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Abstract 

The treatment performance of small WWTPs (< 250 PE) in England is not well 

understood and their ecological impact may be underestimated. However, the critical 

role such systems play in ensuring sustainable wastewater management, means 

they can no longer be neglected. The aim of this thesis, therefore, was to provide 

new data, understanding and analytical approaches to improve the management of 

existing, small WWTPs. Firstly, through an extensive sampling campaign, we found a 

significant difference (p < 0.05) between the effluent quality discharged from twelve 

small and three larger WWTPs across a range of abiotic parameters. Specifically, 

mean removal rates at the small plants were 67.3 ± 20.4%, 80 ± 33.9% and 55.5 ± 

30.4% for sCOD, TSS and NH4-N (± standard deviation), respectively, whereas 

equivalent rates for larger plants were 73.3 ± 17.6%, 91.7 ± 4.6% and 92.9 ± 3.7%. A 

Random Forest classification model accurately predicted the likelihood of a small 

WWTP becoming unreliable. Among the important predictors was population 

equivalence, suggesting the smallest WWTPs may require particularly stringent 

management. Quantifying, in the raw and treated wastewater samples, three genetic 

faecal markers targeting Bacteroides and two targeting E. coli, revealed that human-

associated Bacteroides markers have the greatest potential as alternative 

performance metrics at small WWTPs, however, all markers were influenced by 

seasonality. Next, the problem of predicting flows at small scales was overcome 

using an inverse approach to solve a linear reservoir function (NSE = 0.77 – 0.93). 

The model was combined with the field data to generate pollutant loads and 

investigate the effect of influent peak loading of COD on the final effluent quality at 

small discharges. Simple tools developed, here, provide wastewater managers with 

new techniques to improve the operation and increase the understanding of small 

WWTPs. Growing awareness of the need for sustainable wastewater and water 

resources management makes the work both timely and of global relevance.  
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Chapter 1. Introduction 

Wastewater management infrastructure accounts for approximately 1% of global 

gross domestic product (Ashley & Cashman, 2007) and is central to public and 

environmental health. Considering also, the geopolitical complexity surrounding the 

growing demand for water resources, the effective treatment of wastewater has 

never been a greater priority. However, globally, there is an overreliance on aging 

wastewater infrastructure which Eggimann et al. (2018) suggest leads a conservative 

industry to technological dependence and is blocking the emergence of innovations 

in operational management and technology development. This is a particular concern 

in rural and remote areas in England. Regulatory conditions (EA, 2018b) mean that 

decentralised wastewater treatment plants (WWTP; Figure 1) have historically been 

neglected. The reduced regulatory control invokes limited management, monitoring 

and data which, in turn, results in an incomplete understanding of system 

performance and discharge impact (Istenic et al., 2015; Eggimann et al., 2017). 

Thus, there is an over dependence not only on traditional technologies, but also 

traditional understanding that could be derived from data collected at centralised 

systems that do not accurately reflect the behaviour or form of their smaller 

counterparts.  

The transition to more sustainable wastewater management has primarily focussed 

on centralised assets through the application of such innovations as natural gas 

production from the anaerobic digestion of wastewater sludge and minimised energy 

consumption. However, an exclusive focus on centralised infrastructure is of limited 

benefit and a mix of well-managed, decentralised and centralised investment is 

essential for long-term sustainability (Eggimann et al., 2018). The economic benefits 

of this approach become apparent when considering the institutional capacity and 

financial commitment required to support a large and complex infrastructure (Sadoff 

et al., 2015). Such attributes have been a barrier to the centralised sewer connection 

rates in non-OECD countries in particular (Sadoff et al., 2015), which remain low. 

However, the poor reputation of traditional, small-scale WWTPs is perhaps also to 

blame for limited progress towards achieving the ambitions of Sustainable 

Development Goal 6 (McDonald et al., 2014; United Nations, 2018). Therefore, the 

importance of improved understanding and management of existing, small-scale 

wastewater systems is timely and of global relevance. 
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Figure 1 - Examples of small WWTPs in NE England. Clockwise from top-left, 
technologies are trickling filter, high performance aerated filter, rotating biological 
contactor and activated sludge. 

Knowledge gained from the development of centralised wastewater management, 

whilst perhaps of limited bearing to small scales, should not be discounted. It has 

contributed to step-changes in public health improvement through the eradication of 

diseases such as cholera, and ecological improvements that have increased the 

amenity and accessibility of watercourses. However, there is a clear need to translate 

this understanding to smaller systems and develop tools specifically for small-scale 

applications. One such example is related to treatment performance metrics. In 

England and elsewhere, final effluent discharge regulations are predominantly driven 

by the potential for adverse ecological impact and do not typically apply to small-

scale systems (EA, 2018b). With growing interest in decentralised water reuse 

(Wilcox et al., 2016; Leong et al., 2017; Jonasson & Kandasamy, 2017) and the key 

role small-scale systems might play in addressing sanitation problems in non-OECD 

countries (Graham et al., 2019), it is important to consider alternative treatment 

performance metrics. Recent advances in genetics has allowed the development of 

rapid, highly specific molecular techniques for aiding the quantification of water 

pollution health risks. Such techniques present a new opportunity for health-driven 

wastewater management that might be particularly useful for assessing and even 

designing, small-scale WWTPs.  
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This thesis describes the development and application of simple, mathematical tools 

and analysis approaches to improve the management of small WWTPs, with a 

specific focus on rural areas in North-East (NE) England. The geographical region of 

interest covers the Northumbrian Water Ltd. wastewater operational area, which 

extends from the England-Scotland border in the North to the North Yorkshire Moors 

in the South; from the East coast of England to Alston, Cumbria in the West. Simple 

tools have been chosen, specifically, to encourage adoption, by wastewater 

managers, of the assessment techniques demonstrated in this thesis. The word 

‘simple’ in this context refers to the conceptual theory underpinning the analysis 

approach. For example, the use of a lower number of predictor variables in numerical 

models. Such a philosophy has been applied extensively across a broad range of 

fields, including economics, genetics and geophysics (Barro, 1988; Shiraishi et al., 

2015; Braun et al., 2016). It is particularly appealing for use in informing the 

management of small WWTPs because of the often-limited data requirements of 

simple models.  

1.1 Aims and Objectives 

The aim of this study, therefore, was to provide new data, understanding and 

analytical approaches to improve the management of existing, small WWTPs. The 

aim was met by fulfilling the following objectives: 

1. Improve understanding of the effect of scale and technology type on the 

performance and stability of small WWTPs. 

2. Evaluate the potential of genetic faecal markers for assessing small WWTPs 

and thereby, provide insight into the potential impact of their discharges on 

upper catchment water quality. 

3. Evaluate the influence of wastewater flow rate characteristics on the treatment 

performance of small WWTPs. 

1.2 Thesis Structure 

The thesis consists of seven chapters, including this Introduction. Chapter 2 is a 

literature review which provides the reader with sufficient knowledge to interpret the 



 22 
 

presented research. The review includes a summary of important and recent 

literature relating to, different types of small WWTP, the use of genetic faecal 

markers as health-risk indicators and, the prediction of wastewater flow rates. This is 

followed by the presentation of findings from four studies. Firstly, an extensive 

sampling programme provided data on the treatment performance of twelve small 

WWTPs and facilitated the development of a simple, reliability prediction 

methodology. Using DNA extracted from the same samples, genetic faecal markers 

were quantified and proposed as an alternative treatment performance metric for 

small WWTPs. Chapter 5 describes the development of a flow prediction tool to 

overcome the lack of flow monitoring data at most small WWTPs. The final research 

study draws together Chapters 3, 4 and 5, by applying the flow prediction model to 

assess the impact of flow characteristics on treatment performance. Finally, the 

thesis is concluded in Chapter 7.  
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Chapter 2. Literature Review 

2.1 Defining Small-scale Wastewater Treatment 

Small-scale, decentralised wastewater treatment involves the collection and 

treatment of wastewater close to the point of production (Crites & Tchobanoglous, 

1998). Definitions of ‘small’ are inconsistent across literature and usually chosen for 

relevance to local context which may be driven by regulation or the availability of 

different technologies. For example, in 2003, the European Commission defined 

decentralised WWTPs as being less than 5000 population equivalent (PE; Berland et 

al., 2003). Whereas, the European Committee of Standardization defined ‘small’ as 

applying only to WWTPs serving less than 50 PE (CEN, 2005). Gutterer et al. (2009) 

and Wendland & Albold (2010) chose an upper limit defined by volume, specifically 

1000 m3 wastewater treated per day, and more recently, Roefs et al. (2017) define 

‘neighbourhood-scale’ treatment systems as being between 600 and 1200 PE in their 

economic evaluation of centralised, decentralised and hybrid sanitation systems. The 

result of this inconsistency is that using literature to inform wastewater management 

strategies that consider small-scale technologies is complex and difficult. 

Interestingly, in England, the regulatory authorities do not draw a clear distinction 

between centralised and decentralised WWTPs based on size alone, but consider, 

also, the ecological impact of the final effluent discharge, irrespective of system size 

(EA, 2018b). Furthermore, van Afferden et al. (2015) suggest that the use of the term 

‘decentralised wastewater management’ should only be in reference to the distance 

from the point of production, which is consistent with that of Crites & Tchobanoglous 

(1998). Perhaps, this draws in to question the appropriateness of defining WWTPs by 

scale all together, which is something that this thesis explores.  

For the purposes of this thesis, ‘small’ is defined by regulatory guidance for England 

which indicates that all continuous wastewater discharges of less than 50 m3/day are 

exempt from numerical regulation, including flow rate monitoring (EA, 2018b). As 

stated, the exception being where effluent discharges to an ecologically sensitive 

water course targeted for improvements or limiting deterioration under legislation 

such as the Water Framework Directive (WFD) (EC, 2000). Where flow data are not 

available, PE is often used as a proxy for treatment volumes. In the UK, 250 PE 

equates to a treated flow of approximately 50 m3/day. For consistency, this approach 

has been adopted throughout the thesis. 
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2.2 The Case for Decentralisation  

Small-scale WWTPs should not be viewed as an alternative to centralised 

infrastructure, but rather, complementary to it (Van Afferden et al., 2015). In some 

instances, the use of small-scale WWTPs might be out of necessity. For example, 

where building sewers are considered uneconomical. However, there is a case to be 

made for the preferential use of small-scale WWTPs, particularly in regions 

experiencing rapid urbanisation (Wang, 2014). 

Traditionally, economies of scale have favoured centralised treatment which has 

been reflected in urban planning (Tihansky, 1974). However, the cost-benefit of 

centralised wastewater treatment has been called into question on several accounts. 

Firstly, because the majority of capital investment can be attributed to sewerage 

infrastructure, which may be up to 90% of the total capital cost (Maurer et al., 2005). 

The cost-benefit may, in reality, be a result of high population density, which would 

not necessarily be a benefit exclusive to centralised systems. In other words, if high 

population density minimises the length of sewerage infrastructure required, this 

applies regardless of whether the treatment facility is centralised or decentralised. 

Secondly, population growth forecasts up to thirty years in advance (as is typical) can 

lead to idle treatment capacity of up to 50% (Maurer, 2009). Evidently, this requires a 

large capital outlay to accommodate forecasting risk, which may be even greater at 

times of global economic uncertainty. Thus, money becomes tied up in the idle 

capacity of centralised assets. Conversely, when wastewater management is 

decentralised, the incremental development of infrastructure could negate the need 

for idle capacity. Wang (2014) improved the work of Maurer et al. (2009) by showing 

the effect of idle capacity on the net present value of a WWTP. The author 

demonstrated how under most circumstances, capital investment in decentralisation 

can be justified on the basis of cost saving by reducing idle capacity, even though the 

capital cost per PE might be greater than for a centralised WWTP.   

A common criticism of small WWTPs is that the management of them becomes the 

responsibility of the local community, or asset owners (in the case of a hospital or 

university, for example). Given the obvious requirement for technical expertise to 

carry out effective maintenance and ensure regulatory compliance, centralised 

management of decentralised WWTPs has been proposed on a number of occasions 

(Massoud et al., 2009; Jorsaraei et al., 2014). Gikas & Tchobolangous (2009) 
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highlight the benefits of such an approach and while their review specifically 

considers water reclamation, many of the principles apply. The authors demonstrate 

how a hybrid strategy could mitigate capacity limitations, account for increased 

population growth, and address water quality issues through centralised 

management; all factors of relevance to any wastewater management system. 

Additional benefits to a decentralised approach to wastewater management, which 

has been recognised in recent years, include: facilitating localised wastewater reuse 

(Tchobanoglous et al., 2004; Brown et al., 2010) and resource recovery (Ho, 2005; 

Hong et al., 2005; Ronteltap et al., 2007; Weber et al., 2007; Borsuk et al., 2008) 

smaller physical footprint and reduced aesthetic impacts (Brown et al., 2010).  

Whilst there are evidently benefits to decentralising wastewater management, or 

incorporating small-scale systems into an existing set-up, the performance of such 

systems must be considered relative to their larger counter-parts. Making 

comparisons between different small-scale technologies is difficult because of 

inconsistencies in experimental design, analytical methods and system size and 

generally, the lack of performance data across a range of metrics (Bunce et al., 

2018). Therefore, an aim of this thesis was to fill the data gap and present a robust 

comparison between different types of small WWTP. By way of background, a 

summary of traditional, novel and emerging technologies follows. 

2.3 Small Wastewater Treatment Technologies 

This section provides a brief overview of the wastewater treatment technologies 

typically employed in the UK, including those assessed in this study. The prevalence 

of particularly technologies is likely to be largely historical and varies between and 

within UK water company operating areas. The national asset base is dominated by 

trickling filter systems and this also is reflected at small scales, however other 

technologies also are prevalent. Recently, more sophisticated options have been 

chosen to comply with regulatory targets and/or achieve ecological ambitions. Such 

technologies, which at small scales typically are package plants, are of growing 

interest and so are considered, here.   

The intention is to provide sufficient information to effectively interpret the study; the 

intention is not, therefore, to provide an exhaustive review of all available literature 

relating to the technologies. However, key manuscripts have been considered and 
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are used to summarise the history, recent development, and treatment performance 

trends of different types of small WWTP.   

2.3.1 Septic tanks 

Septic tanks are generally regarded as the most rudimentary treatment system and 

yet widely considered the ‘standard’ for single-household wastewater treatment. 

Despite being over 120 years old, the technology remains generally unchanged and 

systems can range in size from 1 PE to 200 PE or larger (Siegrist, 2017). Briefly, 

wastewater flows into a concrete tank and is ‘treated’ by settling of particulate matter, 

which is then degrades anaerobically. A two-stage version of the septic tank, known 

as the Imhoff Tank, separates the degradation step (i.e., digestion) from solids 

settling. Although common in emerging and developing countries, new installations of 

the Imhoff Tank have largely been phased out in the UK since the 1950s.  

Several recent studies have attempted to quantify the potential impact of septic tank 

effluent discharges on surface water quality in the UK.  their study of 32 septic tanks 

in Scotland. Final effluent concentrations of chemical oxygen demand (COD) ranged 

from 48 - 5514mg/L, ammonium (NH4-N) ranged from 0.03 – 144 mg/L and total 

phosphorus (TP) ranged from 0.2 – 32.5 mg/L (Withers et al., 2011, 2012; Richards 

et al., 2016). These studies highlight the common problem of highly variable 

treatment performance which may be linked to operational maintenance (e.g., sludge 

removal) or incorrect sizing. Whilst the septic tanks assessed were generally for 

single occupancy properties, the performance ranges also apply for larger systems 

(Siegrist, 2017).  

Various attempts have been made to enhance or modernise the septic tank. 

Features including the simple addition of baffle systems (Nasr & Mikhaeil, 2015) or 

complex adaptation to enhance the functionality of the system beyond simply treating 

wastewater (e.g., methane for a combine heat and power plant; (Park, 2015). In a 

recent example, baffling was used to create a multi-chamber system and  intermittent 

aeration was provided to create an aerobic zone (Abbassi et al., 2018). The authors 

report mean COD effluent concentrations of 88 (± 35) mg/L and mean effluent NH4-N 

of 39.8 (± 22) mg/L from pilot-scale systems operating under a hydraulic loading rate 

of 2 m3/day. Whilst the average treatment performance is encouraging, operational 

variability is wide and the relative economic or environmental value of modifying an 
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aging septic tank versus replacing the system with a similarly configured package 

plant, must be called into question.  

In the UK, the General Binding Rules: Small Sewage Discharge to a Surface Water, 

state that, “discharges from [privately owned] septic tanks directly to a surface water 

are not allowed” (EA, 2018a). Instead, septic tanks must be replaced by package 

treatment plants. Water and wastewater companies in the UK are not required to fulfil 

the same obligations. In contrast, in the USA, no septic tank effluent can be 

discharged into a ditch, stream, lake or ocean without additional treatment, 

regardless of ownership (Siegrist, 2017). 

2.3.2 Constructed wetlands 

Constructed wetlands rely on the replication of processes that occur in natural 

wetlands and can result in the degradation of pollutants by chemical, biological and 

physical means (Castellar et al., 2018). They generally provide better treatment 

performance than a natural wetland because the hydraulic regime can be engineered 

and is more easily controlled (Polprasert, 2004). Their low aesthetic impact, relatively 

low cost and simple operation are reasons for their growing appeal as sustainable 

solutions for rural wastewater treatment (Nivala et al., 2013, 2019). Variations in 

system design range from simple, passive horizontal flow to highly engineered and 

complex systems that involve pumping and mechanical aeration (Fonder & Headley, 

2016). The development of different systems has been inter-disciplinary and 

international, which has led to a plethora of design specifications, driven by local 

regulatory requirements for planning and ecological protection (Nivala et al., 2013). 

Therefore, there are no internationally adopted design standards which makes 

comparison between systems difficult. Wetlands are particularly common for 

individual houses or clusters of properties. For example, in Austria, 40% of WWTPs 

serving communities of less than 50 PE installed since 2000 are constructed 

wetlands (Langergraber & Weissenbacher, 2017). Interestingly, installation numbers 

peaked in 2011, which may have been a result of achieving regulatory compliance; 

the reason is unclear.  

Traditional constructed wetlands consist of water-tolerant vegetation grown in gravel 

and/or sand through which wastewater flows horizontally on or below the surface 

(i.e., free-flowing or horizontal sub-surface flowing) (Wu et al., 2014). In contrast, 

more recently developed vertical sub-surface flow wetlands operate by the 
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wastewater being ‘evenly’ distributed across or below the surface of the wetland and 

subsequently treated by passing vertically through the vegetation and filter bed 

structure. Particulate matter in the wastewater is removed by deposition and filtration, 

which over time, will result in a layer of sludge forming on the wetland surface 

(Polprasert, 2004). Soluble organic matter is removed by microbial activity, and 

likewise for the majority of nutrient removal.  

Recent developments have improved or tailored treatment performance by the 

addition of: artificial aeration to increase oxygen concentrations in the wastewater 

(Butterworth et al., 2013; Zhang et al., 2010; Ilyas & Masih, 2017); baffling to allow 

better control of hydraulics (Tee et al., 2012); earth worms to increase nutrient and 

carbon (Xu et al., 2013); and stacking wetlands vertically as a space-saving solution 

(Ye & Li, 2009). The use of artificial aeration is the most widely studied adaptation 

and has resulted in increased removal of faecal indicator organisms as well as abiotic 

parameters (Uggetti et al., 2016). Specifically, in their UK-based study, the authors 

found that artificial aeration reduced NH4-N effluent concentrations from 6.75 mg/L to 

0.15 mg/L, although it had very little effect on COD concentrations. The associated 

energy and maintenance costs of artificially aerating a constructed wetland must be 

considered because the technology is specifically designed to offer an 

environmentally sustainable and aesthetically pleasing alternative to traditional 

wastewater treatment. In all cases, treatment by constructed wetlands require prior 

separation of solids which may make them suitable for treating septic tank effluent 

but means that they do not generally provide a ‘stand-alone’ treatment solution. In 

NE England, wetlands are used most commonly as a tertiary treatment step to 

remove specific pollutants (e.g., nutrients) prior to discharge into an ecologically 

sensitive watercourse.  

2.3.3 Rotating Biological Contactors 

The modular structure of package treatment plants makes them an ideal option for 

decentralised wastewater management. Rotating Biological Contactors (RBCs) 

evolved from the development of a paddle-wheel style device, first reported in the 

early 20th Century (Allen, 1929); however, it was not until the 1960s that RBCs began 

to be installed in Europe. In the 1970s, the modern iteration incorporating corrugated 

media became commercially available. The majority of installations are for 

communities of less than 1000 PE, which highlights its appeal for small-scale 
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applications (Antonie, 2017). In the early 1990s, RBCs were recommended as the 

WWTP of choice for small communities by (Greaves et al., 1990), who noted the low 

operational maintenance requirements and reliable performance relative to extended 

aeration package plants and more efficient contact times compared to trickling filters. 

However, the conclusion was drawn by comparing just the two technologies, and ‘low 

maintenance’ was defined as at least three site visits per week, which is not 

objectively low. The questionable reliability of such findings highlights the need for 

further studies on the localised performance of RBCs compared to different 

technologies.  

RBC reactors consist of a continually rotating disc that is approximately 40% 

submerged in wastewater and acts as a support matrix for biofilm growth (Figure 2). 

The system is particularly effective because it employs the benefits of passive 

aeration utilised by a conventional trickling filter and also aeration provided by the 

rotating wheel, oxygenating the wastewater when the wheel is partially submerged. 

As the discs rotate, they lift a thin film of wastewater that falls under gravity across 

the biofilm, permitting biodegradation and removing organic matter (Antonie, 2017). 

Further removal occurs via the suspended biomass, which is aerated by the rotating 

discs.  

 

Figure 2 - Schematic of a single rotating biological contactor unit (Patwardhan, 2003). 

Although effective at many levels, RBCs are rather sensitive to the organic loading 

rate (OLR). Hiras et al. (2004) reported a decrease in COD removal from 50 to 

35%when the OLR was increased from 90 to 360 g m-2 d-1. This may be explained, in 

part, by oxygen transfer rate limiting substrate uptake efficiency by the biofilm (Di 

Palma & Verdone, 2009), which is important because the effectiveness of an RBC is 

usually more dependent on the physical mass transfer capacity of the biofilm rather 
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than biological kinetics limitations (Hassard et al., 2015). In their review, the authors 

also note that under constant loading, the biofilm and suspended microbial 

community readily attain steady state based on the consistent substrate availability. 

In contrast, under variable hydraulic and loading conditions, the microbial community 

can become unstable due to starvation, excess sloughing, or washout. 

RBCs also have the potential to discharge effluent with a particularly high 

concentration of suspended solids, especially in UK summer. Higher atmospheric 

temperatures accelerate biofilm growth (Madigan et al., 2012), which may be more 

easily stripped from the support media by shear stresses caused by the passing 

wastewater, which is particularly common due to the vertical orientation of the discs. 

It has been suggested this stripping phenomena prevents clogging of the media and 

the agitation of the bulk liquid caused by the continually rotating discs means that the 

stripped biomass stays in suspension (Antonie, 2017). There are two circumstances 

under which this benefit might not be realised: 1) at very small-scales (less than 250 

PE, for example), which is when WWTPs are subject to a particularly high peaking 

factors, and 2) under storm conditions that cause sudden peaks in wastewater flux at 

the WWTP. In both scenarios, a sudden increase in shear stress would likely cause 

greater stripping of biomass. Furthermore, the capacity of the bulk liquid to maintain 

solids in suspension is finite and, especially at higher temperatures, which is when 

excessive microbial growth also would occur in the liquid.  

Improvements to the performance of RBCs, in terms of pollutant removal, have long 

been understood and can be made by increasing the speed of rotation of the disks 

(Friedman et al., 1979), varying support media material (Hassard et al., 2014), or by 

adjusting the number of treatment stages which can lead to a step-wise reduction in 

substrate (Antonie, 2017). Furthermore, staging can act to buffer some of the 

negative effects of shock-loading (Hassard et al., 2015). However, this has not been 

investigated on a diurnal basis in full-scale systems treating real wastewater. 

Interestingly, recirculation of effluent or solids does not appear to dramatically 

improve reactor performance (Wilson & Lee, 1997; Klees & Silverstein, 1992). Whilst 

recirculating effluent might result in a slight increase in nitrification due to a lower 

overall carbon concentration, this often is at the expense of COD removal, which is 

undesirable. Few studies have tested such performance improvements beyond 

laboratory or pilot-scale and/or using variable strength domestic wastewater; 

therefore, drawing meaningful comparisons is difficult. A single stage RBC might 
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expect to achieve final effluent COD concentrations of 75 mg/L and NH4-N 

concentrations as low as 2 mg/L (Tchobanoglous et al., 2003).  

2.3.4 Biological Aerated Filters 

Biological Aerated Filters (BAFs) are fixed-film reactors typically used for secondary 

or tertiary wastewater treatment (Stensel et al., 1988). The media may be suspended 

or fixed in an aerated unit, but also can be applied in anaerobic systems. The high 

specific surface area of the media provides a greater biomass concentration and also 

has the effect of separating the solids retention from the hydraulic retention (Mann et 

al., 1999), which allows greater operational control (Tchobanoglous et al., 2003). 

There are numerous commercially available BAFs, which employ different media 

types and vary in configuration. A recent review (Heinonen-tanski & Matikka, 2017) 

analysed 717 effluent samples collected from small WWTPs in Finland, including 

many commercially available technologies. The authors drew an important 

conclusion: that simple, locally constructed sand filters can produce effluents that are 

at least as good quality as commercially available package plants. Part of their 

reasoning is that due to their complexity most modern package plants require 

frequent attention and are often treated as ‘black-boxes’ by users who may not fully 

understand the technology. This is undoubtedly a useful observation, but it is specific 

to the Finnish context and their sand filter systems. Also, the samples numbers upon 

which the data were based ranged between four and ninety-seven per treatment 

technology, calling into question the statistical validity of the analysis. Furthermore, 

no details are reported on configurations, asset ages or unit operations of individual 

WWTPs. This lack of experimental design means the study is more useful for 

assessing general trends in small WWTP performance in Finland than for drawing 

general conclusions and making recommendations regarding specific technologies. 

None-the-less, the dataset is almost unique amongst publicly available literature in 

comparing traditional and package technologies in a European context and so 

provides, at the very least, a summary of different types of WWTP. This thesis will 

seek to fill the data gap for traditional and modern technologies in the UK and, 

specifically, NE England. 

Examples of commercially available BAF systems exist. The DELPHIN Cube 

incorporates a fixed-bed biofilm support matrix and membrane diffuser to aerate the 

bulk solution (DELPHIN, 2019). In contrast, the Biokube® utilises a series of fixed 
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filter modules, reported to achieve up to 82% COD removal and 84% NH4-N removal 

when operated at a hydraulic retention time of 22 hours using four modules (Choi et 

al., 2015). Finally, the BioWater Technology CFIC® is a second generation moving 

bed bioreactor that includes the tight packing of biofilm carriers to minimise 

movement, which is suggested by the manufacturer to negate the need for final 

clarification, thus improving effluent quality (BLUEWATER BIO, 2019). With the 

exception of BioKube, which has been adopted extensively across the world (7000 

installations at the time of writing; BIOKUBE, 2019), most commercially available 

technologies published reports of extensive, rigorous analysis of treatment 

performance are not available, especially compared to alternative technologies. 

Consequently, there are also minimal, independently tested treatment performance 

data on such technologies. This poses a major problem for the UK water industry 

(and elsewhere) where comparative data is lacking for identifying “most suitable” 

technologies for rural and decentralised applications.   

For the purposes of this thesis, a commercially available BAF of particular interest is 

the High-Performance Aerated Filter (HiPAF) developed by WPL International (WPL, 

2019). HiPAFs are commonly used in NE England, especially where there is a 

regulatory requirement to discharge high-quality effluent to surface waters. The 

technology incorporates a primary settlement, a combined fixed film and dispersed 

floc active unit and a secondary clarifier, within a modular system (Figure 3). Unlike 

several other BAFs (Tchobanoglous et al., 2003), the HiPAF includes a sludge return 

system to ensure longer solids retention. 

The HiPAF system is designed to minimise aesthetic impact, which may be important 

in rural areas of the UK and is reported by the manufacturer to produce high-quality 

effluents (WPL, 2019). The use of efficient air diffusers simultaneously maintains a 

sufficient dissolve oxygen concentration in the bulk solution and scour the filter 

media. The latter is particularly important in fixed film systems in UK summer when 

higher temperatures increase biofilm growth (Madigan et al., 2012). The modular 

system is typically buried in the ground which, as well as reducing aesthetic impact, 

acts to insulate the process from external temperature changes that might influence 

treatment performance. To this author’s knowledge, there are no externally verified, 

comparative performance data on the HiPAF system published in scientific journals.  
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Figure 3 - Schematic of the WPL High Performance Aerated Filter (HiPAF) system 
WPL, (2019). 

2.3.5 Other established technologies 

Other traditional WWTP technologies commonly applied at small scales are derived 

from designs of larger counterparts. These include, conventional activated sludge, 

oxidation ditches, and trickling filters. The treatment configuration typically consists of 

a primary settlement tank, biological treatment unit and a rudimentary secondary 

clarifier. There have been no recent studies that consider the performance and/or 

potential ecological impact of traditional activated sludge or trickling filter systems 

serving small communities in the NE of England. This is likely because the 

assumption that small WWTPs possess similar characteristics (and therefore 

treatment performance) as their larger counterparts, or they are neglected because 

of their low regulatory importance. There are several other well-established 

technologies, some which are aimed at small-scale applications, which have not 

been summarised in detail because they are not prevalent at small scales in the UK, 

especially in NE England. However, for completeness, a brief summary of the 

technologies is provided, as follows. 
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Membrane bioreactors (MBR) have been suggested as a suitable solution for small-

scale wastewater treatment (Capodaglio, 2017; Abegglen et al., 2008). The ability of 

an MBR to produce high-quality effluent has been shown on a number of occasions 

and at various scales (Capodaglio et al., 2017). Briefly, the technology utilises a 

suspended growth bioreactor and microfiltration technology for solids separation 

(Tchobanoglous et al., 2003). The resulting retention of solids eliminates the need for 

secondary clarification and allows operation at a higher mixed liquor suspended 

solids concentration, leading to less sludge production, a smaller spatial footprint and 

higher quality effluent. The membrane can be either immersed within the bioreactor 

or it can be positioned externally, and the mixed liquor is recirculated through the 

membrane (Judd, 2008). Some common disadvantages of MBR systems are 

particularly pertinent to small-scale applications.  

Firstly, the issue of membrane fouling, which occurs when fine particles enter the 

inner pores of the membrane, resulting in a pressure loss (Tchobanoglous et al., 

2003). Solutions typically involve periodic backwashing (often using chlorine), air 

scouring and flushing with sodium hypochlorite, or more recently, quorum-quenching 

bacteria (Deng et al., 2016). Such solutions add complexity, energy, and operational 

costs to the system; all of which should be minimised for sustainable, decentralised 

wastewater treatment. Finally, the issue of capital cost associated with MBRs is often 

prohibitive to their wide-spread adoption. Whilst, this perception might still be limiting, 

it is a simple matter of economics and, in due course, the cost of the technology will 

decrease; it is not a fundamental reason to dismiss the potential of the system. 

Another membrane-based treatment technology with growing commercial appeal is 

the membrane aerated biofilm reactor (MABR). The system relies on the 

immobilisation of biofilm on a membrane surface through which air is passively or 

actively diffused to oxygenate the wastewater (Casey et al., 1999). The commercial 

potential of the technology has attracted the interest of start-ups and multi-national 

corporations, including OXYMEM (a spin-off from University College Dublin), Fluence 

Corp Ltd., and General Electric (GE). Fluence specifically target their MABR 

technology at decentralised applications (Fluence, 2019), whereas GE and OXYMEM 

primarily target centralised WWTPs. The Fluence product is containerised making it 

ideal for decentralised wastewater treatment and is already the solution of choice for 

rural locations, such as Guizhou province, China (Atkinson, 2018). OXYMEM has 

recently developed a retrofit device – the OxyTUBE – which shows great potential for 
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small-scale WWTPs. The device is a small, tube containing a ‘mini MABR’, which can 

be positioned into any biological tank to provide aeration. This could be particularly 

suitable as a retrofit option for small conventional activated sludge units in rural 

locations, or where there is a desire to reduce energy costs. Whilst commercially 

available and tested by one UK water company (OXYMEM, 2018), no data on 

treatment performance have been reported in scientific journals, including 

comparisons with different WWTPs.  

A brief comment on waste stabilisation and algal ponds is warranted because of their 

growing interest in the UK. Waste stabilisation ponds are a rudimentary technology 

typically employed in regions of low latitude, where high levels of sunlight are 

common and also where space is not at a premium. However, recent innovations 

from companies like Gurney Environmental (Gurney, 2019) means they are gaining 

increased attention in the UK, with the first Aero-Fac® system in NE England being 

installed at the time of writing. Aero-Fac® incorporates wind-powered aeration unit 

that ‘converts’ a typical pond treatment into a modular fully aerated facultative 

process with automated adjustments for changes in flow regime (Horan et al., 2006) 

(Horan et al., 2006). In the only UK-based study published in a scientific journal, 

reported a mean final effluent COD concentration of 61 mg/L and NH4-N of 7.6 mg/L 

when using Aero-Fac® on a two-stage lagoon system in Scotland. Whilst the system 

achieved close to 99% ammonia removal in summer, springtime removal dropped to 

20%, highlighting the seasonal dependence of such WWTPs.  

In stabilisation pond systems, wastewater typically flows through a series of large, 

man-made ponds such that hydraulic retention times of up to 15 days are common 

(US EPA, 2011). Configurations typically include anaerobic and facultative ponds, 

although in the UK, anaerobic ponds are uncommon (Mara, 2006). Under aerobic 

conditions, aeration is provided by mechanical means (e.g., Aero-Fac®) and such 

systems share many characteristics with conventional activated sludge systems. 

Under facultative conditions, oxygen is generated primarily by the photosynthetic 

activity of algae (von Spelburg & Chernicharo, 2006). 

Innovations in pond development, additional to the incorporation of novel aeration 

devices, include the engineering the proliferation of specific macro-fauna such as 

Lemna duckweed (Alvarado et al., 2008). COD and NH4-N removals of up to 93% 

and 98%, respectively, have been reported when using three duckweed ponds as a 
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post-secondary treatment (El-shafai et al., 2007). The same study found the 

treatment was deficient in removal of nutrients and faecal indicators (coliforms) in 

Egyptian winter conditions, when daily mean atmospheric temperatures do not 

typically drop below 14 o C (WMO, 2019). For comparison, in NE England, the mean 

daily temperature during meteorological winter (December, January and February) 

between 1981 and 2010 was 6 o C (Met Office, 2010).  

Algal ponds and raceways also are technologies that have shown promise for use at 

small scales. Bunce et al. (2018) highlighted several reasons why such systems 

might not be suitable for UK applications. Example include, levels of sunlight are too 

variable to achieve consistent treatment performance, the separation of algal 

biomass from the final effluent is either energy intensive (requiring a large space), or 

solutions are still in their infancy. However, their potential elsewhere means that a 

plethora of algal biofilm technologies are developed and promoted, ranging from 

simple, single-organism biofilm sheets (Boelee et al., 2011) and to the use of algae 

within an osmotic membrane photobioreactor (Praveen & Loh, 2016; Achilli et al., 

2009). Many such options aim to remove specific pollutants, such as phosphorus, 

and, therefore, may only be suitable for tertiary treatment, which is rarely required 

under UK regulation (EA, 2018b). There are a few commercially available algal-

based wastewater treatment technologies (e.g., Clearas Advanced Biological 

Nutrient Recovery (ABNR®)) and some are marketed for small-scale applications. 

However, issues regarding the stability of the algal community and reliable treatment 

performance remain (Kesaano & Sims, 2014). Furthermore, the energy and 

maintenance costs are likely prohibitive for UK applications (Bunce et al., 2018). 

Algal technologies have not been extensively applied at small scales in the UK, 

especially in NE England.  

2.3.6 Emerging technologies 

Emerging technologies mainly can be categorised as either adaptations of existing 

technologies (e.g., septic tanks or BAFs) or nature-based systems. For example, the 

addition of the CFIC® technology to conventional activated sludge plants. Novel 

package plants will not be covered in detail here as they are typically variations on 

the BAF systems described in Section 2.3.4 or innovations relating to septic tanks, as 

described in Section 2.3.1. 
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Nature-based systems are growing in popularity, driven at least in part by a global 

awareness of environmental sustainability and the demand for aesthetic and 

biodiversity-promoting infrastructure (Capodaglio et al., 2017). Constructed wetlands 

and recent iterations thereof have been discussed in Section 2.3.2, which includes 

the use of particular configurations or materials to target the removal of specific 

pollutants.  

The idea of replicating natural processes for the treatment of wastewater has been 

applied to develop some interesting and novel concepts. For example, the 

‘WETWALL’ concept summarised by Castellar et al. (2018) (Figure 4). Whilst the 

technology is proposed primarily for the secondary treatment of grey water and 

hydroponic wastewater, the theory could be applied to tertiary treatment of effluents 

from small communities (e.g., flats or Universities), prior to discharge. The concept 

involves the irrigating the wastewater through a ‘living wall’ consisting of modular 

cylinders which are passively aerated and support plants chosen for their high levels 

of nutrient uptake. Research to date has been focussed almost exclusively on 

greywater and development of the technology is at proof of concept or pilot stage 

(Fowdar et al., 2017; Masi et al., 2016); however, it shows promise as a novel 

solution where discharge to sensitive watercourses might require additional treatment 

steps at small scales.  

 

Figure 4 - Artist interpretation of an example vertical flow WETWALL (Castellar et al., 
2018) 
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Another emerging technology, which may be relevant for small-scale applications, 

are denitrifying downflow hanging sponge (DDHS) reactors (Bundy et al., 2017; Jong 

et al., 2018). The system is an evolution of downflow hanging sponge (DHS) 

reactors. These rely on the passive aeration of wastewater as it passes through a 

column, within which reticulated foam acts as a support matrix for a microbial 

community. The DDHS reactors incorporate a section within which foam is 

submerged to create an anoxic environment. Bypassing a small fraction of influent 

wastewater to the anoxic section provides sufficient carbon to support a denitrifying 

community which allows total nitrogen removal rates of over 70% and COD removal 

rates of ~80% (Jong et al., 2018). The technology has been proven at laboratory 

scale and shows promise as a low-cost, low-maintenance solution, which may be 

applicable for decentralised locations in the UK and further afield.  

Finally, whilst not strictly a novel technology, there is growing interest in the use of 

anaerobic bioreactors at smaller-scales (Capodaglio et al., 2017). They typically 

incorporate similar features as those used in BAF or moving bed biofilm reactor 

systems to enhance the performance of anaerobic degradation of organic 

compounds and nutrients (Singh et al., 2015), and so are not discussed in specific 

detail here.  

2.3.7 Summarising small WWTP performance 

When choosing a treatment technology for small-scale application, consideration 

must be made regarding affordability–what the purchaser is willing or able to pay – 

and appropriateness – the social and environmental factors associated with the 

installation and operation of the system (Grau, 1996). In light of ever tightening 

discharge standards, regulatory pressure is also becoming an important factor when 

comparing and contrasting different WWTPs.  

A large proportion of technology development is carried out by individuals working in 

the private sector who may not publish the work in scientific journals, or publicly, at 

all (Nivala et al., 2013). The result is that the full extent of technological 

advancements cannot be known but, perhaps more importantly, any reported 

performance of commercially available products may not have been subject to the 

scientific rigour required to with-stand peer-reviewed publication. Therefore, the 

literature review here has considered only treatment performance of technologies 
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reported in scientific journals. The one exception is for HiPAF systems, which are 

particularly prevalent in the NE of England, where this study was based.  

Difficulties in comparing the treatment performance of different technologies arise 

from either: 1) inconsistencies in experimental design and technology scales or 2) 

inherent limitations associated with the technology. The first point is important 

because it is not appropriate to compare the performance, for example, of a 

laboratory-scale reactor treating synthetic wastewater with the performance of a full-

scale WWTP treating real wastewater. Nor, would be it be appropriate to compare 

the treatment performance of similar WWTPs in different countries, which may be 

operating under different climatic conditions and with different wastewaters, and use 

that data to draw general conclusions about the technology. The second reason can 

be easily understood by considering a specific technology. For example, due to such 

long hydraulic retention times and the complex flow dynamics associated with large 

bodies of water, it can be difficult to obtain accurate removal rate data for pond-

based treatment systems.  

Therefore, comparing different WWTPs only using literature can be subject to 

inaccuracies. There is a clear need for a robust and more extensive study assessing 

a range of small-scale treatment systems commonly found in the same 

geographically area.  At the time of writing, there have been no scientifically 

published, extensive studies comparing the treatment performance of different full-

size, small-scale WWTPs in NE England. This thesis seeks to fill this data gap. 

2.4  Redefining Wastewater Treatment Plant Performance 

2.4.1 Genetic faecal markers as health risk indicators 

The drivers of wastewater management in the UK are almost exclusively based on 

ecological benefit. With the exception of wastewater discharges to recognised 

bathing waters, effluent quality targets are determined by the potential for adverse 

ecological impact (EC, 1991). This is despite the protection of public health being the 

underpinning motivation for ‘modern’ wastewater treatment (Sedlak, 2015). Put 

simply, the drive to improve treatment performance has been dictated, at least in 

part, by a secondary incentive for its existence. This is likely because of advances in 

producing potable water and because of the lack of direct access to most surface 

waters in the UK. The latter is important because it means the route to human 



 40 
 

exposure is difficult is identify and, therefore, the relative risk impossible to accurately 

quantify (Bichai & Smeets, 2013). However, in the current era of sustainable and 

circular economies, such aspirations now should be applied to water. With this in 

mind, and also the growing reality of water scarcity (Gosling & Arnell, 2016), 

wastewater reuse becomes a necessary consideration, even in the UK. Rural 

locations are ideally placed to implement this concept. In areas with a 

disproportionately large demand for water (e.g., for agricultural purposes), the 

realisation of local water reuse would save costs for pumping, treatment, and 

storage.  

An important step to determining the feasibility of such a notion is to understand the 

potential risks to human health associated with wastewater that is discharged from 

rural wastewater sources (i.e., small WWTPs). Traditional methods for identifying 

faecal indicator organisms, such as E. coli, rely on the ability to culture organisms 

using growth media. These methods are well-established and remain the 

recommended standard for assessing health risks associated with drinking, bathing 

and irrigation water (World Health Organisation, 2017). However, the method 

provides only a limited picture of human health risks because the approach is non-

targeted and considers only culturable organisms. In other words, the use of culture-

based methods to quantify faecal indicator organisms for human-health risk 

assessments is inexact because their presence does not indicate the source of the 

pollution; common FIOs are present in most warm-blooded mammals (Tenaillon et 

al., 2010). Furthermore, organisms like E. coli are ubiquitous in environments with no 

faecal pollution sources (Yamahara et al., 2007) and the abundance such organisms 

can be poorly correlated with pathogens, especially viruses (Harwood et al., 2005; 

Hörman et al., 2004). Therefore, the level of risk to human health cannot be 

accurately represented by only monitoring FIOs (Ahmed et al., 2016). Similar 

problems of a lack of source-specificity have been associated with chemical-based 

pollution tracking techniques (Seurinck, Verstraete, et al., 2005).  

Microbial source tracking (MST) originated towards the end of the 20th Century with 

attempts to link isolates of E. coli and Streptococci with different faecal sources by 

ribotype or antibiotic resistance (Wiggins, 1996; Parveen et al., 1999). Reports of 

potential human versus animal “target” accuracy of up to 95% made way for 

numerous attempts to identify the dominant sources of faecal pollution in surface 

waters (Harwood et al., 2014). The basic premise for MST is that certain 



 41 
 

microorganisms are specific to particular hosts and that by identifying common, 

genetic attributes, such microorganisms can be used to detect specific pollution 

sources (Shanks et al., 2010). MST methods are typically used where there is a risk 

of human exposure to multiple sources of faecal pollution and/or where the source of 

faecal contamination is unknown. They are particularly useful for providing input data 

to quantitative risk assessments of bathing waters (Harwood et al., 2014). However, 

they have not been used extensively, to assess the relative contributions of pollution 

sources in upper, surface water catchments, which is an emerging opportunity.  

MST methods can be either library-dependant or library-independent. Library-

dependent methods rely on the isolation and typing for a common attribute (e.g., 

antibiotic resistance) of microorganisms from a range of faecal sources (i.e., different 

animals or humans). Library-independent methods rely on targeting a specific genetic 

feature, for example, a variable region the 16S rRNA gene (Bernhard & Field, 2000). 

Thus, a library-independent approach relies on a different target for each faecal 

source. In terms of the practical application, a quantitative polymerase chain reaction 

(qPCR) method is most common. Harwood et al. (2014) point out that the majority of 

recent developments have been on qPCR methods. They were, therefore, chosen for 

this study.  

In general, MST is favoured over direct pathogen monitoring as pathogen distribution 

can be varied and inconsistent, making it impractical and uneconomical for the 

majority of circumstances. It should be noted, however, that direct pathogen 

monitoring still provides an optimal view of risk to human health. So much so, that in 

their recent study, Hughes et al. (2017) concluded that host-specific bacterial 

markers alone are not sufficient for determining health risk. Rather, such markers 

should be used in conjunction with enteric virus quantification due to their tendency 

to over-estimate the likelihood of gastrointestinal illness (Hughes et al., 2017). This 

presents a ‘catch-22’ scenario and so it has been suggested that bacterial faecal 

markers are used for pollution source identification and as a screening tool prior to 

risk assessment.  

2.4.2 Markers of human faecal pollution 

The majority of genetic faecal assays are bacteria-based and a large number of 

these target known or putative clades of Bacteroides sp. (Harwood et al., 2014), 

which was one of the first library-independent methods developed for detected 



 42 
 

human faecal contamination (Bernhard & Field, 2000). Bacteroides was originally 

targeted because it is highly abundant in the human gut and, therefore, is likely a 

reliable and easily detected indicator of human faecal pollution (Seurinck, Defoirdt, et 

al., 2005). Crucially, certain Bacteroides sp. co-evolve with the host, meaning they 

can be a useful tracer over time (Bernhard & Field, 2000). The human-specific 

marker, HF183, targets a region of the 16S rRNA gene found within Bacteroides 

dorei and has been widely used in catchment and bathing-water studies, including 

attempts to standardise MST procedures (Gawler et al., 2007; Cao et al., 2018; 

Kabiri et al., 2016; McQuaig et al., 2012; Chase et al., 2012; Wanjugi et al., 2016; 

Kirs et al., 2016). HF183 was originally developed by Suerinck et al. (2005) 

(Seurinck, Defoirdt, et al., 2005) and since, there have been several developments 

using different chemistries or complementary reverse sequences, each with the aim 

of increasing the sensitivity and specificity of the marker. Most studies report a 

sensitivity of HF183 to sewage of 80-100% with no clear differences reported when 

using SYBR and Taqman chemistry – two of the most common qPCR methodologies 

(Harwood et al., 2014). The original HF183 assay reported 86% sensitivity to human 

faeces (Seurinck et al., 2005). Several studies have recommended HF183/ BacR287 

following comparisons with other human-specific bacterial markers. More specifically 

and relevant to this study, Mayer et al. (2016) found this assay performed most 

consistently of five Bacteroides primer sets that were tested using municipal 

wastewater across a range of geographical regions. 

Other common human-specific Bacteroides markers include HumM2 and HumM3 

(Shanks et al., 2009), HuBac (Layton et al., 2006), BacHum (Kildare et al., 2007), 

BacH (Reischer et al., 2007) and BacHuman (Lee et al., 2010)l. Amongst these, the 

US Environment Protection Agency developed HumM2 markers, which target a 

hypothetical protein, show promise, reporting 100% sensitivity to sewage and faeces, 

and 99.2% specificity, including in field tests (Ahmed et al., 2016). In a study testing 

several human-specific Bacteroides markers, Ahmed et al. (2009) concluded that 

HF183 was the most sensitive and specific to human pollution sources. Interestingly, 

the authors also highlighted the geographical variability did exist in sensitivity and 

specificity amongst similar and identical markers. However, this was based only on 

literature that was available at the time and differences may have resulted from other 

factors (e.g., local environment, experimental methods). 
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After Bacteroides, another common bacterial assay used for MST targets is E. coli 

(Chern et al., 2011; Warish et al., 2015; Hughes et al., 2017). Gomi et al. (2014) 

identified thirty-six human-specific genomic regions and chosen four markers against 

environmental samples alongside several non-human markers. Amongst the human 

markers, H8 was recommended by the authors due to its high sensitivity and 

specificity. The authors also noted how E. coli may not be suitable for identifying the 

source pollution in surface water using genetic methods alone, due to its low relative 

abundance. However, this is unlikely to be an issue in wastewater. More generally, 

markers targeting E. coli may be of particular interest because of their traditional use 

as faecal indicators. 

Numerous other MST assays have been developed and considering the exhaustive 

range of bacterial, viral and mitochondrial targets is beyond the scope of this review. 

However, it is worth noting that the application of most methods has generally been 

local and restricted to several well-studied regions (i.e., the localities of the research 

groups studying the markers). Their stability and performance in different 

geographical locations, therefore, is not well understood, although some attempts 

have been made to rectify this. In their extensive study of 41 MST methods, Boehm 

et al. tested the sensitivity and specificity of markers targeting human, cow, ruminant, 

dog, gull, pig, horse, and sheep against corresponding faecal samples and raw 

sewage (Boehm et al., 2013). Whilst the study provided some useful data for cross-

comparing similar markers, it was more or less inconclusive with regards to the geo-

stability of different assays. Mayer et al. carried out a ‘follow-up’ study that 

investigated five human-associated genetic markers in 29 wastewater treatment 

plants and 280 faecal samples from 13 different countries (Mayer et al., 2018). The 

authors found that all markers were consistently abundant in wastewaters across all 

locations, however, the false positive rate ranged from 5 to 47% when the markers 

were tested against faecal samples of known origin. Thus, it was concluded that the 

sensitivity and specificity of genetic faecal markers is regionally or even catchment-

specific, which is problematic; i.e., some markers are be more abundant in some 

locations than in others, therefore not universal. Furthermore, the effects of sunlight 

and temperature on the stability of the genetic markers varies between organisms 

(Pachepsky et al., 2014), implying that markers targeting certain organisms might be 

more or less appropriate in some locations.   
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2.4.3 Genetic faecal markers and wastewater treatment 

Little consideration has been given to the potential use of genetic faecal markers as 

treatment performance metrics at WWTPs. However, due to the use of sewage as a 

proxy for human faecal matter when developing new markers, there are many data 

on the abundance of different markers found in wastewater. Mayer et al. (2016) 

quantified human-associated Bacteroidetes genetic markers in raw and treated 

wastewater from five larger WWTPs (PE 6600 – 78400) and the final effluent from 

eight small treatment plants (PE 3 – 130) in Germany and Austria. The small-scale 

systems were serving either individual households or hotels. The authors found that 

Bacteroides-based markers were consistently detected in raw and treated 

wastewater, regardless of system size, treatment type or season. However, it should 

be noted that the smaller WWTPs were all high-specification package plants that  are 

mandated to meet the stringent discharge standards on all WWTPs in Austria 

(Langergraber et al., 2018).  

Hughes et al. (2017) quantified several bacterial and viral markers, including HF183, 

in raw and secondary treated wastewater. Interestingly, they found strong, positive 

correlations between the abundance of HF183 and most other bacterial and viral 

markers in the raw sewage. However, in secondary treated wastewater, there were 

no clear correlations except with plant-based pepper mild mottle virus (Spearman 

correlation = -0.8) and human norovirus (spearman correlation = 0.92). Arguably, it is 

encouraging that in treated wastewater, HF183 correlated strongly with a moderately 

common human virus and not with a plant virus, the impact of which on human health 

is tenuous (Colson et al., 2010). 

Beyond these two studies, investigations have focussed on single WWTPs 

(Srinivasan et al., 2011) or single sample types (Silkie & Nelson, 2009). However, 

these studies show the potential of genetic markers as treatment performance 

metrics. By investigating the fate of markers through wastewater treatment processes 

and comparing the behaviour with conventional, water quality metrics (such as, 

COD), new knowledge may be gained about the differences between WWTPs of 

various sizes, operational configurations and technology types.  
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2.5  Predicting Flow Rates at Wastewater Treatment Plants 

The high capital and operational costs associated with wastewater treatment has led 

to the development of several models to assist with process and design optimisation 

(Martin & Vanrolleghem, 2014). Platforms such as the Activated Sludge Model (ASM) 

series and the Benchmark Simulation Model (BSM) series have become common-

place amongst wastewater managers and applied extensively by researchers (e.g., 

Jeppsson et al., 2013; Benedetti et al., 2010; Ostace et al., 2011). However, a 

limitation of such models is the requirement for large amounts of influent data, 

including flowrates. This has perhaps limited the use of models, which is 

compounded by the complexities of on-line monitoring of raw wastewater (Martin & 

Vanrolleghem, 2014). To overcome this, a range of models have been developed to 

generate influent data, which typically consists of a time series of the flow and 

concentrations of typical water quality parameters (e.g., COD, NH4, TSS). The 

sources of wastewater vary dramatically between catchments and, particularly at 

larger scales, the flow and concentration are affected by many parameters (e.g., 

temperature, soil type, population) (Bott & Parker, 2010).  

Martin and Vanrolleghem (2014) point out that the most logical way of generating 

data is experimentally. The implication is that by collecting enough data to fulfil pre-

defined confidence criteria, one can easily infer the ‘missing’ data. Such an approach 

could feasibly be applied to predicting wet or dry weather flow profiles; the former 

relying on substantially more data to retain accuracy. A method proposed by 

Devisscher et al. (2006) as part of the MAgIC Methodology and applied by others 

(Gevaert et al., 2009), uses Poission distribution-based inference to generate flow 

rates within the same time-frame as the measured data. This can be considered 

reasonable under the assumption that flowrate conditions are predictably variable 

within a short period of time, which might be the case for larger WWTPs, especially 

under dry-weather conditions. It provides a useful tool for rapid assessments across 

a network of sewer catchments. Due to the number of small-scale WWTPs, such an 

approach might be considered useful, however the requirement for data from which 

to infer makes it unfeasible; presumably, the more data there is to infer from, the 

more accurate the inference becomes.  

An additional approach to inference is noteworthy and that is the use of machine 

learning algorithms, such as neural network-based and fuzzy inference techniques. 
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Such methods have been used, with varying success, to extrapolate influent 

characteristics for individual WWTPs (Pai et al., 2011, 2009; Cheng et al., 2018; 

Kusiak et al., 2013). Such methods have been applied to total flow extrapolation, 

considering flows received under dry and wet weather conditions. Whilst the ever-

increasing power of artificial intelligence shows promise for these applications, the 

number of independent variables required to cover the range of possible situations 

within each catchment means that these methods might only be relevant for a limited 

number of catchments – those where all or large datasets are available.  

Fourier approximations are another approach used for the prediction of influent 

characteristics, most commonly under dry-weather conditions (Mannina et al., 2011). 

The technique has been used to generate hourly-interval dynamic profiles for flow 

rates or occasionally infer data points that are missing from an existing timeseries 

(Langergraber et al., 2008). Fourier-based methods have been used for individual 

and networks of WWTPs (Talebizadeh et al., 2016; Alex et al., 2009).  

Phenomenological models such as those developed by Gernaey et al. (2011, 2006, 

2005) for the second series BSM (BSM 2), makes use of the observation that human 

wastewater generation follows a consistent diurnal pattern (Butler, 1993; Friedler et 

al., 1996) to generate household wastewater flow predictions. They are, thus, 

particularly useful and effective at predicting flows under dry-weather conditions. It 

presumes a large peak in flow rate in the morning and evening, corresponding with 

people going to and returning from work, and flow minima during the night and early 

afternoon, corresponding with people sleeping and being away from the home during 

working hours. The Gernaey et al. (2011) model consists of a series of modules, 

including household flows that exploits the presumed lifestyle patterns plus 

considerations for weekend and annual variations; industrial flow contributions; 

seasonal correction factors; rain generation for overland flow; and infiltration via soil 

through-flow. Total flowrate contributions can then be combined with pollutant 

parameter modules and used as an input to a series of variable-volume tank models. 

Such a level of complexity is clearly required for an accurate representation of large 

sewer catchments. The model is designed to be a compromise on those which offer 

a deterministic representation of the entire sewer catchment. However, no strategic 

comparisons appear to have been made between different modelling approaches, 

across a range of catchments. So, it is unknown what effect such a compromise 

might have on prediction accuracy. 
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Finally, deterministic models, including those which are commercially available are 

some of the most sophisticated ways of generating influent data (Gernaey et al., 

2011). Such models are developed for predicting flows under dry and wet-weather 

conditions. Early attempts highlighted the inherent complexity of this approach 

(Gustafsson et al., 1993; Hernebring et al., 2002), which typically combine 

hydrological and hydraulic models to represent a sewer catchment in its entirety. The 

hydraulic engine underpinning many deterministic sewer models solve the full Saint 

Venant equations of unsteady flow (Marinaki & Papageorgiou, 2005). Commercially 

available models, such as Infoworks ICM (formerly Hydroworks; Innovyze, 2019) and 

MOUSE (now integrated into MIKE URBAN+; DHI, 2019), have been used in many 

urban drainage studies (Chen et al., 2017; Mahmoodian et al., 2018; Erbe et al., 

2002; Fronteau et al., 1997; Koudelak & West, 2008) and their flow prediction 

capabilities make it possible to predict flow rates received by WWTPs. However, the 

multifarious nature of catchments, which are dynamic systems, requires a large 

number of high-resolution input parameters. Such information may not be available 

for all catchments, particularly those in rural or remote areas.  

The lack of flow-rate data is a particular problem for smaller WWTPs, which may be 

unmonitored due to regulatory conditions, especially in the UK. However, the 

inference models that have been outlined here are unsuitable for smaller catchments 

because they either rely on statistical inference from existing data that largely does 

not yet exist for unmonitored sites or they rely on a deterministic representation of 

complex physical processes. As such, there is a need for a simple, parsimonious tool 

which can generate representative flow rate data that can be used to inform the 

management and potential impact of smaller WWTPs. 

2.6  Concluding Remarks 

Small WWTPs have an important role to play in ensuring sustainable wastewater 

management. However, upon considering the current knowledge and tools available 

to assess such systems, it is clear that there is a gap in understanding. There is a 

need for new data that allows the comparison of different types and sizes of 

decentralised treatment systems. There is also a need for new treatment 

performance metrics which better align with emerging catchment management and 

public health priorities. Finally, there is a need for a simple influent data generation 

method which can be applied to a network of small WWTPs to help inform their 
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management and to investigate performance stressors which may be unique to small 

scales. This thesis presents solutions to meet these needs through the fulfilment of 

the aims and objectives outlined in Chapter 1.  
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Chapter 3. A Parsimonious Approach to Predicting Small 
Wastewater Treatment Plant Reliability 

3.1 Introduction 

Economies of scale have traditionally been the main argument for centralising 

wastewater treatment plants (WWTPs) (McCarty et al., 2011). Therefore, research 

has mainly focussed on large-scale systems, resulting in a wealth of available 

operating data and firm understanding of their overall performance. By contrast, 

smaller WWTPs are typically overlooked. This may be because they are often only 

used where there is no other economically viable option (Larsen et al., 2009); their 

perceived environmental impact is localised; and/ or they may be exempt from 

regulatory conditions (DEFRA, 2010). The latter point is of particular importance 

because regulatory compliance requires monitoring and more effective management. 

Without mandated monitoring, limited performance data have historically been 

collected, which now restricts our ability to predict performance and estimate 

potential discharge impacts. Crites and Tchobanaglous (1998) identified protecting 

receiving environments as one of the key objectives of decentralised WWTPs and yet 

the huge data gap is a barrier to assessing the performance of such systems, which 

is the focus, here.  

In the UK, small WWTPs typically serve rural or remote communities and can 

discharge into sensitive water courses. Although limited data exist, it has long been 

recognised that the ecological impact of such discharges may be underestimated 

(Pujol & Lienard, 1989; May et al., 2015). When considering the mechanism by which 

a waterbody status is determined under the Water Framework Directive (WFD) (EC, 

2000), such underestimation is not surprising. The WFD status of a natural surface 

waterbody for a particular parameter can be calculated from the median value of all 

sample points within the waterbody (UK Technical Advisory Group on the Water 

Framework Directive, 2009). Therefore, the water quality at a sample point 

downstream of a small, poorly managed discharge, may be sufficiently bad to 

influence the ecological or overall waterbody status. 

Despite substantial investment from the UK water industry (and elsewhere), the 

number of waterbodies in England achieving "good” or better ecological status under 

WFD, decreased from 26% to 17% between 2009 and 2015 (Environment Agency, 

2015). We suspect that inadequate investment in the management, monitoring and 
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construction of small WWTPs may be one reason; greater attention and 

understanding could be critical to achieving the aims of WFD or other environmental 

regulatory drivers. However, a lack of evidence on system performance, especially 

operating stability and net environmental impact, hinders managers and policy 

decision makers addressing declining ecological quality (Chong et al., 2011). 

Therefore, here we present new data from twelve rural WWTPs in NE England and 

contrast them with equivalent data from three larger, regional WWTPs. 

This study specifically sought to assess the effects of size, influent characteristics 

and technology type on the performance and stability of small WWTPs in the UK. 

Performance over time (bi-monthly sampling over one year) was assessed by 

different measures of effluent quality and also removal rates of a range of physical 

and chemical parameters. Here, a small WWTP is defined as receiving less than 50 

m3 mean flow per day, which is the low-end boundary for the numerical regulation of 

continuous discharges in England (DEFRA, 2010). This flow roughly equates to a 

population equivalent (PE) of 250, which is typically used as a proxy measure of size 

where no flow data are available. Throughout, we use the word ‘limit’ in reference to 

the legally binding standard placed on a continuous final effluent discharge, which is 

more often referred to, in the UK, as ‘consent’. 

3.2 Methodology 

3.2.1 Identification of study sites and experimental design 

A list of registered WWTPs in NE England was obtained from the Annual Return 

made to the Water Services Regulation Authority (OFWAT) in 2016. The database 

contained information on 412 treatment plants of which 274 (66.5%) have a PE of 

250 or less. More specifically, eighty-two are between 50 and 250 PE. For the 

purposes of this study, the lower limit of investigation was 50 PE. Typically, WWTPs 

below this size are subject to highly intermittent flows and, within the study region, 

55% only are primary treatment systems (i.e. septic tanks) from which obtaining 

consistent influent samples is difficult.   

Four main treatment technologies dominate the list of small WWTPs in NE England, 

including: rotating biological contactors (RBC), secondary filtration which were 

trickling filters (SF), activated sludge (AS) and high-performance aerated filters 

(HiPAF). Two size categories (50-125 PE and 125-250 PE) were used for 
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comparative assessment of size, which created six experimental classes: 50-125 

RBC, 125-250 RBC, 50-125 AS, 125-250 HiPAF, 50-125 SF and 125-250 SF, where 

the number ranges refer to the PE and the letters refer to the technology type. These 

groupings proportionately represent small WWTPs in the region. A longlist of thirty-

six WWTPs was initially generated by stratified random sampling with consideration 

of proportional allocations to the above six categories. Twelve WWTPs were then 

chosen for monitoring following site visits to determine accessibility and logistical 

feasibility. Two plants were chosen in each experimental category (Figure 5; see 

Appendix A for map of the spatial extent of the study). There were no suitable AS 

plants between 125 and 250 PE in the study area and no HiPAF plants between 50 

and 125 PE. Of the twelve small WWTPs, four had flow monitoring. None of the small 

sites had discharge limits for either ammonia or phosphorus. 

 

Figure 5 - The number of study sites in each experimental design category and the 
region of study in NE England. Nb is the number of sites; AS is activated sludge; SF 
is secondary filtration (trickling filters); RBC is rotating biological contactor; HiPAF is 
high-performance aerated filter. Contains OS Data © Crown copyright and database 
right (2019). 

Three larger reference WWTPs were chosen to benchmark the performance of the 

small systems (Figure 5). Specifically, two SF plants and one AS plant were chosen 

with population equivalents of 7140, 5280 and 9650, respectively. All three reference 

sites are subject to regulation under the Urban Wastewater Treatment Directive 
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(UWWTD) (EC, 1991) and have final effluent discharge limits for ammonia. These 

specific plants were chosen because they predominantly treat domestic wastewater, 

and the variance of their removal rates of ammonium (NH4-N) and soluble chemical 

oxygen demand (sCOD) did not exceed 0.1 between August 2013 and July 2016. 

This suggests they were comparatively “stable” in terms of routine performance and 

would be suitable for benchmarking. No tertiary treatment was present at any site 

and there were no known operational issues. Tertiary treatment is an ambiguous 

term but typically refers to treatment steps additional to the biological degradation of 

organic matter and nutrients (Tchobanoglous et al., 2003). Thus, it is commonly used 

for the removal of specific pollutants prior to discharge to sensitive receiving waters.  

The statistical power of the sampling programme was determined a priori by two-

sided and balanced analysis of variance power calculations using the pwr package in 

R (Champely, 2018; R Core, 2018). Sensitivity, as Cohen’s D, was set to ‘moderate’ 

(0.5) as the effect on performance of a treatment plant being in a designated 

experimental category was unknown at the start of the study (Cohen, 1988). The 

significance level was set to 0.05; i.e., 95% confidence. Based on logistical feasibility 

during the field sampling programme, 90 samples were collected across sites for 

influent and effluent quality and removal rate analyses. Using this sample number, 

the overall statistical power of the sampling plan was 0.92, implying the sampling 

regime would produce a dataset suitable for performing statistically significant 

comparisons across the WWTPs. For each experimental category, 12 influent and 12 

effluent samples were collected symmetrically over one year, except for the 

reference AS plant category, which only had six influent and effluent samples 

collected over the year. This experimental design provided a statistical power of 0.9 

for any inter-category comparisons. 

3.2.2 Sampling approach and collection 

Manual, time-apportioned, composite samples of raw influent and final effluent were 

collected at each site, every two months between December 2016 and October 2017. 

This provided 90 influent and 90 final effluent samples for analysis. Typical peak and 

daytime base flowrates were determined by calculating the mean time at which these 

flows occurred at selected WWTPs in the region. Flow data for 2013 – 2016 was 

obtained from the Monitoring Certification Scheme (MCERTS) flow monitors installed 

at 25 decentralised WWTPs. Thus, peak flowrate samples were collected between 
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08:00 and 09:00 and base flowrate samples were collected between 14:30 and 15:30 

on the same day of the month for each site. This was important to negate any effect 

of sample time on pollutant concentrations. 

Influent and effluent samples always were collected in 1 L bottles (Nalgene, USA), 

both at estimated peak and base flows, and samples were combined at the time of 

collection to create composite influent and effluent samples. The bottles were 

transferred on ice to Newcastle University and stored at 4 OC until analysis. On-site 

measurements of dissolved oxygen (DO) were made using a DO600 meter (Extech, 

USA). Ambient temperature, wastewater temperature and pH were measured using 

an EC500 meter (Extech, USA). 

3.2.3 Physical and chemical analysis 

All analysis was carried out in duplicate within 24 hours of sample collection. The 

wastewater in each bottle was homogenised by gentle upending. Analysis of total 

and soluble COD (tCOD; sCOD), ammonium (NH4-N) and total phosphorus (TP) was 

carried using colorimetric kits (Merck, Germany) in accordance with Standard 

Methods for the Examination of Water and Wastewater (APHA, 2009). For analysis 

of bioavailable fractions of COD and NH4-N, samples were filtered using a 0.2 µm 

nylon syringe filter (VWR, UK). Analysis of secondary nutrients was carried out using 

acid washed plastic to minimise procedural losses. Total suspended solids (TSS) 

levels were determined by concentrating suspended matter onto a GM6 glass filter 

membrane (Sartorius, Germany) and incineration at 105°C until consistent weight at 

five significant figures. Determination of anions of nitrogen (NO2-N; NO3-N) was 

performed by ion chromatography using an ICS-1000 system (Dionex, USA) fitted 

with an AS40 auto sampler (Thermo Scientific, UK). 

3.2.4 Data analysis and statistical observation 

All statistical analysis was carried out in R (R Core, 2018) and significance was 

defined by 95% confidence limits (p < 0.05), unless otherwise stated. Two DO 

concentration data points were missing in the raw data set and so prior to statistical 

analysis, were inferred using weighted average K-Nearest Neighbour Imputation with 

K set to 10, using a pre-scaled dataset. To assess the performance differences 

between experimental categories, one-way analysis of variance (ANOVA) was used 

on effluent concentration parameters and removal rates. 
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3.2.5 Reliability analysis 

To assess the stability of the effluent quality from the twelve small WWTPs against 

the larger benchmark sites, covariance of key parameters was calculated and 

represented graphically using ggplot2 package (Wickham, 2016). To further assess 

differences in stability between small treatment plants, reliability analysis (Niku et al., 

1979) was carried out using tCOD effluent concentration data. A coefficient of 

reliability (COR) was derived (Equation 1) from the covariance of the parameter over 

the sample time-series and the probability of compliance (Equation 2), where y is the 

coefficient of variance; Z1-a is the standardised normal variate obtained from tables 

generated by Niku (Niku et al., 1979); Xs is the required discharge standard; and mx 

is the mean measured effluent concentration for tCOD.  

𝐶𝑂𝑅 = 	&(𝑦)	 + 1) 	× 	exp	1−𝑍456√ln	(𝑦) + 1:                    (1) 

𝑍456 = 	
;<	=>5(;<	?@5A.C DE(FGH4))

√DE	(FGH4)
                    (2) 

The COR was multiplied by the Urban Wastewater Treatment limit to define the 

“acceptable” final effluent tCOD concentration, which currently is 125 mg-COD/ L for 

England and Wales (Equation 3), where ms is the design concentration: 

𝑚J = 	𝑋J(𝐶𝑂𝑅)                    (3) 

The design concentration is defined as the effluent quality that is needed to comply 

with the required discharge standard at a pre-determined confidence, which here is 

99% confidence. Note that this is different to a statistical confidence and derived from 

lookup tables included by (Niku et al., 1979). 

3.2.6 Statistical modelling of treatment plant reliability 

The probability of tCOD effluent concentrations exceeding the calculated design 

concentration at each small-scale WWTP was predicted using random forest (RF). 

RF is a powerful machine learning classifier which has key advantages including 

being robust to outliers and dataset noise, and the ability to identify parameter 

importance (Brieman, 2001; Ho, 1995). The approach to modelling is a supervised 

learning algorithm that relies on the construction of an ensemble of decision trees, 

which is particularly useful for correcting overfitting commonly observed in decision 
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trees (Hastie et al., 2008). Thus, the approach is particularly useful for this 

application where the ratio of sample numbers to unique sample sites, which could 

ordinarily result in model overfitting. Modelling was done using the caret package 

(Kuhn, 2018) in R with a 70 / 30 randomly determined train/ test data split, which was 

also chosen because of the ratio of sample numbers to the number of unique sample 

sites. Cross-validation was carried out ten times by comparing the area under the 

Receiver Operating Characteristics (ROC) curve as the metric for model performance 

(Metz, 1978). The optimised model was built using fifty-nine trees which was 

identified as the point at which the minimum error rate occurred in model training.  

Cross-correlations between predictor variables were determined using Spearman's 

rank correlations. The predictor values used were influent concentrations of tCOD, 

TSS, NH4-N and DO, influent pH and temperature, atmospheric temperature, 

season, PE, treatment technology type and the number of times that the site was 

visited by an operator each week. Concentrations of TSS and tCOD in the influent 

samples had an r2 of greater than 0.75, therefore TSS was removed from the model 

dataset to reduce the chance of false positive predictions. The importance of each 

predictor variable was calculated by comparing the cross-validated mean standard 

error (MSE) of the model performance with the performance when withholding each 

predictor in turn. The resulting differences were averaged and normalised by the 

standard error, and the parameter causing the greatest difference in normalised MSE 

was determined to be the most important. This approach was chosen because of the 

non-linear nature of the relative trends among key parameters, thus rendering 

traditional linear methods of predictor significance inappropriate. Data was scaled 

and centred prior to modelling.  

3.3 Results and Discussion 

3.3.1 Analysis of experimental categories 

A summary of effluent concentrations and removal rates for the smaller and larger 

WWTPs is presented in Table 1. Final effluent sCOD concentrations for the twelve 

smaller WWTPs ranged from 21 mg/L to 317.5 mg/L with a mean value of 64.1 mg/L. 

The range for tCOD concentrations at smaller systems was 22.0 to 727 mg/L, which 

is strongly correlated with TSS. The mean effluent tCOD was 114.6 mg/L. By 

contrast, at the larger benchmark plants, maximum effluent COD levels were an 

order of magnitude lower than smaller plants with mean effluent concentrations for 
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both sCOD and tCOD, which are 64.0 mg/L and 77.5 mg/L, respectively. Effluent 

NH4-N concentrations at the smaller WWTPs ranged from 1.75 mg/L to 49.2 mg/L 

with a mean value of 16.5 mg/L. Whereas, NH4-N concentrations in the final effluent 

of the larger WWTPs was on average 2.2 mg/L (never exceeding 5.2 mg/L), which 

meets regulatory compliance levels. 

(a) Effluent concentration 
         

 Smaller WWTPs (n=72) Larger WWTPs (n=18) 

Parameter Min Max Mean SD Min Max Mean SD 

sCOD (mg/L) 21 317.5 64.1 44.8 17 64 35.6 14.8 

tCOD (mg/L) 22.5 727 114.6 108.2 28.5 77.5 48.3 15.3 

TSS (mg/L) 2.3 161 31.6 35.3 5.5 19.3 12.1 4.1 

TP (mg/L) 1 11.6 4.9 2.5 1 5.1 3.6 1 

NH4-N (mg/L) 1.75 49.2 16.5 12.1 1 5.2 2.2 0.8 

NO3-N (mg/L) LOD 129.5 13.4 21.7 LOD 104.1 22.8 27.5 

pH 5.73 8.03 7.2 0.4 5.9 7.7 7.2 0.4 

DO (mg/L) 1.1 7.7 3.2 1.2 1.6 6.4 4.1 1.5 

Ambient temp (oC) -1.4 24.3 11.5 5.5 4 20.9 13 4.6 

WW temp (oC) 4 19.1 12.2 4.6 6 17.3 12.6 3.4 

         

(b) Removal rates          

 
Smaller WWTPs (n=72) Larger WWTPs (n=18) 

Parameter Min Max Mean SD Min Max Mean SD 

sCOD (%) -18.4 95.1 67.3 20.4 33.5 94.3 73.2 17.6 

tCOD (%) -13.1 98.5 78 20.6 74.1 96.6 88.5 7.03 

TSS (%) -13.6 98 80 33.9 80.3 97.6 91.7 4.6 

NH4-N (%) -15.4 95.4 55.5 30.4 81.6 96.6 92.9 3.7 
 

Table 1 - Statistical observations of final effluent and removal rate parameters for 
smaller and larger reference WWTPs. LOD = limit of detection; WW = wastewater. 

The effluent quality for the smaller WWTPs also was much more variable than the 

larger plants for all parameters, except pH and DO. The largest observed standard 

deviation (SD) among effluent parameters was for tCOD at both the larger and 
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smaller WWTPs. For larger plants, this is likely because of a relatively ‘generous’ 

limit of 125 mg/L imposed under the UWWTD; i.e., most treatment plants produce 

effluent concentrations far below this level, which allows less stringent process 

control. In contrast, no tCOD regulation typically exists on discharge concentrations 

for the smaller WWTPs, therefore they are not routinely controlled. This is evident in 

the measured highest effluent concentration of 727 mg/L, which is six times higher 

than the mean. The lowest SD was observed in pH and DO effluent values.  

In terms of removal rates, the parameter with highest mean rate of removal at smaller 

WWTPs is TSS (80.0%), whereas mean removal rates are highest for NH4-N at the 

larger WWTPs (92.9%). The SD of removal rates across larger plants was lowest for 

NH4-N which, again, is probably a result of tight discharge regulations. The lowest 

SD amongst removal rates at smaller WWTPs was for sCOD, but this was still > 20 

and suggests a high level of variance in effluent quality. In fact, one small WWTP had 

effluent quality poorer than influent quality. The lowest SD at the larger WWTPs was 

for NH4-N (3.7).  

There is a significant difference between the mean effluent values of the design 

categories across all parameters except NO3-N at 95% confidence (ANOVA, 4e-10 < 

p < 3.9e-3; p = 0.06). The similarity between NO3-N effluent values may be because 

most small WWTPs serve rural communities that include farms that might lead to an 

increased load of NO3-N entering the wastewater collection system, which would not 

be removed and so appear, similarly, in each effluent discharge. However, without 

being able to determine load fluxes or specific process mechanisms, it is not possible 

to confirm this speculation. Other than NO3-N, the least confidence in significance 

was between pH of final effluent samples, which is not surprising when considering 

SD of values for both small and larger plants (Table 1). For removal rates, there also 

is a significant difference between the removal rates at the different WWTP sizes and 

technologies, across all parameters (ANOVA, 2.5e-9 < p < 2.5e-4).  

3.3.2 Covariance of effluent parameters 

Covariance data on final effluent parameters from the twelve small WWTPs is 

summarised in Figure 6. The correlation between the mean effluent concentration 

and the SD is strongest for tCOD (r2 = 0.93). This demonstrates a strong relationship 

between the treatment performance and operational stability across treatment 

systems. A similarly strong trend was seen for sCOD and TSS (r2 = 0.75 for both). 
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Correlations for NH4-N also are strong (r2 = 0.84), which is surprising because none 

of the small WWTPs had a discharge limit for NH4-N at the time of the study. This is 

interesting because the smaller WWTPs are unlikely to have been designed for or 

operated in order to achieve nitrification, and yet there are evidently some treatment 

systems consistently achieving some nitrification. This suggests that observed trends 

of covariance probably are a ‘natural’ phenomenon rather than a result of operational 

practices or engineered design. In other words, conditions promoting nitrification 

have occurred by ‘chance’ and have developed to be relatively stable through time. 

In terms of TP, while there is a significant difference in removal rates between the 

large and small WWTPs (ANOVA, p <0.05), covariance trends between performance 

and stability are relatively weak (r2 = 0.45). None of the monitored WWTPs have 

phosphorus removal technologies and it is much less likely that TP removal, 

especially by enhanced biological removal, will occur by chance than, for example, 

nitrification might. The three larger treatment systems are clustered to the lower left-

hand corner of the plot (i.e., higher quality effluent and greater stability) for all 

parameters except for TP. After this, the next most obvious observation on 

performance versus stability covariance trends is differences among technology 

types. The package plants tend to discharge higher quality effluent on average and 

do so more consistently. For example, SD of NH4-N ranged between about 3 and 8 

mg/L for RBC and HiPAF treatment types (Figure 6e). It was, however, not possible 

from this covariance analysis to exactly determine the role treatment type (or any 

other factor) played in the stability of effluent quality. 
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Figure 6 - Covariance plots for final effluent values by experimental category as 
population equivalents and technology type. Colours identify treatment technology 
type and shape identifies the population equivalence. Error bars show standard error. 
Shading shows confidence in the linear regression smoothing at the 99th percentile. 
All correlations (reported as r2), are significant (p < 0.01). Plot (a) is soluble COD; (b) 
is total COD; (c) is total suspended solids; (d) is total phosphorus; (e) is ammonium 
and (f) is nitrate. 
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3.3.3 Reliability small treatment systems 

Design concentrations for tCOD for each small WWTP are summarised in Figure 7, 

grouped by the WWTP size and technology type. The lowest effluent concentration 

required to maintain compliance with UWWTD tCOD discharge standards at 99% 

confidence was 63.7 mg/L. Given this criterion, it is not surprising that one of the 50-

to-125 PE trickling filters had the highest mean tCOD effluent concentration, well 

beyond discharge standards (727 mg/L). The highest design concentration was 78.2 

mg/L, which was calculated for the RBC with a PE of between 50 and 125.  

Whilst the range of design concentrations is relatively small (14.5), there is a clear 

inverse relationship between the measured and design concentrations (Figure 7). 

However, two WWTPs that have mean effluent concentrations of > 125 mg/L had 

design concentrations higher than three of the treatment systems with mean 

concentrations > 125 mg/L. This confirms that calculations driven by covariance and 

probability analysis are not simply the average of measured values or numerical 

distance from the mean (i.e., SD). Means and SDs are both useful at times, but 

ultimately, are limited measures of performance because of the underlying 

assumptions upon which their implications depend. Specifically, the assumption of a 

Gaussian or additive normal distribution (Limpert et al., 2001), which may not 

summarise the characteristics of every parameter of interest. Therefore, other 

methods are needed to better understand performance trends, which may allow a 

deeper insight into risks of WWTP compliance failure, ideally also aimed at ecological 

improvement in catchments. Whilst we do not endorse neglecting sites that appear to 

provide stable performance naturally, increased awareness of a WWTP’s reliability 

means that operational practices and allocation of resources can be optimised. 
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Figure 7 - Mean design and mean measured final effluent concentrations of tCOD for 
each study site and each experimental design category for small WWTP only. Black 
line denotes the UWWTD regulatory discharge limit of 125 mg/L COD. Black 
triangles denote mean measured effluent tCOD values for each site. n=90. 

Experimental groups with the most similar design concentrations, and therefore, the 

most similar effluent quality (measured as tCOD concentration, only), are small AS 

WWTPs with a PE between 50 and 125 (50-125_SAS). However, considering the 

position of these two systems in the covariance plots (Figure 6), it is apparent the 

observation is also relevant for other treatment performance parameters.  

3.3.4 Prediction of small works reliability  

Whilst it is useful to observe the evident similarity of effluent quality that was 

discharged from small AS plants, it is perhaps more important to understand what 

drives or influences such trends. The adage, ‘no two WWTPs are the same’ may be 

true, but there also may be enough similarity between the performance of different 

systems to identify dominant predictors. Thus, we applied a simple machine learning 

algorithm to predict the reliability of the small WWTPs assessed in this study, which 

determines the likelihood of tCOD effluent concentrations exceeding site-specific 

design concentrations (Figure 7).  
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The optimised random forest model was used to predict the likelihood of the effluent 

concentration being above the design concentration with an accuracy of 64.2% and, 

therefore, a mean standard error of 0.358. This model was chosen after comparison 

with the performance of a gradient boosting machine and a generalise linear model 

(see Appendix B for further details on the performance of different models). The 

random forest model correctly predicted the effluent tCOD concentration exceeding 

the design concentration for 71.4% of the samples. In contrast, the model correctly 

predicted the effluent tCOD concentration not exceeding the design concentration for 

57.1% of the samples (Table 2). This suggests the model is conservative, which may 

appeal to risk managers responsible for prioritising asset investment against 

regulatory compliance or environmental targets. Such an approach might be useful to 

forecast the performance reliability of multiple small WWTPs, simultaneously. The 

implication of the data is that there may be enough similarity between different sites 

to establish underlying trends and drivers of performance. 

  
Reference 

  
Actual > Design Actual < Design 

Prediction 
Actual > Design 71.40% 42.90% 

Actual < Design 28.60% 57.10% 

 

Table 2 - Confusion matrix for random forest model prediction showing the 
percentage of correctly predicted tCOD concentration values. 

Considering the performance of the model for each of the six experimental categories 

for the small WWTPs, it is clear that the reliability of the package plants (especially, 

RBCs) is harder to predict that the more traditional technologies (Table 3). For 

example, the model correctly predicts the likelihood of the effluent concentration 

falling below the design concentration for all samples collected at trickling filter sites. 

This is likely because the stability of effluent quality discharged from the RBCs is 

generally higher than other plants which makes the difference between the measured 

effluent concentration and the design concentration is small. It should be noted that 

with two WWTPs in each experimental category, it is difficult to attribute the model 

performance to characteristics inherent to that particular technology type. This is 

particularly pertinent when considering the model performance for small AS 
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treatment plants; for example, 50% accuracy could be attributed to the correct 

prediction of samples collected at one WWTP and not the other. However, the 

similarity of the design concentrations (Figure 7), suggests this may not be case, 

here. Furthermore, there is a clear distinction between the accuracy of the model for 

some experimental categories, over others.  

WWTP Category % Correct Predictions 

125-250_HiPAF 67 

125-250_RBC 17 

125-250_SF 100 

50-125_AS 50 

50-125_RBC 67 

50-125_SF 100 

Table 3 - Random Forest model accuracy by experimental category. 

The relative value of different model predictors is shown in Figure 8, which shows 

that influent wastewater characteristics and PE are most important. All samples were 

used to determine the most important predictors, rather than only samples collected 

at WWTPs for which the model performed particularly well because the approach 

presented, here, is designed for relevance to a system of small WWTPs, rather than 

only those that are ‘easy’ to predict and, potentially, therefore, more manageable. 

Interestingly, the size of a treatment system appears to be more important to 

consistency in effluent quality than the treatment technology itself. This is supported, 

at least in part, by the variance observed between treatment plants within the same 

experimental category and differences among categories (Figures 6 and 7). Further, 

the smallest WWTPs (50-125 PE) appear to be consistently less stable (i.e. greater 

variability in effluent quality) than the sites with a PE between 125 and 250. It may 

not be appropriate to categorise all WWTPs according to these PE bands, but the 

model outputs combined with the analysis of the experimental categories suggest 

these groupings may be sufficient and useful for assessing the influence of different 

parameters on treatment performance.  
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Figure 8 - Relative importance of predictors as determined by random forest. ‘pH_inf’ 
is the pH of the influent wastewater; ‘Ammonia_inf’ is the concentration of ammonia 
in the influent wastewater; ‘PE’ is the population equivalence; ‘Treatment_type’ is the 
treatment plant technology; ‘Temp_inf’ is the temperature of the influent wastewater; 
‘tCOD_inf’ is the concentration (mg/L) of tCOD in the influent wastewater; ‘Visit_freq’ 
is the number of times an operator visits the site per week; ‘DO_inf’ is the 
concentration of dissolved oxygen in the influent wastewater; ‘Season’ is UK season; 
‘Ambient_temp’ is the atmospheric temperature at the time of sample collection. 

In contrast to system size and influent characteristics, most other predictors had little 

relative importance in predicting effluent stability (< 60, Figure 8). The significant 

difference (unpaired t-test, p < 0.05) between wastewater and ambient air 

temperatures implies a buffering effect against the latter. This explains why seasonal 

changes are relatively unimportant as a predictor of resilience. However, whilst the 

temperature of the liquid influent was somewhat important, it does not appear to be a 

dominant predictor in this model. Interestingly, the DO concentration of the influent 

also has little relative importance. This is likely because the effects of aeration 

capacity or hydraulic retention time, which are not considered here, both influence 

performance regardless of the influent DO concentration.  

The final parameter of note relative to system performance is the frequency of visits 

to sites by operators. This parameter is included here as a predictor of the effect of 

operational practice. In the UK and elsewhere, the frequency in which small WWTPs 

are visited by operators can vary from several times per week to once every couple 
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of months. The frequency of operator visits appears relatively unimportant and a poor 

predictor of WWTP stability (Figure 8). This might be because the actual activity 

during each site visit can vary, both between sites and through time. Activities might 

range from checking pumps and plumbing, assessing controls, cleaning lines and 

other incidental activities. However, implicitly, this suggests the original design and 

sizing of the processes are more important to treatment performance. This seems to 

be especially true of smaller WWTPs that do not appear to be improved by simply 

increasing operational maintenance.  

3.3.5 Model simplification 

In an attempt to simplify the predictive model, all input parameters with a relative 

importance below 75 (Figure 8) were removed. This meant the independent variables 

were pH of the influent, NH4-N concentration of the influent and the PE. The 

presence of influent pH and NH4-N concentration in this list may be because they are 

acting as indicator metrics for the overall wastewater ‘strength’, rather than because 

the pH or NH4-N themselves control the reliability of tCOD effluent concentration. RF 

classification using the same input conditions and training dataset as previously 

described, generated an accuracy of 66.1%, which is an increase of approximately 

2% compared to modelling with all parameters. Whilst such a marginal improvement 

might be attributed to chance, it is encouraging that the prediction of small WWTP 

reliability can be condensed to just three parameters without any loss of accuracy. 

This is important because it limits the data requirements at small sites and still allows 

wastewater managers to predict the likelihood of these systems becoming unreliable.  

3.4 Conclusions 

Limited understanding of small WWTPs is driven largely by a lack of available 

operational performance and impact data. Here we show the stability and effluent 

quality of smaller systems is significantly poorer than their larger counterparts. 

However, the influence of size extends beyond what has been previously recognised, 

especially how system size relates to consistent compliance with possible limits. 

Specifically, the smallest WWTP (50-125 PE) appeared less stable than the slightly 

larger WWTPs (125-250 PE), across all technology types. These trends also 

reflected in the reliability of the different systems. A simple model showed that the 

reliability of the effluent quality discharged from small WWTPs can be predicted using 

just three parameters to a reasonable degree of accuracy.  
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More generally, the work also shows how simple mathematical techniques can be 

used to provide insight into the performance and reliability of smaller WWTPs and 

might be used to improve operational efficiency. Such analysis can inform a more 

strategic approach to managing effluent releases in rural and remote catchments, 

particularly to achieve regulatory compliance, reduce environmental impact, or 

prioritise operational and capital investment. There is a growing recognition of the 

benefits of decentralised wastewater infrastructure and the methods applied, here, 

could lead wastewater and asset managers to realise the potential of such systems, 

including the role they can play in improving ecological ambitions.  
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Chapter 4. Use of Genetic Faecal Markers as Treatment 
Performance Metrics for Small Wastewater Treatment Plants 

4.1 Introduction 

The design and regulation of WWTPs is almost exclusively for the benefit of 

environmental protection. Yet in many countries, the potable use of untreated water 

means that wastewater discharges also can pose a health threat; i.e., up to 4% of 

deaths globally are attributable to poor sanitation and hygiene (Troeger et al., 2017). 

Several studies have quantified bacterial and viral genetic markers in and out of 

WWTPs (e.g. Mayer et al., 2015; Brown et al., 2015) but few have considered the 

use of such parameters directly as treatment performance metrics. This may be 

because risks to human health from exposure to wastewater discharges are often 

difficult to define (Huijbers et al., 2015) or simply because such markers are not 

regulated. However, with recent and rapid advancements in molecular methods, their 

value and use must be considered. 

As background, the advent of MST has resulted in the development of a large suite 

of genetic faecal assays (Harwood et al., 2014). Such techniques can be used to 

attribute faecal pollution to specific sources, which allows public health managers to 

better quantify and mitigate risks to human health. In contrast, traditional measures of 

sewage pollution rely on the quantification of culturable organisms such as E. coli or 

enterococci. These methods are simple, low cost and therefore, widely used. 

However, unlike genetic markers, culture-based methods do not differentiate 

between sources of pollution. This is important since current microbiological water 

quality standards are based on health-risk, which differs depending on the source of 

pollution (Seurinck, Verstraete, et al., 2005). In contrast, genetic faecal markers can 

be more specific (e.g., human versus non-human sources), allowing more accurate 

allocation and relative quantification of different risks. As such, they could also help 

to quantify relative source-specific faecal loads entering a watercourse, guiding 

wastewater and water quality management decisions.  

There is an abundance of data on the suitability of markers for tracking human-

derived pollution. In the development of MST assays, domestic wastewater is 

commonly used to test the sensitivity and specificity to human-associated markers. 

Furthermore, specific markers have been quantified in different waste streams 

(Srinivasan et al., 2011; Mayer et al., 2018, 2016). However, such testing has more 
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been to determine global or regional variance of human reference samples. Such 

methods have not extensively been used to carry out detailed assessments of 

treatment performance within a strategically designed study. More specifically, there 

have been no attempts to use genetic faecal markers as a metric of treatment 

performance in terms of final effluent quality or gene removal rates. 

Here, we assessed selected genetic faecal markers within the context of possible 

faecal releases from small WWTPs. Such systems are of particular interest because 

their performance, stability and environmental impact are traditionally not well 

understood. However, there is growing recognition of the benefits of decentralised 

treatment over centralised infrastructure, based on whole-life economic costs and 

more accurate sizing for local needs (Roefs et al., 2017; Wang, 2014). The latter is 

particularly pertinent in developing countries where population growth rates far 

exceed the rate of sewage infrastructure investment (Maurer et al., 2005; Graham et 

al., 2019). In such contexts, the human exposure risk to sewage polluted waters is 

also often greater and more overt. Furthermore, the potential for localised 

wastewater reuse has been highlighted in recent times and is particularly pertinent 

with growing, international awareness of water scarcity. Therefore, it is of global 

relevance that small WWTPs are better understood, particularly potential risks their 

discharges pose to human health. The aim of this study was to assess how the use 

of genetic faecal markers to might inform this need and also, provide new insight into 

WWTP treatment performance by providing an alternative, perhaps more pertinent, 

treatment performance indicator.  

4.2 Materials and Methods 

4.2.1 Experimental design and sample collection 

Influent and final effluent wastewater samples were collected from fifteen WWTPs in 

NE England and analysed for physical and chemical performance parameters as 

previously described (Chapter 3). Briefly, six categories of small WWTP (defined as 

250 or less PE) were identified by random stratified sampling of a list of all local 

plants and two were chosen for each category, totalling twelve small WWTPs. 

Experimental categories consisted of two brackets of population equivalence: 50-125 

and 125-250, and four technologies: activated sludge (AS), secondary filtration 

(trickling filter, SF), rotating biological contactor (RBC) and high-performance aerated 

filter (HiPAF). Three larger WWTPs, two trickling filters and one activated sludge 
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plant, were chosen to provide a performance reference against which to contrast the 

smaller WWTPs. Thus, the experimental categories were: 50-125_SF, 125-250_SF, 

50-125_AS, 125-250_HiPAF, 50-125_RBC, 125-250_RBC, 5000-10000_SF, 5000-

10000_AS.  

Analysis of soluble chemical oxygen demand (sCOD), total chemical oxygen demand 

(tCOD), ammonium (NH4-N), total suspended solids (TSS) and anions of nitrogen 

(NO2-N and NO3-N) was carried out on ninety influent and ninety effluent samples 

collected between December 2016 and October 2017. Detailed results of these 

parameters were presented in Chapter 3.  

4.2.2 Selection of faecal markers 

The faecal markers used in this study are shown in Table 4. Human-associated and 

non-specific faecal markers targeting E. coli and Bacteroides were chosen due to 

their high reported sensitivity and specificity (Warish et al., 2015; Ahmed et al., 2016; 

Harwood et al., 2014). For human-associated Bacteroides, HF183/BacR287 (Green 

et al., 2014) and HumM2 (Shanks et al., 2009) were chosen and for human-

associated E. coli, H8 (Gomi et al., 2014) was used. AllBac (Layton et al., 2006) and 

RodA (Chern et al., 2011) also were used to quantify the total number of Bacteroides 

and E. coli genes, respectively, and also for quality control to rule out the possibility 

of PCR inhibition in sample dilutions. Bacteroides is of particular interest because of 

its high abundance in the human gut (Seurinck, Verstraete, et al., 2005) and HF183 

is now widely used in MST studies (e.g., Chase et al., 2012; Wanjugi et al., 2016; 

Cao et al., 2018). The US EPA developed HumM2 marker was chosen because of its 

relatively high performance when compared to other similar markers (Ahmed et al., 

2016). In contrast, the E. coli markers were chosen for comparison because of the 

long-standing use of culturable E. coli as a faecal indicator.  
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Assay Target Sequences (5’ to 3’) Ref. 

RodA Total E. coli 
F: GCAAACCACCTTTGGTCG 

Chern et al., 2011 
R: CTGTGGGTGTGGATTGACAT 

H8 Human E. coli 
F: ACAGTCAGCGAGATTCTTC 

Gomi et al., 2014 
R: GAACGTCAGCACCACCAA 

AllBac Total 
Bacteroides 

F: GAGAGGAAGGTCCCCAG 
Layton et al., 2006 

R: CGCTACTTGGCTGGTTCAG 

HF183 Human 
Bacteroides 

F: ATCATGAGTTCACATGTCCG 
Green et al., 2014 

R: CTTCCTCTCAGAACCCCTATCC 

HumM2 Human 
Bacteroides 

F: CGTCAGGTTTGTTTCGGTATTG 
Shanks et al., 2009 

R: TCATCACGTAACTTATTTATATGCATTAGC 
 

Table 4 - Genetic faecal markers used in this study. F = forward sequence, R = 
reverse sequence. 

4.2.3 Quantification of faecal markers 

Wastewater samples were returned to the laboratory on ice and within three hours of 

collection biomass was concentrated onto cellulose nitrate membrane filters (0.22 µm 

Sartorius, Germany) from 20-50 mL of influent or 50-250 mL of effluent wastewater. 

Filters were frozen at -20 OC until bulk extractions were performed. For DNA 

extraction, cells were lysed for 40 s using a FastPrep R-24 rybolyser (MP 

Biomedicals Inc., USA) with the speed set to 6 m/s. Extractions were carried out 

using Spin kit for Soil (MP Biomedicals Inc., USA) according to the manufacturer’s 

protocol. 

Each well in 96 well plates were loaded with a master mix consisting of 5 uL SsoFast 

Evergreen Supermix (Bio-rad, USA), 500 nm of primers, 2 uL of DNAase-free water 

and 2 uL of template DNA, providing a total reaction volume of 10 uL. qPCR 

analyses of each influent wastewater DNA sample was run at 10-1 and 10-2 dilutions, 

whereas final effluent DNA samples were run at 10-1 and 100 dilutions using a CFX96 

qPCR machine (Bio-Rad, USA) according to the SsoFast Evergreen Supermix 
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manufacturer’s protocol with annealing temperatures set to 60 oC for all primers, 

which is consistent with the referenced literature (Table 4). The dilution that resulted 

in the lowest, mean quantification cycle value was used for subsequent analysis. For 

each qPCR run, triplicate no template controls (NTC; i.e., DNA replaced with 

DNAase-free water) also were analysed to assess possible contamination or 

unexpected amplification. NTC results were consistently negative.  

Quantification standards were developed as linear sequences amplified from DNA 

extracted from target organisms and cleaned using the MinElute PCR purification kit 

(Qiagen, Netherlands). Linear sequences were chosen to avoid overestimation that 

can be observed in supercoiled plasmid standards (Hou et al., 2010), which was 

important because more than one assay was used to target the same organism 

(human-associated Bacteroides). qPCR efficiencies always were between 89% and 

107%, and the calibration curve R2 was at least 0.99 for all runs, which exceeds the 

Minimum Information for publication of Quantitative real-time PCR Experiments 

guidelines (MIQE; Bustin et al., 2009). Based on experience and retaining simplicity, 

the limit of detection for each marker was defined as 10 gene copies per reaction, 

which also is consistent with previous MST studies (McQuaig et al., 2009; Ahmed et 

al., 2008). 

4.2.4 Statistical analysis 

All statistical analysis and data visualisation were carried out using R (R Core, 2018) 

and associated packages. Significance is defined at the 95th percentile (p < 0.05), 

unless otherwise stated. The effect of experimental category – system size and 

treatment technology – on the removal rate of each faecal marker was tested by one-

way Analysis of Variance (ANOVA). Data was scaled and centred prior to all 

analysis. One outlying effluent data point was removed from the winter and summer 

datasets used for clustering analysis, which was identified by assessing its relative 

deviation from the x-y distribution on the quantile-quantile normal plots for each 

marker. Associated chemical data from the same data point corroborated this 

outlying effect (e.g., see sCOD concentration in Table 1). 

To test the suitability of genetic faecal markers for assessing WWTP performance, 

hierarchical and partitioning clustering algorithms were combined with principle 

component analysis. K-medians clustering was used to identify the markers that best 

describe the variance between the effluent qualities observed at treatment plants. A 
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partitioning approach was chosen because it is computationally efficient and because 

it describes the distance between the effluent data points and the centre of the 

respective cluster. K-medians was chosen specifically because it is less sensitive to 

outliers than similar approaches, such as k-means. The appropriate number of 

clusters was chosen by plotting the within-group sum of squares for each partition 

and identifying the point at which the plot ‘levels’; i.e. when the number of clusters no 

longer influence the within-group sum of squares (Hothorn & Everitt, 2014). 

Ward clustering was used to test seasonal effects on effluent quality for all 

parameters across each experimental category and also to test the similarity of 

effluent concentrations between experimental categories. Ward clustering and the 

generation of heat maps for visualisation was done using the made4 package 

(Culhane et al., 2005) in R. Ward clustering was chosen due to the expected 

homogeneity of effluent qualities measured at WWTPs in some experimental 

categories, for example 50-125_SF and 125-250_SF. Ward clustering aims to find 

compact, ‘spherical’ clusters (Ward, 1963), whereas other methods (e.g., complete or 

single linkage methods) adopt less constrained approaches, such as ‘friends of 

friends’ which  would likely infer unrealistic similarities. 

Clustering analysis was carried out on samples collected during the summer and 

winter, which was used to investigate seasonal effects on genetic marker 

abundances. For this study, summer was defined as samples collected at the start 

and end of the UK meteorological summertime (June and August), whereas winter 

includes samples collected at the start and finish of the UK meteorological wintertime 

(December and February).  

4.3 Results & Discussion 

4.3.1 Characterisation of WWTPs and chemical wastewater quality 

The abundance of five genetic faecal markers was quantified in the influent and final 

effluent of fifteen WWTPs in NE England - twelve smaller WWTPs with design 

capacities of between 50 and 250 PE, and three larger, reference WWTPs with 

design capacities between 5000 and 10000 PE. For reference, physical and chemical 

performance characteristics for all WWTPs are summarised in Table 1. 
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4.3.2 Quantification of faecal markers in WWTP influent and effluent 

All markers were detected in 100% of samples (n = 120). Concentrations of each 

marker in the influent and final effluent samples from the small WWTPs are shown in 

Figure 9a and for the larger WWTPs in Figure 9b. Median concentrations of the 

human associated Bacteroides markers in influent samples were very similar for both 

the small and larger WWTPs. Influent concentrations in the small WWTPs were log10 

6.34 and log10 6.6 of HF183 and HumM2, respectively, whereas log10 6.23 and log10 

6.64 were detected in larger plant influents. However, a significant difference was 

observed between median effluent abundances of HF183 and HumM2 in the small 

versus larger WWTPs (Welch’s two-sample t-test; p = 0.003 for HumM2; p = 0.02 for 

HF183). The median concentration of total Bacteroides (i.e., AllBac) was two to three 

orders of magnitude higher than HF183 and HumM2 in both the effluent and influent 

wastewater for both the small and larger WWTPs, which is consistent with previous 

findings (Mayer et al., 2015). 

For human associated E. coli, H8, median abundances in the influent and effluent 

samples from the small WWTPs were log10 5.42 and log10 3.85, respectively. This is 

one to two orders of magnitude lower than the human associated Bacteroides 

markers and two orders of magnitude lower than the mean abundances of total E. 

coli (i.e., RodA). The difference between the effluent qualities at the small and the 

larger WWTPs also was observed in the difference in E. coli marker concentrations. 

There was a significant difference between the final effluent abundances of H8 and 

RodA at the small WWTPs verses the larger WWTPs (Welch’s two-sample t-test, p = 

0.001 - 0.01). 

To test the effect of experimental category (i.e., treatment technology type and 

system size) on faecal marker abundances, ANOVA models were applied to influent, 

final effluent, and pooled (influent and final effluent combined) samples. Pooling was 

possible because of the homogenous distribution of samples across all markers and 

sample types. There was no significant difference between the abundance of any 

markers when only considering the influent or the effluent samples across the WWTP 

categories, suggesting the chosen experimental categories cannot reliably describe 

the variance in influent or effluent faecal marker abundances in the small WWTPs. In 

other words, factors other than treatment technology type and PE appear to drive the 

influent and effluent faecal marker abundances.  
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Figure 9 - Abundance of the five genetic faecal markers expressed as gene copies 
per 100 mL of influent (I) and final effluent (E) samples. Plot (a) is for the small 
WWTPs (n = 48 influent, n = 48 final effluent), plot (b) is for the larger WWTPs (n = 
12 influent, n = 12 final effluent). 

However, when influent and effluent sample data were pooled, a significant 

difference in the abundance of all markers, except AllBac, was observed at the small 

WWTP compared with the larger WWTPs (Welch’s two sample t-test, p = 0.001 – 

0.02). Also, a significant difference in all marker abundances was detected in pooled 
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samples collected in the summer versus the winter (Welch’s two sample t-test, p = 

0.004 – 0.03). This observed seasonal effect is relevant for water quality managers 

because it draws into question the possible reliability of such markers for exposure 

assessments in regions with pronounced seasonal differences. To explore the 

influence of seasonal factors on faecal markers for describing the WWTP 

performance, summer and winter samples were segregated for all proceeding 

analysis. 

4.3.3 Removal of faecal markers by treatment 

The median removal rates of the human-associated markers ranged from log10 1.3 

for HF183 to log10 1.8 for H8, across all WWTPs. For the non-specific markers, the 

median removal rates were log10 1.2 for AllBac and log10 1.7 for RodA. The 

difference between the Bacteroides and E. coli markers might be attributed to 

variations in temperature and exposure to sunlight, both which change seasonally in 

the UK. 

This speculation was explored by applying clustering algorithms to the final effluent 

data collected in summer months and comparing it to data collected during the winter 

months. There was a significant correlation between removal rates of the human-

associated Bacteroides markers (Pearson’s rho = 0.6, p = 1.2e-6) and median 

removal rates also were similar (i.e., log10 1.3 versus log10 1.4). However, less 

convincing and non-significant relationships were observed between total and 

human-associated Bacteroides markers (Pearson’s rho = 0.2, p >0.1). This is 

consistent with previous observations of changes in the abundance of human-

associated and non-specific genetic markers targeting Bacteroides, pre and post 

wastewater treatment (Mayer et al., 2016). In contrast, the correlation between the 

removal rates of H8 and RodA was particularly strong (Pearson’s rho = 0.82, p = 

3.7e-15). It should be noted that on four sampling occasions the abundance of faecal 

markers in final effluents exceeded influent levels, implying a negative removal rate. 

The same trend also was seen for chemical parameters (see Table 1). Generally, 

however, it should be noted that an inherent limitation of molecular quantification is 

indistinction between DNA from living and dead cells, or, indeed free DNA. Thus, 

observed trends may not be an accurate reflection of bacterial abundances resulting 

in potential human exposure to faecal pathogens.  
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4.3.4 Hierarchical clustering shows seasonal marker trends 

The abundances of all faecal markers in the WWTPS as well as final effluent 

chemical concentrations are summarised in Figure 10, grouped by experimental 

category (see section 4.2.1 for definitions). Data collected during the summer and 

winter months have been separated. Dendographs displaying Ward clustering show 

that the human-associated markers cluster together in summer samples, whereas in 

winter samples they do not. Likewise, the non-specific genetic markers cluster 

together in the summer, but they do not in the winter samples.  

Summer patterns might be explained, at least in part, by the fact that non-specific 

markers tend to cluster closely to performance measures, such as particulate matter, 

tCOD and TSS. This may be because of excessive microbial growth at SF and RBC 

plants leading to sloughing of biofilms, containing a proportionally higher number of 

AllBac and RodA genes. This speculation is supported by the greater copy numbers 

of non-specific markers in the effluent of 50-125_SF and 125-250_SF WWTPs 

compared to human-associated markers in summer. However, this speculation could 

only be confirmed by metagenomic analysis of the appropriate biofilms, which was 

beyond the scope of this study. 

WWTPs within the category 50-125_SF produced noticeably poorer quality effluent in 

the summer than all other types of WWTP. Interestingly, faecal marker abundances 

in the effluent appear to be higher than for the 125_250_SF WWTP category for all 

human-associated markers, although the differences were not significant (p > 0.05).   

The difference in effluent quality between the small and the larger WWTPs is obvious 

from visual inspection of the heat maps. For example, the presence of a discharge 

limit for NH4-N at the larger works is particularly clear in the data. Such observations 

alone, however, should not be used to draw conclusions about the dominant factors 

influencing system performance. For example, none of the WWTPs are actively 

controlled to remove faecal markers, yet there is a significant difference between the 

effluent quality and the removal rates measured at small and larger WWTPs. This is 

irrespective of season and otherwise could be explained by close clustering of certain 

managed parameters (e.g. tCOD) and the genetic faecal markers. This did not occur 

and leads us to consider, again, the possible phenomena whereby faecal markers 

targeting total copy numbers of Bacteroides and E. coli are closely related to solids 

removal efficiency, whereas human-associated markers are not.  
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In winter, as biological activity slows down, faecal marker trends become less clear, 

with one obvious exception. RodA, targeting total E. coli and H8 targeting human-

associated E. coli, cluster together and appear independent of all other parameters. 

This may be a result of the effect of temperature on microbial inactivation, of which E. 

coli may be particularly sensitive (Pachepsky et al., 2014). Alternatively, it could 

result from the effects of sunlight levels on photolytic cell degradation. The 

degradation rate of E. coli in surface waters can be sensitive to sunlight levels, 

although not always as sensitive as other organisms, such as Bacteroides (Noble et 

al., 2004). When light is limited, the decay of Bacteroides is biphasic and generally 

slow (Green et al., 2011). Assuming that what is observed in surface waters can be 

extended to WWTPs, this explanation becomes plausible when comparing seasonal 

gene copy numbers. There is no significant difference between the final effluent 

counts of human-associated Bacteroides in the summer or winter samples (p > 0.1), 

whereas, the difference is significant for H8 (Welch’s two-sample t-test, p = 0.04).  

This observation is potentially important because it implies that in winter conditions, 

the abundance of Bacteroides in effluent samples (which generally are more 

abundant; see Figure 9) is proportionally greater than in summer. In other words, 

Bacteroides markers accentuate the poor performance of WWTPs in winter. In 

contrast, E. coli markers provide an unrepresentative view of treatment performance 

because their decay may be less affected by levels of sunlight. This is particularly 

noticeable at the small WWTPs, whose treatment performance and stability are 

seasonally as well as generally more inconsistent than larger WWTPs. 

It appears that Bacteroides markers can provide additional insight into the potential 

ecological impact of a wastewater discharge, as well as the overall treatment 

performance of a WWTP. To confirm the usefulness of these observations for 

understanding small WWTPs, unsupervised clustering analyses were applied to the 

effluent dataset. 
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Figure 10 - Heat maps showing the abundance of genetic faecal markers and the 
concentration of chemical parameters in the final effluent of the WWTPs, grouped by 
experimental category (see section 4.2.1 for definitions). Data for summer refers to 
samples collected in June and August, data for winter refers to samples collected in 
December and February. Dendographs show the output of Ward clustering. Inset 
graphs show histograms of the scaled datasets where ‘Good’ is a low concentration 
and ‘Poor’ is a high concentration, referring to the quality of the final effluent. The 
reader should note that the summer and winter datasets were scaled independently, 
and therefore, heatmap colours should not be compared between summer and winter 
plots. ‘sCOD’ is soluble chemical oxygen demand; ‘tCOD’ is the total chemical 
oxygen demand; ‘TP is total phosphorus; ‘TSS’ is the total suspended solids. 
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4.3.5 Vector analysis and partitioning support the use of human-associated 
markers 

The role of the genetic faecal markers as descriptors of variance in final effluent 

quality between WWTPs is shown in Figure 11. In the summer, the variable loadings 

attributed to the first principle component (56% of variance) are dominated by the 

human-associated faecal markers, which all have similar loadings. However, in 

winter, the dominant loadings against the first principle component (37% of variance) 

are provided by the Bacteroides markers and, interestingly, the loading is 

approximately equal across the human-associated and the non-specific markers. 

This further confirms the potential usefulness of Bacteroides markers for describing 

treatment performance trends across groups of WWTPs.  

To explore the use of the markers for describing the behaviour of individual WWTPs, 

or groups of WWTPs within a larger network, k-medians clustering was applied (see 

colours in Figure 11). According to variance, effluent quality as described by the 

faecal markers cannot be grouped in equal clusters. This suggests that a large 

proportion of the WWTPs are indistinguishable in terms of effluent quality variance. 

However, some trends are clear. For example, samples collected at the smallest 

WWTPs (50-125 PE) cluster together, across both season (red coloured points in 

summer and green coloured points in winter; Figure 11). The implication is that the 

effluent quality of such plants is similar across all faecal markers and distinct from the 

slightly larger WWTPs (125-250). This corroborates the findings of Chapter 3 that the 

influence of size on the performance and stability of small WWTPs may be more 

important than previously recognised. 

The function of k-medians clustering is that clusters are identified by the least 

variance between data points. The variance of each of the faecal markers across 

each of the clusters for summer and winter was calculated to test which marker best 

describes the clustering. In other words, which marker best describes the differences 

in final effluent quality observed across the different WWTPs by having the lowest 

within-cluster variance. In summer, the lowest variance in two of the three clusters 

was seen with the human-associated faecal markers. However, one of the clusters 

can be best described by the variance of RodA abundance. In winter, variance within 

each cluster is best described by variance of the markers targeting Bacteroides.  
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Figure 11 - Analysis of principle components combined with k-medians clustering of 
final effluent data collected in summer months and winter months. Vectors indicate 
the direction of the parameter effect, as derived by principle component analysis. 
Colours show the k-median clusters. 

4.4 Conclusion 

This study sought to investigate the use of genetic faecal markers to improve 

understanding of differences between the treatment performance of small WWTPs. 

During summer operation, human-associated markers appear to be best for 

describing WWTP treatment performance and can potentially provide useful insights 

beyond chemical metrics. In winter, Bacteroides markers appear to be better than E. 

coli markers, possibly because of the susceptibility of E. coli to changes in 

temperature and sunlight, although this speculation must be validated in directed 

experiments. There was a significant difference in marker abundances measured at 

the small WWTPs compared to the larger WWTPs, and there was a significant 

difference between abundances measured in the summer and winter. 

It is clear that genetic faecal markers can provide wastewater managers useful 

insights on the treatment performance and variance of small WWTPs. The 

Bacteroides markers provided the most representative description of differences 

between different WWTPs and so are recommended, especially the human-specific 

markers. However, seasonal effects on marker fate suggest faecal markers should 
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be used with caution because the best marker appears to differ between seasons, 

even for the same types of WWTP, which will impact their utility in places with 

pronounced seasonal variations, such as in temperature and sunlight.  
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Chapter 5. An Inverse Solution to the Problem of Predicting Dry 
Weather Flows at Small Wastewater Treatment Plants 

5.1 Introduction 

The effective management of wastewater discharges from small WWTPs may be 

critical for preserving surface water quality. As established in Chapters 3 and 4, 

understanding the performance and stability of small systems is of particular concern 

as the ecological impact of such systems may be underestimated. It is important, 

therefore, to identify how such systems function and what influences their 

performance reliability, especially compared to larger, centralised WWTPs. It has 

been shown that the reliability of small treatment systems can be affected by multiple 

factors, some of which may be unique to smaller contexts, including the susceptibility 

of smaller WWTPs to receive variable flows (Capodaglio et al., 2017). Sudden 

fluctuations in pollutant load – typically referred to as, shock loading - can impact the 

performance of treatment systems and effluent quality, which may in turn, impact the 

receiving waters. Within this context, the need for high resolution flow data is clear, 

particularly for small WWTPs. However, small treatment plants are not routinely 

monitored (EA, 2018b) and, as a result, there is a lack of data, including flow rates.  

When such information is missing for larger systems, modelling can be used to infer 

data or run future scenarios. This is because the prediction of wastewater influent 

characteristics is well established and can be used for generating inputs for process 

simulators, such as the Benchmark Simulation Model (BSM) platform. Overcoming 

the high costs associated with experimental data collection has resulted in the 

extensive use of such models for WWTP optimisation (Jeppsson et al., 2013). 

Influent generators may employ deterministic approaches or, as is most common, 

use Fourier-based dynamics to estimate diurnal profiles from daily average flows or 

to infill missing data (Langergraber et al., 2008; Mannina et al., 2011). 

Phenomenological models have also been developed (Gernaey et al., 2005, 2006, 

2011), primarily for use in conjunction with the BSM series. These models have 

evolved over the past twenty years from a simple set of flow modules to a complex 

system of models with multiple, inter-connecting facets. In terms of data-driven 

approaches, several attempts, with mixed success, have been made to apply 

machine learning algorithms to infer influent characteristic timeseries from historical 

data (Pai et al., 2011; Cheng et al., 2018). Common techniques such as neural 



 84 
 

networks or gradient boosting machines are typically employed, for both of which, the 

accuracy of prediction is linked to the size of the input dataset. Finally, commercially 

available WWTP process models (e.g., SIMBA, Visual Hydraulics, STOAT) often 

include influent characteristic generators which begin with flow profile predictions; the 

methodology is not always clear, resulting in a ‘black-box’ scenario for modellers.  

Whilst well established in some cases, the array of existing approaches for predicting 

or inferring influent flow data may not be suitable for use in small-scale systems. 

There are two main reasons: 

1) The focus of existing models is on data generation for optimising the process 

management of large WWTPs. For example, the phenomenological model of 

Gernaey et al. (2011) inputs to BSM2 which typically defines influent 

characteristics for a population equivalent (PE) of 100,000. It may not be 

appropriate to assume that the influent characteristics or the WWTP response 

is the same at small systems as it is at larger systems.  

2) Existing models generally rely on large and complex datasets. Whether the 

model is driven by a deterministic representation of a complex physical 

processes (i.e., the WWTP catchment), or machine learning algorithms, the 

necessary data are unlikely to be available for small WWTPs operating in rural 

and remote locations.  

Thus, there is a need for a new approach to predicting flows at small WWTPs, which 

is the aim of this chapter. The inherent variability of flows received by small WWTPs, 

particularly under dry weather conditions, and the likely, rapid return to a consistent 

diurnal pattern following a period of wet weather, means that predicting their flow 

rates should be considered independently from larger WWTPs. Whereas, the flow 

rate behaviour of small WWTPs under wet weather conditions is complex and difficult 

to predict due to the ‘flashiness’ of the catchment and short sewer network lengths. 

Thus, the scope of this chapter is the prediction of dry weather flows received by 

small WWTPs. 

5.2 Modelling Approach 

The approach to modelling employed is one of induction, whereby the model is used 

for the extrapolation of measured data in time and space (Beven, 2012). In contrast 

to other widely held views of modelling, data-based mechanistic modelling (Young & 
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Beven, 1994) is not concerned with achieving the best possible reflection of the 

physical processes involved in determining wastewater fluxes. It is wholly empirical, 

relating a series of data inputs directly to a series of outputs. Such an approach has 

been used extensively in hydrological modelling (e.g., Farmer et al., 2003; Kirchner, 

2009), but has not previously been applied to the issue of assessing wastewater flow 

characteristics. The simplicity of the approach is attractive, given the large number of 

unmonitored WWTPs across the UK. Thus, the work of Kirchner (2009) is of 

particular interest, showing that a single equation rainfall-runoff model can predict 

flows as accurately as other more complex and highly parametrised models, 

especially when solved by analytical inversion. This was the chosen approach here; 

i.e., a simple, single-function solution to determine the flowrates typically received by 

small WWTPs. 

A linear reservoir function was used to represent the total wastewater flow rate, as 

defined by Equation 4. Q is the timeseries of predicted discharges from the sewer 

system into the WWTP, Q0 is the flow rate at time t = 0, Rt is the predicted human 

generated input flux at time t (see Equations 5 to 7 for derivation of R), dt is the 

timestep interval and t is the travel time through the sewer network, commonly 

referred to in hydrological modelling as the residence or the storage time (see 

Equations 8 and 9 for application of t). 

𝑄 = 𝑄A ∗ 	𝑒5O
PQ tR S +	𝑅Q ∗ [1 −	𝑒5O

PQ tR S	]	    (4)  

The flow rates observed under wet and dry weather conditions were treated 

separately because it was expected that flow rates would behave differently under 

each condition. More specifically, it was expected that under dry conditions, a 

‘predictable’ pattern could be identified, based on consistent human behaviour. 

5.2.1 Definition of dry weather flow rates 

Flow rates under dry weather conditions were determined for twenty-one small 

WWTPs in the NE of England (Table 5). Fifteen-minute interval flow rates for the 

period 01 August 2013 and 31 July 2016 were obtained from Monitoring Compliant 

Certification flow meters (EA, 2014). Dry weather flows were defined as the flow rate 

occurring when there had been no measured rainfall for the previous forty-eight 

hours; i.e., where the rain radar recording was zero. This approach was chosen for 

simplicity and to facilitate linking the rainfall data and the measured flow data. It was 
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deemed appropriate for small catchments due to the relatively short travel times 

through the sewer network. Diurnal flow profiles for each WWTP were created by 

calculating the mean flow rate at each fifteen-minute timestep.  

Site Population 
Equivalent 

Sewer Network 
Length (m) 

Longest 
convex hull 

axis (m) 

Barrasford WWTP 237 2331 365 
Blanchland WWTP 100 774 346 
Butterhaugh WWTP 177 3861 981 

Carlton-in-Cleveland WWTP 244 3362 1055 
Fir Tree WWTP 265 2248 485 
Garrigill WWTP 132 2402 1192 
Glanton WWTP 208 4258 638 

Holy Island WWTP 225 5331 720 
Ingleby Greenhow WWTP 200 2497 1080 

Low Worsall WWTP 20 2595 535 
Matfen WWTP 213 4389 1851 

Powburn WWTP 184 1915 770 
Romaldkirk WWTP 154 2226 662 
Rookhope WWTP 211 3017 1425 
Scots Gap WWTP 221 4363 1839 

Snitter WWTP 36 2261 1428 
Wall WWTP 261 2932 677 

West Woodburn WWTP 176 3913 730 
Whittingham WWTP 231 2568 686 

Whorlton WWTP 183 1948 603 
Winston WWTP 254 3788 947 

 

Table 5 - List of WWTPs used for modelling with the relevant population equivalents, 
sewer network lengths and the length of the longest axis of a convex hull drawn 
around the sewer endpoints. This measure has been included to provide an 
indication of the maximum distance of travel within the catchment, to the WWTP. 
Further explanation is provided in section 5.2.5. 

5.2.2 Measured dry weather flows 

Once dry weather flows were isolated from the total flow rates, mean diurnal profiles 

were calculated for each WWTP. The measured dry weather flow rate data was 

cleaned to remove the effects of potential flow meter failure. Datasets for each 

WWTP were checked to ensure no more than 30% of the meter readings were 
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missing, which would imply the on-site flow meter was unreliable. Unrealistically high 

flow rates also were removed, and replacement values were inferred by linear 

interpolation using the zoo package in R (Zeileis & Grothendieck, 2015), with the 

replacement value chosen being the closest to the data extreme. Unrealistic flow 

rates for a particular WWTP were defined as occurring when the difference between 

two adjacent flow points was greater than the mean difference between adjacent 

flows points, recorded at that WWTP. This approach was chosen because such 

‘flashiness’ is typically associated with individual storm events and would not be 

relevant under dry weather conditions, or detectable when flows at each timestep 

were averaged. Therefore, any extreme outliers could be considered atypical and 

likely be a result of flow meter failure. The effects of infiltration on the dry weather 

flow were considered by subtracting the mean minimum flow observed over a diurnal 

period from the flow rate observed at each timestep. Thus, the base dry weather flow 

rate for each model WWTP was 0 m/s. The processed, dry-weather diurnal flow 

profiles are shown in Figure 12.  

The median dry weather flow rate across the twenty-one WWTPs was 0.29 L/s which 

implies a median daily per capita wastewater contribution of 134 L. The standard 

deviation ranged from 0.01 L/s, which was for Garrigill WWTP, to 0.44 L/s, which was 

for Matfen WWTP. This is within the range average per capita water consumption 

values for the UK (CC Water, 2019), which can be used as a metric for dry weather 

flow contribution. The highest median flow rate was observed at Matfen WWTP; 

however, the highest expected flow rate might be for the WWTP with the largest PE, 

which was Fir Tree WWTP. Under such circumstances, it is likely that a non-

domestic flow contribution is dominant within the WWTP catchment. This is the case 

for Matfen WWTP and, specifically, flows were probably dominated by a large local 

hotel. For most WWTPs, such a feature may not be relevant, however, in small 

WWTP catchments, the relative contribution of a single facility, such as a hotel, can 

have a dramatic effect on the wastewater flux. Whilst each WWTP clearly has a 

unique flow signature, it also is clear that the majority of WWTPs follow a similar 

diurnal profile under dry weather conditions, typically consisting of a steep rising limb 

to a morning flow peak; a gentle falling limb to daytime base flows and a less steep 

rising limb to a second flow peak in the afternoon, falling to overall base flows shortly 

after mid-night.  
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Figure 12 - The mean diurnal flow rate profiles under dry weather conditions, after 
data cleaning. 

5.2.3 Rainfall data processing 

Rainfall data was acquired from Northumbrian Water Ltd. for the period 01 August 

2013 to 31 July 2016. The data included rainfall depths recorded at five-minutely 

intervals at a km2 spatial resolution. For each WWTP network, the grid-squares that 

covered the spatial extent of the sewerage system were determined using maptools 

and Raster packages in R (Bivand & Lewin-Koh, 2019; Hijmans, 2019). Rainfall data 

for a particular grid-square was included if more than 30% of the total sewer network 

length passed through the grid-square and if that sewer was not receiving only foul 

flows (i.e., human-derived. Separated sewer systems carry either sewage from 

buildings, or surface water from rainfall run-off. Those carrying sewage from building, 
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only, are termed, ‘foul sewers’). To align the rainfall and measured flow data, the 

rainfall data was converted to fifteen-minutely interval by summing the three prior 

readings. For example, the depth at 03:15 was the sum of the depths recorded at 

03:05, 03:10 and 03:15. Thus, it was assumed that the rainfall was even distributed 

across the fifteen-minute time period. There were no missing values in the raw or 

processed data. To convert the rainfall depths into volumes that fell specifically within 

each WWTP catchment, the depths were multiplied by the area covered by the 

sewerage infrastructure serving each WWTP. The area was calculated by drawing a 

ten-meter buffer around the sewers using the maptools package in R.  

5.2.4 Additional catchment characteristics 

The length of the wastewater collection network within each WWTP catchment was 

required to estimate the travel time of wastewater through the sewer. It was 

calculated from ESRI shapefiles provided by Northumbrian Water using R. The 

sewer length included combined, foul and surface water sewer types. Overflow and 

emergency overflow pipes and culverted watercourses were removed from the 

database as they do not typically contribute to the flows received by a WWTP. The 

length of the sewerage network in the catchments used for modelling ranged from 

774 m to 5331 m with a median network length of 2595 m (Table 5). The length of 

the longest axis of a convex hull drawn around the end points of the sewers in each 

catchment was calculated using QGIS 3.0 (QGIS Development Team, 2019). This 

was used in conjunction with the sewer length to determine the travel time of 

wastewater through the network (see section 5.3.2). The length of the longest axis of 

the convex hull was used to provide an indication of the maximum distance within the 

sewer catchment to the WWTP. This is a particularly important consideration for 

small WWTPs because the shape of the network may be linear (i.e., several sewer 

pipes flowing near-parallel to one another with few lateral pipes), or it may be more 

radial (i.e., sewer pipes converge from multiple directions, on or close to, a single 

point which leads to the WWTP). 

The PE for each WWTP was provided by Northumbrian Water Limited and combined 

with the mean, daily, per capita water consumption in the UK (CC Water, 2019) to 

give the total human-generated wastewater flux over a diurnal period.  
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5.3 Predicting Flows Under Dry Weather Conditions 

5.3.1 Model concept 

Whilst a linear reservoir function is designed to be a simplistic representation of a 

catchment, complexity in solving Equation 4 can arise from parameter interactions 

that make it more difficult to define input sources. Thus, an inverse approach was 

taken. Philosophically, the approach is analogous to the Generalised Likelihood 

Uncertainty Estimation (GLUE) commonly associated with addressing problems of 

equifinality in hydrological modelling (Beven & Binley, 1992, 2014). Here, it was 

anticipated that a similar problem would be encountered whereby multiple 

combinations of the input parameters could result in similar outputs. To overcome 

this, a prior distribution was defined for each input parameter. Monte Carlo 

simulations were used to sample the distributions for parameter values, which 

generated multiple model simulations. The best performing simulations for each 

WWTP were combined to create a representative dry-weather flow prediction model 

that was relevant to and representative of multiple WWTPs. 

5.3.2 Definition of source terms 

The dry weather diurnal flow profiles shown in Figure 12 show the flow rates 

observed at each of the model WWTPs and, therefore, the average pattern of dry 

weather flow contributions. Considering also travel time of flows through the sewer 

network, this forms the premise for the dry weather component of the model. The 

majority of the WWTPs share a similar diurnal flow profile, including a sharp rising 

limb between 06:00 and 08:00 followed by a less steep recession limb where upon 

flow recedes to day-time base flows. A less pronounced peak can be observed in the 

afternoon with the recession limb eventually receding completely to base dry weather 

flows at approximately 04:00. The pattern is a result of the broadly consistent shape 

of human-derived flow contributions throughout a typical day. Thus, the input flux 

driving the dry-weather flow profile can be simplified to consist of three parcels of 

flow (Figure 13). 

An inverse approach to solving the linear reservoir function requires the definition of 

upper and lower bounds for each input parameter to generate a prior distribution. The 

magnitude of the wastewater input flux was defined by the following set of equations 

which correspond to Figure 13. Throughout, R is the predicted timeseries of human 
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generated input flux to the sewer system, measured in L/s; and a is the total human 

generated input over the duration of the simulation (in this case, 24 hours at fifteen-

minute timesteps) and is measured in L. The population equivalents for each WWTP 

were multiplied by the average per capita water consumption for the UK, which was 

149 L (CC Water, 2019). This defined a.  

 

Figure 13 - A simplistic, schematic representation of the human-derived wastewater 
flow contributions under dry-weather conditions. Where, a is the total flow 
contribution; T1 is the start time for the first flow peak and T2 the start of the second; 
D1 and D2 are the duration of the first and second flow peaks, respectively; b is the 
proportion of a that is assigned to the day-time base flows and g is the proportion of 
the peak flows assigned to the first flow peak. 

At time t < T1, R is assumed to be equal to zero because a is likely to be equal to 

zero (the long-term effects of infiltration are considered, as previously described); T1 

is the start of the first flow peak and t begins at 00:00. The upper and lower limits for 

T1 simulations were chosen by observation of the measured dry-weather diurnal 

profiles, as shown in Figure 12.  

At time, T1 < t < (T1 + D1), where D1 is the duration of the first flow peak; g is the 

proportion of the sum of the two peak flows that is assigned to the first peak (i.e., 

morning peak); b is the fraction of a that is assigned to period of time between the 

two flow peaks, i.e., the flow between (T1+ D1) and t2 and is considered to be the 

day-time base flows: 

𝑅 = 	 Oa	5(a∗b	)S	∗	g
V4

                  (5) 
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At time, T2 > t > (T1 + D1), where T2 is the start of the second flow peak, and all 

other parameters are as previously defined: 

𝑅 = 	 a	∗	b
W)5(W4HV4)

                        (6)  

At time, T2 < t < (T2 + D2), where D2 is the duration of the second flow peak and all 

other parameters are as previously defined:  

𝑅 = Oa5(a∗	b)S	∗	(45	g)
V)

                     (7) 

Finally, where t > (T2 + D2), R was assumed to tend towards zero as an exponential 

decay.  

The timeseries of human-generated input flux, R, was used as an input to the linear 

reservoir function (Equation 4), which includes the parameter t, which is the travel 

time through the sewer network. A form of Manning’s equation was used to inform 

the prior distribution: 

t =	 ;

(4 <R 	∗	X
G
Y	∗	Z

[
G	)

                         (8) 

For Equation 8, n is Manning’s roughness coefficient which was set to 0.012, 

assuming concrete sewers; r is the hydraulic radius calculated from the wetted 

perimeter and assuming that the pipe diameter was 150 mm, and S is the gradient of 

the slope and assumed to the 1:150, which is the minimum guideline gradient for 150 

mm sewers (BSI, 2017); l is a factor which considers the ratio of the length of the 

sewer network within the WWTP catchment against the length of the longest axis of a 

convex hull drawn around the sewer endpoints (Equation 9), where h is the length of 

the convex hull axis and L is sewer network length. Thus, it was assumed that the 

velocity of the wastewater flows was consistent across all networks and constant 

through each network. The travel time, then, is dependant only on parameter, l. This 

is important because alternative methods for calculating flow velocities are 

dependent on knowing the flow rate, which would not be available for unmonitored 

WWTPs, for which this model is designed. 
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𝑙 = 	 ]

^] _R
                         (9) 

5.3.3 Description of prior distributions 

In order to pursue the aim of developing a simple, representative flow model, 

consistent distributions were used across all WWTP models for the majority of input 

parameters; only a and t were the only defined WWTP-specific terms. Thus, variable 

source terms were the population equivalents, the sewer network lengths and the 

length of the longest axis of a convex hull drawn around the sewer endpoints, for 

each catchment (Table 5). The upper and lower limits of the prior distributions for 

each parameter are shown in Table 6. It should be noted that the ranges shown are 

not the ranges that generated the best performing simulations; the optimised 

parameter set is summarised in section 5.3.6  

The broad range for g was chosen to accommodate scenarios where the falling limb 

from the first flow peak extends over such a long time period that there is little 

distinction between the first and second flow peaks. The lower limit for b also was set 

to accommodate this scenario. 

Parameter Description Units Lower limit 
definition 

Upper limit 
definition 

a Total human input L 0.5 * (PE * 149) 1.5 * (PE * 149) 

b Proportion of a assigned to 
base flows % 10 50 

g Proportion of peak flows 
assign to first peak % 20 70 

T1 Start time of first flow peak Time 05:00 09:00 

T2 Start time of second flow peak Time 14:00 19:00 

D1 Duration of first flow peak Hours 0.5 4 

D2 Duration of second flow peak Hours 2 6 

t Travel time through sewer 
network Hours 0.5 * t 1.5 * t 

 

Table 6 - Upper and lower limits for prior distributions used for Monte Carlo 
simulations for the development of the dry-weather flow model component. 



 94 
 

5.3.4 Assessing input parameter sensitivity 

Nash-Sutcliffe Efficiency (NSE) was used to compare the performance of each 

simulated model run against the measured flow rate data for each WWTP. To test 

the sensitivity of each input parameter to the sampling from the prior distribution, the 

effect on the overall NSE was considered. This was done for each of the WWTPs 

used for modelling. By plotting the resultant NSE for each parameter against the 

sampled values for all model simulations, it was possible to assess the behaviour of 

each parameter against the model performance in each simulation. Put simply, the 

more rounded the shape of the plot, the more tightly constrained the effect of the 

parameter on the model performance. 

The sensitivity plots for one million simulations for Fir Tree WWTP are shown in 

Figure 14 as examples. It is clear from this example, that the total wastewater flux (a) 

was important, which is expected as several of the other parameters are derived from 

it (see section 5.3.2). The start times for each of the flow peaks (T1, T2) also were 

important with clear points at which NSE was maximised, at 06:30 and 16:00, 

respectively. The skewed nature of the plots for a and D2 suggest that the parameter 

ranges are not optimal, however, it is sufficiently clear to identify values that might 

result in the best performing model simulations.  
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Figure 14 - Example NSE parameter plots for Fir Tree WWTP. NSE is the Nash-
Sutcliffe Efficiency and all parameters are as described in Section 5.3.2. 

5.3.5 Predicted dry weather flow profiles 

Dry weather flow profiles were predicted by calculating the human-derived flow 

contribution and the flow travel time as inputs to a linear reservoir function. Values for 

the input parameters were sampled from a prior distribution to generate multiple 

simulations. An initial model run of ten thousand simulations was carried out to 

identify any WWTPs for which the model failed to represent the measured flow rates. 

This was defined as the maximum NSE being below 0.7 and resulted in the following 

WWTPs being excluded from the modelling process: Garrigill WWTP, Low Worsall 

WWTP, Matfen WWTP, Snitter WWTP and West Woodburn WWTP. Considering the 

diurnal flow profiles of these treatment plants under dry weather conditions (Figure 

12), it is not surprising the model was unable to meet stringent performance criteria in 

these cases. Thus, flow rates measured at the other sixteen WWTPs were used to 

build a representative model.  
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One million simulations were generated for each of these sixteen WWTPs. The 

resulting maximum NSE values ranged from 0.77 to 0.94 with a mean maximum NSE 

of 0.88, suggesting a high-level of prediction accuracy was achievable. As a 

demonstration of the site-specific model output, the predicted diurnal flow profile for 

the best performing simulation (max NSE) for Fir Tree WWTP is shown in Figure 15. 

For diurnal profiles for all WWTPs, see Appendix C. For the majority of the profile, 

the measured flow falls between the upper (Q75) and lower (Q25) quartiles of the 

predicted flow (Predicted Q). This is encouraging given the simplicity of the model 

and the limited range of input parameters. Points where the model appears to be less 

reliable in this example include the early hours of the morning, where the model over-

predicts the flow. This probably results from assumptions made when determining 

the prior distribution for the travel time (t). 

 

Figure 15 - Predicted diurnal flow profile (Predicted Q) for Fir Tree WWTP plotted 
with the measured flow rate (Measured Q) and the predicted human-derived flow 
contribution (Predicted R). Upper and lower quartiles of the predicted profiles are 
also shown (R25, R75, Q25 and Q75). 

5.3.6 Identifying a representative parameter set  

One million simulations were run to generate a suite of parameter sets from which 

representative models were chosen. The model simulations that best represented the 

measured flow rates were defined as those with the highest NSE score. The shape of 
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the NSE parameter plots (e.g., Figure 14) suggested that the best performing 

simulations were not likely to be restricted to a small range of parameter values and 

so a relatively simple approach to optimisation could be employed. Thus, the one 

hundred model simulations that resulted in the highest NSE score for each WWTP 

were chosen and consolidated to give sixteen hundred representative model 

simulations. The maximum NSE for the sixteen hundred model runs ranged between 

0.77 (Ingleby Greenhow WWTP) and 0.94 (Barrasford WWTP). To generate a set of 

parameters that is generally representative of a dry weather flow pattern at small 

WWTPs, the model simulation which resulted in the median NSE from amongst the 

sixteen hundred runs was identified. This provided values for the parameters (Table 

7) that would be required to calculate the human-generated flow contribution and dry-

weather diurnal flow profile for unmonitored small WWTPs. Due to the highly site-

specific nature of the network characteristics and the PE, optimal values for the total 

human input (a) and the travel time (t) were not included in the optimal parameter set 

and instead, site-specific prior distributions were used. The parameters are included 

in Table 7 for completeness. The site-specific prior distributions for a and t are 

shown in Table 8. 

Parameter Units Value at Median NSE 

a L 34,766* 

b % 43 

g % 51 
T1 Time 06:03 
T2 Time 18:17 
D1 Hours 3.3 
D2 Hours 5.6 

t Hours 2.33* 
 

Table 7 – Parameter values for the median NSE amongst the top 100 model runs, 
measured by NSE, across all sixteen WWTPs. These parameter values were used to 
generate the optimal model parameter set. * Note – optimal values for a and t were 
not included in the optimal parameter set and instead, site-specific prior distributions 
were generated. They are included here, for completeness. See Table 8 for a list of 
site-specific prior distributions for a and t. 
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The parameter set resulting from the simulation with the highest NSE was not chosen 

because of the possibility of the high performance being a result of the specific 

characteristics of the modelled WWTP. By choosing the parameter set associated 

with the simulation that resulted in the median NSE, it is likely that a more accurate 

model prediction could be made for WWTPs with a wider range of catchment 

characteristics.   

Site Prior distribution for a 
(L) 

Prior distribution for t 
(hours) 

Barrasford WWTP 19744 - 29114 0.23 - 0.69 
Blanchland WWTP 13815 - 18189 0.90 - 2.69 
Butterhaugh WWTP 21994 - 28244 1.12 - 3.36 

Carlton-in-Cleveland WWTP 28930 - 44009 1.01 - 3.03 
Fir Tree WWTP 28424 - 36716 0.47 - 1.41 
Glanton WWTP 20850 - 27947 0.42 - 1.25 

Holy Island WWTP 44250 - 50581 0.23 - 0.68 
Ingleby Greenhow WWTP 38449 - 44997 1.08 - 3.23 

Powburn WWTP 15657 - 23591 1.73 - 5.18 
Romaldkirk WWTP 17246 - 26650 1.03 - 3.08 
Rookhope WWTP 25334 - 33516 1.89 - 5.67 
Scots Gap WWTP 16908 - 24053 2.17 - 6.51 

Wall WWTP 30289 - 39853 0.45 - 1.35 
Whittingham WWTP 17983 - 25771 0.52 - 1.55 

Whorlton WWTP 19640 - 29292 0.53 - 1.58 
Winston WWTP 21462 - 30666 0.67 - 2.00 

 

Table 8 – Site-specific prior distributions for a and t, for all WWTPs.  

It is evident that for some of the WWTPs, the model failed to predict the highly 

variable nature of some diurnal flow profiles. Whilst these profiles broadly follow the 

pattern upon which the model was conceptualised, there are fluctuations within this 

framework. Such variability could be influenced by the positioning of properties along 

the sewer network or non-domestic sources within the catchment, both which are 

difficult to quantify.  

Thus far, the assessment of model performance has been limited to overall accuracy 

or observation of profile trends. To further test the performance, a form of cross-

validation was carried out on the representative model.    
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Figure 16 - Measured diurnal dry-weather flow profiles for the sixteen small WWTPs 
shown as red lines. The black dashed lines are the upper and lower quartiles of the 
predicted flow profile using the representative parameter set. Flow shown as per 
capita to accommodate the varying sizes of WWTP. 

5.3.7 Cross validation of dry weather model 

Conventional methods of cross-validation, such as k-fold cross validation, are not 

always appropriate for assessing the performance of a timeseries model. This is 

especially true in this case, where the model outputs are a predicted diurnal profile; 

i.e., withholding data in sequence would result in a loss of a particular time period. 

So, to assess how well the representative dry-weather model performs, a novel form 

of cross-validation was employed. For each WWTP, a new representative parameter 

set was generated as described in section 5.3.5, but in turn withholding each WWTP. 

For example, to generate the cross-validation parameter set for Fir Tree WWTP, the 

outputs from the top one hundred model runs for all WWTPs, except Fir Tree, were 

used. Thus, for each WWTP, fifteen hundred model runs were provided from which a 

representative parameter set could be generated to simulate fifteen hundred different 

flow profiles. From these simulations, the median flow rate at each timestep was 

used to generate new diurnal fluxes, which then were compared with the relevant 
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observed flows using NSE. Table 9 shows the NSE for the local and cross-validated, 

representative model.  

Site NSE 
Cross-validation 

NSE 
Site-specific 

Barrasford WWTP 0.87 0.94 

Blanchland WWTP 0.13 0.9 

Butteryhaugh WWTP 0.75 0.93 

Carlton WWTP 0.54 0.9 

Fir Tree WWTP 0.41 0.92 

Glanton WWTP 0.78 0.89 

Holy Island WWTP 0.65 0.88 

Ingleby Greenhow WWTP 0.64 0.77 

Powburn WWTP 0.02 0.94 

Romaldkirk WWTP 0.41 0.82 

Rookhope WWTP 0.72 0.89 

Scots Gap WWTP 0.65 0.91 

Wall WWTP 0.52 0.92 

Whittingham WWTP 0.7 0.93 

Whorlton WWTP 0.34 0.8 

Winston WWTP 0.34 0.78 

 

Table 9 - Results of cross-validation and comparison with site-specific model 
performance 

As expected, the dry-weather model performs more poorly under cross-validation 

compared with when site-specific parameters are used. Further, the model fails 

completely for some WWTPs, in particular, Blanchland WWTP and Powburn WWTP. 

In both cases, the model performed well when using site-specific parameters, 

suggesting that the characteristics of the catchments may be unique in some way. 

When considering the ratio of the sewer network length to the length of network hull 

axis (Table 5) for these WWTPs, this is not surprising. In other words, the 

performance of the model for these WWTPs highlights the importance of some site-

specific parameters. For example, the travel time distribution was not defined for 

each WWTP under cross-validation conditions.  
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It is encouraging, however, that for 56% of the WWTPs, the NSE was >0.6 under the 

rigorous cross-validation scenario. With a greater number of WWTPs used to 

generate a representative parameter set, it could be expected that this percentage 

would increase because the model source terms would reflect of a broader range of 

possible WWTP catchments.  

5.4 Discussion 

Here it has been shown how a simple linear reservoir function can be used to predict 

the wastewater flows entering small WWTPs under dry weather conditions. An 

inverse approach, analogous to the GLUE philosophy, means that identifying source 

terms is possible even in catchments where there is little or no information. The 

model performs well when predicting flows generated under dry weather conditions 

and could be used to inform the management of small WWTPs. Further, by 

comparing predicted versus actual flow characteristics between WWTPs and 

treatment performance, it may be possible to identify factors which result in 

variances. For example, the poor stability of a particular WWTP might be influenced 

by a high rate of shock-loading under dry weather conditions. The model presented, 

here, could allow a rapid assessment of a large network of small WWTPs with few 

input parameters required. 

5.4.1 Future model development 

To improve the relevance and accuracy of the model presented requires additional 

measured flow rate data for more, small WWTPs. This would allow the generation of 

a parameter set that is more broadly representative small WWTPs. Additionally, more 

data would allow for further refinement of the exiting input parameters, especially T2, 

D2 and g. A more sophisticated version of the dry-weather flow model might be 

achieved by identifying a greater number of flow rate ‘parcels’ (Figure 13). 

Observation of measured dry weather flow profiles (Figure 12), reveal that some 

WWTPs receive small flow peaks in addition to the two large flow peaks. The 

importance of this characteristic was reflected in the performance of the 

representative flow model (Figure 16) and should be addressed to improve the 

accuracy of the model for a broader range of catchment scenarios.  

Addressing wet weather flows requires a different approach. However, one that is 

similarly simple may be useful for small WWTPs, for the reasons outlined in the 
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introduction to this chapter. The value of being able to predict such wet weather flow 

patterns is in extended timeseries rather than quantifying the mean diurnal profiles. It 

may be possible to accurately predict a long-term hydrograph for each WWTP 

catchment using rainfall as an input and improving the method by which the rainfall 

run-off is inferred (i.e., the catchment area). By subtracting the mean dry-weather 

profile, created using this model, from a long-term measured flow profile, it would be 

possible to assess the accuracy of the model, and thus, generate a representative 

parameter set. Adding the mean dry-weather profile to a predicted wet weather 

timeseries would generate a total flow hydrograph. This would be useful for exploring 

scenarios which may influence the wastewater flow characteristics within a 

catchment. For example, the effects of climate change of rainfall events and 

population growth resulting in an increase in dry weather flow contributions. Further, 

such a model could be used to assess the impact that water efficiency targets might 

have on the flow rates received by a WWTP. The effects of this on the performance 

and stability of small WWTPs remains a critical research gap, highlighting the need 

for more holistic water management, even in developed economies.   

5.5 Conclusion 

Quantifying wastewater flows received at small WWTPs is important to understand 

the performance and potential ecological impact of such systems. However, there is 

a dearth of reliable flow data because small WWTPs are not routinely monitored. 

Whilst there is a growing number of flow prediction models, their use is not tailored 

for small WWTPs because they are overly complex and rely on large datasets which 

may not be available for small catchments. This work has shown how an inverse 

solution to solving a simple linear reservoir function can generate an accurate 

representation of wastewater flows under dry weather conditions. The resulting 

model could be used to improve understanding of treatment performance and by 

linking the model outputs to water quality data, it could provide information on the 

potential impact of discharges on receiving water courses.  

The demonstrated potential here leads to the recommendation that further refinement 

of the dry weather flow model should be carried out and the philosophy is extended 

to allow short to medium-term predictions under all weather conditions. The limited 

number of input parameters and the potential to develop a representative model, 

makes the analysis particularly suitable for use at small WWTPs. Under the current 
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form, it is recommended that a representative parameter set is used to predict flows 

received by small WWTPs under dry weather conditions, but with site-specific values 

for the travel time distribution and the total wastewater flow. 
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Chapter 6. Application of Flow Prediction Analysis to Assess 
Performance Variance Between Small Wastewater Treatment Plants 

6.1 Introduction 

The performance and basis of reliability of small WWTPs is poorly understood. 

However, data presented in Chapters 3 and 4 shows a statistically significant 

difference between the effluent quality discharged from small and larger systems. 

There are various possible reasons, but one possible explanation is the effect of 

influent shock-loading. In larger wastewater systems, the length of the sewer network 

and complex characteristics of the sewage sources means that peaking factors are 

typically low (Tchobanoglous et al., 2003). Whereas in small systems, a steep rising 

limb in diurnal profiles are often prevalent. Further, under dry weather conditions, the 

wastewater reaching small WWTPs will be predominantly (if not exclusively) from 

human sources and, therefore, is often highly concentrated. Thus, when combined 

with the short sewer lengths and potentially rapid travel times, a sharp peak in 

pollutant load can occur with consequential impact on temporal performance.  

The stability of mixed microbial communities, such as those found in biological 

treatment systems, can be affected by sudden exposure to large quantities of carbon, 

nutrients or other microorganisms, including those found in wastewater (Ofiteru et al., 

2010; Curtis et al., 2003). The work presented in this last research chapter tests the 

notion that shock loading phenomena associated with small WWTPs may be a key 

cause of poor performance of some small systems. To do this requires high-

resolution flow rate data, which can be difficult to obtain or infer for unmonitored 

systems (Martin & Vanrolleghem, 2014). However, the flow analysis presented in 

Chapter 5 provides a unique and simple solution. Therefore, by combining results 

from Chapters 4, 4 and 5, relationship between influent load peaking and final 

effluent quality can be assessed.  

In this assessment, only small WWTPs were considered because defining and 

calculating true dry weather flow at large WWTPs is highly complex and unique to 

each site and catchment. Factors including the long-term effects of infiltration, non-

domestic wastewater sources, and complex sewer networks which would likely 

involve pumped mains or storage, for example, are less likely to dominate small 

wastewater systems. Furthermore, comparing the daily mean load contributions of 
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larger and small WWTPs is meaningless without reliable, high resolution flow data for 

the receiving water course, which was not available for most locations considered 

herein. 

6.2  Methods 

As previously established, the stability and potential impact of small WWTPs is 

variable between treatment types and sizes, but also across similar systems. This 

may be a result of variance in flow-rate characteristics. To evaluate this, the diurnal 

flow rate profiles were calculated for the small WWTPs assessed in Chapters 3 and 

4. Briefly, bi-monthly samples were collected from twelve WWTPs with population 

equivalents (PE) of less than 250 and their performance was measured in terms of 

the removal of abiotic and genetic pollutants. The abiotic parameters included total 

chemical oxygen demand (tCOD), soluble chemical oxygen demand (sCOD), 

ammonium-nitrogen (NH4-N), total suspended solids (TSS) and total phosphorus 

(TP). The genetic faecal markers were chosen because of their common use in 

microbial source tracking (MST) applications and included markers targeting human-

specific Bacteroides (HF183 and HumM2), human-specific E. coli (H8), total 

Bacteroides (AllBac) and total E. coli (RodA).  

The twelve WWTPs are listed in Table 10 alongside experimental design categories, 

which have been used to report pollutant loads measured in the final effluents. These 

are the same twelve small WWTPs that were studied in Chapters 3 and 4 and all final 

effluent data presented in this chapter are presented and discussed in Chapter 3 (for 

abiotic parameters) and 4 (for molecular data). For clarity, the design categories 

consist of waste treatment technology (i.e., activated sludge is AS, secondary 

filtration is SF, rotating biological contactor is RBC, and high-performance aerated 

filter is HiPAF) and WWTP size as PE ranges (i.e., 50-125 and 125-250). Dry 

weather flow data were either derived as described in section 5.2.2, or predicted, 

where no measured flow data were available. Eight of the WWTPs had no flow 

monitoring and, therefore, flow rates under dry weather conditions were predicted 

using a Generalised Likelihood Uncertainty Estimation (GLUE) approach to solving a 

linear reservoir function, which is described in Chapter 5.  
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To test the effects of dry weather influent peak loading on the quality of effluent 

discharged from small WWTPs, new influent COD concentration data were collected 

from two WWTPs.  

Site Design category PE Network 
Length (m) 

Length of 
longest axis (m) 

Flow 
monitoring 

A 125-250_SF 161 2302 539 No 

B 50-125_SF 72 814 249 No 

C 50-125_AS 89 2448 589 No 

D 50-125_SF 110 543 330 No 

E 125-250_RBC 238 2248 485 Yes 

F 50-125_RBC 79 681 281 No 

G 50-125_RBC 68 623 278 No 

H 125-250_SF 128 964 455 No 

I 125-250_HiPaf 199 3046 751 Yes 

J 50-125_AS 88 3404 1084 No 

K 125-250_RBC 262 2932 677 Yes 

L 125-250_HiPaf 188 1948 603 Yes 

 

Table 10 - List of small WWTPs with key catchment characteristics.  

6.2.1 Prediction of dry weather flow profiles for unmonitored WWTPs 

The methodology presented in Chapter 5 was used to predict the mean diurnal flow 

profile for eight WWTPs under dry weather conditions. Throughout this study, dry 

weather has been defined as no rain radar measurement being detected in the forty-

eight hours preceding a given time-step interval. For the purposes of prediction, 

therefore, it was assumed that the only contributions to the wastewater flux at each 

WWTP was derived from human sources. This is legitimate assumption for rural 

catchments like those in this study.  

The input parameters for the linear reservoir function are shown in Table 11. The 

boundary conditions for the travel time distribution (t) and the total human 

wastewater contribution (a) were defined specifically for each WWTP. Whereas, for 

the other parameters, values were derived from the representative model (described 
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in Section 5.3.6). The upper and lower limits for t were defined by Equation 8, using 

the sewer network parameters listed in Table 10. The boundary conditions for a were 

determined by the PE of each WWTP. One hundred thousand Monte Carlo 

simulations were used to calculate the human-derived wastewater flow and the 

subsequent flow received at each WWTP. The median wastewater flux for each time-

step was chosen from the simulations and used to construct the average diurnal flow 

profile for each treatment plant. 

 

Parameter Description Units Value / range 

a Total human input L 5,066 - 58,557 

b Proportion of a assigned to base flows % 43 

g Proportion of peak flows assign to first 
peak % 51 

T1 Start of first flow peak Time 06:03 

T2 Start of second flow peak Time 18:17 

D1 Duration of first flow peak Hours 3.3 

D2 Duration of second flow peak Hours 5.6 

t Travel time Hours 0.13 – 4.47 

Table 11 - Parameters used to predict dry weather flow profiles for the eight 
unmonitored WWTPs. Site specific values were used for the total human input and 
the travel time, according to the defined value ranges. All other parameters are 
derived from the generalise model, as described in chapter 5. 

6.2.2 Calculation of dry-weather flow rates for monitored WWTPs 

Four of the small WWTPs considered here were monitored for flow rates in 

accordance with regulatory requirements due to the ecological sensitivity of the 

watercourse receiving their discharge flows. Fifteen-minute flow interval data was 

obtained for each treatment plant for the study period (01 December 2016 – 31 

October 2017). Flows rates measured under dry weather conditions, using the 

previous definition; i.e., conditions were considered ‘dry’ if no rainfall had been 
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detected in the preceding 48 hours. The mean of the flow rate measured at each 

time-step was used to construct the average dry-weather flow profile.  

To calculate the total daily dry weather flow, and therefore, the pollutant load being 

discharged from each WWTP, the sum of the mean flow rate at each timestep, was 

calculated and converted to m3/day. 

6.2.3 Estimation of effluent pollutant loads 

The mean daily dry-weather load of each parameter in the final effluent of each 

WWTP was estimated by calculating the mean value from a series of Monte Carlo 

simulations. A random uniform prior distribution of concentration values was defined 

with the upper and lower limits of the distribution being the maximum and minimum 

concentrations measured in the final effluent during the study period. One thousand 

simulations were generated by multiplying the mean daily flow with each value of the 

prior distribution. The mean of the simulated loads for each parameter was used to 

define the indicative load contribution of each WWTP to the receiving watercourse. 

One-way ANOVA was used to test the significance between the simulated loads of 

pollutants that were discharged from different categories of WWTP.  

6.2.4 Testing the effects of shock loading 

Having previously confirmed a significant difference between the operating stability of 

small and larger systems, the effect of the load peaking phenomena on different 

types of small WWTPs was tested. The average performance was defined as the 

mean concentration of tCOD measured between December 2016 and October 2017 

as previously described. Load peaking was defined as the difference between the 

maximum load of tCOD in influent and the mean diurnal load of tCOD in the influent. 

To calculate the diurnal profile of tCOD concentration received by small WWTPs, 

discrete samples were collected each hour over a twenty-four-hour period at two 

small WWTPs (henceforth referred to as WWTP 1 and WWTP 2), during February 

2018. The two small WWTPs (P.E. 72 and 128) were selected due to their proximity 

to Newcastle University and because their performance in terms of tCOD removal 

was broadly representative of the other small WWTPs assessed in Chapters 3 and 4. 

Under dry weather conditions, ISCO 6712 Portable automatic samplers (Teledyne 

ISCO, USA) were positioned and programmed to collect 1 L of influent wastewater at 
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hourly intervals. The samples were transported to Newcastle University and analysed 

for tCOD using colorimetric kits (Merck, Germany) in accordance with the Standard 

Methods for Examination of Water and Wastewater (APHA, 2009). This provided 

tCOD concentration values for each hour.  

The difference between the concentrations measured at each time-step and the 

mean measured tCOD concentration was calculated for WWTP 1 and WWTP 2. 

Assuming that the profiles were representative of other small WWTPs of similar size 

within the locality, the mean of each time-step value across the two WWTPs was 

used to approximate the relative change in influent tCOD concentration by time for 

the other small WWTPs in this study. The mean concentration of tCOD measured in 

the influent between December 2016 and October 2017 for each site, was used as 

the baseline from which the hourly concentrations were inferred.  

The inferred concentration for each time-step was multiplied by the dry weather flow 

rate, either predicted using the flow prediction method described in Chapter 5 or 

measured, where monitoring data were available. The generation of the measured 

dry-weather flow rates is described in section 5.2.2. This produced an hourly load 

flow profile for each WWTP plant, where the time-step flow of influent wastewater 

was defined as the sum of the flow rates measured or modelled at four preceding 

time-steps (i.e., fifteen-minute intervals for one hour).  

Thus, the load peaking of tCOD for each WWTP was defined by Equation 10. 

𝐿𝑝 = 	bcd	=
=e

   (10) 

Where X is the load of tCOD recorded at each time-step and is defined by Equation 

11, where Qt is the flow at time-step t, C is the mean concentration of tCOD and 

therefore, dC is the difference between the concentration of tCOD at timestep t and 

C.  

𝑋 = 𝑄𝑡 ∗ (𝑑𝐶 ∗ 𝐶	h )  (11) 

The larger WWTPs that were assessed in Chapters 3 and 4 have not been 

considered here because determining an accurate dry weather flow rate is complex 

for larger WWTP and beyond the scope of this study.  
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6.3 Results & Discussion 

6.3.1 Dry weather diurnal flow profiles 

Dry weather flow profiles were determined for all small WWTPs (A – L). For the 

unmonitored WWTPs, a linear reservoir function was solved using an inverse 

approach to develop the profiles. For monitored WWTPs, the diurnal profile was 

derived from flow rates recorded over the study period. Mean diurnal profiles are 

shown in Figure 17. For the unmonitored sites, the flow profiles are remarkably 

similar; however, there are differences. For example, the peak flow for WWTP B 

occurs at 08:15, whereas for WWTP J, the peak flow occurs at 08:30. However, 

similarities between the profiles might be explained by three things: 1) the use of 

representative values for most of the input parameters, 2) the small range of network 

length parameters resulting is a small difference between t values of different 

WWTPs (see Table 10), and 3) the coarse temporal resolution of the model which at 

fifteen-minute intervals might not detect small changes in flow profile characteristics.  

Whilst there is a clear opportunity to further refine the flow model, it is encouraging 

that the predicted profiles broadly reflect those from the monitored WWTPs (E, I, K 

and L). With the exception of the fluctuations present in the profile of WWTP I and 

WWTP L, which have been previously discussed (see Section 5.2.2), the theory 

underpinning the model appears to be appropriate. Furthermore, the magnitude of 

the flow rates corresponds well to the PE of each WWTP (Table 10).  
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Figure 17 - Mean diurnal dry weather flow profiles (L/s) for the twelve small WWTPs. 
Predicted flows are shown in red with the solid red lines denoting the median flow 
and dashed lines showing the upper and lower quartiles. The mean diurnal dry 
weather flow profiles for the monitored WWTPs are shown in black. 
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6.3.2 Effluent pollutant loads 

The most probable mean daily effluent pollutant loads were calculated for each type 

of WWTP and are shown in Figure 18. There is a significant difference (ANOVA, p < 

0.01) between loads discharged from different types of WWTP for all parameters, 

which is consistent with differences reported in Chapter 3. The largest load of tCOD 

discharged per day is for the smallest trickling filter systems (50-125_SF), which 

concurs the findings of Chapter 3. Whereas, the type of WWTP with the lowest 

contribution of abiotic pollutants per day were the package plants (RBC and HiPAF), 

with the exception of sCOD being discharged from RBCs with PE between 125 and 

250.  

 

Figure 18 - Mean daily dry-weather loads of abiotic pollutants estimated in final 
effluent discharges from different categories of small WWTP. HiPAF is a high-
performance aerated filter, RBC is rotating biological contactor, AS is activated 
sludge, and SF is secondary filtration. Numbers in WWTP categories denote PE.  

The load of nutrients, specifically TP, is of particular interest for catchment 

management purposes. The commonly held perception that small WWTPs have little 

impact on in-river nutrient loads might be relevant at some localised scales (i.e., 

upstream and downstream of a single discharge point), but it has been shown that in 

order to fully understand the effects of pollution sources on water quality, a 

catchment must be viewed in its entirety (Milledge et al., 2018). Thus, the role of 

small WWTPs as contributors of nutrient pollution may be more important than 
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previously thought, especially in rural catchments where there could be a high 

number of small communities.  

For completeness, the load of the genetic faecal markers being discharged from 

each WWTP was calculated in the same way as the abiotic parameters (see Figure 

19). The trend amongst the small WWTPs is less obvious for the genetic faecal 

marker loads. For example, there is a significant difference in human-specific E. coli 

(H8) loads across all WWTP types (ANOVA, p < 0.05), but not for any other 

parameters. This is likely due to seasonal variance in sunlight and temperature 

impacting on the concentration of genetic faecal markers in the effluents. This is 

discussed in detail in Chapter 4 and further supports the need for additional work on 

the use of genetic faecal markers for aiding the management of WWTPs across 

seasons in temperate climates.  

 

Figure 19 - Mean daily loads of genetic faecal markers estimated in final effluent 
discharges for different categories of small WWTP using Monte Carlo simulations. 
HiPAF is a high-performance aerated filter, RBC is rotating biological contactor, AS is 
activated sludge, and SF is secondary filtration. Numbers in WWTP categories 
denote PE. 

However, these results provide valuable and new data on the probable contribution 

of faecal loads to receiving waters from small WWTPs. The highest mean loads of 

human-specific Bacteroides (HF183 and HumM2), H8, and total Bacteroides and E. 

coli (AllBac, RodA) were from the smallest category of trickling filter (50-125_SF). 

This is not surprising since this category of WWTP discharged the worst quality 
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effluent for other performance parameters. This type of information might be useful 

when applying pollution source tracking techniques to upper catchments where there 

might be numerous small WWTPs discharging into surface waters.  

6.3.3 Relationship between load peaking and effluent quality 

The distance from the mean of the influent tCOD concentration, recorded under dry-

weather conditions, at each time-step was inferred from samples collected at hourly 

intervals from two representative, small WWTPs (see section 6.2.4). The greatest 

difference occurred at 13:00 (Figure 20) which might appear surprising because mid-

day is not typical for peak flows under dry weather conditions. However, peak flows 

do not necessarily imply peak pollutant concentrations because at times of peak flow 

(e.g., early morning), flow contributions will include grey water, whereas this may not 

be true later in the day. Further, the difference may be a result of ‘back-ground’ 

infiltration diluting the influent concentrations or due to non-domestic sources in the 

catchment, such as schools, office blocks, or cafes. The minimum tCOD 

concentration occurred at 03:00.  

 

Figure 20 - Diurnal profile of influent tCOD concentration at hourly intervals as a ratio 
of the mean influent tCOD concentration recorded over a twenty-four-hour period. 
Samples were collected under dry-weather conditions. Black line is the mean, the red 
and blue lines are the individual WWTPs.  

Finally, because the concentration profile does not follow the flow rate profile, the 

need to consider pollutant loads and not just concentrations over a diurnal period 
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becomes evident. Thus, the need for reliable, high resolution flow rate data is 

paramount. 

It is not possible to describe a general relationship between influent tCOD peaking 

factor under dry weather conditions and final effluent tCOD concentration, using the 

data provided here (Figure 21). However, this does not necessarily mean that one 

does not exist. Rather, it is likely a reflection of two important things:  

1) The limited number of data points. Across the twelve small WWTPs, a positive 

non-linear relationship may be present. However, any fitted model would be 

strongly influenced by any of the individual datapoints, thus causing the model 

to overfit. Equivalent data are required for more, small WWTPs to explore the 

theory of dry-weather influent load peaking. 

2) Higher resolution data are required to capture the true peak flows, and 

therefore, the peak loading. The conclusions of Chapter 5 identified the need 

for a higher resolution influent flow prediction model. This may also be true for 

measurements of COD concentration. In other words, it may only be possible 

to determine the effects of influent load peaking on final effluent quality, if 

rapid changes in influent COD load can be detected.  

 

Figure 21 - Relationship between the influent tCOD load peaking factor and the mean 
concentration of tCOD in the final effluent of the twelve small WWTPs. 
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 This simple analysis fails to conclusively show whether dry-weather influent load 

peaking is important to the performance of small WWTPs. However, it demonstrates 

the need for further investigation and the need for higher resolution flow rate and 

pollutant concentration data. More effluent quality data measured across a greater 

number of treatment systems are also needed.  

6.4 Conclusion 

This chapter shows how the use of simple flow prediction analysis can provide new 

and unique information about the performance of small WWTPs. Combining the 

model outputs with previously reported effluent quality data showed that trickling 

filters serving communities of between 50 and 125 PE discharged the highest load of 

abiotic pollutants. There was no clear relationship amongst the load of genetic faecal 

markers between different types of small WWTP. This is likely because of seasonal 

effects and the limited data.  

No clear relationship could be established between influent load peaking and final 

effluent quality. Further investigation may be warranted but it will require higher 

resolution flow prediction analysis and more effluent quality data. 
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Chapter 7. Conclusions and Recommendations 

7.1 Conclusions 

The treatment performance of small WWTPs is not well understood and their 

potential ecological impact may be underestimated. However, the critical role they 

play in ensuring sustainable wastewater and water resource management means 

they can no longer be neglected. The aim of this thesis, therefore, was to provide 

new data, understanding and analytical approaches to improve the management of 

existing, small WWTPs. Three main objectives were fulfilled by the work presented in 

Chapters 3-6. 

1. Improve understanding of the effect of scale and technology type on the 

performance and stability of small WWTPs. 

2. Evaluate the potential of genetic faecal markers for assessing small WWTPs 

and thereby, provide insight into the potential impact of their discharges on 

upper catchment water quality. 

3. Evaluate the influence of wastewater flow rate characteristics on the treatment 

performance of small WWTPs. 

The field study presented in Chapter 3 revealed a significant difference (p < 0.05) 

between the treatment performance of small WWTPs and larger WWTPs, across a 

range of physical and chemical metrics. The stability, as covariance, followed this 

trend, with strong positive correlations (r2 = 0.45 - 0.93) between the mean and 

standard deviation of the effluent samples for most parameters. Package plants 

seemingly provided relatively more stable performance amongst the small WWTPs, 

which was expected. When considering the reliability of the small WWTPs, derived 

from the coefficient of variation, it became clear that differences occurred, not only 

between technology types but also by size. With the exception of RBCs, the smallest 

WWTPs (50 – 125 PE) required a lower design effluent concentration than their 

slightly larger counterparts to achieve a final effluent tCOD of 125 mg/L. This 

indication that size may be particularly important to small WWTP performance, led to 

the development of a machine learning-based model to predict treatment reliability. It 

was possible to predict reliability with a reasonable degree of accuracy (64.2%) 
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across all types of WWTP and 100% accuracy for secondary filtration. This type of 

treatment was likely easy to predict because of the relatively poor stability and thus, 

the low design effluent concentrations. More importantly, the model revealed that the 

size of the WWTP was important for predicting the reliability. It is clear that with few 

input parameters, the simple analysis could feasibly allow wastewater managers to 

predict small WWTP reliability which may be useful for prioritising operational 

maintenance or investment. 

Whilst insightful, the analysis presented in Chapter 3 did not consider seasonal 

effects on treatment performance and relied on limited metrics. With growing concern 

for water resource scarcity, there is a need to consider alternative performance 

metrics, especially at smaller scales. Exploiting recent advances in microbial source 

tracking techniques, the use of genetic faecal markers as an alternative treatment 

performance metric was investigated in Chapter 4. Overall, their use further 

supported the differences between small and larger WWTPs, especially in summer 

samples. Consistent with the abiotic effluent concentrations, the abundance of the 

genetic faecal markers revealed differences between the smallest and slightly larger 

WWTPs, particularly of the same technology type. Multiple clustering analyses 

showed that in summer, the human markers better described the variance of the 

effluent quality, irrespective of the target organism. In winter, however, the variance 

was best described by Bacteroides markers which can likely be explained by the 

difference in effect of sunlight and temperature on Bacteroides compared to E. coli. 

Overwhelmingly, human-specific Bacteroides markers proved to be the most useful 

as performance metrics which may be a result of the high abundance of the 

organisms in the human gut. Whilst there evidently is great potential for the use of 

such markers in wastewater management, additional work should be carried out to 

determine the seasonal effects on marker deterioration, especially at small WWTPs 

where treatment performance may be unstable. 

A barrier to the effective management of most small WWTPs is the lack of flow rate 

monitoring. The GLUE-inspired analysis presented in Chapter 5 provided a simple 

solution. By using an inverse approach to solve a single equation hydrological model, 

it was possible to predict diurnal dry-weather flow profiles with a high level of 

accuracy (NSE = 0.77 – 0.94). Encouragingly, it was possible to simplify the model to 

just two input variables by the generation of a representative parameter set. This 

approach performed well under cross-validation for most WWTPs. However, the 
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approach could be applied to predicting flows under wet weather conditions because 

of the dependence on rainfall events, which are not generally diurnally consistent. 

The flow prediction model forms the basis of a useful tool that, with small changes, 

be optimised for use across networks of small, unmonitored WWTPs. It has potential 

to provide new, useful data to inform the management of small systems and calculate 

the load contributions from small wastewater discharges.  

The application of the flow prediction model in Chapter 6 demonstrated how such 

analysis can be used to further understanding and improve the management of small 

WWTPs. The diurnal flow profiles under dry-weather conditions was successfully 

predicted for all unmonitored small WWTPs which were sampled in the studies 

presented in Chapters 3 and 4. Whilst encouraging that the model can be used to 

provide new information on small WWTP performance, its application also highlights 

its limitations. Specifically, the temporal resolution of the model may not be high 

enough for the smallest catchments. However, the approach is not without merit. 

Combined with the physical and chemical concentration data and faecal marker 

abundance data, the final effluent load contributions from the small discharges 

followed a similar trend to the concentration data. Specifically, the differences 

between the smallest WWTPs and the slightly larger WWTPs was maintained. There 

was no clear relationship between the influent load peaking and the final effluent 

quality. However, further investigation may be warranted, and it would require higher 

resolution flow data and more effluent quality data.   

The limited regulation of small wastewater discharges in England has led to a lack of 

monitoring and management. The work presented in this thesis has shown how 

simple analytical tools can be used to inform the management of small WWTPs by 

providing new data, proposing new performance metrics and furthering 

understanding of system reliability. With growing concerns regarding water scarcity 

and the role that decentralised infrastructure can play in sustainable wastewater 

management, the work is undoubtably of global relevance. However, perhaps the 

most useful output from the thesis is the identification of future research 

opportunities, the pursuit of which could lead to ‘real-world’ application of the tools 

and techniques presented. 
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7.2 Recommendations for Future Work 

This thesis has demonstrated the need to pay greater attention to small WWTPs and 

has provided a series of simple tools to further understand and aid the management 

of existing assets. To further develop work presented in this thesis, it is 

recommended the following directions are pursued.   

7.2.1 Development of operational management tools 

The assessment of WWTP reliability presented in Chapter 3 provides a useful basis 

for the development of prioritisation and risk management tools. The analysis should 

be extended to a broader range of WWTP types (size and technology categories) 

and the predictive model developed to prioritise sites according to their likelihood of 

becoming unreliable. This would help to optimise asset investment and operational 

maintenance on small WWTPs, the management of which may become more critical 

for water companies in Europe especially, as compliance with legislation such as 

WFD (or equivalent) becomes an ever-greater concern.  

For small WWTPs, the load peaking of pollutants of concern (as assessed in Chapter 

6) should be further investigated. Refinement of the flow prediction approach allowing 

generation of higher resolution flow data may reveal a dry-weather influent load 

peaking as an important influencing factor on the performance of small WWTPs.  

7.2.2 Temporal and spatial assessment of genetic faecal markers as 
performance indicators 

The study presented in Chapter 4 demonstrated the potential effects of seasonality 

on the effective use of genetic faecal markers as WWTP performance metrics. These 

effects should be tested using controlled laboratory experiments and further field 

work. Whilst the markers clearly demonstrated potential, if their use is restricted by 

temperature or sunlight availability, they are of limited value to wastewater managers. 

Furthermore, it is well understood that genetic faecal markers are geospatially 

sensitive, driven by the variation in host gut microbiomes, by location. What is not 

well know is how this translates to their abundance in wastewater treatment systems, 

including influent and final effluent wastewaters. Changes in the sensitivity of 

different markers across catchments and regions should be tested by comparison of 

abundances in different wastewaters and faecal sources.  
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7.2.3 Refinement of flow prediction model 

The simplicity and effectiveness of the flow prediction analysis described in Chapter 

5 warrants its further development. The dry-weather model should be rebuilt using 

higher resolution flow data so that its relevance can be extended to the smallest 

WWTPs. Development of a wet-weather model component is essential for adoption 

of the presented analysis approach. By empirically deriving the relationship between 

measured flow data and historical rainfall events, it should be possible to forecast 

flow timeseries using a similar, single equation reservoir model, as used for the dry 

weather model. Combining the dry and wet-weather components would provide 

wastewater managers with the ability to rapidly acquire high-resolution flow rate data 

for unmonitored WWTP. In turn, this may guide operational prioritisation or, when 

combined with the proposal outlined in Section 7.2.1, provide unique insight into 

small WWTP performance and impact.  

7.2.4 Development of low impact technologies 

The final research focus should be on the development of wastewater treatment 

technologies specifically designed for small-scale applications, and that require low 

or no energy, are low cost, have a small footprint and are simple to operate and 

maintain. Several commercial applications exist (see Section 2.3 for details) but they 

tend to be relatively energy intensive (e.g., aerated package plants); have large land 

requirement (e.g., constructed wetlands), or have a high capital and operational cost 

(e.g., membrane bioreactors). There is a need, in England and further afield, for 

small-scale WWTPs that meet the above criteria and also target the removal of 

contaminants of emerging regulatory concern, including, nitrates, micropollutants and 

antibiotic resistance genes.  
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Appendix A 

List of Figures 

Figure A1 – Location of WWTPs 

List of Tables 

Table A1 – List of WWTPs  

 

Figure A1 - Location of WWTPs sampled by treatment plant type. AS is activated 
sludge, SF is secondary filtration, HiPAF is high performance aerated filter and RBC 
is rotating biological contactor. 
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Site Design category PE Flow 
monitoring 

A 125-250_SF 161 No 

B 50-125_SF 72 No 

C 50-125_AS 89 No 

D 50-125_SF 110 No 

E 125-250_RBC 238 Yes 

F 50-125_RBC 79 No 

G 50-125_RBC 68 No 

H 125-250_SF 128 No 

I 125-250_HiPaf 199 Yes 

J 50-125_AS 88 No 

K 125-250_RBC 262 Yes 

L 125-250_HiPaf 188 Yes 

M 5000-10000_AS 5280 Yes 

N 5000-10000_SF 7140 Yes 

O 5000-10000_SF 9650 Yes 

 

Table A1 – List of WWTPs included in field study and analysis presented in Chapters 
3 and 4.  
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Appendix B 

List of Tables 

Table B1 – Performance of prediction models 

Table B2 – Confusion matrix for gradient boosting machine 

Table B3 – Confusion matrix for generalised linear model 

 

 Accuracy Sensitivity MSE 

Random Forest 64.2% 0.92 0.36 

Gradient Boosting Machine 47.6% 0.42 0.52 

Generalised Linear Model 52.4% 0.67 0.48 

Table B1 - Performance criteria of three models tested to predict the reliability of 
small WWTPs. MSE is the mean standard error. 

 

  
Reference 

  
Actual > Design Actual < Design 

Prediction 
Actual > Design 41.67 % 44.44 % 

Actual < Design 58.33 % 55.56 % 

Table B2 - Confusion matrix for gradient boosting machine when predicting the 
reliability of small WWTPs 
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Reference 

  
Actual > Design Actual < Design 

Prediction 
Actual > Design 66.67 % 66.67 % 

Actual < Design 33.33 % 33.33 % 

 

Table B3 - Confusion matrix for gradient boosting machine when predicting the 

reliability of small WWTPs 
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Appendix C 

List of Figures 

Figure C1 – Predicted diurnal flow profiles for each WWTP 
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Figure C1 – Predicted dry weather flow profiles for each WWTP shown alongside 
measured mean and predicted human contributions. Q is flow, R is human generated 
flow. Upper and lower quartiles denoted as 75 and 25, respectively. 
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