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Abstract 

 

Infrastructure networks such as water supply systems, power networks, railway 

networks, and road networks provide essential services that underpin modern society’s health, 

wealth, security, and wellbeing. However, infrastructures are susceptible to damage and 

disruption caused by extreme weather events such as floods and windstorms. For instance, in 

2007, extensive disruption was caused by floods affecting a number of electricity substations 

in the United Kingdom, resulting in an estimated damage of GBP£3.18bn (US$4bn). In 2017, 

Hurricane Harvey hit the Southern United States, causing an approximated US$125bn 

(GBP£99.35bn) in damage due to the resulting floods and high winds. The magnitude of these 

impacts is at risk of being compounded by the effects of Climate Change, which is projected to 

increase the frequency of extreme weather events. As a result, it is anticipated that an estimated 

US$3.7tn (GBP£2.9tn) in investment will be required, per year, to meet the expected need 

between 2019 and 2035.   

A key reason for the susceptibility of infrastructure networks to extreme weather events 

is the wide area that needs to be covered to provide essential services. For example, in the 

United Kingdom alone there are over 800,000 km of overhead electricity cables, suggesting 

that the footprint of infrastructure networks can be as extended as that of an entire Country. 

These networks possess different spatial structures and attributes, as a result of their evolution 

over long timeframes, and respond to damage and disruption in different and complex ways.   

Existing approaches to understanding the impact of hazards on infrastructure networks 

typically either (i) use computationally expensive models, which are unable to support the 

investigation of enough events and scenarios to draw general insights, or (ii) use low complexity 

representations of hazards, with little or no consideration of their spatial properties.  

Consequently, this has limited the understanding of the relationship between spatial hazards, 

the spatial form and connectivity of infrastructure networks, and infrastructure reliability.   

This thesis investigates these aspects through a systemic modelling approach, applied 

to a synthetic and a real case study, to evaluate the response of infrastructure networks to 

spatially complex hazards against a series of robustness metrics.   

In the first case study, non-deterministic spatial hazards are generated by a fractal 

method which allows to control their spatial variability, resulting in spatial configurations that 

very closely resemble natural phenomena such as floods or windstorms. These hazards are then 

superimposed on a range of synthetic network layouts, which have spatial structures consistent 
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with real infrastructure networks reported in the literature. Failure of network components is 

initially determined as a function of hazard intensity, and cascading failure of further 

components is also investigated. The performance of different infrastructure configurations is 

captured by an array of metrics which cover different aspects of robustness, ranging from the 

proneness to partitioning to the ability to process flows in the face of disruptions.  

Whereas analyses to date have largely adopted low complexity representations of 

hazards, this thesis shows that consideration of a high complexity representation which includes 

hazard spatial variability can reduce the robustness of the infrastructure network by nearly 40%. 

A “small-world” network, in which each node is within a limited number of steps from any 

other node, is shown to be the most robust of all the modelled networks to the different 

structures of spatial hazard.   

The second case study uses real data to assess the robustness of a power supply network 

operating in the Hull region in the United Kingdom, which is split in high and low voltage lines. 

The spatial hazard is represented by a high-resolution wind gust model and tested under current 

and future climate scenarios. The analysis reveals how the high and low voltage lines interact 

with each other in the event of faults, which lines would benefit the most from increased 

robustness, and which are most exposed to cascading failures. The second case study also 

reveals the importance of the spatial footprint of the hazard relative to the location of the 

infrastructure, and how particular hazard patterns can affect low voltage lines that are more 

often located in exposed areas at the edge of the network. The impact of Climate Change on 

windstorms is highly uncertain, although it could further reduce network robustness due to more 

severe events.  

Overall the two case studies provide important insights for infrastructure designers, 

asset managers, the academic sector, and practitioners in general. In fact, in the first case study, 

this thesis defines important design principles, such as the adoption of a small-world network 

layout, that can integrate the traditional design drivers of demand, efficiency, and cost. In the 

second case study, this thesis lays out a methodology that can help identify assets requiring 

increased robustness and protection against cascading failures, resulting in more effective 

prioritized infrastructure investments and adaptation plans. 
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Glossary of terms 

 
1st order failures 

Failures directly caused by the impact of an external agent on the infrastructure, such as a climatic hazard. 

 

2nd order failures 

Failures not directly caused by an external agent, but by the result of a domino effect within the infrastructure. 

 

Brownian surface 

Synthetic fractal surface generated by implementing the fractional Brownian motion in a three-dimensional spatial 

domain. The datum of the surface is a regular 𝑥, 𝑦 plane or grid. Given two points 𝑝1 = (𝑥1, 𝑦1) and 𝑝2 = (𝑥2, 𝑦2) 

on this grid, the difference in elevation 𝑧2 − 𝑧1 is correlated with the distance between 𝑝1and 𝑝2 depending on the 

value of the Hurst exponent H.  

 

Bulk Supply Point 

Electricity substation where the voltage is stepped down from 132kV to 33-66kV. 

 

Cascading failures 

Non-linear domino effect where failures that occur in one specific layer of a multilayer network propagate, by 

virtue of interlayer connections, to other layers, potentially resulting in complete shutdowns. Cascading failures 

are one of the mechanisms dominated by 2nd order failures, which cause an initial perturbation to evolve into a 

disproportionate phenomenon. 

 

Civil engineering infrastructures 

Networked systems composed of physical elements that are designed and built according to civil engineering 

principles. These systems are aimed at satisfying primary needs of societies, including the delivery of services, 

such as utility or telecommunication networks, or the flow of passengers and freight, such as transportation 

networks.  

 

Climatic loading 

Load being applied to a physical element or an infrastructure network as a result of the presence of a climate 

phenomenon acting as an external agent. Examples of climatic loading include the wind speed, the depth of 

flooding waters, the rainfall intensity, or the voltage potential of a lightning bolt. 

 

Complex network 

Multilayer network where a node in a given layer is not only connected with nodes in the same layer but also with 

nodes in other layers. 

 

Component or tier component 

Segments of the 132kV and 33-66kV tiers or electricity networks. In the context of this thesis, the former are also 

known as feeders, whilst the latter are known as circuits. Feeders are located hierarchically above circuits and 
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connect National Grid Substations with Bulk Supply Points. Circuits connect Bulk Supply Points with Primary 

Substations. 

 

Control climate 

Output of the control runs of a Climate Model used as initial conditions. Often compared to the output of Future 

climate runs to investigate projected changes. 

 

Critical Footprint 

Portions of the footprint where the climatic loading exceeds the failure threshold of the network. 

 

Critical Infrastructures 

Synonym of Civil Engineering Infrastructures, although the emphasis is more on the importance of these systems 

rather than technical aspects. Critical Infrastructures, often termed Critical National Infrastructures, include all 

utility networks, telecommunication networks, and transport networks. 

 

Degree 

Number of connections or edges featured by a node in a given network. It is denoted by the symbol 𝑘. Often 

mentioned is the average degree of a network, < 𝑘 >, which represents the average number of connections or 

edges found in nodes. 

 

Deterministic spatial hazard 

Any footprint schematized by adopting a deterministic shape such as circles, rectangles, ellipses, squares, and so 

forth. 

 

Digital twin 

Digital representation of an infrastructure, the processes that it enables, and the assets it is composed of. More than 

a simple digital drawing, it is a complex object with attributes that can be used to represent the infrastructure 

behavior in a modelling environment. 

 

Directed network 

Network in which the edges connecting the nodes are directional. 

 

Distribution network 

In the United Kingdom, this represents the segment of the electricity network with a voltage lower than 275kV. 

 

Distribution Network Operator 

Private company in charge of operating, managing, and maintaining the assets of the distribution network in a 

specific region of the United Kingdom.  

 

Edge 

Link or connection that is attached to two nodes which act as endpoints. 
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Exposure 

Extent to which an infrastructure is subjected to a given risk. 

 

Failure  

Complete loss of one or more nodes composing a network as a result of either external or internal factors. A 1st 

order failure corresponds to the failures of nodes that are directly impacted by the exceedance of their failure 

threshold, whilst a 2nd order failure is the result of a domino effect, and it cannot occur without at least one 1st 

order failure. 

 

Failure model 

Modelling tool that explains and governs the 1st and 2nd order failures of the nodes in a network. 

 

Failure threshold 

Upper bound of the load to which the nodes in a network are subjected. In a given node, the exceedance of the 

failure threshold results in a 1st order failure. 

 

Fault 

Failure that occurs in electricity networks. 

 

Footprint 

Shape of the surface area hit by a given natural hazard. In the case of wildfires, for instance, this corresponds to 

the burnt area.  

 

Footprint hotspot 

Sector of the footprint where the climatic loading reaches its maximum value. 

 

Fractional Brownian motion  

Continuous-time Gaussian stochastic process that features a covariance function governed by the Hurst exponent 

H. In the 𝑥, 𝑡 plane, the fractional Brownian motion generates random paths composed of increments that can be 

completely uncorrelated, positively correlated, or negatively correlated, depending on the value of the Hurst 

exponent H. The fractional Brownian motion is a generalized mathematical representation of the Brownian motion. 

 

Fractal dimension 

Dimensionless statistical index that provides an indication of the space-filling capacity of an object in a given 

space. Such index is denoted as 𝐷. In a 2D space, the object with the highest space-filling capacity is a bi-

dimensional object, for which 𝐷 = 2. The same reasoning applies to lower and higher dimensions. 

 

Fractal spatial hazard 

Any footprint schematized according to a fractal recipe such as the fractional Brownian motion. 
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Fragility curve 

Probabilistic model that associates the probability of failure of a given physical element to the value of an external 

loading used as input.  

 

Future climate 

Output of the runs of a Climate Model used as projected conditions, often used in conjunction with the output of 

the Control climate. The Future climate is driven by parameters that refer to future, hypothesized conditions.  

 

Hub 

Node with a high number of connections or edges. 

 

Hurst exponent 

Parameter that describes the level of correlation between two successive increments in the fractional Brownian 

motion. In the case of a Brownian surface, the Hurst exponent drives the degree of spatial autocorrelation found 

in the spatial distribution of surface elevations. 

 

Interdependent network 

Alternative definition for complex or multilayer network.  

 

Line 

Alternative name for tier. In the context of this thesis, the lines are the 132kV and 33-66kV networks. 

 

Load and Loading map 

The load is the severity of a natural hazard. A Loading Map is the equivalent of a Brownian surface, where the 

elevations of the latter are interpreted as the severity of a natural hazard. 

 

Localized attack 

Spatial failure pattern that affects all the nodes in a network that falls within the boundary of a circle with a given 

radius. All such nodes constitute 1st order failures. 

 

Main hub 

Hub with the highest number of connections or edges in a network. 

 

National Grid Substation 

Electricity substation where the voltage is stepped down from 275-400kV to 132kV. 

 

Network model 

Equivalent of topology, it represents the spatial and geometrical properties, together with the relationships between 

nodes, found in a network. 

 

Node 

Also known as vertex, it is an abstract object acting as the primary element of a network. Two nodes are connected 

by an edge, and all nodes connected to a node 𝑗 are its neighbors and compose the connected component of 𝑗. 
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Primary substation 

Electricity substation where the voltage is stepped down from 33-66kV to 11-20kV. 

 

Random attack 

Failure pattern where 1st order failures occur randomly in a network. 

 

Resilience 

Ability of a network or infrastructure to recover from the disruptions caused by natural hazards. 

 

Risk 

Extent of the probable damage that a network or infrastructure is subjected to given the exposure to a natural 

hazard. 

 

Robustness 

Ability of a network or infrastructure to continue operating in the face of the disruptions caused by natural hazards. 

 

Scale-free 

In network theory, this corresponds to networks which degree distributions follow a power law. In terms of spatial 

properties, this corresponds to the presence of repetitive patterns that can be identified regardless of the scale at 

which a given object is being observed. 

 

Self-contained system 

A network or infrastructure that is considered to be operating in absence of interactions with out-of-system 

elements. Opposite of the system-of-systems perspective. 

 

Shortest path 

Path connecting two nodes in a network such that the sum of the weights associated with the edges included in the 

path is minimized. If the weights are all unitary or absent, the shortest path corresponds to the sequence of the 

shortest edges between the two nodes. 

 

Small-world 

Topological structure in which two nodes, whilst being not connected, are only a few hops away from each other. 

 

Spatial autocorrelation 

Extent of the correlation shown by the values associated with two adjacent points on a surface. These may include 

elevation or other spatial phenomena. If the values are positively correlated, the two points are clustered; if not, 

they are dispersed. 

 

Spatial hazard 

Hazard that, as opposed to occurring in pointwise locations on a surface, is spatially-distributed and features a 

certain degree of spatial autocorrelation. 

 



Glossary of terms 

 

 

XIV 

 

Spatial robustness 

Capacity of a network or infrastructure to limit the number of 2nd order failures. 

 

System of systems 

Systemic definition of an interdependent or multilayer infrastructure, where each layer or system relies on the 

others to function correctly. In the context of this thesis, the system is the two-tier electricity network, whereas the 

systems are the 132kV and 33-66kV networks. 

 

Targeted attack 

Failure pattern where the 1st order failures intentionally hit hubs or other significant nodes in the network or 

infrastructure. In the context of this thesis, the failure of edges is not modelled.  

 

Tier 

Alternative name for the systems composing the system of systems. In the context of this thesis, the two tiers are 

the 132kV and the 33-66kV networks.  

 

Topology 

In the context of this thesis, this term represents the structure of the network, also indicating the different spatial 

arrangements in which the nodes and edges are distributed in the network. 

 

Undirected network 

Network in which the edges connecting the nodes are bi-directional. 

 

Vulnerability 

Alternative definition for exposure. 

 

Wind gust 

According to the World Meteorological Organization, the wind gust is the maximum value, measured over an 

observing cycle, of the 3-second running average wind speed. It is measured in meters per second.
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List of acronyms 

 
BA   Barabási-Albert Scale-Free Network 

CF   Critical Footprint 

CPM1.5  Convection-Permitting Regional Climate Model with 1.5 km grid 

DNO   Distribution Network Operator 

ER   Erdős–Rényi Random Network 

fBm   fractional Brownian motion 

FI   Fragmentation Index 

Ft   Failure threshold 

LN   Lattice Network 

NaFIRS  National Fault and Interruption Reporting Scheme 

SN   Number of Surviving Nodes 

SR   Spatial Robustness  

SSm   Spectral Simulation method 

UKV   Convection-Permitting Regional Climate Model with 1.5 km grid 

WS   Watts-Strogatz Small-World Network 

 

 

 

 

 

 

 

 

 

 

 

 

 

 





Chapter 1. Introduction 

 

1 

 

Chapter 1. Introduction 

1.1   Overview 

 There is widespread recognition of the importance that civil engineering infrastructures, 

often referred to as critical national infrastructures, have in our modern society. The networked 

systems that compose these infrastructures, such as transportation networks, water supply 

networks, electricity networks, and many others (Hall et al., 2017), have been recognized as the 

backbone of modern lifestyle (Pant et al., 2016), providers of essential services (Thacker et al., 

2017a), and vital components of modern society (Boin and McConnell, 2007).  

As with any highly industrialized Country, the United Kingdom relies heavily on its 

infrastructures, although this is often better indicated by uptake and usage rather than the scale 

of investment. In the case of the energy sector, for instance, access to electricity has been 

available to 100% of the population for decades (Angelou et al., 2013), whereas investments 

amounted to approximately 0.0034% of the GDP for energy-related projects (National 

Infrastructure Commission, 2016). Another important aspect is the contribution of 

infrastructure to the overall economic output, with electricity alone contributing 2.3% of the 

GDP to the United Kingdom economic output in 2016 (National Statistics, 2017). 

The heavy reliance on infrastructure to support quality of life and the economy, coupled 

with limited investment compounds the effect of disruptions caused by extreme weather events 

and natural hazards. The severe windstorm that hit England and France in October 1987 

battered the local infrastructure with wind gusts exceeding 180 km/h, causing casualties and 

widespread damage (Browning, 2003). Another example is the exceptionally wet summer of 

2007, during which floods affected numerous electricity substations, resulting in £138m of 

damage and a power outage that affected more than 170,000 households over a period of five 

days (Chatterton et al., 2010). More recently, Storm Desmond produced sustained rainfall over 

the North West of England in December 2015, causing power outage for over 60,000 customers. 

This prevented a significant fraction of the customer base from accessing electricity and 

curtailed the availability of telecommunication, transportation, and healthcare services.  

These events reveal the vulnerability of our basic services to extreme weather events 

and natural hazards, with the ultimate impact often exceeding their geographical boundaries or 

footprint. This also highlights the need to understand how infrastructures behave under the 

external loading resulting from natural hazards, as well as the need to investigate whether the 

design and operation of infrastructures can be improved to increase infrastructure robustness. 
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1.2   Spatial complexity of hazard and infrastructure systems 

A very important characteristic of water supply, electricity, rail or other infrastructure 

networks is their spatial domain. This is the geography over which they span, connecting the 

generation of a resource (water, electricity, data etc.) and the customer base (Dunn et al., 2016a). 

Depending on the domain size and location, natural hazards of varying type and severity may 

target the spatial domains where infrastructures operate, loading the system and causing 

disruptions that can either be direct (e.g., outright failures) or indirect (e.g., due to domino 

effect). Although multiple factors are at play, the size of the spatial domain of an infrastructure 

varies with the size and importance of its customer base (Thacker et al., 2018; Flyvbjerg et al. 

2008), which likely puts systems at risk of more severe consequences. The risk to infrastructure 

from natural hazards and climate change has also been recognized by Governments and industry 

alike (Cabinet Office, 2011; ETI, 2018). 

Historically, events driven by natural hazards have often taken their toll on civil 

engineering infrastructures. In recent years, two of the major events are Hurricane Katrina, 

which in August 2005 damaged 44 bridges in and around the city of New Orleans costing 1 

billion USD to repair (Padgett et al., 2008), and the Christchurch Earthquake in the Canterbury 

Region of New Zealand, which in February 2011 damaged around 16% of the cables composing 

the urban electricity network and resulted in 629 million customer minutes lost (Massie and 

Watson, 2011).  These events, although associated with different levels of damage, had one 

aspect in common: their footprint was characterized by spatial contiguity, affecting regions as 

vast as 4 US states (e.g., in the order of 600,000 km2) in the case of Hurricane Katrina, or as 

minute as the Lune Catchment in North West England (e.g., in the order of 1,000 km2) in the 

case of Storm Desmond. As such, events of this nature may be defined as natural spatial hazards 

– encompassing, among others, wildfires, floods, earthquakes, ice storms, and high winds – as 

opposed to natural hazards which footprint is more limited in space – such as lightning, 

sinkholes, and so forth.  

Natural hazards such as precipitation, drought, or windstorms are themselves spatially 

complex because of the physical processes that drive them. However, assessing the impacts of 

disruption from a hazard is made more complex because of the distances that infrastructure 

networks span and the complex flows between locations of demand and locations of supply.  

For example, the city of Los Angeles receives part of its water supply from the Los Angeles 

Aqueduct, which originates 375 km away. Large communities will therefore be impacted by 

disruptions occurring hundreds of kilometers away from their homes.   
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Moreover, there is significant heterogeneity in the structure of both the natural hazard 

and infrastructure networks. Across a hazard footprint there are usually substantial variations 

in intensity of event, whilst the density of civil engineering infrastructures varies considerably, 

being especially concentrated in urban areas. This is of importance, as infrastructures are at 

greater risk of common-cause disruption, e.g. disruption resulting from a common triggering 

event, due to co-location (Thacker et al., 2017a).  

 

 

1.3   Failure and robustness of complex infrastructure systems 

Another key aspect of infrastructures is their connectivity or dependence (Thacker et 

al., 2017b; Fu et al., 2014), which is the result of a complex evolutionary process (Dunn et al., 

2016a) shaped by factors such as changing demand, technologies, and costs (Fu et al., 2016).  

In the context of infrastructures exposed to natural spatial hazards, both co-location and 

interdependence have an important role in the occurrence of cascading failures. This is the 

propagation of failures within, or between, infrastructure systems (Hall et al., 2015; Fu et al., 

2014), as shown by the domino effect that brought down the critical infrastructure caused by 

Storm Desmond in the city of Carlisle, United Kingdom (Ferranti et al., 2017). The presence of 

dependencies between different infrastructure types has led to them being increasingly 

considered as integrated systems-of-systems (Hall et al., 2015; Pearson et al., 2018). 

The robustness of the network, often described as the ability to maintain the levels of 

service despite the disruptions, is therefore not only driven by internal infrastructure 

components within the control of a particular sector, but also by the vulnerability to impacts in 

other sectors beyond their control.  One such example is the 2003 Italian Blackout: in September 

2003, the shutdown of a power plant resulted in the interruption of electrical supply to the 

telecommunication system, which in turn led to the disruption of the SCADA system 

controlling the electricity network, which ultimately led to additional electrical faults in the 

network (Rahnamay-Naeini et al., 2016). This has inspired a number of studies, including those 

that aim at characterizing the robustness of civil engineering infrastructures to natural hazards 

by adopting a systemic perspective (Thacker et al., 2017b).  
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1.4   Research gaps and research questions 

Infrastructures that are robust to natural spatial hazards will provide a more reliable 

provision of services. However, few studies cover the relationship between the spatial structure 

of natural hazards and the spatial structure of infrastructure networks (Rachunok and Nateghi, 

2019; Hickford et al., 2018). In addition, the methods currently available in the literature largely 

ignore the fact that infrastructure networks are holistic systems and that different system layouts 

produce different responses in terms of robustness (Kröger, 2019; Marzo et al., 2019). To 

address these research gaps, this thesis introduces four contributions:  

1) It adopts a systems framework to analyse the impacts of spatial hazards on infrastructure 

networks; 

2) It develops a synthetic case study where the combination of a wide range of 

configurations of spatial hazards and spatial infrastructure networks is assessed;  

3) It uses an array of different robustness metrics to characterize the response of 

infrastructure networks; 

4) It applies a systems approach to a realistic case study. 

 

These contributions differ from the methods available in the literature in that they 

describe the infrastructure networks first from a high-level perspective, and then from a more 

detailed systems perspective. In the synthetic case study, the research question is centered 

around describing the robustness of infrastructure networks holistically, pinpointing the 

differences in robustness between systems with different spatial layouts. Then, in the real case 

study, the emphasis is on systems thinking, with the purpose of understanding how the different 

subsystems composing a real-world infrastructure interact with each other under the influence 

of spatial hazards.  

Adequate representation of the spatial properties of hazards is crucial to reduce the 

likelihood of spatial biases affecting the assessment of infrastructure robustness. Existing 

approaches fall into two approaches. The first approach simplifies the behavior of the system, 

and usually does not account for spatial variability or uses simple shapes (e.g. a circle) to 

represent a hazard footprint. The second approach uses physically-based models, such as an 

inundation model, to simulate the hazard.   

In the synthetic case study, this thesis first develops and demonstrates a fractal spatial 

hazard generator to create patterns which represent the spatial variability of different hazards 

by tuning model parameters, thereby allowing to generate a breadth of different spatial 
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structures. The robustness of different infrastructure network structures to different spatial 

hazards is subsequently determined. The framework is then applied to a real case study using a 

high-resolution wind gust model to evaluate the response of an electricity infrastructure network 

to windstorms under current and future climates.  

 

 

1.5   Scope of work, aims and objectives 

The scope of work of this thesis is to study the behavior of infrastructures exposed to 

spatial hazards by adopting a systems approach. This thesis intends to accomplish this by 

investigating both synthetic and realistic infrastructures, infrastructures considered as 

standalone systems and infrastructures considered as systems-of-systems, and synthetic and 

realistic spatial hazards. This thesis also demonstrates the importance of adopting spatial 

hazards that cannot be described by a deterministic model.  

The delimitations of this study include the analysis of selected, planar network models 

that are commonly used in the literature (see paragraphs 4.4 and 5.3), a specific stochastic model 

to reproduce spatial hazards (see paragraph 4.2), and a specific output of a climate model used 

as realistic spatial hazard (see paragraph 5.2). This thesis focuses on quantifying the robustness 

of infrastructures in terms of failures happening in the immediate aftermath of the manifestation 

of spatial hazards, and it is not concerned with modelling their temporal evolution. In the 

paragraphs mentioned above, reasons are provided as to why other network models, metrics, 

and climate outputs are not used.  

More in detail, this aim of this work is to characterize the robustness of different 

infrastructure network structures to natural hazards of different spatial structure, and to quantify 

the robustness of these structures using adequate metrics. The ultimate goal is to provide 

researchers, asset managers, designers, and infrastructure investors with strategies to identify 

the vulnerability of their infrastructures to spatial hazards. 

 

To achieve the aims discussed before, the following objectives will be accomplished: 

1. Reviewing the existing methods for modelling spatial hazards and proposing a 

new approach; 

2. Comparing the spatial properties of non-deterministic and real-world spatial 

natural hazards; 
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3. Analyzing the interaction between different types of spatial hazards and 

different types of synthetic infrastructures;  

4. Assessing infrastructure resilience by applying a range of topology-based 

metrics on various synthetic infrastructure models; 

5. Assessing the interaction between a real-world natural hazard and a real-world 

infrastructure; 

6. Highlighting the most critical segments of the infrastructure based on their 

exposure to the hazard and their potential to trigger cascading failures; 

7. Distilling key recommendations for engineers, policy makers and other 

stakeholders to inform the design and operation of infrastructure systems.  

 

1.6   Structure of this thesis 

This thesis is organized into several chapters addressing two case studies. The first one 

is an investigation of the robustness of synthetic infrastructure network models exposed to 

natural spatial hazards represented by fractal surfaces, whereas the second one analyzes the 

robustness of a real-world infrastructure subjected to a real-world natural hazard.  Following 

this introduction, Chapter 2 presents a detailed and exhaustive examination of the body of 

literature addressing the many interdisciplinary topics revolving around civil engineering 

infrastructures, robustness, and natural hazards. Chapter 3 offers a high-level description of the 

common modelling framework that is applied to two case studies. Chapter 4 and Chapter 5 

describe how the framework is applied to the synthetic case study and real case study 

respectively.  Chapter 6 and Chapter 7 report results and discuss the implications of the results 

for the synthetic and real case study, respectively. Finally, Chapter 8 highlights the major 

findings of the work and draws together insights from both case studies to provide 

recommendations to policy makers and set out priorities for future research on this topic. 
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Chapter 2. Literature review 

2.1 Introduction 

 

2.1.1 The complex nature of civil engineering infrastructures 

Civil engineering infrastructures are one of the pillars of modern societies. Highways, 

railway networks, water supply systems, electricity networks, gas networks and 

telecommunication systems are only a few of the many systems that support progress and 

civilization. Over the last decades, infrastructures have evolved from being the response to 

primary needs such as drinking water, reliable energy and transportation, to entities with 

multiple levels of complexity. As recognized by Dunović et al. (2014), it is possible to identify 

four different layers of complexity: i) organizational and economical complexity (Baccarini, 

1996); ii) structural complexity (Williams, 2002); iii) technical, directional, and temporal 

complexity (Remington and Pollack, 2007); iv) factual and interactional complexity (Geraldi, 

2008). However, additional factors alter this landscape, rendering infrastructures not only 

difficult to design, but also extremely complicated to manage. According to Setola et al. (2016), 

the increasing population, the widespread use of information technology, the migration waves 

towards cities that increase urbanization, and the decreased governmental control due to 

infrastructure privatization are the major factors affecting the benefits provided by civil 

engineering infrastructures. In addition, climate change (Schweikert et al., 2014) and terrorism 

(Apostolakis and Lemon, 2005) are certainly capable of playing a crucial role. It is notable that 

the structural and design aspect is only a marginal contributor to the overall complexity, 

stressing the idea that infrastructures continue to exist after the decommissioning of their 

construction sites. A non-exhaustive list of dimensions relevant to managing infrastructure 

systems from a holistic perspective includes: 

• Risk and resilience; 

• Procurement and infrastructure performance; 

• Asset management; 

• Safety and sustainability; 

• Technology; 

• Policy and regulation. 
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The area of risk and resilience is concerned with determining the level of risk to which 

infrastructures are subjected, and their level of resilience or capacity to regain functionality 

once damaged. Studies around this subject, usually termed impact studies, include exposure to 

the risk of natural hazards (Wilkinson et al., 2012; Pregnolato et al., 2016), risk of man-made 

attacks (Little, 2003; Chopra et al., 2016) or financial risks (Grimsey and Lewis, 2002). The 

most recurrent objective of this area is to provide infrastructure operators with indications 

regarding the weakest components of their networks, in such a way that a tailored strategic 

investment or adaptation plan can be put in place (Walsh et al., 2013; Sayers et al., 2015). 

The dimension of procurement and infrastructure performance focuses on the processes 

regulating how infrastructures are provided and how well they meet user demand and 

expectations. The aspects of investigation for procurement include the economic capacity of 

infrastructure agencies to participate in investment programs (Kajewski, 2016) and the 

reliability of contracting programs that involve Public-Private Partnerships (Regan et al., 2015). 

Performance aspects concern, amongst others, the behavior of infrastructures under extreme 

loading, such as severe earthquakes (Palermo et al., 2017), and the hindrance due to the scarcity 

of resources such as water (Fontanazza et al., 2007) or crude oil (Gross et al., 2012), and how 

this affects revenue projections, availability of goods, and service failings.  

Asset management, at the interface between research and industry, is an area driven by 

the recent emergence of Building Information Modelling (BIM), a framework for the generation 

and analysis of digital representations (digital twins) of the physical components of 

infrastructures. Applications of BIM can be found in the energy sector for detecting faults in 

buildings (Dong et al., 2014) and in the monitoring and maintenance of subways (Marzouk and 

Aty, 2012). These studies highlight the importance of the BIM framework for checking the 

status of infrastructure assets and for driving investment strategies.  

The safety and sustainability dimension addresses the safety aspects surrounding the 

construction and operation of infrastructures, as well as their sustainability and environmental 

impact. Relevant studies focus, for instance, on monitoring aging bridges and other structures 

(Frangopol and Tsompanakis, 2014), and on the environmental performance of infrastructures 

operating at the urban level (Zavrl and Zeren, 2010).  

The technology dimension focuses on how solutions coming from research and 

development can improve the efficiency of construction and services. Among recent 

developments, the Internet of Things framework (IoT) was used to improve the performance of 

urban infrastructures by monitoring the services provided with an integrated network of sensors 

(Sánchez et al., 2013). This leads to the concept of Smart Cities, an urban environment where 
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infrastructures are smart as they adapt intelligently to changes in demand, the surrounding 

environment, and the interaction with other infrastructures to improve their performance (Royal 

Academy of Engineering, 2012).  

Finally, the area of policy and regulations is concerned with delineating a set of 

administrative solutions that enhance the role of infrastructures. Studies in this field focus on 

the governance of infrastructures with respect to themes such as market liberalization (Bošković 

and Bugarinović, 2015), the management of excess infrastructures (Albalate et al., 2015), and 

development and sustainability plans (Willets et al., 2010). By evaluating the robustness of civil 

engineering infrastructures to spatial hazards (Figure 2.1) and their systemic behavior and 

performance, this thesis aims at providing innovative contributions mainly to the dimension of 

risk and resilience.  

 

 

Figure 2.1. Electricity substation being flooded in Gloucestershire, United Kingdom, on 23 July 2007. 

Floods are one of the most common natural spatial hazards to which infrastructures are subjected. 

REUTERS/Stephen Hird. 
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2.1.2 Risk, resilience, and robustness of infrastructures 

 

2.1.2.1 Definition of risk, resilience, and robustness 

The concept of risk has long been associated with civil engineering. As highlighted by 

Flint (1981), it falls into two categories: the one that applies to the physical elements, and the 

one that concerns the overall system. From the physical point of view, risk is associated with 

the idea of being exposed to collapse due to lack of structural integrity, such as the failure of a 

beam or viaduct pillar (e.g., the Hintze Ribeiro disaster in Portugal in 2001). From the 

perspective of a system, risk is associated with the inability to provide the intended service due 

to failures that reduce the systemic performance, as in the case of widespread blackouts (e.g., 

the Northeast blackout in United States and Canada in 2003) or transport disruptions due to 

floods (e.g., Storm Desmond in the United Kingdom in 2015). Given the variety of 

environments in which infrastructures operate and their complexity, it is realistic to assume that 

infrastructures are exposed to both physical and systemic risk. These may involve risks from: 

i) cyber-attacks, which may result in power outages (e.g., the 2015 incident in Western Ukraine 

that left 230,000 people without power for 6 hours); ii) intentional or malicious attacks, which 

may cause partial or total disruption due to damages occurring in targeted, high-profile locations 

(e.g., the London Underground); iii) random attacks, which involve damages occurring in a 

casual location; and iv) spatial attacks, resulting in the simultaneous failure of multiple 

infrastructure assets that are geographically proximal to each other due to common cause failure 

(Setola and Theocharidou, 2016), which is the typical failure mode featured by natural hazards.  

Faber and Stewart (2003) define risk (R) as a function of the probability (P) of an event 

and its consequence (C). The model output aligns with the concept of expected losses adopted 

by the insurance industry (equation 2.1): 

𝑅 = 𝑃 ∗  𝐶   (2.1) 

The identification of risks is carried out by means of a risk analysis, during which the 

potential sources of risk, termed hazards, are identified (Faber and Stewart, 2003). The 

probability associated with risk is determined by identifying a limit state function that shapes 

the probability domain. Dawson and Hall (2006) state that a system composed of n variables 

𝑥: = (𝑥1, … , 𝑥𝑛) which belong to 𝜒 ⊆ ℝ𝑛 can be used to represent an object, in this case an 

infrastructure and its components. Defined the limit state function 𝑔(𝑥) as the separation 

between the region of failure 𝐹 = {𝑥: 𝑔(𝑥) ≤ 0} and the region of uneventfulness 𝑈 =

{𝑥: 𝑔(𝑥) > 0}, with 𝐹 ⋃ 𝑈 =  𝜒 , the probability of failure 𝑝𝑃 is given by equation 2.2: 
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𝑝𝑃 = 𝑝(𝑔(𝑥) ≤ 0) = ∫ 𝐼(𝑔(𝑥) ≤ 0) 𝜌(𝑥) 𝑑𝑥
𝜒

   (2.2) 

where 𝐼 represents the indicator function and 𝜌(𝑥) is the joint probability density 

function referring to the system variables. The consequence of an event is a function of the type 

of event and the accuracy and complexity of the loss model used to describe the impact. One of 

the most notable high-complexity models is the Florida Public Hurricane Loss Model 

(FPHLM), which was developed by Pinelli et al. (2009) to characterize the damage to properties 

exposed to the risk of Hurricanes. The FPHLM couples a wind model with a storm surge 

component and an actuarial module to estimate the cost associated with insured lost property. 

Less complex loss models include those with non-monetary purposes, such as the fragility 

curves that characterize the robustness of electricity networks by estimating the number of 

faults (Dunn et al., 2018).  

The concept of resilience finds application in many different fields and has multiple 

definitions. In the context of civil engineering, resilience is generally defined as the ability of 

an infrastructure to recover rapidly from disruptions (Blockley and Godfrey, 2017). Additional 

definitions describe it as the capacity of learning to bounce back (Wildavsky, 1991), or as the 

ability to withstand loadings of environmental nature (Horne and Orr, 1998). The latter 

demonstrates that the idea of resilience for civil engineering infrastructures is tightly coupled 

with that of an external agent threatening the system. Although infrastructures are also exposed 

to malicious attacks (Apostolakis and Lemon, 2005), the external agents considered in this 

thesis are natural hazards only, in line with Wilkinson et al. (2012) and Pregnolato et al. (2016). 

As pointed out by Bruneau et al. (2003), the idea of resilience is best explained with reference 

to a system that is hit by an external agent, has its performance diminished by the ensuing 

disruption, and then recovers (Figure 2.2). Often the concept of resilience is associated with 

that of the speed of recovery, and as such the latter becomes a metric used to indirectly quantify 

resilience. This approach has been implemented by studies addressing the resilience of water 

supply networks (Herrera, 2016; Zhao et al., 2017) and railway networks (Bhatia et al., 2015). 

Modelling recovery requires sound and realistic tools that can deliver reliable results, and it 

also entails acquiring infrastructure-specific data that can be used to describe the infrastructure 

behavior. Without these, there is a risk that the recovery is not modelled properly. 
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Figure 2.2. Conceptual scheme of the resilience of a system adapted from Bruneau et al. (2003) (e.g., 

the impact-recovery cycle). The speed of recovery is often used as a measure of resilience: the lower 

𝑡1 − 𝑡0, the more resilient the system. The area under the curve was defined by Bruneau as a measure 

of Resilience. 

 

 

 Another important concept is that of robustness. Blockley and Godfrey (2017) define a 

robust system as a system that is not vulnerable to loadings or attacks such as natural hazards 

or man-made sabotage. Moreover, robust systems limit disruptions that are disproportionate 

with respect to the root cause by absorbing or withstanding them (WEF, 2013). Notable 

robustness studies have addressed the vulnerability of the United States electricity network 

(Wang and Rong, 2011), that of urban water infrastructures (Mikovits et al., 2017), and also the 

available strategies to improve robustness (Khoury et al., 2014).  The concepts of resilience and 

robustness are often used interchangeably, and their definitions seem to have fuzzy boundaries. 

However, authors such as Bruneau et al. (2003), the World Economic Forum (2013), and 

Blockley and Godfrey (2017) concur in identifying robustness as being a necessary, although 

not sufficient, condition for resilience. 
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2.1.2.2 Infrastructures as complex systems 

The need of integrating systemic points of view in civil engineering arises from the 

inherent complexity of engineering undertakings, which is often a function of the scale of a 

project. Such complexity is even more noticeable in infrastructure design and construction, 

where it is important that the different parts composing the infrastructure operate in a 

coordinated manner. Not only does systemic mean “building or creating a whole from parts” 

(Langford, 2013), but it also represents a necessary approach because infrastructures are 

systems “consisting of interacting components arranged in a hierarchical and decomposable 

structure” (Brady and Davies, 2014). In addition, the range of services delivered by 

infrastructures may be spread across the different components, as is the case with the 

generation, transmission, and distribution segments of the electricity network. For these 

reasons, the shift from “project” to “system” (Whyte, 2016) is an invaluable opportunity to 

reframe many of the problems that affect infrastructures and the analytical methods used to 

address them.  

This shift entails looking at the system in terms of an ensemble of parts that are required 

to function organically by means of interdependencies, much as it happens for interdependent 

networks (Fu et al., 2014; Havlin et al., 2015; Radicchi, 2015). Interdependency seems to be an 

inherent property of civil engineering infrastructures – regardless of whether it was created on 

purpose or was simply the result of convenient choices – and has in fact been the subject of 

numerous studies (Peerenboom, 2001; Leavitt and Kiefer, 2006; Wang, 2011). Not only is its 

presence a catalyst for the transition from traditional engineering to a systemic approach, but it 

is an implicit definition of the latter, where the individual components of an infrastructure are 

designed to not just deliver, but to operate in co-ordination with other components as well. One 

example of such functional paradigm can be found in water supply systems, where the co-

ordination between the intake, transportation, and delivery components plays a crucial role in 

ensuring that the service is reliable and meets high quality standards. 
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2.1.3 Systemic approaches to understanding risk, robustness, and resilience 

 

2.1.3.1 Systems of systems and hierarchies 

 

The response of civil engineering infrastructures to hazards has been extensively 

investigated in literature by adopting a system-of-systems perspective. This allows to model the 

impact of disruptions taking into account the multiple interactions that infrastructures typically 

feature (Peerenboom et al., 2001; Rinaldi et al., 2001), as opposed to analyzing the impact on 

each system in isolation and then aggregating the outcome. Further to this, as pointed out by 

Eusgeld et al. (2011) and Mostafavi (2017), infrastructures are an ensemble of physical 

elements that are interconnected and related to each other, which functions could not be 

performed in absence of any of them. As such, infrastructures may be seen as systems in which 

the whole is greater than the sum of the parts. This approach requires doing away with 

considering infrastructure elements as if they were standalone, disconnected entities, and as 

such it represents the opposite of performing in-silo analysis. Further to this, the extreme 

vulnerability that civil engineering infrastructures have repeatedly shown when hit by extreme 

weather or natural disasters indicate that another set of interactions should be taken into 

consideration, e.g. the interactions with the geographical domain embedding them. 

Consequently, it may be possible to call systemic any approach to evaluating risk, resilience, 

and robustness that models the presence of interactions within the same infrastructure, or 

between infrastructures, and between infrastructures and the geographical domain where they 

operate. 

The first studies investigating infrastructure interactions were aimed at identifying the 

relationships between different systems, in an attempt to depict the intricacy that the built 

environment has come to represent over time. The renowned studies by Peerenboom et al. 

(2001) and Rinaldi et al. (2001) highlighted the presence of multiple relationships between 

infrastructure systems (Figure 2.3), and defined dependencies as a one-directional connection 

between two infrastructures and inter-dependencies as a two-directional connection, where the 

status of one infrastructure influences that of another and is in turn affected by it.  

 



Chapter 2. Literature Review 

 

15 

 

 
Figure 2.3. Visualization of the inter-dependencies between infrastructure systems that provide six of 

the most important services. Adapted from Rinaldi et al. (2001). 

 

 

The concept of intra-dependencies has been proposed by Buxton and Pringle (2014) as 

a two-way connection that occurs within the same infrastructure system. The process of 

identifying the intra-dependencies occurring in a system relies heavily on the unequivocal 

identification of the set of components or elements that compose the infrastructure itself. One 

example of a set is the lines with different voltage that compose the electricity transmission and 

distribution network (Figure 2.4). As a result of this functional partition, the overall behavior 

of the infrastructure is dictated by the emergent behavior, which puts infrastructures perfectly 

in line with the concept of complex systems (Amin, 2000).  

The existing body of literature addressing this subject is rather extensive, although the 

number of studies directly investigating how the different infrastructure elements interact with 

each other in a failure scenario appears to be limited. Pitilakis et al. (2016) adopted the concept 

of intra-dependencies to study the effect of earthquakes, soil liquefaction, and ground 

deformations on the transportation network of the city of Thessaloniki, in Greece. The study 

revealed that the loss of connectivity of the transportation network is significantly increased 

when the interaction with collapsed buildings is considered. Panzieri and Setola (2008) 

modelled the mutual dependency of infrastructures to explore the effects of man-made attacks, 

and adopted a linearized Markov chain to estimate the overall level of inoperability faced by a 

complex energy-transportation-urban system. Soltan et al. (2017) adopted a system-of-systems 

approach to study how cascading failures propagate in an electricity network subjected to 

individual failures.  
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As highlighted by Brady and Davies (2014), analyzing an infrastructure by means of 

the systemic approach implies acknowledging the existence of hierarchies. The range of 

infrastructures that feature well-defined hierarchical models is vast (Svendsen and Wolthusen, 

2007; Bagler, 2008; Robson, 2016), and encompasses, among others, electricity networks, 

water supply systems, gas networks, and transport networks (Yerra and Levinson, 2005). In 

impact studies where private stakeholders provide confidential asset information and geocoded 

files, hierarchies are easily recognized and modelled, reducing the hierarchical uncertainty to a 

bare minimum. However, there are instances where detailed information and datasets are not 

available, and as such the identification of hierarchies may rely on pattern recognition or 

clustering techniques applied to networks (Sanchez-Silva and Gómez, 2013).  

The point of view of Brady and Davies about implementing a systemic analysis by 

acknowledging the existence of hierarchies is confirmed by topological considerations. In fact, 

it can be argued that it is the presence of functional hierarchies, or dependencies, that gives an 

infrastructure the status of a system of systems. The case of electricity networks is rather 

exemplificative (Figure 2.4), although the same applies to road networks (Lämmer et al., 2006) 

and water supply networks (Diao et al., 2014), for instance. In these examples, there is a neat 

separation between the different co-operating systems, the discriminating factor being either 

their capacity (voltage for electricity networks, flow rate for water supply networks) or their 

pre-assigned importance (classification for road networks).  

 

 

Figure 2.4. Schematized version of the typical hierarchy of electricity networks. The voltage is 

progressively stepped down to meet user demand. Segments at higher voltage can be seen as more 

important as they feed one or more segments with lower voltage.  
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2.1.3.2 Two possible systemic approaches 

The idea that infrastructures often follow a hierarchical structure is reinforced by 

Robson (2016), Bogler (2009), and Yerra and Levinson (2005), who highlighted the fact that 

several levels may exist within the same system, which are often identifiable based on capacity 

(e.g., traffic flow or rank for transportation, flow for water supply systems, voltage for power 

networks, and so forth). These levels correspond to the different stratifications which can be 

identified as part of the same self-contained system. This is the case, for example, of the 

electricity network, a system composed of transmission and distribution lines operating at 

different voltages and on different spatial domains. Based on this reasoning, two different 

approaches may be identified: 

1. A macro-systemic approach, with or without partitions; 

2. A micro-systemic approach. 

 

The first approach involves analyzing an infrastructure at the macro-system level by 

performing a macro-scale analysis. This considers the system as a whole, and it may be 

performed with or without partitions. In the context of this thesis, partitions can be considered 

as self-contained sub-systems composing the larger infrastructure. When partitions are not 

modelled, and the infrastructure is considered as a whole, indications regarding the behavior of 

a system from a holistic perspective may be obtained, whereas the presence of partitions may 

be driven by the need to understand, at a finer scale, how the response to disturbances of a 

specific infrastructure component such as a specific voltage line influences the behavior of 

intra-dependent lines. The presence of partitions may entail looking at inter-dependencies 

and/or intra-dependencies. Overall, a macro-system level study allows to analyze risk, 

robustness, and resilience in terms of the overall impact of system-wide disruptions, leaving the 

analysis of localized behavior and impacts to smaller-scale studies. Although the macro-system 

level appears to be the scale of choice for investment strategies, governance, regulation (Roelich 

et al., 2015), and digital transformation (ICE, 2017), robustness studies performed at this level 

have targeted the London Underground system (D’Lima and Medda, 2015; Chopra et al., 2016), 

the airline traffic network (Wilkinson et al., 2012), and the electricity network (Panteli et al., 

2017). Many of the lessons learned from these studies point toward implementing adaptation 

strategies and changes that span the entire length of existing systems. This is non-trivial and 

requires accurate retrofitting, as shown by O’Donnell et al. (2014) for concrete tunnels and 

Pregnolato et al. (2016) for the road network and the built environment.  
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The second approach is, by contrast, a highly refined, computationally expensive, and 

as such difficult to implement procedure, where detailed information such as structural and 

behavioral characteristics are needed to model the response of each element composing the 

infrastructure system (Proske et al., 2018). For instance, to evaluate the response of the power 

network to high winds using a microsystemic approach would involve analyzing the behavior 

of every single pylon, which would in turn require models that are flexible enough to 

accommodate for variables such as materials, age, dimensions, altitude, presence of natural or 

physical shields and height, all of which may vary greatly even in a small region. 

 

 

2.1.3.3 Modelling the relationships between infrastructures 

 

Within the context of civil engineering infrastructures exposed to natural hazards, the 

concepts of risk, resilience, robustness, together with the systemic approaches used to 

understanding them, highlight the important role of the relationship between systems operating 

in the same geographical domain. As it emerges from the previous paragraphs, modelling these 

relationships is, essentially, what distinguishes a systemic approach from an in-silo approach. 

Setola and Theocharidou (2016) offer a thorough overview of how the relationships between 

infrastructures may be analyzed, understood, and modelled. According to the authors, 

dependency is a unidirectional relationship where variations in the state of one infrastructure 

affect the state of other, dependent infrastructures. Examples of this may include outages in the 

power network that affect the ability of a water supply system to increase the pressure in water 

mains or of a wastewater plant to operate (Dawson et al., 2018). Contrarily, interdependency is 

a bidirectional relationship where disturbances in the first infrastructure not only affect the 

dependent infrastructures, but ultimately backfire, as the first infrastructure is itself dependent 

on the affected ones. The latter appears to be a rather complex situation, where the intricate 

texture of dependencies exposes the multi-infrastructure system to cascading failures 

(Buldyrev et al., 2010; Lu et al, 2018) (see paragraph 2.2.4.3). Setola and Theocharidou (2016) 

and Dawson (2015) categorize interdependencies as being of physical, cyber, geographical, 

logical, and social nature. Although all of them play a key role in ensuring a healthy 

infrastructure system, within the context of this thesis the geographical interdependency is of 

primary importance, as it is the mechanisms that enables common mode failures to occur.  

Setola and Theocharidou also categorize the different modelling approaches to 

dependency and interdependency (Figure 2.5). These include: i) holistic approaches, which 

deploy simplified models aimed at providing qualitative information, and which tend to model 
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infrastructures as single entities by adopting a certain degree of abstraction and large-scale, 

coarse information; ii) network-based or topology-based or structure-based approaches, where 

graphs from network theory are adopted to model the infrastructure as an ensemble of identical 

entities in which relationships are represented by connections, and where the emphasis on 

topological or functional aspects allow to capture the structural properties and to work with 

discrete working states (e.g., active or failed); and iii) simulation-based approaches, where 

more complex models are used in an attempt to unravel dependency or interdependency as they 

emerge from the collective behavior of the parts composing the infrastructure. Figure 2.5 shows 

where the three different approaches are positioned with respect to each other and the three key 

aspects of application domain, implementation effort, and access to information. Based on the 

problem at hand, the requirements, and the constraints posed on the three key aspects, the choice 

of the preferred approach is driven by the need to make an optimized decision. If a network-

based approach is selected, then a decision should be made regarding the adoption of a structural 

or purely topological model, or a functional, topological- and flow-based model. 

 

 

Figure 2.5. Qualitative chart showing the positions of the modelling approaches with respect to each 

other and the three key aspects of application domain, implementation effort, and access to information. 

Adapted from Setola and Theocharidou (2016). 
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2.1.4 Formulation of the research problem 

 

The research problem addressed by this thesis is tightly coupled with the concepts of 

risk, resilience, robustness, and systemicity presented in the previous paragraphs. In generic 

terms, this thesis aims at adopting systemic approaches to evaluate the robustness of civil 

engineering infrastructures, as well as the risks, to the spatial attacks induced by natural 

hazards. This research problem comes with a degree of complexity that requires a multi-stage 

approach in order to derive the necessary information, or building blocks, on top of which the 

workflow of this thesis is built. Whilst detailed information on these building blocks or stages 

is provided in paragraph 2.2, some important, generic aspects have to be taken into 

consideration before zooming in on the technicalities of the problem itself. 

As discussed in paragraph 2.1.3.3, given the level of complexity that civil engineering 

infrastructures feature (Dunović et al., 2014), the need to adopt systemic approaches is justified 

by the necessity to take into consideration the mutual relationships between infrastructure 

components and their contribution to the overall response to disturbances. This thesis is 

concerned with adopting a macro-scale analysis performed at different hierarchical levels and 

on different infrastructure systems, the aim being to compare the outcomes and then draw 

meaningful conclusions based on them. Another crucial element is the timing of the robustness 

evaluation. With respect to the impact-recovery cycle proposed by Bruneau et al. (2003), this 

thesis focuses on the immediate aftermath of the hazard impact (Figure 2.2), so as to gauge the 

immediate response of infrastructures. This is done in order to avoid the numerous uncertainties 

affecting the recovery phase. In line with Dunn et al. (2018), the losses caused by natural 

hazards are not interpreted in monetary terms, but rather in topological terms.  

The final, important aspect to consider is that the problem of evaluating the robustness 

of infrastructures to natural spatial hazards is addressed from two different perspectives: the 

first involves analyzing the response of abstract infrastructure models exposed to abstract 

hazards, whilst the second revolves around analyzing real-world assets exposed to real-world 

natural hazards. This two-sided approach is implemented in order to gain insights on how future 

infrastructures may be designed given the presence of natural hazards (first perspective), and 

on how existing infrastructures may be reconfigured to better cope with them (second 

perspective). Insights of this nature may be of relevance to infrastructure practitioners and the 

wider field of asset management, as the latter are the intended audience of this research 

problem. 
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2.1.5 Original contributions of this thesis 

 

In the context defined by the previous paragraphs, this thesis aims at providing the 

following novel contributions: 

• Generate an array of realistic, synthetic spatial hazards by using a 

computationally inexpensive methodology which enables ease of 

reproducibility and reduced runtimes;  

• Compare the impact on a range of infrastructure topological models of the 

realistic, synthetic spatial hazards to that of the most common model used in the 

literature; 

• Develop a range of topology-based metrics and compare the performances of 

the topological models to highlight differences and similarities and gain insights 

on the most robust topology against all hazards; 

• Evaluate the impact of a very high-resolution climatic hazard, obtained from a 

state-of-the-art Regional Climate Model, on a real-world, multi-level 

infrastructure; 

• Highlight the sections of the infrastructure that are mostly affected by failures 

that could benefit the most from a strategic investment plan.  
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2.2 Six stages to understanding the risk, resilience, and robustness of 

infrastructures 

 

 The task of evaluating the response of an infrastructure system exposed to an external 

threatening agent such as natural hazards is rather complex and requires multiple levels of 

information. An extensive literature review allowed to identify six stages that constitute one 

approach to understanding the risk, resilience, and robustness of infrastructures (see paragraph 

2.2.7). These stages are listed in the following sections and represent the end-to-end working 

pipeline used throughout this thesis. 

 

2.2.1 Stage 1: spatial hazards 

 

2.2.1.1 Background: characteristics of spatial hazards 

Natural hazards are the paramount personification of spatial hazards, being capable of 

affecting areas as large as geographic regions (Gill and Malamud, 2014). Their spatial structure 

is one of the most visible effects, e.g. the extent and shape of a flooded area (Figure 2.1) or 

those of a burnt area. Upon evaluating the impact on infrastructures, estimating the extent of 

the area affected by a natural hazard adds valuable information on the overall description of the 

event. This area is often referred to as footprint (Guha-Sapir et al., 2011). The spatial component 

of wildfires, windstorms, floods, ice storms and other hazards is driven by multiple factors, 

among which are: i) the magnitude of the event; ii) the topography and the physical constraints 

it poses; iii) the built environment; iv) the latitude and longitude of the location; v) possible 

boundary conditions. Providing a characteristic footprint size for each natural hazard is non-

trivial, given the variation in the driving factors; however, size ranges are available in literature 

(Gill and Malamud, 2014).  

Despite the fact that different natural hazards occur at different spatial scales (Gill and 

Malamud, 2014) and with different degrees of severity, their behavior with respect to 

infrastructures seems to be, in general, the same. Regardless of the physical process that governs 

them, natural hazards act as an external agent attacking physical elements with the aggravating 

factor of being spatially-distributed, featuring spatial contiguity across their domain. As such, 

their impact may be spread over large areas, resulting in significant disruption. The Fort 

McMurray wildfire in Canada, Storm Desmond in North West England, Hurricane Harvey in 

Texas, and the 2014 Tehran Dust Storm stand out among the most recent events. When 

infrastructures are modelled as networks (Peerenboom et al., 2001; Rinaldi et al., 2001) and the 
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disruption is interpreted as an attack to their nodes, culminating in events such as the failure of 

flooded electricity substations, natural hazards assume the significance of spatially-distributed 

attacks. The spatial structure of natural hazards can be described by using hazard maps or 

hazard fields, which not only depict the spatial extent of the hazard but also how the severity or 

magnitude is distributed across the domain. 

The pattern followed by spatial hazards is significantly different from the well-known 

attack models used in network theory to investigate the robustness of networks. These models 

include random attacks (Albert et al., 2000; Albert and Barabási, 2002) and targeted attacks 

(Tanizawa et al., 2005; Estrada, 2006). In these, either a node or group of nodes is removed 

from the network and the overall impact on the system is eventually determined based on the 

underlying network topology. Therefore, these models may be categorized as node-driven since 

the propagation of failures depends on the location of the node and its importance. Examples 

of targeted attacks include those events defined as man-made or malicious, which are intended 

to create disruption in one crucial location, such as the sabotage of electricity substations, 

generation plants, or water pumping stations. Examples of random attacks may involve events 

targeting less important nodes. 

On the other hand, localized attacks (Berezin et al., 2015; Shao et al., 2015) were 

introduced to model the occurrence of spatially-distributed events as circles, including natural 

hazards. Being spatially-distributed attacks, the localized attacks do not focus on single nodes; 

rather, they target groups of nodes, and their effect is influenced by the size and intensity of the 

event. These attacks also take into consideration the spatial extent of the area in which the 

networks are embedded. Accordingly, spatially-distributed attacks may be categorized as 

spatially-driven, as their impact on the network is influenced by their spatial variability across 

the entire domain.  
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2.2.1.2 Interactions between infrastructures and spatial hazards 

Infrastructures operate on spatial domains of different size. For instance, sewer systems, 

fiber networks, and road networks operate at the level of urban environments (micro and local 

extent); water supply networks and gas networks operate at the district and regional level (local 

and regional extent); highway networks operate at the regional or interregional level (regional 

and global extent). Railway networks, electricity networks, and telecommunication networks 

operate at all scales. These examples highlight that civil engineering infrastructures virtually 

occupy all spatial scales, and as such they are exposed to a wide range of natural spatial hazards. 

On the one hand, infrastructures thrive due to the positives of their domain, such as size, 

location, and customer base; on the other, they suffer from the negatives, such as exposure to 

hazards. As pointed out by Gill and Malamud (2014), it is possible to categorize natural hazards 

based on their spatial scale. Table 2.1 shows the infrastructures that are mostly impacted. 

 

Table 2.1. Spatial scale of a selection of natural hazards and impacted infrastructures as per Gill and 

Malamud (2014). The extent of the exposed infrastructure may exceed the scale of the hazard. 

Natural 

spatial hazard 

Spatial 

scale (km2) 

Spatial 

extent 

Examples of exposed 

infrastructures 

References 

Landslides and 

sinkholes 
[10-2, 102]  Micro, Local 

Roads,  

railways, 

gas network, 

water supply network, 

telecommunication network 

Terranova et al. 

(2016); 

Gibson et al. 

(2005) 

Local floods [100, 102] Local 
Roads,  

railways 

Pregnolato et al.  

(2017) 

Wildfires [10-2, 104] 
Micro, Local, 

Regional 

Roads,  

railways,  

telecommunication network, 

electricity network 

Ward  

(2013); 

Cova et al.  

(2011) 

High winds, 

hurricanes, 

tornadoes 

[103, 105] Regional 

Railways,  

electricity network, 

telecommunication network 

Panteli et al.  

(2017); 

Dunn et al. 

(2018) 

Major floods and 

extreme 

precipitations 

[104, 105] Regional 

Roads,  

railways, 

electricity network 

Hong et al. 

(2015); 

Eleutério et al. 

(2013) 

Earthquakes [100, 105] 
Micro, Local, 

Regional 

All the above  

(potentially) 

Koks et al.  

(2019) 

Volcanic 

eruptions, ashes, 

dust clouds 

[100, 108] 

Micro, Local, 

Regional, 

Global 

All the above  

(potentially) 

Batista e Silva et al. 

(2019) 
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The interaction between infrastructures and spatial natural hazards is a very well 

investigated area of research. Studies carried out without the direct involvement of stakeholders 

have addressed the impact of volcanic ashes on airline traffic (Wilkinson et al., 2012), the 

damage caused by wildfires to the energy infrastructure (Sathaye et al., 2011), the effect of 

floods on the road network (Pregnolato et al., 2016), and the impact of extreme weather on the 

electricity network (Panteli et al., 2017). However, the involvement of private stakeholders and 

government institutions, which find this field crucially important, is also notable. This is the 

case for the quantification of damage caused by floods to the Austrian railway network 

(Kellermann et al., 2015), the analysis of flood risk policies throughout England (Begg et al., 

2015), and the definition of appropriate fragility curves for the electricity network exposed to 

high winds (Dunn et al., 2018). In this respect, this thesis constitutes a mixed approach, as it 

addresses the problem of natural hazards interacting with infrastructures both from a research-

only perspective and a stakeholder perspective.   

 

 

2.2.1.3 Review of the existing approaches to modelling spatial hazards 

A thorough analysis of the relevant literature has identified four different approaches to 

modelling spatial hazards: 

• The deterministic approach; 

• The geometric approach; 

• The probabilistic approach; 

• The computation-based approach. 

The deterministic approach is the most recurrent in the literature, and it relies on the 

use of regular shapes to describe the spatial extent and presence of natural hazard footprints. 

This approach is computationally inexpensive and also attractive, as it assumes that there is 

either a rule or an equation describing the shape used as footprint. As such, the elements of an 

infrastructure that are immediately affected by the footprint can be easily predicted, as they are 

located inside the footprint itself. On the one hand, this approach allows the emphasis to be put 

on how the network responds and other modelling aspects, but on the other hand it does not 

take into account the spatial variability that natural hazard footprints typically feature. The 

shapes used in literature are mainly circles (Figure 2.4) (Berezin et al., 2015; Gao et al., 2015; 

Shao et al., 2015; Hu et al., 2016; Neumayer and Modiano, 2016; Ouyang, 2016; Dunn and 

Wilkinson, 2017), although squares (Li et al., 2016), ellipses (Little, 2003; Saito, 2015), and 
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other deterministic structures have been implemented, such as lines (Neumayer et al., 2011; 

Long et al. 2014).   

 

 

Figure 2.4. The dashed red line represents the most recurrent incarnation of deterministic shapes, the 

circle. Every node (or infrastructure component) falling within or intersected by the shape with radius r 

fails (grey). The center of the circle may correspond with a random node (Berezin et al., 2015), or with 

a different location. 

 

 

The geometric approach is similar in nature to the deterministic approach in that they 

also fail to consider the spatial variability of natural hazard footprints. The difference between 

the geometric and the deterministic approach is in the type of shapes used. The choice in this 

case is to adopt geometric shapes that are non-deterministic, such as irregular polygons. This 

solution is both computationally inexpensive and attractive but has the downside of having to 

rely on a dataset that divides the footprint into polygons or regions. One relevant example is 

found in Wilkinson et al. (2012), where the footprint is split into irregular polygons based on 

the data on closed airspaces following the 2011 Eyjafjallajökull eruption in Iceland (Figure 2.5). 

 

 
Figure 2.5. The irregular polygons describing the closed airspaces on 18 April 2011, following the 

eruption of the Eyjafjallajökull volcano in Iceland (adapted from Wilkinson et al., 2012). 
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The probabilistic approach relies on the implementation of probability surfaces to 

describe the footprint of natural hazards. Their adoption is not necessarily computationally 

expensive, but it may require extensive analysis of large datasets to produce the contours and 

confidence intervals that characterize the surface. This approach is extensively used in the 

prediction of the strength of tropical cyclone winds, where cone-shaped probability surfaces are 

forecast (Figure 2.6) (Aberson, 2001), and was also used by other authors addressing the 

response of generic (Sterbenz et al., 2011) and specific networks (Agarwal et al., 2010; Agarwal 

et al., 2013) to physical and geographical failures. The disadvantages of probability surfaces 

are that they do not take into account the spatial variability of natural hazard footprints, and 

their requiring extensive datasets might prevent their use in a wider context. 

 

 

Figure 2.6. The probability surface of hurricane-force wind speed for Hurricane Harvey. The white dot 

is the eye of the hurricane, while the colored contours show the probability of wind speed exceeding 74 

miles per hour (120 km/h) (National Hurricane Center, 2017). 

 

 

Finally, the computation-based approach allows to produce hazard maps or hazard 

fields using dedicated software packages. The main advantages are software optimization, 

reliance on high-resolution equations to model physical processes (FLO-2D Software, 2009; 

Glenis et al., 2013) or cellular automata (Guidolin et al., 2016), and availability of output time 

series. These packages might also have the advantage of being open-source (Guidolin et al., 

2016), supporting cloud computing (Glenis et al., 2013), and being valid commercial solutions 

(FLO-2D Software, 2009). Among the main disadvantages are the requirement of accurate input 

datasets about topography and the built environment, runtime, and license or Cloud access 

costs. Moreover, although these packages have been used to model the impact on infrastructures 

(Pregnolato et al., 2016), their use appears to be limited to the analysis of floods (Figure 2.7). 
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Figure 2.7. Hazard map of floods for Newcastle upon Tyne (United Kingdom). The field shows 

floodwater depths as a result of rainfall with a return period of 200 years (adapted from Pregnolato et 

al., 2016). 

 

 

 

2.2.1.4 Advantages and disadvantages of the existing recipes for spatial hazards 

 

The existing approaches to reproducing spatial hazards are characterized by a number 

of advantageous aspects, although they are not bereft of disadvantages either. To assess these, 

five different aspects, identified in the literature, have been used: 

1. Ease of implementation; 

2. Input information required; 

3. Computational effort; 

4. Realism or ability to capture spatial variability; 

5. Specificity. 

 

Figure 2.8 aims to offer a qualitative classification of the existing recipes for spatial 

hazards based on the above aspects. This is offered based on the ability of the methodologies 

discussed in paragraph 2.2.1.3 to reproduce realistic natural hazard footprints.  

The deterministic approaches (DA) are the easiest to implement, owing to the simplicity 

of the hazard shapes or footprint that they adopt (e.g., circles, squares, ellipses, etc.). 

Consequently, they require limited input information, which may only include the center 

location and the extent of the footprint, whilst the computational effort of reproducing a 

deterministic shape is negligible. On the negative side, it can be argued that these shapes do not 

capture any degree of the spatial variability typical of natural hazards, and they are also highly 

non-specific, as they have come to represent a plethora of different situations ranging from 
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generic events (Berezin et al., 2015; Gao et al., 2015; Shao et al., 2015) to failures of the 

telecommunication infrastructure (Neumayer et al., 2011; Long et al. 2014).  

The geometric approaches (GA) may feature a slightly more demanding 

implementation compared to DA, in that these are very similar to deterministic shapes, but they 

may require extensive information. Once the polygons typically featured in GA have been 

defined, the computational effort to reproduce them is likely to be low, whereas the level of 

realism may be limited by the accuracy with which the polygons themselves have been defined. 

On the contrary, the level of specificity is tightly coupled with the type of information required 

(Wilkinson et al., 2012).  

The probabilistic approach (PA) may still be easy to implement and may come with 

limited computational effort, but these positives are offset by the large amount of data required 

to produce a meaningful and reliable footprint, as is the case with the probability surface of 

hurricane-force winds (National Hurricane Center, 2017; Figure 2.6). The level of realism may 

be higher than DA and GA, although this is highly dependent on the accuracy of input 

information. As with GA, PA is typically tightly coupled to the phenomenon it is trying to map.  

Finally, the computation-based approach (CBA) may be classified as the hardest to 

implement, due to the effort required in creating the appropriate model for the appropriate 

phenomenon. In order to produce accurate results, these models usually necessitate detailed 

information and lengthy run times, which may justify the adoption of cloud computing (Glenis 

et al., 2013). Given their extensive deployment in reproducing past events or simulating future 

scenarios, the level of realism offered by CBA is typically higher than other approaches, 

although it is bound by its hazard-specificity.  

Of the five aspects depicted in Figure 2.8, it may be argued that the most valuable and 

desirable is the ability to produce footprints that capture the typical spatial variability featured 

by the footprint of natural hazards. In fact, this is so crucial that the risk of producing inaccurate 

footprints, for instance while trying to map flood risks for the insurance industry or with urban 

planning purposes, may very well cripple all the resources and efforts put into generating them. 

As such, the most desirable combination of the five aspects presented in Figure 2.8 consists of 

a maximized level of realism as primary constituent, followed by minimized ease of 

implementation, input information required, and computational effort. It may be argued that the 

importance of specificity is really dictated by the intended outcome, and that the higher the 

specificity, the less generalized conclusions can be drawn regarding the impact of the footprint. 
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Figure 2.8. Qualitative and non-exhaustive categorization of the four existing approaches to producing 

spatial hazards based on the ability to reproduce the footprint of natural spatial hazards. 

 

 

 

2.2.1.5 The need for more accurate hazard footprints 

 

When considering natural spatial hazards, a crucial element of a reliable infrastructure 

robustness analysis is the availability of hazard footprints. In the literature, these footprints 

originate from multiple sources, based on the hazard and the infrastructure considered by the 

study. A list of sources includes: i) inventory or susceptibility analysis, as it is the case for 

landslides (Malamud et al., 2004; Postance et al., 2017); ii) datasets officially released by 

international bodies, as with airspace closures (Wilkinson et al., 2012); iii) forecasting, as in 

the case of tropical depressions (Aberson, 2001); iv) the identification of probability surfaces, 

as with geographical failures hitting fiber-optic networks (Agarwal et al., 2010; Agarwal et al., 

2013); and v) the adoption of deterministic shapes, as in the case of failures targeting air traffic 

networks (Dunn and Wilkinson, 2016). There is a likelihood that these approaches exhibit 

limitations due to the availability of data, the accuracy of forecasting models, the rate with 

which new forecasts are issued to replace old projections, and the inability of modelling spatial 

variation typical of deterministic shapes.  
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A considerable amount of attention has been recently building up around Regional 

Climate Models, given their role in modelling extreme events such as heavy rainfall or severe 

wind storms (Nikulin et al., 2011). This type of event certainly falls within the category of 

natural hazards given the extensive damage that they cause to infrastructures (Pregnolato et al., 

2017; Panteli et al., 2017). Regional models offer a significant improvement in terms of spatial 

resolution over global models. However, the spatial resolution of extensively used Regional 

Climate Models, such as the UK Met Office North Atlantic and European model (Davies et al., 

2005) with its 12-km resolution, did not allow for proper convective modelling, resulting in the 

limited feasibility of impact studies. In recent years, the UK Met Office has developed a high-

resolution Regional Climate Model known as UKV (Lean et al., 2008) that explicitly resolves 

convection, making the study of small-scale, convective events possible (Kendon et al., 2014).  

 

 

2.2.2 Stage 2: hierarchies and dependencies 

 

2.2.2.1 Background: intra-dependencies, inter-dependencies, and systems 

The concepts of intra-dependency and inter-dependency permeate the literature focused 

on robustness and resilience. A concise definition of these two notions is given by Buxton and 

Pringle (2014), according to whom intra-dependencies are dependencies occurring between 

components of the same system, whereas inter-dependencies are dependencies involving 

components of different, although related, networks. One example of intra-dependencies 

involves the segments of the electricity transmission and distribution network (feeders and 

circuits), whereas inter-dependencies describe the feedback loop that, for instance, governs the 

interactions between the electricity and the telecommunication network (Rosato et al., 2008).  

The complexity behind civil engineering infrastructures, as first highlighted by 

Peerenboom et al. (2001) and Rinaldi et al. (2001), is well documented. As such, it is realistic 

to consider failures resulting from spatial hazards not in terms of independent events, but as 

chains of events (Rahnamay-Naeini and Hayat, 2016). In fact, failures occurring in one 

infrastructures ripple through other systems that are coupled or interdependent (Svendsen and 

Wolthusen, 2007; Wang et al., 2011; Fu et al., 2014). Examples of these nature include the 

coupling of the electricity network and the water distribution network, or the interdependency 

between the electricity network and the railway network. The unwelcomed result is that failures 

manifest themselves not just in different geographic locations, but also in different systems. 

Therefore, the impact of spatial hazards in real-world infrastructures can have deeper, tentacular 
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consequences that span systems of systems (Eusgeld et al., 2011). However, the same is true 

for self-contained systems in which components are partitioned based on their role – the intra-

dependencies - such as the intake, treatment, and distribution components of the water supply 

network. In this case, hierarchies are still present, although within the same system, and are 

known as intra-dependencies. This confirms that a more detailed level of analysis may be 

achieved by adopting the systemic approaches discussed in previous sections, under the 

assumption that infrastructures are not only seen as self-contained systems or systems with 

dependencies, but as systems of systems. The emergent behaviour is that individual components 

from different infrastructures interact with each other, with dependencies playing an active role 

in determining the overall response.  

 

 

 

2.2.2.2 Advantages and disadvantages of the existing approaches 

The accuracy with which intra-dependency and inter-dependency are modelled is 

crucial to understanding how an infrastructure system copes with the impact of natural hazards. 

In fact, over-simplifications, errors, or failure to understand the underlying relationships may 

significantly alter the reliability of the outcome. However, trade-offs between representativity 

and computational costs (and, rather frequently, the availability of detailed information) are 

often sought-after in an attempt to build a close-ended and manageable problem. The 

approaches that can be found in the literature seem to be mostly concerned with the study of 

power networks. These sources seem to follow the schematic provided by Figure 2.5, and 

include: 

• Holistic approaches; 

• Purely topological approaches; 

• Functional approaches; 

• Simulation-based approaches. 

 

Holistic approaches look at the overall behaviour of the infrastructure system, where the 

aggregated behaviour of one infrastructure is responsible for the aggregated behaviour of 

another, regardless of the detailed performance of the individual components. One example of 

this approach might be the study performed by Buldyrev et al. (2010) on the Italian Blackout 
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occurred in 2003, where it was highlighted that the aggregated behaviour of the power network 

– a fault caused by three flashovers – caused the failure of the telecommunication system.  

Purely topological approaches analyse the interactions between different infrastructures, 

as well as components of the same infrastructures, by adopting abstract models borrowed from 

network theory. The latter are helpful when trying to evaluate, in absence of a visible structure, 

the implications of the failures that occur in one or multiple systems. These approaches often 

follow the contagion phenomenon, where an element j downstream of, and directly connected 

to, an element i fails conditional to the latter failing. This entails that the performance of the 

individual components is evaluated. Examples of this nature include the study performed by 

Korkali et al. (2017), where an increase in infrastructure interdependency was tested against the 

risk of cascading failures in power networks.   

Whilst still considering the underlying topological relationships, functional approaches 

incorporate some elements of flow modelling. As an example of this methodology, in order to 

quantify the robustness of the power network to single-line failures, Soltan et al. (2017) devised 

a study in which the effect of power outages occurring on one specific power line impacted on 

the other lines. The re-routing of electrical flows was implemented to observe where in the 

network the next faults would occur based on both topological and flow-related aspects.  

Lastly, simulation-based approaches are meant to reproduce the actual rules and 

operational constraints adopted by that real-world infrastructures. One such example is the 

study conducted by Petrenj and Trucco (2014), in which the transportation system of the city 

of Milan is modelled to understand the impacts of large meteorological events and determine 

the disruption response of the system. Another example is the study performed by Esposito et 

al. (2015) on the seismic risk to which the gas supply network is exposed, in which the 

contribution of the individual components is evaluated. 

By critically analyzing the four classes of methodologies, it emerges that holistic 

approaches are tempting due to the ease of implementation; this, however, comes at the expense 

of accuracy in the results, and its reliability is heavily influenced by the assumptions made to 

simplify complex systems. Topological approaches allow to explicit relationships that are often 

hidden under the operational aspects of infrastructures, and they represent a convenient solution 

when topological information regarding connections or hierarchies is available. The advantage 

is in the fact that, as highlighted by Hines et al. (2010), the results might be misleading if based 

on topology only. Leveraging on this shortcoming, the functional approaches may offer the best 

of both worlds, as they incorporate elements of flow-modelling. However, their advantages may 

be rapidly offset by the computational costs associated with the analysis of a complex system 
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that is large in size, which entails high computational costs and limited opportunities to 

experiment with multiple scenarios or settings. Finally, simulation-based approaches may be 

classed as the most accurate methodology due to their detailed outcomes; however, their 

potential may be severely restricted by the fact that the detailed information that they require 

may not be available, or by the lack of a well-defined scope. In conclusion, the choice of one 

approach instead of another might be dictated by a multitude of factors, among which the degree 

of accuracy of the available information and the computational costs are often decisive. 

 

 

2.2.3 Stage 3: use of models from network theory and real-world infrastructures 

 

2.2.3.1 Background: network models representing infrastructures 

 When analyzed from a systemic perspective, civil engineering infrastructures can be 

modelled as networked systems, as first done by Peerenboom et al. (2001) and Rinaldi et al. 

(2001), and later by Latora and Marchiori (2005), Lewis (2006), and Gao et al. (2014). A great 

deal of research has focused on the use of network theory and models for reproducing the 

behavior and performance of technological systems (Fu et al., 2014). Relevant examples can be 

found in recent studies investigating electricity transmission networks (Panteli et al., 2015; Ren 

et al., 2016; Panteli et al., 2017; Fu et al., 2017; Castellani et al., 2017), but also generic 

infrastructure systems (Dunn et al., 2013), coupled energy, water, and wastewater systems 

(Holden et al., 2013), air traffic networks (Dunn et al., 2016), and transportation and pipeline 

networks (Inanloo et al., 2016). The general idea is that it is possible to create an abstract 

representation of a real-world infrastructure by borrowing the concept of graph from network 

theory. The graph is an object composed of 𝑛𝑖 nodes which can be seen as entities performing 

actions, and 𝑣𝑖 edges which connect the nodes and as such transport the interactions between 

them. The parallelism between a graph and a networked infrastructure arises when the physical 

elements of an infrastructure, such as transmission towers, bridge piers, and road junctions, are 

schematized as nodes. Similarly, the cables between two towers, the decks between two piers, 

and the road segments between two junctions are all modelled as edges.  

 The importance of a node in a network can be inferred from the number of edges going 

through it, although this is not the only criterion in use. The edges could either be directed (from 

node i to node j) or undirected (from node i to node j and then back again) (Figure 2.8). The 

number of edges identifies the degree of a node, k (Newman, 2003); therefore, the concepts of 

degree and number of connections or edges of a node are interchangeable. The average degree, 
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<k>, is often used to characterize the network as a whole. In the case of a directed network, the 

degree must specify the number of edges going in and out of a node using the in-degree (kin) 

and out-degree (kout) notations. An undirected network may be used to represent a generic 

infrastructure or a transport network; a directed network may be appropriate for hierarchical 

systems such as water supply networks and power grids. 

 

 

Figure 2.8. In the undirected network, the red node has a degree k=4, whereas the whole network has 

an average degree <k>=8/5=1.6; the edges can be gone through in both directions. In the directed 

network, the red node has an in-degree kin=3 and an out-degree kout=1, whereas the network has an 

average in-degree <kin>=4/5=0.8 and an average out-degree <kout>=4/5=0.8. In the directed case, the 

edges can only be gone through in the assigned direction.  

 

 

2.2.3.2 Advantages and disadvantages of the graphs used in the literature 

 

As soon as the rendition of civil engineering infrastructures as graphs became a staple 

in impact studies, it also became clear that these models were very advantageous, as they could 

explicitly reveal the relationships underpinning their complex functions (Rosato et al., 2008; 

Fu et al., 2014; Chopra et al., 2016). It can be argued that these relationships were hardly clear 

if not observed through the lenses of an abstract, yet ground based, topological model.  

However, it has been suggested by certain authors that the exclusive use of a topology-

based model may provide results that are unrealistic if looked at through the lenses of dynamism 

(Hines et al., 2010). This aspect seems to align very well with the diagram provided in Figure 

2.5, according to which the use of a topology-based approach only may be perceived as 

unorthodox when the goal is to derive operational insights. Another important aspect which 

may enhance the value of graphs in impact studies is the presence of a realistic geographic 

representation of the modelled infrastructure (Edmondson et al., 2018). In fact, it is possible to 

speculate that a non-realistic representation of node locations may lead to an altered model of 

the infrastructure, which in turn may result in unreliable outcomes. One way of decreasing the 



Chapter 2. Literature Review 

 

36 

 

likelihood of inaccuracies, especially in impact studies based on real-world assets, is to make 

sure that the graph adopted is a direct rendition of the infrastructure itself rather than a 

completely abstract model.  

 

 

2.2.4 Stage 4: mechanisms of failure propagation  

 

2.2.4.1 Background: percolation and failure propagation 

The failure of a node 𝑛𝑖 in a network is likely to ripple throughout the system as a 

function of how many nodes are directly connected to node 𝑛𝑖. This means that the higher the 

number of nodes connected to a failed node, the higher the likelihood of additional failures, 

especially if the neighbors were only connected to the failed node. This concept describes how 

the failure of a node percolates through a network, and it constitutes the focus of percolation 

theory, a subject studied in condensed matter and statistical physics (Stauffer and Aharony, 

1991), as well as network theory (Callaway et al., 2000; Albert and Barabási, 2002). The same 

problem has been investigated in infrastructure systems modelled as complex, interdependent 

networks (Fu et al., 2014; Radicchi, 2015; Gao et al., 2015; Havlin et al., 2015).  

In the context of either single or interdependent networks, percolation emerges as a 

result of two distinct failure processes (Robson, 2016): 

• 1st order failures, which describe the failure of nodes directly affected by an 

external agent or event. In the context of this research, the external agent is any 

natural hazard. All failures occurring within the footprint of such hazard are 

referred to as 1st order failures; 

• 2nd order failures, which describe the failure of nodes not directly affected by 

the external agent. All failures occurring outside the footprint of the natural 

hazard are referred to as 2nd order failures. The exposure to this failure 

mechanism is maximized in nodes that find themselves closer to the boundary 

of the footprint (Figure 2.9). 
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Figure 2.9. Visualization of 1st and 2nd order failures in a network subjected to a hazard footprint. The 

circular nodes are located inside the footprint, and as such they constitute 1st order failures. The triangle 

is outside the footprint, but since it is connected to a node that is inside the footprint (1st order failure), 

it is a 2nd order failure. The square-shaped nodes survive the hazard.  

 

 

 

2.2.4.2 Simulating infrastructure failures 

Accurately defining the process that leads to infrastructure failure is not only key to 

understanding the emergent behavior of the system, but also a potential weakness, as the 

adopted models need to be an appropriate fit for the analyzed infrastructure. In general terms, 

the failure of an infrastructure component is often described as the result of excessive external 

loading. Classical engineering studies have investigated this aspect with reference to 

embankments exposed to flooding and seepage (Polemio and Lollino, 2011) or railway bridge 

components subjected to severe ground acceleration (Kang et al., 2017). From a perspective 

purely based on performance, the fragility curves developed by van der Meer et al. (2009) for 

flooding and those defined for Earthquake Engineering by Grossi and Kunreuther (2005), for 

instance, describe the failure probability of single elements. However, given that infrastructures 

have evolved over time to resemble distributed systems (Whyte, 2016; Thacker et al., 2017) 

that are also complex and adaptive (Ouyang, 2014), there is the need to switch to failure models 

that incorporate interactions between components and interdependency. The literature on the 

subject presents four main approaches that incorporate systemic aspects: 

• Selective failure models; 

• Hierarchy-based failure models; 

• System dynamics failure models; 

• Agent-based failure models. 

 

 

Selective failure models are the most represented in literature. They require the 

transformation of the physical infrastructure into an abstract graph object, which is then used 
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to identify nodes by means of specific criteria. One relevant example is the study of the 

vulnerability of interdependent infrastructures carried out by Wang et al. (2012), where random 

and degree-based selection methods were used to identify crucial nodes and remove them from 

the network. Robson et al. (2014) used similar approaches in analyzing the resilience of 

infrastructure networks, which were complemented by a betweenness-based criterion to 

identify crucial nodes to remove. Finally, Dunn and Wilkinson (2017) used a spatial footprint 

as selection criterion, so that all the nodes of the airline traffic network that fell within the 

boundary of a circle were removed from the system. 

Hierarchy-based failure models study the propagation of failures through the 

infrastructure by considering the hierarchy with which they operate. Fares and Zayad (2010) 

used a hierarchical model to identify the sections of a water distribution system to which the 

highest failure risk is attributable. Soltan et al. (2017) analyzed the phenomenon of cascading 

failures in the electricity network by identifying subgraphs of the US Western Interconnection 

grid, in addition to considering the entire system. 

System dynamics failure models take advantage of an appropriate set of equations 

describing the flow of goods or services through a perturbed infrastructure. Hines et al. (2010) 

highlighted the importance of using the linear approximation of power flow equations as an 

accurate descriptor of failures. Soltan et al. (2017) followed the same approach to find that 

overloads and consequent failures may occur in locations that are not proximal to the area where 

the triggering failure originated.  

Agent-based failure models reinterpret infrastructure components in terms of individual 

agents that can take different statuses based on a number of pre-set rules that describe their 

behavior (Barton et al., 2000). Based on the consequence and type of the external loading, these 

statuses may include, among others, active, failed, or reduced functionality instances that are 

dictated by the failures themselves and the interactions between agents. In the context of 

infrastructure failures, such interactions may include intra- and inter-dependencies (Figure 2.3). 

The objective is to identify any behavior that emerges from the collective set of failures and 

interactions. Applications of this methodology are limited, and this is likely to be due to the 

extensive knowledge required in order to properly define agent statuses and interaction rules. 

Authors that used agent-based models in their studies include Dudenhoeffer et al. (2007), who 

illustrated how modelling infrastructure elements as agents can be beneficial in understanding 

the emergent behavior of a complex, interdependent infrastructure exposed to flooding, and 

Kundur et al. (2011), who modelled the impact of cyber-attacks on the smart grid by modelling 

the grid components as agents.  
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2.2.4.3 Cascading failures 

The concept of cascading failures originates from the study of interconnected networks 

in network theory. The idea is that in an interconnected network composed of several networks, 

failures occurring in one network could spread to other networks via nodes that act as gateways 

to other networks. Interconnected networks are defined by the presence of these nodes, and as 

such were found extremely vulnerable to cascading failures (Buldyrev et al., 2010).  

Ensuing studies quickly turned their attention to infrastructure networks, prompted by 

events such as the 2003 Italian Blackout (Rosato et al., 2008; Buldyrev et al., 2010), where 

disruptions attributed to power stations resulted in failures in the telecommunication network, 

which in turn decreased the controllability of other parts of the electricity network itself. Due 

to the fundamental importance of a reliable electricity supply, the occurrence of cascading 

failures is a risk to which electricity networks are particularly exposed. Studies have addressed 

it by deriving failure models and mechanisms that incorporate the idea of redistribution of flows 

(Crucitti et al., 2004; Soltan et al., 2017; Guo et al., 2017).  

This idea stems from that of a dynamic system where failures along a transmission line 

force the electric flow to adjust to a new configuration, modifying the load to which other lines 

are exposed (Crucitti et al., 2004). A similar approach is followed by Dueñas-Osorio and 

Vemuru (2009), who looked at the overloads generated in power systems by cascading failures 

triggered by natural hazards. Another proposed approach is to adopt purely topological metrics 

to evaluate the response of the electricity network. However, Hines et al. (2010) showed that 

this approach does not return reliable results compared to the implementation of flow 

redistribution.  

The status of cascading failures as a source of risk for infrastructures is well established 

and it applies to all systems, including cities (Dawson, 2007), and both intra-dependent and 

inter-dependent infrastructures (Korkali et al., 2017). Derrible (2017) highlighted the fact that 

the tendency of building more complex and congested cities may facilitate the occurrence of 

chains of failures bouncing from one network to another. As a result, studies have been carried 

out investigating the possible solutions, two of which were reported to be: i) from a topological 

perspective, increasing the level of interdependency (Korkali et al., 2017); and ii) from a risk-

vulnerability perspective, hardening the most important nodes (Fu et al., 2014).  
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2.2.4.4 Advantages and disadvantages of the existing approaches to failure models 

 

The problem of defining advantages and disadvantages of the different mechanisms of 

failure propagation is similar to the definition of advantages and disadvantages of the graphs 

and metrics adopted to represent the infrastructure system (see paragraph 2.2.3.2). Essentially, 

this discussion comes down to defining the exact purpose of the study, the nature of the 

infrastructure studied, and the need to strike a balance between computational costs and 

accuracy. These three aspects are key driving factors in the choice of the most appropriate 

failure model.  

From a generic perspective, it is possible to argue that selective failure models, as well 

as hierarchy-based failure models, may offer limited computational requirements, as the first 

one is most often directly assigned the fraction of failed nodes as input, whereas the second 

relies on the specification of hierarchy rules, which do not have to be inferred or learned from 

the infrastructure model, but are assigned as input. It is possible to speculate that the selective 

failure models and the hierarchy-based failure models may come with increased computational 

requirements as a function of the size of the network to which they are applied. The system 

dynamics and agent-based models, on the other hand, require the definition of the dynamic 

models and the rules underpinning the behavior of the different agents, respectively. Depending 

on the complexity of the problem at hand, the models and rules may become demanding, 

leading to computational costs that do not only scale with the size of the systems to be studied, 

but also with their complexity. Whatever the failure model adopted, studying cascading failures 

contributes to increasing the complexity and computational costs of the analysis.  

 

 

2.2.5 Stage 5: quantification of fragility  

 

2.2.5.1 Background: fragility functions to describe infrastructure performance 

 The multiple definitions of infrastructure robustness existing in literature are in good 

agreement on a basic principle: a robust system is one that is capable of withstanding 

perturbations, maintaining a residual functionality. Even specific definitions, such as that for 

the railway infrastructure - the ability to resist specified disturbances so at least some 

functionality can be maintained (Norrbin et al., 2016) - mirror the generic ones given by 

McDaniels et al. (2008), Madni and Jackson (2009), and Bocchini et al. (2014). The concept of 
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robustness is made even more important by its being one of the four constituents of resilience, 

according to Bruneau et al. (2003). 

 Previous research has adopted fragility curves to characterize and quantify robustness. 

Originating in the field of Earthquake Engineering, a fragility curve is a probabilistic 

catastrophic (CAT) model (Grossi and Kunreuther, 2005) used to predict the degree of probable 

damage to a physical element such as a pillar or a building given an external load that increases 

gradually (Karim and Yamazaki, 2003). When the load is severe, the probability of damage 

may be very high, suggesting a conceptual parallelism with cumulative distribution functions. 

The notion of fragility curves finds application in Flood Risk Management (Sultana and Chen, 

2009), Catastrophe Risk Modelling for electricity networks (Dunn et al., 2018), and Seismic 

Risk Assessment of nuclear plants (Kaplan et al., 1983). This statistical model relies on the fact 

that two physical elements of the same nature may respond differently to the same external load 

as a result of varying marginal factors. For instance, two electricity towers of the same size and 

structure may respond differently to the same wind gust due to different terrains, which may 

result in one of them being shielded. This makes it difficult to identify a threshold past which 

the element is certainly failed, hence the need for a probabilistic approach.  

 The procedure for generating an accurate fragility curve is by no means straightforward: 

the process can be data-intensive, as it demands sample sizes that cover sufficiently large spatio-

temporal windows, and it is reliant on the ability to track down the hazard loading that caused 

a specific failure. The advantage of working with fragility curves is that they are both hazard-

specific and infrastructure-specific: in fact, they constitute a detailed model for predicting the 

response of the relevant infrastructure assets to the relevant hazard in areas where data are not 

available, or where the infrastructure has yet to be created.  

 On the other hand, they are disadvantageous because they may be affected by wide 

confidence intervals, and their high specificity makes them unsuitable for applications that are 

outside their scope. This thesis adopts the approach of fragility curves despite their 

shortcomings, as they represent a research field where developments are occurring at a fast 

pace, resulting in improved accuracy and reliability.  
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Figure 2.10. Fragility curve proposing correlation models involving wind speed and the number of 

faults occurring every 1000 km of overhead transmission and distribution lines (Dunn et al., 2018). 

 

 

2.2.5.2 Advantages and disadvantages of the current approaches to fragility 

The adoption of fragility curves to quantify the impact of natural hazards is more and 

more frequent, and for a wide variety of hazards. The main advantage in the use of fragility 

curves is their ability to provide a model that describes how the impact varies with the load. In 

certain situations (Karim and Yamazaki, 2003; Grossi and Kunreuther, 2005), the accuracy with 

which the relationship load-damage or load-impact is described is rather high. This has the 

consequential advantage of enabling a more informed design phase, which can build on past 

experiences and the amount of data collected. Another important advantage comes from the 

first applications of fragility models, in situations where the load-damage relationship for a 

specific hazard is uncharted territory. For instance, applications such as those enabled by the 

work of Dunn et al. (2018) greatly enhance the understanding of how high winds impact on 

overhead electricity lines.  

However, three major advantages have to be taken into account. The first one is that 

fragility curves are hazard-specific, and as such models developed for one particular situation 

are unsuitable to describe other phenomena. The second aspect is the dependency on high 

quality data, which are needed to produce a meaningful model. The quality of data is also highly 

influenced by the spatial variation of the particular natural hazard that is being studied, as well 

as the sampling distance used to collect the measurements. For instance, ground acceleration 

varies in space, but it is measured with sensors that can be placed virtually anywhere on the 

studied domain. This results in a ground acceleration map that can be rather detailed. In the 

case of high winds, however, this level of accuracy is not easily achievable. For instance, the 
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best, up-to-date model used by Dunn et al. (2018) to compute the load-damage relationship 

relies on data sampled with spacings between 1-2.5 km. The third and final disadvantage 

revolves around the regional properties of the targeted natural hazard. In fact, fragility curves 

aimed at describing the load-impact relationship of high winds or lightning, for instance, have 

to take into account the fact that the weather patterns may change significantly with both the 

latitude and longitude. This results in the limited applicability of a specific model.  As such, if 

the domain of the problem at hand is extended, it may be convenient to divide it into smaller 

domains, such that the changes in weather patterns are limited within the same sub-domain. 

 

 

2.2.6 Stage 6: use of systemic indicators  

 

2.2.6.1 Background: systemic indicators of performance 

 

The idea of measuring the performance of an infrastructure, a system, or a network 

exposed to certain risks is not new to the literature on civil engineering infrastructures. 

However, the accuracy, appropriateness, and peculiarities of each study are relative to the 

problem at hand. It is also the case that, given the complexity of these problems, a set of metrics 

is used instead of single indicators. The majority of metrics are based on graph theory, as a 

result of the common practice of creating an abstract model of the infrastructure by using 

graphs. With reference to the metrics used in impact studies, the vast majority of studies seem 

to generally gather around two main categories: i) structural metrics, and ii) functional metrics.  

The first category includes metrics that gauge, among others, the number of nodes or 

edges in a network, the degree distribution (Guimerà and Amaral, 2004), the geographical 

length of edges, the edge length distribution (Fu et al., 2016), and the presence of planarity, e.g. 

when edges do not cross each other (Gastner and Newman, 2006a), or the centrality measures 

(Brandes, 2008).  

The category of functional metrics includes, among others, path lengths (Watts and 

Strogatz, 1998), network efficiency (Latora and Marchiori, 2001), the analysis of travelling 

times in urban road networks (Leclercq, 2007; Pregnolato et al., 2017), and the plethora of 

algorithms used to determine the flow of commodities across infrastructures, one example of 

which are power flow equations (Soltan et al., 2017). 

A more specific characterization of the metrics adopted reveal that four main aspects 

are investigated in the literature: 
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• Structural aspects, involving measures of topological nature but also fragility 

characteristics such as the frequency of disruptions; 

• Fragmentation aspects, with the aim of investigating the tendency of 

infrastructures to break up into multiple partitions as a result of failures; 

• Flow-related aspects, with the purpose of assessing the ability of the 

infrastructure to meet the demand despite the failures; 

• Domino effect aspects, focusing on how infrastructures cope with failures that 

occur further away from the hazard area, such as cascading failures. 

 

The structural aspects are studied using metrics that are topology-based, with the aim 

of characterizing infrastructures based on concepts from graph theory. In their analysis of the 

robustness of the London Underground, Chopra et al. (2016) used the average short path length 

and the clustering coefficient to derive the topological properties of the system. Kong et al. 

(2013) adopted a bespoke version of centrality measures with the aim of determining the most 

central nodes of electricity networks, based on the resistance between two nodes as opposed to 

the topological configuration. Derrible and Kennedy (2010) characterized the robustness of 

transportation networks by studying their assortativity – which is the tendency of a network to 

exhibit connections between nodes of similar degree – showing that a high degree of robustness 

is the consequence of reciprocal connections between high-degree nodes. 

Analyzing the fragmentation aspects is studying the problem of unintended islanding. 

Panteli et al. (2016) proposed islanding as a defense strategy used by energy systems against 

extreme weather. This technique is based on an intentional partition of the network into self-

sufficient islands with the aim of limiting the spreading of failures. However, in the context of 

robustness to natural spatial hazards, it has to be noted that a network can be partitioned by 

failures. This concept was introduced by Hawick (2012), who showed how the failure and 

removal of electricity substations from the UK National Grid could create islands. The same 

problem was analyzed by Chopra et al. (2016), who proposed a coefficient that estimates the 

size of the isolated components that could result from the failure or removal of an edge. With 

reference to water supply systems, Hawick (2011) adopted the betweenness centrality measure 

to identify the pipe which failure is most likely to produce fragmentation.  

A considerable amount of attention has been drawn by the flow-related aspects, as 

infrastructures are explicitly designed and built to deliver a service, be it the flow of freight, 

passengers, or utilities. Chopra et al. (2016) used the concept of efficiency from Latora and 

Marchiori (2001) to determine how well the London Underground meets passenger demand 
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when subjected to node failures modelled as station removals. Pregnolato et al. (2016) adopted 

the betweenness centrality metric to locate the urban sections where traffic flow was most 

impacted by pluvial flooding. Poljanšek et al. (2012) focused their attention on a connectivity-

based metric used to quantify the reduced serviceability of the European gas and electricity 

network subjected to the seismic risk. Finally, Cavalieri et al. (2017) proposed a metric for 

assessing the serviceability performance of water distribution networks based on the ratio 

between the demanded flow and the delivered flow. 

The domino effect aspects are mostly addressed by the literature on cascading failures. 

The basic concept is that hazards pose a risk for infrastructures that may exceed the severity of 

the hazard itself, with additional failures, often termed 2nd order failures, occurring further away 

from the event hotspot (Little, 2003; Robson, 2016). The literature that de facto addresses 

cascading failures caused by natural hazards is not extensive, with studies being predominantly 

concerned with operational incidents. However, Dueñas-Osorio and Vemuru (2009) proposed 

a metric that quantifies the 2nd order failures occurring in electricity networks as a result of both 

natural and man-made hazards. Shuang et al. (2017) investigated the failure propagation in 

water supply networks affected by valve-triggered cascading failures, which in turn could be 

caused by landslides or soil erosion.  

 

 

2.2.6.2 Advantages and disadvantages of the existing indicators 

The discussion around advantages and disadvantages of the metrics adopted does not 

appear straightforward, and it is rendered complex by the number of driving factors that play a 

key role in the selection of a specific metric. First of all, the choice of a metric is likely to be 

driven by the type of infrastructure analyzed, as certain metrics may be better suited than others 

to describe the characteristics of certain systems.  

Another driving aspect is the nature of the impact study itself, which may lead to the 

adoption of multiple metrics to compute the same parameter. This may be the case, for instance, 

for travelling times in urban road networks, which may be computed using a bespoke curve 

(Pregnolato et al., 2017) or more classic algorithms (Leclercq, 2007), allowing room for 

comparisons.  

From a generic perspective, one trivial aspect is that structural metrics and functional 

metrics do not seem interchangeable, implying that they do not offer reliable results if 

inadequately applied. From a procedural point of view, it is possible to argue that the adoption 

of one set of metrics rather than the other, or of a combination, may be influenced by the need 
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to balance computational costs with accuracy. The adoption of functional metrics seems to 

always imply an increased computational cost given the complexity that, at times, is being 

modelled. This is offset by the more accurate representation of the dynamical functions of the 

infrastructure. On the other hand, whilst structural metrics may be alluring given their limited 

computational requirements, their partial accuracy may hinder their effectiveness. 

 

 

2.2.7 Justification for adopting the six stages  

 

The six stages mentioned in this Chapter were derived from recommendations provided 

by authors addressing the impact of spatial hazards on infrastructure from different points of 

view. These recommendations were integrated and used as building blocks of an end-to-end 

pipeline that allows addressing this research problem in a rather comprehensive way.  

The emphasis placed by Stage 1 on the generation of realistic spatial hazards with 

different degrees of severity reflects the recommendations of Dunn et al. (2013), on the nature 

and magnitude of disruptive events, and Pradhan (2018), on the importance of reproducing 

accurate spatial phenomena. 

The importance of accurately capturing hierarchies and dependencies while modelling 

infrastructures addressed in Stage 2 is also highlighted by Dunn and Holmes (2019), who 

emphasized the use of graph models where connections between sources and the source-sink 

dependency model are explicit, and by Qin and Faber (2019), who underlined the importance 

of considering hierarchical levels. 

Stage 3 focuses on the use of a range of models from both real-world infrastructures and 

network theory. This approach mirrors the recommendations made by Gastner and Newman 

(2006a; 2006b) on using models from network theory, by Panteli et al. (2017) on studying 

electricity networks, and by Dawson et al. (2018), who stressed the importance of adopting 

systemic views. 

The rationale behind stage 4, which introduces failure mechanisms, is in the work by 

Hines et al. (2010), where the importance of an appropriate failure mechanism is highlighted, 

and in that of Korkali et al. (2017), where coupled infrastructures are examined. 

Stage 5 is concerned with quantifying the fragility of infrastructures when exposed to 

spatial hazards. This draws inspiration from D’Amato Avanzi et al. (2013), who emphasized 

the importance of quantifying infrastructure fragility, Dunn et al. (2018), who adapted the 
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concept of fragility curves to electricity networks, and Sarker and Lester (2019), who extended 

the concept of fragility quantification to all critical infrastructures. 

Finally, stage 6 examines the need for systemic indicators when assessing the impact of 

spatial hazards on infrastructures. This follows the recommendations provided by Ghosn et al. 

(2016) on the importance of using systemic metrics during the design and assessment phase of 

infrastructure fragility, and those provided by Dawson et al. (2018) on the need to adopt systems 

approaches at a national level.
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Chapter 3. Research Design Framework 

This chapter provides a general description of the research design framework and its 

rationale. This framework is partially based on the work of Dunn et al. (2013), who defined an 

operational framework for assessing the impact of disruptions using network theory. As this 

thesis is composed of two separate case studies, this chapter introduces a generic modelling 

framework that applies to both, given the commonalities detailed in paragraph 3.1.2. In 

addition, this chapter provides an overview of the main advancements proposed by this thesis, 

and details regarding the datasets used.  

 

 

3.1 Two separate case studies under the same framework 

 

3.1.1 Overview of the two case studies 

 As briefly mentioned in the Introduction chapter, this thesis is composed of two separate 

case studies: 

 

1. Case Study 1: Response of synthetic infrastructure networks to synthetic, 

although realistic, spatial hazards  

This case study addressed the problem of the robustness to natural spatial hazards 

by introducing the use of fractal models to reproduce realistic spatial footprints. The 

aim was to study the response of infrastructure network models to spatial hazards 

with variable degrees of spatial correlation, and to identify behavioral insights that 

can be incorporated in the design phase of infrastructures. This case study looked at 

infrastructures from a macro-systemic perspective without dependencies, hence at 

an aggregate level. However, at variance from a typical in-silo approach, the 

emphasis was placed on infrastructure models that interact with the domain in which 

they are embedded, and the natural spatial hazards; 

2. Case Study 2: Impacts of windstorms on electrical distribution infrastructure 

networks. By adopting a spatial dataset of unprecedented accuracy, this case study 

developed a hierarchy-based network model to determine the most vulnerable 

components of the infrastructure and the risk of cascading failures to which the 

network is exposed when subjected high winds. The aim of this case study was to 
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derive behavioral insights that can be integrated in the infrastructure operational 

phase. This case study adopted a macro-systemic approach with dependencies, 

hence moving further away from an in-silo approach. In fact, the interaction with 

natural spatial hazards was evaluated by taking into account the robustness of each 

individual component, focusing on identifying the components that performed 

systematically worse than others, rather than providing an aggregate description of 

robustness. 

 

3.1.2 General similarities between the two case studies 

The first case study has the characteristics of a theoretical study, given the extensive use 

of synthetic models and hazards, whilst the second one represents a more realistic situation, as 

it adopts both a real-world hazard dataset and infrastructure. Although the two case studies 

differ in terms of aim and technicalities, they share substantial similarities in terms of workflow 

and overall computational structure. These similarities can be summarized as follows: 

 

• Both case studies addressed the response of infrastructure networks to spatial hazards; 

• Both case studies adopted a Monte Carlo-inspired approach to quantify the impact of 

spatial input datasets on infrastructures; 

• Both case studies modelled infrastructure systems by creating equivalent graph objects 

and taking advantage of network theory; 

• Both case studies estimated the impact of spatial hazards by defining metrics appropriate 

to the nature of their aim. 

 

A common modelling framework was used in the two case studies. This is a 

computational, Monte Carlo-inspired, workflow that takes advantage of repeated simulations. 

This workflow is composed of several consequential blocks (Figure 3.1):  

 

1. First block: spatial hazard input; 

2. Second block: infrastructure network modelling; 

3. Third block: failure modelling; 

4. Fourth block: robustness metrics. 

Each block is illustrated in a dedicated section of the next chapters, and details are given on 

their rationale, procedures and implementation. 
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Figure 3.1. Visualization of the four main blocks that compose the shared computational workflow of 

the two case studies of this thesis. The different stages discussed in Chapter 2 are also mapped against 

the four blocks. 

 

 

 

3.1.3  A common approach inspired by network theory 

This thesis was developed by adopting concepts and models from network theory which 

apply to both case studies. The rationale for this choice is the recurrent adoption in the literature 

of the graph, or network, as an abstract model for representing infrastructure systems 

(Peerenboom et al., 2001; Rinaldi et al., 2001; Latora and Marchiori, 2005; Lewis, 2006; Gao 

et al., 2014; Fu et al., 2014; Panteli et al., 2017). A graph 𝐺 = (𝑣, 𝑒) can be classed as a 

mathematical diagram composed of 𝑁𝑣 vertices 𝑣, also known as nodes, which represent 

individual entities, and 𝑁𝑒 connections 𝑒, also known as edges, which represent relationships 

between the nodes. The number of edges linking node 𝑣𝑖 to any other node is defined as the 

degree k of node 𝑣𝑖; computing the average value of k allows to determine the average degree 

of the graph or network, <k>.  

Depending on the relationships existing within 𝐺, either 𝑁𝑣 ≠ 𝑁𝑒 or 𝑁𝑣 = 𝑁𝑒, which 

influences the structure or topological layout of the graph. Throughout this thesis, it was 

assumed that the edges could be either directed or undirected based on the problem at hand. In 

the first case study, a set of undirected graphs was implemented, where any edge can connect 

node 𝑣𝑖 to node 𝑣𝑗  in a bi-directional fashion, entailing that 𝑒𝑖𝑗 = 𝑒𝑗𝑖. This was done based on 

the assumption that the generic network models implemented were not the representation of 
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real infrastructures, thus implying that specifying the direction of flow was not necessary. In 

the second case study, a simplified version of a directed graph was implemented, where every 

edge is associated with an indication of the direction it follows, entailing that 𝑒𝑖𝑗 ≠ 𝑒𝑗𝑖, since 

the two might have different characteristics or might be mutually exclusive. The simplified 

version implemented in the second case study stemmed from the direction of flow followed by 

electricity, hence from lines with higher voltage to lines with lower voltage, hence from the set 

of nodes representing the former to that representing the latter.  

 

 

3.1.4  A common definition of hazard loading 

In addition to the network theory-based approach discussed in the previous paragraph, 

this thesis also relied on another crucial element, which is the superimposition of a hazard field 

on the infrastructure. A hazard field 𝐻(𝑥, 𝑦) can be defined as a three-dimensional field in 

which the field 𝐻 represents the distribution of the severity of the hazard associated with the 

spatial coordinates (𝑥, 𝑦). The intensity of the hazard is defined, throughout this thesis, as the 

hazard loading 𝐿 = 𝐻(𝑥, 𝑦), which is a rational number corresponding to the intensity of a 

natural hazard.  

Depending on the hazard, admissible values of 𝐿 may only be positive (𝐿 ∈ ℚ+), as is 

the case with peak ground accelerations, or may cover the entire spectrum of ℚ, as is the case 

with temperatures (𝐿 ∈ ℚ0). In addition to that, the variation of 𝐿 across its domain is very 

much dependent on the physical phenomena driving the hazard itself.  

As pointed out by Gill and Malamud (2014), an additional factor driving such variation 

is the typical scale at which certain natural hazards occur, ranging from tens of square 

kilometers (e.g., floods) to hundreds of millions of square kilometers (e.g., the fallout of 

volcanic ashes). In this thesis, two different 𝐻(𝑥, 𝑦) fields were considered: in the first case 

study, a square 𝐻(𝑥, 𝑦) field was produced by using a fractal process, where the hazard loading 

𝐿 ∈ ℚ0
+ was non-dimensional; in the second case study, a rectangular 𝐻(𝑥, 𝑦) field was 

obtained from the output of a high-resolution climate model, where the hazard loading 𝐿 ∈ ℚ0
+ 

represented the daily maximum wind speed of a certain location. 
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3.1.5 An open source approach to robustness modelling 

This thesis provides an example of how open-source programming languages can be 

used to produce code that models the robustness of infrastructures exposed to spatial hazards.  

The computational workflow of Figure 3.1 was implemented in Python (van Rossum, 

1995), a high-level, general purpose open source programming language with an extensive 

library of dedicated packages.  

The scripts developed for this thesis follow the procedural programming paradigm 

(Stevenson, 2013), and was implemented in Python 2.7 via Python Jupyter, a web-based, virtual 

computational notebook (Kluyver et al., 2016). The spatial hazard input block was structured 

in such a way that the functionalities of Python’s Numpy, Scipy and NetCDF4 packages could 

be fully exploited, allowing to import netcdf files and to perform data analysis, queries, and 

slicing operations. The infrastructure network modelling block took advantage of the flexibility 

and functionalities of the NetworkX package (Hagberg et al., 2008), which allows to create and 

analyze graphs based on theoretical network models or real-world asset datasets. The failure 

modelling block was implemented by means of basic language constructs such as control flow 

statements for iterative procedures and assignment statements for storage, without the use of 

any particular package. Finally, the robustness metrics block relied on the data analysis 

functionalities made available by the Numpy and Scipy packages, and the visualization 

functions available through the Matplotlib package (Hunter, 2007). The use of an open-source 

programming language was advantageous in many respects, including the possibility to make 

the code reproducible and available to the research community, and the absence of license costs 

charged for the use of proprietary software. 

The reader is advised to refer to the Appendix section in this thesis, where the Python 

scripts are made available for education and reproducibility purposes. This section includes the 

scripts used for Case Study 1, which are entirely open-source. Confidentiality agreements 

prevent the public release of the scripts used for Case Study 2, for which implementation 

guidelines are provided. 
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3.1.6 Datasets used in this thesis 

A collection of datasets originating from different sources has been used in this thesis. 

Following the structure given in section 2.2, these datasets were used at different stages of the 

research. Table 3.1 shows important details of the datasets used, covering aspects such as: i) 

the relevant case study; ii) the relevant stage; iii) source; iv) spatio-temporal scale; v) quality 

checks; vi) selection criterion. 

 

Table 3.1. Details of the datasets used in this thesis. 

Dataset 
Case 

Study 
Stage Source 

Spatio-temporal  

scale 

Quality  

checks 

Selection 

criterion 

Synthetic 

spatial 

hazards 

1 1 
Own  

work 

Spatial scale:  

10x10 cells 

Temporal scale: 

static 

Absence of 

periodicity; 

Absence of 

symmetry 

Only valid 

in absence 

of 

periodicity 

and 

symmetry 

Infrastructure 

network 

models 

1 3 
Own  

work 

Spatial scale:  

10x10 cells 

Temporal scale:  

static 

Absence of 

disconnected 

nodes 

Only valid 

in absence 

of 

disconnected 

nodes 

Topology-

based metrics 
1 6 Literature 

Spatial scale:  

10x10 cells 

Temporal scale:  

static 

Absence of 

negative 

values 

Only valid if 

not negative 

Wind  

gust  
2 1 

UK 

MetOffice 

Spatial scale:  

circa 120x120 km2 

Temporal scale:  

daily  

Absence of 

negative 

values; use of 

land-sea mask 

Only valid if 

not negative 

and relative 

to study area 

Electricity 

network 
2 2 

Northern 

Powergrid 

Spatial scale:  

circa 120x120 km2 

Temporal scale:  

static 

Absence of 

topological 

errors 

(overshooting, 

undershooting, 

gaps, etc.)  

Only valid 

in absence 

of 

topological 

errors, 

which were 

fixed during 

pre-

processing  

Impact 

indicators  
2 6 

Own  

work 

Spatial scale:  

circa 120x120 km2 

Temporal scale:  

daily 

Absence of 

negative 

values 

Only valid if 

not negative 
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3.2 Main contributions and rationale behind this thesis 

 

3.2.1 Overview 

With reference to the six stages described in Chapter 2, this thesis aims at providing 

three novel contributions. The first is concerned with spatial hazards, the second with network-

based systemic approaches, and the third with performance metrics highlighting structural and 

topological weaknesses in the fabric of the infrastructure. These contributions target four of the 

six stages mentioned in Chapter 2, except for Stage 4 and Stage 5: 

• Stage 1: 

Implementing a new method for generating realistic spatial hazards to enhance 

the results of natural hazard-related impact studies. This allowed to derive 

important design principles that can better inform the choice of one specific 

network model during the design phase of an infrastructure, so as to include the 

robustness to spatial hazards in the list of design requirements. This innovation 

was applied to both case studies; 

• Stage 2 and Stage 3: 

In Case Study 1, the infrastructure was considered to be a self-contained system 

that could interact with its surroundings, hence moving away from the concept 

of in-silo infrastructures. This allowed to create a framework where an aggregate 

measure of the robustness to spatial hazards could be defined, leading to hazard-

proof design considerations (Stage 3). In Case Study 2, partitioning the 

infrastructure into meaningful operational components and evaluating the role 

of intra-dependencies in a situation where the infrastructure is subjected to a 

specific natural hazard (Stage 2). This allowed to identify the most vulnerable 

components to be targeted by a strategic investment plan, so as to enable the 

infrastructure to become an adaptive system by changing its spatial structure; 

• Stage 6: 

Highlight the performance of the infrastructure at the aggregate level when 

subjected to spatial hazards to understand the behavior of a specific 

infrastructure layout, and highlight the performance of the single, primary 

components by breaking down the response of the infrastructure to disturbances 

in the form of spatial hazards. These approaches allowed, in the first case, to 

identify an implicit weakness of a given layout, and in the second case to analyze 
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the single components to pick up criticalities that cannot be picked up at an 

aggregate level. This innovation was applied to both case studies. 

 

3.2.2 Stage 1: new methods for spatial hazards 

In the first case study, this thesis proposed an alternative, innovative, and open-source 

approach to producing spatially-distributed hazards, which was based on the use of fractals. 

Such method overcame the inability to model spatial variability featured by deterministic, 

geometric, and probabilistic approaches, and it also allowed to sensibly reduce runtimes. In 

addition, this method allowed to put the emphasis not just on specific hazards, as computation-

based approaches tend to do, but on generic spatial hazards as well. In the context of this thesis, 

opting to model generic rather than specific spatial hazards allowed to establish important and 

generalizable principles that can be applied to the design of all infrastructures. 

The adoption of a fractal model with the purpose of describing the spatial characteristics 

of natural properties and disasters is not infrequent in literature. Fractals have been used to 

uncover potentially unnoticed patterns in natural hazards such as floods, wildfires, and 

earthquakes (Cello and Malamud, 2006; Llasat, 2007). Fractals have also been studied for 

investigating the complexity of spatial domains hit by natural disasters (Scheidegger, 1997), for 

assessing the damage resulting from natural disasters (Myint et al., 2008), and for describing 

terrain properties (Comegna et al., 2013). Fractal theory has also played an important role in 

characterizing the frequency-area statistics of a number of natural disasters (Malamud and 

Turcotte, 2006). Finally, in a work by Smith (2009), a fractal model was used to create synthetic 

rainfall maps to reproduce the spatial textures associated with rain and cloud fields, based on a 

work by Callaghan and Vilar (2007).  

This thesis adopted a fractal model known in literature as fractional Brownian motion 

(fBm), being inspired by the observed Brownian motion (Brown, 1828), and it is used to 

generate synthetic hazard fields. For specific values in its input parameters, fBm is said to 

produce fields that very closely resemble those resulting from natural phenomena, and as such 

they were called fractal forgeries (Voss, 1985). The mathematical foundation of fBm is found 

in the fractal theory proposed by Mandelbrot and Van Ness (1968) and expanded by Voss 

(1985) and Saupe (1988). These authors have paved the way for the implementation of a 

procedure that produces fractal surfaces known as Brownian surfaces. Given a finite grid of 

discrete integer values 𝐺 = {𝑥: 𝑥 ⊆ ℤ, 𝑦: 𝑦 ⊆ ℤ} that serves as spatial domain, the Brownian 
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surface is a three-dimensional object that associates an elevation 𝑍 = 𝑓(𝑥, 𝑦) to each point in 

the grid by means of a fractal elevation function (Russ, 1994).  

The need for an enhanced recipe for spatial hazards was also addressed in the second 

case study, although with less emphasis. In the second case study, this thesis took advantage of 

the high-resolution UKV Regional Climate Model, to analyze the impact of daily maxima wind 

gusts on the electricity infrastructure, using an input dataset with a spatial resolution of 1.5 km. 

From the point of view of natural spatial hazards, this represents an innovative approach, as the 

availability of datasets with such spatial precision is likely to be, at the time of this writing, 

unprecedented. The latter also represents part of the rationale behind the use of wind gusts. The 

other reason is the remarkable frequency of damage reported by Distribution Network 

Operators that are attributable to sustained winds. According to the NaFIRS database, the 

official source of information on electricity faults (Dunn et al., 2018), in Yorkshire and 

Lincolnshire nearly 42% of natural hazard-related damages recorded between 2004 and March 

2017 were attributed to wind. 

 

3.2.3 Stage 2 and Stage 3: topological approaches with and without dependencies 

Targeting Stage 3, the first case study investigated the aggregated impact of synthetic 

spatial hazards on synthetic infrastructure network models. This case study adopted a macro-

systemic perspective that was based on the fact that monitoring the aggregated performance is 

crucial given that localized events may still affect the overall behavior of the system (Albert et 

al., 2004). The rationale behind the macro-systemic approach was to pursue a methodology that 

could reveal whether a specific network structure or topology was more or less robust to spatial 

hazards as a whole. This unprecedented objective was achieved, based the example provided 

by Gastner and Newman (2006a; 2006b), by adopting a range of network models, in such a way 

as to compare the different structures or layouts. The ultimate goal was to determine if the 

different topologies, which are based on theoretical models but at the same time are also 

representative of real-world examples (Guimerà et al., 2005; Kalapala et al., 2006; Carvalho et 

al., 2009), contained structural aspects that made them inherently more or less robust to the 

failures caused by spatial hazards.  

Targeting Stage 2, the second case study analyzed the impact of a real-world, high-

definition dataset of wind gusts on an electricity infrastructure by exploiting a macro-systemic 

approach that includes an intra-dependency model. Such case study was devised to identify the 

primary components of the infrastructure that were most often affected by disruptions over a 
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given timeframe. This case study was structured by taking advantage of a state-of-the-art 

Regional Climate Model that enables fine-scale climatic determinations (Kendon et al., 2012; 

Chan et al., 2014), which very high-resolution output was, for the first time, adopted in an 

impact study. The objective was to inform asset management practitioners seeking strategic 

investment plans of the presence of segments or components of the infrastructure that, based 

on topological considerations, were significantly less robust to disruptions than others. 

 

3.2.4 Stage 6: implementation of a set of bespoke performance metrics 

In the first case study, this thesis adopted a network theory-based perspective with 

regards to the structural, fragmentation, flow-related, and domino-effect aspects driving the use 

of performance indicators. With reference to the structural aspects, a basic count of the number 

of failures was implemented, in order to quantify the impact of natural spatial hazards by 

determining the fraction of nodes that were not disrupted. The fragmentation aspect was dealt 

with by counting the number of connected components in which the infrastructure network was 

partitioned as a result of failures. The flow-related aspects were investigated by adopting a 

variation of the betweenness centrality metric used by Pregnolato et al. (2016), comparing the 

unperturbed to the perturbed situation. Finally, the domino-effect aspects were addressed by 

implementing the enumeration of 2nd order failures as defined by Little (2003) and Robson 

(2016) and illustrated in paragraph 2.2.4.1. The rationale behind the use of this combination of 

metrics, which is unprecedented in the literature, is attempting to capture the main functional 

aspects shaping the complex operations of networked infrastructures. 

In the second case study, the emphasis was placed on applying a state-of-the-art fragility 

model to each component or line of an existing electricity infrastructure (Soltan et al., 2017) 

rather than to the whole system. The innovative approach consisted in the fact that performance 

metrics addressing the expected number of faults produced in a given line by the wind gusts, 

the frequency of caused cascading failures, as well as the risk associated with them were also 

provided at the component level rather than at the macro-systemic level. This was done as the 

objective was to break down the response to characterize the robustness of the individual 

components. This was driven by the assumption that any strategic investment plan is budgeted, 

and there are not enough funds to address the lack of robustness of the entire system. 

Particularly innovative was the definition of the risk of cascading failures propagating from 

each component, which is likely to have never been attempted with a wind gust dataset of the 

same resolution as the one adopted in this thesis.  
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Chapter 4. Case Study 1: Methodology 

4.1 Rationale for adopting a macro-systemic approach 

In agreement with studies performed on the London Underground system (D’Lima and 

Medda, 2015; Chopra et al., 2016), the airline traffic network (Wilkinson et al., 2012), and the 

electricity network (Panteli et al., 2017), this thesis focused on how infrastructures respond to 

spatial hazards as a unique system, without considering the presence of sub-systems. 

Accordingly, in Case Study 1 the impact of spatial hazards was analyzed at the macro-system 

level. Here, the infrastructure was considered as a self-contained system without partitions, its 

behavior coinciding with a system-wide response that does not include the interaction of its 

sub-systems. However, at variance from the in-silo approach, the modelled behavior includes 

the interaction with spatial hazards, which played the role of an external agent. Contrarily to 

the concept of emergent behavior, where the cumulative outcome of a process is the result of 

the contributions of each sub-system and their interactions, the macro-systemic approach 

adopted in this thesis allowed to look at the response of the infrastructure as it if was captured 

from an elevated view (Figure 4.1). This approach was implemented with the purpose of 

determining if a certain system design – e.g., a topological model describing the layout of 

generic infrastructure systems – is more or less robust to spatial hazards. The task of specifying 

how many sub-systems are present, how they behave individually, and what is their emergent 

behavior was intentionally avoided, being implemented in Case Study 2. 

 

Figure 4.1. Difference between the macro-systemic approach implemented in this thesis and the concept 

of emergent behavior.  
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4.2 Stage 1: fractal spatial hazards 

 

4.2.1 Rationale for adopting fractal spatial models 

In this work, the fractional Brownian motion (fBm) was used as a generator of fractal 

surfaces. The elevation of these surfaces represents the severity of natural hazards. The fBm is 

a stochastic, isotropic process that creates a 3D surface with elevations spanning the range 

[0,1]. The x and y axes control the size and resolution of the domain, and the z axis represents 

the elevation of the surface (Figure 4.2). The elevation was used as a proxy for the intensity of 

generic natural hazards, so that peaks are associated with highs and valleys with lows. 

 

Figure 4.2. Visualization of a three-dimensional fractal Brownian surface over a grid composed of 

256x256 cells. Darker shades indicate higher values of the elevation function Z, which fluctuates 

between 0 and 1. The same surface can be visualized using a two-dimensional, eye-view plot. 

 

 

The adoption of the fBm as a spatial hazard generator, as opposed to the use of the 

approaches frequently found in literature, is convenient for multiple reasons: 

• It features a single parameter, the Hurst exponent H (Hurst, 1951), which controls the 

degree of spatial correlation in the surface; by varying it, a wide range of spatial 

variability can be reproduced; 

• For specific values of the Hurst exponent, the fBm model is reported in literature (Voss, 

1985; Saupe, 1988) as the best fractal approach for reproducing the occurrence of natural 

phenomena; 
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• Pseudo-code scripts are largely available, so that a language-specific implementation of 

the fBm process for automation purposes is possible (Smith, 2009), generally requiring 

limited computational demand and programming effort; 

• Contrarily to non-fractal approaches, the fBm process exhibits statistical self-similarity 

(Mandelbrot, 1967), implying that each smaller portion of the fractal surface is a 

reduced-scale version of the larger object; 

• The z values of the surfaces are non-specific and can therefore represent generic natural 

hazards.  

 

 

4.2.2 Mathematical description of the fractional Brownian motion  

The fractional Brownian motion (fBm) is a Gaussian random process which operates 

over a continuous-time interval [0, 𝑇] (Mandelbrot and Van Ness, 1968). Defined 𝑡 as the time 

and 𝜔 as the set of all possible values of the process, the function 𝐵(𝑡, 𝜔) represents the ordinary 

Brownian motion (Lévy, 1953), which describes the path followed by a particle in the space 𝜔 

at time 𝑡. This function features independent Gaussian increments, in such a way that it is 

possible to determine that 𝐵(𝑡2, 𝜔) − 𝐵(𝑡1, 𝜔) is characterized by zero mean and variance |𝑡2 −

𝑡1|, and that 𝐵(𝑡2, 𝜔) − 𝐵(𝑡1, 𝜔) is independent of 𝐵(𝑡4, 𝜔) − 𝐵(𝑡3, 𝜔), provided that the time 

intervals |𝑡2 − 𝑡1| and |𝑡4 − 𝑡3| are not overlapped. Defined 0 < 𝐻 < 1 as the Hurst exponent 

(Hurst, 1951) and 𝑏0 as a real number, 𝐵𝐻(𝑡, 𝜔) is the fractional Brownian motion having 

parameter 𝐻 and starting value 𝑏0. Being 𝑠 another variable for measuring time, with 𝑠 ≠ 𝑡, 

𝐵𝐻(𝑡, 𝜔) can be defined as: 

𝐵𝐻(0, 𝜔) = 𝑏0   

(4.1) 

𝐵𝐻(𝑡, 𝜔) − 𝐵𝐻(0, 𝜔) =
1

𝛤(𝐻+1
2⁄ )

{∫ [(𝑡 − 𝑠)𝐻−1
2⁄ − (−𝑠)𝐻−1

2⁄ ] 𝑑𝐵(𝑠, 𝜔) +
0

−∞

∫ (𝑡 − 𝑠)𝐻−1
2⁄ 𝑑𝐵(𝑠, 𝜔)

𝑡

0
}        

(4.2) 

 Equation 4.2 represents the moving average of 𝑑𝐵(𝑡, 𝜔), where the increments of 

𝐵(𝑡, 𝜔) are weighted by the kernel (𝑡 − 𝑠)𝐻−1
2⁄  (Mandelbrot and Van Ness, 1968). Based on 
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the values of H, equation 4.2 generates three different families of functions, which can be used 

to produce numerical series. These functions are distinguished based on the value of H ∈ [0, 1]: 

• When 0 < 𝐻 < 0.5, the increments of 𝐵𝐻(𝑡, 𝜔) show negative correlation; 

• When 𝐻 = 0.5, the random process 𝐵𝐻(𝑡, 𝜔) corresponds to the ordinary Brownian 

motion 𝐵(𝑡, 𝜔), where the increments show no correlation; 

• When 𝐻 > 0.5, there is positive correlation between the increments. 

 

 

4.2.3 Spatial properties of fBm and significance of the Hurst exponent 

 As first outlined by Mandelbrot (1967) and later supported by Borrough (1981) and 

Baas (2002), the fBm process is characterized by statistical self-similarity. This implies that as 

the fractal object is magnified, the shapes and the statistical properties that are featured at a 

given scale are highly similar to those observed at other scales. One effective example of such 

property is visible in the Sierpińksi triangle or gasket, shown in Figure 4.3. 

  

Figure 4.3. Visual representation of the notion of statistical self-similarity in the Sierpińksi triangle or gasket. 

  

 The concept of statistical self-similarity is tied to that of spatial autocorrelation by means 

of the fractal dimension 𝐷 (Klinkenberg, 1992; Klinkenberg, 2004). This parameter is a 

measure of how efficiently a given geometrical shape fills the space in which it is embedded. 

In the case of regular geometric elements such as lines, squares, or cubes, 𝐷 corresponds to the 

dimension of the Euclidean space they occupy, and it is an integer number (1𝐷, 2𝐷, 3𝐷). In the 

case of fractals, as the word itself suggests, this dimension is not an integer number, but rather 

a fractional number. According to Klinkenberg (1992; 2004), given a three-dimensional space, 

high values of 𝐷, such as 2.8, designate highly irregular geometric objects. On the contrary, 



Chapter 4. Case Study 1: Methodology 

 

62 

 

low values of 𝐷, such as 2.2, designate more regular objects. Consequently, to determine the 

irregularity of an object, the fractal dimension 𝐷 must always be compared with the integer part 

of 𝐷. It is also reported by Klinkenberg (1992; 2004) that, in a 3𝐷 Euclidean space, for instance, 

the self-similarity of an object with 𝐷 = 2.1 features high positive spatial correlation. On the 

other hand, if the object has 𝐷 =  2.9, its self-similarity comes with a high negative spatial 

correlation. If the object has a fractal dimension of 2.5, it shows no spatial correlation. This 

property applies to every dimension of the Euclidean space. This property also justifies the 

choice of a fractal model over the use of pseudo-random generators, as spatial correlation does 

not appear to be an intrinsic property of the latter. 

 The fractal dimension 𝐷 is also tied to the Hurst exponent 𝐻. As reported by Voss 

(1985), there is a linear relationship between 𝐷 and 𝐻, and thus, the Hurst exponent can be 

estimated from the fractal dimension of a particular process: 

𝐷 = 3 − 𝐻 (in a three-dimensional space) 

𝐷 = 2 − 𝐻 (in a bi-dimensional space) 

(4.3) 

  The Hurst exponent plays a multi-faceted role in the outcome produced by the fBm 

process: 

• As it is the only parameter to be accounted for, the Hurst exponent governs the fBm 

model making it simple to manage, flexible, and computationally inexpensive; 

• It describes the degree of autocorrelation featured by the output of equation 4.2, and as 

such, it carries information regarding the long-term memory of the elevations generated 

by equation 4.2; 

• As a consequence of the above, 𝐻 also characterizes the level of ruggedness or 

roughness shown by the motion of the output series. 
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 As previously mentioned, the output of the fBm model is a numerical series. This series 

can be plotted on a bi-dimensional graph to highlight the effect played by changing values of 

𝐻. As depicted in Figure 4.6, the series produced by fBm visually resemble the motion of a 

particle on a surface or through a medium. The lines describing such motion also represent a 

path with a specific degree of roughness that changes with the value of 𝐻. The paths shown in 

Figure 4.4 refer to a discrete integration of equation 4.2 performed in a unidimensional space 

in which time is represented by the x-axis. 

 

 

Figure 4.4. Visual representation of the numerical paths produced by the fBm model and of their change in 

roughness (adapted from Voss, 1985). For H=0.1, the path is highly irregular, with peaks being followed by 

significantly lower values. This sequence is essentially unaltered by higher values of H, although the peaks become 

gradually smoother as H increases. For H=0.7, the path almost completely loses its sharpness. For H=0.9, the peaks 

are so flattened out that the resulting path hardly resembles that with H=0.1. Not only does this chart illustrate the 

effect of changing values of H on the degree of ruggedness, but it also allows to visualize how H determines the 

level of correlation between two consecutive values in each series. 

 

 When the pointwise integration of equation 4.2 is performed on a bi-dimensional 𝑥𝑦-

plane, the paths shown in Figure 4.4 are transformed into a surface, which is then known as 

Brownian surface. In the 𝑥𝑦-plane, given two points with coordinates (𝑥1, 𝑦1) and (𝑥2, 𝑦2), it 

is possible to compute their elevation by applying equation 4.2 following Saupe (1988) and 

Stein (2002). As with the unidimensional case, the roughness of a surface is dictated by the 

value of 𝐻, as shown in Figure 4.5. The Brownian surfaces are referred to as forgeries by Voss 

(1985), since when assigned a proper color bar, they constitute a fictional landscape which 

resembles a true-life terrain. 
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Figure 4.5. Three fractal surfaces obtained with the fBm process following the examples in Kroese and Botev 

(2013). The image to the left was generated with H=0.0 (D=3.0) and produces a very rough surface. The central 

image was produced with H=0.5 (D=2.5), and features uncorrelated changes in z. As such, this image is excessively 

rough to resemble a true-life landscape. The third image was created with H=1.0 (D=2.0) and features a smoother 

surface. These images were generated with an approximate method. As such, inevitable numerical inaccuracies 

prevent the image with H=0.0 from being truly 3D, and that with H=1.0 from being truly 2D. 

 

 

4.2.4 The Spectral Simulation method for recreating Brownian surfaces 

 The generation of a Brownian surface revolves around implementing a numerical 

procedure in which equation 4.2 is solved by an automated procedure. According to Dieker 

(2002), there are numerous approaches available in literature, and it is possible to distinguish 

between exact methods and approximate methods. Among such methods, it is worth 

mentioning: 

• Exact methods: 

o The Hosking method (Hosking, 1984); 

o The Davies and Harte method (Davies and Harte, 1989); 

o The Cholesky decomposition method (Asmussen, 1999); 

o The Stein method (Stein, 2002); 

• Approximate methods: 

o The Random Midpoint Displacement method (Fournier et al., 1982); 

o The Spectral Simulation method (Priestley, 1981; Saupe, 1988); 

o The Wavelet method (Abry et al., 1995); 

o The Aggregating Packet Processes method (Willinger et al., 1997). 

 

 To avoid the computational effort associated with exact methods, this research focused 

on approximate methods, and specifically on deploying the Spectral Simulation method for 

generating the Brownian surfaces. This procedure was first introduced by Priestley (1981), and 

its pseudo-code version was provided by Saupe (1988). As pointed out by Dieker (2003), the 
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Spectral Simulation method (SSm) is widely used in literature and yields a reliable 

approximation of the fBm process in the spectral or frequency domain. In addition, it is 

characterized by algorithmic efficiency, requiring limited time and computational resources. 

While the fBm process is by construction non-stationary, the pseudo-code of the SSm 

implementation provided by Saupe (1988) produces stationary outcomes (Dieker, 2003). This 

property is extremely relevant to the generation of synthetic hazards. In fact, the Brownian 

surfaces are intended to represent the stationary outcome of the manifestation of a natural 

hazard, implying that after the event has occurred, its severity is time-invariant. The objective 

of the Spectral Simulation method is to analyze the fBm process, which by construction 

operates in the time domain, in the spectral or frequency domain (Dieker, 2003). Therefore, this 

method defines the spectral density function associated with the fBm process, and then adopts 

the inverse Fast Fourier Transform for reconstructing the spectral signal, as opposed to directly 

solving its equation.  

Given an 𝑥𝑦-plane and defined 𝑢 and 𝑣 as the variables describing how the frequency 

changes, respectively, along the 𝑥 and 𝑦 directions, the spectral density 𝑆 is given by: 
 

 

𝑆(𝑢, 𝑣) =
1

(𝑢2+𝑣2)𝐻+1  

(4.4) 

 According to Saupe (1988), the corresponding bi-dimensional inverse Fast Fourier 

Transform of equation 4.4, in the discrete form, is given by: 

 

𝑋(𝑥, 𝑦) = ∑ ∑ 𝑎𝑘𝑙𝑒
2𝜋𝑖(𝑘𝑥+𝑙𝑦) 𝑁−1

𝑙=0
𝑁−1
𝑘=0    

(4.5) 

 In this equation, 𝑁 is the resolution of the algorithm, corresponding to the size of the 

array in which the 𝑋(𝑥, 𝑦) results are stored, while 𝑘 and 𝑙 index the steps in the 𝑥 and 𝑦 

directions, respectively. The term 𝑎𝑘𝑙 refers to the Fourier or frequency coefficients used to 

reconstruct the spectral density signal. As a consequence of equation 4.4, these coefficients are 

expressed as follows: 

𝐸(|𝑎𝑘𝑙|
2)   

1

(𝑘2+𝑙2)𝐻+1   

(4.6) 
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4.2.5 Automated implementation of the Spectral Simulation method 

 The function described in equation 4.5 was implemented in Python, in order to take 

advantage of the high flexibility offered by this programming language (Van Rossum, 1995). 

The choice of Python over other programming languages is also justified by the fact that Python 

requires less lines of code than alternative options such as C++ or Java (McConnell, 2004). As 

outlined by Voss (1988), Weisstein (2008), and Smith (2009), higher computational feasibility 

is achieved when the spatial domain of equation 4.5 is a square grid. In addition, the same 

authors suggest that the size of grid must be an exact power of two. Accordingly, this research 

adopted a grid resolution of:  

𝑁 = 28 = 256  

(4.7) 

 As such, the spatial domain of equation 4.5 is composed of 𝑁𝑥𝑁 = 65536 cells. As 

evidenced by Saupe (1988), the surfaces resulting from the fBm process in the frequency 

domain are more and more detailed as the number of Fourier coefficients increases. 

Specifically, the most accurate and definite surfaces are obtained when the number of 

coefficients matches the resolution of the spatial domain. Consequently, the number of Fourier 

coefficients initially used in this thesis was 256. The Brownian surface was obtained by means 

of two nested Python scripts. The inner script implements the automated computation of 

equation 4.5 and the Fast Fourier Transform, whereas the outer script calls the previous one to 

generate the surface with the appropriate parameters (Figure 4.6).  

 

 

Figure 4.6. The two nested Python scripts and the input values used to generate the Brownian surfaces. 
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 In addition to the mentioned inputs, the outer script also specified the initial standard 

deviation of the fractal values, which was selected to be 𝜎 = 1 in order to preserve the 

alignment with Saupe (1988). The outcome of this procedure is visible in Figure 4.9, where one 

Brownian surface is depicted as a bi-dimensional map. As shown by the color bar, completely 

white shades suggest absence of hazard loading (𝐿 = 0.0), while dark red cells denote 

maximum hazard loading (𝐿 = 1.0). The shades of red in between these two extremes 

symbolize values higher than 0.0 and lower than 1.0. 

 

 

Figure 4.7. This image represents the eye-view of a Brownian surface similar to that described in Figure 4.2. It 

was obtained with 𝐻 = 0.8 and a resolution of 𝑁 = 256 cells.  

  

 The raw output produced by the randomized fractal nature of the surface depicted in 

Figure 4.7 followed a normal distribution with 𝜇 = 0 and 𝜎 ≈ 1 𝑁⁄ , where 𝑁 is the resolution 

(Smith, 2009). The application of equation 4.5 to the outcome of equation 4.2 converted the 

fractal values from the time domain to the frequency domain by applying the Fast Fourier 

Transform. This resulted in the fractal values being rescaled to a range ∈[0.0, 1.0] (Walker, 

1991). One discernible feature of the fractals obtained with the numerical recipe provided by 

Saupe (1988) is periodicity (Smith, 2009). This implies repeated shape patterns that can be 

easily recognized by the human eye. The presence of such periodicity is a direct consequence 

of the use of the Fast Fourier Transform. The periodicity is visible in Figure 4.8, where an axis 

of symmetry overlaps the 𝑦 = 𝑥 line.  
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Figure 4.8. Visualization of the periodicity associated with Brownian surfaces. The axis of symmetry is 

represented by the dashed black line, which also happens to be the 𝑦 = 𝑥 line. The repetitiveness of shape patterns 

is an intrinsic property of the Fast Fourier Transform, which is applied to equation 4.2. This image was produced 

with H=0.8. 

  

 The repetitiveness of certain patterns is not a desired element of this research, because 

natural hazards are geographically distributed according to a whole host of different drivers. As 

illustrated by El Morjani et al. (2007), the combination of these drivers hardly results in the 

repetition of any specific geometric shape. Therefore, periodicity is an undesirable property. 

The outer script was designed to avoid such property by slicing each fractal into a smaller 

domain. As highlighted by Smith (2009), the size of this new domain should be half that of the 

original; however, computational aspects may influence the choice of the final size, especially 

if the fractals are used as input to demanding downstream analysis. The smaller domain was 

sliced from the original fractal in such a way as to not intersect the axis of symmetry, thus 

avoiding repeated patterns, and the fractal boundary, to minimize boundary effects.  

 In mathematical terms, the Brownian surfaces returned by the Spectral Simulation 

method are second order stationary random processes, and as such they are also isotropic 

(Saupe, 1988). This means that the occurrence of peaks and valleys is equally likely anywhere 

within the domain (Smith, 2009). Focusing on a smaller region, therefore, does not impede 

capturing the degree of spatial variability offered by the fractal. When the Brownian surfaces 

are used as spatial hazard generators, the fraction of cells which elevation exceeds a cut-off is 

a crucial areal descriptor, which corresponds to the spatial extent of the hazard represented by 

the surface. For the purpose of this research, such extent is defined as the Critical Footprint 

(CF) as it denotes the fraction of footprint that is most likely to cause disruption in an underlying 
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network. The Critical Footprint is expressed in percentage, and it is sensitive to both the fractal 

spatial pattern and the cut-off value.  

 

 

4.2.6 Role of the Hurst exponent in influencing the spatial variability of fractal hazards 

 The Hurst exponent, denoted by H, is the only parameter controlling the fractional 

Brownian motion, its admissible values ranging from 0.0 to 1.0 (Mandelbrot, 1968). It is a 

measure of long-term memory originating from the analysis of hydrological time series, and it 

is also related to their autocorrelations (Hurst, 1951). In the context of fractal geometry, it 

assumes a spatial significance given its relationship with the fractal dimension D (equation 3.3).  

 From a spatial perspective, the Hurst exponent is a proxy for the spatial correlation of 

the elevation of two adjacent points on a surface: the range 𝐻 < 0.5 yields a gradual increase 

in negative correlation as it approaches 0; the value 𝐻 = 0.5 represents uncorrelated elevations; 

the range 𝐻 > 0.5 is associated with a gradual increase in positive correlation as it approaches 

1 (Saupe, 1988).  

 By changing H, it is therefore possible to obtain surfaces with varying degrees of 

ruggedness, from very rough surfaces, generated with low values of H, to very smooth surfaces, 

generated with high values of H. The array 𝐻 = [0.6, 0.7, 0.8, 0.9, 1.0] was used in this 

research. It is centered around 𝐻 = 0.8 as it is reported to be the most reliable value for 

representing natural phenomena (Voss, 1985; Saupe, 1988). More peculiar spatial 

configurations were reproduced by including relatively extreme values such as 𝐻 = 0.6 and 

𝐻 = 1.0. Figure 4.9 illustrates the change in ruggedness induced by the array of H values.  
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Figure 4.9. Representation of the change in ruggedness in the Brownian surfaces. As H gradually increases, the 

spatial fragmentation associated with H=0.6 is progressively smoothed out, and more homogeneous surfaces begin 

to appear. This implies that the loading hotspots (dark red shades) change their behavior as H increases: for lower 

values of the Hurst exponent, the loading hotspots are scattered across the 2D surface; as H approaches 1, the 

hotspots gather in one specific region of the 2D surface (the upper left corner in the realization with H=1.0). 

 

 

4.2.7 Advantages and disadvantages of the fractal approach 

In terms of disadvantages and limitations, this fractal approach features a notable degree 

of randomness due to its isotropy (Saupe, 1988), which can result in unrealistic spatial patterns 

if compared to real natural hazards. Also, the range of elevation values does not exceed the 

interval [0, 1], requiring appropriate data transformation in order to accurately describe specific 

natural hazards. Despite the negative aspects, the reduced computational demand, the 

possibility to include the surface generation inside a streamlined Monte Carlo simulation flow, 

and, particularly, the ability to produce surfaces with varying degrees of spatial correlation are 

the driving factors behind their adoption in this thesis. 
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4.2.8 Comparing fractal spatial hazards to deterministic spatial hazards 

 

4.2.8.1 Generation of circular-shaped hazards as the most common deterministic example 

A substantial body of literature has recently grown up around the topic of localized 

attacks (Berezin et al., 2015; Shao et al., 2015; Yuan et al., 2015) as an alternative to the well-

established and extensively studied random attacks (Albert et al., 2000; Albert and Barabási, 

2002) and targeted or informed attacks (Tanizawa et al., 2005; Estrada, 2006) to describe how 

networks fail. Among all deterministic approaches, the idea behind the localized attacks is by 

far the most commonly used by the literature on spatial hazards. As explained by Berezin et al. 

(2015), the localized attack randomly selects a node in the network to act as the center of a 

circle. Then, using a failure radius 𝑟 > 0, the boundary of the circle is drawn, producing a 

region of failure. All nodes intersected by or inscribed within this region are assumed as failed, 

creating discontinuity regions or holes within the texture of the affected network (Figure 4.10).  

 

 

Figure 4.10. Illustration of a localized attack. The red node in the left panel is randomly selected to be the center 

of a circle superimposed to the network texture. In this case, the network is represented by a square lattice in which 

edges are not shown. Then, a failure radius 𝑟 > 0 is selected to define the size of the circle. All nodes within or 

crossed by the red circle are assumed as failed. The extent to which the network is affected is dictated by the failure 

radius and the underlying topology or layout.  

 

 To compare the impact of fractal spatial hazards to that of the most prominent of all 

deterministic approaches, the localized attacks were implemented. This was done with a Python 

script that rasterizes and fills a circle on a mesh grid combining the Bresenham’s Midpoint 

Circle Generation Algorithm (Bresenham, 1977) with the Flood-Fill Algorithm (Pavlidis, 

1979), producing a circle. This script receives as input the size of two nested mesh grids, the 

radius (an integer number sampled from a discrete uniform distribution, so that all sizes are 

equally probable to be drawn), and the (𝑥𝑐, 𝑦𝑐) coordinates for the center of the circle (two 

integer numbers sampled out of a discrete uniform distribution) (Figure 4.11). The use of two 

nested mesh grids allows for the truncated circles to be generated. The output is an image of 

the inner grid with either whole or truncated circles. (Figure 4.11).  



Chapter 4. Case Study 1: Methodology 

 

72 

 

      

 

Figure 4.11. Structure of the algorithm producing the localized attacks. The coordinates of the center range from 

0 to 𝑂𝑢𝑡𝑒𝑟 𝑔𝑟𝑖𝑑𝑠𝑖𝑧𝑒 − 𝑟𝑎𝑑𝑖𝑢𝑠 to ensure that the circles entirely fall within the boundaries of the outer grid.  

 

 The circles are drawn in two steps. In the first step, the circle is drawn on the grid based 

on the coordinates of the center and the radius. In the second step, all the cells within the circle 

are filled. To accomplish the first task, the Bresenham’s Midpoint Circle Algorithm takes 

advantage of the symmetry of a circle, dividing it into 8 octants of 45 degrees each. The goal is 

to identify a path of adjacent cells or pixels in the lattice so that the equation 𝑥2 + 𝑦2 = 𝑟2 is 

satisfied, resulting in a rasterized circle (Figure 4.12). Each cell or pixel is added to the path if 

𝑥𝑝𝑖𝑥𝑒𝑙
2 + 𝑦𝑝𝑖𝑥𝑒𝑙

2 ≤ 𝑟2, provided 𝑥𝑝𝑖𝑥𝑒𝑙
2 + 𝑦𝑝𝑖𝑥𝑒𝑙

2  is a maximized sum of integer numbers. The 

Bresenham’s Midpoint Circle Algorithm can be briefly described with the following steps: 

• Using integer numbers only, the coordinates of the center and the radius are assigned; 

• The algorithm considered the center of the circle as the new origin, shifting the grid 

origin from its original location to the center of the circle; 

• At the beginning, only the first octant is considered, and a curve starting at point (𝑟, 0) 

is drawn. The drawing proceeds counterclockwise until the angle of 45 degrees is 

reached; 

• While drawing the arc, the algorithm uses a decision variable to determine whether a 

pixel should be added to the path or not. Given two vertically aligned pixels crossed by 

the circle, the algorithm decides which pixel is added to the path based on the sum of 

distances between the centers of the pixels and the arc. The upper pixel is considered 

only when the sum is ≤0; otherwise, the lower pixel is added to the path; 

• The algorithm takes advantage of the four axes of symmetry featured in the circle, so 

that the coordinates of the pixels in other octants can be referred to the coordinates of 
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the pixels in the first octant. This results in the circular path being drawn simultaneously 

across all 8 octants (Figure 4.12);  

• The script uses the Bresenham’s Midpoint Circle Algorithm to assign 1 to each pixel 

composing the path. 

 

 

Figure 4.12. On the left, the rasterization of a circle carried out by the Bresenham’s Midpoint Circle Algorithm. 

The algorithm uses the radius to highlight the pixels composing the path across the first octant. The algorithm also 

uses a decision parameter to determine, for each couple of vertically aligned pixels, which one to include based on 

the value of the parameter. The lower pixel was added only when the decision parameter was higher than 0; 

otherwise, when the parameter was ≤0, the upper pixel was added to the path. In the first octant, the algorithm 

starts drawing a vertical segment since it always takes a step upwards, increasing the y coordinate. The right panel 

depicts the position of each octant in the circle and the symmetry equations used by the algorithm to refer the 

coordinates of the pixels in other octants to those in the first octant. This resulted in a simultaneous drawing of the 

circle across all 8 octants.  

 

 

 The second task consisted of filling the rasterized circle, in such a way that each pixel 

falling within the circle could be assigned 1. This task was carried out using a simplified version 

of the Flood-Fill Algorithm (Pavlidis, 1979). Each pixel satisfying the equation 𝑥𝑝𝑖𝑥𝑒𝑙
2 +

𝑦𝑝𝑖𝑥𝑒𝑙
2 < 𝑟2 and falling within the boundaries of the visualized lattice was assigned 1. Thus, 

each pixel inside and on the circle was attributed 1, whereas those outside the circle were given 

0. The circles generated as such act as generators of spatial hazards. By matching the size of 

the inner grid to that of the fractal grid, it is possible to compare the two outcomes. The circles 

may remind of specific realizations of Poisson point processes or clustered point processes, in 

the likes of the Neyman-Scott Rectangular Pulse (Cowpertwait, 1991; Cowpertwait, 1995; 

Fowler et al., 2000; Fowler et al., 2004; Burton et al., 2008). The main visual difference is that 

only one circle is created for each event. At variance from fractals, which can be scattered 

across the grid, the circles consist of one single, aggregated, and spatially continuous object. As 

with fractals, the circles feature a hazard loading ranging from 0.0 to 1.0, although no value 

between 0.0 and 1.0 is present (Figure 4.13). 
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Figure 4.13. One realization of the localized attacks on a 100x100 mesh grid. The circle is entirely located in the 

inner grid and occupies 16.49% of the cells. As such, the corresponding Critical Footprint is 16.49%.  

 

 

4.2.8.2 Geometrical difference between circular-shaped and fractal spatial hazards 

  Given the recurrence of the circle as the most common deterministic shape used in 

literature to represent natural spatial hazards, this research focused on highlighting the 

geometrical difference between circular-shaped and fBm-generated fractal spatial hazards. In 

this context, the geometrical difference refers to the fact that circles have a characteristic 1D 

geometric descriptor, namely the diameter, whereas fractals are known for not having a 

characteristic 1D geometric quantity (e.g., the diameter or an axis). As such, fractals are 

typically described by the fractal dimension D, which is a fractional measure of how well the 

pattern fills the space in which it is embedded (Mandelbrot, 1967). Therefore, circles and 

fractals do not share any geometric dimensions that can be directly compared. This problem 

was addressed by resorting to the image processing techniques implemented in Python by the 

Scikit package (van der Walt et al., 2014). These techniques were used to generate an ellipse 

with the same 2nd central moments as the fractal or the circle, according to the following steps 

(Figure 4.14a): 

1. Generate one circle and one fractal shape with the same area, 𝐴𝑑𝑖𝑠𝑘 = 𝐴𝑓𝑟𝑎𝑐𝑡𝑎𝑙 = 𝐴; 

2. Compute the 2nd central moments for both the circle and the fractal; 

3. Generate the ellipses with the same moments as those computed, so that each shape has 

its corresponding ellipse; 

4. Compute and compare the lengths of the major axes of the two ellipses, 𝑙𝑑𝑖𝑠𝑘 and 

𝑙𝑓𝑟𝑎𝑐𝑡𝑎𝑙. 
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 The use of equivalent ellipses was implemented to allow to make a meaningful 

geometric comparison between the circle and the fBm-generated shape, provided the two 

original shapes had the same area. The comparison was carried out based on two sets of 10,000 

realizations performed over a mesh grid of 50x50 cells, using 𝐻 = 0.6 as a spatial parameter for 

the fractal shape and the range ∈[3, 50] for the radius of the circle. This specific value was selected 

in order to highlight the differences between the two families of shapes in the worst-case scenario. To 

favor reproducibility, Figure 4.14b uses a generic object to show the procedure followed to obtain the 

ellipses and major axes mentioned in Figure 4.14a. 

 

 

Figure 4.14a. The major axes of the ellipses with the same 2nd central moments as a circle and fractal. The circle 

and the fractal have the same area (Critical Footprint), however they produce different major axes due to the spatial 

distribution of the points that compose their surfaces. The major axis of the fractal is longer due to its points being 

more scattered compared to the circle. 
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Figure 4.14b. Procedure to obtain the ellipse built on the same 2nd central moments as an object (shown here in 

black) of a generic shape, as well as the corresponding major axis with its orientation in a 2D plane. These were 

the steps followed to obtain the two major axes mentioned in Figure 4.14a. 
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4.3 Stage 2: hierarchies and dependencies 

 As discussed in paragraph 3.2.3, Case Study 1 was developed to study the response of 

synthetic infrastructure models to synthetic spatial hazards at the aggregate level. This entails 

that the perspective adopted did not take into account any hierarchies or dependencies, and the 

overall robustness to the spatial hazards was determined based on the assumption that the 

network responded as a self-contained system. 

 

4.4 Stage 3: infrastructure network models 

 

4.4.1 Synthetic models of infrastructure networks 

 Following Gastner and Newman (2006a; 2006b), four of the most common topologies 

were implemented as undirected graphs or networks and used as synthetic infrastructure 

models. These networks were generated using the dedicated Python package NetworkX 

(Hagberg et al., 2008). Although no reference to specific real-world infrastructures was made, 

these four models were included to establish a link with the most recurrent topologies found in 

real-world infrastructures. The implemented topologies include: 

1. The Lattice Network (LN); 

2. The Scale-Free Network (BA); 

3. The Small-World Network (WS); 

4. The Random Network (ER). 

 

 The Lattice Network (LN) features a highly regular topology with evenly spaced nodes, 

and it was adopted given its recurrence in grid-iron street layouts and water supply systems 

(Musa et al., 2009). It resembles a grid with a constant edge length across the entire network, 

and it is also referred to as the Manhattan Lattice (Beamond et al., 2003) given its resemblance 

to the street layout of the New York City borough. The Scale-Free Network (BA) is extensively 

found in real-world infrastructures such as the railway network (Gastner and Newman, 2006b), 

the airline network (Guimerà et al., 2005), the gas network (Carvalho et al., 2009), as well as 

the road network (Kalapala et al., 2006). This model features a small number of highly 

connected nodes known as hubs, whereas most of its nodes only have a few connections. The 

model also features long-range edges. In the context of this research, only the Barabási–Albert 



Chapter 4. Case Study 1: Methodology 

 

78 

 

(BA) variation of the Scale-Free Network is adopted, where the topological structure arises 

from the growth and preferential attachment algorithm (Albert and Barabási, 2002). The Small-

World Network (WS) was adopted based on the WS model proposed by Watts and Strogatz 

(Watts and Strogatz, 1998), where the path connecting any two nodes in the network is 

composed of just a few edges or hops. As such, the hubs emerging in this topology have 

significantly less connections than those emerging in the BA model. Variations of the WS 

model, largely contaminated by the BA model, can be found in the airline network (Guimerà et 

al., 2005; Barthélemy, 2011), particularly for airlines operating the point-to-point transport 

model. Water supply networks follow a closely related scheme when their degree distribution 

follows the Poisson distribution (Giustolisi et al., 2017). The Random Network (ER) was 

implemented following the Erdős–Rényi model (Erdős and Rényi, 1959). In ER, an edge 

connecting two nodes has a certain probability of existing, which is completely independent of 

the probability associated with other edges. The randomness behind the occurrence of a specific 

edge puts this model in a different category than the others, due to the apparent lack of a 

topological criterion and its theoretical nature. This is likely to be the reason why ER models 

are only used for comparison in infrastructure studies (e.g., Cotilla-Sanchez et al., 2011). 

Therefore, this research adopted the ER model only for purposes of comparison. 

 The list of network models used does not include: i) hierarchical networks and ii) 

exponential networks. Hierarchical networks are not included in Case Study 1 as the objective 

was to determine the overall behavior of networks considered without partitions, whereas 

hierarchical networks do feature partitions. However, hierarchical networks were used in Case 

Study 2. Exponential networks (Jing-Zhou and Yi-Fa, 2005) were not included in Case Study 

1 as they are generated with a variation of the growth and preferential attachment algorithm that 

also generates BA networks. Also, the small network size would have prevented to see 

meaningful differences in behavior between exponential and BA networks. 

 Given that the NetworkX functions used to generate the synthetic models rely on a 

random seed, and that a change in seed produces a change in the spatial distribution of edges 

(Figure 4.15), an ensemble of realizations was generated using the same seeds for all models. 

This enabled to extend the results to the entire family of networks. For each synthetic model, 

300 different realizations were generated, except for the LN model, where edges are fixed in 

space. Given the use of resource-intensive metrics, the size of the ensemble was designed to 

preserve the balance between computational costs and the generalization of results.  
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Figure 4.15. Changes in the distribution of edge length in a small-sized BA model using an ensemble of 1,000 

realizations. The 5th and 95th percentile boundaries are visible. The length L is normalized with respect to the size 

of the regular grid hosting the network.  
      

 

 Following Abundo et al. (2014), the synthetic models were generated using a regular 

grid of 10 by 10 cells, each hosting one individual node. The size of such grid, which dictated 

the network size, was identified as a compromise between computational costs and accuracy, 

although improved results might be obtained using larger grids. However, the major constraint 

to adopting larger grids was the computational cost associated with the CFI metric (see 

paragraph 4.7.1).  The Barabási-Albert algorithm used to generate the BA model, when applied 

to the 10 by 10 grid, generated networks in which the hubs were always located in the top-left 

corner of the grid. This is a natural consequence of the growth and preferential attachment 

processes applied to a grid. To ensure that the BA networks were all comparable to each other, 

hub locations were not allowed to vary, creating a consistent topological structure. Details 

regarding the growth and preferential attachment processes can be found in Albert and Barabási 

(2002). 

 The total number of nodes for each realization, 100, implies that the networks were 

always small-sized, and this is a computational advantage. Parameters such as the probability 

of rewiring for the ER model, the number of initial links for the BA model, and the number of 

nearest neighbors for the WS model were selected in such a way as to keep the number of edges 

comparable between the four ensembles of synthetic networks. Figure 4.16 shows single 

realizations of the four ensembles, whereas Table 4.1 specifies their details. The change in seed 

in the BA, WS and ER models entails that the spatial distribution of edges was different for 

each realization. 
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 As shown in Table 4.1, the edge-to-node ratio of the network models varies between 1.8 

(LN) and 2.0 (ER). This was driven by the LN model and it was kept as close to 1.8 as possible, 

the variation being dictated by the topological differences between LN and the other ensembles.  

 

 

Figure 4.16. Single realizations of the four synthetic network models. The brighter colors indicate a higher degree 

relatively to each model. In the LN model, the highest degree is always 4. In the other models, it may vary based 

on the seed used. The BA models always feature hubs with the highest degree, followed by the ER and WS models. 

The presence of edges shows the underlying topological structure.  
 

 

Table 4.1. Topological characteristics of the four ensembles of synthetic networks. 

Network model Nodes Edges 
Edge-to-node 

ratio 

Average degree  

<k> 
Realizations 

1 
Lattice Network  

(LN) 
100 180 1.80 3.60 1 

2 
Scale-Free Network 

(BA) 
100 196 1.96 3.92 300 

3 
Small-World Network 

(WS) 
100 198 1.98 3.96 300 

4 
Random Network  

(ER) 
100 200 2.00 4.00 300 
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4.5 Stage 4: propagation of failures 

 

4.5.1 Mechanisms of failure 

  The mechanisms of 1st and 2nd order failures were implemented using a basic model 

loosely based on agent-based models, following Niazi and Hussain (2009). Agent-based models 

are computational models revolving around the idea of autonomous entities. These, known as 

agents, collectively define, through their actions and interactions, the status of the system they 

are part of. Upon analyzing the impact of fractal spatial hazards, the nodes of a network were 

considered as agents that can take only two statuses, active or failed, based on whether they had 

withstood the hazard loading or not. Since the interaction between nodes is dictated by how the 

edges are distributed across the network, a higher number of edges going in and out of a node 

signals a higher volume of interactions. This offers the node the natural role of an agent capable 

of influencing the performance of other nodes as a function of how many nodes it is connected 

to. Agent-based models typically feature a higher number of statuses than the version described 

here, and find applications in smart grids (Ferreira et al., 2015), air traffic network (Darabi and 

Mansouri, 2015), and local energy networks (De Durana et al., 2015). Mathematically, the basic 

agent-based model adopted is a variation of the general definition of resilience of natural and 

man-made complex systems given in literature (Barzel and Barabási, 2013; Barzel et al., 2015; 

Gao et al., 2016): 

 

𝑑𝑥𝑖

𝑑𝑡
= 𝐹(𝑥𝑖) ∗ ∑ 𝐴𝑖𝑗𝐺(𝑥𝑖, 𝑥𝑗)𝑁

𝑗=1   

(4.8) 

 In equation 4.8, the 
𝑑𝑥𝑖

𝑑𝑡
 term refers to the change in status of node i, which can be either 

active or failed. The term 𝐹(𝑥𝑖) is the self-dynamics (Gao et al., 2016) of each node, which in 

this context describes the impact of the fractal spatial hazards on the node itself. The terms 

under summation, the adjacency matrix 𝐴𝑖𝑗 and the law governing interactions 𝐺(𝑥𝑖, 𝑥𝑗), jointly 

define the exchanges occurring between connected neighbors. The summation itself indicates 

that such exchanges are only taken into account if they involve the connected neighbors of node 

𝑖. Equation 4.8 was applied in two steps: first, the outcome of 𝐹(𝑥𝑖) was computed for each 

node; then, when the outcome was failed, the computation was stopped and the next node in 

the network was analyzed; on the contrary, when the outcome was active, the summation term 
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was also processed. To simplify computations, two assumptions were made before applying the 

agent-based failure model:  

1. A one-to-one relationship linked the network nodes to the cells in the hazard fields 

(Figure 4.17). This was made possible by the non-specificity of the fractal spatial 

hazards and the network models described in paragraph 4.4.1; 

2. The Failure threshold (Ft) values previously described were used one at a time and 

consistently across the entire network. 

 

 

Figure 4.17. Schematic of the 1-to-1 pairing between the cells of the fractal hazard and the nodes in the network. 

This arrangement follows the idea that each node is hosted by a corresponding cell. As a result, each node only 

takes as input the hazard loading displayed in the relevant cell.  

  

  

 In order to detect the two failure mechanisms described in paragraph 2.2.4.1, the agent-

based model was implemented in two steps (Figure 4.18): 

1. The first step detected 1st order failures. The input to each node was compared to the 

failure threshold in effect: when ℎ𝑎𝑧𝑎𝑟𝑑 𝑙𝑜𝑎𝑑𝑖𝑛𝑔 ≤ 𝐹𝑡, the node was considered as 

active; when ℎ𝑎𝑧𝑎𝑟𝑑 𝑙𝑜𝑎𝑑𝑖𝑛𝑔 > 𝐹𝑡, the node was considered as failed, and was 

removed from the network. This step evaluated how the action of the hazard loading 

impacts on the agents, and implemented the term 𝐹(𝑥𝑖) of equation (4.8); 

2.  The second step detected 2nd order failures. The status of all nodes connected to any 

active node (the connected subgraph) was checked, inheriting the output of the first 

step. The aim was to determine whether an active node was still connected to other 

active nodes or was the only active one in its original connected subgraph. In the latter 



Chapter 4. Case Study 1: Methodology 

 

83 

 

case, the node would be considered as isolated. Any node connected to at least one other 

active node was left untouched. Any isolated node, although active, was removed from 

the network under the assumption that isolated nodes cannot interact with other nodes, 

and as such they act as if they had failed. This step is a rendition of the summation term 

in equation 4.8 and quantifies how the interaction between one node (the agent) and its 

dependencies influences the performance of the connected subgraph.  

 

 Any node retaining an active status after the second step was not subjected to further 

modelling. As such, the transition from step one to step two is associated with a possible 

decrease in the number of active nodes. Consequently, the first step can be considered as 

unstable, whereas the second step is stable, given that no further failures were allowed to occur. 

The only situation in which the first step is stable is when the hazard loading is severe enough 

to result in the failure of all nodes. Using networks with different topological arrangements, the 

two failure mechanisms may have different impacts on the final number of active nodes. 

According to network theory, in fact, it is the network topology that dictates how and with what 

probability the nodes are connected, and how extended the edges are (Estrada and Knight, 

2015). 

  

Figure 4.18. The adopted failure model. In the 1st step, the nodes withstand the hazard loading only if the failure 

threshold exceeds it. In the 2nd step, every connected neighborhood is searched for active nodes. If only one active 

node is found, it is considered as failed due to isolation.  

 

 This failure model did not take into account aspects such as the recovery of nodes. This 

is because any information on the recovery process is likely to be highly infrastructure-specific, 

and the infrastructure models adopted in this section were generic. As a result, the response of 

the models to the fractal spatial hazards are to be seen in the context of the immediate aftermath 

of the realization of a hazard. 
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4.6 Stage 5: fragility and propagation of failures 

 

4.6.1 Fragility curves 

 In order to define how the failures caused by the impact of the fractal spatial hazards 

percolated to other nodes, a simplified set of fragility curves was adopted, where the failure of 

a node was not determined based on a probabilistic approach applied to the hazard loading. 

Instead, the failure was only triggered by the exceedance of a specific threshold called the 

Failure threshold (Ft). The nodes subjected to a loading greater than Ft were considered failed 

with a probability of 100%, thus resulting in a binary fragility curve (Figure 4.19). Each 

threshold was used as a proxy for indicating the capability of a node to withstand a fraction of 

the maximum hazard loading. This simplified approach was adopted to decrease the 

computational demand, and to match the non-specificity of the fractal spatial hazards and 

infrastructure models discussed in paragraph 4.4.1. In fact, an accurate analysis of specific 

infrastructure models requires the adoption of relevant and hazard-specific fragility curves. To 

take uncertainty into account, multiple thresholds were implemented, covering the range 𝐹𝑡 =

 [0.1, 0.3, 0.5, 0.7, 0.9]. These values indicate that a node can progressively withstand 10% of 

the maximum loading, then 30%, and so forth, up to 90% of the maximum loading. For instance, 

Ft=0.3 is representative of a weak network, whereas Ft=0.7 describes a strong network.  

 

 

Figure 4.19. Curve 1 represents the typical probabilistic approach of a fragility curve. Curve 2 represents the 

binary fragility curve. The failure of an element in a system is controlled by the value of the failure threshold: if 

this value is exceeded, the element is then considered failed with a probability of 100%. If the loading is less than 

the failure threshold, the element is considered active with a probability of 100%. Curve 3 represents the flexibility 

given by the adoption of a range of failure thresholds as opposed to a single value. 
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4.7 Stage 6: systemic indicators 

 

4.7.1 Robustness metrics 

To thoroughly capture and describe the effects of the fractal spatial hazards on the 

synthetic networks described in paragraph 4.1.1, a range of different robustness metrics was 

used. The reason for adopting multiple indicators is in the need for understanding the behavior 

of networks from multiple points of view. Adopting only a single metric would have likely 

offered an incomplete understanding of the dynamics involved. Drawing from the vast amount 

of network metrics available in literature (Zhu et al., 2011), four measures were implemented. 

These were either directly based on existing parameters or were adapted to match the purposes 

of this research. The metrics include: 

1. Number of Surviving Nodes (SN); 

2. Spatial Robustness (SR); 

3. Fragmentation Index (FI); 

4. Cross-Flow Index (CFI). 

 

 Given a network with 𝑁𝐴 nodes in the unperturbed state, the number of Surviving Nodes 

(SN) refers to the number of nodes still active after the perturbed state, which corresponds to 

the second step of the failure model discussed in paragraph 4.5.1. The SN value is given by: 

𝑆𝑁 = 𝑁𝐴 − 𝑁𝐴
′  = 𝑁𝐴 − ∑ 𝐴𝑖

′𝑁𝐴
𝑖=1   

(4.9) 

where 𝑁𝐴
′  is the total number of nodes failed due to the hazard loading, and 𝐴𝑖

′  represents the individual 

failed node. The SN value varies based on the failure threshold in use, the severity of the hazard 

loading, and the associated spatial pattern (Figure 4.20).  
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Figure 4.20. Hazard loading obtained with Ft=0.3 and H=0.8. The grey nodes have failed due to 1st order failures, 

whereas the blue node has failed due to 2nd order failures. As such, the depicted network has SN=3, the three green 

nodes, with a Critical Footprint of 67.7%. The light shades were obtained by applying an Ft=0.3 cut-off. 

 

 

 

 Plotting the SN value on the y-axis and the Critical Footprint of each fractal spatial 

hazard on the x-axis offers insights on the structural robustness of the network, as well as on 

the difference in responses between the synthetic network models. Simply counting the number 

of surviving nodes constitutes a quantitative measure of robustness of the network to the hazard 

loading. This can be seen as a survey conducted after a disrupting event to ascertain the number 

of elements of an infrastructure that are still functional. It can be argued that, in the face of a 

disruption that has a spatial component, networks that are able to preserve their nodes are also 

likely to recover faster, relying on a fraction of functioning assets (McDaniels et al., 2008).  

 The second metric adopted is the Spatial Robustness (SR), which idea originates from 

the possibility that different topologies may have a different impact on how far from the 

footprint the failures occur. As such, the definition of Spatial Robustness is the ability of the 

network to minimize the failures occurring outside the footprint of the hazard, which happen to 

correspond to the 2nd order failures (Figure 4.20). This concept has already been investigated 

by Little (2003) and Robson (2016), although not in conjunction with a more realistic, fractal 

hazard generator. The adopted formulation of the Spatial Robustness (SR) is: 

𝑆𝑅 = ∑ 𝑛𝑜𝑑𝑒𝑖,𝑓𝑎𝑖𝑙𝑒𝑑

𝐹𝑎𝑖𝑙𝑒𝑑 2𝑛𝑑 𝑜𝑟𝑑𝑒𝑟

𝑖=1

 

(4.10) 

where the summation adds up all the nodes that failed as a result of the 2nd order failure 

mechanism, and 𝑛𝑜𝑑𝑒𝑖,𝑓𝑎𝑖𝑙𝑒𝑑 represents each node failed because of that mechanism. The spreading 

of failures outside the hazard footprint has a potentially fatal impact on the network, in that it 

can end up disrupting nodes that are not in the proximity of the footprint. A low SR value 

indicates that the network topology opposes the spreading of failures, and as such, the lack of 
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robustness of the network receives little to no contribution from the structural configuration. 

On the other hand, a high SR value implies that the response of the network to the hazard cannot 

be quantified by just surveying the number of surviving nodes.  

 In fact, in addition to the fraction of nodes affected by 1st order failures, a further fraction 

of nodes fails simply because of the unfortunate structural configuration. This means that the 

effects of the perturbation are compounded by the topology. Another important aspect that helps 

to understand spatial robustness is the Euclidean distance between 2nd order failures and the 

edge of the footprint. As an example, the blue node in Figure 4.20 is a 2nd order failure occurring 

at a certain distance from the boundary of the fractal hazard. Defined as propagation buffer (pb) 

the distance between the edge of the footprint and the location of the farthest 2nd order failure 

(Figure 4.21 and equation 4.11), it can be argued that spatially robust topologies are able to 

constrain the value of such distance, keeping 2nd order failures closer to the footprint.  

 

Figure 4.21. Schematization of the propagation buffer pb given a footprint causing 3 first order failures and 13 

second order failures. The hotspot is where the highest values of the footprint are located. 

 

 

The propagation buffer was measured in all four models of synthetic networks by 

computing the Euclidean distance between the closest and the farthest 2nd order failure from the 

footprint edge. The terms in Figure 4.21 are defined according to equations 4.11, 4.12, and 4.13: 

𝑝𝑏 = 𝑑2 − 𝑑1  

(4.11) 
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𝑑1 =
1

𝑆𝑥
√(𝑥2𝑐 − 𝑥ℎ)2 + (𝑦2𝑐 − 𝑦ℎ)2 

(4.12) 

 

𝑑2 =
1

𝑆𝑥

√(𝑥2𝑓 − 𝑥ℎ)
2

+ (𝑦2𝑓 − 𝑦ℎ)
2
 

(4.13) 

 

 

where 𝑆𝑥 represents the size of the mesh grid (for the purpose of this work, 𝑆𝑥 = 10), (𝑥ℎ,𝑦ℎ) 

the coordinates of the hazard hotspot, and (𝑥2𝑐,𝑦2𝑐) and (𝑥2𝑓,𝑦2𝑓) the coordinates of the closest 

and farthest 2nd order failures measured from the hotspot. High values of 𝑝𝑏 identify deeper 

propagation of failures into the network topology, meaning that the impact of the hazard is not 

only local (1st order failures), reaching a more extended domain. The values of 𝑝𝑏, 𝑑1, and 𝑑2 

are computed for each network realizations and hazard surfaces to obtain a value representative 

of each configuration.  

 The third metric used draws inspiration from the concept of fragmentation: as a result 

of the failures caused by a specific hazard loading, the texture of a network A may be modified 

to the point that it is partitioned into clusters of active nodes, or subgraphs, separated by gaps 

(Figure 4.22). The largest of these clusters is known in literature as the giant component. The 

resulting clusters are referred to as connected components. By counting the number of 

components or partitions, the Fragmentation Index (FI) provided insights on the proneness of 

each synthetic network model to being fragmented: 

 

𝐹𝐼 = ∑ 𝑐𝑜𝑚𝑝 𝑖(𝐴)
𝑁 𝑐𝑜𝑚𝑝

𝑖=1
   

(4.14) 

where the 𝑁𝑐𝑜𝑚𝑝 term refers to the total number of partitions appearing in the perturbed network 

𝐴, whereas 𝑐𝑜𝑚𝑝𝑖 is the individual connected component. The FI value is influenced by the 

topology in use, the adopted failure threshold, and the severity, spatial extent and spatial pattern 

of the hazard loading. By plotting the FI value on the y-axis and the Critical Footprint on the x-

axis, the effects of progressively larger fractal hazards on the integrity of the synthetic network 

models were highlighted. From the point of view of infrastructures, the proneness to 

fragmentation can be interpreted either positively or negatively. In the case of heavily 

centralized infrastructures, such as high-voltage electricity distribution systems, a high FI value 

is negatively interpreted. These systems are in fact designed to operate under the control of a 
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central entity, such as a generation plant. A fragmented texture may imply that it is no longer 

possible to guarantee the service, since not all partitions can be accessed from the central entity. 

The same FI value may not have such a dramatic impact on microgrids or water distribution 

systems (Hines et al., 2015), as these are fragmented by design.  

 

Figure 4.22. Schematization of the fragmentation of a network. The system is partitioned into two components as 

a result of the failure of the red node. In this case, the resulting fragmentation index is FI=2. 

 

 

The fourth and last metric adopted in Case Study 1 of this thesis was the Cross-Flow 

Index (CFI). This indicator was developed to compensate for the fact that flow is not explicitly 

modelled in the study of the fractal spatial hazards. In fact, the network models discussed in 

paragraph 4.1.1 are intended to be generic, without any specific reference to the exact type of 

service that they deliver nor to any specific real-world infrastructure. The computation of the 

CFI provided a theoretical estimate of the amount of flow each node can handle based on its 

location in the network. Such estimate was computed in the form of a ratio between the amount 

of flow theoretically processed by each node in the network in presence of the hazard loading 

(perturbed state) and the equivalent quantity in absence of the hazard loading (unperturbed 

state).  

This specific formulation allowed to monitor the change in the amount of flow going 

from the unperturbed to the perturbed state, in such a way as to quantify the reduction 

experienced by each node. To accomplish this task, the computation relies on a centrality 

measure known in literature as Stress Centrality (SC) (Brandes, 2008). Stress Centrality is an 

absolute measure of the amount of stress each node is subjected to when the network is 

operating, the term stress referring to the number of operations carried out by each node. In a 

network providing a service, such operations could include the loading and unloading of cargo 

or passengers at a railway station, the volume of water received by a regulation basin and then 

passed on to the pipe network for delivery, or the number of watts an electrical substation 
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processes and delivers to the power grid at any given time. For each pair of nodes (𝑛, 𝑗), and 

given all the possible shortest paths between them, Stress Centrality determines how many of 

these paths or geodesics pass through each node 𝑣 lying between node 𝑛 and node 𝑗 (Figure 

4.23). The formulation of the Stress Centrality is defined as follows: 

𝑆𝐶(𝑣) = ∑ ∑ 𝜎𝑛𝑗(𝑣)𝑗≠𝑣∈𝑉𝑛≠𝑣∈𝑉   

(4.15) 

where 𝑣 represents any node located between nodes 𝑛 and 𝑗, 𝑉 is the set of all vertices or nodes 

in the network, and 𝜎𝑛𝑗(𝑣) denotes the number of shortest paths or geodesics containing vertex 

𝑣. A high value of 𝑆𝐶(𝑣) implies that node 𝑣 is central to the operations performed by the 

network, whereas a low value indicates that node 𝑣 is rather peripheral. In absence of failures 

(e.g., in the unperturbed state), assuming that the network is operating at full capacity and that 

no additional flow can be handled, the stress faced by each node also corresponds to the 

maximum stress admissible. In the perturbed state, given the occurrence of node failures, the 

number of shortest paths passing through node 𝑣 is reduced, resulting in such node handling 

less flow than usual. The Cross-Flow Index (CFI) refers to the ratio between perturbed Stress 

Centrality and unperturbed Stress Centrality for each node: 

𝐶𝐹𝐼 =
1

𝑆𝑁
∑

𝑆𝐶(𝑣)𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑒𝑑

𝑆𝐶(𝑣)𝑢𝑛𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑒𝑑
𝑣   

(4.16) 

where the CFI value was averaged over the number of surviving nodes SN to obtain a single 

indicator to gauge the overall performance of the network. The CFI values span the range ∈ [0, 

1]: a null CFI implied that no flow could be handled by the network, a status typical of 

completely failed networks. In the case of an individual node, the absence of a shortest path 

passing through it entailed that the beginning and terminus of that path were failed nodes. The 

absence of all shortest paths previously passing through that node entailed that all beginnings 

and terminuses were failed nodes. Therefore, the node in question was isolated, and as per the 

adopted agent-based failure model, it was considered as failed.  

 When 𝐶𝐹𝐼 = 1, the network could handle the maximum flow admissible. As well as 

measuring the overall performance of the network, this metric allowed to evaluate the change 

in Stress Centrality for each node, with lower values denoting a more conspicuous change. 

Additionally, the computation of CFI allowed to determine how the impact of a fractal spatial 

hazard influenced the theoretical amount of flow processed by the most highly connected hub 
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in each one of the network models in Table 4.1. This computation was performed by 

determining the Euclidean distance 𝑑ℎℎ from the footprint hotspot to the most highly-connected 

hub of each network model: 

𝑑ℎℎ =
√(𝑥ℎ𝑢𝑏 − 𝑥ℎ)2 + (𝑦ℎ𝑢𝑏 − 𝑦ℎ)2

𝑆𝑥
 

(4.17) 

where (𝑥ℎ𝑢𝑏,𝑦ℎ𝑢𝑏) and (𝑥ℎ,𝑦ℎ) are the coordinates of the most highly-connected hub and the hazard 

hotspot, respectively. As with equation 4.11, 𝑆𝑥 is the size of the mesh grid.   

 

 

 

 
Figure 4.23. The upper panel shows how the Stress Centrality is computed. Node 𝑣 lays between nodes 𝑛 and 𝑗, 

and given the existence of two shortest paths connecting them, 𝑆𝐶(𝑣) = 2. In the lower image to the left, the 

distribution of Stress Centrality in a 10𝑥10 Lattice Network in the unperturbed state. The four nodes in dark red, 

being the most central, are traversed by the highest number of shortest paths (upwards of 800,000), implying that 

their role is pivotal in the functioning of the network. Nodes on the boundaries and away from the corners are 

shown to have the lowest values of Stress Centrality, as they are traversed by less shortest paths (around 100,000). 

The image to the lower right shows how CFI is distributed in the unperturbed situation for the same Lattice 

Network. This image shows the presence of a unique value (1.0) across the network: it is meant to show that each 

node, in the unperturbed state, handles the maximum flow allowed based on its location in the network.  
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 In terms of computational demand, the four metrics offered different performances. 

Given a network 𝐴 with 𝑁𝐴 nodes and 𝑉𝐴 edges, the computational demand of each metric was 

given by the Time Complexity of the algorithm used to compute it. The Time Complexity of an 

algorithm is defined in Computer Science as the amount of time required to execute the 

algorithm as a function of the size of the input (Sipser, 2012). In the case of the synthetic 

networks, the input was the number of nodes, 𝑁𝐴, and the number of edges, 𝑉𝐴.  

 The Time Complexity is a purely theoretical estimation. Instead of being expressed in 

seconds, which would be misleading because the actual time required to perform a computation 

varies based on the machine in use, it is expressed in terms of Big O Notation. This represents 

an estimation based on higher-order terms only. For instance, finding the maximum value in an 

array involves a Time Complexity of 𝑇(𝑛) = 𝑂(𝑛), where 𝑛 is the number of elements in the 

array that need to be analyzed. On the other hand, performing an element-to-element 

comparison using two arrays of 𝑛 elements has a Time Complexity of  𝑇(𝑛) = 𝑂(𝑛2), as it 

involves iterating over both arrays. A useful rule of thumb to determine Time Complexity is 

that the exponent of 𝑛 equals the number of for loops used by the algorithm.  

 As such, algorithms that run in polynomial time are among the most demanding, even 

more so as the exponent increases. Table 4.2 shows the Time Complexity associated with the 

four metrics, as well as their range of values. The Cross-Flow Index was by far the most 

demanding to compute, whereas the other metrics shared the same computational cost. With 

respect to the values taken by each metric, it should be noted that: i) 𝑆𝑁 = 𝑁𝐴 was an upper 

bound imposed by the number of nodes in a network; ii) 𝑆𝑅 = 𝑁𝐴 − 1 was dictated by the fact 

that it is not possible to have any 2nd order failures without at least one 1st order failure; iii) 𝐹𝐼 =

1 means that in the unperturbed state the network was composed by a unique partition, whereas 

𝐹𝐼 = 𝑁𝑐𝑜𝑚𝑝(𝐴) is an upper bound that changes with the topology, as it is not possible to define a priori 

the maximum admissible number of partitions; iv) 𝐶𝐹𝐼 = 0 entailed a completely failed network, 

whereas 𝐶𝐹𝐼 = 1 implied absence of failures. 

 

 

 

 

 

 

 

 



Chapter 4. Case Study 1: Methodology 

 

93 

 

Table 4.2. Meaning, Time Complexity, and range of values of the robustness metrics adopted. 

Metric Meaning 
Time 

Complexity 

Range  

of values 

Number of Surviving Nodes 

(SN) 

Nodes that have survived  

1st and 2nd order failures 
𝑂(𝑁𝐴)  0 ≤ 𝑆𝑁 ≤ 𝑁𝐴  

Spatial Robustness  

(SR) 
Number of 2nd order failures 𝑂(𝑁𝐴) 0 ≤ 𝑆𝑅 ≤ 𝑁𝐴 − 1 

Fragmentation Index  

(FI) 
Number of partitions 𝑂(𝑁𝐴) 1 ≤ 𝐹𝐼 ≤ 𝑁𝑐𝑜𝑚𝑝(𝐴) 

Cross-Flow Index  

(CFI) 

Ratio between perturbed and 

unperturbed Stress Centrality 
𝑂(𝑁𝐴

3) 0 ≤ 𝐶𝐹𝐼 ≤ 1 

 

 

 

 

4.7.2 Difference in impact between circular-shaped and fractal spatial hazards 

 The main visual difference between the circular-shaped and the fractal spatial hazards 

is that, in the first case, the hazard loading L is concentrated in a smaller and regular region, 

whereas in the second case it is spread out irregularly (Figure 4.24). Objective of this Case 

Study was also to investigate any causal differences existing between circular-shaped hazards, 

modelled according to the procedure in paragraph 4.2.8.1, and fBm-generated fractal surfaces 

of the same area. In this context, the causal difference represents the difference in impact of the 

two hazard shapes on an underlying infrastructure network. With reference to the robustness 

metrics introduced in paragraph 4.7.1, the difference in impact was evaluated by superimposing 

the two sets of 10,000 spatial hazards each (first the circles, and then the fractals) on a BA 

Scale-Free Network with 𝑁𝐴 = 2,500 evenly spaced nodes and plotting the SN value against 

the binned Critical Footprint. The choice for this specific network model is in the frequency 

with which scale-free properties are observed in real-world infrastructure networks (Guimerà 

et al., 2005; Gastner and Newman, 2006b; Kalapala et al., 2006; Carvalho et al., 2009). This 

procedure was set up in such a way as to gauge whether two spatial hazards of the same area, 

but of different origin, produced the same number of failed nodes on the same network model. 

The objective was to ultimately test if the difference between circular-shaped and fractal spatial 

hazards is only visual or geometrical (Figure 4.24), or if there is also a functional component 

that makes fractals more detrimental than circles. 
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Figure 4.24. Visual comparison of a circular-shaped hazard (left) obtained with the procedure described in 

paragraph 3.2.5, and a fractal spatial hazard generated with the fBm model described in paragraph 3.2.4. Although 

the two shapes do not have the same area and are only shown for purposes of comparison, two distinct spatial 

patterns are observable. 
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4.8 Computational implications of Case Study 1 

 

4.8.1 An automated Monte Carlo approach 

 From a computational point of view, the impact of fractal spatial hazards on synthetic 

network models was evaluated by following an automated Monte Carlo procedure implemented 

in Python. The computational architecture is composed of four blocks, each of which is 

performed by a dedicated script (Figure 4.25). The automation was implemented by running 

the scripts in loop, following the order in Figure 4.26. 

 

 

Figure 4.25. The four blocks of the Monte Carlo approach implemented in Case Study 1. 

 

 

 Capitalizing on the use of a range of values for both the Hurst exponent H and the failure 

threshold Ft, 25 combinations of values 𝐶 = (𝐻, 𝐹𝑡) were identified. The adoption of a specific 

Ft value implied that the spatial pattern generated by the Brownian surface was modified, as 

visible in Figure 4.20. In fact, any grid cell where the hazard loading (or elevation) was 𝐿 ≤ 𝐹𝑡 

was recast as 𝐿 = 0 (Figure 4.27). This was done under the assumption that when the hazard 

loading did not exceed the threshold, no failures could occur. Table 4.3 shows the specific 

values associated with each combination 𝐶 = (𝐻, 𝐹𝑡). The values of each robustness metric 

were aggregated and analyzed for each individual combination. 
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Figure 4.26. Schematic of the flow chart discussed in Figure 3.25. This process represents an open loop where the 

input values of the Hurst exponent (H) and the node failure threshold (Ft) govern the entire flow. The Monte Carlo 

approach was implemented producing large numbers of simulations, and the results were aggregated based on the 

combination 𝐶 = (𝐻, 𝐹𝑡).  

 

 

Table 4.3. The 25 combinations 𝐶 = (𝐻, 𝐹𝑡) and their values in progressive order. 

𝑪 𝑯 𝑭𝒕 𝑪 𝑯 𝑭𝒕 𝑪 𝑯 𝑭𝒕 𝑪 𝑯 𝑭𝒕 𝑪 𝑯 𝑭𝒕 

1 0.6 0.1 6 0.7 0.1 11 0.8 0.1 16 0.9 0.1 21 1.0 0.1 

2 0.6 0.3 7 0.7 0.3 12 0.8 0.3 17 0.9 0.3 22 1.0 0.3 

3 0.6 0.5 8 0.7 0.5 13 0.8 0.5 18 0.9 0.5 23 1.0 0.5 

4 0.6 0.7 9 0.7 0.7 14 0.8 0.7 19 0.9 0.7 24 1.0 0.7 

5 0.6 0.9 10 0.7 0.9 15 0.8 0.9 20 0.9 0.9 25 1.0 0.9 
 

 

 

 

Figure 4.27. Representation of the fractal footprints after the failure threshold is applied to different fractals 

obtained with H=0.8. (a) Ft=0.3, (b) Ft=0.5, (c) Ft=0.7, (d) Ft=0.9. The increase in Ft produces an increase in the 

light shades, for which L=0. 
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4.8.2 Calibration of the automated Monte Carlo procedure 

 The flow chart in Figure 4.26 was subjected to a calibration test to determine:  

• The optimal number of runs required for each combination 𝐶 = (𝐻, 𝐹𝑡); 

• The optimal number of nodes composing the synthetic network models. 

 

 The test was performed on a Lattice Network of 100𝑥100 nodes and consisted of 

executing the flowchart in Figure 4.26 using specific 𝐶 = (𝐻, 𝐹𝑡) combinations with a number 

of runs between 50 and 1,500. The test was conceived to compute the frequency of complete 

failures (e.g., when 100% of nodes have failed, which is equivalent to 𝑆𝑁 = 0) associated with 

each number of runs. For each 𝐶 = (𝐻, 𝐹𝑡) combination and number of runs, the frequency of 

complete failures was plotted, together with its 3-point Sample Moving Average (SMA) and 

the percent error between the two (equation 4.18). The number of runs was considered optimal 

only when the percent error was <5% (Figure 4.28). The formulation used for the percent error 

was: 

 

   

(4.18) 

where 𝑓𝑟𝑒𝑞𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 refers to the frequency of complete failures computed for each number of 

runs between 50 and 1,500. The term 𝑓𝑟𝑒𝑞𝑆𝑀𝐴 represents the 3-point SMA, which was 

computed every three frequencies. The numerator under the radical sign is the sum of squares, 

and it is divided by 3 in order to take into account the number of values needed to compute the 

SMA. This procedure was applied to all five combinations with  𝐹𝑡 = 0.1 since higher failure 

thresholds would have yielded gradually lower failure frequencies, which in turn would have 

resulted in magnified error percentages due to the latter being an absolute measure. The 

calibration test returned an optimal number of runs of around 1,000 for each combination. 

However, to increase the statistical power of the automated Monte Carlo procedure, the number 

of runs for each combination was set at 2,000. As such, the impact of fractal spatial hazards on 

synthetic networks was evaluated using a total number of 50,000 fBm-generated surfaces for 

each network model. 

 

𝐸𝑟𝑟𝑜𝑟% =
100

𝑓𝑟𝑒𝑞𝑆𝑀𝐴
∗ √

∑(𝑓𝑟𝑒𝑞𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝑓𝑟𝑒𝑞𝑆𝑀𝐴)2

3
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Figure 4.28. Chart showing the frequency of complete failures, its 3-point Sample Moving Average (SMA), and 

the percent error as defined in equation 3.17. The dashed green line represents the 5% error.  

 

 

 The optimal number of nodes in each synthetic network was defined based on 

computational considerations involving the actual number of runs performed and the Time 

Complexity of the four robustness metrics (Table 4.2). The limiting factor of assigning an 

appropriate size for the network models was the Cross-Flow Index. Its computation was 

performed in 𝑂(𝑁𝐴
3) time, where 𝑁𝐴 is the number of nodes in a network 𝐴. As such, any slight 

increase in 𝑁𝐴 would have yielded a cubic increase in the runtime. Consequently, the optimal 

number of nodes was set at 𝑁𝐴 = 100.  

 Given the requirement of the failure model to operate with a 1-to-1 relationship between 

the nodes and the grid cells in the fractal surface, the nodes were placed on a regular 10𝑥10 grid 

(Abundo et al., 2014). This ultimately influenced the size of the Brownian surfaces that were 

used to model the fractal hazards: the smaller domain mentioned in paragraph 4.2.5 was in fact 

assigned a dimension of 10𝑥10 grid cells, matching the dimension of the synthetic network 

models. Considerations regarding the limitations induced by this dimension are given in 

paragraph 4.9. 
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4.9 Limitations of Case Study 1 

 The methodology presented in Chapter 4 is characterized by three major limitations. 

The first limitation pertains the size of network models, as described in paragraph 4.4.1. The 

extent of these models is 10x10 nodes, which entails that small networks were used. As a 

consequence, given the 1-to-1 pairing between nodes and cells of the fractal surfaces, the 

Brownian surfaces were also sized accordingly. The reason for these restrictions is the resource-

intensive calculation of the Cross-Flow Index metric, which requires computational resources 

that grow with a rate of 𝑂(𝑁3), where N is the number of nodes in the network. To overcome 

this obstacle, different computational strategies may be adopted, such as parallel computing or 

multi-threading. 

 Another limitation is the fact that only node failures were modelled in Case Study 1, 

and not edge or link failures. This is a misrepresentation of reality, in that water supply systems 

and electricity networks may experience failures in pipes and cables as well, which represent 

edges, and not just at junctions or pylons. However, modelling the failure of edges was found 

to be in contrast with the 1-to-1 pairing discussed above. Nevertheless, edge failure could have 

been implemented by assigning a weight to each edge based on how often the corresponding 

start and end node were found to have failed in the simulations, which could have modified the 

final Cross-Flow Index values obtained. 

 An additional source of limitation is the fact that the failure propagation mechanism 

described in paragraph 4.5.1 did not consider that nodes within a network may have different 

failure thresholds, owing to a number of factors such as location, age, material, possible 

increased or decreased exposure, material fatigue, and so forth. The adoption of a unique 

threshold for all networks is a simplification which may be eliminated by assigning thresholds 

that vary with the degree of a node, in order to reflect its importance. 

 Although the limitations discussed in this paragraph constitute a source of uncertainty, 

they do not detract significantly from the final results shown in Chapter 6. Moreover, they 

represent details that can be improved in future iterations of this work. 
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Chapter 5. Case Study 2: Methodology 

5.1 Rationale for adopting a system-of-systems approach 

Case Study 2 of this thesis analyzed the response of a two-tier electricity network to 

wind gusts. As opposed to the macro-systemic approach followed in Case Study 1, the focus 

was placed on a real-world infrastructure system that operates by means of interactions between 

its internal sub-systems. Because of the ubiquitous presence of systems-of-systems in real world 

infrastructures (Yerra and Levinson, 2005; Svendsen and Wolthusen, 2007; Bagler, 2008; 

Robson, 2016), the analysis was shaped in such a way as to model these interactions and take 

into account the emergent behavior discussed in paragraph 4.1, rather than deriving how the 

system behaved as a whole. More specifically, the emergent behavior is here intended to 

represent the ensemble of top-down interactions that characterize the network operations. This 

approach is in line with the study on structural and dynamic complexity of infrastructures by 

Brady and Davies (2014), which highlighted the fact that adopting a system-of-systems 

perspective entails considering the functional hierarchies that describe infrastructure 

operations. With respect to the targeted electricity infrastructure, the functional hierarchies were 

modelled as dependencies (Figure 5.1), according to the top-down direction – from a higher 

voltage to a lower voltage – of the flow of electricity. Not only is this structural scheme found 

in electricity networks, but it is also shared by many other civil engineering infrastructures, 

including water supply systems, gas networks, and transport networks. The adoption of a 

system-of-systems perspective enabled to identify the response of each sub-system to the 

climatic hazard, also pinpointing the most vulnerable components. 

 

Figure 5.1. The infrastructure system depicted as a system-of-systems, where the internal interactions occur due 

to dependencies.  
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5.2 Stage 1: high winds as real-world natural spatial hazards 

 

5.2.1 Rationale for adopting high winds 

 The choice of high winds as a real-world natural spatial hazard was driven by the 

adoption of the electricity distribution network discussed in paragraph 5.1, as the two entities 

exhibit a certain degree of interaction. In fact, according to the National Faults Incident 

Reporting Scheme (NaFIRS) database, natural hazard-related incidents with damage due to 

high winds are rather frequent. The NaFIRS database is a repository that every Distribution 

Network Operator is required to populate with statistics about recorded disruptions (OFGEM, 

2017) occurred in their regions, including details about duration, suspected cause, and an 

estimate of the impact in terms of Customer-Minutes Loss. Given that the NaFIRS database is 

not available to the general public, the data used in this thesis were provided by Northern 

Powergrid after a confidentiality agreement was signed. In the period from January 2004 to 

March 2017, 42.1% of all incidents with damage recorded in Yorkshire and Lincolnshire and 

attributable to natural hazards were caused by “wind and gale”. As visible in Figure 5.2, this 

percentage is remarkably higher than the share of incidents attributed to lightning (27.4%), 

snow (6.1%), or a combination of other natural hazards (24.4%). It can be argued that these 

numbers categorize Yorkshire and Lincolnshire as being particularly exposed to the risk of 

wind-related faults. In this area, the overhead lines carrying 132kV, 66kV, 33kV, and 11kV 

voltage electricity, combined, experienced a total of 941 incidents with damage in the 2004-

2017 timeframe, resulting in nearly 73 faults per year affecting an average of 26,405 customers 

in the same temporal window.  

The overhead lines are manifestly the most exposed section of the electricity network, 

being often unsheltered from high winds. Apart from their severity, the impact of the latter 

varies based on whether the lines are supported by a steel tower (for high voltage lines) or a 

wooden pole (for low voltage lines). In general, the disruptions are a consequence of direct 

effects (e.g., collapsed towers or poles, electrical arcs induced by cable oscillation, melting of 

equipment, shackle failures, detachments, ruptures, and cable misplacements), indirect effects 

(e.g., fallen trees causing cables to be severed or misplaced, debris, or windborne objects), or a 

combination of the two. Aspects such as elevation, shielding or exacerbation due to the local 

terrain, topographic exposure, seasonality, and proximity to coastal areas may exert an 

influence as well. 
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Figure 5.2. Pie chart showing the share of incidents with damage recorded in the NaFIRS database and attributed 

to a number of natural hazards in parts of the United Kingdom. The data refer to the area encompassing Yorkshire 

and Lincolnshire and the timeframe January 2004-March 2017. 

 

 

5.2.2 Grids of daily maxima wind gusts 

 

5.2.2.1 Use of a state-of-the-art, high resolution Regional Climate Model 

Whilst the term high winds is generically intended to represent extreme wind speeds, a 

more precise definition is needed to categorize this spatial hazard. According to the World 

Meteorological Organization, a wind gust is defined as the highest wind speed averaged over a 

3-second observation period (Harper et al., 2010; Kirchner-Bossi et al., 2019). Studies carried 

out on the impact of wind gusts or wind storms on infrastructures are not frequent in literature. 

Significant examples include the use of Regional Climate Models with a horizontal resolution 

of approximately 55x55km to characterize winter wind storms in Europe (Schwierz et al., 

2010), or the adoption of wind gust time series obtained from a 73x55km reanalysis model to 

quantify the resilience of the United Kingdom National Grid (Panteli et al., 2016).  

However, it is argued that spatial scales as large as these may represent a spatially coarse 

approach in dealing with the spatial variability of wind speeds, which was categorized as being 

large by Yu et al. (2015). Herrmann et al. (2011) corroborate this point of view by highlighting 

the fact that any increase in the spatial resolution of wind datasets comes with a more realistic 

interpretation of local orography. More recently, the adoption of the 12km RACMO22 Regional 

Climate Model by Dunn et al. (2018) to compute empirical fragility curves for the electricity 

network marked the transition toward the use of finer spatial resolutions in impact studies.  

This Case Study, however, departs from these approaches in that it adopted new and 

previously unavailable high-resolution wind gust datasets derived from Kirchner-Bossi et al. 
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(2019). These datasets were obtained by complementing the use of a 12km model (known as 

RCM12) with a state-of-the-art Regional Climate Model featuring a very detailed 1.5km 

horizontal resolution (known as CPM1.5 or UKV). The CPM1.5 model is a convection-

permitting configuration of the Met Office Unified Model (Cullen, 1993), and it is driven at its 

boundaries by the RCM12 model, another configuration of the Unified Model.  

The transition from the 1.5km to the 12km grid is handled by an interface grid with a 

resolution that decreases from 1.5x1.5km to 4x1.5km on the edges and from 1.5x1.5km to 

4x4km on the corners of the domain (Figure 5.3a). The eightfold increase in the horizontal 

resolution of CPM1.5 compared to RCM12 (Figure 5.3b) enabled finer climate simulations 

(Kendon et al., 2012; Chan et al., 2014), leading to an increased capacity to represent local-

scale phenomena and extreme events, including wind gusts (Balog et al., 2016). 

 

 

Figure 5.3. (a) Representation of the CPM1.5 1.5x1.5km grid and the interface grid on the outer frame, leading to 

the RCM12 12x12km grid. Image adapted from MetOffice (2012). (b) The difference in spatial resolution between 

the 12x12km (in red) and the 1.5x1.5km grids (in blue). 

 

 

5.2.2.2 The computation of wind gust grids 

The wind gust grids used in this Case Study were obtained from Kirchner-Bossi et al. 

(2019). By using CPM1.5 nested inside RCM12, grids of daily maxima wind gusts for England 

and Wales were derived. These grids were obtained for two different climate horizons: Control 

and Future (Table 5.1). The Control horizon is a set of simulations covering 13 years, which 

was obtained from the CPM1.5 control run initialized with ERA-Interim re-analysis data. These 

simulations refer to external forcings (e.g., concentrations of greenhouse gases, aerosols, solar 

input, and so forth) similar to those observed in the year 2000. The Future horizon also covers 
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13 years and was computed by a CPM1.5 run with RCP8.5 external forcings, thus following a 

high-emission scenario (Riahi et al., 2011) centered around the year 2100.  

 

Table 5.1. Details of the wind gust climate horizons, together with suitable reference values. 

Climate 

horizon 
Scenario 

Temporal 

length 

Grid 

temporal  

resolution 

Grid 

spatial 

resolution 

Average 

gust over 

the study 

area 

Maximum 

gust over 

the study 

area 

Control Baseline 13 years Daily 1.5x1.5 km 11.46 m/s 49.79 m/s 

Future RCP8.5 13 years Daily 1.5x1.5 km 11.17 m/s 52.80 m/s 

 

  

The wind gust grids were obtained directly from the output of the Control and Future 

runs, which consisted of grids (hereafter called 𝑔10,10) of wind speeds 𝑠10,10 referring to a 

surface elevation of 10 meters and time intervals of 10 minutes. Each 𝑤10,10 value in the 𝑔10,10 

grids was computed by adding a positive quantity 𝑞 to the wind speed 𝑠10,10 (equation 5.1), 

following Panofsky et al. (1977) and Beljaars (1987): 

𝑤10,10 = 𝑠10,10 + 𝑞 

   

(5.1) 

where the quantity 𝑞 is defined as: 

𝑞 = 𝑓(𝜎𝑓𝑙𝑜𝑤,ℎ) = 𝑓(𝑧𝑖 , 𝐿) 

   

(5.2) 

In equation 5.2, 𝜎𝑓𝑙𝑜𝑤,ℎ is the standard deviation of the horizontal flow, 𝑧𝑖 represents the 

height of the boundary layer, which is the height measured from the surface to the point where 

the horizontal flow velocity is 99% of the free stream velocity, and 𝐿 is the Monin-Obukhov 

length (Figure 5.4). Finally, the wind gusts values referring to a surface elevation of 10 meters 

and 3-second observation periods (hereafter called 𝑤10,3) were obtained by resampling the 

𝑔10,10 grids every 3 seconds, thus creating 𝑔10,3 grids (Figure 5.5). 
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Figure 5.4. Representation of the horizontal flow, the height of the boundary layer, and the Monin-Obukhov 

length. The Monin-Obukhov length represents the height where turbulence is caused more by buoyancy than wind 

shear, whereas the logarithmic curve represents the increase in horizontal flow velocity until zi is reached. 

 

 

 

Figure 5.5. Process similar to the one that Kirchner-Bossi et al. (2019) followed to compute the wind gust grids 

(final output) that were used in this Case Study. 

 

 

 The grids obtained according to the two-step process in Figure 5.5 are composed of 74 

1.5x1.5km cells along the x-axis, and 83 cells along the y-axis. The sea was masked out and it 

was rendered in white, as it is outside the scope of this Case Study. Figure 5.6 shows the average 

daily maxima wind gusts for the Control and Future horizons, as well as their difference. As a 

consequence of the very detailed resolution, and in agreement with Herrmann et al. (2011), the 

local orography appears to be well interpreted, with the most exposed areas being located in the 

North York Moors and along the coast. Despite the range of average wind gusts is the same for 

the two horizons, the difference between the two grids reveals a decrease in severity going from 
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the baseline to the future scenario. This matches the observations of Tobin et al. (2016), with 

the drop reaching almost 1 m/s along the coast.  

 

Figure 5.6. Wind gust grids for the study area showing the average daily maxima wind gust for Control and Future, 

as well as their difference. For reference, the North York Moors are located in a central position in the upper part 

of the study area. 

 

 In terms of variance, Figure 5.7 shows that daily maxima wind gusts are projected to 

become more uncertain under the RCP8.5 scenario in the North York Moors area. The 95th 

percentile grids reveal that, although the average wind gusts are projected to decrease, events 

relatively more severe are projected to affect the North York Moors as well the western parts 

of the study area, with the coast experiencing milder gusts. 
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Figure 5.7. Grids showing the 95th percentile of daily maxima wind gust for the study area and the two climate 

horizons, the difference in percentiles, and the difference in variance. 

 

 

5.2.3 Fractal properties of the wind gust grids 

 

5.2.3.1 Fractal considerations corroborating the adoption of wind gusts  

Apart from the motivations discussed in paragraph 5.1, the rationale for adopting the 

wind gusts as a real-world natural spatial hazard also included the need to find an appropriate 

spatial hazard that could be comparable, at least to a certain extent, to the fractal surfaces 

described in paragraph 4.4. As such, the adoption of wind gusts was pursued as several authors 

(Chang et al., 2012; Fortuna et al., 2014) report that the time series of wind speeds show fractal 

properties at different temporal scales.  

 For instance, the fractal or Hausdorff dimension D of the bi-dimensional time series of 

hourly mean wind speeds as recorded in three stations in Taiwan is 𝐷 ≅ 1.6 (Chang et al., 
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2012), where 𝐷 = 2 − 𝐻 in a bi-dimensional space (see equation 4.3). Similarly, Fortuna et al. 

(2014) found that the time series of hourly mean wind speeds recorded in one station in Italy 

exhibit 𝐷 = 1.46. These values are a direct consequence of the wind speed fluctuation, and as 

outlined in paragraph 3.2.3, 𝐷 > 1.5 means progressively high fluctuations and negative time 

correlation, whereas 𝐷 < 1.5 describes milder fluctuations and positive time correlation. In 

terms of the Hurst exponent H (see paragraph 4.2.3), given the bi-dimensionality of the time 

series, 𝐷 > 1.5 corresponds to 𝐻 < 0.5 and thus to highly corrugated time series profiles, 

whereas 𝐷 < 1.5 corresponds to 𝐻 > 0.5, which describes smoother profiles. 

 These considerations apply to time series, e.g. curves with a fractal dimension 1 ≤ 𝐷 ≤

2, where the lower bound represents a line and the upper bound any bi-dimensional object 

(Figure 5.8a), and clearly refer to the temporal domain. Objective of this thesis was to 

investigate whether the fractal properties of wind gusts also held in the spatial domain. In it, 

the surfaces described by the 𝑔10,3 grids have an a priori dimension 2 ≤ 𝐷 ≤ 3, where the 

lower bound represents any flat surface with 𝑧 = 0 and the upper bound a cube (Figure 5.8b). 

In the spatial domain, positive or negative correlations refer to the correlation between wind 

gusts in adjacent locations rather than adjacent time intervals. 

 

 

 
Figure 5.8. (a) In the temporal domain, any object has a fractal dimension constrained by 1 ≤ 𝐷∗ ≤ 2. (b) In the 

spatial domain, the fractal dimension is constrained by 2 ≤ 𝐷∗∗ ≤ 3. 
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5.2.3.2 Area-Frequency curves  

The Area-Frequency curve was first introduced by Malamud et al. (2004) to count the 

number of landslides of different sizes occurring in a given area. This count was then 

transformed into the frequency with which landslides belonging to the same size range were 

observed. In this curve, the range of occurrences (or frequencies) is displayed along the y-axis, 

whereas the range of sizes is displayed along the x-axis. When generalized for an unspecified 

class of spatial objects, the Area-Frequency curve is defined as: 

𝑝(𝐴𝑜𝑏𝑗) =
1

𝑁𝑜𝑏𝑗,𝑡𝑜𝑡

𝑑𝑁𝑜𝑏𝑗,𝐴

𝑑𝐴𝑜𝑏𝑗
 

   

(5.3) 

In equation 5.3, 𝐴𝑜𝑏𝑗 is the specific area of an object belonging to the range of sizes, 𝑁𝑜𝑏𝑗,𝑡𝑜𝑡 

represents the total number of objects analysed, 𝑑𝑁𝑜𝑏𝑗,𝐴 is the number of objects with 𝑠𝑖𝑧𝑒 =

𝐴𝑜𝑏𝑗, and 𝑑𝐴𝑜𝑏𝑗 represents a differential increase in area. Taken together, the term 
𝑑𝑁𝑜𝑏𝑗,𝐴

𝑑𝐴𝑜𝑏𝑗
 refers 

to the number of objects with areas between 𝐴𝑜𝑏𝑗 and 𝐴𝑜𝑏𝑗 + 𝑑𝐴𝑜𝑏𝑗. The authors found that the 

distribution of landslide sizes features an exponential trend for small sizes, and then a power-

law decay for medium and large sizes. This implies that, for a limited section of the size range 

(e.g., where the objects are medium to large in size), the area-frequency curve is scale-invariant 

or scale-free (Malamud et al., 2004). Such property is also found in fractals, as outlined by 

Mandelbrot (1967), Borrough (1981), and Baas (2002), and it is the consequence of statistical 

self-similarity (see paragraph 4.2.1). The ultimate implication is that, as the spatial object is 

progressively magnified or miniaturized, the same shape and statistical properties observed at 

a given scale are observable at other scales (Figure 4.3). 

In this Case Study, the Area-Frequency curves as described by Malamud et al. (2004) 

were adopted to determine whether scale-free properties emerged from the analysis of the 𝑔10,3 

wind gust grids, and for which section of the size range. The adoption of a statistical tool 

developed for landslides in a study concerning wind gusts is justified by two reasons: 

1. The distribution of landslide sizes has been categorized as having fractal 

properties (Yokoi et al., 1995); 

2. As such, it was found appropriate to determine whether the 𝑔10,3 grids exhibited 

fractal properties by comparing their Area-Frequency curve to those of the fBm-

generated fractal spatial hazards. 
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The implementation of the Area-Frequency curve was preceded by a set of pre-

processing operations:  

1. To ensure that the 𝑔10,3 wind gust grids were comparable to the fBm-generated 

fractal surfaces, it was mandatory for the two class of objects to share the same 

horizontal dimension (e.g., 73 cells along the x-axis and 84 cells along the y-axis). 

This was obtained by retrieving the dataset originally generated for Case Study 1 of 

this thesis, and slicing the fractal surfaces in Figure 4.7 in such a way as to match 

the horizontal dimension of the 𝑔10,3 grids; 

2. From the original dataset of fractal surfaces, 2,000 objects were sampled for each 

combination 𝐶 = (𝐻, 𝐹𝑡), for a total dataset of 50,000 surfaces. This dataset was 

obtained with the same thresholds as Case Study 1, to ensure a meaningful 

comparison with the wind gust grids; 

3. For both climate horizons, the 𝑔10,3 wind gust grids were binarized by using 

appropriate wind filters 𝑤𝑓, following the procedure described in paragraph 4.5.1 

and 4.5.2: any wind gust 𝑤10,3 ≤ 𝑤𝑓 was set to zero, whereas any value 𝑤10,3 > 𝑤𝑓 

was set to one (Figure 5.9). The 𝑤𝑓 filters were determined by computing the 10%, 

30%, 50%, 70%, and 90% fraction of the maximum 𝑤10,3 in the two horizons (Table 

5.2). This binarization is equivalent to raising the 𝑧 = 0 datum of the grids to 

progressively higher values. 

 

The Area-Frequency curves were computed by using a dedicated Python algorithm that 

implements equation 5.3, thus determining the relative frequency of the size ranges of the 

spatial objects emerging in the 𝑔10,3 grids. These spatial objects are hereafter defined as blobs 

and were obtained by binarizing each grid in step 3 (Figure 5.9). The binarization was 

implemented for three reasons: i) to ensure that the fractals used in Case Study 2 were the same 

as those used in Case Study 1, except for the larger size; ii) to allow the algorithm to identify 

the blobs; and iii) to avoid the trivial and frequent case where 𝑤10,3 ≠ 0 over the entire study 

area, which would return the area-frequency distribution of the study area itself. The 

comparison between the fractal surfaces and the 𝑔10,3 grids was performed for both climate 

horizons, using the same dataset of fractal surfaces in both cases. The different filter values 

between the two horizons are due to the different maximum wind gusts obtained by Kirchner-

Bossi et al. (2019). 
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Table 5.2. The 𝑤𝑓 filters used in step 3 of the pre-processing phase and the corresponding failure thresholds. 

Each filter is associated with a maximum load or wind gust speed.  

Max 

fractal  

load 

Failure 

thresholds  

𝑭𝒕 

Max 𝑤10,3, 

Control 

𝑤𝑓 filters, 

Control 

Max 𝑤10,3, 

Future 

𝑤𝑓 filters, 

Future 

1.0 

0.1 

49.79 m/s 

4.98 

52.80 m/s 

5.28 

0.3 14.94 15.84 

0.5 24.89 26.40 

0.7 34.85 36.96 

0.9 44.81 47.52 

 

 

 

Figure 5.9. Representation of the effects of binarization. In the top row, the same function 𝑧 = 𝑓(𝑥, 𝑦) is shown, 

with its datum progressively increased from 0 to 𝑧1 > 0, and then to 𝑧2 > 𝑧1 > 0. In the bottom row, the blobs as 

an eye-view representation of the function 𝑧 where everything inside the red lines equals 1, whereas everything 

outside equals 0. (a) Only one blob is visible, as the datum corresponds with 𝑧 = 0. (b) As the datum raises and 

exceeds the sag, two blobs are visible. (c) When the datum reaches 𝑧2, only the highest peak is visible as a blob. 

 

 

5.2.3.3 The Box-Counting Algorithm (BCA) 

The next step after verifying the emergence of scale-free phenomena in the wind gust 

grids was to estimate their fractal dimension 𝐷. This was accomplished by computing, in a 

dedicated Python script, the Minkowski–Bouligand dimension 𝐷𝑀𝐵 (Peleg et al., 1984; Soille 

and Rivest, 1996), which is a convenient approximation of the fractal dimension (Tijera et al., 
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2012) and as such it was used as its proxy. The computation of the Minkowski–Bouligand 

dimension 𝐷𝑀𝐵 was performed by implementing the Box-Counting Algorithm (BCA), as done 

by many authors (e.g., Li et al., 2009), on the grounds of its simplicity, limited computational 

requirements, and applicability to objects with or without self-similarity (Peitgen et al., 2004).  

Defined a set 𝑆 in a Euclidean space 𝑅𝑛, the objective of BCA is to determine the 

number of squares (in the case of a bi-dimensional object) or boxes (for a three-dimensional 

object) that are necessary to cover the entire set 𝑆. The procedure is repeated by using 

progressively smaller squares or boxes (Figure 5.10), and at each step, the number of boxes 

𝑁(𝜀) with side length 𝜀 is recorded, until a cut-off length is reached. By plotting the 𝜀, 𝑁(𝜀) 

points on a logarithmic plane and fitting a straight line, the Minkowski–Bouligand dimension 

𝐷𝑀𝐵 is obtained from the slope of that line (Foroutan-pour et al., 1999). From an analytical 

point of view, the 𝐷𝑀𝐵 dimension of a set 𝑆 is defined in equation 5.4: 

𝐷𝑀𝐵(𝑆) = lim
𝜀→0

log 𝑁(𝜀)

log (
1
𝜀)

 

   

(5.4) 

 

 

Figure 5.10. To estimate the fractal dimension of the coastline of the United Kingdom, squares of sizes 𝜀3 < 𝜀2 <
𝜀1 are used. A finer interpretation of the southern coastline is obtained with increasing numbers of squares: 3 (a), 

8 (b), and 22 (c). Landlocked squares are not relevant to the BCA algorithm, and as such they were not considered. 

 

 

Within the context of this Case Study, the BCA methodology was applied to the blobs 

obtained from the dataset of binarized grids introduced in paragraph 5.2.3.2. This was done to 

estimate the fractal dimension of each grid of daily maxima wind gusts over the study area. For 
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each climate horizon, the estimated fractal dimension of the time series of blobs were compared 

to the known fractal dimension of the synthetic surfaces to highlight the differences. The BCA 

methodology was not applied to the non-binarized grids as doing this would have returned the 

fractal dimension of the coastline of the study area. In fact, given that the grids refer to daily 

maxima wind gusts, very rarely do they feature 𝑤10,3 = 0 (an instance associated with gaps in 

the wind field texture), de facto returning the footprint of the study area itself.  

 

 

5.3 Stage 2: modelling hierarchies and dependencies of the electricity network 

 

5.3.1 A real-world infrastructure as a system-of-systems 

 

5.3.1.1 An electricity distribution network 

 The real-world infrastructure used in Case Study 2 of this thesis was the electricity 

distribution network operating in Northern Lincolnshire and East Yorkshire, in England (Figure 

5.11). This network comprised the overhead sections of the 132kV (high voltage, HV) and 33-

66kV (medium voltage, MV) lines, and constitutes a bespoke selection of a larger system 

managed by a Distribution Network Operator servicing the North East of England. This network 

has the following characteristics: 

• It serves upwards of 260,000 customers; 

• It is composed of over 7,000 pylons; 

• It consists of more than 1,000 km of overhead lines; 

• It is connected to the National Grid by means of 6 substations, where the voltage is 

decreased from 400kV (extreme high voltage, EHV) to 132kV; 

• It features 19 substations, defined as bulk supply points, where the voltage is reduced 

from 132kV to 33-66kV; 

• It contains 95 substations, defined as primary substations, where the voltage is stepped 

down from 33-66kV to lower voltages (LV). 
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Figure 5.11. Spatial domain covered by the two-tier electricity infrastructure analyzed in Case Study 2 of this 

thesis. The black line represents the boundary of the study area; the red lines represent the 132kV network (left); 

the blue lines represent the 33-66kV network. One segment of the 132kV network is located outside the study area 

but was included in the case study given its proximity to the black line. 

 

5.3.1.2 Dataset pre-processing 

 The spatial dataset provided for this case study consisted in an ArcGIS geodatabase 

populated with the shapefiles as digitized by the Asset Management Team of the Distribution 

Network Operator. The geodatabase consisted of the underground and overhead sections of the 

230V, 11kV, 20kV, 33kV, 66kV, 132kV, and 275kV lines, and in its original form it was not 

appropriately structured for the purpose of Case Study 2 of this thesis. As such, a five-step pre-

processing methodology was set up, with the ultimate purpose of creating a topologically valid 

graph: 

• Step 1: selection of the appropriate networks based on their voltage and other 

considerations; 

• Step 2: correction of digitization and drawing errors such as overshooting, 

undershooting, and any gaps caused by certain lines being intermittently (or 

inconsistently) underground and overground; 

• Step 3: creation of point shapefiles representing electricity towers, which were absent 

from the original dataset; 

• Step 4: creation of point shapefiles representing the substations, which were also absent 

from the original dataset; 

• Step 5: creation of a topologically sound graph for impact modelling. 
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The first four steps were performed in ArcGIS. The 132kV and 33-66kV lines (with the 

33kV and 66kV lines combined) were selected due to the need to create a well-balanced 

network in terms of complexity and computational costs. The study area in Figure 5.11 was 

selected as it offered the best possible compromise between a reasonable size and an appropriate 

level of representativeness. Similar considerations determined the exclusion of the 275kV 

network, which presence in the study area is very limited, and the 11kV network, which 

operates almost entirely underground and as such is not affected by high winds. The correction 

of the large number of digitization and drawing errors (Figure 5.12) was performed either by 

extending two proximal lines until a connection was created, or by trimming them to the 

intended connecting point. The gaps or discontinuities caused by alternating underground-

overhead lines were corrected by connecting the overhead segments in which continuity was 

interrupted by underground segments. This task was performed in order to obtain a continuous 

dataset of lines, at the cost of a slight overestimation of the overall length of the network. 

 

Figure 5.12. Visual representation of how undershooting, overshooting, and gaps were corrected in the pre-

processing procedure. 

 

The point shapefile representing electricity pylons was created by setting an interval 

distance between two adjacent pylons. For the 132kV lines, this was set at 200 m, whereas for 

the 33-66kV lines this was set at 150 m, following a sample measurement performed on Google 

Earth. The point shapefile representing the 120 substations operating over the study area was 

created based on the locations made available by the Distribution Network Operator. The 

substations were allocated in such a way as to have the 6 National Grid as entry points to the 

132kV network, the 19 bulk supply points at the interface of the 132kV and the 33-66kV 

networks, and the 95 primary substations as the exit points of the 33-66kV network. Finally, 

the creation of a topologically connected network was performed by using NetworkX, the 

dedicated Python package for network modelling, which allowed to import the 132kV and 33-

66kV shapefiles and create two topologically valid graphs. This last passage was performed by 
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trimming the 132kV and 33-66kV polylines at the intersection with their pylons, creating 

segments that only connect two adjacent pylons and providing NetworkX with the adjacency 

matrix necessary to build the graph (Figure 5.13). 

 

Figure 5.13. Visual representation of the creation of a topologically valid graph in NetworkX starting from a 

shapefile. 

 

 

5.3.1.3 The modelling of intra-dependencies and the customer base 

 As highlighted in Figure 5.1, the electricity network used in this Case Study features a 

number of intra-dependencies that had to be modelled in order to create a realistic representation 

of the actual infrastructure. The model used to implement and define the intra-dependencies is 

hierarchical, as shown in Figure 2.4, and follows the flow of electricity as it enters the system 

at a 132kV voltage, is decreased to a 33-66kV voltage, and then exits the system at an 11kV 

voltage. This progressive stepdown is well in line with the idea of a hierarchical network, as 

discussed in paragraph 2.1.3, and it is also corroborated by fact that any substation is a node 

that belongs simultaneously to two networks, justifying the definition of two-tier system. In this 

context, the two networks were the 132kV system, which operates at a higher hierarchical level, 

and the 33-66kV network, operating at the lower level (Figure 5.14). This hierarchical model 

allowed to identify 26 segments composing the 132kV network, defined as feeders, and 19 

components of the 33-66kV network, defined as circuits.    

 
Figure 5.14. The hierarchical model adopted. The 132kV line feeds into the 33-66kV line (the dependency), and 

the bulk supply point is a substation belonging to both networks simultaneously. 
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Figure 5.15. Example of two feeders serving a circuit. The substations are also visible. 

 

 The identification of feeders and circuits in the two-tier network allowed to define the 

distribution of dependencies across the 132kV network, and to also determine the number of 

feeders attached to each circuit (Figure 5.16). This task was performed based on information 

made available by the Distribution Network Operator. The information on the customer base of 

each feeder and circuit was determined in a bottom-up fashion, starting from the number of 

customers served by each substation provided by the Distribution Network Operator. For the 

feeders, the number of customers served was assumed to be the same as the substation in which 

they culminated. As an example, the customers served by the two feeders in Figure 5.15 was 

the same as the bulk supply point where they terminated. For the circuits, this number was 

assumed to be the sum of the customers served by each primary substation. For instance, the 

number of customers served by the circuit in Figure 5.15 was given by the sum of the customers 

served by the 10 primary substations it featured. Due to the hierarchical structure in place, the 

number of customers served by the 132kV components was often higher than that served by the 

33-66kV segments: this was the result of the fact that the customer base of each bulk supply 

point was the sum of the customers served by the primary substations attached to it. A 

breakdown of the number of customers served by each feeder and circuit is given in Figure 

3.37. 
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Figure 5.16. Left (132kV network): distribution of the number of circuits (dependencies) attached to each feeder. 

Right (33-66kV network): distribution of the number of feeders attached to each circuit. Amongst feeders, the 

highest number of dependencies found was 3. The highest number of feeders attached to a circuit was found to be 

4. 

 

 

 

 
Figure 5.17. Left (132kV network): distribution of the number of customers served by each feeder. Right (33-

66kV network): distribution of the number of customers served by each circuit. Amongst feeders, the largest 

customer base observed was 58,015, whereas the corresponding number for circuits was 30,070.   

 

 

5.4 Stage 3: a network model inspired by real-world assets  

 At variance from Case Study 1, where the emphasis was on identifying the difference 

in terms of robustness between off-the-shelf topological models, Case Study 2 was entirely 

dedicated to analyzing an existing hierarchical infrastructure. As such, the topological layout 

of the network was not the result of an off-the-shelf model but was driven by the exact location 

of the pylons and the distance between them. As visible in Figure 5.11, this resulted in a layout 
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that is difficult to classify from a topological perspective. However, any topological 

classification aimed at identifying which theoretical model best approximates the networks in 

Figure 5.11 would have likely been meaningless, due to the necessary pre-processing 

adjustments that were applied to the asset dataset (see paragraph 5.3.1.2). 

 

5.5 Stage 4: propagation of failures caused by wind gusts 

 

5.5.1 Intra-systemic cascading failures 

 

5.5.1.2 Components of the 33-66kV line exposed to intra-systemic cascading failures 

 The advantage of modelling the robustness of the 132kV and 33-66kV lines as the 

robustness of a system-of-systems was not only the ability to disentangle the behavior of each 

line component from that of the tier or line it belonged to, but also to model the interactions 

between the components. Under the assumption that switchyards, parallel lines, and loops were 

not present (as it was the case for the asset dataset described in paragraph 5.3.1.1), this was 

accomplished by determining, for each climate horizon, the number of occurrences where 

components of the 33-66kV line experienced interruptions to the electricity supply due to faults 

that had originally affected the 132kV components feeding them (Figure 5.18). The occurrence 

of a cascading failure was constrained by two conditions, which taken together were considered 

to be necessary and sufficient: 

1. For the wind gust to cause the cascading failure, the necessary condition was 𝑤10,3 >

17 𝑚/𝑠, as this threshold value is recognized in the literature as both the definition of 

gale according to the Beaufort scale (Kirchner-Bossi et al., 2019; Jönsson et al., 2007) 

and the value past which wind storms are observed (Dunn et al., 2018; Vajda et al., 

2014). The 𝑤10,3 > 17 𝑚/𝑠 condition was assumed to produce faults with a probability 

of 100%, e.g. 𝑃𝑓 = [1 | 𝑤10,3 > 17 𝑚/𝑠]; 

2. For the cascading failure to occur, the 132kV component had to be affected by at least 

one fault and had to supply at least one 33-66kV component. 

 

According to the conditions above, the cascading effect is to be recognized in the fact 

that faults occurring in one location have an effect in other locations, akin to the concept of 2nd 
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order failures discussed in paragraph 2.2.4.1. This methodology allowed to produce a heatmap 

of the 33-66kV components, highlighting the least and most vulnerable to cascading failures. 

The procedure just described only identified cascading failures that are topological in nature, 

which only depend on the distribution of network edges between the 132kV and 33-66kV 

components, as shown in Figure 5.15. In situations where one 33-66kV component was fed by 

multiple 132kV components, the cascading failure was allowed only if all the relevant 132kV 

components had experienced faults. Following the indications provided by Hines et al. (2010), 

however, it must be pointed out that adopting a topological or hierarchical scheme only to 

describe the propagation of failures in an electricity network may return results that are not 

entirely accurate. As such, this procedure was developed with the aim of complementing the 

implementation of any algorithm describing the redistribution of flows, such as the linearized 

power flow equations (Soltan et al., 2017).  

 

 

Figure 5.18. Given one 132kV component feeding one 33-66kV component, the latter experienced a cascading 

failure if 𝑤10.3 > 17 𝑚/𝑠 and one or multiple faults had occurred at the 132kV level, resulting in the interruption 

to the electricity supply. The “A”, “B”, and “C” symbols represent substations with progressively lower voltages.    

 

 

5.5.1.2 Components of the 132kV line causing intra-systemic cascading failures 

 In a similar fashion to paragraph 5.5.1.1, where the aim was to produce a breakdown of 

the 33-66kV to highlight the spread of vulnerability to topological cascading failures, it was 

also determined the frequency with which a given 132kV component caused cascading failures. 

This was accomplished by counting, for each climate horizon, the occurrences where faults 

affecting 132kV components resulted in service failings at the 33-66kV level. In situations 

where one 132kV component fed multiple 33-66kV components, this computation was 

performed by considering how many cascading failures the 132kV component caused among 

the relevant 33-66kV components. Essentially, this computation was performed by considering 
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the effects described in Figure 5.19 from the point of view of the 132kV component instead of 

the 33-66kV component. The aim of this procedure was to obtain a breakdown of 132kV 

components to identify those that caused the most topological cascading failures, in such a way 

as to provide insights regarding the vulnerability of those components and highlight the 

potential need for increased redundancy. 

 

5.6 Stage 5: quantifying the fragility to wind gusts 

 

5.6.1 Effects of the wind gusts on the electricity infrastructure 

 

5.6.1.1 The choice of empirical fragility curves  

Fragility curves are classed as a statistical method for estimating the conditional 

probability of the failure of a structure given the exceedance of a load threshold (Dunn et al., 

2018). In the context of this thesis, the structures are electricity towers, whereas the load 

threshold is represented by a significant wind speed that is exceeded. For the purpose of this 

thesis, fragility curves can be mathematically defined as: 

𝑃𝑓 = 𝑃[𝐺(𝑥) < 0 | 𝑤 ≥ 𝑤𝑡ℎ𝑟] 

   

(5.5) 

In equation 5.5, 𝑃𝑓 is the conditional probability of failure, 𝐺(𝑥) < 0 represents the loss of 

performance of a structure that leads to the disruption, and 𝑤 ≥ 𝑤𝑡ℎ𝑟 indicates the exceedance 

of a threshold wind gust (e.g., the failure condition). The quantification of failures using 

equation 5.5 is affected by a high degree of uncertainty and complexity, due to the number of 

factors involved. These include the height and geometry of the structure, its age and materials, 

the different degrees of exposure to the loading, and other considerations. To minimize these 

problems, authors in the literature have adopted different strategies that can be categorized as: 

i) performance-based; ii) inspection-based; and iii) record-based or empirical. In terms of 

performance-based approaches, Manis and Bloodworth (2017) focused their attention on 

developing a finite element model of an electricity tower subjected to extreme winds. This 

approach aims at detailing the physical behavior of loaded tower frames, taking into account 
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aspects such as the materials, the geometry of the structure, and the buckling effect as failure 

mechanism.  

 This approach was not implemented in this thesis given the computational resources 

required to apply a finite element procedure to a network with more than 7,000 pylons. In terms 

of inspection-based methodologies, the work of Ryan and Stewart (2017) provided insights 

regarding how the accelerated deterioration of timber poles due to climatic loading can severely 

affect their lifecycle. This approach relies on understanding the changes in structural stability 

of wooden poles, and it is speculated that its accuracy may benefit the most if larger samples of 

poles are surveyed, as done by Gezer et al., 2015. This method was not implemented in this 

thesis given the complete absence of wooden poles in the two-tier network described in 

paragraph 5.3.1.1. As for record-based or empirical approaches, Dunn et al. (2018) analyzed 

the damage due to high winds that resulted in electricity supply failings for lines at different 

voltage. This methodology adopted observations reported by the United Kingdom National 

Faults and Interruption Reporting Scheme (NaFIRS) and returned the average number of faults 

per 1,000 km of overhead lines as a function of the wind gust.  

 This thesis adopted the fragility curves devised by Dunn et al. (2018) due to the fact that 

they allow to estimate the number of faults directly from the wind gust values, and that they 

return a number of incidents that can be normalized with respect to the length of any line. The 

implementation revolved around considering the two curves proposed by the authors (Figure 

5.19): a low-resolution curve (equation 5.6) and a high-resolution curve (equation 5.7). 

Analytically, the two equations are defined as: 

𝐹𝑙𝑜𝑤 = 3 ∗ 10−14 ∗ 𝑤9.2676  

   

(5.6) 

𝐹ℎ𝑖𝑔ℎ = 1 ∗ 10−14 ∗ 𝑤10.051 

   

(5.7) 

In equations 5.6 and 5.7, 𝐹𝑙𝑜𝑤 and 𝐹ℎ𝑖𝑔ℎ refer to the average number of faults per 1000 km of 

overhead lines obtained with the low-resolution and high-resolution curve, respectively, and 𝑤 

represents the wind gust value used as predictand. The low-resolution curve was obtained by 

combining wind observations with wind data from a climate model in order to compensate for 

missing spatial coverage, whereas the high-resolution curve was derived by combining 
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observations, data from a climate model, and high-resolution fault data provided by a 

Distribution Network Operator.  

 

Figure 5.19. The fragility curves proposed by Dunn et al. (2018). Method 1 corresponds to the low-resolution 

curve (continuous line), whereas Method 2 indicates the high-resolution curve (dashed line).  

 

 

 In the context of this thesis, the two curves were implemented by using 𝑤10,3 as input 

value in place of 𝑤. The expected number of faults for a given day was computed for each 

climate horizon by adding up the number of faults computed for each feeder and circuit 

composing the 132kV and 33-66kV lines: 

𝐹𝑙𝑖𝑛𝑒,𝑑𝑎𝑦 = ∑ 𝐹𝑐𝑜𝑚𝑝,𝑑𝑎𝑦 =

𝑁𝑐𝑜𝑚𝑝

𝑖=1

∑
𝐿𝑐𝑜𝑚𝑝

1000 𝑘𝑚
∗ 𝐹(

𝑁𝑐𝑜𝑚𝑝

𝑖=1

max (𝑤10,3)𝑐𝑜𝑚𝑝,𝑑𝑎𝑦)  

   

(5.8) 

 In equation 5.8, 𝑁𝑐𝑜𝑚𝑝 corresponds to the number of feeders or circuits in each 132kV 

or 33-66kV line, 𝐹𝑐𝑜𝑚𝑝,𝑑𝑎𝑦 is the expected number of faults for a given line component and 

day, 𝐹 refers to either 𝐹𝑙𝑜𝑤 or 𝐹ℎ𝑖𝑔ℎ, 𝐿𝑐𝑜𝑚𝑝 is the length in km of each individual component, 

and max(𝑤10,3)𝑐𝑜𝑚𝑝 is the maximum wind gust hitting the circuit or feeder on a given day. The 

adoption of the maximum wind gust overlapping a feeder or a circuit was an assumption made 

to estimate the faults induced by the worst-case scenario. This choice was also driven by the 

ambiguity arising from the fact that, on a given day, multiple 𝑤10,3 values could be used, as 

multiple CPM1.5 grid cells overlap a given feeder or circuit.  
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 Equation 5.8 is a clear implementation of the systemic approach discussed in paragraph 

2.1.3.1, as it returned the number of faults occurring at the 132kV system, for instance, as a 

sum of all the faults affecting the sub-systems composing that system. This approach was also 

implemented as, on a given day, multiple wind gust values affected the system; adopting the 

maximum wind gust as a reference value for the entire network would have likely resulted in 

an overestimation of the number of faults, especially if the reference value was an outlier 

occurring in a particularly exposed location. The overestimation in the number of faults returned 

by this procedure can be estimated to be in the region of +30%, owing to the fact that, on 

average, the maximum wind gust was found to be 30% higher than the average wind gust hitting 

the same sub-system. 

 

5.6.2 Development of a bespoke fragility curve for the study area  

 

 The fragility curves mentioned in section 5.6.1.1 were developed by Dunn et al. (2018) 

for the South West of England, whereas the study area of Case Study 2 is located in East-Central 

England. Wind patterns are known to change at the regional scale (Panteli et al., 2017) due to 

a number of drivers, including orography, latitude, and large-scale circulation (Hueging et al., 

2013; Herrmann et al., 2011). Although the UK Distribution Network Operators (DNOs) 

typically use assets of similar design, the wind-driven empirical approach used to generate the 

fragility curves in Dunn et al. (2018) means it is most accurately calibrated to a specific region. 

 The development of a bespoke regional fragility curve for this case study following the 

methodology in Dunn et al. (2018) would be sensitive to two key factors that affect the quality 

of the result: sample size of failure observations and spatial resolution of wind observations.   

 In terms of sample size of failure observations, it is worth highlighting that the study 

area used for Case Study 2 is a small fraction, approximately 10% of the domain covered by 

the Distribution Network Operator (DNO) (Figure 5.20). This entails that the sample of 

observed failure incidents in the case study area is very small, leading to a less reliable model. 

There is also only incomplete data on the type of structures, their age, maintenance logs and 

other aspects, which make the smaller sample size even more sensitive to recent investments or 

other changes.  

 The other important factor is the spatial resolution of the wind field. Only 5 

meteorological stations maintained by the MetOffice fall within the study area (at Normanby 
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Hall, Leconfield, Hull East Park, Donna Nook, and Saltfleetby St. Clements), as opposed to the 

31 stations used by Dunn et al. (2018).  

 These two aspects, combined, would produce a model of questionable statistical 

validity. A coarser field means the relationship between the observed windspeed and asset 

failure is inevitably less accurate. The availability of data in the case study site means that a 

low-resolution fragility curve would be coarser than the work by Dunn et al. (2018). An 

equivalent high-resolution curve could not be produced for Case Study 2 due to lack of 

knowledge regarding the sub-regions defined by the DNO.  

 The purpose of this research has been to focus on the effects of network structure and 

topology, rather than modelling the fragility of assets. The limited observations from the case 

study region, the assumption that the assets in the case study area are similar to those studied 

by Dunn et al. (2018), and the fact that the study area itself borders the domain considered by 

Dunn et al., 2018) (Figure 5.20), justify why specific fragility curves were not developed and 

those presented by Dunn et al. (2018) were used instead. 

 

 

Figure 5.20. Geographical domains covered by Distribution Network Operators (DNOs) in the United Kingdom. 

The purple area is the one considered by Dunn et al. (2018), and it borders the study area of Case Study 2, which 

is shown in red. Source: ofgem.gov.uk (2019). 

 

 

 

 

https://www.ofgem.gov.uk/key-term-explained/map-who-operates-electricity-distribution-network
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5.7 Stage 6: systemic indicators 

 

5.7.1 Estimating the impact of faults on the two-tier electricity network  

One of the objectives of this thesis was to also estimate the impact of the expected daily 

faults on the two-tier electricity network in both climate horizons. This estimation was obtained 

quantitatively as the product of the expected faults generated with equations 5.6 and 5.7 for 

each feeder and circuit by the number of customers served by each feeder and circuit as shown 

in Figure 5.17. For this purpose, three definitions were used: i) Single Impact (SI), referring to 

the impact at the daily scale on each feeder and circuit (equation 5.9); ii) Tier Impact (TI), 

referring to the impact at the daily scale on the 132kV or the 33-66kV tier or line (equation 

5.10); and iii) Time-Aggregate Impact (TAI), referring to the impact of faults on each tier during 

the 13-year timeframe of each climate horizon (equation 5.11). The three definitions are 

rendered as follows: 

𝑆𝐼𝑖,𝑑𝑎𝑦,ℎ𝑜𝑟𝑖𝑧𝑜𝑛 = 𝐹𝑖,𝑑𝑎𝑦,ℎ𝑜𝑟𝑖𝑧𝑜𝑛 ∗ 𝐶𝑖  

   

(5.9) 

𝑇𝐼𝑡,𝑑𝑎𝑦,ℎ𝑜𝑟𝑖𝑧𝑜𝑛 = ∑ 𝑆𝐼𝑖,𝑑𝑎𝑦,ℎ𝑜𝑟𝑖𝑧𝑜𝑛

𝑁𝑐𝑜𝑚𝑝

𝑖=1

  

   

(5.10) 

𝑇𝐴𝐼𝑡,ℎ𝑜𝑟𝑖𝑧𝑜𝑛 = ∑ 𝑇𝐼𝑡,𝑑𝑎𝑦,ℎ𝑜𝑟𝑖𝑧𝑜𝑛

𝑁𝑑𝑎𝑦𝑠

𝑑𝑎𝑦=1

  

   

(5.11) 

In equations 5.9, 5.10, and 5.11, 𝑖 represents each feeder or circuit, 𝑑𝑎𝑦 represents each day in 

the 13-year timeframe, ℎ𝑜𝑟𝑖𝑧𝑜𝑛 corresponds to either the Control or Future climate, 𝐶𝑖 is the 

number of customers served by each feeder or circuit, which was assumed to be time-invariant, 

𝑡 represents either the 132kV or 33-66kV tier, and 𝑁𝑐𝑜𝑚𝑝 is the number of feeders or circuits 

that compose each tier. Equations 5.9 to 5.11 represent a cascade of computations stemming 

from equation 5.9, and as such they can be combined in a unique form, the outcome being 

expressed in terms of faults multiplied by customers (equation 5.12): 
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𝑇𝐴𝐼𝑡,ℎ𝑜𝑟𝑖𝑧𝑜𝑛 = ∑ ∑ 𝐹𝑖,𝑑𝑎𝑦,ℎ𝑜𝑟𝑖𝑧𝑜𝑛 ∗ 𝐶𝑖

𝑁𝑐𝑜𝑚𝑝

𝑖=1

𝑁𝑑𝑎𝑦𝑠

𝑑𝑎𝑦=1

 

   

(5.12) 

 This approach was implemented as an alternative to the Customers-Minutes-Loss 

(CML) computation, which is estimated by each Distribution Network Operator (DNO) and 

made available via the NaFIRS database. However, although this information was accessible, 

the lack of a consistent geographic reference made it impossible to determine the relationship 

between the wind gust in a given day, the number of faults caused, and the associated CML 

statistic. Ideally, this would be possible if precise geographic information regarding the 

recorded incident was also recorded, although this is currently not performed by DNOs. 

 

5.7.2 Risk of faults 

Another objective of this Case Study was to also estimate the risk of faults to which the 

132kV and 33-66kV tiers are exposed, and to investigate how such evaluation changed for the 

different line components in the same climate horizon, as well as from one climate horizon to 

another. From the canonical definition of risk adopted by the insurance industry (equation 5.13), 

where the risk 𝑅 is generically defined as the product of the probability 𝑃 of an event multiplied 

by its consequences 𝐶, a modified form was derived (equation 5.14):  

𝑅 = 𝑃 ∗  𝐶    

(5.13) 

𝐴𝑅𝑐𝑜𝑚𝑝,ℎ𝑜𝑟𝑖𝑧𝑜𝑛 = ∑ (
𝐹𝑐𝑜𝑚𝑝,𝑑𝑎𝑦

𝐿ℎ𝑜𝑟𝑖𝑧𝑜𝑛
∗ 𝐶𝑐𝑜𝑚𝑝)

𝑁𝑑𝑎𝑦𝑠

𝑑𝑎𝑦=1     

(5.14) 

In equation 5.14, 𝐴𝑅𝑐𝑜𝑚𝑝,ℎ𝑜𝑟𝑖𝑧𝑜𝑛 is the annual risk of faults associated with each component of 

the 132kV and 33-66kV line, 𝐿ℎ𝑜𝑟𝑖𝑧𝑜𝑛 is the length in years of the climate horizon (e.g., 13 

years), 𝑁𝑑𝑎𝑦𝑠 refers to the total number of days in the horizon, 𝐹𝑐𝑜𝑚𝑝,𝑑𝑎𝑦 represents the expected 

number of faults computed for a given day and line component by using equation 5.8, and 𝐶𝑐𝑜𝑚𝑝 

designates the number of customers served by each line component. Akin to equation 5.12, 
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equation 5.14 returned an annual risk expressed in terms of the average number of customers 

lost, per year, due to wind gusts. From an analytical perspective, equation 5.14 is in essence 

similar to equation 5.12, except the fact that 𝐴𝑅𝑐𝑜𝑚𝑝,ℎ𝑜𝑟𝑖𝑧𝑜𝑛 was an annual rate computed for 

each component, whereas 𝑇𝐴𝐼𝑡,ℎ𝑜𝑟𝑖𝑧𝑜𝑛 is to be interpreted as an aggregate value computed for 

each tier or line. As with equation 5.12, 𝐴𝑅𝑐𝑜𝑚𝑝,ℎ𝑜𝑟𝑖𝑧𝑜𝑛 represents an empirical estimation of 

the average number of customers lost per year due to wind-related faults, and it is to be 

considered as an alternative methodology to the use of the CML statistic, which, if 

geographically referenceable, would have returned more accurate results. The implementation 

of equation 5.14 on a partitioned two-tier system allowed to unravel potential behavioral 

differences between the sub-systems or components, enabling the characterization of robustness 

at a much finer level than allowed by equation 5.12. 

 

5.8 Computational implications of Case Study 2 

The computational architecture that was set up for Case Study 2 is conceptually the 

same as the one implemented for Case Study 1 (see paragraph 4.8). This entails that the 

algorithms created to evaluate the number of faults caused by the daily maxima high winds on 

the electricity infrastructure followed a 4-block, Monte Carlo-inspired, brute-force approach 

(Figure 5.21).  

 

 

Figure 5.21. The four blocks of the Monte Carlo approach implemented in Case Study 2. This process mirrors 

the one described in paragraph 4.8 for Case Study 1. 

 

The computational demand of this process was driven by only a few major factors: 

1) The first factor was the temporal coverage of the two climate horizons, which 

corresponds to two 13-year time series of daily maxima wind gust grids. This entails 

that a total of approximately 4,745 grids were used for each horizon. The extent of 

such temporal coverage was also a factor limiting the degree of representativeness 
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of Case Study 2, as a brute-force approach can only generate or evaluate as many 

iterations or events as there are available; 

2) The second factor was the spatial coverage used in this Case Study, which extent is 

a direct consequence of the spatial domain in which the chosen segment of the 

infrastructure operates. The computational demand of the spatial coverage was 

highly influenced by the granularity of the 1.5km resolution of the wind gust grids. 

In fact, although the chosen spatial domain had a footprint of only 73 𝑥 84 cells, 

corresponding to 109.5𝑘𝑚 𝑥 126𝑘𝑚, the computational burden on a machine was 

significantly higher than that of a 12km resolution grids, which would only have 

required processing approximately 90 cells to cover the same spatial domain; 

3) The third and last factor was the computational demand associated with determining 

the maximum wind gust hitting any components of the 132kV and 33-66kV lines 

on any day (equation 5.8). This, in itself, was not a particularly demanding 

operation, as finding the maximum wind gust entailed iterating over the grid cells 

that overlapped a given 132kV or 33-66kV line and identifying the maximum value. 

Expressed in Big-O Notation, such operation alone has the same time complexity as 

finding the maximum value in an unsorted array: 𝑂(𝑛), where 𝑛 is the number of 

elements in the array. However, this operation was repeated at the daily scale for 

each time horizon, resulting in an algorithm running in 𝑑 𝑥 𝑂(𝑛) time, where 𝑑 is a 

factor representing the number of days in each horizon. Moreover, such operation 

was repeated for each line composing the 132kV and 33-66kV electricity networks, 

resulting in the algorithm running in 𝑑 𝑥 𝑙 𝑥 𝑂(𝑛) time for each electricity network 

and climate horizon, where 𝑙 is the individual line. Given the presence of two 

electricity networks with two different voltages and two climate horizons, the 

algorithm used to find the maximum wind gust for each line, day, and time horizon 

ran in approximately 4 𝑥 𝑑 𝑥 𝑙 𝑥 𝑂(𝑛) time, where the number 4 represents the two 

climate horizons and the two electricity networks. 

 

 

5.9 Limitations of Case Study 2 

  The methodology described in Chapter 5 is affected by limitations. The first limitation 

that is worth mentioning revolves around the use of the maximum wind gust value hitting the 

overhead lines as input to the fragility curve. Whilst this led to an overestimation of the number 
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of faults per 1000 km of overhead lines, it represents a conservative assumption that can be 

made for a worst-case scenario. Alternative approaches may include using the average value or 

performing a sensitivity analysis on a specific segment of the infrastructure for which the 

number of faults is known. 

 The second limiting factor is the fact that, for each climate horizon, maps showing the 

spatial distribution of wind gust maxima were used. This corresponds to the assumption that 

the maximum values occurred at the same time over the study area, which led to overestimating 

the final number of faults. One solution to this problem is considering actual storms by using 

the climate output of dates associated with historical events rather than producing maps with 

statistical values. 

 Another source of limitation is the fact that the pre-processing phase described in 

paragraph 5.3.1.2 introduced modifications to the actual layout of the electricity network. These 

modifications generally resulted in lengthier overhead lines due to overhead segments, 

separated by underground segments, being connected. One possible solution to this could be 

considering the underground sections as non-existent, thus avoiding the creation of longer lines. 

 As with Case Study 1, the limitations discussed in this paragraph certainly constitute 

sources of uncertainty, although they do not diminish the significance of the final results shown 

in Chapter 7. Again, these limitations represent details that can be improved in future iterations 

of this work. 
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Chapter 6. Case Study 1: Results and Discussion 

This chapter discusses the results and their implications with reference to the stages to 

which this case study offers a novel contribution. As outlined in paragraph 3.2.1, Case Study 1 

contributes to Stage 1, Stage 3, and Stage 6. However, since Stage 3 refers to the generation of 

network models, no modelling results are available apart from the generation of the network 

models themselves, which is extensively discussed in paragraph 4.4.1. As such, the following 

results refer to Stage 1 and Stage 6.  

 

6.1   Stage 1: fractal spatial hazards 

 

6.1.1  Fractal spatial hazards as generic hazards 

 

6.1.1.1 Very smooth and very fragmented surfaces were the most detrimental spatial patterns  

In order to accomplish the objectives of Case Study 1 of this thesis, a total of 50,000 

fractal or Brownian surfaces were generated by adopting the procedure known as the Spectral 

Simulation method (Priestley, 1981; Saupe, 1988). This methodology allowed to produce five 

arrays of 10,000 surfaces each, with the pattern of spatial autocorrelation of each array being 

governed by values of the Hurst exponent in the range 𝐻 = [0.6, 0.7, 0.8, 0.9, 1.0]. Lower 𝐻 

values produced surfaces with a mild positive spatial correlation resulting in more fragmented 

objects, whereas higher 𝐻 values yielded smoother objects as a result of a strong positive spatial 

correlation (Figure 6.1). 

 

Figure 6.1. The increase with H of the spatial autocorrelation of the Brownian surfaces resulted in the appearance 

of progressively smoother objects. 
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The implementation of the flow chart described in Figure 4.26 returned a 

multidimensional set of results due to three elements: the five values used for the Hurst 

exponent 𝐻 which resulted in five classes of spatial patterns, the five values used for the failure 

threshold 𝐹𝑡, and the four network models. With the aim of determining which spatial pattern 

caused the highest number of 1st and 2nd order failures altogether, the analysis of the results was 

preceded by the identification of the most detrimental spatial pattern for the network models. 

This was accomplished by first selecting two specific values of 𝐹𝑡, 𝐹𝑡𝑙𝑜𝑤 = 0.3 and 𝐹𝑡ℎ𝑖𝑔ℎ =

0.7, which were assumed to represent a weak and a strong network, respectively. Then, the 

computation proceeded to determine the average number of surviving nodes left in the four 

networks after the failures caused by the combinations 𝐶𝑙𝑜𝑤 = (𝐻, 𝐹𝑡𝑙𝑜𝑤) and 𝐶ℎ𝑖𝑔ℎ =

(𝐻, 𝐹𝑡ℎ𝑖𝑔ℎ) of 2,000 Brownian surfaces each.  

 

 

Figure 6.2. Average number (labelled as 𝑆𝑁) of surviving nodes left in the Lattice Network (LN) and Scale-Free 

Network (BA) after the failures caused by the combinations 𝐶𝑙𝑜𝑤 (labelled Low Ft, in red) and 𝐶ℎ𝑖𝑔ℎ (labelled 

High Ft, in blue). The height of each bar was computed out of 2,000 Brownian surfaces. The black line represents 

the standard deviation of the number of surviving nodes. On the y-axis, 𝑆𝑁 is the namesake metric described in 

paragraph 4.7.1. 
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Figure 6.3. Average number (labelled as 𝑆𝑁) of surviving nodes left in the Small-World Network (WS) and 

Random Network (ER) after the failures caused by the combinations 𝐶𝑙𝑜𝑤 (labelled Low Ft, in red) and 𝐶ℎ𝑖𝑔ℎ 

(labelled High Ft, in blue). The height of each bar was computed out of 2,000 Brownian surfaces. The black line 

represents the standard deviation of the number of surviving nodes.  

 

 

Figures 6.2 and 6.3 show that, for the combination 𝐶𝑙𝑜𝑤 = (𝐻, 𝐹𝑡𝑙𝑜𝑤 = 0.3), the lowest 

average number of surviving nodes 𝑆𝑁𝐹𝑡=𝑙𝑜𝑤 always corresponded to 𝐻 = 0.6, which is 

associated with the lowest degree of spatial autocorrelation. Among all four network models, 

the Lattice Network (LN) showed a maximum of 12.81 surviving nodes, whereas the lowest 

number was found in the Scale-Free Network (BA), with 8.03 surviving nodes. In the case of 

the 𝐶ℎ𝑖𝑔ℎ = (𝐻, 𝐹𝑡ℎ𝑖𝑔ℎ = 0.7) combination, the lowest average number of surviving nodes 

𝑆𝑁𝐹𝑡=ℎ𝑖𝑔ℎ was consistently in correspondence of 𝐻 = 1.0, which denotes surfaces with the 

highest degree of spatial autocorrelation.  

The Random Network (ER) showed a maximum number of 80.96 surviving nodes, 

whereas the lowest number found was 78.88 surviving nodes (LN). The implication of these 

results is that, on average, when the networks operated with a low failure threshold, the 

fragmented Brownian surfaces associated with 𝐻 = 0.6 were the ones causing the highest 

number of failures. On the other hand, when a high failure threshold was in place, the smoothest 

surfaces associated with 𝐻 = 1.0 were on average the most detrimental. Owing to the small 

size of the network models adopted, which are composed of 100 nodes, the difference in height 
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between the lowest and the highest red bar was limited. The same was true for the difference 

between the lowest and the highest blue bar, and it is speculated that the adoption of larger 

networks may exacerbate the role of 𝐻 = 0.6 and 𝐻 = 1.0 as the most detrimental spatial 

patterns for the 𝐶𝑙𝑜𝑤 and 𝐶ℎ𝑖𝑔ℎ combination, respectively.  

The justification for adopting 𝐹𝑡𝑙𝑜𝑤 = 0.3 and 𝐹𝑡ℎ𝑖𝑔ℎ = 0.7 instead of other values is 

that: i) 𝐹𝑡𝑙𝑜𝑤 = 0.1 would have caused consistent failures, being associated with an extremely 

weak network, whereas on the other hand, 𝐹𝑡ℎ𝑖𝑔ℎ = 0.9 would have resulted in very limited 

failures; and ii) in both cases, an excessively low or high failure threshold would have diluted 

the different behaviors of the four network models. As a result of this analysis, of the 25 𝐶 =

(𝐻, 𝐹𝑡) combinations described in Table 4.3, only the 10 combinations with 𝐶𝑙𝑜𝑤 = (𝐻, 0.3) 

and 𝐶ℎ𝑖𝑔ℎ = (𝐻, 0.7) are reported in this chapter for analysis and discussion, as they represent 

a worst-case scenario. 

 

 

6.1.1.2  Advantages, disadvantages, and limitations of the Brownian surfaces   

 The adoption of the synthetic Brownian surfaces as fractal spatial hazards needs 

adequate consideration of the limitations, advantages, and disadvantages of the SSm 

methodology. The list of advantages includes: 

1. Limited computational demand; 

2. Compatibility with Monte Carlo or other brute-force simulation algorithms where the 

stochasticity of the fBm process is harnessed to the fullest; 

3. Isotropy and, unlike deterministic approaches, explicit control over the range of spatial 

patterns reproducible by means of a single parameter, the Hurst exponent 𝐻; 

4. For a specific value of 𝐻, ability to reproduce the spatial distribution of natural 

phenomena with significant accuracy (Saupe, 1988); 

5. Ability to replace the use of datasets derived from Climate Models, provided the 

execution of a preliminary conditioning process aimed at aligning the intrinsic isotropy 

of the surfaces to the study area-specific and natural hazard-specific spatial gradients. 
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On the other hand, the list of disadvantages includes:  

1. Necessity of a preliminary conditioning process, the lack of which can cause 

excessive randomness in the spatial patterns, resulting in inappropriate surfaces; 

2. Boundary effects (see Figure 6.4 for clarity); 

3. Symmetry about the 𝑦 = 𝑥 axis; 

4. Necessity of correcting the cumulative distribution function of surface elevations 

with adequate techniques, such as the quantile mapping, to ensure alignment with 

the observed cumulative distribution function of the targeted natural hazard. This is 

needed as the Brownian elevations span the range ∈ [0,1], and need to be scaled up 

to the range of values typical of a specific spatial natural hazard. 

 

The adoption of the conditioning process and the correction technique mentioned above 

is strongly encouraged in case studies where the Brownian surfaces are used as a synthetic tool 

for reproducing realistic natural hazard spatial patterns. Although the additional steps may 

increase the computational demand associated with the Brownian surfaces, due to the 

importance of the aspect outlined by Saupe (1988), their advantages appear to outweigh their 

disadvantages. However, an important limitation has to be considered regarding periodicity. It 

is known from several sources in the literature (e.g., Saupe, 1988; Dieker, 2003) that the 

Brownian surfaces obtained with the SSm method are periodic, and this aspect may be 

particularly inconvenient for impact studies revolving around these surfaces. In fact, it is very 

unlikely, if not unrealistic, to observe spatial natural hazards featuring repeated patterns at 

regular intervals.  

In addition to the periodicity resulting from the symmetry about the 𝑦 = 𝑥 axis, another 

form of symmetry was highlighted. Mapping the distribution of frequency of peak elevations 

𝑧𝑚𝑎𝑥 in each 𝑁𝑥 ∗ 𝑁𝑦 = 𝑁 ∗ 𝑁 = 𝑁2 = 256𝑥256 surface grid revealed that increased 

frequencies occurred at (𝑥 = 𝑁
2⁄ ± 𝑘 𝑁

2⁄ , 𝑦 = 𝑁
2⁄ ± 𝑘 𝑁

2⁄ , 𝑘 ∈ ℕ0) and to a lesser extent 

along the straight lines connecting these points (Figure 6.4), regardless of the 𝐻 value used. 

This phenomenon is the result of a boundary effect becoming visible every 𝑁/2 cells, and it is 

here suggested that it has to be characterized for every size interval. This characterization is 

pivotal, allowing to identify the areas of the grid that are bereft of the boundary effect, e.g. the 

areas where isotropy can be observed. As a result, it is suggested that any impact study 

involving the use of SSm-generated Brownian surfaces should be conducted by either cutting a 

buffer frame out of the surface, so to minimize the boundary effect but with the disadvantage 
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of obtaining a smaller grid, or to consider alternative methods (see paragraph 4.2.3). In this case 

study, the smaller grid used as spatial hazard was sliced from the upper left corner of the grid 

in Figure 4.7 so to avoid the 𝑦 = 𝑥 symmetry, and sufficiently away from the grid boundary so 

to avoid the other form of periodicity. 

 

 
Figure 6.4. Distribution of the frequency of peak elevations 𝑧𝑚𝑎𝑥  in 10,000 realizations of each class of Brownian 

surfaces. Regardless of the H value used, the pattern was the same, although the frequency increases with 𝐻. In 

the top left corner, the 𝑦 = 𝑥 axis is shown. In the top right corner, the dashed black lines represent the periodicity 

found every 𝑁/2 cells, whereas the dashed red line indicates one suitable grid slice where periodicity and boundary 

effects are not present. 
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6.1.2  Geometrical difference between circular-shaped and fractal spatial hazards 

As discussed in paragraph 4.2.8.1, one important objective of Case Study 1 of this thesis 

was to highlight the geometrical differences between circular-shaped spatial hazards, which are 

deterministic in nature, and fractal spatial hazards, which are the result of a stochastic process. 

Moreover, these two classes of objects differ in that the circles feature the radius as a 

characteristic geometric parameter, whereas fractals do not. As such, a geometrical comparison 

between the two classes of objects had to be performed not by using the original objects but on 

a level playing field. Consequently, this was done by computing the ellipses with the same 2nd 

central moments as the circles and fractals and analyzing them with image processing 

techniques. Behind the implementation of the procedure detailed in paragraph 4.2.8.1 was the 

hypothesis that, between a fractal and a circle of the same size, the fractal features an equivalent 

ellipse with a longer major axis. This hypothesis is rooted in the fact that points on a fractal 

surface are not evenly distributed, and they are not equally distant from the center of the surface 

as they are on a circle.  

Figure 6.5 shows how the length of the major axis of 10,000 circles compared to that of 

10,000 Brownian surfaces obtained with 𝐶 = (𝐻 = 0.8, 𝐹𝑡 = 0.5). The major axis of the 

ellipses associated with the fractal surfaces, normalized with respect to the size of the sliced 

grid, appear in many cases to be longer than those of the ellipses associated with circles. This 

difference appears to peak when the Critical Footprint, here interpreted as the object area, nearly 

reaches 40%, with a maximum difference of almost 80%. It is also worth noticing that, while 

the determinism associated with the circles coerces the dark dots into following trends that are 

associable to different radiuses, the stochasticity of fractals allows the white dots to appear in 

many other parts of the graph.  

In terms of how the points are distributed with respect to the center of the object, this 

highlights the fact that the SSM method generates Brownian surfaces with a significant degree 

of variation. As the Critical Footprint approaches 80%, entailing that the fractal surfaces and 

circles occupy the entire grid, the white dots are all located above the dark dots, highlighting 

the fact that, as the fractals increase in size, the points on their surfaces are consistently more 

scattered. In addition, as the Critical Footprint reaches 100%, the normalized axis length for the 

circles tends to 1.0, implying that circles are constrained by the size of the grid where they are 

generated. The same seems not to be true for fractals, as they tend to converge to a value of 

approximately 1.2, which entails that the separation between points on the Brownian surfaces 

is not constrained by the size of the grid. These results are better summarized in Figure 6.6, 

where the x-axis shows the binned Critical Footprint and the y-axis, for each bin, shows the 
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average major axis length for the fractals and circles. The results shown in Figures 6.5 and 6.6 

refer to a value of the Hurst exponent 𝐻 = 1.0, which is synonymous with smooth surfaces, 

whereas the failure threshold used, 𝐹𝑡 = 0.5, is the central value of the range of thresholds 

adopted in this case study.  

It is speculated that the use of a different value for the Hurst exponent has a more 

profound effect than a different threshold, due to the fact that the former controls the nature of 

the resulting spatial pattern, whereas the latter only establishes a higher or lower surface datum. 

Given that 𝐻 = 1.0 is associated with fractal objects with the highest spatial autocorrelation, it 

is also suggested that the trend shown for fractals in Figure 6.5 is the mildest observable among 

fractals, and that more fragmented surfaces may show larger geometrical differences. The 

geometrical difference, coupled with the ability to control the degree of spatial autocorrelation 

featured by the fBm process and with the fact that natural hazards are unlikely to feature a 

deterministic footprint, constitutes a major argument in favor of the use of the Brownian 

surfaces in place of any form of deterministic hazard footprint. 

 
Figure 6.5. Comparison between the normalized length of the major axis of the ellipses associated with circles 

(here shown in black) and those associated with fractals (here shown in white). This graph was obtained by 

analyzing 10,000 circles and 10,000 Brownian surfaces generated with 𝐶 = (𝐻 = 1.0, 𝐹𝑡 = 0.5). The Critical 

Footprint here represents the surface area of the circles and the surface area of the fractals where 𝑧 > 𝐹𝑡 as a 

percentage of the grid where the circles and fractals were generated. The axis length was normalized with respect 

to the side of a grid composed of 256𝑥256 cells. 
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Figure 6.6. Bars showing the average major axis length for each bin of Figure 6.5. It is interesting to notice that 

circles only have longer axes when the fractals have very limited size. However, as the fractal size increases, the 

average length of the major axis of the corresponding ellipses is, on average, constantly above that of circles. The 

difference between the two types of bars peaks around the 41-50% bin, suggesting that fractals that occupy up to 

half the size of the grid where they are generated have their surface points significantly more scattered than circles.  

 

6.2   Stage 6: impact quantification  

 

6.2.1  Impact of the fractal spatial hazards on the infrastructure models 

 As a consequence of the aspects highlighted in paragraph 6.1.1.1, the results regarding 

the impact of fractal spatial hazards on the four network models are presented with reference to 

two worst-case scenarios: 𝑆1 = (𝐻 = 0.6, 𝐹𝑡𝑙𝑜𝑤 = 0.3) and 𝑆2 = (𝐻 = 1.0, 𝐹𝑡ℎ𝑖𝑔ℎ = 0.7), 

each one consisting of 2,000 fractal spatial hazards. The first scenario, 𝑆1, refers to weak 

networks that show noticeable vulnerability to highly fragmented spatial hazards; the second 

scenario, 𝑆2, revolves around strong networks that are most vulnerable to continuous spatial 

hazards. The results are reported following the order of the robustness metrics as presented in 

paragraph 4.7.1. 
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6.2.1.1  Number of Surviving Nodes (SN)   

 The 𝑆𝑁 metric is defined in paragraph 4.7.1 as the number of nodes in the network that 

survive both 1st and 2nd order failures, remaining active after the superimposition of fractal 

spatial hazards with increasing size or Critical Footprint (CF). This also constitutes a measure 

of the ability of the network to preserve its functioning capacity, under the assumption that a 

higher number of active nodes corresponds to an actual capacity that is closer to that featured 

in the unperturbed condition.  

From the analysis of Figures 6.7 and 6.8 it stands out that the transition from scenario 

S1 to scenario S2 resulted in fractals of the same size producing lower 𝑆𝑁 for all networks, 

which implies that the adoption of a higher failure thresholds did not prevent smoother fractal 

surfaces from causing more failures. In both S1 and S2, the Lattice Network (LN) had its trends 

almost completely above the 𝑦 = 100 − 𝑥 line, which represents a situation where the number 

of failed nodes is directly proportional to the size of the fractal spatial hazard, 𝑁𝐴
′ = 𝛼 ∗ 𝐶𝐹, 

with 𝛼 = 1. This is a direct consequence of the fact that the gridlike distribution of edges in LN 

perfectly matches the 1-to-1 pairing between the nodes in the network and the cells in the fractal 

grid (Figure 4.17). This suggests that, for highly regular networks such as LN, the number of 

failures may not exceed the linear relationship with the size of the spatial hazard, implying that 

the relationship 𝑁𝐴
′ = 𝛼 ∗ 𝐶𝐹 constitutes an upper bound for the number of failures, with 𝛼 

representing the number of grid cells superimposed on each node.  

A completely different behavior is observable for the Scale-Free Network (BA), where 

the trend was only sporadically above the 𝑦 = 100 − 𝑥 line in scenario S1, and less frequently 

so in scenario S2. This means that, in both scenarios, the number of failures caused in BA was 

significantly larger than that caused in LN by a fractal spatial hazard of the same size. In fact, 

whilst fractal surfaces with 𝐶𝐹 ≅ 40% corresponded to 𝑆𝑁 ≥ 60 for LN in S1, the same 

surfaces would result in 𝑆𝑁 ≅ 10 for BA. In S2, the gap would increase, as fractal surfaces 

with 𝐶𝐹 > 40% were able to produce 𝑆𝑁 = 0, entailing that the BA network had failed 

completely. The variability of the BA trend is noticeable in both scenarios, with the lower bound 

of the scatter plot resembling a non-linear behavior. This aspect may find explanation in the 

fact that the BA structure includes the presence of highly connected hubs, and that such hubs 

constitute the only connection for a significant fraction of nodes. In the worst-case scenario of 

a fractal surface being superimposed on one or multiple hubs, even a limited size (e.g., 𝐶𝐹 ≅

40%) was enough to produce a low or null 𝑆𝑁 due to the high number of poorly connected 

nodes that failed.  
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Figure 6.7. Scenario S1: graphs showing the change in 𝑆𝑁 with the increase in size of the fractal spatial hazards. 

Whilst the LN trend refers to only one network realization (see paragraph 4.4.1), each one of the other three panels 

show the aggregate trends referring to 300 network realizations. As a reference, the red line indicates the 𝑦 =

100 − 𝑥 line, which entails that the number of failed nodes is directly proportional to the size of the fractal spatial 

hazard. Except for the LN trend, which is composed of 2,000 points, the BA, WS, and ER trends feature 600,000 

points each. 

 
Figure 6.8. Scenario S2: graphs showing the change in 𝑆𝑁 with the increase in size of the fractal spatial hazards. 

Whilst the LN trend refers to only one network realization (see paragraph 4.4.1), each one of the other three panels 

show the aggregate trends referring to 300 network realizations. As a reference, the red line indicates the 𝑦 =

100 − 𝑥 line, which entails that the number of failed nodes is directly proportional to the size of the fractal spatial 

hazard. Except for the LN trend, which is composed of 2,000 points, the BA, WS, and ER trends feature 600,000 

points each. 
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This suggests that the relationship 𝑁𝐴
′ = 𝛼 ∗ 𝐶𝐹 may not be linear for the BA structure. 

In fact, it should be changed to account for the source of non-linearity, which is likely to 

correspond to the number of nodes affected by 2nd order failures. Such number is highly 

variable, being dictated by the network structure, the location of the fractal spatial hazard with 

respect to the hubs, and the seed used to generate the network. In situations where the fractal 

spatial hazard affected nodes with a very limited degree 𝑘, the BA trend exceeded the 𝑦 =

100 − 𝑥 line, indicating the existence of a pseudo-linear bound, although this was more easily 

visible in 𝑆1 than in 𝑆2. With respect to the ER and WS networks, their behavior in both 

scenarios was found to be between the extremes associated with the LN and BA networks. 

Specifically, the variability shown by the ER trend, the shape of the lower bound of the scatter 

plot, and an increased vulnerability to failures in S2 seem to align the ER networks more to the 

BA behavior. Similarly, whilst the WS trends showed non-linearity in the lower bound of the 

scatter plots, their vulnerability to the fractal spatial hazards seemed mitigated with respect to 

both ER and BA networks.  

The results shown here are in agreement with Albert et al. (2000), Buldyrev et al. (2010), 

and Chopra et al. (2016), who concluded that the presence of hubs remarkably increases the 

vulnerability of BA networks to failures caused by random or targeted attacks. Moreover, these 

results extend such conclusions, indicating that the peculiar vulnerability to failures shown by 

BA networks persists in the presence of more realistic failure patterns.  

 

 

6.2.1.2  Spatial Robustness (SR)   

 Spatial Robustness (𝑆𝑅) was defined in paragraph 4.7.1 as the ability of each network 

to minimize the number of 2nd order failures, e.g. failures occurring outside the footprint of the 

fractal spatial hazard. This metric was implemented to identify the behavior of each network 

model under the hypothesis that the topological structure of a network may either facilitate or 

contrast the spreading of failures in locations that are further away from the hazard footprint. 

As a complement to 𝑆𝑅, the propagation buffer 𝑝𝑏 was also introduced, with the aim of 

evaluating how far from the hazard footprint the 2nd order failures occurred. As a result, a 

spatially robust network in the context of this thesis is not just a network with low 𝑆𝑅, but also 

one with low 𝑝𝑏.  

As a representative value for 𝑆𝑅, table 6.1 shows its 95th percentile 𝑆𝑅95, which allows 

to estimate the extreme behavior of the four network models. In both scenarios, the LN 

networks were found to have the lowest number of 2nd order failures, with 𝑆𝑅95 = 5.05 in 𝑆1 
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and 𝑆𝑅95 = 4.00 in 𝑆2, which correspond to a very limited percentage of nodes if compared to 

the other models. On the other side of the spectrum were the BA networks, which reported 

𝑆𝑅95 = 27.00 in 𝑆1 and 𝑆𝑅95 = 23.17 in 𝑆2. These numbers suggest that the 2nd order failures 

affected 27% of the nodes in the network in 𝑆1 and 23.17% in 𝑆2, depicting a situation where 

the scale-free structure was not just the most affected by 2nd order failures, but also one where 

failures outside the fractal footprint could affect around 25% of all nodes.  

In a similar fashion to what has been described in paragraph 6.2.1.1, the ER networks 

showed a similar behavior to the BA networks, whereas the WS networks featured a more 

mitigated behavior. These results seem to confirm the structural vulnerability of the BA 

networks discussed earlier. In fact, values as high as 𝑚𝑎𝑥(𝑘) = 48 and 𝑘95 = 36 indicate 

topological structures where the main hub could reach 35-50% of all nodes in the network. This 

entails that up to 50% of all nodes may have shared a unique connection with the main hub, 

potentially paving the way for the spreading of disruptions should the main hub fail. On the 

other hand, the ubiquitous lack of hubs and low-degree nodes found in the LN networks appears 

to have greatly reduced this phenomenon, as 62% of all nodes had 𝑘 = 4 connections, and as 

such there was enough redundancy to avoid significant 2nd order failures.  

It is worth mentioning that 𝑆𝑅95 appeared to be particularly sensitive to an increase in 

the number of connections shared by the main hubs. In fact, the 100% increase in 𝑘95 observed 

while comparing the LN networks to the models with the closest behavior (e.g., the WS 

networks) produced an increase in 𝑆𝑅95 of 236.6% in 𝑆1 and 225% in 𝑆2, highlighting a 

possible non-linear relationship between 𝑚𝑎𝑥(𝑘), or equivalently 𝑘95, and 𝑆𝑅95. It is also 

worth noticing that the transition from 𝑆1 to 𝑆2 resulted in a decrease in 𝑆𝑅95, suggesting that 

the adoption of a higher failure threshold may counterbalance the increased number of failures 

caused by smooth hazard surfaces, as observed in paragraph 6.2.1.1. 

The propagation buffer 𝑝𝑏 was defined in paragraph 4.7.1 as the Euclidean distance, 

measured from the edge of the fractal footprint, between the closest and farthest 2nd order 

failures. The aim of this complement metric was to quantify how deep into the network 

structures the 2nd order failures propagated, and whether different network models exhibited 

different behaviors. Table 6.2 reports the 95th percentile of the propagation buffer, 𝑝𝑏,95, 

obtained from 2,000 Brownian surfaces and 1 realization for LN, and 2,000 Brownian surfaces 

and 300 realizations for the other network models. The values 𝑑1,95 and 𝑑2,95 are also reported, 

which represent the distance between the footprint hotspot and the closest 2nd order failures to 

the footprint edge and the distance between the footprint hotspot and the farthest 2nd order 

failures from the footprint edge, respectively (see Figure 4.21).  
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In both scenarios, the LN networks featured the narrowest propagation buffer, whereas 

the largest buffers were those of the BA and ER networks, which also showed very similar 

behaviors. The WS networks seemed to better limit the spatial spreading of failures when 

compared to the previous two. It is interesting to notice a consistent increase in 𝑝𝑏,95 in the 

transition from 𝑆1 to 𝑆2: this describes a situation where, whilst the impact of smooth fractal 

surfaces reduces the number of 2nd order failures for all network models, it exposes them to 2nd 

order failures that occur farther away from the hazard footprint. Based on a comparative 

analysis performed on Tables 6.1 and 6.2, it stands out that the LN networks performed as the 

most spatially robust in the context of this thesis, as they featured the lowest 𝑆𝑅95 and 𝑝𝑏,95 in 

both scenarios, followed by the WS networks. On the other hand, the BA networks were found to possess 

the least spatially robust structure, with the highest 𝑆𝑅95 of both scenarios and the highest 𝑝𝑏,95 in 𝑆1. 

 

Table 6.1. The 95th percentile of Spatial Robustness (𝑆𝑅95) for each network model and both scenarios. Also 

reported are the maximum degree 𝑚𝑎𝑥(𝑘) found in 300 network realizations, as well as the 95th percentile, 𝑘95. 

Network  

model 

𝑺𝑹𝟗𝟓 
𝒎𝒂𝒙(𝒌) 𝒌𝟗𝟓 

𝑆1 𝑆2 

Lattice Network  

(LN) 
5.05 4.00 4 4 

Scale-Free Network 

(BA) 
27.00 23.17 48 36 

Small-World Network 

(WS) 
17.00 13.00 10 8 

Random Network 

(ER) 
24.00 21.00 14 11 

 

Table 6.2. The 95th percentile of the propagation buffer (𝑝𝑏,95) for each network model and both scenarios. Also 

shown are 𝑑1,95 and 𝑑2,95. These values were computed for 2,000 Brownian surfaces and 1 realization for LN, 

and 2,000 Brownian surfaces and 300 realizations for the other network models. The values shown are 

normalized with respect to the width of the fractal grid. 

Network  

model 

𝒅𝟏,𝟗𝟓 𝒅𝟐,𝟗𝟓 𝒑𝒃,𝟗𝟓 

𝑆1 𝑆2 𝑆1 𝑆2 𝑆1 𝑆2 

Lattice Network  

(LN) 
0.466 0.481 0.829 0.870 0.363 0.389 

Scale-Free Network 

(BA) 
0.358 0.318 0.950 1.000 0.592 0.689 

Small-World Network 

(WS) 
0.379 0.359 0.937 0.999 0.558 0.640 

Random Network 

(ER) 
0.360 0.320 0.949 1.000 0.590 0.690 
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6.2.1.3  Fragmentation Index (FI)   

 The Fragmentation Index (𝐹𝐼) was introduced in paragraph 4.7.1 with the aim of 

gauging the tendency of each network to fragment as a result of the failures induced by the 

fractal spatial hazards. The objective of this metric was to quantify the number of fragments, or 

islands, composing the perturbed networks, where each island corresponds to a cluster of active 

nodes or connected component. A high value of 𝐹𝐼 was associated with a high number of 

islands, entailing that the network model was particularly prone to fragmentation. On the 

contrary, low values of 𝐹𝐼 indicated the tendency of a network to remain intact in spite of the 

failures.  

Figure 6.9 shows how the 95th percentile of the number of islands, labelled as 𝐹𝐼95, 

changed with the increase in size of the fractal spatial hazards. To obtain a neater representation 

of the trends, the size of the hazards (Critical Footprint, CF) was divided into 10 bins of equal 

width, each bin representing a percentage of the total area of the fractal grid. As a general trend, 

the transition from scenario 𝑆1 to scenario 𝑆2 resulted in a slight decrease in 𝐹𝐼95 for certain 

network models. Also, the same transition produced an anticipated peak in all models except 

the ER networks, entailing that, in 𝑆2, smaller fractal spatial hazards were generally required 

to produce the highest 𝐹𝐼95 value. This may suggest that a higher failure threshold limits the 

number of fragments in which the networks are divided, but it also indicates that spatially 

contiguous hazard surfaces do not have to be particularly large in size to result in a high number 

of fragments.  

The LN networks showed the lowest 𝐹𝐼95 values in both scenarios, reaching a maximum 

𝐹𝐼95 = 3 for 70% ≤ 𝐶𝐹 ≤ 90% in 𝑆1 and 𝐹𝐼95 = 2 for 50% ≤ 𝐶𝐹 ≤ 90% in 𝑆2. This 

suggests that a network model that follows a regular grid may exhibit a remarkable robustness 

to fragmentation. Contrarily, the ER networks displayed the highest 𝐹𝐼95 values in both 

scenarios, peaking at 𝐹𝐼95 = 8 for 40% ≤ 𝐶𝐹 ≤ 60% in 𝑆1 and 𝐹𝐼95 = 7 for 40% ≤ 𝐶𝐹 ≤

70% in 𝑆2. The high number of islands typically displayed by the ER networks are in 

accordance with the results of Albert et al. (2000), who documented a remarkable proneness to 

fragmentation under the influence of random and targeted attacks, as well as the presence of 

thresholds past which the phenomenon becomes more evident. The results shown here extend 

the conclusions of Albert et al. (2000) to the case of realistic spatial hazards and locate the 

above-mentioned thresholds at 10% ≤ 𝐶𝐹 ≤ 30% in both 𝑆1 and 𝑆2.  

Whilst the BA networks displayed the closest behavior to the ER networks, reaching 

𝐹𝐼95 = 6 for 40% ≤ 𝐶𝐹 ≤ 60% in 𝑆1 and 𝐹𝐼95 = 6 for 30% ≤ 𝐶𝐹 ≤ 60% in 𝑆2, the WS 
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networks offered an interesting performance. In 𝑆1, the value 𝐹𝐼95 = 3 was reached with 

fractals that were almost double in size than those that produced the same number for the BA 

networks. In 𝑆2, the value 𝐹𝐼95 = 6 was reached with fractals that were nearly three times as 

large as those that yielded the same value for the ER networks. This suggests that, whilst the 

WS networks were significantly less robust than the LN networks, they offered a noticeable 

advantage over the BA and ER networks in both scenarios.  

It is worth noticing that 𝐹𝐼95 = 1 meant that the networks were displaying only one 

island, e.g. the network in its entirety. In addition, all network models displayed 𝐹𝐼95 = 0 with 

90% ≤ 𝐶𝐹 ≤ 100%, indicating that fractals occupying the entire study area resulted in 

complete failures, hence the lack of islands. 

The results discussed in this paragraph depict a situation where the ER and BA networks 

are particularly prone to fragmentation, the WS networks perform satisfactorily until the critical 

size 40% ≤ 𝐶𝐹 ≤ 50% is reached, and the LN networks are rather robust. These conclusions 

have implications that can be either uneventful or damaging for the infrastructure models. In 

fact, as pointed out by Hines et al. (2015), if an infrastructure is operated and governed centrally, 

as it is the case for the infrastructures of most Developed Countries, the proneness to 

fragmentation may play a very detrimental role, as the nodes of the network are designed to be 

served and not to function autonomously. On the other hand, infrastructures such as the 

microgrids or the water distribution systems in Developing Countries, the proneness to 

fragmentation may be uneventful, as the nodes composing these networks are designed to 

operate both on- and off-grid, as it may be the case for photovoltaic systems. 

 
Figure 6.9. Change in the 95th percentile of the Fragmentation Index (𝐹𝐼95) with the size of the fractal spatial 

hazards. The latter is binned and expressed in percentage with respect to the size of the fractal grid. The transition 

from scenario 𝑆1 to scenario 𝑆2 yielded slightly lower and anticipated peaks. The case 𝐹𝐼95 = 1 indicated that the 

failures had not yet fragmented the networks, whereas 𝐹𝐼95 = 0 was the result of complete failures. 
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6.2.1.4  Cross-Flow Index (CFI)   

 The Cross-Flow Index (𝐶𝐹𝐼) was defined in paragraph 4.7.1 to estimate the theoretical 

ability of nodes to process the volumes of inward and outward flows. For each node, this metric 

was computed as the ratio between the ability in the perturbed state and the ability in the 

unperturbed state, which are based on the computation of the Stress Centrality in the relevant 

state, as defined by Brandes (2008). For each Brownian surface and realization, a representative 

value of 𝐶𝐹𝐼 for the network was obtained by averaging the values of 𝐶𝐹𝐼 of individual nodes.  

The 𝐶𝐹𝐼 offered a theoretical interpretation of the ability to process flows. In fact, the 

network models used in this thesis are generic, and as such the specifics regarding goods or 

services delivered were undefined on purpose. Moreover, due to the level of abstraction of the 

network models, which also implied the absence of the hierarchical rules that often drive how 

infrastructure networks are operated, it was deemed sensible to have the position of each node 

in the network define its ability (see Figure 4.23). As it represents a ratio, 0 ≤ 𝐶𝐹𝐼 ≤ 1, where 

𝐶𝐹𝐼 = 0 implied that the network had retained none of the original ability to process flows, and 

𝐶𝐹𝐼 = 1 meant that 100% of the original ability had been preserved despite the failures caused 

by the Brownian surfaces. The Stress Centrality is a key metric from which the 𝐶𝐹𝐼 was derived, 

and it is a measure of node centrality based on shortest paths. This was adopted under the 

assumption that the undefined flow traversing the network models followed the shortest path 

between any pair of nodes. Other, equally valid centrality metrics based on shortest paths could 

have been adopted, such as the renowned Betweenness Centrality, used for instance by 

Pregnolato et al. (2016) to quantify the performance of a flooded road network.  

However, the Stress Centrality was preferred as it returns an absolute measure of the 

number of connections from node 𝑖 to node 𝑗 that go through node 𝑣 (again, see Figure 4.23), 

allowing to directly quantify the number of inward and outward connections of node 𝑣 in both 

the perturbed and unperturbed state. The implementation of the count of all possible trails 

passing through a given node was also considered, where 𝑁𝑎𝑙𝑙 𝑝𝑎𝑡ℎ𝑠 > 𝑁𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡 𝑝𝑎𝑡ℎ𝑠 since the 

networks implemented feature 𝑁 > 2 nodes. However, this was not pursued given the high 

computational cost, which was estimated to be at least 𝑂(𝑁3), where 𝑁 is the number of nodes 

in the network. In comparison, the computational cost of the Stress Centrality is known to have 

𝑂(𝑁3) as its upper bound. 

 The results are better described by looking at both Figure 6.10 and 6.11. In Figure 6.10, 

the 95th percentile of 𝐶𝐹𝐼, 𝐶𝐹𝐼95, is shown on the y axis as a representative value, whereas the 

x axis shows the Critical Footprint (CF), which represents the size of the fractal surface, divided 
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into 10 bins of equal width. In general, it is possible to observe that the transition from scenario 

𝑆1 to scenario 𝑆2 did not correspond to major changes in the trend of any network model, only 

yielding a marginal decrease in the ability of the networks to process flows. When 0% ≤ 𝐶𝐹 ≤

10%, all four network models showed 𝐶𝐹𝐼95 ≅ 1 in both scenarios, entailing no tangible 

reduction in the overall ability to process flows.  

On the other hand, when 90% ≤ 𝐶𝐹 ≤ 100%, 𝐶𝐹𝐼95 ≅ 0, indicating a complete loss 

of ability. The LN networks were constantly showing the lowest values of 𝐶𝐹𝐼95 of both 

scenarios and displayed a 20% drop in their original ability to process flows for fractals of very 

limited size (10% ≤ 𝐶𝐹 ≤ 20%). This rapid reduction was also observable for 30% ≤ 𝐶𝐹 ≤

40%, where 𝐶𝐹𝐼95 ≅ 0.4 entailed a 60% reduction in the original ability to process flows. The 

WS networks, on the other hand, almost consistently exhibited the lowest decrease in 𝐶𝐹𝐼95. A 

decrease in 𝐶𝐹𝐼95 of 20% in 𝑆1 and nearly 30% in 𝑆2 was found as a result of fractals with 

30% ≤ 𝐶𝐹 ≤ 40%. In 𝑆2, the range 40% ≤ 𝐶𝐹 ≤ 70% is associated with the largest 

difference in terms of 𝐶𝐹𝐼95 between the WS networks and the BA and ER networks, entailing 

that both networks were noticeably more sensitive to the size of the fractal hazards. The BA 

and ER networks were found to have comparable behaviors in 𝑆1, with the BA networks 

displaying slightly higher values of 𝐶𝐹𝐼95.  

In Figure 6.11 it is documented how 𝐶𝐹𝐼95 changed with 𝑑ℎℎ, the distance between the 

peak or hotspot of the Brownian surface and the most highly connected hub. This analysis was 

performed to investigate the sensitivity of each network model to a proximal hazard surface, 

and to complement the results shown in Figure 6.10. Defined 𝑆𝑥 as the width of the fractal grid, 

in 𝑆1 the LN networks featured a drop in 𝐶𝐹𝐼95 of more than 70% when 0.6 ∗ 𝑆𝑥 ≤ 𝑑ℎℎ ≤

0.75 ∗ 𝑆𝑥, entailing that a fractal spatial hazard with an hotspot located more than half grid 

away from the four most central hubs was highly detrimental. This drop increased as 𝑑ℎℎ 

decreased, eventually reaching 𝐶𝐹𝐼95 = 0, whereas in 𝑆2 the LN networks performed slightly 

better.  

Although their trend was affected by fluctuation, the WS networks showed the best 

performance in 𝑆1, retaining a residual 𝐶𝐹𝐼95 > 0.6 with 0 ≤ 𝑑ℎℎ ≤ 0.15 ∗ 𝑆𝑥, indicating that 

the failure of the most highly connected hub did not result in a major decrease in the ability to 

process flows. This is likely due to the fact that, whilst a fractal hotspot resulted in the failure 

of the most highly connected hub, the remaining hubs were farther away, and as such continued 

to operate. By comparison, both the BA and ER networks, although showing fluctuating trends, 

featured residual values of 𝐶𝐹𝐼95 < 0.3. In 𝑆2, the transition to a higher failure threshold 
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seemed to create a situation where 𝐶𝐹𝐼95 remained scarcely sensitive to 𝑑ℎℎ, possibly due to 

lower failure rates, except for the LN networks.  

While interpreting these results, it is to be pointed out that the original ability to process 

the inward and outward flows, e.g. the Stress Centrality in the unperturbed state 𝑆𝐶𝑢, was not 

the same for all network models. As deducible from Figure 4.23, the value of 𝑆𝐶𝑢 for each node 

is both a function of the location of the node relative to the network, as well as the topological 

structure of the network itself. As such, it is not advisable to interpret the 𝐶𝐹𝐼 trends by 

comparing the 𝐶𝐹𝐼95 value of a network model with that of another for a specific size of the 

fractal hazard (e.g., 𝐶𝐹). A normalization with respect to the maximum 𝑆𝐶𝑢 value found in any 

network was not performed due to the different topological structures. As a result, the only 

reasonable comparison is to map the reduction in the ability to process flows of each network 

with respect to the original value and discern whether a particular network is more or less 

sensitive to the increase in size of the fractal hazards.  

The implications of these results may help drive the choice of a specific network model 

over another in the design phase of an infrastructure. The rapid decrease in the ability to process 

flows shown by the LN networks in both Figure 6.10 and 6.11 may be attributed to the fact that 

gridlike structures are particularly dependent on the most central nodes, under the assumption 

that flows are handled according to the concept expressed by the Stress Centrality. Under such 

hypothesis, grid-like structures operate as chain structures, where node 𝑖 transfers the flow to 

node 𝑖 + 1 without losses, and so forth, thus resembling a chain. Because of their position, the 

four most central nodes, which also happened to be adjacent to each other, were the ones with 

the highest 𝑆𝐶𝑢, and as such, their failure was particularly detrimental to the performance of 

the overall network.  

When spatially continuous hazards are factored in, this phenomenon is even more 

impactful, as it was not uncommon for the most central nodes to fail altogether, dramatically 

reducing 𝐶𝐹𝐼. The reasons leading to the scarce performance of the LN networks may be used 

to explain the differences with the other models. The explanation offered in this thesis is that 

the distance between the most important nodes may play a crucial role in the decrease of the 

ability to process flows. In fact, where the four hubs with the highest number of connections 

were very close, a high sensitivity to the proximity of the fractal hotspot was observable. For 

instance, the Euclidean distance between the four main hubs express in grid cells in the LN 

networks was always 𝑑𝑚ℎ = 1.  

On the contrary, the WS networks had 𝑑𝑚ℎ ≤ 6.78 in 95% of the realizations, depicting 

a situation where the four main hubs were much farther away from each other. In fact, the small-
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world property featured by the WS networks tends by default not to aggregate the main hubs in 

one place, but to have them scattered instead. The ER networks featured 𝑑𝑚ℎ ≤ 6.04 in 95% 

of cases, explaining the closer behavior to the WS networks in Figure 6.11, although the 

relatively high number of connections featured by the main hub (see Table 6.1) seems to explain 

the mediocre response observable in Figure 6.10.  

The case of the BA networks seems controversial. The algorithm generating these 

networks is based on growth and preferential attachment, entailing that the most highly 

connected hubs are the first to be created, and are also rather close to each other. In fact, the 

BA networks had 𝑑𝑚ℎ ≤ 4.67 grid cells in 95% of cases. This is reflected in Figure 6.11, where, 

at least in scenario 𝑆1, the BA networks suffer significant reductions in 𝐶𝐹𝐼95 as the fractal 

hotspot approaches the most highly connected hub. However, the performance of the BA 

networks in Figure 6.10 is not particularly negative. At any rate, this controversy only seems to 

affect the interpretation of how the BA networks handled the reduction in 𝐶𝐹𝐼 given larger 

fractal hazards, and not how sensitive they were to their proximity. In addition, the uncertainty 

behind their behavior does not influence the neat trends that the other network models exhibited, 

and it is advised that additional studies, perhaps involving a defined flow algorithm, should be 

carried out to investigate this aspect further.  

Overall, the results discussed here seem to highlight the negative role played by an 

excessive proximity of the most highly connected hubs. This in turn suggests that, when 

perturbed by failures, networks with more separation between their hubs are likely to offer 

better performances in terms of their ability to process flow. 

 

 
Figure 6.10. Change in the 95th percentile of the Cross-Flow Index (𝐶𝐹𝐼95) with the size of the fractal spatial 

hazards. The latter is binned and expressed in percentage with respect to the size of the fractal grid.  
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Figure 6.11. Change in the 95th percentile of the Cross-Flow Index (𝐶𝐹𝐼95) with the distance 𝑑ℎℎ between the peak 

of the fractal surface and the most highly connected hub. The distance 𝑑ℎℎ is binned and expressed in percentage 

with respect to the width of the fractal grid. The LN trends show less points than the other ones as the fractal 

hotspot was never located farther than 0.75 ∗ 𝑆𝑥 grid cells from the four most central nodes. 

 

6.2.2  Difference in impact between circular-shaped and fractal spatial hazards 

An important comparison was performed between the impact of fractal spatial hazards 

and circular-shaped hazards on the networks. This was carried out by: i) superimposing 𝑁𝑓 =

10,000 fractal hazards produced with 𝐶 = (𝐻 = 0.8, 𝐹𝑡 = 0.5) and 𝑁𝑑 = 10,000 circles on 

the same realization 𝐴 of a Barabási-Albert Scale-Free Network composed of 𝑁𝐴 = 2,500 

nodes evenly distributed on a regular grid; ii) applying the failure model described in paragraph 

3.2.7.1 to determine the aggregate number of 1st and 2nd order failures 𝑁𝐴
′ = 𝑁𝐴 − 𝑆𝑁; iii) 

determining the aggregate number of failed nodes observed in the network as a result of the 

fractal hazards, 𝑁𝐴,𝑓
′ ; iv) determining the aggregate number of failed nodes observed in the 

network as a result of the circles, 𝑁𝐴,𝑑
′ ; and v) given a fractal hazard and a circle of the same 

size (e.g., 𝐶𝐹𝑓 = 𝐶𝐹𝑑), comparing 𝑁𝐴,𝑓
′  with 𝑁𝐴,𝑑

′ . Such comparison was performed under the 

hypothesis that the geometrical difference observed between fractal spatial hazards and circles 

(see paragraph 6.1.2) corresponded to a different impact on the same network.  

This hypothesis seems to be confirmed by the trends shown in Figure 6.12. In fact, in 

the 10% ≤ 𝐶𝐹 ≤ 100% range, it can be seen that 𝑁𝐴,𝑓
′ > 𝑁𝐴,𝑑

′  in most cases, with the failures 

caused by the circular-shaped hazards following a quasi-linear trend and those caused by the 

fractals likely following a superlinear trend. The two trends are not distinguishable when 𝐶𝐹 <

10%, perhaps owing to the fact that the fractal hazards are not large enough to display their 

spatial properties. The largest gap between the two trends was observable for 𝐶𝐹 ≅ 40%, where 

𝑁𝐴,𝑓
′ ≅ 1.6 ∗ 𝑁𝐴,𝑑

′ , suggesting that the use of circles may result in an overestimation of the 

network robustness of around 40%. When 𝐶𝐹 = 100%, both trends converged at 𝑁𝐴,𝑓
′ =
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𝑁𝐴,𝑑
′ = 2,500, confirming that the failure model proposed in Chapter 4 correctly modelled the 

case of a spatial hazard occupying the entire grid and causing the maximum disruption. It is 

worth highlighting that the upper bound shown by the white dots in Figure 6.12 is likely to be 

the equivalent of the non-linear lower bound observed for the BA trends in Figures 6.7 and 6.8.  

It is also worth mentioning that the results shown in Figure 6.12 refer to the impact of 

fractal hazards with the typical spatial autocorrelation shown by natural phenomena (Saupe, 

1988), and to a failure threshold associated with a weak network. As such, it is possible to claim 

that the difference between the fractal hazards and circles refers to a typical scenario from a 

spatial perspective, entailing that larger gaps might be observed for 𝐻 > 0.8, given the 

detrimental impact that an increased spatial autocorrelation was found to have in paragraph 

6.2.1.1. The adoption of a low threshold was considered in order to characterize a typical 

scenario from a structural perspective, entailing that a narrower gap in the trends shown in 

Figure 6.12 might be observed for 𝐹𝑡 > 0.5. 

 

Figure 6.12. Number of failed nodes produced in the same 2,500-node BA network by fractal spatial hazards 

(white dots) and circular-shaped hazards (black dots) as a result of the application of the failure model presented 

in Part 1 of this thesis. The size of the circles had a linear effect on the number of failures, whereas a different 

behavior was observed for the fractal hazards. The most significant gap between the two trends occurred for 𝐶𝐹 ≅

40%.



Chapter 7. Case Study 2: Results and Discussion 

 

153 

 

Chapter 7. Case Study 2: Results and Discussion 

This chapter discusses the results and their implications with reference to the stages to 

which this case study offers a novel contribution. As outlined in paragraph 3.2.1, Case Study 2 

contributes to Stage 1, Stage 2, and Stage 6. However, since Stage 2 refers to the 

implementation of the hierarchies found in the electricity infrastructure, no modelling results 

are available apart from the hierarchies themselves, which are presented in paragraph 5.3.1. 

Together with Stage 1 and Stage 6, the following results also refer to Stage 5, where the impact 

of the wind gusts on the electricity infrastructure is quantified.  

 

 

7.1 Stage 1: infrastructure robustness at the system-of-systems level 

 

7.1.1 A realistic, non-isotropic dataset of wind gust grids 

 The grids of daily maxima wind gusts described in paragraph 5.2.2 constitute a highly 

representative dataset. Evidence of this can be found in Figure 7.1, where the annual frequency 

of exceedance of events with wind gust 𝑤10,3 > 17 𝑚/𝑠 over the study area is depicted for both 

the Control and Future climate horizon. The above-mentioned threshold was adopted as it is 

mentioned in the literature as a wind speed value past which wind storms are typically observed 

(Dunn et al., 2018; Vajda et al., 2014). As such, 𝑤10,3 > 17 𝑚/𝑠 was assumed to be a critical 

value to take into account.  

Several aspects can be observed by analyzing Figure 7.1. Firstly, the spatial distribution 

of the above-threshold events is in accordance with the exposure to high winds that 

characterizes the North York Moors and the Humber Estuary: parts of these areas were exposed 

to as many as 140 above-threshold events per year in the Control climate horizon. It is also 

evident how frequently the coastal areas are impacted, as it is the case for Spurn Head. 

Secondly, as pointed out by Kirchner-Bossi et al. (2019) and Tobin et al. (2016), a widespread 

decrease in the frequency of above-threshold events is observable in the transition to the Future 

climate horizon, with the North York Moors and the Humber Estuary experiencing up to 130 

above-threshold events per year. Finally, Figure 7.1 highlights the non-isotropic nature of 

realistic spatial natural hazards, which are intuitively characterized by spatial gradients driven 
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by a number of different factors. Such factors include the type of natural hazard, the location of 

the study area, the length of the timeframe (e.g., timeframes might not be long enough to 

adequately reveal a consistent or realistic spatial gradient), the resolution with which the spatial 

data are sampled, the topographic influence, and so forth.  

The non-isotropic nature of the wind gust grids is relevant to the aspects discussed in 

paragraph 6.1.1.2, where the Brownian surfaces are described as an instrument that in certain 

circumstances can be used to reproduce realistic spatial natural hazards. In fact, Figure 7.1 

highlights the importance of properly investigating the hazard-specific spatial gradients. This 

also corroborates the recommendation that any Brownian surface used in impact studies should 

be overlapped with a grid depicting the spatial gradient of the study area, akin to Figure 7.1. 

 

 

Figure 7.1. Annual frequency of exceedance of 𝑤10,3 > 17 𝑚/𝑠 critical events for the Control (left) and Future 

(right) climate horizons. Highlighted are two of the sectors with the highest annual frequency of critical events: 

the North York Moors (continuous line) and the Humber Estuary (dashed line). The grey area represents the land-

sea mask. 

 

 

 

7.1.2 Fractal properties of the wind gust grids 

 The investigation of the fractal properties of wind gusts was implemented with two 

purposes: i) determining whether fractal properties emerged from the spatial distribution of 

daily maxima wind gusts, in conjunction with the temporal fractal properties observed in 

literature, and ii) exploring a research topic that is at the interface between fractal spatial hazards 

and wind gusts and allows a smooth transition between them. As described in paragraph 5.2.3, 

the study of the fractal properties of wind gusts in the spatial domain was carried out by plotting 
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the Area-Frequency curve in order to highlight possible scale-free behaviors, and then by 

adopting the Box-Counting algorithm to estimate the Hausdorff or fractal dimension D 

associated with each grid of daily maxima wind gusts.  

These two methods were adopted to investigate both the Control and Future climate 

horizons, with the aim of characterizing possible changes. Moreover, these two methods were 

adopted in conjunction as a way to test two necessary and sufficient conditions regarding the 

possible presence of spatial fractal properties: i) the emergence of scale-free behaviors in the 

distribution of blobs, as described in paragraph 5.2.3.2, and ii) the estimation of the Hausdorff 

or fractal dimension D as a non-integer number.  

 

7.1.2.1  Area-Frequency curves   

Central to the idea of Area-Frequency curves is the identification of objects of different 

size found in the wind gust grids, which were defined as blobs. If plotted on a three-dimensional 

space, the grids would constitute continuous surfaces that closely follow the coastline due to 

the applied sea-land mask, which is visible in grey in Figure 7.1. Also, the surface elevations 

would represent daily maxima wind gusts, and very rarely did they feature values such as 

𝑤10,3 = 0. Consequently, the grids were binarized by selecting a range of thresholds that were 

proportional to those implemented for the Brownian surfaces. These thresholds are listed in 

Table 5.2. The binarization implied that all values exceeding the threshold were assigned a 

unitary value, whereas the other values were nullified. This allowed to identify the blobs, e.g. 

islands of cells in the wind gust grids which size could be determined by simply counting the 

number of cells composing their footprints (see Figure 5.9). The same reasoning was applied 

to find the blobs in the Brownian surfaces.  

Figure 7.2 shows the Area-Frequency distributions for the Control climate horizon in a 

double logarithmic scale, whereas Figure 7.3 displays the same for the Future climate horizon. 

In each panel, the x-axis displays the size of the blobs found in the wind gust grids, measured 

in grid cells, where one grid cell equals 1.5 𝑘𝑚 ∗ 1.5 𝑘𝑚 = 2.25 𝑘𝑚2. On the y-axis is the 

frequency with which each size was found in the grids. To avoid visualization problems due to 

linear binning techniques, the log-log plots feature the Complementary Cumulative Distribution 

Function (CCDF) of the frequency of the size of the blobs (Barabási, 2016). The CCDF, which 

is also known in literature as exceedance or reliability function, is computed as the frequency 

with which the value of a given size 𝑖 was exceeded by the rest of the values. Each panel shows 

a red series, referring to the wind gust grids, and five blue series, one for fractal combination 
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𝐶 = (𝐻, 𝐹𝑡∗), where 𝐻 represented the five values of the Hurst exponent ∈ [0.6,1.0] and 𝐹𝑡∗ 

was one of the failure thresholds in Table 5.2. As a reference, panel a) in Figure 7.2 depicts the 

Area-Frequency curve of the wind gust grids binarized by using the value 4.98, which 

corresponds to the value 𝐹𝑡 = 0.1 used for the Brownian surfaces (see Table 5.2). The blue 

trends are the Area-Frequency curves for the five classes of Brownian surfaces binarized by 

adopting 𝐹𝑡 = 0.1. The use of proportional failure thresholds was adopted in order to perform 

meaningful evaluations. In each panel, the visual comparison between the Area-Frequency 

curve of the wind gust grids and those referring to the Brownian surfaces allows to identify for 

which range of size, along the x-axis, the wind gust grids followed a linear trend, which is 

associated in the literature with the presence of scale-free phenomena.  

In Figure 7.2, panel a) shows that the wind gust Area-Frequency distribution followed 

a linear trend in the log-log plot. Defined 𝑠𝑏 as the blob size measured in grid cells, with a single 

grid cells measuring 2.25 𝑘𝑚2, such linear trend was observed for 0 ≤ 𝐿𝑜𝑔(𝑠𝑏) ≤ 60, which 

corresponds to 0 ≤ 𝐴𝑟𝑒𝑎 ≤ 60 ∗ 2.25 𝑘𝑚2 = 135 𝑘𝑚2. This was the longest size interval in 

the Control climate horizon where the wind gusts exhibited a scale-free phenomenon. For 

𝐴𝑟𝑒𝑎 > 135 𝑘𝑚2, 𝐿𝑜𝑔(𝑠𝑏) was associated with lower frequencies with respect to the blue 

trends, indicating that the frequency of larger blobs was visibly reduced with respect to the 

Brownian surfaces.  

In panel b), the scale-free phenomenon was observed for the narrower interval 0 ≤

𝐿𝑜𝑔(𝑠𝑏) ≤ 40, corresponding to 0 ≤ 𝐴𝑟𝑒𝑎 ≤ 40 ∗ 2.25 𝑘𝑚2 = 90 𝑘𝑚2. In panel c), such 

interval narrowed down even further to 0 ≤ 𝐴𝑟𝑒𝑎 ≤ 10 ∗ 2.25 𝑘𝑚2 = 22.5 𝑘𝑚2. These values 

suggest that the wind gust grids displayed scale-free properties in the spatial domain until a 

critical size 𝑠𝑐 was reached. The comparison with the Area-Frequency curves of the associated 

Brownian surfaces reveals that blobs with 𝐴𝑟𝑒𝑎 > 𝑠𝑐 were present less frequently in the wind 

gust grids, suggesting that the blobs found were not large enough to sustain a scale-free 

phenomenon and, consequently, a possible fractal behavior.  

Panels d) and e) describe behaviors for which the scale-free phenomenon may be ruled 

out. It is here suggested that this might be a consequence of the thresholds with which the 

relevant blobs were obtained, namely 𝑤𝑓 = 34.85 for panel d) and 𝑤𝑓 = 44.81 for panel e). In 

fact, thresholds so high aimed at isolating only the peaks of the wind gust grids and evaluating 

their scale-free properties while neglecting the vast majority of the study area. The use of very 

high thresholds also had an influence on the scale-free behavior of the Brownian surfaces, 

which are fractals by definition, causing their behavior to depart from a purely fractal pattern. 

In fact, as observable in panels a) to e), a critical size 𝑠𝑐,𝑓 was observed for the Brownian 
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surfaces as well. With the increase of the failure threshold 𝐹𝑡, a progressively smaller 𝑠𝑐,𝑓 was 

observed, which caused the Area-Frequency curves of the Brownian surfaces to depart from 

the linear trend that is clearly visible in panel a), and to display a curved trend that in literature 

is associated with distributions that do not describe scale-free phenomena (e.g., exponential 

distributions, double exponential distributions, log-normal distributions, and so forth) (Clauset 

et al., 2009).  

Almost identical behaviors were found in Figure 7.3 for the Future climate horizon: the 

same critical values 𝑠𝑐 were found for the size of the wind gust blobs, and the same progressive 

departure from the fractal pattern was observed for the Brownian surfaces. This indicates that, 

from a scale-free perspective, there are likely to be no projected changes from the Control to 

the Future climate horizon.  

 
Figure 7.2. Area-Frequency distribution of the wind gust grids for the Control climate horizon in log-log plots. 

On the x-axis is the size in grid cells of the blobs found in the wind gust grids after the binarization described in 

paragraph 5.2.3.2. On the y-axis is the Complementary Cumulative Distribution Function (CCDF) of the frequency 

of each dot. The red dots represent the frequency with which each size was found in the wind gust grids, whereas 

the blue dots represent the frequency with which each size was found in the Brownian surfaces. The panels a) to 

e) refer to the five thresholds listed in Table 5.2. 
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Figure 7.3. Area-Frequency distribution of the wind gust grids for the Future climate horizon in log-log plots. On 

the x-axis is the size in grid cells of the blobs found in the wind gust grids after the binarization described in 

paragraph 5.2.3.2. On the y-axis is the Complementary Cumulative Distribution Function (CCDF) of the frequency 

of each dot. The red dots represent the frequency with which each size was found in the wind gust grids, whereas 

the blue dots represent the frequency with which each size was found in the Brownian surfaces. The blue dots are 

the same dots as in Figure 7.2. The panels a) to e) refer to the five thresholds listed in Table 5.2. 

 

 

While the use of progressively increasing filters (e.g., 𝐹𝑡 and 𝑤𝑓) resulted in a departure 

from a scale-free pattern for both the Brownian surfaces and the wind gust grids and in both 

climate horizons, their implementation was performed in order to: i) properly identify the blobs 

in both the Brownian surfaces and the wind gust grids; ii) avoid the trivial case of computing 

the Area-Frequency curve of the footprint of the study area; and iii) ensure that the wind gust 

grids were actually comparable with the Brownian surfaces, which had a filter applied.  

However, while there is a clear indication that panels b) to e) in both Figure 7.2 and 7.3 

are heavily influenced by the adoption of high filters and as such cannot be taken into 

consideration, panels a) evidently show the presence of scale-free properties for the range 0 ≤

𝐴𝑟𝑒𝑎 ≤ 135 𝑘𝑚2. This suggests that the wind gust grids are likely to possess, to a limited 

extent, one of the two necessary and sufficient conditions to be considered as fractals. It is 

possible to hypothesize that the limitation imposed on the fractal spatial behavior of the wind 

gust blobs is attributable to physical constraints, such as the presence of the coast, and to 
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climatic constraints, which are driven by the different climatic patterns observed at different 

latitudes and longitudes. On the contrary, the Brownian surfaces were not limited by any 

physical or climatic constraints, save for the adoption of the failure threshold. Overall, the 

constraints mentioned previously are likely to de facto limit the growth of the blobs, 

highlighting the fact that meaningful results may only be obtained if the large domain of a civil 

engineering infrastructure is divided into smaller, regional domains to be analyzed.  

 

 

7.1.2.2  The Box-Counting algorithm   

The Box-Counting algorithm was implemented with the aim of estimating the Hausdorff 

or fractal dimension 𝐷 for each one of the panels in Figures 7.2 and 7.3. The time series shown 

in Figure 7.4 are associated with the Area-Frequency curves in Figure 7.2, whereas those in 

Figure 7.5 are associated with the Area-Frequency curves in Figure 7.3. For purposes of 

comparison, the known fractal dimension 𝐷 of the Brownian surfaces is also shown. In Figure 

7.4, panel a) shows that the blobs found in the wind gust grids were almost consistently 

displaying a fractal dimension 𝐷 = 2.1, entailing that they were occupying a three-dimensional 

space in a similar way as any bi-dimensional plane. This also suggests an alignment with the 

Brownian surfaces generated with 𝐻 = 0.9, the fractal class with the second highest degree of 

spatial autocorrelation, entailing that the wind gust grids exhibited a spatial pattern close to that 

of smooth surfaces.  

The same can be observed in Figure 7.5 for the Future climate horizon. The increase in 

the filter value 𝑤𝑓 caused an increase in the 𝐷 range of the time series, as well as an increase in 

the number of grids for which the estimation was either not possible or returned 𝐷 = 0, which 

is representative of the non-dimensionality of a single point. These results seem to support the 

points made in the previous paragraph, suggesting that, overall, the wind gust grids behave as 

fractals in the spatial domain. However, such behavior is limited by a critical size past which 

the phenomenon is no longer discernible, and by a fractal dimension 𝐷 = 2.1, which can be 

associated with relatively smooth surfaces. 
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Figure 7.4. Time series of the fractal dimension 𝐷 computed for the Control climate horizon. Panels a) to e) refer 

to the same panels in Figure 7.2. The progressive increase in the filter values 𝐹𝑡 and 𝑤𝑓 observed from panel a) to 

panel e) caused a general downward shift, as well as an increasing number of instances where the fractal dimension 

could not be determined. The five colored lines refer to the known fractal dimensions of the five classes of fractals 

generated with 𝐻 = [0.6, 0.7, 0.8, 0.9, 1.0]. 
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Figure 7.5. Time series of the fractal dimension 𝐷 computed for the Future climate horizon. Panels a) to e) refer 

to the same panels in Figure 7.3. The progressive increase in the filter values 𝐹𝑡 and 𝑤𝑓 observed from panel a) to 

panel e) caused a general downward shift, as well as an increasing number of instances where the fractal dimension 

could not be determined. The five colored lines refer to the known fractal dimensions of the five classes of fractals 

generated with 𝐻 = [0.6, 0.7, 0.8, 0.9, 1.0]. 
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7.2 Stage 5: impact of the daily maxima wind gusts on the electricity 

infrastructure 

 

7.2.1 Faults obtained with the low-resolution fragility curve 

The low-resolution fragility curve developed by Dunn et al. (2018) provided an empiric 

tool for estimating the average number of faults occurring every 1,000 km of overhead lines as 

a result of wind gusts. The low-resolution fragility curve was obtained by combining 

observations with spatial data from a 12-km Climate Model. Given the system-of-systems 

approach followed in this case study, the faults were computed with respect to partitions, or 

components, of the two tiers composing the electricity network. The expected number of faults 

was then multiplied by the ratio between the length of the relevant component and 1,000 km. 

Then, for each day in each climate horizon, the expected number of faults per tier was obtained 

by adding the quantities relative to each component.  

Figure 7.6 shows the time series of the expected number of faults for each tier (e.g., the 

132kV tier and the 33-66kV tier) composing the electricity network in the Control climate 

horizon. The first aspect that stands out is the possibility to identify a seasonal component in 

the time series by noticing the frequency with which the peaks occur. This is a direct 

consequence of the fact that wind storms tend to occur during specific periods of the year, such 

as the winter. According to the low-resolution curve, the 132kV tier recorded a maximum of 

0.42 expected faults and a total of 11.52 expected faults during the 13-year horizon, 

corresponding to an average of 0.89 faults per year. On the other hand, the 33-66kV tier 

recorded a peak of 13.43 expected faults and a total of 166.71 expected faults over the 13-year 

horizon, corresponding to 12.82 faults per year.  

The striking difference between these numbers may be explained by two important 

aspects that involve structural and spatial properties of the electricity network. In terms of 

structural properties, the overall length of the 33-66kV tier, 𝐿33−66𝑘𝑉 ≅ 882 𝑘𝑚, was 

significantly greater than the overall length of the 132kV tier, 𝐿132𝑘𝑉 ≅ 205 𝑘𝑚, with 

𝐿33−66𝑘𝑉 > 4 ∗ 𝐿132𝑘𝑉. In terms of spatial properties, the territorial coverage offered by the 

two tiers was not the same, as the 33-66kV network, being at a lower hierarchical level, operated 

in areas where the 132kV was not present. The structural properties had a significant impact on 

the results, as the actual length of each tier influenced the final expected number of faults, which 

was originally computed for 1,000 km of overhead lines. As such, it is possible to categorize 

the low-fragility curve as an empirical tool that is significantly sensitive to the actual length 𝐿. 
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The spatial properties had an equally important influence on the final number of 

expected faults. An example of this is the fact that the 33-66kV tier operates in areas where the 

132kV tier is absent, and in the same areas there is more exposure to high winds, such as the 

North York Moors or the coast. Overall, the structural properties may explain the difference of 

two orders of magnitude between the total number of expected faults of the two time series, 

whereas the spatial properties may be the reason why the peaks in the 33-66kV time series do 

not always correspond to the peaks in the 132kV time series. This aspect suggests the 

emergence and importance of a complex factor, namely the location of the peak wind gust in a 

study area relative to where the infrastructures operate. The distance between the location of 

the peak and the infrastructure might be a key factor in the non-linear relationship between 

severity and impact of wind gusts, given that extreme events would result in limited 

consequences should they occur in areas with lack of infrastructures. 

 

 
Figure 7.6. Time series of the number of expected faults in the 132kV tier (left) and 33-66kV tier (right) of the 

electricity network. These trends refer to the Control climate horizon and the low-resolution fragility curve. The 

y-axis scales are set in such a way as to correspond to those used in the following sections. 
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Figure 7.7 shows the time series of the expected number of faults for the 132kV and 33-

66kV tier in the Future climate horizon. The 132kV tier recorded a daily maximum of 0.95 

expected faults and a total of 13.11 expected faults during the 13-year horizon, corresponding 

to an average of slightly over 1 fault per year. On the other hand, the 33-66kV tier recorded a 

daily peak of 20.44 expected faults and a total of 161.14 expected faults in 13 years and an 

average of 12.40 faults per year. The differences between the two time series may be explained 

using the same reasoning outlined for the Control climate horizon, as the differences in the 

structural and spatial properties of the two tiers did not change in the Future climate horizon.  

What stands out in the comparison between Figure 7.6 and Figure 7.7 is that both the 

maximum number of expected faults and the total number of expected faults for the 132kV tier 

are projected to increase by 126.2% and 13.8%, respectively. The first number is exaggerated 

by the fact that the maximum number of expected faults in a day for the Control climate horizon 

is rather small and as such very sensitive to any increase. The second number, instead, is likely 

to be a more reliable indicator. For the 33-66kV tier, the transition to the Future climate horizon 

entailed an increase in the maximum number of expected faults in a day of 52.2%, and a 

decrease in the total number of expected faults of 3.3%. Overall, these numbers seem to indicate 

a slightly increased exposure of the 132kV tier to wind-related faults, and less faults over the 

same timespan but more extreme daily maxima for the 33-66kV tier. 

 

  
Figure 7.7. Time series of the number of expected faults in the 132kV tier (left) and 33-66kV tier (right) of the 

electricity network. These trends refer to the Future climate horizon and the low-resolution fragility curve. The y-

axis scales are set in such a way as to correspond to those used in the following sections. 
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7.2.2 Faults obtained with the high-resolution fragility curve 

As with the low-resolution case, the high-resolution fragility curve developed by Dunn 

et al. (2018) provided an empiric tool for estimating the average number of faults occurring 

every 1,000 km of overhead lines as a result of wind gusts. The high-resolution fragility curve 

was obtained by combining observations, spatial data from a 12-km Climate Model, and high-

detail spatial information regarding faults provided by a Distribution Network Operator. Owing 

to the system-of-systems approach described in paragraph 5.3.1.3, the faults were computed 

with respect to each component of the 132kV and 33-66 tiers of the electricity network. The 

expected number of faults was then multiplied by the ratio between the length of the relevant 

component and 1,000 km. Then, for each day in each climate horizon, the expected number of 

faults per tier was obtained by adding the quantities of each component.  

Figure 7.8 shows the time series of the expected number of faults for the 132kV and the 

33-66kV tier in the Control climate horizon. As with the low-resolution case, it is possible to 

identify the seasonal trend of the time series by evaluating the frequency with which the peaks 

occur. On the whole, the 132kV tier recorded a daily maximum of 2.08 expected faults and a 

total of 48.11 expected faults during the 13-year horizon, coinciding with an average of 3.70 

faults per year. In contrast, the 33-66kV tier featured a daily peak of 82.49 expected faults and 

a total of 790.94 expected faults in the 13-year horizon, namely 60.84 faults per year. 

 

 
Figure 7.8. Time series of the number of expected faults in the 132kV tier (left) and 33-66kV tier (right) of the 

electricity network. These trends refer to the Control climate horizon and the high-resolution fragility curve. The 

y-axis scales match those used in the previous sections. 
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Finally, Figure 7.9 shows the time series of the expected number of faults for the 132kV 

and the 33-66kV tier in the Future climate horizon. According to the high-resolution curve, the 

132kV tier showed a daily maximum of 5.30 expected faults and a total of 57.59 expected faults 

in the 13-year horizon, resulting in an average of 4.43 faults per year. Alternatively, the 33-

66kV tier displayed a daily peak of 130.64 expected faults and a total of 786.53 expected faults 

during the same 13-year horizon, entailing that an average of 60.50 faults had occurred on a 

yearly basis. As with the low-resolution approach, the discrepancies between the 132kV and 

33-66kV time series may be explained by using the differences in the structural and spatial 

properties of the two tiers, which remained unaltered during the Future climate horizon. 

 

 
Figure 7.9. Time series of the number of expected faults in the 132kV tier (left) and 33-66kV tier (right) of the 

electricity network. These trends refer to the Future climate horizon and the high-resolution fragility curve. The y-

axis scales match those used in the previous sections. 
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7.2.3 Comparison between theoretical and observed faults 

Remarkable differences exist between the 132kV and the 33-66kV tiers, which are due 

to the electricity network itself, and between the Control and Future climate horizons, which 

arise from the CPM1.5 model. However, these are accompanied by noteworthy discrepancies 

in both climate horizons between the expected faults of the low-resolution approach, 𝑓𝑙𝑜𝑤, and 

those of high-resolution approach, 𝑓ℎ𝑖𝑔ℎ. As a general trend, the expected number of faults 

determined by using the high-resolution curve were found to exceed those determined with the 

low-resolution approach, for both tiers.  

As observable from the comparison between Table 7.1 and Table 7.2, the 132kV tier 

was found to be exposed to a total number of expected faults in the Control climate horizon that 

increased significantly from the low-resolution to the high-resolution approach, namely 

𝑓ℎ𝑖𝑔ℎ,132,𝐶𝑜𝑛𝑡𝑟𝑜𝑙 = 4.18 ∗ 𝑓𝑙𝑜𝑤,132,𝐶𝑜𝑛𝑡𝑟𝑜𝑙. In the Future climate horizon, such increase was 

comparable, namely 𝑓ℎ𝑖𝑔ℎ,132,𝐹𝑢𝑡𝑢𝑟𝑒 = 4.39 ∗ 𝑓𝑙𝑜𝑤,132,𝐹𝑢𝑡𝑢𝑟𝑒. The 33-66kV tier was found to be 

subjected to slightly larger increases, such as 𝑓ℎ𝑖𝑔ℎ,33−66,𝐶𝑜𝑛𝑡𝑟𝑜𝑙 = 4.74 ∗ 𝑓𝑙𝑜𝑤,33−66,𝐶𝑜𝑛𝑡𝑟𝑜𝑙 in 

the Control climate horizon and 𝑓ℎ𝑖𝑔ℎ,33−66,𝐹𝑢𝑡𝑢𝑟𝑒 = 4.88 ∗ 𝑓𝑙𝑜𝑤,33−66,𝐹𝑢𝑡𝑢𝑟𝑒 in the Future 

climate horizon. This difference is ascribable to the dissimilarities between the two fragility 

curves, identified by Dunn et al. (2018) to be an underestimation of the number of faults 

obtained with the low-resolution fragility curve due to the coarser resolution of the input spatial 

information. 

 

 

Table 7.1. The maximum number of expected faults, together with the total number of expected faults in the two 

13-year climate horizons, for the two tiers of the electricity network. Values obtained with the low-resolution 

fragility curve. 

Daily maximum expected faults,  

low-resolution fragility curve 

 132kV 33-66kV 

Daily maximum expected faults, 

Control 
0.42 13.43 

Daily maximum expected faults, 

Future 
0.95 20.44 

Total expected faults,  

Control 
11.52 166.71 

Total expected faults,  

Future 
13.11 161.14 
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Table 7.2. The maximum number of expected faults, together with the total number of expected faults in the two 

13-year climate horizons, for the two tiers of the electricity network. Values obtained with the high-resolution 

fragility curve. 

Daily maximum expected faults,  

high-resolution fragility curve 

 132kV 33-66kV 

Daily maximum expected 

faults, Control 
2.08 82.49 

Daily maximum expected 

faults, Future 
5.30 130.64 

Total expected faults, 

Control 
48.11 790.94 

Total expected faults,  

Future 
57.59 786.53 

 

 

 An interesting discussion arises from the analysis of Table 7.3, which documents the 

comparison between the average number of faults per year yielded by the low-resolution and 

high-resolution fragility curves and the same number of observed faults. These are reported by 

the United Kingdom National Faults Incident Reporting Scheme (NaFIRS) in the period 

January 2004 to March 2017. The figures in Table 7.3 reveal that both the low-resolution and 

the high-resolution fragility curves overestimated the number of expected faults per year in the 

two-tier electricity network, where the overestimation factor for faults 𝑜𝑓,𝑓𝑎𝑢𝑙𝑡𝑠 is obtained as 

the ratio between the theoretical number of faults and the observed number of faults.  

In the Control climate horizon, the low-resolution fragility curve featured a lower 

overestimation factor, e.g. 𝑜𝑓 = 1.05 for the 132kV tier and 𝑜𝑓 = 4.77 for the 33-66kV tier. In 

the case of the high-resolution fragility curve, the overestimation factors increased to 𝑜𝑓 = 4.35  

for the 132kV tier and 𝑜𝑓 = 22.62 for the 33-66kV tier. In the Future climate horizon, the low-

resolution curve returned an overestimation factor of 𝑜𝑓 = 1.18 for the 132kV tier and 𝑜𝑓 =

22.49 for the 33-66kV tier. It is also possible to observe that, although Kirchner-Bossi et al. 

(2019) and Tobin et al. (2016) mentioned a general decrease in the wind gusts going from the 

Control to the Future climate horizon, the numbers in Table 7.2 reveal that the 132kV tier is 

projected to face a higher number of faults, with the 33-66kV tier being slightly less exposed. 

It can be suggested that this is due to an increased local severity of the wind gusts, which in the 

Future climate horizons may have taken place in close proximity to the spatial domain covered 

by the 132kV tier. This has an important influence on a hierarchical system, as an increased 

number of faults at a higher level imply more faults at a lower level due to the domino effect. 
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  It is here hypothesized that the observed increase in 𝑜𝑓 is due to two aspects. The first 

aspect is the sensitivity to the actual length of the overhead line of the output of the fragility 

curve. In fact, the less extended of the two tiers, the 132kV tier, always featured the lowest 𝑜𝑓 

compared to the 33-66kV tier, e.g. 1.05 ≤ 𝑜𝑓,𝑓𝑎𝑢𝑙𝑡𝑠,132 ≤ 4.35 for the former as opposed to 

4.77 ≤ 𝑜𝑓,𝑓𝑎𝑢𝑙𝑡𝑠,33−66 ≤ 22.62 for the latter in the Control climate horizon.  

The second aspect is the nature of the dataset that was used to obtain both the low-

resolution and the high-resolution fragility curves. In fact, Dunn et al. (2018) adopted both wind 

data and fault data for the South West of England, which is likely to be affected by more severe 

wind gusts given its location and the prevalence of westerly winds in comparison to the study 

area targeted by this case study. As much as these fragility curves represent the state-of-the-art 

in terms of empirical tools for the estimation of wind-related faults, the adoption of regional 

wind values is likely to regionalize the fragility curve, rendering its application in a different 

location less reliable. The climate pattern of a targeted location may in fact be significantly 

different from that of the area for which the fragility curve was originally developed, resulting 

in remarkable positive or negative differences. As a consequence of this, it is important to 

highlight that the next step in the development of wind-related fragility curves is to probably 

identify a set of regional parameters, so that the estimation of the expected number of faults is 

less affected by either overestimation or underestimation. 

 

 
Table 7.3. Expected number of faults per year as a comparison between the low-resolution, high-resolution, and 

NaFIRS observations. 

Expected number of faults per year 

Tier 
Control, 

low-resolution 

Control, 

high-resolution 

Future, 

low-resolution 

Future, 

high-resolution 

Observed, 

NaFIRS 

132kV 0.89 3.70 1.01 4.43 0.85 

33-66kV 12.82 60.84 12.40 60.50 2.69 

 

 

7.2.4 Impacts determined with the low-resolution fragility curve 

The impacts were determined by adopting a quantitative metric that computed, for each 

day in the climate horizons and each tier component 𝑖 (e.g., the feeder or circuit), the value of 

the Single Impact 𝑆𝐼𝑖,𝑑𝑎𝑦,ℎ𝑜𝑟𝑖𝑧𝑜𝑛, expressed in number of expected faults multiplied by the 
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number of customers affected. This was done to characterize a worst-case scenario, under the 

assumption that a fault occurring anywhere along the overhead line of a component resulted in 

a service failing affecting the entire component and the entirety of its customer base. For each 

day in the climate horizons and component, the 𝑆𝐼𝑖,𝑑𝑎𝑦,ℎ𝑜𝑟𝑖𝑧𝑜𝑛 values were then added to 

produce the Tier Impact 𝑇𝐼𝑡,𝑑𝑎𝑦,ℎ𝑜𝑟𝑖𝑧𝑜𝑛. The latter constitutes a time series of impact at the daily 

scale for both the 132kV tier and the 33-66kV tier.  

Figure 7.10 shows the time series of the Tier Impact corresponding to the low-resolution 

fragility curve and the Control climate horizon. It can be observed that 

max(𝑇𝐼132,𝑑𝑎𝑦,𝐶𝑜𝑛𝑡𝑟𝑜𝑙) ≅ 1.8 ∗ 105 faults-customers, whereas max(𝑇𝐼33−66,𝑑𝑎𝑦,𝐶𝑜𝑛𝑡𝑟𝑜𝑙) ≅

3.5 ∗ 106 faults-customers, revealing a difference between the two of 1 order of magnitude. It 

is apparent how the trends in Figure 7.10 retrace those of Figure 7.6, with peaks in the number 

of expected faults corresponding to peaks in Tier Impact. The only difference between the two 

is that the individual Tier Impact time series were shifted upwards due to their being magnified 

by the relevant number of customers served.  

However, although the impact of the wind-related faults on the 33-66kV tier was greater 

than that on the 132kV tier, the difference between the two time series was narrower than 

observed for the expected faults. In fact, while the 33-66kV tier experienced more faults in the 

Control climate horizon, its customer base was significantly smaller than that of the 132kV tier, 

e.g. 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠132 = 1.68 ∗ 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠33−66. This is a direct consequence of the fact that, 

while the 33-66kV tier operated almost entirely within the boundaries of the study area, a 

fraction of the customers served by the 132kV tier was located outside of it, as the latter 

operated at a higher hierarchical level.  

For the purpose of this case study, such fraction was included for two reasons: i) in 

terms of impact, it was deemed unrealistic not to consider it, as this would have downplayed 

the importance of the 132kV tier; and ii) objective difficulties, mostly owing to lack of detailed 

information, prevented the isolation of the customers located inside the study area. This aspect 

sheds light on the difficulty to identify a self-contained study area, as the two main components 

of this case study, e.g. the electricity network and the wind gusts, follow very different 

geographical patterns. As a consequence, it is here proposed that the regionalism needed to 

perform an accurate impact study (see paragraph 7.2.3) has to be mediated by realistic 

considerations about the geographical shape of the infrastructure. 
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Figure 7.10. Time series of the Tier Impact for the 132kV tier (left) and 33-66kV tier (right) of the electricity 

network. These trends refer to the Control climate horizon and the low-resolution fragility curve.  

 

 

Figure 7.11 shows the time series of the Tier Impact corresponding to the low-resolution 

fragility curve and the Future climate horizon. Owing to the upwards shift caused by the number 

of customers served, the difference in the number of expected faults observed in the transition 

from the Control to the Future climate horizon was maintained, signaling a projected increase 

in impact. In fact, the Future climate horizon was found to have a significantly increased peak 

for the 132kV tier, max(𝑇𝐼132,𝑑𝑎𝑦,𝐹𝑢𝑡𝑢𝑟𝑒) ≅ 2.29 ∗ max(𝑇𝐼132,𝑑𝑎𝑦,𝐶𝑜𝑛𝑡𝑟𝑜𝑙). In addition, whilst 

the threshold of 4 ∗ 105 faults-customers was never exceeded in the Control climate horizon, 

the same threshold was surpassed three times in the Future climate horizon. The situation 

observed for the 33-66kV tier was slightly different, with one instance where 

𝑇𝐼33−66,𝑑𝑎𝑦,𝐹𝑢𝑡𝑢𝑟𝑒 ≥ 5 ∗ 106 faults-customers was surpassed compared to none in the Control 

climate horizon. These results seem to confirm the points made earlier in this paragraph, which 

can be extended to include an increased impact of the wind-related faults on the 132kV tier and 

a decreased impact on the 33-66kV tier.  
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Figure 7.11. Time series of the Tier Impact for the 132kV tier (left) and 33-66kV tier (right) of the electricity 

network. These trends refer to the Future climate horizon and the low-resolution fragility curve.  

 

 

7.2.5 Impacts determined with the high-resolution fragility curve 

As with the number of expected faults, the transition from the low-resolution to the 

high-resolution fragility curve was accompanied by a remarkable increase in Tier Impact. 

Figure 7.12 depicts the time series of Tier Impact for both the 132kV and the 33-66kV tier in 

the Control climate horizon. Compared to the low-resolution case, the 132kV tier in the Control 

climate horizon featured five instances where 𝑇𝐼132,𝑑𝑎𝑦,𝐶𝑜𝑛𝑡𝑟𝑜𝑙 ≥ 4 ∗ 105 faults-customers, and 

a peak of max(𝑇𝐼132,𝑑𝑎𝑦,𝐶𝑜𝑛𝑡𝑟𝑜𝑙) ≅ 9.1 ∗ 105 faults-customers which was more than fivefold 

the low-resolution peak for the Control climate horizon.  

With respect to the 33-66kV tier, not only there were four instances where 

𝑇𝐼33−66,𝑑𝑎𝑦,𝐹𝑢𝑡𝑢𝑟𝑒 ≥ 5 ∗ 106 faults-customers, but it was also found that 

max(𝑇𝐼33−66,𝑑𝑎𝑦,𝐶𝑜𝑛𝑡𝑟𝑜𝑙) ≅ 2.1 ∗ 107 faults-customers, a sixfold increase with respect to the 

low-resolution Control climate horizon. It is apparent that the discrepancy between the low-

resolution and the high-resolution Tier Impact for the Control climate horizon is not negligible, 

and that justification for this may be in the effect of the more detailed spatial information used 

to construct the fragility curves, as pointed out in paragraph 7.2.3. Finally, Figure 7.13 shows 

the time series of high-resolution Tier Impact for the 132kV and the 33-66kV tier in the Future 

climate horizon. The 132kV tier was found to exceed the 4 ∗ 105 faults-customers threshold 
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eight times, with a maximum value of max(𝑇𝐼132,𝑑𝑎𝑦,𝐹𝑢𝑡𝑢𝑟𝑒) = 2.3 ∗ 106 faults-customers. 

The latter corresponds to an increase of nearly six times with respect to the low-resolution 

Future climate horizon. In the case of the 33-66kV tier, it was found that the threshold of 5 ∗

106 faults-customers was surpassed five times, with a peak value of max(𝑇𝐼33−66,𝑑𝑎𝑦,𝐹𝑢𝑡𝑢𝑟𝑒) =

3.4 ∗ 107 faults-customers. 

 

 
Figure 7.12. Time series of the Tier Impact for the 132kV tier (left) and 33-66kV tier (right) of the electricity 

network. These trends refer to the Control climate horizon and the high-resolution fragility curve.  

 

 
Figure 7.13. Time series of the Tier Impact for the 132kV tier (left) and 33-66kV tier (right) of the electricity 

network. These trends refer to the Future climate horizon and the high-resolution fragility curve.  
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7.2.6 Comparison between low-resolution and high-resolution impacts 

Remarkable differences were found to exist between the 132kV and the 33-66kV tiers. 

Table 7.4 highlights these differences by reporting the values of the Time-Aggregate Impact 

𝑇𝐴𝐼𝑡,ℎ𝑜𝑟𝑖𝑧𝑜𝑛, which was obtained by integrating over time the Tier Impact to produce an 

aggregate, 13-year estimation of the impact of wind-related faults in terms of faults-customers. 

The discrepancies between the low-resolution and high-resolution Time-Aggregate Impact are 

a direct consequence of the differences between the two fragility curves. In the Control climate 

horizon, 𝑇𝐴𝐼132,𝐶𝑜𝑛𝑡𝑟𝑜𝑙,ℎ𝑖𝑔ℎ = 4.12 ∗  𝑇𝐴𝐼132,𝐶𝑜𝑛𝑡𝑟𝑜𝑙,𝑙𝑜𝑤, with an overestimation factor for the 

impact 𝑜𝑓,𝑖𝑚𝑝𝑎𝑐𝑡 = 4.12. For the 33-66kV tier, 𝑇𝐴𝐼33−66,𝐶𝑜𝑛𝑡𝑟𝑜𝑙,ℎ𝑖𝑔ℎ = 5.11 ∗

 𝑇𝐴𝐼33−66,𝐶𝑜𝑛𝑡𝑟𝑜𝑙,𝑙𝑜𝑤, with 𝑜𝑓,𝑖𝑚𝑝𝑎𝑐𝑡 = 5.11. In the Future climate horizon, 

𝑇𝐴𝐼132,𝐹𝑢𝑡𝑢𝑟𝑒,ℎ𝑖𝑔ℎ = 4.31 ∗ 𝑇𝐴𝐼132,𝐹𝑢𝑡𝑢𝑟𝑒,𝑙𝑜𝑤, with 𝑜𝑓,𝑖𝑚𝑝𝑎𝑐𝑡 = 4.31. For the 33-66Kv tier, it 

was found that 𝑇𝐴𝐼33−66,𝐹𝑢𝑡𝑢𝑟𝑒,ℎ𝑖𝑔ℎ = 5.00 ∗  𝑇𝐴𝐼33−66,𝐹𝑢𝑡𝑢𝑟𝑒,𝑙𝑜𝑤, with 𝑜𝑓,𝑖𝑚𝑝𝑎𝑐𝑡 = 5.00.  

What is interesting to observe, as with the faults, is the comparison between the Time-

Aggregate Impact of each tier and climate horizon and the Faults-Customers reported in the 

NaFIRS database. This specific statistic is not directly present in the latter, but it was derived 

by computing the number of faults for each tier in the 13-year timespan of recorded data and 

the total number of customers affected. Surprisingly, the 132kV tier apparently recorded zero 

faults-customers in the January 2004-March 2017 period, despite 13 faults with damage were 

reported. This is due to the fact that the Distribution Network Operators are used to report the 

impact of each fault with respect to lower voltages.  

As such, the only meaningful comparison that can be made is with the 33-66kV tier, 

where the Time-Aggregate Impact overestimated the number of faults-customers by as much 

as 3 orders of magnitude. This remarkable difference may be the result of the lack of 

regionalization in the fragility curves, but also of an intrinsic inaccuracy in the computation, 

which may be affected by the assumption that one fault was enough for the individual circuit 

or feeder to stop supplying electricity.  

Due to this reason, it is here proposed that a more accurate metric for the estimation of 

the impact is needed. This metric could take advantage of the Customers-Minutes-Loss (CML) 

statistic that in the NaFIRS database is associated with each fault. This quantity is a more precise 

estimation of the impact, as it is recorded directly by the Distribution Network Operators, and 

it could be used to generate a loss curve describing the relationship between the wind gusts and 

the CML statistic. However, difficulties may arise in trying to accurately locate each fault in 
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the study area, as rarely does the NaFIRS database include geographical indications. The latter 

is also the justification for the fact that a loss curve was not developed in this case study. 

 

Table 7.4. Time-Aggregate Impact in faults-customers for the 13-year climate horizons as a comparison between 

the low-resolution, high-resolution, and Faults-Customers NaFIRS observations. 

 Low-resolution fragility curve High-resolution fragility curve Faults-

Customers,  

NaFIRS Tier Control Future Control Future 

132kV 5.1 ∗ 106 5.8 ∗ 106 2.1 ∗ 107 2.5 ∗ 107 0 

33-66kV 4.3 ∗ 107 4.2 ∗ 107 2.2 ∗ 108 2.1 ∗ 108 3.9 ∗ 105 

 

 

7.3 Stage 6: systemic indicators of robustness 

 

7.3.1 Risk of faults 

 The risk of faults was computed as the Annual Risk of faults 𝐴𝑅𝑐𝑜𝑚𝑝,ℎ𝑜𝑟𝑖𝑧𝑜𝑛 to which 

the individual components of the 132kV and 33-66kV tiers were exposed in both climate 

horizons. This metric, expressed in customers lost per year, is equivalent to the Time-Aggregate 

Impact divided by the length of the climate horizons (e.g., 13 years), and it was aimed at 

estimating how many faults-customers were associated, on an annual basis and with both 

fragility curves, with each tier component.  

Figure 7.14 shows the breakdown by component of the associated Annual Risk 

computed by using the low-resolution fragility curve, superimposed on the annual frequency of 

exceedance of events with wind gust 𝑤10,3 > 17 𝑚/𝑠. The superimposition is provided as a 

reference for associating the spatial gradient of the severity of the natural spatial hazard to the 

risk to which each component was exposed. Overall, both as a result of the higher number of 

faults and the presence in highly exposed locations, the 33-66kV tier was found to be the most 

exposed of the two tiers, with the average component Annual Risk exceeding that of the 132kV 

tier by a factor of 22.40 in the Control climate horizon and 19.09 in the Future climate horizon. 

 More specifically, a very interesting spatial gradient can be observed, with certain 

components being exposed to a risk significantly higher than others. Among the 33-66kV 

components, the line served by the Driffield Bulk Supply Point, identified by the label ”1”, 
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showed the highest exposure, facing an Annual Risk 𝐴𝑅𝐷𝑟𝑖𝑓𝑓𝑖𝑒𝑙𝑑,𝐶𝑜𝑛𝑡𝑟𝑜𝑙,𝑙𝑜𝑤 = 128,679, 

entailing that 128,679 customers were lost every year due to wind-related faults in the Control 

horizon. This number was found to be almost 3.40 times higher than that associated with the 

second most exposed 33-66kV component, identified by the label “2”.  

In the Future climate horizon, the Annual Risk of the line served by the Driffield Bulk 

Supply Point was found to decrease to 𝐴𝑅𝐷𝑟𝑖𝑓𝑓𝑖𝑒𝑙𝑑,𝐹𝑢𝑡𝑢𝑟𝑒,𝑙𝑜𝑤 = 116,373, signaling a 9.5% 

drop. In the case of the 132kV tier, the most highly exposed component was found to be the 

line served by the Keadby National Grid substation, labelled as “3”. In the Control climate 

horizon, such line was found to be exposed to an Annual Risk 𝐴𝑅𝐾𝑒𝑎𝑑𝑏𝑦,𝐶𝑜𝑛𝑡𝑟𝑜𝑙,𝑙𝑜𝑤 = 5,686, 

corresponding to a total of 5,686 customers lost each year due to wind-related faults. Compared 

to the second most exposed 132kV line, this number was 2.70 times higher. In the Future 

climate horizon, 𝐴𝑅𝐾𝑒𝑎𝑑𝑏𝑦,𝐹𝑢𝑡𝑢𝑟𝑒,𝑙𝑜𝑤 = 6,359, corresponding to a 11.8% increase. Two 

important aspects are to be highlighted with respect to the 132kV tier: i) the Annual Risk of 

faults for the 132kV components is computed based on the total number of customers that are 

served by the component, including those served by the 33-66kV components that are fed by 

each individual 132kV component (see Figure 5.17), and ii) the 132kV component served by 

the Keadby National Grid substation appears to be rather influential in the structure of the two-

tier system in that, although it was exposed to a relatively limited risk, it serves as a bridge 

between the Keadby Power Plant (the black triangle in Figure 7.14) and the city of Grimsby 

and supplies three 33-66kV components. 

Figure 7.15 displays the distribution of the Annual Risk computed by using the high-

resolution fragility curve, again superimposed on the annual frequency of exceedance of events 

with wind gust 𝑤10,3 > 17 𝑚/𝑠. The spatial gradient observed for the low-resolution fragility 

curve was confirmed, although, as a consequence of the higher number of faults produced by 

the high-resolution fragility curve, higher risks were highlighted. For instance, the average 

component Annual Risk of the 33-66kV tier exceeded that of the 132kV tier by a factor of 25.33 

in the Control climate horizon and 21.08 in the Future climate horizon. In the Control climate 

horizon, the line served by the Driffield Bulk Supply Point showed the highest exposure, facing 

an Annual Risk 𝐴𝑅𝐷𝑟𝑖𝑓𝑓𝑖𝑒𝑙𝑑,𝐶𝑜𝑛𝑡𝑟𝑜𝑙,ℎ𝑖𝑔ℎ = 612,127, an increase of 476% with respect to the 

same quantity computed with the low-resolution curve.  

The second most exposed 33-66kV component was found to change, being the line 

served by the Hull East Bulk Supply Point, although the difference with respect to the line 

labelled as “2” in Figure 4.26 is less than 3%. Such difference is likely to be ascribable to the 

accumulation of round-off errors. In the Future climate horizon, the line served by the Driffield 
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Bulk Supply Point was found to be exposed to an Annual Risk 𝐴𝑅𝐷𝑟𝑖𝑓𝑓𝑖𝑒𝑙𝑑,𝐹𝑢𝑡𝑢𝑟𝑒,ℎ𝑖𝑔ℎ =

556,301, a 9.1% drop that almost mirrors the decrease observed between the Control and 

Future climate horizons with the low-fragility curve. With respect to the 132kV component 

served by the Keadby National Grid substation, the Annual Risk went up from 

𝐴𝑅𝐾𝑒𝑎𝑑𝑏𝑦,𝐶𝑜𝑛𝑡𝑟𝑜𝑙,ℎ𝑖𝑔ℎ = 24,311 to 𝐴𝑅𝐾𝑒𝑎𝑑𝑏𝑦,𝐹𝑢𝑡𝑢𝑟𝑒,ℎ𝑖𝑔ℎ = 28,673, an increase of 428% and 

451%, respectively. With respect to the second most exposed 132kV component, the line 

labelled as “3” was found to face between 2.75 times and 3.61 times the Annual Risk. 

Overall, these results indicate that, whilst the frequency of more extreme events in the 

study area is not reflected in the risks, possibly due to the differences in spatial structure 

between the wind gusts and the electricity network, a non-linear causal relationship between 

the two can certainly be observed. Identifying the risk by component, which is a direct 

consequence of the system-of-systems approach adopted in this case study, was pivotal in 

allowing to pinpoint the most exposed segments of the electricity network. 

 

 
Figure 7.14. Annual Risk of faults according to the low-resolution fragility curves for the 132kV tier (thick lines) 

and 33-66kV tier (thin lines) in the Control (left) and Future (right) climate horizons. The risk is expressed in 

customers lost per year. The labels refer to: (1) 33-66kV component served by the Driffield Bulk Supply Point, 

(2) 33-66kV component served by the Wold Newton Bulk Supply Point, (3) 132kV component served by the 

Keadby National Grid substation. The location of the latter is identified by the black triangle. 
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Figure 7.15. Annual Risk of faults according to the high-resolution fragility curves for the 132kV tier (thick lines) 

and 33-66kV tier (thin lines) in the Control (left) and Future (right) climate horizons. The risk is expressed in 

customers lost per year. The labels refer to: (1) 33-66kV component served by the Driffield Bulk Supply Point, 

(2) 33-66kV component served by the Hull East Bulk Supply Point, (3) 132kV component served by the Keadby 

National Grid substation. 

 

7.3.2 Intra-systemic cascading failures 

 

7.3.2.1 Breakdown of frequency of cascading failures and risk of cascading failures 

The robustness of the two-tier electricity network to cascading failures was evaluated 

by analyzing intra-systemic failures, e.g. wind-driven faults which effects propagated from 

components of the 132kV line down to the supplied 33-66kV components by virtue of the 

hierarchical connections. This is a bottom-up approach implemented to highlight the 33-66kV 

components that, in the two 13-year climate horizons, were impacted the most by failures that 

only originated at the 132kV level. Also implemented was a top-down approach aimed at 

evaluating the frequency with which the 132kV components caused the cascading failures, with 

the purpose of highlighting the most influential components of the 132kV line. The bottom-up 

and top-down approaches were both relying on the number of 132kV components supplying 

each 33-66kV component (see Figure 5.16).  

Another important element of such computation was the assumption that the faults 

occurred at the 132kV level were the result of a wind gust 𝑤10,3 > 17 𝑚/𝑠, which was 

interpreted as a critical wind speed threshold. The lack of information regarding the actual 

presence of switchyards forced this analysis to assume that one wind-driven fault originating at 

the 132kV level was enough to cause service failings to the entire line of the supplied 33-66kV 

component (see Figure 5.18). However, when a 33-66kV component was supplied by multiple 
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132kV components, all of the latter had to fail for the cascading failure to propagate down to 

the 33-66kV component. 

Figure 7.16 depicts the breakdown, in the form of a heatmap, of the daily frequency of 

cascading failures that affected the 33-66kV components in the Control climate horizon. The 

most heavily hit component, labelled as “1”, was the one supplied by the Wold Newton Bulk 

Supply Point, which recorded a frequency of cascading failures 𝑓𝑐𝑎𝑠𝑐,𝐶𝑜𝑛𝑡𝑟𝑜𝑙,1 = 0.367. This 

value implies that, approximately every 3 days, the component labelled as “1” experienced one 

cascading failure due to the simultaneous failure of all the 132kV components supplying it. The 

second most impacted 33-66kV component, labelled as “2”, was found to have been affected 

with a frequency of 𝑓𝑐𝑎𝑠𝑐,𝐶𝑜𝑛𝑡𝑟𝑜𝑙,2 = 0.319.  

In the Future climate horizon, said components were subjected to cascading failures 

with a frequency of cascading failures that decreased by 4% and 11.9%, respectively. The most 

significant decrease in frequency was found in the 33-66kV component supplied by the 

Immingham Bulk Supply Point, which is labelled as “4”. In this case, the decrease peaked at 

22.4%.  

Whilst the majority of the components experienced a decrease in the frequency of 

cascading failures, which is attributable to the decrease in the wind gust severity observed for 

the Future climate horizon, two exceptions were found. The first one is the 33-66kV component 

labelled as “3”, which experienced a negligible increase of 0.5%, essentially maintaining its 

level of exposure unchanged, and the component labelled as “5”, which recorded an increase in 

frequency of 15%. Whilst the component labelled as “3” constitutes an interesting and possibly 

alarming case, the component labelled as “5” had a rather low frequency value in the Control 

climate horizon which was very sensitive to any increase.  
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Figure 7.16. Left: breakdown of the frequency of cascading failures that hit the 33-66kV components in the 

Control climate horizon. Right: change in frequency in the transition from the Control to the Future climate 

horizon. The label refers to: the component supplied by the Wold Newton Bulk Supply Point (“1”), the component 

supplied by the Scunthorpe South Bulk Supply Point (“2”), the component supplied by the Hull East bulk Supply 

Point (“3”), the component supplied by the Immingham Bulk Supply Point (“4”), and the component supplied by 

the Saltend Bulk Supply Point (“5”). 

 

 

 Figure 7.17 shows the breakdown of risk of cascading failures associated with each 33-

66kV component. The heatmap was obtained by multiplying the frequency of cascading failures 

of each component by the number of customers served. This produced a metric indicating the 

potential impact, in terms of customers lost per day, of the cascading failures. Owing to the fact 

that a different number of customers was served by each component, the risk heatmap does not 

exactly mirror that of the frequency of cascading failures. In fact, whilst the component labelled 

as “1” is subjected to both the highest frequency and the highest risk, with 𝑟𝑐𝑎𝑠𝑐,𝐶𝑜𝑛𝑡𝑟𝑜𝑙,1 =

7966 customers per day, the second most exposed component, labelled as “2”, was not the one 

supplied by the Scunthorpe South Bulk Supply Point but the one supplied by the Driffield Bulk 

Supply Point, with 𝑟𝑐𝑎𝑠𝑐,𝐶𝑜𝑛𝑡𝑟𝑜𝑙,2 = 5787 customers per day. In terms of changes with respect 

to the Future climate horizon, the 33-66kV component supplied by the Hull East Bulk Supply 

Point confirmed a steady risk, whereas the component with the highest decrease in risk, labelled 

as “4”, was also the one with the highest decrease in frequency of cascading failures. 
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Figure 7.17. Left: breakdown of the risk of cascading failures that hit the 33-66kV components in the Control 

climate horizon. Right: change in risk in the transition from the Control to the Future climate horizon. The label 

refers to: the Driffield Bulk Supply Point (“2”), the component supplied by the Hull East bulk Supply Point (“3”), 

and the component supplied by the Immingham Bulk Supply Point (“4”).  

 

Objective of this case study was to also investigate the frequency with which the 132kV 

components caused the cascading failures. Figure 7.18 shows the heatmap of the frequency 

with which the 132kV components caused cascading failures. Two areas could be identified 

with significant frequencies. The first includes the component labelled as “1”, which was found 

to produce cascading failures with a frequency of 𝑓𝑐𝑎𝑢𝑠𝑒𝑑,𝐶𝑜𝑛𝑡𝑟𝑜𝑙,1 = 0.623, as well as other 

clustered components with 𝑓𝑐𝑎𝑢𝑠𝑒𝑑,𝐶𝑜𝑛𝑡𝑟𝑜𝑙 > 0.6. The other area includes the component 

labelled as “2”, which caused cascading failures with a frequency of 𝑓𝑐𝑎𝑢𝑠𝑒𝑑,𝐶𝑜𝑛𝑡𝑟𝑜𝑙,2 = 0.608. 

The transition to the Future climate horizon showed, in alignment with the previous paragraphs, 

a general decrease in the frequency of caused cascading failures, although the component 

labelled as “3” stood out as it experienced an increase of 2.4%.  

As with the 33-66kV components, the risk of causing cascading failures 𝑟𝑐𝑎𝑢𝑠𝑒𝑑 was 

computed for each 132kV component. This was determined by multiplying the frequency of 

caused cascading failures per day by the number of customers served by the 33-66kV 

components served by each 132kV component. Figure 7.19 shows that, once again, the risk 

heatmap does not perfectly mirror the frequency heatmap, due to the uneven distribution of 

customers served among the 33-66kV components.  

The component that was found to be most exposed to the risk of cause cascading 

failures, labelled as “1”, did not correspond with the one that featured the highest frequency of 

caused cascading failures. The former was exposed to a risk of 𝑟𝑐𝑎𝑢𝑠𝑒𝑑,𝐶𝑜𝑛𝑡𝑟𝑜𝑙,1 = 3967 

customers per day, entailing that, on a daily basis, an average of 3967 customers were at risk of 
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service failings due to cascading failures originating in that component. By contrast, the 

component labelled as “2”, which matched the one causing the second highest frequency of 

cascading failures, was exposed to a risk of 𝑟𝑐𝑎𝑢𝑠𝑒𝑑,𝐶𝑜𝑛𝑡𝑟𝑜𝑙,2 = 3432 customers. As a direct 

consequence of the frequency heatmap in Figure 7.18, the Future climate horizon produced a 

general decrease in the risk, although the component labelled as “3” was found to exposed to a 

projected increase in risk of 2.3%.  

 
Figure 7.18. Left: breakdown of the frequency of cascading failures caused by the 132kV components in the 

Control climate horizon. Right: change in frequency in the transition from the Control to the Future climate 

horizon. The labels refer to: the component with the highest frequency in the Control climate horizon (“1”), the 

component with the second highest frequency in the Control climate horizon (“2”), and the component with the 

highest positive change in the Future climate horizon (“3”). 

 

 
Figure 7.19. Left: breakdown of the risk of cascading failures caused by the 132kV components in the Control 

climate horizon. Right: change in risk in the transition from the Control to the Future climate horizon. The labels 

refer to: the component with the highest risk in the Control climate horizon (“1”), the component with the second 

highest risk in the Control climate horizon (“2”), and the component with the highest positive change in the Future 

climate horizon (“3”). 
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 Overall, this procedure highlights components of the 33-66kV tier that are associated 

with high frequency of cascading failures and risk, offering a strategic investment plan several 

important indications regarding where an increased redundancy may be most effective. At the 

same time, the identification of the 132kV components that cause the highest number of 

cascading failures offers investors and infrastructure operators important information regarding 

the locations where an increased robustness may be necessary. However, as much as the 

projections for the Future climate horizon indicate a general and appreciable decrease in both 

the frequency and risk of cascading failures and for both tiers, the results for the Control climate 

horizon are likely to offer an overestimation of the actual frequency and risk.  

The lack of cascading failure records in the NaFIRS database or anywhere else did not 

allow to validate the above-mentioned results, and as such, a benchmark is missing. From a 

critical perspective, the justification for categorizing these results as an overestimation is in the 

fact that a specific 33-66kV component was found to experience one cascading failure 

approximately every 3 days, as a result of the simultaneous failure of all the 132kV components 

supplying it. Notwithstanding the lack of a benchmark, such frequency appears to be rather 

high, depicting an infrastructure that is far less reliable than the official numbers reveal.  

A number of factors are likely to contribute to this hypothesized overestimation: i) it is 

possible to categorize the cascading failures so far analyzed as topological cascading failures, 

entailing that they were the result of the topological-hierarchical structure of the network rather 

than actual cascading failures; ii) the adoption of a topological scheme to describe the 

propagation of failures is likely to have introduced an assumption of causal linearity, whereby 

one fault occurring at the 132kV level automatically meant the interruption of electricity supply 

at the lower level; iii) the fact that the propagation of failures was triggered by the exceedance 

of a wind speed threshold is likely to have introduced an additional assumption of causal 

linearity, whereby faults occurred with a probability of 100% every time the threshold was 

exceeded; and iv) additional uncertainty was introduced by the fact that information regarding 

the presence and functionality of switchyards was lacking, together with the implementation of 

a flow algorithm describing the power flow equations.  

However, notwithstanding the assumptions and uncertainties previously highlighted, 

this procedure is deemed worthy of consideration, as it offered a methodology that highlights 

the most vulnerable components of the electricity network. However, adequate information 

regarding how the failures spread in a system should not neglect the flow algorithm nor the 

topology of the system but should include both. 
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Chapter 8. Conclusions 

8.1   Introduction 

This chapter reports the most important findings and distills the key messages from the 

work carried out. This thesis comprised two case studies that were used to characterize the 

robustness of infrastructure networks to spatial hazards. The two case studies share a common 

research framework that provided insights into the relationship between infrastructure network 

design and robustness to spatial hazards.  

 

1. Case Study 1: Response of synthetic infrastructure networks to synthetic, 

although realistic, spatial hazards  

Case Study 1 developed a new fractal model to generate fields that correspond to 

spatial hazards.  The response of a range of infrastructure network types to different 

spatial hazard structures was analyzed. By loading the networks with generic spatial 

hazards, important principles applicable to the design phase were derived. These 

suggest that different network layouts, or topologies, offer different robustness 

performances, and that specific layouts seem to be fitter than others; 

 

2. Case Study 2: Impacts of windstorms on electrical distribution infrastructure 

networks 

Case Study 2 showed that spatial wind gust data have fractal properties, creating 

continuity with Case Study 1. These data were superimposed to a two-tier electricity 

network in which robustness to faults was evaluated under a current and future 

climatic scenario. The hierarchical structure of the network was reasonably 

preserved, leading to the identification of segments that appeared more vulnerable 

to both direct and knock-on effects. This seems to provide a clear list of priorities 

that can feed into strategic investment plans. 
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8.2   Main findings and implications 

 

8.2.1 Overview    

Both case studies assessed the robustness of infrastructure networks and considered how 

they could be made more robust to spatial natural hazards.  The insights gained from Case Study 

1 highlight how robustness can be embedded into networks from the outset at the design and 

planning stage. Case Study 2 identifies strategies to improve the robustness of existing networks 

by ascertaining priorities for strengthening components, increasing redundancy, or a 

combination of both. The key findings are now considered in the context of the objectives set 

out in the Introduction. 

Case Study 1 showed how infrastructure layout and robustness to spatial hazards could 

improve the design phase, whilst Case Study 2 demonstrated how interactions between 

components of the same operating infrastructure could make the latter a more robust system.  

In the context of a decision-making process that facilitates network recovery, the 

outcome of Case Study 1 is an example of ex-ante decisions (e.g., planning in advance for 

extreme events, learning from past experiences, etc.), whilst the outcome of Case Study 2 is 

aligned with ex-post decisions (e.g., implementing back-up systems or effective 

communication, removing restrictions, etc.). 
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8.2.2 Objective 1: reviewing existing methods for modelling spatial hazards and proposing a 

new approach 

 

A careful evaluation of the techniques used in the literature to reproduce spatial hazards 

revealed that these are generally attractive due to the relative ease of implementation, although 

they may require extensive data or computational resources to be reliable. However, it was also 

highlighted how these techniques fail to thoroughly consider the spatial attributes of spatial 

hazards, such as variation in the spatial structure and intensity over their domain.  

A new approach has been presented in Case Study 1, based on the use of fractal surfaces 

known as Brownian surfaces. These are non-deterministic, isotropic, three-dimensional fields 

originating from a stochastic process that mimics the erratic behavior of Brownian motion. The 

elevation of each surface was adopted as the severity or intensity index ∈ [0,1] of a generic 

spatial hazard. 

 The Brownian surfaces were found to reproduce the spatial variability of spatial hazards 

more accurately than deterministic approaches. Only one tuning parameter, the Hurst exponent 

H, is needed to control the spatial autocorrelation of the fractal surfaces. By adopting a range 

of values for 𝐻 ∈ [0.6, 0.7, 0.8, 0.9, 1.0], it was possible to produce an array of hazard fields 

with increasing degrees of spatial correlation, ranging from highly fragmented (𝐻 = 0.6) to 

smooth surfaces (𝐻 = 1.0).  

The implications for impact studies are manifold. Firstly, Brownian surfaces allow the 

generation of hazard fields at different spatial scales and with different degrees of spatial 

autocorrelation. This significantly improves upon other methods where spatial autocorrelation 

is largely uncontrolled, and extents are defined by regular shapes, such as circles or ellipses, in 

which the intensity varies deterministically, if at all. Secondly, it was demonstrated that fractal 

surfaces induced up to 100% more failures in the same network compared to circular-shaped 

hazard fields, suggesting that deterministic fields may underestimate the impact of spatial 

hazards by 100%. Thirdly, this methodology requires limited computational resources, and it 

can be implemented using open-source programming languages such as Python, with no license 

fees. Overall, computational efficiency and generation of varied hazard structures make fractal 

surfaces a viable option for uncertainty and sensitivity analysis. However, because Brownian 

surfaces exhibit periodicity and boundary effects, before usage the surfaces need to be cropped 

to approximately 25% the size of the original surface.  
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8.2.3 Objective 2: comparing the spatial properties of non-deterministic and real spatial 

hazards 

  

In Case Study 1, the Hurst exponent H was varied between 0.6 and 1.0 to test the impact 

of different spatial hazards on infrastructure networks. In Case Study 2, H was not known a 

priori.  By comparison of the Area-Frequency curves, the wind gust fields are shown to exhibit 

fractal properties both in the Control and Future climate model outputs, corresponding to 𝐻 =

0.9. However, this relationship seems weaker for 𝑤 > 28 𝑚/𝑠. This is possibly because the 

atmospheric processes driving high winds typically manifest at a regional scale, with climatic 

conditions changing from region to region. Although there is absolute freedom to generate 

Brownian surfaces with any degree of spatial autocorrelation, typically most natural hazards 

fall between 𝐻 = 0.8 and 𝐻 = 1.0, which corresponds to a fractal dimension 2.0 < 𝐷 < 2.2. 

As the windstorms were found to be largely associated with  𝐻 = 0.9, they can be seen as the 

real-world equivalent of the most severe hazard structures considered in Case Study 1. 

The binarization, performed to identify which areas of the spatial domain exhibited 

severity exceeding a certain threshold, offered limited value, being only meaningful in the case 

of the lowest threshold. In fact, whilst the binarization allowed to generate several 𝐻, 𝐹𝑡 

combinations in Case Study 1, not all of these combinations found a real incarnation in Case 

Study 2, where the goal was to verify the presence of fractal properties and estimate the fractal 

dimension of wind gusts. 

Whilst the spatial properties of the Brownian surfaces are fractal by nature, the 

comparison with the wind gust hazard fields revealed that the latter also exhibit fractal 

properties comparable with Brownian surfaces with 𝐻 = 0.9. 

 

 

8.2.4 Objective 3: interaction between spatial hazards and synthetic infrastructures 

 

The interaction between spatial hazards and synthetic network models has been 

investigated with a binary failure propagation mechanism. Network nodes were either active 

or, if their failure threshold Ft had been exceeded, failed. If nodes became isolated because the 

other nodes they were connected to had failed, then 2nd order failures occurred, affecting 

between 5% (for Lattice Networks) and 27% (for Scale-Free Networks) of the active nodes left 

in the network. 
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In Case Study 1, highly fragmented surfaces (𝐻 = 0.6) caused the highest number of 

failures in weak networks (up to 30% more failures than other surfaces), whereas highly smooth 

surfaces (𝐻 = 1.0) were most detrimental to strong networks (up to 42% more failures than 

other surfaces). This is because scattered severity peaks can cause multiple disruptions in weak 

networks that subsequently propagate through the network, whereas strong networks require 

hazards with more spatial continuity to be taken down.   

The implications are that evaluating the potential impact of natural spatial hazards on 

infrastructures is most valuable if it is possible to determine the failure threshold of 

infrastructure components. In practical terms, this entails defining the levels of service that the 

infrastructure can guarantee under the constraints posed by failures and disruptions. In 

conclusion, the aspects highlighted above are derived from simulations involving small 

networks. As such, these should be validated against larger networks and using a different range 

of H.  

 

8.2.5 Objective 4: assessing infrastructure robustness using topology-based metrics 

 

 The response of synthetic infrastructure models to fractal hazards has been evaluated 

using four topology-based metrics. Given the complex interactions between synthetic models 

and hazards, adopting multiple metrics instead of one enabled to capture the many facets of 

these interactions. These metrics assessed the extent of the network surviving the impact (SN), 

how far from the hazard hotspot the failures propagated (SR), the tendency of to generate 

partitions (FI), and the ability to distribute flow in the face of disruptions (CFI).  

 Two extreme behaviors where identified. The regular structure of LN enabled it to 

withstand the impact of spatial hazards better than other networks, resulting in an average 31% 

less failures. Such regularity also limited the occurrence of 2nd order failures, which were 

located closest to the hazard hotspot. The LN recorded the lowest number of partitions, 2, given 

the infrequent occurrence of failures due to isolation. The absence of shortcuts from one node 

to another, however, strongly limited the ability to process flows in the presence of failures, 

resulting in a 20% performance decrease for hazards affecting 10-20% of the network.  

The WS model behaved rather differently, recording the second lowest number of 

failures (19% less than the ER and BA models on average), the second lowest number of 

partitions, 3, and 5% more robust to the spread of failures across its structure than the WS and 

BA models. Most importantly, however, the WS networks exhibited the least reduction in the 

ability to process flows, dropping their performance by only 4% for hazards affecting 10-20% 



Chapter 8. Conclusions 

 

189 

 

of the network. The BA and ER models were between these two extremes, with the former 

slightly closer to WS and the latter more aligned with LN. 

  These results show that there may be advantages in adopting a grid model (LN), 

however it proved most vulnerable to disruptions when flow of resource is an important aspect 

of the infrastructure service. Networks with a small number of critical hubs – often the case for 

many infrastructure types – were more vulnerable to fragmentation whenever the hub itself was 

impacted by the disruption. This shows that there is an intrinsic risk of fragmentation in scale-

free infrastructure networks. These properties were shown to be consistent over the range of H 

and Ft. Although eloquent, these results are affected by the number of iterations adopted for 

each network model and the failure propagation algorithm. 

  

8.2.6 Objective 5: interaction between real natural hazards and real infrastructures 

 

 The average number of faults per 1000 km and the impact in terms of customers served 

reflected the seasonality of wind gusts, which were more frequent and 57% stronger in the 

winter on average. Differences between the Control and Future horizons were also observed: 

coastal areas experienced slower wind gusts (up to -10%) from Control to Future, whilst inner 

areas faced an increase of up to 12%. However, there is significant uncertainty in the prediction 

of future wind.  

Any climate-related natural hazards, if considered over the large spatial domains in 

which infrastructures often operate, should be considered over smaller, regional domains for 

impact studies to yield a more realistic outcome. This entails that the size of the infrastructure 

analyzed should be constrained by the footprint of the hazard. This requires regional domains 

that are both meaningful for the infrastructure and the hazard. If this aspect is not considered, 

there is a clear risk of underestimating or overestimating the impact of failures with respect to 

the recorded events. 

Different number of faults were obtained with different fragility curves. The high-

resolution fragility curve returned a number of faults which was almost 5 times as large as that 

returned by the low-resolution curve for both tiers.   

 This may be because the high-resolution fragility curve, with a spatial scale 64 times 

smaller than the low-resolution curve, was able to capture the impact of wind gusts much more 

locally.   

It is also worth noting that a remarkable difference in the average number of faults was 

observed between the 132kV and the 33-66kV systems. The number of faults in the 33-66kV 
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network exceeded those observed at the 132kV level by a factor of 12 in Control and by a factor 

of 15 in Future. This is in part due to the different spatial footprint of the two networks, with 

the 33-66kV system being approximately 4 times more extended as the 132kV system. 

However, the spatial variability of the hazard influences the impact depending on the location 

of the highest windspeeds. In Case Study 2, there were more 33-66kV lines in areas more 

exposed to greater windspeeds. This can be the case in more remote areas, for instance the 

North York Moors, where the topographic and orographic conditions make it inconvenient for 

the higher voltage lines to operate.  

  

 

8.2.7 Objective 6: highlighting the most critical segments of the infrastructure and their 

potential to trigger cascading failures 

  

 For each segment (or component) of the 132kV network, the potential to trigger 

cascading failures was determined by computing the frequency of 2nd order failures occurring 

in the 33-66kV components being fed by the 132kV component.  

 Given the hierarchical nature of the electricity network, both the risk of faults and the 

potential to trigger or be impacted by cascading failures returned different results depending on 

the voltage. Across the domain, the variation in risk resulted from the combination of two 

factors: a severe wind hazard, and a high number of customers served. 

The 132kV components were more likely to be in areas with lower windspeeds, but they 

fed up to 14 33-66kV segments, meaning that failure of a 132kV segment would disrupt many 

more customers. At the 33-66kV level, the situation was inverted: although exposure to more 

severe wind gusts resulted in 12-15 times more faults, this did not guarantee a higher risk than 

for the 132kV network as there were an average 70% less customers served. For both systems 

and in both Control and Future, consistent segments of infrastructure with higher risk were 

identifiable.  

 In terms of cascading failures, specific 33-66kV segments experienced a cascading 

failure with a frequency of 40%, due to the simultaneous failure of the 132kV segments feeding 

them. In the transition from Control to Future, the 33-66kV segments experienced an average 

decrease in frequency of 17%. This is the consequence of the projected general decrease in 

wind hazard discussed in paragraph 7.3.2, although the presence of isolated spikes demonstrates 

that the spatial variability of the hazard field is such that it is necessary to zoom in on the 

behavior of the individual components rather than considering the network as a whole.  
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It emerged that individual 132kV segments triggered cascading failures in the lower 33-

66kV network which impacted as many as 45,000 customers (more than 15% of the customer 

base considered in Case Study 2). Unlike the 33-66kV network, an average decrease in 

frequency of 9% was observed. Overall, this seems to indicate that, as shown in Case Study 1 

for 2nd order failures, the risk of cascading failures is influenced by the spatial properties of the 

hazard and those of the network. 

 Using data on only the number of faults to determine the impact of high winds is likely 

to be misleading without proper spatial context. Knowing where faults are more likely to occur 

is crucial for devising an investment plan. A trivial asset protection strategy might only tackle 

the vulnerability observed at the highest hierarchical levels, seeking to increase the robustness 

of the lines at highest voltage (e.g., the 132kV lines, the 275kV lines, or even the National 

Grid’s 400kV lines). However, this strategy could have dramatic impacts on the customer base 

itself, leaving it unshielded from faults occurring at lower voltages which, as shown in this 

thesis, could also be the most exposed to the hazard.   

 Finally, two aspects are worthy of consideration. First, these results refer to an asset 

dataset without loops or switches, which are used to increase the redundancy of the system and 

offer an alternative supply route in the event of faults. By not incorporating this type of 

information, it is easier to overestimate the faults, risks, and impacts. Second, the underlying 

assumption behind the origin of cascading failures was that it is a necessary and sufficient 

condition to have a single fault along a component for the electricity supply to be interrupted 

downstream.  

  

 

8.2.8 Objective 7: key recommendations for engineers, policy makers, and other stakeholders  
  

In both Case Studies, a systemic approach was applied to understand the behavior of 

infrastructure networks subjected to spatial hazards. The results show the importance of two 

crucial aspects: redundancy, which can be simplistically associated with the availability of 

alternative supply routes, and robustness, entailing increased ability to withstand disruptions.   

Analysis of network response using several performance metrics showed how different 

network types are impacted by different types of hazards and how the impacts can be mitigated.  

This work has identified three important design principles that should be considered in the 

design and management of civil engineering infrastructure systems: 
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1. To minimize the impacts of disruptions from spatial hazards, networks should 

minimize the number of hubs and have a constant number of network connections. 

This increases the redundancy of the network, enabling nodes to be reached from 

multiple alternative supply routes, sustaining network operations in the face of 

failures; 

2. The number of connections should be more evenly spread across the network to 

limit the diffusion of failures, by virtue of having less nodes with a single connection 

to hubs. This entails that less 2nd order failures; 

3. Infrastructure networks should avoid spatial clusters of hubs, as increased spacing 

between them was found to reduce the vulnerability to spatially contiguous hazards. 

 

Analyzing the robustness of an existing electrical infrastructure to a real natural hazard 

revealed the importance of the hierarchical model regulating the interaction between 

infrastructure assets. This work has highlighted the importance of the following aspects: 

1. In an existing infrastructure with different assets interacting with each other, a 

system-of-systems perspective is needed to identify partitions (or subsystems) and 

their boundaries. This can lead to a better understanding of the overall behavior of 

the network, as ignoring the presence of partitions may lead to misrepresentation of 

individual behaviors; 

2. Partitioning the infrastructure into a set of meaningful subsystems and capturing 

their interactions is a crucial step in defining the number of customers potentially 

affected, which may be harder to define otherwise; 

3. Impact studies can leverage on an accurate representation of subsystems as this may 

highlight which ones would benefit from increased robustness, and which ones 

would benefit from increased redundancy. This level of detail is very informative 

for asset managers, as it adds value and effectiveness to prioritized investment plans 

addressing the most crucial assets. 

 

In conclusion, it is recommended that the design principles derived from Case Study 1 

be integrated in the design process of civil engineering infrastructures, together with aspects 

such as demand, efficiency, and costs. It is also recommended that the partitioning methodology 

presented in Case Study 2 be adopted by studies assessing the impacts of natural hazards, so 

that more realistic and representative outcomes are produced. If adopted, these 
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recommendations may potentially result in important monetary savings, including a reduction 

of fines imposed by regulators, improved levels of service, and improved customer satisfaction. 

 

 

8.3   Future work 

8.3.1 Improvements to the case studies implementation 

 The systems framework coupled a number of different components. Opportunities for 

future research and development are now considered, with a view to provide researchers with 

a list of possible next steps to develop the content of this thesis further. 

The analysis presented in Case Study 1 could benefit from a set of possible 

improvements that are summarized as follows in a step-by-step fashion: 

1. The investigation regarding different network behaviors should be extended to 

larger networks, in which there are more than 10x10 nodes. This would also 

enable to gauge the effect of larger fractal spatial hazards, which may result in 

a wider difference in terms of network response. This poses significant 

requirements in terms of computational resources, but technological solutions 

such as parallel computing and multi-threading may reduce the burden; 

2. The range of networks adopted in this thesis is limited. It is recommended that 

the investigation be extended to models such as exponential networks, 

complete graphs, or even scale-free networks mirroring existing 

infrastructures. This would result in a stretched array of topologies which 

would contribute to a deeper understanding of the robustness to realistic spatial 

hazards; 

3. The adoption of different failure models may help reproduce a more realistic 

behavior, especially if the relationships between nodes are modelled after an 

existing infrastructure; 

4. Finally, an improved representation of the capacity of a network to process 

flows (eg, goods, passengers, or services) may be achieved adopting flow 

algorithms that resemble those of existing infrastructures.  

 

The analysis performed in Case Study 2 would also benefit from steps that could 

increase the value of this research. These steps include, but are not only limited to: 
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1. This Case Study focuses on a distribution electricity network, and as such, an 

obvious extension of this work is to transfer it to electricity networks at lower 

voltages, as well as to other infrastructure sectors; 

2. Wind fields are shown to exhibit fractal structure. Future research could explore 

how different hazards natural hazards such as rain fields, wildfires etc. 

correspond to different fractal structures. The use of process models to simulate 

hazards allows for aspects such as timing to be considered (for example, how 

floodwaters rise and fall with river flow). A further extension of the fractal 

model would therefore be to include a temporal component; 

3. Future work could provide improved functional description of power flows in 

the electricity networks (or equivalent processes in other networks) to allow for 

feedbacks and responses to be considered; 

4. Additional improvements could result from the use of network models that 

capture aspects such as accurate asset location, absence of connectivity gaps, 

material, age, and capacity of components, and so forth. This would make the 

results of impact studies produced in both Academia and Industry more 

grounded in reality; 

5. Ongoing research at the UK Met Office and elsewhere is improving the 

resolution and availability of hazard modelling projections which will improve 

infrastructure risk analysis in the future by resolving convective phenomena.  

 

 

8.3.2 Vision for the future 

Case Study 2 of this thesis implemented a digital representation of an electricity 

infrastructure to evaluate its response to high winds. In the process, this thesis also proposed 

the idea of a digital twin to determine the level of resilience of an infrastructure exposed to a 

spatial natural hazard. The underlining idea behind this is the vision for a digital twin for 

resilience. The latter can be thought of as a digital object that includes the infrastructure assets, 

as well as appropriate modelling attributes that include the following elements (Figure 8.1):  

• A topological model, where the infrastructure components are modelled as 

nodes, their connections are modelled as edges, and all node-node relationships 

are identifiable; 
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• A hierarchical model, where the infrastructure components are clearly 

identifiable, and their relationships are explicit; 

• A real-time functional model, where relevant mathematical models are 

implemented to reproduce the processes that occur across the infrastructure; 

• A real-time failure model, which specifies how the infrastructure responds to 

natural spatial hazards or events currently impacting on the network; 

• A real-time supply and demand model that allows to determine how the flow of 

goods or services takes place across the infrastructure. 

 

As with any model, the utility of a digital twin is modulated by how processes are 

modelled, as well as on the availability of the relevant datasets, which should feed back into the 

model. Given the extensive limitations involved in developing a self-contained digital twin, this 

thesis went as far as illustrating the steps needed to implement only the topological, hierarchical, 

and failure models. The implementation of the additional components would be a major 

research endeavor. 

 

 

Figure 8.1. Vision for a digital twin for resilience. This thesis implemented a topological model, a 

hierarchical model, and a failure model only. 

 

 

The idea of a digital twin for resilience may leverage on the increased availability of 

datasets. In fact, recent technological advancements in project design, sensing, and 

measurements, have paved the way for a widespread use of models of digital representation. 
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These models couple the three-dimensional representation of objects, such as bridges or other 

structural elements, with layers of information regarding materials, dimensions, physical 

properties, functionality, and data regarding other aspects. These elements can be grouped 

together to characterize what is known in Civil Engineering as Building Information Modelling 

(BIM), that is, a strategy to blend Information Technology into Civil Engineering practices.  

More specifically, a BIM object operates on digitally-stored databases as opposed to 

paper-based sources, it allows to share design solutions and real-time changes, and it collects 

data that can be used multiple times and at any stage of the lifecycle of the designed physical 

element. Although the use of BIM in civil engineering is becoming more and more widespread, 

its applications are predominantly limited to the design phase, with recent developments 

addressing aspects such as energy consumption and safety performance. However, other 

authors have shown that BIM can be used to detect the occurrence of faults of energy systems 

serving buildings, suggesting that, among all performance indicators, resilience can also be 

investigated. In light of this, additional directions for future research should include the 

investigation of how to integrate digital twins for resilience into design best practices.
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Appendix  

Python scripts used in this thesis 

Case Study 1 

 

This thesis used a number of bespoke scripts written in Python to carry out the research 

tasks. The scripts used in Case Study 1 are allowed to be released in their entirety. The following 

paragraphs contain the scripts used to generate: 

1. The function generating the fractal surfaces (see paragraphs 4.2.4, 4.2.5); 

2. The Critical Footprints given the fractal surfaces (see paragraph 4.2.5); 

3. The circles representing the localized attacks (see paragraph 4.2.8); 

4. The geometrical comparison between the fractal surfaces and the circles (see 

paragraph 4.2.8); 

5. The four synthetic models of infrastructure networks (see paragraph 4.4.1); 

6. The superimposition of the Hazard Loading on the synthetic infrastructure 

network models (see paragraph 4.5.1). 

 

1 Fractal Surfaces  
 

Reference: paragraphs 4.2.4 and 4.2.5 

1. """  

2. Title: fractional Brownian motion (fBm) with Spectral Synthesis on a 2D, square lattice  

3. OPEN SOURCE CODE  

4. Source 

5. Ref: Peitgen, O.H., Saupe, D. 1988. The Science of Fractal Images, Springer-

Vorlag. Chapter 2, Page 108.    

6. """   

7.    

8. from __future__ import division  

9. import numpy   

10. import random   

11. import math   

12. import pylab   

13.    

14. def SpectralSynthesisFM2D(max_level, sigma, H, seed=100, normalise=True, bounds=[0,1]):   

15.   """  

16.   ________________________________________________________________________  

17.   Args:  

18.       max_level : Maximum number of recursions (N = 2^max_level)  

19.       sigma     : Initial standard deviation  

20.       H         : Roughness constant (Hurst exponent), varies form 0.0 to 1.0  

21.       H=0.8 is a good representation of many natural phenomena (Voss, 1985)  

22.       seed      : seed value for random number generator  

23.       normalise : normalizes the data using bound  

24.       bounds    : used for normalization of the grid data  

25.   Result:       

26.       Output is given in the form of an array (grid) which holds surface  

27.       values for a square region.    

https://github.com/SonuGiriIITP/BTP/blob/master/BTP%20Project%20Sonu%20Giri/Code/Semester-1%20(manual%20python%20coding)/SourceCode1.1/SpectralSynthesisFM2D.py
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28.   _________________________________________________________________________  

29.   """      

30.       

31.   N = int(2**max_level)   

32.   A = numpy.zeros((N,N), dtype = complex)   

33.   random.seed() #Seeds the random number generator   

34.   PI = 3.141592   

35.   for i in range(0,int((N-1)/2)):   

36.     for j in range(0,int((N-1)/2)):   

37.       phase = 2*PI*random.random() #/random.randrange(1,Arand)   

38.       if i != 0 or j != 0:   

39.         rad = pow((i*i + j*j),(-(H+1)/2) )*random.gauss(0.0, sigma)   

40.       else:   

41.         rad = 0.0   

42.          

43.       A[i][j] = rad*math.cos(phase) + rad*math.sin(phase)*j    

44.          

45.       if i ==0:    

46.         i0 = 0   

47.       else:   

48.         i0 = N - i   

49.          

50.       if j==0:   

51.         j0 = 0   

52.       else:   

53.         j0 = N - j   

54.        

55.       A[i0][j0] = rad * math.cos(phase) - rad*math.sin(phase)*j   

56.      

57.   for i in range(1,int((N-1)/2)):   

58.     for j in range(1,int((N-1)/2)):   

59.       phase = 2*PI*random.random() #/random.randrange(1,Arand)   

60.       rad = pow((i*i + j*j),(-(H+1)/2) )*random.gauss(0.0, sigma)   

61.       A[i][N-j] = rad * math.cos(phase) + rad* math.sin(phase)*j   

62.       A[N-i][j] = rad * math.cos(phase) - rad* math.sin(phase)*j   

63.      

64.   Grid = numpy.real(pylab.ifft2(( A ))) #Implements the Discrete Inverse FFT on a 2D lattice   

65.   if(normalise):   

66.         Grid += numpy.amin(Grid)*-1 + bounds[0]   

67.         Grid = (Grid/numpy.amax(Grid)) * bounds[1]   

68.   return Grid   
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2 Critical Footprints  
 

Reference: paragraph 4.2.5 

1. """  

2. GENERATING FRACTAL FOOTPRINTS  

3.   

4. Created on Thu Apr 06 16:06:29 2017  

5.   

6. Author: Francesco Castellani, Newcastle University - f.castellani2@ncl.ac.uk  

7. """   

8.    

9. from __future__ import division 

10. import numpy as np   

11. import matplotlib.pyplot as plt   

12. import matplotlib.colors as mc   

13. import SSFM2D    

14. import random   

15. import os   

16.    

17. num_events=[10]   

18. Hurst_values=[0.6,0.7,0.8,0.9] #Hurst exponent (0.8 is a recommended value for natural phenome

na, but it can be brought to the limits [-1,1])   

19. #1) Defining the number of events & the thresholds   

20. ft=[0.1,0.3,0.5,0.7,0.9] #The threshold past which a given node fails. Ranges 0.0 to 1.0.   

21. #All cell values >fail_thre contribute to determining the critical footprint. Ranges 0.0 to 1.

0.   

22. for H in Hurst_values:       

23.     for fail_thre in ft:   

24.         for v in num_events:   

25.             directoryPath=r'C:\Users\mydir' #Creates a new folder   

26.             os.chdir(directoryPath)    

27.            

28.             #3) Parameter assignments   

29.             max_level=8               #This is the exponent controlling the grid size. In this

 case N=2^8=256. Use only integers.   

30.             N=2**max_level            #The size of the matrix. N as size is not used in this s

cript. It is used by SSFM2D.   

31.             sigma=1                   #Variation for random Gauss generation (standardised nor

mal distribution)   

32.             seed = random.random()    #Setting the seed for random Gauss generation   

33.            

34.             #4) Defining dicts for statistics & initializing the for loop. Change as needed.   

35.             event=0 #Initializing the event counter to 0   

36.             from collections import OrderedDict   

37.             event_max=OrderedDict() #An empty dict to store the max value for each fBm image p

roduced. It is calculated after the zeroset has been raised to the failure threshold value.   

38.             event_avg=OrderedDict() #An empty dict to store the avg value for each fBm image p

roduced. It is calculated after the zeroset has been raised to the failure threshold value.   

39.             event_sampdev=OrderedDict() #An empty dict to store the sample variation value for

 each fBm image produced. It is calculated after the zeroset has been raised to the failure th

reshold value.   

40.             event_min=OrderedDict() #An empty dict to store the min value for each fBm image p

roduced. It is calculated after the zeroset has been raised to the failure threshold value.   

41.             critical_cells=OrderedDict() #An empty dict to store the fraction of cells exceedi

ng the node failure threshold   

42.             event_index=[''] #Empty list for indexing events to be associated with footprint v

alues   

43.             for event in range(0,v):   

44.                    

45.                 #5) Lattice initialization   

46.                 Lattice=np.zeros((256,256))   

47.                

48.                 #6) Calling Spectral fBm function   

49.                 Lattice=SSFM2D.SpectralSynthesisFM2D(max_level, sigma, H, seed, normalise=True

, bounds=[0,1])   
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50.                

51.                 #7) Creating the original 256x256 lattice   

52.                 M=np.zeros((257,257))         

53.                 for i in range(0,256):   

54.                     for j in range(0,256):   

55.                         M[i][j]=Lattice[i][j]   

56.                

57.                 #8) Normalizing the output matrix   

58.                 M = M/M[-257:, -257:].max() #Matrix normalization with respect to max   

59.                                

60.                 #9) Producing the images   

61.                 N=np.zeros((257,257))   

62.                 plt.figure()   

63.                 north=int(0) #Allows to slice the main image   

64.                 east=int(0)  #Allows to slice the main image   

65.                 for i in range(257):    

66.                     for j in range(257):   

67.                         if M[east+i][north+j]<fail_thre:   

68.                             N[i][j]=0   

69.                         else:   

70.                             N[i][j]=M[east+i][north+j] #The sliced image. Periodicity is avoid

ed.   

71.    

72.                 #Plotting the images   

73.                 plt.imshow(N[-257:,-

257:].T, origin='lower',interpolation='nearest',cmap='Reds', norm=mc.Normalize(vmin=0,vmax=M.m

ax()))   

74.                 title_string=('Fractal footprint')   

75.                 subtitle_string=('fBm-SSm | Array size: 256x256')   

76.                 plt.suptitle(title_string, y=0.99, fontsize=17)   

77.                 plt.title(subtitle_string, fontsize=8)   

78.                 #Making a custom list of tick mark intervals for color bar (assumes minimum is

 always zero)   

79.                 numberOfTicks = 5   

80.                 ticksListIncrement = M.max()/(numberOfTicks)   

81.                 ticksList = []   

82.                 for i in range((numberOfTicks+1)):   

83.                     ticksList.append(ticksListIncrement * i)    

84.                 plt.tick_params(axis='x', labelsize=8)   

85.                 plt.tick_params(axis='y', labelsize=8)   

86.                 plt.show()   

87.                 plt.xlim(0, 256)   

88.                 plt.xlabel('X',fontsize=12)     

89.                 plt.ylim(256, 0)    

90.                 plt.ylabel('Y',fontsize=12)   

91.     

92.                 plt.savefig(directoryPath+'\\H_'+str(H)+'_ft_'+str(fail_thre)+'_'+str(event)+'

.jpg', bbox_inches='tight',dpi=300)   

93.                 plt.close()   
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3 Circles representing Localized Attacks  
 

Reference: paragraph 4.2.8 

1. """  

2. GENERATING LOCALIZED ATTACKS  

3. Modified Bresenham's circle algorithm.  

4. Variation of the Midpoint Circle Algorithm.  

5. Plots the circular load of a generic hazard on a 2D map.   

6. Output values are either 0.0 or 1.0.  

7.   

8. Created on Tue Apr 11 10:51:28 2017  

9.   

10. @author: Francesco Castellani, Newcastle University - f.castellani2@ncl.ac.uk  

11. """   

12.    

13. from __future__ import division 

14. import numpy   

15. import random   

16. import os   

17. from collections import *   

18. import glob   

19. import math   

20. import pickle   

21.    

22. #1) Directory where to dump the pickle   

23. directoryPath=r'C:\Users\mydir'    

24. os.chdir(directoryPath)    

25.    

26. #2) Set number of events   

27. num_slots=25   

28. events_per_slots=2000   

29. events={}   

30.    

31. for e in range(1,num_slots+1): #Index for each 2000-event slot. Ranges 1 to 25.   

32.        

33.     index=str(e)    

34.     if len(index)==1:   

35.         front='000'+str(index)   

36.     if len(index)==2:   

37.         front='00'+str(index)   

38.        

39.     for k in range(1,events_per_slots+1):   

40.    

41.         if len(str(k))==1: #Events 1-9   

42.             back='000'+str(k)   

43.         if len(str(k))==2: #Events 10-99   

44.             back='00'+str(k)   

45.         if len(str(k))==3: #Events 100-999   

46.             back='0'+str(k)   

47.         if len(str(k))==4: #Events 1000-2000   

48.             back=str(k)   

49.    

50.         event_name=str(front)+str(back) #Dictiona key 

'00010001' to '00252000' (50000 events)   

51.                

52.         n=21 #Grid size, 4 times my visualized output in order to be able to truncate circles  

53.         empty_lattice=numpy.zeros((n,n)) #The empty 2D grid   

54.         radius=int(numpy.random.uniform(1,10)) #Radius | Sampling from uniform distribution [1

, 10]   

55.         xc=int(numpy.random.uniform(0,n-radius)) #X center   

56.         yc=int(numpy.random.uniform(0,n-radius)) #Y center   

57.         r2 = radius ** 2   

58.            

59.         #Bresenham's Algorithm   

60.         for dx in range(0, radius):   
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61.             x = xc + dx   

62.             dx2 = dx ** 2   

63.             for dy in range(0, dx + 1):   

64.                 y = yc + dy   

65.                 dy2 = dy ** 2   

66.                 if (dx2 + dy2 <= r2):   

67.                     if (xc + dx <= n and yc + dy <= n):   

68.                         empty_lattice[xc+dx][yc+dy]=1 #1st octant   

69.                     if (xc - dx >= 0 and yc + dy <= n):   

70.                         empty_lattice[xc-dx][yc+dy]=1 #2nd octant   

71.                     if (xc + dx <= n and yc - dy >= 0):   

72.                         empty_lattice[xc+dx][yc-dy]=1 #3rd octant   

73.                     if (xc - dx >= 0 and yc - dy >= 0):   

74.                         empty_lattice[xc-dx][yc-dy]=1 #4th octant   

75.                     if (xc + dy <= n and yc + dx <= n):   

76.                         empty_lattice[xc+dy][yc+dx]=1 #5th octant   

77.                     if (xc - dy >= 0 and yc + dx <= n):   

78.                         empty_lattice[xc-dy][yc+dx]=1 #6th octant   

79.                     if (xc + dy <= n and yc - dx >= 0):   

80.                         empty_lattice[xc+dy][yc-dx]=1 #7th octant   

81.                     if (xc - dy >= 0 and yc - dx >= 0):   

82.                         empty_lattice[xc-dy][yc-dx]=1 #8th octant   

83.            

84.         loaded_cells=0   

85.         visualized=numpy.zeros(shape=(int(n/2)+1,int(n/2)+1))   

86.            

87.         #Flood-fill Algorithm   

88.         for i in range(0,int(n/2)+1):   

89.             for j in range(0,int(n/2)+1):   

90.                 visualized[i][j]=empty_lattice[int(n/4)+i][int(n/4)+j]    

91.                 if empty_lattice[int(n/4)+i][int(n/4)+j]==1:   

92.                     loaded_cells+=1   

93.         CF=round(100*loaded_cells/(((n/2)+1)*((n/2)+1)),2) #Critical Footprint of the disks   

94.            

95.         events[event_name]=visualized,CF #"visualized" is an auxiliary 2D array that allows di

sk centers to occur outside the fixed study area   

96.      

97.         print ('event: '+str(event_name))        

98.            

99. #3) Dumping everything to a pickle dictionary    

100. pickle.dump(events,open('local_events_50k.p','w'))      
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4 Geometrical comparison between fractal surfaces and circles  
 

Reference: paragraph 4.2.8 

1. '''''  

2. Geometrical comparison between fractals and circles: 

3. Maximum separation of fractal surfaces   

4. vs  

5. Maximum separation of circles (Localized Attacks)  

6. '''   

7. from __future__ import division   

8. import numpy as np   

9. from scipy import ndimage   

10. import os   

11. import glob   

12. import csv   

13. from matplotlib import pyplot as plt   

14. from collections import OrderedDict   

15. from numpy import genfromtxt   

16. import pickle   

17. import skimage as sk   

18. from skimage import measure   

19. from skimage.measure import label   

20. import pandas as pd   

21.    

22. #Load fractals first   

23. dirfr=r'C:\Users\mydir\fractals'   

24.    

25. subdir=[x[0] for x in os.walk(dirfr)]   

26. subdir.pop(0)   

27.    

28. N=121 #Number of cells in each image   

29. fractals=OrderedDict() #Key: event; Value: (major axis, CF)   

30.    

31. for i in subdir:   

32.     temp_dir=r''+i   

33.     os.chdir(temp_dir)   

34.     for file in glob.glob("*.csv"):   

35.         event=file[0:8]   

36.         path = os.path.join(i, file)   

37.         raw_data=np.genfromtxt(path,delimiter=',')[:,2]   

38.         image=np.delete(raw_data, 0, 0)   

39.         Ft=float(file[2]+'.'+file[3])   

40.         blobs=image>Ft   

41.         temp=0   

42.         for j in range(blobs.shape[0]):   

43.             if blobs[j]==True:   

44.                 temp=temp+1   

45.         CF=round(temp/N,2)     

46.         labels,nlabels = ndimage.label(blobs)                

47.         labelled=label(blobs)   

48.         resh_labelled=labelled.reshape((11,11))   

49.         props=sk.measure.regionprops(resh_labelled)   

50.         if CF==0:   

51.             max_sep=0.0   

52.         else:   

53.             diams=[]   

54.             for p in props:   

55.                 diams.append(p.major_axis_length)   

56.             max_sep=round(max(diams),3)   

57.             #max_sep=round(sum(diams)/len(diams),3)   

58.         fractals[event]=(CF,max_sep,nlabels)    

59.     break   

60. cf_maj_ax_fra=[]   

61. for key, value in fractals.items():   

62.     cf_maj_ax_fra.append(value[0:2])   
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63. fra=zip(*cf_maj_ax_fra)   

64.       

65.    

66. #Load circles (Localized Attacks) 

67. dirloc=r'C:\Users\mydir\circles'   

68.    

69. subdir=[x[0] for x in os.walk(dirloc)]   

70. subdir.pop(0)   

71.    

72. N=100 #Number of cells in each image   

73. localized=OrderedDict() #Key: event; Value: (major axis, CF)   

74.    

75. for i in subdir:   

76.     temp_dir=r''+i   

77.     os.chdir(temp_dir)   

78.     for file in glob.glob("*.csv"):   

79.         event=file[0:8]   

80.         path = os.path.join(i, file)   

81.         raw_data=np.genfromtxt(path,delimiter=',')[:,2]   

82.         image=np.delete(raw_data, 0, 0)   

83.         Ft=0.99   

84.         blobs=image>Ft   

85.         temp=0   

86.         for j in range(blobs.shape[0]):   

87.             if blobs[j]==True:   

88.                 temp=temp+1   

89.         CF=round(temp/N,2)     

90.         labels,nlabels = ndimage.label(blobs)                

91.         labelled=label(blobs)   

92.         resh_labelled=labelled.reshape((10,10))   

93.         props=sk.measure.regionprops(resh_labelled)   

94.         if CF==0:   

95.             eq_diam=0.0   

96.         else:   

97.             diams=[]   

98.             for p in props:   

99.                 diams.append(p.major_axis_length)   

100.             max_sep=round(sum(diams)/len(diams),3)   

101.         localized[event]=(CF,max_sep,nlabels)    

102.     break   

103. cf_maj_ax_loc=[]   

104. for key, value in localized.items():   

105.     cf_maj_ax_loc.append(value[0:2])   

106. loc=zip(*cf_maj_ax_loc)   

107.    

108. #Binning   

109. cf_maj_ax_fra.sort(key = lambda x: x[0])   

110. cf_maj_ax_loc.sort(key = lambda x: x[0])   

111. bins = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]   

112. binned_fra = {key: [] for key in bins}   

113. binned_loc = {key: [] for key in bins}   

114. for item in cf_maj_ax_fra: #Islands   

115.     for bin in bins:   

116.         if item[0] <= bin:   

117.             binned_fra[bin].append(item[1])   

118.             break   

119. for item in cf_maj_ax_loc: #Islands   

120.     for bin in bins:   

121.         if item[0] <= bin:   

122.             binned_loc[bin].append(item[1])   

123.             break   

124.    

125. average_fra={}   

126. for key, value in binned_fra.iteritems():   

127.     numerator={k:sum(v) for k,v in binned_fra.items()}   

128.     denominator={k:len(v) for k,v in binned_fra.items()}   

129. for key, value in denominator.iteritems():   
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130.     if denominator[key]==0:   

131.         average_fra[key]=0   

132.     else:   

133.         average_fra[key]=round((numerator[key]/denominator[key]),3)   

134.    

135. average_loc={}   

136. for key, value in binned_loc.iteritems():   

137.     numerator={k:sum(v) for k,v in binned_loc.items()}   

138.     denominator={k:len(v) for k,v in binned_loc.items()}   

139. for key, value in denominator.iteritems():   

140.     if denominator[key]==0:   

141.         average_loc[key]=0   

142.     else:   

143.         average_loc[key]=round((numerator[key]/denominator[key]),3)   

144.    

145. fig1 = plt.figure()   

146. ax1 = fig1.add_subplot(111)   

147. ax1.scatter(*fra, s=20, c='r', marker="o", label='fractals (H=0.8, Ft=0.5)',edgecolors=None)   

148. ax1.scatter(*loc, s=20, c='k', marker="o", label='circles',edgecolors=None)   

149. plt.legend(loc='upper left')   

150. plt.xlim(-0.001,1)   

151. plt.ylim(-0.1,50)   

152. plt.xlabel("Critical Footprint (*100)") #Measured in % cells   

153. plt.ylabel("Perimeter") #Measured in pixels   

154. plt.title('Perimeter Comparison')   

155. plt.grid('on')   

156. plt.show()    

157.    

158. #Bar chart with bins   

159. labels = ['0-10%','11-20%','21-30%','31-40%','41-50%','51-60%','61-70%','71-80%','81-90%','91-

100%']   

160. x = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]   

161. df=pd.DataFrame([average_fra,average_loc])   

162. df.columns=['0-10%','11-20%','21-30%','31-40%','41-50%','51-60%','61-70%','71-80%','81-

90%','91-100%']   

163. df.index=['Fractal','Localized']   

164. df.T.plot(kind='bar', title='Binned comparison (perimeter vs perimeter)',grid=True, color=['re

d','black'])   

165. plt.xlabel("Critical Footprint")   

166. plt.ylabel("Average Perimeter")   

167. plt.xticks(rotation=45)   

168. plt.ylim(0, 50)   

169. plt.tight_layout()   

170. plt.legend(["Fractals (H=0.8, Ft=0.5)", "Circles"],fontsize=9);   

171. plt.show()  
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5 Synthetic models of infrastructure networks  
 

Reference: paragraph 4.4.1 

1. """  

2. GENERATING INFRASTRUCTURE NETWORK MODELS  

3.   

4. Created on Tue Apr 11 10:27:16 2017  

5.   

6. @author: Francesco Castellani, Newcastle University - f.castellani2@ncl.ac.uk  

7. """   

8.    

9. import pickle   

10. import os   

11. import networkx as nx   

12. from pylab import *   

13. import matplotlib.pyplot as plt   

14.    

15.    

16. #Lattice Network (LN) | No seeds are required   

17. N=10 #Nodes per side   

18. G=nx.grid_2d_graph(N,N)   

19. labels = dict( ((i,j), i + (N-1-j) * N ) for i, j in G.nodes() )   

20. nx.relabel_nodes(G,labels,False)   

21. inds=labels.keys()   

22. vals=labels.values()   

23. inds=[(N-j-1,N-i-1) for i,j in inds]   

24. pos2=dict(zip(vals,inds))   

25. #Saving object as pickle   

26. pickle_dir=r'C:\Users\mydir'   

27. with open(pickle_dir+'\\LN.pickle', 'wb') as handle:   

28.   pickle.dump(G, handle)   

29.    

30.    

31. #Seeding for BA, WS, and ER   

32. from __future__ import division   

33. from collections import Counter   

34. seeds=range(300) #Same seeds for all networks   

35.    

36.    

37. #Barabasi-Albert Scale-Free Network (BA) | Seeds: 1 through 300   

38. BA={}   

39. for j in seeds:    

40.     m=2  #Number of initial links   

41.     n=100 #Number of nodes   

42.     ncols=10 #Number of columns in a 10x10 grid of positions   

43.     G=nx.barabasi_albert_graph(n, m, seed=j)   

44.     pos = {i : (i // ncols, (n-i-1) % ncols) for i in G.nodes()}   

45.     BA[j]=G   

46. with open(pickle_dir+'\\BA.pickle', 'wb') as handle:   

47.   pickle.dump(BA, handle)   

48.        

49.    

50. #Watts-Strogatz Small-World Network (WS) | Seeds: 1 through 300   

51. WS={}   

52. for j in seeds:    

53.     n=100 #Number of nodes   

54.     ncols=10 #Number of columns in a 10x10 grid of positions   

55.     p=0.3 #Probability of rewiring   

56.     G=nx.watts_strogatz_graph(n,4,p, seed=j) #4=number of nearest neighbours   

57.     pos = {i : (i // ncols, (n-i-1) % ncols) for i in G.nodes()}   

58.     WS[j]=G   

59. with open(pickle_dir+'\\WS.pickle', 'wb') as handle:   

60.   pickle.dump(WS, handle)   

61.      

62.      
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63. #Erdos-Renyi Random Network (ER) | Seeds: 1 through 300   

64. ER={}   

65. for j in seeds:    

66.     n=100 #Number of nodes   

67.     ncols=10 #Number of columns in a 10x10 grid of positions   

68.     p=0.0385 #Probability of connecting to an existing node   

69.     G=nx.erdos_renyi_graph(n,p,seed=j)   

70.     pos = {i : (i // ncols, (n-i-1) % ncols) for i in G.nodes()}   

71.     ER[j]=G   

72. with open(pickle_dir+'\\ER.pickle', 'wb') as handle:   

73.   pickle.dump(ER, handle)   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix 

 

208 

 

6 Superimposition of the Hazard Loading on the synthetic infrastructure network models  
 

Reference: paragraph 4.5.1 

1. """  

2. APPLYING THE FRACTAL HAZARD LOADING TO A BARABASI-ALBERT SCALE-FREE NETWORK (BA)  

3. The BA model is used as an example. To simulate the loading of other models,  

4. just change the network object according to the script at point 5.  

5.   

6. Created on Tue Apr 11 11:00:01 2017  

7.   

8. @author: Francesco Castellani, Newcastle University – f.castellani2@ncl.ac.uk 

9. NB: Low Ft = Scenario S1, High Ft = Scenario S2  

10.   

11. """   

12.    

13. from __future__ import division   

14. import networkx as nx   

15. import math   

16. from pylab import *   

17. import matplotlib.pyplot as plt   

18. import pandas as pd   

19. import random   

20. import pickle   

21. import numpy   

22. from collections import OrderedDict    

23. import itertools   

24. import os   

25.    

26. #Final container (dict of pandas DataFrames)   

27. BA_ensemble={}   

28. BA_ens_gra_post_attack={} #Dict with all post-attack graphs later dumped to a pickle    

29.    

30. #Seeds   

31. seeds=sorted(random.sample(range(300), 300)) #300 seeds=300 networks (0-299)   

32.    

33. #Load dict of events & select relevant events   

34. pickle_dir_1=r'C:\Users\mydir'   

35. events=pickle.load(open(pickle_dir_1+'\\fractal_events_50k.p',"r"))    

36. #There needs to be a pickle containing all the fractal footprints generated with the script at 

point 2. This pickle is a dictionary containing numpy 2D arrays of the fractal objects.   

37. sel_events={}   

38. for i,event in enumerate(sorted(events.keys())):   

39.     if i>=2000 and i<4000: #Low Ft | Scenario S1   

40.         sel_events[event]=events[event]     

41.     if i>=46000 and i<48000: #High Ft | Scenario S2   

42.         sel_events[event]=events[event]   

43.        

44. #Load excel file with hotspot locations   

45. xls = pd.ExcelFile('C:\Users\Hotspots_Coordinates.xlsx') #There needs to be a file containing 

the hotspot coordinates for each fractal footprint   

46. lowft=xls.parse(sheetname='Low_Ft',converters={'event':str,'x (column)':int,'y (row)':int}) #(

x,y) Low Ft   

47. highft=xls.parse(sheetname='High_Ft',converters={'event':str,'x (column)':int,'y (row)':int}) 

#(x,y) High Ft   

48.    

49. #Ensemble of networks and spatial hazard loading   

50. #The network classes are generated in this code right away, but could be loaded from a pickle 

  

51. for s in seeds:    

52.    

53.     m=2  #Number of initial links   

54.     n=100 #number of nodes   

55.     N=ncols=10 #Number of columns in a 10x10 grid of positions   

56.     G=nx.barabasi_albert_graph(100, m, seed=s)   

57.     pos = {i : (i // ncols, (n-i-1) % ncols) for i in G.nodes()}   
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58.        

59.     #Connected neighbors   

60.     connected_neigh={}   

61.     all_nodes=G.nodes()   

62.     for j, e in enumerate(all_nodes):   

63.     connected_neigh[e]=G.neighbors(e)   

64.    

65.     #The 4 main hubs and their cumulative degree (pre-attack)   

66.     main_hubs=[]   

67.     sort_deg = sorted(G.degree().items(), key=lambda value: value[1]) #Sorting nodes by their 

egree (highest to lowest)   

68.     main_hubs.append(sort_deg[-1])   

69.     main_hubs.append(sort_deg[-2])   

70.     main_hubs.append(sort_deg[-3])   

71.     main_hubs.append(sort_deg[-4])   

72.     cum_pre=0   

73.     hubs_ID=[]   

74.     for i,j in enumerate(main_hubs):   

75.         cum_pre=cum_pre+main_hubs[i][1]    

76.         hubs_ID.append(main_hubs[i][0])   

77.    

78.     #Stress Centrality for each node (pre-attack)   

79.     max_stress_centrality=OrderedDict()   

80.     for n in G.nodes(): max_stress_centrality[n]=0   

81.     for n in G.nodes():   

82.         for j in G.nodes():   

83.             if (n!=j):   

84.                 try:   

85.                     gener=nx.all_shortest_paths(G,source=n,target=j)   

86.                     for p in gener:   

87.                         for v in p: max_stress_centrality[v]+=1   

88.                 except nx.NetworkXNoPath: #If nodes n and j are not connected   

89.                     continue   

90.    

91.     #The empty dicts for storing the four metrics   

92.     size_n=OrderedDict()           #Size(N) (active nodes after 2nd order failures)   

93.     rhc=OrderedDict()              #RHC=Retained Hub Connectivity   

94.     fragmentation=OrderedDict()    #Fragmentation   

95.     cfi=OrderedDict()              #Cross-Flow Index   

96.    

97.     #The rest    

98.     fail_1=OrderedDict() #Failed 1st Phase (1st order)   

99.     act_1=OrderedDict() #Active 1st Phase (1st order)   

100.     fail_2=OrderedDict() #Failed 2nd Phase (2nd order)   

101.     fail_tot=OrderedDict() #Tot failed nodes (1+2)   

102.     act_tot=OrderedDict() #Final active nodes (after 2nd order failures)   

103.     event_order=[]   

104.     crit_foot=[]   

105.     iterator=[]   

106.     filename=[]   

107.    

108.     #Read in the fBm events from the dict of events   

109.     order=sorted(sel_events.keys())   

110.     for i, event in enumerate(order):   

111.    

112.         print ('BA'),   

113.         print ('| seed: '+str(s+1)+' of 300'),   

114.         print ('| event: '+str(event))   

115.    

116.         post_attack_graphs={} #Stores the post-attack graphs   

117.    

118.         iterator.append(i)   

119.         Hurst=float(order[i][0:2])/10   

120.         fail_thre=float(order[i][2:4])/10   

121.         event_no=int(order[i][4:8])   

122.         event_order.append(event_no)   

123.         filename.append(event)   
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124.         crit_foot.append(round(sel_events[event][1],2)) #Critical Footprint (spatial extent of

 events)   

125.         fractal=sel_events[event][0] #ndarray   

126.         fractal_to_list=fractal.tolist() #to list of lists   

127.         merged_fra=list(itertools.chain(*fractal_to_list)) #to flat list   

128.         loading=[merged_fra[i:i+(N+1)] for i in range(0, len(merged_fra), (N+1))] #row-

wise ordered list of loading values   

129.         H=G.copy() #Copy of the graph   

130.    

131.         #Create a dictionary which has the cell ID as key and the fBm value as value (Indexing

 the 2D mesh grid)   

132.         cellid=numpy.arange(0,((N+1)*(N+1)),1) #When populating the dictionary, read the celli

d from this array   

133.         cellid_list=cellid.tolist() #Convert the numpy array into a list to allow dictionary o

perations later on   

134.         proper_cellid_list = [cellid_list[i:i+(N+1)] for i in range(0, len(cellid_list), (N+1)

)] #This is the list later used in dictionarize1   

135.         fra_dict={} #The dictionary containing the cell ID and the fBm value    

136.         for index, n in enumerate(cellid_list): #For loop to populate the dictionary   

137.             fra_dict[n]=merged_fra[index] #Dictionary with the pair: cell ID, loading value   

138.         nodeid=numpy.arange(0,(N*N),1) #Do not delete. It is used later   

139.            

140.         #Create a dictionary in which each key is a node ID, and which value is a tuple (x1,x2

,x3,etc.) containing the neighboring cells   

141.         #The Assignation List   

142.         def dictionarize1(array):   

143.             dict1 = {}   

144.             count = 0   

145.             for x in range(len(array[0]) - 1):   

146.                 for y in range(len(array[0]) - 1):   

147.                     dict1[count] = [array[x][y], array[x][y+1], array[x+1][y], array[x + 1][y+

1]]   

148.                     count = count + 1   

149.             return dict1   

150.         neighborhood=dictionarize1(proper_cellid_list) #This dictionary has the node ID as key

 and the cell IDs of the neighboring cells   

151.    

152.         #Create a dictionary in which each key is a node ID, and its input value is the avg va

lue of the 4 neighboring cells (defined as per the neighborhood dictionary)   

153.         def dictionarize2(array):   

154.             dict2 = {}    

155.             counter = 0   

156.             for a in range(len(array[0]) - 1):   

157.                 for b in range(len(array[0]) - 1):   

158.                     dict2[counter] = (array[a][b] + array[a][b+1] + array[a+1][b] + array[a+1]

[b+1])/4   

159.                     counter = counter + 1   

160.             return dict2   

161.         neigh_mean=dictionarize2(loading) #This dictionary has the node ID as key and the avg 

neighborhood value from fBm as value   

162.            

163.         #1st order failures    

164.         nodeid_list=nodeid.tolist()   

165.         status_haz={} #Store the node ID (labels) and the status after the event (1=active, 0=

failed).   

166.         for index, n in enumerate(nodeid_list): #for loop to populate the dictionary   

167.             status_haz[n]=1 #The status_haz dictionary is initiated with all nodes active (sta

tus=1)   

168.         for key in status_haz.keys(): #This will evaluate if the threshold is surpassed or not

 for each node (ID)   

169.             if (neigh_mean[key]>fail_thre):   

170.                 status_haz[key]=0   

171.             else:   

172.                 status_haz[key]=1   

173.         node_status=numpy.array(status_haz.items(),dtype=int) #A 2D array to store the pairs (

Node ID, status) failed at Stage 1   

174.         act_nodes_haz=sum(1 for x in status_haz.values() if x==1)   
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175.         failed_nodes_haz=(N*N)-act_nodes_haz       

176.            

177.         #Remove 1st order failed nodes from graph    

178.         G1=dict((k, v) for k, v in status_haz.items() if v < 1) #All nodes that have failed du

ring Phase 1   

179.         H.remove_nodes_from(G1)    

180.    

181.         if len(H)==0 or len(H)==100: #If graph is all failed or 100% active   

182.             failed_nodes_model=0 #No 2nd order failures   

183.    

184.         else:   

185.             #2nd order failures    

186.             still_active_haz=dict((k, v) for k, v in status_haz.items() if v == 1) #A dictiona

ry with all nodes that have not failed at Stage 1 (a filtered version of status_haz where all 

nodes have status=1)   

187.             nodeids=sorted(still_active_haz.keys()) #The IDs of the nodes that are still activ

e, sorted smallest to largest   

188.             neigh_still_active={} #For each active node, this carries its connections    

189.             for k in nodeids:   

190.                 neigh_still_active[k]=connected_neigh[k] #This will hold the connected nodes o

f all nodes that are still active (status=1) - a filtered version of connected_neigh (Node ID,

 [connected IDs])   

191.             status_nodes_model={} #The dict containing information of possibly failed nodes (N

ode ID, status=0 or 1) after modeling   

192.             for k in neigh_still_active.keys():   

193.                 temporary_neigh=neigh_still_active.get(k) #Picks up the list of connected node

s associated with each node                           

194.                 temporary_status=[0 for x in range(len(temporary_neigh))] #This list will stor

e the status of the connections of node k   

195.                 for index, val in enumerate(temporary_neigh):   

196.                     if status_haz[val]==0: #If the connection i of node k has failed   

197.                         temporary_status[index]=0 #It is assigned 0   

198.                     else:   

199.                         temporary_status[index]=1 #Else, it is assigned 1   

200.                 temp_status=0 #This is a boolean. After the for loop it will give 0 if all con

nections have failed and 1 if at least 1 connection is active   

201.                 for i, val in enumerate(temporary_status):   

202.                     if temporary_status[i]==0: #If a connection has failed   

203.                         temp_status=0 #Temp_status takes on "0" and the loop goes on to check 

the next connection   

204.                     else: #If a connection has not failed   

205.                         temp_status=1 #Temp_status takes on "1" and the loop goes on to check 

the next connection         

206.                 status_nodes_model[k]=temp_status #To fill this dictionary with the format (No

de ID, status=0 or 1) to see who has failed due to connections and who has not   

207.             act_nodes_model=sum(1 for x in status_nodes_model.values() if x==1)   

208.             failed_nodes_model=act_nodes_haz-

act_nodes_model #Number of failed nodes due to modeled interactions   

209.    

210.         #Remove 2nd order failed nodes from graph   

211.         if len(H)>0 and len(H)<100:   

212.             G2=dict((k, v) for k, v in status_nodes_model.items() if v < 1) #All nodes that ha

ve failed during Phase 2   

213.             H.remove_nodes_from(G2)    

214.    

215.         #Removing isolated nodes   

216.         rem = [node for node,degree in H.degree().items() if degree <1] #len(remove) is an add

itional share of failed nodes   

217.         H.remove_nodes_from(rem) #To get rid of nodes with degree=0 that otherwise are plotted

 and counted as active    

218.    

219.         #Save event statistics    

220.         if sel_events[event][1]==100: #Critical Footprint=100%   

221.             size_n[event]=0   

222.             fail_1[event]=100   

223.             fail_2[event]=0   

224.             act_tot[event]=0   
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225.             fragmentation[event]=0   

226.         if sel_events[event][1]==0: #Critical Footprint=0%   

227.             size_n[event]=100   

228.             fail_1[event]=0   

229.             fail_2[event]=0   

230.             act_tot[event]=100   

231.             fragmentation[event]=1    

232.         else:   

233.             fail_1[event]=failed_nodes_haz                                                    

        

234.             act_1[event]=(N*N)-

fail_1[event]                                                    

235.             fail_2[event]=failed_nodes_model+len(rem)                                         

                

236.             fail_tot[event]=fail_1[event]+fail_2[event]               

237.             size_n[event]=len(H)  #Size(N)                                                    

                                           

238.             act_tot[event]=(N*N)-fail_tot[event]    

239.             fragmentation[event]=nx.number_connected_components(H) #Islands   

240.    

241.         #Stress Centrality for post-attack networks   

242.         if len(H)<=2:   

243.             cfi[event]=0   

244.         if len(H)>=98:   

245.             cfi[event]=1   

246.         else:   

247.             counts=OrderedDict()   

248.             for n in H.nodes(): counts[n]=0   

249.             for n in H.nodes():   

250.                 for j in H.nodes():   

251.                     if (n!=j):   

252.                         try:   

253.                             nx.bidirectional_dijkstra(H, n, j)   

254.                             gener=nx.all_shortest_paths(H,source=n,target=j)   

255.                             for p in gener:   

256.                                 for v in p: counts[v]+=1   

257.                         except nx.NetworkXNoPath:   

258.                             continue   

259.        

260.             altered_shortest_paths = counts.values() #List with values   

261.             post_attack_cfi={k: float(counts[k])/max_stress_centrality[k] for k in counts.view

keys() & max_stress_centrality.viewkeys()} #Dict with final values   

262.             post_attack_cfi_values=post_attack_cfi.values()   

263.             denom=len(post_attack_cfi_values)   

264.             numer=sum(post_attack_cfi_values)   

265.             cfi[event]=round(numer/denom,2)   

266.    

267.         #Post-attack cumulative degree of the main hubs   

268.         #Not used in the paper   

269.         cum_post=0   

270.         for i,j in enumerate(hubs_ID):   

271.             if hubs_ID[i] not in H.nodes():   

272.                 continue   

273.             else:   

274.                 cum_post=cum_post+H.degree(j)   

275.         rhc[event]=round(cum_post/cum_pre,3)   

276.    

277.         #Distance main hub-hotspot (format is column, row)   

278.         hubs_loc=[] #List with all (x,y) coordinates of the main hub   

279.         mainhub=str(main_hubs[0][0]) #Select the most highly connected hub   

280.         column=int(mainhub[0]) #Column is always first digit in "mainhub"   

281.         if len(mainhub)==1: #If node is 0-9, row is 0   

282.             row=0   

283.         else:   

284.             row=int(mainhub[1]) #Else, row is second digit in "mainhub"   

285.         coord=(column,row)   

286.         hubs_loc.append(coord)   
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287.            

288.         post_attack_graphs[event]=H #Dumps the graph into a dictionary   

289.    

290.     BA_ens_gra_post_attack[s]=post_attack_graphs #Dict of dicts; 1 seed=4000 graphs   

291.    

292.     #Building the lists composing each pandas DataFrame   

293.     #1)   

294.     dataframe_events=order #The event name, e.g. '06030001' to '10072000' | First two digits: 

H value; Next two digits: failure threshold value; Last four digits: progressive event number 

1-2000   

295.     #2)   

296.     spa_ext=crit_foot #The spatial extent of the fractal events   

297.     #3)   

298.     sizen=size_n.values() #Size (N)   

299.     #4)   

300.     first_order=fail_1.values() #1st order failures   

301.     #5)   

302.     second_order=fail_2.values() #The list of 2nd order failures for the 4000 events of the cu

rrent seed   

303.     #6)   

304.     ret=rhc.values() #Retained Hub Connectivity   

305.     retained=[1 if x>1 else x for x in ret] #Bringing all outliers down to rhc=1   

306.     #7)   

307.     frag=fragmentation.values() #Number of islands or connected components   

308.     #8)   

309.     cr=cfi.values() #Cross-Flow Index   

310.     cro=[0 if math.isnan(x) else x for x in cr] #To convert all "nan" values to zero   

311.     cross=[1 if x>1 else x for x in cro] #Bringing all outliers down to cfi=1   

312.     #9)   

313.     distances=[] #List with distances hotspot-main hub   

314.     dist_df=pd.concat([lowft,highft], axis=0,ignore_index=True) #Putting all hotspot locations

 together   

315.     for i in range(0,4000):   

316.         if dist_df.ix[i,1]==-9999 or dist_df.ix[i,2]==-9999:   

317.             dist=-9999   

318.         else:    

319.             dist=round(math.sqrt((dist_df.ix[i,1]-hubs_loc[0][0])**2+(dist_df.ix[i,2]-

hubs_loc[0][1])**2),3) #Euclidean distance   

320.         distances.append(dist)   

321.     hotsp_dist=[v/10 if v >0 else v for v in distances] #List of normalized distances to be lo

aded into the DataFrame   

322.    

323.     #Creating the Dataframe   

324.     df=pd.DataFrame({'event':dataframe_events,'Footprint (%)':spa_ext,'Size (N)':sizen,   

325.                      '1st order failures':first_order,'2nd order failures':second_order,'RHC':

retained,   

326.                      'Fragm':frag,'CFI':cross,'Distances':hotsp_dist})   

327.     #Re-ordering   

328.     df=df[['event','Footprint (%)','Size (N)','1st order failures','2nd order failures','RHC',

'Fragm','CFI','Distances']] #Re-order   

329.    

330.     #Loading the DataFrame into the final dictionary   

331.     BA_ensemble[s]=df   

332.    

333. #Dumping the dict into the final pickle   

334. folder=r'C:\Users\mydir\BA_ensemble'   

335. os.chdir(folder)    

336. pickle.dump(BA_ensemble,open('BA_ens_300seeds.p','w')) #The final data   

337. pickle.dump(BA_ens_gra_post_attack,open('BA_ens_post_attack.p','w'))  #Final networkx objects 
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Case Study 2 
 

Owing to confidentiality agreements signed before Case Study 2 was undertaken, the 

scripts used in that section of this thesis cannot be released to the general public. Such limitation 

covers both the asset dataset and the wind gust datasets, which are considered as sources of 

sensitive information. As a consequence, only very short lists of instructions are allowed to be 

released. Whilst these scripts do not document the exact steps undertaken to achieve the results, 

they can be used as a reference to build similar studies regardless of the programming language 

used. The following pages contain the instructions used to: 

1. Extract grids from the wind gust dataset and convert their coordinates from 

geographic to projected (see paragraph 5.2.2); 

2. Pre-process asset dataset (see paragraph 5.3.1); 

3. Identify network partitions (see paragraph 5.5.1); 

4. Apply fragility models (see paragraph 5.6); 

5. Compute systemic indicators (see paragraph 5.7). 

 

List 1: Extract grids from climate dataset and convert their coordinates from 

geographic to projected 

 

1.1 Load files from Climate Model, typically NetCDF; 

1.2 Identify where the actual grid containing the values is located; 

1.3 Extract the grid and determine spatial and temporal resolution; 

1.4 Extract information on the original geographic coordinate system, as well as the rotation, 

encoded in the NetCDF file; 

1.5 Convert geographic coordinates to projected systems, such as the British National Grid, and 

plot; 

1.6 Repeat procedure for all files in a loop, if a time series is available. 

 

List 2: Pre-process asset dataset 

 

2.1 Load files with asset dataset, typically a shapefile; 

2.2 Ensure the coordinate system is the same as that in List 1, to enable the grids with climate 

data and the asst dataset to be plotted in the same map; 

2.3 Ensure there are no gaps, undershootings, or overshootings in the asset dataset, as these will 

create an invalid topological object; 

2.4 Convert pre-processed shapefile into topological object (e.g., graph) using the available 

tools (e.g., Python’s NetworkX). 
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List 3: Identify network partitions 

 

3.1 Identify substations of different voltages in the asset dataset; 

3.2 Identify substations of voltage v1 that are directly fed by substations of voltage 

v2>v1; 

3.3 One possible partition is composed of the overhead lines connecting substations of 

voltage v1 with substations of voltage v2>v1; 

3.4 If available, incorporate information regarding switches and loops, which are 

typically visible in the shapefile mentioned in List 2. 

 

List 4: Apply fragility models 

 

4.1 Identify the correct fragility models for the climate loading considered; 

4.2 Evaluate length of the partitions, as the models might return the likelihood of failure 

normalized with respect to a reference length (in Cast Study 2, for instance, this 

was 1000 km); 

4.3 Identify which cell grid is proximal to which node or edge in the network by 

overlaying them in a plot (use ArcGIS or QGIS); 

4.4 Use the climatic loading of that cell as input value for the fragility model in the 

proximity of that cell, where the closest nodes or edges are; 

4.5 Compute the likelihood of failure as a result of points 4.3 and 4.4. 

 

List 5: Compute systemic indicators 

 

5.1 Identify suitable systemic indicators; 

5.2 Identify temporal scale for the systemic indicators (e.g., daily, monthly, yearly); 

5.3 Identify relationship between systemic indicators and climatic loading (e.g., 

𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠 = 𝑓(𝑤𝑖𝑛𝑑 𝑠𝑝𝑒𝑒𝑑)); 

5.4 Compute systemic indicators for each partition; 

5.5 Consider plotting the values for each partition to identify the most vulnerable ones; 

5.6 Consider computing occurrence of cascading failures given the identified partitions 

and dependencies; 

5.7 Consider plotting the risk of cascading failures and the customer base exposed to 

that. 
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