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Abstract 

 

Anaerobic digestion (AD) of microalgae is an option to generate renewable energy in the 

form of methane-rich biogas. However, the high resistance of the cell wall, and unbalanced 

carbon to nitrogen (C/N) ratios can cause low methane production and an unstable AD 

process when using microalgae as the feedstock. Therefore, this research aims to optimize 

methane production from microalgae following pre-treatment and co-digestion strategies.  

Pre-treatment experiments were conducted in batch biochemical methane potential (BMP) 

tests, and the results showed that enzymatic hydrolysis offered a higher solubilisation of 

organic matters and methane yields compared to low-temperature thermo-alkaline pre-

treatment. However, both pre-treatments were considered energetically efficient in pre-

treating microalgae. Further BMP tests evaluated the feasibility of using potato processing 

waste (PPW) as a co-substrate with microalgae. The results showed that the addition of PPW 

to microalgae increased C/N ratios, methane production rates and final methane yields. BMP 

tests found that the addition of relatively high proportions of PPW could reduce the 

concentration of free ammonia nitrogen (FAN), and improve digestion performance and 

stability by reducing the likelihood of ammonia toxicity. The feasibility of using PPW as a co-

substrate for co-digestion with microalgae was further evaluated in the semi-continuous co-

digestion studies. The start-up strategy with immediate feeding enhanced methane yields 

significantly, and reduced the risk of ammonia toxicity for the methanogens. Co-digestion of 

microalgae with potato discarded parts (PPWdp) produced higher methane yields than co-

digestion with potato peel (PPWp). This start-up strategy and co-digestion of microalgae with 

PPWdp supported a high relative abundance of Methanosarcina. A second semi-continuous 

co-digestion study was carried out to optimize methane production from microalgae by co-

digestion with PPW and glycerol. Results showed that glycerol added to mixtures of 25:75 

microalgae: PPW enhanced methane production significantly. Glycerol dosage of 1% v/v 

could be the optimal dosage with highest specific methane production and stable digestion 

process. However, glycerol dosage of 2% v/v was more likely to accumulate volatile fatty 

acids (VFA), leading to an unstable digestion process. Methaneosaeta was abundant in the 

digesters employing co-digestion of microalgae and PPWdp with or without glycerol. 

Methaneosaeta also predominated in the digester of co-digestion microalgae and PPWp with 

glycerol, however a higher relative abundance of Methanosarcina was detected due to the 

accumulation of VFA. Overall, this research shows that pre-treatment and co-digestion 

strategies can improve methane production from microalgae, and the results are encouraging 

for the future use of microalgae as a sustainable AD feedstock. 
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Chapter 1. Introduction 

 

Global energy consumption is expected to grow by 28% from 2015 to 2040 (IEO, 2017), and 

fossil fuels including coal, oil and natural gas still remain the primary source for the energy 

sector. However, the utilisation of fossil fuels in the energy sector has led to increase levels of 

greenhouse-gas (GHG) emissions that represent nearly 66% of total anthropogenic GHG 

emissions (OECD/IEA, 2015). GHG warm the atmosphere, seriously affect rainfall patterns, 

cause the retreat of glaciers and sea ice, and raise sea levels due to climate change 

(Ramanathan and Feng, 2009). Therefore, in order to avoid further escalation of climate 

change, effective action should be taken in the energy sector, particularly using clean and new 

energy sources instead of conventional fossil fuels. Among other alternative energy sources, 

the fastest growing source predicated for the next few decade is renewable energy (Figure 1.1) 

(BP, 2018) 

 

 

Figure 1.1 Projected energy demand by type of energy source: (A) global overview; (B) 

regional demand, adapted from BP (2018).  

 

Renewable energy sources include wind, marine, solar, hydro, geothermal and biomass 

energy, among them biomass energy represents the largest proportion of 14% out of 18% of 

renewables in the 2016 energy mix (WEC, 2016). Biomass energy in the forms of heat, 

electricity and liquid fuels (biofuels) can be produced from a wide range of biomass sources 

such as virgin wood, energy crops, agricultural residues and food and industrial waste streams 

via various conversion processes (Ellabban et al., 2014). Biomass energy shares similar 
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characteristics to that from fossil fuels, although it belongs to the renewable energy category. 

For example, biomass can be burned to obtain heat energy, and can also converted to various 

liquid and gas biofuels, which can be transported and stored for heat and power generation 

(Ellabban et al., 2014). Therefore, biomass energy will play an important role in future energy 

scenarios, and a recently emerging strategy is to convert biomass into clean energy fuels via 

biorefinery and biotransformation technologies (Ellabban et al., 2014).  

 

Biorefinery is a sustainable process to obtain biofuels, energy and high value products via 

processes and equipment used for biomass transformation (Chew et al., 2017). It has been 

identified as the most promising way to generate a biomass-based industry (González-

Delgado and Kafarov, 2011). Biorefinery is classified according to the type of biomass 

feedstock (Gorry et al., 2018). First-generation biorefineries are based on energy crops such 

as sugar cane, corn or soybean to produce biofuels including ethanol, butanol and biodiesel, 

chemicals (e.g. lactic acid, itaconic acid and 1,3-propanediol) as well as other valued products 

for feed and food applications (Gorry et al., 2018). However, the main concern in using 

energy crops for the bioenergy market is that their production on agricultural land may 

detrimentally affect global food supplies (Dębowski et al., 2017).  

 

Lignocellulosic materials are used as the feedstock for second-generation biorefineries, where 

the lignocellulose can be converted to biofuels such as cellulosic ethanol and syngas, 

including CO, CO2, H2 and CH4 (Gorry et al., 2018). Compared to energy crops, using 

lignocellulosic biomass for biofuel production has advantages such as its abundance and a 

relatively cheap production process (González-Delgado and Kafarov, 2011). However, 

lignocellulosic biomass comprises a strong structural matrix formed by digestible polymers 

(cellulose and hemicellulose) being embedded within the relatively recalcitrant lignin 

component, and therefore an additional treatment is required for it to be broken down 

completely into simple sugars (Gabhane et al., 2014).  

 

Third-generation biorefineries are the most advanced process that can utilise a combination of 

technologies to convert a mixture of biomass sources into multiple valued products (Gorry et 

al., 2018). Microalgae are considered to be a potential feedstock for third-generation 

biorefineries due to their cell characteristics that are capable of producing a multitude of 

products (Chew et al., 2017). The interest in a microalgae biorefinery has four main 

advantages. In comparison with energy crops, microalgae may be grown independently of 

arable land, and their productivity may potentially reach 100 – 150 tonnes/ha/year, which is 
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10 – 15 times higher than that of conventional agricultural crops (Chinnasamy et al., 2010). 

Secondly, the lignin component of microalgae biomass represents less than 2% (Ververis et 

al., 2007), and this low lignin fraction can facilitate enzymatic access, leading to the 

enhancement of hydrolysis rates in microalgae biorefineries. Moreover, some microalgae 

strains can grow under saline conditions or in wastewater treatment systems, which reduces 

the need for freshwater (Pittman et al., 2011; Arashiro et al., 2018; Maeda et al., 2018). More 

importantly, microalgal photosynthesis allows CO2 fixation, which may mitigate the elevated 

CO2 concentrations present in the atmosphere (Blair et al., 2014).  

 

Microalgae are considered as potential feedstocks for the generation different types of 

biofuels such as biodiesel, biogas, bioethanol, biohydrogen and bio-oil (Harun et al., 2011; 

Ebrahimian et al., 2014; Zhao et al., 2014) via various conversion technologies including: 

thermochemical conversion, biochemical conversion, transesterification and photosynthetic 

microbial fuel cells (Naik et al., 2010; Chew et al., 2017). Currently, biogas and biodiesel are 

the most common types of biofuel because they can be used to replace natural gas and 

petroleum diesel, respectively (Alaswad et al., 2015). Therefore, the two crucial techniques of 

microalgae biorefinery downstream processing are transesterification and anaerobic digestion 

(AD) which convert the microalgal biomass into biodiesel and biogas (Figure 1.2).  

 

 

Figure 1.2 Flow diagram of a microalgae biorefinery (Chew et al., 2017). 
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The rapid growth rate of microalgae results in high oil productivity, ranging from 58,700 to 

136,9000 L/ha, which is significantly higher than for other oil crops such as corn, soybean, 

coconut and oil palm (Chisti, 2007). Therefore, biodiesel production from microalgae remains 

a primary research focus. In addition to the lipid content, microalgal biomass contains 

carbohydrate, protein and other nutrients (Sialve et al., 2009), and in order to improve the 

economic balance, after lipid extraction, microalgal residues could be converted to methane 

through AD (Chisti, 2007). Therefore, a simple scenario was proposed by Torres et al. (2013) 

in which, the lipid, protein and carbohydrate components of microalgae were assumed to be 

30, 45 and 35% of volatile solids (VS), respectively. First, lipids were extracted from 

microalgal biomass, and used to produce biodiesel; and the residues of carbohydrate and 

proteins were used for methane production (Figure 1.3 A). In this conceptual process, 

biodiesel production was estimated to produce an energy yield of 11.7 MJ/kg, and an energy 

yield of 17.3 MJ/kg was produced by AD of the residues. However, microalgae biodiesel 

production is associated with substantial energy consumption, including the drying of 

biomass, lipid extraction and oil transesterification, with the energy required for drying 

accounting for nearly 80% of total energy consumption (Lardon et al., 2009). The cultivation 

step is another area of concern when using microalgae as the feedstock for biodiesel 

production. Generally, closed photobioreactors are used for the cultivation of specific 

microalgae strains in order to avoid contamination, but this cultivation system requires high 

energy consumption for mixing the culture and pumping (Scott et al., 2010). Moreover, the 

composition of growth medium needs to be controlled in order to improve the cell lipid 

content. For example, for most microalgae strains, a nitrogen-limited growth medium 

enhances their lipid content, but also limits their growth rate (Sialve et al., 2009). Therefore, 

an alternative is using whole microalgae for biofuel production via AD. Lipids have the 

highest theoretical methane yield of 1.014 L CH4/g VS, which is higher than the values of 

0.415 and 0.851 L CH4/g VS for carbohydrates and proteins, respectively (Montingelli et al., 

2015). In another conceptual process proposed by Torres et al. (2013) (Figure 1.3 B), AD of 

whole microalgae could potentially produce a total energy yield of 28.2 MJ/kg, which is 

similar to the level produced by the combined biodiesel/biogas production process (29 

MJ/kg). Compared to biodiesel and bioethanol production, AD is a straightforward biological 

process where most microalgal macromolecules can be fermented to generate methane-rich 

biogas. Moreover, microalgal biomass can be used for the AD process without drying, and 

biogas generated by AD of microalgae can be used to produce both electricity and heat 

(Torres et al., 2013).  
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In conclusion, the selection of production scenario depends on the lipid content in the 

microalgal biomass. Sialve et al. (2009) suggested that, if a microalgal cell lipid content is 

less than 40%, the AD of whole microalgae would be most favourable, whereas a combined 

biodiesel and biogas production process would be the preferred option when lipid levels are 

higher than 40%.  

 

 

 

Figure 1.3 Potential alternatives for microalgae AD: (A) Biodiesel production and AD of 

microalgal residues to produce methane; (B) AD of whole microalgae for biogas production 

(Torres et al., 2013).  

 

 

Studies of microalgae AD started in the 1960s, but there are still significant problems 

associated with the use of whole microalgae as a feedstock for AD. The theoretical methane 

yields of AD microalgae were estimated to range from 0.48 to 0.80 L CH4/g VS (Sialve et al., 

2009). However, the experimental yields based on previous investigations are substantially 

lower at 0.05 – 0.39 L CH4/g VS (Gonzalez-Fernandez et al., 2012). Previously, several key 

factors have been identified that affect methane production, such as biomass moisture content, 
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concentration of digestible substrate, cell wall digestibility and the composition of cell 

macromolecules (Torres et al., 2013; Montingelli et al., 2015), and experimentation into how 

to break down microalgal cell walls and rebalance the cell composition remains a current 

research focus.    

 

Previous investigations have tested a wide range of pre-treatments involving high energy 

demand, including mechanical (such as ultrasound), thermal and high-temperature thermo-

chemical methods to enhance methane production from microalgae (González-Fernández et 

al., 2012; Mendez et al., 2013). However, these pre-treatments are associated with high 

energy inputs, which can be higher than the amount of energy recovered in the form of 

additional methane. These pre-treatments are energetically unbalanced, although they have 

been reported to improve methane yields efficiently. Therefore, research interest has been 

directed towards the use of low-energy demand pre-treatments for microalgal biomass. 

Enzymatic pre-treatment requires a mild pre-treatment temperature, and therefore it is an 

energetically competitive method. Moreover, the use of enzymes can reduce the possibility of 

releasing by-products that might inhibit the subsequent AD process (Mahdy et al., 2014c). 

However, further research is still required to identify an effective enzymatic pre-treatment for 

microalgae prior to AD. Another energetically competitive method is chemical pre-treatment, 

and this also requires low energy inputs compared to thermal and ultrasonic pre-treatments 

(Cho et al., 2013). However, in order to improve the pre-treatment efficiency, chemical pre-

treatments are usually combined with high temperatures in pre-treating microalgal biomass 

(Cho et al., 2013; Bohutskyi et al., 2014). Therefore, from the energy viewpoint, there is a 

need to investigate the effect of low-temperature thermal-chemical pre-treatment of 

microalgal biomass for AD.  

 

Microalgae without rigid cell walls could also represent a potential feedstock for AD 

(Mussgnug et al., 2010), but most microalgae strains have high protein content that may lead 

to imbalanced carbon-to-nitrogen (C/N) ratios. Such an imbalance becomes an inhibitory 

factor when using microalgae as the feedstock for either the AD of whole cell or the 

combined biodiesel and biogas production process. Anaerobic co-digestion of microalgae 

with other carbon-rich feedstocks is the most commonly used strategy to rebalance the C/N 

ratio and to enhance methane production. Therefore, to further support the economic case for 

digesting microalgae, research must focus on assessing carbon-rich feedstocks already 

available as waste-streams, rather than feedstocks produced specifically for bioenergy 

production. 
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1.1 Aim  

 

The aim of this research is to enhance methane production from microalgae through pre-

treatment and anaerobic co-digestion strategies.  

 

1.2 Objectives 

 

The specific research objectives are: 

 

1. To evaluate the effect of low energy pre-treatments on the degree of solubilisation of the 

microalgal biomass, and the subsequent methane yields achieved in batch biochemical 

methane potential (BMP) tests. 

 

2. To evaluate the feasibility of using potato processing waste as a co-substrate for co-

digestion with microalgae in batch BMP tests.  

 

3. To evaluate the feasibility of using potato processing waste as a co-substrate for co-

digestion with microalgae in semi-continuous reactor studies. 

 

4. To evaluate the effects of glycerol supplementation on the co-digestion of microalgae and 

potato processing waste in semi-continuous reactor studies. 
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1.3 Thesis Structure  

 

 

 

Figure 1.4 Flow diagram of structure of thesis 
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Chapter 2. Literature Review 

 

2.1 Microalgae 

 

2.1.1 General characteristics and composition  

 

Algae are a diverse group of prokaryotic and eukaryotic organisms and, like terrestrial plants, 

most contain chlorophyll that can convert light energy into chemical energy via 

photosynthesis (Rocca et al., 2015). The classification of algae is based on their properties 

such as cell structure, cell wall composition, pigmentation, storage products for 

photosynthesis and the lifecycle (González-Delgado and Kafarov, 2011). The 11 algae 

divisions are Cyanobacteria (blue-green algae), Glaucophyta, Rhodophyta (red algae), 

Chlorophyta (green algae), Charophyta, Haptophyta, Cryptophyta, Ochrophyta, 

Chlorarachniophyceae, Dynophyceae and Euglenophyceae (Barsanti and Gualtieri, 2014). 

Algae are classified in two general groups of microalgae and macroalgae based on their size, 

and microalgae are the focus of this research and detailed information about them is provided 

below. 

 

Microalgae are a group of single-cell photosynthesising microorganisms that grow in both 

marine and fresh water environments (González-Delgado and Kafarov, 2011; Maeda et al., 

2018). Microalgae are very small plant-like organisms around 1 – 50 micrometres in diameter. 

They share similar photosynthetic mechanisms with land-based plants, but can more 

efficiently access carbon dioxide (CO2) and nutrients due to their simple cellular structure. 

Moreover, microalgae live submerged in an aqueous environment where they can gain access 

to water easily (Carlsson et al., 2007). Microalgae are a heterogeneous group of prokaryotic 

(Cyanbacteria) and eukaryotic organisms (Carlsson et al., 2007; Maeda et al., 2018). Based on 

their chemical and morphological characteristics, microalgae can be classified as green algae 

(Chlorophyceae), golden-brown algae (Chryophyceae), diatoms (Bacillariophyceae) and blue-

green algae (Alaswad et al., 2015; Rocca et al., 2015). Microalgae exhibit an enormous 

diversity with more than 50,000 species, but only about 30,000 of them have been studied and 

analysed (González-Delgado and Kafarov, 2011).  
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Protein, carbohydrate and lipid are the main chemical components of microalgae, and the 

proportions of these macromolecules are strongly affected by species differences and 

environmental conditions such as light source and intensity, temperature, growth conditions 

and nutrients (Sialve et al., 2009). Based on data provided in the literature (Rocca et al., 

2015), the major component is protein, with concentrations ranging from 30 – 71% of dry 

weight (DW) (Figure 2.1). The concentrations of carbohydrate varies between 4 – 58% DW. 

Lipid concentrations are reported at between 2 and 45 % DW (Rocca et al., 2015), but this 

may increase up to 63% DW under certain growth conditions such as low nitrogen (Sialve et 

al., 2009).  

 

 

 

Figure 2.1 Chemical composition of microalgae based on different species, adopted from 

Rocca et al. (2015). 
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2.1.2 Microalgae cultivation and harvesting  

 

In comparison with conventional agricultural crops, microalgae can be cultivated in various 

environmental conditions such as freshwater, seawater and wastewater. Table 2.1 compares 

the biomass productivity of microalgae and conventional land-based crops.  

 

Table 2.1 Biomass productivity of land-based plants and microalgae, adapted from Uggetti et 

al. (2014).  

 Biomass Productivity (dry tons/ha.y) 

Rapa seeds 2.7 

Corn grain 7 

Mixed grasses 3.6 – 15 

Woody biomass 10 – 22 

Sugarcane 73 – 87 

Microalgae (Tetraselmis suecica) 10 – 22 

Microalgae (Arthrospira) 27 – 70 

 

 

The commercial large-scale cultivation of microalgae started in the early 1960s, where the 

microalgae strain Chlorella was cultivated in Japan (Borowitzka, 1999). The culture system 

for cultivating microalgae depends on the species to be cultivated and products to be 

harvested, and recent cultivation technologies include open and closed systems (Ozkan et al., 

2012) (Table 2.2). Open systems include large shallow ponds, tanks, circular ponds and race-

way ponds, which are relatively simple and inexpensive to set-up and operate, and sunlight 

can be used as the light source (Borowitzka, 1999; Ozkan et al., 2012). However, a large pond 

is difficult to monitor in comparison with a closed system. Therefore, this type of culture 

system is not suitable for cultivating fast-growing species. Closed systems such as flat and 

tubular photo bio-reactors (PBRs) are commonly used for high value products such as 

pigments and vitamins (Ozkan et al., 2012). Compared to open systems, most closed systems 

are operated indoors using artificial lighting, which is associated with high energy costs 

(Borowitzka, 1999). However, unlike open systems, the intensity and time of lighting, 

temperature, culture medium and environment can be controlled; and also the potential risk of 

predators, parasites and competitive algae species gaining access to systems can be reduced 

(Dębowski et al., 2013).  
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Table 2.2 Comparison of culture systems for microalgal biomass production 

Culture 

system 

Biomass 

concentration 

(kg/m3) 

Productivity 

(g/m2.day) 

Photosynthetic 

efficiency 

(%) 

References 

 

Open 

 

 

0.1 – 0.5 

 

4.0 – 21.0 

 

1.0 – 4.0 

Borowitzka (1999) 

Ozkan et al. (2012) 

Hase et al. (2000) 

Stephens et al. (2010) 

 

 

Closed 

 

2.0 – 8.0 

10.2 – 22.8 

(Flat PBRs) 

13.0 – 47.7 

(Tubular 

PBRs) 

 

2.3 – 9.6 

 

Pulz (2001) 

Brennan and Owende 

(2010) 

 

 

 

When a microalgae culture has reached the stationary phase, the microalgal biomass needs to 

be recovered from the water medium prior to downstream processing. The selection of 

harvesting technology is dependent on the characteristics of microalgae such as size, density 

and the value of the target products (Brennan and Owende, 2010). In general, microalgae 

harvesting involves two steps of bulk harvesting (or separation) and thickening (or 

dewatering) (Brennan and Owende, 2010; Rocca et al., 2015). Bulk harvesting aims to 

separate the microalgal biomass from the bulk suspension, and the concentration of biomass 

after this step will reach to 6 – 20% of the total suspended solids (TSS) (Rocca et al., 2015). 

Flocculation, flotation or gravity sedimentation can be used in this step, and the selection of 

technology depends on the initial biomass concentration. Thickening is a more energy 

intensive step that aims to further concentrate the slurry via centrifugation, filtration or 

ultrasonic aggregation technologies (Brennan and Owende, 2010). After this step, the 

concentration of microalgal biomass will reach 10 – 25% TSS (Rocca et al., 2015). 
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2.1.3 Applications and algal biofuels 

 

Microalgae are capable of accumulating high-value products used to produce pigments such 

as β-carotene and chlorophyll, vitamins including A, B, B2, B6 and C, minerals like iron, 

potassium, calcium and magnesium, antioxidants and nutraceuticals (de Souza et al., 2018; 

Khanra et al., 2018; Rizwan et al., 2018). The bio-products from microalgae can be used in 

commercial, industrial, environmental and medical areas (de Souza et al., 2018; Rizwan et al., 

2018).  

 

Microalgae are also considered to be potential sources to generate different types of biofuels 

such as biodiesel, biogas, bioethanol, biohydrogen and bio-oil through various conversion 

technologies (Harun et al., 2011; Ebrahimian et al., 2014; Zhao et al., 2014) (Figure 2.2).   

Conversion technologies include thermochemical or biochemical conversion, 

transesterification and photosynthetic microbial fuel cells (Naik et al., 2010; Chew et al., 

2017). The selection of conversion technology depends on the microalgae strain, economic 

factors, process specifications and the final products. Among the latter, biogas and biodiesel 

are the most common types of biofuels because they can be used to replace natural gas and 

petroleum diesel, respectively (Alaswad et al., 2015). Indeed, most contemporary studies 

focus using microalgae to produce biodiesel. However, when compared to the biodiesel 

production process, AD is a more straightforward biological process used to produce 

bioenergy without biomass concentration and drying, lipid extraction and fuel conversion. 

Moreover, compared to biodiesel and bioethanol production, most microalgae 

macromolecules can be fermented via AD to generate methane-rich biogas. Additionally, the 

microalgae cultivation process can be integrated with the AD process. In this integrated 

process, not only can the liquid phase of the digestate generated by the AD process be used as 

a nutrient and inorganic carbon source for the cultivation of microalgae, but also the generated 

energy such as heat and electricity can be used for cultivation and downstream processes 

(Gonzalez-Fernandez et al., 2015). Therefore, the microalgae AD process for bioenergy 

production may be less complex.   
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Figure 2.2 Conversion processes of microalgal biomass for biofuel production, adapted from 

Naik et al. (2010) and Chew et al. (2017). 

 

 

2.2 Anaerobic digestion 

 

Anaerobic digestion (AD) is a robust biochemical conversion process whereby 

macromolecules such as carbohydrates, proteins and lipids can be degraded by anaerobic 

microorganisms to generate biogas in an oxygen-free environment, with the digestate 

potentially used as a nutrient fertilizer in agriculture (Ward et al., 2008; Appels et al., 2011). 

The main composition of biogas is around 40% carbon dioxide (CO2) and 60% methane 

(CH4), and the percentages vary depending on the digested feedstocks (Maeda et al., 2018). 

Methane is the simplest hydrocarbon, and produces more heat per unit of mass (55.7 kJ/g) 

than other more complex hydrocarbons. Moreover, the burning of methane produces less CO2 

for each unit of heat than other hydrocarbon fuels. Therefore, methane is a promising valuable 

biofuel generated from the AD process. Moreover, methane could be used in combined heat 

and power (CHP) systems to produce heat and electricity (Wang et al., 2016).  
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2.2.1 Anaerobic digestion process 

 

AD occurs in four key biological and chemical steps, including hydrolysis, acidogenesis, 

acetogenesis and methanogenesis (Figure 2.3).  

 

 

Figure 2.3 Pathway of anaerobic digestion, adopted from Kangle et al. (2012) and Christy et 

al. (2014).  

 

2.2.1.1 Hydrolysis  

 

The initial stage in AD is hydrolysis, where complex organic polymers such as 

polysaccharides, proteins and lipids are catabolized into simple sugars, amino acids and long-

chain fatty acids and other simple organic compounds (Kangle et al., 2012). An example of a 

hydrolysis reaction of catabolize organic waste into the simple sugar such as glucose is shown 

in Equation 2.1 (Christy et al., 2014).  

 

𝐶6𝐻10𝑂4 + 2𝐻2𝑂 →  𝐶6𝐻12𝑂6 + 2𝐻2                                       (2.1) 

 

This step is crucial in the AD process due to the large size of organic polymers which cannot 

be directly consumed by microorganisms. Therefore, a group of hydrolytic microorganisms 

such as Bacteroides, Butyrivibrio, Clostridia, Fusobacterium, Micrococci and Streptococcus 
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secrete different extracellular enzymes, including cellulase, xylanase, amylase, protease and 

lipase, to assist in the degradation of these polymers (Christy et al., 2014). However, the AD 

of substrates containing more structural stable compositions such as cellulose and hemi-

cellulose requires longer for hydrolysis than the digestion of proteins (Adekunle and Okolie, 

2015). Therefore, this step has been reported to be a rate limiting stage in the AD process 

(Adekunle and Okolie, 2015).  

 

2.2.1.2 Acidogenesis 

 

The second stage is acidogenesis, where sugars, amino acids and long-chain fatty acids are 

further catabolized by fermentative microorganisms such as Bacillus, Escherichia coli, 

Lactobacillus, Streptococcus and Salmonella to become acetate, propionate, butyrate and 

other short-chain fatty acids as well as ethanol (Dioha et al., 2013; Christy et al., 2014). The 

typical acidogenesis reactions are shown in Equations 2.2 – 2.4 (Christy et al., 2014).  

 

𝐶6𝐻12𝑂6  ↔  2𝐶𝐻3𝐶𝐻2𝑂𝐻 + 2𝐶𝑂2                                            (2.2) 

 

𝐶6𝐻12𝑂6  +  2𝐻2 ↔  2𝐶𝐻3𝐶𝐻2𝑂𝐻 + 2𝐻2𝑂                               (2.3) 

 

𝐶6𝐻12𝑂6  →  3𝐶𝐻3𝐶𝐻2𝑂𝐻                                                          (2.4) 

 

 

2.2.1.3 Acetogenesis 

 

The third step is acetogenesis or acetogenic oxidation, where propionate, butyrate, valerate 

and simple molecules such as ethanol produced through acidogenesis stage are further 

catabolised by acetogenic bacteria to produce acetate and hydrogen (Dioha et al., 2013). 

Equations 2.5 – 2.7 represent three pathways for the conversion of propionate, glucose and 

ethanol to acetate by actogenic bacteria (Christy et al., 2014).  

 

𝐻3𝐶𝐻2𝐶𝑂𝑂−  +  3𝐻2𝑂 ↔  𝐶𝐻3𝐶𝑂𝑂−  +  𝐻−  +  𝐻𝐶𝑂3
−  + 3𝐻2       (2.5) 

 

𝐶6𝐻12𝑂6  + 2𝐻2𝑂 ↔  2𝐶𝐻3𝐶𝑂𝑂𝐻 + 2𝐶𝑂2  + 4𝐻2                          (2.6) 

 

𝐶𝐻3𝐶𝐻2𝑂𝐻 + 2𝐻2𝑂 ↔ 𝐶𝐻3𝐶𝑂𝑂−  + 2𝐻2  +  𝐻+                           (2.7) 
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As strict anaerobes, acetogenic bacteria have an optimum pH value around 6, and they have 

relatively slow growth rates, and are usually sensitive to environmental changes (Christy et 

al., 2014). Acetogenic bacteria include Sporomusa silvacetia, Acetobacterim woodii, 

Moorella thermoacetica and Thermoanaerobacter kibui (Karnholz et al., 2002). 

 

2.2.1.4 Methanogenesis 

 

The final step is methanogenesis, where methanogens use either acetate or hydrogen to 

produce methane (Alaswad et al., 2015). Hydrogenotrophic methanogens can use CO2 as the 

substrate to produce methane as shown in Equation 2.8, whereas acetotrophic methanogens 

utilise acetate as substrate (Equation 2.9) (Liu and Whitman, 2008; Christy et al., 2014).  

Moreover, other methylotrophic methanogens and Methanosarcina belonging to the 

acetotrophic methanogen group can also use methylated C1 compounds as substrates to 

produce methane (Liu and Whitman, 2008).  

 

𝐶𝑂2 + 𝐻2 → 𝐶𝐻4 + 2𝐻2𝑂                                                              (2.8) 

 

𝐶𝐻3𝐶𝑂𝑂𝐻 → 𝐶𝐻4 + 𝐶𝑂2                                                              (2.9) 

 

 

 

In conclusion, AD is a promising technology for both waste treatment and the production of 

renewable energy. Generally, the AD process will be affected by operational factors such as 

temperature, pH, organic loading rate (OLR) and hydraulic retention time (HRT) as well as 

the characteristics of feedstock (Chen et al., 2008; Mao et al., 2015). The following sections 

discuss the applications and limitations when using microalgae as a substrate for AD.  
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2.3 Anaerobic digestion of microalgae 

 

Studies of microalgae AD started in the 1960s, and a wide range of microalgae species have 

been studied for methane production in laboratory conditions (Table 2.3). By using the 

Buswell equation, the specific methane yields of carbohydrates, lipids and proteins are 0.415, 

1.014 and 0.851 L CH4/g VS, respectively (Sialve et al., 2009). Generally, microalgae contain 

4 – 58% of carbohydrates, 2 – 45% lipids and 30 – 71% proteins, therefore, the estimated 

theoretical methane potential of microalgae ranges from 0.47 – 0.80 L CH4/g VS (Sialve et 

al., 2009). However, the experimental methane yields have been reported from 0.05 – 0.44 L 

CH4/g VS (Table 2.3). Previously, several key factors have been identified that affect 

microalgae methane yields, such as special biomass features, the configuration of the AD 

reactor and operating parameters such as HRT and OLR (Gonzalez-Fernandez et al., 2015). 

Studies of how the features of microalgal biomass affect methane yields are the most common 

area of research.   

 

Methane production is strongly dependent on the microalgae strains used (Mussgnug et al., 

2010). Therefore, in order to maximize methane production, the selection of ideal microalgae 

strains for AD should consider the following factors: (1) the microalgae has a thin or no cell 

wall (Torres et al., 2013); (2) it has fast growth rate even a in non-sterile medium (Mussgnug 

et al., 2010; Torres et al., 2013); (3) it can be cultured in a waste-based system (Cho et al., 

2013); (4) it has high resistance against natural contaminants, and (5) it can be harvested from 

various natural environments (Cho et al., 2013; Torres et al., 2013).  

 

Freshwater microalgae have been reported to produce 0.05 – 0.34 L CH4/g VS of methane via 

AD (Table 2.3). In comparison with marine microalgae, freshwater microalgae have been 

previously studied the most for methane production due to their fast growth rate and, more 

importantly, they can be cultured using wastewater or AD digestate which may improve the 

overall economics of the process (Lim et al., 2010; Gonzalez-Fernandez et al., 2015). 

However, freshwater microalgae have been reported to exhibit hard cell walls that protect the 

cells from attack by anaerobic microorganisms, and consequently this limits methane yields 

(Cho et al., 2013; Bohutskyi et al., 2014; Gonzalez-Fernandez et al., 2015). Moreover, the 

cell composition of organic macromolecules is directly linked to the acidogenesis step in the 

AD process, but high proteins composition in microalgae may lead to the production of more 

ammonia, and this may become an inhibitor for the AD process and consequently limit 

methane production (Torres et al., 2013; Montingelli et al., 2015). 
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Table 2.3 shows that 0.22 – 0.44 L CH4/g VS of methane can be generated by AD of marine 

microalgae strains. The toxicity of compounds in terms of high levels of sodium still needs to 

be considered when utilizing marine microalgae as feedstock for AD, but this issue has been 

discussed and the use of a salt-adopted inoculum seems more efficient for the AD of saline 

waste (Sialve et al., 2009). Therefore, studies have proven that it is feasible to use marine 

microalgae for methane production. Additionally, marine microalgae can be cultured using 

seawater as a culture medium, and this may reduce the cost of overall culturing (Santos et al., 

2014). In contrast to freshwater microalgae, some marine strains such as Dunaliella salina 

and Isochrysis have a simple cell membrane (D’Hondt et al., 2018), and therefore they may 

have the potential to produce more methane. Indeed, Mussgnug et al. (2010) observed that 

AD of the marine green microalgae Dunaliella salina obtained higher methane yield than 

from the other freshwater microalgae strains Chlorella kessleri, Euglena gracilis and 

Scenedesmus obliquus. However, a marine microalgae like Isochrysis galbana lack of a rigid 

cell wall, as with freshwater strains their methane production potential is also limited due to 

high protein compositions (Caporgno et al., 2015).  
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Table 2.3 Previous studies on the anaerobic digestion of different microalgae strains. 

Microalgae Species Fresh (F) or Marine (M) 

starins 

Reactor Type Temperature 

(℃) 

Methane Yield  

(L CH4/g VS) 

References 

Senedesmus obliquus F BMP 38 0.26 Ometto et al. (2014) 

Chlorella sorokiniana F BMP 38 0.27 Ometto et al. (2014) 

Arthrospira maxima M BMP 38 0.18 Ometto et al. (2014) 

Dunaliella salina M BMP 38 0.32 Mussgnug et al. (2010) 

Chlorella sp. and 

Scenedesmus sp. 

F BMP 37 0.34 Cho et al. (2013) 

Nannochloropsis gaditana M BMP 35 0.30 – 0.33 Alzate et al. (2014) 

Chlorella sp. F BMP 35 0.34 Bohutskyi et al. (2014) 

Nannochloropsis sp. M BMP 35 0.36 Bohutskyi et al. (2014) 

Chlorella vulgaris F BMP 35 0.14a Mendez et al. (2013) 

Isochrysis galbana M BMP 33 0.34 Caporgno et al. (2015) 

Isochrysis galbana M BMP 50 0.22 Caporgno et al. (2015) 

Dunaliella M BMP 35 0.44 Gonzalez-Fernandez et al. 

(2012) 

Nannochloropsis salina M BMP 40 0.22 Schwede et al. (2013) 

Scenedesmus sp. F CSTR 35 0.10 – 0.11a González-Fernández et al. 

(2013) 

Chlorella sp. F CSTR 37 0.12 Solé-Bundó et al. (2017b) 

Chlorella vulgaris F CSTR 35 0.15 – 0.24 Gonzalez-Fernandez et al. 

(2012) 

Chlorella and Scenedesmus F CSTR 35 0.09 – 0.14 Gonzalez-Fernandez et al. 

(2012) 

Spirulina maxima F CSTR 35 0.09 – 0.15 Gonzalez-Fernandez et al. 

(2012) 

Spirulina maxima F CSTR 55 0.05 – 0.11 Gonzalez-Fernandez et al. 

(2012) 
a values correspond to L CH4/g COD
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2.3.1 Degradability of the microalgae cell wall 

 

Low biodegradability is a common issue in the AD of different feedstocks such as sludge, 

lignincellulose and photosynthetic microorganisms (Bougrier et al., 2006; Gabhane et al., 

2014; Magdalena et al., 2018). During the AD process, the feedstock’s cell walls are firstly 

degraded by the extracellular enzymes of hydrolytic bacteria, but the duration and rates of 

hydrolysis process strongly depend on the feedstock type (Magdalena et al., 2018). For 

microalgal biomass, some strains which are able to thrive in wastewater effluents or severe 

environments such as high salinity have chemically and structurally robust cell walls (Safi et 

al., 2014).  

 

The microalgal cell wall represents 12.8 – 41.0% of the total cell mass, where carbohydrates 

and proteins are the main components representing 30.0 – 80.0 and 1.7 – 37.3% of the cell 

wall, respectively (Torres et al., 2013). The carbohydrates in microalgae are complex, which 

consist of a mixture of neutral sugars, amino sugars and uronic acids (Templeton et al., 2012). 

The composition of microalgal carbohydrates vary according to species and growth 

conditions. For example, the predominate monosaccharide in C. vulgaris is galactose, while 

mannose and glucose are the major sugars in P. tricornutum and Nannochloropsis sp. 

(Templeton et al., 2012). Generally, microalgal cell walls have outer and inner layers. The 

outer layer of the microalgal cell wall is composed of specific matrix polysaccharides such as 

pectin, chitin agar or algaenan, while the inner layer contains microfibrillar cellulose as well 

as hemicellulose and glycoproteins (Demuez et al., 2015). Similar to plants, the proportions 

of different compositions in microalgal cell wall are 25 – 30% of cellulose, 15 – 25% of 

hemicellulose, 35% pectin and around 5 – 10% glycoproteins (Mahdy et al., 2014a). Cellulose 

is a complex, water-insoluble polysaccharide with a rigid linear structure (Festucci-Buselli et 

al., 2007), and this structurally stable cellulose together with hemicellulose, proteins and other 

compounds forms a rigid cell wall that protects the microalgae against attack from hydrolytic 

bacteria, and consequently prevents efficient biodegradability and lows methane yields 

(Mahdy et al., 2014c). Therefore, Mussgnug et al. (2010) reported that the presence of the cell 

wall and its composition are the main reasons affecting microalgae biodegradability and 

biogas production. Their results suggested that microalgae strains without a cell wall or with a 

protein-based cell wall should be preferred in terms of the efficiency of methane production. 

Moreover, energy consuming pre-treatment can potentially be avoided when digesting these 

types of microalgae. However, they also pointed out that microalgae without rigid cell walls 

in some respects may not be ideal substrates for AD because they may produce harmful 
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compounds which inhibit bacterial biocenosis, for example, inhibit the methanogenic archaea. 

Therefore, for those microalgae strains which have a robust cell wall, cell wall disruption in 

pre-treatment is needed to facilitate the access of extracellular enzymes that assist the 

anaerobic microorganisms in using organic matter of the microalgae (Magdalena et al., 2018). 

More detailed information concerning microalgae pre-treatments is provided in Section 2.4 

below.  

 

2.3.2 Carbon-to-nitrogen ratio  

 

The digestion potential of a feedstock is determined by its cell macromolecular composition, 

but the high proportions of proteins in microalgae may lead to an unbalanced carbon-to-

nitrogen (C/N) ratio which is unsuitable for AD. The optimum C/N ratios for AD range from 

20/1 to 30/1, but values for microalgae have been reported from 4.65/1 to 17/1 (Caporgno et 

al., 2016; Rétfalvi et al., 2016; Wang et al., 2016; Li et al., 2017). This imbalance leads to the 

release of extra nitrogen in the form of ammonia during AD, which may become an inhibitory 

to methanogens (Sialve et al., 2009). Compared to other anaerobic bacteria, methanogens 

exhibit lower growth rates and low tolerance to toxic compounds, especially ammonia 

nitrogen (Magdalena et al., 2018). The total ammonia nitrogen (TAN) exists in two forms of 

ammonium (NH4
+) and free ammonia (FAN), and the proportions of these two forms depend 

on temperature and pH (Akindele and Sartaj, 2018). Generally, the methanogenesis stage 

could be inhibited by TAN and FAN at 1700 – 1800 and 150 mg/L, respectively (Yenigün 

and Demirel, 2013). The ammonia, are especially FAN, diffuses through the cell membrane of 

methanogens and neutralizes the membrane potential by changing the cytoplasmic pH; and at 

high concentrations may cause cell death (Martinelle et al., 1996). Moreover, the activities of 

microorganisms which degrade propionic acids were reduced by higher ammonia 

concentrations, leading to an accumulation of propionic acids that further inhibits the 

methanogens, and consequently increases in volatile fatty acids (VFA) resulted in an 

imbalance in the AD system (Angelidaki and Ahring, 1993; Banks et al., 2012). Therefore, 

different strategies have been reported to avoid ammonia inhibition, such as the cultivation of 

microalgae in a low-nitrogen medium, and sludge bioaugmentation including the use of an 

ammonia tolerant inoculum for the AD of microalgae. However, the most interesting strategy 

is the anaerobic co-digestion of microalgae with a high-carbon feedstock used to rebalance the 

C/N ratio and consequently to enhance the methane yields already reported in many previous 

studies, and detailed information concerning microalgae co-digestion is discussed in Section 

2.5.  
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2.4 Microalgae pre-treatment 

 

The mechanical strength, shape and rigidity of the microalgae cell wall mainly depend on the 

diversity of cell wall composition and its polymer arrangement (Demuez et al., 2015). 

Therefore, effective pre-treatment must be optimized for the targeted cell wall to be disrupted. 

Different microalgae pre-treatments, namely mechanical (ultrasound), thermal, chemical 

(alkaline and acid hydrolysis), thermo-chemical and biological (enzymatic) processes have 

been reported (Cho et al., 2013; Mahdy et al., 2014b; Santos et al., 2014). Based on the 

energy inputs involved, pre-treatments are classified into two groups of high- and low-energy 

demand pre-treatments (Table 2.4).  

 

2.4.1 Ultrasound pre-treatment  

 

Ultrasound treatment is the most common mechanical pre-treatment that has been applied to 

disrupt microalgae cell walls for methane production (Alzate et al., 2012; González-

Fernández et al., 2012). The efficiency of ultrasound pre-treatment is strongly dependent on 

the specific supplied energy (Es), and this can be calculated from the ultrasonic power, 

ultrasonic time, volume of treated solution and initial total solids (TS) of the raw biomass 

(Alzate et al., 2012; González-Fernández et al., 2012). For example, González-Fernández et 

al. (2012) found that Scenedesmus sp. pre-treated with the highest Es of 128.9 MJ/kg TS 

increased methane yield by 87%, whereas the two low Es values of 35.5 and 47.2 MJ/kg TS 

did not enhance methane yields compared to untreated microalgae. However, the high Es is 

associated with high input energy, and in the most previous studies the additional methane 

production was not sufficient to balance the energy required for the pre-treatment of the 

microalgae (Ometto et al., 2014). Therefore, there is some argument about whether or not a 

lower Es has a positive effect on the energy balance. Passos et al. (2014) investigated the 

effect of low Es (16.0 – 67.2 MJ/kg TS) on the AD of microalgae. In their studies, methane 

yields after pre-treatment were increased by 6 – 33% compared to untreated microalgal 

biomass. However, the energy input still cannot be balanced by the extra methane production. 

Therefore, the high input energy required is the main limitation of ultrasound pre-treatment 

when compared to thermal, chemical and biological methods (Magdalena et al., 2018).  
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Table 2.4 Summary of previous studies on pre-treatment of microalgae for methane production. 

 Pre-treatment Microalgae 

Strains 

Conditions Methane yield 

increase (%) 

References 

 

 

 

 

 

High energy 

demand 

 

Ultrasound 

Scenedesmus sp. 35.5 – 128.9 MJ/kg TS 

for 15 – 30 min 

up to 87.0 González-Fernández et al. (2012) 

Mixed culture 16.0 – 67.2 MJ/kg TS 

for 10 – 30 min 

6.0 – 33.0 Passos et al. (2014) 

 

Thermal 

(>100 ℃) 

Chlorella sp., Nanochloropsis sp., 

Thalassiosira weissflogii, 

Tetraselmis sp., Pavlova_cf sp. 

121 ℃ for 30 min up to 30.0 

 

Bohutskyi et al. (2014) 

Mixed culture 

(Chlamydomonas, Scendesmus, 

Nannochloropsis) 

110 – 170 ℃ for 15 min 19.0 – 46.0 Alzate et al. (2012) 

Thermo-

chemical 

(>100 ℃) 

Chlorella vulgaris 4 M NaOH at 120 ℃ for 20 – 

40 min 

71.2 – 73.2 Mendez et al. (2013) 

Chlorella vulgaris 4 M H2SO4 at 120 ℃ for 20 – 

40 min 

59.7 – 64.7 Mendez et al. (2013) 

 

 

 

 

 

 

Low energy 

demand 

 

 

 

Enzymatic 

Chlorella vulgaris Protease at 0.146 – 0.585 

AU/g DW 

40.0 – 60.0 

 

Mahdy et al. (2014c) 

Chlorella vulgaris 

C. reinharidtii 

Cellulase at 0.3 mL/g DW -3.0 – 14.0 

 

Mahdy et al. (2014b) 

Scenedesmus obliquus, 

Chlorella sorokininan, Arthrospira 

maxima 

Cellulase mixed with 

pectinase at 150 U/mL 

 

324 – 690a 

 

Ometto et al. (2014) 

Scenedesmus obliquus, 

Chlorella sorokininan, Arthrospira 

maxima 

Esterase mixed with protease 

at 150 U/mL 

218 – 735a 

 
Ometto et al. (2014) 

 

Thermal 

(<100 ℃) 

Mixed culture (Chlorella sp. and 

Scenedesmus sp.) 
50 and 80 ℃ for 30 min 4.5 – 14.3 

 

Cho et al. (2013) 

Scenedesmus sp. 70 and 80 ℃ for 20 min 9.2 – 57.3 González-Fernández et al. (2012) 

Thermo-

chemical 

(<100 ℃) 

 

Chlorella vulgaris 

Scenedesmus sp. 

 

0.05 – 5% w/w NaOH at 

50 ℃ for 24 – 48 h 

 

up to 20.0 

 

Mahdy et al. (2014a) 

a values correspond to biogas enhancement.
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2.4.2 Thermal pre-treatment 

 

Thermal pre-treatment is able to break down the biomass cell wall, releasing both 

extracellular and intercellular materials, and it has been used to pre-treat different types of 

feedstocks such as sludge, manure and lignocellulosic materials (Carrere et al., 2008; 

González-Fernández et al., 2008). Thermal pre-treatment has also been applied to treat the 

microalgal biomass at temperatures ranging from 50 to 170 ℃ with different pre-treatment 

durations from minutes to hours. In terms of the energy demand of pre-treatments, thermal 

pre-treatment can be classified in two groups at low temperatures below 100 ℃ and high 

temperatures above 100 ℃ (Passos et al., 2013). High-temperature thermal pre-treatment 

shows better hydrolysis efficiency and higher methane production compared to low-

temperature methods. For example, a mixture of the microalgae Chlamydomonas, Scendesmus 

sp. and Nannocloropsis was pre-treated at high temperature ranging from 110 to 170 ℃ for 15 

minutes, and methane production increased by 19 to 46 % (Alzate et al., 2012). Similar 

results were found when using low-temperature thermal pre-treatment, where the mixed 

microalgae species Chlamydomonas and diatoms Nitzchia were pre-treated by various 

temperatures from 55 to 95 ℃, and methane production was improved by 12 – 61% (Passos et 

al., 2013). However, in their study, the pre-treatment time was set from 5 to 15 hours, which 

is longer than for high-temperature pre-treatment. Cho et al. (2013) tried to pre-treat a mixture 

of microalgae Chlorella sp. and Scendesmus sp. at the low-temperature of 50 and 80 ℃ within 

a short reaction time of 30 minutes. However, methane production only increased by 4.5 – 

14.3% after pre-treatment. Moreover, in some respects, low-temperature thermal pre-

treatment may not be efficient for the enhancement of methane production from microalgae. 

For instance, the methane production was not significantly enhanced when Chlorella vulgaris 

and Scendesmus sp. were treated at 55 ℃ for 24 and 48 hours of pre-treatment, respectively 

(Mahdy et al., 2014a).  

 

2.4.3 Chemical pre-treatment  

 

Compared to thermal pre-treatment, chemical pre-treatment requires low input energy (Cho et 

al., 2013). Chemical pre-treatment, including ozonolysis, oxidative delignification (wet 

oxidation), acid and alkaline hydrolysis, is commonly used to treat various biomass such as 

lignocellulosic materials, sludge and solid waste (Genç et al., 2002; Sun and Cheng, 2002; 

Torres and Lloréns, 2008; Kumar et al., 2009). Among these pre-treatment methods, 

ozonolysis and oxidative delignification are used to degrade the lignin content in biomass 
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(Kumar et al., 2009). Since the lignin composition in microalgal biomass is less than 2% 

(Ververis et al., 2007), these two methods are not commonly used to treat microalgal biomass. 

 

Several studies have reported the use of acid or alkaline hydrolysis of microalgae for the 

production of bioethanol, biogas and bio-hydrogen (Harun et al., 2011; Yang et al., 2011; 

Scholz et al., 2013; Mahdy et al., 2014a). For acid hydrolysis, concentrated acids such as 

H2SO4 or HCl are generally used to treat the biomass. Although they are powerful agents for 

degradation of cellulose, the drawbacks of using concentrated acids include the fact that 

corrosive and hazardous acids may damage the reactors, and, more importantly, toxic by-

products may be formed that could inhibit the downstream process (Kumar et al., 2009; 

Mendez et al., 2013). Several studies consider the use of dilute acids instead of concentrated 

acids to treat the biomass (Mendez et al., 2013). However, the use of dilute acids in the pre-

treatment process requires high temperatures above 100 ℃, which means that the process may 

not be economically viable (Kumar et al., 2009). Therefore, acid hydrolysis is not generally 

used to pre-treat microalgal biomass for methane production via the AD process. Alkaline 

hydrolysis causes less sugar degradation, and most of the caustic salts formed can be 

recovered and/or regenerated compared to with acid hydrolysis (Kumar et al., 2009). 

Moreover, an alkaline pre-treatment of microalgae can enhance the solubilisation of both 

carbohydrates and proteins, whereas acid pre-treatment only enhances the solubilisation of 

carbohydrates (Mendez et al., 2013). In order to enhance the efficiency of hydrolysis and 

methane production, the use of alkaline is normally combined with different pre-treatment 

temperatures in what is called thermo-alkaline pre-treatment (Mahdy et al., 2014a).  

 

2.4.4 Thermo-alkaline pre-treatment 

 

Thermo-alkaline pre-treatment increases the surface area of the cellulose by causing the 

swelling of the biomass, and this decreases the degree of polymerization and cellulose 

crystallinity (Agbor et al., 2011). Therefore, thermo-alkaline pre-treatment of microalgae is 

more effective in terms of hydrolysis efficiency and methane production than thermal or 

alkaline pre-treatments alone (Bohutskyi et al., 2014). In thermo-alkaline pre-treatment, the 

temperature used is one of the critical factors that affect the pre-treatment efficiency. Based 

on the energy demand concerned, thermo-alkaline pre-treatment can also be divided into two 

groups of high-temperature (>100 ℃) and low-temperature (<100 ℃) pre-treatment. Several 

studies have used the high-temperature (>100 ℃) thermo-alkaline pre-treatment of the 

microalgal biomass to enhance methane production through AD. For instance, Bohutskyi et 
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al. (2014) used a high temperature of 121 ℃ combined with different concentrations from 0 to 

20 g NaOH /L of sodium hydroxide (NaOH) to pre-treat five microalgae strains. They found 

that for the microalgae strains except T. weissflogii, the solubilisation of COD was 

significantly increased by up to 60% after high-temperature thermo-alkaline compared to 

alkaline pre-treatment. Moreover, at the end of digestion process, the biogas and methane 

yields for all microalgae strains were enhanced by up to 30 – 40% compared to untreated 

microalgae biomass. Mendez et al. (2013) applied high-temperature thermo-alkaline pre-

treatment using 4M NaOH at 120 ℃ to C. vulgaris for 20 – 40 minutes, and found that a 

73.2% increase in methane yields was achieved.  

 

Previous studies have also investigated the effect of low-temperature (<100 ℃) thermo-

alkaline pre-treatment on biomass solubilisation and methane production. For instance, 

Tsapekos et al. (2016) used different concentrations of 2, 4 and 6% w/w TS of NaOH to pre-

treat digested manure biofibres at three temperatures of 55, 90 and 121 ℃. In their studies, 

rather than high-temperature thermo-alkaline pre-treatment, using 6% w/w NaOH at 55 ℃ 

was identified as the most efficient method, and enhanced methane production by 26%. 

Indeed, pre-treatment at low temperature below 100 ℃ has attracted close attention in recent 

research interests because high-temperature thermo-alkaline pre-treatment may involve 

organic losses due to the degradative reactions (Mahdy et al., 2014a). Moreover, although the 

methane yields of microalgae are improved by high-temperature thermo-alkaline pre-

treatment, the additional methane yield is still not enough to balance the energy required for 

the pre-treatment (Ometto et al., 2014). Therefore, low-temperature thermo-alkaline pre-

treatment could be considered as a suitable method to reduce the energy demand and improve 

the energy balance of an AD system (Passos et al., 2013). However, compared to high-

temperature thermo-alkaline pre-treatment, few investigations have used low-temperature 

techniques to pre-treat microalgal biomass for methane production.  

 

The type of alkaline used is another factors that affect the efficiency of pre-treatment. Suitable 

alkaline pre-treatment agents include sodium, calcium, potassium and ammonium hydroxides 

and, of these four, NaOH has been studied the most for the pre-treatment of microalgal 

biomass for methane production (Cho et al., 2013; Mendez et al., 2013; Mahdy et al., 2014a). 

However, drawbacks in using NaOH as the pre-treatment reagent should be considered, such 

as the high cost and the complex subsequent regeneration process (Kumar et al., 2009). 

Moreover, applying NaOH may increase the concentrations of Na+ in the digestate, which 

could be potentially be toxic to the methanogens (Feijoo et al., 1995). Calcium hydroxide 
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(Ca(OH)2) is less expensive than other types of alkaline and can be regenerated using 

established lime kiln technology (Kumar et al., 2009). Previously, lime has been used to pre-

treat other substrates such as solid wastes and smooth cordgrass to improve their 

biodegradability and methane production via the AD process (Torres and Lloréns, 2008; 

Liang et al., 2013). However, few investigations have used lime to pre-treat microalgae, 

especially at lower pre-treatment temperatures.  

 

Other parameters such as the dosage of alkaline and pre-treatment time also need to be 

considered when applying thermo-alkaline pre-treatment to microalgae. Previously, it has 

been reported that methane yields are gradually enhanced by increasing the NaOH dosage at 

the same pre-treatment temperature when pre-treating manure (Tsapekos et al., 2016). Similar 

results were found for thermo-alkaline pre-treatment of microalgae. For example, Mahdy et 

al. (2014a) found when pre-treating the microalgae Scenedesmus using NaOH at 50 ℃, the 

solubilisations of both COD and carbohydrate were increased with NaOH dosage from 0.05 to 

5% w/w. Moreover, Solé-Bundó et al. (2017a) found that when using lime to pre-treat the 

microalgae C. vulgaris at the same pre-treatment temperature, the best hydrolysis efficiency 

and highest methane yield were observed with the highest dosage. Mahdy et al. (2014a) also 

investigated the effect of pre-treatment time of thermo-alkaline pre-treatment on microalgae 

methane production. In their study, NaOH was used to pre-treat C. vulgaris with two pre-

treatment time of 24 and 48 hours. However, the results found that pre-treatment time had no 

significant effect on methane yields. Compared to NaOH, Ca(OH)2 requires a relatively 

longer time for catalysis to occurs especially at lower temperature (Kumar et al. (2009). 

Previously, Liang et al. (2013) studied the use of lime for the pre-treatment of the smooth 

cordgrass of Spartina alterniflora at mild temperatures of 25 – 55 ℃. In their study, pre-

treatment time was set at 7 – 28 days, and the highest methane yield was obtained by pre-

treatment conditions of 28 days at 45 ℃. Since using Ca(OH)2 to pre-treat microalgae has 

been little studied, it is also worth investigating the effect of pre-treatment time on methane 

production when using Ca(OH)2 in the pre-treatment of microalgae.  
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2.4.5 Enzymatic pre-treatment 

 

Enzymatic pre-treatment requires a mild pre-treatment temperature and reduces the possibility 

of the release of by-products which inhibit the AD process (Mahdy et al., 2014c). This pre-

treatment may also have the potential to avoid the corrosion of equipment due to the low and 

neutral pH reaction conditions, thereby reducing maintenance costs (Demuez et al., 2015). 

Consequently, enzymatic cell wall disruption methods are considered environmentally-

friendly and less energy consuming than mechanical, thermal and chemical pre-treatments. 

This type of pre-treatment has been reported to be a promising strategy to break microalgal 

cell walls, thereby enhancing methane yields (Mahdy et al., 2014b; Mahdy et al., 2014c). 

Ometto et al. (2014) determined that the efficiency of enzymatic pre-treatment is linked to the 

composition of the microalgae cell wall. Therefore, the characteristics of the microalgal cell 

wall should be taken into consideration in the selection of enzymes.  

 

Generally, microalgal cell walls are mainly composed of carbohydrates, and an efficient pre-

treatment can be designed to hydrolyse both the cell wall and storage carbohydrates into 

simple sugars using a carbohydrase (Demuez et al., 2015). Carbohydrase including cellulase, 

pectinase, amylase and β-glucanase have been reported to pre-treat the microalgal biomass, 

converting polysaccharides into simple sugars. Passos et al. (2016) used 1.0% w/w of 

cellulase to pre-treat microalgal biomass and compared to untreated biomass, biomass 

solubilisation in terms of values of soluble volatile solids (VS) increased by 110% and the 

methane yield was enhanced by 8%. Ometto et al. (2014) used pectinase to pre-treat the three 

microalgae strains S.obliquus, C. sorokiniana and A. maxima; however, the results showed 

that concentrations of soluble COD were only enhanced for S. obliquus, suggesting that this 

enzyme targeted a specific cell wall component. In the same study, α-amylase was also used 

to pre-treat microalgae and as with pectinase, it was particularly active on C. sorokiniana. 

Mahdy et al. (2014b) used the commercial enzyme Viscozyme L to pre-treat the microalgae 

C. vulgaris and C. reinhardtii. Viscozyme L is a commercial cocktail including the main 

activity of β-glucanase and other side activities of arabanase, cellulose, b-glucanase, 

hemicellulase and xylanase. In their study, C. vulgaris pre-treated by carbohydrolase at 0.3 

ml/g dry weight (DW) increased methane production by 14% compared to untreated 

microalgae. However, for the pre-treatment of C. reinhardtii, the results showed that methane 

production was not improved significantly.  
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Protease is able to hydrolyze peptides into amino acids, and since proteins are also 

components of the microalgae cell wall, therefore the use of protease to degrade the protein 

fraction in microalgae has been reported. Mahdy et al. (2014c) used protease to pre-treat C. 

vulgaris, and after enzymatic hydrolysis the methane yields were enhanced by 50 – 70% in 

batch BMP tests. In the semi-continuous AD process, the reactor feeding with pre-treated C. 

vulgaris by protease could enhance methane yield 2.6-fold compared to the reactor feeding 

with untreated microalgae (Mahdy et al., 2015).  

 

A single enzyme may have limited hydrolytic activity, whereas mixtures of enzymes can 

exhibit a synergistic effect, improving the efficiency of hydrolysis (Yang et al., 2010; Alvira 

et al., 2011). Therefore, previous studies have investigated using mixtures of enzyme to treat 

feedstocks for methane production. For example, Yang et al. (2010) investigated the effect of 

enzymatic hydrolysis on sludge solubilisation in AD conditions. In their study, the highest 

solubilisation of sludge observed was 68.43% using a mixture of protease and amylase, which 

was higher than the values obtained by only protease (39.70%) or amylase (54.24%). Yu et al. 

(2013) also applied enzymatic hydrolysis to waste activated sludge for biogas production via 

AD. In their study, the final biogas production was improved by 20.2% when sludge was 

treated by amylase mixed with protease, whereas it was enhanced by 18.6 and 15.6% treated 

by amylase or protease alone, respectively. For the pre-treatment of microalgal biomass, 

Ometto et al. (2014) investigated that the use of a mixture of cellulase and protease at 150 

u/mL to pre-treat the three microalgae strains Scenedesmus obliquus, Chlorella sorokiniana 

and Arthrospira maxima. In their study, after enzymatic hydrolysis, the maximum biogas 

improvement occurred with A. maxima yielding 1996 ± 254 mL/gVSadded (+ 898%) followed 

by  S. obliquus (1669 ± 63 mL/gVSadded, + 485%) and C. sorokiniana (1292 ± 148 

mL/gVSadded, + 387%). Moreover, compared to other methods such as ultrasound and thermal 

pre-treatments, enzymatic pre-treatment is a most promising method with low energy demand. 

However, previous studies have mostly focused on the pre-treatment of microalgae using 

single enzymes, and only a few investigations have considered the effect of mixed enzymes 

on microalgae AD. Therefore, there is a need to further investigate the effect of mixed 

enzyme on microalgae solubilisation and methane production.  
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2.5 Microalgae anaerobic co-digestion  

 

Anaerobic co-digestion is applied to digest a homogeneous mixture of two or more substrates 

simultaneously, aiming to overcome the disadvantages of mono-digestion (Hagos et al., 

2017). Moreover, the economic viability of AD plants is further enhanced because of their 

higher methane production. Co-digestion in most cases may cause a positive synergistic effect 

on the biodegradability of both substrates, resulting in enhanced methane production (Oliveira 

et al., 2014). Other advantages include the dilution of inhibitory compounds and increased 

diversity of the anaerobic microorganism species that help establish a stable AD process 

(Nielfa et al., 2015). Moreover, co-digestion provides economic advantages, such as 

increasing the economic scale by increasing the quantity of wastes used (Mata-Alvarez et al., 

2000; Nielfa et al., 2015).  

 

Microalgae have been reported to co-digest effectively with carbon-rich feedstocks such as 

waste paper, energy crops, sewage and animal manures, thereby rebalancing the C/N ratio and 

increasing methane production (Yen and Brune, 2007; Schwede et al., 2013; Rétfalvi et al., 

2016). A study carried out by Yen and Brune (2007) demonstrated that the C/N ratio and 

methane productivity were improved by the co-digestion of mixed algal sludge (Scenedesmus 

spp. and Chlorella spp.) and waste paper. In their study, adding 50% (on the basis of VS) of 

waste paper in algal sludge achieved the highest methane production of 1170 ± 75 mL/L day, 

which was double that from the mono-digestion of algal sludge.  

 

Maize silage is another type of common co-substrate, which has been mixed with the 

microalgae. C. vulgaris was used for co-digestion with maize silage in semi-continuously 

anaerobic digesters as reported by Rétfalvi et al. (2016). In their study, adding maize silage to 

C. vulgaris could increase the C/N ratio to 16, and from the co-digestion of these two 

substrates the volumetric methane yield was 1.19 ± 0.08 L/L, which is significantly higher 

than for the mono-digestion of C. vulgaris (0.38 ± 0.07 L/L). Anaerobic co-digestion of 

Nannochloropsis saline with maize silage has been used to enhance the stability of the 

process due to the balanced nutrient supply, especially under higher organic loading rates 

(OLR) as reported by Schwede et al. (2013). In their study, in batch BMP tests, a ratio of 1/6 

of Nannochloropsis saline mixed with maize silage produced the highest methane yield of 

0.66 m3/kg VS, which was significantly higher than for the mono-digestion of microalgae 

(0.28 m3/kg VS).  
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Sewage sludge has also been introduced for the co-digestion with microalgae, and Caporgno 

et al. (2016) investigated sewage sludge co-digestion with microalgae Nannochloropsis 

oculata in batch BMP tests. They found that adding sewage sludge to microalgae slightly 

enhanced methane yields, but the co-digestion showed no synergistic effect. A similar study 

was reported by Caporgno et al. (2015), who found that biogas production between batch 

reactors did not differ significantly either when marine microalgae Isochrysis galbana and 

sewage sludge were digested together or separately. Similar results were achieved when using 

animal manure for co-digestion with microalgae. These types of feedstock are not popular 

either due to their relatively low C/N ratios and because ultimate methane yields are not 

significantly improved with increasing dosage (Wang et al., 2016; Li et al., 2017).  

 

In conclusion, anaerobic co-digestion of microalgae with carbon-rich feedstocks is a 

promising strategy in terms of balanced C/N ratios and improved methane production. When 

considering to choose an ideal co-substrate for co-digestion with microalgae, in order to 

further support the economic case for digesting microalgae, any carbon-rich feedstocks should 

come as waste-streams rather than be produced specifically for bioenergy production. 

Detailed information concerning potential co-substrates for co-digestion with microalgae is 

discussed in Sections 2.5.1 and 2.5.2.   

 

2.5.1 Potato processing waste 

 

Potato processing waste (PPW) is a main by-product of industrial potato processing such as in 

the manufacturing of French fries, canned foods and starch products (Liang and McDonald, 

2015). Generally, PPW consists of potato discarded parts (PPWdp), which are whole or cut 

potatoes discarded due to size, blemishes or failure to meet standard quality for human food, 

and potato peel (PPWp) (Pistis et al., 2013; Schalchli et al., 2017). The annual global 

production of potatoes reached 377 million tonnes in 2016, with around 50% of harvested 

potatoes being processed into industrial products (Liang and McDonald, 2015; FAOSTAT, 

2018). Typical manufacturing losses of approximately 8% of potato weight generated 15.08 

million tonnes of waste in 2016 (Liang and McDonald, 2015). Therefore, there is growing 

interest in strategies to treat these waste streams, particularly as they represent zero value 

waste from the manufacturing process as well as high perishability, and food companies have 

to dispose of this waste quickly, leading to high disposal costs (Arapoglou et al., 2010; 

Schalchli et al., 2017). Furthermore, potatoes contain high levels of nutrients and 

decomposing potato waste has the potential to contaminate both ground and surface water 
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(Olsen et al., 2001). Given these factors, there is a need for an integrated, environmentally-

friendly solution for PPW treatment.  

 

The carbohydrate content of PPW is typically around 55.6 – 68.7% of DW, primarily as 

starch (Zhu et al., 2008; Arapoglou et al., 2010; Pistis et al., 2013), which is easily broken 

down into monomers or simple sugars (Hess et al., 2007). Moreover, the total moisture 

content of PPW is around 85% (Zhu et al., 2008; Arapoglou et al., 2010; Pistis et al., 2013), 

and it is thus eligible for AD. However, because of its high biodegradability, the mono-

digestion of PPW can lead to rapid and strong acidification, resulting in the accumulation of 

VFAs, which consequently inhibit the activity of methanogens with an unstable AD process 

(Pistis et al., 2013). Therefore, previous studies have suggested that the use of a high 

temperature (thermophilic) process or a two-stage AD could overcome this problem when 

mono-digestion of PPW (Zhu et al., 2008; Pistis et al., 2013). The C/N ratios of potato waste 

range from 12.1/1 to 30.0/1 (Pistis et al., 2013; Lucas, 2014), and therefore it is a promising 

feedstock for anaerobic co-digestion with other low-carbon substrates.  

 

Yadanaparthi et al. (2014) studied the co-digestion of potato waste with dairy manure in both 

mesophilic and thermophilic conditions. They found that adding 10% (based on VS) of potato 

waste to 90% dairy manure increased methane production by around 12 – 26% under 

mesophilic conditions. For thermophilic anaerobic co-digestion, the final methane yield was 

enhanced to 157 – 158% when co-digestion occurred with 20% potato waste and 80% dairy 

manure. Parawira et al. (2004) demonstrated that co-digestion of potato waste and sugar beet 

leaves in batch BMP tests. In their study, the results showed that methane yields improved by 

6 – 31%, and the co-digestion of 24% (based on TS) of potato with 16% sugar beet leaves 

gave the highest methane yield. Mu et al. (2017) investigated that co-digestion of cabbage 

waste and potato waste in both batch and semi-continuous modes. For batch BMP tests, they 

found the mixing ratio of 1:1 by VS was optimal for the co-digestion of cabbage waste and 

potato waste. Co-digestion enhanced methane yields by 18.4% as compared to the mono-

digestion of potato waste in semi-continuous tests. However, to date, there is little information 

available about the anaerobic co-digestion of microalgae with PPW. Therefore, in the current 

work, PPW can be considered as a potential feedstock for co-digestion with microalgae.  
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2.5.2 Glycerol 

 

For the microalgae anaerobic co-digestion process, reliance on a single waste stream could 

pose some operational risks to an AD plant (Nges et al., 2012), and therefore additional levels 

of feed need to be considered as a secondary co-digestion feedstock. Glycerol is the main by-

product of the biodiesel production process, representing 10% w/w of the total product stream 

(González-Pajuelo et al., 2004; Mu et al., 2006; Da Silva et al., 2009). This means that the 

production of 100 kg of biodiesel could generate 10 kg of glycerol. By 2020, the total 

production of biodiesel will reach 42 million tonnes that would generate 4.2 million tonnes of 

glycerol (OECD/FAO, 2011). The rapid growth of the biodiesel industry has led to the 

overproduction of crude glycerol with its lowest price at $0.05/lb, and the purification costs of 

crude glycerol are around $0.20/lb (Chi et al., 2007). Moreover, the disposal of glycerol is 

associated with environmental concerns (Fernando et al., 2007). An alternative to disposal, 

which would concomitantly mitigate its surplus production, is to convert the glycerol into 

other valuable products.  

 

The high concentration of COD of crude glycerol ranges from 1000 to 1900 g/L (Sell et al., 

2011; Larsen et al., 2013), and it is easy to degrade by acidogenic bacteria to produce organic 

acids (Viana et al., 2012). Therefore, it is regarded as one promising co-substrate with other 

organic wastes to produce biogas via AD. For instance, anaerobic co-digestion of glycerol 

with pig manure could improve biogas production by 100 – 400% (Wohlgemut et al., 2011; 

Astals et al., 2012). A study by Serrano et al. (2014) reported that the addition of glycerol to 

mixtures of strawberry and fish waste could accelerate the hydrolytic stage leading to the 

highest biodegradability measured at 96.7% with 308 L/kg VS of methane production. Larsen 

et al. (2013) investigated the co-digestion of glycerol with starch industry effluent, and found 

that biogas production increased by 69% when co-digested with 2% v/v glycerol.  

 

Glycerol was also introduced to co-digest with algal biomass in order to boost methane 

production. Oliveira et al. (2014) designed a batch mode experiment aiming to optimise 

biogas production via the co-digestion of macroalgae Gracilaria vermiculophylla with 

glycerol, and the addition of 2% w/w glycerol to macroalgal biomass was found to increase 

the biomethane potential by 18%. Another study carried out by Oliveira et al. (2015) 

conducted the co-digestion of macroalgae Sargassum sp. with glycerol and waste oil to 

improve biogas production in batch BMP test. Their results showed that co-digestion with 
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glycerol increased methane yields and methane production rates by 56% and 38%, 

respectively. 

 

Unlike macroalgae, microalgae contains a high proportion of lipid that can be used as raw 

biomass to produce biodiesel. The protein-rich microalgae residues after lipid extraction for 

the biodiesel production process are treated as waste and need to disposal. Therefore, previous 

studies have reported that co-digestion of lipid-spent microalgae with glycerol in order to 

enhance biogas production. Neumann et al. (2015) investigated that anaerobic co-digestion of 

90% lipid-spent Botryococcus braunii with 10% glycerol in batch BMP tests, it was found 

that methane yields slightly increased compared to digestion with mono-substrate. However, 

the methane production rates were not significantly enhanced. AD of whole microalgae seems 

to be an optimum strategy in terms of energy balance if the microalgal cell-lipid composition 

is less than 40% (Sialve et al., 2009). Glycerol is also considered to be a potential feedstock 

for microalgae co-digestion although there is little information available about co-digestion of 

whole microalgae with glycerol.   

 

2.6 Conclusion 

 

Although there have been some studies evaluating the potential of microalgae as a feedstock 

for AD, some gaps in knowledge still needed to be filled. In order to achieve a more 

energetically balanced AD system, the effect of low-energy demand enzymatic and low-

temperature thermo-alkaline pre-treatments on microalgae AD needs to be evaluated. 

Moreover, in order to improve the feasibility and economic of methane production from 

microalgae, potential waste-stream co-substrates of PPW and glycerol also needed to be fully 

investigated.  
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Chapter 3. Materials and Methods 

 

3.1 Microalgae cultivation and harvesting  

 

3.1.1 Microalgal growth conditions and medium  

  

The Chlorella vulgaris strain (CCAP 211/63) was obtained from Culture Collection of Algae 

and Protozoa, UK. C. vulgaris was pre-cultivated in 200 mL flasks for 22 days using 

sterilized Bold's Basal medium (BBM) (Ilavarasi et al., 2011; Sharma et al., 2016) in 

laboratory conditions at 19 ℃ under artificial light with a 16:8 light dark photoperiod. The 

composition of BBM is shown in Table 3.1.  

 

Table 3.1 Chemical composition of BBM  (Ilavarasi et al., 2011; Sharma et al., 2016) 

 Chemical name Concentration 

(g/L) 

Quantity to add per 

L of medium (mL) 

Macronutrientsa NaNO3 25 10.0 

 CaCl2.2H2O 2.5 10.0 

 MgSO4.7H2O 7.5 10.0 

 K2HPO4 7.5 10.0 

 KH2PO4 17.5 10.0 

 NaCl 2.5 10.0 

Micronutrientsa Na2EDTA 0.75  

 

6.0 

 FeCl3.6H2O 0.097 

 MnCl2.4H2O 0.041 

 ZnCl2 0.005 

 CoCl2.6H2O 0.002 

 Na2MoO4.2H2O 0.004 

Vitaminsb Vitamin B1 

(Thiaminhydrochloride) 

1.2 1.0 

 Vitamin B12 

(Cyanocobalamin) 

0.01 1.0 

a Macro- and micronutrients solutions were sterilized in an autoclave at 121 ℃ for 15 minutes, 

and stored at 4 ℃ cold room; 
b Vitamin solutions were sterilized by using 0.2 µm nylon filter (VWR, UK), and stored at 

4 ℃ cold room.  
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The pre-cultivated C. vulgaris was then transferred to medium size (1 to 4 L) photo-

bioreactors (PBRs). After 20 days of cultivation in the medium size PBRs, the C. vulgaris was 

transferred to 10 L PBRs for continuous microalgae cultivation. The cultivation process is 

shown in Figure 3.1 A. For PBRs, aeration was supplied by an air pump through Hepa-Vent 

filters (VWR, UK). The cultivation process was undertaken in the algal culture room, which is 

located in the Ridley Building, School of Nature and Environmental Sciences, Newcastle 

University (Figure 3.1 B). 

 

 

 

 

Figure 3.1 Laboratory scale microalgae cultivation: (A) cultivation process; (B) culture room 
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3.1.2 Growth analysis 

 

In order to evaluate the efficiency of cultivation and to determine the optimal time to harvest 

the microalgae, the growth of the microalgal biomass was evaluated by measurements of 

optical density from the first day until the 57th day at 540 nm (Ilavarasi et al., 2011) using a 

spectrophotometer (Pharo 100, Merck, UK). Based on the growth curve (see Appendix A, 

Figure A.1), the microalgae are within the stationary phase after 25 – 30 days of culture, and 

the microalgae were first harvested manually through the sampling port of 10 L PBRs using a 

sterile plastic tube, and drained into 5 L plastic containers.  

 

Due to the limited working volume of the laboratory centrifuge, the harvesting method 

employed in this study was a combination of sedimentation and centrifugation. Microalgae 

were first concentrated by sedimentation for 48 hours at 4 ℃, and then the supernatant was 

discarded. The remaining microalgae were centrifuged at 3392×g for 10 minutes in 8×45 mL 

sterilized centrifuge tubes (VWR, UK). The supernatant was discarded and the pellet was 

washed with distilled water to remove the culture medium. After that, the concentrated 

microalgae were stored at 4 ℃ up to 2 weeks prior to AD tests.  

 

3.2 General analytical methods 

 

3.2.1 Total and volatile solids 

 

Total solids (TS) and volatile solids (VS) were determined according to APHA standard 

methods (APHA, 2005). Briefly, clean crucibles (VWR, UK) were prepared and heated at 

550 ℃ in a muffle furnace for 1 hour. Then, the heated crucibles were cooled and stored in a 

desiccator (VWR, UK). Each crucible was weighted prior to use, and the weight recorded as 

“Wdish”. Approximately 10 – 20 mL of samples was added to the crucible, and the weight 

taken again as “Wdish+sample”. After that, the samples were dried at 103 ℃ oven for a minimum 

12 hours, and cooled down in a desiccator. Then, the weight was recorded as “W104”. The 

residues were then heated at 550 ℃ in the muffle furnace for 1 hour, and cooled them to 

equilibrium temperature in a desiccator, and the weight recorded as “W550”. Calculations of 

TS and VS based were on the Equations 3.1 and 3.2.  
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𝑇𝑆 (𝑔/𝐿) =
𝑊104−𝑊𝑑𝑖𝑠ℎ

𝑊𝑑𝑖𝑠ℎ+𝑠𝑎𝑚𝑝𝑙𝑒−𝑊𝑑𝑖𝑠ℎ
× 1000                         (3.1) 

 

𝑉𝑆 (𝑔/𝐿) =
𝑊104−𝑊550

𝑊𝑑𝑖𝑠ℎ+𝑠𝑎𝑚𝑝𝑙𝑒−𝑊𝑑𝑖𝑠ℎ
× 1000                         (3.2) 

 

 

3.2.2 Total and soluble chemical oxygen demand  

 

Concentrations of total chemical oxygen demand (CODt) and soluble oxygen demand (CODs) 

were measured using Merck COD cell test kits (VWR, 1.14541.0001, UK) based on the 

standard methods of APHA 5220 D (APHA, 2005). For sample preparation, the measurement 

range of the test kits was from 25 to 1500 mg/L COD, and therefore both CODt and CODs 

samples with high concentrations needed to be diluted using distilled water. For the 

measurement of CODs, samples were centrifuged at 3392×g for 10 minutes in a centrifuge 

(Sigma 3-16P, UK), and then the supernatant was filtered using a 0.2 μm nylon filter (VWR, 

UK). The filtrate was then analysed for CODs using COD cell test kits.  

 

3.2.3 Ammonium and free ammonia nitrogen  

 

Concentrations of ammonium nitrogen (NH4+-N) were measured using Merck ammonium 

cell test kits (VWR,1.00683.0001, UK) based on the standard methods of APHA 4500-NH3 F 

(APHA, 2005). For the preparation of test samples, the maximum measurement range of the 

test kits was from 5 to 150 mg/L NH4-N, and so samples containing more than 150 mg/L 

NH4+-N needed to be diluted with distilled water. Raw or diluted samples were first 

centrifuged at 3392×g for 10 minutes in a centrifuge (Sigma 3-16P, UK), and then the 

supernatants were filtered by a 0.2 μm nylon filter (VWR, UK) before measurement of NH4+-

N concentrations.  

 

The concentrations of free ammonia nitrogen (FAN) were calculated based on Equation 3.3 

(Jaroszynski et al., 2012).  

 

𝐹𝐴𝑁 =
𝑁𝐻4

+−𝑁×10𝑝𝐻

𝑒6344/(273+𝑇)+10𝑝𝐻                                        (3.3) 
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3.2.4 pH 

 

pH was measured using a Jenway 3010 pH-meter (Jenway, UK) equipped with a double 

junction electrode (VWR, UK). Calibration was needed using two commercially certified 

standards (pH 4 and pH 7) prior to measure the samples.  

 

3.2.5 Carbohydrates analysis  

 

Total and soluble carbohydrate contents were measured via the phenol-sulphuric acid method 

(Nielsen, 2010). Briefly, 1.0 mL of sample was diluted with 1.0 mL of distilled water and 

then reacted with 0.05 mL of phenol (80% w/v) and 5 mL of concentrated sulphuric acid 

(98%) for 30 minutes at room temperature (25 ℃). After that, the absorbance was measured at 

490 nm using a spectrophotometer (Pharo 100, Merck, UK). To determine the sample 

concentration, a standard curve using D-glucose (100 mg/L) was prepared in the same way.  

 

3.2.6 Proteins analysis  

 

Measurements of the total and soluble protein contents were based on the bicinchoninic acid 

(BCA) protein assay (Kralj et al., 2014). The measurements were carried out using a protein 

assay kit (Thermo Sciencitific Pierce, 23227, UK), with bovine serum albumin (BSA) as the 

standard.  

 

This reaction is based on the chelation of two molecules of BCA with one cuprous ion (Cu2+), 

which produces a purple-coloured reaction product that can be measured using a 

spectrophotometer. The standard BSA curve was prepared following the manufacturer’s 

instruction, and testing samples with high concentrations needed to be diluted using distilled 

water due to the working range of this assay kit being between 20 to 20,000 ug/mL. Each 

standard and unknown sample (0.1 mL) was reacted with 2.0 mL of working reagent at 37 ℃ 

for 30 minutes, and then cooled down at room temperature. The working reagent was 

prepared following the manufacturer’s instruction, where 50 parts of reagent A were mixed 

with 1 part of reagent B.  Analysis was undertaken using a spectrophotometer (Pharo 100, 

Merck, UK) at 562 nm.  
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3.2.7 Elemental analysis  

 

For elemental analysis, samples were first oven dried at 60 ℃ until their weight was constant. 

Then 50 mg of powdered samples were placed in a clean (pre-combusted) ceramic crucibles 

(VWR, UK), and analysed for carbon (C) and nitrogen (N) using an Elementar VarioMAX 

CNS analyzer (Elementar, Germany). Based on the manufacturer’s instruction, the analysis of 

samples involved combustion at 1145 ℃ in an oxygen-enriched helium atmosphere with the 

presence of tungsten oxide as a catalyst. The calibration standard of sulfadiazine (% C = 

47.99, % N = 22.37 and % S = 12.81) needed to be analyzed at the start and end of the sample 

sequence, and after 5 – 10 samples. The amounts of C and N were calculated by reference to 

the calibration standard during the analysis using Elementar software.   

 

3.2.8 Alkalinity analysis 

 

The total alkalinity (TA) of samples from the semi-continuous digester was determined using 

the titration method as described by Lossie and Pütz (2008). Samples were first centrifuged at 

3392×g for 30 minutes, and 20 mL of supernatant was put in a 50 mL flask. The flask was 

then placed on a magnetic stirrer and homogenised continuously during the titration process. 

Titration was conducted using 0.1 N sulphuric acid (H2SO4) to pH 5, and the volume of 

H2SO4 added was recorded. The concentration of TA was calculated based on Equation 3.4.  

 

𝑇𝐴 (𝑚𝑔/𝐿) = (𝑉1 − 𝑉2) × 250                                (3.4) 

 

where 𝑉1 is the starting volume of H2SO4 in mL, and 𝑉2 is the volume of H2SO4 added from 

the start to pH 5.0 in mL.   
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3.2.9 Volatile fatty acids analysis  

 

The total volatile fatty acids (total VFA) of samples from the semi-continuous digesters was 

also determined by titration methods followed by the measurement of TA (Lossie and Pütz, 

2008). The continuous titration of test samples using 0.1 N H2SO4 from pH 5.0 to pH 4.4, and 

the volume of H2SO4 added was recorded. The concentration of total VFA was calculated 

based on Equation 3.5. 

 

𝑇𝑜𝑡𝑎𝑙 𝑉𝐹𝐴 (𝑚𝑔/𝐿) = ((𝑉2 − 𝑉3) × 1.66 − 0.15) × 500                     (3.5) 

 

where 𝑉2 is the volume of H2SO4 at pH 5.0 mL, and 𝑉3 is the volume of H2SO4 added from 

pH 5.0 to pH 4.4 in mL.  

 

The measurement of individual VFA values was carried out using chromatography methods. 

Briefly, samples were first diluted and then filtered using a 0.2 μm nylon filter (VWR, UK). 

Then, the filtered sample was mixed with 0.1 M octane sulphonic acid at a ratio of 1:1 before 

sonicating for 40 minutes (Zealand et al., 2017). Ion Chromatography Dionex Aquion system 

equipped with an AS-AP auto sampler with Chameleon 7 Software was applied to analyse the 

sonicated samples. The detection range of this method is between 5 to 500 ppm without 

dilution, and concentrations over this range needed to be diluted with deionised water.  

 

3.2.10 Methane concentration analysis 

  

The methane composition of the biogas was determined using a GC-FID instrument (Carlo-

Erba 5160 GC) with hydrogen as the carrier gas and the injector at 150 ℃ and FID at 300 ℃. 

Methane standards (10% or 80% CH4 balanced with CO2; Scientific and Technical Gases 

Ltd., UK) were used in triplicate injections of 50, 40, 30, 20 and 10 µL of standard gas to 

make a calibration standard. A minimum calibration coefficient (R2) of 0.99 is required before 

the analysis of test gas samples. After that, triplicate injections of a 50 µL sample of biogas, 

taken from the headspace of the BMP bottles or gas bags of the semi-continuous digesters 

using a 100 µL gastight syringe (SGE, 100R-V-GT), were quantified by reference to the 

standard curve. The volume of methane was calculated under standard temperature and 

pressure (STP) conditions (0 ℃, 1atm). 
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3.3 Microbial community analysis  

 

3.3.1 DNA extraction  

 

For microbial community analysis, genomic DNA from samples of the semi-continuous 

digesters and the negative control were extracted using an isolation kit (DNeasy PowerSoil 

kit, QIAGEN, UK) following the manufacturer’s instructions. After extraction, the quality of 

DNA samples were determined using a DeNovix spectrophotometer (DeNovix, US) 

measuring the absorbance at 260 and 280 nm.  

 

3.3.2 Sequencing  

 

The extracted total DNA samples were sent to Northumbria University for paired-end 

Illumina MiSeq sequencing the V4 hypervariable region of 16S rRNA. The basic processes 

for Illumina MiSeq sequencing are library preparation, cluster amplification, sequencing and 

alignment and data analysis. The universal primers set 515F and 806R were used to allow 

amplification of the V4 region of both bacteria and archaea (Nelson et al., 2014). The 

amplicon libraries were sequenced on the Illumina MiSeq platform using the Wet Lab SOP as 

described by Kozich et al. (2013). At the end, FASTQ files with quality score encoding were 

generated.  

 

3.3.3 Sequencing data processing   

 

The raw Illumina FASTQ files were demultiplexed and quality filtered using QIIME 2 with 

plugin wraps DADA 2 (https://docs.qiime2.org/2018.4/). Sequences presenting at 99% 

similarity were grouped into one operational taxonomic unit (OTU), and assigned taxonomy 

from the SILVA 119 reference database. Methanogens have relatively low growth rates than 

other anaerobic microorganisms and they are more sensitive to the environmental changes. 

Therefore, in this research, the processed sequencing data were further analysed, and focusing 

on the analysis of archaeal community.  

 

 

 

 

 

https://docs.qiime2.org/2018.4/
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3.4 Performance calculation  

 

3.4.1 Biochemical methane potential (BMP) test calculations 

 

The volume of dry biogas under STP conditions was calculated based on Equation 3.6 

(VDI/4630., 2006).  

 

𝑉0 =
𝑉∗(𝑃−𝑃𝑊)∗𝑇0

𝑃0∗𝑇
                                                            (3.6) 

 

where V0 is the volume of dry biogas under STP conditions (0 ⁰C, 1atm) (mL), V is the 

volume of biogas produced (mL), P is the pressure of the gas phase at the time of reading 

(hPa), PW is the vapour pressure of water as a function of the temperature of the ambient 

space (hPa), T0 is the normal temperature, T0=273K, P0 is the normal pressure, P0=1013 hPa 

and T is the temperature of the fermentation gas, T=37 ⁰C (310K). 

 

The methane content of dry gas in the BMP tests was calculated based on Equation 3.7 

(VDI/4630., 2006).  

 

𝐶𝐻4
𝐷 = 𝐶𝐻4

𝐻 ∗
𝑃

𝑃−𝑃𝑊
                                                   (3.7) 

 

where 𝐶𝐻4
𝐷

is the methane content of dry biogas in % by volume, 𝐶𝐻4
𝐻

 is the methane 

content in humid gas in % by volume, P is the pressure of the gas phase at the time of reading 

(hPa), and PW is the vapour pressure of water as a function of temperature of the ambient 

space (hPa). 

 

The volume of methane (𝑉𝐶𝐻4
) produced under STP conditions was calculated based on 

Equation 3.8 (Edward et al., 2015).  

 

𝑉𝐶𝐻4
= 𝐶𝐻4

𝐷 × (𝑉𝐻 + 𝑉𝑆 − 𝑉𝐻0
)                                   (3.8) 

 

where 𝑉𝐻 is the calculated daily biogas production in the headspace (mL), 𝑉𝑆 is the daily 

measured biogas in the syringe (mL), and 𝑉𝐻0
 is the volume of biogas produced from the 

headspace on the previous day (mL). 
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The experimental methane yields (BMPexp) under STP conditions can be calculated using 

Equation 3.9 (Edwards, 2015).  

 

𝐵𝑀𝑃exp (𝑆𝑇𝑃)(mL 𝐶𝐻4/g VS ) =
𝑉𝑆𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒−𝑉𝑏𝑙𝑎𝑛𝑘

𝑉𝑆𝑎𝑑𝑑𝑒𝑑
                      (3.9) 

 

where 𝑉𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒 is the methane volume from the substrate calculated based on equation 3.8 

(mL), 𝑉𝑏𝑙𝑎𝑛𝑘 is the methane volume from inoculum (mL) produced in the blank bottle, 

𝑉𝑆𝑎𝑑𝑑𝑒𝑑 is the value of VS of the substrate was added to the substrate bottle (g).  

 

3.4.2 Semi-continuous test calculations 

 

The volume of dry biogas under STP conditions and methane content in dry gas can be 

calculated in the same way as in the BMP tests according to equations 3.6 and 3.7. However, 

the final methane composition in biogas for the semi-continuous tests needs to be subjected to 

headspace correction due to the biogas component being diluted by the inert gas in the 

headspace at the beginning of the digestion process. The corrected methane concentration can 

be calculated as in Equation 3.10 (VDI/4630., 2006).  

 

𝐶𝐻4
𝐶 = 𝐶𝐻4𝑡2

𝐷 + (𝐶𝐻4𝑡2
𝐷 − 𝐶𝐻4𝑡1

𝐷 ) ∗
𝑉𝐻

𝑉𝐵
                                 (3.10) 

 

where 𝐶𝐻4
𝐶
 is the corrected final methane content in % by volume, 𝐶𝐻4𝑡2

𝐷
 and 𝐶𝐻4𝑡1

𝐷
 are the 

methane contents (%) in dry biogas calculated using equation 3.7, t2 and t1 are the two 

different measurement times (t2>t1), 𝑉𝐻 is the headspace volume (mL), and 𝑉𝐵 is the produced 

biogas volume in the gas bag at t2 (mL).  

 

The organic loading rate (OLR) is defined as the amount of VS or COD if fed to the digester 

per day per unit digester volume (Montingelli et al., 2015). For the semi-continous digester, 

the OLR can be calculated using Equation 3.11 (Edwards, 2015).   

 

𝑂𝐿𝑅(𝑔/𝐿. 𝑑) =
𝑔 𝑂𝑀𝑎𝑑𝑑𝑒𝑑

𝑉𝑑𝑖𝑔𝑒𝑠𝑡𝑒𝑟.𝑑
                                                        (3.11) 

 

where 𝑔 𝑂𝑀𝑎𝑑𝑑𝑒𝑑 is the quantity of organic material in terms of VS or COD added to the 

digester, 𝑉𝑑𝑖𝑔𝑒𝑠𝑡𝑒𝑟 is the digester volume (L), and 𝑑 is day.  
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The hydraulic retention time (HRT) can be calculated using Equation 3.12 (Edwards, 2015).  

 

𝐻𝑅𝑇(𝑑) =
𝑉𝑑𝑖𝑔𝑒𝑠𝑡𝑒𝑟

𝑄
                                                 (3.12) 

 

where 𝑉𝑑𝑖𝑔𝑒𝑠𝑡𝑒𝑟 is the digester volume (L) and Q is the influent flow rate (L/d). 
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Chapter 4. Evaluation of enzymatic and low-temperature thermo-alkaline 

pre-treatments on anaerobic digestion of microalgae 

 

4.1 Introduction 

 

Biochemical methane potential (BMP) tests have been widely used in previous studies to 

quantify the production rates and yields of biogas, and also to characterise the 

biodegradability of various substrates (Carrère et al., 2009; Costa et al., 2012; Nielfa et al., 

2015). Compared to continuous reactor experiments, BMP tests are relatively quick, cheap 

and require less laboratory space. Therefore, BMP tests are a good starting point for 

microalgae AD study in this research.  

 

The rigid cell walls of microalgae protect them against the attack from hydrolytic bacteria, 

and consequently prevent efficient biodegradability (Mahdy et al., 2014c). Mechanical, 

physical, chemical and enzymatic cell wall disruption methods have been reported to pre-treat 

microalgae (Cho et al., 2013; Mahdy et al., 2014b; Santos et al., 2014). For enzymatic pre-

treatment, previous studies mostly focus on the pre-treatment of microalgae using single 

enzymes, and only few investigation have considered the effect of mixed enzymes on 

microalgae AD, especially cellulase mixed with α-amylase. Alkaline pre-treatment is usually 

combined with high temperature (Cho et al., 2013; Bohutskyi et al., 2014), but few studies 

have investigated the effect of low temperature thermo-alkaline on microalgae AD, especially 

using Ca(OH)2 as the catalytic reagent.  

 

This Chapter aimed to investigate the effect of low energy demand enzymatic and low-

temperature thermo-alkaline pre-treatments on the degree of solubilisation of the microalgal 

biomass, and the subsequent methane yields in batch BMP tests.  

 

1. For enzymatic pre-treatment, the effects of different dosages and types of enzymes 

were investigated.  

 

2. For low-temperature thermo-alkaline pre-treatment, the effects of Ca(OH)2 dosages, 

pre-treatment temperature and pre-treatment time were investigated.  
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4.2. Materials and methods 

 

4.2.1 Microalgae and inoculum  

 

The C. vulgaris strain (CCAP 211/63) was cultured in Bold’s Basal Medium in 10 L Nalgene 

carboys (Ilavarasi et al., 2011; Sharma et al., 2016) at 19 ℃ under artificial light with a 16:8 

light dark photoperiod. The detailed procedures of cultivation and harvesting of microalgae 

are described in Section 3.1. The microalgal biomass was characterised by its TS, VS, CODt 

and CODs, carbohydrate and protein content (Table 4.1). 

 

The anaerobic seed inoculum was collected from a manure-based farm anaerobic digester 

located at Cockle Park Farm, Northumberland, UK. The TS and VS of the anaerobic 

inoculum were 12.2 ± 0.1 and 6.6 ± 0.1 g/L, respectively.  

 

Table 4.1 Characterisation of microalgae Chlorella vulgaris 

Parameters Value  

TS (g/L) 2.0 ± 0.2a 

VS (g/L) 1.9 ± 0.2 

VS/TS (%) 91.9 ± 1.9 

CODt (g/L) 2.7 ± 0.9 

CODs/CODt (%) 2.7 ± 2.1 

Total Protein (% VS) 39.2 ± 4.8 

Total Carbohydrate (% VS) 27.6 ± 3.2 

a Mean ± SD, n=4. 
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4.2.2 Experimental design 

 

4.2.2.1 Enzymatic pre-treatment 

 

Enzymatic pre-treatment was designed to evaluate the effect of concentrations and types of 

enzyme on hydrolysis efficiency in terms of solubilisations of COD, carbohydrate and 

protein; and methane yields. Three commercial enzymes (Table 4.2) were used alone or in 

combination at two different concentrations of 0.5 and 1.0 % v/w. The enzyme concentrations 

were selected based on previous studies (Choi et al., 2010; Mahdy et al., 2014b). 

 

Table 4.2 Characterisation of three type of commercial enzymes 

Enzymes No. Commercial 

Name 

Composition Specific 

Activity 

(Purity) 

Supplier 

C 

 

Carezyme 1000L Cellulase 

 

≥1000 U/g  

 

Sigma-Aldrich, 

UK 

P Flavourzyme@ 

500L 

Protease 

 

≥500 U/g 

 

A BAN™ 240L α-Amylase ≥250 U/g 

 

 

The types of enzyme tested in this study are cellulase (C), protease (P), amylase (A), mixtures 

of cellulase plus protease (CP) and cellulase plus amylase (CA). For mixed enzymes, the 

mixture ratio of the two enzymes was set at 1:1. In order to catalyze the activity of the 

enzymes, pre-treatment conditions were set at 55 ℃ for 24 hours (Choi et al., 2010; Lin et al., 

2011; Ometto et al., 2014). After 24 hours pre-treatment, the samples were heated in an oven 

at 75 ℃ for 15 minutes to deactivate the enzymes (Mahdy et al., 2014c). A summary of 

experimental design of enzymatic pre-treatment is shown in Table 4.3.  
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Table 4.3 Summary and coding of the experimental design for enzymatic pre-treatment trials. 

Treatment coding: 1-2 corresponds to the concentrations of enzymes, C=cellulase, P= 

protease, A= α-amylase, CP = cellulase mixed with protease, CA= cellulase mixed with α-

amylase 

Enzyme concentration  

(% v/w) 

Experimental groups 

0.5 C1 P1 A1 CP1 CA1 

1.0 C2 P2 A2 CP2 CA2 

 

 

4.2.2.2 Low-temperature thermo-alkaline pre-treatment  

 

The low-temperature thermo-alkaline pre-treatment was designed to use lime (Ca(OH)2) to 

pre-treat C. vulgaris at two low temperatures of 37 and 55 ℃ at different dosages (0, 10 and 

15% w/w). These dosages were selected based on previous studies (Harun et al., 2011; 

Gabhane et al., 2014; Mahdy et al., 2014a). The effect of pre-treatment time at 24 or 48 hours 

on hydrolysis efficiency and methane yields was also evaluated. The experimental design is 

shown in Table 4.4.  

 

 

Table 4.4 Summary and coding of the experimental design for low-temperature thermo-

alkaline pre-treatment trials. Treatment coding: 1-3 corresponds to the dosage of Ca(OH)2, L= 

low pre-treatment temperature of 37 ℃, and H=high pre-treatment temperature of 55 ℃; 

A=24 hours of pre-treatment time, B=48 hours of pre-treatment time 

Ca(OH)2 dosage (% w/w) 

0 10 15 

L1A L1B L2A L2B L3A L3B 

H1A H1B H2A H2B H3A H3B 
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4.2.3 Evaluation of hydrolysis efficiency 

 

The solubilisation of COD is a measure widely used to determine the efficiency of pre-

treatments (Alzate et al., 2014; Mahdy et al., 2014c), and the solubilisation of COD (% COD) 

was calculated according to Equation 4.1.   

 

% 𝐶𝑂𝐷 =
𝐶𝑂𝐷𝑠𝑝−𝐶𝑂𝐷𝑠𝑜

𝐶𝑂𝐷𝑡−𝐶𝑂𝐷𝑠𝑜
× 100%                                      (4.1) 

 

where 𝐶𝑂𝐷𝑠𝑝 is the concentration of the soluble COD of pre-treated microalgae, 𝐶𝑂𝐷𝑠𝑜 is the 

concentration of the soluble COD of untreated microalgae, and 𝐶𝑂𝐷𝑡 is the total 

concentration of COD of microalgae.  

 

C. vulgaris is characterised by a carbohydrate-based cell wall, which is mainly composed of 

cellulose (25 - 30%) and hemicellulose (15 - 25%) (Abo-Shady et al., 1993; Yamamoto et al., 

2005). Moreover, since microalgae are rich in protein contents; therefore, in order to further 

evaluate the efficiency of pre-treatments, solubilisations of carbohydrate (% CH) and proteins 

(% PT) were also calculated based on the Equations 4.2 and 4.3.  

 

% 𝐶𝐻 =
𝐶𝐻𝑠𝑝−𝐶𝐻𝑠𝑜

𝐶𝐻𝑡−𝐶𝐻𝑠𝑜
× 100%                                            (4.2) 

 

% 𝑃𝑇 =
𝑃𝑇𝑠𝑝−𝑃𝑇𝑠𝑜

𝑃𝑇𝑡−𝑃𝑇𝑠𝑜
× 100%                                             (4.3) 

 

where 𝐶𝐻𝑠𝑝 and 𝑃𝑇𝑠𝑝 are the concentrations of soluble carbohydrate and protein of pre-treated 

microalgae, 𝐶𝐻𝑠𝑜 and 𝑃𝑇𝑠𝑜 are the concentrations of soluble carbohydrate and protein of 

untreated microalgae, and 𝐶𝐻𝑡 and 𝑃𝑇𝑡  are the total concentrations of carbohydrate and 

protein of microalgae.  
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4.2.4 Biochemical methane potential (BMP) test 

 

Batch BMP tests were performed based on the guidelines recommended by Angelidaki et al. 

(2009), using glass bottles with a capacity of 160 mL and closed with butyl rubber seals and 

aluminium caps. The addition of 10% v/v (9 mL) of NaHCO3 (5g/L) solution was made to 

each test bottle to maintain the pH value (Dechrugsa et al., 2013). The untreated or pre-treated 

C. vulgaris and anaerobic inoculum were mixed to achieve a ratio of 0.5:1 on the basis of VS 

(Lee et al., 2013; Ometto et al., 2014). Quantities were calculated to obtain 90 mL of final 

liquid volume and to allow 43.75% of headspace.  

 

The daily biogas production was measured volumetrically, and on each measurement day, a 

10 mL syringe (VWR, UK) was connected to the top of the BMP bottle to measure the daily 

biogas production before measuring the methane percentage, and also to make sure that the 

internal pressure was equal to atmospheric pressure (Bohutskyi et al., 2014). Each BMP assay 

was performed in triplicate for each individual substrate in order to identify the biogas 

production level and percentage of methane, and a blank test containing only inoculum was 

also performed and subtracted from the treatment bottles. The volume of methane was 

calculated under STP conditions (0 ℃, 1atm), and details of the calculations can be found in 

Section 3.4.1. All BMP bottles were placed in a 37 ℃ incubator at 70 rpm for 25 or 26 days of 

reaction.  

 

4.2.5 Analytical methods 

 

Measurements of TS, VS, CODt, CODs, carbohydrate and protein were conducted according 

to the methods are described in Section 3.2.  
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4.2.6 Kinetics of anaerobic digestion 

 

The modified Gompertz equation has been used in many previous studies, and also assumes 

that methane production is proportional to microbial activity, which indicates the growth of 

microorganisms (Lay et al., 1997; Patil et al., 2012; Nielfa et al., 2015). The kinetic data 

obtained from all digesters were checked for the fitness of the modified Gompertz equation 

using Equation 4.4. 

 

 

𝑀 = 𝑃 × exp {− exp [
𝑅𝑚×𝑒

𝑃
(𝜆 − 𝑡) + 1]}                                 (4.4) 

 

where M is the cumulative methane production (ml/gVS) at time t, P is the methane yield 

potential (ml/gVS), Rm is the maximum methane production rate (ml/gVS/d), λ is the duration 

of lag phase (d), and t is the digestion time (d). 

 

 

4.2.7 Energy requirement consideration 

 

An energy requirement study was carried out to estimate whether the energy requirement for 

pre-treatment can be balanced by the extra methane produced. To evaluate the energy balance 

of each pre-treatment method, the ratio between energy input (Ei) and energy output (Eo) is 

used as an indicator (Passos et al., 2013; Ometto et al., 2014).  

The Ei was estimated using Equation 4.5, where the main energy input was determined by the 

heat required to raise the microalgal biomass from the initial temperature (To) to the pre-

treatment temperature (Tp).  

 

𝐸𝑖 =
𝜌×𝑉×𝛾×(𝑇𝑝−𝑇𝑜)×(1−∅)

𝑉𝑆
                                                      (4.5) 

 

where 𝜌 is microalgae specific density, which was assumed to be equal to that of water of 

1g/mL, V is the sample volume (mL), 𝛾 is the specific heat values of 4.18 × 103 kJ/g.℃, Tp is 

the pre-treatment temperatures of 37 and 55 ℃ for thermo-alkaline pre-treatment and, 55 and 

75 ℃ for enzymatic pre-treatment, To is the initial temperature for microalgal biomass, which 

was assumed to be equal to the ambient temperature of 20 ℃, ∅ is the heat recovery 
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efficiency, which was assumed to be equal to 85%, and VS is the volatile solids content in 

pretreated samples (g).  

 

The energy required for pre-treatment should at least be covered by the extra methane 

produced; therefore, the Eo was calculated from the difference in methane yields between pre-

treated and untreated microalgae using Equation 4.6.  

 

𝐸𝑜 =
∆𝑃𝐶𝐻4×𝐿𝐶𝑃

106                                                     (4.6) 

 

where ∆𝑃𝐶𝐻4
 is the enhanced methane yield after pre-treatment (mL/g VS), and LCP is the 

lower calorific power (LCP) of methane, which has been reported to be approximately 

35.8×103 kJ/m3 CH4 under standard conditions (STP) of 1atm and 0 ℃ (Serrano et al., 2014).  

 

4.2.8 Statistical analysis 

 

For enzymatic pre-treatment, experimental data for the solubilisations of COD, carbohydrate 

and protein as well as methane yields were analysed by a two-way mixed analysis of variance 

(ANOVA) with the Bonferroni post hoc test used to determine the significance of statistical 

differences between the concentrations of enzymes (Field, 2009). The Turkey post hock test 

was used to determine the differences between types of enzymes.  

 

Experimental data for thermo-alkaline pre-treatment were analysed by a three-way mixed 

ANOVA with the Bonferroni post hoc test used to determine the statistical differences 

between the dosages of Ca(OH)2 (Field, 2009).  

 

A Pearson correlation coefficient analysis was run to determine the relationship between the 

solubilisations of COD, carbohydrate or protein and methane yields (Field, 2009). A 

confidence interval of differences of 95% (p<0.05) was chosen to define statistical 

significance. All statistical analyses were conducted using IBM SPSS statistics, Version 23. 

MATLAB, R2015a was used to calculate P, Rm and λ for each digester.  
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4.3 Results  

 

4.3.1 Hydrolysis efficiency   

 

4.3.1.1 Enzymatic pre-treatment 

 

Figure 4.1 shows the hydrolysis efficiency after the enzymatic pre-treatment. COD 

solubilisation after enzymatic pre-treatments ranged from 41 to 67% (Figure 4.1a), and the 

concentrations of enzymes had a significant effect on COD solubilisation 

(F(1.104,30)=6500.00, p<0.001). The type of enzyme also had a significant effect on COD 

solubilisation (F(4,15)=60.26, p<0.001). Enzyme mixtures showed a higher COD 

solubilisation than single enzymes. Cellulase plus α-amylase (CA) exhibited higher COD 

solubilisations, which were significantly higher than those of cellulase (p<0.001), protease 

(p=0.001) and α-amylase (p<0.001). Similarity, cellulase plus protease (CP) also showed 

significantly higher COD solubilisation than those of cellulase (p<0.001), protease (p=0.004) 

and α-amylase (p<0.001). However, COD solubilisations were not significantly different 

between cellulase plus protease (CP) and cellulase plus α-amylase (CA) (p=1.000). The 

significant effect on COD solubilisation was also qualified in terms of an interaction effect 

between concentration and type of enzymes (F(4.42,15)=40.14, p<0.001). This interaction 

effect can be seen where the COD solubilisations from single enzymes and mixed enzymes 

were not significantly different with an enzyme dosage at 0.5% v/w. However, the COD 

solubilisations observed for mixed enzymes were significantly higher than the values 

observed for single enzymes when the enzyme dosage was set at 1.0% v/w.  

 

Carbohydrate solubilisation after enzymatic hydrolysis ranged from 13 to 44% (Figure 4.1b), 

and was significantly increased with increasing enzyme concentrations (F(1.10,30)=1400.00, 

p<0.001). The enzyme type also significantly affected carbohydrate solubilisation 

(F(4,15)=3840.00, p<0.001). For single enzymes, cellulase released significantly more 

carbohydrates than did protease (p<0.001) and α-amylase (p<0.001). Enzyme mixtures 

performed well compared to single enzymes in terms of carbohydrate solubilisation, where 

cellulase plus protease (CP) showed significantly higher carbohydrate solubilisation than 

cellulase (p<0.001), α-amylase (p<0.001) and protease (p<0.001). Similarity, cellulase plus α-

amylase (CA) also showed significantly higher carbohydrate solubilisation than cellulase 

(p<0.001), α-amylase (p<0.001) and protease (p<0.001).   
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Protein solubilisation was observed to range from 28 to 72% after enzymatic pre-treatment 

(Figure 4.1c). The concentration of enzyme had a significant effect on protein solubilisation 

(F(1.32,30)= 4750.00, p<0.001), and mixed enzymes exhibited significantly higher 

solubilisation of protein than single enzymes (F(4,15)=657.00, p<0.001). The significant 

effect on protein solubilisation was also qualified by an interaction effect between 

concentration and type of enzymes (F(5.29,30)=106.39, p<0.001). This interaction effect can 

be seen where the cellulase plus protease (CP) and single protease (P) were the most effective 

enzymes for protein solubilisation, and they both showed higher values than other types of 

enzyme.  
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Figure 4.1 Solubilisation of (a) COD, (b) carbohydrate and (c) protein after enzymatic pre-

treatment: C=cellulase, P= protease, A= α-amylase, CP = cellulase plus protease mix, CA= 

cellulase plus α-amylase mix. Error bar=mean ± SD, n=4. 
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4.3.1.2 Low-temperature thermo-alkaline pre-treatment 

 

Figure 4.2 shows the hydrolysis efficiency after low-temperature thermo-alkaline pre-

treatment. COD solubilisation was observed to range from 18 to 28% (Figure 4.2 a), and 

Ca(OH)2 dosage had a significant effect on COD solubilisation (F(3,12)=2838.00, p<0.001). 

The highest values were obtained with a dosage of 15% w/w, and were significantly higher 

than those with 0% w/w dosage (p=0.001). However, there was no significant difference 

between the results with 10 and 15% w/w dosages (p=1.000). The pre-treatment temperature 

also had a significant effect on the solubilisation of COD (F(1,4)=10.99, p=0.030), with 

values observed at 55 ℃ higher than those of at 37 ℃. However, pre-treatment time had no 

significant effect on COD solubilisation (F(1,4)=0.00, p=0.983).   

 

Carbohydrate solubilisation was observed to range from 27 to 50% after low-temperature 

thermo-alkaline pre-treatment (Figure 4.2 b). Ca(OH)2 dosage had a significant effect on 

carbohydrate solubilisation (F(3,12)=955.08, p<0.001). The highest values were obtained with 

a dosage of 15% w/w, and were significantly higher than those for 0% w/w dosage (p=0.013). 

However, there was no significant difference between the results with 10 and 15% w/w 

dosage (p=0.475). Pre-treatment time and temperature both had significant effects on the 

solubilisation of carbohydrate (F(1,4)=20.60, p=0.011 and F(1,4)=42.26, p=0.003, 

respectively).  

 

Between 14 – 26% of proteins were solubilized after low-temperature thermo-alkaline pre-

treatment (Figure 4.2 c), and Ca(OH)2 dosage had a significant effect on protein solubilisation 

(F(3,12)=1452.42, p<0.001). The highest values were observed with 15% w/w dosage, and 

were significantly higher than those with 0% w/w (p=0.001) and 10% w/w dosages (p=0.023). 

The solubilisation of protein observed at 55 ℃ were significantly higher than those of at 37 ℃ 

(F(1,4)=34.15, p=0.004). Pre-treatment time also had a significant effect on protein 

solubilisation (F(1,4)=29.28, p=0.006).  
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Figure 4.2 Solubilisation of (a) COD, (b) carbohydrate and (c) protein after low-temperature 

thermo-alkaline pre-treatment: L= low pre-treatment temperature of 37 ℃, H=high pre-

treatment temperature of 55 ℃; A=24 hours pre-treatment time, B=48 hours pre-treatment 

time. Error bar=mean ± SD, n=2.  
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4.3.2 Methane yields and BMP kinetic model  

 

4.3.2.1 Enzymatic pre-treatment  

 

Figure 4.3 shows the cumulative amounts of methane produced by digestion of untreated and 

enzymatic pre-treated C. vulgaris. The lowest methane yield of 120 mL CH4/g VS was 

produced by digestion of untreated C. vulgaris, and methane yields were improved by 22 – 

162% after enzymatic pre-treatments. Methane yields were significantly improved after 

enzymatic pre-treatment (F(2,50)=647.79, p<0.001). The methane yields were significantly 

higher for the 1.0% v/w dosage than for 0.5% v/w dosage (p<0.001) and untreated microalgae 

(p<0.001). The type of enzyme also had a significant effect on methane yields 

(F(4,25)=127.95, p<0.001). The mixed enzymes showed higher methane yields compared to 

single enzymes, and the highest methane yields were achieved by cellulase plus protease 

(CP), which were significantly higher than those for cellulase (p<0.001), protease (p<0.001), 

α-amylase (p<0.001) and cellulase plus α-amylase (p=0.002).  

 

Gompertz kinetics data obtained by digestion of untreated and enzymatic pre-treated C. 

vulgaris are summarized in Table 4.5. The values of Rm were significantly increased after 

enzymatic hydrolysis (F(2,10)=166.33, p<0.001). The values obtained by 0.5 and 1.0% v/w 

dosages were all significantly higher than for untreated C. vulgaris (p<0.001 and p<0.001, 

respectively). Enzyme type also had a significant effect on the values of Rm (F(4,5)=11.37, 

p=0.010). The highest Rm values were obtained by cellulase plus protease, which were 

significantly higher than those for cellulase plus α-amylase (p=0.034). However, there was no 

significant difference between results for cellulase plus protease and cellulose (p=1.000), 

protease (p=1.000) and α-amylase (p=0.074). The duration of lag phase (λ) were shorter than 

those for untreated microalgae in some pre-treatment conditions (A1, CA1 and CA2). 

However, there were no significant effects of enzyme dosage and type on the time values of λ 

(F(2,10)=2.56, p=0.127 and F(4,5)=3.28, p=0.112, respectively).  
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Table 4.5 Summary of modified Gomerptz kinetics data for AD of untreated and enzymatic 

pre-treated C. vulgaris 

No. Rm 

(mLCH4/gVS/d) 

λ  

(d) 

R2 

Untreated 18.88 0.70 0.9925 

C1 33.32 0.96 0.9971 

C2 38.82 1.14 0.9974 

P1 35.61 1.06 0.9945 

P2 43.17 0.95 0.9977 

A1 26.31 0.58 0.9958 

A2 35.92 0.91 0.9975 

CP1 43.40 1.00 0.9859 

CP2 36.52 0.74 0.9906 

CA1 30.57 0.57 0.9885 

CA2 28.69 0.44 0.9893 

 

 

4.3.2.2 Low-temperature thermo-alkaline pre-treatment 

 

Figure 4.4 shows the cumulative methane yields after low-temperature thermo-alkaline pre-

treatment. After 25 days of reaction, final methane yield of 129 mL CH4/g VS was achieved 

by digestion of untreated C. vulgaris. The methane yields were improved by 4 – 19% (expect 

for L1B) compared to untreated C. vulgaris when the pre-treatment temperature was 37 ℃ 

(Figures 4.4 a and 4.4 b), and the highest yield of 154 mL CH4/g VS was produced by L2B 

(10% w/w Ca(OH)2 dosage, and 48 hours pre-treatment). When the pre-treatment temperature 

was 55 ℃ (Figures 4.4 c and 4.4 d), the methane yields were improved by 8 – 26% compared 

to untreated C. vulgaris, and the highest yield of 162 mL CH4/g VS was produced by H2A 

(10% w/w Ca(OH)2 dosage, and 24 hours pre-treatment). Overall, the dosage of Ca(OH)2 had 

a significant effect on methane yield (F(3,12)=11.34, p=0.001). Pre-treatment temperature 

also had a significant effect on methane yield (F(1,4)=9.79, p=0.035), with yields obtained at 

55 ℃ higher than those of at 37 ℃. However, pre-treatment time had no significant effect on 

methane yield (F(1,4)=0.56, p=0.495).   
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Table 4.6 shows the Gompertz kinetics data of the low-temperature thermo-alkaline pre-

treatment. Ca(OH)2 dosage had no significant effect on the values of Rm (F(3,12)=3.31, 

p=0.057), but pre-treatment temperature had a significant effect on Rm (F(1,4)=9.90, 

p=0.035). Moreover, there was a significant interaction effect between Ca(OH)2 dosage and 

pre-treatment temperature (F(3,12)=9.68, p=0.002). This interaction effect can be seen where 

at the high pre-treatment temperature of 55 ℃, the values of Rm were increased compared to 

untreated microalgae. However, the effect of pre-treatment time on Rm was not significant 

(F(1,4)=0.17, p=0.698). The time values of λ were significantly increased after thermo-

alkaline pre-treatment compared to untreated microalgae (F(3,12)=57.07, p<0.001). The time 

values of λ at 37 ℃ were significantly shorter than at 55 ℃ (F(1,4)=159.15, p<0.001). 

However, the values of λ did not significantly differ between 24 and 48 hours of pre-treatment 

time (F(1,4)=0.92, p=0.392).  

 

Table 4.6 Summary of modified Gomerptz kinetics data for AD of untreated and thermo-

alkaline pre-treated C. vulgaris 

No. Rm 

(mLCH4/gVS/d) 

λ 

(d) 

R2 

Untreated 16.62 1.45 0.9850 

L1A 9.46 1.60 0.9825 

L1B 8.53 1.55 0.9868 

L2A 13.85 2.35 0.9746 

L2B 15.18 2.09 0.9685 

L3A 17.21 2.70 0.9681 

L3B 16.79 2.90 0.9793 

H1A 17.20 5.96 0.9783 

H1B 20.97 6.14 0.9685 

H2A 22.82 2.78 0.9632 

H2B 16.62 3.87 0.9833 

H3A 19.66 4.17 0.9789 

H3B 16.62 3.87 0.9833 
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Figure 4.3 Cumulative methane yields after enzymatic pre-treatment: (a) enzyme dosage at 

0.5% v/w, and (b) enzymatic dosage at 1.0 % v/w. 



 

 

 

6
6

 

 

Figure 4.4 Cumulative methane yields after low-temperature thermo-alkaline pre-treatment: (a) pre-treatment at 37 ℃ for 24 hours, (b) pre-treatment 

at 37 ℃ for 48 hours, (c) pre-treatment at 55 ℃ for 24 hours, (d) pre-treatment at 55 ℃ for 48 hours
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4.3.3 Effects of hydrolysis efficiency on methane yield 

 

A Pearson correlation was used to determine the relationship between hydrolysis efficiency 

(solubilisations of COD, carbohydrate and protein) and final methane yields. For enzymatic 

pre-treatment, there was a positive correlation between the solubilisation of COD and 

methane yield (r(22)=0.755, p<0.001) (Figure 4.5 a). The solubilisation of carbohydrate also 

was also positively correlated with methane yield (r(22)=0.787, p<0.001) (Figure 4.5 b). 

Similarly, there was a positive correlation between the solubilisation of protein and methane 

yield (r(22)=0.733, p<0.001) (Figure 4.5 c). 

 

 

Figure 4.5 Correlation between methane yield and the solubilisation of (a) COD, (b) 

carbohydrate and (c) protein for the enzymatic pre-treatment.   
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For low-temperature thermo-alkaline pre-treatment, the solubilisations of COD and 

carbohydrate were both positively correlated with methane yield (r(26)=0.476, p=0.014 and 

r(26)=0.457, p=0.019, respectively) (Figures 4.6 a and 4.6 b). Moreover, there was also a 

positive correlation between the solubilisation of protein and methane yield (r(26)=0.489, 

p=0.011) (Figure 4.6 c).  

 

 

Figure 4.6 Correlation between methane yield and the solubilisation of (a) COD, (b) 

carbohydrate and (c) protein for thermo-alkaline pre-treatment. 
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4.3.4 Energy balance 

 

In the current study, the methane yields were enhanced by the tested pre-treatment methods, 

and the energy output (Eo) and the energy input (Ei) to energy output (Eo) ratios of Ei/Eo are 

summarized in Table 4.7. The value of Ei for enzymatic hydrolysis was estimated at 1.25 kJ/g 

VS, and this was calculated based on the temperature used to catalyst (55 ℃) and deactivate 

(75 ℃) the enzymes. The values of Eo increased with enzyme dosage and mixed enzymes 

obtained higher values than single enzymes (Table 4.7). The ratios of Ei/Eo were all lower 

than one (except A1), which indicates there were the positive energy balances for enzymatic 

hydrolysis.  

 

For low-temperature thermo-alkaline hydrolysis, values of Ei were estimated at 0.28 and 0.58 

kJ/g VS for 37 and 55 ℃, respectively. Higher values of Eo were achieved by high pre-

treatment temperature of 55 ℃ compared to 37 ℃. For 55 ℃ pre-treatment, the ratios of Ei/Eo 

at most conditions (except for H3A) were lower than one, whereas only L2A and L2B (10% 

Ca(OH)2 dosage) obtained positive energy balances for 37 ℃ pre-treatment.  

 

Table 4.7 Methane yields, energy output (Eo) and energy ratios (Ei/Eo) of enzymatic and 

thermo-alkaline pre-treatments 

No. Methane 

yield 

Eo 

(kJ/gVS) 

Ei/Eo No. Methane 

yield 

Eo 

(kJ/gVS) 

Ei/Eo 

Untreated 120 ± 15a / / Untreated 129 ± 13 / / 

C1 159 ± 11 1.41 0.89 L1A 135 ± 11 0.22 1.25b 

P1 169 ± 7 1.76 0.71 L1B 127 ± 0 / / 

A1 146 ± 9 0.93 1.34b L2A 139 ± 6 0.37 0.77 

CP1 248 ± 5 4.58 0.27 L2B 154 ± 13 0.88 0.32 

CA1 213 ± 14 3.32 0.38 L3A 134 ± 5 0.18 1.58b 

C2 183 ± 12 2.24 0.56 L3B 136 ± 5 0.25 1.11b 

P2 194 ± 1 2.67 0.47 H1A 148 ± 5 0.67 0.86 

A2 177 ± 14 2.03 0.62 H1B 153 ± 1 0.86 0.68 

CP2 314 ± 11 6.94 0.18 H2A 162 ± 1 1.18 0.49 

CA2 291 ± 5 6.13 0.20 H2B 154 ± 2 0.88 0.66 

    H3A 139 ± 6 0.35 1.66b 

    H3B 154 ± 2 0.88 0.66 

a Error bar= mean ± SD, n=3;  

b The ratio of Ei/Eo >1, which indicates the negative energy balance. 
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4.4 Discussion  

 

4.4.1 Effect of pre-treatments on hydrolysis efficiency  

 

4.4.1.1 Enzymatic pre-treatment 

 

The efficiency of enzymatic pre-treatment is linked to the composition of the microalgal cell 

wall (Ometto et al., 2014). In the current study, the tested microalgae strain is C. vulgaris, 

which belongs to the glucosamine-type Chlorella genus, and the main components of its cell 

wall are cellulose (25 – 30%) and hemicellulose (15 – 25%) (Abo-Shady et al., 1993; 

Yamamoto et al., 2005). Therefore, in agreement with previous studies, single cellulase at 

higher dosage (1.0% v/w) performed well in the solubilisation of carbohydrate compared to 

protease and α-amylase (Choi et al., 2010; Mahdy et al., 2014b). In the present study, the total 

protein content in C. vulgaris was observed at 39.2% of VS, and Safi et al. (2014) reported 

that 20% of the total protein in C. vulgaris is bound to the cell wall. Therefore, protease could 

also be an optimizing enzyme for the pre-treatment of C. vulgaris as reported by Mahdy et al. 

(2014b), Mahdy et al. (2014c) and Ometto et al. (2014). In agreement with previous studies, 

C. vulgaris pre-treated by protease performed well in the solubilisations of both COD and 

protein. After 24 hours pre-treatment, the maximum solubilisation of protein with a 1.0% v/w 

dosage of protease was observed to be 72%. α-Amylase is targeted to break down the starch 

content in microalgae, whereas the starch content in C. vulgaris is generally located in the 

chloroplast and is composed of amylase and amylopectin together with sugars to store the 

energy for the cells (Safi et al., 2014). The cell wall composition of C. vulgaris lacks starch, 

and therefore, this is likely to explain why the hydrolysis efficiency obtained by pre-treatment 

with α-amylase alone are lower than for cellulase and protease pre-treatments.  

 

However, higher degrees of the solubilisations of COD and carbohydrate were observed when 

α-amylase was mixed with cellulase. The single enzyme may have limited hydrolytic activity, 

whereas mixtures of enzymes can exhibit a synergistic effect, improving the hydrolysis 

efficiency (Yang et al., 2010; Alvira et al., 2011). Therefore, the higher hydrolysis efficiency 

achieved by enzymes mixtures were probably a result of synergistic effects caused by the 

presence of two type of enzymes. Similarly, cellulase mixed with protease also performed 

well compared to single enzymes, especially in protein solubilisation. This finding 

corroborates the findings of Mahdy et al. (2014b) and Ometto et al. (2014). In their studies, 
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cellulase mixed with protease or pectinase led to higher hydrolysis efficiency compared to 

single enzymes.  

 

4.4.1.2 Low-temperature thermo-alkaline pre-treatment 

 

The combination of alkaline and temperature increases the surface area of cellulose due to the 

swelling of the biomass, and the degrees of polymerization and cellulose crystallinity are 

decreased (Agbor et al., 2011). In the current study, for low-temperature thermo-alkaline pre-

treatment, the solubilisations of COD, carbohydrates and proteins increased significantly with 

Ca(OH)2 dosage and pre-treatment temperature. This finding agrees with those of Solé-Bundó 

et al. (2017a) that the highest hydrolysis efficiency was observed with the highest alkali 

dosage and temperature.  

 

Alkaline usually combined with high temperature (60 – 120 ℃) to pre-treat microalgae, as 

reported by Harun et al. (2011), Bohutskyi et al. (2014) and Solé-Bundó et al. (2017a), and 

the cellulose may not solubilized by the alkaline at low temperatures between 25 and 55 ℃  

(Kumar et al., 2009). However, in the current study, 27 – 50% of the carbohydrate 

solubilised, which is higher than the levels reported in previous studies by Mahdy et al. 

(2014a) and Solé-Bundó et al. (2017a). In their studies, NaOH or CaO were combined with 

low temperatures of 25, 50 or 55 ℃ to pre-treat microalgae, and the solubilisation of 

carbohydrate observed to range from 9.8 – 30.0%. It should be noticed that, in the current 

study, the highest Ca(OH)2 dosage was 15% w/w, which is higher than the dosages used in 

those previous studies, which were from 0.05 to 10% w/w. Solé-Bundó et al. (2017a) found 

that increasing the alkaline dosage could release more of the cell wall structural sugars of 

glucose, xylose and arabinose at the same pre-treatment temperature. Therefore, the results of 

the current study indicate that increasing Ca(OH)2 dosage may have the potential to break 

down the microalgae cell wall, and solubilisation of the cell wall constituents can then occur 

at low pre-treatment temperatures.  

 

From the current study, it was found that the effect of pre-treatment time had no significant 

effect on COD solubilisation, and this finding agrees with the results reported by Mahdy et al. 

(2014a). Their study showed that incubation time (24 and 48 hours) barely affected COD 

solubilisation when using NaOH to pre-treat microalgae C. vulgaris and Scenedemus sp.. 

Kumar et al. (2009) reported that the contact time should be increased with decreasing 

temperatures when using lime for biomass pre-treatment. In the current study, the pre-
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treatment time was set at either 24 or 48 hours, which is shorter than the in previous study of 

Liang et al. (2013). In their study, smooth cordgrass of Spartina alterniflora was pre-treated 

by lime at mild temperatures of 25 – 55 ℃ for 7 – 28 days. However, in comparison with the 

lignocellulosic biomass of cordgrass, microalgae are lignin-free substrate, and therefore the 

pre-treatment time may not need to be that long. Moreover, González-Fernández et al. (2013) 

found that pre-treatment temperature is the key factor that affects the sufficient hydrolysis of 

the microalgael cell wall rather than pre-treatment time. In their study, microalgae strain 

Scenedesmus sp. was thermally pre-treated by three temperatures of 70, 80 or 90 ℃. The 

values of soluble COD significantly increased with temperature. These values were also 

significantly enhanced after 15 minutes pre-treatment, but afterwards only increased by 8% 

from 15 minutes to 4 hours.  

 

4.4.2 Effect of pre-treatment on methane yield  

 

In the current study, the ultimate methane yields were enhanced by both enzymatic and low-

temperature thermo-alkaline pre-treatments. The improvements in methane yields were 

possibly proportional to levels of COD solubilisation (Cho et al., 2013). In the current study, 

for both pre-treatments, COD solubilisation was positively correlated with methane yield. 

This probably explains why methane yields were enhanced compared to untreated C. vulgaris. 

Moreover, methane yields were also positively correlated with levels of carbohydrate and 

protein solubilisation. This agree with the findings of Solé-Bundó et al. (2017a) that the 

highest solubilisation of both carbohydrate and protein resulted in the highest methane yield. 

For enzymatic pre-treatment, cellulase mixed with protease released more protein than other 

types of enzymes, and consequently produced the highest methane yield. This result agrees 

with the findings of Ometto et al. (2014), who demonstrated that effective enzymatic 

hydrolysis should take into account proteic and polysaccharidic components. They found that 

the highest methane yield was produced by a protease plus esterase mix.  

 

The rigid cell wall of microalgae protects them against attack from anaerobic microorganisms. 

Mahdy et al. (2014c) reported that effective pre-treatment not only aims to improve the 

ultimate methane yield but also to increase methane production rate. In the current study, 

production rates for enzymatic pre-treatment were significantly increased compared to 

untreated microalgae. After low-temperature thermo-alkaline pre-treatment, the production 

rates were also significantly increased at the high pre-treatment temperature of 55 ℃. These 

results may suggest that the initial hydrolysis stage of AD was enhanced by the tested pre-
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treatment methods. The lag phase for some conditions of enzymatic pre-treatment were 

shorter than for untreated microalgae; however, in low-temperature thermo-alkaline pre-

treatment the increased methane yields were accompanied by an extended lag phase, 

especially for the high concentration of 15% w/w Ca(OH)2. This was probably due to the 

generation of phenolic compounds when using a relatively high concentration of alkaline 

(Antonopoulou et al., 2015).  

 

In the current study, low-temperature thermo-alkaline pre-treatment released more 

carbohydrates, and this may indicate that this pre-treatment is more efficient in the 

degradation and solubilisation of cell wall components. However, enzymatic pre-treatment 

released more COD and proteins than thermo-alkaline pre-treatment, and this may suggest 

that the microalgae cell wall is broken down more efficiently via enzymatic pre-treatment, 

releasing more intercellular organic matters (Ometto et al., 2014). Therefore, this likely 

explains why enzymatic pre-treatment produced more methane than low-temperature thermo-

alkaline pre-treatment. However, Yen and Brune (2007) and Cho et al. (2013) reported that 

the biological decomposition of microalgal biomass via the hydrolysis of anaerobic 

microorganisms acts more strongly than pre-treatments. Therefore, the methane production of 

microalgae might be enhanced by other factors, such as the substrates to inoculum ratio, or 

operational conditions such as AD temperature rather than pre-treatments (Passos et al., 2013; 

Caporgno et al., 2015). Moreover, the high protein composition in microalgal biomass results 

in unbalanced carbon-to-nitrogen (C/N) ratios that may cause low methane yields (Schwede et 

al., 2013; Li et al., 2017).  

 

4.4.3 Effects of pre-treatment on energy balance  

 

The energy balance of microalgae pre-treatment was estimated in order to gain insights into 

the possibility of full-scale implementation (Passos et al., 2013). In the current study, the 

extra methane production was sufficient to balance the energy required for the pre-treatment 

of microalgal biomass in most of tested conditions. The enzymatic pre-treatment showed the 

most energetically balanced conditions compared to low-temperature thermo-alkaline pre-

treatment, and this result agrees with the finding of Ometto et al. (2014). In their study, after 

enzymatic pre-treatment, microalgal biomass produced more methane and leading to a more 

positive energy balance compared to thermal and ultrasound pre-treatments.  
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For low-temperature thermo-alkaline pre-treatment, higher energy inputs were associated with 

higher pre-treatment temperature, but more methane was also produced resulting in a more 

positive energy balance. This finding corroborates those of Passos et al. (2013), who found 

that for microalgae after thermal pre-treatments, the Ei/Eo ratios were decreased with 

increasing pre-treatment temperature from 55 to 95 ℃; and a positive energy balance was 

obtained at temperatures over 75 ℃. It should be noted that, in the current study, the 

temperatures used of 37 or 55 ℃ are lower than in the previous study. However, the 

combination of Ca(OH)2 with low temperature was able to enhance methane yields leading to 

a positive energy balance, especially at an optimal dosage (such as 10% w/w). Therefore, the 

results suggest that low-temperature thermo-alkaline pre-treatment could also be an 

energetically efficient method in the pre-treatment of microalgae for methane production.  

 

4.5 Conclusion  

 

In this chapter, the effect of enzymatic and low-temperature thermo-alkaline pre-treatments 

on microalgae solubilisation and methane yield was investigated. For enzymatic pre-

treatment, the methane yields were significantly enhanced after pre-treatment, where the 

enzyme concentration at 1.0% v/w dosage performed the best. Moreover, mixed enzymes 

gave better hydrolysis efficiency and produced more methane than the use of single enzymes.  

 

For thermo-alkaline pre-treatment, the solubilisation of organic matters and methane yields 

increased with the pre-treatment temperature and Ca(OH)2 dosage. However, increasing 

Ca(OH)2 dosage did not significantly improve the maximum methane productions. The 

solubilisations of carbohydrates and proteins significantly increased with the pre-treatment 

time, but it had no significant effect on methane yields.  

 

Overall, enzymatic pre-treatment could break down the microalgae cell wall efficiently, and 

may releasing more intercellular components, and producing more methane than low-

temperature thermo-alkaline pre-treatment. The results also showed that both enzymatic and 

low-temperature thermo-alkaline pre-treatments were considered to be energetically efficient 

methods to pre-treat microalgae. However, unbalanced C/N ratios in microalgal biomass can 

cause low methane yields and an unstable AD process when using microalgae as a mono-

digestion feedstock. Therefore, follow-up studies should carried out using co-digestion 

strategies to enhance methane production from microalgae.   
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Chapter 5. Anaerobic co-digestion of microalgae Chlorella vulgaris and 

potato processing waste in biochemical methane potential (BMP) tests: 

effect of mixing ratio, waste type and substrate to inoculum ratio 

 

5.1 Introduction 

 

An unbalanced carbon-to-nitrogen (C/N) ratio in microalgae can cause low methane yields 

and an unstable AD process when using microalgae as a mono-digestion feedstock. Co-

digestion of microalgae with other carbon-rich substrates, such as waste paper and maize can 

balance the C/N ratios and increase methane yields as shown by Yen and Brune (2007), 

Schwede et al. (2013) and Rétfalvi et al. (2016).  

 

Potato processing waste (PPW) consists of potato discarded parts (PPWdp) and potato peel 

(PPWp) (Pistis et al., 2013; Schalchli et al., 2017), and the C/N ratios of PPW ranges from 

12.1/1 to 30.0/1 (Pistis et al., 2013; Lucas, 2014), and therefore it is a promising feedstock for 

anaerobic co-digestion with other low carbon substrates such as dairy manure and sugar beet 

leaves (Parawira et al., 2004; Yadanaparthi et al., 2014). However, there is little information 

available about the anaerobic co-digestion of microalgae with PPW. 

 

The substrate to inoculum ratio (SIR) is crucial during BMP tests as it ensures a balance of 

the bacteria and archaea that carry out the acidification and methanogenic process (Raposo et 

al., 2009; Eskicioglu and Ghorbani, 2011; Fagbohungbe et al., 2015) 

 

The aim of this Chapter was to investigate the feasibility of using PPW as a co-substrate for 

co-digestion with microalga Chlorella vulgaris in batch BMP tests: 

 

1. To evaluate the effects of the mixing ratios between C. vulgaris and PPW on methane 

yield; 

 

2. To evaluate the effects of different types of PPW- discarded parts (PPWdp) and peel 

(PPWp) on methane yield; 

 

3. To evaluate the effect of SIR on methane yield. 
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5.2 Materials and methods 

 

5.2.1 Experimental design 

 

The current study utilised a 5×2×2 mixed factorial design, including one within-independent 

variable, i.e. the mixing ratios between C. vulgaris and PPW, with five levels: 100:0, 75:25, 

50:50, 25:75 and 0:100 on the basis of VS. The proportions were selected based on previous 

microalgae co-digestion studies (Yen and Brune, 2007; Wang et al., 2016). The first between-

independent variable was PPW type, either PPWdp or PPWp. The second between-independent 

variable was the substrate to inoculum ratio (SIR), where substrate and anaerobic inoculum 

were mixed to achieve a ratio of 0.5:1 or 1:1 on the basis of VS (Lee et al., 2013; Ometto et 

al., 2014). A summary of the experimental design is shown in Table 5.1. The dependent 

variables were biomenthane potential (experimental final methane yields and BMP kinetic 

results), and process stability that measured as the concentrations of soluble COD (CODs) and 

FAN. 

 

Table 5.1 Summary and coding of the experimental design for microalgae co-digestion trials. 

Treatment coding: D = potato discarded parts (PPWdp), P = potato peel (PPWp), 1-5 

corresponds to the mixing ratio, A = SIR of 1.0, B = SIR of 0.5. 

C. vulgaris : PPW (based on VS) 

100:0 75:25 50:50 25:75 0:100 

D1A P1A D2A P2A D3A P3A D4A P4A D5A P5A 

D1B P1B D2B P2B D3B P3B D4B P4B D5B P5B 

 

 

5.2.2 Microalgae and potato processing waste 

 

The C. vulgaris strain (CCAP 211/63) was used in this study and detailed cultivation and 

harvesting methods are described in Section 3.1. The simulated PPW was made in two groups 

of PPWdp and PPWp as shown in Figure 5.1. The waste, with 2 L of distilled water, was 

homogenized using a kitchen blender. 
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The feedstocks were characterised by their TS, VS, CODt, carbohydrate and proteins content, 

as well as carbon (C) and nitrogen (N) content are summarised in Table 5.2. The anaerobic 

seed inoculum was collected from a manure-based farm anaerobic digester located at Cockle 

Park Farm, Northumberland, UK.  

 

 

Figure 5.1 Preparation of potato processing waste 

 

 

5.2.3 Biochemical methane potential (BMP) test  

 

Detailed methods of set up batch BMP tests are described in Section 4.2.4. The volume of 

methane was calculated under STP conditions (0 ℃, 1atm), and detailed methods can be 

found in Section 3.4.1. All BMP bottles were placed in a 37 ℃ incubator at 70 rpm for 25 or 

27 days of reaction.  

 

5.2.4 Analytical methods 

 

General analytical procedures are described in Section 3.2. 

 

5.2.5 Kinetics of anaerobic digestion  

 

The modified Gompertz kinetics model is described in Section 4.2.6.  
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5.2.6 Synergistic effect 

 

The synergistic effect is the inner reaction produced by the co-digestion of different 

feedstocks (Nielfa et al., 2015). This effect can be calculated as Equation 5.1. 

 

α =
𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 𝑌𝑖𝑒𝑙𝑑

𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 𝑌𝑖𝑒𝑙𝑑
                                             (5.1) 

 

where “Experimental Yield” is the methane yield obtained from BMP test for each co-

digestion mixture, “Theoretical yield” was calculated from the experimental yields of the 

individual substrates taking into account of VS values of each substrate. 

 

5.2.7 Statistical analysis 

 

Experimental data (final methane yield, kinetic data, CODs, and FAN) were analysed by a 3-

way mixed analysis of variance (ANOVA) with the Bonferroni post hoc test (Quinn and 

Keough, 2002; Field, 2009) using IBM SPSS statistics, version 23. The 95% confidence 

interval of differences (p<0.05) was chosen to define the statistical significance. MATLAB, 

R2015a was used to calculate P, Rm and λ for each digester.  

 

5.3 Results 

 

5.3.1 Substrate and inoculum characterisation 

 

C. vulgaris had a C/N ratio of 6.43/1 (Table 5.2). The addition of PPWdp enhanced the C/N 

ratio to within a range of 8.03/1 to 22.77/1. The C/N ratios were also increased by adding 

PPWp (ranging from 7.99/1 to 19.86/1). For these co-digestion mixtures, the carbohydrates 

content increased whereas the protein content decreased.  

 

The seed inoculum had TS of 15.2 ± 0.1 g/L, VS/TS of 63.0 ± 1.0%, a pH of 7.96 and 

concentrations of NH4
+-N and FAN of 4100 ±141 and 433 ± 15 mg/L, respectively.  
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Table 5.2 Characterisation of microalgae Chlorella vulgaris, potato discarded parts (PPWdp) and peel (PPWp), and co-digestion mixtures. 

a Mean = ± SD, n = 4. 

b the large variations in TS and VS content was due to different amounts of raw substrate having been diluted with distilled water. 

 TS 

(g/L) 

VS 

(g/L) 

VS/TS 

(%) 

COD 

(g/L) 

COD/VS 

 

Protein 

(% VS) 

Carbohydrate 

(% VS) 

C 

(% DW) 

N 

(%DW) 

C/N 

 

Chlorella 3.6 ± 0.6a 3.5 ± 0.7 97.0 ± 1.2 5.6 ± 1.0 1.6 ± 0.1 35.9 ± 3.1 20.0 ± 3.3 52.55 8.17 6.43 

PPWdp 11.5 ± 8.2b 10.0 ± 6.9b 90.1 ± 5.8 20.5 ± 15.6 1.8 ± 0.5 16.4 ± 2.3 77.0 ± 1.3 39.76 0.97 40.78 

PPWp 8.1 ± 5.9 6.9 ± 4.8 88.2 ± 5.3 10.4 ± 6.9 1.6 ± 0.2 17.8 ± 1.3 63.3 ± 10.6 40.25 1.40 28.59 

25% PPWdp 4.6 ± 1.3 4.4 ± 1.2 95.0 ± 1.0 6.7 ± 1.8 1.5 ± 0.1 27.1 ± 3.3 44.4 ± 2.5 49.47 6.16 8.03 

50% PPWdp 5.4 ± 1.8 5.0 ± 1.6 92.7 ± 2.6 7.4 ± 2.3 1.5 ± 0.0 25.7 ± 3.1 51.7 ± 3.4 46.96 4.16 11.24 

75% PPWdp 8.8 ± 5.1 7.9 ± 4.4 91.5 ± 3.7 11.5 ± 5.7 1.5 ± 0.2 21.0 ± 1.2 67.2 ± 2.3 44.25 1.94 22.77 

25% PPWp 3.9 ± 1.1 3.6 ± 1.0 93.9 ± 0.9 5.5 ± 1.6 1.5 ± 0.1 25.2 ± 2.8 42.4 ± 4.3 50.03 6.26 7.99 

50% PPWp 4.1 ± 1.2 3.7 ± 1.0 90.0 ± 3.9 5.1 ± 1.7 1.4 ± 0.2 23.6 ± 1.5 51.8 ± 5.2 46.22 4.13 11.19 

75% PPWp 6.3 ± 3.5 5.4 ± 2.8 88.7 ± 5.3 7.0 ± 3.8 1.3 ± 0.2 21.0 ± 0.1 54.0 ± 9.0 42.65 2.15 19.86 
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5.3.2 Biomenthane potential of mono- and co-digestion  

 

5.3.2.1 Experimental BMP  

 

Figure 5.2 shows the cumulative methane produced by mono-digestion of C. vulgaris, and co-

digestion with PPWdp (Figure 5.2 A) or PPWp (Figure 5.2 B) for 1.0 SIR. The methane yields 

were inhibited during the first 7 days for all experimental conditions, but after 9 days the 

methane yields increased linearly with time. Mono-digestion of C. vulgaris produced 158 mL 

CH4/g VS, compared with the yields of 232 and 340 mL CH4/g VS by mono-digestion of 

PPWp and PPWdp, respectively.  

 

Figure 5.3 shows the cumulative methane produced by mono-digestion of C. vulgaris, and co-

digestion with PPWdp (Figure 5.3 A) or PPWp (Figure 5.3 B) for 0.5 SIR. After 3 days, the 

methane yields increased linearly with time for all treatments. The lowest yield was 176 mL 

CH4/g VS by mono-digestion of C. vulgaris, while the high methane yields were 439 and 348 

mL CH4/g VS by mono-digestion of PPWdp and PPWp, respectively. 

 

For both SIRs, co-digestion of the mixtures showed methane yields between those of the two 

mono-substrates, and the mixing ratios between C. vulgaris and PPW had a significant effect 

on the final methane yields (F(4,32)=100.68, p<0.001). A greater PPW introduction relative 

to C. vulgaris led to an improvement of the methane yields. The yields were achieved by co-

digestion of 25:75 C. vulgaris and PPW were significantly higher than the mixing ratios of 

100:0 (p<0.001), 75:25 (p<0.001) and 50:50 (p=0.031). Moreover, the type of PPW also had a 

significant effect on yields (F(1,8)=52.94, p<0.001), with PPWdp giving significantly higher 

methane values than both mono-digestion or co-digestion with PPWp. To access the impact of 

SIR on methane yields, it was found that the overall methane yields were significantly higher 

for 0.5 SIR than for 1.0 SIR (F(1,8)=54.82, p<0.001).  
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Figure 5.2 Cumulative methane yield of Chlorella vulgaris co-digested with PPW for 1.0 SIR 

with [A] potato discarded parts (PPWdp) and [B] potato peel (PPWp). The solid line represents 

the Gompertz model fit data. Co-digestion with PPWdp at 1.0 SIR (D1A-D5A), co-digestion 

with PPWp at 1.0 SIR (P1A-P5A). 
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Figure 5.3 Cumulative methane yield of Chlorella vulgaris co-digested with PPW for 0.5 SIR 

with [A] potato discarded parts (PPWdp) and [B] potato peel (PPWp). The solid line represents 

the Gompertz model fit data.  Co-digestion with PPWdp at 0.5 SIR (D1B-D5B); co-digestion 

with PPWp at 0.5 SIR (P1B-P5B). 
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5.3.2.2 BMP kinetic model  

 

The modified Gompertz model was applied to the experimental BMP data and used to 

determine the maximum methane production rate (Rm) and lag phase (λ) for each substrate 

(Table 5.3). The values of Rm obtained by co-digestion with PPW were gradually improved as 

the proportions of PPWdp or PPWp were increased, and the mixing ratios between C. vulgaris 

and PPW had a significant effect on Rm (F(1.736,32)=18.52, p<0.001).  The PPW type also 

had a significant effect on Rm (F(1,8)=17.89, p=0.003). Co-digestion or mono-digestion with 

PPWdp gave higher production rates than with PPWp. It was also found that the values of Rm 

for 0.5 SIR were significantly lower than those produced by 1.0 SIR (F(1,8)=58.28, p<0.001).  

The time values of λ for 0.5 SIR were significantly shorter than at 1.0 SIR (F(1,8)=177.59, 

p<0.001). The effect of mixing ratios on time values of λ was not significant (F(4,32)=0.54, 

p=0.711). Also, the values of λ did not significantly differ between PPWdp and PPWp 

(F(1,8)=1.76, p=0.221). However, there was a significant interaction effect between the 

mixing ratios, type of PPW and SIR (F(4,32)=3.58, p=0.016). This interaction effect can be 

seen as at 0.5 SIR, when the type of PPW is PPWdp, the values of λ being reduced as 

increasing the proportions of PPW.  

 

Table 5.3 Summary of modified Gomerptz kinetics data for Chlorella vulgaris co-digestion 

with PPWdp or PPWp at two substrate to inoculum ratios (SIR). Co-digestion with PPWdp at 

1.0 SIR (D1A-D5A) or 0.5 SIR (D1B-D5B); co-digestion with PPWp at 1.0 SIR (P1A-P5A) 

or 0.5 SIR (P1B-P5B). 

1.0 SIR Rm 

(mLCH4/gVS/d) 

λ 

(d) 

R2 0.5 SIR Rm 

(mLCH4/gVS/d) 

λ 

(d) 

R2 

D1A 15.75 7.14 0.9659 D1B 14.33 4.06 0.9957 

D2A 21.45 6.85 0.9899 D2B 23.91 3.90 0.9879 

D3A 18.97 6.76 0.9730 D3B 15.74 2.95 0.9923 

D4A 22.77 7.17 0.9817 D4B 17.60 2.82 0.9924 

D5A 40.90 8.73 0.9942 D5B 26.15 3.11 0.9845 

P1A 15.75 7.14 0.9659 P1B 14.33 4.06 0.9957 

P2A 29.41 7.22 0.9865 P2B 19.67 3.15 0.9882 

P3A 18.77 7.57 0.9739 P3B 13.32 4.48 0.9945 

P4A 22.94 8.76 0.9775 P4B 13.85 2.70 0.9953 

P5A 21.45 6.85 0.9899 P5B 23.91 3.90 0.9879 
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5.3.2.3 Synergistic effects of co-digestion  

 

To study the synergistic effects produced by co-digestion of C. vulgaris with PPWdp or PPWp, 

the theoretical yields of co-substrates were calculated from the experimental yields of the sole 

substrates taking into account of VS values of each substrate. Figure 5.4 shows that the 

synergistic effects (experimental yields higher than theoretical yields) were only found in co-

digestion of C. vulgaris with PPWp for 1.0 SIR. 

 

 

Figure 5.4 Experimental and theoretical methane yields for the co-digestion of Chlorella 

vulgaris with PPW at [A] 1.0 SIR and [B] 0.5 SIR. Potato discarded parts (PPWdp) at 1.0 SIR 

(D2A-D4A) and 0.5 SIR (D2B-D4B); or with potato peel (PPWp) at 1.0 SIR (P2A-P4A) and 

0.5 SIR (P2B- P4B). Error bars = mean ± SD, n=2. 
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5.3.3 Process stability   

 

In the current study, concentrations of CODs, NH+
4-N and pH were measured at the end of the 

BMP tests. The concentrations of FAN were calculated based on the values of pH and NH+
4-

N. Figure 5.5 shows that the highest CODs present at the end of the BMP tests was 3210 mg/L 

and was produced by mono-digestion of PPWdp at 1.0 SIR. The mixing ratios had a significant 

effect on CODs (F(4,16)=38.26, p<0.001). The overall CODs obtained by digestion with 

PPWdp were significantly higher than with PPWp (F(1,4)=122.51, p<0.001). The 

concentrations of CODs improved with increasing the SIR ratio, and the values obtained by 

0.5 SIR were significantly lower than by 1.0 SIR (F(1,4)=1473.68, p<0.001). The significant 

effect on CODs was also qualified by an interaction effect between mixing ratios, type of 

PPW and SIR (F(4,16)=33.49, p<0.001). This interaction effect can be seen as the similar 

amounts of CODs being produced by co-digestion of C. vulgaris with PPWp for both SIRs. 

During co-digestion of C. vulgaris with PPWdp, similar amounts of CODs were obtained at 0.5 

SIR; however, for 1.0 SIR the concentrations of CODs increased significantly with increasing 

proportions of PPWdp. Specifically, mono-digestion of C. vulgaris, and co-digestion with 25% 

and 50% PPWdp produced similar amounts of CODs. However, the concentrations of CODs 

increased significantly when the proportions of PPWdp were at 75% and 100%.  

 

 

Figure 5.5 Concentrations of soluble COD obtained at the end of co-digestion of Chlorella 

vulgaris with potato discarded parts (PPWdp) at 1.0 SIR (D1A-D5A) and 0.5 SIR (D1B-D5B); 

or with potato peel (PPWp) at 1.0 SIR (P1A-P5A) and 0.5 SIR (P1B- P5B). Error bars = mean 

± SD, n=2. 
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Figure 5.6 shows that the highest FAN of 123 mg/L was obtained by mono-digestion of C. 

vulgaris at 0.5 SIR, and the lowest value of 20 mg/L was obtained by mono-digestion of 

PPWdp at 1.0 SIR. The mixing ratios of PPW had a significant effect on FAN (F(4,16)=20.70, 

p<0.001). Also, the concentrations of FAN were significantly increased at lower SIR 

(F(1,4)=626.42, p<0.001). The main effects of mixing ratios of PPW and SIR on 

concentrations of FAN can also qualified by a significant interaction effect between these two 

factors (F(4,16)=15.44, p<0.001). This interaction effect can be seen as, for 0.5 SIR, the 

concentrations of FAN showed a clear decreasing trend as increasing the proportions of 

PPWdp or PPWp. The type of PPW also had a significant effect on concentrations of FAN 

(F(1,4)=13.86, p=0.020).  

 

 

Figure 5.6 Concentrations of free ammonia nitrogen (FAN) obtained at the end of co-

digestion of Chlorella vulgaris with potato discarded parts (PPWdp) at 1.0 SIR (D1A-D5A) 

and 0.5 SIR (D1B-D5B); or with potato peel (PPWp) at 1.0 SIR (P1A-P5A) and 0.5 SIR 

(P1B- P5B). Error bars = mean ± SD, n=2. 
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5.4 Discussion 

 

5.4.1 Effect of co-digestion on biomethane potential and process stability 

 

In the current study, 158 and 176 mL CH4/g VS were produced by mono-digestion of C. 

vulgaris, which is lower than previously reported by Wang et al. (2016). Their results showed 

that 250 mL CH4/g VS was produced by mono-digestion of Chlorella sp. and a possible 

reason for this is that the growth media they applied to cultivate the microalgae was a mixed 

media containing synthetic and real AD swine effluent. Consequently, the mature Chlorella 

sp. was harvested with a C/N ratio at 17/1, which is much higher than in the current study 

(6.43/1).  

 

The benefits of co-digestion of microalgae with carbon-rich feedstocks are to rebalance the 

C/N ratio, reduce the concentration of inhibitory compounds affecting methanogens, and 

provide a stable AD process (Yen and Brune, 2007). In the current study, the addition of 

PPWdp or PPWp to C. vulgaris both resulted in an increase in the C/N ratio, and the results 

indicate that PPW has the potential to be an effective co-substrate for microalgae co-digestion 

in terms of generating more balanced C/N ratios. Consequently, the co-digestion of C. 

vulgaris with PPWdp increased methane yields by 22 – 47% above that of C. vulgaris mono-

digestion, while co-digestion with PPWp increase it by 12 – 32%. Solé-Bundó et al. (2017b) 

investigated the co-digestion of wheat straw with mixed microalgae in batch BMP tests. Their 

results showed that the final methane yield increased by only 5 – 9% compared to microalgae 

mono-digestion, which is lower than the current study. Wheat straw is a lignocellulosic 

biomass consisting of 40.8 – 49.8% of cellulose, 26.4% of hemicellulos and 19.6 – 22.9% of 

lignin (Beltrame et al., 1992; Zimbardi et al., 1999; Kasmani and Samariha, 2011). 

Lignocellulosic biomass comprises a strong structural matrix formed by the digestible 

polymers (cellulose and hemicellulose) being embedded within the relatively recalcitrant 

lignin component, and therefore requires additional treatment to be broken down completely 

into simple sugars. However, 65.0 – 85.0 % of the carbohydrate in potato waste is present as 

starch (Arapoglou et al., 2010; Leonel et al., 2017), and unlike lignocellulosic biomass, it is 

easily broken down into sugars (Hess et al., 2007). Therefore, this suggests that PPW could 

be more efficient than lignocellulose biomass as a co-substrate with microalgae.   
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Improved kinetics data is another benefits of co-digestion of two feedstocks had reported by 

Ramos-Suárez et al. (2014) and Solé-Bundó et al. (2017b). In the current study, the addition 

of PPW to C. vulgaris significantly increased the values of Rm, while a significant reduction 

the values of λ was seen for the co-digestion with PPWdp at 0.5 SIR. The improved kinetics 

may also suggest that PPW could be a useful co-substrate in co-digestion with microalgae. 

Moreover, the concentrations of FAN were significantly reduced by co-digestion with PPW, 

and FAN is regarded as the active component leading to ammonia inhibition for AD process 

(Yenigün and Demirel, 2013). Therefore, in the current study, the results indicating that co-

digestion of microalgae with PPW brings further benefits by reducing the risk of ammonia 

toxicity. 

 

The synergistic effects would be an additional benefits provided by co-digestion of different 

feedstocks (Nielfa et al., 2015). However, in the current study, synergistic effects in final 

methane yields were only found for the co-digestion of C. vulgaris with PPWp at 1.0 SIR. 

Research to identify the possible mechanisms leading to the improvement of co-digestion 

performance has not focused entirely on the balancing of C/N ratios in feedstock. Some 

studies reported that the synergistic effect of co-digestion of microalgae with other co-

substrates was attributed to certain micronutrients and essential trace elements provided to the 

microorganisms, and this may hiding the true benefits of the co-digestion (Schwede et al., 

2013; Olsson et al., 2014). However, in the current study, additional nutrients were not 

supplied in BMP bottles, and therefore the presence of potentially toxicity components during 

digestion was thought to influence the synergistic effects seen in co-digestion studies (Cheng 

and Zhong, 2014). In the current study, the seed inoculum was collected from a manure-based 

anaerobic digester with high concentrations of ammonia nitrogen, especially FAN which was 

measured at over 400 mg/L. This inoculum was used without diluting and washing, and could 

have provided extra nitrogen in BMP bottles, masking the true benefits of the co-digestion 

mixtures in batch BMP tests. Consequently, for 0.5 SIR, the concentrations of FAN were 

significantly higher than for 1.0 SIR because of the relatively higher proportion of inoculum 

that was added into the BMP bottles. Therefore, this likely explains why the synergistic 

effects of the co-digestion substrates were only found for 1.0 SIR.  
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5.4.2 Effect of mixing ratios on biomethane potential and digester stability  

 

The co-digestion of C. vulgaris with PPW, the methane yields also affected by the mixing 

ratios between C. vulgaris and PPW proportions. In the current study, the best performance 

was found at ratio of 25:75 C. vulgaris and PPW compared to ratios of 75:25 and 50:50.  

Wang et al. (2016) found that the C/N ratio of swine manure was 35/1, and compared to 

mono-digestion with Chlorella sp., the methane yields improved by around 13 – 28% after 

co-digestion with these two substrates. This improvement is similar to that achieved by co-

digestion of PPWp with C. vulgaris, however, in the previous study the highest yield of 348 

mL CH4/g VS was obtained from co-digestion with 6% Chlorella sp. and 94% swine manure 

on the basis of VS. Since the 25:75 ratio was the highest co-digestion ratio investigated in the 

current study that contained C. vulgaris, it is possible that higher methane yields might have 

been found at ratios containing greater proportions of PPW (e.g a 10:90 ratio). However, in 

the current study, the results showed that the concentrations of CODs increased with 

increasing proportions of PPW to microalgae, and the highest CODs observed by mono-

digestion of PPW. According to González-Fernández and García-Encina (2009), the CODs 

produced in an anaerobic process corresponds mainly to oxidation produced volatile fatty 

acids (VFA). Moreover, potato waste has high degree of soluble components and high 

biodegradability resulting in rapid and strong acidification, and consequently accumulated 

more VFA which may have inhibited the activity of methanogens (Kaparaju and Rintala, 

2005; Pistis et al., 2013).Therefore, the results may indicate that adding higher proportions (> 

75%) of PPW to microalgae increased the possibility of generating high VFA concentrations 

that might inhibit the AD process. Similarly, the mono-digestion of PPW creates a possibility 

that the AD process might inhibited due to VFA accumulation, although it obtained highest 

methane yields in the current batch BMP tests. In the current study, the C/N ratios in the 

mixtures of C. vulgaris with PPWdp or PPWp at a mixing ratio of 25:75 were 22.77/1 and 

19.86/1, respectively, both within the optimal range quoted for AD process (Yen and Brune, 

2007; Weiland, 2010). Therefore, the current study suggests that a mixing ratio of 25:75 

might provide more optimal conditions for the co-digestion of microalgae and PPW.  
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5.4.3 Effect of type of PPW on biomethane potential and digester stability  

 

The addition of PPWdp or PPWp to C. vulgaris increased the C/N ratios and the final methane 

yields. Therefore, both of these sources of PPW could be used as co-digestion substrates with 

microalgae. Methane yields during mono- or co-digestion with PPWdp were significantly 

higher than during mono- or co-digestion with PPWp. PPWdp consisting of 54.3 – 76.8 % of 

dry matter as starch (Leonel et al., 2017), while Arapoglou et al. (2010) and Liang et al. 

(2014) observed for PPWp that between 34.3 – 52.1 % of dry matter is starch. In the present 

study, the total carbohydrates content for PPWdp was 77.0 % of dry weight, and 63.3 % of dry 

weight for PPWp, suggesting that PPWdp contained higher amounts of starch (around 85% of 

total carbohydrates) than the values (65% of total carbohydrates) for PPWp, although the 

starch analysis was not determined directly. Spets et al. (2010) reported that starch is easily 

broken down into monosaccharides, and the higher starch contents in anaerobic feedstocks 

may improve their anaerobic biodegradability (Kaparaju and Rintala, 2005). Therefore, in the 

current study, the higher methane yields achieved by mono- or co-digestion with PPWdp was 

probably a result of their higher starch content with respect to PPWp. Moreover, increased 

methane production rates (Rm) and shorter lag phase (λ) were seen during mono- or co-

digestion with PPWdp compared to PPWp. These results suggest that the PPWdp contained 

greater concentrations of soluble components than PPWp.   

 

5.4.4 Effect of SIR on biomethane potential and digester stability  

 

In the current study, the results showed that methane yields were increased at lower SIR, and 

agree with previous studies using different substrates (Raposo et al., 2009; Eskicioglu and 

Ghorbani, 2011; Fagbohungbe et al., 2015). An optimum SIR in the digester is considered to 

contain the balanced amount of anaerobic microorganisms for digestion of both primary and 

intermediate products (Raposo et al., 2009; Eskicioglu and Ghorbani, 2011; Fagbohungbe et 

al., 2015). However, the lag phase (λ) in the present study significant reduced at higher SIR, 

indicating that the activity of methanogens was limited for 1.0 SIR compared to 0.5 SIR; 

supported by the findings of Li et al. (2014b) and Fagbohungbe et al. (2015).  

 

The concentrations of CODs decreased at the lower SIR, which agree with a previous study 

reported by Fagbohungbe et al. (2015). And higher CODs concentrations were measured at 

the end of digestion for 1.0 SIR, compared to 0.5 SIR, and hence it is likely that much of this 

was from VFA. In the current study, a significant interaction effect was observed between the 
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mixing ratios, type of PPW and SIR, and may indicate that the co-digestion of C. vulgaris 

with higher proportions (> 75% VS) of PPW has the potential to accumulate more VFAs in 

terms of CODs under higher SIR. In the present study, the concentrations of FAN were 

significantly increased at lower SIR, contrasting the results obtained by González-Fernández 

and García-Encina (2009). In their study, it was found that the final concentrations of FAN 

was reduced with a decreasing SIR. The high concentrations of FAN present in the seed 

inoculum could have been responsible for the observed effects in the current study. 

 

5.5 Conclusion 

 

This Chapter has demonstrated the possibility that potato processing waste (PPW) could be 

used effectively as a feedstock co-digestion with microalgae. In batch BMP tests the methane 

production rates and final methane yields were all increased significantly as the proportion of 

PPW in the mixed waste was increased. Addition of relatively high proportions of PPW could 

decrease the concentrations of FAN, and improve digestion performance and stability by 

reducing the likelihood of ammonia toxicity. The PPWdp and PPWp co-digestion feedstocks 

both show good potential for co-digestion with microalgae. Co-digestion of C. vulgaris with 

PPWdp increased the methane yields the most, by 22 – 47%, whilst co-digestion of C. vulgaris 

with PPWp enhanced the methane yields by 12 – 32%.  Methane yields and duration of lag 

phase were both affected significantly by the variation of the SIRs. The residual level of 

CODs present at the end of BMP tests was greater at the higher SIR, and may limit observed 

methane yields.  

 

Overall, the investigation suggests that PPWdp and PPWp are both promising feedstocks for 

co-digestion with microalgae. The enhanced methane yields resulting from co-digestion can 

be attributed mainly to the balanced C/N ratios. However, the presence of relatively high 

concentrations of ammonia in seed inoculum could have hidden the true benefits of the co-

digestion. Therefore, follow-up studies should carried out using continuously fed anaerobic 

digesters to verify the potential of PPW as a feedstock for co-digestion with microalgae.  
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Chapter 6. Semi-continuous anaerobic co-digestion of marine microalgae 

with potato processing waste: the effects of start-up strategy and waste type 

on methane production and archaeal community 

 

6.1 Introduction 

 

In Chapter 5, it has demonstrated that potato processing waste (PPW) can be used an effective 

feedstock for co-digestion with freshwater microalgae C. vulgaris in batch BMP tests. 

However, the presence of relatively high concentrations of ammonia in seed inoculum could 

have hidden the true benefits of the co-digestion. Moreover, methane production is also 

dependent on the microalgae strains used (Mussgnug et al., 2010). Some marine strains such 

as Isochrysis have a simple cell membrane (D’Hondt et al., 2018), but as with freshwater 

strains their methane production potential is also limited due to high protein compositions 

(Caporgno et al., 2015). Therefore, this chapter was carried out using semi-continuously fed 

anaerobic digesters to verify the potential of PPW as a feedstock for co-digestion with marine 

microalgae. 

 

The start-up stage of a continuous anaerobic digester is an important step in the AD process, 

the success of which is related to a number of factors such as initial OLR, HRT, and the 

source and initial amounts of the seed inoculum (Angelidaki et al., 2006). Successful start-up 

of an anaerobic digester also aims to develop an appropriate microbial community to shorten 

the period of acclimatization as reported by Benabdallah et al. (2007) and Westerholm et al. 

(2016). Moreover, changes in microbial communities during the AD process have been 

reported that link to the performance of anaerobic digesters (Moset et al., 2014). However, 

microbial community information during the AD of microalgae is still limited. 

 

The aim of this Chapter was to investigate the feasibility of using potato processing waste as a 

co-substrate for co-digestion with microalgae in semi-continuous co-digestion studies: 

 

1. To evaluate the effects of start-up strategy on methane yields, digester performance and 

digester microbial communities. 

 

2. To evaluate the effects of PPW type on methane yields, digester performance and 

digester microbial communities.  
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6.2 Materials and methods 

 

6.2.1 Substrates and inoculum   

 

A commercial marine microalgae strain Tisohrysis lutea (CCMP 1324) (also frequently 

referred to as Isochrysis), and marketed as ‘Instant Algae’, was obtained from Varicon Aqua 

Solutions Ltd, UK. Approximately 0.4 L of algae concentrate (117.8 g TS/L) was 

resuspended in 2 L of distilled water. Two types of simulated PPW were prepared as PPWdp 

and PPWp. The PPW was homogenized using a kitchen blender with the appropriate addition 

of distilled water, and the detailed information about the preparation of PPW have been 

described in Section 5.2.2. The T. lutea, PPWdp and PPWp feedstocks were characterised by 

their total solids (TS), volatile solids (VS), total chemical oxygen demand (CODt), and 

carbohydrate and protein content as well as carbon (C) and nitrogen (N) content, as 

summarized in Table 6.1.  

 

The TS and VS of inoculum were 14.8 ± 0.1 and 8.3 ± 0.1 g/L, respectively. pH value of 

inoculum was 7.94, and concentrations of NH4
+-N and FAN were 4100 ±141 and 416 ± 14 

mg/L, respectively.  

 

Table 6.1 Feedstock characterisation: Tisochrysis lutea, potato discarded parts (PPWdp) and 

potato peel (PPWp). 

 T. lutea  PPWdp  PPWp 

TS (g/L) 22.1 ± 0.1a 20.4 ± 0.7 17.0 ± 0.5 

VS (g/L) 10.5 ± 0.2 18.4 ± 0.1 15.0 ± 0.4 

VS/TS (%) 47.6 ± 1.0 90.2 ± 0.1 88.1 ± 0.1 

CODt (g/L) 18.2 ± 0.6 19.4 ± 0.4 15.3 ± 0.3 

Protein (% VS) 63.2 ± 2.3 18.2 ± 0.1 22.0 ± 1.0 

Carbohydrate (% VS) 13.6 ± 1.3 75.6 ± 0.1 68.7 ± 5.5 

pH 8.10 5.92 5.91 

C/N 9.50 40.78 28.59 

a Mean ± SD, n=2. 
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6.2.2 Semi-continuous anaerobic digester conditions and operations 

 

Eight identical one litre Duran bottles (VWR, UK) were used as the semi-continuous co-

digestion digesters, with working volume of 0.8 L (Figure 6.1). Each digester was sealed with 

a rubber bung with two holes, of which one hole was connected with a gas bag to determine 

gas production and the other was a closed port (silicon tube with tube-clamp) for 

sampling/feeding. At the beginning of the experiment, all digesters were filled with 0.8 L of 

seed inoculum collected from Cockle Park Farm, and flushed with N2 to ensure anaerobic 

conditions. All digesters were placed in a temperature-controlled water-bath at an operating 

temperature of 37 ℃. The digester was mixed by hand mixing before and after feeding. 

 

 

Figure 6.1 Schematic of the semi-continuous anaerobic digesters used for microalgae co-

digestion 

 

This study utilised a 2×2 independent factorial design, and the first between-independent 

variable was start-up strategy, where two start-up strategies were evaluated, namely fed start-

up strategy: the digester immediate feeding with 100% PPW after inoculation, and unfed 

start-up strategy: the digester delayed feeding, which means no feed being supplied during 

first 5 days. The second between-independent variable was PPW type, either PPWdp or PPWp.  
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The whole experiment was divided into three phases, and detailed information of variation of 

OLR and feedstock composition over the co-digestion process is summarized in Table 6.2. 

Period І (day 1 – 5) is the initial period, where digesters D2 and D4 were fed every day with 

100% PPWdp or PPWp at an OLR of 0.5g VS/L/d, and digesters D1 and D3 were unfed. 

Period II (day 6 – 25) is the substrate change period, where all digesters were start to feed a 

mixture of 25% T. lutea and 75% PPWdp or 75% PPWp based on the proportion of VS. A 

25:75 ratio of T. lutea and PPW also had the potential to provide an optimum C/N ratio and 

produce higher methane yields compared to other tested mixing ratios (e.g. 75:25 and 50:50). 

The detailed results are discussed in Appendix A, Section A.3. Period ІІI (day 26 – 64) is the 

experimental period, and same with Period II, digesters D1 and D2 were fed with the mixtures 

of 25:75 T. lutea and PPWdp, and digesters D3 and D4 were fed with the mixtures of 25:75 T. 

lutea and PPWp. All digesters were fed every two days at an average OLR of 1.0 g VS/L/d 

during Periods II and III. The HRT of 25 days for Periods І and ІІ, Period III had a HRT of 20 

days. 

 

Table 6.2 Start-up strategy, feedstock composition and OLR for co-digesting T. lutea and 

PPW 

No. Start-up 

Strategy 

Period Operation 

time 

(days) 

OLR 

(g VS/L/d) 

Feed Composition 

(% VS) 

T. lutea PPWa 

 

D1 

 

Unfed start-up 

I 1 – 5 / 0 0 

II 6 – 25 1.0 25 75 

III 26 – 64 1.0 25 75 

 

D2 

 

Fed start-up 

I 1 – 5 0.5 0 100 

II 6 – 25 1.0 25 75 

III 26 – 64 1.0 25 75 

 

D3 

 

Unfed start-up 

I 1 – 5 / 0 0 

II 6 – 25 1.0 25 75 

III 26 – 64 1.0 25 75 

 

D4 

 

Fed start-up 

I 1 – 5 0.5 0 100 

II 6 – 25 1.0 25 75 

III 26 – 64 1.0 25 75 

a Digesters D1 and D2 were fed with potato discarded parts (PPWdp); Digesters D3 and D4 were 

fed with potato peel (PPWp). 
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During the semi-continuous co-digestion process, biogas production, methane content and pH 

values were measured every feeding day. Digestate samples removed during feeding were 

analysed weekly for TS, VS, and CODt, CODs NH4
+-N, FAN and VFAs concentrations.  

 

6.2.3 Analytical methods  

 

The general analytical procedures have been described in Section 3.2. 

 

6.2.4 Microbial community analysis  

 

For microbial community analysis, genomic DNA was extracted from digesters on days 0, 27, 

46 and 64 using an isolation kit (DNeasy PowerSoil kit, QIAGEN, UK) following the 

manufacturer’s instructions. Detailed information of DNA sequencing and processing 

sequencing data are described in Section 3.3. 

  

6.2.5 Energy analysis  

 

The energy yields (MJ/kg VS) of the mixtures of T. lutea with PPWdp or PPWp were 

estimated based on experimental data (see Section 6.3.3), and calculated using Equation 6.1 

(Serrano et al., 2014): 

 

𝐸𝑛𝑒𝑟𝑔𝑦 𝑦𝑖𝑒𝑙𝑑 = 𝑌𝐶𝐻4/𝑆 × 𝐿𝐶𝑃                                   (6.1) 

 

where 𝑌𝐶𝐻4/𝑆
 (m3

STP/kg VS) is the methane yield coefficient, and LCP is the lower calorific 

power (LCP) of methane, which has been reported to be approximately 35.8 MJ/m3 under 

standard conditions (STP) of 1atm and 0 ℃  (Serrano et al., 2014). 

 

6.2.6 Statistical analysis 

 

Semi-continuous experimental data for the concentrations of VFA, concentrations of NH4
+-N 

and FAN, pH values, specific methane yields and relative abundance of methanogenic 

archaea were analysed by two-way independent ANOVA (Field, 2009). A Spearman’s rank-

order correlation was run to determine the relationship between the relative abundance of 

methanogenic archaea and digester operating parameters (VFA concentrations and specific 

methane yields) (Field, 2009). A confidence interval of differences of 95% (p<0.05) was 
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chosen to define statistical significance. All statistical analyses were conducted using IBM 

SPSS statistics, Version 23. 

 

6.3 Results and discussion 

 

6.3.1 Digester performance - VFAs production  

 

The initial stage in AD is hydrolysis, where complex organic polymers are catabolized into 

simple sugars, amino acids and long-chain fatty acids (Kangle et al., 2012). The acidogenesis 

stage is the following step, where these components are further catabolized by acidogenic 

bacteria (Dioha et al., 2013). In this step, the important intermediate products of VFA can 

accumulate. Successful start-up of an anaerobic digester should avoid the accumulation of 

VFA that could inhibit the activity of acetogens and methanogens (Angelidaki et al., 2006).  

 

Figure 6.2 shows the concentrations of VFA during the semi-continuous co-digestion process, 

reaching its maximum values in the digesters (except digester D3) at day 15. The start-up 

strategy had a significant effect on the production of total VFA (F(1,12)=24.13, p<0.001), 

with fed start-up digesters (D2 and D4) producing more VFA than unfed start-up digesters 

(D1 and D3). The type of PPW also significantly affected the production of VFA 

(F(1,12)=76.63, p<0.001), with co-digestion of T. lutea with PPWdp producing more total 

VFA than with PPWp.  

 

Acetate and propionate were the two major VFA produced, and the observed concentrations 

of acetate and propionate in all digesters also reached their maximum values at day 15 (Figure 

6.2). The start-up strategy also had a significant effect on the concentrations of acetate 

(F(1,12)=11.18, p=0.006) and propionate (F(1,12)=127.08, p<0.001), with digesters D2 and 

D4 producing more acetate and propionate than unfed start-up digesters (D1 and D3). The 

type of PPW also significantly affected the production of acetate (F(1,12)=73.47, p<0.001) 

and propionate (F(1,12)=18.55, p=0.001). Co-digestion of T. lutea with PPWdp produced 

more acetate and propionate than co-digestion with PPWp.  
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Zhou et al. (2013) found that the production of VFA is affected by the proportion of 

feedstocks when co-digesting with two different feedstocks. In the current study, the digesters 

D2 and D4 were immediate feeding with 100% PPWdp or PPWp during the first five days, and 

Kaparaju and Rintala (2005) and Pistis et al. (2013) reported that AD of potato waste could 

cause rapid and strong acidification due to its high concentration of biodegradable 

components. Therefore, in the current study, the observed effect probably resulted from the 

high proportion of PPW added to the fed start-up digesters (D2 and D4); these results agree 

with the findings of Banerjee et al. (1999) and Elefsiniotis et al. (2005). Their studies 

demonstrated that the addition of starch-rich potato processing wastewater to primary sludge 

or municipal wastewater could stimulate acidogenesis and generate high amounts of VFA. 

 

PPWdp consists of 54.3 – 76.8% of dry matter as starch (Leonel et al., 2017), whereas 

Arapoglou et al. (2010) and Liang et al. (2014) observed values of 34.3 – 52.1% for PPWp. In 

the current study, the total carbohydrate content of PPWdp was 75.6% VS, and 68.7% of VS 

for PPWp, suggesting that PPWdp contained higher amounts of starch (around 87 % of total 

carbohydrate) than the values (63% of total carbohydrate) for PPWp, although starch content 

was not determined directly. Starch is readily catabolized into simple sugars (Spets et al., 

2010), and the higher amount of VFA produced by co-digestion with PPWdp was probably a 

result of the higher starch content with respect to PPWp. 

 

Efficient degradation of VFA is critical to the success of the AD process (Onoh et al., 2017). 

Propionate degrading microorganisms have lower specific growth rates than acetate or 

butyrate degrading microorganisms (Griffin et al., 1998; Moset et al., 2014). Therefore, 

Nielsen et al. (2007) suggested that the accumulation of propionate could be one of the major 

parameters that indicates the instability of an anaerobic system. However, in the present 

study, propionate did not accumulate in all digesters (Figure 6.2). From day 15 to 27, 

propionate was degraded more efficiently in fed start-up digesters than unfed start-up 

digesters. There were reductions of 71 and 84% of propionate concentrations in digesters D2 

and D4, respectively, which were higher than those in digesters D1 and D3 (53 and 56%, 

respectively). Therefore, on day 27 the propionate concentrations in fed start-up digesters 

were significantly lower than unfed start-up digesters (F(1,12)=5.74, p=0.034). This finding 

corroborates Moset et al. (2014), who found that the residual concentrations of propionate in 

digesters with fed during start-up were significantly lower than in unfed digesters. During 

Period III, VFAs concentrations reduced in all digesters, and there were no excessive 

accumulations of VFAs caused by co-digestion of T. lutea with PPWdp or PPWp.  



 

 

 

1
0
0

 

 

Figure 6.2 Concentrations of VFAs for semi-continuous co-digestion of T. lutea with PPWdp (digesters D1 and D2), or with PPWp (digesters D3 and 

D4) under different start-up strategies
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6.3.2 Other indicators of digester performance 

 

Figure 6.3a shows that the pH values started to decrease after feeding, and at day 6 pH values 

of 7.33 and 7.48 were observed in fed start-up digesters (D2 and D4) because of the high 

amounts of VFAs produced after feeding with 100% PPWdp or PPWp, whereas the pH values 

in unfed start-up digesters (D1 and D3) remained at 7.81.  

 

Microalgal biomass is characterised by high protein content, leading to ammonia inhibition 

when used as a mono-digestion feedstock. One major advantage of co-digesting microalgae 

with high carbon feedstocks is to reduce ammonia concentrations (Yen and Brune, 2007). 

Figure 6.3b presents the variation in FAN concentrations during semi-continuous co-digestion 

of T. lutea with PPWdp or PPWp. On day zero, high concentrations of FAN (416 mg/L) were 

observed in all digesters since the seed inoculum was collected from a manure-based 

anaerobic digester. During Period I (day 0 to 6), the FAN concentration showed a decreasing 

trend in all digesters, and at day 6 the observed concentrations in fed start-up digesters (D2 

and D4) were significantly lower than in unfed start-up digesters (D1 and D3) (F(1,4)=508.20, 

p<0.001). FAN is regarded as the active form of ammonia that leads to ammonia inhibition in 

the AD process (Yenigün and Demirel, 2013). Therefore, the results show that feeding 100% 

PPW during start-up can reduce ammonia toxicity at the beginning of semi-continuous co-

digestion.  

 

During Period III, the pH values of all digesters ranged from 6.88 to 7.05, which are within 

the optimum range for AD (Ward et al., 2008). Concentrations of FAN showed a declining 

trend in all digesters (Figure 6.3b). After 46 days of operation, FAN concentrations of 

approximately 50 mg/L were observed in all digesters, which is less than the previously 

reported methanogenic toxicity level of 80 – 150 mg/L (Nielsen and Angelidaki, 2008; Wang 

et al., 2016). Therefore, the results show that co-digestion of T. lutea with PPWdp or PPWp at 

a ratio of 25:75 avoids ammonia toxicity for methanogens.  
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Figure 6.3 (a) pH values and (b) concentrations of FAN for semi-continuous co-digestion of 

T. lutea with PPWdp (digesters D1 and D2), or with PPWp (digesters D3 and D4) under 

different start-up strategies. Error bars= mean ± SD, n=2. 
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6.3.3 Methane yield  

 

Methane yields increased steadily during Periods I and II for all digesters (Figure 6.4). 

Generally, the specific methane yields of fed start-up digesters (D2 and D4) were higher than 

those of unfed start-up digesters (D1 and D3). After 25 days of operation most of the seed 

inoculum had been washed out, and during Period III, the average specific methane yields 

produced by fed start-up digesters (D2 and D4) were 383 ± 46 and 343 ± 40 mL CH4/g VS, 

respectively. For unfed start-up digesters (D1 and D3), the average methane yields were 332 ± 

44 and 320 ± 38 mL CH4/g VS, respectively. The start-up strategy had a significant effect on 

the specific methane yields (F(1,148)=23.13, p<0.001). This agrees with Moset et al. (2014) 

in which an easily biodegradable commercial broiler feed was used as the start-up feedstock 

before the addition of pig manure, and their results showed that more methane was produced 

following initial start-up. Li et al. (2014a) also found that an AD feedstock containing more 

readily degradable organic matter could enhance the activity of microorganisms during the 

start-up period. In the current study, during the first five days of start-up, PPWdp or PPWp 

were fed to digesters D2 and D4, resulting in a higher degradation efficiency of VFAs 

(especially propionate), and lower concentrations of FAN during subsequent operational 

phases compared to unfed start-up digesters (D1 and D3). These results suggest that the 

activity of microorganisms may be enhanced when using PPW as the initial feedstock, 

consequently yielding greater methane productivity in fed start-up digesters (D2 and D4) 

compared to unfed start-up digesters (D1 and D3).  

 

PPW type also had a significant effect on specific methane yields (F(1,148)=11.46, p=0.001), 

with digesters co-digesting T. lutea with PPWdp (D1 and D2) showing higher methane yields 

than digesters co-digesting T. lutea with PPWp (D3 and D4). Kaparaju and Rintala (2005) 

reported that an AD feedstock containing more starch may improve its anaerobic 

biodegradability. In the current study, the high methane yields achieved by co-digestion with 

PPWdp were probably a result of its higher starch content compared to PPWp.  
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Figure 6.4 Specific methane yields for semi-continuous co-digestion of T. lutea with (a) 

potato discarded parts (PPWdp) or (b) potato peel (PPWp) under different start-up strategies. 

Error bars= mean ± SD, n=2. 

 

 

 

 

 

 

 

 



 

105 

 

6.3.4 Characteristics of archaeal community  

 

To investigate the microbial communities present during the co-digestion process, samples 

were taken from digesters on days 0, 27, 46 and 64 for 16S rRNA gene sequencing analysis. 

Figure 6.5 shows that acetoclastic methanogens (Methanosarcina and Methaneosaeta) were 

more dominant than hydrogenotrophic methanogens. Initially, Methaneosaeta was the 

dominant genus (representing 56% of relative abundance), but was replaced by 

Methanosarcina by day 27. On day 27, the start-up strategy had a significant effect on the 

relative abundances of Methanosarcina (F(1,12)=504.86, p<0.001). Methanosarcina were 

detected at abundances of 82 and 77% in fed start-up digesters (D2 and D4), respectively. For 

unfed start-up digesters (D1 and D3), the relative abundances of Methanosarcina were 50 and 

52%, respectively. However, PPW type had no significant effect on the relative abundances of 

Methanosarcina (F(1,12)=1.09, p=0.318).  

 

From days 27 to 64, the relative abundances of Methanosarcina exhibited a decreasing trend 

in digesters D1, D3 and D4, but on day 46 Methanosarcina was still the predominant genus in 

all digesters. On day 46, the relative abundance of Methanosarcina in fed start-up digesters 

(D2 and D4) was significant higher than in unfed start-up digesters (D1 and D3) 

(F(1,12)=15.22, p=0.002). PPW type also had a significant effect on the relative abundance of 

Methanosarcina, and co-digesting T. lutea with PPWdp supported a higher relative abundance 

of Methanosarcina than with PPWp (F(1,12)=47.55, p<0.001).  

 

At the end of the digestion process (on day 64), Methanosaeta was the dominant genus in 

digesters D1, D3 and D4, whereas Methanosarcina remained dominant in digester D2. The 

start-up strategy had a significant effect on the relative abundance of Methanosarcina 

(F(1,12)=59.00, p<0.001). Methanosarcina were detected at abundances of 90 and 28% in 

digesters D2 and D4, which were higher than in digesters D1 and D3, 30 and 21%, 

respectively. The start-up strategy also had a significant effect on the relative abundance of 

Methanosaeta (F(1,12)=45.08, p<0.001), with Methanosaeta the predominant genus in unfed 

start-up digesters (D1 and D3). PPW type significantly affected the relative abundances of 

both Methanosarcina and Methanosaeta at the end of the experiment (F(1,12)=50.59, 

p<0.001 and F(1,12)=32.38, p<0.001, respectively).  
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Methanosarcina and Methaneosaeta compete for acetate as a substrate (Zinder, 1993). In the 

current study, there was a positive correlation between the concentrations of acetate and the 

relative abundance of Methanosarcina (rs (32) = 0.649, p<0.001), whereas the relative 

abundance of Methaneosaeta had a negative correlation with acetate concentration (rs (32) = -

0.711, p<0.001). Kobayashi et al. (2009) reported that Methanosarcina had higher growth 

rates than Methaneosaeta for digesters with high acetate concentrations. Therefore, the 

current study shows that digesters immediate feeding with 100% PPW not only significantly 

enhanced the production of acetate, but also supported a greater relative abundance of 

Methanosarcina. Competition between Methanosarcina and Methanosaeta is also affected by 

the operating conditions (feeding rates and stirring intensity) and feedstock type (Liu and 

Whitman, 2008; Lin et al., 2012). In the current study, the results assumed that PPWdp 

contained higher amounts of starch than PPWp; therefore, co-digestion of T. lutea with PPWdp 

could potentially produce higher amounts of acetate as well as support a higher relative 

abundance of Methanosarcina than co-digestion with PPWp.  

 

The relative abundance of Methanosarcina was also positively correlated with specific 

methane yields (rs (32) = 0.769, p<0.001), whereas there was a negative correlation between 

the relative abundance of Methanosaeta and specific methane yields (rs (32) = -0.649, 

p<0.001). Liu and Whitman (2008) reported that Methanosarcina is a relative generalist that 

can use acetate, CO2, methyl-group containing compounds or H2 as substrate to produce 

methane, whereas Methanosaeta is a specialist that only utilizes acetate. Therefore, the high 

methane yields achieved by immediate feeding with PPW, or during co-digestion with PPWdp, 

were probably a result of the high relative abundances of Methanosarcina present in the 

digesters. Kobayashi et al. (2009) also reported that Methanosaeta has a competitive 

advantage over Methanosarcina in low acetate (<100 mg/L) environments. In the current 

study, from day 46 to 64, the observed concentrations of acetate for all digesters were less 

than 100mg/L, and consequently Methanosaeta became the dominant genus in digesters D1, 

D3 and D4 by the end of experiment. However, Methanosarcina remained dominant in 

digester D2 at the end of the digestion process. Methanosacina is tolerant to environmental 

stresses such as high salt and VFA concentrations (De Vrieze et al., 2012). As a marine strain, 

T. lutea may contain high concentrations of salt, and this is likely to explain why a large 

Methanoscarina population was found in digester D2.   
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Figure 6.5 Relative abundance of methanogenic archaea (genus level) for semi-continuous co-digestion of T. lutea with PPWdp (digesters D1 and D2), 

or with PPWp (digesters D3 and D4) under different start-up strategies.
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6.3.5 Benefits of co-digestion and energy implications 

 

Anaerobic co-digestion of microalgae with high carbon feedstocks facilitates balanced C/N 

ratios, provides a favourable organic or inorganic nutriment composition, and supports a 

stable AD process (Yen and Brune, 2007). In the current study, T. lutea had a C/N ratio of 

9.50/1, whereas PPWdp and PPWp had ratios of 40.78/1 and 28.59/1, respectively. The C/N 

ratios of feedstocks were balanced by the addition of PPWdp or PPWp to T. lutea. The C/N 

ratios in the mixtures of T. lutea with PPWdp or PPWp at a mixing ratio of 25:75 were 24.24/1 

and 19.33/1, respectively (see Appendix A, Section A.3, Table A.3). These C/N ratios both 

within the optimal range for AD process (Yen and Brune, 2007; Weiland, 2010). Therefore, 

PPWdp and PPWp are both promising feedstocks for co-digestion with microalgae. Moreover, 

a mixing ratio of 25:75 of T. lutea: PPWdp or T. lutea: PPWp, enabled the co-digestion process 

to operate successfully without VFAs and ammonia inhibition.  

 

In the current study, the energy yields of the mixtures of T. lutea: PPWdp or T. lutea: PPWp 

were estimated from experimental data taken from Period IІІ of the semi-continuous digesters, 

and calculated using Equation (6.1). The energy yields for the 25:75 mixture of T. lutea: 

PPWdp ranged from 11.90 to 13.70 MJ/kg, and from 11.50 to 12.30 MJ/kg for the 25:75 

mixture of T. lutea: PPWp. Using a conversion factor of 3.6 MJ per KWh (Cuéllar and 

Webber, 2008), potential energy yields of 3306 – 3806 KWh/tonne can be estimated for a 

25:75 mixture of T. lutea: PPWdp, and 3194 – 3417 KWh/tonne for a 25:75 mixture of T. 

lutea : PPWp. The energy produced by co-digestion of T. lutea with PPW could be used in 

combined heat and power (CHP) systems, assuming a conversion efficiency for heat and 

electrical energy of 50 and 35%, respectively (Wang et al., 2016), the energy that could be 

generated by co-digestion of the mixture of T. lutea: PPWdp would be equivalent to 1157 – 

1332 kWh/tonne of electricity and 1653 – 1903 kWh/tonne of heat. Equivalent values for the 

mixture of T. lutea: PPWp would be 1118 – 1196 kWh/tonne of electricity and 1597 – 1709 

kWh/tonne of heat. Currently, the challenges in using microalgal biomass exclusively for 

biogas production include high production costs and low production capacity (Schenk et al., 

2008). Therefore, co-digestion of microalgae with PPW could be a possible step to enhance 

the feasibility of biogas production from microalgae. However, energy consumptions from 

digester heating, mixing, pumping, digestate treatment and production should be considered, 

and therefore, further deep energy analysis is needed to in order to address the feasibility of 

anaerobic co-digestion.   
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6.4 Conclusion  

 

In this Chapter, the feasibility of using potato processing waste as a potential feedstock for co-

digestion with marine microalgae T. lutea in the semi-continuous anaerobic co-digestion tests 

was investigated.  

 

The digesters were immediate feeding with 100% PPW (fed start-up strategy) significantly 

enhanced methane yields, and also reduced the potential risk of ammonia toxicity to the 

methanogens compared to the digesters delayed feeding (unfed start-up strategy). Co-

digestion of T. lutea with PPWdp produced higher methane yields than co-digestion with 

PPWp, but both feedstocks exhibited good potential for co-digestion with T. lutea with 

balanced C/N ratios and stable digestion performance. 

 

Microbial analyses showed that acetoclastic methanogens were abundant. Methaneosaeta was 

the predominant genus, but the fed start-up strategy and T. lutea co-digesting with PPWdp 

supported high relative abundances of Methanosarcina. However, Methaneosaeta became 

dominant in some of digesters because of the acetate concentrations were observed to be less 

than 100 mg/L at the end of digestion process. 
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Chapter 7. Semi-continuous anaerobic co-digestion of microalgae with 

potato processing waste and glycerol: effect of glycerol addition on methane 

production and microbial diversity 

  

7.1 Introduction 

 

In Chapters 5 and 6, it has demonstrated stable co-digestion of a freshwater (Chlorella 

vulgaris) and a marine microalga (Tisochrysis lutea) with PPW in batch and semi-continuous 

modes. However, reliance on a single waste-stream could pose some operational risks to an 

AD plant (Nges et al., 2012), and also in order to improve the economics of the process, 

secure co-feedstock supply (ideally as a waste-stream) is important. Glycerol is the main by-

product of biodiesel production representing 10% w/w of the total product stream (Mu et al., 

2006; Da Silva et al., 2009). The rapid growth of the biodiesel industry has led to 

overproduction of crude glycerol (OECD/FAO, 2011). Glycerol has high concentration of 

COD and is easily degraded by acidogenic bacteria to produce organic acids, which is now 

readily available as a cheap waste material (Sell et al., 2011; Viana et al., 2012; Larsen et al., 

2013). Therefore, glycerol is a promising potential anaerobic feedstock for co-digestion with 

low C/N ratios feedstocks such as microalgae.  

 

This Chapter aimed to investigate the effects of glycerol supplementation on the co-digestion 

of microalgae and PPW (PPWdp and PPWp) in semi-continuous tests: 

 

1. To evaluate the effect of glycerol dosage on methane production and process stability. 

 

2. To evaluate the effect of glycerol dosage on microbial diversity/structural dynamics.  
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7.2 Materials and methods 

 

7.2.1 Microalgae and co-substrates 

 

Chlorella vulgaris strain (CCAP 211/63) was used in this study, and detailed information of 

cultivation and harvesting are described in Section 3.1. The detailed information of 

preparation of two PPW feedstocks of PPWdp and PPWp were described in Section 5.2.2. The 

feedstocks of C. vulgaris, PPWdp and PPWp were characterised for their TS, VS, CODt, and 

carbohydrate and protein content as well as C and N content are summarised in Table 7.1.  

 

A glycerol solution (Sigma-Aldrich, 4978, UK) with a purity of 86 – 89% was used as a co-

substrate. The reason why using this solution is because the glycerol with this purity was 

essentially methanol free produced in industry biodiesel units (Zhang et al., 2003). The 

glycerol solution had a CODt of 1888.0 ± 2.8 g/L and density of 1.25 kg/L.  

 

The seed inoculum had TS and VS of 18.6 ± 1.2 and 10.4 ± 0.9 g/L, respectively. pH value of 

inoculum was 7.89 ± 0.02, and concentrations of NH4
+-N and FAN were 2905 ± 83 and 274 ± 

18 mg/L, respectively.  

 

Table 7.1 Feedstock characteristics: Chlorella vulgaris, potato processing waste of discarded 

parts (PPWdp) and peel (PPWp). 

 C. vulgaris PPWdp PPWp 

TS (g/L) 2.7 ± 0.2a 16.0 ± 0.4 15.7 ± 0.1 

VS (g/L) 2.4 ± 0.1 14.8 ± 0.4 13.9 ± 0.1 

VS/TS (%) 88.9 ± 3.2 92.2 ± 0.0 88.7 ± 0.0 

CODt (g/L) 3.5 ± 0.3 13.8 ± 0.2 12.5 ± 0.1 

Proteins (% VS) 37.6 ± 4.0 13.0 ± 0.2 13.7 ± 1.1 

Carbohydrates (% VS) 23.8 ± 3.3 74.8 ± 0.1 69.0 ± 3.7 

C/N 6.4 40.8 28.6 

a mean ± SD, n = 2. 
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7.2.2 Operation of semi-continuous anaerobic digesters 

 

Eight identical one litre Duran bottles (VWR, UK) with a working volume of 0.8 L were used 

as the semi-continuous co-digestion digesters, and detailed information of the digester 

configuration is described in Section 6.2.2. At the beginning of the experiment, all digesters 

were filled with 0.8 L of anaerobic inoculum that collected from Cockle Park Farm, and 

flushed with N2 to ensure anaerobic conditions. The semi-continuous digesters were kept at 

constant temperature of 37 ℃ by a temperature-controlled water-bath. The digester was mixed 

by hand mixing before and after feeding.  

 

The semi-continuous digesters were studied at four feeding conditions: the digesters were fed 

with mixtures of C. vulgaris: PPWdp and glycerol (C1); the digesters were fed with mixtures 

of C. vulgaris: PPWdp without glycerol (C2); the digesters were fed with mixtures of C. 

vulgaris: PPWp and glycerol (C3); the digesters were fed with mixtures of C. vulgaris: PPWp 

without glycerol (C4). Detailed information of variation of OLR and feedstock composition 

over the co-digestion process is summarized in Table 7.2.  

 

During Period І, all digesters were fed with 100% PPWdp or 100% PPWp. In Period ІІ, all 

digesters were start to feed a mixture of 25% C. vulgaris and 75% PPWdp or 75% PPWp based 

on the proportion of VS. A 25:75 ratio of C. vulgaris and PPW had the potential to provide an 

optimum C/N ratio and produce high methane yields compared to other tested mixing ratios 

(e.g. 75:25 and 50:50) as discussed in Section 5.3.2. Digesters C1 and C3 were also fed with 

glycerol, and the dosage of glycerol in the mixture was progressively increased from 1 to 2% 

v/v over Period II. The glycerol dosages of 1 and 2% v/v were selected based on previous 

studies on anaerobic co-digestion of glycerol with other low carbon feedstocks (Sell et al., 

2011; Larsen et al., 2013).  

 

Periods III and IV are the experimental phases for digesters C1 and C2, where digester C1 

was supplemented with different glycerol dosages, i.e., 2 and 1% v/v for Periods III and IV, 

respectively. Digester C2 was used as control digesters, and fed with 25:75 C. vulgaris: 

PPWdp without glycerol supplementation. Overall, digesters C1 and C2 were operated 76 

days. For digesters C3 and C4, the operating phases start from Periods III to VI. During 

Periods III and IV, digester C3 was supplemented with 2% v/v of glycerol, but had no 

glycerol supplementation in Phase V. Glycerol was back to add to digester C3 at 1% v/v 
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during Period VI. Control digester C4 was only fed with 25:75 C. vulgaris: PPWp. Overall, 

digesters C3 and C4 were operated 132 days.  

 

During the semi-contiguous co-digestion process, biogas yield, methane content, and pH 

values were measured every feeding day. Digestate samples removed during weekly and 

analysed for TS, VS, the concentrations of CODt, CODs, TAC, VFAs, NH4
+-N and FAN.  

 

Table 7.2 Organic loading rate (OLR) and feedstock composition for co-digesting C. vulgaris 

and PPW with or without glycerol. 

Feeding 

regime 

Period Operation 

time 

(days) 

OLR 

(g COD/L/d) 

Feed Composition 

 

  C. 

vulgaris 

(% VS) 

PPWa 

(%VS) 

Glycerol 

(% v/v) 

 

 

C1 

 

I 1 - 3 0.14 0 100 0 

 4 - 8 0.28 0 100 0 

II 9 - 15 0.47 25 75 1.0 

 16 - 24 0.80 25 75 2.0 

III 25 - 56 1.20 25 75 2.0 

IV 57 - 76 0.70 25 75 1.0 

 

C2 

I 1 - 3 0.14 0 100 0 

 4 - 8 0.28 0 100 0 

II 9 - 24 0.40 25 75 0 

III+IV 25 - 76 0.60 25 75 0 

 

 

 

C3 

I 1-3 0.12 0 100 0 

 4 - 8 0.25 0 100 0 

II 9- 15 0.45 25 75 1.0 

 16 - 24 0.75 25 75 2.0 

III+IV 25 - 56 1.12 25 75 2.0 

V 57 - 94 0.50 25 75 0 

VІ 95 - 132 0.67 25 75 1.0 

 

 

C4 

I 1 - 3 0.12 0 100 0 

 4 - 8 0.25 0 100 0 

II 9 - 24 0.25 25 75 0 

III+IV+ 

V 

25 – 76b 0.50 25 75 0 

VІ 95 - 132 0.50 25 75 0 
a Digesters C1 and C2 were fed with potato discarded parts (PPWdp); Digesters C3 and C4 

were fed with potato peel (PPWp).  

b During the recovery stage (from days 57 to 94), the digester C4 was unfed for a period (days 

77 to 94).  
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7.2.3 Analytical methods 

 

The general analytical procedures have been described in Section 3.2. 

 

7.2.4 Microbial community analysis 

 

For microbial community analysis, genomic DNA was extracted from all digesters on days 0, 

23, 54, 76 and 132 using an isolation kit (DNeasy PowerSoil kit, QIAGEN, UK) following 

the manufacturer’s instructions. Detailed information of DNA sequencing and processing 

sequencing data are described in Section 3.3. The non-metric dimensional scaling (NMDS) 

ordination plot was plotted based on the code described by Torondel et al. (2016).   

 

7.2.5 Statistical analysis 

 

The independent samples t-test and one-way ANOVA were utilized to test the effects of 

glycerol dose on the significance of methane production and digester performance by co-

digestion of C. vulgaris and PPW (Field, 2009). A Spearman’s rank-order correlation was run 

to determine the relationship between the relative abundance of methanogenic archaea and 

digester operating parameters (Field, 2009). A confidence interval of differences of 95% 

(p<0.05) was chosen to define statistical significance. All statistical analyses were conducted 

using IBM SPSS statistics, Version 23. The NMDS plots were conducted using RStudio 

software.  
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7.3 Results and discussion 

 

7.3.1 Effect of co-digesting C. vulgaris and PPWdp with glycerol on AD performance  

 

During Period III (days 25 to 56), the glycerol feed was maintained at 2 % v/v with a high 

OLR at 1.20 g COD/L/day for digester C1 (Figure 7.1 A), whereas the OLR of digester C2 

was kept at 0.60 g COD/L/day (Figure 7.2 A). The glycerol dosage significantly enhanced 

volumetric methane production (F(2,61)=319.67, p<0.001). Digester C1 (2% v/v dosage) had 

an average methane production of 0.59 ± 0.08 L CH4/Ldigester (Figure 7.1 A), which was 

significantly higher than C2 (0.19 ± 0.02 L CH4/Ldigester; p<0.001) (Figure 7.2 A). Moreover, 

the addition of glycerol also significantly enhanced specific methane yields (F(2,61)=213.67, 

p<0.001). During Period III, digester C1 had an average specific methane yield of 0.49 ± 0.07 

L CH4/g COD, which was significantly higher than C2 (0.32 ± 0.03 L CH4/g COD; p<0.001). 

Methane production and OLR of digester C1 rapidly increased with glycerol addition, likely 

due to catabolism of the readily biodegradable soluble COD in glycerol. This agrees with 

Wohlgemut et al. (2011) in which glycerol doubled methane production with a four times 

higher OLR when used as a co-substrate with pig manure.  

 

The maximum concentrations of TA and VFA were observed on day 8 for both digesters, 

after which they decreased continuously (Figures 7.1 C and 7.2 C). During Period IІI, from 

days 31 to 48, the average VFA/TA ratio of digester C1 was 0.24, whereas digester C2 had a 

lower ratio of 0.14. By day 54, VFA concentrations increased slightly to 929 ± 117 mg/L in 

digester C1 causing the VFA/TA ratio to peak at 0.45; Ciotola et al. (2014) and Pontoni et al. 

(2015) suggested that digesters are overloaded when this ratio exceeded 0.40. pH values for 

digester C1 also showed a declining trend (6.94 ± 0.01 by day 54) (Figure 7.1 B), although 

this remained within the optimum range of 6.8 – 7.2 for the AD process (Ward et al., 2008). 

These results agree with the work of Ciotola et al. (2014), who found that during AD of dairy 

manure with a high OLR (1.8 kg VS/m3/day), the digester failed at a high VFA/TA ratio of 

0.65, despite pH remaining at 6.92. This may have been due to the accumulation of short 

chain fatty acids leading to a significant reduction of buffering capacity before the pH 

dropped, as reported by Ward et al. (2008). Glycerol is rapidly consumed by acidogenic 

bacteria which generate large amounts of organic acids (Sell et al., 2011; Larsen et al., 2013); 

therefore, balanced alkalinity is important for AD of glycerol (Viana et al., 2012). However, 

Astals et al. (2012) found that co-digesting pig manure with crude glycerol reduced the 

alkalinity because glycerol provides negligible alkalinity, resulting in the VFA/TA ratio 
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exceeding 0.60. Therefore, in their study, the crude glycerol dosage was reduced from 5 to 4% 

w/w which decreased the VFA/TA ratio to less than 0.4 after 2 days. In the current study, 

Figures 7.1 C and 7.2 C show that on day 54, digester C1 had a lower TA concentration (2062 

± 18 mg/L) than digester C2 (2800 ± 35 mg/L). Therefore, on day 57, the glycerol dosage was 

reduced to 1% v/v, consequently the OLR decreased to 0.70 g COD/L/day (Figure 7.1 A). 

Consequently, on day 60, the VFA/TA ratio of digester C1 decreased to 0.34, within the 

optimum range for stable AD. During Period IV (days 57 to 76), the average volumetric 

methane yield of C1 was 0.51 ± 0.05 L CH4/Ldigester (Figure 7.1 A) being significantly higher 

than digester C2 (0.19 ± 0.03 L CH4/Ldigester; p<0.001) (Figure 7.2 A). The specific methane 

yield of C1 was 0.73 ± 0.07 L CH4/g COD, which was also significantly higher than C2 (0.32 

± 0.05 L CH4/g COD; p<0.001).  
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Figure 7.1 Variation in (A) volumetric methane yield, (B) pH, and (C) concentrations of total 

alkalinity (TA), volatile fatty acids (VFA) and ratio of VFA/TA during co-digestion of C. 

vulgaris and PPWdp with glycerol (C1). Error bars = mean ± SD, n = 2. 

 

 

 

 

 

 

 

 



 

119 

 

 

 

 

Figure 7.2 Variation in (A) volumetric methane yield, (B) pH, and (C) concentrations of total 

alkalinity (TA), volatile fatty acids (VFA) and ratio of VFA/TA during co-digestion of C. 

vulgaris and PPWdp without glycerol (C1). Error bars = mean ± SD, n = 2. 
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Figure 7.3 Concentrations of acetic, propionic and isobutyric acids in semi-continuous 

anaerobic co-digestion of C. vulgaris and PPWdp (A) with glycerol (C1) and (B) without 

glycerol (C2). Note: acetic and proponic acids below detection in all digester C2, and some 

C1 periods. 
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7.3.2 Effect of co-digesting C. vulgaris and PPWp with glycerol on AD performance  

 

During Period IІI (from days 25 to 45), when the glycerol feed for digester C3 was increased 

to 2 % v/v with a high OLR at 1.12 g COD/L/day. Digester C4 was maintained at 0.50 g 

COD/L/day of OLR. Figures 7.4 B and 7.5 B show that there was a slow reduction of pH in 

both C3 and C4 during Period III. The glycerol dosage significantly affected the volumetric 

methane production (F(2,65)=916.41, p<0.001). During Period III, an average volumetric 

methane production of 0.60 ± 0.05 L CH4/Ldigester in digester C3, which was significantly 

higher than the level of 0.15 ± 0.02 L CH4/Ldigester in digester C4 (p<0.001). The average 

specific methane yield of 0.54 ± 0.04 L CH4/g COD in C3, which was also significantly 

higher than the value of 0.31 ± 0.04 L CH4/g COD in digester C4 (p<0.001).  

 

The TA and VFA concentrations of digesters C3 and C4 also peaked after 8 days of operation, 

then decreased continuously until day 48 (Figures 7.4 C and 7.5 C). Subsequently, the TA and 

VFA concentrations continued to decrease in digester C4, with a relatively stable VFA/TA 

ratio. However, digester C3 started to accumulate VFA and experienced reduced TA 

concentrations, resulting in the VFA/TA ratio peaking at 1.89 on day 54, corresponding with 

a significant drop in pH of digester C3 to 6.22 and decreased methane production. VFAs are 

crucial intermediate products affecting methane production and AD process stability, and 

glycerol degradation by acidogenic bacteria produces VFA. Propionic acid degrading 

microorganisms have lower specific growth rates than acetic acid- or butyric acid consumers 

that require longer degradation times (Griffin et al., 1998; Calli et al., 2005; Moset et al., 

2014). Therefore, Nielsen et al. (2007) and Xiao et al. (2015) suggested that propionic acid 

accumulation could be one of the major parameters indicating AD process instability. The 

growth rates of both acidogenic bacteria and methanogens are inhibited when propionic acid 

concentrations exceed 900 mg/L, leading to reduced methane production (Wang et al., 2009). 

On day 54 of the current study, the total propionic acid concentration in digester C3 was 1220 

mg/L (Figure 7.6 A), which probably explains the reduction in methane yields in digester C3 

at that time.  
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Lossie and Pütz (2008) suggested that the input of biomass to a digester should be reduced or 

stopped if the VFA/TA ratio exceeds 0.6. Therefore, on day 57, the feed of glycerol to 

digester C3 was stopped, with only the baseline feed of 25:75 C. vulgaris: PPWp used to 

recover it during Period V. The recovery stage of Period V lasted for 37 days (from days 57 to 

94), and the OLR of digester C3 was maintained at 0.50 g COD/L/day. During this recovery 

stage, pH, methane production and TA concentrations in digester C3 exhibited increasing 

trends (Figure 7.4), while VFAs, especially propionic acid, decreased continuously, reducing 

the VFA/TA ratio from 1.89 to 0.21 (Figure 7.4 C). Lossie and Pütz (2008) also suggested 

that biomass loading should be increased slowly when the VFA/TA ratio ranges from 0.2 to 

0.3. Therefore, after recovery, during Period VI, glycerol feeding was restarted at 1% v/v to 

digester C3 on day 95, and the OLR was increased to 0.67 g COD/L/day (Figure 7.4 A). 

Period VI lasted 37 days (from days 95 to 132), the average volumetric methane production of  

0.33 ± 0.02 L CH4/L in digester C3, which was significantly higher than 0.17 ± 0.03 L CH4/L 

produced by digester C4 (p<0.001). Moreover, the average specific methane yield of 0.55 ± 

0.03 L CH4/g COD in C3, which was significantly higher than the value of 0.34 ± 0.06 L 

CH4/g COD in C4 (p<0.001).  
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Figure 7.4 Variation in (A) volumetric methane yield, (B) pH, and (C) concentrations of total 

alkalinity (TA), volatile fatty acids (VFA) and ratio of VFA/TA during co-digestion of C. 

vulgaris and PPWp with glycerol (C3). Error bars = mean ± SD, n = 2. 
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Figure 7.5 Variation in (A) volumetric methane yield, (B) pH, and (C) concentrations of total 

alkalinity (TA), volatile fatty acids (VFA) and ratio of VFA/TA during co-digestion of C. 

vulgaris and PPWp without glycerol (C4). Error bars = mean ± SD, n = 2. 

 

 

 

 

 

 



 

125 

 

 

 

 

 

Figure 7.6 Concentrations of acetic, propionic and isobutyric acids in semi-continuous 

anaerobic co-digestion of C. vulgaris and PPWp (A) with glycerol, digester C3 and (B) 

without glycerol, digester C4. Note: acetic and proponic acids below detection in some 

periods of digesters C3 and C4.  

 

 

 

 

 

 

 

 

 



 

126 

 

7.3.3 Overall performance during co-digestion 

 

Tables 7.3 and 7.4 show the overall performance of co-digesting C. vulgaris and PPW 

(PPWdp or PPWp) both with and without glycerol during the different operating stages. At the 

end of Period III, the VS values increased when adding 2% v/v glycerol (C1 and C3), which 

were significantly higher than the digesters (C2 and C4) without glycerol (t(6) = -7.799, 

p<0.001). Similarly, the VS values in digesters C1 and C3 were significantly higher than C2 

and C4 at the end of Period IV and Period VI (t(6) = -3.243, p=0.018). These results agree 

with the work of Fountoulakis et al. (2010) and Ma et al. (2008). Their studies demonstrated 

that the addition of glycerol to sewage sludge or potato processing wastewater could improve 

methane production due to enhanced growth of the active biomass in terms of increased VS 

values.  

 

FAN is regarded as the active component leading to ammonia inhibition in an AD processes 

(Yenigün and Demirel, 2013), and microalgae biomass is characterised by having high protein 

content which can lead to high ammonia concentrations and inhibition when used as a mono-

digestion feedstock. In the current study, the FAN concentrations of all digesters were less 

than 10 mg/L, lower than previously reported methanogenic toxicity levels of 80 – 150 mg/L 

(Nielsen and Angelidaki, 2008; Wang et al., 2016). Therefore, the current study demonstrated 

that co-digestion of C. vulgaris and PPW, both with and without glycerol, helps avoid the 

development of ammonia toxicity.  

 

The glycerol dosage level is a key factor affecting final methane production when using 

glycerol as a co-substrate because of its high COD concentration. Rapidly introducing high 

glycerol dosage would suddenly increase the OLR, and reduce digester performance by 

creating a “shock load” as described by Wohlgemut et al. (2011). In their study, the 

volumetric biogas/methane production stopped after 12 days because of VFAs accumulation 

(> 10,000 mg/L) when pig manure was co-digested with 4% v/v glycerol. Similarly, co-

digestion with 2% v/v glycerol also accumulated VFAs (>7000 mg/L) after 25 days. During 

Period II in the current study, a slow and stepwise increase in glycerol dosage from 1 to 2% 

v/v was implemented successfully without creating any organic shock load.  
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Although PPWdp and PPWp are both promising feedstocks for stable microalgae co-digestion, 

the addition of small amounts (1 – 2% v/v) of glycerol significantly enhanced both volumetric 

methane yield and specific methane yield (PPWdp: F(2,61)=319.67, p<0.001 and 

F(2,61)=213.67, p<0.001;  PPWp: F(2,65)=916.41, p<0.001 and F(2,65)=207.72, p<0.001 

respectively). Although the higher glycerol dose led to enhanced volumetric methane 

production, the highest specific methane yield was achieved with the lower dose. When 

mixtures of C. vulgaris: PPWdp co-digesting with 1% v/v glycerol, the specific methane yield 

was significantly higher than with 0% v/v dosage (p<0.001) and 2% v/v dosage (p<0.001) 

(Table 7.3). When co-digesting with mixtures of C. vulgaris: PPWp, there was no significant 

difference between the specific methane yield at the 2 % and 1% v/v dosage (p=0.687) (Table 

7.4). Moreover, the addition of 2% v/v glycerol was more likely to accumulate VFA, resulting 

in high VFA/TA ratios, leading to a potentially unbalanced system. Consequently, 1% v/v 

glycerol appears to be the better dosage when applied to 25:75 co-digestion mixture of C. 

vulgaris/PPW. This agrees with Fountoulakis et al. (2010) and Panpong et al. (2014) who 

applied 1% v/v glycerol during co-digestion with sewage sludge or canned seafood 

wastewater, doubling the volumetric methane production and specific methane yield. 

However, their systems also showed signs of organic overloading because of increased VFAs 

concentrations and decreased pH when the dosage exceeded 1% v/v.  
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Table 7.3 Performance of digesters co-digesting C. vulgaris and PPWdp with or without glycerol during different experimental stages. 

 Digester C1 Digester C2 

 Period III 

(day 24-56) 

Period IV 

(day 57-76) 

 Period III 

 (day 24-56) 

 Period IV 

 (day 57-76) 

OLR (g COD/L/d) 1.20 0.70 0.60 0.60 

Process stability     

pH 6.94 ± 0.01a 6.75 ± 0.00 7.05 ± 0.01 6.81 ± 0.06 

Total Alkalinity (g/L) 2.06 ± 0.02 1.45 ± 0.25 2.80 ± 0.04 1.86 ± 0.02 

Total VFAs (g/L) 0.93 ± 0.11 0.56 ± 0.06 0.31 ± 0.06 0.35 ± 0.00 

NH+
4-N (g/L) 0.34 ± 0.00 0.32 ± 0.00 0.53 ± 0.02 0.35 ± 0.04 

FAN (mg/L) 3.86 ± 0.21 2.35 ± 0.21 7.56 ± 0.60 2.86 ± 0.73 

Digester effluent     

TS (g/L) 8.09 ± 0.19 5.67 ± 0.00 6.79 ± 0.35 4.70 ± 0.39 

VS (g/L) 5.36 ± 0.05 3.81 ± 0.00 4.18 ± 0.32 2.77 ± 0.37 

CODt (g/L) 6.86 ± 0.06 6.04 ± 0.06 5.84 ± 0.00 4.43 ± 0.08 

CODs (g/L) 1.49 ± 0.02 1.01 ± 0.05 1.25 ± 0.04 0.72 ± 0.06 

VSremoval (%) 49 ± 7 64 ± 5 57 ± 1 71 ± 1 

CODremoval (%) 59 ± 7 64 ± 6 69 ± 2 77 ± 2 

Methane production     

Volumetric CH4 yield (L/Ldigester) 0.59 ± 0.08 0.51 ± 0.05 0.19 ± 0.02 0.19 ± 0.03 

CH4 (%) 58 ± 6 62 ± 8 60 ± 5 65 ± 8 

Specific CH4 yield (L/g CODadded ) 0.49 ± 0.07 0.73 ± 0.07 0.32 ± 0.03 0.32 ± 0.05 

a Mean ± SD, n = 2. 
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Table 7.4 Performance of digesters co-digesting C. vulgaris and PPWp with or without glycerol during the different experimental stages. 

 Digester C3 Digester C4 

 Period III 

(day 24-45) 

Period VI 

(day 95-132) 

Period III 

(day 24-45) 

Period VI 

(day 95-132) 

OLR (g COD/L/d) 1.12 0.60 0.50 0.50 

Process stability     

pH 7.18 ± 0.00a 6.80 ± 0.00 7.16 ± 0.00 6.65 ± 0.00 

Total Alkalinity (g/L) 3.10 ± 0.14 1.10 ± 0.00 3.39 ± 0.02 1.30 ± 0.00 

Total VFAs (g/L) 0.70 ± 0.02 0.18 ± 0.00 0.39 ± 0.06 0.18 ± 0.00 

NH+
4-N (g/L) 0.53 ± 0.00 0.16 ± 0.00 0.57 ± 0.02 0.18 ± 0.04 

FAN (mg/L) 10.4 ± 0.23 1.28 ± 0.03 10.5 ± 0.16 1.07 ± 0.04 

Digester effluent     

TS (g/L) 8.75 ± 0.05 4.51 ± 0.00 7.22 ± 0.03 4.02 ± 0.00 

VS (g/L) 5.70 ± 0.15 3.30 ± 0.00 4.34 ± 0.09 2.85 ± 0.00 

CODt (g/L) 10.7 ± 0.43 4.88 ± 0.01 7.67 ± 0.42 4.10 ± 0.00 

CODs (g/L) 3.02 ± 1.91 0.88 ± 0.00 1.07 ± 0.00 0.41 ± 0.02 

VSremoval (%) 48 ± 6 70 ± 3 56 ± 1 71 ± 1 

CODremoval (%) 50 ± 5 77 ± 1 58 ± 5 78 ± 2 

Methane production     

Volumetric CH4 yield (L/Ldigester) 0.60 ± 0.05 0.33 ± 0.02 0.15 ± 0.02 0.17 ± 0.03 

CH4 (%) 58 ± 7 66 ± 2 60 ± 6 64 ± 5 

Specific CH4 yield (L/g CODadded ) 0.54 ± 0.04 0.55 ± 0.03 0.31 ± 0.04 0.34 ± 0.06 

a Mean ± SD, n = 2. 
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7.3.4 Microbial characteristics   

 

The microbial community from each digester was characterised on days 0, 23, 54 and 76 and 

extended to days 91 and 132 for digesters C3 and C4 during the recovery phase and the 

relative abundance of the methanogenic communities are presented in Figures 7.7 and 7.8.   

Among the methanogens, Methanosaeta had the highest relative abundance in the seed 

inoculum and remained dominant up to day 54. Methanosaeta abundance fluctuated 

somewhat in C2 but an overall decreasing trend was evident over the extended sampling 

periods for digesters C3 and C4. Methanosaeta, as a specialist acetate degrader, is expected to 

be favored in low acetic acid environments (<100 mg/L) (Liu and Whitman, 2008; Kobayashi 

et al., 2009). From days 23 to 54, the total VFAs concentrations of digesters C1, C2 and C4 

decreased steadily, with acetic acid concentrations remaining below 100 mg/L (Figures 7.3 

and 7.6); acetic acid concentration correlating negatively with Methanosaeta abundance 

(rs(34) = -0.395, p=0.021). Digester C3 experienced performance inhibition by day 54 through 

VFAs accumulation and low pH (Figure 7.6 A), and had to be recovered. During recovery, the 

high acetic acid concentration was effectively degraded, supporting a shift in dominance to 

Methanosarcina (up to 66% relative abundance).  

 

Methanosarcina is a robust acetoclastic methanogen that can utilize acetate, CO2, methyl-

group containing compounds or H2 as substrate (Liu and Whitman, 2008). It survives at pH 5 

– 8 and is often associated with deteriorating digester performance (Kobayashi et al., 2009; 

De Vrieze et al., 2012). In C3, Methanosarcina abundance and methane production were 

negatively correlated (rs (34) = -0.487, p=0.004), with abundance exhibiting a decreasing 

trend from day 91 to 132. The relative abundance of Methanoculleus increased from 6 to 41% 

over this period, becoming the dominant genus in digester C3 at the end of the digestion 

process. Furthermore, Methaneosaeta dominance was lost in digester C4 by day 132, yielding 

to Methanoculleus and the H2-dependent methylotroph Methanomassiliicoccales archaeon  

RumEn M2 ((Lang et al., 2015); Figure 7.8).  Methanoculleus is a hydrogenotrophic 

methanogen that grows favourably at low acetate and hydrogen concentrations (Hori et al., 

2006) that were prevalent during the pseudo of Period VI. De Vrieze et al. (2012) reported 

that a robust methanogenic process can be established based on syntrophic acetate oxidation 

coupled with hydrogenotrophic methanogenesis by Methanosarcina under elevated OLR 

conditions. Therefore, during Period VI the high methane production achieved by digester C3 

was probably a result of interactions between Methanosarcina and Methanoculleus.  
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The variations of methanogens abundance could significantly affect methane production. For 

example, the relative abundances of Methanobrevibacter and methane production were 

negatively correlated (rs (34) = -0.392, p=0.022), with abundance exhibiting a decreasing 

trend in all digesters (Figures 7.7 and 7.8). Methanobrevibacter is a hydrogentrophic 

methanogen that generally produce methane using hydrogen as electron donor (Liu and 

Whitman, 2008). From day 0 to day 54, the concentrations of propionic and isobutyric acids 

in digesters C1, C2 and C4 were decreased continuously, indicating that the digesters may 

have low hydrogen levels. The efficient hydrogenotrophic methanogenesis are normally 

associated with low hydrogen levels resulting in the stable digestion process (Liu and 

Whitman, 2008). The elevated VFA concentrations leading to the unstable digestion process 

in digester C3 by day 54, and Methanosarcina becoming the dominant genus in digester C3 

(Figure 7.8). It also found that the relative abundances of Methanosarcina and methane 

production had a negative correlation (rs (34) = -0.487, p=0.004). During the recovery period 

(from days 57 to 94), the feed of glycerol to digester C3 was stopped, and the concentrations 

of VFA exhibited a decreasing trend. Methane production increased continuously, and was 

associated with the decreased Methanosarcina abundance.  

 

Other notable community features included the maintenance of high relative abundances of 

the methyl-reducing syntroph, Candidatus Methanofastidiosum (formerly WSA2; (Nobu et 

al., 2016)) in digesters without glycerol (C2 and C4), and the strong growth of the 

hydrogentrophic methanogen Methanobacterium, which can utilize H2 (formate) to produce 

methane, in digesters C1 and C2 from day 54.  

 

The extent of change observed within the methanogenic communities is illustrated in Figure 

7.9, showing the influence of operation time and glycerol addition on the microbial 

population. Time had a greater influence on community development, with distinct clustering 

identifiable for each sampling date (Figure 7.9 A); this is unsurprising given the need for the 

manure-adapted seed inoculum to respond to a markedly different feedstock employed in this 

study. Only days 76 and 91 had substantial overlap (during the recovery phase), and with day 

132 having only partial similarity with day 91. Continued methane production under sub-

optimal operating conditions highlights the functional resilience of the communities, even 

during the recovery phase. Glycerol addition also shaped the methanogenic communities, but 

to a lesser degree (Figure 7.9 B). Glycerol amended and unamended treatments grouped 

within distinct clusters, but with substantial overlap; likely due to switching glycerol feed 

rates in response to digester instability. 
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Figure 7.7 Relative abundance of methanogenic archaea (genus level) during co-digestion of 

C. vulgaris and potato discarded parts (PPWdp) with (C1) or without (C2) glycerol addition. 
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Figure 7.8 Relative abundance of methanogenic archaea (genus level) during co-digestion of 

C. vulgaris and potato peel (PPWp) with (C3) or without (C4) glycerol addition. 
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Figure 7.9 Non-metric multi-dimensional scaling ordination (NMDS) plot of all samples: (A) time-dependent clustering pattern; (B) feedstock-

dependent (with or without glycerol) clustering pattern.
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7.4. Conclusion 

 

In this chapter, the feasibility of using glycerol as an additional co-substrate on the co-

digestion of microalgae and PPW was evaluated in semi-continuous digester studies.  

 

Results showed that the glycerol added to mixtures of C. vulgaris: PPWdp enhanced the 

specific methane yields the most, by 53 – 128%, whilst co-digestion with mixtures of C. 

vulgaris: PPWp enhanced the methane yields by 62 – 74%. When co-digesting with mixtures 

of C. vulgaris: PPWdp, the highest specific methane yields of 0.73 ± 0.07 L CH4 /g COD was 

achieved by 1% v/v glycerol dosage, which was significantly higher than 2% and 0% v/v 

dosage. When co-digesting with mixtures of C. vulgaris: PPWp, the highest specific methane 

yields of 0.55 ± 0.03 L CH4 /g COD was also achieved by 1% v/v glycerol dosage, which was 

significantly higher than 0% v/v dosage. However, there was no significant difference 

between 1 and 2% v/v dosage. Moreover, the 2% v/v dosage promoted the accumulation of 

VFA leading to an unstable process and requiring one treatment to be recovered.  

 

The methanogenic communities diverged markedly over operational time, and to a lesser 

extent in response to glycerol addition. The acetoclast Methaneosaeta was abundant in all 

treatments but was replaced by Methanosarcina in the PPWdp with glycerol treatment due to 

VFA accumulation. 

  

Overall, this chapter demonstrate that the performance of microalgae co-digestion is 

substantially improved by the addition of glycerol as an additional co-substrate. The results 

suggested that 1% v/v could be the optimal dosage when co-digesting with mixtures of C. 

vulgaris: PPW to enhance methane production without organic overloading.  
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Chapter 8. Conclusions 

 

8.1 Introduction  

 

Microalgal biomass is an alternative to conversional terrestrial based energy crops for the 

future bioenergy market. AD of microalgae is a promising option not only in terms of the 

production of renewable energy but also in the reduction of greenhouse gas emissions. 

Moreover, AD of microalgae provides additional potential benefits by improving the 

economic case for microalgae biodiesel production through an integrated biorefinery process.  

The results reported in Chapters 4, 5, 6 and 7 have important implications for the 

development of an economically viable microalgae AD process. This chapter firstly discusses 

the potential implications of the findings of each investigation and highlights the future 

perspective for microalgae AD technology. Secondly, this chapter details the conclusions and 

proposes recommendations for the future work.  

 

8.2 Implications  

 

8.2.1 Implication of microalgae pre-treatment  

 

Microalgae AD is a promising way to generate renewable energy, but the implementation of 

this process first requires the disruption of cell walls after harvesting microalgal biomass. 

Moreover, if integrating microalgae AD as a part of biorefinery process, a technique for mild 

cell disruption is required to ensure that cell components are released intact so that their 

subsequent extraction is easier (Vanthoor-Koopmans et al., 2013). In order to ensure that the 

pre-treatments can be used in large-scale applications, the selection of suitable pre-treatments 

should consider their energy demand and overall cost. In Section 4.3.4, the results show that, 

in comparison with low-temperature thermo-alkaline pre-treatment, enzymatic pre-treatment 

was more energetically balanced, except when using 0.5% v/w of α-amylase. Moreover, in 

further considering the energy balance, enzymatic pre-treatment using a mixtures of enzymes 

may be favourable than single enzymes. Enzymatic pre-treatment is a mild cell disruption 

method which can break down the cell wall effectively, but the high cost of commercial 

enzymes could be an obstacle in applying this method at a large-scale. However, since the 

biofuel production process and pre-treatment efficiency are dependent on enzyme loading 

and, if this can be reduced, the enzyme costs will be proportionally lower (Liu et al., 2016). 

Reducing the amount of enzyme consumed in hydrolysis process may reduce the enzyme 
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loading requirement, and consequently reduce the costs (Klein‐Marcuschamer et al., 2012). 

The results in Section 4.3.4 show that the AD of microalgae pre-treated with a 0.5% v/w 

dosage of a mixture of cellulase and protease could generate 248 mL CH4/g VS of methane, 

which is higher than the values of 183 and 194 mL CH4/g VS of methane produced by higher 

dosages of 1.0% v/w of cellulase and protease, respectively. Similar results were also found 

when using cellulase mixed with α-amylase to pre-treat microalgae. Based on these findings, 

enzymatic pre-treatment using mixed enzymes should consume lower amounts of enzyme 

compared to single enzyme pre-treatments, but should gave greater methane production. 

Therefore, microalgae pre-treatment using mixed enzymes may be a potential way to reduce 

enzyme costs, and improve the economic feasibility of the pre-treatment process prior to AD. 

However, other alternatives still need to be considered in order to further reduce the cost of 

enzymes. Information about potential alternatives are discussed in Section 9.2.1.   

 

Chapter 4 also shows that the microalga C. vulgaris pre-treated by a low-temperature thermo-

alkaline method produced less methane compared to enzymatic pre-treatment. However, as 

discussed above, one of the requirements in the selection of a suitable pre-treatment is that it 

should be less energy intensive. The results in Section 4.3.4 also showed that a combination 

of 10% w/w Ca(OH)2 with low pre-treatment temperatures of 37 and 55 ℃ lead to a positive 

energy balance. In addition, the selection of pre-treatment temperature in the current work 

was based on the operational temperatures used in anaerobic digesters under mesophilic 

(37 ℃) and thermophilic (55 ℃) conditions. Therefore, when considering the utilisation of the 

low-temperature thermo-alkaline pre-treatment of microalgae prior to AD, the pre-treatment 

temperature could be set at the same as the subsequent AD process. Moreover, thermo-

alkaline pre-treatment using Ca(OH)2 has additional advantages, including inexpensive 

reagent costs and a safety process. Therefore, a low-temperature thermo-alkaline pre-

treatment of microalgae with Ca(OH)2 as an energetically balanced and a cost-effective 

method, has the potential for application beyond the laboratory scale investigations. However, 

some difficulties need to be considered before scaling up this pre-treatment. Firstly, an 

appropriate technique should be found to reduce the consumption of water used to wash the 

pre-treated biomass. Additionally, the pre-treated biomass may need neutralisation to 

rebalance the pH, and this process may increase the cost of downstream processing (Agbor et 

al., 2011). Therefore, the selection of low-cost and environmentally-friendly chemicals for 

this neutralisation process is another area which requires further consideration.   
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8.2.2 Implication of microalgae co-digestion  

  

Chapters 5, 6 and 7 focus on investigating the feasibility of using potato processing waste and 

glycerol as co-substrates for anaerobic co-digestion with microalgae. This section highlights 

the implications of the results reported in these three chapters for the development of an 

economically viable microalgae co-digestion process.  

 

The results in Section 5.3.1 show that the concentrated microalgae C. vulgaris contained 

relatively low concentrations of TS and VS, and the addition of PPW could increase the load 

of biodegradable organic matter in terms of TS and VS. The most fundamental challenge that 

exists in proving the economic viability of converting microalgal biomass to methane, or 

alternative biofuels, is the relatively low concentration of harvested microalgal biomass 

generated after growing it (Ward et al., 2014). This means that without the implementation of 

costly biomass concentration technologies, low OLRs, short HRTs or both would be 

experienced when using microalgal cultures directly as a substrate for a large-scale AD plant. 

Therefore, if the co-digestion of microalgae and PPW can be applied in large-scale AD, the 

OLRs may be potentially increased compared to the mono-digestion of microalgae. Moreover, 

increasing the OLRs can also reduce the size of digester, and subsequently reduce capital 

costs (Chandra et al., 2012).  

 

Currently, besides the low biomass concentration, high production costs are another challenge 

when using microalgae for biofuel production (Schenk et al., 2008). Production costs are 

reported to be between $100,000 – 1,000,000/ha depending on the cultivation system used 

(Ghasemi et al., 2012). The results in Chapter 5 show that the best co-digestion performance 

was achieved at a mixing ratio of 25:75 of microalgae and PPW compared to ratios of 100:0, 

75:25 and 50:50. Therefore, when running a large-scale co-digestion digester, less input of 

microalgal biomass may be required, which consequently improves the economic feasibility 

of using microalgae for methane production.  

 

When considering the use of microalgae as a feedstock for methane or other biofuels 

production, the water consumption for all processes is an important issue, especially for the 

cultivation process. Freshwater is a critical natural source, and thus the utilization of seawater 

or wastewater would be extremely beneficial for the cultivation of microalgae in order to 

reduce the demand for freshwater (Gonzalez-Fernandez et al., 2012). However, very few 

investigations have utilised marine microalgae in the production of methane due to their high 
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salt concentrations. In the current study, Chapter 6 shows that successful co-digestion of the 

marine microalgae T. lutea and PPW without the production of compounds toxic to the 

methanogens. Therefore, co-digestion with PPW may also be a feasible method to reduce 

inhibition and enhance methane production when using marine microalgae as a feedstock for 

biogas production.  

 

Chapters 5 and 6 show that PPW is a promising co-substrate to assist in the digestion of 

microalgae, and co-digestion with microalgae is also an environmentally-friendly and 

economical solution for PPW treatment/disposal. Work with batch BMP tests reported in 

Chapter 5 shows that the highest methane yields were obtained by the mono-digestion of 

PPW, but this increased the possibility of generating high VFA concentrations. The results in 

Chapter 6 identified further that semi-continuous digesters initially fed with 100% PPW could 

produce more VFA compared to the digesters not being fed this substrate. Methanogenesis 

was the rate-limiting step for the easily biodegradable PPW, whereas hydrolysis was the rate-

limiting step for microalgae. Therefore, based on these findings, a two-stage anaerobic co-

digestion process could be proposed in order to further increase methane production from 

microalgae.  

 

As reported in Chapter 7, the supplementation of glycerol to the mixtures of microalgae and 

PPW allowed the operating OLR to be increased. Moreover, methane production was 

significantly enhanced when conducting co-digestion with glycerol at an optimum dosage of 

1% v/v. When using microalgae as a substrate for biofuel production, one factor affecting 

financial viability is the transportation of the biomass to the operational site (Saratale et al., 

2018). In addition, feedstock availability is another important consideration when operating 

an AD plant. Therefore, when considering microalgae AD as part of a biorefinery concept, 

particularly where biodiesel production is one step in the value chain, glycerol will be 

produced on site thereby providing a readily available co-digestion feedstock and reducing the 

transportation costs. Another area which needs further consideration is the large amount of 

glycerol produced from biodiesel production that may require additional treatment, and this 

may potentially increase the cost of on-site waste management (Saratale et al., 2018). 

Therefore, from an economic viewpoint, co-digestion with glycerol may be a technique that 

could be used to improve the overall efficiency of the AD process and the economics of the 

biorefinery plant. However, the utilisation of glycerol as a co-substrate requires a further 

economic viability analysis due to its high value as a chemical feedstock (Gonzalez-

Fernandez et al., 2012).  
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Changes in microbial communities during the microalgae AD process is a research area which  

needs further investigation (Ward et al., 2014). Methanosaeta has previously been identified 

as the dominant archaea in the mesophilic AD of mixed microalgae harvested from a 

wastewater lagoon (Ellis et al., 2012). However, microbial community information during the 

AD of specific microalgae strains is still limited. In the current work, the co-digestion process 

utilized specific microalgae strains, and the results in Section 6.4 showed that during the co-

digestion of the marine microalgae T. lutea and PPW, Methanosarcina became the dominant 

genus present within the co-digestion process. Moreover, this type of methanogens remained 

dominant at the end of the digestion process in one treatment using T. lutea and PPWdp. 

Methanosarcina is tolerant to environmental stresses such as high salt and VFA 

concentrations (De Vrieze et al., 2012). As a marine strain, T. lutea may contain high 

concentrations of salt, and this is likely to explain why a large Methanoscarina population 

was found when T. lutea was co-digested with PPW. However, when investigating the co-

digestion of the freshwater microalgae C. vulgaris and PPW in semi-continuous tests in 

Section 7.3.4, Methanosaeta had the highest relative abundance during the co-digestion 

process. Moreover, the microbial communities were also affected by the types of co-

substrates, and the results in Section 7.3.4 show that when large amounts of glycerol were 

added to the mixtures of C. vulgaris and PPW, Methanosarcina also became the dominant 

genus due to the elevated concentrations of VFAs. Therefore, such information may provide 

insights at a molecular level to assist in the digestion of the microalgae when using specific 

microalgae strains and various co-substrates.  

 

8.2.3 Future perspectives  

 

Some potential implications of the present findings suggest that the economic feasibility of 

the use of microalgae for methane production can be improved, but the conversion of 

microalgal biomass exclusively for biogas production at an industrial level still faces 

challenges. The integration of microalgae production and AD based on a biorefinery approach 

seems to be a promising way forward as mentioned in literature (Uggetti et al., 2014), and 

Figure 8.1 shows that a potential system can be proposed based on the current work.  

 

Since high cultivation costs are the first challenge using microalgae for biofuel production, 

the integration with AD could be an opportunity for large-scale microalgae cultivation. In this 

integration process illustrated in Figure 8.1, digestate and CO2 generated by the co-digestion 

process could be used as nutrients and inorganic carbon for microalgae cultivation. However, 
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information about the use of AD digestate to cultivate microalgae is limited. Future attention 

should focus on the evaluation of the characteristics of the digestate, and especially the lipid 

phase, before using it as a nitrogen source for microalgae cultivation.  

 

Secondly, another issue with the use microalgae for biodiesel production is the requirement of 

extra energy for lipid extraction and oil transesterification. In the proposed systems, the heat 

and electricity generated from the co-digestion process could be used in the biodiesel 

production process. The glycerol generated by the biodiesel production process could also be 

used as the feedstock for anaerobic co-digestion. However, the complexity of these processes 

require further detailed environmental and economic assessments. In addition to microalgae 

biodiesel production, microalgal residues after lipid extraction could be used as substrates for 

co-digestion with PPW and glycerol. Since the current study focussed on using whole 

microalgal cells for the co-digestion process, the potential of using microalgal residues for co-

digestion with PPW and glycerol is a research area which needs to further investigation.   

 

The hydrolysis stage has also been reported as a rate-limiting step in the development of the 

feasibility of co-digestion systems (Hagos et al., 2017). As discussed in Section 8.3, a two-

stage co-digestion process could be a potential solution in the co-digestion of microalgae with 

PPW. This work found that enzymatic and low-temperature thermo-alkaline pre-treatments 

are energetically balanced methods, and therefore another alternative to solve this problem is 

to consider using a pre-treated microalgal biomass for the co-digestion process, as shown in 

Figure 8.1. Therefore, further research should extend the current co-digestion work by feeding 

pre-treated microalgal biomass, PPW and glycerol.  
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Figure 8.1 Proposed integration process of microalgae cultivation and AD based on a 

biorefinery concept.  
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8.3 Conclusions 

 

The aim of this study was to evaluate how to enhance methane production from microalgae 

through pre-treatment and co-digestion strategies. The following four broad objectives of the 

research were designed to achieve this aim (further specific objectives within each of these 

are discussed in detail in Chapters 4 to 7): 

  

1. To evaluate the effects of low energy pre-treatments on microalgae solubilisation and 

methane yields in batch BMP tests. 

2. To evaluate the feasibility of using potato processing waste as a co-substrate for co-

digestion with microalgae in batch BMP tests.  

3. To evaluate the feasibility of using potato processing waste as a co-substrate for co-

digestion with microalgae in semi-continuous co-digestion studies. 

4. To evaluate the effects of glycerol supplementation on the co-digestion of microalgae and 

potato processing waste in semi-continuous co-digestion studies. 

 

Results from Chapter 4 show that methane yields were significantly enhanced by both 

enzymatic and low-temperature thermo-alkaline pre-treatments. Microalgae C. vulgaris after 

enzymatic pre-treatment enhanced methane yields the most, by 22 – 162%, whilst C. vulgaris 

pre-treated by thermo-alkaline pre-treatment improved methane yields by 4 – 26%. For 

enzymatic pre-treatment, mixtures of enzymes may exhibit a synergistic effect and 

consequently improve the hydrolysis efficiency. Therefore, C. vulgaris pre-treated with mixed 

enzymes showed higher methane yields compared to single enzymes. In low-temperature 

thermo-alkaline pre-treatment, the level of enhancement in methane yields depended on the 

alkaline dosage and pre-treatment temperature, but the high alkaline dosages were associated 

with limitations such as a prolonged lag phase in the digestion process. In comparison with 

low-temperature thermo-alkaline pre-treatment, microalgae pre-treated enzymatically may 

release more intercellular components in terms of the concentrations of soluble COD and 

proteins, and these two parameters had a positive correlation with methane yields. Therefore, 

C. vulgaris pre-treated by enzymatic pre-treatment could produce more methane than low-

temperature thermo-alkaline pre-treatment. From an energy viewpoint, both pre-treatments 

showed positive energy balances for the majority of experimental conditions, and therefore 

both pre-treatments are considered to be energetically efficient methods to pre-treat 

microalgae.  
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PPW could be used effectively as a feedstock in co-digestion with microalgae C. vulgaris in 

batch BMP tests as shown in Chapter 5. The addition of PPW (PPWdp or PPWp) to C. vulgaris 

both resulted in an increase in the C/N ratio and decreased the content of toxic components in 

terms of FAN concentrations, and consequently improved digestion performance and 

stability. Production rates and final yields of methane were significantly enhanced with 

increased proportions of PPW in the mixed waste, and the best performance was found at a 

ratio of 25:75 C. vulgaris: PPW compared to ratios of 75:25 and 50:50. The type of PPW also 

had a significant effect on methane yields, as C. vulgaris co-digested with PPWdp increased 

the methane yield by 22 – 47%, versus a 12 – 32% enhancement with PPWp. A lower 

substrate to inoculum ratio (SIR) is probably better for microalgae co-digestion with PPW, as 

a higher SIR of 1.0 led to an accumulation of soluble COD, resulting in decreased methane 

yield relative to digesters employing a SIR of 0.5.  

 

The results of semi-continuous anaerobic co-digestion experiments reported in Chapter 6 also 

indicated that both PPWdp and PPWp are promising feedstocks for co-digestion with the 

marine microalga T. lutea. A mixing ratio of 25:75 of T. lutea: PPW gave the optimum C/N 

ratios, and enabled the semi-continuous co-digestion process to operate successfully without 

VFA and ammonia inhibition. The results also showed that the semi-continuous co-digestion 

of T. lutea with PPWdp produced higher methane yields than co-digestion with PPWp. Results 

also showed that methane yields were significantly affected by the start-up strategies used, 

with semi-continuous digesters that were immediate feeding with 100% PPWdp or PPWp 

showing significantly enhanced methane yields compared to the digesters that were not fed 

initially either of these substrates. Moreover, physiochemical variables were also affected by 

this 100% PPW start-up strategy, with concentrations of VFA and ammonia being decreased 

significantly, and consequently, this educed the potential risk to the methanogens. Moreover, 

digesters were immediate feeding with 100% PPW supported a high relative abundance of 

Methanosarcina.  

 

The results of the semi-continuous anaerobic co-digestion experiments described in Chapter 7 

suggest that the performance of microalgae co-digestion is substantially improved by the 

inclusion of glycerol as an additional feedstock. Supplementing glycerol into mixtures of C. 

vulgaris: PPW enhanced methane yield significantly. Co-digestion of glycerol with mixtures 

of C. vulgaris: PPWdp enhanced the specific methane yields the most, by 53 – 128%, whilst 

co-digestion with mixtures of C. vulgaris: PPWp enhanced the methane yields by 62 – 74%. 
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However, glycerol dosage is a key factor for the co-digestion process, and results showed a 

dosage of 2% v/v caused the accumulation of VFA, leading to an unstable process and 

requiring intervention to recover one of the digesters. Interestingly, at the beginning of the 

recovery period, the digester was dominated by Methanosarcina, and the relative abundance 

of this methanogen showed a negative correlation with methane yields.  

 

8.4 Recommendations for future work  

 

Overall, the methane yields obtained from microalgae were significantly enhanced due to the 

tested pre-treatments. Potato processing waste and glycerol are two promising waste materials 

that can be used as feedstocks for co-digestion with microalgae, and can rebalance C/N ratios, 

and improve process stability, leading to enhanced methane yields. However, the ideas 

developed in this work need to be examined further, and recommendations for the future work 

is provided below that should improve the feasibility of using microalgae as a feedstock for 

the production of bioenergy via AD.  

 

8.4.1 Recommendations for pre-treatment  

 

For enzymatic pre-treatment, the enzyme mixtures produced higher methane yields than 

single enzymes, but the mixture ratios of two enzymes were set at 1:1 in the current study. 

Therefore, future laboratory work could extend the enzymatic pre-treatment conditions by 

assessing the effect of other mixture ratios such as 1:3, 1:2, 2:1 and 3:1 on the solubilisation 

of microalgae and subsequent methane yields. Additionally, the pre-treatment time for 

enzymatic pre-treatment was set at 24 hours, and therefore, other reaction periods should be 

investigated to determine whether methane yields might be improved. For low-temperature 

thermo-alkaline pre-treatment, pre-treatment time had no effect on methane yields, and it 

appears that only short contact periods may be needed for microalgae compared to 

lignocellulosic biomass. However, future laboratory work still needs to investigate other the 

pre-treatment times to verify this. Moreover, the present pre-treatment work was all based on 

small batch BMP experiments, but in order to study the performance of anaerobic 

microorganisms in more depth by extended feeding with pre-treated microalgal biomass, a 

semi-continuously fed digester is required to evaluate the benefits, or possible long-term 

detrimental effects of both pre-treatments in terms of energy balance and overall costs.  
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Although the enzymatic pre-treatment of microalgae led to a higher solubilisation of organic 

matter and methane yields compared to low-temperature thermo-alkaline pre-treatment, a key 

difficulty with the use of this method in large-scale applications is the high cost associated 

with the purification of enzymes or the purchase of commercial enzymatic cocktails. 

Therefore, alternatives to these high cost sources of enzymes should be considered. The first 

alternative should consider on-site production using crude enzymes produced by microbes 

such as bacteria or fungi. For example, in order to reduce costs further and enhance enzymatic 

hydrolysis of the microalgae, bioaugmentation could be used whereby whole cells of enzyme-

producing bacteria, or crude enzyme preparations from these bacteria, were added to 

suspensions of the microalgae prior to AD.  

 

Microalgae contain intercellular enzymes associated with cell activities, and the second 

strategy would exploit the natural process of autolysis of microalgae to release its own 

digestive enzymes. Microalgae autolysis is a natural process that occurs during both asexual 

and sexual lifecycles, where autolysins (proteases) are capable of degrading microalgal cell 

wall. Microalgae autolysis is induced by various environmental stress conditions, including 

oxidative stress, darkness, heat-stress, high salinity and restricted CO2. Therefore, the 

autolysis process might be a cheaper method to disrupt the microalgal cell wall when using 

microalgal biomass for the production of biofuels, and within a biorefinery process.  

 

8.4.2 Recommendations for co-digestion  

 

For the co-digestion experiments, reported in Chapter 6, the digesters were initially fed with 

100% PPW showed better performance and higher methane yields than the digesters with 

delayed feeding. However, the period with 100% PPW feeding was set at five days, after 

which microalgae in the feedstock was set at a constant proportion of 25% based on VS. 

Therefore, further laboratory work should be conducted to determine whether a longer start-

up period with 100% PPW, and/or a progressive increase in the proportion of microalgae from 

0 to 25% VS, gives additional benefits compared to the current study.  

 

To date, information about continuous digesters fed with microalgal biomass is still very 

limited compared to BMP tests. During the current work, as presented in Chapters 6 and 7, 

the semi-continuous anaerobic tests focused on an evaluation of the potential of the benefits 

of using carbon-rich waste materials as co-digestion substrates with microalgae. Since 

operating parameters such as OLR and HRT are known to affect the performance of the AD 
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process and influence methane production. Therefore, it is proposed that future work should 

investigate the effect of OLR and/or HRT on the semi-continuous co-digestion of microalgae 

with potato processing waste and/or glycerol.  

 

Additionally, since digestion temperature is known to be key factor affecting methane 

production. Thermophilic AD (55 – 70 ℃) giving potentially faster reaction rates, and higher 

biodegradability and productivity than mesophilic AD, but possibly causing detrimental 

effects as well, such as acidification and the accumulation of intermediate products. Future 

work could expand on the co-digestion experiments carried out to date by assessing the effect 

of temperature on digester performance and methane production.  
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Appendix  

 

Appendix A. Additional experimental data 

 

A.1. Growth analysis of C. vulgaris 

 

Figure A.1 shows the growth curve of cultivated C. vulgaris, and the stationary phase started 

from days 23 to 39 with the average optical density of 1.95 ± 0.01 at 540 nm.  

 

 

Figure A.1. C. vulgaris growth curve based on optical density at 540 nm. 
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A.2. Additional experimental data of C. vulgaris co-digestion with PPW in batch BMP 

studies 

 

The theoretical maximum methane potential of C. vulgaris, PPWdp, PPWp and co-digestion 

mixtures can be calculated based on Equation A.1 (Nielfa et al., 2015).  

 

𝐵𝑀𝑃𝑡ℎ𝐶𝑂𝐷 =
𝑛𝐶𝐻4𝑅𝑇

𝑃𝑉𝑆𝑎𝑑𝑑𝑒𝑑
                                                                       (A.1) 

 

where 𝐵𝑀𝑃𝑡ℎ𝐶𝑂𝐷- The theoretical production (ml CH4/g VS added) at experimental 

conditions (1atm, 37 ℃); R- Gas constant (R = 0.082 atm L/mol K); T -Temperature of the 

digestive bottle (37 ℃=310K); P- Atmospheric pressure (1 atm); 𝑉𝑆𝑎𝑑𝑑𝑒𝑑-the volatile solids 

(g/L) of the substrate; 𝑛𝐶𝐻4
- The amount of molecular methane (mol) determined from 

Equation A.2. 

𝑛𝐶𝐻4
=

𝐶𝑂𝐷

64(𝑔/𝑚𝑜𝑙)
                                                   (A.2) 

 

Tables A.1 and A.2 show that the experimental and therotical methane yields produced by co-

digestion of C. vulgaris and PPW.  

 

Table A.1. Experimental, theoretical methane production and biodegradability of co-digestion 

of C. vulgaris and potato processing waste at 1.0 SIR 

 

 SIR=1.0 

BMPth 

(ml CH4/gVS) 

BMPexp 

(ml CH4/gVS) 

BDexp 

(%) 

C. vulgaris 563 158 28 

PPWdp 749 340 45 

PPWp 519 232 45 

+ 25% PPWdp 532 207 36 

+ 50% PPWdp 513 243 47 

+ 75% PPWdp 486 260 53 

+ 25% PPWp 532 201 38 

+ 50% PPWp 506 210 41 

+ 75% PPWp 462 228 49 
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Table A.2. Experimental, theoretical methane production and biodegradability of co-digestion 

of C. vulgaris and potato processing waste at 0.5 SIR 

 

 

A.3. Additional experimental data of T. lutea co-digestion with PPW in batch and semi-

continous studies  

 

Figure A.2 shows the cumulative methane produced by mono-digestion of T. lutea, and co-

digestion with PPWdp (Figure A.2a) or PPWp (Figure A.2B) for o.5 SIR. Tables A.1 and A.2 

show the summary of experimental data for T. lutea co-digestion with PPWdp or PPWp.  

 

The mixing ratios between T. lutea and PPW had a significant effect on methane yields (F 

(2.011, 16)=91.59, p<0.001). High content of PPW relative to T. lutea led to enhanced 

methane yields, and co-digestion of T. lutea and PPW at 25/75 produced significantly more 

methane than the ratios of 100/0 (p<0.001) and 75/25 (p=0.012). However, the methane yields 

from of ratios of 50/50 and 25/75 were not significantly different (p=0.301). The C/N ratios in 

the mixtures of T. lutea with PPWdp or PPWp at a mixing ratio of 25/75 were 24.24/1 and 

19.33/1, respectively, both within the optimal range for AD process.  

 

 

 

 

 SIR=0.5 

BMPth 

(ml CH4/gVS) 

BMPexp 

(ml CH4/gVS) 

BDexp 

(%) 

C. vulgaris 539 176 33 

PPWdp 521 439 84 

PPWp 607 348 57 

+ 25% PPWdp 541 227 42 

+ 50% PPWdp 521 268 51 

+ 75% PPWdp 582 330 57 

+ 25% PPWp 532 201 38 

+ 50% PPWp 445 225 51 

+ 75% PPWp 411 246 60 
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Figure A.2. Cumulative methane yield of T. lutea co-digested with PPW [a] potato discarded 

parts (PPWdp) and [b] potato peel (PPWp). The solid line represents the Gompertz model fit 

data. 
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Table A.3. Summary of C/N ratios and characterisation of digestate for T. lutea co-digestion 

with PPWdp or PPWp 

 C/N 

 

BMPexp 

(mLCH4/gVS) 

pH CODS 

(g/L) 

FAN  

(mg/L) 

T. lutea 9.50 85 ± 10 a 7.79 ± 0.01 1.4 ± 0.1 80.7 ± 2.5 

PPWdp 40.78 353 ± 34 7.78 ± 0.04 1.7 ± 0.1 62.3 ± 18.8 

PPWp 28.59 353 ± 34 7.53 ± 0.00 1.5 ± 0.7 58.4 ± 1.8 

+ 25% PPWdp 13.60 184 ± 13 7.70 ± 0.01 1.5 ± 0.2 89.3 ± 1.4 

+ 50% PPWdp 17.85 251 ± 28 7.64 ± 0.09 1.3 ± 0.2 80.2 ± 0.4 

+ 75% PPWdp 24.24 302 ± 19 7.70 ± 0.14 1.4 ± 0.1 61.2 ± 0.4 

+ 25% PPWp 10.76 166 ± 30 7.78 ± 0.04 1.7 ± 0.1 97.6 ± 7.4 

+ 50% PPWp 17.08 217 ± 6 7.71 ± 0.03 1.4 ± 0.1 85.4 ± 4.3 

+ 75% PPWp 19.33 234 ± 26 7.73 ± 0.01 1.5 ± 0.1 88.8 ± 0.5 

a Mean ± SD, n=3.  

 

Table A.4. Summary of modified Gomerptz kinetics data for T. lutea co-digestion with 

PPWdp or PPWp 

 Modified Gompertz Kinetics 

 P 

(ml CH4 /gVS) 

Rm 

(ml/gVS/d) 

λ 

(d) 

R2 

T. lutea 111.0 6.432 11.74 0.9902 

PPWdp 345.7 40.97 3.747 0.9919 

PPWp 366.2 30.43 3.382 0.9859 

+ 25% PPWdp 187.3 16.51 6.015 0.9920 

+ 50% PPWdp 250.0 25.13 4.167 0.9962 

+ 75% PPWdp 298.6 28.98 3.261 0.9825 

+ 25% PPWp 173.7 12.47 6.161 0.9788 

+ 50% PPWp 229.0 15.29 3.851 0.9807 

+ 75% PPWp 240.7 27.36 4.074 0.9792 
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Table A.5. Performance of digesters when co-digesting T. lutea and PPW during experimental period 

 D1 D2 D3 D4 

 Period III 

(day 26-64) 

Period III 

(day 26-64) 

Period III 

(day 26-64) 

Period III 

(day 26-64) 

OLR (g VS/L/d) 1.0 1.0 1.0 1.0 

Process stability     

pH 7.04 ± 0.14a 6.88 ± 0.00 7.07 ± 0.04 7.05 ± 0.06 

NH+
4-N (g/L) 1.22 ± 0.04 1.15 ± 0.03 1.27 ± 0.03 1.26 ± 0.01 

FAN (mg/L) 17.50 ± 5.81 11.19 ± 0.00 18.99 ± 1.51 18.06 ± 2.41 

Digester effluent     

TS (g/L) 7.13 ± 0.59 7.63 ± 0.00 7.09 ± 0.19 7.07 ± 0.06 

VS (g/L) 3.58 ± 0.80 4.15 ± 0.00 3.27 ± 0.36 3.23 ± 0.10 

CODt (g/L) 7.59 ± 0.02 8.36 ± 0.32 6.89 ± 0.73 6.33 ± 0.0.04 

CODs (g/L) 0.89 ± 0.17 0.75 ± 0.00 0.83 ± 0.10 0.77 ± 0.01 

VSremoval (%) 57 ± 10 58 ± 4 60 ± 4 61 ± 1 

CODremoval (%) 55 ± 3 50 ± 1 59 ± 2 62 ± 2 

Methane production     

CH4 (%) 62 ± 6 62 ± 7 66 ± 6 66 ± 7 

Specific CH4 yield (mL/g VSadded ) 332 ± 44 383 ± 46 320 ± 38 343 ± 40 

a Mean ± SD, n=2
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Appendix B. Statistical analysis of experimental data of Chapter 4 

 

B.1. Enzymatic pre-treatment  

 

EC stands for concentrations of enzymes, with 3 levels of 0, 0.5 and 1.0 %v/w; ET stands for 

enzymes type, with 5 levels: cellulase (C), protease (P), amylase (A), cellulase + protease 

(CP) and cellulase + amylase (CA). 

 

Table B.1. Statistical analysis of solubilisation of COD after enzymatic pre-treatment 

COD solubilisation df. F p. 

EC 1.104,30a 6500.00 <0.001*** 

ET 4,15 60.262 <0.001*** 

EC*ET 4.417,30 40.14 <0.001*** 

a “test of Sphericity” violated (p<0.05), and G-G Sphericity Epsilon estimates < 0.75, use 

Greenhouse-Geisser estimate; 

*** The mean difference is significant at the 0.001 level  

 

 

Table B.2. Statistical analysis of solubilisation of carbohydrates after enzymatic pre-treatment 

Carbohydrates 

solubilisation 

df. F p. 

EC 1.099, 30 a 1400.00 <0.001*** 

ET 4, 15 3840.00 <0.001*** 

EC*ET 4.398, 30 a 252.14 <0.001*** 

a “test of Sphericity” violated (p<0.05), and G-G Sphericity Epsilon estimates < 0.75, use 

Greenhouse-Geisser estimate; 

*** The mean difference is significant at the 0.001 level  
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Table B.3. Statistical analysis of solubilisation of proteins after enzymatic pre-treatment 

Proteins 

solubilisation 

df. F p. 

EC 1.323,30 a 4750.00 <0.001*** 

ET 4,15 657.00 <0.001*** 

EC*ET 5.293,30 a 106.39 <0.001*** 

a “test of Sphericity” violated (p<0.05), and G-G Sphericity Epsilon estimates < 0.75, use 

Greenhouse-Geisser estimate; 

*** The mean difference is significant at the 0.001 level  

 

Table B.4. Statistical analysis of cumulative methane yields of enzymatic pre-treatment 

Cumulative 

methane yield 

df. F p. 

EC 2,50 647.79 <0.001*** 

ET 4,25 127.95  <0.001*** 

EC*ET 8,50 45.95 <0.001*** 

*** The mean difference is significant at the 0.001 level. 

 

Table B.5. Statistical analysis of maximum methane production rate of enzymatic pre-

treatment 

Rm df. F p. 

EC 2,10 166.33 <0.001*** 

ET 4,5 11.37 0.010** 

EC*ET 8,10 7.17 0.003** 

** The mean difference is significant at the 0.01 level; 

*** The mean difference is significant at the 0.001 level; 
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Table B.6. Statistical analysis of lag phase of enzymatic pre-treatment 

λ df. F p. 

EC 2,10 2.56 0.127 

ET 4,5 3.28 0.112 

EC*ET 8,10 2.49 0.089 

 

 

Table B.7. Statistical analysis of Pearson correlation tests of enzymatic pre-treatment 

 Methane yields 

Solubilisation of COD (%) r (22)=0.755, p<0.001*** 

Solubilisation of carbohydrates (%) r (22)=0.787, p<0.001*** 

Solubilisation of proteins (%) r (26)=0.733, p<0.001*** 

 

 

B.2 Thermo-Alkaline pre-treatment 

 

CD stands for Ca(OH)2 dosage at 3 levels of 0,10 and 15% w/w. PT stands for pre-treatment 

time with 2 levels of 24 and 48 hours, and PE stands for pre-treatment temperature with 2 

levels of 37 and 55 ℃. 00 level means untreated C. vulgaris.  

 

Table B.8. Statistical analysis of solubilisation of COD after thermo-alkaline pre-treatment 

COD solubilisation df. F p. 

CD 3,12 2838.00 <0.001*** 

PT 1,4 0.00 0.983 

PE 1,4 10.99 0.030* 

CD*PT 3,12 24.37 <0.001*** 

CD*PE 3,12 4.65 0.022* 

PE*PT 1,4 2.11 0.220 

CD*PE*PT 3,12 1.45 0.276 

* The mean difference is significant at the 0.05 level; 

*** The mean difference is significant at the 0.001 level; 
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Table B.9. Statistical analysis of solubilisation of carbohydrates after thermo-alkaline pre-

treatment 

Carbohydrates 

solubilisation 

df. F p. 

CD 3,12 955.08 <0.001*** 

PT 1,4 20.60 0.011* 

PE 1,4 42.26 0.003** 

CD*PT 3,12 2.48 0.111 

CD*PE 3,12 5.72 0.011* 

PE*PT 1,4 0.26 0.639 

CD*PE*PT 3,12 6.83 0.006** 

* The mean difference is significant at the 0.05 level; 

** The mean difference is significant at the 0.01 level; 

*** The mean difference is significant at the 0.001 level. 

 

 

Table B.10. Statistical analysis of solubilisation of proteins after thermo-alkaline pre-

treatment 

Proteins 

solubilisation 

df. F p. 

CD 3,12 1452.42 <0.001*** 

PT 1,4 29.28 0.006** 

PE 1,4 34.15 0.004** 

CD*PT 3,12 24.63 <0.001*** 

CD*PE 3,12 11.91 0.001*** 

PE*PT 1,4 10.86 0.030* 

CD*PE*PT 3,12 8.33 0.003** 

* The mean difference is significant at the 0.05 level; 

** The mean difference is significant at the 0.01 level; 

*** The mean difference is significant at the 0.001 level. 
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Table B.11. Statistical analysis of cumulative methane yields of thermo-alkaline pre-

treatment 

Cumulative 

methane yield 

df. F p. 

CD 3,12 11.34 0.001*** 

PT 1,4 0.56 0.495 

PE 1,4 9.79 0.035* 

CD*PT 3,12 0.61 0.619 

CD*PE 3,12 2.00 0.167 

PE*PT 1,4 0.00 0.908 

CD*PE*PT 3,12 2.30 0.130 

* The mean difference is significant at the 0.05 level; 

*** The mean difference is significant at the 0.001 level. 

 

Table B.12. Statistical analysis of maximum methane production of thermo-alkaline pre-

treatment 

Rm df. F p. 

CD 3,12 3.31 0.057 

PT 1,4 0.17 0.698 

PE 1,4 9.90 0.035* 

CD*PT 3,12 1.62 0.237 

CD*PE 3,12 9.68 0.002** 

PE*PT 1,4 0.28 0.625 

CD*PE*PT 3,12 2.66 0.096 

* The mean difference is significant at the 0.05 level; 

** The mean difference is significant at the 0.01 level. 
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Table B.13. Statistical analysis of lag phase of thermo-alkaline pre-treatment 

λ df. F p. 

CD 3,12 57.071 <0.001*** 

PT 1,4 0.919 0.392 

PE 1,4 159.151 <0.001*** 

CD*PT 3,12 0.498 0.691 

CD*PE 3,12 51.620 <0.001*** 

PE*PT 1,4 0.784 0.426 

CD*PE*PT 3,12 2.083 0.156 

*** The mean difference is significant at the 0.001 level. 

 

Table B.14. Statistical analysis of Pearson correlation tests of thermo-alkaline pre-treatment 

 Methane yields 

Solubilisation of COD (%) r (26)=0.476, p=0.014* 

Solubilisation of carbohydrates (%) r (26)=0.457, p=0.019* 

Solubilisation of proteins (%) r (26)=0.489, p=0.011* 

* The mean difference is significant at the 0.05 level. 
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Appendix C: Statistical analysis of experimental data of Chapter 5.  

 

CPPW stands for the mixing ratios between C. vulgaris and PPW, with 5 levels of 100:0, 

75:25, 50:50, 25:75 and 0:100. TPPW stands for PPW type, with 2 levels of PPWdp and 

PPWp. SIR is the substrate to inoculum ratio also with 2 levels of 0.5 and 1.0.  

 

Table C.1. Statistical analysis of cumulative methane yields of co-digestion BMP tests 

Cumulative methane 

yield 

df. F p. 

CPPW 4,32 100.68 <0.001*** 

TPPW 1,8 52.94 <0.001*** 

SIR 1,8 54.82 <0.001*** 

CPPW*TPPW 4,32 9.51 <0.001*** 

CPPW*SIR 4,32 8.72 <0.001*** 

TPPW*SIR 1,8 2.03 0.193 

CPPW*TPPW*SIR 4,32 1.10 0.373 

*** The mean difference is significant at the 0.001 level. 

 

Table C.2. Statistical analysis of maximum methane production of co-digestion BMP tests 

Rm df. F p. 

CPPW 1.786,32a 18.52 <0.001*** 

TPPW 1,8 17.89 0.003** 

SIR 1,8 58.28 <0.001*** 

CPPW×TPPW 1.786,32 3.93 0.047* 

CPPW×SIR 1.786,32 1.53 0.249 

TPPW×SIR 1,8 3.16 0.113 

CPPW×TPPW×SIR 1.786,32 3.79 0.052 

a “test of Sphericity” violated (p<0.05), and G-G Sphericity Epsilon estimates < 0.75, use 

Greenhouse-Geisser estimate 

* The mean difference is significant at the 0.05 level; 

** The mean difference is significant at the 0.01 level; 

*** The mean difference is significant at the 0.001 level. 
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Table C.3. Statistical analysis of lag phase of co-digestion BMP tests 

λ df. F p. 

CPPW 4,32 0.54 0.711 

TPPW 1,8 1.76 0.221 

SIR 1,8 177.59 <0.001*** 

CPPW×TPPW 4,32 2.77 0.044* 

CPPW×SIR 4,32 5.46 0.002** 

TPPW×SIR 1,8 0.29 0.603 

CPPW×TPPW×SIR 4,32 3.58 0.016* 

* The mean difference is significant at the 0.05 level; 

** The mean difference is significant at the 0.01 level; 

*** The mean difference is significant at the 0.001 level. 

 

Table C.4. Statistical analysis of concentrations of CODs at the end of co-digestion 

CODs df. F p. 

MPPW 4,16 38.26 <0.001*** 

TPPW 1,4 122.51 <0.001*** 

SIR 1,4 1473.68 <0.001*** 

MPPW×TPPW 4,16 39.99 <0.001*** 

CPPW×SIR 4,16 41.90 <0.001*** 

TPPW×SIR 1,4 98.95 0.001*** 

CPPW×TPPW×SIR 4,16 33.50 <0.001*** 

*** The mean difference is significant at the 0.001 level. 

 

Table C.5. Statistical analysis of concentrations of FAN at the end of co-digestion 

FAN df. F p. 

CPPW 4,16 20.70 <0.001*** 

TPPW 1,4 13.86 0.020* 

SIR 1,4 626.42 <0.001*** 

CPPW×TPPW 4,16 1.996 0.144 

CPPW×SIR 4,16 15.44 <0.001*** 

TPPW×SIR 1,4 0.03 0.862 

CPPW×TPPW×SIR 4,16 1.64 0.212 

* The mean difference is significant at the 0.05 level; 
*** The mean difference is significant at the 0.001 level. 
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Appendix D. Statistical analysis of experimental data of Chapter 6 

 

STM stands for start-up methods, and TPPW stands for type of potato processing waste. 

 

D.1 Statistical analysis of experimental data on days 6, 15 and 27  

 

Table D.1 Statistical analysis of concentrations of FAN on day 6 

 df. F p 

STM 1,4 508.20 <0.001*** 

TPPW 1,4 9.26 0.038* 

STM*TPPW 1,4 2.14 0.218 

* The mean difference is significant at the 0.05 level; 

*** The mean difference is significant at the 0.001 level. 

 

Table D.2 Statistical analysis of concentrations of total VFA on day 15 

 df. F p 

STM 1,12 24.13 <0.001*** 

TPPW 1,12 76.63 <0.001*** 

STM*TPPW 1,12 7.72 0.017* 

* The mean difference is significant at the 0.05 level; 

*** The mean difference is significant at the 0.001 level. 

 

Table D.3. Statistical analysis of concentrations of acetic acids on day 15 

 df. F p 

STM 1,12 11.18 0.006** 

TPPW 1,12 73.47 <0.001*** 

STM*TPPW 1,12 13.85 0.003** 

** The mean difference is significant at the 0.01 level; 

*** The mean difference is significant at the 0.001 level. 
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Table D.4. Statistical analysis of concentrations of propionate acids on day 15 

 df. F p 

STM 1,12 127.08 <0.001*** 

TPPW 1,12 18.63 0.001*** 

STM*TPPW 1,12 8.63 0.012* 

* The mean difference is significant at the 0.05 level; 

*** The mean difference is significant at the 0.001 level. 

 

Table D.5. Statistical analysis of degradation efficiency of total VFAs from days 15 to 27 

 df. F p 

STM 1,12 5.57 0.036* 

TPPW 1,12 0.17 0.691 

STM*TPPW 1,12 5.08 0.044* 

* The mean difference is significant at the 0.05 level. 

 

Table D.6. Statistical analysis of concentrations of propionate acids on day 27 

 df. F p 

STM 1,12 5.74 0.034* 

TPPW 1,12 3.83 0.074 

STM*TPPW 1,12 1.23 0.290 

* The mean difference is significant at the 0.05 level. 

 

D.2 Statistical analysis of experimental data of biogas and methane yields during Period 

III 

Table D.7. Statistical analysis of biogas production during Period III 

 df. F p 

STM 1,148 50.27 <0.001*** 

TPPW 1,148 68.60 <0.001*** 

STM*TPPW 1,148 9.30 0.003** 

** The mean difference is significant at the 0.01 level; 

*** The mean difference is significant at the 0.001 level. 
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Table D.8. Statistical analysis of specific methane yields during Period III 

 df. F   p 

STM 1,148 23.13 <0.001*** 

TPPW 1,148 11.46 0.001*** 

STM*TPPW 1,148 3.17 0.077 

*** The mean difference is significant at the 0.001 level. 

 

D.3. Statistical analysis of relative abundance of archaea during the co-digestion process  

 

Table D.9. Statistical analysis of relative abundance of Methanosarcina on day 27 

 df. F p 

STM 1,12 504.86 <0.001*** 

TPPW 1,12 1.09 0.318 

STM*TPPW 1,12 7.13 0.020* 

* The mean difference is significant at the 0.05 level; 

*** The mean difference is significant at the 0.001 level. 

 

Table D.10. Statistical analysis of relative abundance of Methanosaeta on day 27 

 df. F p 

STM 1,12 174.69 <0.001*** 

TPPW 1,12 7.82 0.016* 

STM*TPPW 1,12 25.55 <0.001*** 

* The mean difference is significant at the 0.05 level; 

*** The mean difference is significant at the 0.001 level. 

 

Table D.11. Statistical analysis of relative abundance of Methanosarcina on day 46 

 df. F p 

STM 1,12 15.22 0.002** 

TPPW 1,12 47.55 <0.001*** 

STM*TPPW 1,12 3.21 0.098 

** The mean difference is significant at the 0.01 level; 

*** The mean difference is significant at the 0.001 level. 
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Table D.12. Statistical analysis of relative abundance of Methanosaeta on day 46 

 df. F p 

STM 1,12 7.08 0.021* 

TPPW 1,12 30.51 <0.001*** 

STM*TPPW 1,12 6.29 0.027* 

* The mean difference is significant at the 0.05 level; 

*** The mean difference is significant at the 0.001 level. 

 

Table D.13. Statistical analysis of relative abundance of Methanosarcina on day 64 

 df. F p 

STM 1,12 59.00 <0.001*** 

TPPW 1,12 50.59 <0.001*** 

STM*TPPW 1,12 26.94 <0.001*** 

*** The mean difference is significant at the 0.001 level. 

 

Table D.14. Statistical analysis of relative abundance of Methanosaeta on day 64 

 df. F p 

STM 1,12 45.08 <0.001*** 

TPPW 1,12 32.38 <0.001*** 

STM*TPPW 1,12 42.58 <0.001*** 

*** The mean difference is significant at the 0.001 level. 
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Appendix E. Statistical analysis of experimental data of Chapter 7 

 

E.1 Statistical analysis of experimental data during the co-digestion process 

 

Table E.1. Statistical analysis of the values of TS and VS between 0 and 2% v/v glycerol 

dosage at the end of Period III 

 df. t p. 

TS 6 -5.588 0.001*** 

VS 6 -7.799 <0.001*** 

*** The mean difference is significant at the 0.001 level. 

 

Table E.2. Statistical analysis of the values of TS and VS between 0 and 1% v/v glycerol 

dosage at the end of Period IV and Period VI 

 df. t p. 

TS 6 -1.311 0.238 

VS 6 -3.243 0.018* 

* The mean difference is significant at the 0.05 level. 

 

Table E.3. Statistical analysis of the volumetric and specific methane yields when microalgae 

co-digesting with PPWdp with or without glycerol  

 df. F p. 

Volumetric methane yields 2,61 319.67 <0.001*** 

Specific methane yields 2,61 213.67 <0.001*** 

*** The mean difference is significant at the 0.001 level. 

 

Table E.4. Statistical analysis of the volumetric and specific methane yields when microalgae 

co-digesting with PPWp with or without glycerol  

 df. F p. 

Volumetric methane yields 2,65 916.411 <0.001*** 

Specific methane yields 2,65 207.720 <0.001*** 

*** The mean difference is significant at the 0.001 level. 
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Table E.5. Spearman correlation between relative abundance of methanogenic archaea and operating parameters [1] 

 CH4 yields TS VS CODt CODs 

Methanosaeta 0.390 rs(34)=-0.416 

0.015* 

rs(34)=-0.431 

0.011* 

rs(34)=-0.360 

0.036* 

rs(34)=-0.407 

0.017* 

Candidatus 

Methanofastidiosum 

0.831 rs(34)=0.563 

0.001*** 

rs(34)=0.539 

0.001*** 

rs(34)=0.465 

0.006** 

rs(34)=0.504 

0.002** 

Methanobrevibacter rs(34)=-0.392 

0.022* 

rs(34)=0.662 

<0.001*** 

rs(34)=0.650 

<0.001*** 

rs(34)=0.531 

0.001*** 

rs(34)=0.621 

<0.001*** 

Methanobacterium 0.242 rs(34)=-0.753 

<0.001*** 

rs(34)=-0.719 

<0.001*** 

rs(34)=-0.623 

<0.001*** 

rs(34)=-0.700 

<0.001*** 

Methanoculleus 0.145 0.590 0.737 0.390 0.744 

Methanosarcina rs(34)=-0.487 

0.004** 

0.644 0.302 0.903 0.418 

RumEn M2 0.362 rs(34)=-0.627 

<0.001*** 

rs(34)=-0.558 

0.001*** 

rs(34)=-0.498 

0.003** 

rs(34)=-0.547 

0.001*** 

* The mean difference is significant at the 0.05 level; 

** The mean difference is significant at the 0.01 level; 

*** The mean difference is significant at the 0.001 level. 
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Table E.6. Spearman correlation between relative abundance of methanogenic archaea and operating parameters [2] 

 FAN pH VFA TA VFA/TA 

Methanosaeta 0.196 0.246 rs(34)=-0.395 

0.021* 

0.116 0.377 

Candidatus 

Methanofastidiosum 

rs(34)=0.350 

0.042* 

0.070 rs(34)=0.573 

<0.001*** 

rs(34)=0.428 

0.012* 

0.081 

Methanobrevibacter rs(34)=0.581 

<0.001*** 

rs(34)=0.562 

0.001*** 

rs(34)=0.383 

0.025* 

rs(34)=0.649 

<0.001*** 

0.557 

Methanobacterium rs(34)=-0.622 

<0.001*** 

rs(34)=-0.595 

<0.001*** 

rs(34)=-0.505 

0.002** 

rs(34)=-0.673 

<0.001*** 

0.942 

Methanoculleus 0.537 0.473 0.087 0.683 0.148 

Methanosarcina 0.765 0.690 0.502 0.746 0.389 

RumEn M2 rs(34)=-0.407 

0.017* 

rs(34)=-0.389 

0.023* 

rs(34)=-0.522 

0.002** 

rs(34)=-0.514 

0.002** 

0.251 

* The mean difference is significant at the 0.05 level; 

** The mean difference is significant at the 0.01 level; 

*** The mean difference is significant at the 0.001 level.



 

 

 

 


