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Abstract 
Solid-liquid circulating fluidised beds possess many qualities which makes them useful for 

industrial operations where particle-liquid contact is vital, e.g. improved heat transfer 

performance, and consequent uniform temperature, limited back mixing, excellent solid-liquid 

contact, good control of reaction and regeneration of catalysts or bio-solids at the same time. 

All these characteristics make them suitable for various industrial processes, e.g. waste water 

treatment, food processing, and bioconversion of agricultural-waste into lactic acid, 

fermentation, linear alkyl benzene production, and photo-catalytic ozonation. Despite this, they 

have seen no application in the micro-technology context.  

Solid-liquid micro circulating fluidised beds (µCFBs), which essentially involve fluidisation 

of micro-particles in sub-centimetre beds, hold promise of applications in the areas of 

microfluidics and micro-process technology. This is mostly due to fluidised particles providing 

enhancement of mixing, mass and heat transfer under the low Reynolds number flows that 

dominate in micro-devices. 

Albeit there are few reports on liquid-solid micro-fluidised beds, this thesis presents the first 

experimental study of a solid-liquid circulating fluidised bed at the microscale. It is well known 

that particle handling in micro technology devices remains one of the big challenges in the 

field. Development of a micro circulating fluidised bed is providing one solution to the 

problem, e.g. for solid catalyst recovery, recycle and regeneration. 

This thesis reports on the design and study the hydrodynamics of a liquid-solid micro-

circulating fluidised (LS µCFB) systems for possible applications as novel micro (bio)-reactors 

and diagnostics device, high-throughput kinetics screening, high-heat flux cooling and others. 

In order to successfully implement this, it is very important to understand the hydrodynamic 

parameters such as the influence of surface forces and inevitable  wall effect on minimum 

fluidisation velocity, and bed expansion dynamics as they play a crucial role in the 

hydrodynamic behaviour and determine the bed performances, as well as dictating the solid-

liquid contacting.  

The experimental research was performed in a novel micro-circulating fluidised bed which was 

made by micro-machining channels of 1mm2 cross section in Perspex. 

(Polymethylmethacrylate (PMMA) and soda lime glass microspheres particles were used as 

the fluidised particles and tap water and glycerol of different concentration (5, 10, and 15 vol. 

% aqueous glycerol) as the fluidising liquid to study the hydrodynamics of solid-liquid 
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fluidisation in micro-circulating fluidised bed channel. Furthermore, additive manufacturing 

technology, digital light processing (Miicraft+ printer) and stereolithography (Form2 printer) 

were also used to fabricate the novel micro-circulating fluidised bed. This allowed the rapid 

fabrication of a reliable micro-circulating fluidised bed using low cost material and most 

importantly, the bed geometry could easily be modified. 

Two novel measurement techniques, the valve accumulation and digital particle image 

velocimetry (PIV) methods were developed to measure the particle velocity in the micro-

circulating fluidised bed system, and the results looks relevant when compared with previous 

reported studies. As in a macroscopic circulating fluidised bed, the solid flux in a micro-

circulating fluidised bed increases with liquid velocity in two distinct zones, increasing sharply 

first then levelling off at higher inlet fluid velocities.  

The result indicates that fluidisation in a solid-liquid micro circulating fluidised bed system 

could be categorised in four operating regimes like in macroscopic case: fixed bed, 

conventional fluidisation, circulating fluidisation, and transport regime. However, the surface 

forces influence strongly the minimum fluidisation velocity which can be up to 20 times bigger 

for the smallest PMMA microparticles while the increase is only minor for glass particle (less 

than 2 times for the same size smallest glass microparticles). The determined critical transition 

velocity is comparable to the particle terminal velocity, i.e. the normalised transition velocity 

is approximately 1 in line with previous macroscopic studies. Yet, there was a weak increase 

in the normalized transition velocity with particle size which is probably due the wall effects 

(higher particle to bed ratio). In addition, the normalised velocity is slightly higher for PMMA 

particles due to stronger adhesion and cohesion forces, but influence is minimal in comparison 

with influence on the minimum fluidisation velocity. Finally, it seems that transition to the 

transport regime is influenced by cohesion so the relative transition velocity for PMMA 

particles is around 20 times particle terminal velocity while it is only 5 times for the glass 

beads. Consequently, the conventional regime is proportionally bigger for the glass beads in 

comparison with PMMA particles, whist the situation is opposite for circulating fluidisation 

regime as it is bigger for PMMA particles. 

The study also confirms that fluidisation behaviour in a liquid-solid micro-circulating fluidised 

bed system is also influenced by bed geometry such as the size of solid feed pipe cross section 

and the angle between the riser and solid feed pipe.  
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The results also show that solid flux in a micro-circulating fluidised bed is influenced by the 

viscosity of the fluidised liquid. The minimum superficial liquid velocity at which particles 

fluidisation is achieve decreases with increasing liquid viscosity. The reduction in the minimum 

fluidisation velocity with an increase in the liquid viscosity is mostly due to the fact that viscous 

systems have a lower ratio of adhesion to drag force.    
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 Introduction 

1.1 Fluidisation 
Fluidisation refers to the process by which a bed of solid particles starts to behave like a fluid 

through contact with liquid or gas [1, 2] . The fluidisation process starts when liquid or gas is 

introduced into a bed of granular material at such a flowrate that the particle (buoyant) weight 

is equal to the drag force of the fluid [3]. Consequently, the bed is transformed from a solid 

state to a dynamic fluid-like state where particles can move freely. [3]. ‘Fluidised bed’ is the 

term used for beds in which fluidisation of particulate solids takes place [4].  

 
Figure 1: flow behaviour in liquid and gas fluidisation. A: packed bed, B:  minimum 

fluidisation velocity, C: liquid fluidisation, B: gas fluidisation 

 

The fluidisation process could be achieved by utilising gas, liquid, or by combining gas and 

liquid to speed up chemical reactions and mixing in a bed of solid particles [5]. In solid-liquid 

fluidisation the flow characteristics are generally homogenous and stable, when superficial 

liquid velocity is higher than the minimum fluidisation velocity (Umf) the bed expands smoothly 

and progressively as shown in Figure 1 [6, 7]. In normal circumstance large amount of 

heterogeneity or bubbles is not observed and flow instabilities are small [8, 9]. The expansion 

behaviour of these types of system are well described by the Richardson and Zaki 

𝑈

𝑈𝑡
= 𝜀𝑛                            (1) 
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where Ut the particle terminal velocity, U is the liquid velocity, ε the voidage and n an exponent 

with a value of 4.66 for laminar regime represents an empirical correlation index. In general n 

depends on Re number. In solid-gas fluidisation the flow characteristics are heterogeneous, as 

the gas velocity is increased above the minimum fluidisation velocity, the flow becomes 

unstable and large amount of bubbles and channelling can be spotted. 

The dynamics of fluidisation is closely linked to the solid particle properties (i.e. size of 

particle, density, distribution size, particle cohesion and characteristic of surface), fluid 

properties, and bed design (i.e. cross sectional area, shape and bed height) [1, 3]  . This is the 

favoured solid-fluid processing technique when solid and fluids (liquid or gas) need to be in 

contact for chemical or physical processes due to its efficiency mixing particles and fluids 

(liquid or gas) [10]. 

  

1.2 Industrial applications of fluidisation technology 
Fluidisation is an important solid-fluid contacting process and it is recognised as one of the 

most important technologies in many industrial processes. As a technology, fluidisation has 

been developed over a long period. The first fluidised bed which was used for coal gasification 

applications was developed by Fritz Winker in Germany in 1922 for the production of synthesis 

fuel from coal [11]. With the threat of the Second World War all over Europe and the Far East 

in the late 1930s, the USA predicted a need for an immense amount of high octane gasoline. 

Hence it recommended that the American engineering society should discover a new method 

to convert gas oil and kerosene into essential fuel. In the early 1940s, a fluidised bed technology 

for oil feedstock catalytic cracking was developed by the US petroleum industry [12]. The 

technology began with gas fluidised beds, and then moved to liquid fluidised beds. Fluid 

catalyst cracking is still recognised as the principal conversion unit technology in most 

petroleum refineries worldwide to produce diesel fuel, gasoline, and heating oil from crude oil 

[13, 14]. Fluidisation applications in industry could be classified in two type groups [15, 16]: 

1. Physical processes: mixing particle, transport, absorption, heating, drying, coating, and 

sizing 

2. Chemical processes: solid-gas reactions, solid-liquid reactions, or solid-liquid-gas 

reaction. 

Some application of the fluidised bed are polymerisation, calcination, combustion, ore roasting, 

mineral processing, coking, catalytic oxidation, and gasification for the production of 

pharmaceuticals, essential fuel, food, and various essential chemical products [17-20]. 
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Fluidisation technology finds also application in the nuclear industry for processes such as 

nuclear fuel fabrication, uranium extraction and waste disposal [11].  

Research investigations have demonstrate that fluidisation offer many benefits to the processes, 

for example: reduced pressure drop, uniform temperature, elimination of diffusion limitations, 

and increase of heat and mass transfer rates [21, 22]. These important qualities have made 

fluidisation one of the most important units of operation in many industrial processes [23, 24]. 

Even though particle fluidisation could be achieved either by liquid or gas as fluidising 

medium, solid-liquid fluidised beds have not received much attention in the fluidisation 

literature compared to gas-solid fluidised beds [25], because they are less applicable in process 

industries due to the insufficient knowledge on scaling up procedure from the small scale 

(laboratory units) to a larger commercial engineering scale device [11, 26]. Lots of significant 

processing characteristics such as hydrodynamics, transport mechanism, heat and mass transfer 

in solid-liquid fluidised beds are sensitive and vary with unit size [27, 28]. For example, flow 

regime characteristics could vary between small and large fluidised beds even when the same 

liquid velocity and particles are used. For industrial applications, in depth understanding of 

hydrodynamics, heat and mass transfer mechanisms which are extremely important in order to 

improve the design and scale up of solid-liquid fluidised beds and to enhance process 

intensification are not completely understood [29, 30]. The major disappointing issue is the 

reduction in the solid-liquid fluidised beds performance when scaled up to an engineering scale 

equipment [11]. Nonetheless, new applications in bio-chemical and hydro-metallurgy 

technology such as backwashing filters, adsorption, protein recovery, crystallisation, reduction 

of ore, ion exchange, and substrate enzyme reaction processes have generated much scientific 

interest in liquid fluidisation [31, 32]. Liquid fluidised beds have found application in mineral, 

chemical and biochemical processes as reactors, heat exchangers, bioreactors, and crystallizers.  

They are particularly suitable for operations where bed temperature-uniformity is necessary 

[33]. Liquid fluidised bed heat exchangers are amongst the most effective processing 

technology in limiting fouling [34]. Liquid fluidised bed bio-reactors are one of the most 

effective processing equipment for biological wastewater treatment [35]. Some examples of 

fluidised beds include bio-reactors for the production of penicillin, degradation of phenol, and 

wastewater treatment in general [36]. Due to the lack of hydrodynamic stability in gas-fluidised 

beds compared to liquid-fluidised beds, gas fluidised beds are not suitable for biochemical 

operations [37]. For biochemical processes involving large volumes of fine and small catalyst 

or bio solid particles that are expensive and deactivate very fast and needs to be continuously 



4 
 

regenerated, liquid-solid circulating fluidised beds (LSCFB) are the preferred solid-liquid 

contactors [11]. The liquid-solid circulating fluidised beds have the capability to accommodate 

a wide-ranging of particles with high liquid throughputs. As well the LSCFB, facilitates the 

regeneration of catalysts, or biosolid particles, resulting in enhanced mass transfer between 

phases and high product throughputs can be achieved [16, 38].  

 

1.3 Fluidisation regime 
Generally solid-gas fluidisation can be categorise into six fluidisation regimes: fixed bed, 

minimum fluidisation velocity, bubbling bed, slugging bed, turbulent bed, and pneumatic 

transport regime when gas flow rates are varied as shown in figure 2 [39, 40].  

 

 
Figure 2. Flow regime in solid-gas fluidised bed [39, 40]. 

 

When the gas flow rate is below the minimum fluidisation velocity, particles in the bed remain 

static, and this regime is called ‘fixed bed’. As the gas flow rate in is increased to a point where 

the particle weight is equated by the drag force of the fluid, and bed voidage increases, the bed 

is operating at minimum fluidisation velocity regime. Increasing the gas flow rate beyond the 

minimum fluidisation velocity causes bubbles formation in the system indicating that the bed 

is operating at the bubbling regime. In the bubbling regime when gas flow rate is increased, the 

bubbles grown in size and its diameter almost equates the bed width, this regime is slugging. 

When gas flow rate is increased beyond critical transition velocity, the bubbles in the system 

disappear and turbulent particle flow cluster are observed, this indicate that the system is 

operating in the turbulent regime. If gas flow rate is significantly increased within the turbulent 

regime, large amounts of particles are transported out of the system indicating pneumatic 
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transport regime [41, 42]. The shape and size of air bubbles in slugging and bubbling regime 

have different characteristics. Generally, in the bubbling regime bubbles are small and have a 

spherical structure. In the slug regime bubbles are usually in form of square nosed shape or in 

form of round nosed shape with bubble size approaching the bed inner diameter. Some smaller 

bubbles can also be spotted in the slug regime [43]. Solid-liquid fluidised beds normally only 

have a single operating flow regime, the conventional fluidised bed regime, at which 

fluidisation is homogeneous and solids are distributed uniformly in the system, nonetheless 

flow instabilities can still occur in some cases. [44, 45]. 

 

1.4 Fluidised bed shape 
Based on bed shape, fluidised beds could be categorised into conical, cylindrical, and 

rectangular beds [46]. Cylindrical shaped beds are the most popular type of fluidised bed found 

in industry and laboratory applications when compared to conical shaped beds due to the fact 

that little is known about the conical shaped beds [47]. Conical shaped beds have some 

advantages when compared to cylindrical beds. For immobilised wastewater treatment bio-

reactors, the fluid velocity and drag acting on the bio-particles in the top section of the conical 

bed bio-reactor are less than in the cylindrical shaped bed, and this significant advantage 

prevents bio-particles entrainment and allows a broad range of operating fluid velocities [48]. 

Conical shaped beds finds many applications in processes such as waste water treatment, 

granulation, coating, micro-organism, and drying processes [49]. However, rectangle fluidised 

beds provides a better flow visualisation as a result of their flat faced shaped channel [50-54]  

1.5 Micro-fluidised bed 
Micro fluidised beds are a new concept in chemical engineering and find potential applications 

in a micro process and micro fluidics context [55, 56]. Micro-fluidised beds refer to those with 

the bed cross-section or inner diameter at millimetre scale [57, 58]. These types of bed are 

considered to be a promising way of achieving high quality fluid and solid mixing and process 

intensification of heat and mass transfer under a laminar flow regime and could potentially 

offer novel process windows [57, 58]. Studies on fluidisation in the liquid-gas or liquid-solid 

micro-fluidised beds are still very limited [58, 59]. The main reason is that micro fluidised beds 

hydrodynamics such as solid flux and voidage are extremely hard to be accurately measured 

using current measurement technology such as valves, X-ray tomography, electrical 

capacitance tomography, and magnetic resonance imaging as they are expensive, but more 

importantly it is very difficult to scale down for application in a microfluidics context [60]. The 
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major difference between micro-fluidised bed and macro-fluidised bed flows is the importance 

of surface forces and the effect of walls caused by the small-scale bed size [61]. Like other 

miniaturised technologies, micro-fluidised beds combine the advantages of fluidised beds and 

micro technology systems such as reduced pollution, waste and by products, less energy and 

resources consumption, less operational and capital cost, increased safety, intensive heat and 

mass transfer, and increases chemical reaction conversion rates, good mixing, temperature 

uniformity. They are considered to be ideal for performing reactions in circumstances which 

would normally be limited by heat and mass transfer and unsafe operations [57, 62]. All these 

important qualities make micro-fluidised beds more efficient and sustainable fluid-solid 

processing equipment. The main drawback of microfluidised beds is simply the low scale of 

production, unless there are thousands in parallel. The current applications are mainly in high 

throughput screening and testing of catalyst as it enables fast and reliable measuring of solid 

catalysed reaction kinetics. Micro-fluidised beds are being employed to study particle 

segregation and drying of pharmaceutical materials in the pharmaceutical industry, as active 

pharmaceutical ingredients are costly and extremely hard to acquire during the early phase of 

formulation development [63, 64]. Recently the solid-gas micro-fluidised bed developed by the 

Institute of Process Engineering and the Chinese Academic of Science was successfully applied 

for analysing fast solid-gas reactions such as pyrolysis of biomass and coal, CO2 capture by 

Ca(OH)2, reduction of iron oxides and CuO, steam gasification of char, and combustion of 

graphite [65].  Micro fluidised bed applications includes thermogravimetric analysis of coal 

combustion and gasification, high throughput screening of catalysts, and catalytic oxidation 

processing of volatile organic compounds [65, 66]. The solid-gas micro-fluidised bed is already 

applied for thermogravimetric analysis of coal gasification and combustion, and catalytic 

oxidation processing of volatile organic compounds (VOCs) [67, 68]. For some applications 

continues circulation of particles would be required such as continuous regeneration of catalyst 

or bio-solid particles for which circulating fluidised beds are an excellent technology, in 

particular by improving solid-fluid contacting and reducing back mixing. 

1.6 Significance and innovation 
Whilst there have been many studies on the hydrodynamics of macro-fluidised bed, there is 

limited research on fluidisation at the micro-scale. The first research experiments on fluidised 

beds at the micro-scale were reported by Potic et al. [57]. They experimentally investigated 

liquid-solids fluidisation hydrodynamics using a 1mm inner diameter capillary. They reported 

that the minimum fluidisation velocity predicted using the Ergun equation was in accordance 
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with the minimum fluidisation velocity obtained in the experiment. Zivkovic et al. [61]  

experimentally studied the importance of surface force in a micro-fluidised bed with a cross 

section of 400 x175 μm. They found that the major difference between the micro-fluidised bed 

and their macroscale counterparts was the importance of surface forces which can even prevent 

fluidisation due to particle adhesion to the walls. Doroodchi et al. [69]  experimentally 

investigated fluidised beds hydrodynamics with regards to expansion of the bed, minimum 

fluidisation velocity and pressure drop using tubes of 17.1, 1.2 and 0.8 mm inner diameter size. 

They found when the inner diameter of the tube was reduced, the voidage of the bed increased 

causing an increase in the minimum fluidisation velocity. Liu and co-workers [70]  studied 

minimum bubbling velocity and minimum fluidisation velocities of silica sand particles using 

micro fluidised beds of 12, 20, and 32 mm inner diameter. They found that the minimum 

fluidisation velocities and minimum bubbling velocities increase when the fluidised bed inner 

diameter is reduced. Xu and Yue [66] investigated the hydrodynamics of micro fluidised bed 

using beds with column diameter of 4, 5, 10, 15, 20, and 25 mm. In their studies they 

investigated the influence of fluidised bed height, column diameter, fluid and solid properties 

on the minimum fluidisation velocity and pressure drop. They found that minimum fluidisation 

velocity is a function of fluidised particle and fluid, bed voidage and size distribution. The 

minimum fluidisation velocity of particles reduces with an increase in bed column diameter 

and increases with an increase in bed height. They also reported that the predicted pressure 

drop of micro fluidised beds by the Ergun equation is more than the experimental pressure drop 

value. The difference between the predicted and experimental pressure drop value was 

attributed to the increased bed voidage under reduced bed diameters. A reduction in the bed 

diameter increased the bed voidage resulting in a decrease in the experimental pressure drop 

across the bed. Nonetheless, the difference in pressure drop reduced with an increase in the bed 

diameter. When the bed diameter was close or larger than 15 mm, the experimental pressured 

drop of micro fluidised beds equated to the predicted pressure drop obtained by Ergun equation. 

Rao et al. [71] experimentally investigated the influence of fluidised bed height and diameter 

on the minimum fluidisation velocity. They reported that the minimum fluidisation velocity 

increases with bed height or when the column diameter of fluidised bed is reduced. Fei and 

Liang [60] studied the influence of wall in the solid-gas micro fluidised beds using FCC 

particles in beds ranging from 0.7 – 5 mm. They reported that the wall friction, minimum 

fluidisation velocity and bubbling in solid-gas micro-fluidised beds increases with reduction in 

bed size. Wall friction, minimum fluidisation velocity and bubbling velocity is greater for 

micro-channels compared to larger channels. Tang et al. [59] experimentally investigated the 
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characteristics of solid-liquid fluidisation in micro-fluidised beds using visual measurements. 

They found that the theoretical minimum fluidisation velocity by Ergun equation is 5 times less 

than the experimental minimum fluidisation velocity, and the increase in the measured 

minimum fluidisation velocity is associated to the wall effect, which becomes sufficiently great 

with decreasing bed column diameter. Li et al. [72] investigated the hydrodynamics 

characteristics of liquid-gas-solid fluidisation in a micro-fluidised bed system. They found that 

wall effect (higher particle to bed ratio) significantly influences the fluidisation behaviour and 

flow regime transition in micro-fluidised bed system causing flow regime transition at reduced 

solid holdup. Yanjun et al.[73] also studied the liquid-gas-solid fluidisation characteristics in 

micro-fluidised bed system experimentally. They found that minimum fluidisation liquid 

velocity and transition velocity increases with wall effect. Jia et al. [74] investigated the 

influence of oblique angle on the pressure drop and fluidisation characteristics in micro-

fluidised beds using computational particle fluid dynamics (CPFD) software to simulate the 

fluidisation behaviour. They found that the bed oblique angle significantly influences the fluid, 

pressure and solids distribution in the bed due to effect of walls caused by the small scale bed 

size. The bigger the bed oblique angle is, the more uniformly the particle are distributed in the 

micro-fluidised bed, which indicates that micro-fluidised beds with oblique angle of 0° 

provides better fluid-particle contact when compared with inclined bed. The pressure drop in 

micro-fluidised bed does decreases with an increase in oblique angle of the bed. Zhongguo and 

co-workers[75] studied methylene blue photocatalytic degradation in a micro-fluidised bed 

system, and they reported an increase in mass transfer coefficient of about 11-13 times and an 

increase in apparent reaction rate constant of 5 times for coated inner fluidised bed wall when 

compared with non-coated inner bed wall. They found when the particles inside the bed and 

the bed wall were coated with catalyst, the ratio of degradation are 5 – 35% greater when 

compared with non-coating particle and bed wall. Xiangnan et al.[76] studied the bed 

expansion behaviour of a solid-liquid fluidisation in micro-fluidised bed channel. They found 

that in solid-liquid micro-fluidised bed system wall effect at higher particle to bed ratio leads 

to an increase in the expansion ration and larger local voidage. Pereiro et al.[77, 78] 

investigated the influence of magnetic field profile, and the interaction of magnetic bead 

dipolar on the flow regime of a micro-fluidised bed. They reported that their system shares lots 

of characteristics similar to gravity based fluidised bed system such as the existence of fixed 

bed and minimum fluidisation velocity regime, bubbling bed, slugging bed, turbulent bed, and 

pneumatic transport regime.  
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Albeit there are few studies of solid-liquid micro-fluidised beds as outline above, the proposed 

research will be the first experimental study of liquid-solid circulating fluidised beds at the 

micro-scale. It is well known that solid particle handling in micro-technology devices remains 

one of the big challenges in the field [55, 79]. Development of a circulating micro-fluidised 

bed is providing one solution to the problem, e.g. for catalyst recovery, recycle and recovery. 

The study will provide new fundamental knowledge (hydrodynamics of solid-liquid micro 

circulating fluidised bed) but also develop a new measurement technique (e.g. micro-valves for 

solid flow measurement). This can be a new platform for solids metering and dosing techniques 

as another solid handling issue in the micro-technology field. 

1.7 Motivation 
The long term goal of my research project is to design and study the hydrodynamics of a solid-

liquid micro-circulating fluidised bed (µ-CFB) system for possible application as novel micro 

(bio)-reactors, as well as for diagnostics high-throughput kinetics screening, high-heat flux 

cooling and other applications. In order to successfully implement this, it is very important to 

understand the hydrodynamic parameters such as the influence of surface forces, wall effect, 

minimum fluidisation velocity, and solid flux as they play a crucial role in the hydrodynamic 

behaviour and determine the bed performances, as well as dictating the solid-liquid contacting. 

Even though solid-liquid flow is simpler and stable than solid-gas flow in micro-fluidised bed 

system, there is very limited research on the effect of parameters such as liquid viscosity, bed 

geometry, solid circulation rate, surface forces and wall effect on solid-liquid flow in micro-

fluidised bed. Thus, it is essential to study the solid-liquid micro-circulating fluidised bed 

hydrodynamics. Therefore, in the present research investigation an attempt will be made to 

study the effect of these important parameters in the solid-liquid micro-circulating fluidised 

bed hydrodynamics. 

The overall aim of the research project was to investigate the hydrodynamics of a solid-liquid 

Micro-Circulating Fluidised Bed (µCFB). The specific objectives of the study were: 

1. Design and build a novel micro-circulating fluidised bed. 

2. Study the influence of surface forces and wall effect on the Hydrodynamics of liquid-

solid micro-circulating fluidised bed (LS µCFB) 

3. Solid flux measurement in a micro-circulating fluidised bed. 

4. Examine the effect of liquid viscosity on the hydrodynamics of LS µCFB   

5. Study the influence of CFB geometry on the hydrodynamics of LS µCFB  



10 
 

6. Carry out flow regime mapping of a liquid-solid micro-circulating fluidised bed (LS 

µCFB) 
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 Literature review 

2.1 Circulating fluidised bed 
The circulating fluidised bed is a type of fluidised bed which was developed in the late 1960s 

by Reh for alumina calciners application [38]. Various different names has been adopted to 

describe the circulating fluidised bed like: line reactor, fast fluidised bed, and recirculating bed 

riser [80]. Circulating fluidised bed technology was invented to enable particles entrained in 

high velocity fluidisation system to be recycled back to the system to increase the production 

rate in comparison to others fluid-solid contacts equipment such as fluidised bed combustors 

[38]. The word circulating means that in circulating fluidised beds, solids are separated from 

the fluid and recirculate back to the bed, which is a fundamental and vital part of the bed 

configuration [38]. There has been a strong academic and industrial interest in circulating 

fluidised bed technology in the past 30 years due to the need to improve important processes 

in industry such as fluid catalytic cracking units (conversion of crude oil into essential 

products) and circulating fluidised bed combustors [38]. The majority of circulating fluidised 

beds are run in the fast fluidisation regime and there is no recognisable upper bed surface [16]. 

Circulating fluidised beds offer lots of advantages when compared to other types of fluid-solid 

contacting technique such as the packed bed and bubbling bed, as circulating fluidised beds 

remove several problems found in other beds. For example, in circulating fluidised beds 

particle back mixing is significantly reduced, solid-fluid contact is improved while solid and 

gas axial dispersion is limited, solid residency time is longer and controllable, solid cooling 

and regeneration of catalyst and it is much simpler to have staged processes [81]. Base on solid-

fluid system, circulating fluidised beds could be categorised into solid-gas, solid-liquid and 

solid-liquid-gas circulating fluidised beds [38]. 

 Solid-gas circulating fluidised bed 
Solid-gas circulating fluidised beds ( SGCFB) are widely used processing technology in 

various chemical process industry, predominantly in energy, petrochemicals, and 

environmental sectors for solid-gas catalytic reactions, solid-gas reactions, and physical 

process such as volatile organic compound or drying due to their advantage already mentioned 

above such as reduced back mixing, enhance carbon conversion rate, good solid-gas contact, 

improved heat transfer and possess excellent capability to manage particle agglomeration [38, 

82, 83]. They have recently been applied in solar energy capture and storage systems and waste 

recovery to replace thermal fluids and molten salt as transfer and storage medium [84, 85]. 
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Numerous research investigation has been done to map the solid-gas circulating fluidised bed 

flow regime. Zenz [86] experimentally investigated the solid-gas flow characteristics and 

suggested a flow diagram where the concurrent pneumatic and dense fluidisation flow regime 

were indicated, however the turbulent zone was not depicted. Yerushalmi and co-worker [87] 

also suggested a solid-gas circulating fluidisation flow regime map. In their experimental study 

they plotted the bed voidage as a function of gas flow rate to delineate the regime of solid-gas 

circulating fluidised beds. Li and co-workers [88] also proposed a similar regime map by 

plotting the bed voidage as a function of gas flow rate. Squires et al. [89] proposed a solid-gas 

circulating flow regime, however in their report they extended the regime map to incorporate 

the transport regime. Later on Bi and Grace [43] proposed a flow regime map for solid-gas 

circulating fluidised beds which includes fixed bed, bubbling, slugging, turbulent, circulating 

fluidisation and transport regimes depending on the particle motion as shown in figure 3 by 

plotting the non-dimensional superficial gas velocity (U*) against non-dimensional the 

diameter of particles (dp
*). 

𝑈∗ =
𝑅𝑒

𝐴𝑟1 3⁄
                                                        (2) 

𝑑𝑝
∗ = 𝐴𝑟1 3⁄                                                          (3) 

 

Figure 3: solid-gas circulating fluidised bed regime map [38]. 
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Initially as the gas flow rate is below the minimum fluidisation velocity, (Umf), granular 

material in the bed remains static (fixed bed) as show in in figure 4.  

 
Figure 4. Flow regime in solid-gas circulating fluidised bed [38]. 

 

 

The passage from the fixed bed regime to fluidisation is indicated by the minimum fluidisation 

velocity, which is the minimum superficial gas flow rate where particles are fluidised. Umf
* can 

be predicted using various available equations, such as the Grace Equation revised from the 

Wen and Yu equation [90] 

𝑅𝑒𝑚𝑓 = √27.22 + 0.0408𝐴𝑟 − 27.2                       (4) 

Where Re is Reynolds number and Ar is Archimedes number. 

With increasing gas flow rate beyond the minimum bubbling velocity (Umb), bubble formation 

in the system is caused, indicating that the bed is operating at bubbling regime. Minimum 

bubbling velocity could be defined as the minimum gas flow rate where air bubbles first 

appears in the system and it is a function of solid properties. Minimum bubbling velocity is 

larger than minimum fluidisation velocity for group A particles of Geldard powder 
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classification and equal to minimum fluidisation velocity for group B and D particles [91]. 

Minimum bubbling velocity could be predicted using e.g. Abrahamsen and Geldart 

dimensional correlation [92] 

𝑈𝑚𝑏 = 33𝑑𝑝 (
𝜌𝑔

𝜇𝑔
)

0.1

                                (5) 

where ρg and µg are density and viscosity of gas respectively 

In the bubbling regime when gas flow rate is increased, the bubbles becomes larger and its 

diameter almost equates the bed diameter, this regime is slugging. The minimum slugging flow 

rate (Ums), could be predicted using e.g. Stewart and Davidson equation [93]: 

𝑈𝑚𝑠 = 𝑈𝑚𝑓 + 0.07√𝑔𝐷                       (6) 

When gas flow rate (Ug) is increased beyond (Uc) the velocity where pressure fluctuation 

standard deviation reaches maximum, the system enters the turbulent regime which could be 

estimated using the Grace and Bi equation [43] 

𝑅𝑒𝑐 = 1.24𝐴𝑟0.45    (2 < 𝐴𝑟 < 1 × 108)           (7) 

Within the turbulent regime when gas flow rate is increased above the critical transition 

velocity (Utr), the system enters the circulating fluidised bed regime where particles are 

transported to the top of the column and recirculated back to the system. Bi and co-worker [43] 

suggested a better way to predict the transition velocity from turbulent to circulating fluidised 

bed based on the critical velocity (Use). Utr depends on the location and distance between the 

two taps which measures the pressure drop across the system. Use behave likes Utr and it is 

more reliable. Use can be predicted using Bi et al. equation 

𝑅𝑒𝑠𝑒 = 1.53𝐴𝑟0.50    (2 < 𝐴𝑟 < 4 × 106)               (8) 

If gas flow rate is increased with a great extent within circulating fluidised bed regime, the 

system will enter the transport regime where lots of particles are carried out of the system. 
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2.1.1.1 Critical transition velocity in solid-gas circulating fluidised bed system 

A number of experimental studies has been done to determine the critical transition velocity 

(Utr), which demarcates the transition from turbulent fluidisation to circulating fluidisation 

regime as shown in figure 5.  

 
Figure 5. Previous measurement technique to determine the critical transition velocity (a) 

Yerushalmi, (b) Schnitzlein (c) Perales, (d) Horio [94-97]. 

 

Yerushalmi et al. [94] suggested a method to determine the Utr by plotting the pressure gradient 

as a function of particle circulation rate. The particle circulation rate was measure with help of 

a butterfly valve.  By closing the valve at a given time, particle accumulation above the valve 

was measured giving the particle circulation rate. The pressure drop was measure with aid of a 

pressure transducer installed across the column riser and linked to a PC through an Analog to 

Digital Converter (ADC). The critical transition velocity in their experiment was defined as the 

critical velocity at which the sharp change in the pressure gradient disappears as particles 

circulation rate increases. Schnitzlein et el. [95] determined the Utr by a linear extrapolation 

method, the maximum particle circulation rate was plotted as a function of gas velocity. Utr 

was given by a tangent curve as seen in figure 5b. Perales [96] determined Utr by the emptying 

bed methodology, which was done by measuring the time needed to emptying all the particles 
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in the bed against gas velocity when no fresh particles were introduced into the system. The 

Utr was defined as the inflection point in the emptying time plot as a function of gas velocity. 

Horio et al. [97] also determined the Utr by plotting the voidage gradient (∂ɛ/∂h) as a function 

of gas velocity (U). The voidage were obtained by the pressure gradient at different locations 

across the column riser. The pressure drop was measured by ten pressure transducers which 

were installed across the column riser. They defined Utr as the velocity at which the voidage 

gradient at inflection point stops decreasing with gas velocity.  

Although fluidisation can be achieved either by liquid or gas as fluidising medium, solid-liquid-

circulating fluidised beds did not receive much attention in the fluidisation literature compared 

to gas-solid circulating fluidised beds. However, experimental knowledge on solid-gas 

circulating fluidised beds can eventually be applied to study solid-liquid circulating fluidised 

bed hydrodynamics [98, 99]. 

 Solid-liquid circulating fluidised bed (CFB) 
Solid-liquid fluidisation has been viewed as a completely academic matter by most researchers. 

But, new processes in various chemical sectors such as hydrometallurgy, water treatment, food 

processing, and biochemistry have prompted the urgency for new type of particle-fluid contact 

device which could control reaction and regeneration at the same time and reduce small and 

light particle entrainment [100]. The solid-liquid circulating fluidised bed is one of these 

excellent solid-fluid contacting devices. It possesses many advantages over the conventional 

solid-liquid fluidised bed which makes it useful for industrial operations where particle-liquid 

contact is vital, e.g. improved heat transfer performance, and consequent uniform temperature, 

limited back mixing, and excellent solid-liquid contact [101]. The component of a solid-liquid 

CFB include two columns the storage vessel or down comer and the riser with continuous 

particle circulation between the two columns, solid return pipe, and solid feeding pipe or return 

leg as shown in figure 6. Under normal conditions the column riser operates in the circulating 

fluidised bed regime (liquid superficial velocities are above the particle terminal velocity) and 

the storage vessel is a slower column and operates in the fixed mode regime or in the expanded 

mode regime [102]. The circulating fluidised bed system takes place when solids are 

transported up the riser by upward motion. Entrained solids are collected at the top by a solid-

liquid separator and recirculated back to the system by downwards motion. In the solid-liquid 

circulating fluidised bed system the contacting time between the particle and liquid depends on 

the solid inventory (solid amount in the volume of the whole CFB system) in addition to the 

fluid velocity [103].  
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Figure 6.  Schematic illustration of solid-liquid circulating fluidised bed [104]. 

 

Many research studies on the solid-liquid circulating fluidised bed hydrodynamics and its 

application in the processes industries have been carried out in the last decades [33, 36]. Most 

investigators studied the solid-liquid fluidised bed axial particle volume fraction distribution. 

They observed axial uniform but radial non-uniform solid distribution in the circulating 

fluidised bed regime flow structure while the flow structure in the conventional and transport 

regime was uniformly distributed in both radial and axial direction. This is different to the non-

uniform behaviour of solid-gas CFB in both directions.  

Lan et al. [105]  experimentally studied the effect of solid volume fraction on the 

hydrodynamics of a solid-liquid circulating fluidised bed by predicting the solid volume 

fraction from the pressure gradient in the system. The pressure gradient was measured by a 

manometer. 

∆𝑃

∆𝑧
= (1 +

ℎ

∆𝑧
) 𝜌𝑙𝑔                               (9) 

ΔP/Δz is the pressure gradient, ρl the liquid density, g the gravity, h, riser height, Δz average 

distance from the bottom of the column  
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By ignoring the pressure drop as the superficial liquid velocity in the riser and downcomer was 

very low (9 and 1.9 mm/s respectively). The voidage, solid volume fraction and pressure could 

be linked as shown in equation 10 

∆𝑃

∆𝑧
= (𝜀𝑠𝜌𝑠 + 𝜀𝑙𝜌𝑙)𝑔                            (10) 

εs is the solid volume fraction and  εl the bed voidage,  εs + εl = 1, the solid volume fraction and 

pressure gradient relation is expressed as shown in equation 11 

𝜀𝑠 =
(𝜌𝑠 − 𝜌𝑙)

𝜌𝑠

ℎ

∆𝑧
                                (11) 

In their report based on the solid volume fraction, they suggested that the downcomer can be 

divided in three regions, the dense region, diluted region, and free board region. Liang and co-

workers [106] experimentally measured the solid volume fraction radial distribution using 

electrical conductivity and observed the distribution was non uniform. They reported a radial 

non uniform flow structure in the circulating fluidised bed regime which differs from the 

uniform flow structure in the axial and radial direction in the conventional and transport regime. 

The bed non uniformity radially was directly proportional to the solid circulation rate and liquid 

velocity. When the solid circulation rate and liquid velocity were increased the bed non 

uniformity radially also increased. Zheng and co-workers [107] also reported the radially non 

uniform flow distribution found in circulating fluidised bed regime using a fibre optic probe. 

They found that the properties of solids and operating conditions plays an important role in the 

radially flow distribution. The non-uniform radially flow structure increases when the particle 

circulation rate is higher. System with lower solids density tend to have less radially non 

uniformity flow distribution for the same cross section average bed voidage. Fluidisation in 

solid-liquid circulating fluidised beds is homogeneous and solid particles are distributed 

uniformly in the system, with limited radial non-uniform distribution found in the circulating 

fluidised bed regime. But the radial non uniform distribution found in solid-liquid fluidised 

beds is smaller compared to the non-uniform distribution in solid-gas fluidised bed [106, 107]. 
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Table 1. Solid-liquid circulating fluidised bed vs solid-gas circulating fluidised beds [106, 107]  

 SLCFB SGCFB 

Voidage distribution in axial direction uniform Non uniform 

Voidage distribution in radial direction Non uniform Non uniform 

Fluid velocity in radial direction Non uniform Non uniform 

Slid velocity in radial direction Non uniform Non uniform 

Non uniformity significant Even more significant 

cluster Not seen Clearly seen 

Transition velocity Ucr < Ut Utr ≫ Ut 

 

Vidyasagar et al. [108]  experimentally investigated the solid inventory and viscosity of the 

liquid effect on the critical transition velocity and solid hold up and found that the critical 

transition velocity from the conventional fluidised bed to the circulating fluidised bed is 

inversely proportional to the solid inventory and auxiliary liquid velocity, i.e. it decreased when 

the solid inventory and auxiliary liquid velocity are increased. On the other hand they found 

that the average solid volume fraction was proportional to the solid inventory and the liquid 

superficial velocity, it increased with increasing solid inventory and liquid superficial velocity. 

Natarajan and co-worker [36, 98]  investigated solid-liquid circulating fluidised bed behaviour 

by analysing solid volume fraction and circulation rate variation. They found that there are two 

regions in the circulating fluidisation regime. The first region is where solid flux increases 

rapidly with increasing superficial liquid velocity and the second region is where solid flux 

insignificantly varies with increasing superficial liquid velocity. Sang and Zhu [109]  

investigated how particle size and density affects the solid volume fraction in the SLCFB 

system by analysing the normalised velocity, excess velocity (Ul – Ut), and liquid velocity. 

They found that excess velocity was the best parameter to analyse the effect of solid sizes and 

densities on solid volume fraction. 

Hashizume et al. [110] studied the pressure drop in a solid-liquid circulating fluidised bed riser. 

In their experimental investigation the pressure drop was obtained using an inverted U tube 

manometer located in the centre of the column riser. From their experimental results their 

suggested a pressure drop method with a predicting accuracy of ± 20%. Grbavcic et al. [111] 

have investigated the pressure drop in the SLCFB riser using a water manometer. Based on 

their experimental investigation they suggested a one dimensional steady state solid-liquid flow 

model which can predicted the pressure drop based on the momentum and continuity equations 

for solid-fluid phases of Nakamura and Capes [112]. Liang  et al. [113] also conducted an 

experimental studied of pressure drop in the SLCFB riser using a manometer. Based on their 
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experimental results they developed a theoretical model to predict the pressure drop in the 

solid-liquid system. 

Geometry design can greatly influence the flow characteristics in a solid-liquid circulating 

fluidised bed system. Zheng and Zhu [107] experimentally investigated particle velocity in a 

solid-liquid circulating fluidised bed by varying particle density, solid inventory and solid feed 

pipe diameter. They reported that solids feed pipe diameter and solid inventory greatly 

influence the operating range and particle velocity of liquid-solid circulating fluidised bed 

system. Natarajan [104] investigated flow characteristic of SLCFB by varying the solid feed 

pipe diameter and reported that the solid circulation rate increases with increase solid feed pipe 

diameter. Feng et al. [114] report that bed geometry such as location of the riser outlet and 

solid feed pipe strongly influence the hydrodynamics of solid-liquid circulating fluidised bed.  

In their report they found that the higher the column riser exit, the less the particle circulation 

rate is, and the solid feed pipe diameter has more influence on the solid circulation rate than 

the length of solid feed pipe does. 

2.1.2.1 Solid-liquid circulating fluidised bed industrial applications 

The solid-liquid circulating fluidised bed is finding application in many industrial processes, 

for example: waste water treatment, bioconversion of agricultural-waste into lactic acid, 

fermentation, linear alkyl benzene production, photo-catalytic ozonation [99, 115]. A common 

characteristics of these processes is that they include a solid catalyst and liquid reactant and 

major reactions, desorption, or anoxic processes takes place in the column riser and catalysts 

regeneration, aerobic process, or adsorption takes place in the storage vessel (also known as 

the down comer) [102, 103]. 

2.1.2.2 Solid-liquid circulating fluidisation regime map 

A hydrodynamics investigation is fundamental in order to develop and design a solid-liquid 

fluidised bed as a contact equipment or reactor for future industrial application because it 

dictates the bed performance and solid–liquid contacting [38]. Generally, the solid-liquid 

fluidised bed can be classified into four operating regimes [106, 116]: fixed or packed bed, 

conventional particulate fluidisation, circulating fluidisation, and transport regimes as a result 

of changing the superficial liquid velocity and consequent change in solid-particle motion. At 

the beginning when the superficial liquid velocity is below the minimum fluidisation velocity, 

solids in the bed remain stationary (fixed bed regime), figure 7(a). When the superficial liquid 

velocity is increased beyond the minimum fluidisation velocity, the solid-liquid system enters 

the conventional particulate fluidisation regime, as shown schematically in figure 7(b). In 
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general the minimum fluidisation velocity can be easily calculated using the Ergun equation 

[117] and equating it to the buoyant weight of the bed [118, 119].  

∆𝑃

𝐻
= 150

𝜇𝑓𝑈𝑚𝑓(1 − 𝜀)2

𝑑𝑝
2𝜀3

+ 1.75
(1 − 𝜀)

𝜀3

𝜌𝑓𝑈𝑚𝑓
2

𝑑𝑝
                                                 (12) 

where µf  and ρf   are fluid viscosity and density respectively, dp represent the diameter of solid-

particle, ∆P is the pressure drop, g is the gravitational acceleration, ε is voidage and H is bed 

height. The pressure drop required for minimum fluidisation is given by: 

∆𝑃 = (1 − 𝜀)(𝜌𝑝 − 𝜌𝑓)𝑔𝐻                                                                                          (13) 

where ρp and g are particle density and gravitational acceleration respectively. 

 
Figure 7. Flow regimes in solid-liquid circulating fluidised bed [106, 107]. 

 

In the conventional particulate fluidisation operation regime, there is a clear borderline 

separating the lower dense zone of the bed and the higher freeboard zone. When the superficial 

liquid velocity is increased above the critical transition velocity, the solid-liquid system enters 

the circulating fluidised bed regime where a number of particles are moved out of the system 

and it is important to re-introduce particles to retain the bed [106, 107], figure 7(c).  If the 

superficial liquid velocity is increased to a great extent within the circulating fluidised bed 

regime, the solid-liquid system will enter the transport regime where lots of particles will be 

carried out of the system. The transition velocity from circulating fluidised bed regime to 

transport regime varies with solid circulation rate. A big solid circulation rate postpones the 

passage from the circulating fluidised bed to transport regime, due to the fact that bigger solid 

circulation rate causes an increase in the solid volume fraction, and this results in an increased 
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non-uniform radially flow distribution. The superficial liquid flow rate must be high enough to 

achieve uniform radial flow distribution and entering the transport regime [106, 107]. The 

critical transition velocity could be defined as the transition or passage from the conventional 

particulate fluidised bed regime to a circulating fluidised bed regime [106, 116]. The critical 

transition velocity in the system is reached when the solid velocity becomes zero with a 

reduction in superficial liquid velocity [106]. Solid-liquid circulating fluidised beds systems 

also have a transition phase from conventional particulate fluidised bed regime to circulating 

fluidised bed regime where the borderline separating the two zones  is not clearly defined and 

the dense zone expands and a number of particles are carried out of the bed [106]. 

 

Liang and co-workers [106]  experimentally investigated the characteristics of the solid-liquid 

circulating fluidised bed flow and reported a solid-liquid fluidisation regime map as shown in 

figure 8 by plotting non-dimensional solid-particle diameter (dp
*) against non-dimensional 

superficial liquid velocity (Ul
*) as given by Equations 14-17. 

𝑑𝑝
∗ = 𝐴𝑟1 3⁄                                                                                                             ( 14) 

𝐴𝑟 =
𝑔𝑑𝑝

3(𝜌𝑝 − 𝜌𝑓)𝜌𝑓

𝜇2
                                                                                         (15 ) 

𝑈𝑙
∗ =

𝑅𝑒𝑝

𝐴𝑟1 3⁄
                                                                                                                (16)  

𝑅𝑒𝑝 =
𝜌𝑙𝑑𝑝𝑈

𝜇
                                                                                                             ( 17) 

The operation regime map for solid-liquid fluidised beds suggested by Liang and co-workers 

was identical to the operation map suggested by Grace [38]  for solid-gas circulating fluidised 

beds. In figure 8, the Ucr is the critical transition velocity which indicates the transition from 

conventional particulate fluidised bed to circulating fluidised bed occurs at approximately 60% 

of the particle terminal velocity (Ut). Ua is the velocity at which transition from the circulating 

fluidised bed to the transport regime occurs. The Stokes particle terminal velocity for laminar 

flow, where Re < 1, which is applicable to the research project is: 

𝑈𝑡 =
(𝜌𝑝 − 𝜌𝑓)𝑔𝑑𝑝

2

18𝜇
                                                                                                     ( 18) 
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Figure 8. Operation regime map for solid CFB, adapted from Liang [106]. 

 

2.1.2.3 Transition from conventional fluidisation to circulating fluidisation regime 

Liang and co-workers [106]  suggested a method to find the critical transition velocity (Ucr), 

the transition from conventional particulate fluidised bed to circulating fluidised bed by 

plotting the solid circulation rate as a function of the liquid velocity as shown in figure 9.  In 

their method the critical transition from conventional fluidised bed to circulating fluidised beds 

occurs at the point where the solid circulation rate becomes zero when superficial liquid 

velocity is reduced. The Ucr was found to be around 50 to 60% of the particle terminal velocity 

(Ut) and was dependent on the bed design, solid inventory, and operational conditions [99]. 

Liang and co-workers’ circulating fluidised bed device had a third liquid stream close to the 

downcomer which was sufficiently high to fluidise particles in the downcomer. This third 

stream carries particles from the downcomer to the bottom of the column riser and joins the 

other two streams (primary liquid flow rate and auxiliary liquid flow rate) to fluidise particles 

at the column riser. However, they did not take into account this third stream when reporting 

the total liquid flow rate and this could explain why their reported critical transition velocity 

(Ucr) was lower than the calculated terminal velocity (Ut) [116]. 

Transport regime 

Fixed bed regime 

Conventional 
fluidisation 
regime 

Circulating 
fluidisation 
regime 
 

Umf 

Ucr 

Ua 

Ut 
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Figure 9. Solid-particles circulation rate vs. Superficial liquid velocity for determination of 

critical transition velocity Ucr reported by Liang [106]. 

 

Table 2. Critical transition velocity and terminal particle velocity for various particle reported 

Liang[106] . 

Particle ρs (kg/m3) dp (mm) Ucr (cm/s) Ut (cm/s) Ucr/Ut 

Silica gel A 1363 0.385 1 1.85 0.54 

Silica gel B 1375 0.57 1.9 3.32 0.57 

Glass beads A 2460 0.405 3.1 5.29 0.59 

Glass beads B 2440 0.777 6.3 11.1 0.57 

 

Zheng and co-workers [116]  in the other hand experimentally investigated the critical 

transition velocity from the conventional particulate fluidised bed to the circulating fluidised 

bed regime.  They suggested an onset velocity (Ucf) which gives the lowest critical transition 

velocity from the conventional fluidised bed to the circulating fluidised bed regime and is 

independent of the solid inventory, equipment design and operating conditions. The Ucf   was 

found by the ‘emptying bed methodology’ which was done by measuring the time needed to 

empty the solid-particles in the bed using different superficial liquid velocities as shown in 

figure 10. The Ucf is defined as the inflection point in the emptying time plot as a function of 

the liquid velocities. It was found to be approximately equal to the particle terminal velocity. 

They suggested that Ucr is the actual transition from the conventional to circulating fluidised 

bed regime and Ucf represents the lowest transition from the conventional to circulating 

fluidised be regime [107, 116]. 
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Figure 10. Time needed to empty all the solid particles in the bed vs. superficial liquid 

velocity for determination of onset velocity Ucf reported by Zheng and co-workers [116] 

 

 

Table 3.  Critical velocity and onset liquid velocity suggested by Zheng [116]. 

Particle ρs (kg/m3) dp (mm) Ucr Ucf (cm/s) Ut (cm/s) Ucr/Ut Ucf/Ut 

Plastic 

Beads 

1100 0.53 1.17 1.15 1 1.17 1.15 

Glass 

beads I 

2490 0.51 6.47 6.45 5.9 1.1 1.1 

Glass 

Beads 

II 

2541 1 - 16.30 14.4 - 1.13 

Steel 

shot 

7000 0.58 24.84 23.7 21.6 1.15 1.1 

 

Nirmala and co-worker [99] also determined the critical transition velocity, Ucr by plotting the 

solid circulation rate as a function of the liquid velocity.  The solid circulation rate was 

measured using a ball valve. When the valve was closed in the downcomer, the accumulation 

of particles above the valve at given time could be measured, giving the particle circulation 

rate. The critical transition velocity was taken as the point where the solid circulation rate 

becomes zero when reducing superficial liquid velocity. The Ucr was found to be 1.33 times 

the particle terminal velocity (Ut). 
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 Solid-liquid-gas circulating fluidised bed 
Solid-liquid-gas fluidisation could be defined as the fluidisation of particles by liquid and gas 

as the fluidising media where liquid could act as the continuous phase and gas as the dispersed 

phase or vice versa [120, 121]. Solid-liquid-gas circulating fluidised beds (SLGFB) finds 

applications in various  environmental, petroleum, chemical and biochemical applications for 

processes such as sewage sludge pyrolysis, hydrogenation, petroleum hydro-treating, 

production of methanol, ethanol fermentation, biological waste water treatment and catalysis 

reaction where contacting of particles with both liquid and gas are required [122, 123]. They 

are extremely important processing technology for biochemical and chemical applications in 

which independent control of solid, liquid, gas phases holdup and continuous regeneration of 

catalyst is required to guarantee an undisturbed operation mode [124, 125]. In these types of 

bed, the adsorbents or deactivated catalyst are continuously regenerated by particle circulation 

between the riser where reaction takes place and the downcomer where regenerations are 

performed [126]. Solid-liquid-gas circulating fluidised bed have a number of advantages such 

as uniform and fine bubbles, better mass and heat transfer rate, higher liquid and gas flow rate, 

excellent solid-liquid and gas contacting when comparing to conventional solid-liquid-gas 

fluidised beds [121, 122].  The higher shear stress differences between the riser and downcomer 

in SLGCFB could be exploited to promote biofilm renewal in circulating fluidised bed bio-

reactors, where micro-organisms can be immobilised on the inert particle surface creating an 

active micro-organism layer [125, 127]. 

Solid-liquid-gas circulating fluidised bed has been the subject of numerous research 

publications in the past 20 years. Liang et al. [122] experimentally investigated the solid-liquid-

gas circulating fluidised bed hydrodynamics by using a conductive probe. They observed a 

uniform gas and particle hold ups distribution in the riser column, and a non-uniform radially 

distribution. Yang et al. [128] investigated the liquid flow structure in SLGCFB using an 

electrolyte tracer method. They reported a non-uniform radially liquid velocity distribution. 

The non-uniform radial liquid velocity in the SLGCFB are more uniform compare to solid-

liquid gas fluidised beds (SLGFB). Jin et el. [129] has studied the flow characteristics in the 

solid-liquid-gas circulating fluidised bed, and proposed a flow regime map as shown in figure 

11 which includes, coalesced bubble, dispersed bubble, slugging, recirculation and transport 

regime when liquid flow rate is increase. At the start the system operates at the coalesced 

bubble regime which is characterised by lower liquid flow rate and intermediate gas flow rate. 

Bubbles at this regime are larger with wide distribution size as a result of increasing 

coalescence bubble. Increasing liquid flow rate within coalesced regime causes a reduction in 



27 
 

bubbles size indicating that the system is operating at dispersed bubble regime where bubbles 

are small and also much uniformly distributed. The transition from coalesced bubble regime to 

dispersed bubble regime takes place when gas hold up increases with increasing liquid flow 

rate. When the liquid flow rate is increased above the dispersed bubble regime, the system 

enters the recirculation regime where a number of particles are carried out of the riser column 

and recirculated back to the system via the solid feed pipe, and it is important to re-introduce 

particles to retain the bed. Within the recirculating fluidisation regime if liquid flow rate is 

further increased, the system will enter the transport regime. Liang and co-worker [130] 

reported that it could potentially be possible to map the circulating fluidisation regime of the 

solid-liquid circulating fluidised bed and the transport regime of the solid-gas circulating 

fluidised bed within the recirculation regime in the solid-liquid-gas circulating fluidised bed. 

 

 
Figure 11. Solid-liquid-gas circulating fluidised bed regime map [11, 38] 
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2.2 Inverse fluidisation 
Inverse fluidisation is a process by which particles with a density smaller than the continuous 

liquid, are fluidised by a downwards flow of the continuous liquid [131, 132]. Inverse fluidised 

beds are very effective solid-liquid contact devices for biological waste water treatment 

compared to other types of fluidised beds, i.e. bio-film thickness could effectively be controlled 

to prevent intra-biofilm diffusional limitations[133, 134]. Figure 12 shows the schematic 

fluidised bed and inverse fluidised beds. The inverse fluidisation process has several 

advantages such as high transfer rates, particle attrition is very limited, bio-film thickness are 

effectively controlled and it can easily be re-fluidised if power outage occurs [132, 133]. 

Inverse fluidised beds find numerus applications in many industrial applications such as in 

aerobic waste-water treatment, food processing, biotechnology and environmental engineering. 

Inverse fluidised beds have been important tools in the treatment of waste water from wine, 

sugar and distillery industries [132, 133]. 

Figure 12. Fluidisation and inverse fluidisation process [131]. 

 

 

2.3 Additive manufacturing technology 
The controlled manipulation of small volumes of fluids at micrometres length scales provides 

important advantages for chemical and biological applications, including inkjet printers, waste 
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water treatment, cell biology research, chemical micro-reactor, medical diagnostics, drug 

screening, micro-processor cooling, protein crystallization, genetic analysis, electro-

chromatography, fuel processing and power generation [135, 136]. Historically, the scaling of 

fluidic systems has primarily relied on micromachining technologies that were developed for 

semiconductor and microelectromechanical systems industries [137]. Notably, soft lithography 

techniques for micro-moulding and bonding elastomeric materials, such as 

polydimethylsiloxane (PDMS), have served as the basis for most of current microfluidic 

systems [137]. However, these techniques have many known limitations, such as the 

complicated commercial translation of academic research, because of difficulties in large 

volume manufacturing [138]. These techniques require much space to hold multiple pieces of 

equipment, are labour intensive, cause time wastage when making a change in design, and 

requires highly specialized skills [139]. For scientific research, however, it is often more 

important to minimize the technological and temporal effort for device fabrication to quickly 

and easily adopt microfluidic devices to new demands and developments [140]. Fortunately, 

the rapid development of additive manufacturing technology in terms of resolution and speed 

is providing a solution to the problem [140, 141].  

Additive manufacturing is the process which fabricates three dimensional structures by adding 

layer upon layer under computer control [140, 141]. In the field of microfluidics, additive 

manufacturing technology, also known as 3D printing, offers the capability to directly print 

complex 3D microfluidic devices with low-cost desktop printers, changing the way in which 

such devices are designed, and manufactured [142]. Compared with other microfabrication 

techniques, 3D printing requires little training outside of the ability to use computer-aided 

drafting software [142]. Fabrication can be accomplished in relatively short amounts of time, 

with a build time of approximately 4 hours for a structure of ∼2 mm x 2 mm dimensions [143]. 

Perhaps more importantly, 3D printing does not require dedicated microfabrication facilities 

and is lower overall in cost than the instrumentation required for lithography approaches [144]. 

There are several other notable advantages associated with 3D printing for the fabrication of 

microfluidic devices over conventional methods, including the embedding of a tissue scaffold 

with high porosity, high resolution and defined pore structure into the device, using a range of 

different materials [144]. Thus, issues normally associated with microfluidics, such as 

blockages are significantly reduced [144]. This could possibly aid the field of microfluidics in 

finding the killer application that will lead to its acceptance by researchers, especially in the 

chemical and biomedical field. Finally, 3D printing design files can be shared easily, which 
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should facilitate collaboration and enable broad use. For those reasons additive manufacturing 

technology is well suited for microfluidic applications [145]. Example of 3D microfluidic 

device is shown in figure 13.  

 

Figure 13. 3D micro-mixer with 1500 micron circular channel printed using Formlabs 

Form1+[146] 

In spite of the mentioned advantages offered by additive manufacturing technology over soft 

lithography, most microfluidic researchers have been reluctant in adopting 3D printing 

techniques because of concerns regarding material availability, biocompatibility of the resin, 

optical transparency, surface quality, shape conformity and dimensional fidelity [145]. 

Additive manufacturing technology for microfluidic was pioneered by McDonald et al.[147] 

who reported the used of additive manufacturing technology to produce templates for poly 

(dimethyl siloxane) (PDSM) casting. The first successfully printed microfluidics device was 
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achieved by Moore et al [148] involving disk-based microfluidics. Anderson et al[149] created 

a microfluidic channel to investigate drug transport and cells effect. The micro channel was 

printed via Fuse deposition modelling comprising 8 parallel 3 x 1.5 mm channels to enable 

integration with commercial polycarbonate membrane. Lee et al. [150] proposed an additive 

manufacturing technique to produce integrated microfluidic devices.  They managed to print a 

microfluidic channel comprising of different configurations such as T-Junction, straight 

sections, and separate unit to mix the flows for detection of alpha fetoprotein (AFP) biomarker. 

Munshi et al. [151] used additive manufacture to create a microfluidic wall-jet electrochemical 

detector and demonstrate that additive manufacturing technology could be a powerful tool to 

create microfluidic devices. Their result design shows an improved sensitivity and limit 

detection when compared with soft lithographic design. Saggiomo and velders [152] presented 

a simple and cheap scaffold removal technique to produce complex 3D microfluidic channels. 

They also demonstrate how externa components, such electronic, heating element and circuitry 

could be directly incorporate into the microfluidic device using the scaffold removal 

manufacturing technique. Gowers et al.[153] reported a 3D printed microfluidic system that 

integrates the commercially available micro-dialysis probes for online analysis of lactate and 

glucose in humans. He et al [154] produced a 3D printed microfluidic chips from a simple and 

cheaper 3D sugar printer to investigate cell culture and their result shows that this simple and 

cheaper method to produce 3D microfluidics chips could potentially be used in biomedical 

researches. Rogers et al. [155] presented a novel 3D printed microfluidic channel with 

integrated valves. The microfluidic channel was fabricated using a stereolithographic (SLA) 

modelling 3D printer. They demonstrated that their fabricated 3D printed microfluidic device 

is less prone to non-specific protein adsorption than polydimethylsiloxane (PDSM) and showed 

lots of attributes which are attractive for microfluidic applications. Shallan et al. [156] 

presented a transparent 3D printed microchips device to study the effect of nitrate in tape water. 

The printed microchips were fabricated using commercial stereolithographic 3D printer 

(MiiCraft). Their experimental result demonstrates the potential of the MiiCraft 3D printer to 

produce cheaper and reliable microfluidic device compared to others published design using 

traditional manufacturing technique. They stated that it would be extremely hard to produce a 

similar microfluidic device for a similar price and similar time using soft lithography 

fabrication technique. Recently Gaal et al.[157]  use additive manufacturing technique to 

produce integrated microchannel using polylactic acid (PLA), a low-priced alternative material 

to Polydimethylsiloxane (PDSM). The microchannel was printed via Fuse deposition 

modelling (FDM). To illustrate the capability of the additive manufacturing technique in 
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produce a microfluidic device, a 3D printed microfluidic electronic tongue capable to 

differentiate basic tastes was fabricated. The electronic tongue was produced in less than 1 

hour, which could hardly be achieved by PDSM process. Additive manufacturing for 

microfluidic include stereolithography (SLA), fused deposition modelling (FDM), electronic 

beam melting (EBM), multi jet modelling (MJM), selective laser sintering (SLS), laminated 

object manufacturing (LOM), and digital light processing (DLP) [140, 141]. The above 

mentioned additive manufacturing technique finds application in the fabrication of microfluidic 

devices, and their advantages and current limitations is summarized in table 4. One of the 

challenge facing the microfluidic industry is the absence of a standards for fluidic interface and 

components [140, 141]. Additive manufacturing technology could provide a solution to this 

problem by offering standard fabrication which could be adopted by the microfluidic 

community.  
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Table 4: Current 3D printing technology used for microfluidic devices fabrication. 

Printing Technology 

 

Applications Advantages Disadvantages 

Stereolithography (SLA) 

 

Microfluidics interface [158] 

Modular microfluidic [139] 

Microfluidics chips [155] 

Master mould fabrication [159]. 

High resolution & High accuracy 

transparent microfluidic chip 

easy to operate 

Fast and cheaper process 

Post treatment is required 

Material availability is limited 

Limited operating temperature 

 

Fuse deposition modelling 

(FDM) 

Master mould fabrication [159]. 

Micro-fluidic reactionware [160] 

3D sugar printing  of microfluidic 

chip [154] 

 

Low cost material 

Easy to remove support material 

Highly accessible and 

reconfigurable format 

Poor resolution & rough surfaces 

restricted accuracy 

Slow fabrication time 

Material availability is limited 

 

Multi-jet modelling (MJM) 

 

Fabrication of vertical microfluidic 

channel [161]. 

Design of complex microfluidics 

molds[162] 

High resolution 

Multi material printing capability 

Rapid printing speed 

High accuracy and quality 

Post treatment is required 

Material availability is limited 

Hard to remove support structure 

Expensive 

 

Digital light processing (DLP) 

 

Mold casting [156] High accuracy 

Fast building speed 

Consistent building time 

Cheaper equipment 

 

Non-bio-compatibility 

Material availability is limited 

Limited operating temperature 

Post treatment is required 

Selective laser sintering (SLS) 

 

Integrated micro-valves & pump 

Triple helix fabrication [163] 

High accuracy,  

High strength  

Rapid fabrication 

Poor resolution 

Post treatment is required 

Very costly 

Selective laser melting (SLM) 

 

Metal electrode supports fabrication 

[164] 

High accuracy 

High strength  

Wide material adaptation  

Rapid fabrication 

Very costly 

Rough surface  

Lower resolution 

Hard to remove support structure 

Laminated object manufacturing 

(LOM) 

Paper based microfluidic analytical 

with different agents [165] 

Cheaper 

Easy to fabricate large parts 

Low material availability 

Time consuming 
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2.4 Novelty 
Chapter 1 & 2: Review of micro-fluidised bed 

A general background and review of solid-liquid circulating fluidised beds at micro-scale is 

presented for the first time. In this chapter, a detailed review of published literature on the 

circulating fluidised bed, liquid-solid fluidisation, micro-fluidised beds, flow regime transition, 

inverse fluidisation, and estimation of surface forces identifies the vital characteristics of the 

micro-circulating fluidised bed that are applicable to the current research study and different 

measurement technique employed by previous researchers. It is well known that solid particle 

handling in micro-technology devices remains one of the big challenges in the field. 

Development of a circulating micro-fluidised bed is providing one solution to the problem, e.g. 

for catalyst recovery, recycle and recovery. The study provided new fundamental knowledge 

(hydrodynamics of solid-liquid micro circulating fluidised bed) but also developed a new 

measurement technique (e.g. micro-valves for solid flow measurement). This can be a new 

platform for solids metering and dosing techniques as another solid handling issue in the micro-

technology field 

Chapter 3 Methodology 

Additive manufacturing was used for the first time for design and fabrication of a novel micro-

circulating fluidised bed (µCFB) to investigate the hydrodynamics of solid-liquid fluidisation 

in micro channels. This allowed us to rapidly create micro-channels of any shape while 

providing high micro resolution of 10s of microns in the x, y and z directions. The method also 

provided fast and simple solutions to manufacturing reliable micro-structures such as micro-

circulating fluidised beds and the distributor using low-cost materials. Thus, issues normally 

associated with micro-fluidics, such as blockages was significantly reduced. 

For the first time particle image velocimetry (PIV) software PIVlab was used to measure the 

solid flux in a liquid-solid micro-circulating fluidised bed. This technique is non-invasive and 

easy to implement in microfluidics setup which is not trivial for other conventional techniques 

such as the valve technique. In addition of PIV software, a novel measurement technique (e.g. 

magnet valve for solid circulation rate measurement) was developed to measure the Solid 

circulation rate in the micro-circulating fluidised bed. A magnet was installed inside the micro-

circulating fluidised bed in the downcomer, and an external magnet was used to move and 

control the magnet inside the bed as a magnetic measuring valve. By closing the downcomer 

with the magnet valve which was installed in the bed, the accumulation of particles above the 
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valve at any given time interval could be measured, giving the particle circulating speed, and 

the results were compared with those obtained using PIV methodology. 

Chapter 4 Influence of surface force and wall effect 

In general, the major difference between micro and macro-scale flows is the importance of 

surface forces which can prevent fluidisation, and inevitably the wall effects due to small bed 

size. Therefore, for the first time an attempt was made to investigate the influence of surface 

force and wall effect in liquid-solid micro-circulating fluidised bed system. The experimental 

results showed that the acid-base model of van Oss, Chaudhury and Good combined with the 

Derjaguin approximation can successfully predict the propensity of micro-particles to adhere 

to the walls of micro-fluidised beds using common liquid fluidizing media. 

Chapter 5 Solid flux measurement 

In this chapter, solid flux in a liquid-solid micro circulating fluidised bed was successfully 

studied for the first time. The experimental research was performed in a micro-CFB which was 

made by micro-machining channels of 1mm2 cross section in Perspex. PMMA and soda lime 

glass micro-particles were used as the fluidised particles and tap water as the fluidising liquid. 

The experimental results look relevant when compared with their macroscopic counterparts.  

Chapter 6 Effect of liquid viscosity  

For the first time, the influence of liquid viscosity on the hydrodynamics of liquid-solid micro-

circulating fluidised bed is presented. In most industrial processes where SLCFB are employed 

as a solid-liquid processing equipment, viscous liquid is required as a processing fluid. Hence, 

it is crucial to understand the effect of liquid viscosity on the hydrodynamics, particularly on 

the solid circulation rate and minimum fluidisation velocity of a liquid-solid circulating 

fluidised bed. 

Chapter 7 Influence of circulating fluidised bed geometry 

Here, it was presented the first study on the effect of bed geometry (solids feed pipe-riser ratio, 

and angle between solid feed pipe and riser) on the hydrodynamics of liquid-solid circulating 

fluidised beds (LSCFB) at the micro-scale. The circulating fluidised bed (CFB) geometry can 

have a significant effect on the internal recycling of solids in a riser, and subsequently on the 

riser hydrodynamics and particle residence time distribution. Hence, effort were made to 

understand their influence on the hydrodynamics of SLCFB at micro scale. 

Chapter 8 Flow regime map 

A new fluidisation regime, the solid-liquid micro-circulating fluidisation regime, was mapped 

for the solid-liquid fluidisation systems of different particles size and materials 
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(Polymethylmethacrylate (PMMA) and soda lime glass microspheres). The operation regime 

map is a function of liquid velocity inherently related with particle terminal velocity (function 

of solid-particle density and size, liquid density and viscosity). 
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2.5 Thesis structure 
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 Methodology 
This chapter outlines the design fabrication of the Micro-circulating fluidised bed and 

procedure to investigate the hydrodynamics characteristics of liquid-solid fluidisation in micro 

and mini channel. At the beginning, different types of distributor were analysed and the most 

suitable distributor design which would provide stable and uniform flow distribution across the 

micro-circulating fluidised bed was chosen. A soft lithography technique and additive 

manufacturing technology were used to fabricate the micro-circulating fluidised bed channel 

to be used in the present investigation. Different measurement technique capable of measuring 

the minimum fluidisation velocity and the solid circulation rate in the micro-circulating 

fluidised bed channel are outlined. 

3.1 Consideration design  
The design of micro-circulating fluidised bed influences the bed performance as a solid-liquid 

processing equipment including the hydrodynamics such as minimum fluidisation velocity, 

solid circulation rate and flow regime map. The liquid distributor represents the most important 

part of a circulating fluidised bed system. The liquid distributor dictates the performance of a 

circulating fluidised bed as a solid–liquid contact equipment. The main function of the liquid 

distributor is to provide stable and uniform fluidisation across the bed cross-section while 

reducing particles back mixing and to prevent particles leaving the bed at the bottom [11]. 

Therefore, liquid distributor design generally dictates the success or failure of a circulating 

fluidised bed as they play a major influence on the hydrodynamics characteristics of a 

circulating fluidised bed. Currently there are various different distributor models, some more 

applicable than others depending on the cost, mechanical feasibility and process conditions. 

Those distributor design with their applications, advantages and limitations are discussed in 

this section. The nature of the distributor model strongly dictates the number and size of 

bubbles formed in a fluidised bed. The important characteristics of a good distributor plate 

should include: 

 Provide uniform and stable fluidisation 

 Prevent formation of dead zones on the grid 

 Prevent particle back mixing 

 Reduce particles attrition 

 Reduce particles erosion 
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 Perforated plate 
Perforated plates are the most commonly used distributor model in many industry where 

fluidised bed is employed as solid-liquid processing equipment because of its low price, simple 

fabrication, easy to scale up and down [166]. Possible drawback of this type of distributor is 

the lack of rigidity and formation of dead zone. In perforated plate distributor the fluidising 

fluid is introduced into the bed in upwards direction. Perforated plate distributor finds 

application in powder agglomeration, coating of particle and tablets, and also spray granulation 

of liquid granulation [167].  The perforated plate distributor is made of arranged triangular or 

square holes of varying size and shape in various patterns as displayed in figure 14. 

 
Figure 14. Perforated plate distributor model 

 

 Sparge or Pipe distributor 
Sparge or pipe grid are tubes with holes drilled in them as illustrated in figure 15.  In sparge 

and pipe distributors the fluidising fluid is introduced into the bed in a downwards or lateral 

direction. The advantages of this type of distributor is that reduces weeping, low pressure drop, 

and it is easy to fabricate and to install in the circulating fluidised bed system. The main 

drawback is that with Sparge distributor it is difficult to prevent dead zone formation. Sparge 

and Pipe distributor finds application in the Sohio acrylonitrile process [168, 169].   

 

Figure 15. Example of Sparge and pipe distributor 
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 Bubble caps and Nozzles 
In bubble cap and nozzles distributors the fluidising fluid is introduced into the system in lateral 

direction. The main advantage of those type of distributor is that reduces particles back mixing 

and weeping. However, the major disadvantage includes that it is hard to avoid the formation 

of dead particles regions, they are expensive to design, hard to clean and to modify. Bubble 

cap and nozzles distributor finds application in energy and food industry [170, 171]. An 

illustration of a bubble cap distributor is shown in figure 16. 

 

Figure 16. Bubble cap distributor 

 Conical distributor 
In this type of distributor, the fluid motions are conical as displayed in figure 17, this distributes 

the fluidised fluid uniformly, promotes mixing of particle, eliminates the formation of dead 

zone, minimises pressure drop and segregation of particles. However conical distributors are 

hard to fabricate, and carefully fabrication design is required to guarantee good fluid 

distribution across the bed cross-section. Conical distributor finds application in industrial 

drying of foods [11, 172]. 

  

 

Figure 17. Conical distributor model 
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 Porous plate distributor 
Porous plate distributors are fabricated from either synthetic, ceramic or sponge metal. These 

type of distributor are popular in the research laboratory to investigate fluidisation 

characteristics at small scale but are unsuitable for industrial scale fluidised bed due to high 

pressure drop [40]. Porous plate distributor provides high pressure drop compared to other 

distributor design, the pressure drop is directly proportional to the fluid velocity through the 

hole. Hence porous plate distributor does not suffer from the misdistribution of fluid as the 

other type of distributor design. Porous plate distributor promotes mixing of particles, prevent 

dead zone formation and they are the best type of distributor design in terms of fluidisation 

quality according to Richardson [173]. The main drawback of porous plate distributor is the 

high pressure drop across the plate which leads to an increase in power consumption and 

processing costs, plate blockage by fine particles and thermal stresses sensitivity [1]. An 

illustration of porous plate distributor is given in figure 18. 

 

 

Figure 18. Porous plate distributor 
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3.2 Final bed design   
Micro-fluidised beds channel could be of any geometrical shape, circular and square shaped 

bed channel are the most popular type of micro-fluidised found in industry and laboratories 

applications. Circular shaped channels provide a better axial uniform solid distribution because 

of their circular shape. However, square shaped channels provide a better flow visualisation as 

a result of their flat faced shaped channel. Square shaped channel was chosen for the present 

studies as it will enable a better visualisation of fluidisation behaviour in micro-circulating 

fluidised bed without distortion. The major difference between micro-scale and macro-scale 

flow is the importance of surface forces relative to volumetric forces. Base on this principle the 

boundary between the micro and macro-scale flow is considered to be 1 mm in the micro-

fluidic field in general [174]. When the channel diameter is bellow 1mm the system is a micro-

fluidised bed system, and if the channel diameter is above 1mm it is considered to be mini-

fluidised bed system. Hence, this was the general reason for the choice of the bed dimension. 

In addition, this is also of practical nature as the workshop could provide us this as upper limit 

for fabrication. Our recent study has shown that adhesion and cohesive forces strongly 

influences the fluidisation characteristic in the micro-fluidised bed as they can postpone or even 

prevent fluidisation [175]. The design of the micro-circulating fluidised will evolve throughout 

the research project. 

 The first micro-circulating fluidised bed design was made by milling 1mm x 1mm cross-

section channels into Perspex in the workshop to investigate the hydrodynamics of liquid-solid 

fluidisation at micro-scale. The bed was made of Perspex to enable to visualise the fluidisation 

behaviour and record them for offline analysis. The labelled photo of fabricated micro-

circulating fluidised bed is shown in figure 19.   

To make the face of the 1mm square cross-section channel milled into a methacrylate plate 

optically clear, first a very fine emery paper (a type of abrasive or sandpaper) was used to 

smooth the surface faces of the 1mm channel. This was done by moving the emery paper with 

light pressure against the bed surface to remove any marks from the surface. Then buffing 

wheel was used to polish the bed surface to get a clear finish (glass-like finish). 
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Figure 19: Schematic of a simple micro-circulating fluidised bed design 

 

The micro-circulating fluidised bed consist of a riser column of 1mm square cross-section and 

100 mm in height, a solid-liquid separator, a down comer acting as a particle reservoir, a solid 

return pipe, and a solid feeding pipe.  At the base of the riser is the distributor (a 1.5 mm thick 

porous plate distributor with mean pore size of 21 µm) which prevents particles leaving the 

bed at the bottom and provides uniform flow distribution and stable fluidisation. The porous 

plate distributor are cheaper, simple to fabricate, easy to modify, promotes particle mixing, and 

provides enough pressure drop to ensure that the flow is not disturbed by the pressure 

fluctuation [11]. The liquid separator is a simple diamond-shaped expansion that enables the 

particles to be separated from the outflowing liquid. 
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3.3 3D printing technology in microfluidic 
As previously mentioned microfluidic devices offer many benefits over conventionally reactors 

such as reduces dramatically the resources consumption, short time for analysis, significantly 

reduces waste and by products, low operational and capital costs, enhancing the percentage 

conversion and selectivity of chemical reaction, and intensification of heat and mass transfer 

which results in a more efficient and sustainable operation processes and helps protecting the 

environment [135, 136]. However, current fabrication methods such as soft lithography 

techniques for micro-moulding and bonding elastomeric materials, such as 

polydimethylsiloxane (PDMS) require much space to hold multiple pieces of equipment, are 

labour intensive, cause time wastage when making a change in design, and requires highly 

specialized skills [139, 176]. For scientific research, however, it is often more important to 

minimize the technological and temporal effort for device fabrication to quickly and easily 

adopt microfluidic devices to new demands and developments [140]. Fortunately, the rapid 

development of additive manufacturing technology in terms of resolution and speed is 

providing a solution to the problem [140, 141].  

Additive manufacturing also referred as 3D printing is the process which fabricates three 

dimensional structures by adding layer upon layer under computer control [140, 141]. 

Compared with other microfabrication techniques, 3D printing requires little training outside 

of the ability to use computer-aided drafting software [142]. Fabrication of a simple microchip 

can be accomplished in 20-30 min, while a more complex microchip device  of 2 mm sided 

and 120 mm in height could be printed in 5 hours [143]. Perhaps more importantly, 3D printing 

does not require dedicated microfabrication facilities and is cheaper than the instrumentation 

required for lithography approaches [144]. Figure 20 shows the fabrication process of 

microfluidic device using both additive manufacturing technology and conventional 

lithography technique. 
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Figure 20. Comparison between Microfluidic fabrication using conventional lithography 

technique and 3D printing technology. 

 

At the present investigation study additive manufacturing technology, digital light processing 

(Miicraft+ printer) and stereolithography (Form2 printer) were used to fabricate the micro-

circulating fluidised bed to study the influence of bed geometry on the hydrodynamics of 

liquid-solid fluidisation in micro-channel. In digital light processing (DLP) and 

stereolithography (SLA) technique, 3D solid objects are created by joining material in a layer 

upon layer fashion using a liquid photopolymer resin by applying an ultraviolet (UV) laser or 

digital light projector until the physical part is complete. Form2 printer employs a UV light 

(155 μm size and 120 mW) to obtain each layer. For this printer, the printing time dependents 

on the layer size. While the Miicraft+ printer employs a digital micromirror device to project 

the entire layer geometry at once, and the printing time per layer is independent from the layer 

size, and the printing time per layer is constant irrespective the model size. The detailed 3D 

printer specifications are summarized in table 5. 

Table 5. 3D Printer description 

Printer 

name 

Printing 

type 

Maker XYZ resolution Build size 

(mm) 

Form2 SLA FormLabs 155 µm (xy), 25-200 µm (z) 125 x 125 x 165 

Miicraft+ DLP Miicraft 56 µm (xy), 30-100 µm(z) 43 x 27 x 180 

 

3D printing fabrication design consist of four major steps: image design, image post processing, 

3D printing, and post processing as shown in figure 21. First, 3D modelling computer program 

SketchUp is used to create a digital image of the structure to be made, which is then converted 

into stereolithography (STL) file format and transferred to the 3D printer apparatus, which 
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creates the 3D solid structure layer by layer until the desired solid object is completed. Finally 

support material are removed from the printed circulating fluidised bed and isopropyl alcohol 

or methanol was used to remove the excessive resin in the bed channels. Post processing is an 

important step as it enhances the printed CFB mechanical properties. 

 
Figure 21. 3D printing process 

 

The Miicraft+ printer was able to produce the micro-circulating fluidised bed within 6 hours. 

The Form2 printer was faster and allowed the production of up to four micro-circulating 

fluidised bed at the same time within just 8 hours. Miicraft+ prints had the most visible layers 

while Form2 prints had the smoother surface finish. The Miicraft+ and Form2 printer used very 

similar clear photopolymer resin. The clear resins are a mixture of methacrylic acid esters and 

photoinitiator. The Miicraft+ resin was purchased from Young Optics Europe GmbH, while 

the Form2 resin was purchased from FormLabs. After printing process, Form Wash was 

employed to clean the circulating fluidised bed. Form Wash uses isopropyl alcohol to remove 

the liquid resin from the bed channel and surface, the cleaning process was approximately 20 

minutes. Once washing was completed Form Cure was used to cure the bed for at least 40 

minutes. This was done to improve prints strength and performance. Once the bed was 

completely cured, flush cutter was used to remove supporting material from the printed 

circulating fluidised bed. 
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 Distributor for the 3D printed bed 
As previous mentioned, the liquid distributor is one of the most important components of a 

circulating fluidised bed. Hence, one major task was to decide which type of distributor model 

can provide stable and uniform liquid distribution and support the particles in a 3D printed 

micro-circulating fluidised bed.  There are several types of distributor models which are able 

to provide those important qualities, however, both the Form2 and Miicraft + printer are not 

capable to printing some of these distributors due to ultra-fine resolution. Hence, it was 

important to analyse each potential distributor model to see which of them could be printed 

using the Form2 and Miicraft+ printer. After completing these analysis, the potential distributor 

models were tested to choose which one would best support the bed of particles and provide 

uniform fluidisation into the bed. Figure 22 illustrates the type of questions considered in order 

to choose the suitable distributor model to be implement in the micro-circulating fluidised bed. 

 
Figure 22. Decision rout for liquid distributor design 
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3.3.1.1 Perforated plate distributor 

This type of distributor could be suitable for the 3D printing micro-circulating fluidised bed as 

it provides a good balance between liquid distribution and structural integrity. The distributor 

hole size can easily be modified, and they are easy to fabricate compared to others type of 

distributor. Possible disadvantage may be the lack of structure to support the bed material 

3.3.1.2 Mesh 

A wire mesh could potentially be suitable distributor model for the micro-circulating fluidised 

bed as it possesses a very fine orifices capable of support particles and prevent them leaving 

the bed at the bottom. However, as the wire mesh distributor comprises of very fine components 

for a 2 mm conduit the distributor components would be beneath the printer resolution. For that 

reason, the wire mesh was dismissed. 

3.3.1.3 Pillars distributor 

The pillars within the channel could be arranged in horizontal or vertical direction. Horizontal 

arranged pillars could be of different sizes and with different space between the pillars. The 

main drawback with horizontal pillars is that very fine pillars can be subjected to breakage, as 

they may not be able to support the weight of the particles. Vertical pillars distributor generate 

gaping holes between the pillars, which could be blocked in case of excess resin, making this 

type of distributor unsuitable for this study. Horizontal pillars distributor of different dimension 

will be tested to see if they could be viable option.  

3.3.1.4 Ring baffles distributor  

The baffles distributor could be a good candidate for the micro-circulating fluidised bed as it 

has a very good liquid distribution performance characteristics especially at low flowrate. 

However, a baffles ring is not able to serve as a distributor on its own as it is incapable of 

supporting the solid particles before fluidisation, because of their thinner strands when 

compared to the micro-channel diameter.  For a 2 mm conduit, the components of the 

distributor will be too small to support the particles in the bed. An example on a baffle 

distributor is shown in figure 23. 
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Figure 23. Baffle distributor model [177] 

 Printing test 
Printing tests were performed to help determine the best suitable distributor model to the solid-

liquid micro circulating fluidised bed. Here two types of distributor model, the perforated plate 

and the horizontal pillar distributor were studied. As the resolution is one of the key factors 

which indicates the printing quality, tests were done in order to find if it was possible to print 

objects at the exact quoted resolution, and to determine if the printed distributor could support 

the weight of the bed material. Additional tests were also carried out to determine the optimal 

curing time to print the micro-circulating fluidised bed, and the optimum layer thickness.   

3.3.2.1 Printing resolution 

The Miicraft printer resolution is quoted to be 56 µm in the x and y direction by its maker 

[178]. So as to confirm if this quoted resolution could be achievable several printing tests was 

performed. Here, two types of distributor model, the perforate plate distributor of 1 mm in 

perforation depth and horizontal pillar distributor of 1 mm in height were printed. For both 

prints the layer thickness was 100 µm. The perforations and the pillars diameters for the test 

were chosen to be 200, 150, 100, 70, and 60 µm as shown in figure 24 in order to confirm if it 

is possible to achieve the quoted resolution. 
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Figure 24. Perforated & pillar distributor  

 

The investigation results are displayed in figure 25. From the results it can clearly been seen 

that both the pillars and perforate plate distributor have not been successfully printed. It can be 

observed that there is not clear perforation visible and some pillars are distorted. These 

observation are similar to that reported by Shallan and co-workers [156], which found that only 

perforate plate distributor of 300µm could be successfully printed without imperfections and 

that only pillars distributor above 250 µm could be printed without warping.  

 

 

Figure 25. Unsuccessfully prints: perforated plate and pillar distributor with 100 μm layer 

thickness, and 1 mm pillar height and perforation depth.  



51 
 

As is well known in the 3D printing research community, one simple method of improving the 

printing resolution is by reducing the layer thickness of the material to be printed. Hence, here 

a number of printing tests were carried out with 30µm layer thickness in order to increase the 

printing quality. However, the test was not successful, as the layer was too thin and fail to 

attach properly to the build plate. So, additional tests were carried out at layer thickness of 50 

µm to find the optimal layer thickness as displayed in figure 26. In these tests, pillars of 60, 80, 

100, 150, 200, and 250 µm diameter with perforation of 60, 80, 100, 150, 200, and 250 µm 

diameter were printed and the results is shown in figure 27 and 28. In this test, the optimal 

resolution between the pillars were also evaluated. The space between the pillars were 50, 60, 

70, 80, 90, and 100 µm. 

 
Figure 26. Schematic of perforated and pillar distributor  

  

 

From figure 27, it can be notice that the test was successful as most pillars were printed without 

warping. This confirms that the printing resolution improves when the layer thickness is 

reduced from 100µm to 50µm. The Miicraft+ printer also managed to print the perforated 

distributor as shown in figure 28, but these were not as perfectly printed as the pillars in figure 

14. So, the optimal layer thickness for the 3D printing experiment was chosen to be 50 µm. 
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Figure 27. Printed pillars of 60, 80, 100, 150, 200, and 250 µm diameters with 50  

µm thickness layer 

 

 
Figure 28. Printed perforated plate distributor of 60, 80, 100, 150, 200, and 250 µm diameters 

with 50 µm thickness layer 

 

 

3.3.2.2 Pillar distributor 

Two types of pillar distributor combine pillar and cross-linked pillar were tested in this 

investigation. These two types of pillar distributor were investigated as it was thought they can 

potentially provide stable and uniform flow distribution in the system and support the bed 

material. 

3.3.2.3 Combined pillars  

Several numbers of tests were carried out to find the most suited pillar design for this study. 

The diameters of the tested pillars were 50, 100, 150, 200, and 250µm with layer thickness of 
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50µm, as it was found to be the optimal layer thickness during the printing resolution test. A 

schematic of combined pillar is displayed in figure 29. The space between the tested pillars 

were 60, 80, 100, and 150 µm. 

 
Figure 29. Combined pillar  

 

Figure 30 -33 shows the printed combined pillars. From figure 30, it can be notice that the 

printed pillars are warped, and this made them unusable. This warping problem occurred as the 

pillars were too close to each other with 60 µm spacing between them.  
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Figure 30: warped pillar of 50 µm diameter with layer thickness of 50 µm, and 60 μm space 

between pillars. 

 

Figure 31 displays a printed joined pillar. Joined pillars could potentially provide even liquid 

distribution into the bed and support the fluidised particles as there are additional pillars in the 

channel. However, the Miicfraft+ printer fail to reproduce this type of pillar design after several 

attempts. It was extremely difficult to replicate this design consistently. Thus, it was concluded 

that this type of pillar is not suitable for this project. 

 
Figure 31. Joined pillars of 100µm diameter with layer thickness of 50 µm and 80 μm 

gapping between pillars 
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Figure 32 displays a successfully printed pillar of 100 µm in diameter with 100 µm spacing. 

However, it was also hard to replicate this printing design after several attempts as the pillar 

diameter were too thin resulting in warped pillars for most test, making them also not suitable 

for this study. 

 

Figure 32. Successfully printed pillar of 100 μm diameter with layer thickness of 50 μm and 

100 μm gapping between pillars. This design could not be replicate 

Figure 33 illustrates the successfully printed pillar of 150 µm in diameter with 150µm gaping 

between pillars. From the printed distributor in figure 33 it can be observed that one of the 

pillars is attached to the wall of bed, nevertheless, this problem can be solved by employing 

multiple layers of pillars. From figure 33, it is also observed a small volume of resin on top of 

the printed channel which can easily be removed with isopropyl alcohol or acetone during post 

processing stage. Overall this printing design meet all the requirement for this study as it 

produced the better pillar distributor, and was easy to replicate without deformation, and more 

important was able to support the particles as shown in figure 34a and the 150 µm space 

between pillars will enable particle suspension (165 and 196 µm glass particles) as shown in 

figure 34b. 
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Figure 33. Successfully printed pillar of 150 μm diameter with layer thickness of 50 μm and 

150 μm gapping between pillars. The design was easily replicated without warping 

 

 

Figure 34: (a) Pillar distributor supporting the bed material. (b) Particles suspension in the 

channel. 

 



57 
 

3.3.2.4 Cross linked pillars 

Crossed linked pillars were also tested in this study. This type of distributor design could 

potentially offer more support to the bed material as there is an increase in the number of pillars 

in the channel and more importantly the space between pillars in the channel is very much 

reduced as shown in figure 35. 

 

 

Figure 35: schematic of cross-linked pillars distributor of 150 μm dimeter with 50 μm layer 

thickness  

Figure 36 illustrates the printed cross linked distributor. The distributor appears to be 

completely blocked by the cured resin preventing liquid passing through it. This problem 

happened because the gapping between the pillars distributor were too small, causing resin to 
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pool inside the channel, this resin became trapped in the channel as there were no holes to allow 

the resin to drip out, so the resin cured and blocked the channel making this type of distributor 

design unsuitable for this study.  

 

 

Figure 36. Printed cross-linked distributor of 150 μm dimeter with 50 μm layer thickness 

 

 Cure time 
One of the key parameters which influences the printing quality is the curing time per layer. 

Incorrect curing time will result in warped and blocked print. Therefore, preliminary test was 

conducted to find the optimal curing time to print the micro-circulating fluidised bed. The 

tested cure time were 6, 7, 8, 9, 11, 14 seconds. The layer thickness was 50 µm in all the 

experimental test. The successfully printed bed was achieved with curing time of 8 seconds. In 

those tests it was found, when the curing time per layer was shorter than 8 seconds the bed 

suffered from under cure problems and the bed was printed smaller than expected, in some 

cases the printed bed fell and damaged the resin tray. In the other hand a curing time per layer 

longer than 8 seconds resulted in loss of details and blocked print as shown in figure 37b 
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Figure 37: (a) successfully printed bed, curing time per layer was 8 seconds. (b) Unsuccessful 

print with blocked channel. Curing time per layer was 11 seconds 

 

 Optimum number of layers  
Preliminary tests were conducted to determine the optimum number of layers for the circulating 

fluidised bed. From these tests it was discovered that a single layer pillar distributor was not 

enough in order to achieve even fluidisation across the bed, as some parts of the bed became 

defluidised during the experiment and blocked part of the channel. Hence, a multiple layer plate 

distributor was employed in this study as shown in figure 38.  This type of distributor design 

was found to promote equal fluidisation across the bed over the range of operating conditions. 

Furthermore, the double layer pillar was able to support the bed material, and prevented 

particles leaving the bed at the bottom. Excessive loss of particles decreases the solid inventory 

in the system, and this may postpone the critical transition velocity from conventional to 

circulating fluidised bed regime. It was surprising to note that additional layer (three and four 

layer) delivered the same result. So, there was no need to employ three- or four-layer pillar 

distributor in this study in order to save printing time. 
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Figure 38. Multiple layer pillar distributor  

 

 Printing multiple channel at once 
In this experimental research, multiple channels were printed simultaneously instead of 

printing them one by one. Printing multiple channels in a single print was more convenient as 

it was found to accelerate printing production. The Miicraft+ printer was able to produce 12 

channels within 3-4 hours and that saved significant amount of time as it was possible to 

conduct multiple test per day. A schematic of multiple test which were printed simultaneously 

is given in figure 39. 

 

Figure 39. Schematic of multiple channel per print 

All the above printing studies were also done for form2 lab, and the results were approximately 

the same. 
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 Printing problems 
Table 6: Printing troubleshooting  

Problems Problem details How to fix 

 

Prints not adhering to the 

build plate 

 

  

During printing process, the 

3D printer software 

generates supporting 

material to ensure prints 

sticks properly to the build 

plate preventing sagging due 

to gravity. In some cases, this 

supporting material fails to 

adhere to the build plate due 

to speed, uneven build 

surface, or cooling problems 

resulting in print falling 

damaging the resin tray. 

 

 Clean the build platform 

 Level the build platform 

 decrease printing speed 

 Decrease height of first 

layer 

 Replace the film module 

 Pre-heating resin before 

printing  

 Roughen bed and build 

plate surface 

 

Warped prints In some printing 

experiments, printing object 

warped due to thermal 

deformation and lack of 

support making them 

dysfunctional. 

 Make sure printing object 

is well supported 

 heat build plate 

 heat enclosure 

 clean build surface & 

degrease substrates 

 

Small features fail to print On some occasion the printer 

fails to print smaller part of 

the circulating fluidised bed 

correctly due to wrong set up 

 Have a look at the slicer 

setting 

 Redesign the part 

 Save model as single 

body 

Resin blocking problem 

 

The pillar distributor was 

blocked by cured resin as the 

gap between the pillar was 

too small making them not fit 

to be used 

 Increase the gap between 

pillars 

 Use more suitable resin 

 Lower printing speed 

 

Poor Surface quality 

 

The surface of printed bed 

shows a wavy pattern.  This 

issue mainly appeared due to 

incorrect setting   

 Check the settings 

 Lower the printing speed 

 Decrease the layer height 

Hard to remove supporting 

structure 

 

In few occasions it was hard 

to remove the supporting 

structure from prints after the 

post-process due to fused 

support structure  

 Reduce the percentage of 

supporting material 

 Reduce the supporting 

structure diameter 

 Increase the space pattern 

  

delamination Parts of cured prints 

suspended in the resin tank 

due to dirty surface, issues 

with support structure 

 Clean dirty surface 

 Get rid of cured resin and 

failed prints in the tank 
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 Final 3D printing CFB design 
The final design chosen to study the influence of bed geometry on the hydrodynamics of liquid-

solid micro-circulating fluidised bed is shown in figure 40. The micro-circulating fluidised bed 

consist of a riser column of 2 mm square cross-section and 100 mm in height, a solid-liquid 

separator, a down comer acting as a particle reservoir, a solid return pipe, and a solid feeding 

pipe.  At the base of the riser is a 2-layers pillar distributor (150 μm pillars diameter with 150 

μm gaping between them) which prevent particles leaving the bed at the bottom and provided 

uniform liquid distribution. This design was easy to replicate without warping, prevents 

particles leaving the bed at the bottom, and most important provides uniform liquid distribution 

across the bed.  

 
Figure 40. 3D printed Circulating Fluidised Bed 
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3.4 Minimum fluidisation velocity 
The minimum fluidisation velocity (Umf) and the terminal particle velocity (Ut) are important 

parameters of fluidisation phenomenon for understanding the hydrodynamics characteristics of 

fluidisation of solid-particles and are essential for fluidised bed operation and design [90, 179]. 

Minimum fluidisation is the minimum superficial liquid velocity where solid fluidisation is 

achieved or could also be described as the velocity where the overall fluidised bed pressure 

drop equates to the bed weight [180]. The minimum fluidisation velocity phenomenon happens 

as a consequence of the force of the liquid on the solid particles. Umf depends on factors such 

as size, density and polydispersity of the particles. I.e. the density directly alters the net force 

of gravity acting on the particle, and hence the minimum velocity needed to lift a particle.  

When the bed is fluidised solids move in a disorganised way and the distance between solids 

gets bigger with increases in superficial liquid velocity resulting in the bed height to increase.  

 Minimum fluidisation velocity measurement 
During fluidisation phenomena the minimum fluidisation velocity could be found by observing 

visually the bed height variation against the superficial liquid velocity or by measuring the 

pressure drop difference in the fluidised bed. 

3.4.1.1 Pressure drop 

A pressure transducer, which is installed on the bed wall at inlet and outlet, could provide the 

overall pressure drop along the micro-circulating fluidised bed between the two pressure 

transducer taps [22]. The plotting of pressure drop across the system versus the liquid velocity, 

shows two linear zones whose intersection indicates the minimum fluidisation velocity (Umf) 

20]. However, the pressure drop across the micro fluidised bed was not measured in this study, 

because it was hard due to very fine resolution required, the pressure drop across the bed is 

only of the order of few pascal. 

3.4.1.2 Visual observation 

One method to determine the minimum fluidisation velocity is to observe visually the flow 

across a transparent bed wall. Minimum fluidisation velocity is determined as the liquid 

velocity where the bed first starts to expand. 

3.4.1.3 Extrapolation 

In extrapolation technique minimum fluidisation velocity is obtained by extrapolation of linear 

relationship between the superficial liquid velocity and ratio of bed expansion. Minimum 

fluidisation velocity values were obtained from the plot of bed height expansion vs superficial 
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liquid velocity. The point of intersection of the expansion line with vertical line for packed bed 

height was taken as minimum fluidisation velocity [59, 76]. 

 Minimum fluidisation velocity measurement in the present study  
In the present experimental study the minimum fluidisation velocity required to achieve 

fluidisation was by obtained by observing visually the bed height expansion and also by 

extrapolation of linear relationship between the superficial liquid velocity and ratio of bed 

expansion as measuring pressure drop is difficult due to very fine resolution required (the 

pressure drop is only of the order of several Pa). The height of the expanded bed was obtained 

by using a Euromex Nexius trinocular microscope to take pictures. ImageJ [23], an image 

processing and analysis computer programme was used for off-line analysis to determine the 

bed height as a function of superficial liquid velocity. Minimum fluidisation velocity values 

were obtained from the plot of bed height expansion vs superficial liquid velocity. The point 

of intersection of the expansion line with vertical line for packed bed height was taken as 

minimum fluidisation velocity. Typical plots of relative bed height as a function of superficial 

fluid velocity are given in figure 41 (additional figures 109 to 121 are given in appendix). 
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 Figure 41. Relative bed height as a function of superficial liquid velocity, U, with increasing 

liquid velocity (Umf, u), and decreasing liquid velocity (Umf, d) for 26 μm glass microparticles 

in 1mm2 micro-bed. Error are not visible in the graph as they are smaller than the symbols.  
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Step change in bed height on fluidisation was not observed in figure 41, this could be due to 

the extrapolation technique used to determine the minimum fluidisation velocity, instead to 

more reliable pressure drop measurement technique, as measuring the pressure drop in the 

micro fluidised bed system was difficult due to very fine resolution required (pressure drop 

across the bed was only of the order of few pascal). 

 Predicted minimum fluidisation velocity  
Prior to the start of each experimental set, it was important to predict the minimum fluidisation 

velocity and terminal particle velocity, to determine the experiment starting point and the 

maximum liquid velocity at which particles remain in the fluidized bed. The predicted particle 

terminal velocity and minimum fluidisation velocity were used as the experimental starting 

point. The Ergun Equation and pressure drop equation, equations 12 and 13, were used to 

predict the minimum fluidisation velocity, as it has been shown to be accurate experimentally 

[90, 181]. The voidage was estimated to be 0.40 ± 0.01. The Stokes particle terminal velocity 

for the laminar regime (Equation 18), was used to predict the particle terminal velocity prior to 

the start of each experiment set to determine the range of velocities which was used in each 

experiment. The calculated particle terminal velocity was converted into a volumetric flow rate 

and this was done by multiplying by the bed cross sectional area. The calculated particle 

terminal velocity and corresponding volumetric flow rate for the current research investigation 

are shown in table 7 and 8. 

Table 7. The calculated terminal particle velocity for Glass Particle 

Particle Diameter (μm) Ut (μm/s) Volumetric Flow rate (μl/min) 

26 580 34.73 

30 741.7 44.46 

35 1000 60 

58 2770 166 

82 5542 332.5 

98 7915 475 

115 11000 660 

165 22438 1346 

196 31661 1900 
 

Table 8. The calculated terminal particle velocity for PMMA Particle 

Particle Diameter (μm) Ut (μm/s) Volumetric flow rate (μm/min) 

23 60.7 3.6 

35 100 6 

41 189.3 12 

58 370 24 

115 1466 900 
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 Estimation of surface forces 
The major difference between micro-fluidised beds and macro-fluidised beds flows is the 

importance of surface forces relative to the volumetric forces, i.e. gravity [61, 182]. Equation 

19, the acid-based theory developed by Oss, Chaudhury and Good [183] can successfully 

predict particle adhesion to the walls of micro-fluidised beds and its absence as a function of 

fluidising liquid-solids materials involved. The free interaction energy when two different solid 

surfaces are submerged in a liquid could be expressed as: 

Δ𝐺1𝑤2 = (√𝛾1
𝐿𝑊 − √𝛾2
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2
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2
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      (19) 

 

Where 𝛾𝐿𝑊 is the apolar Lifshitz Van der Waals, 𝛾𝐴𝐵 is the polar Lewis acid base, 𝛾+ the 

Lewis acid ( electron acceptor parameter),  𝛾− the Lewis base (electron donor parameter), the 

subscripts 1 and 2 are the two solid surfaces (particle and wall respectively), and subscripts w 

the liquid surface. The solid-liquid surface tension γ, is expressed as sum of the apolar Lifshitz 

Van der Waals γLW, and the polar Lewis acid base γAB, which was in turn expressed as a product 

of a Lewis-base γ+, and a Lewis-acid γ- , giving [61]  

𝛾 = 𝛾𝐿𝑊 + 𝛾𝐴𝐵 = 𝛾𝐿𝑤 + 2√𝛾+𝛾−                                                                    (20) 

The Lifshitz van der Walls component 𝛾𝐿𝑊represents a single surface property, while the 

𝛾𝐴𝐵 represents both the polar Lewis acid, and polar Lewis base properties of the material. 

The apolar component of ∆𝐺1𝑤2, the Lifshitz Van der Waals component ∆𝐺1𝑤2
LW between two 

different solid surfaces submerged in water is negative (attractive). The polar component of 

∆𝐺1𝑤2, the Lewis acid base component ∆𝐺1𝑤2
AB between two different solid surfaces 

submerged in water can be positive or negative and is quantitatively the most important 

component dictating whether the free energy of interaction between two different solid surfaces 

1 and 2, submerged in water is attractive or repulsive. 
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For any material the values of γ- and γ+, are unknown. For various liquids and solid surfaces in 

order to measure and express γ+ and γ- , it is presumed that the ratio γ+/γ-, is unity for water, at 

20ºC, example: γ- = γ+= 25.5 mJ/m2 [183]. Given the free energy obtained from the acid base 

approach, the Derjaguin approximation could be helpful to determine the adhesion force [183], 

assuming the bed wall and particles can be approximated by a flat plate and spheres 

respectively. This leads to [183, 184]  

𝐹𝑎𝑑ℎ = 𝜋∆𝐺1𝑤2𝑑𝑝                                                                                                            (21) 

The hydrodynamics force experienced by the particle can be equated to the drag force, Fd, 

which in turn can be equated through a force balance to the difference between particle weight 

and buoyance force, Fb 

𝐹𝑑 = 𝑊 − 𝐹𝑏                                                                                                                          (22) 

where Fb, the buoyancy force, is expressed as: 

𝐹𝑏 = 𝑉𝑝𝜌𝑓𝑔                                                                                                                              (23) 

where Vp is volume of particle.  

Using equation 22 and 23, the drag force could be expressed as [185]: 

𝐹𝑑 = (
𝜋𝑑𝑝

3

6
) (𝜌𝑝 − 𝜌𝑓)𝑔                                                                                                         (24) 

Table 9. Liquid and solid surface tension components  

Material γ 

(mJ/m2) 

γLW 

(mJ/m2) 

γAB 

(mJ/m2)  

γ+ 

(mJ/m2) 

γ- 

(mJ/m2) 

Reference 

water 72.8 21.8 51 25.5 25.5 Van Oss [183] 

Glass 59.8 42 17.8 1.97 40.22 Freitas & Sharma [186]  

 64.37 42.3 22.07 2.9 42 Clint & Wicks [185] 

 51.7 33.7 18 1.3 62.2 Van Oss [183] 

PMMA 44.65 42 2.65 0.55 3.2 Della Volpe et al. [187]  

 44.58 41.2 3.38 0.38 7.5 Clint & Wicks [185] 

 40.6 40.6 0 0 12 Van Oss [183] 

 39.21 36.68 2.53 0.16 10.02 Zdziennicka [188] 
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In the present research study the Dupree equation using acid-base theory developed by Oss, 

Chaudhury and Good [183] (equation 19) was used to predict the free interaction energy, 

ΔG1w2, between two different solid surfaces submerged in a liquid. The surface tension 

parameters for the fluid (water), glass, PMMA particles and PMMA walls used in the micro-

fluidised bed study are shown in table 9.  The free interaction energy between glass, PMMA 

particles and PMMA walls in water were obtained using all combinations of values in table 9. 

Given the surface energy obtained from acid and base approach using surface tension 

components for liquid-solids given in table 8, the adhesion force was found using the Derjaguin 

approximation (equation 21), and the drag force was found from the buoyant weight of particles 

(equation 24). When ΔG1w2 value is negative, particle has the propensity to adhere to the walls 

of the micro-fluidised bed in presence of water, and when ΔG1w2 value is positive, the 

interaction between the particle and bed wall is repulsive. 

3.5 Solid circulation rate 

In order to successfully design a solid-liquid micro circulating fluidised bed system for micro-

technology applications, it is essential to understand their hydrodynamics such as solid flux as 

it determines the bed performance as processing equipment, controlling heat and mass transfer, 

and dictating mixing in the system. 

One of the fundamental parameters needed to in order to successfully design a solid-liquid 

micro circulating fluidised bed system for micro-technology applications, is the solid 

circulation rate, as it determines the bed performance as processing equipment, controlling heat 

and mass transfer, and dictating mixing in the system. Therefore, an attempt will be made to 

determine the solid circulation rate in the micro-circulating fluidised bed system. The solid 

circulation rate could be determined by various different methodology such as Ball valve, 

Butterfly valve, Magnet, Laser Doppler velocimetry, Particle image velocimetry (PIV), visual 

and impact technique. 

 Ball valve measurement 
In this technique a solid circulation rate is measured by using a valve and a simple procedure.   

When the valve is closed in the downcomer, the accumulation of particles above the valve at 

given time interval could be measured, giving the particle circulation rate. 

The overall solid flux is expressed  
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𝐺𝑠 =
𝐴𝑑

𝐴𝑟

𝛥𝐻𝜌𝑃

∆𝑡
                                                                                                  (25 ) 

where Ar and Ad are the downcomer and riser cross-sectional areas respectively, ΔH the 

recorded bed height, and Δt time of particle accumulation above the valve. 

 Butterfly valve 
By installed a butterfly valve in the downcomer of a circulating fluidised bed system, the solid 

circulation rate can be measured. When the two butterfly valves are flipped from one side to 

another, solid circulating through the bed could be accumulated in one side of the section being 

measured for a given time interval to provide the solid circulation rate [116].  

 Magnetic valve 
In the case of small scale fluidized bed as used here, there are not available butterfly valves at 

micro scale and a magnet is installed inside the bed (downcomer) as shown in figure 42, and 

an external magnet is used to move and control the magnet inside the bed as a magnetic 

measuring valve. The solid circulation rate is measured by closing the downcomer with a 

magnet which is installed in the circulating fluidised bed system, and noting the time required 

to accumulate a defined height of solids above the magnet and the equation 25 was used to 

calculate the solid circulation rate. 

 
Figure 42. Displaying the 3D printed micro-circulating fluidised bed with a magnet inside the 

system used to measure the solid circulation rate 
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 Visual technique 
This includes high speed videos and images, which can be important in dilute system for the 

analysis of the tracers of periodically excited fluorescent particles and for particle imaging 

velocimetry. But, the analysis of the results requires a high speed computation system and can 

be very time consuming [189]. 

 Laser Doppler velocimetry 
Solid velocities are measured by laser light.  LDA Applies the Doppler Effect to determine the 

particle velocity in the bed. The advantage of Laser Doppler Velocimetry is that it is a non 

contacting technique, calibration is not needed and it can also be used to measure solid velocity 

in an inverse fluidisation system. On the other hand, Laser Doppler Velocimetry equipment is 

very expensive [190, 191]. 

 Impact technique 
This uses the force of re-circulating particles in the system to measure the solid circulation rate. 

In this technique forces of re-circulating solids dropping onto an inclined pan near the particles 

returning pipe are measured by a loaded beam. Wu, Gerhart [192] employed an impact plate flow 

meter to determine the solid circulation rate by measuring the torque on a hinged plate from falling 

particles impacts. The disadvantage of this type of solid flux measurement device is that 

calibration is very complex [193] . 

 Radioactive technique 
Roy et al. used a radioactive technique to measure the solid circulation rate [194]. The basic 

theory was to determine the particles volumetric flow rate by measuring the particles velocity 

and volume fraction in the downcomer. Particle volume fraction was obtained by densitometry 

measurement, while particle velocity was obtained by measuring the falling time of a single 

radio-active tracer particle between two detectors installed in the downcomer. 

 Particle image velocimetry 
Particle Image velocimetry (PIV) is a common experimental technique in the field of fluid 

mechanics used to measure the flow velocity profiles in fluids (using tracer particles) and for 

general granular flow [195, 196]. The particle displacement is determined by calculating the 

cross correlation of two consecutive image captured by a camera with a short time delay ∆t. In 

PIV programme each image is divided into small sub images (interrogation region). Cross 

correlation function shown in equation 26 is then used to determine the most likely 

displacement of particles between each region as shown in figure 43 [197, 198]. The advantage 
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of this technique over other conventional techniques such as the valve technique is that it is 

non-invasive and easy to implement in microfluidics setup which is not trivial for the valve. 

max
𝑑

= ∫𝑤 𝐴(𝑟) 𝐵(𝑟 + 𝑑)𝑑𝐴                                        (26) 

where W is the correlation domain, A and B represents the interrogation area from image A 

and B, r is the position vector and d represent the displacement vector between interrogation 

area. 

 

Figure 43. PIV principles [199] 

3.6 Solid circulation rate measurement  
In the current research investigation, particle imaging velocimetry (PIV) software PIVlab 

[200], was used to determine the solid flux in the micro-circulating fluidised bed. A digital PIV 

technique has been employed previously by researchers for measuring the flow velocity 
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profiles in granular flow [201, 202]. The advantage of this technique over other conventional 

techniques such as the valve technique is that it is non-invasive and easy to implement in 

microfluidics setup which is not trivial for the valve. In addition, PIVlab does not need any 

information regarding light intensity or the time between successive frames that some other 

forms of PIV need. PIVlab is able to calculate the velocity field of a material or fluid based 

only off of sequential images that are loaded into it. The effects of operating parameters such 

as solids inventory, particle size and density on solid flux has been carefully studied using 

PIVlab and MatLab. 

Digital movies of granular flow were captured by a Basler aCA 1300-200uc digital camera 

which as a resolution of 1.3 MP. Basler Pylon viewer software was used to monitor the 

recording process. Flexible fibre optic illuminator was used to illuminate the granular flow in 

the circulating fluidised bed and produce high quality image. The camera capture rate was set 

to 25 fps with a shutter time of 100 µs after preliminary test revealed that it provided high 

quality videos without motion blur and the optimal PIV results. Each video has a recording 

time of 20 seconds.  

Digital movies of liquid-solid fluidisation behaviour were recorded and stored on a PC for off-

line analysis. The off-line examination comprised of movies conversion into successive frame 

sequences by VLC media player, and particle displacement calculation from successive frames 

using PIVlab, a Matlab code, which determines the velocity of particles by cross correlation 

PIV algorithm of multiple small sub-images.  Determination of particle displacement using the 

PIVlab code in the current research investigation is composed of three major stages:  

 Image Pre-processing to increase the analyse quality 

 Image analysis to calculate the particle displacement in the area of interest 

 Post processing of PIVlab analysis to eliminate erroneous data 

 Image pre-processing 
Firstly, the solid feed pipe was chosen as the region of interest and a mask was applied to 

exclude the outside regions from the analysis as shown in figure 44. That is important as it 

decreases the computational time. The region of interest was about 3 x 1 mm. 
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Figure 44. Fluidized bed for the 58 µm glass particles at flow rate   inside 15% solid 

inventory bed showing area interest for the digital PIV analysis. 

 

Before the image analysis takes place, it is very important to reduce or eliminate the faulty data 

which contributes to erroneous PIV analysis. Thus, image pre-processing was done to raw data 

to enhance the PIV analysis quality. Here, several image pre-processing techniques such as 

image pre-processing contrast limited adaptive histogram equalisation (CLAHE), high pass 

filtering, intensity capping filter were tested, so as to evaluate their effect on the PIV 

performance. It was preliminary concluded that the only image pre-processing technique need 

for the PIV analysis is the CLAHE filter, and the optimal performance was obtained with 

CLAHE filter of 20-pixel size. Hence, prior to PIV analysis, CLAHE filter was applied to all 

frames to enhance the image contrast and the probability of detecting valid vectors.  

 Image analysis 
Image calibration was performed by specifying the bed cross sectional area (1 mm) and the 

time step between images of one frame (25 frames per second), this was done as to establish 

the correlation between the particle displacement in the image and the displacement of particles 
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in the flow. Image calibration converts pixel values to standard values that represent 

measurements in the real world.  

Each image was divided into small sub images (interrogation region), and cross-correlation of 

successive frames was applied to determine the most likely displacement of particles in these 

regions. Particle displacement was determined using FFT (fast Fourier transform correlation 

with multiple pass and deforming windows algorithm).  The PIVlab analysis shows that particle 

displacement calculation using DCC (single pass direct cross correlation) suffers from more 

missing correlations under the same conditions as FFT as shown in figure 45. Therefore, FFT 

was the preferable correlation algorithms for the PIV calculations, as it is much more robust, 

reduces erroneous correlations and provided the more accurate results. 

 

Figure 45. Comparison of the velocity map calculated using DCC (left) and window 

deformation (right) under the same experimental conditions. Large vectors are outliers. The 

window deformation technique FFT reduces the amount of erroneous correlations 

 

As is well known, the quality of particle image velocimetry measurement is linked to the size 

of the interrogation area[201]. Several researchers suggested that to maximize the PIV analysis 

accuracy, the interrogation area size in the first pass should at least be four times bigger than 

the maximum particle displacement [203, 204].  If the size of the interrogation area is smaller, 

the cross correlation analysis will be incorrect, due to particle pair loss, as a number of particle 

pairs leave the interrogation area as shown in figure 47(c & d) [205]. However, a very large 

interrogation area causes a massive reduction in the measurement resolution leading to poor 

results as shown in figure 46a & 46b [206, 207]. 
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Figure 46. PIV analysis results of several interrogation area sizes. (a) 140-120-100 pixel, (b) 

120-100-80 pixel, (c) 32-16-8 pixel, (d) 16-8-4 pixel 

 

A preliminary test was conducted to determine the optimal size of the interrogation area and 

the number of PIV passes. A three step cross correlation analysis with an interrogation area of 

64 pixel in the first pass, 32 pixel in the second pass, and 16 pixel in the third pass 

(corresponding to 0.64, 0.32, and 0.16 mm in real scale respectively) was chosen as the optimal 

PIV setting to determine the particle displacement of the image data. These PIV setting was 

found to produce excellent resolution with minimal noise and satisfy Keane and Adrian 

(a) 

(c) 

(b) 

(d) 
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recommended guideline [203]. Each interrogation area was overlapped by 50% as shown in 

figure 47. 

  
Figure 47. PIV setting use to calculate the particle motion inside the micro-circulating 

fluidised bed  

 

The displacement information obtained in each pass is used to shift the interrogation windows 

in the next pass to increase the resolution of vector map, signal to noise ratio without sacrificing 

robustness. Gaussian function 2x3-point was used to estimate the sub-pixel displacement as 

shown in figure 48. All the particle image velocimetry calculations were conducted on partially 

overlapping frame pairs (i.e. 1-2, 2-3, 3-4 etc). The maximum particle image displacement was 

found to be approximately 5 pixel in all experimental investigation (less than 2 particle 

diameter). The particle image density was estimated to be 10-15 particles per interrogation area 
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which satisfy Thielicke recommended guideline [208] with the particle image diameter was 

approximately 3 pixel. All the PIV setting used for this experiment is shown in table 10. 

Table 10. PIV settings. 

Parameter value unit 

Interrogation area 64-32-16 pixel 

Particle image density 10 - 15 pixel 

Particle image diameter 3 pixel 

CLAHE Filter 20 pixel 

High pass off n/a 

 Intensity capping off n/a 

Wiener2 denoise filter off n/a 

 

 Post processing 
Generally, the velocity field obtained from the PIV calculation is never error-free as it may 

contains some erroneous vector due to noise [209]. Therefore, the vector field were smoothed 

and validated using a number of filters (local median filter, and standard deviation filter) while 

missing data were interpolated using the boundary value solver interpolation technique to 

increase the accuracy of the velocity calculation this was required in order to eliminate 

erroneous vector (outliers) and to improve the results. The above procedure was repeated to 

calculate the velocity (horizontal u and vertical v component) for each frame for all the PMMA 

and glass particles at various liquid flowrates.  

The results obtained using PIVlab code was exported as a consecutive Mat-file into Matlab 

workspace for further processing. Matlab was then employed for adjusting velocity field due 

to background movement and for time averaging of velocity field for each particle at different 

liquid flow rate by averaging the instantaneous velocity obtained using the PIVlab code. 

 Background movement 

Initial PIVlab image analysis shows that particles move downwards and upwards as shown in 

Figure 48(a) instead of downwards along the solid feed pipe as expected and visually observed. 

Further analysis showed considerable background movement, so it was necessary to calculate 

the background movement velocity field using PIVlab as shown in Figure 48(b). The 

background movement could be the result of imperfect illumination due to shadow and light 
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reflection which was observed during the recording process. Under ideal conditions, image for 

PIV analysis comprises of bright particles on an entirely dark background. However, this ideal 

scenario is not always possible because the fluidised bed was fastened by screws and bolts as 

shown in figure 19, and those screws and bolts produced light reflections and shadow during 

the experiment process which influenced the PIV analysis and consequently created the 

background motion.  

The imported vector field of particles in the solid feed pipe in Matlab is shown in figure 49(a) 

with the erroneous upward motion of particles. The velocities were then correctly adjusted by 

subtracting the background motion (Figure 48(b)) in Matlab to obtain the correct particle 

velocity field with downward motion as shown in Figure 49(b). From figure 50, it can be seen 

that the downwards and upwards background motion cancel each other 

 
Figure 48.  Velocity vector field in (a) the solid feed pipe and (b) in background determined 

by PIVlab analysis. 
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Figure 49. Examples of Original particle velocity field (a) and the velocity field after 

subtraction of the background movement (b) for the 58 µm glass particle at 445 µl/min liquid 

flow rate with 15% solid inventory bed. 

 

Figure 50. Example of downwards and upwards background motion as given by 2000 vectors 

over 20 seconds. 

Figure 50 displays a MATLAB analysis involving the downwards and upwards background 

motion as given by 2000 vectors over 20 second. From figure 50, it can be noticed that the 

vector velocity field associated with the downwards and upwards background motion cancels 

each other in this analysis. 

(a)

(b)

0.01 mm/s

0.008 mm/s
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3.7 Critical transition velocity measurement 
As previously mentioned, solid-liquid circulating fluidised beds system have different 

operating regimes as a function of liquid velocity. In order to understand their hydrodynamics 

characteristics it is crucial to identify the transition from one regime to another such as the 

critical transition velocity which delineates the transition from conventional to circulating 

fluidised bed regime [102, 210]. The critical transition velocity could be determined by three 

different methodology, solid circulation rate, bed emptying time, and pressure gradient method 

as given in  

 Solid circulation rate method: 
Liang and co-workers [106] determined the critical transition velocity, Ucr by plotting the solid 

circulation rate as a function of the liquid velocity as shown in figure 9.  The critical transition 

velocity was taken as the point where the solid circulation rate becomes zero when reducing 

superficial liquid velocity. 

 

 Emptying bed time: 
Zheng and co-workers [116] determined the critical transition velocity using the emptying bed 

time. This was done by measuring the time needed for all the particles to be transported out of 

the bed by the outflowing liquid at various liquid velocities when no particles were introduced 

from the downcomer into the riser. At lower liquid flow rates, solids are not significantly 

entrained, so that the time needed for all the solid-particles to be carried out of the bed is longer. 

When the liquid flow rate is increased, there is a rapid increase in solid entrainment, and if no 

solid-particles are introduced into the riser column, the system becomes empty in a short time. 

Hence two different lines could be spotted by plotting the superficial liquid velocity against 

particle empty time in the column riser: at lower velocity and higher velocity. The critical 

velocity which indicates the transition from conventional fluidisation to circulating fluidisation 

regime could be found at the intersection between these two lines. 

 Pressure gradient method:   
Pressure gradient method as previously been applied by Vatanakul et al [211], Vidyasagar et 

al [210]. In this method the critical transition velocity is obtained by plotting the pressure 

gradient at two locations (above the distributor and on top of the riser) as function of superficial 

liquid velocity. Vidyasagar measured the pressure drop using a pressure taps connected to a 

manometer. Vatanakul measure the pressure gradient with aid of a pressure transducer and wall 

electrical conductivity probes which was linked to a PC through an ADC. The critical transition 
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velocity was defined by all these researchers as the superficial liquid velocity at the peak of 

pressure gradient line. 

 Critical transition velocity determination in the present study 
In the current research the critical transition velocity from conventional to circulating 

fluidisation regime was determined by plotting the average particle velocity from PIV 

measurement as a function of the liquid velocity. This PIV method was chosen over magnetic 

valve due to its simplicity and easy of the experiment. The critical transition velocity Ucr, was 

taken as the point where the particle velocity becomes zero when reducing superficial liquid 

velocity as shown in figure 51. In addition, the critical transition velocity was also determined 

by visualising the circulating flow across the transparent bed wall. The critical transition 

velocity was taken as the maximum liquid velocity where no fresh particles were reintroduced 

back to the riser from the downcomer by decreasing the superficial liquid velocity as shown in 

figure 52, i.e. Solid flux of particles is essentially zero. 

The transition velocity Ua, which demarcates the transition from circulating fluidised bed 

regime to transport regime, was also determined by plotting the average particle velocity as a 

function of the liquid velocity.  The critical transition velocity Ua, was taken as the point where 

the particle velocity becomes constant when increasing superficial liquid velocity as shown in 

figure 51 [106, 107]. 
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Figure 51. Particle circulating speed as a function of superficial liquid flow rate for both PIV 

technique (empty circle) and accumulation method (filled square) 
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Figure 52. The photo of downcomer which was visually observed by stereo-microscope for 

detecting solid particle circulation. 
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 Influence of surface forces and wall 

effect on the minimum fluidisation velocity of liquid-

solid micro-fluidised beds 

4.1 Introduction 
 

Microfluidics is the science and technology of processing of small volumes of fluids in conduits 

having dimensions of the order of tens to hundreds of micrometres [212-214]. This fascinating 

technology holds broad application areas, including medical diagnostics [215], power 

generation [216], materials synthesis [217], chemical and biochemical research [218, 219] due 

to their advantages such as the dramatic reduction in the amount of required sample, chemicals 

and reagents reducing the global fees of applications, less energy consumption, short times for 

analysis, improved safety, and less pollution [220-226]. However, transport process in 

microfluidic systems are dominated by molecular diffusion that comes with the inevitable 

laminar flow found in micron-sized conduits[174]. Fluidized beds have long been used at the 

macro-scale to enhance mixing and, thereby, heat and mass transport. Recent experimental 

work [227, 228] has demonstrated that liquid-solid micro-fluidized beds are feasible, offering 

the potential to not only overcome diffusion-limited  fluid mixing, heat and mass transport in 

simple micron-sized channels, but also to provide higher sensitivity and multi-modal detection 

in the diagnostic context by virtue of the large surface area per unit volume that comes from 

use of micro-particles [229, 230]. 

In general, the major difference between micro and macro-scale flows is the importance of 

surface forces which can prevent fluidisation, and inevitably the wall effects due to small bed 

size. Base on this principle the boundary between the micro and macro-scale flow is considered 

to be 1mm in the micro-fluidic field in general [231-233]. As expected, our previous 

experimental study confirmed that surface forces play a vital role in the micro-fluidised bed 

and can even prevent fluidisation in many cases [174, 234]. We showed that the acid-base 

model of van Oss, Chaudhury and Good combined with the Derjaguin approximation [235] 

can successfully predict the propensity of micro-particles to adhere to the walls of µFBs using 

common liquid fluidizing media [174, 227]. Furthermore, we used a comparison of surface and 

hydrodynamic driving forces to estimate the boundary between micro- and macro-scale 

fluidization at 1 cm with stricter limits at 1 mm, the same as for microfluidics [174]. 

A second major issue in µFBs is the high potential for the particle-to-bed diameter ratios to be 

greater than 0.1, leading to significant influence of the bed walls on the packing of the particles 
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in the bed and subsequently fluidization behaviour [58, 227]. The bed voidage in the µFB 

(micro-packed beds as the starting fluidization point) is indeed substantially higher compared 

to macroscale beds, leading to a significant increase in the minimum fluidization velocity [58, 

227]. The bed expansion behaviour also varies with the particle-to-bed ratio confirming strong 

wall effects as in the original Richardson-Zaki correlation for viscous flow [236]. Previous  

experiments indicate that the Richardson-Zaki exponent, n, increases significantly in a linear 

manner with the particle-to-bed diameter ratio only when the ratio exceeds 0.1 [227]. 

Subsequently, Tang et al. [228] confirmed our findings if only for narrow particle size 

distributions, while the trend is opposite for particles with wider distribution. Their study shows 

that wall effects are still influencing minimum fluidization behaviour for very high bed to 

particle ratios of up to 30, i.e. particle-to-bed diameter ratios greater than 0.03 [228].  In gas-

solid miniaturized beds experiments, the influence of the wall effects on the minimum 

fluidization velocity was observed for even lower particle-to-bed diameter ratios of 0.02 [70, 

71]. We performed new experiments with glass micro-particles and water as a fluidizing 

medium at a boundary of a micro-fluidization according to our previous mentioned study. 

Specifically, we used micro-machined Perspex fluidized bed of 1 mm2 and 2 mm2 square cross 

sections in this study. 

4.2 Experimental details 

 Experimental set up 
The system used in the present experimental investigation was made by micro machining 

channels in Perspex. Two micro-bed units were used in experiments with a cross section of 1 

mm x 1mm and 2 mm x 2 mm. Figure 53 (a & b) illustrates a schematic of the research 

experimental set up which consist of syringe pump (AL-4000, WPI INC., US) to pump water 

as a fluidising medium at the desired flow rate using a 5 ml B-D Plastipak syringe, and Euromex 

Nexius trinocular digital microscope fitted with a USB digital camera (JB Microscopes Ltd, 

UK) to record the micro fluidisation behaviour. The images and movies were saved on a 

computer for offline investigation studies. The equipment was connected using Deluxe Luer 

Fitting kit and flexible plastic tubing. 



85 
 

 

Figure 53. Photograph of (a) the experimental setup used in the research studies and (b) the 

micro-machined μ-FB  and μ-CFB  

 

 

 Particle and liquid materials 
Two different groups of particles were used as fluidised solid: (1) soda lime glass microspheres 

of five different diameters, d = 26 ± 1.5 µm, 30 ± 1.5 µm, 35 ± 3 µm, 58 ± 5 µm, 82 ± 6 µm, 98 

± 8 µm, 115 ± 9 µm, 165 ± 15 µm, 196 ± 16 µm μm whose density is ρp = 2500 kg/m3 and (2) 

PMMA particles of five different diameters, d = 23 ± 3.5 µm, 35 ± 3 µm, 41 ± 3.5 µm, 58 ± 5 

µm, and 115 ± 9 µm whose density is ρp = 1200kg/m3. Tap water (with average density of 998 

kg/m3) was used as the fluidising liquid. All experiments were performed at room temperature 

of average 18 ± 2 ºC. 

 Experimental methodology 

The minimum fluidisation velocity required to achieve fluidisation was determined by 

observing visually the bed height expansion and also by extrapolation of linear relationship 

between the superficial liquid velocity and ratio of bed expansion. Flowrates were calibrated 

in the range of fluidization velocities with and without particles inside the bed as in some cases 

a high pressure drop across the porous distributor caused a considerable but linear discrepancy 

from syringe pump readings. All experiments were started with the bed totally filled with tap 

water and solids up to a known height. For a desired liquid system and particle size, the liquid 

flow rate was slowly increased every 10 minutes and the corresponding bed height was noted. 

The height of the expanded bed was obtained by using a Euromex Nexius trinocular digital 

microscope to take pictures. ImageJ [237], an image processing and analysis computer 

(a) 

(b) 
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programme was used for off-line analysis to determine the bed height as a function of 

superficial liquid velocity. Minimum fluidisation velocity values were obtained from the plot 

of bed height expansion vs superficial liquid velocity. The point of intersection of the expansion 

line with vertical line for packed bed height was taken as minimum fluidisation velocity. 

4.3 Surface force and wall effect in the micro-fluidised bed 

experiment 
The importance of surface force and wall effect in micro-fluidised beds were investigated 

experimentally. As previously mentioned, the major difference between micro-fluidised beds 

and macro-fluidised beds flows is the importance of surface forces which can prevent 

fluidisation [61]. In the present research study the Dupree equation using acid-base theory 

developed by Oss, Chaudhury and Good (equation 19, chapter 3) [183] was used to predict the 

free interaction energy, ΔG1w2, between two different solid surfaces submerged in a liquid. The 

surface tension parameters for the fluid (water), glass, PMMA particles and PMMA walls used 

in the micro-fluidised bed study are shown in table 9 in chapter 3.  The free interaction energy 

between glass, PMMA particles and PMMA walls in water were obtained using all 

combinations of values in table 9. Given the surface energy obtained from acid and base 

approach using surface tension components for liquid-solids given in table 9, the adhesion force 

was found using the Derjaguin approximation (equation 21, chapter 3), and the drag force was 

found from the buoyant weight of particles (equation 24, chapter 3). When free interaction 

energy, ΔG1w2 value is negative (i.e. ΔG1w2 < 0), particle has the propensity to adhere to the 

walls of the micro-fluidised bed in presence of water, and when ΔG1w2 value is positive (i.e. 

ΔG1w2 >0), the interaction between the particle and bed wall is repulsive. 

4.4 Result and discussion 
In the first experimental investigation involving glass particles and PMMA wall using water as 

the fluidised medium, the free energy of interaction, ΔG1w2 obtained using most of the 

combination of values in table 9 from chapter 3 estimated that the interfacial energy acting 

between the PMMA walls of micro-fluidised bed and glass particles in the presence of water 

is attractive. However, when van Oss glass surface tension components were used with PMMA 

components excluding Della Volpe a positive free interaction energy was obtained (3/12 

combinations). The average predicted free interaction energy obtained using these three 

combinations indicates glass particles does not have the tendency to adhere to PMMA walls in 

the presence of water (ΔG1w2 = 8 mJ/m2 and  σ(ΔG) = 3.8 mJ/m2). The ΔG1w2 of only estimated 

adhesion values (9/12 combinations) was -8.87 mJ/m2 and σ(ΔG) = 5.77 mJ/m2.  
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As displayed in table 11, the average free interaction energy, ΔG1w2 obtained using the 12 

parameter combinations between glass particle and PMMA walls when using water as the 

fluidised medium was negative (-4.63 mJ/m2) and standard deviation of 9.29 mJ/m2. This 

indicates that the glass micro-particles have a small propensity to adhere to a PMMA walls 

surface in the presence of water. The interfacial energy acting between the PMMA micro 

fluidised bed walls and the glass particles is attractive. These observation are proximately 

identical to that described by Zivkovic and Biggs [61]. It was observed during the experimental 

investigation that some glass particles were sticking to the bed walls when there was no liquid 

flowing (packed bed) and it was also observed that particles were sticking to the top of the 

fluidised bed during the de-fluidisation experiments as shown in figure 54 (a & b). 

Table 11. Glass and PMMA particle Free energy of Interaction ΔG1w2 (mJ/m2) 

Surface 

1 

Surface 

2 

Liquid ΔG1w2 σ(ΔG) (ΔG)min (ΔG)max Interaction 

Glass PMMA Water -4.63 9.29 -19.22 12.38 attractive 

PMMA PMMA Water -47.22 7.49 -62.79 -37.83 attractive 

 

 

Figure 54. Adhesion of 35 μm glass particle (a) and (b) and PMMA particle(c) and (d) in the 

walls of the micro-fluidised bed. Adhesion can be seen at the top of the packed bed (a) and 

(c) and also at the top of the fluidised bed during defluidisation (b) and (d). 
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In the second experimental studies involving PMMA particles and PMMA walls using water 

as the fluidising medium, the free energies of interaction, ΔG1w2 obtained using the 16 surface 

tension components combination of PMMA were less than zero, with average free energy of 

interaction, ΔG1w2 = -47.22 mJ/m2 and standard deviation of 7.49 mJ/m2. This indicates that 

PMMA particles have a significant tendency to adhere to PMMA micro-fluidised bed surface 

when submerged in water as displayed in figure 54 (c) an (d). The free interaction energy, 

ΔG1w2 obtained using similar surfaces (4/16 combinations) were a little different with a mean 

of -46.66 mJ/m2 and standard deviation of 9.98 mJ/m2, which indicates a significant cohesion 

of PMMA particles when submerged in water unlike glass particle which are hydrophilic and 

its interaction is repulsive with mean free energy of 22.17 mJ/m2 

In the present experimental study smooth fluidisation was achieved for all glass particles as 

displayed in figure 55(a) and (b). Smooth fluidisation surprisingly was also obtained for each 

PMMA particle as shown in figure 3 (c & d). 

 

Figure 55. Successfully fluidisation using (a &b) 115 and 26 μm glass particle, (c & d) 115 

and 23 μm PMMA particle 
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In the experiments even though the free energy permits the identification of the propensity for 

solid particle adhesion to the bed surface, the adhesion and drag forces ratio experienced by 

solid particles in the bed is required if adhesion to the micro-fluidised bed wall will in fact 

occur. In the present research study, for both the PMMA and glass particles, the adhesion forces 

were 3-5 orders of magnitude bigger than the calculated drag forces, indicating that particle 

adhesion to the micro-fluidised bed walls is highly likely in these cases. This was observed in 

the efforts to fluidise the solid-particles in the bed, which proved difficult due to the solid-

particles adhering to the bed walls as displayed in figure 54. 

 

4.5 Minimum fluidisation velocity 
ImageJ was used to analyse videos and images to determine the bed height as a function of 

liquid superficial liquid velocity, which is displayed in figure 55. In the experiments the 

minimum fluidisation velocity was the point of transition between the packed bed regime and 

the conventional fluidisation regime in a fluidised bed. The experimental and theoretical 

minimum fluidisation velocity for glass and PMMA in the present experimental investigation 

are shown in table 12 and 13 respectively. 

 

Table 12. Experimental and theoretical Umf results for Glass particle 

bed size D 

(mm) 

dp Umf Theory Umf  Exp. Umf Exp. / Umf Theory 

1 26 7.01 13.81 1.97 

30 9.05 16.74 1.85 

35 12.10 19.97 1.65 

58 33.97 48.58 1.43 

82 68.15 89.96 1.32 

98 97.34 120.70 1.24 

115 134.70 157.60 1.17 

165 275.75 303.32 1.10 

196 388.87 396.65 1.02 

2 26 7.01 9.46 1.35 

35 12.10 14.76 1.22 

58 33.97 35.33 1.04 

115 134.70 125.27 0.93 
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Table 13. Experimental and theoretical Umf results for PMMA particle 

 

In an ideal fluidised bed system, the Umf is the minimum superficial liquid velocity where a bed 

of granular material is transformed from packed state to a fluidised state. In the present 

experimental investigation for 115 µm glass particle using the 2mm bed, a partially fluidised 

bed was observed at a superficial liquid velocity bellow the predicted minimum fluidisation 

velocity as shown in table 2. As the superficial liquid velocity was increased in a small range, 

the majority of particles in the bed became fluidised, however, it was also observed small 

amount of un-fluidised particles at superficial liquid velocity significantly higher than those 

where the system appeared to be fluidised. For PMMA particles the transitional region from 

fixed state to fluidised state was considerable extensive as the cohesive forces present on them 

are by far higher than the gravitational force, and the fluid drag and buoyancy forces acting on 

them are not sufficiently high and that made difficult to determine the minimum fluidisation 

velocity. As there was observed fluidised and un-fluidised regions at the same time in the 

system, it was important to standardise an approach to determine de minimum fluidisation 

velocity to enable comparison of different bed characteristic. This was done by plotting the bed 

height expansion as a function of superficial liquid velocity as shown in figure 56. 

Extrapolation of a linear relationship between the superficial liquid velocity and ratio of bed 

expansion was used to determine the experimental minimum fluidisation velocity.  The point 

of intersection of the expansion line with vertical line for packed bed height was taken as the 

minimum fluidisation velocity. 

Figure 56 displays the bed height against liquid velocity obtained from the experimental results. 

This is shown on the plot for both the forward and reverse cases. Umf, U indicates the minimum 

fluidisation velocity obtained by increasing the liquid velocities, and Umf, d indicates the 

minimum fluidisation velocity obtained by decreasing the liquid velocity, Umf, T is the 

bed size D (mm) dp Umf  Theory Umf  Exp. Umf Exp./ Theory 

1 23 0.75 16.79 22.39 

35 1.66 25.25 15.21 

41 2.33 30.80 13.22 

58 4.55 46.62 10.25 

115 18.03 139.73 7.75 

2 23 0.75 7.61 10.14 

35 1.66 12.02 7.24 

41 2.33 14.33 6.15 

58 4.55 22.80 5.01 

115 18.03 83.12 4.61 
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theoretical minimum fluidisation velocity. The Bars are the standard error of the height 

obtained from image analysis in ImageJ. 

From figure 56 it can be observed that the height of the bed stays the same until it reaches the 

minimum fluidisation velocity after which it begins to increase. Before the minimum 

fluidisation velocity is reached, the fluid force on the fixed bed is not enough to cause it to 

change as it is less than the weight of the fixed bed. When Umf is reached, the fluid force acting 

in the upwards direction upon the fixed bed is greater and for this reason the packed bed 

increases in height. Hence solid particles become suspended. At this point fluidisation takes 

place. From the experimental results, it can be identified that the minimum fluidisation velocity 

is directly proportional with solid particle size. The minimum fluidisation velocity rises with 

increasing particle diameter.   
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Figure 56. Relative bed height as a function of superficial liquid velocity, U, with increasing 

liquid velocity (Umf, u), and decreasing liquid velocity (Umf, d) for 26 μm glass microparticles 

in 1mm2 micro-bed. Error are not visible in the graph as they are smaller than the symbols. 

Figure 57 displays the minimum fluidisation velocity values obtained from the experimental 

investigation for 1mm and 2mm bed as a function of particle size. It can be observed that 

minimum fluidisation velocity is inverse proportional to bed size. For particles with same size 

and density Umf increases with decreasing in bed size, and it can also be seen that the bed size 

becomes more significant with increase particle size special for PMMA particles. 

Umf,u 

Umf,d 

Umf,t 
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Figure 57. Umf as a function of particle size for (a) glass and (b) PMMA particles inside a 

1mm and 2mm bed 
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From figure 58 it can be observed that minimum fluidisation velocity is independent of bed 

height.  For various  bed heights used in the experimental study, the minimum fluidisation 

velocity required to achieve fluidisation was the same. The Umf did not show changes when the 

initial bed height or solid inventory was increased. In other words the bed height did not have 

a significant effect on the minimum fluidisation velocity.  
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Figure 58. Effect of Bed height on minimum fluidisation velocity 

 

 

 

 Importance of surface force and wall effects  

We plotted ratios of experimentally determined fluidization velocity over the theoretical 

calculated values using the Ergun equation as a function of adhesion/drag force ratios as shown 

in Figure 59 and 60. In the case of glass micro-particles, Figure 59, the velocity ratio goes 

below unity which is a consequence of underestimation of experimental minimum fluidization 

velocity by the extrapolation of expansion lines, a technique applied here as discussed in the 

previous sub-section. Yet, it seems that the velocity ratios level off at around 0.9 at lower fluid 
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velocities in the case of 2 mm2 (empty circle) micro-fluidized bed indicating probably a 20-

30% underestimation in the determination of the Umf in our experiments. Regardless of these 

systematic underestimations, the figure undoubtedly shows that the increase in experimental 

minimum fluidization velocity is linearly scaling with the force ratio both for glass and PMMA 

micro-particles fluidization. However, it is noticeable that two distinct lines represent results 

in 1 mm2 (full square) and 2 mm2 (empty circle) micro-fluidized beds in both glass and PMMA 

particle fluidization experiments. This clearly indicates that wall effects, i.e. the particle-to-bed 

diameter ratio, influence the postponement of incipient fluidization in addition to the 

adhesion/drag force ratio.  
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Figure 59. Umf experimental/Umf calculated vs. adhesion force/drag force for D = 1mm full 

square D = 2mm empty circle. 
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PMMA Particle
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Figure 60. Umf experimental/Umf calculated vs. adhesion force/drag force for D = 1mm full 

square and D = 2mm empty circle. 

 

 

 

In order to take wall effects into account, we replotted the data from Figure 59 and 60 as a 

function of the simple product of two ratios: adhesion/drag force ratio and particle-to-bed 

hydraulic diameter ratio. In both particles cases, the data fall on one master line showing good 

linear trend of increase of the minimum fluidization velocity as a function of the introduced 

ratios product. The linear fitting to the glass micro-particles fluidization data gives a line of 

slope 0.077 ± 0.0025 as shown in Figure 61 (adjusted R2 = 0.996) while for the PMMA beads 

slope of linear fitting line is 0.027 ± 0.0009 (adjusted R2 = 0.996), Figure 62. The difference in 

the slope of the lines for glass and PMMA particles could be caused by the cohesion of particles 

that is present in PMMA particles and not in glass particles when submerged in water. Cohesion 

increases particle size as a result of agglomeration and that reduces the significance of surface 

force and decreases the line of slope. In general cohesion will increase the particle size due to 

agglomeration which will reduce the importance of surface forces as the major factor and 

therefore reduce the slope of the line. 
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In the study of PMMA particles, experimental Umf is approximately 4-23 times higher than the 

predicted Umf. The ratio between experimental Umf and theoretical Umf increases with decreasing 

particle size, for 23μm PMMA particle the ratio is almost 23 times higher. Although this 

corresponds to the level of surfaces importance, it is not completely proportional to surface and 

adhesion forces ratios, but rather scale with the product of force ratio and the particle to bed 

diameter ratio as can be seen in figures 60 and 62. Hence, both wall effect and surface forces 

influence fluidisation behaviour of micro-fluidised beds at the boundary of micro fluidisation. 
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Figure 61. Ratio of experimental and theoretical Umf versus product ratio for D = 1mm (full 

squares) and D = 2mm (empty circles). 
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PMMA Particle

Fadh/Fd*dp/D

0 100 200 300 400 500 600 700

U
m

f 
E

x
p

. 
/ 

U
m

f 
T

h
e

o
ry

0

5

10

15

20

25

1mm bed
2mm bed

R
2
 = 0.996

slope = 0.027

 
 

Figure 62. Ratio of experimental and theoretical Umf versus product ratio for D = 1mm (full 

squares) and D = 2mm (empty circles). 

 

In the study of PMMA particles, experimental Umf is approximately 4-23 times higher than the 

predicted Umf. The ratio between experimental Umf and theoretical Umf increases with decreasing 

particle size, for 23μm PMMA particle the ratio is almost 23 times higher. Although this 

corresponds to the level of surfaces importance, it is not completely proportional to surface and 

adhesion forces ratios, but rather scale with the product of force ratio and the particle to bed 

diameter ratio as can be seen in figures 60 and 62. Hence, both wall effect and surface forces 

influence fluidisation behaviour of micro-fluidised beds at the boundary of micro fluidisation. 

 

 Hysteresis in micro-fluidization expansion behaviour 
The expansion plots, Figure 56, shows obvious and quite large hysteresis effects in expansion 

lines for both glass and PMMA particles, probably due to considerable pressure overshoot for 

fluidization cycle experiments as already measured in the micro-fluidized bed [69]. This may 

also be an indication of jamming transition as demonstrated by the careful experimentation of 
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Goldman and Swinney [238]. We quantify the degree of hysteresis as the ratio of Umf,u and 

Umf,d for each size of particles. The velocity ratios were the order of 1.2-1.3 and 1.15-1.25 for 

PMMA and glass particles fluidization indicating larger hysteresis for more adhesive PMMA 

beads. The plot of glass particles fluidization results shows good trend of increase of hysteresis 

with the product of force and particle-to-bed diameter ratios as shown in Figure 63 (b). On the 

other hand, this trend is not present in results of PMMA particles fluidization with no obvious 

trend with either force ratio or particle-to-bed diameter ratio alone.   
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Figure 63. The ratio of the experimental minimum fluidization velocity for increasing, Umf,u, 

and decreasing, Umf,d, flow rate experiments versus product of force and particle-to-bed 

diameter ratios for (a) glass  and (b) PMMA micro-particles. 

 

 

4.6 Conclusions 
We studied fluidization of glass and PMMA micro-particles in 1 mm2 and 4 mm2 square micro-

fluidized beds made of Perspex (PMMA). As predicted by the acid-base theory of van Oss, 

Chaudhury and Good there was noticeable adhesion to the bed walls for both particle materials. 

The Derjaguin approximation was used to estimate adhesion forces between micro-particles 

and bed walls for comparison with drag forces approximated by the buoyant weight of the 

particles. The observed incipient fluidization in the micro-fluidized bed was postponed in 

comparison with theoretical predictions based on macroscopic experiments. This was 

influenced both by adhesion strength and wall effects. The increase in the minimum 

fluidization velocity scales linearly with the simple product of adhesion/drag force and particle-

to-bed diameter ratios. Particle cohesion and bed walls/particle materials properties like 
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elasticity influence the scaling relationship but further investigation is needed on this point.  

The hysteresis is proportional to the product of force and particle-to-bed diameter ratios in the 

case of glass particles but not for PMMA particles’ results- further investigation is needed to 

elucidate this further.  
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 Solid circulating velocity measurement 

in a liquid-solid micro-circulating fluidised bed 

system  

5.1 Introduction 

One of the major tasks in liquid-solid circulating fluidised bed is to use the reliable technique 

to measure the solid circulating velocity in the system. An accurate solid circulating velocity 

measurement is desirable as it reduces operational and capital cost, increases safety and 

provides process stability [239, 240]. As previous mentioned one of the fundamental 

parameters needed to quantify mass and heat transportation and one that dictates the fluidised 

bed capability as a reactor, is the solid circulating velocity in the bed, which controls the time 

of contact between solid and liquid. Solid circulating velocities are important as they affect 

heat and mass transfer, erosion, and mixing in circulating fluidised beds. Measurement of solid 

circulating velocity in a micro circulating fluidised bed is extremely hard to be implement using 

current measurement technology such as butterfly valve, X-ray tomography, electrical 

capacitance tomography, magnetic resonance imaging, as they are expensive, as it is very 

difficult to scale down these techniques  for application in a microfluidics context [60]. 

The solid circulation rate measurement in a solid-liquid circulating fluidised bed has been 

reported previously by various researchers. Several research groups [36, 106, 107, 210] 

measured the solid circulation rate by using a simple procedure with a measuring valve in the 

downcomer. The accumulation of particles above the ball valve at a given time interval could 

be measured by closing the valve in the downcomer, thus giving the particle circulation rate. 

They reported that the solid circulation rate increases with liquid flow rate and solid feed pipe 

diameter but decreases with increasing particle density and size. Roy, Kemoun [194] used a 

radioactive technique to measure the solid circulation rate. The basic idea was to determine the 

particles volumetric flow rate by measuring the particles velocity and volume fraction in the 

downcomer. Particle volume fraction was obtained by densitometry measurement, while 

particle velocity was obtained by measuring the falling time of a single radio-active tracer 

particle between two detectors installed in the downcomer. This type of measurement technique 

is costly and requires considerable safety measures. Wu et al. [192] and Masuda and Linoya 

[241]  measured the solid circulation rate based on the impact technique. In this technique an 

impact plate flow meter installed in the downcomer is employed to determine the solid 

circulation rate by measuring the force of re-circulating particles falling onto an inclined plate. 
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The disadvantage of this type of solid flux measurement device technique is the issues with its 

breadth measurement range and calibration is very complex.  Hensler, Firsching [242] 

employed X-ray tomography to determine the solid circulation rate. They found that the solid 

circulation rate increases with liquid velocity. Wang, Dyakowski [243] used electrical 

capacitance tomography to measure the solid circulation rate in a circulating fluidised bed. 

Patience et al. [194, 244] used an approximate technique to estimate the solid circulation rate 

in a gas-solid circulating fluidised bed system based on differential pressure drop measurement. 

Lech [245] predicted the solid circulation rate based on parallel measurement of pressure drop 

and particles velocity. They also reported an increase in the solid flux with an increase in the 

liquid velocity. Kuramoto et al.[246] measured the solid circulation rate by using a tracer 

micro-spherical particles coated with fluorescent dyes. The tracer particles motion was detected 

by a fiber optic sensor installed in the storage vessel. 

In the current research investigation, particle imaging velocimetry (PIV) software PIVlab 

[200], was used to determine the solid circulating velocity in the micro-circulating fluidised 

bed. A digital PIV technique has been employed previously by researchers for measuring the 

flow velocity profiles in granular flow [201, 202]. The advantage of this technique over other 

conventional techniques such as the butterfly and ball valve technique are that it is non-invasive 

and easy to implement in microfluidics setup which is not trivial for the valve. The effects of 

operating parameters such as solids inventory, particle size and density on solid circulating 

velocity has been carefully studied using PIVlab and Matlab. 

5.2 Experimental details 

 Experimental set up 
The schematic representation of the experimental set up is illustrated in Figure 64(a). The 

system consists of a syringe pump (AL-4000, WPI INC., US) to pump the water as a fluidising 

medium at the desired flow rate using a 5ml B-D Plastipak syringe, and Basler aCA1300-200uc 

digital camera to record the micro fluidisation behaviour. The system used in the present 

experimental investigation was made by micro machining channels in Perspex as schematically 

shown in Figure 64(b). The micro-circulating fluidised bed consist of a riser column of 1 mm 

square cross-section and 100 mm in height, a solid-liquid separator, a down comer acting as a 

particle reservoir, a solid return pipe, and a solid feeding pipe.  At the base of the riser is the 

distributor (a 1.5 mm thick porous plate distributor with mean pore size of 21 µm) which 

prevents particles leaving the bed at the bottom and provides uniform flow distribution and 

stable fluidisation. The solid-liquid separator is a simple diamond shaped expansion that 
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enables the particles to be separated from the outflowing liquid as the reduced liquid superficial 

velocities is not sufficient for liquid to carry over particles.  

 Particles and liquid used in the present study 
Two different groups of particles were used as fluidised solid: (1) soda lime glass microspheres 

of five different diameters, d = 26 ± 1.5 µm, 30 ± 1.5 µm, 35 ± 3 µm, 58 ± 5 µm, 82 ± 6 µm, 98 

± 8 µm, 115 ± 9 µm, 165 ± 15 µm, 196 ± 16 µm μm whose density is ρp = 2500 kg/m3 and (2) 

PMMA particles of five different diameters, d = 23 ± 3.5 µm, 35 ± 3 µm, 41 ± 3.5 µm, 58 ± 5 

µm, and 115 ± 9 µm whose density is ρp = 1200kg/m3. Tap water (density ρf = 998 kg/m3 and 

viscosity µf = 0.001 Pa.s) was used as the fluidising liquid. All experiments were performed at 

room temperature of average 18 ± 2 ºC.  

 

Figure 64. Schematic of (a) experimental set up for imaging and (b) micro-circulating 

fluidised bed. 

 Experimental procedure 
Prior to loading the particles into the micro-circulating fluidised bed, the bed was cleaned 

several times with tap water to make sure that no particles and air bubbles was left within the 

system. The bed was filled with liquid (water) using a syringe pump, taking care to ensure no 

air bubbles entered the fluidised bed system. This was done because any trapped air bubbles 

within the system could affect the experimental results. Once the CFB was flooded with water, 

PMMA and glass particles (23-196 μm) were loaded into the top of the CFB and left to fall 

down on to the top of the distributor by gravity. The solid particles were left to settle for 24 

hours, to ensure they properly settled in the bed. Calibration was performed with and without 

particles to determine the flowrate at which liquid moves through the system and showed a 
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good linear relationship from the pump reading. The solid inventory was measured with the 

aid of ImageJ [237]. This was done by measuring the initial static bed height using ImageJ and 

expressed in terms of surface percentage occupied by the particles out of the whole system 

surface (in this case this is the same as volume percentage as the depth is constant) as shown 

in figure 65. Liquid at varying velocity was pumped by a syringe pump from the syringe to the 

bed inlet to produce the fluidisation liquid at the required velocity in the bed. Particles at the 

bottom of the riser were kept in motion by the upward liquid flow. When the liquid flow rate 

was high enough, particles were carried out of the riser and separated from the outflowing 

liquid by the solid-liquid separator and recirculated back to the riser through the solid feed pipe. 

The experimental procedure was performed with both decreasing and increasing superficial 

liquid velocities. For each particle, this procedure was repeated at least three times to ensure 

repeatability and the measurement of experimental errors. Digital movies of granular flow were 

captured by a Basler aCA 1300-200uc digital camera which as a resolution of 1.3 MP. Basler 

Pylon viewer software was used to monitor the recording process. Flexible fiber optic 

illuminator was used to illuminate the granular flow in the circulating fluidised bed and produce 

high quality image. The camera capture rate was set to 25 fps with a shutter time of 100 µs 

after preliminary test revealed that it provided high quality videos without motion blur and the 

optimal PIV results. Each video has a recording time of 20 seconds. The images and movies 

were saved on a computer for offline study. The off-line examination comprised of movies 

converted into successive frame sequences by VLC media player, and the particle displacement 

calculation was made from successive frames using PIVlab, a Matlab code, which determines 

the velocity of particles by cross correlating a PIV algorithm of multiple small sub-images.  
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Figure 65. Example of solid inventory measurement with static bed height of 45mm as determined by 

ImageJ. In this case 45mm static bed height corresponds to 20% of surface percentage occupied by 

the particles out of the whole system surface. Therefore, the solid inventory in the system was 

estimated to be 20% 

5.3 Results and discussion 

 Background movement 
Initial PIVlab image analysis shows that particles move upwards as shown in Figure 66(a) 

instead of downwards along the solid feed pipe as expected and visually observed. Further 

analysis showed considerable background movement, so it was necessary to calculate the 

background movement velocity field using PIVlab as shown in Figure 66(b). The imported 

vector field of particles in the solid feed pipe in Matlab is shown in Figure 67(a) with the 

erroneous upward motion of particles. The velocities were then correctly adjusted by 

subtracting the background motion, Figure 66(b), in Matlab to obtain the correct particle 

velocity field with downward motion as shown in Figure 67(b).  
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Figure 66.  Velocity vector field in (a) the solid feed pipe and (b) in background determined 

by PIVlab analysis. 

 
Figure 67. Examples of Original particle velocity field (a) and the velocity field after 

subtraction of the background movement (b) for the 58 µm glass particle at 445 µl/min liquid 

flow rate with 15% solid inventory bed. 

 

 Effect of the liquid flow rate on solid flux 
 In solid-liquid circulating fluidised beds, particle motion is controlled by changing the inlet 

superficial liquid flow rate. Figure 68 displays the effect of liquid velocity on the solid 

circulating velocity for glass and PMMA particles as determined by digital PIV analysis 

described in the previous section. The experimental results indicate that by increasing the 

superficial liquid flow rate, the solid circulating velocity in the system is close to zero (no solid 

(a)

(b)

0.01 mm/s

0.008 mm/s
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movement) then increases sharply at some critical superficial liquid velocity and then plateaus 

at higher superficial liquid flow rate. The change in solid circulating velocity with superficial 

liquid flow rate indicates two zones. The first zone (initial circulating fluidisation zone) where 

solid circulating velocity increases rapidly with increasing superficial liquid flow rate and the 

second zone (fully developed zone) where solid circulating velocity insignificantly varies with 

increasing superficial liquid velocity as reported by Zheng [107]. The critical transition velocity 

from a conventional fluidised bed to circulating fluidised beds occurs at the point where the 

solid circulating velocity becomes zero with reducing superficial liquid velocity. Thus, the 

critical transition velocities are determined as the intercept of no particle flow (nearly zero) and 

initial circulating zone line as shown in the plots. These plots clearly also show that the critical 

transition velocity, Ucr, is approximately equal to the particle terminal velocity, Ut in all 

consider cases. 

 

 
Figure 68. Particle circulating speed as a function of normalised velocity (Ul/Ut) for (a) glass 

and (b) PMMA particle. Errors are smaller than the symbols. 
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 Effect of solid inventory in the system 
Figure 69 shows the normalised critical transition velocity as a function of solid inventory, 

indicating that in the solid-liquid micro circulating fluidised bed the critical transition velocity 

is strongly influenced by solid inventory. For beds with a solid inventory lower than 10 %, a 

higher superficial liquid velocity is required to achieve a circulating fluidised bed, and the 

transition from conventional to circulating fluidised bed is greater than the particle terminal 

velocity (Ucr/Ut = 1.5 to 4.7). However, for systems with a solid inventory higher than 10%, 

the critical transition velocity from conventional to circulating fluidised bed regime occurs 

close to the particle terminal velocity, and the normalised transition velocity is approximately 

1. These observations are similar to those reported by Liang et al. [106], the critical transition 

velocity decreases with solid inventory and finally becomes stable when the solid inventory is 

high enough. This is slightly different from the observation reported by Zheng and Zhu as their 

reported onset velocity (Ucf) which gives the lowest critical transition velocity from the 

conventional to circulating fluidised bed regime was found to be independent of the bed 

geometry, operating conditions and solid inventory, probably due to the method applied. 

 
Figure 69. Effect of solid inventory on normalised transition velocity for 35µm (a) glass and 

(b) PMMA particles. 

 Effect of particle size 
Figure 70 shows that the transition from conventional to circulating fluidised bed regime in a 

solid-liquid micro circulating fluidised bed is influenced by particle properties such as size and 

surface properties beyond the influence on the particle terminal velocity. First there is a trend 

of increased normalised critical transition velocity with an increase in particle size which is 

probably because of increased wall effects which are not usually present in large circulating 

fluidised beds. It can also be observed that the normalised transition velocity (Ucr/Ut) is 
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considerably higher for PMMA particles compared to glass particles of the same size. This is 

probably due to the difference in surface properties with PMMA particles being hydrophobic 

while glass particles are hydrophilic. Particle agglomeration due to cohesion was visually 

observed for PMMA as was some particle adhesion to the walls. Cohesion increases particle 

size as a result of agglomeration and that may postpone the critical transition velocity (Ucr) 

from conventional to circulating fluidised bed regime and the wall adhesion present in the 

downcomer will also contribute to postponing transition. 

 

 

Figure 70.  Normalised critical transition velocity as a function of particle size for (a) Glass 

and (b) PMMA micro-particles with solid inventory in the range of 10 - 25%. 
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5.4 Validation 
A second experimental study was carried out to measure the solid flux in a liquid-solid micro-

circulating fluidised bed. In this experimental investigation a novel measurement technique, 

the magnet for solid flux measurement was developed to measure the solid flux in the micro-

circulating fluidised bed and the results was compared with those obtained using PIV software. 

In order to validate the PIV measurement in micro-circulating fluidised bed, two experimental 

investigation was carried out, the first experiment was the solid flux measurement by PIV 

technique and the second experimental investigation was the solid flux measurement by a 

magnet valve (accumulation method). For the solid flux measurement by PIV methodology all 

the procedures used in the previous PIV study were employed. 

Additive manufacturing was used for design and fabrication of a novel micro-circulating 

fluidised bed (µCFB). With 3D printing it is easy to implement the magnet valve to measure 

the solid flux which would be extremely difficult to implement using the present traditional 

design technique. 

The micro-circulating fluidised bed used for both experimental investigations is shown in 

figure 71.  

 
Figure 71. Schematic of the two micro-circulating fluidised bed used for the research 

experiment: (a) shows the bed used for the PIV measurement technique and (b) shows the 

bed used for the magnet measurement technique (accumulation method). 
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The micro-circulating fluidised bed consist of a riser column of 2mm square cross-section and 

100 mm in height, a solid-liquid separator, a down comer acting as a particle reservoir, a solid 

return pipe, and a solid feeding pipe.  At the base of the riser is the distributor (a two layer of 

parallel array pillars of 150 µm diameter and 100 µm spacing which prevents particles leaving 

the bed at the bottom and provides uniform flow distribution and stable fluidisation. In this 

experimental investigation lime glass micro-particles of two different diameters, d = 165µm ± 

15 and d = 196 ± 16 µm whose density is ρp = 2500 kg/m3 were used as the fluidised solid and 

tap water as the fluidising liquid. The above microsphere glass particles were chosen for this 

experimental study because the liquid distributor was not able to support any particle of 

diameter below 150 µm. 

 Solid circulation rate using magnet 
A magnet was installed inside the micro-circulating fluidised bed (downcomer) as shown in 

figure72, and an external magnet was used to move and control the magnet inside the bed. The 

solid circulation rate was measured by closing the downcomer with a magnet which was 

installed in the circulating fluidised bed system, and noting the time required to accumulate a 

defined height of solids above the magnet and the equation 25 from chapter 3 was used to 

calculate the solid circulation rate. Since the bed was transparent, it was possible to observe 

visually the accumulation of solids after closing the valve, and ImageJ was used to determine 

the bed height from images as shown in Figure 72. 
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Figure 72. Picture of 3D printed micro-circulating fluidised bed with a magnet inside the 

system used to measure the solid circulation rate 

 

Figure 73 presents the experimental results obtained from both, the solid circulating velocity 

measurement by PIV technique and with magnet valve technique. We plotted the particle 

circulation velocity as a function of normalised velocity for both 165 µm and 196 µm glass 

microsphere particle. 

To facilitate comparison between the PIV technique and accumulation method, the solid 

circulation rate obtained from the accumulation method was converted to circulating solid 

velocity using equation 27 [99, 107].  

𝑈𝑠 =
𝐺𝑠

𝜌𝑠
                   (27) 

Where ρs is the solid density, Us solid circulating velocity, and Gs solid circulation rate. 

(Example of solid circulation rate conversion to solid velocity are given in appendix) 
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Figure 73. Particle circulating speed as a function of normalised velocity (Ul/Ut) for both PIV 

technique (blue) and accumulation method (red) 

 

 In general, the solid circulating velocity based on the accumulation method (magnet) was 

found to be 5-10% lower to the PIV technique measurements for all liquid velocities as shown 

in figure 73. However, for both measurement technique the critical transition velocity from 

conventional to circulating fluidised bed regime are almost identical as shown in figure 74. The 

critical transition velocity is just slightly higher for the accumulation technique for both 165 

and 196 µm particle. Albeit the accumulation technique is simple to perform, and the solid flux 

in system can directly be determined, the measurement is not continuous. The interference 

caused by closing the downcomer with the magnet valve disturb the steady state operation of 

the system. Particle accumulation in the circulating fluidised bed downcomer imply reduction 

of particles in other part of the system and this introduce changes to fluidisation characteristics 

in the riser during the measurement. The larger the volume of particle accumulated in the 

downcomer, albeit increasing resolution of the results, the more unreliable is the experimental 

result as it influences dynamics in other part of the system. Overall the results obtained from 

these techniques agreed well with each other, and this agreement provided a strong basis for 

the development of a novel Particle image velocimetry (PIV) software PIVlab method and 

accumulation technique to measure the solid flux in a micro-circulating fluidised bed. 
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Figure 74.  Normalised critical transition velocity as a function of particle size obtained from 

the PIV and accumulation measurement technique. 

 

 

5.5 Conclusions 
The digital PIV analysis using PIVlab and MATLAB was used to determine the solid 

circulating velocity in a micro-circulating fluidised bed. The use of PIVlab and Matlab codes 

to estimate the solid circulating velocity seems promising, and the results looks relevant when 

compared with previous reported studies. As in a macroscopic circulating fluidised bed, the 

solid circulating velocity in a micro-circulating fluidised bed increases with liquid velocity in 

two distinct zones, increasing sharply first then levelling off at higher inlet fluid velocities. The 

determined transition velocities from solid circulation rate versus velocity plots are comparable 

to the particle terminal velocity, i.e. the normalised transition velocity is approximately 1 in 

line with previous studies. The transition velocity is strongly influenced by solid inventory, i.e. 

it decreases with solid inventory before levelling off at high enough solid inventory. Finally, a 

weak increase in the normalised transition velocity with particle size was observed, which is 

probably due the wall effects (higher particle to bed ratio). 
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 Influence of circulating fluidised bed 

geometry on the hydrodynamics of liquid-solid flow 

in microchannel 

6.1 Introduction 
As the component of a solid-liquid Circulating fluidised bed include two columns the storage 

vessel or down comer and the riser with continuous particle circulation between the two 

columns, the flow characteristics and solid circulating velocity in the circulating fluidised bed 

system can be considerably influenced by the bed geometry, especially in large scale systems. 

Solid feed pipe is one of the most influential components of the circulating fluidised bed 

geometry. As the solid feeding pipe structure changes, the fluidisation characteristics in the 

system may not remain similar [99, 108, 247]. 

Although there have been many reported studies on the hydrodynamics of liquid-solid 

circulating fluidised beds, there are limited published articles on the importance of the solid 

feed pipe diameter on the circulating fluidised bed hydrodynamics. Most reported experimental 

investigation were carried out without modifying the diameter of the solid feed pipe, the main 

reason is that changing the solids feed pipe structure using traditional fabrication method used 

to manufacture these type of liquid-solid processing equipment are costly, labour-intensive, 

and cause time wastage when making a change in the design. Therefore, in the present research 

investigation an attempt was made to study the effect of these important parameters in the solid-

liquid micro-circulating fluidised bed flow behaviour. 

A number of experimental studies has been done to determine the influence of solid feeding 

pipe structure on the hydrodynamics of circulating fluidised beds. Zheng and Zhu [116] 

investigated the solid circulation rate in a liquid-solid circulating fluidised bed by changing the 

solid feeding pipe diameter, and reported that the solid circulation rate is depended on the solid 

feeding pipe structure. Feng et al. [114] experimentally investigated the influence of solid 

feeding pipe system on the solid circulation rate and concluded that the solid feeding pipe 

diameter strongly influence the flow characteristics of the liquid-solid circulating fluidised bed 

system. Natarajan et al. [36, 104] studied the effect of the diameter of the solids feed pipe on 

the hydrodynamic behaviour of the liquid-solid circulating fluidised bed hydrodynamics, 

particularly the solid circulation rate by using five different solids feed pipes of 9, 12, 22, 25, 

and 30 mm inner diameter size. In their report they concluded that the solid circulation rate 
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increases with increase solid feed pipe diameter and the particles input to the circulating 

fluidised beds riser is dependent on the diameter of solid feed pipe. 

6.2 Experimental details 
Here we are presenting the first experimental study on the effect of circulating fluidised bed 

geometry (the ratio between the diameter of solid feed pipe and riser and also the angle between 

solid feed pipe and riser) on the hydrodynamics of liquid-solid circulating fluidised beds 

(LSCFB) at the micro-scale. Additive manufacturing technology, digital light processing 

(Miicraft+ printer) and stereolithography (Form2 printer) were used to fabricate a novel micro-

circulating fluidised bed. Compared with other fabrication techniques such as lithography, 

additive manufacturing technology allowed us to rapidly fabricate a reliable micro-circulating 

fluidised bed using low cost material and most importantly, the solid feed pipe structure such 

as the diameter and angle of the solid feed pipe can be easily be modified.   

For this experimental study, new solids feed pipe designs were suggested. The idea is that by 

changing the size of the solid feed pipe diameter and the angle between the solid feed pipe and 

the riser can have a major influence on the internal recycling of particles in the riser column, 

and eventually on the system hydrodynamics. The micro-circulating fluidised bed used for this 

experimental investigation is schematically illustrated in figure 75. The bed consist of a riser 

column of 2mm square cross-section and 100 mm in height, a solid-liquid separator, a down 

comer acting as a particle reservoir, a solid return pipe, and a solid feeding pipe. At the base of 

the riser is the distributor (a two layer of parallel array pillars of 150 µm diameter and 100 µm 

spacing which prevents particles leaving the bed at the bottom and provides uniform flow 

distribution and stable fluidisation.  

The first experiment were carried out using three different solid feed pipe of 1, 1.5 and 2 mm 

square cross section as shown in figure 75, and the second experiment were done using three 

different angles (angle between the solid feed pipe and the riser) of 30, 50, and 60° as displayed 

in figure 76 to explain the importance of the solid feed pipe cross section and the angle between 

the solid feed pipe and the riser on the flow behaviour.  

In this experimental investigation the bed particles were lime glass micro-particles 

(Whitehouse Scientific Ltd, UK) of two different diameters, d = 165 ± 15 µm and d = 196 ± 

16 µm whose density is ρp = 2500 kg/m3 were used as the fluidised solid and tap water as the 

fluidising liquid. The above microsphere glass particles were chosen for this experimental 
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study because the liquid distributor was not able to support any particle of diameter below 150 

µm.  

In the current research investigation, particle imaging velocimetry (PIV) software PIVlab [200-

202], was employed to determine the solid circulating velocity in the micro-circulating 

fluidised bed. This measurement technique was chosen because of its simplicity and ease of 

implementation in microfluidics when compared with others measurement methodologies 

already mentioned in chapter 3. The critical transition velocity, the superficial liquid velocity 

from conventional to circulating fluidised bed regime was identified by the solid circulation 

rate method. 

 
Figure 75. Schematic of the three systems used to study the influence of solid feed pipe cross 

section on the flow behaviour of a liquid-solid micro-circulating fluidised bed system: (a) 

shows a system with 2mm cross section solid feed pipe, (b) shows system with a 1.5 mm 

cross sectional solid feed pipe, and (c) show a system with a 1mm cross sectional solid feed 

pipe 
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Figure 76. Schematic of the three system used to study the influence of the angle between the 

riser and solid feed pipe on the liquid-solid flow behaviour in a micro-circulating fluidised 

bed system. (a) With a 60°angle between the riser and solid feed pipe, (b) with a 50°angle 

between the riser and solid feed pipe, and (c) with a 30°angle between the riser and solid feed 

pipe 

 

6.3 Results and discussion 
In solid-liquid micro-circulating fluidised beds, particle motion is controlled by changing the 

inlet superficial liquid flow rate and the solid feed pipe structure. The solid circulating velocity 

for the three types of solid feed pipe are different in the current experimental investigation. 

Figure 77 displays the influence of the ratio between the cross section of the solid feed pipe 

and riser on the hydrodynamics of liquid-solid micro-circulating fluidised bed, specifically 
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solid circulating velocity for glass (165 and 196 µm) particles as determined by digital PIV 

analysis described in chapter 3. 
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Figure 77. particle circulating velocity as a function of normalised velocity (Ul/Ut) for both 

165µm glass particle in black and 196 µm glass particle in white colour. The angle between 

the riser and solid feed pipe is 60°. 

 

First there is a trend of increased solid circulating velocity with an increase in the solid feed 

pipe cross section. For the three types of solid feed pipe (1, 1.5 and 2mm), it was observed that 

the solid circulating velocity is highest for the circulating fluidised bed with a cross section 

solid feed pipe of 2 mm and lowest for solid feed pipe of 1 mm cross section. It can be said 

that as the solid feed pipe cross section increases, the solid circulating velocity in the system 

also increases. The increment in the solid circulating velocity with an increase in the cross 

section of solid feed pipe indicates an increase in the amount of particles reintroduction from 

the downcomer to the riser. This was predicted because as the solid feed pipe cross section 

increases so does the area of the pipe and consequently a higher amount of solids being 
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reintroduced to the rise. The increment in solid circulating velocity with increased solid feed 

pipe cross section could also be attributed to the wall effect as shown in our previous research 

study [234]. As in microscopic circulating fluidised bed, the change in solid circulating velocity 

with superficial liquid flow rate indicates two zones. The first zone (initial circulating 

fluidisation zone) where solid circulating velocity increases rapidly with increasing superficial 

liquid flow rate and the second zone (fully developed zone) where solid circulating velocity 

insignificantly varies with increasing superficial liquid velocity.  

The experimental results also show that the maximum value in the solid circulating velocity is 

directly proportional to the cross sectional size of the solid feed pipe. For the three types of 

solid feed pipe (1, 1.5 and 2mm), it was notice that the maximum value in the solid circulating 

velocity is higher for the 2mm cross section solid feed pipe and lower for the solid feed pipe 

of 1mm cross section. These trend was the same for both the 165 and 196 µm glass particles. 

Additional, it was also found that the maximum value in superficial liquid flow rate increases 

with solid feed pipe cross section size. The bigger the solid feed pipe cross section is, the higher 

the maximum superficial liquid flow rate is. These observations are similar to those reported 

by Natarajan et al. [104], the solid circulating velocity in the liquid-solid circulating fluidised 

bed system is influenced by the superficial liquid flow rate and the solid feed pipe cross section. 

Figure 78 shows the critical transition velocity for the three different solid feed pipe structure. 

It can be notice that the critical transition velocity (Ucr) which demarcate the transition from 

conventional to circulating fluidised bed regime is dependent upon the solid feed pipe cross 

section size. The critical transition velocity is higher for the 1 mm cross section solid feed pipe 

and lower for the system with solid feed pipe of 2 mm cross section, it can be concluded that 

the critical transition velocity increases with a reduction in the solid feed pipe cross section 

size. In general, for both particles (165 and 196µm) the critical transition velocity is roughly 

equal to the particle terminal velocity, and the normalised transition velocity, Ucr/Ut in all 

consider cases is close to 1, varies from 1.13 to 1.187. These observations are similar to those 

reported by Liang et al. [4], the critical transition velocity depends on the bed geometry, liquid 

and particles properties but is slightly different from the observation reported by Zheng and 

Zhu as their reported onset velocity (Ucf) which gives the lowest critical transition velocity 

from the conventional to circulating fluidised bed regime was found to be independent of the 

bed geometry. Their proposed (Ucf) was found using the emptying bed methodology which was 

carried out by measuring the time needed to empty the particles in the bed by varying the liquid 

velocity. The Ucf was defined as the inflection point in the emptying time plot as a function of 
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the liquid velocities and was found out to be approximately equal to the particle terminal 

velocity Ut. They suggested that Ucr is the actual transition from conventional to circulating 

fluidised bed regime and Ucf represents the lowest transition from conventional to circulating 

fluidised bed regime. From figure 78, it can also be noticed a trend of increased normalised 

critical transition velocity with an increase in particle size which is probably because of 

increased wall effects which are not usually present in large circulating fluidised beds.  
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Figure 78. Importance of solid feed pipe on the normalised transition velocity for both 165 

and 196 m glass particle. The angle between the riser and solid feed pipe is 60° 
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Figure 79. Importance of solid feed pipe on the transition velocity from circulating fluidised 

bed regime to transport regime for both 165 and 196 m glass particle. The angle between the 

riser and solid feed pipe was 60° 

 

Figure 79 shows the transition velocity from circulating fluidised bed regime to transport 

regime for the three different solid feed pipe structure. It can also be notice that the transition 

velocity, Ua, from circulating fluidisation to transport regime is also dependent upon the solid 

feed pipe cross section size. The transition velocity Ua, is higher for the 1 mm cross section 

solid feed pipe and lower for the system with solid feed pipe of 2 mm cross section, it can be 

concluded that the transition velocity Ua, from circulating fluidised bed regime to transport 

regime increases with a reduction in the solid feed pipe cross section size. The increase in the 

transition velocity from circulating fluidisation regime to transport regime is due to the wall 

effects which are not usually present in large circulating fluidised beds.  
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To my knowledge, the influence of the angle between the riser and solid feed pipe has never 

been investigated. The flow behaviour in liquid-solid circulating fluidised bed system depends 

on several hydrodynamics parameters in the flow, one of these crucial parameter is the angle 

between the riser and solid feed pipe. With a change in the angle between the riser and the 

solids feed pipe, the fluidisation characteristics in the liquid-solid circulating fluidised bed 

system such as solid circulating velocity, critical transition velocity from conventional to 

circulating fluidised bed regime main not remain the same.  Here, three cases of different angle, 

type 1 (30°), type 2 (50°) and type 3 (60°) were investigated to explain their influence on the 

fluidisation characteristics. The three system used for this experiment had a riser and solid feed 

pipe of 2mm square cross section  
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Figure 80: Influence of the angle between the riser and solid feed effect on the flow 

behaviour for both 165µm glass particle in black and 196 µm glass particle in white colour. 

The micro-circulating fluidised bed employed for this experiment had a riser and solid feed 

pipe of 2mm square cross section. 

 

From Figure 80 it is observed that there is a trend of increased solid circulating velocity with 

reduction in the angle between the riser and solid feed pipe. The solid circulating velocity is 

higher for the type 1 system and lower for type 3 circulating fluidised bed system. This strongly 
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suggests that the angle between the riser and solid feed pipe is influencing the flow behaviour 

as would be expected. This influence could be caused by the hydrodynamics forces acting on 

the particle. From chapter 3, the importance of surface force and wall effect on the 

hydrodynamics of liquid-solid micro-fluidised beds, it was found that flow behaviour in the 

liquid-solid micro-fluidised bed can be determined by the balance of hydrodynamics force such 

as adhesion, gravitational, drag, and buoyant force acting on the particle. Since the solid feed 

pipe inclination angle for type 1, 2, and 3 systems is not the same as shown in figure 76, the 

net hydrodynamics forces such as drag and buoyancy forces acting on the particles are also not 

the same. In other words, as the solid feed pipe inclination angle changes, so does the net force 

acting on the particles, and this change plays a major influence on the hydrodynamics flow 

behaviour such as solid circulating velocity and transition from one regime to another. 
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Figure 81. Effect of angle between riser and solid feed pipe on the normalised transition 

velocity for both 165 and 196 m glass particle. The micro-circulating fluidised bed employed 

for this experiment had a riser and solid feed pipe of 2mm square cross section. 

 

It was also found that the critical transition velocity, Ucr, from conventional to circulating 

fluidised bed regime increases with an increase in the angle between the riser and solid feed 
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pipe looking at figure 81. For particles with the same size and density, Ucr is higher for type 3, 

and smaller for type 1 system. This is due to the difference in the net hydrodynamics force 

acting on the particle. The difference in the net hydrodynamics force due to the difference in 

the solid feed pipe inclination angle clearly affects the flow behaviour and postpone the critical 

transition velocity from conventional to circulating fluidised bed regime. 
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Figure 82. Effect of angle between riser and solid feed pipe on the transition velocity from 

circulating fluidised bed regime to transport regime for both 165 and 196 µm glass particle 

using a circulating fluidised bed with 2mm cross section feed pipe and riser.  

 

From figure 82 it can be notice that the transition velocity Ua, from circulating fluidised bed 

regime to transport regime increases with an increase in the angle between the riser and solid 

feed pipe. For particles with the same size and density, the transition velocity from circulating 

fluidised bed regime to transport regime is higher for the system with 60° angle between riser 

and solid feed pipe system and lower for the 30° system. This is due to the difference in the net 

hydrodynamics force acting on the particle as explained above.  
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6.4 Conclusion 
We presented the first investigation study on the importance of solid feed pipe and riser ratio, 

and the influence of the angle between the riser and solid feed pipe on the hydrodynamics of 

liquid-solid micro-circulating fluidised system, with a special interest on the flow behaviour 

and solid circulating velocity. For the first time, additive manufacturing technology, digital 

light processing (Miicraft+ printer) and stereolithography (Form2 printer) were used to 

fabricate a micro-circulating fluidised bed. The results indicate that the flow behaviour and 

solid circulating velocity in liquid –solid micro-circulating fluidised bed channel depends on 

the solid feed pipe. The solid circulating velocity increases with increased solid feed pipe cross 

section. This was predicted because as the solid feed pipe cross section increases so does the 

area of the pipe and consequently a higher amount of solids are reintroduced to the rise. As in 

macroscopic circulating fluidised the maximum value in the particle velocity and superficial 

liquid flow rate increases with solid feed pipe cross section. The critical transition velocity 

increases with a reduction in the solid feed pipe cross section size. 

Additionally, the solid circulating velocity and the critical transition velocity from conventional 

to circulating fluidised bed regime in liquid-solid micro-circulating fluidised beds is also 

dependent on the angle between the riser and solid feed pipe. The solid circulating velocity 

increases with a reduction in the angle between the riser and solid feed pipe, and the critical 

transition velocity from conventional to circulating fluidised bed regime reduces with reducing 

the angle between the riser and solid feed pipe which is probably due to the difference in the 

net hydrodynamics force acting on the particle. The reduction in the angle between the riser 

and solid feed pipe reduces the particle–wall friction forces which in turn increases the mobility 

of the fluidised particles and this reduces the critical transition velocity hence circulating 

fluidised bed regime started early. The increase in the solid circulating velocity with a reduction 

in the angle between the riser and solid feed pipe could also be attributed to the increased 

effective gravity. The reduction in the riser and solid feed pipe angle increased the effective 

gravity, which in turn increased the mobility of the fluidised particles therefore the critical 

transition velocity started at lower superficial liquid velocity. 
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 Influence of liquid viscosity in liquid-

solid micro-fluidised beds 

7.1 Introduction 
In most industrial processes where solid-liquid circulating fluidised beds are employed as a 

solid-liquid processing equipment, highly viscous liquid is often required as a processing fluid 

[248]. The flow behaviour in liquid-solid circulating fluidised bed system depends on several 

hydrodynamics parameters in the flow, one of these crucial parameters is the viscosity of the 

fluidising media which is not explore in detail as others parameters such as particle diameter, 

particle-fluid density difference and temperature [249]. With changes in the liquid viscosity, 

the fluidisation characteristics in the liquid-solid circulating fluidised bed system such as 

minimum fluidisation velocity, solid flux, critical transition velocity from conventional and 

circulating fluidised bed regime may not remain the same.   

A number of experimental studies has been done to determine the influence of liquid viscosity 

on the minimum fluidisation velocity. Vijaya et al. [250] experimentally studied the importance 

of liquid viscosity on the minimum fluidisation velocity. Tap water and carboxy methyl 

cellulose (0.1, 0.2, and 0.3 %) were used as the liquid mixture. They found a decrease in the 

minimum fluidisation velocity with increasing liquid viscosity. The experimental results of 

minimum fluidisation velocity were compared with predicted minimum fluidisation velocity 

using Ergun equation and were in good agreement. Qui et al. [251] investigated the influence 

of viscous liquid on the minimum fluidisation velocity. Their experimental study was carried 

out using tape water, and 9 different concentrations of aqueous glycerol solution with liquid 

viscosity ranging from 7 to 1400 cp as the liquid mixture. They also reported a reduction in the 

minimum fluidisation velocity with increased liquid viscosity. Their experimental minimum 

fluidisation velocity data agrees with calculated minimum fluidisation velocity by Ergun 

Equation.  

Although the importance of solid-liquid density difference, pressure, temperature, and diameter 

of particles on the flow behaviour have been previous determined, there is still a limited 

knowledge of the influence of liquid viscosity on the flow characteristic. The influence of liquid 

viscosity on the hydrodynamics of a liquid-solid circulating fluidised bed has been reported 

previously by various researchers. Zheng [252] experimentally studied the flow behaviour in a 

liquid-solid circulating fluidised bed system with varying liquid viscosity. The carrier liquid 

employed in their investigation was water and glycerol solutions (20% v/v and 30% v/v). They 
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concluded that the flow structure was less vigorous and more uniform in a viscous system, and 

the non-uniform particles distribution in the radial direction is reduced with liquid viscosity. 

Cho et al. [253] investigated the radial dispersion behaviour of viscous liquid in liquid-solid 

circulating fluidised bed system. The liquid medium employed in their experimental studies 

was water and carboxymethylcellulose solution. They also found the radial distribution was 

more uniform in a viscous system. Vidyasagar [108] investigated the influence of liquid 

viscosity on the critical transition velocity, solid circulation rate, axial and average particles 

holdup in a liquid-solid circulating fluidised bed. Tape water and glycerol of different 

concentrations (10, 20, and 40 vol. % aqueous glycerol) were used as the liquid mixture. They 

observed a decrease in the critical transition velocity with increasing liquid viscosity. 

Gnanasundaram investigated the influence of liquid viscosity on the hydrodynamics 

characteristics of a liquid-solid circulating fluidised bed. Their experimental study was carried 

out using tap water and glycerol at different concentration (5% and 15% (v/v) [99] and also 

10% and 20% (v/v) aqueous glycerol [254]. They found an increase in solid circulation rate 

and solid holdup with increasing liquid viscosity, and a decrease in slip velocity with increased 

liquid viscosity. They observed a uniform axial particles distribution in the flow structure for 

a viscous system, and also reported a decrease in the critical transition velocity from 

conventional to circulating fluidisation regime with increases in the fluidising liquid viscosity. 

It is believed that the influence of viscous liquid on the hydrodynamics of micro-circulating 

fluidised bed has never been investigated, and to date most of the publish literature on liquid-

solid circulating fluidised bed hydrodynamics at macroscale considered water as the liquid 

medium. Therefore, an attempt was made to investigate the importance of viscous liquid on the 

hydrodynamics, particularly on the solid circulation rate and minimum fluidisation velocity of 

a liquid-solid circulating fluidised bed. For the first time, the influence of liquid viscosity on 

the hydrodynamics of liquid-solid micro-circulating fluidised bed is presented. 
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7.2 Experimental procedure 
Two different groups of particles were used as fluidised solid: (1) soda lime glass microspheres 

of five different diameters, d = 26 ± 1.5 µm, 30 ± 1.5 µm, 35 ± 3 µm, 58 ± 5 µm, 82 ± 6 µm, 98 

± 8 µm, 115 ± 9 µm, 165 ± 15 µm, 196 ± 16 µm μm whose density is ρp = 2500 kg/m3 and (2) 

PMMA particles of five different diameters, d = 23 ± 3.5 µm, 35 ± 3 µm, 41 ± 3.5 µm, 58 ± 5 

µm, and 115 ± 9 µm whose density is ρp = 1200kg/m3. Tap water and glycerol of different 

concentration (5, 10, and 15 vol. % aqueous glycerol) were used as the liquid mixture. More 

viscous mixture could not be studied due to limitation of the setup, the syringe pump could not 

pump very viscous liquid. The fluidising liquid density and viscosity is listed in table 14. All 

experiments were performed at room temperature of average 18 ± 2 ºC.  

Table 14: Density and viscosity of fluidising liquid 

Fluidising liquid Density (kg/m3) Viscosity (mPa∙s) 

Tape water 1000 1 

5% v/v glycerol 1011 1.085 

10% v/v glycerol 1022 1.17 

15% v/v glycerol 1036 1.36 

 

To investigate the dependency of fluidisation behaviour on the liquid viscosity, two 

experimental investigation was conducted. The first experiment was carried in a micro-

fluidised bed to study the importance of viscous liquid in the minimum fluidisation velocity, 

and the second experiment were conducted in a micro-circulating fluidised bed to investigate 

the influence of fluidised liquid viscosity on the solid flux and critical transition velocity from 

conventional to circulating fluidised bed regime in a liquid-solid circulating fluidised bed at 

micro-scale. 

As in the previous experimental investigation in chapter 4 ( the importance of surface force and 

wall effect on the minimum fluidisation velocity), here the minimum fluidisation velocity 

required to achieve fluidisation were obtained by observing visually the bed height expansion 

and also by extrapolation of linear relationship between the superficial liquid velocity and ratio 

of bed expansion as measuring pressure drop is difficult due to the very fine resolution required 

(the pressure drop is only of the order of several Pa). ImageJ [237],  an image processing and 

analysis computer programme was used for off-line analysis to determine the bed height as a 

function of superficial liquid velocity. Minimum fluidisation velocity values were obtained 

from the plot of bed height expansion vs superficial liquid velocity. The point of intersection 
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of the expansion line with vertical line for packed bed height was taken as minimum 

fluidisation velocity. Typical plots of relative bed height for water and 3 glycerol solutions as 

a function of superficial fluid velocity are given in figure 83. The Ergun equation (equation 12, 

in chapter 2) [255] was used to predict the minimum fluidisation velocity with an estimated 

initial packed bed voidage of εmf = 0.40 ± 0.01 in line with previous experiments [59] and trend 

of rectangular packed bed voidage with particle-to-bed ratios lower than 0.15 [256]. The 

calculated minimum fluidisation velocity for glass and PMMA particles is summarised in table 

15 and 16 respectively and the experimental minimum fluidisation velocity for PMMA and 

glass particles is given in table 17 and 18 respectively. The experimental minimum fluidisation 

velocities were compared with minimum fluidisation velocity results obtained by the Ergun 

equation. 
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Figure 83. Relative bed height as a function of superficial liquid velocity, U, with increasing 

liquid velocity (Umf, u), and decreasing liquid velocity (Umf, d) for (a) water, (b) 5% v/v 

glycerol, (c) 10% v/v glycerol (d) 15% v/v glycerol solution as the fluidising liquid in 1 mm2 

micro-fluidised bed using 26µm glass particles. Errors are not visible in the graph as they are 

smaller than the symbols. 
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Table 15. The theoretical minimum fluidisation velocity for PMMA particle using Ergun 

equation from chapter 2 

 
dp (μm) 

Umf (µm/s) 
 

water 5 % (v/v) glycerol 10 % (v/v) glycerol 15 % (v/v) glycerol 

23 0.75 0.65 0.57 0.45 

35 1.66 1.44 1.26 0.998 

41 2.33 2.03 1.77 1.40 

58 4.55 3.96 3.46 2.74 

115 18.03 15.70 13.72 10.87 
 

Table 16. The theoretical minimum fluidisation velocity for glass particle using Ergun 

equation mentioned in chapter 2. 

 
dp (μm) 

Umf (µm/s) 
 

water 5 % (v/v) glycerol 10 % (v/v) 

glycerol 

15 % (v/v) 

glycerol 

26 7.01 6.27 5.77 4.92 

30 9.05 8.35 7.68 6.55 

35 12.10 11.36 10.46 8.91 

58 33.97 31.20 28.72 24.47 

82 68.15 62.35 57.40 48.91 

98 97.34 89.06 81.98 69.86 

115 134.70 123.69 113.86 97.03 

165 275.75 252.31 232.28 197.96 

196 388.87 355.85 327.62 279.25 
 

Table 17. The Experimental minimum fluidisation velocity for PMMA particles obtained 

from the plot of bed height expansion as a function of superficial liquid velocity 

dp (μm) water 5% 10% 15% 

23 16.79 13.58 11.31 8.33 

35 25.25 20.26 15.86 11.13 

41 30.80 23.98 18.68 12.73 

58 46.62 35.05 24.39 15.21 

115 139.73 98.14 56.23 23.92 
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Table 18. The Experimental minimum fluidisation velocity for glass particles obtained from 

the plot of bed height expansion as a function of superficial liquid velocity 

 

dp (μm) 

Umf (µm/s) 

water 0.05 0.1 0.15 

26 13.81 11.91 10.39 8.51 

30 16.74 14.52 12.83 10.34 

35 19.97 17.61 15.27 12.39 

58 48.58 41.18 35.90 27.65 

82 89.96 74.82 65.43 50.87 

98 120.70 100.63 86.08 64.97 

115 157.60 131.11 108.17 81.51 

165 303.32 244.74 195.11 142.53 

196 396.65 313.15 242.44 170.34 

 

As discussed in chapter 4, the major difference between micro-fluidised beds and macro-

fluidised bed flows is the importance of surface forces which can prevent fluidisation [61]. 

Here the Dupree equation using acid-base theory developed by Oss, Chaudhury and Good 

[183] (equation 19, chapter 3) was used to predict the free interaction energy, ΔG1w2, between 

two different solid surfaces submerged in a liquid. The surface tension parameters for the fluid 

(water and glycerol), glass, PMMA particles and PMMA walls used in the micro-fluidised bed 

study are shown in table 19. The free interaction energy between glass, PMMA particles and 

PMMA walls in water were obtained using all combinations of values in table 19. Given the 

surface energy obtained from the acid and base approach using surface tension components for 

liquid-solids given in table 19, the adhesion force was found using the Derjaguin approximation 

[183], (equation 21, chapter 3) and the drag force was determined from the buoyant weight of 

particles as shown in equation 24 from chapter 3. When ΔG1w2 value is negative, particles have 

the propensity to adhere to the walls of the micro-fluidised bed in the presence of liquid phase, 

and when ΔG1w2 value is positive, the interaction between the particle and bed wall is repulsive. 

The Eberhart relation [257, 258], equation 28, was used to determine the surface tension of the 

aqueous glycerol solution ( 5% v/v, 10% v/v and 15% v/v). 

𝛾𝑚𝑖𝑥 = 𝑋1𝛾1 + 𝑋2𝛾2                                (28 ) 
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where, γmix is the theoretical surface tension of the liquid mixture, γ1 and γ2 are the surface 

tension of water and glycerol, X1 and X2 are the volume fractions of water and glycerol 

respectively.  

 

Table 19. Liquid and solid surface tension components  

Material γ γLW γAB  γ+ γ- Reference 

Glycerol 64 34 30 3.92 57.4 Janczuk et al.[259] 

Water 72.8 21.8 51 25.5 25.5 Van Oss [183] 

5 % v/v glycerol 72.36 22.41 49.95 23.02 27.01  

10 % v/v glycerol 71.92 23.02 48.90 20.84 28.69  

15 % v/v glycerol 71.48 23.63 47.85 18.90 30.29  

Glass 59.8 42 17.8 1.97 40.22 Freitas & Sharma [186]  

 64.37 42.3 22.07 2.9 42 Clint & Wicks [185] 

 51.7 33.7 18 1.3 62.2 Van Oss [183] 

PMMA 44.65 42 2.65 0.55 3.2 Della Volpe et al. [187]  

 44.58 41.2 3.38 0.38 7.5 Clint & Wicks [185] 

 40.6 40.6 0 0 12 Van Oss [183] 

 39.21 36.68 2.53 0.16 10.02 Zdziennicka [188] 

 

In the current research investigation, particle imaging velocimetry (PIV) software PIVlab [200-

202], was employed to determine the solid flux in the micro-circulating fluidised bed. The 

experimental procedure was described early in chapter 3. This solid flux measurement 

technique was chosen because of its simplicity and easy to implement in microfluidics when 

compared with others measurement methodology. The critical transition velocity, the 

superficial liquid velocity from conventional to circulating fluidised bed regime was identified 

by the solid circulation rate method. 
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7.3 Result discussion 

 Adhesion force prediction 
Here eight different cases of  free energy of interaction, ΔG1w2 involving four liquids (water, 5 

v/v aqueous glycerol, 10 v/v aqueous glycerol and 15 v/v aqueous glycerol solution), and two 

solids (Glass and PMMA)  were determined : 

1st case: involves a glass particle and PMMA wall with water as the fluidising liquid 

2nd case:  Glass particle and PMMA wall with 5% volume aqueous glycerol as the fluidising 

liquid 

3rd case: Glass particle and PMMA wall with 10% vol. aqueous glycerol solution as the 

fluidising liquid 

4th case: Glass particle and PMMA wall with 15% vol. aqueous glycerol solution as the 

fluidising liquid 

5th case: PMMA particle and PMMA wall with water as the fluidised liquid 

6th case: PMMA particle and PMMA wall with 5% vol. aqueous glycerol solution as the 

fluidised liquid 

7th case: PMMA particle and PMMA wall with 10% vol. aqueous glycerol as the fluidised 

liquid 

8th case: PMMA particle and PMMA wall with 15% vol. aqueous glycerol as the fluidised 

liquid 

In the first to fourth case, the majority of the combination values estimated that the free energy 

of interaction acting between glass particles and PMMA walls with water, and glycerol (5% 

v/v, 10% v/v, and 15% v/v) solution as the fluidising liquid is attractive, only when Van Oss 

glass surface tension components were used with PMMA components excluding Della Volpe 

and Siboni a positive free interaction energy was obtained (3/12 combination). Overall the 

average free energy of interaction obtained from the 12 parameter combinations between glass 

particle and PMMA walls in the first, second, third and fourth case are negative as shown in 

table 20. This indicates that the glass micro-particles have a small propensity to adhere to a 

PMMA walls surface in the presence of water and glycerol solution (5% v/v, 10% v/v, and 15% 

v/v). The free energy of interaction acting between the PMMA micro fluidised bed walls and 
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the glass particles is attractive, and the adhesion tendency decreases with addition of glycerol 

as can be seen in Table 20 by decreasing value of the free energy of interactions.  

Table 20. Free energy of interaction (mJ/m2) acting between glass particles and PMMA walls 

with water, and glycerol (5% v/v, 10% v/v, and 15% v/v) solution as the fluidising liquid. 

Surface1 Surface2 Liquid ΔG1w2 σ(ΔG) (ΔG)min (ΔG)max Interaction 

Glass PMMA water -4.62 9.28 -19.21 12.38 attractive 

Glass PMMA 5% v/v glycerol -3.53 8.29 -17.24 14.62 attractive 

Glass PMMA 10% v/v glycerol -2.41 7.69 -14.76 17.06 attractive 

Glass PMMA 15% v/v glycerol -1.07 7.19 -11.92 19.85 attractive 

 

In the fifth, sixth, seventh and eighth case involving PMMA particle and PMMA wall with 

water and aqueous glycerol solution (5% v/v, 10% v/v, and 15% v/v) as the fluidising liquid, 

the free energies of interaction, ΔG1w2 obtained using the 16 surface tension components 

combination of PMMA were significantly less than zero with an average free energy of 

interaction of -47.22, -43.13, -42.91, and -40.45, for water, 5% v/v, 10% v/v, and 15% v/v 

aqueous glycerol solution system respectively as shown in table 21. Therefore, like for the glass 

particles there is a decrease in the free energy of interaction values with increase of glycerol 

volume fraction indicating slight decrease in the adhesion tendency. However, the values are 

much higher than for glass particle case indicating that PMMA particles have a significant 

tendency to adhere to PMMA micro-fluidised bed surface when water and glycerol solution 

(5% v/v, 10% v/v, and 15% v/v) are used as the fluidising liquid 

Table 21. Free energy of interaction (mJ/m2) acting between PMMA particles and PMMA 

walls with water, and glycerol (5% v/v, 10% v/v, and 15% v/v) solution as the fluidising 

liquid. 

Surface1 Surface2 Liquid ΔG1w2 σ(ΔG) (ΔG)min (ΔG)max Interaction 

PMMA PMMA water -47.22 7.49 -62.76 -37.83 attractive 

PMMA PMMA 5% v/v glycerol -45.13 6.73 -60.54 -35.71 attractive 

PMMA PMMA 10% v/v glycerol -42.91 6.18 -57.95 -33.12 attractive 

PMMA PMMA 15% v/v glycerol -40.45 5.70 -54.82 -30.04 attractive 
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 Influence of liquid viscosity on the minimum fluidisation velocity 
From figure 83 and 84, the importance of viscous liquid on the minimum fluidisation velocity 

of a liquid-solid fluidisation in a micro-fluidised bed, it can clearly be notice that there is a 

trend of reduction in the minimum fluidisation velocity with increased liquid viscosity. Here, 

four cases of different liquid medium, type 1 (water), type 2 (5% v/v aqueous glycerol), type 3 

(10% v/v aqueous glycerol), and type 4 (15% v/v aqueous glycerol), were investigated to 

explain their influence on the minimum fluidisation velocity. The minimum fluidisation 

velocity is much higher for type 1 system, and lower for type 4 system. This trend was the same 

for both Glass and PMMA particles. This strongly suggests that the liquid viscosity is 

influencing the superficial liquid velocity where fluidisation is achieved. These observations 

are similar to those reported by Vijaya et al.[250]  and Qiu et al.[251]. In Their experimental 

studies, they explained that in solid-liquid fluidisation system, the minimum fluidisation 

velocity reduces with an increase in the viscosity of the fluidised liquid due to the fact that 

viscosity enhances the shearing stress acting on particle, consequently, this increased the drag 

force acting on the particles and as a result the minimum fluidisation velocity was achieved at 

lower superficial liquid velocity when the fluidising liquid viscosity was increased. 

Figure 84 and 85 also shows that the normalised minimum fluidisation velocity is considerably 

higher for PMMA particles when compared to glass particles of the same size. This is probable 

due to difference in surface properties with PMMA particles being hydrophobic while glass 

particles hydrophilic. For glass particle the experimental minimum fluidisation velocity is 

about two times bigger when compared to the theoretical prediction using the Ergun equation, 

and For PMMA particles the experimental minimum fluidisation velocity is about 4-23 times 

higher than the theoretical prediction depending on the size of the particle. This was anticipated 

since the Ergun equation used to predict the minimum fluidisation in the present study does not 

consider the surface forces among particles and bed wall. Consequently, for both PMMA and 

glass particles the proportional increments in the minimum fluidisation velocity is much higher 

for the smallest particles. 
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Figure 84. Experimentally determined minimum fluidisation velocity over the theoretical 

calculated values using the Ergun equation as a function of particle diameter four different 

liquid medium, tape water, 5% aqueous glycerol, 10% aqueous glycerol and 15% aqueous 

glycerol solution, with glass as the fluidised particle 
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Figure 85. Experimentally determined minimum fluidisation velocity over the theoretical 

calculated values using the Ergun equation as a function of particle diameter four different 

liquid medium, tape water, 5% aqueous glycerol, 10% aqueous glycerol and 15% aqueous 

glycerol solution, with PMMA as the fluidised particle 
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 Influence of particle density on the on minimum fluidisation velocity 
From figure 86 and 87, the influence of particle density on the minimum fluidisation velocity, 

it can be notice that the minimum superficial liquid velocity at which particle fluidisation is 

achieved for both PMMA and glass particles is almost the same even though glass particles 

have a higher density compare to PMMA particles (2500 and 1200 kg/m3 respectively). Based 

on theory, the theoretical minimum fluidisation velocity based on Ergun equation for glass 

microparticles should be 8 times bigger than for PMMA particle of the same size for the particle 

size range of 23-115µm as used in this study. However, our recent research study [234] found 

that in solid-liquid micro fluidised bed system, surface forces strongly influences the minimum 

superficial liquid velocity at which particle fluidisation is achieved. 
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Figure 86. Experimental minimum fluidisation velocity as a function of particle size for glass 

particle with 5% v/v aqueous glycerol as the fluidising liquid. 
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Figure 87. Experimental minimum fluidisation velocity as a function of particle size for 

PMMA particle with 5% v/v aqueous glycerol as the fluidising liquid. 

 

For PMMA particles the transitional region from fixed state to fluidised state was considerable 

extensive when compare to glass particles. This is probably due to difference in surface 

properties with PMMA particles being hydrophobic while glass particles hydrophilic. PMMA 

particles are extremely hard to fluidise at a lower superficial liquid velocity as the cohesive 

forces (capillary, electro static and van der walls forces) present in the particles are relative 

higher than the gravitational and drag force exerted on the particles. These cohesive forces 

which are present in PMMA particles and not in glass particle increases particle size as a result 

of agglomeration which strongly influences the point of fluidisation and beyond as shown in 

Figure 89. In some cases, PMMA particles were fluidised in the form of agglomerates at 

superficial liquid velocity twenty times higher than the predicted minimum fluidisation 

velocity. 
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Figure 88. Optical Microscope illustrating adhesion of 35 µm 

PMMA particle inside 1mm2 micro-fluidised bed with water as the fluidising liquid. 

 

 
Figure 89. Optical Microscope illustrating agglomeration of 35 µm PMMA particle inside 

1mm2 micro-fluidised bed with water as the fluidising liquid. 
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  Surface force magnitude for glycerol mixtures 
Even though the free interaction energy helps to predict particle tendency for adhesion to the 

walls of micro-fluidised beds and its absence, the adhesion to drag force ratio is needed to 

determine if particle adhesion to the bed wall will in fact happen. For this experimental 

investigation tap water, 5 % glycerol, 10% glycerol, and 15% glycerol solution were used as 

the liquid phase. Adhesion to drag force ratios was plotted as function of particle size for both 

glass and PMMA particles as shown in figure 90 and 91 respectively. The adhesion forces scale 

up with particle diameter, whilst the drag force scales with the cube of diameter. Figure 90 and 

91 shows that the adhesion/drag forces ratio reduces with increasing fluidising liquid viscosity.  

This is in a way direct consequence of the fact that the adhesion tendency (force) is decreasing 

with increase in volume fraction of glycerol for both glass and PMMA particles.  

The ratio of adhesion to drag force is the highest for water system and the lowest for 15% 

glycerol solution system. In the cases of PMMA micro-particles fluidized by water in a PMMA 

micro-fluidized bed, adhesion forces are some 3 to 5 orders of magnitude larger than the 

estimated drag forces, indicating particle adhesion to the bed walls is highly likely to influence 

the fluidization process.  

For glass particle fluidised in water, because they have a higher particle density and weaker 

adhesion forces, the adhesion to drag force ratio is only 1-3 orders of magnitude larger. For 

both PMMA and glass particles fluidised by 5% glycerol, 10 glycerol and, 15% glycerol 

aqueous solution the influence of adhesion forces when compared to the gravitational and 

buoyancy forces was relatively lower than the particles fluidised by water, and particle 

fluidisation was achieved at superficial liquid velocity comparable to theoretical prediction.  It 

was understood that the adhesion/drag force ratio in the liquid solid micro-fluidised bed system 

decreases with increasing the viscosity of the fluidising liquid, consequently, this decreased the 

friction forces between particles and increased the mobility of the fluidised particles resulting 

in a decrease of the minimum fluidisation velocity in our experiment. This clearly indicates 

that in addition to the adhesion/drag force ratio, the liquid viscosity influences the 

postponement of incipient fluidization.  
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Figure 90. Adhesion to drag forces ratio as a function of particle diameter for glass micro-

particles with water and aqueous glycerol solution (5% v/v, 10% v/v, and 15% v/v) as the 

fluidising liquid in 1 mm2 micro-fluidised bed. 
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Figure 91. Adhesion to drag forces ratio as a function of particle diameter for glass micro-

particles with water and aqueous glycerol solution (5% v/v, 10% v/v, and 15% v/v) as the 

fluidising liquid in 1mm2 micro-fluidised bed. 
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Looking at figure 92 and 93 it is evident that there is a trend of decreased experimental 

minimum fluidisation velocity with an increased fluidised liquid viscosity. It was observed that 

the experimental minimum fluidisation velocity is higher for water system in comparison with 

glycerol solution system. This is most likely due to the fact that viscous systems have a lower 

adhesion/drag force ratio, hence the minimum fluidisation velocity starts at comparatively even 

lower superficial liquid velocity when the viscosity of the fluidised liquid is increased. For both 

types of particles, glass and PMMA, the minimum fluidisation velocity at which particles are 

fluidised is postponed, but the proportional increment in the minimum fluidisation velocity is 

much higher for PMMA particles. It can also be noticed that the ratio of experimental minimum 

fluidisation velocity over the predicted minimum fluidisation velocity using Ergun equation is 

higher for smaller particles when compared to large particles for both PMMA and glass, that 

could be due to the ratio of adhesion to drag force, as smaller particles have a higher ratio of 

adhesion to drag force than large particles, hence the surface force effect on the minimum 

fluidisation velocity is higher for smaller particles as shown in Figure 92 and 93. 

Looking at the data for glass particles, it can be observed that for low force ratio, Umf for water 

system is almost at the theoretical values (first 3 point), indicating small influence of adhesion 

forces on fluidization behaviour as already discussed in chapter 4 (Influence of surface forces 

and wall effects on the minimum fluidization velocity of liquid-solid micro-fluidized bed). In 

this case it is clear that due to viscosity influence Umf measured is much smaller in line with 

previous studies. In the case of other points, the force ratio is higher and the Umf is increased 

due to adhesion issues like for water system. However, if we compare the points for glycerol 

solutions to the fitting for water system, we can see clearly that deviation from the line is bigger 

for the more viscous system, once again confirming the liquid viscosity influence. On contrary, 

seems like increase in viscosity decrease Umf, looking at beginning points, we have Umf smaller 

than theoretical prediction. From fitting line in graph 92 and 93, it can be seen that for e.g. 5% 

glycerol deviation from water line is small (within experimental error), especially for the top 

points, but it is bigger for 10 and the biggest for 15 volume fraction of glycerol, indicating that 

viscosity is also influencing Umf in addition to dominant adhesion forces influence. 
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Figure 92. Experimentally determined minimum fluidisation velocity over the theoretical 

calculated values using the Ergun equation as a function of adhesion/drag force ratios for four 

different liquid medium, tape water, 5% aqueous glycerol, 10% aqueous glycerol and 15% 

aqueous glycerol solution. 
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Figure 93. Experimentally determined minimum fluidisation velocity over the theoretical 

calculated values using the Ergun equation as a function of adhesion/drag force ratios for four 

different liquid medium, tape water, 5% aqueous glycerol, 10% aqueous glycerol and 15% 

aqueous  glycerol  solution. 
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 Influence of liquid viscosity on solid circulating velocity 
Even though there are few published studies on the importance of liquid viscosity on the solid 

circulating velocity as outline above, here for the first time, the influence of the fluidising liquid 

viscosity on the solid circulating velocity and critical transition velocity from conventional to 

circulating fluidisation regime of a liquid solid circulating fluidised bed at micro scale will be 

discussed. 

 

Figure 94-97 displays the variation of solid circulating velocity with normalised transition 

velocity as determined by digital PIV analysis described in chapter 3 (additional figures 122 to 

132 are given in appendix). Here four different fluidising liquids were studied:  

 type 1- water 

 Type 2 - 5 vol.% aqueous glycerol 

 Type 3 - 10 vol.% aqueous glycerol 

 Type 4 - 15 vol.% aqueous glycerol 

Like in the water system in chapter 5, the change in solid circulating velocity with superficial 

liquid flow rate indicates two zones. The first zone (initial circulating fluidisation zone) is 

where solid circulating velocity increases rapidly with increasing superficial liquid flow rate 

and the second zone (fully developed zone) where solid circulating velocity insignificantly 

varies with increasing superficial liquid velocity as reported by Nirmala [249]. 

From figures 94 to 97 it can also be seen that there is a trend of increased solid circulating 

velocity with an increased in the viscosity of the fluidised liquid. The solid circulating velocity 

is the highest for the most viscous type 4 system (15%v/v glycerol) and the lowest for type 1 

system (pure water). This was predicted since viscous system have a lower particle terminal 

velocity than water, and the particle terminal velocity decreases with increased fluidised liquid 

viscosity. As the particle terminal velocity decreases so does the critical transition velocity 

from conventional to fluidised bed regime resulting in an earlier circulating fluidised bed 

regime for type 4 system. This trend was the same for both Glass and PMMA particles. These 

observation are similar to those reported by Gnanasundaram [248] 
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Figure 94. Influence of fluidising liquid viscosity on the particle circulating speed for 35 µm 

glass particle 
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Figure 95. Influence of fluidising liquid viscosity on the particle circulating speed for 115 µm 

glass particle 
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Figure 96. Influence of fluidising liquid viscosity on the particle circulating speed for 35µm 

PMMA particle 
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Figure 97. Influence of fluidising liquid viscosity on the particle circulating speed for 115µm 

PMMA particle 
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 Influence of liquid viscosity on the critical transition velocity 
As previously mentioned, solid-liquid circulating fluidised beds system have different 

operating regimes as a function of liquid velocity. In order to understand their hydrodynamics 

characteristics, it is crucial to identify the transition from one regime to another such as the 

critical transition velocity which delineates the transition from conventional to circulating 

fluidised bed regime.  

Figures 98 and 99 shows the normalised transition velocity as a function of particle size for 

type 1, 2, 3, and 4 system and glass and PMMA as the fluidised particles. First there is a trend 

of increased normalised transition velocity with a decreased fluidising liquid viscosity. The 

critical transition velocity from conventional to circulating fluidised bed regime is the lowest 

for the most viscous system (15% vol glycerol) system and the highest for pure water system 

due to the fact that viscous liquids have a lower particle terminal velocity than water as 

explained above. These observations are similar to those reported by Gnanasundaram [28] and 

Nirmala [27]. It is also evident from the figure 98 and 99 that the normalised critical transition 

velocity increases with increased particle size which is probably because of increased wall 

effects which are not usually present in large circulating fluidised beds. In addition to wall 

effect, large particles have a higher particle terminal velocity than smaller particle which in 

turn increases the critical transition velocity and consequently postpone the circulating 

fluidised bed regime. Similar to the water system in chapter 5, it can also be observed that the 

normalised transition velocity (Ucr/Ut) is considerably higher for PMMA particles compared 

to glass particles of the same size. This is probably due to the difference in surface properties 

with PMMA particles being hydrophobic while glass particles are hydrophilic. Particle 

agglomeration due to cohesion was visually observed for PMMA as was some particle adhesion 

to the walls. Cohesion increases particle size as a result of agglomeration and that may postpone 

the critical transition velocity (Ucr) from conventional to circulating fluidised bed regime and 

the wall adhesion present in the downcomer will also contribute to postponing transition. 
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Figure 98. Influence of liquid viscosity on the critical transition velocity from conventional to 

circulating fluidised bed regime for glass particles 
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Figure 99. Influence of liquid viscosity on the critical transition velocity from conventional to 

circulating fluidised bed regime for glass particles 
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 Influence of liquid viscosity on the transition velocity Ua, from 

circulating fluidised bed to transport regime 
 

Figures 100 and 101 shows the normalised transition velocity as a function of particle size for 

water, 5% volume aqueous glycerol, 10% volume aqueous glycerol, and 15% volume aqueous 

glycerol solution system with glass and PMMA as the fluidised particles. From figure 100 and 

101 it can be observed that the normalised transition velocity Ua/Ut reduces with increasing 

liquid viscosity, the normalised transition velocity Ua/Ut, is highest for water system and lowest 

for 15% volume aqueous glycerol solution system. The decline in the normalised transition 

velocity Ua/Ut, with increased liquid viscosity is due to the fact that viscosity enhances the 

shearing stress acting on particle, subsequently, this increased the drag force acting on the 

particles resulting in a decrease of the normalised transition velocity Ua/Ut. Transport regime 

started at lower superficial liquid velocity when the fluidising liquid viscosity was increased. 
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Figure 100. Influence of liquid viscosity on the transport velocity from circulating fluidised 

bed regime to transport regime for glass particles 
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Figure 101. Influence of liquid viscosity on the transport velocity from circulating fluidised 

bed regime to transport regime for PMMA particles 

 

7.4 Conclusions 
The importance of fluidising liquid viscosity on the hydrodynamics of liquid-solid micro-

circulating fluidised system, with special interest on the minimum fluidisation velocity, critical 

transition velocity and solid circulating velocity was studied for the first time. It was found that 

the minimum superficial liquid velocity at which particles fluidisation is achieve decreases with 

increasing liquid viscosity. The reduction in the minimum fluidisation velocity with an increase 

in the liquid viscosity is mostly due to the fact that viscous systems have a lower ratio of 

adhesion to drag force but seems like this cannot explain the whole reduction.   Similar to the 

water system, for the same glycerol solutions, the minimum fluidization velocity was found to 

be linearly scaling with the ratio of adhesion to drag force. 

Like in water system, the change in solid circulating velocity with superficial liquid flow rate 

indicates two zones. The first zone where solid circulating velocity increases rapidly with 

increasing superficial liquid flow rate and the second zone where solid circulating velocity 

insignificantly varies with increasing superficial liquid velocity. The solid circulating velocity 

in a micro-circulating fluidised bed is influenced by the viscosity of the fluidised liquid, the 

solid circulating velocity in the system increases with an increase in the liquid viscosity. The 
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critical transition velocity from conventional to circulating fluidised bed regime declines with 

increasing liquid viscosity. The reduction in the normalised critical transition velocity is due to 

the fact particle terminal velocity reduces with increasing liquid viscosity, therefore the critical 

transition from convention to circulating fluidised bed regime decreases resulting in an earlier 

circulating fluidisation regime.  
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 Flow regime mapping of a liquid-solid 

micro-circulating fluidised bed 

8.1 Introduction 
Solid-liquid circulating fluidised beds systems have different operating regimes as a function 

of liquid velocity [106]. The performance of these systems as solid-liquid processing 

equipment is influenced by flow regime. The fluidisation characteristics differ from one regime 

to another [106]. The rates of mixing in liquid-solid circulating fluidised beds are different in 

each flow regime [107] .  Different fluidisation regimes produce different liquid-solid mixing. 

Hence knowledge on the fluidisation regime is crucial for the design and optimisation of the 

liquid-solid circulating fluidised bed [107]. 

Fluidisation regimes identification have attracted lots of attention due to rapid advance in 

fluidisation research. The operation regime map in a solid-liquid circulating fluidised bed has 

been reported previously by various researchers. Liang et al. [106] carried out an experimental 

investigation to define the fluidisation characteristics of liquid-solid circulating fluidised beds 

and suggested a liquid-solid circulating fluidised bed regime map which is identical to the 

fluidisation regime map proposed by Grace [38] for gas-solid circulating fluidised beds. They 

classified the circulating fluidized bed into four operating regimes: fixed bed, conventional 

fluidisation, circulating fluidisation and the transport regime. Zheng and Zhu [116] also studied 

the flow characteristics in a solid-liquid circulating fluidised bed. In their experiments they 

suggested an onset velocity (Ucf) which gives the lowest value of Ucr, critical transition velocity 

from the conventional to circulating fluidised bed regime and is independent of system 

geometry and operating conditions. Zheng et al.[107] studied the flow regime map of liquid-

solid circulating fluidised bed and reported two existing zone in the circulating fluidised bed 

regime. The first zone (initial circulating fluidisation zone) where solid flux increases rapidly 

with increasing superficial liquid flow rate and the second zone (fully developed zone) where 

solid flux insignificantly varies with increasing superficial liquid velocity. Shilapuram et al. 

[33].conducted an experimental study to investigate the fluidisation regime in liquid-solid 

circulating fluidise beds using three different experimental methodologies and found that the 

critical transition velocity which indicates the transition velocity from conventional to 

circulating fluidisation regime was not the same for these three operational methodology. 

Natarajan et al. [98] also studied the flow regime map for a liquid-solid circulating fluidised 

bed. Their observations are similar to those reported by Zheng et al. [107], where there exists 
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two regions within the circulating fluidised bed regime, the initial circulating fluidised bed 

region and the fully developed region. 

 In the current research investigation, a new fluidisation regime, the solid-liquid micro 

circulating fluidisation regime, will be mapped for the solid-liquid fluidisation system based 

upon different particles sizes and materials (Polymethylmethacrylate (PMMA) and soda lime 

glass microspheres). The operation regime map is a function of liquid velocity inherently 

related to particle terminal velocity which is a function of solid-particle density and size, liquid 

density and viscosity. Previous studies showed that liquid density and viscosity have very little 

effect on the solid circulating rate, particle velocity and pressure drop, once taken into account 

in the particle terminal velocity [260]. Therefore, a new liquid-solid micro-circulating 

fluidisation regime will be studied primarily as a function of superficial liquid velocity for 

different sizes and densities of particles and bed sizes. The operation regime map in the micro-

circulating fluidised bed is expected to be similar to the solid-liquid circulating fluidised bed 

regime map proposed by Liang and co-workers [260]. The major differences from their macro-

scale counterparts are expected to be the surface forces, which can prevent fluidisation, and 

inevitably the wall effects due to small bed size [61]. 

 
 

8.2 Results and discussion 

 Observation 
Solid-liquid fluidisation in a micro circulating fluidised bed is reasonably uniform. In the 

circulating fluidisation regime with increasing liquid flow rate, a difference could be observed 

in the liquid flow rate in the riser, with higher liquid flow rate at the centre of the riser and 

lower liquid flow rate near the walls.  

In the middle section of the riser, particles were carried up to the top of the column riser by a 

higher liquid flow, while a small downwards flow of particles occurred near the wall of the 

riser as shown in figure 102. However, this downwards flow of particles near the wall of the 

riser column was insignificant and did not have an effect on regime transition. These 

observations are similar to that reported by Zheng and Zhu [116]  and Liang et al [106]. 

Agglomeration of particles which was caused by the presence of bubbles in the system was 

also observed, special with the PMMA particles which were extremely hard to separate using 

the solid-liquid separator, as these particle-bubble agglomerates usually float to the top of the 

solid-liquid-separator. 
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Figure 102.  The time sequenced images extracted from the movie of circulating fluidized 

bed using 38 µm soda lime glass microsphere particle at 1.5 mm/s. the arrows show small 

downwards flow of particles close to the riser wall. The letters a, b and c show three 

consecutive images of downwards flow of particles taken in a short time interval (0, 40, and 

80 milliseconds respectively) 

 

 Transition from circulating fluidisation regime to transport regime 
To facilitate the comparison between different particle size and density, the transition velocity, 

Ua, which demarcate the transition from circulating fluidised bed regime to transport regime 

was normalised by dividing the corresponding particle terminal velocities Ut.  

Figure 103 shows the normalised transition velocity, Ua / Ut as a function of particle diameter 

for both glass and PMMA particle respectively. One can notice that Ua is influenced by particle 

size and density. Firstly, for glass and PMMA particles, the normalised transition velocity, 

Ua/Ut was found to increase with particle size which is probably because of increased wall 

effects. Once again, one can also observe that Ua/Ut is also perceptibly higher for PMMA 

particles, compared to glass particles of the same size, even though PMMA particles density 

are lighter than glass particle (1200 and 2500 kg/m3 respectively). This is due to differences in 

surface properties as already discussed. 

 

t = 0 ms 

t = 40 ms 

t = 80 ms 
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Figure 103. Transition velocity from circulating fluidised bed regime to transport regime for 

(a) glass and (b) PMMA particles with solid inventory in the range of 10 – 25%. 
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 Flow regime map 
Based on this experiment and our previous experiments in the simple micro-fluidised bed 

[234], the fluidisation regime map is constructed for both PMMA and glass particles as shown 

in figure 104. Both experimental results were plotted on the same plot using non-dimensional 

quantities of dimensionless liquid velocity, Ul
* and dimensionless particle diameter dp

* as 

introduced by Liang, Zhang [106]: 

𝑈𝑙
∗ = 𝑈𝑙 (

𝜌𝑓
2

𝜇𝑔∆𝜌
)

1 3⁄

       (29) 

𝑑𝑝
∗ = 𝑑𝑝 (

𝜌𝑓𝑔∆𝜌

𝜇2
)

1 3⁄

      (30) 

The most striking trend of the plot is that the minimum fluidisation velocity (Umf, exp.) at which 

particle fluidisation is achieved for both PMMA and glass particles deviates strongly from the 

theoretical prediction of the Ergun equation, with proportionally higher deviation for the 

PMMA particles. This is due to the strong influence of surface forces on the minimum 

superficial liquid velocity at which particle fluidisation is achieved as found in our recent study 

[234]. For PMMA particles fluidised by water in a PMMA micro fluidised bed, adhesion forces 

are 3–5 orders of magnitude higher than the drag forces, while for glass particles adhesion 

forces are only 1–3 orders of magnitude higher than the predicted drag force due to weaker 

adhesion forces and larger particle densities. These particle–wall adhesion forces are 

transferred as frictional forces to the particle ensemble inside the bed [261, 262]. Consequently, 

this increased wall friction force results in an increase of the experimental minimum 

fluidisation velocity [71].  
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Figure 104. Flow regime map of solid–liquid micro–circulating fluidised bed for glass (filled 

symbols) and PMMA (empty symbols) particles with water as fluidizing liquid. The solid 

lines are the theoretical prediction for minimum fluidisation velocity and terminal velocity. 

The dashed (glass particles) and dotted (PMMA particles) lines connecting experimental 

points for the minimum fluidisation velocity (circles), the critical transitional velocity 

(triangles) and the transport transition velocity (squares) are a guide for the eye only. Three 

dotted lines labeled 1, 2 and 3 are Ucr of glass particles at solid inventories of 8%, 6% and 3% 

respectively.  

 

The minimum fluidization is postponed for both types of particles, but the proportional increase 

is much bigger for PMMA micro–particles (8–20 times bigger experimental Umf to the 

theoretical prediction depending on the size of particles) in comparison with glass beads (only 

about 2 times bigger experimental Umf  compared to the theoretical prediction for the smallest 

size particles). Our experimental data show that the increase in the minimum velocity scales 

linearly with the product of the adhesion/drag force and particle–to–bed diameter ratios [234], 

but mostly is influenced by the surface forces. Therefore, the proportional increase is the 

highest for the smallest particles of both glass and PMMA, decreasing with the increase in 

particle size, and becoming unity for the biggest glass particles as can be seen in the plot.  
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However, the surface forces did not have a major influence on the critical transition velocity 

(Ucr) which demarcates the transition from conventional to circulating fluidised bed regime as 

shown in figure 104. For both types of particles, the normalised transition velocity, Ucr/Ut, is 

roughly 1, at solid loading above 10%, with a weak increased Ucr/Ut, with an increase in particle 

size which is probably because of increased wall effect as already discussed. In addition, the 

relative transition velocity is slightly higher for PMMA particles due to influence of cohesion 

which forms bigger agglomerates and wall adhesion observed in the downcomer. This is not 

visible in the plot as the increased transition velocity is only 5 to 10% (smaller than the symbol 

used). Three additional dotted lines labelled on the plot as 1, 2 and 3 shows the Ucr of glass 

beads at solid inventories of 8%, 6% and 3% respectively. These show that the solid loading 

influences significantly this transitional velocity further limiting the operating range of 

velocities for the circulating fluidized bed at the micro-scale. This is not given for PMMA 

particles due to clarity reasons, but similar trends are also present. 

The transport transition velocities, Ua from circulating fluidized bed to transport regime are 

very similar in magnitude for PMMA and glass particles of the same size which indicate it 

might be a property of the system geometry only for a given particle size. Therefore, there are 

two distinctive lines on the map as the relative transition velocity for PMMA particles is around 

20 times particle terminal velocity while it is only 10 times for the glass beads which indicates 

that transition to the transport regime is influenced by cohesion. Further study is needed to 

elucidate this further.    

 

 Flow regime map for liquid-solid micro-circulating fluidised bed 

system with change in liquid viscosity 
 

Fluidisation regime map was constructed for glass and PMMA particles using four kinds of 

fluidising liquid, water, 5% volume aqueous glycerol, 10% volume aqueous glycerol, and 15% 

volume aqueous glycerol solution as shown in figure 105. 
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Figure 105. Flow regime map of solid–liquid micro–circulating fluidised bed for (a) Glass 

particles and (b) PMMA particles with water (empty circle), 5% volume aqueous glycerol 

(empty square), 10% volume aqueous glycerol solution (filled circle) and 15% volume 

aqueous glycerol solution (empty triangle) as fluidising liquid. The solid lines are 

experimental minimum fluidisation velocity, the dotted lines connecting experimental points 

for the critical transition velocity, and the dashed lines are the transport transition velocity 
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Based on the experimental results a new flow regime map of solid-liquid micro-circulating 

fluidised bed for glass and PMMA particles with water, glycerol (5% v/v, 10% v/v, and 15% 

v/v) solution as the fluidising liquid is presented in figure 103a & 103b.  

The experimental data in figure 105a and 105b shows that, the liquid viscosity have a major 

influence on the fluidisation behaviour of a liquid-solid micro-circulating fluidised bed system. 

The experimental minimum fluidisation velocity Umf, critical transition velocity Ucr, and 

transport velocity Ua decreased with increased fluidising liquid viscosity. The experimental 

Umf, Ucr, and Ua was higher for water system in comparison with glycerol solution system. The 

reduction in the experimental minimum fluidisation velocity Umf, critical transition velocity 

Ucr, and transport velocity Ua, with increased fluidised liquid viscosity is due to the fact that 

viscosity enhances the shearing stress acting on particle, consequently, this increased the drag 

force acting on the particles resulting in a decrease of the minimum fluidisation velocity, 

critical transition velocity, and transport velocity. Hence, conventional fluidisation regime, 

circulating fluidisation regime, and transport regime started earlier for viscous system, but the 

size of each regime is approximately the same regardless of liquid viscosity. 

 

 Flow regime map for liquid-solid micro-circulating fluidised bed 

system with change in solid feed pipe geometry 
 

Fluidisation regime map was constructed for 165 µm and 196µm glass particles using three 

solid feed pipe of 1, 1.5 and 2 mm square cross section. The difference in the solid feed pipe 

cross section size did not have any major influence on the transition velocity from fixed bed 

regime to conventional fluidised bed regime as shown in figure 106. The minimum fluidisation 

velocity was the same for three types of system (1mm, 1.5 mm, and 2mm cross section solid 

feed pipe). 

The critical transition velocity Ucr, from conventional to circulating fluidised bed regime and 

transport transition velocities Ua, from circulating fluidised bed regime to transport regime was 

affected by the change in the solid feed pipe cross section size. The critical transition velocity 

Ucr, and transport transition velocity Ua, increases with a reduction in the solid feed pipe cross 

section size due to the wall effects which are not usually present in large circulating fluidised 

beds. Hence, the circulating fluidised bed regime and transport regime start at lower superficial 

liquid with increasing solid feed pipe cross section.  The fluidisation regime, and transport 
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regime started much earlier for the 2 mm cross section solid feed pipe system and was much 

later for the system with solid feed pipe of 1 mm cross section. However, the size of each 

regime seems unchanged by this geometry of the bed. 
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Figure 106. Flow regime map of solid–liquid micro–circulating fluidised bed with change in 

the solid feed pipe cross section size. Three different solid feed pipe structure of 1mm, 

1.5mm, and 2mm cross section were used construct the fluidisation regime map for 165 and 

196µm glass particles with water as fluidising liquid. The angle between the riser and solid 

feed pipe was 60°. The solid lines are experimental minimum fluidisation velocity, the dotted 

lines connecting experimental points for the critical transition velocity, and the dashed lines 

are the transport transition velocity. 

 

 Flow regime map for liquid-solid micro-circulating fluidised bed 

system with change in the angle between riser and solid feed pipe 
 

Fluidisation regime was mapped for 165µm and 196µm glass particles using three kinds of 

angle between the riser and solid feed pipe of 30, 50, and 60°. The variation in the angle 

between the riser and solid feed pipe did not have any major influence on the transition velocity 

from fixed bed regime to conventional fluidised bed regime as shown in figure 107. The 
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minimum superficial liquid velocity at which particle fluidisation was achieved was the same 

for the three types of system (30°, 50°, and 60°). 

However, the critical transition velocity Ucr, from conventional to circulating fluidised bed 

regime and transport transition velocity Ua, from circulating fluidised bed regime to transport 

regime is dependent upon the angle between the riser and solid feed pipe. The critical transition 

velocity Ucr, and transport transition velocity Ua, increases with an increase in the angle 

between the riser and solid feed due to the difference in the net hydrodynamics force acting on 

the particle. Therefore, the circulating fluidised bed regime and transport regime started at 

much lower superficial liquid for the system with 30° angle between the riser and solid feed 

pipe and was much late for the system with 60° angle between riser and solid feed pipe.   
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Figure 107. Flow regime map of solid–liquid micro–circulating fluidised bed with change in 

the angle between the riser and the solid feed pipe. Three different angles of 30°, 50°, and 

60°were used to construct the fluidisation regime map for 165 and 196µm glass particles with 

water as fluidising liquid. The micro-circulating fluidised bed employed for this experiment 

had a riser and solid feed pipe of 2mm square cross section. The solid lines are experimental 

minimum fluidisation velocity, the dotted lines connecting experimental points for the critical 

transition velocity, and the dashed lines are the transport transition velocity. 
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8.3 Conclusions 
A research investigation on solid-liquid fluidisation in a micro circulating fluidised bed was 

performed to map different regimes with a special interest in the transition from a conventional 

fluidised bed to circulating fluidised bed regime. The results indicate that fluidisation in a solid-

liquid micro circulating fluidised bed system could be categorised in to four operating regimes: 

fixed bed, conventional fluidisation, circulating fluidisation, and transport regime, with the 

critical transition velocity roughly equal to the particle terminal velocity. The surface forces 

influence strongly the minimum fluidisation velocity which can be up to 20 times bigger for 

the smallest PMMA microparticles while the increase is only minor for glass particle (less than 

2 times for the same size smallest glass microparticles). As in a macroscopic circulating 

fluidised bed, the transition velocity from conventional to circulating fluidised bed decreases 

with solid inventory before levelling off at high enough solid inventory. The transition velocity 

is comparable to the particle terminal velocity, i.e. the normalised transition velocity is 

approximately 1 in line with previous macroscopic studies. However, there was a weak in-

crease in the normalized transition velocity with particle size which is probably due the wall 

effects (higher particle to bed ratio). In addition the normalised velocity is slightly higher for 

PMMA particles due to stronger adhesion and cohesion forces but influence is minimal in 

comparison with influence on the minimum fluidisation velocity. Finally it seems that 

transition to the transport regime is influenced by cohesion so the relative transition velocity 

for PMMA particles is around 20 times particle terminal velocity while it is only 10 times for 

the glass beads. Consequently, the conventional regime is proportionally bigger for the glass 

beads in comparison with PMMA particles, whist the situation is opposite for circulating 

fluidisation regime as it is bigger for PMMA particles. 
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 Conclusions 
A research study on fluidisation of glass and PMMA microparticles in a micro-circulating 

fluidised bed was performed. The investigation confirmed that liquid-solid fluidisation in 

micro-circulating fluidised bed system is strongly influenced by surface force and wall effect. 

For both particles, some adhesion was observed to the fluidised bed walls as predicted by the 

Acid-based theory developed by Oss, Chaudhury and Good.  For PMMA particles the adhesion 

forces were 3-5 order of magnitude higher than the drag forces, indicating particle adhesion to 

the bed walls is highly likely to influence the fluidization process. while for glass particles 

adhesion forces are only 1-3 order of magnitude higher than the predicted drag force due 

weaker adhesion forces and large particle density. These adhesion forces are transferred as 

frictional forces to the particle ensemble inside the bed. Consequently, this increased wall 

friction force results in an increase of the experimental minimum fluidisation velocity and 

beyond. For both PMMA and glass particles surface force is more important for smaller particle 

as adhesion force scale up with particle diameter while drag force scales with the cube of 

diameter. 

The experimental fluidisation was postponed in comparison with theoretical minimum 

fluidisation velocity predicted by Ergun equation. The minimum fluidization velocity was 

influenced by both surface force and wall effects. The minimum fluidisation velocity can be 

up to 23 times bigger for the smallest PMMA microparticles while the increase is only minor 

for glass particle (less than 2 times for the same size smallest glass microparticles). 

The digital PIV analysis using PIVlab and MATLAB was used to determine the solid 

circulating velocity in a micro-circulating fluidised bed. The use of PIVlab and MATLAB 

codes to estimate the average particle velocity seems promising, and the results looks relevant 

when compared with previous reported studies. As in a macroscopic circulating fluidised bed, 

the average particle velocity in a micro-circulating fluidised bed increases with liquid velocity 

in two distinct zones, increasing sharply first then levelling off at higher inlet fluid velocities. 

The determined transition velocities are comparable to the particle terminal velocity, i.e. the 

normalised transition velocity is approximately 1 in line with previous studies. The transition 

velocity is strongly influenced by solid inventory, i.e. it decreases with solid inventory before 

levelling off at high enough solid inventory. A weak increase in the normalised transition 

velocity with particle size was observed, which is probably due the wall effects (higher particle 

to bed ratio). 
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The study also confirms that fluidisation behaviour in liquid-solid micro-circulating fluidised 

bed system is also influenced by bed geometry such as cross section size of solid feed pipe and 

the angle between the riser and solid feed pipe. The average particle velocity increases with 

increased solid feed pipe cross section while the critical transition velocity increases with a 

reduction in the solid feed pipe cross section size. Furthermore, the average solid velocity 

increases with decreased angle between the riser and solid feed pipe, and the critical transition 

velocity from conventional to circulating fluidised bed regime increases with increased angle 

between the riser and solid feed pipe due to the difference in the net hydrodynamics force acting 

on the particle. 

The solid circulating velocity in a micro-circulating fluidised bed is influenced by the viscosity 

of the fluidised liquid. The minimum superficial liquid velocity at which particles fluidisation 

is achieve decreases with increasing liquid viscosity. The reduction in the minimum fluidisation 

velocity with an increase in the liquid viscosity is mostly due to the fact that viscous systems 

have a lower ratio of adhesion to drag force. Similar to the water system, for the same glycerol 

solutions, the minimum fluidization velocity was found to be linearly scaling with the ratio of 

adhesion to drag force. The solid circulating velocity in the system increases with an increase 

in the liquid viscosity. The critical transition velocity from conventional to circulating fluidised 

bed regime declines with increasing liquid viscosity. The reduction in the normalised critical 

transition velocity is due to the fact particle terminal velocity reduces with increasing liquid 

viscosity, therefore the critical transition from convention to circulating fluidised bed regime 

decreases resulting in an earlier circulating fluidisation regime. 

Finally, a new fluidisation regime, the solid-liquid micro-circulating fluidisation regime, was 

mapped for the solid-liquid fluidisation systems of different particles size and materials 

(Polymethylmethacrylate (PMMA) and soda lime glass microspheres). The result indicates that 

fluidisation in a solid-liquid micro circulating fluidised bed system could be categorised in to 

four operating regimes: fixed bed, conventional fluidisation, circulating fluidisation, and 

transport regime, with the critical transition velocity roughly equal to the particle terminal 

velocity. 
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 Future work 
An interesting idea of practical application of developed micro-fluidized bed system is to study 

heat transfer and hydrodynamics in inverse micro- circulating fluidised bed system. The 

motivation for this work is as follows. In the last four decades high heat flux electronic cooling 

has become an important technology in the power electronics and micro-electronics industry 

for the manufacture of various electronics equipment such as high power computer micro-

chips, medical X-ray, electronic radar, laser diodes [263, 264]. For a successful and reliable 

operation of these electronic equipment, temperature control within a certain range is extremely 

vital as high heat flux (1000-2000 W/cm2) produced by these micro-processor devices causes 

malfunction, shortened life and equipment failure [265, 266]. For that reason, it is important to 

remove the large amount of heat generated in these micro-processor devices. Conventional 

cooling solutions such as air system, vapour chamber, thermoelectric cooling, and heat pipes 

which have long been used for the cooling of computer chip in the micro-electronic and power 

electronic industry have either reached their practical application limits or are soon to become 

impractical for recently emerging electronics components as they are not capable of removing 

high heat fluxes of 1000-2000 W/cm2 [267, 268]. Hence, higher heat flux removal in today’s 

emerging micro-electronic device continues to be one of the major challenge facing the micro-

electronics industry [268]. Efforts to improve the reliability of electronic computers are as 

important as efforts to improve their speed and storage capacity [268]. Solid-liquid micro-

circulating fluidised beds are considered to be a potential high flux technology, their unique 

thermal transport properties make them prime contenders for the next generation of coolers for 

high power computer chips [269, 270]. They have a better and efficient heat removal 

capabilities when comparing to most conventional cooling solutions, as they are capable of 

removing very high heat flux (1000-2000 W/cm2) from micro-processor equipment such as 

computer chips and telecom devices while keeping the equipment temperature low and steady, 

reduced power consumption and enhance the system efficiency [271, 272]. Although the 

influence of angles on micro-circulating fluidised bed hydrodynamics was not studied at the 

present research investigation, many studies have concluded that when the misalignment is less 

than 5 degree, the influence on the hydrodynamics variables is small and easy to control [273-

277]. Furthermore, the cooling device is not projected to be used for laptops and such devices, 

mostly envision for huge data centres (cluster computers) where position is easy to control. 
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Furthermore, micro-encapsulated phase change materials (PCM) can be used as the fluidised 

particles in the recommended experimental studies.  PCM are latent heat storage materials, they 

absorbs energy when melts, and release energy when solidifies enabling them to act as heat 

storage media [278]. PCM particles have the capability to store and release high amount of heat 

while maintaining a uniform temperature, which is essential for processes where temperature 

uniformity is required to achieve higher conversion efficiency [279, 280]. The particles would 

be encapsulated PCM, ie. there is a shell which would not go through phase transition, pcm 

would be inside so not possible to go outside and cause any agglomeration [281, 282].  

Microencapsulated phase change materials are very stable, e.g. they are been used in building 

applications as construction material to improve thermal comfort and to save energy 

consumption in buildings (commercially available from e.g. BASF) [283, 284], and in the 

textile applications for the manufacturing of smart textile product such as space suits to protect 

astronauts from cold and heat during space mission,  and sensor baby vest to monitor babies 

body temperature [285, 286].  

Hence PCM particles are ideal for the recommended study. Since PCM particles have a density 

lower than water (around 800 kg/m3), a novel inverse micro-circulating fluidised bed is 

required in this case as particles will be fluidised by a downwards flow of the liquid. Study on 

heat transfer along with hydrodynamics of inverse micro-circulating fluidised bed will offer 

important parameters for design a micro-fluidised bed cooler capable to fulfil the needs of 

cooling high power computer micro-chips and others micro-electronics component. 

The second idea for future work is to use fast design-manufacture cycle provided by additive 

manufacturing technology (3D printing) to study non-conventional bed geometries. 3D 

printing will allow to rapidly fabricate a reliable micro-circulating fluidised bed using low cost 

material and most importantly, the bed geometry can easily be modified.  Specifically, 

Miicraft+ printer and Form2 printer can be used in future experimental studies to design and 

construct the micro-circulating fluidised bed of different bed cross-sectional geometry like 

circular, square geometries (used in my study), hexagonal (other polygons can be considered), 

semi-circle shaped micro-fluidized bed. The liquid-solid fluidisation characteristics such as 

minimum fluidisation velocity, critical transition velocity, transport transition velocity, solid 

circulation rate, in circular and hexagonal cross section shaped channels can be studied and the 

results obtained will be compared with corresponding ones in a square shaped bed channel. It 

would be interesting to find polygon shape which resembles the most circular geometry as the 
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most common big scale fluidized bed geometry while still having the flat surface important for 

easy of visualization studies like used in this study.   

Since the liquid-solid circulating fluidised bed consist of two columns, the riser and 

downcomer with continuous particle circulation between the two columns. The angle of the 

solid return pipe, the liquid-solid separator structure, and riser-downcomer diameter ratio could 

potentially influence the hydrodynamic parameters in the liquid-solid micro-circulating 

fluidised bed system, particularly the solid circulation rate, critical transition velocity Ucr from 

conventional to circulating fluidised bed regime, and transport transition velocity Ua from 

circulating fluidised to transport regime. Therefore, future experimental studies also include 

the influence of circulating fluidised bed geometry (riser-downcomer diameter ratio, solid 

return pipe angle, and the structure of liquid-solid), on the hydrodynamic variables such as 

solid circulating velocity, critical transition velocity from conventional to circulating fluidise 

bed regime, and transport transition velocity from circulating fluidised bed to transport regime. 

The idea is that by changing the liquid-solid separator structure, solid return pipe angle, and 

riser-downcomer ratio can have an influence on the internal recycling of particles in the riser 

and eventually on the system hydrodynamics. 3D printing will be used to fabricate the micro-

circulating fluidised. This will allow to rapidly fabricate a reliable fluidised bed and most 

importantly, the structure of solid-liquid separator can easily be modified.  

Future experimental studies should also include the hydrodynamics study of gas-solid micro-

circulating fluidised bed as the gas-fluidized beds have much wider application on a macro 

scale in comparison with liquid-solid fluidized beds. The study aim would be to investigate the 

influence of hydrodynamics of the system and the influence of surface forces, wall effect, 

minimum fluidisation velocity, critical transition velocity, transport transition velocity in a gas-

solid micro-circulating fluidised bed system, and a new fluidisation regime, the gas-solid 

micro-circulating fluidisation regime, will be mapped for the gas-solid fluidisation systems of 

different particles size and materials. 
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 Appendix 

11.1 Calibration 
Before the experimental procedure, flowrates were calibrated in the range of fluidization 

velocities with and without particles inside the bed in order to estimate the systematic error and 

showed a good linear relationship from the pump reading as shown in figure 108. 
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Figure 108. Liquid calibration  
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11.2 Minimum fluidization experiments results  
 

Figure 109. Relative bed height as a function of liquid velocity for 30µm glass particle in 

1mm micro-fluidised bed with water as the fluidised particles. 
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Figure 110. Relative bed height as a function of liquid velocity for 35µm glass particle in 

1mm micro-fluidised bed with water as the fluidised particles. 
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Figure 111. Relative bed height as a function of liquid velocity for 58µm glass particle in 

1mm micro-fluidised bed with water as the fluidised particles. 
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Figure 112. Relative bed height as a function of liquid velocity for 82µm glass particle in 

1mm micro-fluidised bed with water as the fluidised particles. 
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Figure 113. Relative bed height as a function of liquid velocity for 98µm glass particle in 

1mm micro-fluidised bed with water as the fluidised particles. 
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Figure 114. Relative bed height as a function of liquid velocity for 115µm glass particle in 

1mm micro-fluidised bed with water as the fluidised particles. 
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Figure 115. Relative bed height as a function of liquid velocity for 165µm glass particle in 

1mm micro-fluidised bed with water as the fluidised particles. 
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Figure 116. Relative bed height as a function of liquid velocity for 196µm glass particle in 

1mm micro-fluidised bed with water as the fluidised particles. 
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Figure 117. Relative bed height as a function of liquid velocity for 23µm PMMA particle in 

1mm micro-fluidised bed with water as the fluidised particles. 
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Figure 118. Relative bed height as a function of liquid velocity for 35µm PMMA particle in 

1mm micro-fluidised bed with water as the fluidised particles. 
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Figure 119. Relative bed height as a function of liquid velocity for 41µm PMMA particle in 

1mm micro-fluidised bed with water as the fluidised particles. 

        58 m PMMA Particle

U ( m/s)

20 40 60 80 100 120

(h
 -

 h
0

) 
/ 

h
0

 (
m

m
)

4.8

5.0

5.2

5.4

5.6

5.8

Increase liquid flowrate
Decrease liquid flowrate

 

Figure 120. Relative bed height as a function of liquid velocity for 58µm PMMA particle in 

1mm micro-fluidised bed with water as the fluidised particles. 
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Figure 121. Relative bed height as a function of liquid velocity for 115µm PMMA particle in 

1mm micro-fluidised bed with water as the fluidised particles. 

 

 

11.3 Solid circulation rate conversion to solid circulating velocity 
 

𝑈𝑠 =
𝐺𝑠

𝜌𝑠
 

Where Us is the solid circulating velocity, ρs solid density, and Gs the solid circulation rate 

 

When 

Gs = 1.14 x10-2 kg/m2. s 

ρs = 2500 kg/m3 

 

𝑈𝑠 =
1.04 × 10−2

2500 
=  4.17 × 10−6 𝑚/𝑠 
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11.4 Influence of fluidising liquid viscosity on the solid flux  
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Figure 122. Particle circulating speed for 26µm glass particle as function of normalized liquid 

velocity for water and glycerol mixtures.  
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Figure 123. Particle circulating speed for 30µm glass particle as function of normalized liquid 

velocity for water and glycerol mixtures.  



179 
 

58 m Glass Particle

Ul/Ut

0 1 2 3 4 5

U
s

 (
m

/s
)

0

2

4

6

8

10

12

14

16

Water
5% v/v glycerol
10% v/v glycerol
15% v/v glycerol

 

Figure 124. Particle circulating speed for 58µm glass particle as function of normalized liquid 

velocity for water and glycerol mixtures.  
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Figure 125. Particle circulating speed for 82µm glass particle as function of normalized liquid 

velocity for water and glycerol mixtures.  
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Figure 126. Particle circulating speed for 98µm glass particle as function of normalized liquid 

velocity for water and glycerol mixtures.  

165 m Glass Particle

Ul/Ut

0 2 4 6 8 10

U
s

 (
m

/s
)

0

1

2

3

4

5

6

7

Water
5% v/v glycerol

10% v/v glycerol

15% v/v glycerol

 

Figure 127. Particle circulating speed for 165µm glass particle as function of normalized 

liquid velocity for water and glycerol mixtures.  
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Figure 128. Particle circulating speed for 196µm glass particle as function of normalized 

liquid velocity for water and glycerol mixtures.  
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Figure 129. Particle circulating speed for 23µm PMMA particle as function of normalized 

liquid velocity for water and glycerol mixtures.  
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Figure 130. Particle circulating speed for 35µm PMMA particle as function of normalized 

liquid velocity for water and glycerol mixtures.  
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Figure 131. Particle circulating speed for 41µm PMMA particle as function of normalized 

liquid velocity for water and glycerol mixtures.  
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Figure 132. Particle circulating speed for 58µm PMMA particle as function of normalized 

liquid velocity for water and glycerol mixtures.  
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