
INVESTIGATION OF RECONFIGURABLE-ACCURACY

APPROXIMATE ADDER DESIGNS

FOR IMAGE PROCESSING APPLICATIONS

Khaled Suleiman Al-Ma’aitah

A Thesis Submitted for the Degree of

Doctor of Philosophy at Newcastle University

School of Engineering

Faculty of Science, Agriculture and Engineering

October 2019

10/14/2019 Mail - Khaled Al-ma''aitah (PGR) - Outlook

https://outlook.office.com/mail/inbox/id/AAQkADIwOWVkNDQ0LTNiMzAtNGNmNS05ZjVkLWFmN2Q1NjgzYWE2NgAQAFXnv%2FW%2BrkvNsy… 1/2

RSST: Title Change Approval

Rebecca McLean
on behalf of
Research Student Support Team Role Account
Tue 08/10/2019 10:42 AM
To: Khaled Al-ma''aitah (PGR) <k.almaaitah@newcastle.ac.uk>
Cc: A Bystrov <a.bystrov@newcastle.ac.uk>; Alex Yakovlev <Alex.Yakovlev@newcastle.ac.uk>; contact soe pgr eleceng
<soe.pgr.eleceng@newcastle.ac.uk>

RM/120365407
08.10.2019

 Research Student Support Team
Student Progress Service

Student Services
Newcastle University

King’s Gate
Newcastle upon Tyne

NE1 7RU United Kingdom

Dear Khaled,

I am pleased to inform you that the Dean of Postgraduate Studies, acting on behalf of the Faculty of Science,
Agriculture and Engineering has approved the following concession:

Title changed to: “Investigation of Reconfigurable-Accuracy Approximate Adder Designs for Image
Processing Applications”

Please keep this email as evidence of the concession granted.

Should you have any queries regarding this, please do not hesitate to contact the Research Student Support
Team at rssteam@ac.uk.

Yours sincerely,

Rebecca McLean
Research Student Support Assistant

Research Student Support Team

Student Recruitment, Admissions and Progress
Student and Academic Services
Level 3, Kings Gate
Newcastle University
Newcastle upon Tyne
NE1 7RU
United Kingdom

Tel: 0191 208 8713

Team Email: RSSTeam@newcastle.ac.uk

mailto:rssteam@ac.uk
mailto:RSSTeam@newcastle.ac.uk

10/14/2019 Mail - Khaled Al-ma''aitah (PGR) - Outlook

https://outlook.office.com/mail/inbox/id/AAQkADIwOWVkNDQ0LTNiMzAtNGNmNS05ZjVkLWFmN2Q1NjgzYWE2NgAQAFXnv%2FW%2BrkvNsy… 2/2

RSST Drop-in Sessions - 10am to 12 pm (Mon to Fri), Level 2, King's Gate
--
Student Services welcomes feedback from students and other customers. Your views about the service we provide
are very important to us and will help us make improvements where required. Please use this form to make any
comments about the service you have received from us https://my.ncl.ac.uk/students/feedback.php

CC:
Supervisor(s)
School PGR Secretary

https://my.ncl.ac.uk/students/feedback.php

A B S T R A C T

In the last decades, integrated circuits with CMOS technology show

progressive scaling challenges of both increased power density and

power dissipation. Meanwhile, high-performance requirements of

current and future application operations show rapid demands of

computing resources like power. This design conflict has pushed

much effort to search for high performance and energy efficient

design approach, such as approximate computing.

Approximate computing exploits the error resilience of compute-

intensive applications such as image processing applications to

implement approximation design techniques with different levels

of abstractions and scalability. The basic principle is to relax the

strict accuracy requirements in favour of a lower design complexity,

thereby achieving more computational performance (i.e., speed)

and energy saving. The adder arithmetic unit is considered one

of the essential computational blocks in most of the applications.

As such, much effort has explored new designs of an efficient

approximate adder design.

This thesis presents an investigation into design enhancement,

novel approximate adder designs and implementation approaches.

The first approach introduces a modification to the error detection

technique of a popular configurable-accuracy approximate adder

design. The proposed lightweight error detection technique reduces

the required gates of the error detection circuit, thus, mitigating

the design area overhead. Furthermore, at the error correction

process of the adder, we have proposed an extensive error detection

while activating more than one correction stage concurrently. As a

result, this ensures achieving an optimum accuracy of outputs for

the worst case of quality requirements.

In general, approximate (speculative) adder designs use the seg-

mentation technique to divide the adder into multiple short length

sub-adders which operate in parallel. Hence, this would limit the

long chains of carry propagation and result in a better performance

v

operations. However, the use of overlapped parts of sub-adders

regarding a better carry speculation and then more accuracy be-

comes a significant challenge of a large design area overhead. The

second approach continues mitigating this challenge by present-

ing a novel and simpler adder dividing technique to a number of

sub-adders. The new method uses what is known as the carry-kill

signal for both limiting the carry propagation and applying adder

segmentation. Further, between every two adjacent sub-adders,

one AND gate and one XOR gate are used for carry speculation

and error (i.e., carry propagation) detection respectively. Thus, a

significant reduction of the design overhead has been achieved, yet,

with acceptable levels of output results accuracy. In the third final

approach, simple logic OR gates are used to build the approximate

adder while compensating the conventional full adders operation.

The resulted approximate adder design presents very low complex-

ity, high speed, and low power consumption. Furthermore, instead

of augmenting error recovery circuit, short bit-length exact adders

are used as correction stages to control the general level of output

quality (i.e., without error detection overhead). At the final correc-

tion stage, the proposed design would operate the same as an exact

adder.

To validate the efficiency of these approaches, a number of adders

with different bit-widths are designed and synthesized showing

considerable reductions in the critical delay, silicon area and more

savings in energy consumption, compared to other existing ap-

proaches. In addition to acceptable levels or output errors, which

are extensively analysed for each proposed design.

In this study, the proposed configurable adder designs exhibit

energy/quality trade-offs at a different number of correction stages.

These trade-offs can be effectively exploited to implement adders

in applications, where energy can be gracefully minimised within

the envelope of quality requirements. As such, designs implemen-

tation in an image processing application known as Gaussian blur

filter was introduced, demonstrating the loss in the image quality

at each error correction stage. The output images showed promis-

ing results to use the proposed designs for more energy-efficient

applications, where output quality requirements can be relaxed.

vi

INVESTIGATION OF RECONFIGURABLE-ACCURACY

APPROXIMATE ADDER DESIGNS

FOR IMAGE PROCESSING APPLICATIONS

Khaled Suleiman Al-Ma’aitah

A Thesis Submitted for the Degree of

Doctor of Philosophy at Newcastle University

School of Engineering

Faculty of Science, Agriculture and Engineering

October 2019

Khaled Al-Ma’aitah: Investigation of Reconfigurable-Accuracy Ap-

proximate Adder Designs for Image Processing Applications ©2018

D E C L A R AT I O N

I hereby declare that this thesis is my own work and effort and

that it has not been submitted anywhere for any award. Where

other sources of information have been used, they have been ac-

knowledged.

Newcastle upon Tyne, November 2018

Khaled Al-Ma’aitah

A C K N O W L E D G E M E N T S

I would like to express my deep gratitude to Professor Alex

Yakovlev for his supervision, unlimited kind support, guidance

and patience in all situations and especially hard times during all

stages of my study and preparation of this thesis.

I would also like to express my sincere thanks to Dr Alex Bystrov,

my co-supervisor, for his kindness, valuable comments and advice.

Huge thanks are also due to my friends, Dr. Ahmad Soltan,

Dr. Ghaith Tarawneh and Dr. Issa Qiqieh for their valuable help

and support that enabled me to overcome many obstacles during

the past years. I would like to take this opportunity to express my

profound gratitude to Mutah University for it generous scholarship

and financial support for this work.

No words can express my thanks and gratitude to my family,

my lovely father (Dr. Suleiman) and my awesome mother (Mrs.

Fatima) and all of my sisters (Maes, Batool, Hala and Esraa) for

their love, passion, encouragement and support throughout the

different stages of my academic and social life.

To my second family, my wife’s family, from whom I received both

encouragement and compassion; my sincere respect and thanks go

to all of you.

To the soul of my father in law (Mr. Esam AlKaraki), may Allah

Almighty accept him with His mercy. I really miss your adorable

smile, and I have been really blessed to have the pleasure of know-

ing you even for a short period of time.

To my beloved and gorgeous wife (Sura), thank you for being my

best friend, first supporter and the only one who literally lived all

the happy and tough times of this long journey with me. I pray

to God to bless you and for you to remain the source of happiness

in my life. May Allah give me the strength to reward you with a

wonderful life ahead.

iv

A B S T R A C T

In the last decades, integrated circuits with CMOS technology show

progressive scaling challenges of both increased power density and

power dissipation. Meanwhile, high-performance requirements of

current and future application operations show rapid demands of

computing resources like power. This design conflict has pushed

much effort to search for high performance and energy efficient

design approach, such as approximate computing.

Approximate computing exploits the error resilience of compute-

intensive applications such as image processing applications to

implement approximation design techniques with different levels

of abstractions and scalability. The basic principle is to relax the

strict accuracy requirements in favour of a lower design complexity,

thereby achieving more computational performance (i.e., speed)

and energy saving. The adder arithmetic unit is considered one

of the essential computational blocks in most of the applications.

As such, much effort has explored new designs of an efficient

approximate adder design.

This thesis presents an investigation into design enhancement,

novel approximate adder designs and implementation approaches.

The first approach introduces a modification to the error detection

technique of a popular configurable-accuracy approximate adder

design. The proposed lightweight error detection technique reduces

the required gates of the error detection circuit, thus, mitigating

the design area overhead. Furthermore, at the error correction

process of the adder, we have proposed an extensive error detection

while activating more than one correction stage concurrently. As a

result, this ensures achieving an optimum accuracy of outputs for

the worst case of quality requirements.

In general, approximate (speculative) adder designs use the seg-

mentation technique to divide the adder into multiple short length

sub-adders which operate in parallel. Hence, this would limit the

long chains of carry propagation and result in a better performance

v

operations. However, the use of overlapped parts of sub-adders

regarding a better carry speculation and then more accuracy be-

comes a significant challenge of a large design area overhead. The

second approach continues mitigating this challenge by present-

ing a novel and simpler adder dividing technique to a number of

sub-adders. The new method uses what is known as the carry-kill

signal for both limiting the carry propagation and applying adder

segmentation. Further, between every two adjacent sub-adders,

one AND gate and one XOR gate are used for carry speculation

and error (i.e., carry propagation) detection respectively. Thus, a

significant reduction of the design overhead has been achieved, yet,

with acceptable levels of output results accuracy. In the third final

approach, simple logic OR gates are used to build the approximate

adder while compensating the conventional full adders operation.

The resulted approximate adder design presents very low complex-

ity, high speed, and low power consumption. Furthermore, instead

of augmenting error recovery circuit, short bit-length exact adders

are used as correction stages to control the general level of output

quality (i.e., without error detection overhead). At the final correc-

tion stage, the proposed design would operate the same as an exact

adder.

To validate the efficiency of these approaches, a number of adders

with different bit-widths are designed and synthesized showing

considerable reductions in the critical delay, silicon area and more

savings in energy consumption, compared to other existing ap-

proaches. In addition to acceptable levels or output errors, which

are extensively analysed for each proposed design.

In this study, the proposed configurable adder designs exhibit

energy/quality trade-offs at a different number of correction stages.

These trade-offs can be effectively exploited to implement adders

in applications, where energy can be gracefully minimised within

the envelope of quality requirements. As such, designs implemen-

tation in an image processing application known as Gaussian blur

filter was introduced, demonstrating the loss in the image quality

at each error correction stage. The output images showed promis-

ing results to use the proposed designs for more energy-efficient

applications, where output quality requirements can be relaxed.

vi

P U B L I CAT I O N S

The publications that were produced as a part of research reported

in this thesis are listed as follows:

• Khaled Al-Maaitah; Issa Qiqieh; Ahmed Soltan; Alex Yakovlev,

Configurable-accuracy approximate adder design with light-

weight fast convergence error recovery circuit, IEEE Jordan

Conference on Applied Electrical Engineering and Computing

Technologies (AEECT), 2017, pp 1-6.

• Khaled Al-Maaitah; Ghaith Tarawneh; Ahmed Soltan; Issa

Qiqieh; Alex Yakovlev, Approximate adder segmentation tech-

nique and significance-driven error correction, 27th Interna-

tional Symposium on Power and Timing Modeling, Optimization

and Simulation (PATMOS), 2017, pp 1-6.

vii

C O N T E N T S

I Thesis Chapters 1

1 I N T R O D U C T I O N 2

1.1 Design Scaling Challenge 2

1.2 Approximate Computing 4

1.3 Motivation . 6

1.4 Aim of the Thesis . 7

1.5 Contribution . 7

1.6 Thesis Organization 9

2 BA C K G R O U N D A N D L I T E R AT U R E R E V I E W 11

2.1 Approximate Computing 11

2.1.1 Motivations 11

2.1.2 Challenges of Approximate Computing . . 13

2.1.3 Solution Approaches 15

2.2 Approximation Techniques 17

2.2.1 Software Techniques 18

2.2.2 Operating Parameters Techniques 21

2.2.3 Hardware Techniques 24

2.3 Scalable Effort Design for Approximate Computing 29

2.4 Significance-driven Design 30

2.5 Approximate Error Metrics 31

2.6 Basic Adders Background 34

2.6.1 Ripple Carry Adder 35

2.6.2 Carry Select Adder 36

2.6.3 Carry Look Ahead Adder 37

viii

C O N T E N T S ix

2.7 Approximate Adders 39

2.7.1 Lower-Part-OR Adder (LOA) 40

2.7.2 Error Tolerant Adder (ETA) 41

2.7.3 ETA IV . 43

2.8 Speculative Adders 44

2.8.1 Variable Latency Speculative Adder (VLSA) 45

2.8.2 Accuracy-Configurable Approximate Adder

(ACA) . 46

2.8.3 General Architectural Design of Accuracy-

Configurable Adders (GeAr) 49

2.9 Comparison and Challenges 52

2.10 Image Processing . 54

2.10.1 Image Processing Steps 56

2.10.2 Image Processing Motivations 56

2.10.3 Image Processing Techniques 57

2.10.4 Gaussian Blur Image Filter 57

3 S CA L A B L E L O W-P O W E R A N D C O N FI G U R A B L E -A C -

C U R A C Y A P P R O X I M AT E A D D E R D E S I G N 61

3.1 Introduction . 61

3.2 General Design Architecture 63

3.3 Error Detection Circuit 65

3.4 Error Correction Circuit 66

3.5 Numerical Example 68

3.6 Design Trade-offs . 71

3.7 Error Analysis . 75

3.7.1 Error Probability Model 75

3.7.2 Error Metrics Evaluation 78

3.8 Large Bit Width Adders Evaluation 84

3.9 Further Hardware Comparison 85

3.10 Image Processing Application 85

C O N T E N T S x

3.11 Summary . 88

4 A P P R O X I M AT E A D D E R D E S I G N W I T H CA R R Y

K I L L S E G M E N TAT I O N T E C H N I Q U E 90

4.1 Introduction . 90

4.2 Proposed Design . 92

4.2.1 Segmenting Technique 93

4.2.2 Carry Prediction Technique 94

4.2.3 Error Detection and Correction 96

4.3 Numerical Example 100

4.4 Design Trade-offs . 101

4.5 Error Analysis . 105

4.5.1 Error Probability Model 105

4.5.2 Error Metrics Evaluation 109

4.6 Large Bit Width Adders Evaluation 115

4.7 Further Hardware Comparison 118

4.8 Image Processing Application 118

4.9 Summary . 121

5 G E N E R A L Q UA L I T Y-C O N T R O L A P P R O X I M AT E

A D D E R W I T H L O W D E S I G N OV E R H E A D 123

5.1 Introduction . 123

5.2 Proposed Design . 125

5.3 Quality Control Circuit 126

5.4 Error Correction Stages 127

5.5 Numerical Example 128

5.6 Design Trade-offs . 130

5.7 Error Analysis . 133

5.7.1 Error Probability Analysis 134

5.7.2 Error Metrics Evaluation 135

5.8 Image Processing Application 141

C O N T E N T S xi

5.9 Summary . 142

6 C O N C L U S I O N S A N D F U T U R E W O R K 144

6.1 Conclusions . 144

6.2 Future Work . 150

II Bibliography 153

B I B L I O G R A P H Y 154

L I S T O F F I G U R E S

Figure 2.1 General taxonomies of approximate comput-

ing techniques. 17

Figure 2.2 4-Bits ripple carry adder. 36

Figure 2.3 4-Bits carry select adder. 37

Figure 2.4 4-Bits carry look-ahead adder. 37

Figure 2.5 Carry look-ahead generator. 38

Figure 2.6 Lower-Part-OR adder(LOA) architecture. . 40

Figure 2.7 Error-tolerant adder (ETA). 41

Figure 2.8 Block diagram of ETA type IV (ETAIV). . . 43

Figure 2.9 VLSA single-bit shift segmentation. 45

Figure 2.10 ACA adder example (16-bit adder), where

H=High, M=Middle and L=Low. 47

Figure 2.11 ACA error detection and correction circuit. . 47

Figure 2.12 Two stages implementation of the approxi-

mate adder (below) with power gated correc-

tion stage, a conventional adder (above). . . 48

Figure 2.13 GeAr adder with N=12, R=4, P=4 and M=2. 50

Figure 2.14 GeAr adder with N=12, R=2, P=6 and M=3. 51

Figure 2.15 Error detection and correction for GeAr

adder with N=12, R=4, P=4 and k=2. 51

Figure 2.16 (15X15) Matrix of image-array of pixels. . . 55

Figure 2.17 Mean averaging of image values matrix. . . 59

Figure 2.18 Blur averaging of image values matrix. . . . 60

Figure 3.1 General implementation of the proposed ap-

proximate adder. 64

Figure 3.2 Proposed error detection technique. 65

xii

List of Figures xiii

Figure 3.3 Significance-driven error correction stages

(32-bit adder example). 67

Figure 3.4 Proposed design numerical (32-bit) approxi-

mate addition example. 68

Figure 3.5 Proposed design versions vs. ACA active er-

ror correction stages. 70

Figure 3.6 32-Bit proposed design versions vs. ACA dy-

namic power (µW) comparison. 72

Figure 3.7 32-Bit proposed design versions vs. ACA

leakage power (µW) comparison. 72

Figure 3.8 32-Bit proposed design versions vs. ACA area

(µm2) comparison. 73

Figure 3.9 32-Bit proposed design versions vs. ACA de-

lay (ns) comparison. 74

Figure 3.10 Tree of probability of carry propagation

based on inputs bits values assuming C1= ’1’

and C2= ’0’. 76

Figure 3.11 32-Bit proposed design vs. ACA relative er-

ror distance (RED) distribution analysis (No

correction stages). 79

Figure 3.12 32-Bit proposed design vs. ACA relative error

distance (RED) distribution analysis (One

correction stage). 80

Figure 3.13 32-Bit proposed design vs. ACA relative error

distance (RED) distribution analysis (Two

correction stages). 80

Figure 3.14 32-Bit proposed design vs. ACA relative error

distance (RED) distribution analysis (Three

correction stages). 81

List of Figures xiv

Figure 3.15 The 32-Bit adder designs MRED values com-

parison through different correction stages. 82

Figure 3.16 The cumulative probability distribution for

the error through different correction stages. 83

Figure 3.17 ACA vs. Proposed large bit-width adder de-

signs hardware comparisons. 84

Figure 3.18 Gaussian blur image filter test. 88

Figure 4.1 The proposed general adder segmentation

technique using the carry kill new bit locations. 93

Figure 4.2 The proposed carry-in prediction technique

for each segmented sub-adder. 95

Figure 4.3 Example of (32-bit) proposed approximate

adder using the segmenting technique of

carry kill bit locations. 96

Figure 4.4 The proposed error detection technique aug-

mented with the carry-in prediction circuit. 97

Figure 4.5 Significance-driven structure of error correc-

tion stages. 98

Figure 4.6 Proposed design numerical example of (32-

bit) inputs addition, sub-adders carry-in pre-

diction and error (carry propagation) detection.100

Figure 4.7 32-Bit proposed design versions vs. ACA dy-

namic power (µW) comparison. 102

Figure 4.8 32-Bit proposed design versions vs. ACA

leakage power (µW) comparison. 102

Figure 4.9 32-Bit proposed design versions vs. ACA area

(µm2) comparison. 103

Figure 4.10 32-Bit proposed design versions vs. ACA de-

lay (ns) comparison. 104

List of Figures xv

Figure 4.11 32-Bit proposed design vs. ACA relative er-

ror distance (RED) distribution analysis (No

correction stages). 110

Figure 4.12 32-Bit proposed design vs. ACA relative error

distance (RED) distribution analysis (One

correction stage). 110

Figure 4.13 32-Bit proposed design vs. ACA relative error

distance (RED) distribution analysis (Two

correction stage). 111

Figure 4.14 32-Bit proposed design vs. ACA relative error

distance (RED) distribution analysis (Three

correction stage). 112

Figure 4.15 The 32-Bit adder designs MRED values com-

parison through different correction stages. 113

Figure 4.16 The cumulative probability distribution

(CPD) for the error through different cor-

rection stages. 114

Figure 4.17 ACA vs. proposed large adder designs dy-

namic power(µW) comparison. 115

Figure 4.18 ACA vs. proposed large adder designs leak-

age power (µW) comparison. 116

Figure 4.19 ACA vs. proposed large adder designs area

(µm2) comparison. 116

Figure 4.20 ACA vs. proposed large adder designs delay

(ns) comparison. 117

Figure 4.21 ACA vs. proposed large adder designs reduc-

tion ratio values. 117

Figure 4.22 Gaussian blur image filter test. 120

List of Figures xvi

Figure 5.1 The conventional full adder circuit in (a.)

versus the proposed approximate OR gates

addition operation in (b.). 125

Figure 5.2 The proposed accuracy recovery circuit. . . 126

Figure 5.3 Significance-driven error correction stages

(32-bit adder example). 127

Figure 5.4 Proposed design numerical example of (32-

bit) inputs addition using OR logic gates and

multi-stage correction by using (8-bit) exact

adder at each stage. 129

Figure 5.5 32-Bit proposed design versions vs. ACA dy-

namic power (µW) comparison. 130

Figure 5.6 32-Bit proposed design versions vs. ACA

leakage power (µW) comparison. 131

Figure 5.7 32-Bit proposed design versions vs. ACA area

(µm2) comparison. 131

Figure 5.8 32-Bit proposed design versions vs. ACA de-

lay (ns) comparison. 132

Figure 5.9 32-Bit proposed design vs. ACA reduction

ratio values. 133

Figure 5.10 Monte Carlo analysis of logic OR addition

implementation in(a) 32-bits inputs, and (b)

8-bits inputs. 134

Figure 5.11 32-Bit proposed design vs. ACA relative er-

ror distance (RED) distribution analysis (No

correction stages). 136

Figure 5.12 32-Bit proposed design vs. ACA relative error

distance (RED) distribution analysis (One

correction stage). 137

Figure 5.13 32-Bit proposed design vs. ACA relative error

distance (RED) distribution analysis (Two

correction stage). 137

Figure 5.14 32-Bit proposed design vs. ACA relative error

distance (RED) distribution analysis with

three and four correction stages. 138

Figure 5.15 The 32-Bit adder designs MRED values com-

parison through different correction stages. 139

Figure 5.16 The cumulative probability distribution

(CPD) for the error through different cor-

rection stages. 140

Figure 5.17 Gaussian blur image filter test. 142

L I S T O F TA B L E S

Table 2.1 Taxonomies of approximate computing ap-

proaches . 32

Table 2.2 Taxonomies of approximate adder based on

error recovery circuit implementation. . . . 53

Table 3.1 Proposed design versions vs. ACA error de-

tection. 69

Table 3.2 Average reduction ratio values of the pro-

posed design version compared to ACA design 74

Table 3.3 Hardware metrics comparison of proposed

adders and previous efforts 86

Table 4.1 One-bit inputs probability of carry prediction

and error detection and correction 97

xvii

Table 4.2 Average reduction ratio values of the pro-

posed design compared to ACA design for all

correction stages. 104

Table 4.3 Error probability of carry value regarding

input combinations assuming C1= ’1’ and

C2= ’0’. 106

Table 4.4 Hardware metrics comparison of the pro-

posed adder designs and several previous

efforts . 119

A C R O N Y M S

CMOS complementary metal-oxide-semiconductor

VOS voltage over-scaling

LSB least significant bits

MSB most significant bits

FPU floating-point unit

PSNR peak signal-to-noise ratio

EDC error detection and correction

LWC lightweight check

LVA load value approximation

SIMD single instruction multiple data

FA full adder

xviii

A C R O N Y M S xix

QoS quality of service

VDD voltage source

Ceff effective switched capacitance

DSP digital signal processing

LOA lower-part-oR adder

MA mirror adder

AMAs approximate mirror adders

ER error rate

ED error distance

MED mean error distance

RED relative error distance

MRED mean relative error distance

NED normalized error distance

RCA ripple carry adder

CSL carry select adder

CLA carry look-ahead adder

SPGs sum, propagate, generate signals

ETA Error tolerant adder

VLSA variable latency speculative adder

ACA accuracy-configurable adder

GeAr general architectural design of accuracy-configurable adders

A C R O N Y M S xx

GDA gracefully-degrading accuracy-configurable adder

CPD cumulative probability distribution

PDP power-delay-product

FPGA field-programmable gate array

Part I

Thesis Chapters

1

1

I N T R O D U C T I O N

1.1 D E S I G N S CA L I N G C H A L L E N G E

Over the last decade, the size of computation work-loads has dra-

matically increased because of extensive data, demanding appli-

cations and communication features. Hence, a massive amount

of resources should be available in order to meet the current and

future computation requirements. However, the continuing ad-

vances in technology scaling introduce a critical issue of delivering

high-performance designs without a significant increase in energy

consumption [9, 10, 15, 33].

Several studies have explored the relationship between technol-

ogy scaling and designing references like Moore’s law (reduction

in transistor size leads to increase the total number of transistors

per chip with an effective cost) [95]. These studies argue that, for

the past three decades, each of Moore’s law and Dennard scaling

which postulates a constant power density despite transistors size

reduction [93, 76, 81] have led to an exponential increase in com-

putational performance, yet, at constant energy consumption and

transistor cost [21].

However, the fast development of higher performance technolo-

gies and circuits becomes coordinated with a decline of Moore’s

law. This implies that, as the downscaling of the complementary

metal-oxide-semiconductor (CMOS) is wholly stretched to limits;

technology scaling would become unlikely to drive computing

2

1.1 D E S I G N S CA L I N G C H A L L E N G E 3

shortly [76, 81, 77, 40]. Moreover, with the end of Dennard scaling

(2005-2007), the per-transistor performance power efficiency is

not held on with known power-reduction techniques at various

abstraction levels [21, 61, 22]. Thus, the simultaneous increase

of performance with a higher clock frequency and supply voltage

reduction have significantly weakened. In other words, CMOS tech-

nology scaling might still sustain Moore’s law; however, with a

large increase in power density since transistor scaling and voltage

scaling are no longer consistent with each other.

Further, the failure of Dennard’s law would result in the so-

called the Dark silicon problem, which imposes the portion of the

circuit that cannot be powered at the nominal operating voltage.

This happens to assure the circuit stays within the power density

and the thermal design power restrictions (i.e., to avoid more heat

which might destroy the chip) [21, 79].

Other studies have proposed that is expected that, in the coming

decade, the increased demands of performance would shortly out-

pace the growth in available resource budgets, and a significant

gap would take place in the near future [24, 55, 39].

Since CMOS technology scaling is becoming less effective in

improving system capability, new approaches are required for

more resource-efficient computing systems, instead of just over-

provisioning of resources alone. This introduces the necessity of

exploring new computing paradigms that convey more energy effi-

ciency and moderate the functionality out of computing platforms

across the spectrum, from mobile and deeply-embedded devices to

servers and data centres. One of these approaches is approximate

computing, which has been globally considered as attractive de-

sign approach and has even driven more attention in the scientific

community, during the last few years.

1.2 A P P R O X I M AT E C O M P U T I N G 4

A brief description of approximate computing is presented in the

following section.

1.2 A P P R O X I M AT E C O M P U T I N G

As illustrated in the previous section, designing of low power con-

sumption and small area circuit becomes a basic requirement for

electronic products. Further, due to the increase of technology

scaling and embedded mobile applications, the required level of

computational workload grows massively. For example, the appli-

cations that involve media processing (e.g., images and videos),

search engines, recognition, and data mining would consume large

computing resources with hard restrictions.

A common characteristic of such applications is their ability

to work sufficiently despite the existence of a low level of errors.

This characteristic would allow few errors to take place during the

intermediate operations and result in a highly acceptable output

quality. Thus, this leads to a state that strict exact results are not

necessary, and approximate (i.e., less than optimal) result can be

sufficient and hard to be distinguished from the optimum one. As a

result, this precision-resilient characteristic is exploited by a new

design approach known as approximate computing [30].

Remarkably, approximate computing in image processing appli-

cation mainly leverages the perceptual limitations of users due to

the human brain ability to fill in large number missing elements

of the resulted images or videos. In other words, approximate com-

puting exploits the different accuracy requirements between the

user and the application and the exact operations provided by the

computing system, for achieving multiple optimisations.

1.2 A P P R O X I M AT E C O M P U T I N G 5

Approximate computing design approach might include hard-

ware and software-based techniques that expose incorrectness to a

specific part of circuit architecture or program code. The trading-

off computational quality for computational efforts would result

in more speed, lower power dissipation, and smaller area designs,

yet, with controlled bounds of quality loss.

However, quality-loss controlling has emerged as a significant

challenge while applying an approximation. For example, imple-

menting approximation to critical portions of code, control flow

or significant memory access operations can lead to severe unac-

ceptable quality degradation. Hence, a careful selection of approx-

imable code or data portion and the approximation technique can

effectively improve error analysis and recovery during approxi-

mation. Moreover, efficient output monitoring mechanisms would

ensure meeting any predefined quality specifications, which would

lead to decrease the probability of severe quality loss [69, 75, 102].

As mentioned, approximate computing can target both hardware

and software levels of abstraction. The software-based approxima-

tion specifies the approximable portion of code in a program or

algorithm and applies approximate techniques such as omitting

least significant code portions or early terminating of the program

loop. On the other hand, hardware-based techniques would explore

the chance of modifying designs at circuit and architecture levels

of abstraction. Furthermore, extending common techniques like

truncation and voltage over-scaling (VOS) would result in wider

ranges of approximation scalability [66, 51].

As an example of hardware level approximation, adders have

attracted remarkable interest. This is due to the fact that adders

are key arithmetic units in digital systems and intensively used

by other arithmetic operations such as multiplication and divi-

1.3 M O T I VAT I O N 6

sion; thus, they have been regarded as attractive blocks to be

approximated for the goal of the more efficient computing sys-

tem [105, 48, 106, 92, 5].

The following section presents our motivation in this work for

more approximate computing effort regarding the approximate

adder design.

1.3 M O T I VAT I O N

In a state-of-the-art review, the majority of adder design approxi-

mations have exploited two main observations:

1. The addition operation of the lower order part or the least

significant bits (LSB) of the adder can be approximated, due to

the limited significance (i.e., contribution) of this part in the

final result, in contrast to the higher order part or the most

significant bits (MSB) of the adder, which should be strict to the

exact operations to preserve full correctness.

2. The longest (worst case) carry chains are limited and rarely

happened; thus, they present the probability to be speculated in

advance. As a result, much low power and high-speed approxi-

mate (speculative) adder designs have been introduced.

However, several challenges are still facing such approximate

and speculative adder designs. For instance, approximate adder de-

signs with a lower order approximate part and an accurate higher

order part show large error rates, especially for small numbers. On

the other hand, although speculative adder design presents a more

top speed of the addition operation, both the used overlapping tech-

niques and the augmented error detection and correction (EDC)

circuits would result in the large overhead of area, delay and power

1.4 A I M O F T H E T H E S I S 7

consumption. Hence, mitigating the effect of these challenge has

been considered the primary motivation of this work.

In detail, this work proposes more efficient designs of approx-

imate and speculative adders, when compared to other related

efforts. For example, speculative adder designs are presented with

a simple sub-adders segmenting technique, better accuracy and a

lower error recovery circuit overhead. Further, approximate adder

design is performed with a general output quality control and a

comparable design overhead to a conventional adder design. The

proposed designs are based on the significance-driven structure of

accuracy controlling during run-time so as to achieve quick con-

vergence to the exact result. The following section illustrates the

major contributions of the proposed approximate adder designs

with a different level of accuracy during run-time and their effect

on the targeted image processing application.

1.4 A I M O F T H E T H E S I S

This work aims to mitigate or even eliminate the challenge of

design overhead of the configurable accuracy adder design. Sev-

eral techniques have been proposed to meet this goal. However,

assuming the error source of the resulted adder outputs is limited

to approximate adder operations (i.e., functional level) and not due

to gate or transistor levels.

1.5 C O N T R I B U T I O N

The new contributions are mainly based on the previously men-

tioned motivations of mitigating approximate and speculative

adder challenges including the design overhead of sub-adders seg-

1.5 C O N T R I B U T I O N 8

mentation and the error recovery circuit. This improves accuracy

and scalability of large bit-width adders, and further, controlling

the general output quality instead of frequent activation of error re-

covery processes, thus, maximizing the approximation benefits. In

this work, the following points present the main contributions re-

garding the targeted configurable-accuracy (i.e., the different level

of accuracy) approximate adder designs and their implementation

results in an image processing application.

• A configurable-accuracy approximate adder design, which has

been proposed with augmented significance-driven correction

stages. The proposed design shows a lower overhead of error

detection by using lightweight checks, and further, achieving

the optimum accuracy similar to an exact adder in the last

correction stage. Moreover, it improves the approximate design

feasibility for adders with larger bit widths [3].

• Presenting a novel speculative adder segmentation technique

by using the principle of carry kill signals in order to limit the

carry chain of the adder. The new technique divides the adder

into an independent number of sub-adders in contrast to other

dependent dividing techniques like intensive single-bit shift

or overlapping. To preserve accuracy levels, a carry prediction

technique is also proposed, in addition to significance-driven

configurable correction stages during run-time. This significance-

driven error recovery structure would start correcting the errors

with the major effect in the final output, which resulted from

the higher order or the most significant bits (MSB) of the adder.

As a result, this would confirm a quick convergence to the exact

addition operation output [4].

1.6 T H E S I S O R G A N I Z AT I O N 9

• Presenting a new approximate adder design that eliminates

frequent error recovery process overhead. For the addition ap-

proximation stage, the proposed design has replaced the con-

ventional arithmetic addition with simple OR gates at each bit

location and results in a direct sum bit. The correction process

has been implemented through a significance-driven multi-stage

structure, yet, by using a short bit-width exact adder for each

stage. Hence, at the final correction stage, the proposed design

would work as an exact adder that guarantees full accuracy. This

general output quality controlling eliminates the augmented

overhead of error detection and correction circuitry.

• All the proposed approximate adder designs have replaced the

conventional adder units in an image processing filter known as

Gaussian blur filter. The implementation results have provided

a highly acceptable output images quality. As such, this might

confirm the feasibility of the proposed design to be applied in

similar error resilience applications, yet, with low design over-

head.

1.6 T H E S I S O R G A N I Z AT I O N

Chapter 2 includes a background of approximate computing ap-

proach, image processing and a brief description and evaluation

of related work of approximate and speculative adder designs.

Chapter 3 presents the first contribution of a scalable speculative

adder with configurable-accuracy during run-time, in which the

design overhead of error recovery has been mitigated and intro-

duces a smaller area, better accuracy and more scalability for large

bit-width adders. The second contribution of the new speculative

adder segmentation technique is explored in Chapter 4, where

1.6 T H E S I S O R G A N I Z AT I O N 10

simpler sub-adders’ segmentation technique is introduced without

using overlapping. The proposed method is combined with a quick

error detection process; thus, it results in lower design overhead

and highly acceptable output quality. Approximate adder design

with simple logic gates and a general output quality controlling

is placed in Chapter 5. However, the proposed adder design has

no augmented error detection circuit, and the resulted design pa-

rameters are approximately comparable to the exact conventional

adder. Finally, Chapter 6 concludes the thesis and points to future

work.

2

BA C K G R O U N D A N D L I T E R AT U R E R E V I E W

In this chapter, a brief background of the major parts of this work

is presented. In the first part, we start with a general review of

approximate computing motivations, challenges and techniques, in

addition to a short review of basic adders. The second part explores

a literature review of related approximate and speculative adders

as well as their current challenges. The definition of the used

Gaussian blur image filter is placed at the final part.

2.1 A P P R O X I M AT E C O M P U T I N G

The approximate computing design approach exploits the error tol-

erable applications characteristics in order to create more chances

for efficient designs. The new designs are based on efficiency-

quality trades-off (i.e., speed and low power design with a limited

output quality loss) [78, 30].

The following sections present a brief background of the moti-

vations, problems, solution approaches and examples of the used

approximate computing techniques.

2.1.1 Motivations

In many applications, the necessity of using approximation might

be different; for instance, frequently rounding the result of floating-

point unit (FPU) is an unavoidable operation. Thus, the optimal

11

2.1 A P P R O X I M AT E C O M P U T I N G 12

exact result may not be known. However, the approximated result

can be efficient and sufficient. Generally, several approaches can

use the approximate computing as a chance for more efficiency

optimization (e.g., more speed and lower power consumption). The

following points discuss the motivations of approximate computing

and the opportunity of implementation.

2.1.1.1 Essential Requirements for Approximation

Common factors can lead to employing unavoidable approximation

to the computation operation and then the output result. These

factors might include the inherently noisy input, data with limited

precision and hard real-time constraints. Hence, the application is

forced to compute a sufficient (i.e., not exact) output [56].

2.1.1.2 Error-Resilience of Users and Applications

• Perceptual limitations: Applications with analogue inputs

and/or outputs which operate on noisy real-world data exploit

the ability of the human brain and vision tolerance (i.e., the

ability to automatically fill in the missing information) of the

distorted image or video frames.

• Redundant input data: The redundancy of data values in-

creases the chances for algorithm approximate computation,

and further, can be used to internally recovering from er-

rors. Hence, the algorithm might be lossy, yet, still suit-

able [75, 86, 49, 72].

• Significance in the final output: Inputs or code portions can

be classified, depending on their significant impact on the

final output. For instance, the lower order bits or the least

significant bits (LSB) have smaller significance and a minor

2.1 A P P R O X I M AT E C O M P U T I N G 13

impact on the final output quality when compared to the

higher-order or the most significant bits (MSB) [13, 23, 68,

28].

• Applications with no unique answer, such as the web search.

2.1.1.3 Performance Optimization

When exploiting a combined error resiliency characteristic and

minimum acceptable quality levels, such as minimum error rate

(10%) and peak signal-to-noise ratio (PSNR) values (30 dB) in image

processing applications [68], the approximate computing can be

extended for more efficiency optimization (improving performance

and energy efficiency). For example, introducing techniques like

reducing the memory refresh rate and voltage [55, 56], skipping

memory access [99], and loop termination [12], can lead to more

efficient performance, however, with minor and acceptable quality

degradation.

2.1.1.4 Design Reconfigurability

Approximate computing might allow a better management of re-

sources. In other words, the user may have the ability to expand

efforts (e.g., power, area) as much as dictated by the output quality

requirements, providing knobs to trade-off quality with efficiency.

This is compared to the conventional computation, where every

computation is executed to full reliability [11].

2.1.2 Challenges of Approximate Computing

Similar to any design approach, approximate computing has sev-

eral challenges, which might limit the approximation techniques

2.1 A P P R O X I M AT E C O M P U T I N G 14

benefits. The following points show a few major challenges of ap-

proximation regarding hardware computation blocks and software-

based implementations.

2.1.2.1 Critical Domain of Approximate Computing

Applications like cryptography and compression programs require

hard and restricted levels of accuracy. With this being the case,

they can be considered not amenable to approximation. Moreover,

approximation techniques can be valid for a certain range; for in-

stance, aggressive task skipping might lead to program failure or a

corrupted output. Further, the advantages of approximate comput-

ing may become limited. For example, an unreliable approximated

memory does not reduce the number of operations on the data,

and vice versa. Hence, a good selection of the targeted application

(i.e., considerable error resilience) and the range of approximation

should take place cautiously.

2.1.2.2 Application Dependent Approximation

One or multiple approximation techniques can be applied to an ap-

proximable application. However, the challenge stated that there

is no approximate technique that can be applied universally to all

targeted applications. Hence, the approximate techniques are con-

sidered an application-based dependent and need to be determined

according to each application requirement [6].

2.1.2.3 Design Overhead and Limited Scalability

Several approximate computing techniques introduce large imple-

mentation overhead; for instance, the augmented error detection

and correction (EDC) circuitry of approximate adders incurs a large

design overhead, and thus, reducing the gains of approximation.

2.1 A P P R O X I M AT E C O M P U T I N G 15

Other software-based techniques might require the user to write

multiple approximate versions of a program. Consequently, this

would consume huge designing efforts, and further, would not scale

to more complex programs.

2.1.2.4 Accuracy Recovery

A key challenge of approximate computing is the output accuracy

controlling mechanism. This mechanism should control the level

of resulted errors, and thus, maintain the desired output quality.

The error control block should have an efficient error detection and

correction techniques, based on predefined thresholds (e.g., worst-

case bounds) or predetermined tunable knob(s) to trade-off quality

with efficiency [88]. Hence, if the error level or quality degradation

violates the threshold, the application must recover the desired

quality and might need to be executed precisely, a matter which

increases computation overhead [26].

2.1.3 Solution Approaches

The proposed techniques in the following points aim to address the

above-mentioned approximate computing challenges.

2.1.3.1 Identifying the Approximable Parts

The basic step in the majority of approximate computing tech-

niques is to find the approximable variables, blocks and code por-

tions. This can be achieved by using a straightforward option

such as approximating the lower order bits (LSB) of input data.

However, this may require a deep inspection of the application

characteristics by using a testing technique like error injection or

2.1 A P P R O X I M AT E C O M P U T I N G 16

statistical measurements, and then, monitoring the correlation

between outputs and targeted executed data and operations [71].

2.1.3.2 Preserving Quality by Output Monitoring

The overhead of monitoring application output to preserve desired

quality might be mitigated by using several approaches. These

approaches might include periodic checking of general quality

levels, instead of full frequent checking and recovering of errors.

Further, error verification and correction can be accomplished us-

ing lightweight check (LWC)circuitry. For example, Grigorian and

Reinman in [26] proposed (LWC) circuit, which indicates an un-

acceptable quality loss. Accordingly, the exact computation would

be activated to recover the undesired levels of quality. Otherwise,

if the output quality shows acceptable levels, the approximation

would be deemed satisfactory. Hence, this would bound the worst-

case error, and saves energy without compromising reliability.

2.1.3.3 Programming Language Support for Approximate Com-

puting

Programming languages can play a vital role in solving approxi-

mate computing challenges. For instance, Sampson et al. in [74]

proposed Java extension type qualifiers that can classify portions

of the code as precise (guaranteed strict accuracy) or approximable.

According to this classification, approximated computations, stor-

age and algorithms can be used by variables denoted with an

approximate qualifier. They showed that their approach can save

a large amount of energy with small accuracy loss.

Another effort by Yazdanbakhsh et al. in [49] presented Verilog

annotations, which provide suitable syntax and semantics for an

approximate hardware design. They showed that the designer

2.2 A P P R O X I M AT I O N T E C H N I Q U E S 17

can specify both critical (precise) and approximable portions of

the design. Furthermore, they provide the chance of reusing the

approximate modules in different designs that might have different

accuracy requirements, yet, without requiring reimplementation.

Based on these solution approaches, the following sections

present several approximate computing techniques that have been

explored by many state-of-the-art efforts.

2.2 A P P R O X I M AT I O N T E C H N I Q U E S

Once the process of identifying the approximable variables and

operations within the application has been accomplished, different

approximation methods might be implemented. We now discuss

these methods, in the context of the approximation techniques

and related applications in which they are used. Fig. 2.1 shows

the general taxonomies of approximate computing techniques. The

following points present a brief description of each approximation

method with related examples.

Figure 2.1: General taxonomies of approximate computing techniques.

2.2 A P P R O X I M AT I O N T E C H N I Q U E S 18

2.2.1 Software Techniques

In software domain, approximate computing introduces the pro-

grammers an opportunity for creating lower restricted programs

and applications versions. These new versions would contain sev-

eral approximate code techniques that allow the application to

work more efficiently, yet, with different trade-off error levels (i.e.,

accuracy) [60].

The crucial point of this software-based approximation is to

identify the portions of code (instruction, operation and storage)

that are tolerable to be approximated. These selected approximable

portions must not harmfully affect the final output quality.

Several techniques can be used to make application’s code op-

erating with more performance and controlled levels of quality

degrading. Such techniques might include skipping tasks, loop

perforation, omitting portions of code, replicating local statisti-

cally correlated matrices of inputs, and using memory values to

compensate computations. Nevertheless, error levels have to be

controlled with specific user-defined metrics (e.g., predefined error

rate threshold).

The following points present several examples of software-based

approximate techniques.

2.2.1.1 Loop Perforation

The idea of the loop perforation method has been implemented by

skipping some iterations of a loop in order to reduce computational

overhead.

For example, Sidiroglou et al. in [85] introduced several global

computational algorithms that work with loop perforation such

as search space enumeration, in which some items computations

2.2 A P P R O X I M AT I O N T E C H N I Q U E S 19

can be skipped and one of the remaining items is returned from

the search space. On the other hand, for exploring performance

versus accuracy trade-off, they used given perforation rates (i.e., a

fraction of iterations to skip) as a test threshold. While exploring

combinations of all tunable loops (those loops whose perforation

produces efficient and still acceptable computations) on training

inputs, the combinations that produce error are discarded and

those with acceptable accuracy are selected. As a result of this

effort, performance improvements have been shown, along with

the ability of performance-accuracy trade-off exploration.

2.2.1.2 Load Value Approximation

In general, once a load’s miss in a cache memory happened, the

required data must be fetched from the next-level cache or main

memory, and thus, inquiring large latency. However, the error

tolerance characteristics of the approximable applications allow

estimating the missed load value, which is known as load value

approximation (LVA). Hence, this would hide the cache miss la-

tency and allow a processor to progress without any delay for a

response [54].

An example of LVA-based efforts, Miguel et al. [86] presented

an LVA technique for graphics applications. In their proposed tech-

nique, memory block would be fetched occasionally to train the

approximator, in contrast to traditional block fetching on every

cache miss to confirm the correctness of prediction. However, in

case of not matching of the estimated value and exact value, no roll-

backs are required in such error tolerance applications. As a result,

this would reduce the overhead of memory accesses significantly.

2.2 A P P R O X I M AT I O N T E C H N I Q U E S 20

2.2.1.3 Memoization

The memoization methodology is an optimization technique that

exploits the results of inputs functions similarity. In other words,

storing the results of expensive function calls for later reuse with

identical values of inputs. Consequently, exploring more speed up

and reducing the computation overhead. This approach is used by

several approximate computing techniques [94, 73].

An example of memoization concept, Rahimi et al. [67] exploited

the value locality of a parallel program, which is exposed to all

lanes in the single instruction multiple data (SIMD) architecture.

Based on this, they proposed a technique of reusing the result

of data item’s error-free execution across different parallel lanes

of the SIMD architecture, and thus, reducing the delay of error

recovery overhead. The memoized result would be used to correct,

either precisely or approximately, an erroneous execution on same

or adjacent data items. Precise correction is implemented by com-

paring the corresponding bits of the inputs of the instructions (i.e.,

bit-by-bit matching). On the other hand, approximate correction

is implemented by matching a certain number of a least signifi-

cant fraction of inputs. Their SIMD architecture consists of a single

strong lane and multiple weak lanes. Hence, the result of an exact

floating point FPU instruction on a strong lane can be memoized

and reused to approximately recover any weak erroneous lane, and

as a result, reducing the overhead of timing recovery for a large

fraction of erroneous instructions.

2.2.1.4 Multiple Inexact Program Versions

Code approximation extension was implemented in well-known

programming languages, such as Java and Verilog [49, 74]. This

can be conducted by a specific user’s notations that classify the

2.2 A P P R O X I M AT I O N T E C H N I Q U E S 21

portions of code as critical and approximable, and thus, identi-

fying the possibility of applying any kind of programme-based

approximation strategies, mentioned before.

As an example of multiple inexact program versions, Baek and

Chilimbi [7] presented a programming model framework that pro-

vides approximated versions of the program by approximating

functions and the loops perforation technique. However, the loss

in quality of service (QoS) is measured by a user-defined function

for checking the difference of output results of the precise and

approximate function versions. Additionally, they used periodically

statistical measuring of the QoS loss at runtime in order to update

the approximation and guarantee the targeted quality levels.

2.2.2 Operating Parameters Techniques

2.2.2.1 Voltage Scaling

For static-timing analysis of conventional design methodology, all

the operations (circuit paths) would be guaranteed to meet timing

limits. However, when voltage source (VDD) starts to be scaled

down, timing errors will be induced rapidly, and thus, degrading

the output signal quality, then, reducing the benefits of potential

energy reduction. Voltage scaling is considered to be the most key

factor of decreasing the digital circuit energy consumption. This

is due to the fact that the power consumption is dominated by

dynamic power dissipation P_dynamic, which is given by [65, 64,

60]

Pd ynamic = Ce f f .V2
DD . f , (2.1)

2.2 A P P R O X I M AT I O N T E C H N I Q U E S 22

where VDD is the supply voltage, effective switched capaci-

tance (Ceff), and (f) is the clock frequency. It can be noticed that

scaling down the supply voltage would lead to an overall quadratic

reduction in the energy to complete a task. Nevertheless, while pre-

serving a fixed performance (i.e., operating frequency), aggressive

scaling of supply voltage will cause timing errors.

Several techniques of approximate computing have been ex-

plored for new procedures to gracefully over-scale voltage below

the circuit’s lower voltage [66, 51]. Generally, they differ in the

way they deal with timing induced errors due to insufficient volt-

age, which cannot guarantee timing correctness on all paths (i.e.,

timing starvation).

In some efforts, correction mechanisms are introduced in such

a way that the system becomes able to tolerate timing errors

induced by voltage over-scaling (VOS). For example, design efforts

in [86, 32, 82], specifically targeted digital signal processing (DSP)

type circuits, such as filters. A main computing block in the circuit

is targeted with lower voltage for more energy reduction. On the

other hand, error correcting block is implemented with a normal

voltage value, and thus, error-free results.

A general approach to mitigate the effect of the induced timing

errors is to identify the significance of computations that need to be

protected against voltage-over-scaling and those that can tolerate

them as shown in the following examples.

• In [59], meta-functions accumulator was considered the main

block which might experience time-starvation under voltage

over-scaling. By using techniques such as dynamic segmentation

and delay budgeting of chained units, the accumulator can work

more gracefully under VOS, resulting in that the quality-energy

trade-offs are improved.

2.2 A P P R O X I M AT I O N T E C H N I Q U E S 23

• Even in the same block, not all computations have the same

significance to the final output quality. In [58], The significant

computations are identified and then protected under VOS, by

allowing them to consume an additional clock cycle for comple-

tion. In opposite, the insignificant computations are allowed to

produce occasional errors.

Furthermore, using methods of predicting the occurrence of early

timing errors can lead to a significant reduction of quality loss

under VDD scaling. This might be accomplished by using operand

statistics such as the design effort in [31], which is based on the

knowledge of operand statistics. They stated that while VDD is

scaling down, the large magnitude of timing errors shows high

probability to happen in the addition of small numbers with dif-

ferent signs. Due to such additions timing-critical paths, they are

proposed to apply the addition of opposing signs small number at

the last step of computation, and thus, limiting the magnitude of

error and improving the output quality.

2.2.2.2 Over-Clocking

In general, for any given voltage, the circuit will have a maximum

"stable" speed where it still operates correctly. Approximation by

using over-clocking is to gain further performance from a given

component by increasing its operating speed while applying con-

stant voltage. This happens by setting the circuit’s working fre-

quency at the higher end of the margin of the clock frequency. An

example of work towards "over-clocking friendly" is exercising an

over-clocking technique for serial operations in online arithmetic

implementations which can gain substantial performance benefits

with graceful degradation of timing violations [17, 18, 64].

2.2 A P P R O X I M AT I O N T E C H N I Q U E S 24

2.2.3 Hardware Techniques

In this part, we investigate the efforts of the inexact basic arith-

metic units’ design, especially for the approximate adders. This

part also includes a brief description of approximation efforts of

multiplier units.

From state-of-the-art literature, the general methodologies of

conventional adder approximation can be classified into two groups.

The first group concerns about the production of a new adder ar-

chitecture with better efficiency. The second group applies changes

to the internal structure of the computing units in the adder. The

change can be implemented at the gate level by using a few logic

gates to apply the addition operation rather than the standard

circuit of the full adders, and further it might take place at the

transistor level of the adder by removing a number of transis-

tors which would not significantly harm the adder operation and

outputs.

2.2.3.1 General Architecture Approximation

In this section, adder approximation techniques would target the

general architecture of the adder (i.e., not the internal gates or

transistors levels). The following two parts explore examples of the

key ideas of both approximate and speculative adders that follow

this classification.

• Bit-significance approximate adders

Several approximate adder designs exploit the general classi-

fication of the significance of the adder bits in the final sum

result. The main idea is that the lower adder bits (LSB) con-

tribute with the lower portion of the final sum value and have

2.2 A P P R O X I M AT I O N T E C H N I Q U E S 25

the smaller effect of errors (i.e., not harmful to the general accu-

racy), compared to the higher order bits (MSB) of the adder. This

motivation of significance analysis leads to dividing the multiple

bit adder into two parts:

1. The most significant or accurate part, which retains the

exact conventional carry propagation addition to be per-

formed to the higher order bits (MSB) of the adder.

2. The less significant or inaccurate part, in which a less

complex circuit design or a modified carry free (i.e., not gen-

erated or propagated from previous bit location) addition

function can be implemented to each bit of the lower order

bits (LSB) of the adder.

This architecture of the approximate design with accurate and

inaccurate parts would maintain the low magnitude of errors

since the higher order bits of the sum are expected to result in

values that are close to the exact sum result. On the other hand,

for the inaccurate part, the modified inexact addition function

can be performed by using new less complex or simplified ver-

sions of the conventional adder at the transistor level [28, 29] or

using simple logic gates to compensate the conventional arith-

metic addition operation [19, 98, 50]. However, the length of

both parts not necessarily needs to be equal.

As an example, the lower-part-oR adder (LOA) design divided

the adder into two parts, the accurate part for the higher order

(MSB) bits and the inaccurate part for the lower order (LSB) bits

range [50]. In the inaccurate part, the conventional full adder

(FA) unit was replaced with simple OR gate at each bit location

in order to estimate the sum value. Additionally, an AND gate

was used to generate the carry-in to the accurate upper part that

2.2 A P P R O X I M AT I O N T E C H N I Q U E S 26

performs the exact addition operation, specifically, when both

inputs values to the most significant bit in the lower part are ’1’.

In summary, the LOA performs a carry-free addition in the less-

significant lower part of the adder, which a result, shows very

low power dissipation with smaller area and better performance.

• Segmented Speculative Adders

This type of approximate adders is generally based on the fact

that the carry propagation critical path rarely implies the worst-

case adder delay (i.e., carry propagation from the first bit to the

last bit of the adder).

Approximate speculative adder designs have proposed that the

carry propagation chain can be limited to a number of previous

bits to calculate the sum with a high probability. Hence, the

conventional adder can be segmented into a number of blocks

(sub-adders), which have an equal number of bits. The carry-

in to each sub-adder would be speculated to either ’0’ value

or by using a carry prediction technique that is related to the

previous sub-adder. Additionally, the input bits to the sub-adder

can internally manipulate the propagated carry-in values with

a high probability (i.e., input bits might generate correct carry

and can be propagated to a considerable number of bits within

the sub-adder).

All the segmented sub-adders would work in parallel, calculating

the sum bits values of each sub-adder at the same time. Thus,

the speculative adder designs would result in high speed (limited

to the bit width of the sub-adder) achieving sub-logarithmic

delays (i.e., the operation complexity is less than log(n) in an

n-bit adder [48, 91]), yet, with a high probability of acceptable

accuracy.

2.2 A P P R O X I M AT I O N T E C H N I Q U E S 27

However, assuming that the bit width of each sub-adder equals

(k), speculative adders’ trade-off between accuracy and delay

would depend crucially on the size of (k). Although the smaller

value of k speeds up the addition operation, it might limit the

accuracy. Conversely, larger values of k can improve the accuracy

level; Nevertheless, they limit delay reduction benefits.

Speculative adders with different segmenting techniques can

show more accuracy and a higher level of output quality without

affecting speed benefits. For example, speculative almost correct

adder (ACA) in [91] used intensive blocks overlapping (overlaps

(k-1)-bits between successive sub-adders) to increase the proba-

bility of the correct carry speculation. The proposed speculative

adder involved N-k+1 sub-adders, and thus, enforced power and

area overheads. Moreover, the design was augmented with error

detection and correction circuitry (EDC) to recover any detected

errors to reach the full accuracy with variable latency (i.e., er-

ror recovery consumes an additional clock cycle of the addition

function).

• Accuracy-Configurable Adders

The previously discussed approximate adders have the challenge

of the fixed accuracy level at the design time (i.e., not flexible

to be changed within multi-levels during run-time). Hence, the

designed approximate adder will be dependent on the accuracy

level of the targeted application and might be not fit another

error-resilience application with a different level of accuracy.

Therefore, one of the key problems of approximate adders is

the redesign efforts. To resolve this challenge, several design

efforts propose accuracy-configurable adders [91, 37, 8, 80, 100].

In this approach, Multi-Stages error recovery structure is used.

Here at each stage, error detection and correction (EDC) circuit

2.2 A P P R O X I M AT I O N T E C H N I Q U E S 28

can be enabled to detect and correct errors or just be disabled

according to the required accuracy level during run-time. In

this manner, the accuracy-configurable adder trades-off speed-

power-accuracy during run-time, according to requirements of

applications, and consequently, generalises the design.

An example of this type of accuracy-configurable adders, the

design effort in [37], in which a speculative segmented adder

was proposed by introducing a middle sub-adder that shares

an overlapped part from the previous sub-adder in terms of

increasing accuracy as a first interest. Further, a pipelined multi-

stage error recovery circuit structure was implemented. Each

stage here employs a different level of accuracy and can be

enabled or disabled during run-time by a kind of a power gating

technique.

2.2.3.2 Internal Structure Approximation

In the approximate adder circuit, the inexact addition function can

be performed by using less complex versions of the conventional

adder at the transistor level [28, 29]. This happens by making

changes to the internal structure of the transistors of the adder.

For example, the approximation of the 28-transistors mirror

adder (MA) architecture [28]. The idea of analysing the effect of

truth table entries to the sum result at each bit was the motivation

to produce five approximate MAs (AMAs). The new approximate

mirror adders (AMAs) explored different attempts to reduce the

logic complexity by removing a number of transistors from the orig-

inal MA circuit architecture, yet, by ensuring the low significance

of resulted output errors. This logic reduction at a transistor level

leads to faster charging and discharge of the node capacitance in

the new approximate MA. Consequently, this results in a lower

2.3 S CA L A B L E E FF O R T D E S I G N F O R A P P R O X I M AT E C O M P U T I N G 29

circuit complexity, more speed (i.e., a shorter critical path inside

the MA), and lower power dissipation. Hence, this would trade-off

accuracy for energy, area and performance.

2.2.3.3 Approximate Multipliers

Approximate multipliers design starts to receive better attention

in the last few years. Generally, the key design idea is to reduce

the critical path of adding the partial products. This can be done

by the use of speculative adders to compute the sum of the partial

products [101, 103], or omitting some less significant bits in the

partial products (i.e., some adders can be removed for more delay

benefit) [50, 62], or by using approximation techniques like logic

compression as in [27] in order to reduce the levels of partial addi-

tion, or using inexact small block in order to be used as a building

block in a larger multiplier for an approximate computation [89].

As a result of approximate multiplier implementation, the area

has been reduced, compared to the exact multiplier, leading to a

shorter critical path and a better speed.

2.3 S CA L A B L E E FF O R T D E S I G N F O R A P P R O X I M AT E

C O M P U T I N G

In several cases, a more efficient approximation can happen while

tuning the effort expended by the approximate technique. This

tunable effort would be based on the tolerance level of the targeted

portion, and the accuracy significance of operation results in the

output. In the state of art, several efforts have used this approach

per task basis in order to maximize the gains and reliability of

approximation [57].

2.4 S I G N I FI CA N C E -D R I V E N D E S I G N 30

For example, Grigorian et al. [27] presented a technique that

uses both precise and approximate accelerators and uses error

analysis to set the accuracy constraints. During execution, first

steps operate with relaxed approximate computation, and consec-

utively, the approximation complexity increases and ends with a

precise computation. Based on the output quality measurement

at each step, the tasks that have met the specified output quality

are committed, and only remaining tasks move to the next stage.

They showed that most of the tasks are expected to be committed

in early stages, thus, reducing the overall overhead.

Venkataramani et al. [89] presented a scalable approxima-

tion technique for improving the energy efficiency of supervised

machine-learning classifiers. In their technique, the difficulty of

input data would determine the tuning of the computational effort.

Here simple inputs would be processed within few stages, and hard

inputs would require going through multiple stages. They showed

that the number of operations per input is decreased, and thus,

results in reducing the energy consumption of the classification

process.

2.4 S I G N I FI CA N C E -D R I V E N D E S I G N

The main idea of significance-driven design is based on exploring

the most significant part of the design regarding the resource

consumption and/or the final output. For example, some image

processing applications have specific operations that consume a

large portion of execution time or power consumption, and further

have mathematical coefficients that affect the final output result

significantly. Approximate designs would exploit these significant

2.5 A P P R O X I M AT E E R R O R M E T R I C S 31

parts since they present the chance for new efficient designs with

more speed and a lower power consumption [58, 57].

In this work of approximate adder designs, we consider the

higher order bits as the most significant part of the adder. This

is due to their significant influence in the final sum results when

compared to the lower order bits. Thus, we have implemented a

significance driven error correction structure for each proposed ap-

proximate adder design. In the proposed error recovery structure,

the most significant (higher order) bits or sub-adders would be

corrected first (i.e., at early stages). Hence, this would guarantee

fast convergence to exact addition values with a small delay.

As a summary of the targeted levels of the approximate comput-

ing techniques, Table. 2.1 presents the three mentioned taxonomies

with their features and design limitations.

2.5 A P P R O X I M AT E E R R O R M E T R I C S

Since the approximate computing has been explored increasingly

by many efforts, a new performance metrics become required in

order to evaluate the efficiency of the approximate design. Several

analytical efforts have proposed error metrics, which can be used

for quantifying approximation errors, and then the reliability of

approximate designs. In the following, a list of generally used error

metric is introduced aligned with a brief explanation [37, 42, 44,

53, 83, 84, 87, 90].

• The error rate (ER): also known as error frequency [53], is de-

fined as the fraction of incorrect outputs out of a total number

of inputs in an approximate circuit. ER is expressed by the fol-

2.5 A P P R O X I M AT E E R R O R M E T R I C S 32

Ta
bl

e
2.

1:
Ta

xo
no

m
ie

s
of

ap
pr

ox
im

at
e

co
m

pu
ti

ng
ap

pr
oa

ch
es

A
pp

ro
ac

h
M

et
ho

do
lo

gy
Fe

at
ur

es
an

d
L

im
it

at
io

ns
H

ar
dw

ar
e-

ba
se

d
ap

pr
ox

im
at

io
n

A
pp

ro
xi

m
at

e
th

e
in

te
rn

al
ar

ch
it

ec
tu

re
of

co
m

pu
ti

ng
bl

oc
ks

su
ch

as
ad

de
rs

an
d

m
ul

ti
pl

ie
rs

.

A
ch

ie
ve

a
be

tt
er

pe
rf

or
m

an
ce

w
it

h
a

lo
w

er
po

w
er

co
ns

um
pt

io
n.

H
ow

ev
er

,t
he

er
ro

r
re

co
ve

ry
pr

oc
es

s
m

ig
ht

in
cu

r
a

la
rg

er
ex

ec
ut

io
n

de
la

y
an

d
a

de
si

gn
ar

ea
.

So
ft

w
ar

e-
ba

se
d

ap
pr

ox
im

at
io

n

A
pp

ly
co

de
in

st
ru

ct
io

ns
to

lim
it

pa
rt

s
of

th
e

ru
nn

in
g

pr
og

ra
m

s
su

ch
as

lo
op

pe
rf

or
at

io
n.

A
pp

ly
a

lo
w

er
ex

ec
ut

io
n

ti
m

e
by

st
op

pi
ng

or
ne

gl
ec

ti
ng

so
m

e
pa

rt
s

of
an

ex
ec

ut
ed

pr
og

ra
m

or
in

st
ru

ct
io

ns
to

ac
hi

ev
e

be
tt

er
pe

rf
or

m
an

ce
an

d
to

ta
lp

ow
er

co
ns

um
pt

io
n.

H
ow

ev
er

,a
ca

re
fu

ls
el

ec
ti

on
of

to
le

ra
bl

e
pa

rt
s

an
d

ap
pr

ox
im

at
io

n
te

ch
ni

qu
es

sh
ou

ld
ex

is
t

to
av

oi
d

se
ve

r
fin

al
qu

al
it

y
de

gr
ad

at
io

n.

O
pe

ra
ti

ng
pa

ra
m

et
er

s
sc

al
in

g

A
pp

ly
th

e
pa

ra
m

et
er

va
lu

e
sc

al
in

g
to

th
e

op
er

at
ed

ci
rc

ui
t,

su
ch

as
vo

lt
ag

e
ov

er
-

sc
al

in
g

an
d

ov
er

cl
oc

ki
ng

.

V
er

y
be

ne
fic

ia
lo

fd
ec

re
as

in
g

th
e

po
w

er
co

ns
um

pt
io

n
by

sc
al

in
g

th
e

su
pp

ly
vo

lt
ag

e
be

lo
w

th
e

no
m

in
al

va
lu

e,
an

d
it

ac
hi

ev
es

be
tt

er
pe

rf
or

m
an

ce
by

ap
pl

yi
ng

hi
gh

fr
eq

ue
nc

y
va

lu
e,

in
st

ea
d

of
th

e
st

ab
le

fr
eq

ue
nc

y
ra

ng
e

of
th

e
ci

rc
ui

t.
H

ow
ev

er
,t

hi
s

w
ill

ca
us

e
ti

m
in

g
er

ro
rs

th
at

ha
pp

en
w

he
n

th
e

ta
sk

do
es

no
t

m
ee

t
th

e
m

ax
im

um
(c

ri
ti

ca
l)

pa
th

de
la

y
of

th
e

ci
rc

ui
t,

w
hi

ch
in

tu
rn

,r
es

ul
ts

in
an

ou
tp

ut
va

lu
e

er
ro

r.

2.5 A P P R O X I M AT E E R R O R M E T R I C S 33

lowing equation where Re is the number of incorrect bits, and R

is the total number of inputs.

ER= Re

R
(2.2)

In general, ER is important when the erroneous results need to

be handled or recovered by a costly technique. Hence, an accu-

rate estimation of ER is important in case where approximate

circuits spend additional cycles of error corrections.

• The error distance (ED): is defined as the arithmetic distance

(magnitude of deviation) between an inexact output and the

correct output for a given input. ED is used for evaluating the

quality of approximate adders [42], and expressed by the follow-

ing equation where Re is the number of incorrect bits, and Rc is

the number of correct bits.

ED= |Rc−Re| (2.3)

Several error metrics can be derived from the formal definition

of the error distance ED such as the mean error distance (MED),

which studies the average error effect of multiple inputs [34]. In

other words, MED reflects the average "closeness" of the approxi-

mate adder to the accurate adder and is used as common criteria.

Another related metrics to ED is the relative error distance (RED)

that equals to the ratio of ED over the exact output, as presented

in Eq. 2.4, and the mean relative error distance (MRED) which

is defined as the average of all RED values obtained from all

possible input combinations. These metrics of RED and MRED

are used in this thesis to demonstrate the effect of our proposed

2.6 BA S I C A D D E R S BA C K G R O U N D 34

approximate adder designs since they are considered as a signif-

icant indicator of outputs quality degradation.

RED= |Rc−Re|
Rc

(2.4)

• The normalized error distance (NED) is the normalization of

MED for multiple-bit adders. Remarkably, while MED measures

multiple-bit adders’ implementation accuracy, NED is indepen-

dent of the size of the adder, and thus, analyses the general

reliability of a specific design.

Based on the definition of the error distance (ED) metric, error

rate (ER) can be defined as the probability of inputs for which

ED is greater than zero as described in Eq. 2.5.

ER= 1
n

n∑
i=1

P(ED(i)> 0) (2.5)

However, if MED value is large, and ER value is small, then the

design would generate large error magnitudes.

The following section presents more illustration about the adder

importance, and makes a brief review of basic conventional adder

designs.

2.6 BA S I C A D D E R S BA C K G R O U N D

The addition operation is an essential part of any digital system

where the fast and accurate operation of a digital system is greatly

involved in existed adders’ performance. Adders are also exten-

sively used in other basic digital operations such as subtraction,

2.6 BA S I C A D D E R S BA C K G R O U N D 35

multiplication and division. Then, improving the efficiency of the

digital adder module would significantly enhance the whole pro-

cesses of binary operations inside a circuit compromised of such

blocks.

The majority of approximate adder designs have exploited the

idea of the low probability of the worst case of the carry propaga-

tion critical path. In other words, for an adder with bit width equals

N, the probability of carry-chains having length=N is extremely

low, and generally, carry signal can be determined by considering

a number of bits to the right of the current bit position [91, 25].

Adders critical path reduction would result in decreasing hard-

ware complexity and general power consumption,yet, with limited

output quality degradation.

In the following part of this section, a short revision for three

basic designs of the adder is presented.

2.6.1 Ripple Carry Adder

The ripple carry adder (RCA) in Fig. 2.2 is constructed by cascading

full adders (FA) blocks in series. One full adder is responsible for

the addition of two inputs binary digits at any stage of the ripple

carry. The carry-out of one stage is directly inputted to the carry-in

of the next stage. Major characteristics of RCA can be summarized

as follows:

• Cascade N(1-bit) full adder.

• The delay grows in proportion to N or O(N), thus, has a long

carry path (i.e., very slow for wide numbers).

• Each full adder requires waiting for the carry bit to be calcu-

lated from the previous adder.

2.6 BA S I C A D D E R S BA C K G R O U N D 36

Figure 2.2: 4-Bits ripple carry adder.

• Shows a low power consumption due to a small area and the

basic addition operation.

2.6.2 Carry Select Adder

In the carry select adder (CSL) shown in Fig. 2.3, the results of

the addition operation are computed in parallel for the two al-

ternatives: input carry ’0’ and ’1’. These simultaneous additions

take place in advance of receiving the actual carry value. Once the

carry value becomes available, the correct computation is chosen

(using a multiplexer (MUX)) to produce the desired output. Hence,

mitigating the delay value of waiting for the carry-in to calculate

the sum. However, although the fast speed and the high accuracy

of the CSL adder, it shows considerable area requirements and an

extensive level of computation (replicates the addition process).

2.6 BA S I C A D D E R S BA C K G R O U N D 37

Figure 2.3: 4-Bits carry select adder.

2.6.3 Carry Look Ahead Adder

The carry look-ahead adder (CLA) in Fig. 2.4, solves carry propa-

gation problem by calculating the carry signals in advance, based

on the input signals. Further, the use of both generate (G(i)), and

propagate (P(i)) signals takes place in this adder design.

Figure 2.4: 4-Bits carry look-ahead adder.

The following points describe the main boolean expressions for

generating sum and the new carry signals or propagating the

previous carry value:

2.6 BA S I C A D D E R S BA C K G R O U N D 38

• Consists of (n) (sum, propagate, generate signals (SPGs))

which operate in parallel to produce the sum.

• G i = Ai . Bi , Pi = Ai ⊕ Bi, both signals are connected to

the carry look-ahead (CLA) generator, which is illustrated in

Fig. 2.5.

• Si = Pi ⊕ Ci−1 , Ci+1 =G i + PiCi ,where (Si) is the sum

result and (Ci) is the carry value of adder (i). These equations

show that a carry signal will be generated in two cases:

1. If both bits Ai and Bi are ’1’,

2. If either Ai or Bi is 1 and the carry-in Ci is ’1’.

• For CLA generator depicted in Fig. 2.5

1. All carries are generated directly, thus shorter carry

path compared to RCA (i.e., high-speed computation).

2. Anticipating the carry-in of every module according

to a calculus of the carry-out from the previous (less

significant) module.

3. Require a large circuit.

Figure 2.5: Carry look-ahead generator.

2.7 A P P R O X I M AT E A D D E R S 39

In summary, the comparison between the three types of adders

shows that the RCA design has the simplest design, the smallest

area and a lower power consumption, yet, has the slower com-

putation speed. On the other hand, although both CSL and CLA

adder designs have larger areas and complex circuits (hardware

and computations), CSL adder designs shows high accuracy for

outputs and CLA adder design behaves more efficiently in terms of

propagation delay.

The following sections provide a review and examples of ap-

proximate and speculative adder designs that are related to our

proposed work. They also present adders taxonomy table and sum-

mary points that illustrate the differences and challenges of the

two design approaches.

2.7 A P P R O X I M AT E A D D E R S

Since adder module plays a key role in digital system efficiency,

several efforts have targeted the approach of approximated adder

designs. The general idea is to use an approximate computation

technique to implement addition in the lower order bits (LSB) of

the adder. This is due to the observed limited significance of lower

part bits in adder’s final result, and thus, preserving very low

degradation of output quality.

In the following part, several related examples of approximated

adder’s designs are shown. These designs explain the utilizing

of dividing the adder into an accurate and approximated "carry

free" inaccurate parts. The approximation technique of inaccurate

part is used to compensate the conventional exact addition opera-

tion, thus, more efficiency and a lower power consumption can be

achieved.

2.7 A P P R O X I M AT E A D D E R S 40

2.7.1 Lower-Part-OR Adder (LOA)

Lower-Part-OR adder(LOA) [98, 50, 42, 35, 36, 47, 46] is considered

a basic example of the approximated adder design. As depicted in

Fig. 2.6, the adder structure of bit width equals (P) is divided into

two parts, accurate part of a bit width of (m) and an inaccurate

part of a bit width of (n), where (m+n=P).

m-Bit
Precise Adder
(Sub-Adder)

IN 2 (n-1)
IN 1 (n-1)
IN 2 (n-1)
IN 1 (n-1)

IN 2 (0)
IN 1 (0)

IN 2 (p-1:n)

IN 1 (p-1:n)

m

m

IN 2 (n-1:0)
n

IN 1 (n-1:0)
n

C out

m
OUT(p-1:n)

n
OUT(n-1:0)

Figure 2.6: Lower-Part-OR adder(LOA) architecture.

In the approximated design, the accurate part has the higher

order bits (MSB) and uses the exact addition operation to produce

correct results. On the other hand, the lower inaccurate part (LSB)

uses OR gates to perform bitwise OR operation to the correspond-

ing input bits. Further, an AND gate is placed at the higher order

bit location of the inaccurate part and utilised to generate carry-in

value to the upper accurate part when the two input bits are both

equal to ’1’ at that location. As a result, this would help to prop-

agate a generated carry value of the lower part of the adder, and

then, increase the total accuracy.

For the general evaluation of the LOA design, it can be sum-

marised that it achieves a considerable increase of computation

speed, in addition to reductions in area and power consumption.

2.7 A P P R O X I M AT E A D D E R S 41

However, these benefits are limited to the size selection of the bit

width of the two parts of the adder, since a large inaccurate part

bit width would achieve high performance and energy efficiency,

yet, with a high percentage of output errors. On the other hand,

if the accurate part has a larger bit width, the output accuracy

would increase, but approximation gains would be decreased.

2.7.2 Error Tolerant Adder (ETA)

Error tolerant adder (ETA)) [106] design follows the same adder

division strategy of accurate and inaccurate parts, yet, the bit

width of the two parts are not necessarily equal. Fig. 2.7 illustrates

the proposed approximate addition operations for each part of the

adder.

Operation
direction

Operation
directionStarting

Point
MSB LSB

Accurate Part Inaccurate Part

10110011

01101001

10011010

00010011

100011100 10011111

Normal Operation All bits set to “1”

Input
operands

Sum

Figure 2.7: Error-tolerant adder (ETA).

The addition operation is started simultaneously from the mid-

dle of the adder and in opposite directions. The accurate part that

has the higher order or most significant bits (MSB), performs the

exact addition and results in accurate outputs. On the other hand,

2.7 A P P R O X I M AT E A D D E R S 42

for the inaccurate part, a specific approximate addition technique

is applied on the lower order or least significant bits (LSB).

In detail, starting carry free (i.e., not generate or propagate

of the carry) addition operation from the MSB to LSB bits of the

inaccurate part, control signals would check the value of input

bits at each location. In case the checked bits are both equal ’0’

or different (i.e., ’0’, ’1’), the addition operation is performed by

modified XOR gate. In the other case, when the checked two input

bits to the same location both have the value of ’1’, the sum bit

value of the corresponding modified XOR gate is set to 1, and

further, all the remaining bits to the right of this bit location are

set to ’1’ (by selecting the output nodes connected to VDD). As a

result, this would increase the accuracy and limit the error of carry

chain elimination in the inaccurate part of the adder.

In summary of this effort, the proposed design has achieved

an overall delay reduction due to a simultaneous implementa-

tion of the addition operation in the opposite direction, and to the

carry-free addition in the inaccurate part. In addition, introducing

smaller area and a lower power consumption. However, a consid-

erable level of output errors might be produced, especially for the

case of small number additions, and further, the control signal

overhead in the inaccurate part.

For addressing the challenge of error levels, ETA has been ex-

tended to several modified designs (ETAII, ETAIIM [104]and

ETAIII [107]), in which the first interest was to improve predicting

the carry-in to the higher order or most significant bits (MSB) due

to their high efficiency in the output quality. In the following, we

will explore the (ETA IV) [105] approximate adder design, which

is considered the last version of ETA adder series.

2.7 A P P R O X I M AT E A D D E R S 43

2.7.3 ETA IV

The proposed ETAIV approximate adder [105] follows the concept

of carry select adder (CSL) [102] in its implementation. An (N-bit)

adder is divided into (N/X) blocks, where (X) equals the bit width

of the sub-block (Sum Generator). However, the carry chain has

been divided into two stages by the multiplexer (MUX2) unit (i.e.,

instead of dividing sum generator blocks in the original (CSL) adder

adder described in section. 2.6.2).

Carry Generator II

Carry Generator II Carry Generator I

Carry Generator II

Carry Generator II

Sum Generator Sum Generator Sum Generator Sum Generator

VDD

M
U
X
2

M
U
X
2

VDD

An-1 ~ AN-X

Bn-1 ~ BN-X

An-X-1 ~ AN-2X

Bn-X-1 ~ BN-2X

An-2X-1 ~ AN-3X

Bn-2X-1 ~ BN-3X

An-3X-1 ~ AN-4X

Bn-3X-1 ~ BN-4X

Co.n SN-1 ~ SN-X SN-X-1 ~ SN-2X SN-2X-1 ~ SN-3X SN-3X-1 ~ SN-4X

Figure 2.8: Block diagram of ETA type IV (ETAIV).

As illustrated in Fig. 2.8, two carry generators, type I and type

II, are proposed to select the carry in input to the successive most

significant sum generator. Each carry generator of type II calcu-

lates the carry out for the cases when inputted carry-in has the

values ’0’ and ’1’. Nevertheless, the accuracy of the carry-out of the

carry generator would be limited to the bit width (X) value.

Based on the carry select concept, the carry-out of one of the

two carry generators (type II) would be selected depending on

the carry-out value from the previous stage carry generator (type

I). In detail, when the carry-out of carry generator (type I) is ’0’,

then the carry-out of Carry Generator (type II) that has inputted

2.8 S P E C U L AT I V E A D D E R S 44

carry-in equals ’0’ will be selected. On the contrary, if the carry-

out of carry generator (type I) is ’1’, then the carry-out of carry

generator (type II) that has inputted carry-in equals ’1’ will be

selected. Consequently, the selected carry-out value is inputted to

the successive most significant sum generator block. This leads

that the carry predicting has been increased to (2X) bits, which

would increase the accuracy of the result of the most significant

sum generator block.

To analyse the design effort, although the improved accuracy

level of outputs, the bit width value (X) might limit the gains of

the approximation since a larger value of X would increase the

accuracy, yet, with more delay and power dissipation and vice

versa. Moreover, the general architecture based on carry select

adder would introduce a large area overhead, therefore, limiting

the approximation approach benefits.

2.8 S P E C U L AT I V E A D D E R S

The speculative adder design approach exploits the observation of

rare occurrence of carry propagation worst case (critical) chains

during addition operation. The general design architecture of spec-

ulative adder follows the approach of dividing N-bit adder into

several smaller blocks (sub-adders), which are operating in paral-

lel. Assuming that the bit width of sub-adder equals K, then the

number of divided sub-adder is (M=N/K). The key idea in such de-

signs is to speculate the carry-in value, which has to be propagated

to a bit location, and then, approximate the correspondence bit

sum result. Majority of speculative adder designs use K previous

bits to predict the carry and then the sum value of bit location.

2.8 S P E C U L AT I V E A D D E R S 45

k k

an-1 an-2 an-3 an-4 an-5

bn-1 bn-2 bn-3 bn-4 bn-5

a5 a4 a3 a2 a1 a0

b5 b4 b3 b2 b1 b0

Sn-1 Sn-2 S5 S4

Figure 2.9: VLSA single-bit shift segmentation.

However, they might differ in the segmentation procedure and the

accounted number of sum bits result in the output.

In the following, several related efforts of speculative adders are

presented with a brief description and evaluation of each design.

2.8.1 Variable Latency Speculative Adder (VLSA)

The design of the variable latency speculative adder (VLSA) [91] in

Fig. 2.9 proposed sub-adders segmentation by overlapping (K-1))

bits of previous sub adder in order to speculate the carry value in

the current sub-adder. Each sub-adder contributes with one bit in

the resultant sum (i.e., one resultant bit per sub-adder). As a result,

a limited delay value to the bit width of the sub-adder is achieved

(i.e., high speed). Further, the error levels become restricted, a

matter which results in preserving a high accuracy level of the

adder output. Nevertheless, due to using an intensive fixed single-

bit shift operation, the number of sub-adders will increase with

large fan-out of the input, and thus, increasing the area and power

consumption overhead.

2.8 S P E C U L AT I V E A D D E R S 46

The adder design is extended by augmenting error detection and

correction (EDC) circuitry, which consists of carry look-ahead (CLA)

adder with the same bit width of segmented sub-adder. In case

of error detection, the CLA adder will perform a precise addition

to the erroneous sub-adder, while exploiting carry generate and

propagate signals from the previous sub-adder. However, the pro-

cess of the error recovery will consume another clock cycle to be

performed.

As a summary, the VLSA design has shown more speed and high

accuracy levels. However, it introduced a large area overhead due

to a single-bit shift operation and the augmented EDC circuitry, in

addition to the critical delay of the error recovery. This limitation

of the design would decrease the total gain of the approximation

effort.

2.8.2 Accuracy-Configurable Approximate Adder (ACA)

The design of accuracy-configurable adder (ACA) adder [37] pro-

posed a speculative adder that mitigates the design challenges

exist in previous efforts such as VLSA. Since the accuracy level

was the first interest in ACA design, a middle sub-adder was intro-

duced between every two basic sub-adders as depicted in Fig. 2.10.

In detail, each sub-adder has a 2K number of bits, and after the

first (least significant sub-adder), the successive sub-adder has

overlapped half number of bits from the previous adder for the

purpose of carry speculation to its upper part bits. Hence, half of

the sub-adder length would result in the final sum as compared

to the VLSA design that provides a single sum bit result for each

sub adder. As a result, the number of sub-adders would decrease,

2.8 S P E C U L AT I V E A D D E R S 47

8-bit
adder

8-bit
adder

8-bit
adder

carry

SUM

SUMH

SUMM

SUML

AH + BH

AM + BM

AL + BL

A[0]

A[15]

A[15:0] B[15:0]

SUM[16]

SUM[15:12]

SUM[11:8]

SUM[7:4]

SUM[3:0]

AH = A[15:8],
AM = A[11:4],
A L = A[7:0]

Figure 2.10: ACA adder example (16-bit adder), where H=High,
M=Middle and L=Low.

and then, reducing the area and power consumption overhead.

Fig. 2.10 shows a 16-bits example of ACA adder implementation.

For the error detection and correction (EDC) circuit depicted

in Fig. 2.11, the proposed error detection uses simple logic gates

such as AND gates, and is based on checking the following two

conditions:

Sub-adder (i+1)

Sub-adder (i) Incrementor
IN

Approximate Adder EDC circuit

SUMapprox

SUMcorrect
OUT

errori

sum

i

Carryi+1

Data Stall

Error

Figure 2.11: ACA error detection and correction circuit.

1. In the current sub-adder, all resulted sum bits of the over-

lapped part are equal to ’1’.

2.8 S P E C U L AT I V E A D D E R S 48

2. In the previous sub-adder (i.e., from where the overlapped

part comes from), the carry-in to overlapped bits is equal ’1’.

In case that two conditions have been met, then this indicates

that a carry propagation should take place to the current sub-adder.

To overcome the detected erroneous sub-adder, an incrementor

circuit is used to propagate the missed carry value of ’1’ to the

resulted sum bit (i.e., not to the sub-adder itself), thus, preserving

a high level of accuracy.

Another major advantage of ACA design is the multi-stage struc-

ture of the error recovery process of which each correction stage

recovers a determined number of erroneous sub-adders’ sum result

using incrementors.

Approximate adder

N/2-bit adder

N/2-bit adder

G

S

D

Error correction

Power gating
switches

Stage 1 Stage 2

SUML

SUMH

SUMcorrect

SUMapprox.

Error

Carry

A

B

AH

AL

BH

BL

Accurate mode

Figure 2.12: Two stages implementation of the approximate adder (be-
low) with power gated correction stage, a conventional adder
(above).

As illustrated in Fig. 2.12, the first stage has the approximate

addition operation and the second stage consists of a correction

stage (incrementor in the ACA design). It can be noticed that the

activation of the correction stage is controlled by power gating

the added footer transistor. In case an error recovery operation is

2.8 S P E C U L AT I V E A D D E R S 49

required, the transistor would power on the correction circuit to

implement the correction process.

Furthermore, this two-stage structure proposed to be extended

to multi-correction stages. The new correction stages would be

organised in the pipelined architecture where the first correction

stage would recover errors in the least significant sub-adders and

the last correction stage recovers the error in the most significant

sub-adder sum. The activation of these correction stages is con-

trolled by a power gating technique by using one transistor for

each stage. This added transistor would control the activation of

the correction stage based on the required level of accuracy, thus,

the error correction process becomes configurable during run-time.

The worst case of the accuracy level can be fulfilled by operating

all the correction stages.

Since we consider the ACA design [37] as a significant example

of accuracy configurable approximate adders, the proposed adder

designs of this work in chapters 3, 4 and 5 have been compared to

its design parameters such as delay, area and power consumptions,

in addition to the related output error values.

2.8.3 General Architectural Design of Accuracy-Configurable

Adders (GeAr)

The general architectural design of accuracy-configurable adders

(GeAr) [80] is based on the previous accuracy-configurable adder

(ACA) design [37] with equal bit-width sub-adders. However, this

design proposed a generalised model and architecture for the

accuracy-configurable adders.

The main idea of generalisation is to exploit the chance of mul-

tiple ranges of a number of overlapped bits, which are used for

2.8 S P E C U L AT I V E A D D E R S 50

carry speculation, and the number of sum resulted bits from each

sub-adder. As a result, different architectures and configurations

of adder design can be available, thus, introducing multiple energy-

accuracy trade-offs.

In detail, for a sub-adder, if the number of the overlapped bits

(P) is larger than resulted bits (R), the accuracy will increase, yet,

with more delay. Conversely, if the (R) bits have a larger number

than propagate bits (P), the speed will increase with the reduction

of accuracy. Figs. 2.13 and 2.14 below show two different imple-

mentations of 12-bits GeAr adder design regarding the defined

values of result bits (R) and propagate bits (P) and the number of

sub-adders (M).

Sub
adder

2

Sub
adder

1

SUM[7:4]B

A
In 1

In 2

Cp1

Cp2

Co2

Co1

S
U
M

OUT

SUM[7:0]

SUM[11:4] SUM[11:8]

A[7:0]

B[7:0]

A[11:4]

B[11:4]
Carry out

B[11:0]

A[11:0]

Figure 2.13: GeAr adder with N=12, R=4, P=4 and M=2.

On the other hand, regarding the configurable correction scheme

which is depicted in Fig. 2.15, the incrementor in ACA design is

replaced by a new approach of error detection and correction. The

proposed correction technique includes the following points:

1. The error detection is implemented with an AND gate (i.e.,

ANDING Cpi and Co(i-1)).

2.8 S P E C U L AT I V E A D D E R S 51

SUM[9:4]

B

A
In 1

In 2

Cp1

Cp3

Co3

Co1

S
U
M

SUM[7:0]

SUM[11:4] SUM[11:10]

A[7:0]

B[7:0]

A[11:4]

B[11:4]

Cp2

Co2

SUM[9:8]

A[9:2]

B[9:2]

SUM[7:2]

OUT

Carry out

B[11:0]

A[11:0]

Sub
adder

2

Sub
adder

3

Sub
adder

1

Figure 2.14: GeAr adder with N=12, R=2, P=6 and M=3.

OUT

B

A
In 1

In 2

Cp1

Cp2

Co2

Co1

S
U
M

M
U

X
M

U
X

1

1

M
U

X

0

SUM[11:4] SUM[11:8]

SUM[7:4]

SUM[7:0]
A[7:0]

B[7:0]

B[11:4]

A[11:4]

BC [11:4]

AC [11:4]

Error control

Data Stall

Carry out

Sub
adder

1

Sub
adder

2

Figure 2.15: Error detection and correction for GeAr adder with N=12,
R=4, P=4 and k=2.

2.9 C O M PA R I S O N A N D C H A L L E N G E S 52

2. In case Cpi and Co(i-1) both are ’1’, then the accuracy shall

be compromised, and this confirms that a carry with a value

of ’1’ should be propagated from the previous sub-adder, oth-

erwise, an error is detected.

3. For error correction, both inputs to sub-adder are passed

through an OR gate, and their LSBs are set to ’1’, and hence,

while activating the correction process, this will generate the

required carry to recover the erroneous sum.

4. Further, a control signal is used to select the sub-adder that

needs error detection and recovery. Consequently, providing

a higher level of the architectural support for configurable

error correction to avoid correction overhead, based on appli-

cation accuracy specifications, yet, with a larger area chal-

lenge.

As a summary, Table. 2.2 presents taxonomies of the three types

of approximate adders with their features and design limitations.

Additionally, a detailed evaluation of both approximate and specu-

lative adders is provided in the following section.

2.9 C O M PA R I S O N A N D C H A L L E N G E S

As a general evaluation for both approximate and speculative

adders, it can be noticed that the main difference between spec-

ulation and approximation depends on the error rate concern.

Speculative adders’ principle depends on the very low probability

of error occurrence, which results in more efficiency in terms of

high speed and low activation of the error recovery circuit (EDC).

Conversely, approximated adder depends on the significance of an

error in the resulted output quality, thus, presents the ability for

2.9 C O M PA R I S O N A N D C H A L L E N G E S 53

Ta
bl

e
2.

2:
Ta

xo
no

m
ie

s
of

ap
pr

ox
im

at
e

ad
de

r
ba

se
d

on
er

ro
r

re
co

ve
ry

ci
rc

ui
t

im
pl

em
en

ta
ti

on
.

C
at

eg
or

y
Fe

at
ur

es
L

im
it

at
io

ns

D
es

ig
ns

w
it

ho
ut

er
ro

r
re

co
ve

ry
ci

rc
ui

ts
.

L
O

A
[5

0]
,E

T
A

[1
06

]

H
ig

h
sp

ee
d,

sm
al

la
re

a,
an

d
lo

w
po

w
er

co
ns

um
pt

io
n

1-
A

cc
ur

ac
y

de
pe

nd
s

on
th

e
nu

m
be

r
of

bi
ts

in
th

e
fu

ll
ac

cu
ra

te
pa

rt
of

th
e

ad
de

r
de

si
gn

.
2-

H
ig

h
er

ro
r

ra
te

fo
r

th
e

sm
al

ln
um

be
rs

ad
di

ti
on

s
w

hi
ch

ar
e

pr
oc

es
se

d
at

th
e

ap
pr

ox
im

at
ed

pa
rt

of
th

e
ad

de
r

de
si

gn
.

3-
N

ew
ar

ch
it

ec
tu

re
s

fo
r

im
pr

ov
in

g
th

e
ac

cu
ra

cy
w

ill
in

cu
r

a
su

bs
ta

nt
ia

ld
es

ig
n

ov
er

he
ad

re
ga

rd
in

g
ar

ea
an

d
po

w
er

co
ns

um
pt

io
n.

D
es

ig
ns

w
it

h
an

er
ro

r
re

co
ve

ry
ci

rc
ui

t
an

d
a

fix
ed

le
ve

lo
f

ac
cu

ra
cy

.V
L

SA
[9

1]

1-
H

ig
h

sp
ee

d
du

e
to

th
e

se
gm

en
te

d
sh

or
t

ca
rr

y
ch

ai
n

an
d

pa
ra

lle
l

ad
di

ti
on

op
er

at
io

ns
m

ai
nl

y
in

th
e

ca
se

of
no

au
gm

en
te

d
er

ro
r

re
co

ve
ry

ci
rc

ui
t.

2-
B

et
te

r
ou

tp
ut

ac
cu

ra
cy

w
he

n
co

m
pa

re
d

to
th

e
de

si
gn

s
in

th
e

pr
ev

io
us

ca
te

go
ry

du
e

to
th

e
qu

ic
k

ca
rr

y-
in

sp
ec

ul
at

io
n

te
ch

ni
qu

e
at

ea
ch

bi
t

lo
ca

ti
on

in
th

e
ad

de
r.

1-
E

D
C

ci
rc

ui
t

w
ou

ld
in

cu
r

co
ns

id
er

ab
le

de
si

gn
ov

er
he

ad
of

ar
ea

an
d

po
w

er
co

ns
um

pt
io

n.
2-

A
fix

ed
ac

cu
ra

cy
le

ve
la

t
th

e
de

si
gn

ti
m

e
w

ou
ld

m
ak

e
th

e
w

ho
le

ap
pr

ox
im

at
io

n
pr

oc
es

s
le

ss
be

ne
fic

ia
l.

3-
F

re
qu

en
t

er
ro

ne
ou

s
su

m
de

te
ct

io
n

du
ri

ng
ad

di
ti

on
op

er
at

io
n

w
ou

ld
re

su
lt

in
m

or
e

la
te

nc
y.

D
es

ig
ns

w
it

h
an

er
ro

r
re

co
ve

ry
ci

rc
ui

t
an

d
a

co
nfi

gu
ra

bl
e

le
ve

l
of

ac
cu

ra
cy

.A
C

A
[3

7]

1-
H

ig
h

sp
ee

d
du

e
to

th
e

se
gm

en
te

d
sh

or
t

ca
rr

y
ch

ai
n

an
d

pa
ra

lle
l

ad
di

ti
on

op
er

at
io

ns
.

2-
T

he
er

ro
r

re
co

ve
ry

is
di

vi
de

d
in

to
m

ul
ti

pl
e

st
ag

es
an

d
co

nt
ro

lle
d

du
ri

ng
th

e
ad

di
ti

on
op

er
at

io
n

ru
n-

ti
m

e.

1-
T

he
se

gm
en

ta
ti

on
an

d
sp

ec
ul

at
io

n
te

ch
ni

qu
es

of
th

e
ad

de
r

de
si

gn
st

ill
re

su
lt

in
a

la
rg

er
de

si
gn

ar
ea

w
he

n
co

m
pa

re
d

to
th

e
co

nv
en

ti
on

al
ad

de
r.

2-
A

t
th

e
w

or
st

ca
se

of
er

ro
r

re
co

ve
ry

(i
.e

.,
fu

ll
ac

cu
ra

cy
of

ou
tp

ut
),

co
ns

id
er

ab
le

de
la

y
an

d
po

w
er

co
ns

um
pt

io
n

le
ve

ls
w

ou
ld

be
in

tr
od

uc
ed

.
3-

T
he

ac
ti

va
ti

on
of

al
le

rr
or

re
co

ve
ry

st
ag

es
do

es
no

t
gu

ar
an

te
e

th
e

fu
ll

ac
cu

ra
cy

of
th

e
fin

al
ou

tp
ut

.
T

hi
s

du
e

to
th

e
fa

ct
th

at
a

fe
w

ca
rr

y
pr

op
ag

at
io

ns
m

ig
ht

be
no

t
fu

lly
de

te
ct

ed
du

ri
ng

er
ro

r
re

co
ve

ry
.

2.10 I M A G E P R O C E S S I N G 54

accepting high rates of error in its lower order or least significant

(LSB) part, yet, with low magnitude values. Therefore, the research

efforts are focusing on minimizing the error amplitude in a way

to conserve highly accepted quality for the outputs. The following

points will summarise the major characteristics, approximation

gains and challenges of both adder design approaches.

• The bit width of sub-adders of the speculative adder and the

inaccurate part of the approximate adder plays a key role in

trading off the approximation efficiency and the output quality.

• Approximate adder designs do not have an error recovery cir-

cuit; However, several techniques might be used to limit the

error significance (i.e. magnitude) in the final output, yet, with

increased design overhead.

• For the speculative adders, the overlapping speculation tech-

nique and the number of resulted sum bits of each sub-adder,

both determine the number of sub-adder blocks, and thus, af-

fecting the gains of area and power saving.

• Error detection and correction circuitry (EDC) in speculative

adders results in more area and delay overhead, which limits

the benefits of approximation.

2.10 I M A G E P R O C E S S I N G

Image processing is defined as a technique of converting an image

to a computational form in order to perform several operations

on it in a digital system. As shown in Fig. 2.16, The image in

mathematical form is regarded as an array or matrices of squared

picture elements known as Pixels, which are organized in adjacent

2.10 I M A G E P R O C E S S I N G 55

columns. Pixels "Picture Elements" are the basic building blocks

of a digital image or display and are created using geometric coor-

dinates.

Figure 2.16: (15X15) Matrix of image-array of pixels.

Operations on the digitally captured image (e.g., photograph or

video frame) might include enhancing the original image by a kind

of filtering such as sharpening and smoothing filters or using the

characteristic of the image in some processing operations [38].

Generally, images are considered two-dimensional (i.e., including

rows and columns of pixels) signals, or a function of two variables

(e.g., F (x,y)) with the amplitude value of the image at the real

coordinate position (x,y). Thus, different signal processing methods

can be applied to them in the image processing system.

Image processing plays an integral role in most of growing multi-

media applications and related technologies today. It is considered

a core part of many aspects of business like social and medical

applications, in addition to high-speed communications. Image

processing presents a major and wide research area within engi-

neering and computer science disciplines for more optimization

and computation efficiency.

2.10 I M A G E P R O C E S S I N G 56

The following parts present a brief background of the major

steps, general purposes and techniques of the image processing

implementation.

2.10.1 Image Processing Steps

Basically, the image processing implementation follows the next

three steps [38].

1. Capturing and importing the image to the digital system by

means of input devices such as a scanner or digital camera.

2. Performing the computational manipulation on the imported

image, which might include image processing techniques

such as enhancement or compression, or analysing image

specific patterns and characteristics.

3. The last step presents the output either as a new altered

image or a report of the analysed data of the image.

2.10.2 Image Processing Motivations

General purposes of image processing can be classified into five

groups.

1. Visualization: in which the not-easily visible objects can be

observed.

2. Image restoration and enhancing: in which the amendments

on the original image can produce a better image quality.

3. Image retrieval: that allows the application’s user to search

for the image of interest.

2.10 I M A G E P R O C E S S I N G 57

4. Measurement of the pattern: which allows making measure-

ments on multiple characteristics or objects in the image.

5. Image Recognition: that helps to distinguish a specific object

in an image.

2.10.3 Image Processing Techniques

Once the image has been captured, a number of basic compu-

tational operations are implemented in advance to convert the

image into a digital (i.e., bit information) form, and then, becomes

available for further image processing.

Two basic operations in the image processing system are the

digitization operation that includes a sampling of the image by

selecting subsets of inputs, based on determined algorithms, and

the quantization operation which gives amplitude values of each

image sample. Consequently, after finishing these two steps, the

image would be converted to a bits form and the processing can be

performed [38, 97, 41].

Among widely known computation blocks in image processing,

the Gaussian blur filter presents a remarkable example. There-

fore, it has been considered in this work for analysing the imple-

mentation of the proposed adder designs in the image processing

application.

2.10.4 Gaussian Blur Image Filter

In image processing, a common filter known as Gaussian blur

(smoothing) filter is used to reduce image noise and details. The

process of blurring an image is resulted from convolving each

2.10 I M A G E P R O C E S S I N G 58

pixel in the image with Gaussian function. Blurring is a widely

used effect in graphics software, and specifically, with algorithms

that are sensitive to noise such as edge-detection algorithms, and

thus, improving the result of the algorithm. Further, it is generally

considered a pre-processing stage in computer vision algorithms

for enhancing image structures at different scales [20].

In general, Gaussian blur filter can be classified as a low pass fil-

ter and would result in a reduction effect of image’s high-frequency

components and signals.

The Gaussian blur filter uses a Gaussian function (which also

expresses the normal distribution in statistics), which calculates

the transformation that would be applied to each pixel in the image.

The following equation presents the mathematical of a Gaussian

function in one dimension [20].

G (x)= 1p
2πσ2

e−
x2

2σ2 , (2.6)

While in two dimensions, the Gaussian function equals the prod-

uct of two such Gaussians, one in each dimension:

G (x,y)= 1
2πσ2 e−

x2+y2

2σ2 , (2.7)

where x is the distance from the origin in the horizontal axis, y

is the distance from the origin in the vertical axis, and (σ) is the

standard deviation of the Gaussian distribution.

This equation gives a way to calculate coefficients for a Gaus-

sian template that is then convolved with an image. Convolution

operation would result in Gaussian averaging, which means that

the point in the averaged picture is calculated from the sum of

2.10 I M A G E P R O C E S S I N G 59

the region where the central parts of the picture are weighted to

contribute to more than the peripheral points. Standard deviation

is essentially the average distance from the mean of all points and

a small standard deviation will have a tight bell curve, which is

essentially prioritizing the weights in the middle.

The result of the two dimensions equation would result in a

convolution matrix to be applied to the original image. The values

of this matrix have a Gaussian distribution from the centre point.

Hence, each pixel in the image must be included in the calculations

and then get a new value (non-zero). Each new pixel value is

set to a weighted average of the neighbourhood pixel. In such

values distribution, the original pixel’s value receives the heaviest

weight (i.e., highest Gaussian value), and as the distance from

the original pixel increases, neighbouring pixels receive smaller

Gaussian values. As a result of this blur, better preservation of

image boundaries and edges would happen.

The following Figs. 2.17and 2.18 present a simple comparison

between mean averaging and blur averaging methodologies.

Figure 2.17: Mean averaging of image values matrix.

From Fig. 2.17, it can be noticed that the mean averaging opera-

tion uses unity kernel matrix (i.e., has values of ones) in order to

2.10 I M A G E P R O C E S S I N G 60

Figure 2.18: Blur averaging of image values matrix.

calculate the direct average of neighboured values in the matrix

of the original image. This centre location average value would be

the new value in the resulted image matrix. On the other hand,

blur averaging operation in Fig. 2.18 uses different values in its

kernel matrix, which results in new better values of the smoothed

image matrix.

As a summary, Gaussian blur filter is used to produce a smoothed

image, and thus, a better quality for analysis operations. Further,

it has the characteristic of the low pass filter that limits high-

frequency data in the new blurred image. However, this would

require an intensive level of computations.

3

S CA L A B L E L O W- P O W E R A N D

C O N F I G U R A B L E - A C C U R A C Y A P P R O X I M AT E

A D D E R D E S I G N

3.1 I N T R O D U C T I O N

The previous chapter explores the approximate computing princi-

ple and the targeted design levels of approximation by research

efforts. It has shown that the main idea of approximate computing

is about enhancing the design parameters such as execution speed,

area, and power consumption, meanwhile allowing computing er-

rors to occur within acceptable frequency and magnitudes.

In this chapter, an approximate (speculative) adder design is

introduced. The proposed design is grounded on the idea of the

accuracy-configurable adder design in ACA [37]. This design has

been considered because it was investigated by other research

efforts such as (gracefully-degrading accuracy-configurable adder

(GDA) [100], GeAr [80], Accurus [8]), nevertheless, with the common

challenge of additional design overhead regarding delay, power,

and area.

As presented in chapter 2, the general adder architecture of ACA

design is based on dividing the adder of length N into several sub-

adders equals N/2K, where k is the half-length of each sub-adder.

The primary design point in the ACA adder design is using an

overlapping number of bits equals (k) from the previous sub-adder

to be used as the low order part of the current sub-adder. The main

61

3.1 I N T R O D U C T I O N 62

two interests of the design are to break the carry chain for more

execution speed and to increase the accuracy of the speculated

carry-in value to the remaining higher order k bits within the

sub-adder. As a result, the higher order k bits in each sub-adder

would be extracted to the final sum result with highly acceptable

accuracy.

The error detection (i.e., carry propagation) technique in ACA

design needs to check the sum result of the overlapped k bits in

the current sub-adder and to check the carry-in value to these k

bits in the previous sub-adder if all equals to logic one. If the two

checks flagged high, this would confirm an erroneous sum result

of the current sub-adder which should be corrected. As a result,

the challenge of the large design area overhead is existing and

referred to the large number of logic gates used for error detection

between every two successive sub-adders. Additionally, although

the correction process was implemented with controlled stages, it

did not consider the significance (i.e., impact) of the corrected sub-

adders sum in the final full-length sum result (i.e., N bits result).

This is because it starts correction from the lower order sub-adder

with the overlapped k bits part.

The contribution in this chapter1 introduces two main modifi-

cations to the baseline design of the ACA design in order to miti-

gate the mentioned challenges of design area overhead and low

significance of premier correction stages. This effort proposes a

new lightweight error detection technique, which results in lower

design overhead and more scalability for larger bit-width adder de-

signs, yet, without any accuracy scarifying. For correction stages, a

1 This effort has been published in IEEE Xplore as, Khaled Al-Maaitah; Issa
Qiqieh; Ahmed Soltan; Alex Yakovlev, Configurable-accuracy approximate adder
design with lightweight fast convergence error recovery circuit, IEEE Jordan
Conference on Applied Electrical Engineering and Computing Technologies
(AEECT), 2017, pp 1-6.

3.2 G E N E R A L D E S I G N A R C H I T E C T U R E 63

significance-driven structure has been proposed to ensure correct-

ing errors with high magnitude early and achieve fast convergence

to the exact adder outputs. Moreover, it demonstrates an extended

version of the proposed design, which guarantees 100% accuracy

at the final correction stage.

Compared to other equivalent approximate adders, the proposed

design has drastically reduced the logic counts used for error de-

tection process, thus, achieving lower overhead of the silicon area.

In addition to improving the energy efficiency of the adder design

with faster convergence to the exact results.

A number of different bit-widths of the proposed adder (32-bit to

256-bit) are designed in Verilog and synthesized using Synopsys de-

sign compiler. Our post-synthesis experiments showed significant

reductions of 12% and 10% for dynamic and leakage power respec-

tively, and 8% in the silicon area for the design with full correction

stages. Remarkably, the proposed adder with large bit-widths has

reserved these reduction ratios while presenting better scalability

overhead. For design implementation, the proposed adder design

has been applied in an image processing application (Gaussian

blur filter), which resulted in high PSNR output values of (29 and

42 dB) for the two premier correction stages, and the optimum

image quality while using the full correction stages [3].

3.2 G E N E R A L D E S I G N A R C H I T E C T U R E

The proposed approximate adder exploits the idea that the critical

(worst case) carry propagation through the whole adder width

would take place on rare occasions (i.e. not often happened). Hence,

the proposed approximate adder is divided into several sub-adders

by cutting the length of the critical carry path. On the other

3.2 G E N E R A L D E S I G N A R C H I T E C T U R E 64

Figure 3.1: General implementation of the proposed approximate adder.

hand, redundant parts of the addend inputs are overlapped at

successive sub-adders. These redundant parts are used to predict

a carry-in value within the new sub-adders. This would lead to

a high probability of carry value handling, and then, increasing

the outputs accuracy significantly. This general approach of the

proposed approximate adder might be considered similar to the

efforts in [80], [8] and [37]. However, the proposed design in this

work would introduce better design overhead, scalability and high

levels of accuracy.

Fig. 3.1 shows the general implementation of the proposed ap-

proximate adder design, which has the same general architecture

in ACA design, however, the proposed design has been augmented

with a different lightweight error detection technique. The follow-

ing points summarize the design main parts.

• 2K is the bit-width of the sub-adder.

• K equals the half-length of the carry-chain in the sub-adder.

• Non-overlapped K-bits at each sub-adder would result in

final output sum.

3.3 E R R O R D E T E C T I O N C I R C U I T 65

• The first sub-adder produces a 2k-bit result.

• The approximate adder consists of M= ((N/K)-1)sub-modules,

where N equals to the total bits number of the main adder.

3.3 E R R O R D E T E C T I O N C I R C U I T

The second part of the proposed design is the error detection and

correction (EDC) circuit. This augmented circuit gives the proposed

adder design the ability to work gracefully in the approximate

and accurate modes during run-time. In the proposed design, the

error will signal high when the overlapped (redundant) part of

the sub-adder failed to handle a correct carry value which should

be propagated from the previous sub-adder. For error detection

between two sub-adders, the proposed lightweight error detection

technique uses an XOR gate as shown in Fig. 3.2 to check the

equality of the carry-out of the previous sub-adder and the carry-

out of the redundant part of the current sub-adder. Hence, when

an error is detected; the approximated sum value has an error and

needs to be corrected by adding ’1’ to its current value.

Figure 3.2: Proposed error detection technique.

3.4 E R R O R C O R R E C T I O N C I R C U I T 66

This correction process guarantees the correct carry value prop-

agation and can be accomplished by an incrementor circuit. The

proposed technique decreases the logic complexity used for error

detection between every two sub-adders when compared to the

previous effort of ACA [37] that used more logic to check values of

a larger number of bits (sum bits of the redundant (overlapped)

part of the current sub-adder, and the carry-in to this part in the

previous sub-adder).

Although the proposed error detection technique incurs a limited

degradation of delay, significant enhancements of power consump-

tion and area happened. Moreover, this technique is considered

more beneficial in terms of scalability of larger adder widths as

will be shown in section 3.8 of this chapter.

3.4 E R R O R C O R R E C T I O N C I R C U I T

The correction operation basically uses an incrementor circuit that

increments the erroneous sum value by one. The bit width of the

incrementor is equal to the width of the resulted approximated

sum bits of each sub-adder.

The structure of the correction circuit is applied through several

correction stages. The multi-stage structure would give the ability

to control the active correction stage independently while changing

the accuracy level during the run-time. This would achieve more

power saving for low-level accuracy modes [37].

Fig. 3.3 illustrates the proposed significance-driven error correc-

tion structure. This structure would guarantee that the resulted

sum from the most significant sub-adders will be corrected first,

and the final correction stage will correct the resulted sum from the

least significant sub-adders. As a result, the correction of high mag-

3.4 E R R O R C O R R E C T I O N C I R C U I T 67

nitude errors and fast convergence to the exact sum value will take

place at the premier correction stages. This significance-driven

correction scheme might be analogous to [8]; However, there was

no remarkable modification for the error detection mechanism, in

opposite to our proposed design that incurs lower design overhead.

On the other hand, in order to guarantee 100% accuracy of

outputs at the final correction stage (highest level of accuracy),

the carry-out values of the active correction stages should not be

overlooked. Conversely, these values have to be considered and

propagated to the successive most significant correction stages.

Hence, the proposed design has introduced a new extended ver-

sion, which checks the correction stages carry-out values and their

propagation in a way that achieves full accuracy at the final cor-

rection stage. The extended full accurate version of the proposed

design is denoted by (Proposed_Accurate).

Figure 3.3: Significance-driven error correction stages (32-bit adder ex-
ample).

From Fig. 3.3, the main points of multi correction stages can be

summarized as follows.

1. Stage (0) has the approximated sum result (without any

correction).

2. The correction stage (incrementor) will result in the accurate

sum part (coloured green).

3.5 N U M E R I CA L E X A M P L E 68

3. S0 is always correct as it uses carry-in = ’0’.

For more clarification for how the proposed design works, a numer-

ical example is provided in the following section.

3.5 N U M E R I CA L E X A M P L E

In this section, a (32-bit) binary numerical addition example is pre-

sented. The detailed example in Fig. 3.4 shows the main methodol-

ogy of adder division, approximate addition and error detection and

correction techniques of the proposed design versions (Proposed

design and Proposed_Accurate) versus ACA design.

1111 1111 1111 1111 1101 1001 1100 1010

0000 0000 0000 0000 0010 1110 1111 0001

1100 1010
1111 0001

1001 1100
1110 1111

1101 1001
0010 1110

1111 1101
0000 0010

1111 1111
0000 0000

1111 1111
0000 0000

1111 1111
0000 0000

Sub-adder(1)Sub-adder(2)Sub-adder(3)Sub-adder(4)Sub-adder(5)Sub-adder(6)Sub-adder(7)

1011 10111000 1111 1111 1111 1111 0000

1011 10111000 0000 0000 0000 0000 0000

A

B

A= Approximated final sum result of Proposed and ACA designs. Approximated Final

Carry equals to ‘0’.

B= Exact (correct) final sum result. Exact Final Carry equals to ‘1’.

Figure 3.4: Proposed design numerical (32-bit) approximate addition ex-
ample.

Fig. 3.4 presents an example of (32-bit) addition of the proposed

design. The main adder is divided into seven sub-adders of (8-bit)

width for each. Sub-adders (except the first one) has two parts, in

which the first lower order part has a redundant 4 bits from the

previous sub-adder, and the most significant part has new added 4

bits, which are used to result in the approximated sum.

In the proposed architecture, the carry-in to each sub-adder is

truncated to ’0’, while the redundant bits at each sub-adder are

3.5 N U M E R I CA L E X A M P L E 69

used to speculate the carry-in to the most significant part of the

sub-adder, thus, approximate the sum results with high accuracy.

In Fig. 3.4, part A presents the approximated sum of the pro-

posed design, while part B shows the exact (correct) sum that

accomplished by a conventional adder. The two results A and B

show the difference between the approximated and exact results.

It can be noticed that a carry at A had to be propagated after the

fourth sub-adder to the final carry-out, and hence, the exact value

of carry-out should be ’1’ instead of approximated carry-out of ’0’.

Table 3.1 shows the methodology of error detection of the eight

sub-adders of the proposed design versions (Proposed design and

Proposed_Accurate) and ACA design. Error detection simply im-

plies checking (i.e., active ’1’) if there is a carry-out value of ’1’ from

the previous sub-adder, which should be propagated to the current

sub-adder. As a result, if an error is detected, the approximated

4-bit sum value should be incremented by ’1’ to match the correct

value.

Table 3.1: Proposed design versions vs. ACA error detection.

Proposed
Accurate

Check

Proposed
Design
Check

ACA
Check

Carry
out

Redu-
ndant
=1111

Carry
[3]

- - - 1 - 0
0 0 0 1 No 1
0 0 0 1 No 1
1 1 1 0 Yes 0
1 0 0 0 Yes 0
1 0 0 0 Yes 0
1 0 0 0 Yes 0

The proposed design in ACA [37] detects an error when the re-

dundant 4-bit sum is equal to (1111), and the carry-out of the

fourth bit of the previous sub-adder is equal to ’1’. Conversely, in

3.5 N U M E R I CA L E X A M P L E 70

this work, the proposed design error detection concerns about just

checking the equality of two bits locations (the carry-out of the pre-

vious sub-adder and the carry-out of the fourth bit of the current

sub-adder), then, the equality check will signal high if there is any

detected error (i.e., carry propagation).

Moreover, the extended full accurate version of the proposed

design (denoted as Proposed_Accurate) introduces more accuracy

through detecting the carry-out of the active correction stage to be

propagated to the sum result of successive correction stages.

Figure 3.5: Proposed design versions vs. ACA active error correction
stages.

Fig. 3.5 presents a comparison between the proposed design ver-

sions and ACA design regarding the active correction stages while

detecting an error. For the ACA design error recovery technique,

an error is detected at sub-adder number four. Based on the ACA

correction stages structure, which starts correcting the errors of

the least significant sum results, stage number 2 will be active to

correct the error. The proposed design version detects the same er-

ror at the fourth sub-adder, and regarding the significance-driven

architecture in Fig. 3.3, correction stage number 2 will be active to

correct the error.

3.6 D E S I G N T R A D E -O FF S 71

On the other hand, for the Proposed_Accurate design version,

all the errors of carry propagation starting from the fourth sub-

adder to the final seventh sub-adder will be detected. The Pro-

posed_Accurate design version has the same significance-driven

structure of correction stages, thus, for the errors at the fourth and

fifth sub-adders, correction stage number 2 will be active, and for

the errors at the sixth and seventh sub-adders, correction stage

number 1 will be active. As a result, all the errors will be corrected

with 100% accuracy of the final sum result.

In the following sections, we present an evaluation of design met-

rics improvements and the error analysis of the proposed design

when compared to ACA design [37].

3.6 D E S I G N T R A D E -O FF S

To demonstrate the proposed approach, Verilog was used to apply

different sizes of adders ranging from (32-bit to 256-bit). However,

our main comparison for approximate and all correction stages

used 32-bit adder with half carry chain (K) equals to (4-bit) for

each sub-adder (i.e., 2K = 8 bits). These codes were synthesized

and implemented using two different off-the-shelf tools; Firstly,

Modelsim was used for compiling the Verilog codes and running

the associated test benches of functionality and error analysis. Sec-

ondly, the Synopsys design compiler was utilized for synthesizing

all sizes of the proposed adder versions when mapping the circuits

to the UMC (Faraday 90nm) technology and evaluating for power,

delay and area.

In order to make hardware evaluation, the proposed design was

compared to the design effort in ACA [37]. The proposed design has

two versions, where the first version was applied without consid-

3.6 D E S I G N T R A D E -O FF S 72

ering the carry-out of correction stages, and the second version

considers the carry-out of each active correction stage. For simpli-

fying, the design version considering the correction stage carry-out

is denoted by (Proposed_Accurate).

0

10

20

30

40

50

60

No Correction One Stage Two Stages Three Stages

P
o
w

e
r

(µ
W

)

ACA Proposed Proposed_Accurate

Figure 3.6: 32-Bit proposed design versions vs. ACA dynamic power (µW)
comparison.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

No Correction One Stage Two Stages Three Stages

P
o
w

e
r

(µ
W

)

ACA Proposed Proposed_Accurate

Figure 3.7: 32-Bit proposed design versions vs. ACA leakage power (µW)
comparison.

From Figs. 3.6, 3.7 and 3.8, it can be noticed that the pro-

posed design behaves better than the accuracy-configurable adder

(ACA) [37] in terms of design parameters such as dynamic power,

3.6 D E S I G N T R A D E -O FF S 73

0

250

500

750

1000

1250

1500

1750

2000

No Correction One Stage Two Stages Three Stages

A
re

a
 (

µ
m

2
)

ACA Proposed Proposed_Accurate

Figure 3.8: 32-Bit proposed design versions vs. ACA area (µm2) compari-
son.

leakage power and Area. This is because the proposed design

incurs a smaller silicon area due to limiting the error detection

logic gates counts when compared to the ACA error detection tech-

nique. Consequently, the decreased hardware would result in lower

levels of the dynamic and leakage power consumption. For the Pro-

posed_Accurate design version, due to the additional carry-out

signal detection of the active correction stages, it shows a limited

increase of logic gates, when compared to the proposed design

version. This explains the increase of the total design area and

the levels of dynamic and leakage power consumption. However, it

still shows smaller values when compared to the ACA design.

For delay values in Fig. 3.9, the proposed design shows a small

enhancement of the execution speed at the final correction stage,

besides stable delay values through all correction stages. These

values can illustrate the independence characteristic of each sub-

adder in which the critical path delay is the same for all segmented

blocks. This is referred to the limited equality checking of two

signals values for error detection.

3.6 D E S I G N T R A D E -O FF S 74

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

No Correction One Stage Two Stages Three Stages

D
el

a
y
 (

n
s)

ACA Proposed Proposed_Accurate

Figure 3.9: 32-Bit proposed design versions vs. ACA delay (ns) compari-
son.

In the case of the Proposed_Accurate version with an additional

carry-out signal detection of the active correction stages, despite

the degradation of correction stages delay values, it still behaves

with higher speed regarding conventional adders like ripple carry

adder (RCA) as will be shown in section 3.9 of further compari-

son. Moreover, the Proposed_Accurate designs keeps lower design

overhead in terms of area and power consumption levels when

compared to ACA for all stages.

Table 3.2: Average reduction ratio values of the proposed design version
compared to ACA design

Parameter Proposed Design vs. ACA
Dynamic Power 7.3%
Leakage Power 5.2%

Area 4.6%
Delay -1.9%

Table 3.2 provides the average reduction ratios resulted from

the proposed design version when compared to the ACA design

for the approximate addition and all correction stages. Obviously,

due to the resulted smaller design area, significant improvements

3.7 E R R O R A N A LY S I S 75

are introduced in terms of power (dynamic and leakage) and area

values for all stages of the proposed design. However, the speed

value is limited to the carry-out delay that equals to the full length

of the sub-adder. As a result, this would introduce more delay when

compared to the ACA design, thus, explain the limited negative

average ratio of delay.

3.7 E R R O R A N A LY S I S

In this section, we present the second part of the proposed design

evaluation by analysing the expected error levels of its resulted

outputs. The analysis includes the mathematical models and the

approximate error metrics simulations.

3.7.1 Error Probability Model

In first part of this section, we attempted to analyse the probability

of erroneous sum occurrence (i.e., the chance of undetected carry

propagation) through the sub-adders. This analysis would lead to

predicting the maximum error percentage (i.e., the error bound) of

the proposed design results within the total space of the outputs.

To analyse error occurrence of the proposed design, assume that

the final carry-out from the previous sub-adder is C1 equals to

’1’, and the carry-out of the overlapped four bits in the current

sub-adder is C2 equals to ’0’. This case would check the carry

propagation from the lower order (i.e., least significant) part of

the previous sub-adder. All other cases would introduce no errors

because the carry can be generated by the addition of inputs having

values of ones (i.e., C1 = C2 = ’1’), or the carry might be stopped in

3.7 E R R O R A N A LY S I S 76

Figure 3.10: Tree of probability of carry propagation based on inputs bits
values assuming C1= ’1’ and C2= ’0’.

the case of addition of inputs having values of zeros (i.e., C1 = C2

= ’0’).

The red dashed line in Fig. 3.10 shows the case of carry propaga-

tion for the input bits (A [7,4], B [7,4]), which in turns would result

in an error (i.e., mismatch) between the two carry values C1 and

C2.

The analysis also needs to consider the carry generate or propa-

gate from the higher order (most significant) bit of the lower part

of the previous sub-adder. This bit location might either generate

carry or propagate a carry signal to the overlapped 4-bits part.

The maximum error bound can be analysed using the following

equation (Eq. 3.1).

|E i| = Pi × Wi, (3.1)

where (i) is the bit index number in the sub-adder, E_i is the

expected magnitude of error due to bit (i), P_i is the probability of

error of bit (i), and W_i is the weight of bit (i).

3.7 E R R O R A N A LY S I S 77

The probability of correct result at each bit location would be

equal to 1
2i ,then, the probability of error would be equal to 1− 1

2i .

Pi =
(
1− 1

2i

)
(3.2)

The bit weight (i) within the sub-adder is calculated by the follow-

ing equation.

Wi = 1
2((MSB−i)+1) (3.3)

|E i| =
(

1− 1
2n

)
× 1

2((MSB−i)+1) (3.4)

where n is the number of the overlapped bits between the sub-

adders. In the proposed design, the overlapped part has four bits.

As a result, the error bound can be expressed by the following

equations.

|E i| =
(

1− 1
24

)
×

∑i=7
i=3 pi

2((7−4)+1) ,

=
(

1− 1
16

)
×

2
4 + 2

4 + 2
4 + 2

4 + 3
4

16

P (C1=1,C2=0)= 0.94 ×0.172= 0.162 (3.5)

This result shows that at maximum, 16.2% of the resulted ap-

proximated outputs would have erroneous sum values (i.e., not

equal to the exact sum value). In our experiments of error levels,

we have used the relative error distance (RED) metric which mea-

3.7 E R R O R A N A LY S I S 78

sures the magnitude difference value between the approximated

and exact output result.

The following section of the (RED) results simulation will show

that the correct results of the proposed addition approximately

equal to 84% of the outputs space. Hence, this might confirm the

mathematically derived error bound of the proposed approximate

adder design.

3.7.2 Error Metrics Evaluation

In this part, we explore the behaviour of the proposed design

regarding three error metrics described in the previous chapter,

in section 2.5 of approximate error metrics. The targeted error

metrics are the relative error distance (RED), mean relative error

distance (MRED) and the cumulative probability distribution (CPD)

of error.

Relative error distance (RED) distribution analysis has been done

for each design over different error values. RED simply measures

how far the significance of resulted output’s error when compared

to the exact output of the conventional adder. RED analysis has

been made for both proposed design versions (Proposed and Pro-

posed_Accurate) and the ACA adder design, as they are compared

to the exact outputs from a conventional adder. However, despite

the simplicity of this measurement, it would show the effect (i.e.,

error magnitude) of the proposed design stages regarding the final

quality of the outputs.

3.7 E R R O R A N A LY S I S 79

The following equation shows the arithmetic expression of the

RED value.

RED = |Exact output − Approximated output|
Exact output

, (3.6)

For clarifying, an example when the RED value equals ’0’, then

the approximated output value is correct, and there is no difference

between it and the output value of the exact adder. On the other

hand, if the RED value equals ’0.01’, then the approximated output

value is not fully correct, and there is a difference between its

value and the exact value by the percentage of 1% (i.e. it has 99%

of accuracy).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

P
ro

b
a

b
il

it
y

 o
f

E
rr

o
r

Relative Error Distance

ACA Proposed

Figure 3.11: 32-Bit proposed design vs. ACA relative error distance (RED)
distribution analysis (No correction stages).

Fig. 3.11 shows the case of designs (proposed design version

versus ACA design) without any correction stages (i.e., the approx-

imate addition stage). The two compared designs have the same

general implementation of adder segmenting to sub-adders with

the same bit widths. Each sub-adder has the same number over-

lapped bits from the previous sub-adder, which equal to the half

3.7 E R R O R A N A LY S I S 80

of its bit width except the first sub-adder. As a result, the error

analysis shows that the proposed design version has the same

behaviour as ACA. However, since the targeted design modifica-

tion is about the enhancing error detection with the lightweight

technique, the following figures of error analysis of the correction

stages would show more enhancements of limiting errors, yet, with

a lower design overhead.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

P
ro

b
a

b
il

it
y

 o
f

E
rr

o
r

Relative Error Distance

ACA Proposed Proposed_Accurate

Figure 3.12: 32-Bit proposed design vs. ACA relative error distance (RED)
distribution analysis (One correction stage).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

P
ro

b
a
b

il
it

y
 o

f
E

rr
o
r

Relative Error Distance

ACA Proposed Proposed_Accurate

Figure 3.13: 32-Bit proposed design vs. ACA relative error distance (RED)
distribution analysis (Two correction stages).

3.7 E R R O R A N A LY S I S 81

Figs. 3.12 and 3.13 show the error analysis of designs with one

correction stage and two correction stages, respectively. It can be

noticed that our design versions (Proposed and Proposed_Accurate)

have approximately the same error distribution as in ACA design.

Nevertheless, due to the fact that the proposed design versions

start correcting the most significant (i.e., higher order) sub-adders’

errors, they show results with fast convergence to exact sum values.

Further, they present more stability in terms of RED values as they

start to be limited strictly between 100% and 99% of accuracy.

The analysis of the highest level of accuracy is provided in

Fig. 3.14. In this mode, the full three correction stages would

be in action. It is obviously shown that the behaviour of the pro-

posed design version continues to show the same behaviour as

ACA. However, the improved error detection mechanism of the

Proposed_Accurate design version (by considering the carry propa-

gation of the correction stages) guarantees the full error detection

and correction of all induced sum errors, thus, shows the best

result of 100% accurate outputs.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

P
ro

b
a
b

il
it

y
 o

f
E

rr
o
r

Relative Error Distance

ACA Proposed Proposed_Accurate

Figure 3.14: 32-Bit proposed design vs. ACA relative error distance (RED)
distribution analysis (Three correction stages).

3.7 E R R O R A N A LY S I S 82

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

No_Correction One_Correction_Stage Two_Correction_Stages Three_Correction_Stages

ACA Proposed Proposed_Accurate

Figure 3.15: The 32-Bit adder designs MRED values comparison through
different correction stages.

Fig. 3.15 presents the mean relative error distance(MRED) val-

ues comparison, which shows the mean value of errors within

test space or input vectors at each correction stage [63]. At the

approximate addition stage with no error detection and correction,

the proposed design versions and the ACA design show the same

mean error values. This is due to the fact that they have the same

sub-adder segmenting implementation. However, by using the first

and second correction stages, the proposed versions’ MRED values

are drastically decreased showing better accuracy and consistency.

This referred to the significance-driven structure of the proposed

correction stages, which guarantee the fast convergence to the

exact sum values and limit the final outputs to low magnitude

values of errors early.

For the final correction stage, our proposed design version pro-

vides MRED values similar to ACA design. However, for the extended

proposed version (Proposed_Accurate) with full error detection and

correction, the MRED evaluation dropped to zero value, which elim-

inates the probability of not handled errors and confirms the final

outputs full accuracy.

3.7 E R R O R A N A LY S I S 83

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

E
r
r
o

r
 p

r
o

b
a

b
il

it
y

 d
is

tr
ib

u
ti

o
n

RED RANGE

STAGE(0) STAGE(1)

STAGE(2) STAGE(3)

Figure 3.16: The cumulative probability distribution for the error
through different correction stages.

Furthermore, Fig. 3.16 presents the cumulative probability dis-

tribution (CPD) for relative error distance (RED) levels through

approximate addition and error correction stages. This analysis

describes the change of percentages of the output space regarding

the RED values. Additionally, it shows the speed of the resulted

outputs become closer to the exact addition results. Thus, it would

explore how each correction stage might affect the total output

accuracy.

It can be noticed that the cumulative value at approximate addi-

tion stage without any error correction shows a quick move to the

RED range (0.0 ≤ RED < 0.02). This means that approximately

96% of the output space hasRED values of (0 ≤ RED < 0.02). This

percentage would be gradually increased with small values and

reached ’1’ (i.e., 100%) of the output space at RED > 0.1.

For the correction stages, the approximately show the same

cumulative behaviour of the sharp jump to the RED range (0.1 ≤
RED < 0.02). However, they present the high speed to cover all

the output space (i.e., reach 100% of the outputs number) when

compared to the previous stage of approximate addition with no

3.8 L A R G E B I T W I D T H A D D E R S E VA L UAT I O N 84

0

2

4

6

64-Bits 128-Bits 256-Bits

Delay (ns)

ACA Proposed Design

0
75

150
225
300
375
450
525

64-Bits 128-Bits 256-Bits

Dynamic Power (µW)

ACA Proposed Design

0

10

20

30

40

64-Bits 128-Bits 256-Bits

Leakage Power (µW)

ACA Proposed Design

0

5

10

15

20

64-Bits 128-Bits 256-Bits

X
 1

0
3

Area (µm2)

ACA Proposed Design

Figure 3.17: ACA vs. Proposed large bit-width adder designs hardware
comparisons.

error recovery. The only difference of MRED values between the

correction stages is the percentage of the premier resulted exact

values. It can be noticed that as the number of active correction

stages increased, the portion of the correct results (i.e., RED =’0’)

is increased, and thus, improves the quickstep to cover all the

resulted output space.

3.8 L A R G E B I T W I D T H A D D E R S E VA L UAT I O N

For design scalability checking, a further hardware evaluation was

implemented for different adder designs (ACA and Proposed design

version) with larger bit widths (64-bits,128-bits and 256-bits). The

hardware metrics evaluation for each design with its full correction

stage architecture (i.e. using three correction stages) is shown in

Fig. 3.17.

It can be noticed that the proposed design version preserves

lower values in terms of power (dynamic and leakage) and area

when compared to the ACA design. Nevertheless, it still shows

a very limited delay degradation when larger bit-width adders

3.9 F U R T H E R H A R D WA R E C O M PA R I S O N 85

are in use. Remarkably, these reduction values would confirm the

scalability advantage of the proposed design for large bit-width

adders over the ACA design.

3.9 F U R T H E R H A R D WA R E C O M PA R I S O N

Table 3.3 shows an extended comparison of the proposed design

two versions (Proposed and Proposed_Accurate) regarding previous

efforts.

Obviously, the proposed design shows more advantages and en-

hancements of the design parameters such as power, delay and

area. In detail, for both the power and area, the proposed de-

sign versions present better values when compared to ACA [37]

and Accurus [8] designs. For the delay values, the proposed de-

sign version shows a higher speed regarding ACA and Accurus

designs. These results of the proposed design version have been

confirmed by the delay-power-product power-delay-product (PDP)

values, which shows smaller numbers while using the full correc-

tion stages when compared to ACA and Accurus designs. On the

other hand, despite delay degradation of the Proposed_Accurate

version, it still presents better speed than conventional ripple carry

adder (RCA).

3.10 I M A G E P R O C E S S I N G A P P L I CAT I O N

To evaluate the proposed design in a real-world implementation,

this work exploits a key block in the image processing application

known as Gaussian blur image filter, which has been previously

defined in section 2.10.4.

3.10 I M A G E P R O C E S S I N G A P P L I CAT I O N 86

Ta
bl

e
3.

3:
H

ar
dw

ar
e

m
et

ri
cs

co
m

pa
ri

so
n

of
pr

op
os

ed
ad

de
rs

an
d

pr
ev

io
us

ef
fo

rt
s

D
es

ig
n

M
ax

C
or

re
ct

io
n

St
ag

es

D
el

ay
(n

s)

D
yn

am
ic

Po
w

er
(µ

W
)

P
D

P
L

ea
ka

ge
Po

w
er

(µ
W

)

A
re

a
(µ

m
2)

A
C

A
*

[3
7]

N
o

co
rr

ec
ti

on
0.

67
22

.2
43

14
.9

2.
40

38
10

01
.9

5

A
C

A
[3

7]
T

hr
ee

1
56

.1
61

56
.1

61
4.

12
78

18
55

.7
2

A
cc

ur
us

[8
]

T
hr

ee
1.

13
56

.9
16

64
.3

1
4.

17
96

18
95

.7
1

R
C

A
A

cc
ur

at
e

2.
22

18
.1

27
40

.2
4

2.
02

63
70

2.
81

P
ro

po
se

d*
N

o
co

rr
ec

ti
on

0.
67

22
.2

43
14

.9
2.

40
38

10
01

.9
5

P
ro

po
se

d
T

hr
ee

0.
98

49
.1

17
48

.1
3

3.
72

6
17

08
.3

3

P
ro

po
se

d_
A

cc
ur

at
e

T
hr

ee
1.

93
49

.9
05

96
.3

1
3.

80
5

17
74

.9
7

3.10 I M A G E P R O C E S S I N G A P P L I CAT I O N 87

In the Gaussian blur image filter, the process of blurring an

image is resulted from convolving each pixel in the image with the

Gaussian function. The filter is commonly used since blurring is a

major effect in graphics software, and specifically, with algorithms

that are sensitive to noise such as edge-detection algorithms, and

thus, improving the result of the algorithm. Further, it is generally

considered a pre-processing stage in computer vision algorithms

for enhancing image structures at different scales [38].

For the implementation analysis, a general Matlab test bench

was proposed to apply the Gaussian blur image filter test. The test

bench checks the actual behaviour of (20-bits) Proposed_Accurate

adder design version during multiple correction stages. The peak

signal to the noise ratio (PSNR) is used to measure the quality of the

output images after applying the Gaussian blur filter by comparing

the resulted image quality to the optimum blurred image of the

conventional circuit of the Gaussian blur filter.

From Fig. 3.18, at Mode=1, the most significant correction stage

is in operation; the resulted image shows a PSNR value of (29.8

dB) with acceptable quality and limited distortion. However, for

Mode=2 where two correction stages are in action, a remarkable

improvement happened to the PSNR value by (42.6 dB) with a very

acceptable quality of the output. In Mode=3 with all three active

correction stages, the output image presents the optimum PSNR

value, the same as the resulted image of the exact adder.

Inspite of the appearance of low PSNR value at the first correc-

tion stage, the proposed design might be considered an attractive

adder design for some application like the biomedical applications,

which are generally interested in high speed, very low power and

acceptable outputs quality [96, 2, 1].

3.11 S U M M A R Y 88

Figure 3.18: Gaussian blur image filter test.

3.11 S U M M A R Y

In this chapter, a configurable-accuracy approximated adder with

a new error detection technique was proposed. The new technique

mitigated the error detection overhead by limiting the number of

the targeted error signals for equality checking, thus, decreasing

the number of the required logic (XOR) gates in the error recovery

circuit.

As a result, this incurred lower design overhead with 12%, 10%

and 8% reduction ratios for dynamic power, leakage power, and

area, respectively, at the final correction stage (i.e. highest level

of accuracy). Furthermore, the error correction stages were struc-

tured in a significance-driven scheme, in which the first correction

3.11 S U M M A R Y 89

stage starts correcting the most significant (highest impact) erro-

neous sum bits. Hence, this guarantees a fast convergence to the

exact output values at the premier correction stages.

On the other hand, the proposed design was extended to a mod-

ified version, which considers the propagation of the correction

stages’ carry-out to successive significant stages during the active

correction process. Remarkably, the (Proposed_Accurate) design

version continued to show a lower design overhead and the best re-

sults of accuracy consistency (i.e. between 99% and 100% accuracy

levels), and further, 100% accurate results at the final stage.

The proposed adder with large bit-widths has reserved the de-

sign parameters reduction ratios with acceptable scalability over-

head. For the design implementation in the image processing ap-

plication, the proposed adder design was applied in the Gaussian

blur filter block, which resulted in high PSNR output values of (29

and 42 dB) for the two premier correction stages, and the optimum

image quality while using the full correction stages.

The next chapter explores another modification of approximate

(speculative) adder, in which a simple sub-adders’ segmenting

technique is introduced. The newly proposed technique uses the

principle of carry kill signals that limit or stop the propagated

carry chain when the addend inputs have zero values. The main

advantage of this technique is to avoid sub-adders’ parts over-

lapping, hence, reducing the resulted area and design overhead.

Further, the proposed design in the following chapter keeps using

the error recovery circuit in order to keep highly acceptable output

quality.

4

A P P R O X I M AT E A D D E R D E S I G N W I T H CA R R Y

K I L L S E G M E N TAT I O N T E C H N I Q U E

4.1 I N T R O D U C T I O N

In the previous chapter 3, we have introduced several modifi-

cations on a widely known accuracy-configurable approximate

(speculative) adder design ACA. A new lightweight error detection

technique has been proposed, in addition to organising the con-

trolled correction stages in a significance-driven structure. As a

result, lower design overhead is introduced with a smaller area

and lower levels of power consumption which present better design

scalability of large bit width adders. Furthermore, the proposed

modifications would guarantee high convergence to the exact result

at the premier error correction stages.

In this chapter, we continue to address the challenge of approxi-

mate adder large design overhead. This effort introduces a novel

technique for segmenting the sub-adders in the approximated

(speculative) adder. The proposed technique is based on using the

principle of the carry-kill signal in order to stop the carry chain

propagation at specific bit locations, which in turn, specify the num-

ber of sub-adders. The new dividing technique does not propose

any overlapping parts from the previous sub-adders. Conversely, it

preserves approximately the same length of the basic N bits adder.

Hence, a smaller area is introduced which results in lower levels

of design overhead and power consumptions. However, in order

90

4.1 I N T R O D U C T I O N 91

to preserve highly acceptable accuracy of the approximated sum

result, a carry-in value prediction technique has been augmented

to the proposed adder design with high probability.

In general, each sub-adder in the approximate (speculative)

adder design uses overlapped bits to predict a carry-in value,

and then, produces a number of resultant bits that contribute

to the final summation output. Consequently, approximate (specu-

lative) adders might be roughly categorised into three techniques,

regarding the number of the resulted approximate sum bits at

each sub-adder: the first one proposed the use of multiple overlap-

ping sub-adders with one resultant bit per sub-adder to the final

sum [91, 14, 45]. The second technique divided addition into multi-

ple blocks with overlapping parts, and each block is responsible for

generating a range of bits to the final sum [105, 37, 100, 45, 16, 43].

The proposed design in this chapter follows the third technique, in

which each sub-adder results in sum bits number that equals to

its full bit-width as can be found in [16].

For the error correction process, we maintain the configurable

multi correction stages in a significance-driven structure. This

stages structure would guarantee that the higher order (i.e., most

significant) sub-adders to be corrected first, thus, imply fast con-

vergence to the exact result. The multi-stage error correction mech-

anism allows the designer to limit the delay of error correction

and the ratio of consumed power. This is done by controlling the

activation of the number of correction stages (accuracy level) and

limiting the error checks number. Hence, the more the pipelined

stages, the smaller the carry chain length of the design sub-blocks

and the more performance achieved [37].

4.2 P R O P O S E D D E S I G N 92

The proposed work in this chapter1 focuses on improving the

procedure of segmenting the sub-adders in order to increase the

expected benefits of such approximate (speculative) adder designs.

A novel segmenting technique of sub-adders has been introduced

by using carry-kill bit locations (with input bits values equal to

zero). Further, a lightweight carry-in prediction and error detection

techniques are proposed, which leads to lower design overhead

and more scalability for larger adder size. The proposed design is

augmented with a significance-driven multi-stage error recovery

circuit, which implies fast convergence to correct outputs.

The proposed design presented improvements of (16%), (17%)

and (18.6%) for dynamic, leakage power and area respectively. Nev-

ertheless, outputs reserved a general high accuracy level, which

limited between 99% and 100% for the majority of input space.

The proposed design was implemented in an image processing

application, which resulted in high PSNR values of (53 and 83 dB)

for the two premier correction stages, and 100% exact results while

using full correction stages [4].

4.2 P R O P O S E D D E S I G N

In general, the carry kill signal shown in Eq. 4.1 participates in a

vital role by limiting the chain of carry propagation in the adder,

and then, the critical path delay. In this effort, we exploited this

characteristic in order to divide the adder into smaller sub-adders,

and further, to apply the real carry detection in parallel. The

new segmentation technique would lead to the decreased silicon

1 This effort has been published in IEEE Xplore as, Khaled Al-Maaitah; Ghaith
Tarawneh; Ahmed Soltan; Issa Qiqieh; Alex Yakovlev, Approximate adder seg-
mentation technique and significance-driven error correction, 27th International
Symposium on Power and Timing Modeling, Optimization and Simulation (PAT-
MOS), 2017, pp 1-6.

4.2 P R O P O S E D D E S I G N 93

area and lower power consumption, thus, mitigating the emerging

design overhead challenge in configurable-accuracy approximate

adders.

Carry K ill Signal(j) = SUM(j) [0+0]+Carry(j−1), (4.1)

4.2.1 Segmenting Technique

The proposed design follows the general technique of dividing the

adder into independent (i.e., not overlapped) smaller sub-adders.

However, a one-bit location is added after each sub-adder to limit

the long carry chain as depicted in Fig. 4.1 that shows the general

architecture of the proposed adder design. In detail, for an N bit

adder, the number of segments will equal to M where (M=N/K);

K is the sub-adder bit width (K=L-1), and L is the total bit width

of the sub-adder (i.e., includes sub-adder bits and the added bit

location for limiting the carry chain).

Figure 4.1: The proposed general adder segmentation technique using
the carry kill new bit locations.

4.2 P R O P O S E D D E S I G N 94

The new bit locations have input values of ’0’ (e.g., A+B= 0+0

=0), thus, result in sum values equal to ’0’. The added location

keeps its value to ’0’, or can be changed to ’1’ in the case of carry

propagation or generating from the neighbouring most significant

bit (MSB) of the sub-adder. The new sum value of the added bit

location would hold the real output carry of the sub-adder. As a

result, the value of the real carry at each bit location will be used

in the process of the erroneous sum value detection and correction

of each sub-adder.

4.2.2 Carry Prediction Technique

Carry-in prediction to each sub-adder in the proposed design is

presented in Fig. 4.2. It can be noticed that carry prediction applies

an AND logic gate between every two successive sub-adders. As

illustrated in Eq. 4.2, the predicted carry value of sub-adder (i) is

equal to the value of generate signal (G) of the most significant

(i.e., higher order) bits of previous sub-adder (i-1). In detail, the

predicted carry value will be equal to ’1’ if both inputs to the

AND logic gate have values of ’1’, otherwise, the predicted value

will be equal to ’0’. The carry-in to the first sub-adder will be

truncated to ’0’ value. A similar technique of carry prediction by

AND gate was previously used in the lower-part-OR (LOA) adder

design effort [50]; however, with completely different approximate

adder architecture.

The following Eq. 4.2 presents the carry-in generate signal (G),

which is used for carry-in value prediction between every two sub-

adders in the proposed design. The result of AND-ing the values of

4.2 P R O P O S E D D E S I G N 95

Figure 4.2: The proposed carry-in prediction technique for each seg-
mented sub-adder.

the most significant bits (MSB) of the previous sub-adder will be

the value of the predicted carry-in to the current sub-adder.

Carry− in(i) =G(MSB(i−1)) = A(MSB(i−1)) .B(MSB(i−1)), (4.2)

where i is the current sub-adder, i-1 is the previous sub-adder.

An example of the (32-bit) approximate adder uses the proposed

segmenting technique is presented in Fig. 4.3, and the following

points summarise its main parts:

• Assuming the bit width of each sub-adder (K= 8-bits), the

number of sub-adders equals to M=N/K= 32/8 = 4. The length

of each segment (sub-adder) is increased by one additional

bit location in order to limit the carry propagation and hold

the real carry-out of the adder segment. Hence, L equals to

(K+1)= 9 bits.

• The carry-in of each sub-adder is predicted as the result of

AND-ing the most significant (MSB) input bits of the previ-

4.2 P R O P O S E D D E S I G N 96

Figure 4.3: Example of (32-bit) proposed approximate adder using the
segmenting technique of carry kill bit locations.

ous sub-adder, except the first sub-adder, which has been

truncated carry-in = 0.

• Each bit in sub-adder participates in one sum bit in the final

approximated sum output value. However, the carry kill bit

location value is not regarded as a sum bit and it will be

discarded.

• The final carry kill bit location at sub-adder (4) is considered

the final carry-out value of the whole approximate adder.

• The length of the sub-adders might be configurable at the

design time, depending on the application requirements.

4.2.3 Error Detection and Correction

The proposed circuit in Fig. 4.4 illustrates that for error detection

at each prediction circuit, one XOR gate is used, and the error

signal will be high if both the predicted and the real carry (in the

carry kill bit location) are not equal as presented in Eq. 4.3.

4.2 P R O P O S E D D E S I G N 97

Figure 4.4: The proposed error detection technique augmented with the
carry-in prediction circuit.

Error(i) =G(MSB(i−1)) ⊕Carry K ill Bit(i−1), (4.3)

This implies that error will signal high when there is a carry

propagation from lower order bits than the used MSBs for predic-

tion. This case will happen just once when the predicted carry-in is

equal to ’0’ and the real carry-out of the previous adder is equal to

’1’. Table 4.1 presents the inputs combinations and the probability

of error correction when there is a carry propagation.

Table 4.1: One-bit inputs probability of carry prediction and error detec-
tion and correction

A B
Predicted

Carry
Real

Carry
Error

SUM
Correction

0 0 0 0 NO NO

0 1 0 1 YES SUM + 1

1 0 0 0 NO NO

1 1 1 1 NO NO

To correct the detected erroneous approximate sum value, we

used the same procedure as in the proposed design in chapter 3.

4.2 P R O P O S E D D E S I G N 98

For error recovery process, an incrementor circuit is used to

compensate the missed carry-in value of ’1’ in the final output sum.

Thus, the bit width of each incrementor would have the same num-

ber of bits resulted from sub-adder. Further, the error correction

is implemented through multiple controlled stages during run-

time (i.e., each correction stage has an incrementor for correction),

which can be activated or turned off based on the required output

accuracy level.

Figure 4.5: Significance-driven structure of error correction stages.

The correction stages are illustrated in Fig 4.5 and have the

same structure of significance-driven principle in section 3.4 in

the previous effort of chapter 3. In such a structure, the most

significant (i.e., higher order) erroneous segment will be corrected

first. This is due to the fact that higher order bits have the largest

impact on the output result to the final sum when compared to the

bits of the lower order sub-adders. Hence, this significance-driven

structure of error correction would guarantee high convergence

to the exact result, yet, with a small delay and power overhead.

In this implementation, the least significant segmented part (sub-

adder) will be corrected at the final stage, and only in the worst

case of the full accuracy mode.

4.2 P R O P O S E D D E S I G N 99

This structure of arranging the correction stages is similar to

what exists in [8]. However, this work presents an extension of

the error detection and correction process. The extended version of

the proposed design is denoted by (Proposed_Accurate), in which

the carry-out of each correction stage will not be overlooked in

case its value was high. Conversely, the high carry-out value of

a correction stage has to be propagated in order to correct the

successive sub-adder output sum. As a result, this extension of

error detection would guarantee the full accuracy of outputs at the

final correction stage.

Based on Fig. 4.5, the following points can be noticed:

• The approximated adder gives the approximated SUM at

each stage.

• (S0) is always correct as it uses truncated (not predicted)

carry-in = ’0’.

• The correction stage (incrementor) will result in the accurate

sum part (coloured green).

Comparing the proposed error recovery process with other efforts

such as accuracy-configurable adder (ACA) [37] that is described

previously in section 2.8 of chapter 2, the proposed error detection

and correction mechanism introduces lower design overhead. For

instance, in the (32-bit) adder example in Fig. 4.6, it is obviously

shown that four segmented sub-adders have to make just three

error checks (since the first sub-adder is always correct), in con-

trast to six error checks have to take place for the same adder

bit length in ACA. Additionally, we use just one incrementor cir-

cuit to correct the resulted erroneous 8-bit sum at each sub-adder,

then, three incrementors are required for the whole correction

process. Further, the extended error correction mechanism of the

4.3 N U M E R I CA L E X A M P L E 100

(Proposed_Accurate) design version would guarantee full output ac-

curacy by checking whether the results of the successive correction

stages need a further correction or not.

4.3 N U M E R I CA L E X A M P L E

In this section, a (32-bit) binary numerical addition example is

presented. The detailed example shows the principal methodol-

ogy of adder division, approximate addition and error detection

techniques of the proposed design.

0 1 1 0 0 1 0 1 0

0 1 1 1 1 0 0 0 1

0 1 1 0 1 1 0 0 1

0 0 0 1 0 1 1 1 0

0 1 0 1 1 1 1 1 1

0 0 0 1 0 0 0 0 0

0 1 1 0 0 1 1 1 0

0 1 0 1 0 0 0 1 1

1 1 0 1 1 1 0 1 11 0 0 0 0 0 1 1 10 1 1 0 1 1 1 1 11 0 1 1 1 0 0 0 1

10 0

CorrectErrorCorrect

Inputs

SumError
check

Additional carry
kill bit location

Real carry

Predicted
carry-in

1100 1110 1011 1111 1101 1001 1100 1010

1010 0011 0010 0000 0010 1110 1111 0001

Figure 4.6: Proposed design numerical example of (32-bit) inputs addi-
tion, sub-adders carry-in prediction and error (carry propaga-
tion) detection.

The numerical example depicted in Fig. 4.6 presents the approx-

imate addition and the segmentation technique of the adder into

equal length (not overlapped) sub-adders. The new bit location

at each sub-adder has the addition result of inputs with values

of zero (i.e., A=’0’, B=’0’). As a result, the propagated carry of the

higher order bit of the sub-adder would be stopped in that location,

thus, would have the real carry-out value of the sub-adder. On

the other hand, an AND gate with two inputs is used for carry-in

4.4 D E S I G N T R A D E -O FF S 101

value prediction to each sub-adder except the first adder which

has a truncated carry-in value equals to zero ’0’. It can be noticed

that the inputs to each AND gate are the higher order (i.e., most

significant) input values of the previous sub-adder.

For carry-in value misprediction detection, one XOR gate is

used between every two sub-adders to check the inequality of the

predicted carry-in value to the current sub-adder and the real

carry-out of the previous sub-adder (located at the additional bit

location). If an error has been detected, the resulted erroneous

approximated sum would be corrected and incremented by one

using the incrementor block.

4.4 D E S I G N T R A D E -O FF S

To examine the contribution of the proposed design, our experi-

ments used Verilog to build (32-bit) different adder designs with

their different correction stages, and test benches were used to test

the functionality of each design with different accuracy modes. For

the part of the comparison, we used Modelsim for error analysis

simulations, which is based on Monte Carlo method that implies a

large number of random variable as input values to the proposed

approximate addition function. This test would provide the gen-

eral behaviour of the proposed approximate adder and the error

levels of each correction stage. Further, we exploited the Synopsys

design compiler UMC (Faraday 90nm) technology to synthesise

and evaluate the design parameters such as delay, power and area

values.

To evaluate the modification of hardware design metrics, the

proposed design is compared to the design effort of ACA [37]. The

proposed design has two versions, where the first version has been

4.4 D E S I G N T R A D E -O FF S 102

applied without considering the carry-out of correction stages, and

the second version considers the carry-out of each active correction

stage regarding the selected accuracy mode. For simplifying, the

design version considering the correction stage carry-out is denoted

as (Proposed_Accurate).

0

5

10

15

20

25

30

35

40

45

50

55

60

No_correction One_stage Two_stages Three_stages

P
o

w
er

 (
µ

W
)

ACA Proposed Design Proposed_Accurate

Figure 4.7: 32-Bit proposed design versions vs. ACA dynamic power (µW)
comparison.

0

0.4

0.8

1.2

1.6

2

2.4

2.8

3.2

3.6

4

4.4

No_correction One_stage Two_stages Three_stages

P
o

w
er

 (
µ

W
)

ACA Proposed Design Proposed_Accurate

Figure 4.8: 32-Bit proposed design versions vs. ACA leakage power (µW)
comparison.

From Figs. 4.7, 4.8 and 4.9, it can be noticed that the proposed

design behaves better than the accuracy configurable adder (ACA)

4.4 D E S I G N T R A D E -O FF S 103

in terms of design parameters such as dynamic and leakage power

and area. These enhancements are referred to not using any over-

lapped (redundant) parts of the addend inputs, which are used in

terms of carry speculation in other efforts. As a result, the num-

ber of the introduced sub-adders used for addition is decreased,

resulting in that the total design area and power consumption

are decreased as well. Further, the augmented lightweight error

detection circuit would not incur high overhead to the design.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

No_correction One_stage Two_stages Three_stages

A
re

a
 (

µ
m

2
)

ACA Proposed Design Proposed_Accurate

Figure 4.9: 32-Bit proposed design versions vs. ACA area (µm2) compari-
son.

For delay values in Fig. 4.10, the proposed design has larger

values with a limited range compared to the ACA design. This is

due to the use of the carry prediction technique with AND gates,

and the increased length of each sub-adder with more one-bit loca-

tion. For erroneous addition recovery, (8-bit) length incrementors

are used (instead of 4 bits length as in ACA), thus, needing more

execution time. However, the proposed design version (i.e. not

Proposed_Accurate), shows more stability regarding delay values

through all correction stages. This, in turn, presents the indepen-

dence characteristic of each sub-adder in which the critical path

delay is the same for all segmented blocks.

4.4 D E S I G N T R A D E -O FF S 104

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

No_correction One_stage Two_stages Three_stages

D
el

a
y

 (
n

s)

ACA Proposed Design Proposed_Accurate

Figure 4.10: 32-Bit proposed design versions vs. ACA delay (ns) compari-
son.

On the other hand, for the case of the Proposed_Accurate design

version (correction stages carry-out in concern), it reaches the full

accuracy at the highest correction mode. However, it continues

to behave better in terms of power consumption and area when

compared to ACA for all stages, and with a comparable speed to the

exact ripple carry adder (RCA).

Table 4.2: Average reduction ratio values of the proposed design com-
pared to ACA design for all correction stages.

Parameter Proposed design vs. ACA
Dynamic power 16%
Leakage power 17.2%

Area 18.6%
Delay -16%

Table 4.2 provides the average values of reduction ratios re-

sulted from the proposed design through approximate and all

correction stages. Obviously, due to the decreased design overhead

of using less number of sub-adders and logic gates for error detec-

tion, significant improvements are introduced in terms of positive

reduction values of dynamic power (16%), leakage power (17%),

4.5 E R R O R A N A LY S I S 105

and area (18%). On the other hand, although of the degradation of

the delay values in the proposed design, which are referred to the

addition of carry prediction logic gates, it still shows higher speed

when compared to exact adder like ripple carry adder (RCA)as will

be shown in section 4.7 of further comparison in this chapter.

4.5 E R R O R A N A LY S I S

Since approximate designs error characteristics drive a great at-

tention to previous efforts such as in [44, 52], this section presents

the second part of the proposed design evaluation by analysing

the expected error levels of its resulted outputs. The analysis in-

cludes the mathematical model and the approximate error metrics

simulations.

4.5.1 Error Probability Model

In the first part of this section, we attempted to analyse the proba-

bility of erroneous sum occurrence (i.e., the chance of carry mispre-

diction and unhandled carry propagation) through the sub-adders.

This analysis would lead to predicting the maximum error percent-

age (i.e., the error bound) of the proposed design results within the

total space of the outputs.

To analyse error occurrence in the proposed design, assume

that the final carry-out from the previous sub-adder is C1 equals

to ’1’, and the predicted carry-in to the current sub-adder is C2

equals to ’0’. This case would check carry misprediction and the

unhandled carry propagation from the previous sub-adder. As

shown in Table 4.3, all other cases would introduce no errors since

the carry can be predicted to value of ’1’ by ANDing most significant

4.5 E R R O R A N A LY S I S 106

Table 4.3: Error probability of carry value regarding input combinations
assuming C1= ’1’ and C2= ’0’.

BMSB−1 AMSB−1 BMSB AMSB Carry prediction error
0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
1 1 0 0 0
0 0 1 0 0
1 0 1 0 0,1
0 1 1 0 0,1
1 1 1 0 1
0 0 0 1 0
1 0 0 1 0,1
0 1 0 1 0,1
1 1 0 1 1
0 0 1 1 0
1 0 1 1 0
0 1 1 1 0
1 1 1 1 0

inputs having values of ones (i.e., C1 = C2 = ’1’), or it might be

predicted to value of ’0’ in the case of ANDing inputs having values

of zeros (i.e., C1 = C2 = ’0’).

The coloured rows in Table 4.3 show the cases of carry propa-

gation to the higher order (i.e., most significant) bits input in the

previous sub-adder which are used for carry prediction (A[7], B[7]).

These inputs combinations would result in wrong carry prediction,

thus, an error (i.e., mismatch) between the two carry values C1

and C2 might occur.

The analysis also needs to consider the carry generate or propa-

gate from the lower order bit location from the used bits for carry

prediction. This bit location might either generate carry or propa-

gate a carry signal from the least significant bits in the sub-adder.

4.5 E R R O R A N A LY S I S 107

The maximum error bound of the proposed design can be calcu-

lated as the addition of the probability of not correctly predicting

the carry-in value to the current sub-adder, and the probability of

error of the carry-out (i.e., carry propagation) from the previous

sub-adder.

The maximum error bound can be analysed by the following

equation (Eq. 4.4).

|E i| = Pi × Wi, (4.4)

where (i) is the bit index number in the sub-adder, E_i is the

expected magnitude of error due to bit (i), P_i is the probability of

error of bit (i), and W_i is the weight of bit (i).

The probability of correct result at each bit location would be

equal to 1
2i ,then, the probability of error would be equal to 1− 1

2i .

Pi =
(
1− 1

2i

)
(4.5)

The bit weight (i) within the sub-adder is calculated by the follow-

ing equation.

Wi = 1
2((MSB−i)+1) (4.6)

|E i| =
(

1− 1
2n

)
× 1

2((MSB−i)+1) (4.7)

4.5 E R R O R A N A LY S I S 108

where n is the bit-width or the index of the MSB bit in the previous

sub-adder. The carry-out error probability of the previous sub-

adder is as follows:

P (C1)= |E7| =
(

1− 1
27

)
× 1

21 = 0.496, (4.8)

The probability of not correct carry-in value prediction equals to

the probability of unhandled carry generate and carry propagate

from the previous least significant bit.

P (C2)=
(

2
16

)
+

(1
2

)4

16

= 0.125+0.004= 0.129, (4.9)

P (Error)= P (C1 +C2)= 0.496+0.129= 0.625 (4.10)

This result shows that at maximum, 62.5% of the resulted ap-

proximated outputs would have erroneous sum values (i.e., not

equal to the exact sum value).

In our experiments of error levels, we have used the relative

error distance (RED) metric which measures the magnitude differ-

ence value between the approximated and exact output result.

The following section of RED results simulation would show that

the correct results of the proposed addition approximately equal to

41% of the outputs space. Hence, this might confirm the derived

error bound of the proposed approximate adder design.

4.5 E R R O R A N A LY S I S 109

4.5.2 Error Metrics Evaluation

In this part, we explore the behaviour of the proposed design re-

garding three error metrics which are the relative error distance

(RED), the mean relative error distance (MRED) and the cumulative

probability distribution (CPD) of error. We targeted these error met-

rics as they are considered an important evaluation of approximate

design as mentioned in section 2.5 of approximate error metrics in

chapter 2.

Relative error distance (RED) distribution analysis has been

done for each design over different error distance values range.

RED simply measures how far the significance of resulted output’s

error when compared to the exact output of the conventional adder.

RED analysis has been made for both proposed design versions

(Proposed and Proposed_Accurate) and the ACA adder design when

compared to the correct outputs of exact adder. However, despite

the simplicity of this measurement, it would show the effect (i.e.,

error magnitude) of the proposed design stages, regarding the final

accuracy of the outputs.

The following equation shows the arithmetic expression of the

RED value.

RED = |Exact output − Approximated output|
Exact output

, (4.11)

Fig. 4.11 presents the case of designs (proposed design version

versus ACA design), yet, without any correction stages. From the

resulted analysis, it can be shown that the proposed design has

an acceptable range of outputs with no errors (more than 40%

of the tested space), and approximately 55% with a very limited

4.5 E R R O R A N A LY S I S 110

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

P
ro

b
a

b
il

it
y

 o
f

E
rr

o
r

Relative Error Distance

ACA Proposed Design

Figure 4.11: 32-Bit proposed design vs. ACA relative error distance (RED)
distribution analysis (No correction stages).

magnitude of error (50% with 99% and 5% with 98% of accuracy).

These levels of erroneous outputs can be referred to the number of

misprediction of the propagated carry between the adjacent sub-

adders during the addition process. Regarding the last 5% of the

tested inputs space, the proposed design behaves the same as ACA,

which lies on different RED values. However, the proposed design

presents higher percentages of outputs with a smaller magnitude

of error values.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

P
ro

b
a
b

il
it

y
 o

f
E

rr
o
r

Relative Error Distance

ACA_one_stage Proposed Design_one_stage Proposed_Accurate_one_stage

Figure 4.12: 32-Bit proposed design vs. ACA relative error distance (RED)
distribution analysis (One correction stage).

4.5 E R R O R A N A LY S I S 111

Fig. 4.12 presents the error analysis of designs with one correc-

tion stage. It can be noticed that our design versions (Proposed

and Proposed_Accurate) have increased the ratio of the correct

results, and further, more stability in terms of RED values which

are started to be limited strictly between (RED = 0 ,57%) and (RED

= 0.01, 43%) values, in contrast to ACA which still shows different

values of RED. This can be explained because the correction process

uses the significance-driven principle that starts correcting the

most significant (i.e., higher order) bits of the adder due to their

significant impact on the final sum result. As a result, very small

magnitudes of error are expected.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

P
ro

b
a
b

il
it

y
 o

f
E

rr
o
r

Relative Error Distance

ACA_Two_stages Proposed Design_Two_stages Propossed_Accurate_Two_stages

Figure 4.13: 32-Bit proposed design vs. ACA relative error distance (RED)
distribution analysis (Two correction stage).

For the case of two correction stages in Fig. 4.13, the proposed

design two versions and ACA have improved the ratio of the fully

correct output values; however, our design versions still generally

show more acceptable results as they continue to be limited to 100%

and 99% of accuracy, in contrast to ACA that still owns scattered

values of RED.

Finally, at Fig. 4.14, the case of three (full) active correction

stages (worst case of accuracy level) is presented. It is obviously

4.5 E R R O R A N A LY S I S 112

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

P
ro

b
a

b
il

it
y

 o
f

E
rr

o
r

Relative Error Distance

ACA_Three_stages Proposed Design_Three_stages Proposed_Accurate_Three_stages

- Proposed design Higher levels of accuracy vs ACA.

- Proposed_Accurate version shows 100% accurate

Figure 4.14: 32-Bit proposed design vs. ACA relative error distance (RED)
distribution analysis (Three correction stage).

shown that the behaviour of the proposed design versions shows

higher levels of accurate results compared to ACA design, and fur-

ther, guarantees of 100% correct results in the Proposed_Accurate

version (i.e., when carry-out values of correction stages are in

concern).

These results of accuracy levels of the proposed design versions

in the previous figures are referred to the effective carry-in values

prediction and the error correction structure. It can be clearly no-

ticed that the significance-driven implementation of the correction

stages would guarantee the fast convergence to the exact addition

results and furthermore, the small magnitude of the output error.

For the case of Proposed_Accurate design version, all the carry

propagation signals during error detection and correction would

be handled through all the correction stage. As a result, the full

accuracy at the last correction stage would be guaranteed.

Fig. 4.15 presents a comparison of the mean relative error dis-

tance (MRED) values, which would show the mean value of errors

within the test space or input vectors at each correction stage.

4.5 E R R O R A N A LY S I S 113

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

No_Correction One_Correction_Stage Two_Correction_Stages Three_Correction_Stages

D
is

tr
ib

u
ti

o
n

ACA Proposed

Figure 4.15: The 32-Bit adder designs MRED values comparison through
different correction stages.

It can be noticed that at the approximate addition stage with no

error detection and correction, the proposed design shows a limited

higher level regarding the ACA design. This is due to the fact that

the proposed design does not have overlapped parts within each

sub-adder used for intense carry speculation, thus, introduces

lower accuracy. However, by using the first and second correction

stages, the proposed design MRED values are drastically decreased

showing better accuracy and consistency. This can be referred to

the significance-driven structure of the proposed correction stages,

which guarantee the fast convergence to the exact sum values and

limit the final outputs to low magnitude values of errors early.

For the final third correction stage, the proposed design provides

MRED value equals to zero, in contrast to the ACA design that still

shows a small mean error value. Hence, this would confirm that the

proposed design presents a full handling of errors with optimum

final output accuracy.

Fig. 4.16 presents the cumulative probability distribution (CPD)

for relative error distance (RED) levels through approximate addi-

tion and error correction stages. This analysis describes the change

4.5 E R R O R A N A LY S I S 114

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
u

m
u

la
ti

v
e

P
ro

b
a

b
il

it
y

RED range

Stage(0) Stage(1)

Stage(2) Stage(3)

Figure 4.16: The cumulative probability distribution (CPD) for the error
through different correction stages.

of percentages of the output space regarding the RED values. Addi-

tionally, it shows the speed of the resulted outputs become closer

to the exact addition results. In other words, it would explore how

each correction stage might affect the total output accuracy.

From Fig. 4.16, it can be noticed that the cumulative value at

approximate addition stage without any error correction shows

a quick move to the RED range (0.01 ≤ RED < 0.02). This

means that approximately 90% of the output space has RED val-

ues of(0 ≤ RED < 0.02). The remaining 10% percentage of

the output space would be covered very quickly within the RED

range(0.03 ≤ RED < 0.04) to reach ’1’ (i.e., 100%) of the output

space.

For the first and second correction stages, both of them show

better and approximately same cumulative behaviour of the sharp

jump the RED range (0.01 ≤ RED < 0.02). However, they be-

come limited to this RED range and entirely cover all the output

space (i.e., reach 100% of the outputs number). The only difference

between these correction stages is the percentage of the resulted

exact values. It is clearly shown that as the number of active correc-

4.6 L A R G E B I T W I D T H A D D E R S E VA L UAT I O N 115

tion stages increased, the portion of the correct results (i.e., RED =

0) is increased, then, speeding up the step to cover all the resulted

output space. Remarkably, the last correction stage presents the

better behaviour of accuracy with approximately 100% of exact

results of the whole output space.

4.6 L A R G E B I T W I D T H A D D E R S E VA L UAT I O N

For design scalability checking, a further hardware evaluation has

been implemented for different adder designs (ACA and Proposed

versions) with larger bit widths (64-bits,128-bits and 256-bits).

The values from each design with full correction stage architecture

(i.e. using three correction stages) are presented in the following

figures.

0

50

100

150

200

250

300

350

400

450

500

ACA Proposed Design Proposed_Accurate

P
o

w
er

 (
µ

W
)

64-Bits 128-Bits 256-Bits

Figure 4.17: ACA vs. proposed large adder designs dynamic power(µW)
comparison.

It can be noticed that the proposed design versions (Proposed

and Proposed_Accurate) keep the reduction ratio values in terms

of dynamic power in Fig. 4.17 , leakage power in Fig. 4.18, and

the area in Fig. 4.19. Furthermore, these values start to increase

positively as the bit width of the adder becomes larger. This is

4.6 L A R G E B I T W I D T H A D D E R S E VA L UAT I O N 116

due to the increased number of the overlapped sub-adders in the

ACA design, thus, increasing the total area and power consump-

tion. However, our proposed design continues to limit the resulted

number of segmented sub-adders, and hence, shows better design

parameters overhead.

0

5

10

15

20

25

30

35

40

ACA Proposed Design Proposed_Accurate

P
o

w
er

 (
µ

W
)

64-Bits 128-Bits 256-Bits

Figure 4.18: ACA vs. proposed large adder designs leakage power (µW)
comparison.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

ACA Proposed Design Proposed_Accurate

A
re

a
 (

µ
m

2
)

64-Bits 128-Bits 256-Bits

Figure 4.19: ACA vs. proposed large adder designs area (µm2) compari-
son.

Fig. 4.20 apparently shows that the delay degradation of the

proposed design version compared to ACA design becomes smaller

as larger bit-width adders are in use. This might be referred to the

4.6 L A R G E B I T W I D T H A D D E R S E VA L UAT I O N 117

difference of the resulted design area between the proposed design

and the ACA design. Thus, the negative ratio of the delay values

would be slightly decreased.

0

1

2

3

4

5

6

7

ACA Proposed Design Proposed_Accurate

D
el

a
y

 (
n

s)

64-Bits 128-Bits 256-Bits

Figure 4.20: ACA vs. proposed large adder designs delay (ns) comparison.

Remarkably, the results in Fig. 4.21 illustrate that the percent-

age of the large adder designs reduction values which can clearly

confirm the scalability advantage of the proposed design versions.

Compared to the ACA design, the positive reduction values of the

proposed design are referred to the lower overhead of design pa-

rameters such as area, dynamic and leakage power as explored in

the previous hardware evaluation figures.

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

64-Bits 128-Bits 256-Bits

P
er

ce
n

ta
g
e

(%
)

Delay Power (Dynamic) Power (Leakage) Area

Figure 4.21: ACA vs. proposed large adder designs reduction ratio values.

4.7 F U R T H E R H A R D WA R E C O M PA R I S O N 118

Furthermore, although the exist of negative reduction ratios

of delay values, it can be noticed that they become limited while

increasing the bit width of the adder. Hence, it can be concluded

that the proposed design versions would be adaptive for use in

very large bit width adders with acceptable design overhead.

4.7 F U R T H E R H A R D WA R E C O M PA R I S O N

Table 4.4 shows an extended comparison of the proposed design

two versions (Proposed and Proposed_Accurate) regarding previ-

ous efforts. The comparison values confirm the privileges of the

proposed design in terms of all design parameters such as delay,

power and area. For the delay values, the proposed design versions

show a higher speed than Accurus [8] design and has an acceptable

difference when compared to ACA [37] design versions.

Moreover, the proposed design versions show the best behaviour

regarding the power (dynamic and leakage) and area when com-

pared to all designs in the table except the accurate ripple carry

adder (RCA) design. These results of the proposed design versions

have been confirmed by the delay-power-product PDP values, which

show smaller numbers when compared to ACA and Accurus designs.

However, it is interesting to notice that the proposed design version

without a correction mode might be considered a very high-speed

version of RCA, but with an acceptable output quality and small

design overhead.

4.8 I M A G E P R O C E S S I N G A P P L I CAT I O N

To evaluate the proposed design in a real-world implementation,

we exploit a key block in the image processing application known

4.8 I M A G E P R O C E S S I N G A P P L I CAT I O N 119

Ta
bl

e
4.

4:
H

ar
dw

ar
e

m
et

ri
cs

co
m

pa
ri

so
n

of
th

e
pr

op
os

ed
ad

de
r

de
si

gn
s

an
d

se
ve

ra
lp

re
vi

ou
s

ef
fo

rt
s

D
es

ig
n

M
ax

C
or

re
ct

io
n

St
ag

es

D
el

ay
(n

s)

D
yn

am
ic

Po
w

er
(µ

W
)

P
D

P
L

ea
ka

ge
Po

w
er

(µ
W

)

A
re

a
(µ

m
2)

A
C

A
*

[3
7]

N
o

co
rr

ec
ti

on
0.

67
22

.2
43

6
14

.9
2.

40
38

10
01

.9
52

A
C

A
[3

7]
T

hr
ee

1
56

.1
61

4
56

.1
6

4.
12

78
18

55
.7

28

A
cc

ur
us

[8
]

T
hr

ee
1.

13
56

.9
16

64
.3

1
4.

17
96

18
95

.7
12

R
C

A
A

cc
ur

at
e

2.
22

18
.1

27
3

40
.2

4
2.

02
63

70
2.

81
6

P
ro

po
se

d*
N

o
co

rr
ec

ti
on

0.
7

18
.9

54
2

13
.2

6
2.

02
21

79
3.

40
8

P
ro

po
se

d
T

hr
ee

1.
15

46
.3

69
53

.3
2

3.
33

48
15

19
.3

92

P
ro

po
se

d_
A

cc
ur

at
e

T
hr

ee
2.

04
47

.5
74

7
97

.0
5

3.
38

66
15

69
.5

68

4.8 I M A G E P R O C E S S I N G A P P L I CAT I O N 120

as Gaussian blur image filter, which is already defined in sec-

tion 2.10.4.

For implementation analysis, a general Matlab test bench was

proposed to apply the Gaussian blur image filter test. The test

bench checks the actual behaviour of (20-bits) Proposed_Accurate

adder design version during multiple correction stages. The peak

signal to noise ratio (PSNR) is used to measure the quality of the

output images after applying the Gaussian blur filter and compar-

ing the resulted image quality to the optimum blurred image of

the conventional circuit of the Gaussian blur filter.

Figure 4.22: Gaussian blur image filter test.

Based on the resulted images of approximate addition and dif-

ferent correction stages, the PSNR results in Fig. 4.22 confirm the

advantage of this design version. In detail, for the approximate

addition stage (without any correction), an acceptable value of

PSNR is provided with (27.2. dB). Further, for the correction stages,

the results show high PSNR magnitude values, especially when

starting the error recovery at the first correction stage with more

than (53 dB). Remarkably, while using two correction stages, the re-

sulted PSNR value has presented a well-noticed jump and reached

4.9 S U M M A R Y 121

(83.6 dB). For the case when the implemented design operates at

the full accurate mode (i.e., three correction stages), it guarantees

the same accuracy as the original picture which is implemented

with exact computations.

The appearance of low PSNR value of the proposed design with-

out correction stages might be referred to the low level of exact

outputs as described previously in Fig. 4.5. This level of erroneous

addition might impact the Gaussian kernels calculation in the

used image filter, as a result, an image distortion can be expected.

However, this low level of PSNR value can be considered an attrac-

tive choice for adder design in some application like the biomedical

applications, which are generally interested in high speed, very

low power and acceptable outputs quality [96, 2, 1].

4.9 S U M M A R Y

In this chapter, a new segmentation technique has been proposed

for designing configurable-accuracy approximate adder with low

power and area requirements. The concept of carry propagation

kill signal was used to introduce a new bit location, which was

exploited for both dividing conventional adder into a number of

sub-blocks and holding the real carry of each sub-adder.

This new architecture of dividing sub-adders was augmented

with a lightweight carry-in prediction technique by using the re-

sult of AND-ing the MSB bits of the previous sub-adder. Further,

simple error (carry propagation) detection technique was proposed

by using XOR gate between successive sub-adders to check the

equality value of the predicted carry-in and the real carry at the

new bit locations. For error correction, a significance-driven multi-

stage structure was used, while considering the carry-out of each

4.9 S U M M A R Y 122

active stage. Thus, this would guarantee full accuracy at the final

correction stage.

While evaluating the proposed design in this chapter, the re-

sults have presented average reduction ratios of (16%), (17.2%)

and (18.6%) for dynamic power, leakage power and area respec-

tively. On the other hand, for error analysis, the results showed

fast convergence to exact results at premier correction stages and

increased stability of output accuracy levels between (99% and

100%) through all correction stages.

Further, the proposed design feasibility was confirmed by a real-

time implementation in an image processing application, which

resulted in high PSNR values of (27, 53 and 83 dB) for the approxi-

mate addition and the two premier correction stages respectively.

Moreover, the optimum PSNR quality was provided as an exact

filter circuit when the proposed design was working with full cor-

rection stages.

The following chapter continues to explore more chances to miti-

gate the design overhead of the configurable accuracy approximate

adder design. For this target, an approximate adder design is pro-

posed with simple logic gates in the approximate sum stage. The

operation of the used logic gates would compensate the conven-

tional arithmetic addition. Further, the proposed design will not

have any special augmented error detection and correction (EDC)

circuit. Conversely, the error recovery technique would use multi-

stages of short bit-width exact adders to overcome and control the

general quality of the outputs. The main advantage of the proposed

design in the following chapter is that it would approximately elim-

inate the design overhead and the frequent processing of the error

recovery circuit, yet, it would show the optimum output quality at

its final recovery stage similar to an exact adder.

5

G E N E R A L Q UA L I T Y- C O N T R O L A P P R O X I M AT E

A D D E R W I T H L O W D E S I G N OV E R H E A D

5.1 I N T R O D U C T I O N

Based on the general aim of this work, this chapter continues to

explore more chances to mitigate or even eliminate the augmented

error recovery circuit overhead of the approximated adder design,

yet, while preserving acceptable levels of the output accuracy. In

the previous two chapters (chapter 3 and chapter 4), design im-

provements have been made regarding the error recovery process

and sub-adders segmentation of the approximate (speculative)

adders. However, in this effort, we propose a low-power approxi-

mate adder that combines the approximate logic addition design

with general output quality controlling during run-time.

In the state of the art literature, approximate adder designs

such as lower-part-OR adder (LOA) [50] and error tolerant adder

(ETA)design series [106, 105, 104, 107] reduce the maximum carry

propagation by dividing the total number of bits of adder into

accurate and inaccurate parts. In such architecture, the exact ad-

dition is used for the precise part and the approximated addition

methods such as the simple logic addition is implemented in the

inaccurate part. However, several challenges have been observed

regarding these approximated designs, such as, the high output

error rates without proposing an error recovery method to keep

an accepted level of accuracy. On the other hand, approximate

123

5.1 I N T R O D U C T I O N 124

(speculative) adder designs such as VLSA [91] and ACA [37] used an

error recovery circuit to avoid severe outputs quality degradation.

However, these efforts still have the common challenge of addi-

tional design overhead in terms of error recovery delay, power, and

area, and moreover, they have not reached the full accuracy at the

final correction stages.

The proposed design in this chapter presents three contributions

regarding a hybrid adder design of approximated logic addition and

general output accuracy controlling. The proposed contributions

introduce an energy-efficient approximate adder which replaces

conventional arithmetic addition by a simple logic operations. Addi-

tionally, the proposed design is augmented with a general accuracy

recovery stages that exploit a short length exact adder at each cor-

rection stage (instead of incrementor circuits in the previous two

chapters). The correction stages maintain the significance-driven

structure to ensure general quality controlling and early correction

of higher-magnitude errors to achieve fast convergence to the exact

addition results.

Compared to other approximate adders, the proposed design

has drastically reduced the overhead of approximate addition and

error recovery process. In this work, a (32-bit) approximate adder

is designed in Verilog and synthesized using the Synopsys design

compiler. Our post-synthesis results showed significant average

reductions of 70% and 62% for dynamic and leakage power respec-

tively, and 61% in the silicon area for the design with full correction

stages. Delay values show positive reduction ratios at the approxi-

mated addition stage and the first correction stage. However, an

acceptable degradation at the remaining stages happened because

the proposed adder starts to work as a conventional exact adder.

The implementation test of the image processing application con-

5.2 P R O P O S E D D E S I G N 125

firms our results with high PSNR values of (50.6 dB and 81.2 dB)

for the second and third correction stages, respectively, and the

optimum PSNR value while activating all correction stages.

5.2 P R O P O S E D D E S I G N

The proposed design is depicted in Fig.5.1, uses simple logic (OR)

gates to approximate the full arithmetic addition operation with

high speed and very low design overhead. Previous efforts such

as the lower-part-OR (LOA) approximate adder design [50] used

the simple logic OR gates to result directly the sum bits in the

lower ’carry free’ inaccurate part of the adder. However, in this

work, the proposed design uses logic OR gate to compensate the

full conventional arithmetic addition operation.

Figure 5.1: The conventional full adder circuit in (a.) versus the proposed
approximate OR gates addition operation in (b.).

Fig. 5.1 illustrates the proposed approximated addition, where

the logic OR gates are used to compensate the exact full adder

arithmetic operations. The following points summarize the pro-

posed design’s main parts.

• We OR the corresponding bits of the two inputs,(i.e., Si = Ai

| Bi), to get the approximated Sum result.

5.3 Q UA L I T Y C O N T R O L C I R C U I T 126

• The proposed approximated adder can be usefully used in

a low accuracy level and extremely low power applications.

Moreover, it has a high speed and a very small area (limited

to the size of the used OR gates).

5.3 Q UA L I T Y C O N T R O L C I R C U I T

The proposed accuracy recovery circuit is shown in Fig. 5.2, in

which the correction process is implied by an accurate adder of

short bits length. However, the bit width of correction adders can be

configurable and based on the application design requirements (i.e.,

the bit width of adders might be different; yet, their total bit width

should be equal to the original bits’ number of the approximated

adder).

Figure 5.2: The proposed accuracy recovery circuit.

In the proposed circuit in Fig. 5.2, each short length exact adder

used for correction has its inputs from the addend inputs, which

are the same corresponding inputs to the approximated adder. Fur-

ther, the carry-in to each correction adder should be multiplexed

between two choices, the carry-out from the previous correction

5.4 E R R O R C O R R E C T I O N S TA G E S 127

adder (stage) if the two successive stages are active in parallel, or

a truncated carry-in value equals to ’0’. The multiplexed carry-in

value depends on the selected accuracy mode, which specifies the

number of the active correction stages.

5.4 E R R O R C O R R E C T I O N S TA G E S

The proposed significance-driven structure of the accuracy recov-

ery circuit is depicted in Fig.5.3. The proposed structure would

guarantee that the results of the most significant approximated

sum bits are first corrected. As a result, the correction of high mag-

nitude errors would take place at the premier correction stages,

and then, achieve a fast convergence to the exact sum value.

Figure 5.3: Significance-driven error correction stages (32-bit adder ex-
ample).

This significance-driven structure is similar to what we have

used for error recovery stages of the proposed designs in the pre-

vious chapters 3 and 4. However, they have used incrementors

as correction circuits to correct the erroneous sum values with

more delay, power and area overheads. Conversely, the proposed

design in this chapter does not imply any error detection process

5.5 N U M E R I CA L E X A M P L E 128

and uses short length exact adders to overcome the general quality

degrading. Thus, it would incur a limited design overhead, which

approximately equals to a conventional adder.

Furthermore, the proposed design would follow the procedure

of detecting the carry-out value of the active correction stages,

which has been used in the Proposed_Accurate design version in

the previous chapters 3 and 4, Thus, guaranteeing full output

accuracy at the final correction stage.

Based on Fig. 5.3, the main points of the multi correction stages

can be summarized as follows.

• Stage 0 has the approximated sum result (without any cor-

rection).

• The correction stage (short-length exact adder) will result in

the accurate sum part (coloured green).

• S0 will be corrected at the final correction stage.

5.5 N U M E R I CA L E X A M P L E

In this section, a (32-bit) numerical addition example is presented.

The detailed example shows the main methodology of adder divi-

sion, approximate addition and accuracy recovery techniques of

the proposed design.

From Fig. 5.4, the ’Appx Sum’ stage presents 32-bit inputs ap-

proximate addition using one logic OR gate at each bit location. At

this first stage, the brown coloured bit locations have erroneous

sum values, when compared to the exact result. Stage 1 is the

first correction or quality controlling stage. In this stage, the exact

adder with 8-bits width starts to correct the eight higher order (i.e.,

most significant) bits of the result of the previous approximated

5.5 N U M E R I CA L E X A M P L E 129

Figure 5.4: Proposed design numerical example of (32-bit) inputs addi-
tion using OR logic gates and multi-stage correction by using
(8-bit) exact adder at each stage.

stage ’Appx Sum’. The yellow coloured bit locations in this stage

present the correct sum values when compared to the exact result.

Stage 2 continues to correct the successive eight higher order

(i.e., most significant) bits of the result of the approximated stage

’Appx Sum’. As a result, the number of bits with exact values is

increased. However, the green coloured bit locations have erro-

neous values due to the truncated carry-in zero ’0’ value to stage

2. This might be referred to not handling the carry propagation

with a value of ’1’ at this stage. Stage number 3 presents the same

behaviour as the previous stages with exact sum results and a

limited number of erroneous bits.

Finally, stage 4 presents the case when the proposed design

starts to work as a 32-bits exact adder with full accurate sum

result. At this final stage, all the approximate addition results

from ’Appx Sum’ are neglected. Thus, the proposed adder would

provide the optimum quality of the final outputs.

5.6 D E S I G N T R A D E -O FF S 130

5.6 D E S I G N T R A D E -O FF S

To demonstrate the proposed approach, we implemented the design

in Verilog to apply (32-bit) adder design with different correction

stages. For the correction circuit of the proposed design, we used (8-

bit) ripple carry adder (RCA) at each correction stage. These codes

were synthesized and implemented using two different off-the-

shelf tools. Firstly, Modelsim was used for compiling the Verilog

codes and running the associated test benches. Secondly, Synopsys

design compiler was utilized for synthesizing all versions of the

proposed adder when mapping the circuits to the UMC (Faraday

90nm) technology and evaluating for power, delay and area. Monte

Carlo simulation was used for error analysis.

We compare our proposed design against the design effort of

accuracy-configurable adder (ACA) [37] in terms of hardware design

parameters such as power, area and delay.

0

5

10

15

20

25

30

35

40

45

50

55

60

No_correction One_stage Two_stages Three_stages Four_stages

P
o
w

er
 (

µ
W

)

ACA Proposed Design

Figure 5.5: 32-Bit proposed design versions vs. ACA dynamic power (µW)
comparison.

Based on Figs. 5.5, 5.6 and 5.7 , it can be observed that our

proposed design behaves better than the (ACA) design in terms

of power (dynamic and leakage), and area. The proposed design

5.6 D E S I G N T R A D E -O FF S 131

incurs a smaller area overhead due to using OR logic gates number

equals to the number of one addend input vector, in addition to

limiting the correction circuit overhead by avoiding frequent error

detection checks and error correction processes. Conversely, it

concerns about general output quality controlling during run-time.

As a result, the general design incurs a smaller area and lower

levels of power consumption.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

No_correction One_stage Two_stages Three_stages Four_stages

P
o
w

er
 (

µ
W

)

ACA Proposed Design

Figure 5.6: 32-Bit proposed design versions vs. ACA leakage power (µW)
comparison.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

No_correction One_stage Two_stages Three_stages Four_stages

A
re

a
 (

µ
m

2
)

ACA Proposed Design

Figure 5.7: 32-Bit proposed design versions vs. ACA area (µm2) compari-
son.

5.6 D E S I G N T R A D E -O FF S 132

0

0.3

0.6

0.9

1.2

1.5

1.8

2.1

2.4

No_correction One_stage Two_stages Three_stages Four_stages

D
el

a
y
 (

n
s)

ACA Proposed Design

Figure 5.8: 32-Bit proposed design versions vs. ACA delay (ns) compari-
son.

For the delay values in Fig. 5.8, the proposed design shows

higher speed values for approximated addition with no correction

overhead and for the addition with one correction stage when

compared to the ACA design. However, for the remaining correction

stages, the delay presents higher values as the proposed design

starts to work as an exact conventional adder.

To analyse the general design enhancement against the ACA de-

sign, the reduction ratios of design parameters of the proposed de-

sign through approximated addition and all four correction stages

are presented in Fig. 5.9. The average reduction values of the pro-

posed design stages result in 70.3% for dynamic power, 62% for

leakage power, 61.3% for area and -25% for the delay. In Fig. 5.9, all

the positive results are referred to using the simple limited count

of logic gates instead of conventional full adders for addition, and

further, not using any augmented error detection and correction

EDC circuit to handle the erroneous outputs. Instead, the proposed

design uses a short bit width exact adder in each correction stage

in order to control the general output quality levels. This in turn

5.7 E R R O R A N A LY S I S 133

would explain the results of positive and negative values of delay

reduction ratios analysis through the design stages.

-1.5

-1

-0.5

0

0.5

1

1.5
Delay Dynamic Power Leakage Power Area

P
er

ce
n

ta
g
e

(%
)

No_correction One_stage Two_stages Three_stages Four_stages

Figure 5.9: 32-Bit proposed design vs. ACA reduction ratio values.

For the positive reduction delay values in the approximated

addition stage and the first correction stage, it can be explained

that the delay would equal to the processing time of a simple logic

gate and a short bit width exact adder. On the other hand, for

the remaining correction stages (i.e., second, third and the fourth

final stage), they show negative delay reduction ratios since the

proposed adder starts gradually to work as a conventional adder

with its conventional addition process time. However, the proposed

design with its full recovery stages still shows lower values of

design parameters such as power and area when compared to the

approximated design of ACA.

5.7 E R R O R A N A LY S I S

In this section, we present the second part of the proposed design

evaluation by analysing the expected error levels of its resulted

outputs and several detailed approximate error metrics.

5.7 E R R O R A N A LY S I S 134

5.7.1 Error Probability Analysis

In the first part of this section, the probability of the maximum

error percentage (i.e., the error bound) of the proposed design

results is examined within the total space of the outputs. The

analysis would mainly explore the behaviour of error distribution

while using the logic OR gates for addition in both small and large

bit-width adders instead of the conventional addition process by

using exact full adders’ blocks.

Figure 5.10: Monte Carlo analysis of logic OR addition implementation
in(a) 32-bits inputs, and (b) 8-bits inputs.

To analyse the sum results’ error distribution, we used Monte

Carlo to check the relative error distance (RED) distribution of the

addition operation results. Monte Carlo method applies random

variables as inputs to the targeted function to check the general

behaviour of the resulted outputs. In our experiments, the sim-

ulations use repetitions of random variables within the range of

examined adders’ bit-widths. Fig. 5.10 presents the RED distribu-

tions of the addition results of two 32-bits numbers in (a.), and for

the addition of two 8-bits numbers in (b.).

5.7 E R R O R A N A LY S I S 135

The results show two main points; the first one is that error

rate (i.e., RED>0) of the resulted outputs is increased as the bit-

width of the adder is getting larger. The second point is that the

maximum RED value or the error bound is located at 50%, with

percentage of 20% for both (a.) and (b.) tests. This result means

that while using OR gates for addition, 20% of the resulted sum

values would have the half value of the exact addition results for

the same inputs. However, it can be noticed that although the

error rate is increased for the large bit-width addition in (a.), the

percentage of the resulted outputs which has a limited RED value

of 10% is increased to approximately 35% of the total output space.

The following section has the RED distribution analysis of the

proposed approximate (32-bits) adder with different stages of out-

put quality controlling. The experiments results would confirm the

results of Monte Carlo simulations with a maximum RED value

of 50% and the majority of outputs has a small RED value of 10%

compared to the exact result.

5.7.2 Error Metrics Evaluation

In this part, we explore the behaviour of the proposed design re-

garding three error metrics which are relative error distance (RED),

mean relative error distance (MRED) and cumulative probability

distribution (CPD) of error.

Relative error distance (RED) distribution analysis has been done

for each design over different error distance values range. RED

simply measures how far the significance of resulted output error

when compared to the exact output of the conventional adder. RED

distribution analysis has been made for both proposed design and

the ACA adder design [37] when compared to the correct outputs

5.7 E R R O R A N A LY S I S 136

of the exact adder. This test would show the effect of the proposed

design stages regarding the final quality of the outputs.

The following equation shows the arithmetic expression of the

RED value.

RED = |Exact output − Approximated output|
Exact output

, (5.1)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.2 0.3 0.4 0.5

P
ro

b
a

b
il

it
y

 o
f

E
rr

o
r

Relative Error Distance

ACA Proposed Design

Figure 5.11: 32-Bit proposed design vs. ACA relative error distance (RED)
distribution analysis (No correction stages).

Fig. 5.11 presents the case of designs (Proposed and ACA) without

any correction stages. From the results, it can be shown that the

proposed design has a high RED rate (20% of the test space has

a maximum error of 50% far away from the exact result). This is

due to the fact of compensating the full conventional arithmetic

bit addition operation with just one logic gate. However, for the

low accuracy level, this can be considered an acceptable error rate

especially when compared to the large improvements in the design

parameters like delay, power and area.

On the other hand, at one correction stage in Fig. 5.12, it can be

noticed that the proposed design made a remarkable improvement

5.7 E R R O R A N A LY S I S 137

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

P
ro

b
a

b
il

it
y

 o
f

E
rr

o
r

Relative Error Distance

ACA_One_stage Proposed Design_One_stage

Figure 5.12: 32-Bit proposed design vs. ACA relative error distance (RED)
distribution analysis (One correction stage).

in terms of RED values, in which 99% of the test space presents

(0.01) RED value, implying that the output result is far away from

the exact result by just 1%.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

P
ro

b
a

b
il

it
y

 o
f

E
rr

o
r

Relative Error Distance

ACA_Two_stages Proposed Design_Two_stages

Figure 5.13: 32-Bit proposed design vs. ACA relative error distance (RED)
distribution analysis (Two correction stage).

In the case of two and three correction stages in Fig. 5.13 and

Fig. 5.14 respectively, the proposed design has improved the ratio

of (0.01) RED value and reached approximately to 100% of the

test space, in contrast to ACA that still show different values of

5.7 E R R O R A N A LY S I S 138

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

P
ro

b
a
b

il
it

y
 o

f
E

rr
o
r

Relative Error Distance

ACA_Three_stages Proposed Design_Three_stages Proposed Design_Four_stages

Figure 5.14: 32-Bit proposed design vs. ACA relative error distance (RED)
distribution analysis with three and four correction stages.

RED. Hence, this might show that the proposed design has more

consistency in terms of resulted outputs than ACA design.

All previous figures of error analysis results can be referred to

the correction process implementation while using significance-

driven stages structure. In the used structure, it starts correcting

the most significant (i.e., higher order) bits of the adder first due

to their significant impact in the final sum result. As a result, very

small magnitudes of error would be expected.

The highest level of accuracy when all four correction stages

are in operation is presented in Fig. 5.14 (red column). The result

clearly confirms that the behaviour of the proposed design would

guarantee the optimum exact result and achieve full accuracy at

the final outputs. This due to the fact that at the final correction

or quality control stage; the proposed design starts to work as a

conventional adder with full exact output results.

Fig. 5.15 presents the mean relative error distance (MRED) val-

ues comparison, which shows the mean value of errors within test

space or input vectors at each correction stage. At the approximate

OR logic gates addition stage, the proposed design shows a higher

5.7 E R R O R A N A LY S I S 139

0

0.05

0.1

0.15

0.2

0.25

0.3

No_Correction One_Correction_Stage Two_Correction_Stages Three_Correction_Stages

D
is

tr
ib

u
ti

o
n

ACA Proposed

Figure 5.15: The 32-Bit adder designs MRED values comparison through
different correction stages.

level of MRED values when compared to ACA design. This level of

error is referred to the use of simple logic gates with a consider-

able error probability to compensate the conventional full addition.

However, by start using the correction stages, the proposed design

MRED values are drastically decreased showing the approximately

consistent low level of errors through all stages. The significance-

driven structure of the proposed output quality controlling stages

(i.e., short bit-width exact adders) would guarantee exact addition

sum for the higher order (i.e., most significant) bits early.

For the final fourth stage, the proposed design operates as an

exact adder, thus, providing the MRED value equals to zero with

optimum output accuracy.

Fig. 5.16 presents the cumulative probability distribution (CPD)

for relative error distance (RED) levels through approximate ad-

dition and accuracy recovery stages. This analysis describes the

change of percentages of the output space regarding the RED val-

ues. Additionally, it shows the speed of the resulted outputs become

closer to the exact addition results.

5.7 E R R O R A N A LY S I S 140

Figure 5.16: The cumulative probability distribution (CPD) for the error
through different correction stages.

It can be noticed that the cumulative value at approximate

addition stage without any error correction presents a quick step

to the RED range (0.01 ≤ RED < 0.02) with approximately 20%

of the outputs space. This percentage would be gradually increased

by small numbers for different values of RED and reach about 40%

at RED = 0.1. The remaining portion of outputs space (60%) would

have relative error values greater than 0.1 (RED > 0.1).

However, for the first three correction stages, all of these stages

show an efficient and approximately the same cumulative be-

haviour since they step up quickly to the RED range (0.01 ≤
RED < 0.02), and further, they become limited to this RED range

and entirely cover all the output space. The percentage difference

of the exact results between these correction stages is very small

and can be considered ’zero’. Remarkably, the last fourth correction

stage presents the better behaviour of accuracy with approximately

100% of exact results of the whole output space. This due to the

fact that the proposed design at this final stage would start to work

as a conventional adder with full accuracy.

5.8 I M A G E P R O C E S S I N G A P P L I CAT I O N 141

5.8 I M A G E P R O C E S S I N G A P P L I CAT I O N

To implement the image processing application test, we followed

the same procedure in the previous chapters 3 and 4. Hence, a

Gaussian blur image filter [20] was implemented by using Matlab

test-bench to check the actual behaviour of the proposed design

during multiple correction stages. The proposed adder of (20-bits)

width was implemented, and the peak signal to noise ratio (PSNR)

metric is used to measure the quality of the output images after

applying the Gaussian blur filter.

From Fig. 5.17, it can be noticed that for Mode= 0 (without any

correction), the resulted image shows a level of distortion with

PSNR value of (19.7 dB). At the first correction stage (Mode=1),

the resulted image PSNR value is (21.8 dB) with acceptable image

blurring. This is referred to the considerable level of outputs error

rate due to the use of simple logic OR gate to compensate the exact

addition operation. However, for (Mode=2) where two correction

stages are in action, a significant improvement has happened to

the PSNR value by (50.6 dB) with a very acceptable output quality.

Further, for (Mode=3) with three active correction stages, a better-

quality output image has been provided with a very high PSNR

value of (81.2 dB). At the final fourth stage of Mode=4, the proposed

adder works as an exact adder; thus, the output image presents

the optimum PSNR value and the best quality.

Nevertheless, both modes(0 and 1) might be considered attrac-

tive options for some biomedical applications, which are interested

in high speed, low power and acceptable outputs quality [96, 2, 1].

5.9 S U M M A R Y 142

Figure 5.17: Gaussian blur image filter test.

5.9 S U M M A R Y

In this chapter, a low-power approximated adder design was pro-

posed with output quality recovery stages. The proposed adder

used simple OR logic gates to compensate conventional arithmetic

5.9 S U M M A R Y 143

addition. Furthermore, the new accuracy recovery technique has

approximately solved the challenge of the severe overhead of er-

ror detection and correction circuit. Consequently, the proposed

design incurred a lower design overhead with 70%, 62% and 61%

average reduction ratios for dynamic power, leakage power, and

area respectively at the final correction stage.

The correction stages in the proposed design were structured in

a significance-driven scheme, in which the first correction stage

starts correcting highest error magnitudes. As a result, the pro-

posed design achieved fast convergence to the exact output values

at the premier correction stages. Since the proposed design started

to work as a an exact adder at the final correction stage, full output

accuracy was introduced, yet, with very limited design overhead.

The implementation test of the proposed design in an image

processing application provided fair PSNR values of (19.7 dB and

21.8 dB) for the approximate addition and the first accuracy re-

covery stage respectively. Remarkably, a noticeable improvement

happened to the output image quality at the second stage with a

PSNR value of (50.6 dB), and the third stage with a PSNR value of

(81.2 dB). Finally, when all the accuracy recovery stages were in

action; the optimum PSNR value was shown similar to the result of

an exact image filter circuit.

6
C O N C L U S I O N S A N D F U T U R E W O R K

6.1 C O N C L U S I O N S

Approximate computing has recently introduced a promising ap-

proach for the energy-efficient circuit design. Many of imprecision-

resilient applications can exploit approximation techniques at dif-

ferent design levels while using inexact computing. These tech-

niques would offer the chance of building low complexity, high

performance, and energy-efficient designs, yet, with the cost of

induced output errors. As one of the significant examples of ap-

proximate circuits, approximate arithmetic blocks (such as adders

and multipliers) have received high consideration in the current

research efforts.

This thesis proposed an investigation into configurable-accuracy

approximate adder design as a promising approach for mitigating

the challenges of design parameters overhead, such as critical de-

lay, silicon area, and power consumption in addition to controlling

the error recovery process due to approximation during the run-

time. This section summarises the main conclusions drawn from

this thesis.

The adder is considered an essential hardware module in most

of the computing blocks. However, the strict correctness of conven-

tional addition operation starts to be a real challenge in modern

applications. This is referred to the necessary exact intensive ad-

dition operations to compute outcomes, which in turn, presents a

144

6.1 C O N C L U S I O N S 145

large portion of performance and power consuming. As a result,

adder circuit design has been targeted for an approximation for

lower complexity and energy efficient designs. In the adder op-

eration, one of the key factors of dynamic power consumption is

the glitches induced by carry propagation delay, which causes an

undesired transition that occurs before the intended value in a

digital circuit.

Nevertheless, the rare occurrence of long or worst carry chain in

uniform random inputs has led to two general methods of adder

approximations. The first method divides the adder bits into two

parts, low order (least significant) bits, and high order (most sig-

nificant) bits. An approximate addition technique can be used for

the least significant bits part without carry propagation overhead.

On the other hand, the most significant bits adder part uses the

exact addition operation in order to preserve the general quality of

outputs. The second method of adder approximation is to divide

the adder into a number of sub-adders while using a carry specu-

lation technique to each sub-adder, such as overlapping bits from

the previous sub-adder or using logic gates to predict the carry. In

this study, we have mainly targeted the design challenges of the

configurable-accuracy approximate adder, which are discussed in

Chapter 2.

To mitigate these challenges of design overhead, the first ap-

proach in chapter 3 has targeted a modification to the error de-

tection technique of an exist configurable-accuracy approximate

adder design. The proposed lightweight error detection technique

which has replaced five (multi inputs) AND gates used for error

detection (i.e., carry propagation) in the original design with just

one XOR gate. The error detection takes place between every two

adjacent sub-adders and performs equality checking for two in-

6.1 C O N C L U S I O N S 146

put carry signals. Thus, the proposed technique results in more

reduction of the used logic gates, thus, a smaller silicon area and

lower power consumption. In the error recovery process, we have

ensured a quick convergence to the exact results by organising

the correction stages in a bit significance-driven structure. This

structure starts correcting the induced error at the high order

(i.e., most significant) bits since they have the dominant effect

in the final output quality. Moreover, while activating more than

one correction stage simultaneously, an extensive error (i.e., carry

propagation) detection has been added to the recovery process. As

a result, this has guaranteed to attain an optimum accuracy of

output at the worst case of quality requirements.

The results obtained after synthesis have shown better enhance-

ment of the performance (i.e., speed) and a substantial decrease

in design silicon area and power consumption, when compared

to other existing designs. For the design error analysis, an ana-

lytical model has been demonstrated, which shows the general

accuracy behaviour of the resulted outputs. On a statistical ba-

sis, our experiments used various error metrics, such as RED and

MRED, which have shown better enhancements of accuracy and

error distributions through the approximate addition and all the

correction stages. Moreover, we demonstrate how the scalability of

adder design has been improved for large bit width adders while

preserving reduction ratios of design metrics such as delay, area,

and power consuming.

For analysing the implementation effect of the proposed design

in our first approach, an image processing filter known as Gaussian

blur filter has been used as a test bench block. In this filter, all the

exact adder blocks have been replaced by the proposed approximate

adder. The peak to signal noise ratio (PSNR) metric was used to

6.1 C O N C L U S I O N S 147

measure the resulted image quality. The implementation results

have confirmed the efficiency of our proposed adder designs by

producing output images with acceptable levels of quality. In detail,

the simulations results show high PSNR values (29 dB, 42 dB)

for the first and second correction stages, respectively, and the

optimum image quality at the last error correction stage. These

results would confirm the feasibility of our design in such error-

resilient applications.

The second approach in chapter 4 continues the effort to mitigate

the challenge of design area overhead of the overlapped sub-adders

in the previous first approach. Hence, we have presented a novel

and simpler adder dividing (segmenting) method to a number of

sub-adders. The new method has proposed a new bit location at

the end of each sub-adder and used the carry-kill signal for both

limiting the carry propagation and applying adder segmentation.

Further, one AND gate and one XOR gate have been placed be-

tween every two adjacent sub-adders for carry speculation and

error (i.e., carry propagation) detection respectively. Thus, a sig-

nificant reduction of the number of sub-adder and logic gates has

been introduced, and then, mitigating the total design overhead of

the proposed adder. On the other hand, the error recovery process

keeps the same bit significance-driven structure and the extensive

carry propagation detection of the active correction stages. As such,

the error recovery process continues to guarantee the fast conver-

gence to the exact result and the full accuracy when operating all

the correction stages.

Design synthesis results have shown more reduction values of

the area and required power consumption, when compared to the

first approach, and other exist designs. This is referred to elimi-

nating overlapping parts of sub-adders of carry speculation, which

6.1 C O N C L U S I O N S 148

results in smaller number of sub-adders and the required logic

gates. The delay values of approximate addition and the first cor-

rection stage show an enhancement of operation speed. However,

the proposed additional bit locations and the carry prediction tech-

nique have incurred a limited delay overhead especially at the

time of activating the final correction stages. For design error anal-

ysis, an analytical model has been demonstrated, which shows the

error bound (i.e., maximum error) of the resulted outputs. By using

the same error metric of RED and MRED, the simulation results

show different levels of outputs accuracy for approximate addition

and correction stages. Although the approximation addition stage

shows a high error rate (i.e., error not equal to ’0’), the relative

error distance (RED) values are still limited between 99% and 98%,

which are highly acceptable.

Moreover, the significance-driven structure of the correction

stages presents a guarantee for high convergence to exact val-

ues, and then, a quick reduction of the error rate of outputs. For

scalability validation, the proposed adder has been designed and

synthesized with different larger bit-widths. The resulted hard-

ware evaluation has confirmed the scalability characteristic of

adder design while preserving reduction ratios of design metrics

such as silicon area, power consuming and mitigating the delay

values degradations.

The implementation results of the Gaussian blur filter present

the feasibility of our proposed adder design while producing output

images with acceptable levels of quality. By using the same PSNR

metric, the simulations results show a fair value of (27 dB) for the

approximate addition stage and values of (53 dB and 83 dB) for

the first and second correction stages respectively.

6.1 C O N C L U S I O N S 149

While continuing our attempts to build approximate adder with

lower complexity, we have exploited simple logic OR gates in the

third approach in chapter 5 to entirely replacing the full adders

blocks in the conventional adder. The proposed logic addition would

compensate the exact addition operation. For error recovery pro-

cess, instead of augmenting error recovery circuit, short bit-length

exact adders have been used as a correction stages to control the

general level of output quality. The proposed accuracy controlling

method eliminates the incurred overhead of the augmented er-

ror detection circuit. Further, the suggested correction stages are

organised in the same significance-driven structure as the pre-

vious two approaches, thus, presenting fast convergence to high

outputs quality. At the final correction stage, the proposed design

would operate the same as a conventional adder with full, accurate

outputs.

Since our proposed design uses simple logic gates to compen-

sate the conventional full adder addition operation, the synthesis

results have shown significant reductions in delay, design silicon

area, and power consumption. However, since the proposed adder

works as an exact adder at the final stage of quality recovery, the

operation speed would be the same as a conventional adder. For

error analysis, we showed the error bound of the used OR gates by

using Monte Carlo simulations and test benches of RED and MRED

error metrics to evaluate the accuracy levels through the design

stages. Although the approximation addition stage shows no exact

outputs, the majority of relative error distance (RED) values are

less than 90%. These values can be considered acceptable regard-

ing the significant reductions of the design metrics. Further, the

significance-driven structure of the correction stages provides fast

6.2 F U T U R E W O R K 150

convergence to exact values, and then, a quick enhancement of

outputs accuracy.

The proposed adder implementation in the Gaussian blur filter

has presented an acceptable PSNR value of (19 dB) for the approxi-

mate addition stage and values of and (21 dB, 50 dB, 81 dB)for the

first, second and third correction stages respectively, and further,

the optimum PSNR value while activating all the accuracy recovery

stages. These results would confirm the feasibility of our design in

high error-resilient applications.

All in all, we can conclude that the proposed designs present sim-

ple techniques and a good extension to the configurable-accuracy

adder designs, by achieving lower design metrics, such as delay,

area, and power when compared to other efforts. Nonetheless, they

preserve a high level of accuracy (i.e., output quality), and thus,

compatibility with standard image processing applications.

6.2 F U T U R E W O R K

The objective of this thesis is to demonstrate that there is still

a room existing for techniques modifications and novel ideas for

the approximate adder designs. This work can be considered an

extension for the configurable accuracy adder approximation de-

sign efforts. However, more work can be motivated by this thesis

to achieve further performance and energy efficiency. The follow-

ing points would show directions for future research due to some

design limitations:

•Implementations: Future work might include using the pro-

posed designs in complete circuits that consist of control and mem-

ory aspects. Further, it can be targeting other hardware blocks that

comprise a large number of adders, such as multipliers. As such,

6.2 F U T U R E W O R K 151

the field-programmable gate array (FPGA) platform would be useful

to conduct more feasibility analysis. The proposed adder designs

can be tested over more imprecision-resilient applications, e.g.,

digital signal processing (DSP) and biomedical applications, which

show a large concern for high speed, low power, and acceptable

quality outputs designs. These implementations can be combined

with new approximation techniques and error recovery techniques

while applying the comprehensive analysis of design metrics and

accuracy levels.

•Dynamic Voltage Frequency Scaling (DVFS): The proposed ap-

proximated adder designs result in a shorter carry path (i.e., more

execution speed), especially the designs in chapter 4 and chap-

ter 5. This can be utilized for more energy/performance efficiency

by using voltage/frequency scaling during execution of addition

operations. For example, while implementing approximate and

exact adders to execute the workload operations, the resulted slack

time of the tasks executed by approximate adders can be exploited

to consciously slow down the execution (e.g., scaling down the

operational clock frequency) as stated in slack reclamation ap-

proach [70, 64]. Generally, this aims to reduce the total consumed

energy while meeting performance targets.

•Automated analysis and verification: In this work, several Ver-

ilog test benches have been used to check the designs validation.

Further, we analysed the resulted error levels of various design

stages (approximation and correction stages) by performing Matlab

test benches and statistical techniques (Monte-Carlo simulations).

These techniques are very time consuming and not flexible enough

while supplying design error bounds as a part of the input. As

such, adding new tools for automating the approximate design

synthesis, validation and error impact analysis becomes an urgent

6.2 F U T U R E W O R K 152

requirement to facilitate the whole design processes. However, the

new tools design should be adaptive and carefully consider a range

of aspects, such as parametrisation and analytical error bounds,

which are both critical and application dependent. Therefore, the

automated analysis and verification of the approximate adders is

considered a vital area of future research.

Generally, we believe that the outcomes of this thesis can be

considered a useful contribution for the approximate circuit design

community, and a guide to further research and development effort

for the directions mentioned above.

Part II

Bibliography

153

B I B L I O G R A P H Y

[1] W. Al-Atabany and P. Degenaar. Scene optimization for

optogenetic retinal prosthesis. In 2011 IEEE Biomedical

Circuits and Systems Conference (BioCAS), pages 432–435,

Nov 2011. doi: 10.1109/BioCAS.2011.6107820.

[2] W. Al-Atabany, B. McGovern, K. Mehran, R. Berlinguer-

Palmini, and P. Degenaar. A processing platform for optoelec-

tronic/optogenetic retinal prosthesis. IEEE Transactions on

Biomedical Engineering, 60(3):781–791, March 2013. ISSN

0018-9294. doi: 10.1109/TBME.2011.2177498.

[3] K. Al-Maaitah, I. Qiqieh, A. Soltan, and A. Yakovlev.

Configurable-accuracy approximate adder design with light-

weight fast convergence error recovery circuit. In 2017 IEEE

Jordan Conference on Applied Electrical Engineering and

Computing Technologies (AEECT), pages 1–6, Oct 2017. doi:

10.1109/AEECT.2017.8257753.

[4] K. Al-Maaitah, G. Tarawneh, A. Soltan, I. Qiqieh, and

A. Yakovlev. Approximate adder segmentation technique

and significance-driven error correction. In 2017 27th Inter-

national Symposium on Power and Timing Modeling, Opti-

mization and Simulation (PATMOS), pages 1–6, Sep. 2017.

doi: 10.1109/PATMOS.2017.8106986.

[5] P. Albicocco, G. C. Cardarilli, A. Nannarelli, M. Petricca, and

M. Re. Imprecise arithmetic for low power image process-

ing. In 2012 Conference Record of the Forty Sixth Asilomar

154

B I B L I O G R A P H Y 155

Conference on Signals, Systems and Computers (ASILO-

MAR), pages 983–987, Nov 2012. doi: 10.1109/ACSSC.2012.

6489164.

[6] J. Ansel, Y. L. Wong, C. Chan, M. Olszewski, A. Edelman,

and S. Amarasinghe. Language and compiler support for

auto-tuning variable-accuracy algorithms. In International

Symposium on Code Generation and Optimization (CGO

2011), pages 85–96, April 2011. doi: 10.1109/CGO.2011.

5764677.

[7] W. Baek and T. Chilimbi. Green: A system for supporting

energy-conscious programming using principled approxima-

tion. Microsoft Research, Tech. Rep., pages TR–2009, 2009.

[8] V. Benara and S. Purini. Accurus: A fast convergence

technique for accuracy configurable approximate adder cir-

cuits. In 2016 IEEE Computer Society Annual Sympo-

sium on VLSI (ISVLSI), pages 577–582, July 2016. doi:

10.1109/ISVLSI.2016.58.

[9] A. Berl, E. Gelenbe, M. Di Girolamo, G. Giuliani, H. De

Meer, M. Q. Dang, and K. Pentikousis. Energy-efficient

cloud computing. The Computer Journal, 53(7):1045–1051,

Sep. 2010. ISSN 0010-4620. doi: 10.1093/comjnl/bxp080.

[10] D.J. Brown and C. Reams. Toward energy-efficient comput-

ing. Commun. ACM, 53(3):50–58, 2010.

[11] S. T. Chakradhar and A. Raghunathan. Best-effort comput-

ing: Re-thinking parallel software and hardware. In Design

Automation Conference, pages 865–870, June 2010. doi:

10.1145/1837274.1837492.

B I B L I O G R A P H Y 156

[12] V. K. Chippa, D. Mohapatra, K. Roy, S. T. Chakradhar, and

A. Raghunathan. Scalable effort hardware design. IEEE

Transactions on Very Large Scale Integration (VLSI) Sys-

tems, 22(9):2004–2016, Sep. 2014. ISSN 1063-8210. doi:

10.1109/TVLSI.2013.2276759.

[13] K. Cho, Y. Lee, Y. H. Oh, G. Hwang, and J. W. Lee. edram-

based tiered-reliability memory with applications to low-

power frame buffers. In 2014 IEEE/ACM International

Symposium on Low Power Electronics and Design (ISLPED),

pages 333–338, Aug 2014. doi: 10.1145/2627369.2627626.

[14] A. A. Del Barrio, M. C. Molina, J. M. Mendias, E. Andres,

R. Hermida, and F. Tirado. Applying speculation techniques

to implement functional units. In 2008 IEEE International

Conference on Computer Design, pages 74–80, Oct 2008. doi:

10.1109/ICCD.2008.4751843.

[15] R. G. Dreslinski, M. Wieckowski, D. Blaauw, D. Sylvester,

and T. Mudge. Near-threshold computing: Reclaiming

moore’s law through energy efficient integrated circuits. Pro-

ceedings of the IEEE, 98(2):253–266, Feb 2010. ISSN 0018-

9219. doi: 10.1109/JPROC.2009.2034764.

[16] K. Du, P. Varman, and K. Mohanram. High performance re-

liable variable latency carry select addition. In 2012 Design,

Automation Test in Europe Conference Exhibition (DATE),

pages 1257–1262, March 2012. doi: 10.1109/DATE.2012.

6176685.

[17] R. P. Duarte and C. Bouganis. Zero-latency datapath error

correction framework for over-clocking dsp applications on

fpgas. In 2014 International Conference on ReConFigurable

B I B L I O G R A P H Y 157

Computing and FPGAs (ReConFig14), pages 1–7, Dec 2014.

doi: 10.1109/ReConFig.2014.7032566.

[18] R. P. Duarte and C. Bouganis. A unified framework for

over-clocking linear projections on fpgas under pvt varia-

tion. In International Symposium on Applied Reconfigurable

Computing, pages 49–60. Springer, 2014.

[19] S. Dutt, H. Patel, S. Nandi, and G. Trivedi. Exploring ap-

proximate computing for yield improvement via re-design

of adders for error-resilient applications. In 2016 29th In-

ternational Conference on VLSI Design and 2016 15th Inter-

national Conference on Embedded Systems (VLSID), pages

134–139, Jan 2016. doi: 10.1109/VLSID.2016.101.

[20] En.wikipedia.org. Gaussian blur, 2018. URL https://en.

wikipedia.org/wiki/Gaussian{_}blur.

[21] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam,

and D. Burger. Dark silicon and the end of multicore scaling.

IEEE Micro, 32(3):122–134, May 2012. ISSN 0272-1732. doi:

10.1109/MM.2012.17.

[22] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam,

and D. Burger. Power challenges may end the multicore

era. Commun. ACM, 56(2):93–102, February 2013. ISSN

0001-0782. doi: 10.1145/2408776.2408797. URL http://

doi.acm.org/10.1145/2408776.2408797.

[23] S. Ganapathy, G. Karakonstantis, A. Teman, and A. Burg.

Mitigating the impact of faults in unreliable memo-

ries for error-resilient applications. In 2015 52nd

ACM/EDAC/IEEE Design Automation Conference (DAC),

pages 1–6, June 2015. doi: 10.1145/2744769.2744871.

https://en.wikipedia.org/wiki/Gaussian{_}blur
https://en.wikipedia.org/wiki/Gaussian{_}blur
http://doi.acm.org/10.1145/2408776.2408797
http://doi.acm.org/10.1145/2408776.2408797

B I B L I O G R A P H Y 158

[24] J. Gantz and D. Reinsel. Extracting value from chaos. IDC

iview, 1142(2011):1–12, 2011.

[25] J. George, B. Marr, B. E. S. Akgul, and K. V. Palem. Proba-

bilistic arithmetic and energy efficient embedded signal pro-

cessing. In Proceedings of the 2006 International Conference

on Compilers, Architecture and Synthesis for Embedded Sys-

tems, CASES ’06, pages 158–168, New York, NY, USA, 2006.

ACM. ISBN 1-59593-543-6. doi: 10.1145/1176760.1176781.

URL http://doi.acm.org/10.1145/1176760.1176781.

[26] B. Grigorian and G. Reinman. Dynamically adaptive and

reliable approximate computing using light-weight error

analysis. In 2014 NASA/ESA Conference on Adaptive Hard-

ware and Systems (AHS), pages 248–255, July 2014. doi:

10.1109/AHS.2014.6880184.

[27] B. Grigorian and G. Reinman. Accelerating divergent ap-

plications on simd architectures using neural networks. In

2014 IEEE 32nd International Conference on Computer De-

sign (ICCD), pages 317–323, Oct 2014. doi: 10.1109/ICCD.

2014.6974700.

[28] V. Gupta, D. Mohapatra, S. P. Park, A. Raghunathan, and

K. Roy. Impact: Imprecise adders for low-power approximate

computing. In IEEE/ACM International Symposium on Low

Power Electronics and Design, pages 409–414, Aug 2011. doi:

10.1109/ISLPED.2011.5993675.

[29] V. Gupta, D. Mohapatra, A. Raghunathan, and K. Roy. Low-

power digital signal processing using approximate adders.

IEEE Transactions on Computer-Aided Design of Integrated

http://doi.acm.org/10.1145/1176760.1176781

B I B L I O G R A P H Y 159

Circuits and Systems, 32(1):124–137, Jan 2013. ISSN 0278-

0070. doi: 10.1109/TCAD.2012.2217962.

[30] J. Han and M. Orshansky. Approximate computing: An

emerging paradigm for energy-efficient design. In 2013 18th

IEEE European Test Symposium (ETS), pages 1–6, May

2013. doi: 10.1109/ETS.2013.6569370.

[31] K. He, A. Gerstlauer, and M. Orshansky. Controlled timing-

error acceptance for low energy idct design. In 2011 Design,

Automation Test in Europe, pages 1–6, March 2011. doi:

10.1109/DATE.2011.5763129.

[32] R. Hegde and N. R. Shanbhag. Soft digital signal processing.

IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, 9(6):813–823, Dec 2001. ISSN 1063-8210. doi:

10.1109/92.974895.

[33] T. Higgs. Energy efficient computing. In Proceedings of the

2007 IEEE International Symposium on Electronics and the

Environment, pages 210–215, May 2007. doi: 10.1109/ISEE.

2007.369396.

[34] J. Huang and J. Lach. Exploring the fidelity-efficiency design

space using imprecise arithmetic. In 16th Asia and South Pa-

cific Design Automation Conference (ASP-DAC 2011), pages

579–584, Jan 2011. doi: 10.1109/ASPDAC.2011.5722256.

[35] H. Jiang, J. Han, and F. Lombardi. A comparative review

and evaluation of approximate adders. In Proceedings of the

25th Edition on Great Lakes Symposium on VLSI, GLSVLSI

’15, pages 343–348, New York, NY, USA, 2015. ACM. ISBN

978-1-4503-3474-7. doi: 10.1145/2742060.2743760. URL

http://doi.acm.org/10.1145/2742060.2743760.

http://doi.acm.org/10.1145/2742060.2743760

B I B L I O G R A P H Y 160

[36] H. Jiang, J. Han, F. Qiao, and F. Lombardi. Approxi-

mate radix-8 booth multipliers for low-power and high-

performance operation. IEEE Transactions on Comput-

ers, 65(8):2638–2644, Aug 2016. ISSN 0018-9340. doi:

10.1109/TC.2015.2493547.

[37] A. B. Kahng and S. Kang. Accuracy-configurable adder for

approximate arithmetic designs. In DAC Design Automation

Conference 2012, pages 820–825, June 2012. doi: 10.1145/

2228360.2228509.

[38] R Saroha Kavita, Rajani Bala, and Sunita Siwach. Review

paper on overview of image processing and image segmenta-

tion. International journal of Research in Computer applica-

tions and Robotics, 1(7):1–13, 2013.

[39] S. Kemp. 2018 global digital reports, 2018.

URL https://wearesocial.com/blog/2018/01/

global-digital-report-2018. [Online; accessed 19-

July-2018].

[40] L. B. Kish. End of moore’s law: thermal (noise) death of

integration in micro and nano electronics. Physics Letters A,

305(3-4):144–149, 2002.

[41] J. Kuruvilla, D. Sukumaran, A. Sankar, and S. P. Joy. A re-

view on image processing and image segmentation. In 2016

International Conference on Data Mining and Advanced

Computing (SAPIENCE), pages 198–203, March 2016. doi:

10.1109/SAPIENCE.2016.7684170.

[42] J. Liang, J. Han, and F. Lombardi. New metrics for the relia-

bility of approximate and probabilistic adders. IEEE Trans-

https://wearesocial.com/blog/2018/01/global-digital-report-2018
https://wearesocial.com/blog/2018/01/global-digital-report-2018

B I B L I O G R A P H Y 161

actions on Computers, 62(9):1760–1771, Sep. 2013. ISSN

0018-9340. doi: 10.1109/TC.2012.146.

[43] I. Lin, Y. Yang, and C. Lin. High-performance low-power

carry speculative addition with variable latency. IEEE

Transactions on Very Large Scale Integration (VLSI) Sys-

tems, 23(9):1591–1603, Sep. 2015. ISSN 1063-8210. doi:

10.1109/TVLSI.2014.2355217.

[44] C. Liu, J. Han, and F. Lombardi. An analytical framework for

evaluating the error characteristics of approximate adders.

IEEE Transactions on Computers, 64(5):1268–1281, May

2015. ISSN 0018-9340. doi: 10.1109/TC.2014.2317180.

[45] G. Liu, Y. Tao, M. Tan, and Z. Zhang. Casa: Correlation-

aware speculative adders. In 2014 IEEE/ACM International

Symposium on Low Power Electronics and Design (ISLPED),

pages 189–194, Aug 2014. doi: 10.1145/2627369.2627635.

[46] W. Liu, L. Chen, C. Wang, M. Neill, and F. Lombardi. Inexact

floating-point adder for dynamic image processing. In 14th

IEEE International Conference on Nanotechnology, pages

239–243, Aug 2014. doi: 10.1109/NANO.2014.6967953.

[47] W. Liu, L. Chen, C. Wang, M. Neill, and F. Lombardi. De-

sign and analysis of inexact floating-point adders. IEEE

Transactions on Computers, 65(1):308–314, Jan 2016. ISSN

0018-9340. doi: 10.1109/TC.2015.2417549.

[48] S. L. Lu. Speeding up processing with approximation cir-

cuits. Computer, 37(3):67–73, March 2004. ISSN 0018-9162.

doi: 10.1109/MC.2004.1274006. URL https://doi.org/10.

1109/MC.2004.1274006.

https://doi.org/10.1109/MC.2004.1274006
https://doi.org/10.1109/MC.2004.1274006

B I B L I O G R A P H Y 162

[49] D. Mahajan, K. Ramkrishnan, R. Jariwala, A. Yazdan-

bakhsh, J. Park, B. Thwaites, A. Nagendrakumar, A. Rahimi,

H. Esmaeilzadeh, and K. Bazargan. Axilog: Abstractions for

approximate hardware design and reuse. IEEE Micro, 35(5):

16–30, Sep. 2015. ISSN 0272-1732. doi: 10.1109/MM.2015.

108.

[50] H. R. Mahdiani, A. Ahmadi, S. M. Fakhraie, and C. Lucas.

Bio-inspired imprecise computational blocks for efficient

vlsi implementation of soft-computing applications. IEEE

Transactions on Circuits and Systems I: Regular Papers, 57

(4):850–862, April 2010. ISSN 1549-8328. doi: 10.1109/TCSI.

2009.2027626.

[51] D. May and W. Stechele. Voltage over-scaling in sequential

circuits for approximate computing. In 2016 International

Conference on Design and Technology of Integrated Systems

in Nanoscale Era (DTIS), pages 1–6, April 2016. doi: 10.

1109/DTIS.2016.7483887.

[52] S. Mazahir, O. Hasan, R. Hafiz, M. Shafique, and J. Henkel.

Probabilistic error modeling for approximate adders. IEEE

Transactions on Computers, 66(3):515–530, March 2017.

ISSN 0018-9340. doi: 10.1109/TC.2016.2605382.

[53] J. Miao, K. He, A. Gerstlauer, and M. Orshansky. Modeling

and synthesis of quality-energy optimal approximate adders.

In 2012 IEEE/ACM International Conference on Computer-

Aided Design (ICCAD), pages 728–735, Nov 2012.

[54] J. S. Miguel, M. Badr, and N. E. Jerger. Load value approx-

imation. In Proceedings of the 47th Annual IEEE/ACM

International Symposium on Microarchitecture, MICRO-47,

B I B L I O G R A P H Y 163

pages 127–139, Washington, DC, USA, 2014. IEEE Com-

puter Society. ISBN 978-1-4799-6998-2. doi: 10.1109/MICRO.

2014.22. URL http://dx.doi.org/10.1109/MICRO.2014.

22.

[55] S. Mittal. Power Management Techniques for Data Cen-

ters: A Survey. CoRR, abs/1404.6(1404.6681), 2014. doi:

10.2172/1150909. URL http://www.osti.gov/servlets/

purl/1150909/.

[56] S. Mittal. A survey of techniques for approximate computing.

ACM Comput. Surv., 48(4):62:1–62:33, March 2016. ISSN

0360-0300. doi: 10.1145/2893356. URL http://doi.acm.

org/10.1145/2893356.

[57] D. Mohapatra. ApproximateComputing:Enabling Voltage

Over-Scaling in Multimedia Applications. PhD thesis, Pur-

due University, Nov 2011.

[58] D. Mohapatra, G. Karakonstantis, and K. Roy. Significance

driven computation: A voltage-scalable, variation-aware,

quality-tuning motion estimator. In Proceedings of the

2009 ACM/IEEE International Symposium on Low Power

Electronics and Design, ISLPED ’09, pages 195–200, New

York, NY, USA, 2009. ACM. ISBN 978-1-60558-684-7. doi:

10.1145/1594233.1594282. URL http://doi.acm.org/10.

1145/1594233.1594282.

[59] D. Mohapatra, V. K. Chippa, A. Raghunathan, and K. Roy.

Design of voltage-scalable meta-functions for approximate

computing. In 2011 Design, Automation Test in Europe,

pages 1–6, March 2011. doi: 10.1109/DATE.2011.5763154.

http://dx.doi.org/10.1109/MICRO.2014.22
http://dx.doi.org/10.1109/MICRO.2014.22
http://www.osti.gov/servlets/purl/1150909/
http://www.osti.gov/servlets/purl/1150909/
http://doi.acm.org/10.1145/2893356
http://doi.acm.org/10.1145/2893356
http://doi.acm.org/10.1145/1594233.1594282
http://doi.acm.org/10.1145/1594233.1594282

B I B L I O G R A P H Y 164

[60] T. Moreau, J. San Miguel, M. Wyse, J. Bornholt, L. Ceze,

N. Enright Jerger, and A. Sampson. A taxonomy of approx-

imate computing techniques. UW CSE Technical Report,

pages 1–5, 2016.

[61] K. Palem and A. Lingamneni. What to do about the

end of moore’s law, probably! In DAC Design Automa-

tion Conference 2012, pages 924–929, June 2012. doi:

10.1145/2228360.2228525.

[62] J. Park, J. H. Choi, and K. Roy. Dynamic bit-width adap-

tation in dct: An approach to trade off image quality and

computation energy. IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, 18(5):787–793, May 2010. ISSN

1063-8210. doi: 10.1109/TVLSI.2009.2016839.

[63] I. Qiqieh, R. Shafik, G. Tarawneh, D. Sokolov, and

A. Yakovlev. Energy-efficient approximate multiplier design

using bit significance-driven logic compression. In Design,

Automation Test in Europe Conference Exhibition (DATE),

2017, pages 7–12, March 2017. doi: 10.23919/DATE.2017.

7926950.

[64] I. H. Qiqieh. Investigation into energy-efficient and approxi-

mate multiplier design. PhD thesis, Newcastle University,

School of Engineering, aug 2018.

[65] J. Rabaey. Low power design essentials. Springer Science &

Business Media, 2009.

[66] R. Ragavan, B. Barrois, C. Killian, and O. Sentieys. Pushing

the limits of voltage over-scaling for error-resilient appli-

cations. In Design, Automation Test in Europe Conference

B I B L I O G R A P H Y 165

Exhibition (DATE), 2017, pages 476–481, March 2017. doi:

10.23919/DATE.2017.7927036.

[67] A. Rahimi, L. Benini, and R. K. Gupta. Spatial memoization:

Concurrent instruction reuse to correct timing errors in simd

architectures. IEEE Transactions on Circuits and Systems

II: Express Briefs, 60(12):847–851, Dec 2013. ISSN 1549-

7747. doi: 10.1109/TCSII.2013.2281934.

[68] A. Rahimi, A. Ghofrani, K. Cheng, L. Benini, and R. K.

Gupta. Approximate associative memristive memory for

energy-efficient gpus. In 2015 Design, Automation Test in

Europe Conference Exhibition (DATE), pages 1497–1502,

March 2015. doi: 10.7873/DATE.2015.0579.

[69] A. Ranjan, S. Venkataramani, X. Fong, K. Roy, and A. Raghu-

nathan. Approximate storage for energy efficient spintronic

memories. In 2015 52nd ACM/EDAC/IEEE Design Au-

tomation Conference (DAC), pages 1–6, June 2015. doi:

10.1145/2744769.2744799.

[70] N. B. Rizvandi, J. Taheri, and A. Y. Zomaya. Some observa-

tions on optimal frequency selection in dvfs-based energy

consumption minimization. Journal of Parallel and Dis-

tributed Computing, 71(8):1154–1164, 2011.

[71] P. Roy, R. Ray, C. Wang, and W. F. Wong. Asac: Auto-

matic sensitivity analysis for approximate computing. SIG-

PLAN Not., 49(5):95–104, June 2014. ISSN 0362-1340. doi:

10.1145/2666357.2597812. URL http://doi.acm.org/10.

1145/2666357.2597812.

[72] M. Samadi, J. Lee, D. A. Jamshidi, A. Hormati, and

S. Mahlke. Sage: Self-tuning approximation for graphics

http://doi.acm.org/10.1145/2666357.2597812
http://doi.acm.org/10.1145/2666357.2597812

B I B L I O G R A P H Y 166

engines. In 2013 46th Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO), pages 13–24,

Dec 2013.

[73] M. Samadi, D. A. Jamshidi, J. Lee, and S. Mahlke. Paraprox:

Pattern-based approximation for data parallel applications.

SIGPLAN Not., 49(4):35–50, February 2014. ISSN 0362-

1340. doi: 10.1145/2644865.2541948. URL http://doi.acm.

org/10.1145/2644865.2541948.

[74] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam,

L. Ceze, and D. Grossman. Enerj: Approximate data types

for safe and general low-power computation. SIGPLAN

Not., 46(6):164–174, June 2011. ISSN 0362-1340. doi:

10.1145/1993316.1993518. URL http://doi.acm.org/10.

1145/1993316.1993518.

[75] J. Sartori and R. Kumar. Branch and data herding: Reduc-

ing control and memory divergence for error-tolerant gpu

applications. IEEE Transactions on Multimedia, 15(2):279–

290, Feb 2013. ISSN 1520-9210. doi: 10.1109/TMM.2012.

2232647.

[76] R. R. Schaller. Moore’s law: past, present and future. IEEE

Spectrum, 34(6):52–59, June 1997. ISSN 0018-9235. doi:

10.1109/6.591665.

[77] M. Schulz. The end of the road for silicon? Nature, 399

(6738):729, 1999.

[78] L. Sekanina. Introduction to approximate computing: Em-

bedded tutorial. In 2016 IEEE 19th International Sympo-

sium on Design and Diagnostics of Electronic Circuits Sys-

http://doi.acm.org/10.1145/2644865.2541948
http://doi.acm.org/10.1145/2644865.2541948
http://doi.acm.org/10.1145/1993316.1993518
http://doi.acm.org/10.1145/1993316.1993518

B I B L I O G R A P H Y 167

tems (DDECS), pages 1–6, April 2016. doi: 10.1109/DDECS.

2016.7482460.

[79] M. Shafique, S. Garg, J. Henkel, and D. Marculescu. The

eda challenges in the dark silicon era: Temperature, re-

liability, and variability perspectives. In Proceedings of

the 51st Annual Design Automation Conference, DAC ’14,

pages 185:1–185:6, New York, NY, USA, 2014. ACM. ISBN

978-1-4503-2730-5. doi: 10.1145/2593069.2593229. URL

http://doi.acm.org/10.1145/2593069.2593229.

[80] M. Shafique, W. Ahmad, R. Hafiz, and J. Henkel. A low

latency generic accuracy configurable adder. In 2015 52nd

ACM/EDAC/IEEE Design Automation Conference (DAC),

pages 1–6, June 2015. doi: 10.1145/2744769.2744778.

[81] J. M. Shalf and R. Leland. Computing beyond moore’s law.

Computer, 48(12):14–23, Dec 2015. ISSN 0018-9162. doi:

10.1109/MC.2015.374.

[82] B. Shim, S. R. Sridhara, and N. R. Shanbhag. Reliable

low-power digital signal processing via reduced precision

redundancy. IEEE Transactions on Very Large Scale Inte-

gration (VLSI) Systems, 12(5):497–510, May 2004. ISSN

1063-8210. doi: 10.1109/TVLSI.2004.826201.

[83] D. Shin and S. K. Gupta. Approximate logic synthesis for

error tolerant applications. In 2010 Design, Automation

Test in Europe Conference Exhibition (DATE 2010), pages

957–960, March 2010. doi: 10.1109/DATE.2010.5456913.

[84] D. Shin and S. K. Gupta. A new circuit simplification method

for error tolerant applications. In 2011 Design, Automation

http://doi.acm.org/10.1145/2593069.2593229

B I B L I O G R A P H Y 168

Test in Europe, pages 1–6, March 2011. doi: 10.1109/DATE.

2011.5763248.

[85] S. Sidiroglou-Douskos, S. Misailovic, H. Hoffmann, and

M. Rinard. Managing performance vs. accuracy trade-offs

with loop perforation. In Proceedings of the 19th ACM

SIGSOFT Symposium and the 13th European Conference

on Foundations of Software Engineering, ESEC/FSE ’11,

pages 124–134, New York, NY, USA, 2011. ACM. ISBN

978-1-4503-0443-6. doi: 10.1145/2025113.2025133. URL

http://doi.acm.org/10.1145/2025113.2025133.

[86] G. V. Varatkar and N. R. Shanbhag. Energy-efficient motion

estimation using error-tolerance. In ISLPED’06 Proceed-

ings of the 2006 International Symposium on Low Power

Electronics and Design, pages 113–118, Oct 2006. doi:

10.1145/1165573.1165599.

[87] Z. Vasicek and L. Sekanina. Evolutionary design of approx-

imate multipliers under different error metrics. In 17th

International Symposium on Design and Diagnostics of Elec-

tronic Circuits Systems, pages 135–140, April 2014. doi:

10.1109/DDECS.2014.6868777.

[88] S. Venkataramani, A. Ranjan, K. Roy, and A. Raghunathan.

Axnn: Energy-efficient neuromorphic systems using approx-

imate computing. In 2014 IEEE/ACM International Sympo-

sium on Low Power Electronics and Design (ISLPED), pages

27–32, Aug 2014. doi: 10.1145/2627369.2627613.

[89] S. Venkataramani, S. T. Chakradhar, K. Roy, and A. Raghu-

nathan. Approximate computing and the quest for com-

puting efficiency. In 2015 52nd ACM/EDAC/IEEE Design

http://doi.acm.org/10.1145/2025113.2025133

B I B L I O G R A P H Y 169

Automation Conference (DAC), pages 1–6, June 2015. doi:

10.1145/2744769.2744904.

[90] R. Venkatesan, A. Agarwal, K. Roy, and A. Raghunathan.

Macaco: Modeling and analysis of circuits for approximate

computing. In 2011 IEEE/ACM International Conference on

Computer-Aided Design (ICCAD), pages 667–673, Nov 2011.

doi: 10.1109/ICCAD.2011.6105401.

[91] A. K. Verma, P. Brisk, and P. Ienne. Variable latency specula-

tive addition: A new paradigm for arithmetic circuit design.

In 2008 Design, Automation and Test in Europe, pages 1250–

1255, March 2008. doi: 10.1109/DATE.2008.4484850.

[92] M. Weber, M. Putic, H. Zhang, J. Lach, and J. Huang.

Balancing adder for error tolerant applications. In 2013

IEEE International Symposium on Circuits and Systems

(ISCAS2013), pages 3038–3041, May 2013. doi: 10.1109/

ISCAS.2013.6572519.

[93] Wikipedia contributors. Dennard scaling — Wikipedia, the

free encyclopedia. https://en.wikipedia.org/w/index.

php?title=Dennard_scaling&oldid=875866716, 2018.

[94] Wikipedia contributors. Memoization — Wikipedia, the

free encyclopedia. https://en.wikipedia.org/w/index.

php?title=Memoization&oldid=864455867, 2018. [Online;

accessed 20-February-2019].

[95] Wikipedia contributors. Moore’s law — Wikipedia, the free

encyclopedia. https://en.wikipedia.org/w/index.php?

title=Moore%27s_law&oldid=883976956, 2019.

[96] M. A. Yaman, W. Al-Atabany, A. Bystrov, and P. Dege-

naar. Fpga design for dual-spectrum visual scene prepa-

https://en.wikipedia.org/w/index.php?title=Dennard_scaling&oldid=875866716
https://en.wikipedia.org/w/index.php?title=Dennard_scaling&oldid=875866716
https://en.wikipedia.org/w/index.php?title=Memoization&oldid=864455867
https://en.wikipedia.org/w/index.php?title=Memoization&oldid=864455867
https://en.wikipedia.org/w/index.php?title=Moore%27s_law&oldid=883976956
https://en.wikipedia.org/w/index.php?title=Moore%27s_law&oldid=883976956

B I B L I O G R A P H Y 170

ration in retinal prosthesis. In 2014 36th Annual Inter-

national Conference of the IEEE Engineering in Medicine

and Biology Society, pages 4691–4694, Aug 2014. doi:

10.1109/EMBC.2014.6944671.

[97] A. Yan-Li. Introduction to digital image pre-processing and

segmentation. In 2015 Seventh International Conference on

Measuring Technology and Mechatronics Automation, pages

588–593, June 2015. doi: 10.1109/ICMTMA.2015.148.

[98] Z. Yang, A. Jain, J. Liang, J. Han, and F. Lombardi. Ap-

proximate xor/xnor-based adders for inexact computing. In

2013 13th IEEE International Conference on Nanotechnol-

ogy (IEEE-NANO 2013), pages 690–693, Aug 2013. doi:

10.1109/NANO.2013.6720793.

[99] A. Yazdanbakhsh, G. Pekhimenko, B. Thwaites, H. Es-

maeilzadeh, O. Mutlu, and T. Mowry. Rfvp: Rollback-free

value prediction with safe-to-approximate loads. ACM Trans.

Archit. Code Optim., 12(4):62:1–62:26, January 2016. ISSN

1544-3566. doi: 10.1145/2836168. URL http://doi.acm.

org/10.1145/2836168.

[100] R. Ye, T. Wang, F. Yuan, R. Kumar, and Q. Xu. On

reconfiguration-oriented approximate adder design and its

application. In 2013 IEEE/ACM International Conference

on Computer-Aided Design (ICCAD), pages 48–54, Nov 2013.

doi: 10.1109/ICCAD.2013.6691096.

[101] T. Yeh, P. Faloutsos, M. Ercegovac, S. Patel, and G. Reinman.

The art of deception: Adaptive precision reduction for area ef-

ficient physics acceleration. In 40th Annual IEEE/ACM In-

http://doi.acm.org/10.1145/2836168
http://doi.acm.org/10.1145/2836168

B I B L I O G R A P H Y 171

ternational Symposium on Microarchitecture (MICRO 2007),

pages 394–406, Dec 2007. doi: 10.1109/MICRO.2007.9.

[102] Y. Yetim, M. Martonosi, and S. Malik. Extracting useful

computation from error-prone processors for streaming ap-

plications. In 2013 Design, Automation Test in Europe Con-

ference Exhibition (DATE), pages 202–207, March 2013. doi:

10.7873/DATE.2013.055.

[103] G. Zervakis, K. Tsoumanis, S. Xydis, D. Soudris, and

K. Pekmestzi. Design-efficient approximate multiplica-

tion circuits through partial product perforation. IEEE

Transactions on Very Large Scale Integration (VLSI) Sys-

tems, 24(10):3105–3117, Oct 2016. ISSN 1063-8210. doi:

10.1109/TVLSI.2016.2535398.

[104] N. Zhu, W. L. Goh, and K. S. Yeo. An enhanced low-power

high-speed adder for error-tolerant application. In Proceed-

ings of the 2009 12th International Symposium on Integrated

Circuits, pages 69–72, Dec 2009.

[105] N. Zhu, W. L. Goh, G. Wang, and K. S. Yeo. Enhanced low-

power high-speed adder for error-tolerant application. In

2010 International SoC Design Conference, pages 323–327,

Nov 2010. doi: 10.1109/SOCDC.2010.5682905.

[106] N. Zhu, W. L. Goh, W. Zhang, K. S. Yeo, and Z. H. Kong.

Design of low-power high-speed truncation-error-tolerant

adder and its application in digital signal processing. IEEE

Transactions on Very Large Scale Integration (VLSI) Sys-

tems, 18(8):1225–1229, Aug 2010. ISSN 1063-8210. doi:

10.1109/TVLSI.2009.2020591.

B I B L I O G R A P H Y 172

[107] N. Zhu, W. L. Goh, and K. S. Yeo. Ultra low-power high-speed

flexible probabilistic adder for error-tolerant applications. In

2011 International SoC Design Conference, pages 393–396,

Nov 2011. doi: 10.1109/ISOCC.2011.6138614.

	1.Title_Page
	2.New Title approval
	3.Abstract
	4.6 month Standard Deposit Licence for Print and Electronic
	5.Khaled_Signed_Thesis
	Declaration
	Acknowledgements
	Abstract
	Publications
	Contents
	List of Figures
	List of Tables
	Acronyms

	I Thesis Chapters
	1 Introduction
	1.1 Design Scaling Challenge
	1.2 Approximate Computing
	1.3 Motivation
	1.4 Aim of the Thesis
	1.5 Contribution
	1.6 Thesis Organization

	2 Background and Literature Review
	2.1 Approximate Computing
	2.1.1 Motivations
	2.1.2 Challenges of Approximate Computing
	2.1.3 Solution Approaches

	2.2 Approximation Techniques
	2.2.1 Software Techniques
	2.2.2 Operating Parameters Techniques
	2.2.3 Hardware Techniques

	2.3 Scalable Effort Design for Approximate Computing
	2.4 Significance-driven Design
	2.5 Approximate Error Metrics
	2.6 Basic Adders Background
	2.6.1 Ripple Carry Adder
	2.6.2 Carry Select Adder
	2.6.3 Carry Look Ahead Adder

	2.7 Approximate Adders
	2.7.1 Lower-Part-OR Adder (LOA)
	2.7.2 Error Tolerant Adder (ETA)
	2.7.3 ETA IV

	2.8 Speculative Adders
	2.8.1 Variable Latency Speculative Adder (VLSA)
	2.8.2 Accuracy-Configurable Approximate Adder (ACA)
	2.8.3 General Architectural Design of Accuracy-Configurable Adders (GeAr)

	2.9 Comparison and Challenges
	2.10 Image Processing
	2.10.1 Image Processing Steps
	2.10.2 Image Processing Motivations
	2.10.3 Image Processing Techniques
	2.10.4 Gaussian Blur Image Filter

	3 Scalable Low-Power and Configurable-Accuracy Approximate Adder Design
	3.1 Introduction
	3.2 General Design Architecture
	3.3 Error Detection Circuit
	3.4 Error Correction Circuit
	3.5 Numerical Example
	3.6 Design Trade-offs
	3.7 Error Analysis
	3.7.1 Error Probability Model
	3.7.2 Error Metrics Evaluation

	3.8 Large Bit Width Adders Evaluation
	3.9 Further Hardware Comparison
	3.10 Image Processing Application
	3.11 Summary

	4 Approximate Adder Design with Carry Kill Segmentation Technique
	4.1 Introduction
	4.2 Proposed Design
	4.2.1 Segmenting Technique
	4.2.2 Carry Prediction Technique
	4.2.3 Error Detection and Correction

	4.3 Numerical Example
	4.4 Design Trade-offs
	4.5 Error Analysis
	4.5.1 Error Probability Model
	4.5.2 Error Metrics Evaluation

	4.6 Large Bit Width Adders Evaluation
	4.7 Further Hardware Comparison
	4.8 Image Processing Application
	4.9 Summary

	5 General Quality-Control Approximate Adder with Low Design Overhead
	5.1 Introduction
	5.2 Proposed Design
	5.3 Quality Control Circuit
	5.4 Error Correction Stages
	5.5 Numerical Example
	5.6 Design Trade-offs
	5.7 Error Analysis
	5.7.1 Error Probability Analysis
	5.7.2 Error Metrics Evaluation

	5.8 Image Processing Application
	5.9 Summary

	6 Conclusions and Future Work
	6.1 Conclusions
	6.2 Future Work

	II Bibliography
	Bibliography

	Blank Page
	Blank Page

