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Abstract 

This thesis aimed to assess the consequences of coccidiosis on broiler long bone quality and 

to explore ameliorative nutritional strategies. The impact of coccidiosis on long bone 

mineralisation, as well as resistance and tolerance to coccidian infection, was similar in two 

broiler lines differing in their genetic growth rate (GR) potential. Penalties of infection on 

bone quality persisted after the impaired GR of infected birds attained a similar level as that 

of their non-infected counterparts [Chapter 2].  

Offering 25-hydroxycholecalciferol (OHD) instead of cholecalciferol (D3) as the source of 

dietary vitamin D (VitD), and higher VitD levels (4000 vs 1000 IU/kg) improved bone 

mineralisation and performance of both infected and control birds [Chapter 3]. Although, the 

performance of infected birds was penalised to a higher degree when offering low VitD, 

offering OHD or high VitD increased parasite burden, suggesting that dietary VitD supply is 

crucial for broilers during coccidiosis.  

Offering marginally deficient Ca/P diets reduced mineralisation of both control and infected 

birds [Chapter 4]. Offering OHD instead of D3 at high levels (4000 IU/kg) did not ameliorate 

effects of either coccidiosis or reduced Ca/P supply, but promoted higher mineralisation in 

birds offered adequate Ca/P diets. Parasite burden and performance was similar for 4000IU/kg 

OHD- and D3-fed broilers, suggesting that the benefits of OHD over D3 were limited at 4000 

IU/kg.  

Chapter 5 investigated the benefit of diet dilution-induced reduction in early GR on 

coccidiosis-impaired long bone mineralisation. Bone quality, especially femur strength, was 

improved by reducing GR whilst coccidiosis-impaired bone mineralisation was independent 

of GR. 

Overall, the effects of coccidiosis on bone development were provided; they persisted at later 

stages of infection and differed amongst femur and tibia bones. Genetic and dietary-induced 

differences in GR and dietary level of VitD and Ca/P improved responses of both control and 

infected birds whilst infected birds additionally benefited from a higher VitD supply. 
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Chapter 1: Introduction 

1.1 Coccidiosis: A perennial problem affecting poultry production 

Globally, the poultry industry records a minimum financial loss of £2 billion annually due to 

coccidia-induced production losses combined with the cost of preventing and treating the 

infection (Dalloul and Lillehoj, 2006). Williams (1999) revealed that as of 1995 the United 

Kingdom poultry industry suffered a loss in excess of £38.6 million due to coccidiosis, and 

because poultry production tripled over the last 20 years (faostat.fao.org) with no definite cure 

for the disease, the current economic impact of coccidiosis in the United Kingdom alone can 

be very substantial. Coccidiosis is a parasitic disease caused by Eimeria species of the phylum 

Apicomplexa and family Eimeriidae (Jeurissen and Veldman, 2002). There are over 1200 

species of Eimeria and chickens are susceptible to at least seven of these species; Eimeria 

tenella, E. brunetti, E. necatrix, E. maxima, E. acervulina, E. praecox, E. mitis (Chapman et 

al., 2013), which constitute the most challenging problem for poultry production worldwide 

in terms of economic impact and  animal welfare (Sharman et al., 2010; Tewari and 

Maharana, 2011; Clark et al., 2016). All seven Eimeria species are present in all the 

continents of the world with three additional genetic variants known as operational taxonomic 

units x, y and z; OTU-x, OTU-y and OTU-z (Morris et al., 2007; Clark et al., 2016). All of 

these species and OTUs reduce the profitability of commercial chicken farms and threatens 

the sustainability of the poultry business, especially in Africa (Fornace et al., 2013).  

Over the years, chemotherapy via the use of anticoccidial drugs and vaccination have been 

employed for the prevention and control of coccidiosis in chickens. However, there is 

growing evidence that these control methods are not sustainable due to a number of 

shortcomings. Resistance to anticoccidial drugs has emerged, making them ineffective to 

tackle the disease (Chapman, 1997; Thanner et al., 2016; Lan et al., 2017). The build-up of 

pathogen resistance, which has negative implications for human health, caused the European 

Union to place a ban on in-feed antibiotics as growth promoters for farm animals since 

January 2006, and extended the ban to include anticoccidial ionophores since 2007 (Castanon, 

2007; Lillehoj and Lee, 2012; Seal et al., 2013). The United States of America, USA, has also 

ordered a total removal of all medically important antibiotics from livestock feed since 

January 2017 (Robinson et al., 2018). Moreover, the possibility of drug toxicity to birds 

(Abdelrahman, 2014) and public health concerns regarding the accumulation of chemical 

residues in chicken meat, eggs and by-products has triggered some legislative restrictions on 

the addition of drugs in chicken feed (McEvoy, 2001; Blake and Tomley, 2014).  



2 
 

On the other hand, using live vaccines to enhance natural immunity of chickens which 

involves recycling low doses of coccidial oocysts (Chapman et al., 2002) has been relatively 

successful in some parts of the world (Shirley et al., 2005; Sharman et al., 2010). However, 

an issue with Eimeria vaccines is the lack of cross-protection among different species, and for 

this reason, most vaccines usually contain at least three Eimeria species (Dalloul and Lillehoj, 

2006). The inclusion of several species in one vaccine may negatively affect early growth 

rate, feed conversion and possibly lead to vaccination failure (Chapman et al., 2002; Dalloul 

and Lillehoj, 2006). Yet another limiting factor is that whilst vaccines help to stimulate 

immunity, they also have the capacity to induce lesions that predisposes birds to increased 

intestinal colonisation of bacterial pathogens like Clostridium perfringens which causes 

necrotic enteritis, and Salmonella enterica serovars Typhimurium and Enteritidis: notable 

culprits in zoonotic food-borne diseases (Qin et al., 1996; Blake and Tomley, 2014).  

Furthermore, Shaw et al. (2012) compared vaccination with the use of in-feed coccidiostat as 

control methods for coccidiosis and observed significantly impaired body weight (BW) and 

feed conversion ratio (FCR) for the vaccinated than the in-feed coccidiostat administered 

broilers over a more extended period, i.e. 0-11d vs 0-20d of age.  Hence, there is the need for 

more effective and sustainable coccidiosis-control strategies; genomics, nutritional 

modulations and administration of herbal extracts are the focus of current investigations. 

1.1.1 Mode of infection and life cycle of coccidia 

Coccidia infection in poultry follows a faecal-oral route (illustrated in Figure 1.1) with 

environmentally resistant Eimeria oocysts shed in the excreta of infected birds as the 

infectious agents (Jeurissen and Veldman, 2002). These oocysts undergo a process of 

sporogony to form sporozoites contained within sporocysts. When the sporozoite is fully 

mature, the oocysts are referred to as sporulated and they at this point become infective to 

chickens. The sporulated oocysts are ingested by uninfected chickens, undergo a process of 

excystation during which the grinding process of the gizzard breaks the oocyst wall and then 

the action of pancreatic enzymes and bile salts causes the release of the infective sporozoites. 

The motile sporozoites then penetrate the intestinal epithelium at specific sites of invasion that 

are thought to be unique to individual Eimeria species (Jeurissen et al., 1996). Furthermore, 

sporozoites are transformed into trophozoites which undergo merogony to form merozoites. 

The merozoites develop into male microgametocytes and female macrogametocytes. The 

macrogametocytes are fertilised by the microgametocytes to form zygotes which form the 

environmentally resistant oocysts that are shed in the excreta. This process from ingestion to 

excretion takes 4 to 7 days (Jeurissen and Veldman, 2002).  
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Although chickens are susceptible to at least seven Eimeria species, upon post-mortem 

examination of dead birds, it was observed that the three dominant Eimeria species affecting 

chickens are E. tenella, E. maxima and E. acervulina (Cervantes, 2002). E. acervulina lesions 

are usually most prevalent, confined to the upper small intestine and presented in the form of 

internal white patches or transverse white lines that may be visible from outside the gut. E. 

maxima lesions comprise multiple pin-point size haemorrhages often seen from the outside of 

the mid-gut area, accompanied by segmental enlargement of the mid-gut with the presence of 

orange-tainted mucous. E. tenella lesions are confined to the caeca and consists of external or 

internal haemorrhages on the caeca wall, free blood within the caeca, a thickening of caeca 

wall or the presence of a substantial core of cellular debris and blood (Johnson and Reid, 

1970; Cervantes, 2002).  

 

 

Figure 1. 1 Lifecycle of coccidia (Adapted from Wilson (1995)) 

  

1.1.2 Effects on growth performance of broilers 

The hallmark of broiler coccidiosis is reduced weight gain (Tyzzer, 1929) which is caused by 

anorexia and reduced efficiency of feed utilization due to poor digestion, malabsorption of 

nutrients, changes in metabolism (Adams et al., 1996a) and repartitioning absorbed nutrients 

away from growth processes towards the functioning of the immune system (Coop and 

Kyriazakis, 1999; Colditz, 2002). Anorexia has been defined as a reduction in voluntary food 
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intake, which usually occurs during pathogen infection in animals and humans (Kyriazakis, 

2010; Kyriazakis, 2014). It is thought to be mediated by cytokine production in the presence 

of infection and reduces the amount of nutrients available to the host for vital bodily 

functions, including the immune response (Kyriazakis, 2014).  

Coccidiosis-induced reduction in the weight gain of broilers is Eimeria species and dose-

dependent (Adams et al., 1996a; Sandberg et al., 2007). A recent meta-analysis on the growth 

performance of broilers challenged with either E. acervulina, E. tenella, E. maxima or a pool 

of Eimeria species suggested that the degree to which performance of broilers is penalised 

differs amongst challenges with coccidia species and dosage (Kipper et al., 2013). At the 

same level of feed intake, E. maxima-infected broilers recorded the most significant reduction 

in weight gain and the worst feed conversion ratio followed by E. tenella and then E. 

acervulina infected broilers (Kipper et al., 2013). The infection dose of oocysts required to 

stimulate immune response was also smallest for E. maxima compared with E. acervulina and 

E. tenella. It has also been observed that within species, particular strains are more pathogenic 

than others judging from performance, parasitological and haematological parameters 

including body weight, feed conversion ratio, lesion scores, oocysts count, haemoglobin 

content, total erythrocyte count and packed cell volume (Abu-Akkada and Awad, 2012). 

Poor absorption of nutrients during coccidian infections impacts negatively on the efficiency 

of feed utilisation (Preston-Mafham and Sykes, 1967; Preston-Mafham and Sykes, 1970; 

Jenkins et al., 2008). Although malabsorption occurs in parasitised regions of the small 

intestine, it has been argued that compensatory absorption from the uninfected areas should 

help to attain a normal overall absorption of nutrient in the long run (Preston-Mafham and 

Sykes, 1970; Turk, 1978; Noblet and Turk, 1979). However, broilers challenged with either 

Eimeria maxima, E. acervulina, E. brunetti or E. mivati experienced significantly less nutrient 

absorption in the intestinal regions of maximum infection, whilst compensatory absorption 

from the uninfected areas occurred only in E. acervulina infected broilers (Ruff and Wilkins, 

1980).  

Reduced digestibility and utilisation of ingested nutrients including fat and carbohydrate 

(Preston-Mafham and Sykes, 1970; Turk, 1970), amino acids (Turk, 1972; Ruff, 1974), 

calcium, zinc and total minerals (Turk and Stephens, 1966; Turk, 1973), vitamin A, vitamin E 

and xanthophylls (Erasmus et al., 1960; Ruff and Fuller, 1975) are well reported in coccidia-

infected broilers. For this reason, dietary modulations of specific nutrients as a means of 

ameliorating coccidiosis has been explored in several studies: it also forms the central focus 
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of this thesis. Nutrient malabsorption during coccidia infections is thought to arise from 

increased digesta viscosity (Waldenstedt et al., 2000), gastrointestinal tract villous atrophy 

causing reduction in the ratio of villous height to mucosal thickness (Pout, 1967; Preston-

Mafham and Sykes, 1967), and reduced activities of digestive enzymes (Adams et al., 1996a). 

It also arises from increased intestinal acidity which probably lengthens the gut passage time, 

intestinal leakage of plasma proteins which explains the higher concentration of uric acid in 

excreta of infected birds (Adams et al., 1996a; Waldenstedt et al., 2000; Williams, 2005b), 

and also from downregulation of genes encoding amino acid transporters in the intestine of 

infected birds (Fetterer et al., 2014).  

Set aside reduced nutrient uptake resulting from reduced absorption and consumption, 

nutrient requirements of broilers are altered by activation of the immune system (Adams et 

al., 1996a; Adams et al., 1996b), which could impact negatively on performance. 

Lymphocyte proliferation, gene expression and production of proteinaceous molecules such 

as acute phase proteins (Chamanza et al., 1999), antibodies, cytokines and other cytotoxic 

substances increase amino acid requirements during coccidia infections (Yun et al., 2000; Li 

et al., 2007). Similarly, alteration in vitamin requirements including vitamins A, D, E, C, the 

B-vitamins, and minerals (i.e. trace metals) such as Zu, Mu, Cu and Se suggest that increased 

supplementation will improve immunity (Kidd, 2004), and consequently performance. Also, 

E. acervulina infection has been shown to cause depletion in ascorbic acid concentration in 

blood plasma, small intestine, liver and the adrenal glands of parasitised birds (Kechik and 

Sykes, 1979).  

The significant reduction in feed intake and weight gain of coccidiosis-infected birds, which 

is accompanied by severe mucosa damage and the shedding of oocysts, may also be induced 

by free radicals or their products (Allen, 1997b; Costantini and Møller, 2009). Oxidative 

stress arising from an imbalance (favouring production) between the production and 

elimination of reactive oxygen species (ROS) such as superoxide, hydrogen peroxide, 

hydroxyl radical, hydroxyl ion and nitric oxide in cells, tissues and physiological fluids, has 

been associated with coccidia infections in birds (Sepp et al., 2012). It was observed that the 

levels of plasma and mucosa NO metabolites increased reaching peak values on day six post-

infection whilst the activities of NADPH oxidase also increased. Furthermore, the high 

susceptibility of carotenoids to oxidation by free radicals has made plasma carotenoids 

concentration (mainly lutein and zeaxanthin) a useful marker for both oxidative stress (Allen 

et al., 1996b) and nutrient absorption (Allen, 1997b) during coccidia infections. All the effects 
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highlighted above jointly contribute to the impairment of growth performance in coccidiosis-

infected broilers.  

1.1.3 Effects on bone quality of broilers 

Generally, bone-related consequences associated with broiler coccidiosis have not been well 

researched. Given that coccidiosis penalises digestion, absorption or utilisation of vital bone 

minerals (Turk and Stephens, 1966; Turk, 1973), penalties on bone mineralisation are to be 

expected. Nevertheless, there is a scarcity of studies in the scientific literature with a detailed 

examination of the bone quality of coccidiosis-infected broilers measured across time points. 

A few studies approached the subject of bone quality indirectly, e.g. as a support marker for 

other research interests such as the effect of phytase when offering mineral-deficient diets to 

coccidiosis-infected broilers (Watson et al., 2005; Walk et al., 2011; Shaw et al., 2012). 

Therefore, this thesis incorporated a more direct approach to provide specific details including 

the point at which bone strength and mineralisation are affected post-coccidia infection in 

modern broilers. Related studies available in the bone literature suggested that for day-old 

broilers, mild infections with E. acervulina, E. maxima, E. mivatti and E. tenella live oocysts 

may not affect tibia ash percentage (Lehman, 2011; Walk et al., 2011), but significantly 

penalise tibia breaking strength (Shaw et al., 2011) at d21 of age. Another study (Giraldo et 

al., 1987) reported that coccidiosis might cause a reduction in bone Ca and an increase in 

bone P concentrations when offering to broilers a high dietary Mg from oxide or sulfate 

source. Nevertheless, these studies are not devoid of sources of experimental error, which in 

this context is the fact that the diets offered could influence bone quality.  

1.1.4 Immune response to coccidia infection 

The immune response to coccidia infection in chickens is species-specific and most potent at 

the intestinal site of infection of coccidia species (Cornelissen et al., 2009). The gut associated 

lymphoid tissues (GALT) comprising the bursa of Fabricius, cecal tonsils, Peyer’s patch, 

Meckel’s diverticulum and lymphocyte aggregates scattered along the intra-epithelium and 

lamina propria of the gastrointestinal tract play the role of processing and presentation of 

antigens, production of intestinal antibodies and the activation of cell mediated immunity 

(Lillehoj and Trout, 1996; Yun et al., 2000).  

A wide range of immune effector mechanisms have been described for several Eimeria 

species primary infections, which mediate protection to a variable degree, including 

upregulation of cytokine and chemokine production, heterophil infiltration in the gut, NK cell 

activation, B cell proliferation and antibody production, macrophage and T cell activation 
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(Lillehoj, 1998; Yun et al., 2000; Dalloul et al., 2007; Wallach, 2010). The profile of the 

effector mechanisms employed depends on the stage of coccidia development, prior exposure 

to coccidia, the dose of infecting oocysts, the nutrient status of infected birds, and their 

genetic make-up (Lillehoj, 1986; Yun et al., 2000).  

Overall, the three most common Eimeria species induce both CD4+ and CD8+ T-cells, as well 

as macrophage, and a wide range of cytokine responses (Lillehoj and Li, 2004). Cytokine 

mediated T-cell immunity (CMI) in particular is crucial for Eimeria control, with CD4+  T-

helper and CD8+ cytotoxic T lymphocytes being involved in host responses (Hong et al., 

2006a; Chapman et al., 2013). The exact mechanisms mediated by various T lymphocyte 

subpopulations in host protection against avian coccidiosis remain to be determined. 

However, there is a consensus that T-cells are essential mediators of host immunity, both in 

primary and challenge coccidian infections (Lillehoj and Lee, 2012), whilst antibody 

mediated immunity plays a role which is of far less significance in comparison to CMI 

(Lillehoj, 1986; Rose, 1987). It is generally believed that CD4+ T cells initiate an immune 

response, and CD8+ T cells are known to bring about effector responses in coccidian 

infections (Shivaramaiah et al., 2014). 

Immunological response of infected host classically follows two pathways. T-helper 1 (Th1) 

immune response mediates protective cellular immunity against intracellular infection such as 

coccidiosis, whilst the Th2 humoral immune responses control extracellular pathogens (Min 

et al., 2013). Th1 / Th2 balance is critical for protective host response against intracellular 

infections such as coccidiosis (Cornelissen et al., 2009; Haritova and Stanilova, 2012). The 

cytokine environment drives the differentiation of these subsets with IFN-γ promoting Th1 

and inhibiting Th2 cell production, and IL-4 and IL-10 inhibiting Th1 cell production and IL-

4 driving Th2 cell production (Min et al., 2013). The profile of produced cytokines, as well as 

the ratio of CD4+ and CD8+ T-cells, differs among coccidian species in their respective site 

of infection (Cornelissen et al., 2009). E. acervulina and E. tenella are shown to induce Th1 

(IL-2, IL-8 and IFN-γ) and Th2 (IL-4, IL-10) responses in the duodenum and caecum 

respectively, whereas E. maxima induced a strong Th1 biased duodenal and jejunal response 

(Cornelissen et al., 2009). Given that the changes in T cell subpopulations are species and 

host-breed specific, local changes in T cell subpopulation induced by Eimeria infection may 

reveal the level of susceptibility to coccidiosis in different strains of chickens (Lillehoj, 1994; 

Bessay et al., 1996). 
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Cellular immune response to parasite invasion is associated with the production of free radical 

species such as nitric oxide (NO) (Allen, 1997b). Activated macrophages produce NO during 

Eimeria infection, and the level of production can be estimated by analysing its stable 

metabolites (NO2
- + NO3

-) in the plasma and intestinal mucosa (Allen and Lillehoj, 1998). 

Although the virulence of an Eimeria strain is unrelated to NO production  (Allen, 1997b), it 

has been shown that resistant broiler lines produce higher levels of plasma NO2
- + NO3

- in 

response to primary Eimeria infections compared to susceptible lines (Allen and Lillehoj, 

1998). However, it is yet unknown whether the immune response to coccidiosis is affected by 

selection for growth potentials, which constitutes a gap in the scientific literature. 

1.2 Nutritional interventions relevant to broiler coccidiosis 

The possibility of nutritional immunomodulation in broilers has increased the potentials of 

dietary interventions as a candidate for sustainable coccidiosis control given the earlier stated 

problems associated with reliance on in-feed drugs or live vaccines. In a recent review, 

Robinson et al. (2018) highlighted nutritional modulations involving butyrate- and VitD-

enhanced host defence peptides (HDPs; also called antimicrobial peptides (AMPs)), synthesis 

as a possible alternative to the use of in-feed antibiotics in livestock systems (Robinson et al., 

2018). This followed a previous study on broilers (Wen and He, 2012) and a review on swine 

(Xiao et al., 2015), which suggested a link between enhanced growth and gut health, and 

HDP-supplemented diets especially over the course of a disease. Butyrate, a short-chain fatty 

acid (SCFA), and fat-soluble VitD were identified as the most efficacious compounds with 

the ability to promote HDP synthesis (Robinson et al., 2018), whilst the immunomodulatory, 

antimicrobial and barrier-protective activities of HDPs (Xiao et al., 2015) were implicated as 

the cause of the enhanced growth and gut health (Robinson et al., 2018). Also, the ability of 

medium-chain fatty acids (MCFA), caprylic and nonanoic, to enhance intestinal 

immunological barrier functions through the combined effects of HDP upregulation and 

histone deacetylase (HDAC) inhibition was recently suggested (Wang et al., 2018). 

The nutritional requirements for immunity differ from those for growth or skeletal tissue 

accretion (Kidd, 2004). Hence, several nutritional interventions expected to boost immunity 

and ameliorate the consequences of coccidia infections have been investigated (Jeurissen and 

Veldman, 2002; Williams, 2005b; Abdelrahman, 2014). The manipulation of dietary inclusion 

levels of protein and amino acids, fatty acids, dietary fibre, vitamins and minerals as well as 

the inclusion of enzymes, probiotics, plant extracts and other additives have been shown to 

attenuate some effects of Eimeria infections to a variable degree (Jeurissen and Veldman, 
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2002; Williams, 2005b; Abdelrahman, 2014). The subsections below touch briefly on 

nutrients that can be supplemented to improve coccidiosis-impaired performance and bone 

quality, as well as resistance, tolerance, or both during coccidiosis in birds.  

1.2.1 Proteins and Amino acids (AA) 

Wu (2013b) classified amino acid for poultry into three; 1) essential (EAA), e.g. arginine, 

cysteine, glycine, histidine, proline, isoleucine, leucine, methionine lysine, phenylalanine, 

threonine, tryptophan, tyrosine and valine; 2) non essential (NEAA), e.g. alanine, asparagine, 

aspartate, and serine, and 3) conditionally essential (CEAA), e.g. glutamate, glutamine and 

taurine. This classification was based on species, developmental state, physiological status, 

intestinal lumen microbiota, environmental factors and pathological state. Furthermore, the 

growing recognition that arginine, cysteine, glutamine, leucine, proline and tryptophan 

regulate vital metabolic pathways relevant to growth, maintenance, reproduction and 

immunity, has earned them the name, functional AA (Wu, 2009).  

Maintenance of body protein involving the reversal of pathophysiological effects of 

parasitism on the host has been shown to gain priority over body functions like growth and 

reproduction in the allocation of nutrient resources (Coop and Kyriazakis, 1999). Sandberg et 

al. (2007) suggested that there is a significant, but variable increase in requirements for 

protein and specific amino acids during pathogenic infection which is caused by innate 

immune functions, repair of damaged tissue and expression of acquired immunity. Lee et al. 

(2011) reported that increased protein concentration in starter diets led to an improvement in 

body weight, feed conversion and overall performance of broilers during a vaccination 

program to prevent coccidiosis. Indeed, combining anticoccidial vaccines with an appropriate 

starter diet containing increased protein levels may result in a similar performance for broilers 

receiving either immunoprophylaxis or coccidiostat as control measures for coccidiosis (Lee 

et al., 2009).  

In two separate studies, increasing the concentration of dietary supplementation levels of 

arginine (Tan et al., 2014) and threonine (Wils-Plotz et al., 2013) in coccidia-infected broilers 

helped to attenuate intestinal mucosal disruption and altered the immune response. Arginine 

plays an essential role in the proper development of lymphoid organs especially the thymus 

and spleen (Kwak et al., 1999); increased concentration of arginine may, therefore, help to 

optimise immune response or disease resistance in coccidia-infected broilers (Jahanian, 2009). 

Furthermore, it was proposed that increasing dietary arginine probably attenuate intestinal 

mucosal disruption by decreasing Toll-like receptor 4 (TLR4) mRNA expression and 
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activating mechanistic target of rapamycin (mTOR) complex 1 pathways (Tan et al., 2014). 

Serine, cysteine and especially threonine are vital components of mucin, an essential 

constituent of the mucus layer (Montagne et al., 2004). Dietary supplementation of threonine 

to alter the dynamics of mucin and hence influence the integrity of the mucous layer and 

nutrient absorption (Horn et al., 2009) can be explored to improve the health of coccidia-

infected birds. Wils-Plotz et al. (2013) reported an improved intestinal immune response at 

higher levels of dietary threonine supply, which also helped to sustain normal growth in 

coccidia-infected broilers (Wils-Plotz et al., 2013). 

However, information on the dietary modulation of other amino acids including asparagine, 

glycine, lysine, histidine, proline, tryptophan and tyrosine during coccidian infections is 

scarce. These AAs may play vital roles in immunity; for instance, proline and cysteine are 

known to have pathogen killing and antioxidant functions (Wu, 2013a), which can be 

explored during coccidian infections. Increased levels of sulfur amino acids (methionine and 

cysteine) (Takahashi et al., 1997; Swain and Johri, 2000), arginine (Tan et al., 2014) and 

threonine (Wils-Plotz et al., 2013) in broiler diets were also reported to improve cellular 

immune response and ameliorate the consequences of pathogen infections including coccidian 

infections (Wils-Plotz et al., 2013; Tan et al., 2014).  

Bortoluzzi et al. (2017) in their review of recent studies, confirmed the potentials of increased 

dietary AAs to reduce mucosa atrophy, maintain microbiota balance and stimulate local 

immune response during coccidia infections. The review also highlighted the role played by 

threonine, arginine and glutamine towards mucin production, immune function and epithelial 

proliferation respectively, and towards the overall proper functioning of the intestinal tract 

(Bortoluzzi et al., 2017). However, it remained unclear whether administering AAs to 

improve gut-healing capacity or to reprogramme intestinal mucosa before infection, which 

would be more effective in the context of coccidiosis.  

1.2.2 Fatty acids  

A major distinguishing factor between the lymphoid cell and other tissues is the high level of 

fatty acids and sterols in the membranes of lymphoid cells (Kigoshi and Ito, 1973). It is 

therefore perceived that metabolism of lipid and fatty acid in lymphoid cells may influence 

physiological activities of the cells, which may have an impact on the immune status of 

animals (Gross and Newberne, 1980). Unlike saturated and monounsaturated fatty acids 

(Gross and Newberne, 1980), polyunsaturated fatty acids (PUFAs) such as arachidonic acid 

(C20:4 n-6), eicosapentaenoic acid (C20:5 n-3) and docosahexaenoic acid (C22:6 n-3) are 
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known to have immunomodulating effects. This is associated with mechanisms involving the 

reduced synthesis of pro-inflammatory cytokines and decreased antigen-presenting cell 

activity with a concomitant increase in feed intake and weight gain (Selvaraj and Cherian, 

2004). Diets rich in n-3 PUFAs increase growth performance and antibody mediated 

responses, while n-6 PUFAs increase cell mediated responses (Selvaraj and Cherian, 2004). 

However, a proper balance between n-6 and n-3 PUFAs is required, as a high n-6: n-3 ratio 

will result in cytokine production (Simopoulos, 2002) leading to a reduction in food intake 

(Klasing, 1998; Ferket and Gernat, 2006). 

In coccidia-infected broilers, dietary n-3 PUFAs supplementation has been shown to reduce 

lesion scores from acute E. tenella infections (cecal or haemorrhagic coccidiosis) but this was 

not the case with E. maxima infections (intestinal or malabsorptive coccidiosis) (Allen et al., 

1996a; Allen et al., 1997; Allen and Danforth, 1998). Although some researchers found no 

impact of dietary PUFAs supplementation on immunity and resistance to infections 

(Puthpongsiriporn and Scheideler, 2005), there is sufficient evidence to support the ability of 

fatty acids to modulate intestinal immune responses and cytokine secretion (Fritsche et al., 

1991; Yang and Guo, 2006; Robinson et al., 2018). For example, butyrate supplemented in 

broiler diets as sodium butyrate (1 g/kg) or butyrate glycerides (4 g/kg) improved 

performance while suppressing IL-1β, IL-6, IL-10 and IFN-γ cytokines induction by 

lipopolysaccharides (Zhang et al., 2011; Zhou et al., 2014). Also, 0.2% butyric acid 

supplementation maintained performance and carcass quality of vaccinated broilers 

challenged with coccidiosis (Leeson et al., 2005). Furthermore, a recent study reported the 

ability of 750 mg/kg dietary supplementation with coated sodium butyrate (30% sodium 

butyrate, coated with palm stearin) to balance the shift in caecal microbial composition, i.e. 

increase in firmicutes and proteobacteria, and decrease in bacteroidetes, caused by E. tenella 

infection in broilers (Zhou et al., 2017). Indeed, the above findings suggest that fatty acids 

nutrition holds excellent potentials for coccidiosis-infected broilers. 

1.2.3 Vitamins: Focus on VitD 

The antioxidant, membrane stabilising and immunomodulating properties of some vitamins 

can be explored to boost resistance or tolerance to coccidian infections, or both, in broilers 

(Wunderlich et al., 2014). Research has shown that deficiency of fat-soluble vitamins A 

(Dalloul et al., 2002), D (Aslam et al., 1998) and E (Erf et al., 1998) in chicken diets resulted 

in depressed cellular, humoral and innate immunity. Although dietary supplementation of fat-

soluble vitamins may boost resistance to coccidian infection (Colnago et al., 1984), there are 

some noteworthy antagonistic tendencies. For instance, diets with excess Vit A may reduce 
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Vit E efficacy (Kidd, 2004), and antagonisms between Vit A and Vit D are known to exist 

(Mora et al., 2008). Vitamins A (Dalloul et al., 2002), E (Allen and Fetterer, 2002b) and C 

(Kechik and Sykes, 1979) have been supplemented at varying levels to ameliorate the 

consequences of Eimeria infections in chickens. Also, dietary supplementation with β-

carotene, a major constituent of Vit A, may induce antioxidant functions that help to maintain 

mucosal integrity as well as functions in both humoral and cell-mediated immune response: 

its deficiency increased susceptibility to E. acervulina infection via impaired immune 

response and increased oocysts production (Chew, 1995). Dalloul et al. (2002) reported that 

changes in the duodenal intraepithelial lymphocytes (IEL) subpopulations of Vit A-deficient 

broilers compromised local immune defence during E. acervulina infection and caused 

increased oocyst shedding.   

Several studies supplemented Vit E based on its antioxidant functions protecting against free 

radical oxidative processes in cellular membranes and also its ability to function as an 

immunomodulator in chickens (Erf et al., 1998; Allen and Fetterer, 2002b). On the other 

hand, there are conflicting results from studies manipulating supplementation levels of α-

tocopherol, the most active compound in Vit E, which may be dependent on factors related to 

vitamin dose, and age and genetics of birds (Khan et al., 2012). At 316 mg/kg inclusion level, 

dietary Vit E supplementation decreased intestinal lesion, oocysts output, and improved 

cellular defence system without affecting plasma antioxidant status in E. tenella-infected 

broilers (Jafari et al., 2012b). However, further increments had adverse effects on plasma 

antioxidant status and also recorded higher oocysts output (Jafari et al., 2012b). Furthermore, 

dietary supplementation with Vit E plus Selenium (Se), a component of glutathione 

peroxidase aiding antioxidant protection of cells, reduced cecal lesions and mortality during 

E. tenella infection in chickens (Colnago et al., 1984). In broilers infected with E. maxima, 

dietary supplementation with DL-α-tocopherol acetate caused a moderate reduction in lesion 

score severity and plasma carotenoid concentration, and a slight increase in plasma NO 

metabolites concentrations. However, there was no effect on weight gain whilst it increased 

oocyst output at higher inclusion levels (Allen and Fetterer, 2002b). About Vit C, Kechik and 

Sykes (1979) found that ascorbic acid concentration in blood plasma and intestinal tissue of 

E. acervulina infected birds was depleted and dietary supplementation of 1000 mg/kg 

prevented this depletion. Dietary ascorbic acid supplementation also had minimal effects on 

cellular immunity of broilers (Murray et al., 1988).  

The role of VitD as a potent regulator of immune responses has gained wider publicity in the 

last decade (Baeke et al., 2010; Rodriguez-Lecompte et al., 2016; Robinson et al., 2018). No 
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previous research has explored the benefits of VitD immunomodulatory potentials for 

malabsorptive coccidiosis-infected broilers in relation to bone quality. Fat-soluble VitD is a 

steroid hormone essential for the regulation of systemic calcium, phosphorus and bone 

metabolism (DeLuca, 2008; Bikle, 2011). It occurs either as cholecalciferol (D3) or 

ergocalciferol (D2) but the latter is not effectively utilised by broilers (Chen and Bosmann, 

1964; Hay and Watson, 1977). Hence, D3 or its metabolite, 25-hydroxycholecalciferol (OHD) 

is supplied in broiler diets. Other D3 metabolites such as 1,25-dihydroxycholecalciferol 

(1,25D3) (Rennie et al., 1993), and those with hydroxyl group in 1-C position (Honma et al., 

1983; Edwards, 1990), do have higher capacity to mediate VitD activities compared to D3 

and OHD (Edwards, 1989; Morris et al., 2015). However, caution is applied in supplementing 

these in broiler diets for risk of toxicity if given in excess (Jones, 2008). A review of recent 

studies suggested that a dietary VitD supply level of 3000 IU/kg meets the requirement for 

healthy bone development, maximum mineral digestibility, egg shell quality, immunity and 

performance indices of the modern-day high-producing chickens (Swiatkiewicz et al., 2017). 

Like other sterols, VitD3 absorption is fat dependent. The process is optimised by prior 

solubilisation as a micelle containing bile salt (Thompson, 1971; Maislos et al., 1981; Vaziri 

et al., 1983), uptake from the intestinal lumen and transported from the gut wall mainly to the 

mesenteric lymph (Schachter et al., 1964). Contrariwise, absorption of D3 metabolites, OHD 

or 1,25D3, is less fat dependent (Maislos et al., 1981). In rats, OHD and 1,25D3 absorption 

rates were reported to be approximately 1.5 and 3 times faster than D3 respectively (Maislos 

et al., 1981), which could suggest that they are the preferred form of VitD under 

malabsorptive conditions like coccidiosis in broilers. The fat independent absorption of OHD 

metabolite has been scientifically proven as oral administration of OHD was successfully 

employed to treat osteomalacia in humans suffering from steatorrhea (Wagonfeld et al., 1976; 

Compston and Thompson, 1977; Reed et al., 1980).  

VitD metabolism is such that absorbed D3 undergoes further hydroxylation into 25-

hydroxycholecalciferol in the liver and then to 1,25-dihydroxycholecalciferol mainly in the 

kidney, to become biologically active (White and Cooke, 2000; Lips, 2006; DeLuca, 2008; 

Haussler et al., 2013). Hydroxylation of OHD to the active 1,25D3 also occurs in the small 

intestine, breast and thigh muscles, bone, and immune cells (Shanmugasundaram and 

Selvaraj, 2012). Renal 1,25D3 production is stimulated by parathyroid hormone (PTH), 

fibroblast growth factor 23 (FGF23) and decreased by calcium, phosphate and 1,25D3 (Bikle, 

2011), whilst cytokines such as IFN-γ and TNF-α may stimulate extrarenal 1,25D3 

production, and depending on tissue, less affected by Ca, P and 1,25D3 (Lips, 2006; Bikle, 
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2009). Key functions of 1,25D3 include regulation of calcium (Ca) and phosphorus (P) 

homeostasis (Bienaimé et al., 2011), stimulating osteoclast differentiation and calcium 

reabsorption from the bone, and promoting mineralisation of the bone matrix (Holick, 2004; 

St-Arnaud, 2008; Bikle, 2012; Haussler et al., 2013). VitD also improves performance (Fritts 

and Waldroup, 2003; Whitehead et al., 2004), integrity of intestinal mucosa barrier (Kong et 

al., 2008), small intestine morphology in chicks (Ding et al., 2011), and helps recovery during 

mucosal injury (Zhao et al., 2012) in broilers.  

VitD effects associated with growth and disease prevention are generally under-studied in 

poultry and other livestock. Specific physiological functions of VitD in humans suggested its 

immunomodulatory potentials in chickens. VitD exerts anti-inflammatory actions by causing 

a reduction in pro-inflammatory cytokine, i.e. IL-1β, IL-6, IFN-γ, IL-8 and TNF-α expression 

post-pathogenic challenge in humans (Di Rosa et al., 2012; Zhang et al., 2012). Also, in 

humans, VitD promoted macrophage activation and phagocytosis, whilst facilitating 

monocyte differentiation towards macrophages instead of dendritic cells (Zhu et al., 2002; 

Griffin et al., 2003). Recent studies utilising broiler chickens reported a VitD dose-dependent 

CATH-1 and CATH-1β induction in the spleen that was further enhanced by a deficiency in 

dietary Ca and P levels, whilst CATH-3 was suppressed (Rodriguez-Lecompte et al., 2016). 

VitD3-enhanced cathelicidins were not observed in peripheral blood mononuclear cells 

(PBMCs, e.g. monocytes, lymphocytes and macrophages) at 2760 or 9800 IU/kg dietary 

inclusion levels. However, at 9800 IU/kg VitD3 supplementation, only CATH-1 was 

significantly induced in the bursa of Fabricius in broilers (Rodriguez-Lecompte et al., 2016).  

Furthermore, in-vitro studies using chicken embryo intestinal epithelial cells (CEIEPCs) and 

PBMCs (Zhang et al., 2016), and macrophages (Shojadoost et al., 2015) reported the 

capability of 1,25D3 to induce host innate immunity in chickens. 1,25D3 induced Avian β-

defensin (AvBD) expression (Zhang et al., 2016), as well as increased in macrophages the 

capacity to respond to stimuli and produce NO (Shojadoost et al., 2015). However, the 

immunological effects of 1,25D3 in broilers can also be influenced by dietary Ca and P 

adequacy (Rodriguez-Lecompte et al., 2016). High dietary VitD3, supplied at 9800 IU/kg, 

combined with low dietary Ca and P led to a higher Th1 (IL-12, IL-18 and IFN-γ) and  Th2 

(IL-4, IL-10 and IL-13) cytokines expressions in the spleen and bursa of Fabricius, as well as 

a higher CxCLi2 (formerly called IL-8) chemokine in the spleen (Rodriguez-Lecompte et al., 

2016). Rodriguez-Lecompte et al. (2016) suggested that although cytokine expression was 

enhanced in the spleen, the IL-12: IL-10 ratio favoured an anti-inflammatory status. They 

concluded that D3 and OHD both have robust immunomodulatory potentials with a more 
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favourable Th2 response, and the ability to enhance Th2 cytokine responses under both 

adequate and marginally deficient Ca and P inclusion levels in the diets of broiler chickens 

(Rodriguez-Lecompte et al., 2016). 

1.3 Interactions between broiler genetics and coccidiosis   

The application of genetic control strategies for reducing the risk and severity of diseases in 

livestock populations has gained considerable attention in recent years (Doeschl-Wilson et al., 

2012), with emphasis on host resistance or host tolerance, or both (Swaggerty et al., 2015). 

Host resistance is the mechanisms that restrict the entry of pathogens or prevent the 

replication of pathogens within the host or both. Tolerance is the ability of the host to limit the 

detrimental effect of pathogens on its performance without necessarily affecting parasite 

burden (Doeschl-Wilson and Kyriazakis, 2012). However, it is unclear whether resistance and 

tolerance have a similar impact on individual host fitness and performance as well as on 

population performance and disease risk and severity (Doeschl-Wilson et al., 2012). 

Genetic background, among other factors, is thought to influence susceptibility to coccidia 

infections in broilers (Long, 1968; Johnson and Edgar, 1986; Lillehoj, 1986). According to 

the resource allocation theory, when an organism is offered a finite resource such as nutrients 

during pathogen infections, selection for improved growth performance may cause an 

increase in allocation of the resource towards growth-related traits at the expense of immune 

functions and ultimately penalise its resistance and tolerance to disease (Rauw et al., 1998; 

Coop and Kyriazakis, 1999). Indeed, the unprecedented selection for high production 

parameters over the years, which lead to approximately 300% increase in daily weight gain 

between broilers in the 1950s and modern broilers (Knowles et al., 2008), may have resulted 

in penalised immune functions and increased susceptibility to infectious diseases by reducing 

resistance (Yunis et al., 2000; Havenstein et al., 2003). 

Concerning coccidia-infected broilers, a recent meta-analysis demonstrated that pure broilers 

lines are less tolerant to coccidia infections when compared with cross-bred broilers (Kipper 

et al., 2013), which may relate to the higher growth rates of the former in comparison to the 

later. Previous studies show that coccidia infection in broilers cause a reduction in the level of 

plasma carotenoids which may be breed dependent: breeds selected for resistance to diseases 

compared to susceptible breeds experience lesser plasma carotenoid reductions during 

coccidiosis (Lillehoj and Ruff, 1987). However, no study has examined the degree to which 

selection for performance or growth potentials penalises the ability of broilers to cope with 

coccidian infections; dissecting the impact on various aspects of performance. An experiment 
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involving different infection doses and genotypes differing only in their growth rate will be 

required to achieve this.  

1.4 Skeletal development in modern broilers 

Chicken long bone formation starts in-ovo with the prechondral or membranous process, 

which involves the laying down of a hyaline cartilage model of the appendicular skeleton 

(Gilbert, 1997). After that, the endochondral ossification process, which is responsible for 

converting the hyaline cartilage model to bone begins in-ovo but essentially occurs post-hatch 

(Bain and Watkins, 1993; Dibner et al., 2007). Long bones grow in length by replacing new 

hyaline cartilage formed at the epiphyseal plate during the endochondral ossification process 

(Marks and Popoff, 1988). Bone mineralisation is restricted to the epiphyseal plate, and 

significant pathology such as osteopetrosis or osteoporosis may occur in the event of 

excessive and insufficient mineralisation (Dibner et al., 2007). In modern broilers, bone 

formation and mineralisation are at their peak between 4 – 18 and 4 – 11 days of age, 

respectively (Williams et al., 2000). The process of long bone formation is illustrated in 

Figure 1.2. 

 

 

 

 

Figure 1. 2 Long bone growth process from hyaline cartilage model to bone (produced from 2 internet images 

https://s3.amazonaws.com/static.wd7.us/c/c0/Illu_bone_growth.jpg and http://www.knowyourbody.net/wp-

content/uploads/2017/09/Endosteum-Image.png)  

 

https://s3.amazonaws.com/static.wd7.us/c/c0/Illu_bone_growth.jpg
http://www.knowyourbody.net/wp-content/uploads/2017/09/Endosteum-Image.png
http://www.knowyourbody.net/wp-content/uploads/2017/09/Endosteum-Image.png
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Generally, bone formation in all vertebrates is such that successive layers of bone are laid 

down to form dense, compact bone covered outwardly by the cellular periosteum. Long bones 

are hollow and filled with an extension of the air sacs, and bone marrow, whilst compact bone 

is modified to a concentric structure called the Haversian system. It contains Haversian canals 

that run parallel to the axis and carries blood vessels and nerve fibres. Plates of bone surround 

the Haversian canal and small spaces, lacunae, abound between the plates carrying bone cell 

called osteocyte. Nutrients from blood vessels reach the bone via the Haversian canal and 

small canals that are known as canaliculi (Maggiano et al., 2016). 

In modern fast-growing commercial broilers, it is not unlikely that closure of the epiphyseal 

plate may not occur before they are sold off having attained the required market weight (Rath 

et al., 2000). This means that the axial bone could remain under development throughout its 

lifetime, never reaching the state of homeostasis and remodelling as seen in other adult 

vertebrates (Rath et al., 2000; Roberson et al., 2005). The implication is that healthy bone 

growth in modern broilers can be affected at any point by infectious conditions (Mireles et al., 

2005), as well as nutritional, environmental and developmental amongst other conditions 

(Dibner et al., 2007). Figure 1.3, adapted from the recent study of Kierończyk et al. (2017), 

highlights selected factors that may affect leg bone development resulting in lameness of 

broilers. The rapid growth rate of modern broilers is responsible for rapid periosteal bone 

deposition, impaired mineralisation, increased cortical bone porosity and altered 

biomechanical properties (Williams et al., 2004; Knowles et al., 2008). The frequently 

affected areas in fast-growing broilers include the joints, tendons, structural bone and the 

connective tissues of the feet and leg (Dibner et al., 2007). 

1.4.1 Long bone mineralisation and coccidiosis in modern broilers  

Broiler long bones are mainly the leg bones, i.e. femur, tibia and fibular, and then their 

corresponding arm bones, i.e. humerus, radius and ulna. Generally, bones are approximately 

70% mineral, 20% organic and 10% water (Rath et al., 2000). The mineral content which 

gives stiffness and compressional strength to the bone are basically Ca and P in the form of 

hydroxyapatite [Ca10(PO4)6(OH)2] (Turek, 1984). The organic content is collagen, which 

gives tensile strength (Knott and Bailey, 1998), and the collagen crosslink content is 

indicative of bone maturity (Boskey et al., 1999). The bone is more or less the primary 

reservoir for Ca and P as it stores approximately 98% and 80% respectively of these minerals 

in the body (Rath et al., 2000). Other essential minerals in bone structure that can be drawn 

upon during inadequate supplies include sodium, potassium and magnesium (Reid and New, 

1997).  
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Dietary Ca and P inclusion levels, as well as ratio, is crucial for their retention and availability 

for utilisation in chickens (Rao et al., 2006; Delezie et al., 2012). Aviagen (2014a) set 0.96 

and 0.48% for d0 – 10 of age, and 0.88 and 0.44% for d11 – 24 of age respectively as the 

dietary inclusion levels of Ca and nonphytate P (nPP or avP) required to optimise bone 

mineralisation in their popular fast-growing broiler breed, Ross 308. In like manner, narrow 

Ca:P ratios between 1.8 to 2 : 1 were recommended for optimum performance and bone 

development (Liu et al., 2017), as well as for reduced occurrence of tibial dyschondroplasia 

(Edwards and Veltmann, 1983), and reduced faecal P (Rao et al., 2006) in broilers. There is 

also an inter-relationship between Ca and P metabolism such that either excess or deficiency 

of one interferes with utilisation and metabolism of the other (Kebreab and Vitti, 2005).  

VitD plays a critical role in facilitating Ca and P metabolism and has been used to augment 

deficiencies in dietary Ca and P intake in broilers. (Rao et al., 2006; Delezie et al., 2012). 

Availability of P from conventional feedstuff like cereals and oilseed by-products is usually 

impaired because it occurs mainly in phytate form, which requires further breaking down 

(Dilger et al., 2004). Both dietary phytase and VitD supplementations can optimise the 

availability and utilisation of P from dietary sources. They also do have immunomodulatory 

potential that may be explored over the course of coccidiosis. Phytase supplementation in 

broiler diets increased levels of intestinal IgA, and blood T-helper and cytotoxic T cells (Liu 

et al., 2008), which may have implications for resistance to Eimeria spp, whilst the robust 

immune-related potentials of VitD were described in section 1.2.3 above. Indeed besides the 

few studies highlighted in section 1.3.1 above, very little is known about the effect of 

coccidiosis on long bone mineralisation. 

Another issue with modern fast-growing broilers is that their low activity levels (Bailie and 

O’Connell, 2015) and rapid growth rate (Williams et al., 2004) may already impact negatively 

on long bone mineralisation. Hence, the poor absorption and utilisation of vital bone minerals 

associated with coccidiosis (Turk and Stephens, 1966; Turk, 1973) cause a further reduction 

in bone mineralisation. However, no study has looked into the effects of increasing the 

activity levels or reducing the growth rate of modern broilers to improve long bone 

mineralisation during coccidiosis.  

 

 



19 
 

 

 

Figure 1. 3 Factors affecting leg bone development that may result in lameness and economic loss. (Adapted 

from Kierończyk et al. (2017)) 

 

1.5 Thesis Aims  

The primary aim of the thesis was to assess the consequences of coccidiosis on the long bone 

quality of modern fast-growing broilers and to explore relevant nutritional intervention 

strategies that are capable of ameliorating these consequences alongside other effects of the 

disease. The significant effects of VitD on healthy bone development and mineralisation, 

growth performance of broilers, as well as its immunomodulatory potentials made VitD the 

preferred candidate in this thesis. Also, E. maxima was used to induce coccidiosis because of 

its higher pathogenicity and wider spread across the sections of the small intestine, compared 

to the other malabsorptive coccidia species. The specific aims of the thesis chapters were: 

1) To investigate the degree to which selection for growth potential in modern broilers 

penalises resistance and tolerance to a primary coccidian infection [chapter 2]. For this 
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purpose, two modern broiler genotypes differing more than 25% in their growth rate were 

used. 

2) To investigate the effects of increasing dietary VitD supplementation level (1000 vs 

4000 IU/kg), and supplementing with a more efficiently absorbed metabolite (OHD) of D3 

during coccidia infection [chapter 3]. 

3) To investigate whether offering OHD instead of VitD at commercially supplemented 

levels  (4000 IU/kg) would result in improved bone mineralisation for coccidiosis – infected 

broilers receiving marginally deficient Ca:P diets [chapter 4]. 

4) To investigate whether an artificial reduction of early GR via diet dilution would result 

in improved bone mineralisation for coccidiosis – infected modern fast-growing broilers 

[chapter 5]. 
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Chapter 2: Does selection for growth rate in broilers reduce resistance and 

tolerance to Eimeria maxima infection? 

2.1 Summary  

A total of 288 male broiler chickens of fast (F) or slow (S) growing lines (line effect) were 

raised from hatch in two consecutive batches to test the hypothesis that broilers selected for 

faster growth rate will show inferior resistance and tolerance to a coccidian challenge. 

Broilers from F and S lines were experimentally infected with different doses (dose effect) of 

0 (control; C), 2500 (low-dose; L), or 7,000 (high-dose; H) sporulated E. maxima oocysts at 

day 13 of age in both rounds. To evaluate growth performance, feed conversion ratio (FCR), 

as well as average daily feed intake (ADFI), weight gain (ADG), and their values relative to 

body weight (BW) at infection (ADFI/BW and ADG/BW) were calculated over 13 days post-

infection (pi). The performance was also assessed for three phases of infection; pre-patent 

(days 1 – 4 pi), acute (d5 – 8 pi) and recovery (d9 – 12 pi). Levels of plasma carotenoids and 

vitamins (Vit) E and A were measured at d6 and d13 pi. Long bone mineralisation and linear 

growth, and histological measurements were also assessed at the acute and recovery phases of 

infection using samples obtained at d6 and 13 pi, respectively. Furthermore, levels of nitric 

oxide metabolites, small intestine lesions, and the number of parasite genome copies (parasite 

replication) in the jejunum at d6 pi were measured. The F birds grew 1.42 times faster than 

the S birds in absolute terms whilst there was no significant interaction between line and 

parasite dose for ADG/BW and ADFI/BW, or FCR (P > 0.05). Amongst the plasma 

metabolites measured, line and dose interacted (P = 0.05) only for Vit E at d13 pi. C birds of 

the S line had a significantly higher concentration than L and H dose birds of line S and H 

birds of line F, whilst C, L and H birds of the F line had statistically similar values (P > 0.05). 

Similarly, only Vit A concentration was affected by genetic line (P < 0.001; F < S) at d13 pi. 

Infection significantly decreased levels of all metabolites, apart from NO, which increased (P 

< 0.001) in response to infection on d6 pi. The reduced concentration of metabolites was 

accompanied by changes in histomorphometric features, as well as the presence of E. maxima 

genome copies in infected birds; effects persisting at d13 pi. Line affected small intestine villi 

height (VH/BW) and crypt depth (CD/BW) expressed in proportion to body weight at 

sampling. Both variables were significantly decreased (P < 0.001) in duodenum and jejunum 

of the F than the S line at d6 and 13 pi. Furthermore, infection penalised tibia and femur linear 

growth, robusticity and mineralisation; the effects were more pronounced at d13 pi. Bone 

quality was generally higher for the S than the F broilers. Although femur percentage ash was 
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similar for both lines, femur strength in relation to body weight was higher for the S than the 

F line at d13 pi. Reductions in the measured variables were mostly independent of dose size, 

as was the level of parasite replication, and lesions inflicted on all three sections of the small 

intestine. The experimental factors had statistically similar effects (P > 0.05) on the measured 

variables in both rounds. In conclusion, the results herein suggest that a more robust selection 

scheme encompassing resistance to infection bears a higher significance than differences in 

growth rate per se.   

2.2 Introduction 

Improving productivity traits is the main focus for genetic selection in most livestock 

production systems (Dekkers and Hospital, 2002), but other vital traits can be compromised in 

the process (Van der Most et al., 2011). For instance, selection in modern broiler chickens for 

increased daily gain or lower feed conversion ratio may have compromised tolerance to 

metabolic and skeletal disorders (Julian, 1998; Dawkins and Layton, 2012) and infectious 

pathogens (Yunis et al., 2000; Leshchinsky and Klasing, 2001; Cheema et al., 2003) as a 

consequence. Therefore, selection for improved performance traits may affect immune 

response and increase susceptibility to infections especially during a resource limitation 

situation (Rauw et al., 1998; Van der Most et al., 2011). The hypothesis is that birds from 

lines selected for productivity will continue to direct nutrient resources to productive traits at 

the expense of functional traits, such as the ability to limit or cope with a disease (Coop and 

Kyriazakis, 1999). 

An excellent model to test the above hypothesis is a controlled coccidia infection using E. 

maxima which is the most pathogenic malabsorptive, and one of three predominant, coccidia 

species affecting chickens (Blake and Tomley, 2014). Through anorexia and severe 

inflammation of the small intestine, E. maxima infection impairs nutrient absorption and 

nutrient utilisation (Cervantes, 2002; Dalloul and Lillehoj, 2006) leading to reduced 

availability of nutrient resources as is the case with most health challenges. Susceptibility to 

E. maxima infections in broilers is here defined in terms of resistance; the ability to prevent 

the entry of oocysts, limit their proliferation within the intestinal tract, or both, and tolerance; 

the ability to limit the detrimental effects on performance (Doeschl-Wilson et al., 2012). 

Broilers infected with E. maxima experience reduced weight gain due to anorexia and reduced 

efficiency of feed utilization arising from poor digestion, malabsorption of nutrients (Shirley 

et al., 2007), changes in metabolism (Adams et al., 1996a) and repartitioning of absorbed 
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nutrients away from growth processes towards the functioning of the immune system (Van 

der Most et al., 2011).  

Therefore, this study aimed to investigate the degree to which genetic selection for growth 

potentials in modern-day broilers penalises their resistance and tolerance to a primary 

coccidian infection. To assess tolerance, performance was measured using ADG, ADFI and 

FCR over the course of infection. Also, levels of plasma carotenoids and vitamins E and A, 

small intestine lesions and histological measurements to assess the level of damage to the 

intestinal mucosa, as well as markers of long bone mineralisation and physical development at 

the acute and recovery phases of infection, were examined. The level of nitric oxide 

metabolites (NO) during the acute stage of infection was also measured. In assessing the 

differences in resistance of the treatment groups, an estimation of the number of parasite 

genome copies in the jejunum, which is the primary site of E. maxima colonisation and 

replication, was done at peak of parasite replication, i.e. d6 pi (Blake and Tomley, 2014) and 

by proxy accounting for any possible underlying immune responses. It was further 

hypothesised that the effects of infection on performance would be more pronounced at higher 

E. maxima doses. 

2.3 Materials and Methods 

2.3.1 Birds, Husbandry and Diets 

All procedures were conducted under the UK Animals (Scientific Procedures) Act 1986 and EU 

Directive 2010/63/EU for animal experiments after obtaining the Home Office authorisation 

(P441ADF04). The experiment was conducted over two rounds with a 6-week interval between 

them. For each round, 72 male day-old chicks of a fast-growing line (Ross 308, F) and 72 male 

day-old chicks from a slow-growing line (Ross Ranger Classic, S) were obtained from the same 

breeding hatchery. The birds were from the same flocks of origin and whose parents have been 

subjected to similar husbandry. The parent stock used were from the same flock for each of the two 

lines, which ranged between 37 and 43 weeks of age for rounds A and B, respectively. The growth 

potential of these broiler lines differs by 25% according to the performance objectives of the 

breeding company. The lines F and S originated from the same paternal lines but different maternal 

lines in that the maternal lines of the S were not selected for growth rate. 

The birds in each round were housed in 24 round pens each with a diameter of 1.2 m (1.13 m2) 

situated in a windowless, thermostatically controlled room at the Newcastle University Cockle 

Park farm. The pens were arranged such that the treatments were allocated uniformly to represent 
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the different sides of the room. The floor of the pens was covered with wood shavings to a depth of 

approximately 5cm, and each pen was equipped with tube feeders and bell-drinkers. These birds 

had ad libitum access to feed and water throughout the trial. The temperature at pen level was 

monitored daily and maintained to meet Aviagen recommendations for spot brooding (Aviagen, 

2014b), starting at 34°C at chick placement and gradually reduced to 20 °C by 25 days of age. 

Light (L) intensity at pen level ranged from 180-220 lux, whilst a lighting schedule of 23L:1 dark 

(D) was applied for the first seven days of age and then switched to 18L:6D for the remaining days 

of the trial. 

Starter (d0-10) and grower (d11-26) diets were manufactured according to Aviagen nutrition 

specifications (Aviagen, 2014a), and offered to both lines (Table 2.1). The starter and the grower 

diets were offered in crumb and pelleted forms, respectively.  

2.3.2 Experimental design and inoculations 

The experiment was conducted according to a 3 × 2 factorial design with 3 coccidian doses 

representing infections and 2 lines as the independent variables, while the experimental round was 

treated as a blocking factor. Upon arrival, day-old chicks of F and S lines were randomly assigned 

to treatment groups at one of three levels of infection, a non-infected control group (C), a low level of 

infection (L), and a high level of infection (H). Each treatment group consisted of 8 pens as replicates, 

and the initial stocking density was six birds per pen. Broilers were orally inoculated at 13 days of 

age (d0 pi) with a single 0.5 ml oral dose of water (C) or doses of either 2500 (L) or 7000 (H) 

sporulated E. maxima oocysts of the Weybridge laboratory reference strain using 1-ml syringes. 

The inocula were prepared using a previously described method (Pastor-Fernández et al., 2018). 

The infection doses were chosen based on previous studies (Allen and Fetterer, 2002b) to maintain 

pathogenicity at a sub-clinical level.  

2.3.3 Sampling 

Bird individual weight and pen feed intake were measured at 1 and 13 days of age (pre-infection), 

and then daily from d1 to 13 pi when the trial was terminated. On d6 and 13 pi, a randomly 

selected bird from each pen was weighed, bled from wing vein, and then euthanised with a lethal 

injection of sodium pentobarbitone (Euthatal®, Merial, Harlow, United Kingdom). Blood was 

placed in 5 ml sodium heparin plasma tubes (BD Vacutainer, SST II Advance Plus Blood 

Collection Tubes - BD, Plymouth, United-Kingdom). The blood samples were immediately placed 

on ice and then centrifuged for 10 min at 1500 g at 4°C within 1.5 h after collection. Aliquoted 

plasma samples were stored at -80 °C pending analyses. 
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During necropsy, the small intestine was removed, and the duodenum, jejunum and ileum were 

scored for any lesions according to the method described by Johnson and Reid (Johnson and Reid, 

1970). Following lesion scoring, 5 cm of intestinal tissue from the immediate region of Meckel’s 

diverticulum, the main site of infection by E. maxima (Long et al., 1976), was excised, opened 

longitudinally, the digesta carefully removed, and the tissue was submerged in 5 ml bizous filled 

with RNAlater® (Life Technologies; Carlsbad, CA, USA). These samples were immediately 

stored at -80 °C pending further analyses. Also, two 1 cm segments, one from the duodenal loop 

and one from the jejunum positioned 2.5 cm from Meckel's diverticulum, were sampled from birds 

dissected on d6 and 13 pi and were fixed in 10% phosphate buffered formalin, maintained at a pH 

of 7.0, for morphometric analysis. Finally, the right femur and tibia were dissected, much of the 

adhering soft tissues removed using scalpels and they were stored in airtight individually labelled 

polythene bags at -20 °C pending evaluation. 

2.3.4 Sample analysis 

Morphometric analysis of gut  

Formalin-fixed intestinal sections from the duodenum and jejunum were dehydrated through a 

series of graded ethanol baths followed by xylene in a Shandon™ Excelsior™ ES Tissue 

Processor (Thermo Fisher Scientific Inc., Waltham, Massachusetts), before being embedded 

in paraffin wax, sectioned at 4 µm and stained with hematoxylin/eosin. Histological sections 

were examined under a Zeiss Primostar light microscope and images were captured using 

ZEN imaging software (Zeiss Germany, Oberkochen, Germany). Images were viewed to 

measure morphometric features at 10× magnification. The villus height (VH) and the crypt 

depths (CD) were determined from sections using ImageJ (NIH) software (Schneider et al., 

2012). The villus height was estimated by measuring the vertical distance from the villus tip to the 

villus-crypt junction level for ten villi per section, and the crypt depth by measuring the vertical 

distance from the villus-crypt junction to the lower limit of the crypt for ten corresponding crypts 

per section. 

Parasite replication 

Quantitative real-time PCR (qPCR). Using predicted genome sizes of 46.2 Mbp for E. 

maxima (Blake et al., 2011) and 1.2 Gbp for G. domesticus (Furlong, 2005), and the method 

of Blake et al. (Blake et al., 2008) to extract total genomic DNA (gDNA) from sporulated E. 

maxima oocysts and uninfected chicken intestinal tissue, ten-fold DNA dilution series were 

created using previously described methods (Blake et al., 2006; Nolan et al., 2015). For 

quantifying E. maxima genome copy number, the primers Ema_qPCRf (forward: 5′-TCG 
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TTG CAT TCG ACA GAT TC-3′) and Ema_qPCRr (reverse: 5′-TAG CGA CTG CTC AAG 

GGT TT-3′), targeting 138 base pairs of the Microneme Protein 1 (MIC1) gene, were used 

(Blake et al., 2006). For normalization, the primers actbF (forward: 5′-GAG AAA TTG TGC 

GTG ACA TCA-3′) and actbR (reverse: 5′- CCT GAA CCT CTC ATT GCC A -3′), which 

amplify 152 base pairs of the chicken cytoplasmic beta-actin (actb) gene were used according 

to a previously employed protocol (Nolan et al., 2015). Total gDNA was extracted from 

excised jejunal tissue using a DNeasy® Blood and Tissue kit (Qiagen, Hilden, Germany), 

according to the manufacturer’s protocol. In brief, RNAlater® was removed from the 

defrosted jejunal tissue, which was then weighed and immersed in an equal w/v of Qiagen 

tissue lysis buffer. Each sample was homogenised with a Qiagen TissueRuptor, and the 

equivalent of ≤ 25 mg of the homogenate added to a sterile 1.5 ml microcentrifuge tube. 

Genomic DNA was then extracted according to the manufacturer’s instructions and stored at -

20 °C until analysis.  

Quantitative real-time PCR was performed with a CFX96 Touch® Real-Time PCR Detection 

System (Bio-Rad Laboratories, Hercules, California, USA). Amplification of each sample 

was performed in triplicate in a 20 μl volume containing 1 μl of total gDNA, 300 nM of each 

primer, 10 μl of SsoFast™ EvaGreen® Supermix (Bio-Rad Laboratories), and 8.9 μl of 

DNase/RNase free water (Gibco™, Life Technologies, Karlsruhe, Germany). Cycling qPCR 

conditions were 95 °C/2 m (enzyme activation/initial denaturation), followed by 40 cycles of 

95 °C/15 s (denaturation), 60 °C/30 s (annealing/ extension), followed by melt analysis of 65–

95 °C at increments of 0.5 °C/0.5 s. Assays were performed in white hard-shell® 96-well 

PCR plates (Bio-Rad Laboratories) sealed with Thermo Scientific adhesive sealing sheets and 

included the respective gDNA dilution series (standards) and no template controls (NTC). 

Calculation of copy number of each qPCR target was performed with the software CFC 

Manager v.3.1 (Bio-Rad Laboratories) according to the slope and intercept of the 

corresponding reference dilution series. A normalisation of the predicted parasite genome 

copy number was performed by comparison to the estimated host genome copy number. 

Parasite genome copy number was calculated based on the normalised parasite copy 

number/μl. All other procedures and calculations were as described previously (Nolan et al., 

2015). 

Blood metabolites 

Carotenoids, vitamins A and E. Plasma samples were analysed for lutein and zeaxanthin, 

which are the major carotenoids in cereal grains (Humphries and Khachik, 2003). Fat-soluble 

vitamins retinol (Vit A) and α-tocopherol (Vit E) levels in the blood plasma were also 
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measured. Both carotenoids and fat-soluble vitamin concentration in the blood plasma were 

used as indicators of the gut absorptive capacity during coccidiosis or coccidiosis-induced 

damage to intestinal epithelial (Singh and Donovan, 1973; Allen and Fetterer, 2002a; Allen et 

al., 2004). Retinyl acetate and echinenone were used as internal standards. Retinoid (> 95% 

all-trans isomers) and α-tocopherol standards were purchased from Sigma-Aldrich while 

carotenoid standards were purchased from CaroteNature GmbH (Ostermundigen, 

Switzerland). HPLC-grade acetonitrile, ethanol, methanol, chloroform, hexane and 

triethylamine were purchased from Fisher Scientific (Loughborough, UK). Butylated 

hydroxytoluene (BHT) was obtained from Sigma-Aldrich. All procedures were undertaken 

under orange lighting to avoid analyte degradation. For the preparation of stock solutions, 

retinol and Vit E were dissolved in ethanol with 0.1% BHT, while lutein and zeaxanthin were 

dissolved in chloroform with 0.1% BHT. The concentrations of individual calibration 

standard solutions were confirmed by measuring the absorption in ethanol with a UV 

spectrophotometer. Internal standards were prepared in ethanol containing 0.01% BHT. 100 

µl of each plasma sample was diluted in 100 µl of water to which 200 µl of the internal 

standard in ethanol was added. 2 ml of hexane was added to each sample and samples were 

vortexed in an orbital shaker for 10 min and then centrifuged at 1500 g for 5 min. Following 

centrifugation, the upper hexane phase was transferred to clean glass tubes, and samples were 

re-extracted with a further 2 ml of hexane. Hexane was evaporated under a nitrogen stream, 

and residues were dissolved in 100 µl of ethanol and transferred to amber glass vials with 

inserts (Fisher Scientific). Ten µl of sample extract was injected for the analysis using a 

Shimadzu HPLC System via photodiode array (PDA) detection, according to previously 

described methodology (Liu et al., 2011). The concentrations of Vit E, lutein zeaxanthin and 

echinenone were quantified at 450 nm, while Vit A and retinyl acetate (IS2) were measured at 

325 nm.  

Nitric oxide metabolites. Plasma concentrations of nitric oxide metabolites (NO2- and NO3-), 

which constitute a maker of the severity of coccidian infections (Allen, 1997b; Allen, 1997a), were 

analysed using methods described by Qadir et al. (2013). Spiking solution was prepared from 5 

mM Sodium nitrate-15N and 0.05 mM Sodium nitrite-15N (Cambridge Isotope Laboratories, Inc., 

USA) and used as an internal standard. 100µL of plasma sample, 100 µL of spiking solution, 20µL 

of 2,3,4,5,6 - pentafluorobenzyl bromide (Sigma-Aldrich, Germany) and 800 µL of acetone 

(VWR, Lutterworth, Leicestershire, UK) were pipetted into Falcon™ round-bottom polystyrene 

tubes and placed in a heating block at 50 °C for 120 mins for incubation. Following incubation, 

acetone was evaporated under a nitrogen stream for 10mins. Samples were allowed to cool before 
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2ml of toluene (Fischer Scientific, UK) was pipetted into each tube and the tubes vortexed for 15 

secs. Subsequently, 1ml of distilled water was pipetted into each tube and samples were re-

vortexed twice for 15 secs with a rest of 15 secs in between. Using glass Pasteur pipettes, the top 

layer was transferred into amber glass vials and stored in at -20 °C pending GCMS analysis. Other 

variables such as column type and ionisation temperatures, were as described previously (Tsikas, 

2000). 

Bone evaluation 

Frozen femur and tibia were thawed at 4oC in a fridge overnight, and then placed at room 

temperature for 1 hour before further defleshing with scalpels. Tibia and femur length and diameter 

at the centre of the diaphysis were measured using digital callipers and recorded. Each bone was 

weighed on an analytical balance to obtain the weight before being subjected to a 3-point break test 

using an Instron testing machine (Instron 3340 Series, Single Column-Bluehill). The testing 

support consisted of an adjustable 2-point block jig, spaced at 30 mm for both tibia and femur 

bones. The crosshead descended at 5 mm/min until a break was determined by measuring a 

reduction in force of at least 5%.  Following breaking strength evaluation, bones were split in two, 

and the bone marrow was manually removed. Subsequently, bones were soaked in petroleum ether 

for 48 hours for lipid removal and then placed in an oven at 105 °C for 24 hrs, and the dry defatted 

bone weight (DDB, g) was recorded. Samples were then placed in a furnace at 600 °C for 24 hrs 

for the determination of ash weight (g) and ash content (%) for tibia and femur. Hence, data 

deriving from femur and tibia of dissected birds include length and width (mm), ash weight (g), 

breaking strength (BS, N), DDB(g) and ash percentage (AP, %). Also, bone robusticity index (RI) 

(Riesenfeld, 1972; Mutuş et al., 2006), as well as weight/length (Seedor) index (Seedor et al., 

1991), were derived using the following prescribed formulae. 

 

𝑅𝑜𝑏𝑢𝑠𝑡𝑖𝑐𝑖𝑡𝑦 𝑖𝑛𝑑𝑒𝑥 =
length (mm)

3√weight (mg)
 

 

𝑆𝑒𝑒𝑑𝑜𝑟 𝑖𝑛𝑑𝑒𝑥 =
weight (mg)

length (mm)
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2.3.5 Calculations and Statistics 

All statistical analyses were conducted using IBM SPSS Statistics for Windows, Version 22 

(Armonk, NY: IBM Corp). For all statistical assessments, the pen was considered as the 

experimental unit. The ADFI (g/d), ADG (g/d) and FCR of birds were calculated over the pi 

period (d1 – 13 pi) and were analysed with dose, line and round as fixed factors and the 

interaction between line and dose, using the general linear model procedure (GLM) (Table 

2.2). Furthermore, ADFI and ADG data pi were expressed as a proportion of BW at d0 pi 

(ADG/BW and ADFI/BW in g/g/d) to account for the a priori differences in performance 

between the broiler lines.  

The ADG/BW and ADFI/BW calculated over the pi period were analysed with the repeated 

measurements mixed procedure. The model included dose, line, day and round as fixed 

factors, the 2-way interactions between dose and line, dose and day and the 3-way interaction 

between dose, day and line. Based on the day pi that a reduction of ADG and ADFI was 

observed (Figure 2.1), the pi period was divided into pre-patent (d1 – 4 pi), acute (d5 – 8 pi), 

and recovery (d9 – 12 pi) phases and ADFI, ADG, and FCR were calculated over each of the 

phases. The performance data for each phase was analysed using GLM with line, dose, round 

and the interaction between line and dose as the factors (Table 2.3).  

Single time point data included plasma concentrations of zeaxanthin, lutein, vitamins E and 

A, histological and bone measurements deriving from one bird per pen dissected on d6 or 

d13pi, as well as E. maxima genome copy numbers and nitric oxide metabolites (NO) 

obtained at d6pi. These were analysed with GLM with dose, line, and round as fixed factors 

and the interaction between dose and line. Histological and bone measurements, apart from 

AP and villi height/crypt depth ratio (VCR), were expressed as a proportion of BW of 

dissected birds to account for the size difference between S and F growing birds, and between 

control and infected birds. Absolute values for histological measurements (i.e. not expressed 

relative to BW) were also analysed. Expressing bone variables as a proportion of BW has 

been previously used in studies comparing broiler genotypes with different growth potential 

(Shim et al., 2012). For E. maxima genome copy (GC) numbers, control birds were excluded 

from the model as their value was effectively 0. Hence, GC was analysed using GLM with the 

two lines (S and F), two doses (L and H), two rounds as the factors and the interaction 

between line and dose.  

For all statistical analysis, the normality of the residuals was assessed with the Shapiro-Wilk 

test, and non-normalized data like predicted E. maxima genome copy numbers were log-
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transformed before analysis. When significant differences were detected, treatment means 

were separated and compared by the Tukey’s multiple comparison tests. Significance was 

determined at P < 0.05. All values are expressed as model-predicted least square means with 

the SEM. 

Intestinal lesion scoring was done on a scale of 0 (no lesion) to 4 (very severe); 1, 2 and 3 

representing mild, moderate and severe respectively. Data generated were analysed using ordinal 

logistics regression with line, dose and round as fixed factors and the interaction between line and 

dose. Control birds were excluded from the analysis, as there were no intestinal lesions found 

(Score 0). Significance was determined at P < 0.05. 
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Table 2. 1 Ingredient and analysed chemical composition of the Starter (d0 – 10) and Grower 

(d11 – 26) diets offered to broiler chickens.  

Item Starter 

 

Grower 

Ingredient (%)   

Wheat 47.8 51.5 

Soybean meal (48% CP) 32.0 25.2 

Corn 10.0 10.0 

Soybean full fat 4.0 7.0 

Dicalcium phosphate 1.89 1.66 

Soy crude oil 1.84 2.32 

Limestone 0.64 0.59 

Vitamin and mineral premix 0.40 0.40 

DL methionine 0.33 0.30 

L-Lysine 0.27 0.24 

Sodium bicarbonate (27%) 0.21 0.19 

Sodium chloride (39%) 0.19 0.20 

L-Threonine 0.14 0.12 

Choline chloride (60%) 0.05 0.05 

L-Valine 0.03 0.02 

Xylanase1 0.02 0.02 

Nutrient composition (%) 

ME (kcal/kg) 3000 3100 

Crude Protein  23.5 21.7 

Crude Fat   4.37 5.41 

Calcium 0.96 0.87 

Phosphorus 0.76 0.70 

Available phosphorus 0.48 0.44 

Ash       5.23 4.78 

The nutrient composition was in accordance with Aviagen nutrient specification (Aviagen, 2014a). 

1Ronozyme ® WX, DSM Nutritional Products Ltd. 
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2.4 Results 

The main effect of round and the interaction between round and other experimental factors are 

not presented in the results as they were not statistically significant (P > 0.05). 

2.4.1 Bird health and performance variables  

No bird was euthanised due to health-related disorders, and coccidiosis caused anorexia and 

reduced weight gain according to expectations. The main effects of line, parasite dose and their 

interaction on ADG, ADFI, and FCR are presented in Table 2.2. 

Post-infection period 

Line and dose did not significantly interact for any of the performance parameters (P > 0.1). 

Parasite dose significantly affected BW (P < 0.001) at the end of the trial period (d13 pi), as 

well as ADG, ADFI, and FCR over the period, with H and L dosed birds showing inferior 

values in comparison to C birds, and similar to each other for these parameters. Line 

significantly affected (P < 0.001) all performance parameters over the pi period with F line 

birds showing higher BW at inoculation (d0 pi) and at the end of the trial (d13 pi).  

Repeated measurements on daily ADFI/BW and ADG/BW 

The repeated measurement analysis on ADFI/BW and ADG/BW for d1 to 13 pi is illustrated 

in Figure 2.1. There were no significant interactions (P > 0.1) between line and dose for 

ADG/BW or ADFI/BW (g/d/g). Even when expressing values as a proportion of BW at 

infection, the F line birds maintained higher (P < 0.01) ADG (0.194 vs 0.176; SEM = 0.0010) 

and ADFI (0.257 vs 0.252; SEM = 0.0010) than the S line birds. Dose affected relative ADG 

and ADFI (P < 0.001); in comparison to C birds, L and H dosed birds showed significantly 

lower ADG (C = 0.200 vs L = 0.177 vs H = 0.177; SEM = 0.0200) and ADFI (0.268 vs 0.247 

vs 0.249; SEM = 0.0200 for C, L, and H birds, respectively). ADG/BW and ADFI/BW were 

affected by the interaction between dose and day (P < 0.001); birds on H and L dose showed 

significantly lower ADG and ADFI between d4 and d8 pi compared to the controls (Fig. 2.1). 

For this reason, the experimental period was divided into three equal periods that roughly 

equated to the pre-patent (d1 – 4 pi), acute (d5 – 8 pi), and recovery (d9 – 12 pi) periods of 

infection.  

Performance during the pre-patent, acute, and recovery periods 

The main effects of line, period and their interaction on relative ADG, ADFI, and FCR are 

presented in Table 2.3. Line and dose did not interact for performance variables during any period 
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pi (P > 0.01). The F line birds had significantly higher ADG/BW, ADFI/BW and smaller FCR 

than S line birds during all periods apart from the acute period when they had similar ADFI/BW 

with S line birds. Parasite dose significantly affected ADG/BW and FCR during the pre-patent and 

acute periods, as well as ADFI/BW during the acute period (P < 0.05); C broilers had significantly 

higher relative ADG and ADFI and smaller FCR than L and H broilers in all cases.   

2.4.2 Plasma Carotenoids, Vitamins A, E, and Nitric oxide metabolites 

The main effects of dose, line and their interaction on plasma concentrations of carotenoids, 

vitamins A, E, and NO are presented in Table 2.4. There were no interactions between line 

and parasite dose for plasma concentration of lutein, zeaxanthin, vitamins E and A, and NO 

metabolites on days 6 or 13 pi, apart from Vit E at d13 pi. Line and dose interacted for plasma 

Vit E (P = 0.050): control birds of the S line had significantly higher values than those of the 

L and H dose birds of line S and H dose birds of line F, whilst C, L and H birds had 

statistically similar values amongst F line broilers (Table 2.4). 

Parasite dose significantly affected the concentration (P < 0.001) of lutein, zeaxanthin, and 

Vitamins A and E at d6pi. Values were significantly higher in control birds compared to L 

and H dose birds. Similar effects were observed at d13pi for lutein (P < 0.001), zeaxanthin (P 

< 0.01), and Vit E (P < 0.05). In contrast, dose induced the opposite effect on NO at d6pi (P < 

0.001). Bird line did not affect the concentration of any of plasma metabolites measured at d6 

and d13pi (P > 0.1), apart from Vit A (P < 0.001), which was higher for S than for F line 

birds at d13 pi (Table 2.4). 

2.4.3  Parasite replication and histology 

The main effects of dose, line and their interaction on the number of E. maxima genome 

copies derived from qPCR, and histological measurements obtained on d6 and 13 pi are 

presented in Tables 2.5 and 2.6, respectively. Parasite genomes were not detected in samples 

collected from control birds at d6 pi. Parasite replication in S and F line birds was not affected 

(P > 0.05) by any of the independent variables or the interaction at d6 pi. Dose significantly 

affected (P < 0.05) all digestive tract morphological parameters at d6 pi; expressed in 

absolute terms and relative to the BW at dissection. Infected H and L birds had shorter villi 

and enlarged crypts and a lower villi height/crypt depth ratio (VCR) in comparison to C birds, 

whilst being similar to each other. At d13 pi, duodenal and jejunal VH were not affected by 

dose, but they were significantly affected when expressed relative to their BW at dissection; 

being significantly higher (P < 0.05) in H and L dose birds in comparison to C birds. CD of 
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intestinal sections, both in absolute and relative terms were significantly affected by dose (P 

< 0.001) being higher for H and L dose birds compared to C birds. On the other hand, VCR 

was significantly affected by infection (P < 0.05), being significantly lower for H dose birds 

in the duodenum and both and H and L birds in the jejunum than C birds.  

Although F birds had significantly longer villi in the duodenum at d6 (P < 0.01) and greater 

CD (P = 0.05) at d13pi, the opposite was the case for both VH and CD at all intestinal sites at 

both days pi when they were expressed relative to BW. Line and dose interacted for CD (P < 

0.05) in the jejunum at d6 pi and in the duodenum at d13 pi. The F birds receiving the H dose 

displaying greater CD than all other line and dose treatment groups. When expressed as a 

proportion of BW at dissection, the interaction between line and dose for jejunal CD at d6 pi 

was maintained but with S birds receiving the H and L doses displaying significantly (P < 

0.05) higher CD than F line L dosed birds (Table 2.5). 

2.4.4 Intestinal lesion score 

There were no intestinal lesions (score 0) detected in uninfected birds of either the S or the F line at 

d6 and 13 pi. Hence, these were excluded from the regression model. Also, the intestinal lesions 

observed amongst infected L and H birds at d6 pi had recovered by d13 pi. Small intestinal lesion 

score deriving from an average score of the three individual sections at d6 pi revealed no effect (P 

> 0.1) of line (S = 1.35 vs F = 1.60; SEM = 0.181), dose (L = 1.31 vs H = 1.65; SEM = 0.181), or 

the interaction between line and dose on small intestine lesions. Irrespective of line or dose, the 

cumulative score showed that 50% of infected birds had moderate lesions (score 2) while 34.4% 

and 15.6% had mild (score 1) and severe (score 3) lesions respectively. Amongst the three 

segments of the small intestine, the jejunum had the only occurrence of very severe lesions (score 

4; 3.1%) as well as the highest occurrence (25%) of the severe lesion (score 3) compared to the 

duodenum (6.5%) and the ileum (9.4%). 

2.4.5 Bone variables 

The effects of line, dose and their interactions on femur and tibia measurements at d6 and d13 

pi are presented in Tables 2.7 and 2.8, respectively. There were no significant interactions 

between line and dose on tibia and femur parameters at d6 and 13pi. 

Bone linear growth relative to body weight at dissection 

Line affected (P < 001) tibia and femur length/BW: values were higher for the S than the F line 

birds at d6 and 13 pi. Tibia and femur width/BW were affected (P < 0.001) by line with values 
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higher for the S than the F line at d6 and 13 pi. As expected, infection affected (P < 0.05) 

length/BW and width/BW of tibia and femur at d6 pi. Values were lower in uninfected (C) birds 

compared to infected (L and H) birds. Whilst at d13 pi, infection significantly increased (P < 0.05) 

tibia and femur length/BW and femur width/BW, but tibia width/BW was not affected (see Tables 

2.7 and 2.8). 

Relative bone breaking strength (BS) and dry defatted bone weight (DDB)  

Broiler line did not affect (P > 0.05) femur or tibia BS/BW and DDB/BW at d6 pi. However, at 

d13 pi, line significantly affected (P < 0.05) femur BS/BW, as well as tibia and femur DDB/BW; 

values were consistently higher in the S compared to the F line broilers. Parasite dose significantly 

affected (P < 0.05) BS/BW of femur and tibia at d6 and 13 pi, respectively; the infected compared 

to C birds had reduced BS/BW. There were no other significant effects of parasite dose on tibia or 

femur BS/BW and DDB/BW at d6 and 13 pi.  

Ash content relative to body weight and ash percentage in dry defatted bone 

Parasite dose reduced (P < 0.05) femur AP for L and H in comparison to C birds at d6 pi, as well 

as tibia and femur ash/BW for H compared with C birds at d13 pi; values for L birds were 

intermediate and not significantly different from other two groups. Also, infection significantly 

reduced (P < 0.05) tibia and femur AP for L and H compared to C birds at d13 pi. On the other 

hand, Tibia ash/BW was significantly higher (P < 0.05) for the S than the F line on both d6 and 13 

pi, but femur ash/BW only on d13 pi (P < 0.001). Tibia or femur AP did not differ (P > 0.05) 

between F and S lines at both time points. 

Weight/length (Seedor) and robusticity indices  

Line significantly affected (P < 0.05) seedor and robusticity indices for tibia and femur at d6 and 

13 pi. Seedor index was lower, and robusticity index higher for the S than the F line birds. Dose 

significantly reduced (P < 0.05) seedor index for femur and tibia at d6 and 13 pi respectively: 

values were lowest in H birds and highest in C birds for the S and the F lines. Dose also 

significantly increased (P < 0.05) femur robusticity index for the infected (L and H) compared to C 

birds at d13 pi (Tables 2.7 and 2.8). 
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Table 2. 2 Effects of line, dose and their interaction on performance parameters in broiler chickens of either fast 

or slow-growing lines, inoculated with 0 (Control), 2500 (Low) or 7000 (High) sporulated E. maxima oocysts on 

d13 of age, over the period post-infection (d0 – 13 pi). 

  BW d0 pi BW d13 pi ADG ADFI FCR 

Line      

 Slow 371 1220 65.3 93.4 1.43 

 Fast 479 1676 92.1 123 1.34 

 SEM 3.4 14.4 1.01 1.17 0.009 

Dose      

 Control 427 1541a 85.7a 114a 1.34a 

 Low 422 1401b 75.3b 104b 1.39b 

 High 427 1402b 75.0b 106b 1.42b 

 SEM 4.2 17.6 1.24 1.4 0.012 

Line  Dose      

Slow Control 373 1296 71.0 98.6 1.39 

Low 369 1182 62.6 90.2 1.44 

High 373 1181 62.1 91.5 1.47 

Fast Control 481 1786 100 130 1.29 

Low 475 1619 88.1 118 1.34 

High 481 1624 87.9 120 1.37 

 SEM 5.9 24.9 1.80 2.03 0.016 

Source Probabilities 

Line <0.001 <0.001 <0.001 <0.001 <0.001 

Dose 0.599 <0.001 <0.001 <0.001 <0.001 

Line x Dose 0.972 0.522 0.476 0.716 0.981 

a, bMeans within a sub-column that do not share a common superscript are significantly different (P < 0.05). 

Abbreviations: BW, body weight; ADG, average daily gain; ADFI, average daily feed intake; FCR, feed 

conversion ratio 

The period from d0 to 13 pi equates to d13 to 26 of age. 
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Table 2. 3 Effects of line, dose and their interaction on ADG/BW (g/d/g) and ADFI/BW (g/d/g) and FCR, during the pre-patent (d1-4 pi), acute (d5-8 pi), or recovery (d8-12 

pi) periods of infection in broiler chickens of either fast or slow-growing lines, inoculated with 0 (Control), 2500 (Low) or 7000 (High) sporulated E. maxima oocysts on d13 

of age. 

  Pre-patent  Acute  Recovery 

 ADFI/BW ADG/BW FCR  ADFI/BW ADG/BW FCR  ADFI/BW ADG/BW FCR 

Line            

 Slow 0.194 0.149 1.30  0.217 0.144 1.57  0.326 0.226 1.44 

 Fast 0.199 0.163 1.22  0.217 0.160 1.39  0.338 0.251 1.34 

 SEM 0.0015 0.0018 0.001  0.0033 0.0035 0.029  0.0039 0.0030 0.009 

Dose            

 Control 0.199 0.162a 1.23a  0.255a 0.197a 1.30a  0.335 0.239 1.40 

 Low 0.195 0.153b 1.28b  0.200b 0.131b 1.54b  0.325 0.235 1.38 

 High 0.195 0.153b 1.28b  0.196b 0.127b 1.60b  0.336 0.241 1.40 

 SEM 0.0019 0.0022 0.014  0.0040 0.0042 0.005  0.0048 0.0037 0.012 

Line  Dose            

Slow Control 0.197 0.156 1.26  0.253 0.190 1.33  0.331 0.226 1.47 

Low 0.195 0.145 1.32  0.206 0.126 1.65  0.318 0.225 1.41 

High 0.191 0.147 1.32  0.193 0.115 1.72  0.329 0.227 1.45 

Fast Control 0.201 0.168 1.19  0.257 0.204 1.27  0.339 0.253 1.34 

Low 0.199 0.161 1.24  0.199 0.137 1.44  0.332 0.255 1.35 

High 0.195 0.159 1.23  0.195 0.139 1.48  0.342 0.246 1.34 

 SEM 
0.0025 0.0031 0.019  0.0057 0.0060 0.051  0.0068 0.0053 0.017 

Source Probabilities 

Line 0.045 <0.001 <0.001  0.972 0.003 <0.001  0.045 <0.001 <0.001 

Dose 0.269 0.008 0.020  <0.001 <0.001 <0.001  0.210 0.546 0.479 

Line x Dose 0.314 0.707 0.801  0.295 0.522 0.222  0.892 0.769 0.154 
a, bMeans within a sub-column that do not share a common superscript are significantly different (P < 0.05).  

Abbreviations: BW, body weight; ADG/BW, average daily gain in proportion to BW; ADFI/BW, average daily feed intake in proportion to BW;  

FCR, feed conversion ratio 

The period from d0 to 13 pi equates to d13 to 26 of age. 
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Table 2. 4 Effects of line, dose and their interaction on plasma metabolites concentration (μm/ml) in broiler chickens of either fast or slow-growing lines on d6 and 13 post-

infection (pi). Broilers inoculated with 0 (Control), 2500 (Low) or 7000 (High) sporulated E. maxima oocysts on d13 of age. 

  D6 post-infection  D13 post-infection 

  Lutein Zeaxanthin Vit E Vit A NO  Lutein Zeaxanthin Vit E Vit A 

Line           

 Slow 1.12 0.269 42.8 3.16 48.6  1.93 0.412 69.9 4.63 

 Fast 1.19 0.285 41.9 2.95 42.9  1.86 0.402 69.2 3.84 

 SEM 0.052 0.0117 1.91 0.117 3.10  0.064 0.0149 2.56 0.110 

Dose           

 Control 2.27a 0.515a 93.0a 4.19a 28.7a  2.16a 0.456a 76.1 3.97 

 Low 0.65b 0.169b 17.8b 2.65b 54.2b  1.77b 0.387b 68.4 4.34 

 High 0.55b 0.146b 16.3b 2.32b 54.4b  1.75b 0.377b 64.1 4.39 

 SEM 0.064 0.0140 2.34 0.143 3.79  0.079 0.0182 3.14 0.134 

Line  Dose           

Slow 

Control 2.25 0.505 97.0 4.23 31.9  2.27 0.476 82.3a 4.46 

Low 0.64 0.173 16.9 2.78 62.1  1.70 0.372 63.3b 4.64 

High 0.47 0.130 14.6 2.47 51.8  1.82 0.389 64.1b 4.79 

Fast 

Control 2.30 0.526 88.9 4.15 25.5  2.05 0.436 70.0ab 3.49 

Low 0.66 0.166 18.7 2.52 46.2  1.85 0.402 73.5ab 4.03 

High 0.62 0.163 18.0 2.18 57.0  1.68 0.366 64.1b 4.00 

 SEM 0.090 0.0203 3.31 0.203 5.36  0.113 0.0258 4.44 0.190 

Source Probabilities 

Line 0.326 0.342 0.735 0.224 0.204  0.417 0.621 0.838 <0.001 

Dose <0.001 <0.001 <0.001 <0.001 <0.001  <0.001 0.007 0.031 0.066 

Line  Dose 0.758 0.601 0.184 0.865 0.164  0.225 0.370 0.050 0.622 
a, bMeans within a sub-column that do not share a common superscript are significantly different (P < 0.05). 

Abbreviations: NO, Nitric oxide metabolites; Vit, vitamin  

D6 and 13 post-infection equates to d19 and 26 of age respectively 
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Table 2. 5 Effects of line, dose and their interaction on intestinal morphology and  E. maxima genome copy number (GC) at d6 post-inoculation in broiler chickens of either 

fast or slow-growing lines, inoculated with 0 (Control), 2500 (Low) or 7000 (High) sporulated E. maxima oocysts on d13 of age. 

  Duodenum  Jejunum 

  
VH 

(μm) 

CD 

(μm) 

VH/BW 

(μm/kg) 

CD/BW 

(μm/kg) 

VCR  VH (μm) CD (μm) VH/BW 

(μm/kg) 

CD/BW 

(μm/kg) 

VCR E. maxima 

GC1 

Line             

 Slow 1176 269 1699 396 5.45  528 197 761 293 3.71 5.87 

 Fast 1338 263 1428 289 6.00  538 208 574 231 3.63 5.89 

 SEM 36.5 12.1 46.9 16.8 0.260  27.1 11.1 35.8 14.7 0.282 0.120 

Dose             

 Control 1594a 181b 1861a 212b 9.49a  647a 107 757a 125 6.45a NA 

 Low 1132b 289a 1467b 380a 4.26b  498b 233 646b 311 2.48b 5.89 

 High 1045b 329a 1362b 436a 3.42b  454b 268 599b 349 2.07b 5.87 

 SEM 44.7 14.8 57.4 20.6 0.320  33.2 13.6 43.8 18.0 0.340 0.120 

Line  Dose             

Slow 

Control 1442 167 1957 227 9.28  624 100c 836 136c 6.63 NA 

Low 1112 295 1669 444 3.98  488 255b 732 385a 2.19 5.91 

High 973 343 1471 517 3.10  472 237b 714 359a 2.29 5.87 

Fast 

Control 1746 194 1765 196 9.71  669 113c 677 114c 6.27 NA 

Low 1151 282 1265 317 4.54  509 211b 561 238b 2.78 5.88 

High 1118 314 1254 354 3.74  436 299a 483 340ab 1.85 5.87 

 SEM 63.2 20.9 81.2 29.1 0.451 
 

46.9 19.3 61.9 25.5 0.487 0.170 

Source Probabilities 

Line 0.003 0.759 <0.001 <0.001 0.146  0.789 0.515 0.001 0.005 0.858 0.940 

Dose <0.001 <0.001 <0.001 <0.001 <0.001  <0.001 <0.001 0.049 <0.001 <0.001 0.880 

Line  Dose 0.122 0.381 0.370 0.073 0.973  0.682 0.030 0.825 0.024 0.498 0.927 
a-cMeans within a sub-column that do not share a common superscript are significantly different (P < 0.05). 

Abbreviations: VH, villus height; VH/BW, villus height relative to BW; CD, crypt depth; CD/BW, crypt depth relative to BW; VCR, villi height:crypt depth ratio;  

BW, body weight at dissection; GC, genome copy numbers 
1log-transformed values; NA, not applicable  

D6 pi equates to d19 of age 
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Table 2. 6 Effects of line, dose and their interaction on intestinal morphology at d13 post-inoculation in broiler chickens of either fast or slow-growing lines, inoculated with 

0 (Control), 2500 (Low) or 7000 (High) sporulated E. maxima oocysts on d13 of age. 

  Duodenum 
 

Jejunum 

  VH (μm) CD (μm) VH/BW 

(μm/kg) 

CD/BW 

(μm/kg) 

VCR  VH (μm) CD (μm) VH/BW 

(μm/kg) 

CD/BW 

(μm/kg) 

VCR 

Line            

 Slow 1510 155 1241 128 10.15  702 117 578 97 6.33 

 Fast 1591 171 956 104 9.77  775 132 467 80 6.28 

 SEM 31.5 3.6 24.7 2.9 0.324  29.4 4.3 22.1 3.0 0.239 

Dose            

 Control 1548 147 1026b 98.0b 10.8a  680 104b 448b 68.0b 7.05a 

 Low 1531 163 1118a 120a 9.76ab  758 133a 552a 97.0a 6.02b 

 High 1572 179 1151a 130a 9.30b  777 137a 566a 100a 5.84b 

 SEM 38.6 4.4 30.2 3.60 0.397  35.9 5.3 27.0 3.70 0.293 

Line  Dose            

Slow 

Control 1510 142b 1164 110 11.0  647 97.0 498 74.0 6.92 

Low 1513 162b 1280 137 9.63  723 126 610 107 6.20 

High 1507 160b 1279 136 9.80  735 128 625 109 5.87 

Fast 

Control 1586 153b 888 86.0 10.6  713 111 399 62.0 7.19 

Low 1548 164b 956 102 9.88  793 141 494 88.0 5.84 

High 1638 197a 1023 124 8.79  820 146 508 90.0 5.82 

 SEM 54.6 6.2 42.8 5.10 0.561  50.8 7.50 38.2 5.20 0.413 

Source 
Probabilities 

Line 0.077 0.002 <0.001 <0.001 0.406  0.085 0.016 0.001 <0.001 0.887 

Dose 0.750 <0.001 0.016 <0.001 0.029  0.148 <0.001 0.008 <0.001 0.013 

Line  Dose 0.690 0.021 0.726 0.083 0.541  0.978 0.978 0.964 0.744 0.756 
a, bMeans within a sub-column that do not share a common superscript are significantly different (P < 0.05). 

Abbreviations: VH, villus length; VH/BW, villus height relative to BW; CD, crypt depth; CD/BW, crypt depth relative to BW;  VCR, villi height: crypt depth ratio;  

BW, body weight at dissection. 

 D13 pi equates to d26 of age 
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Figure 2. 1 Main effect of parasite dose on ADG  (A) and ADFI (B)  from d1 to 13 post-infection (pi) for broiler 

chickens, orally inoculated with 0 (Control), 2500 (Low) or 7000 (High) sporulated oocysts of E. maxima on d13 of age. 

Values were expressed in proportion to body weight (BW) at inoculation and analysed using repeated measurements 

mixed procedure. C > L,H represents a significant difference (P < 0.05) between control and infected (L and H) birds at 

the corresponding day pi. 
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Table 2. 7 Effects of line and infection dose and their interaction on tibia and femur length, width, breaking strength, dry defatted bone and ash, expressed relative to body 

weight (BW), and ash percentage, weight/length (seedor) index and robusticity index of broiler chickens of either a fast or a slow-growing line, at d6 post-infection (pi) with 

E. maxima. Broilers were orally inoculated with 0 (Control) 2500 (Low) or 7000 (High) sporulated oocysts of E. maxima on d13 of age. 

  
Tibia   Femur 

 

Length/

BW 

(cm/g) 

Width/ 

BW 

(cm/g) 

Breaking 

strength/ 

BW (N/g) 

DDB/ 

BW 

(g/g) 

Ash/BW 

(g/g) 

AP 

(%) 

SI 

(mg/mm) 

RI 

(mm/mg) 
 

Length/

BW 

(cm/g) 

Width/ 

BW 

(cm/g) 

Breaking 

strength/ 

BW (N/g) 

DDB/

BW 

(g/g) 

Ash/BW 

(g/g) 

AP 

(%) 

SI 

(mg/mm) 

RI 

(mm/mg) 

Line                  
 Slow 105 7.22 212 2.65 1.13 42.6 72.5 4.18  78.9 8.04 194 1.82 0.805 44.3 69.2 3.50 

 Fast 82.2 5.89 197 2.53 1.07 42.2 90.2 4.03  62.5 6.28 181 1.75 0.778 44.4 83.8 3.43 

 SEM 0.92 0.143 10.0 0.045 0.018 0.45 1.27 0.019  0.72 0.125 6.2 0.029 0.0151 0.42 1.06 0.016 

Dose                  

 Control 88.0b 6.14b 213 2.56 1.09 42.8 83.4 4.09  66.2b 6.66b 204a 1.78 0.809 45.4a 79.9a 3.42b 

 Low 96.1a 6.81a 196 2.62 1.11 42.5 80.5 4.11  72.7a 7.40a 172b 1.80 0.786 43.6b 75.4b 3.48a 

 High 96.4a 6.71ab 204 2.59 1.09 41.8 80.0 4.11  73.1a 7.42a 186ab 1.77 0.779 43.9ab 74.1b 3.49a 

 SEM 1.12 0.176 12.2 0.055 0.022 0.55 1.56 0.024  0.89 0.153 7.6 0.036 0.0185 0.51 1.30 0.019 

Line  Dose                  

Slow 

Control 98.2 6.58 209 2.59 1.12 43.3 74.5 4.15  73.5 7.35 209 1.79 0.813 45.4 71.6 3.46 

Low 108 7.66 205 2.69 1.15 43.0 71.9 4.18  81.2 8.36 180 1.85 0.812 43.9 68.2 3.51 

High 108 7.42 222 2.67 1.10 41.4 71.1 4.19  82.0 8.4 191 1.81 0.788 43.6 67.7 3.53 

Fast 

Control 77.8 5.69 218 2.52 1.07 42.3 92.4 4.03  58.9 5.98 173 1.77 0.805 45.5 88.2 3.39 

Low 84.3 5.96 188 2.55 1.07 42.1 89.2 4.03  64.3 6.43 163 1.75 0.759 43.4 82.7 3.45 

High 84.5 6.00 185 2.51 1.07 42.2 88.9 4.02  64.3 6.43 181 1.74 0.769 44.2 80.5 3.45 

 SEM 1.59 0.248 17.1 0.078 0.033 0.77 2.20 0.034  1.26 0.216 10.8 0.050 0.0262 0.71 1.83 0.028 

Source Probabilities 

Line <0.001 <0.001 0.296 0.064 0.030 0.540 <0.001 <0.001  <0.001 <0.001 0.147 0.122 0.217 0.889 <0.001 0.003 

Dose <0.001 0.020 0.629 0.732 0.711 0.391 0.256 0.827  <0.001 0.001 0.019 0.885 0.477 0.038 0.008 0.047 

Line x Dose 0.469 0.265 0.422 0.844 0.761 0.446 0.989 0.806  0.469 0.308 0.937 0.706 0.672 0.727 0.597 0.977 

a, bMeans within a sub-column that do not share a common superscript are significantly different (P < 0.05). 

Abbreviations: SI, Seedor index; RI, Robusticity index; BW, body weight at dissection; DDB, dry defatted bone weight; AP, ash percentage. 

D6 pi equates to d19 of age 
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Table 2. 8 Effects of line and infection dose and their interaction on tibia and femur length, width, breaking strength, dry defatted bone and ash, expressed relative to body 

weight (BW), and ash percentage, weight/length (seedor) index and robusticity index of broiler chickens of either a fast or a slow-growing line, at d13 post-infection (pi) 

with E. maxima. Broilers were orally inoculated with 0 (Control) 2500 (Low) or 7000 (High) sporulated oocysts of E. maxima on d13 of age. 

  
Tibia   Femur 

 

Length/

BW 

(cm/g) 

Width/ 

BW 

(cm/g) 

Breaking 

strength/ 

BW (N/g) 

DDB/ 

BW 

(g/g) 

Ash/BW 

(g/g) 

AP 

(%) 

SI 

(mg/mm) 

RI 

(mm/mg) 
 

Length

/BW 

(cm/g) 

Width/ 

BW 

(cm/g) 

Breaking 

strength/ 

BW (N/g) 

DDB/

BW 

(g/g) 

Ash/BW 

(g/g) 

AP 

(%) 

SI 

(mg/mm) 

RI 

(mm/mg) 

Line                  
 Slow 71.2 4.83 191 2.55 1.15 44.9 105 4.16  52.9 8.04 175 1.88 0.821 43.8 99.6 3.47 

 Fast 52.6 3.83 194 2.40 1.08 45.1 123 3.98  39.8 6.25 152 1.72 0.750 43.7 119 3.34 

 SEM 0.58 0.079 7.2 0.042 0.019 0.21 2.4 0.028  0.50 0.152 6.4 0.033 0.0118 0.42 2.02 0.022 

Dose                  

 Control 59.6b 4.24 215a 2.52 1.15a 45.8a 121a 4.05  43.9b 6.70b 168 1.80 0.809a 45.1a 113 3.39 

 Low 63.2a 4.44 189ab 2.53 1.13ab 44.7b 115ab 4.03  47.3a 7.42a 162 1.86 0.794ab 42.7b 107 3.40 

 High 62.9a 4.31 174b 2.37 1.05b 44.4b 106b 4.12  47.9a 7.33ab 160 1.74 0.754b 43.4b 107 3.42 

 SEM 0.71 0.097 8.8 0.051 0.024 0.26 3.0 0.034  0.62 0.186 7.8 0.041 0.1450 0.51 2.5 0.027 

Line  Dose                  

Slow 

Control 68.4 4.72 210 2.62 1.19 45.4 111 4.14  49.9 7.59 180 1.89 0.858 45.5 103 3.44 

Low 72.9 5.06 200 2.64 1.19 45.2 106 4.12  54.1 8.46 186 1.98 0.846 42.9 99.8 3.45 

High 72.4 4.72 164 2.38 1.05 44.1 97.4 4.22  54.6 8.08 160 1.78 0.760 42.9 95.8 3.52 

Fast 

Control 50.8 3.77 221 2.41 1.18 46.2 131 3.97  38 5.81 157 1.70 0.760 44.8 124 3.34 

Low 53.6 3.82 179 2.42 1.07 44.3 124 3.94  40.5 6.39 139 1.76 0.743 42.4 115 3.35 

High 53.4 3.90 183 2.36 1.05 44.7 115 4.02  40.8 6.55 161 1.71 0.749 43.9 118 3.33 

 SEM 1.00 0.137 12.4 0.072 0.032 0.37 4.2 0.059  0.87 0.263 10.9 0.058 0.0205 0.72 3.5 0.038 

Source Probabilities 

Line <0.001 <0.001 0.764 0.014 0.021 0.593 <0.001 <0.001  <0.001 <0.001 0.014 0.001 <0.001 0.925 <0.001 <0.001 

Dose 0.001 0.351 0.007 0.062 0.011 0.001 0.003 0.165  <0.001 0.017 0.748 0.109 0.030 0.006 0.115 0.608 

Line x Dose 0.703  0.281  0.237  0.309 0.182 0.052 0.945 0.950  0.504 0.586 0.104 0.398 0.052 0.437  0.557 0.396  

a, bMeans within a sub-column that do not share a common superscript are significantly different (P < 0.05). 

Abbreviations: SI, Seedor index; RI, Robusticity index; BW, body weight at dissection; DDB, dry defatted bone weight; AP, ash percentage. 

D13 pi equates to d26 of age 
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2.5 Discussion 

The hypothesis of the present study that resistance and tolerance to Eimeria maxima infection 

would be affected by genetic selection for faster growth rate in modern broiler lines was based 

on the prioritised allocation of nutrient resources during periods of scarcity (Kyriazakis and 

Houdijk, 2006). Normally, broilers exposed to parasites like Eimeria species for the first time 

experience anorexia (Kyriazakis, 2014) which limit nutrient availability (Preston-Mafham and 

Sykes, 1970), and are expected to prioritise the acquisition of immunity over growth functions 

in allocating scarce nutrient resources. However, genetic selection for growth rate may cause 

the diversion of scarce resources towards growth functions at the expense of immunity and 

other vital functions (Kyriazakis and Houdijk, 2006) for selected birds. To that end, two 

broiler lines differing more than 25% in their growth rates were experimentally infected with 

E. maxima to limit availability (Blake and Tomley, 2014) and utilisation (Allen and Fetterer, 

2002b) of nutrients. Under the hypothesis test herein, the fast-growing line would be expected 

to divert fewer nutrient resources towards health functions and suffer more the detrimental 

effects of infection as a consequence only if it exhibits a higher level of anorexia in 

comparison to the slow-growing line. In which case, increasing pathogen doses would lead to 

a higher degree of resource limitation for the fast than the slow line broilers.  

In actual sense, it is doubtful that monospecific coccidian infections would occur in broiler 

production systems. Nevertheless, E. maxima infection was used in the present study as a 

model to test the above hypothesis because it is one of the commonly encountered coccidia 

spp, has widespread effects across the intestinal tract and is the most pathogenic 

malabsorptive coccidia spp limiting nutrient absorption (Cervantes, 2002). The magnitude of 

its effects was judged by the degree of tissue damage and inflammation (Lillehoj and Trout, 

1996; Williams, 2005a). Reductions in growth performance typically occur around the period 

of maximum parasite schizogony and gametogony (Hein, 1968), which coincides with 

shortening of the villi and enlargement of crypts with a decrease in villi height to crypt depth 

ratio (VCR) (Kettunen et al., 2001).  

In the present study, variation in parasite replication due to differential resistance between F 

and S lines was assessed using quantitative real-time PCR to measure parasite genome copy 

number in tissues surrounding Meckel’s diverticulum. The method supported higher 

throughput analysis and allowed the broilers to be maintained under conditions similar to that 

of commercial broiler farms throughout the study. The approach also minimised the impact of 

variation related to the temporal manner of oocyst excretion (Blake et al., 2006). Quantitative 
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real-time PCR has previously been used to define variation in parasite replication in chicken 

lines with a known polymorphism in their resistance to E. maxima, revealing the most 

significant differences five and six days after infection. In this study, predicted parasite copy 

number at d6pi in line F and S birds was similar, disproving the hypothesis that a fast-

growing line may show reduced resistance. Moreover, there were no significant differences 

observed amongst birds from lines S and F that received the L or H doses: likely illustrating 

the crowding effect on parasite replication (i.e. parasite fecundity reduces after a ‘threshold’ 

has been reached) (Williams, 2001).  

Williams (2001) confirmed the possibility that crowding effects may occur during E. maxima 

infection in broilers. A basic generic model had predicted the occurrence of crowding effect 

during E. maxima infection for broiler chickens dosed at 1000 to 10000 sporulated oocysts 

(Johnston et al., 2001). The model simulated the reduced availability of host cells as the cause 

of the crowding effect. However, other factors such as immune activities i.e. primary immune 

response (Rose et al., 1984; Elaine Rose et al., 1985; Rose et al., 1992) and parasite-derived 

inhibitory toxins have been implicated as causes of reduced fecundity with a resultant 

crowding effect during Eimeria infections (Brackett and Bliznick, 1952; Smith and Hayday, 

2000).  

In the current study, infection reduced the growth performance of broilers from both F and S 

lines, but the focus was on whether the degree of reduction was higher for the faster-growing 

broiler line. During the pre-patent and recovery periods of infection, the degree of effect on 

growth performance for control and infected birds was similar in each line. This implies that 

there was no capacity for compensatory growth for infected birds within the duration of this 

study and agrees with previous findings (Gabriel et al., 2006). However, during the acute 

phase (d4 - 8 pi), ADG and ADFI were significantly reduced for infected than control birds, 

though the degree did not differ in magnitude between lines. The FCR of infected birds was 

generally impaired, but the values implied a better feed utilisation for the F than the S line 

during the acute phase of infection. The observed reductions in performance during the acute 

stage of infection coupled with damage to the gastrointestinal mucosa of the duodenum and 

jejunum at d6 pi may account for the poor FCR over the acute period of infection. Indeed, 

reduction of absorptive area and costs of repair of damaged tissues reduce the efficiency of 

feed digestion and its utilisation by the host (Persia et al., 2006; Sandberg et al., 2007). The 

pathological effects of infection persisted at d13 pi as birds displayed increased crypt depth 

and reduced VCR at both intestinal sites.  
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On the aspect of intestinal lesions, severity was the same for the infected fast- and slow-

growing broilers in this study based on the lesion score analysis. However, contrary to a 

general notion that E. maxima infects the jejunum (Cervantes, 2002), there was a spread of 

lesions to the duodenum and ileum sections of the small intestine in this study although scores 

for the jejunum were highest. This uncovers the potentials for a wider sphere of intestinal 

damage, which could as well mean a more significant effect on the absorptive capacity for 

young broilers infected with E. maxima. Also, although it is argued that evaluating gross 

lesions employed herein can underestimate the magnitude of E. maxima infection in broilers 

(Idris et al., 1997a), the results presented herein are consistent with the observed levels of 

parasite replication showing no difference between the fast and the slow-growing broilers 

irrespective of dose. 

A marked reduction in plasma carotenoids level was observed during the acute phase of 

infection, which is characteristic of coccidian infections affecting the proximal intestine 

(Allen, 1992; Zhu et al., 2000; Hernández-Velasco et al., 2014). Similar reductions were 

observed for Vit E in previous studies (Allen and Fetterer, 2002c; Allen and Fetterer, 2002b). 

However, the interaction between line and dose on plasma Vit E levels at the recovery phase 

in this study, such that F compared to S birds inoculated with L dose had relatively higher 

levels, supports an improved gut absorptive capacity for the F birds (Tallentire et al., 2016). 

The reduction in plasma concentration of the aforementioned metabolites are attributed to 

malabsorption caused by the damage to the gastrointestinal mucosa (Allen and Fetterer, 

2002c; Allen and Fetterer, 2002b), leading to defective fat absorption (Sharma and Fernando, 

1975; Adams et al., 1996a), and to oxidation by reactive oxygen species (Allen, 1997b). In 

the present study, these effects persisted to d13 pi for carotenoids compared to the effects on 

Vit A, which may have increased in concentration as a result of its release by the liver 

(Harrison, 2005). The significantly elevated level of NO metabolites at d6 pi was expected in 

Eimeria infections. An upregulation of NO production, predominantly from macrophages 

upon stimulation by pro-inflammatory cytokines, is commonly observed in the acute phase of 

Eimeria infection with their level depending on the severity of the infection (Allen, 1997b; 

Allen, 1997a; Sild and Hõrak, 2009). NO metabolites facilitate parasite killing (Lillehoj and 

Li, 2004), but their excessive production contributes to the pathology of E. maxima (Allen 

and Fetterer, 2002b) infections due to oxidative damage. Previous studies showed that their 

concentration is negatively correlated with ADG and carotenoid concentration at d6 pi (Zhu et 

al., 2000). 
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A significant problem associated with selection for increased growth rate in modern broilers is 

skeletal disorders caused by reduced bone mineralisation (Angel, 2007). Previous studies 

established a strong correlation between growth-rate / live-weight and lameness, which is 

traceable to altered body conformation from the rapid growth of pectoral (breast) muscle 

displacing the centre of gravity cranially, and the relatively short legs in modern broilers 

(Kestin et al., 2001; Corr et al., 2003b). Also, studies using E. acervulina revealed a reduction 

in calcium (Ca) and mineral absorption and retention during the recovery phase, depending on 

the severity of infection (Turk, 1973; Takhar and Farrell, 1979). E. acervulina-infected starter 

chicks (i.e. infected at d2 - 8) exhibited reduced bone ash, bone Ca content, or Ca:P ratio 

(Giraldo et al., 1987; Ward et al., 1990; Watson et al., 2005). Furthermore, it was reported 

that a combined infection of day-old chicks with E. acervulina and E. tenella via seeded litter 

led to an adverse effect on bone breaking strength (BS) by d21 of age (Shaw et al., 2011). 

However, the BS data in Shaw et al. (2011) were not adjusted for the reduction in broilers’ 

BW following infection, and the timing of effects, touching parasite cycle, was unknown as a 

natural infection model was utilised. Infections with either E. maxima or E. acervulina are 

known to reduce bone mineral content at d6 pi from a recent study (Fetterer et al., 2013), but 

their effects at later time points were not examined. The present study appears to be the first 

to investigate effects on bone mineralisation at the acute (d6 pi) and recovery (d13 pi) time 

points over the course of E. maxima infection in broilers.  

The results presented herein revealed that E.maxima-induced penalties on long bone 

mineralisation persisted across time points, were more pronounced during the recovery phase, 

and that the femur was affected earlier than the tibia. The differential effects on femur and 

tibia were in line with the different rate of mineralisation reported for these bones in growing 

broilers (Applegate and Lilburn, 2002). Furthermore, the significantly impaired tibia and 

femur mineralisation by d13 pi meant that upon recovering from a limitation of nutrient 

resources as a result of coccidiosis, bone development lags behind tissue accretion. This can 

rightly be interpreted to mean the addition of extra pressure on the under-developed skeletal 

framework or bone quality of modern fast-growing broilers following recovery from 

malabsorptive Eimeria infections.   

Regarding long bone linear growth, the slow-growing line had longer, wider and denser tibias 

and femurs, which yielded more dry weight and ash weight across the two sample points, 

apart from femur ash weight which was initially similar between the two lines.  These 

changes likely reflect the influence of the selection criteria of the maternal lines of the fast-

growing broilers and the effect they exert on body conformation traits, including breast 
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muscle development (Corr et al., 2003a). On the other hand, tibia and femur ash percentage 

were similar amongst the two genetic lines suggesting that they had similar levels of 

hydroxyapatite formation and bone maturation over the grower phase. It also indicates that 

incorporation of markers in modern schemes can potentially eliminate the impact of growth 

rate on bone ash percentage and they have been shown to exhibit high heritability (De Verdal 

et al., 2013). Despite the lack of differences in bone ash percentage between lines, femur 

strength, which is a marker of mineralisation was higher for the slow- than the fast-growing 

line at d26 of age. This was expected because the more massive breast muscle with the 

corresponding higher BW and ADG imposed by the forward shift of the centre of gravity in 

fast-growing broiler lines (Corr et al., 2003b), directly challenges the integrity of femur. 

Therefore, the quality of tibia and femur should be assessed separately in genetic schemes 

aiming at improving leg health 

Over the post-infection period, the two lines differed by 30% in their final body weight at d26 

of age (d13 pi) while they differed by 7% in their FCR, according to expectations. However, 

contrary to the hypothesis of the present study, the impact of infection, independent of dose 

magnitude, was similar between lines, apart from the feed efficiency of the S differing from 

the F line. A recent review (Tallentire et al., 2016) summarising effects of selection for 

performance on the digestive physiology of broilers, stated that selection for growth rate has 

reduced the size of the gastrointestinal tract (GIT), but is accompanied by increased surface 

area due to greater intestinal villi size. Although the present study did not assess the relative 

size of GIT, when villi height was expressed relative to BW, F line birds had shorter villi than 

S line birds. This finding, coupled with the lower FCR of F line birds, suggests that they could 

absorb nutrients more efficiently, potentially by differential expression of nutrient transporters 

as there is considerable variability among different lines of chicken on the level of mRNA 

expression of nutrient transporters in the small intestine (Gilbert et al., 2007). Furthermore, in 

the presence of infection, a lower impact on FCR in F line birds than S line birds could be 

attributed to a proportionally smaller GIT and the concomitant lower energetic and nutrient 

costs which would accompany the repair of damaged intestinal tissue (Sandberg et al., 2007). 

In the current study, although F and S broilers originated from the same paternal lines, bred 

under identical husbandry conditions to reduce factors of variation, the observed lack of 

difference between lines in relation to resistance to infection may be attributed to certain 

factors. It is believed that less robust phenotypes with altered immune functions and less 

resistance and tolerance to infection evolved from single trait productivity inclined selection 

in earlier genetic schemes, which led to unwanted consequences for traits that were not 
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selected for (Yunis et al., 2000; Havenstein et al., 2003; Van der Most et al., 2011; Hocking, 

2014). This is why modern poultry industry employs multi-trait selection schemes 

encompassing functional traits in the selection programmes (Hocking, 2014) which allows 

improvement in performance alongside health-related traits as part of a balanced breeding 

programme (Kapell et al., 2012b). This probably is linked to previous finding that selection 

for immune functions is possible without compromising growth (Van der Most et al., 2011), 

and may have been the reason as to why selection for growth rate did not affect the outcomes 

of the present study in relation to the resistance and ADG and ADFI when comparing these 

two genetic lines. 

In summary, the focus of this study was not to look at immune pathways, but at the 

impact of a given pathogen on resistance and tolerance, and by proxy to account for their 

immunocompetence. Faster growth rates in multi-trait selection schemes did not lead to 

reduced resistance or tolerance. Contrary to the hypothesis tested, FCR was better for the F 

line in the face of E. maxima infection. Ross Ranger is a relatively new genotype destined for 

slow-growing broiler markets, and its nutritional specifications are not different from Ross 

308 (Aviagen personal communication), albeit they are expected to be lower due to the slower 

growth rate. Pathogen-induced anorexia may be sensitive to dietary nutrient adequacy, and 

this has implications for the differential response of fast vs slow-growing genotypes 

(Kyriazakis, 2010). Future studies should look into the differential effects of coccidiosis in 

lines differing in their efficiency of feed utilisation. The subsequent chapters of this thesis 

examined targeted nutritional modulations to ameliorate the consequences of E. maxima 

infection in the fast-growing line, especially those affecting the long bone quality. 
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Chapter 3: Effects of vitamin D source and supply level on vitamin D status, 

bone development, performance and intestinal morphology of coccidia-

infected broilers 

3.1 Summary 

Broiler coccidiosis impairs fat-soluble vitamin status and long bone mineralisation [Chapter 

2]. The hypothesis that broilers infected with coccidiosis would benefit from increased dietary 

supplementation with vitamin D (VitD) or with 25-hydroxycholecalciferol (OHD) instead of 

the conventional cholecalciferol (D3) was tested in a 2 2 2 factorial experiment. A total of 

336 male Ross 308 (fast-growing) chicks were randomly assigned to diets with low (L) or 

high (H) VitD levels (1000 vs 4000 IU/kg) supplemented with either D3 or OHD. At d11 of 

age, birds were orally inoculated with water (control; C) or 7000 sporulated Eimeria maxima 

oocysts (infected; I). Each treatment group consisted of 6 replicate pens with 7 birds/pen. Pen 

performance was calculated over 14 days post-infection (pi) and for the early (d1 – 6 pi), 

acute (d7 – 10 pi) and recovery (d11 – 14 pi) periods pi. At the end of each period (d6, 10 and 

14 pi), 6 birds per treatment combination were dissected to evaluate alterations in 

histomorphometric features, long bone quality, as well as levels of plasma OHD, Calcium 

(Ca) and Phosphorus (P). Parasite replication and gross lesions due to E. maxima infection 

were assessed at d6 pi. Performance, bone mineralisation and plasma OHD levels were 

significantly reduced during infection (P < 0.05). Offering L diets compromised feed 

efficiency pi, reduced femur breaking strength (BS) and plasma P levels at d10 pi in I birds. H 

diets or diets with OHD raised plasma OHD, improved performance and aspects of bone 

mineralisation. There was a significant 3-way interaction (P < 0.05) between VitD source, 

supply level and infection status on tibia ash weight in proportion to BW (ash/BW) at d14 pi; 

I compared to C broilers had significantly lower (P < 0.05) values only amongst those 

receiving the LD3 and HOHD treatment combinations. VitD level interacted with infection 

status on FCR (P < 0.05) calculated over the period of infection (d1 – 14 pi) such that I 

compared to C birds showed inferior FCR, which was more pronounced amongst broilers 

receiving the L than the H diets. VitD level and infection status interacted (P < 0.05) similarly 

for femur BS at d6 pi and plasma P at d10 pi; I compared to C birds receiving L diets had 

significantly lower value whilst H-fed I and C birds had similar values. Furthermore, VitD 

source and infection status interacted for plasma Ca levels (P < 0.05) at d10 pi such that 

values were higher in I than C birds receiving OHD diets but similar amongst D3-fed I and C 

broilers. As expected, VitD level and source interacted for OHD status (P < 0.05) across time 

points with birds receiving the high OHD diets having the highest values consistently. 
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Contrastingly, offering H diets or diets with OHD resulted in higher parasite loads (P < 0.05) 

at the acute phase of infection, which was accompanied by reduced jejunal villi height at d10 

pi and significant atrophy in small intestine morphology. In conclusion, diets with 4000 IU/kg 

content or OHD improved broiler performance and bone mineralisation, irrespective of 

infection status. Diets with 4000 IU/kg VitD level further improved performance and 

mineralisation in the presence of coccidial infection. The positive correlation which appears to 

exist between increased VitD activity and higher parasite burden warrants further 

investigation. 

3.2 Introduction  

In broiler chickens, coccidia infections impair absorption and utilisation of fat-soluble 

vitamins (Allen and Fetterer, 2002a; Jafari et al., 2012a) [Chapter 2] alongside other vital 

nutrients (reviewed in chapter 1). As a consequence, coccidiosis impairs bone growth and 

mineralisation (Watkins et al., 1989; Watson et al., 2005) [Chapter 2]. Malabsorptive coccidia 

species affecting broilers include Eimeria acervulina, E. maxima E. mitis and E. praecox 

(Blake and Tomley, 2014), but E. maxima is considered the most pathogenic and infects the 

largest region of the intestinal tract amongst these three species (Cervantes, 2002). Chapter 2 

of this thesis suggests that E. maxima infection may impair the VitD status of growing 

broilers because other fat-soluble vitamins status (A and E), as well as bone mineralisation, 

were impaired in infected birds. According to previous studies, impaired digestibility and 

malabsorption of fat following coccidia infection may be linked to the lowered pH (< 5.0) of 

intestinal lumen  (Russell and Ruff, 1978) which retards actions of pancreatic carboxyl ester 

hydroxylases responsible for hydrolysis of cholesterol and fat-soluble vitamins (Lombardo et 

al., 1980; Mathias et al., 1981). Fat malabsorption may also arise from qualitative changes to 

the absorptive surface due to villous atrophy as trapped globules of fat were seen in 

parasitised villous epithelial cells with a concomitant high fat concentration in voided excreta 

confirming impaired absorption (Sharma and Fernando, 1975; Allen, 1987).  

Broiler diets especially under intensive management systems (usually no exposure to 

sunlight) needs to be fortified with VitD, and for many years cholecalciferol (D3) has been 

the conventional source. However, studies have shown that replacing D3 with OHD in diets 

can amplify VitD effects for broilers (Fritts and Waldroup, 2003; Fritts et al., 2004; Fritts and 

Waldroup, 2005). A possible reason for this is that OHD absorption, compared to D3, is less 

fat dependent and approximately 1.5 times faster (Maislos et al., 1981). This implies that 

OHD may be the preferred VitD source during malabsorptive conditions such as coccidia 
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infections. Moreso, the fat independent absorption of OHD has been scientifically proven, as 

oral administration of OHD was employed to successfully treat osteomalacia in humans 

suffering from steatorrhea (Wagonfeld et al., 1976; Compston and Thompson, 1977; Reed et 

al., 1980). Other D3 metabolites such as 1,25-dihydroxycholecalciferol (1,25D3) (Rennie et 

al., 1993) and especially those with hydroxyl group in 1-C position (Honma et al., 1983; 

Edwards, 1990) do have higher efficacy to mediate VitD effects compared to D3 (Edwards, 

1989; Morris et al., 2015).  

Given that coccidian infections impair fat-soluble vitamin status and bone mineralisation in 

broilers (chapter 2), this study aimed to investigate dietary modulation of fat-soluble and 

bone-related VitD during coccidia infection. The modulation involved increasing dietary VitD 

supply, supplementing with a more efficiently absorbed metabolite (OHD) of D3, or both, 

during E. maxima infection. It was hypothesised that: 1) VitD status will be impaired in E. 

maxima infected birds. 2) Dietary supplementation with OHD will be more efficient than D3 

in improving VitD status and bone mineralisation due to its higher metabolic potency; the 

effects will be more pronounced in infected broilers. 3) Improved VitD status may mediate 

improvements in ADG and FCR due to the reduction of the mucosal pro-inflammatory 

response which will be accompanied by alterations in gut morphology, and 4) Improved VitD 

status may impact positively on broiler resistance to coccidian infection as indicated by 

reduced parasite replication.  

3.3 Materials and Methods 

3.3.1 Birds, Husbandry and Diets 

All procedures were conducted under the UK Animals (Scientific Procedures) Act 1986 and EU 

Directive 2010/63/EU for animal experiments after obtaining the Home Office authorisation 

(P441ADF04). A total of 336 male day-old Ross 308 chicks were raised from d1 until 26 days old 

at the Newcastle University Cockle Park farm. Birds originating from parent flock subjected to 

similar husbandry were obtained from a local hatchery. Unlike chapter 2, the birds in this study and 

the experiments reported in chapters 4 and 5 of this thesis, were raised in a single round and housed 

in 48 rectangular 1.4 m x 0.6 m (0.84 m2) pens arranged in a windowless, thermostatically 

controlled room. The pens were equipped with tube feeders and bell-drinkers and arranged such 

that the treatments were allocated uniformly to represent the different sides of the room in the 

various experiments. Wood shavings were used as litter in the pens to a depth of 5cm. Birds were 

offered ad libitum access to water as well as a starter (d0 – 10) and grower (d11 – 26) diets (Table 

3.1). Routine husbandry procedures were as described in section 2.3.1 of chapter 2.  
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The diets were manufactured according to Aviagen nutrition specifications (Aviagen, 2014a) but 

with altered VitD content. Two sources of VitD (D3 and OHD) supplemented at two levels 

(low(L); 1000 and high(H); 4000 IU/kg of feed) were added to the diets. Hence, four different 

dietary treatments: LD3 (low level of D3; 1000 IU/kg), HD3 (high level of D3; 4000 IU/kg), 

LOHD (low level of OHD; 1000 IU/kg), HOHD (high level of OHD; 4000 IU/kg) were 

formulated. The choice of 1000 and 4000 IU/kg of feed as levels of VitD supply was jointly 

influenced by the commonly fed levels in the industry today ranging from 2000 to 4000 IU/kg 

for broilers (Fritts et al., 2004), and the EFSA maximum authorised level of 5000 IU/kg 

(EFSA, 2012). Birds were randomly assigned to one of four diets upon arrival. The starter diet 

was offered in crumbled form and the grower and finisher diets in pelleted form.  

3.3.2 Experimental design and inoculations 

The experiment was a 2 × 2 × 2 factorial design with VitD level, source and infection status as 

the independent variables. Day-old birds were randomly assigned to treatment groups 

receiving 1000 or 4000 IU/kg level of dietary VitD supplementation, using D3 or OHD as 

sources of VitD activity, and two levels of infection (non-infected control group (C) vs 

infected group (I)). At d11 of age (d0 post-infection, pi) birds were orally inoculated with a 

single 0.5 ml oral dose of water (C) or 7000 (I) of sporulated E. maxima oocysts of the 

Weybridge strain using 1 ml syringes. The infection dose was selected based on previous 

experiments and aimed at avoiding severe clinical disease and prepared using a previously 

described method (Pastor-Fernández et al., 2018). Each treatment group consisted of 6 

replicate pens with an initial stocking density of 7 birds/pen.  

3.3.3 Sampling   

Bird individual weight and pen feed intake were measured pi; at d0, d6, d10 and d14 pi. One 

bird per pen with a BW close to the pen average was selected at weighing on d6, d10 and d14 

pi. The selected sampling days roughly represents the end of the early, acute and recovery 

periods, respectively, for broiler performance during E. maxima infection [chapter 2]. After 

weighing, the selected birds were blood-sampled via the wing vein and subsequently euthanised 

with a lethal injection of sodium pentobarbitone (Euthatal®, Merial Harlow, United Kingdom). 

Blood was collected in 5 ml sodium heparin plasma tubes (BD Vacutainer, SST II Advance Plus 

Blood Collection Tubes - BD, Plymouth, United-Kingdom), then immediately placed on ice and 

centrifuged for 10 mins at 1500 g at 4 °C within 1.5 h after collection. Aliquoted plasma samples 

were stored at -80 °C pending analyses. 
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During necropsy of each selected bird, the gastrointestinal tract was removed, and the duodenum, 

jejunum and ileum were scored for any lesions according to the method described by Johnson and 

Reid (1970). Following lesion scoring of the selected birds at d6 pi, 6 cm of intestinal tissue from 

the immediate region of Meckel's diverticulum, which is the mid-point of the intestinal area 

infected by E. maxima (Long et al., 1976), was excised, opened longitudinally and digesta contents 

were gently removed. Thereafter, 5 cm of excised tissue was submerged in 7 ml bijous, and 1 cm 

proximal to the jejunum in 1.5 ml screw cap microtubes (Thermo Scientific) filled with 

RNAlater® (Life Technologies; Carlsbad, CA, USA). Samples were immediately stored at -80 °C 

pending analyses. Also, three 1 cm segments; one from the duodenal loop, one from mid-

jejunum (midway between Meckel's diverticulum and the end of the duodenal loop), and one 

from mid-ileum (midway between Meckel's diverticulum and the ileocecal junction), were 

sampled from birds dissected on d6, 10 and 14 pi. They were fixed in 10% phosphate-

buffered formalin maintained at a pH of 7.0 for histomorphometric assessment. Following 

intestinal tissue sampling, right femur and tibia were dissected and defleshed using scalpels, and 

stored at -20 °C in airtight individually labelled polythene bags pending evaluation. 

3.3.4. Sample analysis 

Experimental diet 

Feed samples were analysed for VitD3 and OHD contents (see Table 3.2) at the DSM Laboratory 

(Basel, Switzerland) using a previously published method (Jakobsen et al., 2007).  

Morphometric analysis of gut  

Excised, formalin-fixed intestinal sections from the duodenum, jejunum and ileum were 

dehydrated in increasing concentrations (50%, 75%, 95% and 100%) of ethanol followed by 

xylene in a Shandon™ Excelsior™ ES Tissue Processor (Thermo Fisher Scientific Inc., 

Waltham, Massachusetts). Tissues were oriented longitudinally and cross-sectionally before 

being embedded in paraffin wax, and 4 µm of sections were cut using a Leica microtome 

RM2235 (Mannheim, Germany). Slides left to dry overnight, deparaffinised in xylene, 

gradually rehydrated in ethanol (100%, 80%, 70% and 50%) and then rinsed in water. After 

that, slides were immediately stained for 5 mins in hematoxylin, rinsed with water and then 

counterstained in eosin for 3 mins.  

After mounting slides in distyrene plasticiser xylene, they were left to settle and dry for two days 

before scanning with a Leica SCN400 slide scanner (Leica Microsystems, Germany), which has 

SlidePath Gateway Client Viewer 2.0 software version.  Images were viewed to measure 

morphometric parameters of intestinal architecture at 20× magnification. From the stained sections, 
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the villus height (VH) and crypt depths (CD) were determined using ImageScope® software 

(Aperio Technologies, Vista, CA, USA). VH was estimated by measuring the vertical distance 

from the villus tip to the villus-crypt junction level and CD by measuring the vertical distance from 

the villus-crypt junction to the lower limit of the crypt (Figure 3.1). Ten villi with their 

corresponding crypts were measured per section to obtain their estimated lengths (micrometres, 

µm) in duodenal, jejunal and ileal samples of 6 birds per treatment combination. 

Parasite replication 

Quantitative real-time PCR (qPCR). Predicted E. maxima (Reid et al., 2014) and G. 

domesticus (Furlong, 2005) genome sizes were used, and total genomic DNA (gDNA) from 

sporulated E. maxima oocysts and uninfected chicken intestinal tissue was extracted using the 

method of  (Blake et al., 2008). Ten-fold DNA dilution series was created using prescribed 

methods (Blake et al., 2006; Nolan et al., 2015), and other procedures were as described in 

section 2.3.4 of chapter 2. 

Blood metabolites 

Plasma concentrations of Ca and P (mmol/l) were analysed using ABX Horiba Pentra 400 

automatic analyser (Horiba Medical, Irvine, CA, USA) in duplicate according to the 

manufacturer’s instructions. Also, the plasma concentration of OHD (ng/ml) was determined using 

the 25-Hydroxy VitD Direct EIA kit (IDS Diagnostics, Fountain Hills, AZ, USA). 

Bone evaluation 

Bones were thawed at 4oC in a fridge overnight. Following thawing, they were placed at room 

temperature for 1 hour before defleshing of the remaining adhering soft tissues using scalpels. 

Tibia and femur length, and diameter (maximum and minimum) at the centre of the diaphysis were 

measured using digital callipers and recorded. Fresh weight of each bone was measured using an 

analytical balance. Robusticity (Riesenfeld, 1972) and Seedor indices (Seedor et al., 1991) 

were calculated using the formulas in section 2.3.4 of chapter 2. Bone breaking strength (BS) 

was also tested using an Instron testing machine (Instron 3340 Series, Single Column-Bluehill) 

and the method described in section 2.3.4 of chapter 2.  

Following BS evaluation, tibia and femur bones were boiled for 5 minutes in deionised water at 

100 °C to facilitate removal of cartilage caps, were split in two for manual removal of bone 

marrow, and then further hand-broken into smaller bits. Subsequently, bones were placed in 

vessels containing 10 ml of acetone (VWR) and 10 ml of Petroleum ether (VWR) and were 

subjected to fat extraction in a Mars 6 Microwave Assisted Reaction System 6 (CEM, 
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Matthews, USA) with a set temperature of 180 °C for 80 minutes. Fat-extracted bones were 

then placed in an oven at 105 °C for 18 hours, and the dry defatted bone weight was measured 

thereafter. After that, they were placed in a Phoenix CEM ashing microwave furnace (CEM, 

Matthews, USA) at 850 °C for 1.5 hours to obtain the ash weight (g). The above procedure 

was repeated for tibia and femur bones of 6 birds per treatment combination. 

3.3.5 Calculations and statistics 

All statistical analyses were carried out using IBM SPSS Statistics for Windows, Version 

22.0. (Armonk, NY: IBM Corp). For all statistical assessments, the pen was considered the 

experimental unit and all variables were analysed with VitD level, source and infection status 

as main effects and their interactions using general linear model (GLM). Pen performance 

data included average BW pre-infection (d11 of age) and at the end of the experiment (d25 of 

age), as well as average daily feed intake (ADFI; g/d), average daily gain (ADG; g/d), and 

feed conversion ratio (FCR) calculated over the pre-infection (d0 – 11 of age) and post-

infection (pi) periods (d1 – 14 pi). The performance was also measured for specific phases 

that roughly corresponds to the early (d1 – 6 pi), acute (7 – 10 pi) and recovery (d11 – 14 pi) 

periods pi. The Shapiro-Wilk test was used for assessing the normality of the studentized 

residuals and non-normalised data were log-transformed.  

Data generated from birds sampled at d6, 10 and 14pi such as plasma levels of Ca, P and OHD, 

VH, CD and villi height: crypt depth ratio (VCR), qPCR for E. maxima genome copy number 

(parasite replication) at d6 pi, and all bone-derived measurements were also analysed using GLM 

and the aforementioned factors. When significant differences were detected, treatment means were 

separated and compared by the Tukey’s multiple comparison tests. For assessing the normality of 

the studentized residuals, the Shapiro-Wilk test was used. Significance was determined at P < 0.05, 

and a tendency was defined as 0.5 < P < 0.1. Intestinal lesion score was evaluated as described in 

section 2.3.5 of chapter 2.
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Table 3. 1 Ingredients and analysed chemical composition of the starter (d0–10) and grower (d11–25) diets 

offered to broiler chickens.  

Item Starter Grower  

Ingredient (%)   

   

Wheat 47.9 51.6 

Corn 10.0 10.0 

Soybean meal (48 % CP) 32.0 25.3 

Soybean full fat  4.0 7.0 

Soy crude oil 1.84 2.32 

Dicalcium phosphate 1.82 1.60 

Limestone 0.64 0.67 

Vitamin and mineral premix 0.40 0.40 

DL methionine 0.33 0.30 

L-Lysine 0.27 0.25 

Sodium bicarbonate (27 %) 0.21 0.20 

Sodium chloride (39 %) 0.19 0.20 

L-Threonine 0.14 0.12 

Choline chloride (60 %) 0.05 0.05 

L-Valine 0.03 0.02 

   

Nutrient composition (%) * 

 

ME (kcal/kg) (calculated) 3,000 3,100 

Crude protein  23.1 21.4 

Crude fat 5.03  4.87 

Crude fibre 2.39 2.13 

Ash 5.43 4.83 

Calcium 1.03 0.80 

Phosphorus 0.74 0.62 

Available phosphorus (calculated) 0.48 0.44 

Sodium 0.18 0.15 

Manganese (mg/kg) 218.2  168.8 

The nutrient composition was in accordance with Aviagen nutrient specifications (Aviagen, 2014a) apart from 

the VitD source and level of supply. 

*Analysed nutrient composition (%) unless otherwise stated.  
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Table 3. 2 Analysed D3 and OHD contents (IU/kg of feed) of the dietary treatment: low level of D3 (LD3; 1000 

IU/kg ), low level of OHD (LOHD; 1000 IU/kg D), high level of D3 (HD3; 4000 IU/kg) and high level of OHD 

(HOHD; 4000 IU/kg). 

VitD Level Starter Grower 

D3  
Low  1560 1020 

High 4910 4520 

OHD  
Low  844 652 

High 2828 2720 

Abbreviations: D3, cholecalciferol; OHD, 25-hydroxycholecalciferol 
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Figure 3. 1 Measurements for villi height (A), crypt depth (B) and serosa thickness (C) from duodenal section 
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3.4 Results 

3.4.1 Bird health and performance variables 

No bird was euthanised due to health-related disorders, and coccidiosis caused anorexia and 

reduced weight gain according to expectations. The effects of VitD source, level of supply and 

infection status on performance: BW, ADG, ADFI, and FCR pre- and post-infection are 

presented in Tables 3.3 and 3.4. There were no 3-way interactions between the experimental 

factors for performance variables pre- or post-infection. 

Pre- and post-infection periods    

No significant difference between treatment groups was detected for chick BW at placement 

(average 43.5 g; SEM = 0.41; P > 0.1). Performance data analysed over d0 to 11 of age show 

that there was no effect of VitD source on BW, ADG, ADFI and FCR pre-infection. However, 

dietary VitD level significantly affected (P < 0.05) ADG and ADFI pre-infection, as well as 

the BW at the end of the pre-infection period at d11 of age (d0 pi); birds receiving the H 

compared to the L diets exhibited superior performance. 

On the other hand, growth performance analysed over the pi period (d1 – 14 pi) indicate that 

VitD level significantly interacted with infection for FCR (P < 0.05) pi, being poorest 

amongst L-fed infected birds (Figure 3.2). There were no other significant 2-way interactions 

between VitD level, VitD source and infection status for performance variables. As expected, 

infection significantly affected (P < 0.001) all performance variables measured over the 

infection period; ADG, ADFI, FCR and final BW at d14 pi.  

There was a main effect of VitD level on final BW and FCR, and source on final BW, ADG 

and FCR. Birds on the H diets had significantly higher BW (P < 0.05) and lower FCR (P < 

0.001) than birds on the L diets. Birds receiving OHD achieved higher BW (P < 0.05) and 

ADG (P < 0.01) and lower FCR (P < 0.05) than birds receiving D3. 

Early, acute and recovery phases of infection 

The main effects of VitD source, level of supply and infection status on ADG, ADFI, and 

FCR during an estimated early, acute and recovery phases of infection are presented in Table 

3.4. Infection penalised (P < 0.001) ADG, ADFI and FCR over the early and acute phases of 

infection whilst there was no effect of infection on these variables during the recovery period. 

ADG, ADFI and FCR were not affected by VitD level or source during the recovery phase.  
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There was an effect of VitD source only on ADG during the acute phase and an effect of VitD 

level on ADG (acute) and FCR (early and acute) pi. Birds offered OHD achieved higher ADG 

(P < 0.05) than birds offered D3 diets. Birds on H diets had higher ADG (P < 0.05) and 

lowered FCR (P < 0.05) than birds receiving L diets. 

3.4.2 Plasma Calcium, Phosphorus and OHD  

The main effects of VitD level, VitD source and infection status on plasma levels of Ca, P and 

OHD over the timepoints pi are presented in Table 3.5, and all significant interactions are 

presented in Figures 3.3 and 3.4. There were no significant 3-way interactions between the 

experimental factors for plasma levels of Ca, P and OHD.  

Calcium and Phosphorus status 

VitD level and infection interacted (P < 0.05) on P level whilst VitD source and infection 

interacted on Ca status at d10 pi. To summarise, I compared to C birds had lower plasma P 

levels amongst L-fed broilers but similar P levels amongst H-fed broilers (Figure 3.3A). Also, 

plasma Ca levels were higher in I than C birds amongst OHD-fed but similar amongst D3-fed 

broilers (Figure 3.3B). 

Infection significantly reduced (P < 0.001) levels of Ca and P only at d6 pi, which is the day 

of peak replication for E. maxima in infected broilers. VitD supply level affected (P < 0.05) 

plasma Ca level at d6 and 10 pi such that broilers on H compared to L diets had higher levels. 

Furthermore, VitD source had no significant effect (P > 0.05) on Ca and P levels at d6, 10 

and 14pi (Table 3.5). 

OHD status 

VitD level and source interacted (P < 0.001) for plasma OHD levels at d10 pi. Broilers receiving 

the HD3 and LOHD diets had statistically similar plasma OHD levels, which were significantly 

higher (P < 0.001) than the levels in LD3 and lower (P < 0.001) than the levels in the  HOHD-fed 

broilers (Figure 3.4A). Also, level and infection interacted for plasma OHD levels (P < 0.05) at 

d10 pi, being more significantly reduced (P < 0.05) for the control L than H birds compared to 

their infected L- and H-fed counterparts (Figure 3.4B). Furthermore, plasma levels of OHD were 

significantly affected (P < 0.05) at d6, 10 and 14 pi by VitD level, source of VitD supply and 

infection; being significantly higher at all time points in birds on OHD than birds on D3 treatments, 

H than L VitD supply level, and in C than I birds respectively.  
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3.4.3 Histology and lesion scores 

Histology 

The main effects of VitD level, VitD source and infection on duodenum, jejunum and ileum 

are presented in Tables 3.6 – 3.8 respectively and all significant interactions are presented in 

Figures 3.5 – 3.7. There were no significant 3-way interactions between the experimental 

factors for histological measurements in this study. VitD level and source interacted (P  < 

0.01) for jejunal VH at d10 pi and jejunal VCR at d14 pi. Birds receiving D3 compared to 

OHD diets had longer villi (P < 0.05) at the low supply level, but VH remained statistically 

similar (P > 0.05) for birds receiving OHD and D3 diets at the high supply level (Figure 

3.5A). Also, VCR was significantly lower (P < 0.05) for H compared to L D3-fed broilers 

whilst values were statistically similar for H and L OHD-fed broilers (Figure 3.5B). Level and 

infection interacted (P < 0.01) for jejunal VH at d10 pi with significantly longer VH for birds 

offered the L than the H diets amongst the infected birds, and statistically similar VH for L 

and H birds amongst the control birds (Figure 3.6). VitD source and infection interacted for 

ileal VH (P < 0.05) and VCR (P < 0.01) at d6 pi. To summarise, ileal VH and VCR values 

were significantly greater for C than I birds receiving OHD diets, whilst D3-fed C compared 

to I birds had statistically similar VH, and a smaller (though significant) difference in VCR 

compared to the difference in the VCR of their OHD-fed counterparts (Figures 3.7A and 

3.7B, respectively). 

Infection significantly decreased (P < 0.05) VH and VCR, and increased CD of the 

duodenum at d6 and 10 pi. At d14 pi effects persisted only on CD (P < 0.05) and VCR (P < 

0.01). The same direction of effects, on the same days, was observed on histomorphological 

measurements of the jejunum and the ileum, albeit the ileal VCR was significantly affected (P 

< 0.001) only at d6 pi (Table 3.8). 

Lesion score 

No intestinal lesions were detected in C birds (score 0), so they were excluded from the 

regression model. The main effects of vitD level (L = 1.53 vs H = 1.69; SEM = 0.112), VitD 

source (D = 1.56 vs OHD = 1.67; SEM = 0.112), or their interaction, on small intestine 

lesions derived from an average score of the three individual sections was not significant (P > 

0.1) amongst the infected broilers in this study.  



64 
 

3.4.4 Parasite replication 

E. maxima genome copies were not detected in control birds. There was no significant 

interaction (P > 0.05) between VitD level and source for parasite replication at d6 pi, which 

was the only sampling point for this variable in this study and the day of peak parasite 

replication for E. maxima in infected broilers. However, the main effects of level and source of 

VitD supply significantly affected (P < 0.05) parasite replication. OHD compared to D3-fed 

broilers showed higher parasite burdens (11.5 vs 11.1; SEM = 0.08), whilst L compared to H 

level significantly reduced (P < 0.05) parasite burdens (11.6 vs 11.0; SEM = 0.08). 

3.4.5 Bone variables  

The main effects of VitD level, VitD source and infection on bone variables over the 

timepoints pi are presented in Tables 3.9 – 3.11 and all the significant interactions are 

presented in Figures 3.8 and 3.9.   

Linear growth in proportion to BW  

There were no 2- or 3-way interactions between the experimental factors on the length and width 

of femur or tibia expressed in proportion to BW at dissection in the current study. Infection 

increased femur and tibia length and width per BW at d6, 10 and 14 pi, which was an artefact 

of infection due to the significant weight loss. VitD level affected (P < 0.05) tibia and femur 

length per BW at d10 and 14 pi, and femur width per BW at d10 pi; values were lower for the 

H than the L birds. Length and width of tibia or femur were not affected by VitD source. 

Breaking strength in proportion to BW 

Level and infection interacted (P < 0.05) for the femur, but not tibia, BS expressed in 

proportion to BW at d6 pi. Amongst infected birds, femur BS/BW was significantly higher for 

birds receiving the H than the L VitD diets; this was not the case with the control birds, as 

values did not differ between birds receiving H and L diets (Figure 3.8). Furthermore, infected 

birds receiving the H diets had a statistically similar BS/BW as uninfected birds receiving 

either the H or the L diets. 

Infection at d6 and 14 pi, and L diet at d10 pi significantly reduced (P < 0.05) femur BS/BW. 

Tibia BS/BW was significantly affected (P < 0.05) by VitD level at d6 pi and infection at d10 

and 14 pi. Birds receiving H diets, and C birds had higher values compared to birds offered L 

diets and I birds respectively. 
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Weight/length (Seedor) and robusticity indices  

Infection significantly affected Seedor index of both femur and tibia at all time points pi (P < 

0.05). Robusticity index, on the other hand, was significantly affected (P < 0.05) for both 

femur and tibia at d6 and 14 pi but not at d10 pi. VitD level significantly affected (P < 0.05) 

femur Seedor and Robusticity indices at d10 pi but did not affect these variables for tibia. 

Similarly, VitD source significantly affected (P < 0.05) tibia seedor index at d6 pi and 

robusticity index at d14 pi but did not affect these variables for the femur. Other effects were 

not statistically significant (P > 0.05).   

Ash in proportion to BW, and ash percentage 

VitD level, VitD source and infection significantly interacted (P < 0.01) for tibia ash weight 

relative to BW (ash/BW) at d14 pi with I birds on the LD3 treatment displaying the lowest 

values (Figure 3.9). VitD source significantly affected (P < 0.05) tibia ash/BW only at d6 and 

10 pi. The values were significantly higher for birds receiving OHD than D3 diets. The main 

effect of infection significantly reduced (P < 0.001) ash/BW only at d14 pi. There were no 

other statistically significant effects (P > 0.05) of VitD level on tibia ash/BW in this study. 

Infection significantly reduced (P < 0.05) ash percentage at d6, 10 and 14 pi. VitD source 

affected ash percentage only at d10 and 14 pi; birds receiving D3 compared to OHD diets had 

the lower values consistently. Furthermore, H compared to L diets significantly increased (P 

< 0.05) percentage tibia ash at d10 and 14 pi, but not at d6 pi. 
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Table 3. 3 Main effects of level (1000 vs 4000 IU/kg) and source (D3 vs OHD) of vitamin D supply, and Eimeria infection status on chicken 

performance pre-infection (d0-11 days of age) and over the period (d1 - 14) post-infection (pi), body weight at the end of the pre- (d11 of age) and 

post-infection period (d25 of age). Broiler chickens orally inoculated with 0 (Control) or 7000 sporulated E. maxima oocysts (Infected) at d11 post-

hatch (d0 pi). 

    Body weight (g)   
Average daily gain 

(g/d) 
  

Average daily feed 

intake (g/d) 
  Feed conversion ratio 

 Period 
Pre-

infection 

Post-

infection 
 

Pre-

infection 

Post- 

infection 
 

Pre-

infection 

Post- 

infection 
 

Pre-

infection 

Post- 

infection 

 Day 
d11 of age 

(d0pi) 

d25 of age 

(d14pi) 
 

d0-11 of 

age 
d1-14pi  

d0-11 of 

age 
d1-14pi  

d0-11 of 

age 
d1-14pi 

Level                         

 1000 (IU/kg) 434 1570  35.5 80.7  39.4 122  1.11 1.48 

 4000 (IU/kg) 444 1608  36.4 82.4  40.4 122  1.11 1.43 

Source             

 D3 437 1563  35.8 79.9  39.7 121  1.11 1.47 

 OHD 441 1614  36.1 83.1  40.0 123  1.11 1.44 

Infection             

  Control - 1729  - 91.8  - 130  - 1.36 

  Infected - 1448  - 71.2  - 114  - 1.57 

  SEM 3.58 12.8  0.307 0.794  0.319 1.10  0.0001 0.0101 

  Probabilities 

Level 0.041 0.042  0.038 0.128  0.037 0.800  0.225 0.003 

Source 0.501 0.008  0.415 0.007  0.501 0.105  0.059 0.018 

Infection - <0.001  - <0.001   - <0.001  -  <0.001 

Level × Source 0.531 0.348  0.382 0.846  0.351 0.963  0.947 0.297 

Level × Infection - 0.954  - 0.578  - 0.322  - 0.039 

Source × Infection - 0.518  - 0.995  - 0.437  - 0.833 

Level × Source × Infection - 0.711   - 0.883    - 0.851   -  0.966 

SEM: Pooled standard error of the mean. 

See Figure 3.2 for graphical illustration of significant interaction (P < 0.05) between the experimental factors post-infection (pi).  

The period from d1 to 14 pi equates to d12 to 25 of age 
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Figure 3. 2 Interaction between level of vitamin D supply that being low (1000 IU/kg) or high (4000 IU/kg) and 

infection status on feed conversion ratio (FCR) over the course of primary infection (d1-14 post-infection, pi). 

Broiler chickens orally inoculated with 0 (Control) or 7000 sporulated oocysts of E. maxima (Infected) at d11 

post-hatch. 
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Table 3. 4 Main effects of level (1000 vs 4000 IU/kg) and source (D3 vs OHD) of vitamin D supply, and Eimeria infection status on 

chicken performance over the early (d0 - 6), acute (d6 - 10) and recovery (d10 - 14) periods post-infection (pi). Broiler chickens orally 

inoculated with 0 (Control) or 7000 sporulated E. maxima oocysts (Infected) at d11 post-hatch (d0 pi). 

    Average daily gain (g/d)   
Average daily feed intake 

(g/d) 
  Feed conversion ratio 

 Day pi d0-6 d6-10 d10-14  d0-6 d6-10 d10-14  d0-6 d6-10 d10-14 

Level             

 1000 (IU/kg) 64.8 77.9 109  91.5 116 160  1.43 1.55 1.47 

 4000 (IU/kg) 67.2 82.3 108  91.1 117 158  1.37 1.47 1.47 

Source             

  D3 65.5 77.1 106  90.6 113 158  1.40 1.54 1.49 

 OHD 66.5 83.2 110  92 119 159  1.41 1.48 1.45 

Infection             

  Control 76.2 102 107  96.9 134 158  1.27 1.32 1.49 

  Infected 55.8 57.9 110  85.7 97.8 159  1.54 1.70 1.45 

  SEM 0.844 1.53 1.82  1.06 2.00 1.93  0.0139 0.0268 0.017 

  Probabilities 

Level 0.056 0.047 0.638  0.783 0.714 0.506  0.004 0.035 0.934 

Source 0.409 0.008 0.096  0.379 0.068 0.650  0.952 0.075 0.087 

Infection <0.001 <0.001 0.242  <0.001 <0.001 0.716  <0.001 <0.001 0.135 

Level × Source 0.247 0.540 0.362  0.379 0.803 0.586  0.355 0.690 0.110 

Level × Infection 0.531 0.611 0.383  0.441 0.529 0.607  0.436 0.352 0.078 

Source × Infection 0.474 0.606 0.216  0.545 0.650 0.220  0.129 0.272 0.568 

Level × Source × Infection 0.353 0.461 0.653   0.620 0.849 0.566   0.358 0.506 0.997 

SEM: Pooled standard error of the mean.  

The period from d0 to 14 pi equates to d11 to 25 of age 
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Table 3. 5 Main effects of level (1000 vs 4000 IU/kg) and source (D3 vs OHD) of vitamin D supply, and Eimeria infection status on 

chicken plasma Ca and P concentration (mmol/l) and log-transformed plasma levels of OHD (ng/ml) at d6, 10 and 14 post-infection 

(pi). Broiler chickens orally inoculated with 0 (Control) or 7000 sporulated E. maxima oocysts (Infected) at d11 post-hatch (d0 pi) 

    Ca (mmol/l)   P (mmol/l)   Log OHD (ng/ml) 

 Day pi d6 d10 d14  d6 d10 d14  d6 d10 d14 

Level                         

 1000 (IU/kg) 2.56 2.79 2.75  2.05 1.96 1.98  1.51 1.46 1.59 

 4000 (IU/kg) 2.66 2.89 2.77  2.08 2.01 2.05  2.05 1.88 2.1 

Source             

 D3 2.61 2.82 2.74  2.05 1.95 1.97  1.62 1.45 1.67 

 OHD 2.61 2.85 2.79  2.08 2.02 2.06  1.94 1.88 2.02 

Infection             

  Control 2.81 2.81 2.73  2.2 2.01 2.04  1.84 1.94 1.88 

  Infected 2.4 2.87 2.75  1.93 1.97 1.99  1.71 1.39 1.81 

  SEM 0.032 0.034 0.0284  0.0466 0.0459 0.0360  0.0220 0.0230 0.0200 

  Probabilities 

Level  0.040 0.040 0.593  0.730 0.442 0.161  <0.001 <0.001 <0.001 

Source  0.861 0.564 0.185  0.675 0.296 0.090  <0.001 <0.001 <0.001 

Infection  <0.001 0.194 0.109  <0.001 0.512 0.376  <0.001 <0.001 0.019 

Level × Source 0.889 0.205 0.095  0.094 0.279 0.137  <0.001 <0.001 <0.001 

Level × Infection 0.088 0.416 0.625  0.163 0.046 0.742  0.366 0.033 0.448 

Source × Infection 0.34 0.040 0.511  0.287 0.833 0.665  0.253 0.283 0.838 

Level × Source × Infection 0.259 0.877 0.326   0.307 0.521 0.534   0.31 0.571 0.844 

SEM: Pooled standard error of the mean. 

Abbreviations: Ca, Calcium; P, Phosphorus, OHD, 25-hydroxycholecalciferol 

D6, 10 and 14 pi equates to d17, 21 and 25 of age respectively 

See Figure 3.3 and 3.4 for graphical illustration of significant interaction (P < 0.05) between the experimental factors at d10 post-infection (pi). 
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Figure 3. 3 (A) Interaction between source of vitamin D supply (OHD or D3) and infection status on plasma Ca 

concentration (mmol/l) and (B) between level of vitamin D supply that being low (1000 IU/kg) or high (4000 

IU/kg) and infection status on plasma P concentration (mmol/l) at d10 post-infection. Broiler chickens orally 

inoculated with 0 (Control) or 7000 sporulated E. maxima oocysts (Infected) at d11 post-hatch. 
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Figure 3. 4 (A) Interaction between low (1000 IU/kg) or high (4000 IU/kg) vitamin D supply and source (OHD 

or D3) and (B) between level and infection on log-transformed circulating levels of OHD at d10 post-infection. 

Broiler chickens orally inoculated with 0 (Control) or 7000 sporulated oocysts of E. maxima (Infected) at d11 

post-hatch. 
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Table 3. 6 Main effects of level (1000 vs 4000 IU/kg) and source (D3 vs OHD) of vitamin D supply, and Eimeria infection status 

on chicken duodenum morphology on d6, 10 and 14 post-infection (pi). Broiler chickens orally inoculated with 0 (Control) or 

7000 sporulated E. maxima oocysts (Infected) at d11 post-hatch (d0 pi). 

    Duodenum 

 
 Villi length (μm)   Crypt depth (μm)   Villi length: Crypt depth 

 
Day pi d6 d10 d14  d6 d10 d14  d6 d10 d14 

Level                         

 1000 (IU/kg) 1617 1880 2234  263 223 197  7.81 8.62 11.6 

 4000 (IU/kg) 1590 1802 2181  276 239 204  7.49 7.96 10.7 

Source             

 D3 1578 1867 2215  267 238 204  7.56 8.23 11.0 

 OHD 1629 1814 2200  272 229 197  7.74 8.34 11.3 

Infection             

  Control 2009 1987 2216  170 199 190  11.99 10.18 11.7 

  Infected 1198 1695 2199  369 269 211  3.31 6.39 10.6 

  SEM 40.9 50.6 44.0  9.04 7.46 5.63  0.272 0.278 0.246 

  Probabilities 

Level 0.644 0.280 0.397  0.327 0.352 0.355  0.418 0.100 0.024 

Source 0.379 0.462 0.810  0.675 0.386 0.418  0.644 0.768 0.498 

Infection <0.001 <0.001 0.788  <0.001 <0.001 0.012  <0.001 <0.001 0.002 

Level × Source 0.241 0.616 0.225  0.552 0.821 0.241  0.901 0.961 0.764 

Level × Infection 0.913 0.767 0.940  0.459 0.499 0.354  0.804 0.427 0.311 

Source × Infection 0.745 0.792 0.856  0.729 0.590 0.595  0.564 0.641 0.561 

Level × Source × Infection 0.948 0.485 0.301   0.099 0.631 0.953   0.256 0.166 0.404 

SEM: Pooled standard error of the mean. 

D6, 10 and 14 pi equates to d17, 21 and 25 of age respectively 
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Table 3. 7 Main effects of level (1000 vs 4000 IU/kg) and source (D3 vs OHD) of vitamin D supply, and Eimeria infection status 

on chicken jejunum morphology on d6, 10 and 14 post-infection (pi). Broiler chickens orally inoculated with 0 (Control) or 7000 

sporulated E. maxima oocysts (Infected) at d11 post-hatch (d0 pi). 

    Jejunum 

 
 Villi length (μm)   Crypt depth (μm)   Villi length: Crypt depth 

 
Day pi d6 d10 d14  d6 d10 d14  d6 d10 d14 

Level                         

 1000 (IU/kg) 839 1045 1182  236 212 190  4.85 5.40 6.89 

 4000 (IU/kg) 835 995 1186  230 203 175  4.75 5.03 6.44 

Source             

 D3 808 1019 1214  229 211 184  4.94 5.10 6.65 

 OHD 866 1022 1154  236 203 181  4.66 5.34 6.68 

Infection             

  Control 1069 1112 1208  139 172 165  7.69 6.52 7.42 

  Infected 605 928 1160  326 242 200  1.91 3.92 5.91 

  SEM 31.5 27.1 32.5  10.4 8.12 6.56  0.167 0.154 0.191 

  Probabilities 

Level 0.916 0.198 0.934  0.684 0.476 0.106  0.681 0.096 0.108 

Source 0.202 0.927 0.197  0.631 0.448 0.711  0.234 0.275 0.918 

Infection <0.001 <0.001 0.290  <0.001 <0.001 <0.001  <0.001 <0.001 <0.001 

Level × Source 0.504 0.004 0.420  0.379 0.127 0.113  0.795 0.727 0.008 

Level × Infection 0.499 0.008 0.095  0.408 0.896 0.079  0.614 0.178 0.995 

Source × Infection 0.152 0.632 0.462  0.859 0.540 0.121  0.212 0.491 0.364 

Level × Source × Infection 0.551 0.718 0.460   0.469 0.722 0.097   0.393 0.473 0.546 

SEM: Pooled standard error of the mean. 

See Figures 3.5 and 3.6 for graphical illustration of significant interaction (P < 0.05) between the experimental factors at d10 and 14 post-infection (pi).  

D6, 10 and 14 pi equates to d17, 21 and 25 of age respectively 
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Table 3. 8 Main effects of level (1000 vs 4000 IU/kg) and source (D3 vs OHD) of vitamin D supply, and Eimeria infection status 

on chicken ileum morphology on d6, 10 and 14 post-infection (pi). Broiler chickens orally inoculated with 0 (Control) or 7000 

sporulated E. maxima oocysts (Infected) at d11 post-hatch (d0 pi). 

    Ileum 

 
 Villi length (μm)   Crypt depth (μm)   Villi length: Crypt depth 

 
Day pi d6 d10 d14  d6 d10 d14  d6 d10 d14 

Level                         

 1000 (IU/kg) 479 556 663  189 132 136  3.10 4.25 4.93 

 4000 (IU/kg) 497 583 649  186 139 146  3.2 4.23 4.53 

Source             

 D3 479 575 671  169 135 142  3.26 4.33 4.83 

 OHD 496 563.5 642  206 137 141  3.03 4.14 4.64 

Infection             

  Control 543 519 645  121 124 133  4.46 4.2 4.89 

  Infected 432 619 667  253 148 149  1.84 4.27 4.57 

  SEM 24.4 19.9 27.7  10.1 4.73 5.48  0.128 0.144 0.181 

  Probabilities 

Level 0.605 0.345 0.709  0.834 0.308 0.216  0.579 0.930 0.124 

Source 0.636 0.679 0.463  0.015 0.703 0.885  0.208 0.350 0.467 

Infection 0.003 0.001 0.575  <0.001 0.001 0.041  <0.001 0.731 0.212 

Level × Source 0.533 0.827 0.634  0.226 0.913 0.951  0.875 0.853 0.680 

Level × Infection 0.465 0.795 0.908  0.605 0.867 0.672  0.618 0.838 0.960 

Source × Infection 0.022 0.512 0.920  0.099 0.753 0.087  0.005 0.305 0.093 

Level × Source × Infection 0.596 0.993 0.941   0.438 0.778 0.464   0.674 0.845 0.368 

SEM: Pooled standard error of the mean. 

See Figure 3.7 for a graphical illustration of significant interaction (P < 0.05) between the experimental factors at d6 post-infection (pi).  

D6, 10 and 14 pi equates to d17, 21 and 25 of age respectively 
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Figure 3. 5 (A) Interaction between level of vitamin D supply that being low (1000 IU/kg) or high (4000 IU/kg) 

and source (OHD or D3) on jejunal villi height at d10 post-infection and (B) on jejunal villi height to crypt depth 

ratio (VCR) at d14 post-infection. Broiler chickens orally inoculated with 0 (Control) or 7000 sporulated oocysts 

of E. maxima (Infected) at d11 post-hatch. 
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Figure 3. 6 Interaction between level of vitamin D supply that being low (1000 IU/kg) or high (4000 IU/kg) and 

infection on jejunal villi height at d10 post-infection. Broiler chickens orally inoculated with 0 (Control) or 7000 

sporulated oocysts of E. maxima (Infected) at d11 post-hatch. 
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Figure 3. 7 (A) Interaction between source of vitamin D supply (OHD or D3) and infection status on ileal villi 

height and (B) ileal villi height to crypt depth ratio (VCR) at d6 post-infection. Broiler chickens orally inoculated 

with 0 (Control) or 7000 sporulated oocysts of E. maxima (Infected) at d11 post-hatch. 
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Table 3. 9 Main effects of level (1000 vs 4000 IU/kg) and source (D3 vs OHD) of vitamin D supply, and Eimeria infection status on chicken femur characteristics on d6, 10 and 14 post-

infection (pi). Broiler chickens orally inoculated with 0 (Control) or 7000 sporulated E. maxima oocysts (Infected) at d11 post-hatch (d0 pi). 

    Femur 

  Length/BW   Width/BW   BS (N/kg of BW)   Seedor index*   Robusticity index* 

 Day pi d6 d10 d14  d6 d10 d14  d6 d10 d14  d6 d10 d14  d6 d10 d14 

Level                                     

 1000 (IU/kg) 6.62 5.20 4.12  0.772 0.63 0.510  188 167 140  78.5 90.0 109  3.35 3.34 3.36 

 4000 (IU/kg) 6.46 4.90 3.93  0.764 0.598 0.503  198 182 146  79.7 96.9 113  3.34 3.26 3.31 

Source                     

 D3 6.49 5.07 4.09  0.755 0.612 0.505  192 171 139  78.5 91.5 110  3.34 3.31 3.36 

 OHD 6.59 5.04 3.96  0.781 0.616 0.508  194 178 147  79.8 95.5 112  3.35 3.29 3.31 

Infection                     

  Control 6.04 4.60 3.76  0.722 0.575 0.483  205 179 152  82.3 101 119  3.29 3.28 3.30 

  Infected 7.04 5.50 4.29  0.814 0.653 0.531  181 169 133  76.0 85.6 103  3.39 3.32 3.37 

  SEM 0.0905 0.0620 0.0667  0.0130 0.00765 0.00978  4.31 4.52 3.47  0.983 2.02 1.70  0.0179 0.0217 0.021 

          Probabilities 

Level 0.245 0.001 0.043  0.662 0.005 0.622  0.105 0.028 0.206  0.392 0.019 0.100  0.715 0.017 0.068 

Source 0.473 0.712 0.148  0.176 0.701 0.813  0.681 0.289 0.110  0.362 0.169 0.598  0.711 0.439 0.072 

Infection <0.001 <0.001 <0.001  <0.001 <0.001 0.001  <0.001 0.124 <0.001  <0.001 <0.001 <0.001  <0.001 0.163 0.025 

Level × Source 0.684 0.249 0.559  0.423 0.861 0.490  0.783 0.187 0.89  0.942 0.742 0.829  0.731 0.825 0.571 

Level × Infection 0.637 0.751 0.915  0.496 0.091 0.294  0.002 0.573 0.236  0.369 0.321 0.959  0.814 0.412 0.128 

Source × Infection 0.767 0.990 0.712  0.711 0.431 0.636  0.064 0.767 0.614  0.438 0.101 0.674  0.537 0.211 0.226 

Level × Source × Infection 0.826 3.302 0.354   0.598 0.723 0.317   0.213 0.542 0.731   0.202 0.396 0.130   0.080 0.360 0.227 

SEM: Pooled standard error of the mean.  

Abbreviations: BW, body weight; BS, breaking strength; N/kg, Newton per kilogram 

D6, 10 and 14 pi equates to d17, 21 and 25 of age respectively 

See Figure 3.8 for graphical illustration of significant interaction (P < 0.05) between the experimental factors at d6 post-infection (pi). 
*Robusticity index = (bone length (mm)) / (bone weight (mg))1/3; Seedor index = (bone weight (mg)) / (bone length (mm)) 

BS, Breaking strength 
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Table 3. 10 Main effects of level (1000 vs 4000 IU/kg) and source (D3 vs OHD) of vitamin D supply, and Eimeria infection status on chicken tibia characteristics on d6, 10 and 14 post-

infection (pi). Broiler chickens orally inoculated with 0 (Control) or 7000 sporulated E. maxima oocysts (Infected) at d11 post-hatch (d0 pi). 

    Tibia 

  Length/BW   Width/BW  BS (N/kg BW)   Seedor index*   Robusticity index* 

 Day pi d6 d10 d14  d6 d10 d14  d6 d10 d14  d6 d10 d14  d6 d10 d14 

Level                                     

 1000 (IU/kg) 8.87 7.20 5.78  0.685 0.549 0.455  204 205 186  83.4 99.8 120  3.99 4.00 4.08 

 4000 (IU/kg) 8.73 6.85 5.51  0.686 0.528 0.440  230 215 196  84.5 104 123  4.00 3.98 4.04 

Source                     

 D3 8.75 7.02 5.73  0.676 0.535 0.447  212 204 189  82.3 101 110  4.01 3.98 4.09 

 OHD 8.50 7.04 5.56  0.696 0.542 0.448  223 217 193  85.5 103 122  3.98 4.00 4.03 

Infection                     

  Control 8.22 6.39 5.29  0.641 0.507 0.435  220 221 211  87.3 108.9 131  3.96 3.97 4.01 

  Infected 9.38 7.66 6.00  0.730 0.569 0.460  214 199 171  80.5 94.9 110  4.03 4.00 4.11 

  SEM 0.107 0.0790 0.0910  0.0116 0.00920 0.00932  5.70 6.10 5.05  1.01 1.73 2.10  0.0174 0.0192 0.0210 

          Probabilities 

Level 0.362 0.004 0.044  0.971 0.118 0.279  0.002 0.241 0.166  0.438 0.085 0.331  0.695 0.437 0.173 

Source 0.535 0.836 0.217  0.230 0.57 0.907  0.179 0.145 0.630  0.028 0.375 0.364  0.227 0.491 0.026 

Infection <0.001 <0.001 <0.001  <0.001 <0.001 0.072  0.431 0.014 <0.001  <0.001 <0.001 <0.001  0.005 0.385 0.001 

Level × Source 0.406 0.150 0.445  0.880 0.672 0.508  0.748 0.382 0.051  0.264 0.975 0.978  0.452 0.750 0.489 

Level × Infection 0.484 0.725 0.489  0.682 0.228 0.381  0.768 0.652 0.825  0.752 0.453 0.467  0.292 0.555 0.327 

Source × Infection 0.749 0.893 0.501  0.980 0.537 0.529  0.583 0.835 0.224  0.724 0.745 0.975  0.710 0.889 0.150 

Level × Source × Infection 0.992 0.257 0.583   0.813 0.610 0.758   0.785 0.619 0.518   0.909 0.539 0.188   0.480 0.354 0.576 

SEM: Pooled standard error of the mean. 

Abbreviations: BW, body weight; BS, breaking strength; N/kg, Newton per kilogram 

D6, 10 and 14 pi equates to d17, 21 and 25 of age respectively 
*Robusticity index = (bone length (mm)) / (bone weight (mg))1/3; Seedor index = (bone weight (mg)) / (bone length (mm)) 

BS, Breaking strength 
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Table 3. 11 Main effects of level (1000 vs 4000 IU/kg) and source (D3 vs OHD) of vitamin D supply, 

and Eimeria infection status on chicken tibia mineralisation on d6, 10 and 14 post-infection (pi). 

Broiler chickens orally inoculated with 0 (Control) or 7000 sporulated E. maxima oocysts (Infected) 

at d11 post-hatch (d0 pi). 

    Tibia  

  Ash (g/kg BW)   Ash percentage (%) 

  Day pi d6 d10 d14   d6 d10 d14 

Level                

 1000 (IU/kg) 0.997 0.985 0.929  50.7 50.9 50.4 

 4000 (IU/kg) 1.04 0.999 0.953  51.6 51.9 52.0 

Source         

 D3 0.989 0.957 0.938  50.7 50.9 50.6 

 OHD 1.05 1.03 0.944  51.6 51.8 51.8 

Infection         

  Control 1.01 1.00 1.012  51.9 53.0 52.3 

  Infected 1.02 0.981 0.870  50.3 49.8 50 

  SEM 0.0167 0.0185 0.0166  0.346 0.280 0.367 

   

Level 0.072 0.595 0.316  0.066 0.021 0.003 

Source 0.018 0.011 0.799  0.070 0.030 0.030 

Infection 0.664 0.399 <0.001  0.002 <0.001 <0.001 

Level × Source 0.118 0.681 0.52  0.720 0.981 0.153 

Level × Infection 0.071 0.776 0.635  0.674 0.570 0.456 

Source × Infection 0.858 0.786 0.416  0.569 0.984 0.945 

Level × Source × Infection 0.724 0.883 0.005   0.869 0.745 0.237 

SEM: Pooled standard error of the mean.  

D6, 10 and 14 pi equates to d17, 21 and 25 of age respectively 

See Figure 3.9 for a graphical illustration of significant interaction (P < 0.05) between the experimental  

factors at d14 post-infection (pi). 
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Figure 3. 8 Interaction between the level of vitamin D supply that being low (1000 IU/kg) or high (4000 IU/kg) 

and infection status on femur bone breaking strength (BS) at d10 post-infection (P = 0.002). Broiler chickens 

orally inoculated with 0 (Control) or 7000 sporulated oocysts of E. maxima (Infected) at d11 post-hatch. 

 

 

 
 

Figure 3. 9 Interaction between level of vitamin D supply that being low (1000 IU/kg) or high (4000 IU/kg), 

source (OHD or D3) and infection status on ash weight (g) expressed as a proportion of body weight at 

dissection (g/kg BW) at d14 post-infection (P = 0.005). Broiler chickens orally inoculated with 0 (Control) or 

7000 sporulated E. maxima oocysts (Infected) at d11 post-hatch. 

a

b

a a

2

52

102

152

202

252

Control Infected Control Infected

Low High

Fe
m

u
r 

B
S 

(N
/ 

kg
 B

W
)

P = 0.002

a

c

ab
ab

ab
abc

a

bc

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Control Infected Control Infected Control Infected Control Infected

D3 OHD D3 OHD

Low High

Ti
b

ia
 A

sh
 (

g/
g 

B
W

)

P=0.005



82 
 

3.5 Discussion 

In chapter 2, E. maxima infection reduced bone mineralisation and impaired fat-soluble 

vitamins status in fast and slow-growing broiler lines. The present study tested whether 

offering differing dietary VitD levels (4000 vs 1000 IU/kg), different forms (OHD vs D3), or 

both, would alleviate the effects of E. maxima infection on bone mineralisation and growth 

performance of fast-growing broilers. Also, the effects of the above dietary modulations on 

the parasite burden were assessed using parasite GC at peak replication. The basis of the 

hypothesis was that fat-soluble vitamin status is impaired during coccidiosis, which in turn 

may further aggravate a marginal VitD deficiency, and that OHD may be absorbed in a more 

fat-independent manner, being more potent than D3 in mediating VitD activity (Wagonfeld et 

al., 1976; Reed et al., 1980; Fritts and Waldroup, 2003). 

Consistent with chapter 2, infection penalised the performance of infected chickens during the 

early and acute periods of infection but infected and control birds a similar performance 

during the recovery period. Gastrointestinal damage occurred across all segments of the small 

intestine around peak parasite replication (Blake et al., 2006). The effects were more 

pronounced and persisted longer in the proximal and mid-intestine, which is the predilection 

site for E. maxima (Williams, 2005b; Cornelissen et al., 2009). Compensatory ileal villi 

development took place as described previously in similar studies with the same parasite 

(Idris et al., 1997b), but not at the acute stage of infection (d6 pi). The higher long bone linear 

growth (length and width) relative to BW amongst infected birds were artefacts of infection. 

The values were, to a negligible extent, due to the shorter and thinner bones, but more 

importantly due to the significant weight loss of birds following infection. Hence, longer and 

wider tibia and femur bones per BW did not correspond with improved strength and 

mineralisation for infected birds in this study. Incomplete infilling of the periosteal surface by 

osteoblasts (Williams et al., 2004) is believed to have caused the weakness and poor 

mineralisation of long bones for the infected birds. In other words, a higher porosity of long 

bones could be rightly inferred for the infected than the control birds in this study 

In terms of bone mineralisation, the effects of infection were present throughout the pi period 

for both femur and tibia with both showing inferior robusticity and seedor indices. Femur BS 

responded to infection earlier than tibia BS, which could be attributed to the faster 

mineralisation rate of the former in comparison to the latter at initial stages of broiler growth 

(Applegate and Lilburn, 2002). Even though the proportion of tibia ash to BW at dissection 

was constant for control birds throughout d17 - 25 post-hatch (Bar et al., 2003), this was not 
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the case for infected birds where a progressive decrease was noted. By d14 pi infected birds 

matched the growth rates of their non-infected counterparts, but their tibias carried 14 % less 

ash (g). Moreover, tibia ash % was severely depressed at all timepoints, being more 

pronounced at d10 pi but persisting at d14 pi. These results bear significance considering that 

although ADG was comparable between infected and control birds over the recovery period, 

the BW of infected birds was significantly lower, indicating that proportionally more stress 

was applied to their long bones.  

Consistent with the hypothesis of this study, VitD status was impaired in response to infection 

with E. maxima. Infection reduced plasma levels of OHD across the pi period, reaching the 

lowest level at d10 pi. Studies in mammalian species suggest that some storage of OHD occur 

in the liver, adipose and muscle tissues, which can be released slowly in periods of VitD 

deficiency to raise plasma OHD levels: the rate of release is higher when subjected to a 

negative energy balance (Brouwer et al., 1998; Heaney et al., 2009; Burild et al., 2016). 

Although there is no information on VitD storage and kinetics in avian species, these reserves 

are depleted within a week in the absence of dietary supply in minipigs (Heaney et al., 2009). 

The results of the present study suggest that within a few days of coccidian challenge, 

systemic circulating OHD levels become severely depressed. At d6 pi, levels of plasma Ca 

and P, and bone mineralisation was penalised, likely due to their reduced absorption 

following gastrointestinal tissue damage. However, homeostasis of both Ca and P was 

attained later during infection, while penalties on plasma OHD concentration and bone 

mineralisation persisted throughout the infection period. 

The results of feed analysis suggested that the amount of dietary OHD was consistently lower 

than D3, in both the starter and grower diets. The reason for this discrepancy is believed to be 

analytical, i.e. related to the methodology for estimating OHD contents. Ultimately, plasma 

OHD concentration was significantly higher for birds offered the OHD than the D3 diets. 

Therefore, the results present in the current study can be interpreted with confidence. Overall, 

OHD status was significantly increased by higher VitD supplementation and by offering OHD 

as the source of VitD activity in both control and infected birds. The interaction between level 

and source indicates that offering OHD is more efficient than D3 in raising OHD status and is 

consistent with previous reports in chickens where serum or plasma OHD concentrations were 

assessed (Yarger et al., 1995; Vignale et al., 2015; Sakkas et al., 2018). Although there was 

no formal interaction between level, source and infection on circulating levels of OHD, at d10 

pi when effects of infection were maximised, OHD levels were similar between HD3 and 

LOHD birds suggesting a better absorption efficiency for dietary OHD (Figure 3.4a). On the 
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other hand, VitD supply interacted with infection status for levels of OHD at d10 pi, being 

significantly depressed in L infected birds but maintained in H infected birds to similar levels 

as L controls. Infected birds on low VitD diets also showed inferior FCR across the pi period, 

and had the lowest femur BS and circulating P levels on the same day pi. The effect of VitD 

on phosphate absorption is thought to be mediated via the saturable transcellular mechanism 

as increased levels of NaPiIIb in the brush border membrane have been measured in response 

to biologically-active VitD (1,25D3) treatment of patients with renal failure and in VitD 

deficient rats (Davis et al., 1983; Kurnik and Hruska, 1984). The only formal interaction 

between VitD level, VitD source and infection was detected at d14 pi for tibia ash weight per 

BW. Infected birds receiving LD3 diets showed the lowest ash/BW overall. Collectively, 

these results indicate that a low VitD supply penalised bone development in infected 

chickens, with the greatest impact at later stages of infection when offered in D3 form. On the 

other hand, although dietary OHD was more efficient for maintaining VitD status, it did not 

offer additional benefits in the presence of infection. Previous studies involving increased 

dietary supply of Ca (Watkins et al., 1989) and P (Willis and Baker, 1981) have been 

unsuccessful in improving bone mineralisation in coccidiosis-infected birds while phytase 

supplementation has limited efficacy (Watson et al., 2005; Shaw et al., 2011). There are 

limitations in the capacity of infected birds to compensate for penalties imposed on their bone 

development, at least within the period studied. 

Although final BW was improved by both VitD level and source, VitD level affected ADG 

only over the period pre-infection and VitD source only during the period pi, whilst FCR was 

affected only during the period pi by both. These results are consistent with those of 

previously published studies (Yarger et al., 1995; Whitehead et al., 2004) and suggest that 

VitD requirements of broilers for growth functions may remain high throughout the grower 

period. Although increasing VitD supplementation, or offering OHD, improved all markers of 

bone mineralisation, effects were not consistent across sampling points. Nonetheless, tibia 

ash% which is the most important marker of bone mineralisation was significantly increased 

by d10 and d14 pi when offering high levels of vitD or in the form of OHD. These results 

show that benefits from increased VitD supply extend beyond the starter period and are in 

agreement with a recently published study evaluating effects of VitD supply in fast-growing 

broiler lines (Sakkas et al., 2018). A higher level of VitD supply also increased plasma 

concentration of Ca but not of P. Although this could have occurred due to increased bone 

resorption or enhanced Ca and P absorption, ultimately bones were more mineralised 

promoting mineralisation of the bone matrix (St-Arnaud, 2008; Bikle, 2012; Haussler et al., 
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2013). The efficiency of Ca absorption is low in VitD deficient animals (Pansu et al., 1983) 

and has been related to transcellular and the paracellular absorption mechanisms (Christakos, 

2012). 

In the present study, offering a higher level of VitD, or replacing D3 with OHD, associated 

with a higher degree of parasite replication. Likewise, a higher degree of gastrointestinal 

damage was observed with higher levels of VitD activity. In the presence of infection offering 

HD3 diets evoked greater jejunal VH than LD3 diets at d10 pi, and OHD diets resulted in 

smaller ileal VH and VCR at d6 pi than D3 diets. Unsurprisingly, there was no correlation 

between the histomorphometric analysis and lesion scores of the small intestine in the current 

study. The main effects and interaction of VitD level and source on intestinal lesions were not 

significant for the infected birds. A previous study had reported the lack of correlation 

between microscopic and gross morphological assessments, recommending microscopic to be 

more reliable (Idris et al., 1997a).  

Eimeria maxima evokes a complex cytokine response characterized by increased production 

of Th1 pro-inflammatory cytokines such as IL-1b, IL-6, IL-8, IL-17, and IFN-γ in the small 

intestine, as well as Th2 anti-inflammatory cytokines such as IL-4 and IL-10 (Williams, 

2005b; Hong et al., 2006b; Min et al., 2013). In particular, increased IFN-γ mRNA levels are 

thought to associate with antigen-specific resistance to coccidiosis, promoting Th1 cell 

production, whilst preventing Th2 cell production (Laurent et al., 2001; Cornelissen et al., 

2009), balanced by IL-10 (Rothwell et al., 2004). Elevated IL-10 mRNA levels have been 

described in susceptible compared to resistant broiler chicken lines (Rothwell et al., 2004), 

whilst dietary fed oral antibody to chicken IL-10 prevents growth depression due to a mixed 

Eimeria spp. infection (Sand et al., 2016). On the other hand, 1,25D3 may support conversion 

of naïve T cells into T regulatory cells, which produce IL-10 and TGF-β that inhibit the 

expression of pro-inflammatory cytokines such as IFN-γ and IL-17 (Jeffery et al., 2009) and 

to upregulate IL-10 production in macrophages (Sharma and Fernando, 1975; Korf et al., 

2012). Previous research has shown that increased supplementation of OHD, above 2000 

IU/kg of feed, in white Leghorn chicks infected with a mixed Eimeria spp. resulted in smaller 

penalties on their ADG, similar to the present study (Morris et al., 2015). However, decreased 

IL-1β and increased IL-10 transcripts were detected in the cecal tonsils. It is possible that in 

the present study a delayed upregulation of IFN-γ, or an earlier upregulation of IL-10, rather 

than variation in their absolute levels at the peak of the infection may have affected 

parasitological outcomes and degree of GIT damage.  
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An earlier study (Trout and Lillehoj, 1995) had demonstrated the involvement of CD8+ T cell 

in functioning as a transporter for sporozoite and increasing oocyst shedding, and recently 

Morris et al. (2015) reported that feeding OHD increased the percentage of CD8+ cells in the 

cecal tonsils of layers inoculated with multiple coccidia species. However, contrary to results 

presented herein, Morris et al. (2015) found no effect of dietary OHD on faecal oocyst 

shedding at their level of infection even though OHD was supplemented at similar levels as 

the current study. Further investigation of the immune response at earlier stages of infection is 

required to elucidate the observed effects. In addition, outcomes may differ according to the 

parasite species in question; E. maxima, in particular, induces a strong pro-inflammatory 

response as opposed to the more balanced Th1/Th2 phenotype which characterises infections 

with E. acervulina and E. tenella (Williams, 2005b). Interestingly, parasitological and 

histological findings did not corroborate performance outcomes. It has been previously shown 

that a higher VitD status results in an increased fractional rate of synthesis and increased 

breast muscle yield in broilers (Yarger et al., 1995). Therefore, the reduced FCR observed in 

high VitD-fed infected broilers could be attributed to their increased VitD status and their 

improved ability to accrete body protein in the presence of infection (Yarger et al., 1995). The 

lack of an interactive effect of source of vitD supply and infection status on performance 

variables indicates that the source is likely less critical than the level of vitD supply within 

these experimental conditions. 

In conclusion, the present study shows that an E. maxima infection penalises broiler chicken 

performance, bone mineralisation and VitD status, whilst a low VitD supply seems to 

aggravate the adverse effects of infection. In contrast, a higher VitD supply resulted in higher 

parasite loads and compromised gut architecture in the absence of adverse effects on 

performance variables. Chapter 4 further examined the effects of the high VitD supply level 

(4000 IU/kg) from D3 and OHD source in coccidia-infected broilers receiving marginally 

deficient Ca/P diets. No doubt, additional studies are required to unravel the effects of vitD 

supply on immune responses over time in different host/pathogen systems. 
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Chapter 4: Interactions between dietary Calcium and Phosphorus level, 

and vitamin D source on bone mineralisation, performance and intestinal 

morphology of coccidia-infected broilers 

4.1 Summary 

Coccidiosis penalises Calcium (Ca), Phosphorus (P) and vitamin D (VitD) status, as well as 

bone mineralisation in broiler chickens [Chapter 3]. It was hypothesised that dietary VitD 

supplementation in the form of 25-hydroxycholecalciferol (OHD), compared to 

cholecalciferol (D3), would improve bone mineralisation in broilers receiving marginally 

deficient Ca/P diets, with more pronounced effects during malabsorptive coccidiosis. In a 2 

VitD source × 2 Ca/P levels × 2 levels of infection factorial experiment (n = 6 pens per 

treatment, 6 birds/pen), 288 day-old Ross 308 broilers were assigned to an Aviagen-specified 

diet supplemented with 4000 IU/kg of either OHD or D3. From d11 to 24 of age, the diet 

contained adequate (A; 8.7:4.4g/kg) or marginally deficient (M; 6.1:3.1g/kg) total Ca and 

available (av)P levels. At d12 of age, birds were inoculated with either 7,000 Eimeria maxima 

oocysts (I) or water (C). Pen performance was measured over 12 days post-infection (pi), and 

during the early (d0 to 6 pi) and late (d6 to 12 pi) stages of infection. Six birds per treatment 

combination were assessed for parameters of bone mineralisation and intestinal 

histomorphometric features (d6 and 12 pi), as well as E. maxima replication and gross lesions 

of the small intestine (d6 pi). There was no 3-way interaction between VitD source, Ca/P 

level, and infection status for any variable examined. VitD source and infection interacted for 

plasma Ca levels at d6 pi; OHD- compared to D3-fed broilers had higher levels (P < 0.05) of 

plasma Ca amongst C birds whilst levels were statistically similar amongst I birds receiving 

D3 and OHD diets. VitD level interacted with infection status for tibia breaking strength (BS) 

at d12 pi; M compared to A birds had significantly lower BS (P < 0.05) amongst C birds but 

similar values amongst I birds. VitD source and Ca/P level also interacted for tibia ash weight 

relative to BW (ash/BW), and ash percentage (AP) at d12 pi. Values for ash/BW and AP were 

similar for A and M broilers receiving D3 diets but M compared to A broilers had 

significantly lower (P < 0.05) values amongst birds on OHD diets. Overall, BS/BW, Ash/BW 

and AP were highest in broilers fed the OHD-supplemented A diets irrespective of infection 

status. E. maxima infection significantly impaired (P < 0.05) average daily gain (ADG) and 

feed conversion ratio (FCR) pi; Ca and P levels in blood plasma at d6 pi; OHD status, BS, 

AW and AP at d12 pi; and intestinal morphology at d6 and 12 pi. A- compared to M-fed 

broilers had higher BS, AW and AP at d6 pi, and AW at d12 pi. VitD source affected only 

OHD status, being higher (P < 0.001) for OHD- than D3-fed broilers at d6 and 12 pi. In 
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conclusion, offering OHD and adequate levels of Ca and P improved bone mineralisation, 

with no effect on performance. Dietary D3 and OHD supplemented at 4000IU/kg had similar 

effects on coccidiosis-infected and uninfected broilers, which led to the rejection of the 

hypothesis. 

 4.2 Introduction 

Vitamin D nutrition plays a critical role in Ca and P metabolism, bone mineralisation, and 

other physiological processes related to performance and immunity against infections in 

broiler chickens (Whitehead et al., 2004; Khan et al., 2010; Shao et al., 2019). Studies have 

shown that higher-level supplementation and replacing cholecalciferol (D3), which is the 

conventional source of dietary VitD, with 25-hydroxycholecalciferol (OHD), can amplify 

VitD effects for broilers (Fritts and Waldroup, 2003; Fritts et al., 2004; Fritts and Waldroup, 

2005). This is because D3 requires liver-located hydroxylases for its conversion to OHD, 

which is the major VitD circulated metabolite (Barchetta et al., 2012; Bergada et al., 2014), 

and OHD may be the preferred source in young animals where the liver function has not 

reached its full adult capacity. Furthermore, OHD, compared to D3 absorption, is less fat 

dependent, occurs at a faster rate, and more efficiently (Maislos et al., 1981). The above 

implies that OHD may be the preferred dietary source of VitD in young broilers, as well as 

during malabsorptive conditions, such as coccidia infections.  

Malabsorptive coccidiosis adversely affects aspects of bone mineralisation in broilers 

[Chapter 2], and is linked to reduced absorption of Ca and P (Turk, 1973; Turk, 1978), 

depressed levels of circulating OHD [Chapter 3], and increased bone resorption (Akbari 

Moghaddam Kakhki et al., 2018). Furthermore, this thesis revealed that higher levels of VitD 

supply, and offering VitD in the form of OHD instead of D3, significantly improved bone 

mineralisation, while reduced VitD supply penalised long bone mineralisation to a similar 

degree in coccidian-infected and uninfected broilers [Chapter 3].  

In chapter 3, lower VitD supplementation (1000 vs 4000 IU/kg) while offering Ca/P adequate 

diets reduced bone mineralisation and growth performance with more significant penalties 

occurring amongst coccidiosis-infected than uninfected broiler. Moreover, previous studies 

reveal that OHD is more efficient at improving Ca and P absorption and OHD status at 

comparable levels of D3 supplementation (Fritts and Waldroup, 2005; Sakkas et al., 2018). 

Indeed, adequate levels of Ca and P in diets, as well as a Ca/P ratios from 1.8 to 2:1, are 

crucial for their retention by broilers (Rao et al., 2006; Delezie et al., 2012). 
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There is increasing evidence of the need for P reduction in broiler diets for economic and 

environmental reasons (Knowlton et al., 2004; Wironen et al., 2018). This relates to the high 

prices of feed-grade P supplements but more importantly, the environmental pollution caused 

by unutilized phytate phosphorus (PP) excretion. PP also chelates essential minerals including 

Zinc, Copper, Iron and Magnesium in feedstuffs thereby limiting their availability to broilers, 

and increasing the amount of these minerals excreted into the environment (Reddy et al., 

1982; Shafey et al., 1991; Maenz et al., 1999). Therefore, studies aiming to reduce the 

exogenous supply of P from phosphate sources focus on strategies for improving P, and 

invariably Ca, utilisation via increased VitD supply, phytase enzyme supplementation, or 

both.  

The present study investigated whether dietary VitD supply at commercially supplemented 

levels (4000 IU/kg) in the form of OHD, would result in improved bone mineralisation for 

coccidia-infected broilers receiving marginally deficient Ca/P diets. The hypothesis was that 

VitD supplementation in the form of OHD compared to D3 will promote bone mineralisation due 

to improved Ca and P utilisation, as well as enhance performance, for broilers on marginally 

deficient Ca and P diets; effects will be more pronounced in the presence of coccidiosis.  

4.3 Materials and Methods 

4.3.1 Birds, Husbandry and Diets  

All experimental procedures complied with the UK Animals (Scientific Procedures) Act 1986, as 

well as the EU Directive 2010/63/EU for animal experiments, and were carried out under Home 

Office authorisation (P441ADF04). Two hundred and eighty-eight male Ross 308 day old chicks 

were raised from hatch to 24 d of age at the Newcastle University Cockle Park farm. Birds were 

housed in 48 rectangular pens (0.84 m2) situated in a windowless thermostatically controlled 

building such that the treatments were allocated uniformly to represent the different sides of the 

room. Each pen was equipped with a tube feeder and a bell-drinker and had wood shavings to a 

depth of 5 cm as litter. The temperature at pen level was monitored daily and maintained to meet 

Aviagen recommendations for spot brooding (Aviagen, 2014b), starting at 34 °C at chick 

placement and gradually reduced to 20 °C by 24 d of age. Light intensity at pen level ranged from 

60 to 80 lux, while a lighting schedule of 23L:1D was applied for the first 7 days of age and 

switched to 18L:6D for the remainder of the trial. Feed and water were offered to birds ad libitum 

for the duration of the experiment.  

Upon arrival, birds were allocated to a standard starter (d1 to 10) diet and then to a grower (d11 to 

24) diet (see Table 4.1), which offered either adequate (A) levels of total Ca and avP or marginally 
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deficient (M) levels of approximately 30% below Aviagen recommendations. The M level was 

classed as marginally deficient because it has a similar effect on the performance of broilers as the 

Aviagen-recommended A levels but results in reduced bone mineralisation (Rao et al., 2006; 

Delezie et al., 2015; Valable et al., 2018). Hence, there were four dietary treatments; AD3, MD3, 

AOHD, and MOHD. VitD was supplemented at 4000 IU/kg as per commercial practice in the EU 

(Fritts et al., 2004) and is within the EFSA authorised limits (EFSA, 2012). The dietary 

specifications of the starter and the grower diets were according to Aviagen nutrition 

recommendations (Aviagen, 2014a)  apart from the total Ca and avP levels of M diets. Starter diets 

were offered in crumbled form and grower diets in pelleted form.  

4.3.2 Experimental design and inoculations  

The experiment was arranged in a 2×2×2 factorial pattern with dietary VitD source (D3 vs OHD), 

Ca/P levels (adequate vs deficient) and infection status (control vs infected) of birds as the 

independent variables. The diets containing adequate total Ca and avP (A; 8.7: 4.4 g/kg), or 

deficient levels (M; 6.1: 3.1 g/kg) were introduced at 10 d of age, while all birds received 4000 

IU/kg VitD either as D3 or OHD throughout the experiment. At 12 d of age, birds were orally 

inoculated with a single 0.5 ml dose of water (Control; C) or 7000 (Infected; I) sporulated E. 

maxima oocysts of the Weybridge laboratory reference strain, using 1ml syringes. The treatment 

groups were replicated in six pens stocked with six birds per pen. 

4.3.3 Sampling  

To assess performance, pen feed intake was measured post-infection (pi), and birds were 

individually weighed at infection (d0pi), and at time points (d6 and 12pi), representing the early 

and late stages of E. maxima infection in broilers. One bird per pen weighing close to pen average 

was selected at d6 and 12pi for blood sampling via the wing vein and subsequently euthanised with 

a lethal injection of sodium pentobarbitone (Euthatal®, Merial Harlow, United Kingdom). Blood 

samples were collected in 5 ml sodium heparin plasma tubes (BD Vacutainer, SST II Advance 

Plus Blood Collection Tubes-BD, Plymouth, United-Kingdom), then immediately placed on ice 

and centrifuged for 10 mins at 1500 g at 4 °C within 1.5 h after collection. Plasma sample aliquots 

were stored at -80 °C pending analyses. The gastrointestinal tract (GIT) of the selected birds was 

removed during necropsy and duodenum, jejunum and ileum were scored separately for any 

lesions, according to the method described by Johnson and Reid (1970). Following lesion scoring 

at d6pi, 6 cm of intestinal tissue from the immediate region of Meckel’s diverticulum, the mid-

point of the intestinal area infected by E. maxima (Long et al., 1976), was excised and opened 

longitudinally to remove digesta contents. Excised tissue (5 cm) was submerged in 7 ml bizous, 
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and 1 cm in 1.5 ml screw cap microtubes (Thermo Scientific) filled with RNAlater® (Life 

Technologies; Carlsbad, CA, USA) and stored at -80 oC pending analyses. Thereafter, three 

segments of 1 cm each from the duodenal loop, mid-jejunum (midway between Merkel's 

diverticulum and the end of the duodenal loop) and mid-ileum (midway between Merkel's 

diverticulum and the ileocecal junction) were sampled from birds dissected on d6 and d12pi 

and fixed in 10% buffered formalin pending microscopic morphological assessment. 

Following GIT removal, right femur and tibia of the selected birds were dissected to evaluate 

physical development and mineralisation. Much of the adhering tissues were removed from 

dissected bones before storing in airtight individually labelled polythene bags at -20 °C pending 

evaluation. 

4.3.4. Sample analysis 

Experimental diet 

Feed samples were analysed for VitD3 and OHD contents at the DSM Laboratory (Basel, 

Switzerland) using the method described in section 3.3.4 of chapter 3. The analysed D3 and OHD 

contents of the experimental diets were 4910 and 2828 IU/kg (starter) and 4520 and 2720 IU/kg 

(grower), respectively.  

Morphometric analysis of gut 

The same method described in section 3.3.4 of chapter 3, was used.  

Parasite replication 

Quantitative real-time PCR (qPCR). The number of Eimeria maxima genome copies (GC) in 

intestinal tissue was measured using the same method described in section 2.3.4 of chapter 2. 

Blood metabolites  

As in chapter 3, concentrations of Ca and P (mmol/l) in blood plasma were analysed in duplicate 

using an ABX Horiba Pentra 400 automatic analyser (Horiba Medical, Irvine, CA, USA) 

according to the manufacturer’s instructions. Plasma concentration of OHD (ng/ml) was 

determined using the 25-Hydroxy Vitamin D Direct EIA kit (IDS Diagnostics, Fountain Hills, AZ, 

USA) according to the manufacturers’ instructions. 
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Bone evaluation 

Bones were thawed at 4 oC overnight and place at room temperature for 1 h before the adhering 

soft tissues were removed using scalpels. All procedures, measurements and derived variables 

were as described in section 3.3.4 of chapter 3. 

4.3.5 Calculations and Statistics 

All statistical analyses were conducted using IBM SPSS Statistics for Windows, Version 

22.0. (Armonk, NY: IBM Corp). The pen was considered the experimental unit for all 

statistical assessments. Average daily feed intake (ADFI; g/d), gain (ADG; g/d) and feed 

conversion ratio (FCR; ADFI/ADG) were calculated pre-infection (d0 – 10 and d11 – 12 post-

hatch), over the entire period post-infection (d1 – 12 pi), as well as for the early (d1 – 6 pi) 

and late (d7 – 12 pi) stages of infection . Furthermore, BW, ADG and ADFI post-infection 

were expressed in proportion to body weight at infection (BWd0 pi) to account for diet-

change-induced tendencies of a priori differences in BW at infection, and because BW and 

ADFI increased proportionally with age. Data were analysed with VitD source, level of Ca: P 

supply and infection status as fixed factors, and their interactions using the General Linear 

Model procedure (GLM). 

The concentration of Ca, P and OHD in blood plasma, villi height (VH), crypt depth (CD) and villi 

height: crypt depth ratio (VCR), GC number from qPCR analysis (parasite replication), and all 

bone-derived data generated from birds sampled at d6 and 12 pi were also analysed with the above 

factors using GLM. When significant differences were detected, treatment means were separated 

and compared by the Tukey’s multiple comparison test. The Shapiro-Wilk test was used for 

assessing the normality of the studentised residuals and non-normalised data, such as plasma 

OHD concentration and parasite genome copy numbers were log-transformed before 

statistical analysis. The log-transformed values are presented herein. Significance was 

determined at P < 0.05, and a tendency was defined as P < 0.1.  

Intestinal lesion score was evaluated on a scale of 0 (no lesion) to 4 (very severe lesions); 1, 2 and 3 

represented mild, moderate and severe lesions respectively. As only infected birds had lesions, data 

were analysed with level and source of VitD supply as fixed variables and their interaction, using 

ordinal logistic regression procedure of SPSS and significance was determined at P < 0.05.  
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Table 4. 1 Ingredients and chemical composition of the starter (d0–10) and the two grower (d11–24) diets 

offered to broiler chickens.  

Item 

Starter                     Grower                    

Adequate                 Deficient  

Ingredient (%)   

   

Wheat 47.9 51.6 52.5 

Corn 10.0 10.0 10.0 

Soybean meal (48 % CP) 32.0 25.3 25.3 

Soybean full fat  4.00 7.00 7.00 

Soy crude oil 1.84 2.32 2.32 

Dicalcium phosphate 1.82 1.60 0.87 

Limestone 0.77 0.67 0.45 

Vitamin and mineral premix  0.40 0.40 0.40 

DL methionine 0.33 0.30 0.30 

L-Lysine 0.27 0.25 0.25 

Sodium bicarbonate (27 %) 0.21 0.20 0.20 

Sodium chloride (39 %) 0.19 0.20 0.20 

L-Threonine 0.14 0.12 0.12 

Choline chloride (60 %) 0.05 0.05 0.05 

L-Valine 0.03 0.02 0.02 

 

Nutrient composition (%) * 

 

ME (kcal/kg) (calculated) 3,000 3,067 3,095 

Crude protein  23.1 21.37 21.00 

Crude fat 5.03  4.87 5.12 

Crude fibre 2.39 2.13 2.22 

Ash 5.43 4.83 4.80 

Calcium 1.03 0.80 0.63 

Phophorus 0.74 0.62 0.55 

Available phosphorus (calculated) 0.48 0.44 0.30 

Sodium 0.18 0.15 0.15 

Manganese (mg/kg) 218 169 160 

The nutrient composition was in accordance with Aviagen nutrient specifications (Aviagen, 2014a), but the two 

grower diets contained different levels of Ca and P: an adequate and a deficient level. 

*Analysed nutrient composition (%) unless otherwise stated.  
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4.4 Results 

4.4.1 Bird health and performance variables 

Two birds with gait scores of 4 out of 5 were culled and euthanised while coccidiosis caused 

anorexia and reduced weight gain according to expectations. The main effects of dietary VitD 

source, Ca/P level and infection status on performance (BW, ADG, ADFI, and FCR) pre- and 

post-infection, are presented in Tables 4.2 – 4.4. There were no significant 2- or 3-way 

interactions (P > 0.05) between the experimental factors for performance variables in this 

study. No performance variable was affected by VitD source (P > 0.1). 

Pre-infection 

VitD source did not significantly affect (P > 0.1) performance over the starter period (d0 – 10 

of age). However, Ca/P levels affected performance. Between d11 and 12 of age when dietary 

Ca/P levels were altered, birds receiving the M in comparison to the A diets had significantly 

higher (P < 0.05) ADFI, and tended to have higher ADG (P = 0.069) and BW (P = 0.067) 

prior to inoculation at d12 of age (Table 4.2).  

Post-infection period 

Infection significantly reduced (P < 0.001) ADG and ADFI, and increased FCR (P = 0.005) 

calculated over the infection period (d1 – 12 pi). BW at d12 pi was significantly reduced for I 

compared with C birds. Ca/P level significantly affected (P < 0.05) ADG post-infection, as 

well as BW at d12 pi; values were significantly higher for birds receiving the M in 

comparison to the A diets (Table 4.3).  

Early and late stages of infection 

E. maxima infection impaired (P < 0.05) ADG, ADFI and FCR during the early and late 

stages of infection, whereas the effect of Ca/P level on these variables was not significant (P 

> 0.05) during both phases. Moreover, ADG and ADFI tended (0.5 < P < 0.1) to be higher 

for the M than the A- fed broilers during the acute phase (Table 4.4). VitD source and 

infection status tended to interact (P = 0.052) for ADG per unit BWd0 pi during the early 

stage of infection: values for OHD- compared to D3-fed broilers tended to be higher amongst 

control birds, but lower amongst infected birds. 

4.4.2 Plasma Calcium, Phosphorus and OHD concentrations  

The main effects of dietary VitD source and Ca/P level, and infection status on plasma Ca, P, 

and OHD concentrations are presented in Tables 4.5. The 2-way interaction between VitD 
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source and infection status for Ca (P = 0.014) at d6 pi is illustrated in Figure 4.1. Amongst C 

birds, plasma Ca was significantly higher for birds receiving OHD than D3 diets, whilst D3 

and OHD diets had a similar effect on plasma Ca concentration for I birds. There were no 

other 2- way or any 3-way interactions between the experimental factors.  

Infection significantly reduced (P < 0.05) Ca and P concentration (mmol/L) in the blood 

plasma of broilers only at d6 pi, whereas VitD source and Ca/P level had no significant effect 

on Ca or P status at both d6 and12 pi. Infection significantly reduced (P < 0.05) plasma OHD 

concentration (ng/ml) at d6 and d12 pi. Broilers receiving OHD compared to D3 diets had 

higher (P < 0.001) plasma OHD concentration at d6 and d12 pi. Ca/P level tended to increase 

(P = 0.098) plasma OHD concentration for M- compared to A-fed broilers at d6 pi, but did 

not affect OHD status at 12 pi (Table 4.5).    

4.4.3 Histology and lesion scores 

Histology 

Results of the duodenum, jejunum and ileum morphological analysis are presented in Table 

4.6. There were no significant 2- or 3- way interaction between dietary VitD source, Ca:P 

level and infection status for VH, CD or VCR in any section of the small intestine at d6 or 12 

pi. Dietary VitD source and Ca/P level did not affect (P > 0.05) small intestine morphological 

architecture assessed at d6 and 12 pi. 

Infection significantly reduced (P < 0.05) duodenal VH at d6 and 12 pi, and jejunal VH at d6 

pi. Infection increased (P < 0.05) jejunal and ileal CD at d6 and 12 pi, and duodenal CD only 

at d6 pi. Furthermore, infection reduced (P < 0.05) VCR of duodenum, jejunum and ileum at 

d6 and d12 pi (Table 4.6).   

Lesion score 

Uninfected broilers had no intestinal lesions (score 0). The main effects of dietary VitD 

source (D3 = 1.58 vs OHD = 1.69; SEM = 0.0887) and Ca/P level (M = 1.64 vs A = 1.64; 

SEM = 0.0887), and their interaction, was not significant (P > 0.1) for E. maxima lesions in 

the small intestine. Individually, lesions in the duodenal, jejunal or ileal sections were also not 

affected (P > 0.1) by the experimental factors (the same scenario occurred in chapters 2 and 

3). Nevertheless, severe E. maxima lesions (score 3) occurred only in the jejunum, whereas 

the duodenum had only mild lesions (score 1), and the ileum had mild to moderate lesions 

(score 2). 
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4.4.4 Parasite replication 

There were no traces of E. maxima parasites in the gut of C birds at the point of sampling: d6 

pi. There was no interaction (P > 0.05) between Ca/P level and VitD source for E. maxima 

GC number. M and A diets (M = 5.16 vs. A = 5.32; SEM = 0.0692), as well as D3 and OHD 

VitD sources (D3 = 5.34 vs. OHD = 5.16; SEM = 0.0692), had no effect (P > 0.05) on 

parasite replication of broilers. 

4.4.5 Bone evaluation  

The main effects of dietary VitD source and Ca/P level, and infection status on bone variables 

are presented in Tables 4.7 and 4.8. The significant interactions between the experimental 

factors for markers of bone mineralisation are illustrated in Figures 4.2 and 4.3. There were 

no significant 3- way interaction between VitD source and Ca/P level, and infection status. 

The main effect of VitD source was not significant (P > 0.05) for all femur and tibia 

parameters assessed in this study.  

Linear growth in proportion to BW 

Dietary Ca/P level interacted with infection status (P < 0.05) for relative tibia length, i.e. in 

proportion to body weight at dissection (length/BW), at d6 pi. Infected birds on the M 

compared to the A diets had significantly lower values (P < 0.05) for tibia length/BW, which 

were statistically similar to values for control birds irrespective of Ca/P level in the diet. 

Infection significantly increased (P < 0.05) femur length/BW, as well as femur width/BW at 

d6 and 12 pi (Table 4.7). Infection also significantly increased (P < 0.05) tibia length/BW at 

d6 and 12 pi and tibia width/BW at d6 pi (Table 4.8).  

Dietary Ca/P level affected tibia and femur linear growth only at d6 pi. M compared to A 

diets significantly reduced (P < 0.05) width/BW of tibia and femur (Tables 4.7 and 4.8). 

Breaking strength in proportion to BW 

Ca/P level in diet interacted with infection status (P = 0.024) for tibia BS in proportion to 

body weight d12 pi. C birds offered A compared to M diets had significantly higher values (P 

< 0.05), whereas BS/BW of infected A and M birds were statistically similar (Figure 4.2). 

Infection significantly reduced BS/BW (P < 0.05) of tibia and femur only at d12 pi. M diet 

reduced (P < 0.05) tibia and femur BS/BW compared to A diet at d6 pi. BS/BW values 



97 
 

remained lower (P < 0.05) for tibia and femur of M- than A-fed broilers at d12 pi (Tables 4.7 

and 4.8). 

Weight/length (Seedor) and robusticity indices  

Dietary Ca/P level interacted with infection status (P < 0.05) for tibia and femur seedor and 

robusticity indices only at d12 pi. In general, results of both indices suggest that tibia and 

femur density amongst birds receiving the A diet were significantly higher (P < 0.05) for the 

C than the I birds. On the other hand, tibia and femur density were statistically similar (P > 

0.05) for C and I birds receiving the M diet. Infection reduced (P < 0.05) seedor index of tibia 

and femur at d12 pi, whereas the main effect of dietary Ca/P level on tibia and femur seedor 

or robusticity indices was not statistically significant (P > 0.05).   

Ash percentage and ash in proportion to BW 

VitD source and Ca/P level interacted (P < 0.05) for tibia AP and ash/BW only at d12 pi. 

Amongst birds receiving OHD diets, AP and ash/BW values were significantly reduced (P < 

0.05) for birds offered the M compared to the A diets. These reduced values for MOHD birds 

were at statistically similar levels as the AP and ash/BW values for birds receiving MD3 and 

AD3 diets (Figure 4.4A and B).  

Infection reduced (P < 0.05) tibia ash/BW only at d12 pi, and AP at d6 and d12 pi for I in 

comparison to C birds (Table 4.8). Dietary Ca/P level affected (P < 0.05) tibia ash/BW at d6 

and 12 pi, and tibia AP at d6 pi. M- compared to A-fed broilers had reduced (P < 0.05) tibia 

Ash/BW at d6 and 12 pi, as well as AP at d6 pi (Table 4.8).  
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Table 4. 2 Main effects of source of VitD supply (D3 vs OHD) and Ca/P level (M = 6.1:3.1 vs A = 8.7:4.4 

g/kg) on body weight (BW, g) at d10 and 12 of age, and on average daily feed intake (ADFI, g/d), average 

daily gain (ADG, g/d) and feed conversion ratio (FCR, ADFI/ADG) of broiler chickens pre-infection with E. 

maxima 

      Pre-infection  

 
d0 to10 of age    d11 to 12 of age   

ADG ADFI FCR  BWd10  ADG ADFI FCR  BWd12 

Level M NA NA NA   378   58.4 74.3 1.28   495 

A NA NA NA  373  55.5 70.5 1.27  484 

Source D3 32.7 36.4 1.11  372  57.8 72.6 1.26  488 

OHD 33.4 36.6 1.10  379  56.1 72.2 1.29  491 

  SEM 0.288 0.287 0.00591  2.96  1.08 0.943 0.0171  4.01 

   Probabilities 

Level NA NA NA  0.242  0.069 0.006 0.890  0.067 

Source 0.124 0.734 0.122  0.135  0.246 0.781 0.193  0.628 

Level × Source NA NA NA   0.201   0.187 0.061 0.893   0.105 

SEM: Pooled standard error of the mean. NA means not applicable
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Table 4. 3 Main effects of dietary VitD source (D3 vs OHD), Ca/P level (M = 6.1:3.1 vs A = 8.7:4.4) and infection status 

on body weight at infection (BWd0pi), and d12 post-infection (BWd12pi), and on average daily gain (ADG, g/d), feed 

intake (ADFI, g/d) and feed conversion ratio (FCR, ADFI/ADG) over the post-infection period (d1 to d12 pi). Broiler 

chickens orally inoculated with 0 (Control) or 7000 sporulated oocysts of E. maxima (Infected) at d12 post-hatch. 

      Post-infection period (d1 to 12pi) 

 
BWd0pi 

(g) 

BWd12pi 

(g) 
Bwd12pi/BWd0pi 

ADFI 

(g/d) 

ADG 

(g/d) 

ADFI/ 

BWd0pi 

ADG/ 

BWd0pi 
FCR 

Level M 495 1510 3.05 119 84.6 0.241 0.171 1.85 

A 483 1461 3.03 115 81.5 0.238 0.169 1.86 

Source D3 488 1476 3.03 116 82.4 0.237 0.169 1.79 

OHD 490 1494 3.05 118 83.6 0.242 0.171 1.92 

Infection Control 484 1582 3.27 122 91.5 0.253 0.189 1.69 

Infected 493 1389 2.81 112 74.5 0.226 0.151 2.02 

  SEM 3.98 14.2 0.0208 1.84 0.993 0.00288 0.00175 0.078 

   Probabilities 

Level 0.042 0.020 0.353 0.111 0.037 0.493 0.387 0.975 

Source 0.758 0.378 0.400 0.331 0.391 0.302 0.465 0.262 

Infection 0.100 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.005 

Level × Source 0.065 0.503 0.165 0.145 0.799 0.513 0.195 0.433 

Level × Infection 0.825 0.245 0.133 0.142 0.125 0.067 0.078 0.332 

Source × Infection 0.740 0.342 0.359 0.287 0.223 0.218 0.249 0.336 

Level × Source × Infection 0.167 0.131 0.760 0.407 0.210 0.941 0.863 0.548 

SEM: Pooled standard error of the mean 

The period from d1 to 12 pi equates to d12 to 24 of age 
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Table 4. 4 Main effects of source of VitD supply (D3 vs OHD), Ca/P level (M = 6.1:3.1 vs A = 8.7:4.4 g/kg) and infection status on 

average daily feed intake (ADFI, g/d), average daily gain (ADG, g/d) and feed conversion ratio (FCR, ADFI/ADG) during the early 

(d0 to 6pi) and late (d7 to 12pi) stages post-infection (pi). Broiler chickens orally inoculated with 0 (Control) or 7000 sporulated oocysts 

of E. maxima (Infected) at d12 post-hatch. 

 

Early stage (d0 to 6pi)  Late stage (d7 to 12pi) 

ADFI 

(g/d) 

ADG 

(g/d) 

ADFI/ 

BWd0pi 

ADG/ 

BWd0pi 
FCR   

ADFI 

(g/d) 

ADG 

(g/d) 

ADFI/ 

BWd0pi 

ADG/ 

BWd0pi 
FCR 

Level 
M 101 74.2 0.204 0.150 1.37   137 94.0 0.278 0.190 1.50 

A 96.6 71.6 0.200 0.148 1.37  133 91.8 0.276 0.190 1.47 

Source 
D3 97.9 72.6 0.201 0.149 1.35  134 91.8 0.274 0.188 1.50 

OHD 99.7 73.1 0.203 0.149 1.39  137 94.0 0.280 0.192 1.47 

Infection 
Control 102 78.9 0.211 0.163 1.30  143 104 0.295 0.216 1.39 

Infected 95.5 66.8 0.193 0.135 1.44  128 81.5 0.259 0.165 1.58 

  SEM 1.74 1.05 0.00284 0.00173 0.0189  2.29 1.40 0.00381 0.00268 0.015 

   Probabilities 

Level 0.076 0.086 0.290 0.478 0.741  0.224 0.267 0.805 0.992 0.100 

Source 0.455 0.712 0.473 0.793 0.172  0.320 0.263 0.302 0.321 0.224 

Infection 0.011 <0.001 <0.001 <0.001 <0.001  <0.001 <0.001 <0.001 <0.001 <0.001 

Level × Source 0.094 0.294 0.291 0.993 0.070  0.284 0.841 0.840 0.155 0.293 

Level × Infection 0.341 0.113 0.260 0.052 0.337  0.102 0.336 0.052 0.307 0.531 

Source × Infection 0.206 0.084 0.151 0.059 0.436  0.455 0.693 0.426 0.825 0.905 

Level × Source × Infection 0.724 0.084 0.972 0.305 0.395   0.288 0.442 0.669 0.893 0.680 

SEM: Pooled standard error of the mean. 

The period from d0 to 6pi and d7 to 12pi equates to d12 to 18, and d19 to 24 of age, respectively. 
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Table 4. 5 Main effects of source of VitD supply (D3 vs OHD), Ca/P level (M = 6.1:3.1 vs A = 8.7:4.4 g/kg) and infection status 

on concentration of Calcium (mmol/l), Phosphorus (mmol/l) and log-transformed 25-hydroxycholecalciferol (OHD; ng/ml) in 

blood plasma on days 6 and 12 post-infection (pi). Broiler chickens orally inoculated with 0 (Control) or 7000 sporulated oocysts 

of E. maxima (Infected) at d12 post hatch, 

 
Calcium (mmol/l)   Phosphorus (mmol/l)   

25-hydroxy 

cholecalciferol(ng/ml)1 

d6pi d12pi  d6pi d12pi  d6pi d12pi 

Level 
M 2.73 2.86   1.82 1.86   2.08 1.91 

A 2.75 2.87  1.78 1.92  1.99 1.92 

Source 
D3 2.71 2.86  1.76 1.91  1.78 1.67 

OHD 2.78 2.87  1.84 1.87  2.29 2.15 

Infection 
Control 2.90 2.85  1.88 1.89  2.09 2.10 

Infected 2.58 2.88  1.71 1.89  1.98 1.73 

  SEM 0.0301 0.0255  0.0371 0.0400  0.0373 0.0479 

   Probabilities 

Level 0.691 0.723  0.436 0.312  0.098 0.883 

Source 0.099 0.740  0.125 0.534  <0.001 <0.001 

Infection <0.001 0.311  0.003 0.889  0.036 <0.001 

Level × Source 0.765 0.936  0.122 0.742  0.268 0.082 

Level × Infection 0.903 0.418  0.067 0.624  0.516 0.477 

Source × Infection 0.014 0.623  0.536 0.698  0.141 0.411 

Level × Source × Infection 0.598 0.900   0.701 0.634   0.711 0.546 

1Log-transformed values.  

SEM: Pooled standard error of the mean. 

D6 and 12 pi equate to d18 and 24 of age, respectively. 

See Figure 4.1 for a graphical illustration of the interaction (P = 0.014) between VitD source and infection status on plasma Ca concentration at d6pi. 
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Figure 4. 1 Interaction between dietary VitD source (D3 and OHD) supplemented at 4000 IU/kg and infection 

status on plasma calcium concentration at d6 post-infection. Broilers chickens orally inoculated with 0 (Control) 

or 7000 sporulated oocysts of E. maxima (Infected) at d12 post-hatch,  
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Table 4. 6 Main effects of source of VitD supply (D3 vs OHD), Ca/P level (M = 6.1:3.1 vs A = 8.7:4.4 g/kg) and infection status on small intestine morphology on days 6 and 12 post-infection (pi). 

Broiler chickens orally inoculated with 0 (Control) or 7000 sporulated oocysts of E. maxima (Infected) at d12 post-hatch. 

      Duodenum   Jejunum   Ileum 

Experimental factors 

Villi length 

(μm) 

Crypt depth 

(μm) 
Villi/Crypt ratio  

Villi length 

(μm) 

Crypt depth 

(μm) 

Villi/Crypt 

ratio 
 

Villi length 

(μm) 

Crypt depth 

(μm) 
Villi/Crypt ratio 

d6pi d12pi d6pi d12pi d6pi d12pi   d6pi d12pi d6pi d12pi d6pi d12pi   d6pi d12pi d6pi d12pi d6pi d12pi 

Level 
M 1767 2016 255 204 9.15 11.0  880 1135 226 175 5.44 6.70  634 711 159 136 4.49 5.39 

A 1766 2131 268 185 8.57 12.1  957 1174 248 177 5.48 6.81  640 700 162 140 4.28 5.37 

Source 
D3 1761 2070 264 212 8.89 10.9  952 1140 239 183 5.69 6.42  626 711 162 135 4.25 5.48 

OHD 1772 2077 260 176 8.83 12.2  886 1168 234 169 5.23 7.09  647 700 158 141 4.53 5.27 

Infection 
Control 2113 2156 153 183 13.8 13.2  1099 1142 126 156 8.73 7.43  617 697 116 114 5.45 6.21 

Infected 1420 1991 370 205 3.88 9.90  738 1167 347 197 2.19 6.07  657 714 205 163 3.32 4.54 

  SEM 39.6 51.0 6.96 15.4 0.244 0.455  29.6 42.9 8.25 7.14 0.176 0.254  19.7 19.7 7.69 5.99 0.179 0.224 

   Probabilities 

Level 0.998 0.119 0.181 0.384 0.098 0.108  0.073 0.525 0.070 0.864 0.860 0.758  0.836 0.708 0.829 0.688 0.417 0.957 

Source 0.855 0.917 0.673 0.107 0.854 0.054  0.121 0.641 0.693 0.161 0.069 0.068  0.461 0.698 0.739 0.471 0.295 0.512 

Infection <0.001 0.028 <0.001 0.308 <0.001 <0.001  <0.001 0.683 <0.001 <0.001 <0.001 0.001  0.177 0.859 <0.001 <0.001 <0.001 <0.001 

Level × Source 0.070 0.457 0.318 0.871 0.223 0.645  0.821 0.122 0.962 0.356 0.347 0.535  0.966 0.103 0.475 0.155 0.294 0.392 

Level × Infection 0.853 0.388 0.806 0.247 0.213 0.690  0.320 0.306 0.362 0.235 0.128 0.657  0.668 0.968 0.571 0.598 0.506 0.842 

Source × Infection 0.559 0.906 0.338 0.280 0.693 0.266  0.754 0.137 0.473 0.589 0.488 0.794  0.864 0.379 0.945 0.588 0.815 0.383 

Level×Source×Infection 0.100 0.187 0.579 0.164 0.112 0.072   0.695 0.853 0.482 0.757 0.628 0.966   0.629 0.590 0.780 0.554 0.661 0.325 

SEM: Pooled standard error of the mean. 

D6 and 12 pi equate to d18 and 24 of age, respectively. 
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Table 4. 7 Main effects of source of VitD supply (D3 vs OHD), Ca/P level (M = 6.1:3.1 vs A = 8.7:4.4 g/kg) and infection status on femur 

length (mm), width (mm) and breaking strength (N) in proportion to body weight (BW; cg) as well as seedor and robusticity indices on d6 and 

12 post-infection (pi). Broiler chickens orally inoculated with 0 (Control) or 7000 sporulated oocysts of E. maxima (Infected) at d12 post-hatch, 

      Femur 

Experimental factors 

Length/BW 

(mm/cg) 
Width/BW (mm/cg) 

Breaking 

Strength/BW 

(N/cg) 

Seedor index Robusticity index 

d6pi d12pi d6pi d12pi d6pi d12pi d6pi d12pi d6pi d12pi 

Level 
M 5.95 4.28 0.687 0.512 146 122 80.0 113 3.41 3.35 

A 6.16 4.40 0.719 0.521 171 140 81.7 112 3.39 3.33 

Source 
D3 6.01 4.36 0.691 0.513 164 130 80.2 113 3.41 3.36 

OHD 6.10 4.32 0.715 0.520 153 132 81.6 112 3.39 3.33 

Infection 
Control 5.80 4.15 0.684 0.498 162 140 82.1 115 3.40 3.36 

Infected 6.32 4.53 0.722 0.535 155 122 79.7 110 3.40 3.32 

  SEM 0.0767 0.0646 0.0101 0.0067 5.04 3.77 1.23 1.63 0.0182 0.0173 

   Probabilities 

Level 0.070 0.203 0.030 0.344 0.002 0.002 0.339 0.932 0.490 0.597 

Source 0.441 0.656 0.104 0.458 0.124 0.685 0.454 0.725 0.534 0.246 

Infection <0.001 <0.001 0.011 <0.001 0.338 0.002 0.168 0.034 0.705 0.186 

Level × Source 0.583 0.944 0.674 0.650 0.589 0.052 0.454 0.383 0.653 0.805 

Level × Infection 0.078 0.251 0.636 0.064 0.477 0.596 0.294 0.037 0.595 0.048 

Source × Infection 0.634 0.370 0.639 0.350 0.509 0.316 0.472 0.066 0.736 0.217 

Level × Source × Infection 0.235 0.859 0.941 0.363 0.136 0.470 0.157 0.326 0.187 0.341 

SEM: Pooled standard error of the mean. 

D6 and 12 pi equate to d18 and 24 of age, respectively. 
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Table 4. 8 Effects of source of VitD supply (D3 vs OHD), Ca/P level (M = 6.1:3.1 vs A = 8.7:4.4 g/kg) and infection status on tibia length (mm), width (mm), 

breaking strength (N) and ash weight (mg) in proportion to body weight (BW; cg) as well as ash percentage, seedor and robusticity indices on d6 and 12 post-

infection (pi). Broiler chickens orally inoculated with 0 (Control) or 7000 sporulated oocysts of E. maxima (Infected) at d12 post-hatch. 

      Tibia     

Experimental factors 

Length/BW 

(mm/cg) 

Width/BW 

(mm/cg) 

Breaking 

Strength/BW 

(N/cg) 

Seedor index 
Robusticity 

index 
Ash/BW (mg/g) Ash percentage 

d6pi d12pi d6pi d12pi d6pi d12pi d6pi d12pi d6pi d12pi d6pi d12pi d6pi d12pi 

Level 
M 8.01 5.80 0.619 0.450 214 167 86.7 118 4.05 4.04 0.904 0.909 50.1 50.5 

A 8.23 5.96 0.66 0.455 236 191 86.8 115 4.04 4.04 1.00 0.995 51.7 51.2 

Source 
D3 8.07 5.90 0.639 0.455 227 176 86.4 117 4.05 4.04 0.951 0.946 51.0 50.5 

OHD 8.17 5.86 0.640 0.451 224 182 87.1 115 4.04 4.04 0.955 0.958 50.8 51.2 

Infection 
Control 7.83 5.62 0.623 0.454 230 207 87.8 121 4.06 4.03 0.969 0.992 51.4 52.5 

Infected 8.42 6.15 0.656 0.452 220 151 85.7 111 4.03 4.06 0.937 0.911 50.4 49.2 

  SEM 0.0858 0.0794 0.00965 0.00722 6.01 4.05 1.15 1.78 0.0164 0.017 0.0154 0.0152 0.321 0.308 

   Probabilities 

Level 0.081 0.180 0.006 0.605 0.013 <0.001 0.952 0.338 0.674 0.928 <0.001 <0.001 0.001 0.080 

Source 0.394 0.761 0.992 0.672 0.734 0.306 0.701 0.398 0.690 0.909 0.868 0.587 0.593 0.172 

Infection <0.001 <0.001 0.023 0.851 0.254 <0.001 0.189 <0.001 0.216 0.294 0.145 0.001 0.042 <0.001 

Level × Source 0.426 0.865 0.870 0.734 0.776 0.602 0.143 0.214 0.834 0.274 0.831 0.023 0.740 0.022 

Level × Infection 0.035 0.335 0.084 0.095 0.965 0.024 0.715 0.017 0.363 0.008 0.391 0.528 0.763 0.933 

Source × Infection 0.393 0.348 0.863 0.109 0.502 0.83 0.471 0.143 0.432 0.144 0.750 0.396 0.710 0.904 

Level × Source × Infection 0.171 0.789 0.965 0.326 0.805 0.143 0.123 0.284 0.126 0.965 0.501 0.812 0.948 0.477 

SEM: Pooled standard error of the mean. 

D6 and 12 pi equate to d18 and 24 of age, respectively. 

See Figures 4.2 and 4.3 for a graphical illustration of significant interactions (P < 0.05) between the experimental factors on bone mineralisation parameters at d12pi.  
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Figure 4. 2 Interaction between dietary Ca:P level (A = 8.7:4.4 vs M = 6.1:3.1) and infection status on tibia bone 

breaking strength in proportion to body weight (BS/BW) at d12 post-infection. Broilers chickens orally 

inoculated with 0 (Control) or 7000 sporulated oocysts of E. maxima (Infected) at d12 post-hatch.  
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Figure 4. 3 Interaction between dietary VitD source (D3 and OHD) supplemented at 4000 IU/kg and dietary 

Ca:P level (A = 8.7:4.4 vs M = 6.1:3.1) on tibia ash percentage (A) and ash in proportion to body weight (B) at 

d12 post-infection. Broiler chickens orally inoculated with 0 (Control) or 7000 sporulated oocysts of E. maxima 

(Infected) at d12 post-hatch.  
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4.5 Discussion 

This study aimed at inducing a marginal Ca and P deficiency in growing broilers to test the 

hypothesis that dietary VitD supplementation at 4000 IU/kg using OHD instead of D3 will 

enhance long bone mineralisation and productive performance of broilers on such diets during 

coccidiosis. By this hypothesis, more pronounced effects of VitD source was also expected in 

the coccidiosis-infected than in the uninfected broilers. Furthermore, a 3-way interaction 

between VitD source, Ca/P level and infection status, as well as a 2-way interaction between 

VitD source and Ca/P level, for parameters of long bone mineralisation and performance of 

broilers was anticipated in this study. The higher biological potency of OHD in mediating 

VitD activity compared to D3 (Wagonfeld et al., 1976; Reed et al., 1980; Fritts and 

Waldroup, 2003), and the observed penalties on bone mineralisation following malabsorptive 

coccidian infections [Chapters 2 and 3] formed the basis of the hypothesis. In addition, the 

present study investigated the effect of 4000 IU/kg dietary OHD compared to D3 

supplementation on parasite replication and gut integrity during broiler coccidiosis. 

Although the analysed OHD levels (section 4.3.4) in the experimental diets were consistently 

lower than the intended values, the cause of this may likely be analytical as observed in 

chapter 3: the same laboratory and equipment were used to analyse feed samples in both 

studies. Notwithstanding, blood OHD concentration, which is considered to be the most 

reliable indicator of dietary VitD intake (Hollis, 2005; Autier et al., 2014), were consistently 

and significantly higher for broilers receiving the OHD compared to the D3 diets in 

accordance with the aims and hypothesis of the study. Therefore, the results presented herein 

can be discussed confidently without any reservations in this regard. Also, the effects of the 

Ca/P levels on parameters of long bone mineralization, which was significantly reduced for 

the M compared to the A-fed broilers, were as expected for femur and tibia BS (d6 and 12 pi), 

as well as tibia ash weight (d6 and 12pi) and ash percentage (d6pi). Furthermore, E. maxima 

infection significantly impaired performance and long bone mineralisation, and altered gut 

morphological features, as observed in chapters 2 and 3.  

In the present study, circulating OHD was assessed as a marker for VitD status because it is 

the main storage form of VitD in animals and research has shown that it is a more accurate 

indicator of VitD nutritional status than the biologically active metabolite, 1,25D3 (Yarger et 

al., 1995; Young et al., 1997; Norman, 2008). A reason for the above is that the formation 

process of OHD from D3 in the liver is not regulated, so blood level rightly reflects dietary 

intake. Conversely, renal or extra-renal production of 1,25D3 from OHD is tightly regulated; 
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being influenced by several factors including circulating Ca, P and parathyroid and other 

related hormones (Holick, 2005; Hollis and Horst, 2007; Autier et al., 2014).  

The poorer performance, regarding BW, ADG, ADFI, and FCR, of the I than the C broilers 

reported herein, is traceable to several factors including pathogen-induced anorexia 

(Kyriazakis, 2014), impaired nutrient absorption and utilization (Hernández-Velasco, et al., 

2014; Preston-Mafham and Sykes, 1970; Rochell, et al., 2016) associated with the parasite-

induced morphological alterations in the small intestine [Chapter 3]. The penalised 

performance may also be attributed to the activation of an immune response (Allen, 1997) 

amongst other disease-related expenditures such as altered expression of nutrient transporters 

and digestive enzymes in the intestine (Su et al., 2015).   

The absence of an effect of dietary Ca/P level on relative ADG and ADFI in the current study 

was anticipated. This is because 25 to 33% and 15 to 23% reductions of dietary total Ca and 

of avP respectively, below the recommended levels (Aviagen, 2014a), whilst maintaining a 

Ca/P ratio close to 2:1, have not previously penalised growth performance in growing broilers 

(10 to 30 days of age) (Delezie et al., 2012; Delezie et al., 2015; Valable et al., 2018). Valable 

et al. (2018) suggested that this lack of effect on growth performance is because a decrease in 

Ca and avP at the levels mentioned above reduces lean body content and increases body fat 

content. It is expected that effects on bone mineralisation would be seen before the impact on 

performance because Ca and P requirements for mineralisation exceed those for lean body 

mass development (Larbier and Leclercq, 1992).  

The absence of a significant 3-way interaction between Ca/P level, VitD source and infection 

status for any of the measured variables in this study led to the rejection of the hypothesis of 

this study. Therefore, the results suggested a similar effect of dietary OHD and D3 supplied at 

4000 IU/kg, on long bone quality, growth performance, and gut morphology of broilers 

infected with E. maxima or not. Previous studies (Fritts and Waldroup, 2003; Sakkas et al., 

2018) had reported a similar capacity for OHD and D3 to mediate VitD activities in healthy 

birds when supplied at the level in the current study. It is unclear why the effects of OHD and 

D3 on bone mineralisation did not differ due to coccidian infection that led to impaired Ca 

and P status, amongst birds offered deficient or adequate Ca/P diets. However, this suggests 

that coccidiosis also impairs the utilisation of these nutrients for bone mineralisation.  

The infection-induced reductions in plasma concentrations of Ca, P and OHD in the current 

study are consistent with the previous findings [Chapter 3]. In the present study, VitD source 

did not affect plasma Ca levels in infected broilers, whereas OHD- in comparison to D3-fed 
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broilers had higher plasma Ca concentration amongst uninfected broilers. This interaction 

between VitD source and infection status that occurred for plasma Ca at d6pi (Figure 4.1) was 

implicated in the similar Ca/P level and infection status interaction that occurred for tibia BS 

at d12pi (Figure 4.2). It was also connected with the 2-way interaction between VitD source 

and Ca/P level for tibia AP and AW/BW at d12pi in this study: values for AD3, MD3 and 

MOHD were statistically similar but significantly lower than AOHD (Figure 4.3). The 

specific mechanism by which OHD and D3 diets can have similar effects on plasma Ca status 

for coccidia-infected, but not for healthy broilers, as shown in the current study remains 

unclear. However, similar to the effects of phytase reported in Watson et al. (2005), these 

results suggest that OHD compared to D3 is more efficient in improving Ca and P absorption 

in the absence of coccidiosis, and that Ca and P utilisation may be impaired by coccidiosis. 

The above finding for the control birds agreed with the hypothesis of the current study, but 

that of the infected birds warrants further investigations.  

As expected, the OHD- compared to the D3-fed broilers had significantly higher OHD 

concentration in blood plasma at d6 and 12pi, but this was the case irrespective of bird 

infection status and dietary Ca/P level. Although plasma OHD status of birds may be 

influenced by VitD content of the diet ingested, there is no evidence to suggest any 

correlation between concentrations of blood OHD and its biologically active metabolite, 

1,25D3, in broilers (Yarger et al., 1995). In line with Yarger et al. (1995), despite the higher 

plasma OHD concentration for the OHD- than the D3-fed broilers, the effects of VitD source 

on measured variables did not always reflect this in the current study. This offers a likely 

explanation as to why the main effect of VitD source was not significant for parameters of 

bone mineralisation (BS/BW, Ash/BW, and AP) or development (linear growth and density) 

in this study. However, the OHD and A diet combination in comparison to the other diet 

combinations significantly increased long bone mineralisation for broilers as discussed in the 

preceding paragraph. 

Consistent with the delayed effect of infection on bone strength in relation to the performance 

reported in chapters 2 and 3, E. maxima infection significantly weakened long bone BS of 

broilers at d12pi in the current study. There was a corresponding significant reduction in tibia 

AP for the infected than uninfected broilers at d6 and 12pi and Ash/BW at d12pi. However, 

contrary to expectations, dietary OHD and D3 supplemented at 4000 IU/kg affected bone 

mineralisation to a similar degree in both infected and control broilers. This conflicting 

evidence likely stem from the fact that the higher potency of OHD compared to D3 is better 

displayed when offering diets with suboptimal (< 500 IU/kg) VitD levels (Fritts and 
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Waldroup, 2003; Fritts et al., 2004; Fritts and Waldroup, 2005). Similar to the findings herein, 

previous studies reported a reduction in bone mineral content, AP in dry defatted bone, and 

BS in the absence of effects on performance when offering diets with suboptimal levels of Ca 

and avP at a steady 2:1 ratio (Yan et al., 2005; Valable et al., 2018). 

The significantly higher parasite burden for OHD than D3 broilers observed in chapter 3 was 

absent in the current study, although the total parasite replication was almost double in this 

study. However, the results herein are in line with the previous report that dietary D3 and 

OHD mediate VitD functions similarly when supplemented at 4000 IU/kg (Fritts and 

Waldroup, 2003; Fritts et al., 2004; Sakkas et al., 2018). A possible reason why 4000 IU/kg 

OHD and D3 diets had similar effects on parasite replication in this study may be connected 

to the significantly higher parasite load herein. It may be the case that VitD 

immunomodulatory effects are more pronounced at lower levels of E. maxima replication, or 

that the outcome of a higher level of infection was influenced by the Eimeria crowding effect 

(Williams, 2001), possibly negating any experimental differences. Further studies will unravel 

this, as the scientific literature has no specific information to offer regarding this issue. 

In conclusion, E. maxima infection and offering marginally deficient diets in Ca/P reduced 

bone mineralisation. Broilers offered OHD as the source of dietary VitD and adequate Ca/P 

diets showed the highest degree of bone mineralisation. However, the hypothesis that high-

level (4000 IU/kg) dietary OHD instead of D3 supplementation will enhance mineralisation to 

a higher degree for broilers during E. maxima infection was rejected as both sources had 

similar effects on parameters of long bone mineralisation of broilers in the presence or 

absence of coccidiosis. This suggests that the high-level OHD and D3 diets used in 

commercial broiler production might not affect E. maxima replication differently.  
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Chapter 5: Effects of reducing early growth rate via diet dilution on bone 

development, performance and relative carcass yield of coccidia-infected 

broilers 

5.1 Summary 

Coccidia infection and genetic selection for faster growth rate (GR) compromise long bone 

quality in modern broiler chickens [Chapter 2]. The hypothesis that artificial reduction in GR 

via diet dilution with lignocellulose during peak bone development will improve bone 

mineralisation in both coccidiosis-infected and uninfected broilers was tested in this study. 

Male Ross 308 day-old chicks totalling 384 were allocated to a basal grower diet (3107 

kcal/kg ME and 19.4% CP) diluted with 0, 5, 10 or 15% lignocellulose at d10 of age. Before 

this, birds in each group received half the intended diet-dilution levels from d8 to 10 of age, 

and a standard starter diet from d1 to 7 of age. At d13 of age (d0 post-infection, pi), birds 

were orally inoculated with either 7000 sporulated Eimeria maxima oocysts (I) or water (C), 

forming a 4 diet-dilution level × 2 infection status factorial experiment. Each treatment group 

consisted of 6 replicate pens with 8 birds per pen. Broiler performance was evaluated using 

average daily feed intake (ADFI) and average daily gain (ADG) measured over 12 days pi and 

scaled to BW at infection (d0 pi). The scaling was done to account for a priori BW 

differences due to diet dilution. ADFI and ADG relative to BW were also assessed over the 

early (d1 – 6 pi) and late (d7 – 12 pi) stages of infection. At d12 pi (d25 of age), 6 birds per 

treatment combination were sampled to assess tibia and femur mineralisation relative to BW, 

as well as carcass yield. There was no interaction (P > 0.1) between infection status and diet-

dilution level on ADFI/BW measured over d1 – 12 pi, or on any bone variable. ADG/BW pi 

decreased (P < 0.01) with diet dilution amongst C birds, but was statistically similar (P > 

0.05) amongst I birds. I compared to C birds had reduced breast meat (P < 0.05) and 

eviscerated carcass yield (P < 0.01), femur (P < 0.05) and tibia (P < 0.01) relative breaking 

strength (BS/BW), and femur relative ash weight (ash/BW) (P < 0.05). Diet dilution with 

lignocellulose did not affect carcass yield, but improved femur BS/BW (P < 0.001), and 

tended to improve (0.05 < P < 0.1) femur and tibia Ash/BW. Overall, diet dilution 

significantly affected more femur than tibia variables: relative BS, robusticity index, and ash 

percentage. Artificial diet-dilution induced reduction in GR affected marker of long bone 

mineralisation to a similar degree in the presence or absence of coccidiosis in broilers.  
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5.2 Introduction 

Intensive genetic selection for performance in modern broilers has increased GR, such that the 

time required to reach 2 kg BW reduced by 3 weeks between the 1950s and 2014 (Tallentire 

et al., 2016), but at the same time appears to have compromised skeletal development and 

integrity (Julian, 1998; Pratt and Cooper, 2018). Rapid GR causes rapid periosteal bone 

deposition, impaired mineralisation, altered biomechanical properties and radial vascular 

canal orientation, which increases the porosity of the cortical bone (Williams et al., 2004; 

Pratt and Cooper, 2018). Skeletal problems, particularly those affecting leg bones are 

associated with chronic pain in broilers that negatively affect their welfare (Julian, 1998; 

Danbury et al., 2000; Dibner et al., 2007). Moreover, their increased prevalence causes 

substantial financial losses due to lameness, which limits bird access to feed (Knowles et al., 

2008) and increased mortality, and culling rates due to leg fractures and vertebral column 

abnormalities, as well as increased carcass condemnations caused by muscle haemorrhage and 

the presence of bone fragments in meat portions (Driver et al., 2006; Knowles et al., 2008; 

Pines and Reshef, 2015). 

Broilers with slow compared to fast GR have lower incidence of leg disorders (Corr et al., 

2003b; Caplen et al., 2012; Kapell et al., 2012a), better adaptation to increased mechanical 

load (Pitsillides et al., 1999), higher bone ash and reduced occurrence of cortical bone 

porosity (Leterrier and Nys, 1992; Williams et al., 2004; Pratt and Cooper, 2018). Chapter 2 

revealed a similar bone ash percentage (AP), but a higher amount of ash in proportion to body 

weight (ash/BW) and improved femur strength for the slower-growing of two broiler lines 

divergently selected for GR. Generally, studies suggest that the axial bone of fast-growing 

modern-day broilers remains under development throughout its lifetime, never reaching the 

stage of homeostasis and remodeling as seen in other vertebrates (Rath et al., 2000; Roberson 

et al., 2005), and factors including infection, flock management system and nutrition affect 

healthy bone development (reviewed in Kierończyk et al. (2017)).  

Bone development in broilers is at the peak during the first three weeks of life (Lilburn, 1994; 

Williams et al., 2000). Reducing GR during this period may facilitate bone development in 

fast-growing broilers. GR reduction via feed restriction has been shown to improve bone 

mineralisation, skeletal development and impact positively on the bone quality of healthy 

broilers (Pratt and Cooper, 2018). Quantitative feed restriction as a means of delaying GR 

achieved lower bone porosity and higher mineralisation (Williams et al., 2004). However, this 

methodology raises welfare concerns due to the association of chronic hunger with prolonged 
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restrictions (Tolkamp and D’Eath, 2016). Another effective method of GR reduction is the use 

of qualitative feed restriction which involves diluting the diet with an inert ingredient or with 

feed ingredients of low nutritional value (Rezaei and Hajati, 2010; Atapattu and Silva, 2016; 

Xu et al., 2017). This method reduces the adverse effects of starvation or chronic hunger on 

broiler welfare that are associated with the quantitative restriction method. 

Coccidiosis penalises bone mineralisation by limiting intestinal absorption and utilisation of 

vital bone minerals (Turk, 1973; Turk, 1978) [Chapter 2], as well as increasing bone 

resorption in broilers (Akbari Moghaddam Kakhki et al., 2018). Chapters 2 to 4 showed that 

significant effects of malabsorptive coccidiosis on bone mineralisation are delayed until the 

later stages (beyond 12 days) of infection. This suggests that previous studies may have 

underestimated the adverse effect of coccidiosis on broiler bone mineralisation as they 

typically assess bone mineralisation within the first 6 days post-infection (pi) when productive 

performance is grossly impaired (Blake and Tomley, 2014).  

In the present study, the aim was to investigate whether a diet-dilution induced reduction in 

early GR, i.e. during weeks 2 and 3 of age when bone development peaks, would improve 

bone mineralisation of broilers in the presence, as in the absence, of coccidiosis. Grower diets 

were diluted with lignocellulose, an inert substance with high water holding capacity (WHC) 

and no added nutritive value to the feed, to limit the nutrient intake and consequently ADG. 

The hypothesis was that GR reduction would improve parameters of bone mineralisation in 

broilers infected with coccidiosis as in their uninfected counterparts. 

5.3 Materials and Methods 

5.3.1 Birds, Husbandry and Diets 

All procedures were conducted under the UK Animals (Scientific Procedures) Act 1986 and EU 

Directive 2010/63/EU for animal experiments and carried out under Home Office authorisation 

(P441ADF04). Three hundred and eighty-four male Ross 308 chicks were raised from hatch until 

25d old. They were housed in 48 rectangular 0.84 m2 pens situated in a thermostatically controlled 

building at the Newcastle University Cockle Park farm. Each pen was equipped with a tube feeder 

and a bell-drinker offering birds ad libitum access to feed and water throughout the experimental 

trial. Wood shavings to a depth of 5 cm were used as litter. Routine husbandry procedures were 

carried out as described in section 2.3.1 of chapter 2.  

Upon arrival, broilers were allocated to a conventional starter diet until 7 d of age. A basal grower 

diet with 3107 kcal/kg ME and 19.4% CP was diluted at graded levels, i.e. 0, 5, 10 or 15%, of 
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Arbocel ® RC Fine lignocellulose (JRS PHARMA, Rosenberg, Germany) to formulate four 

experimental diets (Table 5.1). The energy to crude protein ratios of the diets was maintained due 

to the inert nature of the diluent. Arbocel is a natural lignocellulose produced from fresh spruce 

trees (Picea species) by JRS PHARMA and is characterised by its high WHC. It was used as 

the feed diluent because of its inert nature and high WHC, which was expected to cause a reduction 

in feed intake and hence GR at the above levels of inclusion in the diet. An adaptation period was 

incorporated from d8 to 10 of age, during which chicks within each diet group were assigned to 

half of their intended diet dilution level, before allocating them to the dietary treatments at 10 d 

of age. All diets were offered as a coarse mash passed through a 5 mm screen. 

5.3.2 Experimental design and inoculations  

The experiment had a 4 × 2 factorial arrangement with four feeding treatments and two infection 

statuses. Birds were assigned to diets diluted with 0, 5, 10 or 15% lignocellulose (R0 – R3 

respectively) at d10 of age. At 13 d of age (d0pi), birds were orally inoculated with a single 0.5 

ml dose of water containing either 0 (Control; C) or 7000 (Infected; I) sporulated E. maxima 

oocysts of the Weybridge laboratory reference strain, using 1 ml syringes. The inocula were 

prepared using a previously described method (Pastor-Fernández et al., 2018) as in the 

preceding chapters. Each treatment group was replicated in six pens.    

5.3.3 Sampling  

Bird and feed weight were measured at d0, 6 and 12 pi to evaluate the growth performance of birds 

during the early (d1 to 6 pi) and the late (d7 to 12 pi) stages of infection, and the entire period of 

infection (d1 to 12 pi). To confirm the occurrence of infection, polyethene sheets were placed over 

the wood shavings of each pen for 90 minutes daily from d4 to 10 pi to obtain excreta samples for 

enumerating oocysts per gram (OPG). Approximately 10 g of pooled excreta from each pen were 

collected in screw cap pots and stored at 4°C pending OPG determination.  

One bird/pen weighing close to pen average was selected for carcass yield evaluation at d12 pi. 

Birds were euthanised with a lethal injection of sodium pentobarbitone (Euthatal®, Merial Harlow, 

United Kingdom), and then eviscerated. The weight of eviscerated carcass and portions including 

breast meat, wings, thigh and drumstick were measured using a digital scale. Following carcass 

evaluation, right femur and tibia bones were dissected, defleshed using scalpels, and stored in 

airtight individually labelled polythene bags at -20°C pending evaluation. Long bones were 

sampled at d12 pi because E. maxima-infected broilers experience significantly impaired bone 

mineralisation at d12 pi [Chapters 2 – 4].  
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5.3.4. Sample analysis 

Excreta oocysts count 

Excreta OPG were estimated using the modified McMaster technique (Kaufmann, 2013). After 

thorough mixing of excreta, a 3 g sample was removed for OPG determination and the remaining 

excreta material was freeze-dried to estimate dry matter (DM) content. Sampled material for OPG 

determination was mixed with 42 ml of water and then passed through a 1mm sieve. The 

suspension formed was transferred to a glass tube, centrifuged at 1500 rpm for 2 mins at room 

temperature, the supernatant was carefully siphoned off, and then the underlying pellet was 

vortexed until re-suspended. After that, 10 ml of saturated sodium chloride solution was added, the 

suspension was mixed thoroughly, and a sample taken from the centre of the tube was carefully 

transferred to the chambers of a McMaster counting slide. Slides were left to stand for 10 mins to 

allow the oocysts to rise to the top of the slide, before being read at 100× magnification. Values 

obtained were further expressed per unit gram of excreta DM content to obtain ‘OPG excreta DM.’  

Bone evaluation 

Bones were thawed at 4 oC overnight and placed at room temperature for 1 h before further de-

fleshing of adhering soft tissues. Length and width at the centre of the diaphysis were measured for 

tibia and femur using a digital calliper, and then the weight of each bone was measured using an 

analytical balance. The bones were subjected to a 3-point break test using an Instron testing 

machine (Instron 3340 Series, Single Column-Bluehill) to determine breaking strength (BS) in 

Newtons (N). The testing support consisted of an adjustable 2-point block jig, spaced at 30 mm for 

both tibia and femur bones. The crosshead descended at 30 mm/min until a break was determined 

by measuring a reduction in force of at least 5%. After BS assessment, tibia and femur ash weight 

(AW, g) and AP were determined using a previously described method in section 3.3.4 of 

chapter 3.  
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Table 5. 1 Ingredients and chemical composition (%) of the starter (d0 to 7) and grower (d8 to 25) diets offered 

to broiler chickens.  

 Starter Grower 

Ingredients (%) Basal 
Basal 

(R0) 

Low 

Lignocellulose 

(R1)  

Medium 

Lignocellulose 

(R2) 

High 

Lignocellulose 

(R3) 

Ground Maize 10.0 10.0     9.5   9.0   8.5 

Ground Wheat 51.5 53.9 51.2 48.5 45.8 

Soybean meal (48% CP) 26.0 23.0 21.8 20.7 19.5 

Arbocel (lignocellulose) - -            5           10           15 

Full fat Soya   5.0  5.0    4.75   4.5    4.25 

Limestone     1.25   1.25    1.19     1.13    1.06 

L-Lysine HCL   0.4 0.3    0.29     0.27    0.26 

DL-Methionine   0.4   0.35    0.33     0.32 0.3 

L-Threonine     0.15   0.15    0.14     0.14   0.13 

Soya oil    3.00   3.50    3.33     3.15   2.98 

Monocalcium phosphate    1.50   1.25    1.19     1.13   1.06 

Salt    0.25   0.25    0.24     0.23   0.21 

Sodium bicarbonate   0.15   0.15     0.14    0.14   0.13 

Premix 0.4 0.4   0.4  0.4 0.4 

Titanium dioxide - 0.5   0.5  0.5 0.5 

      

Nutrient composition (%)*   

      

ME (kcal/kg) (calculated) 3059  3107 2940 2796 2629 

Crude protein  21.4  19.4 18.5 17.6 16.9 

Crude fibre   2.9  2.3  4.5  7.2 10.7 

Ether extract (oil A)    5.55    6.59    6.13    5.79     5.53 

Total oil (oil B) -    7.32    6.86    6.51   6.30 

Acid detergent fibre -    3.25    5.61    7.96          11.60 

Neutral detergent fibre  -    8.3          11.5          15.7          21.9 

Acid detergent Lignin -   0.48    1.39    2.45  3.23 

The nutrient composition was in accordance with Aviagen nutrient specifications (Aviagen, 2014a), but the four 

grower diets contained 0, 5, 10 and 15% lignocellulose supplemented at the expense of wheat and soybean meal. 
*Analysed nutrient composition (%) unless otherwise stated.   
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5.3.5 Calculations and Statistics 

All statistical analyses were conducted using IBM SPSS Statistics for Windows, Version 

22.0. (Armonk, NY: IBM Corp). The pen was used as the experimental unit for all statistical 

assessments. Values obtained for ADFI (g/d) and ADG (g/d) were expressed relative to BW (g) at 

infection to account for a priori differences in BW between groups. Carcass yield (%) was 

obtained by expressing the weight of eviscerated carcass and portions including breast meat and 

thigh plus drumstick as a percentage of live BW at dissection (d12 pi). Breast meat and thigh plus 

drumstick were further expressed as a percentage of eviscerated carcass weight to obtain part yield. 

Tibia and femur BS, length and width (mm), and AW measured at d12 pi were expressed in 

proportion to BW at dissection. Robusticity index and AP were calculated for both long bones 

using the prescribed formula (Riesenfeld, 1972). Pen relative performance and bone data generated 

from sampled birds were analysed with dietary treatment and infection status as fixed factors using 

a general linear model. Excreta OPG data was further analysed using repeated measures mixed 

procedure. The model contained diet and day as the factors and the 2-way interaction between diet 

and day. Linear and quadratic responses to diet dilution were determined using orthogonal 

polynomial contrasts for all variables. Treatment means were compared by the Tukey’s multiple 

comparison test, which maintains the desired alpha levels provided the model assumptions such as 

normality and homogeneity of residuals are met. For assessing the normality of the studentized 

residuals, the Shapiro-Wilk test was used, and non-normalized data, such as OPG were log-

transformed. Significance was determined at P < 0.05 and tendency at 0.05 < P < 0.1. 

Furthermore, allometric scaling relationships between tibia (Y) length, width, weight and ash 

weight, and their corresponding measurements for femur (X) bone was determined for broilers in 

all the treatment groups, using reduced major axis (RMA) linear regression. This method accounts 

for variations in both X and Y axes (Rayner, 1985; Sokal and Rolf, 1995). All regression analyses 

were performed on natural log-transformed data to establish the allometric equation: 

  LogY (tibia variable1) = Loga + b LogX (femur variable1) 

Then the difference between slope (b) derived from R0 vs R1, 2 or 3 treatments was assessed 

separately based on infection status (i.e., control and infected) for each variable using prescribed 

formula (Andrade and Estévez-Pérez, 2014). The different slopes derived from R0 in control vs. 

R0 to 3 in infected broilers for length, width, weight and ash weight were calculated using the 

prescribed formula: 

b1 − b2

√SEb12  +  SEb22
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Where b1 and b2 represent the individual slopes and SEb1 and SEb2 were the respective standard 

errors of the slopes.   

5.4 Results 

5.4.1 Bird health and performance variables  

No bird was euthanised due to health-related disorders, and coccidiosis caused anorexia and 

reduced weight gain according to expectations. Results on growth performance are presented for 

BW pre-infection, as well as the early, late, and entire periods pi (Tables 5.2 and 5.3).  

BW pre-infection  

Broilers had similar BW (P > 0.05) at the beginning of the adaptation period, d8 of age. Diet 

dilution led to a reduction (P < 0.05) in the BW of R1, 2 and 3 compared to R0 broilers by 

approximately 7, 9 and 15% respectively (estimated from the main effect of diet on BW d0pi, 

Table 5.2) at the point of infection, d13 of age.  

Relative BW, ADG and ADFI post-infection 

There was a significant interaction (P < 0.05) between diet and infection status for ADFI 

relative to BW (ADFI/BW) during the late stage of infection, relative BW at d12 pi and ADG 

relative to BW (ADG/BW) during the early, late and entire periods pi. During the late period 

of infection, the diluted diets (R1 to 3) had statistically similar effects (P > 0.05) on 

ADFI/BW of C and I birds, while the I compared to the C birds receiving undiluted, R0, diet 

had a lower ADFI/BW (P < 0.05) (Table 5.3). On the other hand, relative BW at d12 pi and 

ADG/BW reduced (P < 0.05) with increasing diet dilution amongst C birds, while values 

were statistically similar (P > 0.05) amongst the I birds.  

Performance at any time point was significantly impaired (P < 0.001) by infection. Diet 

dilution affected ADFI/BW only during the early stage of infection (P < 0.05); R3 compared 

to R0 broilers had significantly higher ADFI/BW, while intake levels relative to BW were 

statistically similar for R0 to 2, as well as R2 and 3 broilers (Table 5.3). Furthermore, diet 

dilution reduced (P < 0.05) BW at d6 and 12 pi and relative BW at d12 pi followed a 

statistically linear reduction (P < 0.001). The effect of diet dilution on ADG/BW was 

statistically significant (P < 0.05) during the early, late and entire periods pi. Birds receiving 

the R3 compared to the R0 diet had significantly reduced ADG/BW or while R1, R2, and R3 

birds had statistically similar ADG/BW.  
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5.4.2 Oocyst excretion 

The effect of diet dilution on OPG is illustrated in Figure 5.1. There were no oocysts detected 

in the control pens. The repeated measurements analysis on daily oocyst excretion revealed no 

significant interaction (P > 0.05) between diet and day pi for OPG excreta DM output. Diet 

dilution did not affect (P > 0.05) excreted oocysts calculated per gram of excreta DM content 

from d4 to 10 pi (Figure 5.1). However, there was a linear decrease (P < 0.01) in oocysts 

output with increasing levels of diet dilution for OPG excreta DM at d7, 8 and 9pi. Day 

affected (P < 0.05) OPG excreta DM (4.62 vs 5.24 vs 4.37 vs 3.55 respectively; SEM = 

0.0973) for d6 to 9pi; values were highest at d7pi compared to the other days pi. 

5.4.3 Carcass evaluation 

The main effects of diet dilution and infection status on carcass variables are presented in 

Table 5.4. There was no interaction between diet and infection status for carcass variables 

measured in this study. Infection significantly reduced (P < 0.001) relative eviscerated 

carcass and breast meat yield but did not affect (P > 0.05) relative thigh plus drumstick yield, 

breast meat and thigh plus drumstick part yield at d12 pi. Diet dilution did not affect (P > 

0.05) relative eviscerated carcass, breast, and thigh plus drumstick yields at d12pi. There was 

no significant effect (P > 0.05) of diet dilution on breast meat and thigh plus drumstick part 

yield, i.e. when expressed as a percentage of eviscerated carcass weight. Furthermore, 

increasing diet dilution caused a linear decrease in all carcass variables measured at d12 pi, 

while the reduction in relative eviscerated carcass yield followed both a quadratic and linear 

pattern (Table 5.4). 

5.4.4 Bone evaluation 

The main effect of diet dilution and infection status on long bone variables at d12pi are 

presented in Tables 5.5 and 5.6. There were no interactions (P > 0.05) between diet and 

infection for tibia or femur bone variables measured.   

Relative linear growth of long bone and robusticity index 

Infection increased (P < 0.05) tibia length and femur width expressed as a proportion of BW 

at dissection: an artefact of reduced BW pi. Diet dilution caused a significant linear increase 

(P < 0.05) in tibia and femur length and width. Femur robusticity index of R3 and R2 

compared to R0 broilers was higher (P < 0.05). Femur, but not tibia, robusticity increased 
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linearly (P < 0.05) with an increase in dilution level. Other effects were not significant (P > 

0.05).  

Breaking strength in proportion to BW 

Infection significantly reduced (P < 0.05) femur and tibia BS. On the other hand, diet dilution 

increased (P < 0.001) femur, but not tibia BS for R3 in comparison to R0 and R1 birds (Table 

5.5). Also, increasing diet dilution level caused a quadratic increase (P < 0.001) in femur and 

tibia BS relative to BW; R0 had the lowest value of 17.0 N/g. 

Ash percentage and ash in proportion to BW 

Infection did not affect (P > 0.05) femur and tibia AP, and tibia Ash/BW at d12 pi. However, 

it significantly reduced (P < 0.05) femur ash/BW. Diet dilution tended to increase (0.05 < P 

< 0.1) femur and tibia ash/BW, and femur AP for R3 in comparison to R0-2 birds (Table 5.5). 

Tibia AP was not affected by diet dilution (P > 0.1), while tibia and femur AP increased in a 

quadratic manner with diet dilution level in this study. 

Allometric scaling of tibia vs femur  

Results of differences between the slopes derived from linear regressions of the tibia (Y) vs 

femur (X), (i.e. comparing the dietary treatments) are shown for length, width, weight and ash 

weight in the appendix. There were no significant differences (P > 0.05) between the slope 

for R0 vs R1, 2 or 3 amongst the control or the infected birds. Also, the difference between 

the slope for R0 in control vs. R0, 1, 2, or 3 in the infected broilers was not statistically 

significant (P > 0.05) for the variables above (see Table 5.6).  
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Table 5. 2 Effect of diet diluted with 0, 5, 10 or 15% lignocellulose and infection status on body 

weight and relative body weight at infection (d0 pi) and during the early (d6pi) and late (d12pi) 

phases post-infection (pi). Broiler chickens orally inoculated with 0 (Control) or 7000 sporulated 

oocysts of E. maxima (Infected) at d13 post-hatch. 

    Body Weight (g)   Relative Body Weight (g/g) 

Infection × Diet d0pi d6pi d12pi   (d6/d0)pi (d12/d0)pi 

Control R0 351 707 1178   2.04 3.47a 

 R1 340 625 982  1.97 3.27ab 

 R2 326 654 1063  1.95 3.17abc 

 R3 302 555 927  1.89 2.96bcd 

Infected R0 356 617 979  1.80 2.90cd 

 R1 317 568 877  1.78 3.03bcd 

 R2 330 565 868  1.78 2.81d 

 R3 297 525 804  1.81 2.81d 

SEM  13.7 24.5 36.5  0.029 0.068 

Main Effect       

Infection        

Control  330 636 1022  1.96 3.22 

Infected  325 569 898  1.80 2.89 

SEM  6.8 12.2 18.2  0.015 0.034 

Diet        

R0  354a 666a 1080a  1.92 3.18 

R1  329ab 605ab 995ab  1.87 3.15 

R2  328ab 592b 928bc  1.87 2.99 

R3  300b 545b 836c  1.85 2.89 

SEM  9.7 17.3 25.8  0.021 0.048 

  Probabilities 

Diet × Infection 0.682 0.579 0.329  0.096 0.024 

Infection  0.626 <0.001 <0.001  <0.001 <0.001 

Diet  0.004 <0.001 <0.001  0.123 <0.001 

Diet (linear) <0.001 <0.001 <0.001  0.489 <0.001 

Diet (Quadratic) 0.025 <0.001 <0.001   0.982 0.885 
a-c Means in a column with different superscript differ significantly (P < 0.05) 

R0, 1, 2 and 3 represents 0, 5, 10 and 15% lignocellulose-diluted diets respectively  

Relative BW is BW divided by BW at infection 

D6 and 12 pi equate to d13 and 25 of age respectively. 
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Table 5. 3 Effect of diet diluted with 0, 5, 10 or 15% lignocellulose and infection status on average daily gain (ADG) and average daily feed intake (ADFI) post-infection (pi): 

values expressed in proportion to body weight at infection (BWd0pi). Broiler chickens orally inoculated with 0 (Control) or 7000 sporulated oocysts of E. maxima (Infected) 

at d13 post-hatch. 

 

 
  Early stage (d1-6 pi)   Late stage (d7-12 pi)   Post-infection (d1 -12 pi) 

Infection × Diet Diet 
ADG (g/d) / 

BWd0pi (g) 

ADFI (g/d) / 

BWd0pi (g)   

ADG (g/d) / 

BWd0pi (g) 

ADFI (g/d) / 

BWd0pi (g) 
  

ADG (g/d) / 

BWd0pi (g) 

ADFI (g/d) / 

BWd0pi (g) 

Control R0 0.170a 0.223   0.225a 0.329a   0.197a 0.276 

 R1 0.149b 0.226  0.198ab 0.318ab  0.176b 0.272 

 R2 0.149b 0.236  0.187bc 0.321ab  0.168bc 0.278 

 R3 0.145bc 0.246  0.172bcd 0.317ab  0.159bcd 0.281 

Infected R0 0.126d 0.182  0.170bcd 0.266c  0.148cd 0.224 

 R1 0.124d 0.189  0.181bcd 0.298abc  0.152cd 0.244 

 R2 0.120d 0.194  0.159cd 0.282bc  0.139d 0.238 

 R3 0.128cd 0.211  0.153d 0.308abc  0.140d 0.259 

SEM  0.0038 0.0060  0.0063 0.0096  0.0044 0.0073 

Main Effect          

Infection          

Control  0.153 0.233  0.195 0.321  0.175 0.277 

Infected  0.124 0.194  0.166 0.288  0.145 0.241 

SEM  0.0019 0.0030  0.0031 0.0096  0.0022 0.0037 

Diet          

R0  0.148 0.202b  0.197 0.298  0.173 0.250 

R1  0.137 0.208b  0.189 0.307  0.164 0.258 

R2  0.134 0.215ab  0.173 0.302  0.153 0.258 

R3  0.136 0.229a  0.163 0.312  0.149 0.270 

SEM  0.0027 0.0043  0.0044 0.0068  0.0031 0.0052 

  Probabilities 

Diet × Infection  0.004 0.941  0.019 0.043  0.007 0.198 

Infection  <0.001 <0.001  <0.001 <0.001  <0.001 <0.001 

Diet  0.011 0.001  <0.001 0.468  <0.001 0.066 

Diet (linear)  0.929 0.646  0.289 0.966  0.576 0.882 

Diet (Quadratic)   0.961 0.995  0.999 0.999  0.999 0.999 
a-c Means in a column with different superscript differ significantly (P < 0.05). The period from d1 to 12 pi equates to d13 to 25 of age.  

R0, 1, 2 and 3 represents 0, 5, 10 and 15% lignocellulose-diluted diets respectively 
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Table 5. 4 Main effects of diet diluted with 0, 5, 10 or 15% lignocellulose and infection status on carcass yield (%) at d12 post-

infection. Broiler chickens orally inoculated with 0 (Control) or 7000 sporulated oocysts of E. maxima (Infected) at d13 post-

hatch.  

  

  
Eviscerated / 

BW (%) 

Breast muscle / 

BW (%) 

Thigh + Drumstick 

/ BW (%) 

Breast muscle / 

Eviscerated (%) 

Thigh + Drumstick / 

Eviscerated (%) 

Main effect      

Infection      

Control 63.1 20.6 17.8 32.6 28.1 

Infected 61.3 19.4 17.4 31.7 28.4 

SEM 0.38 0.33 0.18 0.44 0.32 

Diet      

R0 62.6 20.7 17.8 33.0 28.4 

R1 62.5 20.3 17.9 32.5 28.5 

R2 62.4 19.8 17.4 31.7 27.9 

R3 61.3 19.3 17.2 31.5 28.1 

SEM 0.54 0.46 0.26 0.63 0.45 

Probabilities 

Infection 0.001 0.015 0.178 0.149 0.547 

Diet 0.268 0.201 0.279 0.330 0.723 

Diet (Linear) <0.001 <0.001 <0.001 <0.001 0.017 

Diet (Quadratic) 0.003 0.989 0.376 0.658 0.999 

Eviscerated/BW  =Percentage of the eviscerated carcass to live body weight; Breast muscle/BW = Percentage of breast muscle  

weight to live body weight; Thigh + Drumstick/BW = Percentage of thigh plus drumstick weight to live body weight; Breast muscle/Eviscerated = 

Percentage of breast muscle weight to eviscerated carcass weight; Thigh + Drumstick/Eviscerated = Percentage of thigh plus drumstick weight to 

eviscerated carcass weight. 

R0, 1, 2 and 3 represents 0, 5, 10 and 15% lignocellulose-diluted diets respectively 

D12 pi equates to d25 of age 
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Figure 5. 1 Effects of diet diluted with 0, 5, 10 or 15% lignocellulose on excreted oocysts per gram (OPG) of dry 

excreta matter from d4 to 10 post-infection (pi). Broiler chickens orally inoculated with 7000 sporulated oocysts 

of E. maxima at d13 post-hatch. R0, 1, 2 and 3 represents 0, 5, 10 and 15% lignocellulose-diluted diets 

respectively. * represents significantly higher OPG (P < 0.05) on d7 compared to d8 and 9 pi. 
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Table 5. 5 Main effects of diet diluted with 0, 5, 10 and 15% lignocellulose and infection status on markers of femur and tibia bone development at d12 post-infection (pi). 

Broiler chickens orally inoculated with 0 (Control) or 7000 sporulated oocysts of E. maxima (Infected) at d13 post-hatch. 

 Femur   Tibia 

Main effect 

Breaking 

Strength 

/ BW 

(N/g) 

Length / 

BW 

(mm/cg) 

Width / 

BW 

(mm/cg) 

Robusticity 

index 

Ash / 

BW 

(mg/g) 

Ash 

percentage 
  

Breaking 

Strength 

/ BW 

(N/g) 

Length / 

BW 

(mm/cg) 

Width / 

BW 

(mm/cg) 

Robusticity 

index 

Ash / 

BW 

(mg/g) 

Ash 

percentage 

Infection                           

Control 19.6 5.98 0.652 3.51 0.776 50.4  25.0 8.01 0.586 4.17 1.02 50.4 

Infected 18.0 6.36 0.692 3.49 0.741 50.2  20.8 8.45 0.607 4.18 0.97 50.2 

SEM 0.52 0.134 0.0131 0.021 0.0016 0.38  0.74 0.172 0.0115 0.030 0.003 0.472 

Diet              

R0 17.0b 5.50c 0.623b 3.41b 0.758 50.3  22.8 7.37c 0.559b 4.17 1.00 50.4 

R1 17.3b 5.97bc 0.649b 3.50ab 0.746 49.2  23.0 8.02bc 0.564b 4.19 0.94 49.7 

R2 19.2ab 6.48ab 0.673b 3.56a 0.746 50.2  22.2 8.61ab 0.606ab 4.21 0.97 49.5 

R3 20.6a 6.73a 0.743a 3.53a 0.814 51.3  23.8 8.91a 0.656a 4.15 1.08 51.4 

SEM 0.58 0.175 0.0169 0.027 0.0028 0.50  1.07 0.225 0.0153 0.040 0.003 0.63 

 Probabilities 

Infection 0.033 0.055 0.037 0.571 0.045 0.689  0.001 0.082 0.202 0.928 0.187 0.769 

Diet <0.001 0.001 <0.001 0.010 0.064 0.076  0.737 0.001 <0.001 0.752 0.058 0.149 

Diet (Linear) <0.001 <0.001 0.002 0.008 0.948 <0.001  0.055 <0.001 0.005 0.987 0.943 <0.001 

Diet (Quadratic) <0.001 0.453 0.781 0.141 0.947 <0.001   <0.001 0.182 0.726 0.445 0.857 <0.001 
a-c Means in a column with different superscript differ significantly (P < 0.05) 

 R0, 1, 2 and 3 represents 0, 5, 10 and 15% lignocellulose-diluted diets respectively 
D12 pi equates to d25 of age 
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Table 5. 6 Difference between regression slopes of tibia (Y-axis) vs femur (X-axis) at d12 post-infection (pi) for length (mm), 

width (mm), weight (g) and ash weight (g) in broiler chicken orally inoculated with 0 (Control) or 7000 sporulated oocysts of 

E. maxima (Infected) at d13 post-hatch, and receiving diet diluted with 0, 5, 10 and 15% arbocel (R0 – 3 respectively). 

Regression was done using log-transformed values. 

Tibia (Y) vs 

Femur (X) 

  Comparing R1-3 with R0    Comparing infected (R0-3i) with control R0 (R0c) 

Diets 
Slope 

(diff) 

SE 

(diff) 
t-stat P   Diets 

Slope 

(diff) 

SE 

(diff) 
t-stat P 

                  Length         

Control R1-R0 -0.523 0.879 -0.595 0.574  R0i - R0c -0.0311 0.955 0.0325 0.975 

 R2-R0 -0.0912 0.751 -0.121 0.907  R1i - R0c -0.0351 0.876 0.0401 0.969 

 R3-R0 -0.130 1.03 -0.126 0.904  R2i - R0c 0.320 1.09 0.293 0.779 

Infected R1-R0 -0.00404 0.714 -0.00565 0.996  R3i - R0c -0.290 1.38 0.210 0.840 

 R2-R0 0.352 0.932 0.377 0.716       

 R3-R0 -0.259 1.22 -0.213 0.837       

              Width     

Control R1-R0 1.11 0.975 1.14 0.287  R0i - R0c 0.623 0.546 1.141 0.287 

 R2-R0 -0.200 0.436 -0.458 0.659  R1i - R0c -0.157 0.387 0.406 0.696 

 R3-R0 -0.271 0.604 -0.448 0.666  R2i - R0c 0.00669 0.576 0.0116 0.991 

Infected R1-R0 -0.780 0.497 -1.57 0.155  R3i - R0c -0.0261 0.399 0.0655 0.949 

 R2-R0 -0.616 0.686 -0.898 0.395       

 R3-R0 -0.649 0.509 -1.27 0.238       

             Weight     

Control R1-R0 0.566 0.837 0.676 0.518  R0i - R0c -0.0648 1.59 0.0408 0.968 

 R2-R0 0.633 0.907 0.698 0.505  R1i - R0c 0.811 0.826 0.982 0.355 

 R3-R0 0.543 0.939 0.578 0.579  R2i - R0c 1.18 0.973 1.21 0.262 

Infected R1-R0 0.876 0.985 0.889 0.400  R3i - R0c 0.710 1.01 0.701 0.503 

 R2-R0 1.24 1.13 1.09 0.305       

 R3-R0 0.775 1.17 0.661 0.527       

          Ash Weight     

Control R1-R0 -0.0179 0.827 -0.0217 0.983  R0i - R0c 0.340 0.722 0.471 0.650 

 R2-R0 0.190 0.499 0.382 0.713  R1i - R0c 0.155 0.519 0.299 0.773 

 R3-R0 0.423 0.722 0.585 0.574  R2i - R0c 0.702 0.578 1.21 0.259 

Infected R1-R0 -0.185 0.496 -0.374 0.718  R3i - R0c 0.361 0.445 0.811 0.441 

 R2-R0 0.362 0.556 0.652 0.533       

  R3-R0 0.0213 0.422 0.0505 0.961             

t-stat = slope (diff) divided by SE (diff), i.e. 
𝑏1−𝑏2

√𝑆𝐸𝑏12 + 𝑆𝐸𝑏22
 ; where b = slope and SEb = standard error of slope;  

P = Probabilities. 
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5.5 Discussion 

In chapter 2, genetic selection for reduced GR improved bone mineralisation with effects 

persisting in the presence of coccidia infection. Therefore, a similar result was expected 

amongst broilers in the case of an artificial diet-induced reduction in GR. In the present 

study, lignocellulose-diluted grower diet was used to reduce the GR of a widely used 

rapid-growing broiler genotype during the second and third week of life (Williams et al., 

2000). It was expected that slowing down early GR during the above period, which 

coincides with peak bone development, would impact positively on bone development of 

uninfected broilers (Knowles et al., 2008; Shim et al., 2012; Pratt and Cooper, 2018), and 

coccidia-infected birds. By this hypothesis, significant improvement in long bone strength 

and mineral content per unit BW (BS/BW and Ash/BW), and AP, i.e., markers of bone 

mineralisation, was anticipated amongst broilers receiving the diluted (R1 to 3) compared 

to the undiluted (R0) feed in this study.  

In this study, oocyst excretion was measured solely to establish the occurrence of E. 

maxima infection. However, the OPG results suggested a linear reduction in E. maxima 

parasite burden at increasing levels of diet dilution from d7 to 9pi. This inverse 

relationship between parasite burden and diet dilution persisted after accounting for the 

water content, which also increased with diet dilution, in the droppings of infected birds. 

The reduction in OPG at increasing levels of dilution may be ascribed to the increasing 

bulkiness of the feed and the indigestible nature of the diluent, which resulted in a 

proportionally greater quantity of excreta amongst the broilers receiving the diluted diets.  

The observed effects of coccidiosis on productive performance were in line with chapters 

2 – 4. Also, the reduction in GR induced by the diluted diets was as expected pre-

infection, i.e., from d8 to 13 of age. The diluent, lignocellulose, only contributed to 

bulkiness, but not to the nutritive value of the diet (Zeitz et al., 2018). Nonetheless, 

graded diet-induced GR could not be achieved amongst the infected birds over the 

infection period (d1 to 12pi), as seen in the control birds. This was influenced by the 

significantly lower feed intake, or higher magnitude of anorexia, amongst the infected 

compared to the control broilers receiving the undiluted (R0) diet during the late stages of 

infection (d7 to 12pi), whereas there was a similar intake level amongst infected and 

control broilers receiving the diluted (R1, R2 or R3) diets during that period (see Table 

5.3).  
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Anorexia was previously hypothesised to be a host defense or disease-coping strategy 

(Kyriazakis et al., 1998; Kyriazakis, 2014). The present study provides further evidence 

for this hypothesis showing that broilers receiving a poor (diluted) diet exhibit a lesser 

reduction in voluntary feed intake (anorexia) compared to broilers receiving a balanced 

(undiluted) diet following coccidiosis infections. A physiological explanation for this lies 

in the inextricable link suggested between the immune system and anorexia (Kyriazakis et 

al., 1996; Kyriazakis, 2014). Activation of the immune system following pathogen 

infection, with the associated upregulation of cytokines, has been implicated as the 

primary cause of anorexia (Van Niekerk et al., 2016).  

Attaining a similar degree of GR reduction in both coccidiosis-infected and uninfected 

broilers in the current study could have been a logical reason for expecting corresponding 

commensurate effects on their bone mineralisation. Unfortunately, this was not the case 

due to the statistically similar level of anorexia amongst the infected broilers. Moreover, 

there are no comparable studies in the bone literature that has successfully induced a 

graded reduction in GR of coccidiosis-infected broilers in order to test such a hypothesis. 

On the use of GR reduction as a management tool for reducing the occurrence of skeletal 

disorders, the suggested optimum timing economically is during the second week of life 

(Robinson et al., 1992). Although this method of mitigating skeletal disorders delays the 

attainment of market weight by 2 or 3 days (Robinson et al., 1992), it should be 

considered in light of the substantial economic loss associated with poor skeletal 

development and the welfare issues that they raise (Driver et al., 2006; Knowles et al., 

2008; Pines and Reshef, 2015). 

There was no evidence from the present study to suggest that a reduction in early GR 

improved bone mineralisation to a higher degree in uninfected than in coccidiosis-

infected broilers. This was the case even though the experimental diets induced graded 

levels of GR reduction amongst the control broilers during the period of examination (d1 

to 12pi), whereas graded GR probably lasted until the onset of anorexia and thereafter 

remained similar for the infected birds despite the different diet dilution levels. 

A differential rate of mineralisation between tibia and femur in growing broilers had been 

reported previously (Applegate and Lilburn, 2002); chapter 2 also support this suggestion. 

Femur strength is crucial for gait stability and bearing the heavy weight of fast-growing 

broilers because of its position in the skeleton (Marks and Popoff, 1988; Chinsamy and 

Elzanowski, 2001). In modern broilers, the forward shift in the centre of gravity due to 
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increased breast muscle places specific demands on femur integrity (Paxton et al., 2014). 

Therefore, the finding that diet dilution increased femur strength significantly at a point 

(d12 pi) when penalties of an E. maxima infection are maximised is a remarkable novel 

discovery from the current study. 

Other studies have investigated the effects of reducing broiler GR on markers of leg bone 

quality and mineralisation using various methods. A 50% restriction in feed intake 

(compared to consumption rate in ad libitum fed birds), but the same level of Ca and P as 

ad lib fed birds, caused a significant increase in tibia ash content and lower porosity at 

d42 of age (Williams et al., 2004). Sequential feeding with low and high-lysine diets 

during the first and second half of the day, starting from d2 to 12 of age, increased 

activity levels and improved leg condition at d42 of age (Bizeray et al., 2002b). Offering 

a low energy diet did not affect the bone quality (Leterrier et al., 1998). A light schedule 

of 12L: 12D improved bone ash compared to 20L: 4D (Brickett et al., 2007). Although 

the above studies induced an artificial reduction in GR, it is unknown whether the 

methods employed in the above studies may ameliorate the effects of coccidiosis on bone 

mineralisation.  

Furthermore, the conclusion of Leterrier et al. (1998) that limiting GR using a low energy 

diet did not affect bone quality was based only on tibia variables. In this study and that 

reported in chapter 2, there is evidence to support the previously reported different 

mineralisation rates for tibia and femur bones (Applegate and Lilburn, 2002), which 

Leterrier et al. (1998) did not consider in their study. Moreover, they also observed that 

the slower-growing broilers due to low-energy diets were more than 6-fold (3.1% vs 

19.9%) less predisposed to varus-valgus deformities than their faster-growing 

counterparts (Leterrier et al., 1998). This, therefore, suggests that slowing down GR via 

low energy diet did have a potentially positive effect on leg bone in that study, and 

perhaps on one or more of the other long bones not examined. A subsequent investigation 

(Bruno et al., 2000) revealed that about 15% reduction in dietary energy intake, during 

the second week of life only, improved humerus weight and density without affecting the 

same variables in tibia or femur bones. Restriction in protein intake also affected femur, 

but not tibia or humerus width (Bruno et al., 2000). The results above underscore the 

possibility that a single factor may have differential effects between long bones 

(Applegate and Lilburn, 2002), as was observed for GR on tibia and femur strength in the 

present study.  
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In conclusion, coccidial infection penalised long bone strength and mineralisation in 

modern fast-growing broilers, while a reduction in GR via diet dilution with a 

commercially available lignocellulose product improved bone quality to a similar degree 

for both coccidiosis-infected and uninfected broilers. Although delaying early GR 

imposes economic constraints in the intensive broiler sector due to the additional days 

broilers require to reach market weight, it should be considered as a means to improve 

skeletal integrity and broiler welfare. Although lignocellulose was utilised in the present 

study, alternative feed ingredients with a high WHC may also be utilised to reduce 

overall feed costs in markets when they are available and where bird welfare is valued 

more (Sakkas et al., 2019). Collectively, the markers of long bone mineralisation 

evaluated in this study suggest a more pronounced effect of artificial GR reduction on 

improving femur compared to tibia mineralisation.  
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Chapter 6: General discussion 

6.1. Introduction 

Coccidiosis impairs the productivity of poultry systems in diverse ways globally (Blake and 

Tomley, 2014). Information on the consequences of malabsorptive coccidia infections on the 

long bone quality of modern fast-growing broiler chickens is scarce, and the few related 

studies focus mainly on the early stages of infection, i.e. from the point of infection up to day 

6 post-infection (pi). It is now known that although coccidiosis has adverse effects on 

performance and some effects on the bone quality of broilers during the early stage of 

infection, more significant bone effects occur during the late stages post-infection, i.e. d12 – 

14 pi [Chapters 2, 3, 4 and 5]. Indeed, the bone quality and skeletal development of meat-type 

(broiler) chickens have not received sufficient attention over the years (Julian, 1998; Julian, 

2005), which is to the detriment of modern fast-growing broilers. Genetic selection for 

increased growth potential without due attention to the integrity of the skeletal framework that 

bears the extra weight (Applegate and Lilburn, 2002), and malabsorption of vital bone 

minerals during coccidiosis (Turk and Stephens, 1966; Turk, 1973) but no proper assessment 

of the consequences on bone quality is clear evidence of undermining skeletal development in 

modern broilers. Fortunately, the similar ash percentage of long bones for the fast- and slow-

growing broilers reported in chapter 2 suggest that some recent genetic schemes may have 

included markers of skeletal health. However, other examined makers of long bone 

mineralisation, i.e. strength and ash weight relative to body weight, still portrayed the 

inferiority of the fast- compared to the slow-growing broilers [Chapter 2]. 

This thesis had a practical objective; to assess the effects of malabsorptive coccidiosis on the 

long bone quality of modern fast-growing broilers, and to investigate relevant ameliorative 

nutritional strategies capable of jointly mitigating the bone-related effects, as well as other 

known effects of coccidiosis such as impaired performance. To achieve this objective, it was 

of interest to first dissect the effect of selection for improved growth potentials in modern 

broilers on their resistance and tolerance to coccidiosis [Chapter 2]. This study sets the 

framework for further investigations in this thesis and is the first of its kind. The nutritional 

strategies explored herein involved modulations of dietary VitD [Chapter 3] and Ca/P 

[Chapter 4], and diluting diet with an inert substance to induce an artificial reduction in early 

growth rate (GR) of broilers [Chapter 5]. Overall, the thesis revealed that infected broilers are 

as sensitive as control broilers to genetic selection for growth rate [Chapter 2], the source of 

VitD supply [Chapter 3], Ca and P adequacy [Chapter 4] and to a dietary-induced reduction in 
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early growth rate [Chapter 5]. Also, chapter 3 provided evidence that Eimeria-infected 

broilers could be more sensitive than uninfected broilers to a high level of dietary VitD 

supplementation regarding femur strength (d10 pi), OHD and P status (d10 pi) and feed 

conversion ratio over the period of infection (d1 – 14 pi). The use of E. maxima infection was 

a case point, as the methodology employed in the study can be applied to other malabsorptive 

coccidia species, as well as pathogens that may elicit malabsorption of vital bone minerals in 

broiler chickens.  

6.2 Impact of coccidiosis on long bone quality in modern broilers 

In chapters 2, 3, 4 and 5, the thesis unveiled novel aspects regarding the impact of coccidiosis 

on broiler long bone quality. For example, no previous study categorically showed that the 

effects of coccidia infection on long bone mineralisation lagged behind effects on productive 

performance such that total recovery from coccidiosis-impaired performance occurred whilst 

bone mineralisation was still significantly penalised. The thesis clarified for the first time that 

coccidiosis penalises more markers of the femur than tibia mineralisation in chapters 2 and 5. 

The experiments reported in chapters 3 and 4 could not cover femur mineralisation in details 

due to the time-consuming analysis and short interval between trials. However, in chapters 3 

and 4, the thesis examined femur breaking strength, also a potent marker of mineralisation, as 

well as Seedor and Robusticity indices, and then examined tibia mineralisation in further 

details; being the commonly used marker for long bone mineralisation in most studies. Future 

research may investigate whether or not VitD supplementation alters the differential effects of 

coccidiosis on tibia and femur mineralisation reported in chapters 2 and 5. 

A recent study (Akbari Moghaddam Kakhki et al., 2018) that was published at the time of 

writing this final chapter provided further information on the interaction between broiler 

coccidiosis and bone quality. Akbari Moghaddam Kakhki et al. (2018) investigated the effects 

of Eimeria challenge on long bone attributes using Ross 708 broilers and an infection model 

comprising E. acervulina and E. maxima. Such Acervulina / maxima co-infection is a perfect 

model for testing effects on the bone because these Eimeria species parasitise duodenal and 

jejunal sections of the small intestine (Chapman, 2014), where absorption of vital bone 

minerals including Ca and P occur (Van der Klis et al., 1990). Unfortunately, they focused 

their study on the acute phase of infection, d6 pi, which has been a limitation associated with 

many previous studies. For this reason, although their results showing significant effects on 

tibia but not femur mineralisation were comparable to those for d6 pi in chapter 2, their 

conclusion that femur mineralisation was not affected by malabsorptive coccidiosis was quite 
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misleading and of course due to their sampling point (d6 pi). This thesis offers a clear, 

consistent and reliable picture of the effect of malabsorptive coccidiosis on long bone quality 

obtained by sampling at both the early (d6 pi) and the later stages (d10, 12 and 14 pi) 

following infection. Furthermore, their assertion that the effects of coccidiosis on femur 

mineralisation may differ between Ross 708 broilers used in their experiment (Akbari 

Moghaddam Kakhki et al., 2018), and Ross 308 broilers used in this thesis, was not supported 

by the recent study of Sakkas et al. (2018): similar levels of femur mineralisation were 

observed for Ross 308 and 708 broilers.  

Set aside the above clarifications, Akbari Moghaddam Kakhki et al. (2018) is one of the most 

relevant resources on the effects of Eimeria infection on the long bone quality of modern 

broilers available in the literature. Whilst the thesis focused mainly on nutritional measures to 

tackle coccidiosis-induced malabsorption of vital bone minerals [Chapters 3 and 4], and then 

artificial reduction in the early growth rate of modern broilers to allow for commensurate 

bone development and weight gain [Chapter 5],  Akbari Moghaddam Kakhki et al. (2018) has 

a novel discovery to their credit. They showed a vital link between damage to the intestinal 

tract, mineral malabsorption and increased bone resorption during broiler coccidiosis for the 

first time. Based on an increased serum receptor activator of nuclear factor kappa-B ligand 

(RANKL) concentration and a corresponding reduction in tibia ash content, they concluded 

that bone resorption might contribute significantly to the penalties on long bone quality 

during broiler coccidiosis (Akbari Moghaddam Kakhki et al., 2018). Indeed, this opens up a 

vast array of potential future investigations relating to coccidiosis-induced bone resorption 

and bone-targeting therapies for infected broilers. It points towards osteoimmunology as a 

logical field for further investigations relating to the bone effects elicited by broiler 

coccidiosis. 

Osteoimmunology is an interdisciplinary field that focuses primarily on the interactions 

between the immune and skeletal systems. The primary connection between the bone and 

immune system was established based on the discovery of a regulatory mechanism via the 

RANKL – receptor activator of nuclear factor kappa-B (RANK) – osteoprotegerin signalling 

axis that is common to both systems (Lee and Choi, 2015; D’Amelio and Sassi, 2016). 

Another connection between the bone and immune system is that bone-resorbing osteoclast 

cells, as well as macrophages and myeloid dendritic cells,  are derivable from the same 

myeloid precursor cells, and the above RANKL – RANK – osteoprotegerin regulatory 

mechanism applies to these cells coexisting in the bone marrow (D’Amelio and Sassi, 2016). 

RANKL and tumour necrosis factor (TNF)-α are renowned pro-osteoclastogenic cytokines 
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(Sakthiswary and Das, 2013). RANKL causes an upregulation of osteoclast formation and 

activity, whilst TNF-α favours RANKL production, increases RANKL-responsiveness of 

osteoclasts precursors, and with adequate RANKL levels induces osteoclast formation 

(D'Amelio et al., 2008). 

Recent reviews of mostly murine osteoimmunological studies provided details on the 

association of activated immune cells, especially T cells and dendritic cells, with RANKL 

upregulation causing an imbalance between bone-forming osteoblast and bone-resorbing 

osteoclast cells, which favours bone loss (Lee and Choi, 2015; D’Amelio and Sassi, 2016). 

Indeed, a negative correlation between RANKL upregulation and tibia mineralisation for 

coccidiosis-infected broilers at d6 pi (Akbari Moghaddam Kakhki et al., 2018) warrants 

applying high-throughput functional genomics tools to delineate a comprehensive immune 

mechanism associated with the more significant coccidiosis-impaired bone quality at later 

stages beyond the acute phase of infection. This should enhance understanding on how 

coccidiosis affects bone quality in modern broilers; coupling the aspects of nutrient 

malabsorption [Chapters 2, 3, 4 and 5] with bone resorption (Akbari Moghaddam Kakhki et 

al., 2018) to provide much stronger evidence. The above is commended to further 

experimental investigations. 

6.2.1 Different effects of coccidiosis on tibia and femur mineralisation 

The differing effects of coccidiosis on femur and tibia mineralisation reported in the thesis 

[Chapters 2 and 5] reflected a previously suggested difference in their rates of mineralisation 

(Applegate and Lilburn, 2002) and responsiveness to stress (Wideman and Pevzner, 2012). 

However, in the context of broiler coccidiosis, this information is both novel and vital for 

mitigating effects on leg bone quality for modern heavyweight fast-growing broilers. This 

thesis, as well as other studies (Bradshaw et al., 2002), supported the hypothesis that long 

bone strength with the level of mineralisation is strongly correlated [Chapters 2, 3, 4 and 5]. 

Also, the thesis agreed with previous studies (Lilburn, 1994; Applegate and Lilburn, 2002) 

that identified femur as the weak link regarding the development of the two major leg bones 

because of its much slower mineralisation rate compared to the tibia.  

Despite the adverse effects of coccidiosis on femur mineralisation and strength [Chapters 2 

and 5], the position of the bone within the skeletal framework remains crucial for bearing the 

increased weight of modern broilers. Moreover, recent studies (Dozier et al., 2010; Mendes et 

al., 2014) revealed how the 100% increase in pectoralis major (breast) muscle yield between 

modern broilers and heritage lines (Schmidt et al., 2009) could be further increased for 
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economic gains. All of these significantly challenge the integrity of leg bones, which are 

further weakened with exposure to coccidia infection, particularly the femur. This thesis 

showed effects of rapid growth rate and coccidiosis on both tibia and femur and the 

ameliorative effects of high VitD supplementation [Chapter 3] in diets with adequate Ca/P 

levels [Chapter 4]. It also showed a significant improvement in markers of the femur, but not 

tibia, mineralisation achieved by reducing early growth rate [Chapter 5]. Therefore, it is 

recommended that future studies on coccidiosis-impaired long bone quality of broilers do not 

assume femur quality from tibia variables and vice versa. 

6.3  Potentials of VitD nutrition to attenuate broiler coccidiosis  

There is a consensus that modulating specific nutrients in broiler diets to ameliorate the 

consequences of infection is sustainable and indeed safer than the use of in-feed drugs. The 

emphasis in such nutritional modulations would typically be on nutrients with 

immunomodulatory potentials (Zhang et al., 2012; Zhang et al., 2016) and, in the case of 

malabsorptive infections like coccidiosis, altering dietary intake of nutrients to mitigate the 

effects of malabsorption and intestinal tract atrophy is an option. This thesis investigated the 

benefits of dietary modulations involving VitD3 and its 25-hydroxycholecalciferol (OHD) 

metabolite for coccidiosis-infected broilers [Chapters 3 and 4]. Chapter 1 reviewed the key 

functions of the biologically active VitD metabolite (1,25-dihydroxycholecalciferol; 1,25D3). 

They include regulation of calcium and phosphorus homeostasis (Bienaimé et al., 2011), 

stimulating osteoclast differentiation and calcium reabsorption from the bone, and promoting 

mineralisation of the bone matrix (Holick, 2004; St-Arnaud, 2008; Bikle, 2012; Haussler et 

al., 2013). Also, the ability to improve performance (Fritts and Waldroup, 2003; Whitehead et 

al., 2004), integrity of intestinal mucosa barrier (Kong et al., 2008), small intestine 

morphology in chicks (Ding et al., 2011), as well as helping recovery during mucosal injury 

(Zhao et al., 2012) were identified as derivable benefits of dietary VitD supplementation in 

broilers [Chapter 1]. All of these VitD functions are relevant to coccidiosis-induced effects on 

broiler long bone quality, which was the focal point of this thesis.  

6.3.1 VitD and growth performance  

This thesis provided experimental evidence that higher dietary VitD supplementation (4000 

vs 1000 IU/kg), and replacing D3 with its metabolite, OHD [Chapter 3] can improve both the 

feed utilisation efficiency and bone mineralisation of coccidiosis-infected broilers. It further 

showed in chapter 4 that there is no added effect of VitD source on the growth performance of 

infected broilers offered D3- and OHD-supplemented diets at 4000 IU/kg, i.e. commercial 



138 
 

levels [Chapter 4]. Previous studies did identify these potentials of VitD in healthy broilers 

(Fritts and Waldroup, 2003; Whitehead et al., 2004; Colet et al., 2015), which the thesis now 

shows their applicability in the context of broiler coccidiosis. At least three known functions 

of VitD; the ability to 1) improve muscle development, 2) improve Ca and P absorption and 

utilisation, and 3) perform immunoregulatory functions, may have interactively contributed to 

improving feed utilisation and long bone mineralisation in coccidiosis-infected broilers. As 

higher parasite loads and an increased mucosal injury was observed in response to increased 

levels of VitD supplementation and VitD activity (OHD), it is more likely that its function on 

muscle development mediated the improvements in performance. The subsequent sections of 

the discussion attempt to account for the observed effects on parasite replication (see section 

6.3.2).  

Regarding VitD-improved muscle development, Vignale et al. (2015) reported that an 

increased level of OHD in circulation is associated with an increased fractional rate of protein 

synthesis and higher expression of VitD receptors (VDRs) in breast muscles. These effects 

offer valid explanations as to how VitD supplementation improved performance in terms of 

weight gain and FCR in chapter 3. Overall, what the thesis shows is that the benefits of 

dietary VitD on broiler performance in the absence of coccidiosis are also derivable to a 

similar degree by infected birds. It further agrees with Colet et al. (2015) on no additional 

benefit of OHD over D3 on broiler growth performance beyond 3500 IU/kg dietary 

supplementation level, confirming this amongst coccidiosis-infected broilers. 

6.3.2 VitD, gut morphology, parasite replication and immune response 

VitD is a potent immunoregulator of both innate and adaptive immune responses (Baeke et 

al., 2010). Regarding its immunoregulatory roles, the biologically active 1,25D3 metabolite 

acts as an immune system modulator preventing the excessive expression of cytokines and 

increasing the oxidative burst potential of macrophages (Baeke et al., 2010). It is noteworthy 

that mucosal inflammation downregulates VDR (VitD receptor) expression via the action of 

mucosal pro-inflammatory cytokines. On the other hand, increased VitD supplementation 

leads to upregulation of the VDR and downregulates pro-inflammatory cytokines (Autier et 

al., 2014). Therefore, these facts imply that higher dietary levels of VitD might benefit the 

innate immune response to pathogens and the ability of broilers to cope with the disease. 

Moreover, reduced pro-inflammatory cytokine production may also improve their 

productivity considering the role of the latter on the distribution of nutrients away for growth 
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processes and the induction of anorexia (Kyriazakis et al., 1998; Lochmiller and Deerenberg, 

2000).  

Regarding immune responses of D3- or OHD-fed broilers, Fritts et al. (2004) reported no 

significant differences on aspects of macrophage function such as nitric oxide production and 

cytotoxicity and cutaneous basophil hypersensitivity when feeding graded levels (125 to 

4,000 IU/kg of feed) of VitD to non-infected birds either in the form of D3 or OHD. On the 

other hand, it has been shown that the addition of OHD to a diet containing 3000IU of D3, 

resulted in lower total serum IgA at d14 d of age and lower total serum IgG at 21 d of age in 

uninfected broilers (Chou et al., 2009). However, birds infected with Salmonella 

Typhimurium fed OHD produced higher total serum IgG at 21 d of age. That study also 

showed that supplemental OHD improved small intestinal morphology and that these effects 

varied with age and section of the small intestine (Chou et al., 2009). Furthermore, immune 

response deriving from OHD supplemented in drinking water at 0.06 ml/l whilst offering feed 

containing extra 5500 IU/kg D3 supplementation attenuated outbreak of bacterial 

chondronecrosis with osteomyelitis (BCO) induced lameness in broilers (Wideman et al., 

2015). All these are evidence of VitD potentials to mediate immune response in broilers. 

Despite the improved performance and in contrast with the studies above, there was a 

significant increase in parasite load and mucosal injury in response to higher VitD activity 

[Chapter 3]. IFN-γ and IL-10 are key cytokines regulating the immune response to coccidiosis 

(Min et al., 2013). E. maxima evoke a complex cytokine response characterised by increased 

production of Th1 pro-inflammatory cytokines; IL-1b, IL-6, IL-8, IL-17, and IFN-γ in the 

small intestine, as well as Th2 anti-inflammatory cytokines; IL-4, IL-10 (Hong et al., 2006b; 

Min et al., 2013). Increased IFN-γ mRNA has been associated with antigen-specific resistance 

to coccidiosis; favouring Th1 cell production, whilst inhibiting Th2 cell production (Laurent 

et al., 2001; Cornelissen et al., 2009), balanced by IL-10 (Rothwell et al., 2004). On the other 

hand, elevated IL-10 has been associated with susceptible but not resistant broiler lines 

(Rothwell et al., 2004). VitD has the potential to alter key cytokine responses such as IFN-γ 

and IL-10. 1,25D3 may support conversion of naïve T cells into T regulatory cells, which 

produce IL-10 and TGF-β that inhibit the expression of pro-inflammatory cytokines such as 

IFN-γ and IL-17 (Jeffery et al., 2009) and to upregulate IL-10 production in macrophages 

(Baeke et al., 2010; Korf et al., 2012). Although differential expression of either cytokine was 

not confirmed in this thesis, it is possible that upregulation of IFN-γ occurred at later times pi 

and of IL-10 at earlier time pi in broilers receiving diets with higher vs lower dietary vitamin 

D activity 
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The only other related study on dietary VitD immune activity at the time of writing this thesis 

was Morris et al. (2015). They investigated the immunomodulatory effects of VitD (OHD 

metabolite) in coccidiosis-infected layer chickens. The layers received graded levels of 

dietary OHD; 250, 1000, 2000 and 4000IU/kg, from day-old and then were infected at 21d of 

age with 105 live oocysts (Inovocox; Zoetis), containing a mixture of E. acervulina, E. 

maxima and E. tenella. Morris et al. (2015) reported an increased IL-10 mRNA in the caecal 

tonsils of coccidiosis-infected layers receiving OHD supplemented at 250 (3.3-fold), 1000 

(4.5-fold), 2000 (4.9-fold) and 4000 IU/kg (3.5-fold) in comparison to their uninfected 

counterparts at d6 pi. Amongst infected layers, IL-1β mRNA amount decreased in the caecal 

tonsils of those receiving dietary OHD supply at 1000 (1.7-fold), 2000 (4.2-fold) and 4000 

(3.4-fold) in comparison to those receiving 250 IU/kg OHD at d6 pi. Also, IL-1β mRNA 

levels in 250 IU/kg OHD-fed layers were similar in the presence or absence of coccidia 

infection (Morris et al., 2015). The improved feed efficiency at higher (4000 vs 1000 IU/kg) 

dietary VitD supply amidst significantly increased parasite load [Chapter 3] can also be 

associated with the decrease in IL-1β expression described by Morris et al. (2015). 

Upon further investigations at d14 pi, Morris et al. (2015) revealed that the percentage of 

CD4+ cells in cecal tonsils of 1000, 2000 and 4000 IU/kg OHD-fed layers did not differ from 

those of their 250 IU/kg OHD-fed counterparts. At d15 pi, infected compared to uninfected 

4000 IU/kg OHD-fed layers had 17% more CD4+CD25+ in cecal tonsils (Morris et al., 2015). 

Overall, a higher percentage of T regulatory cells, a natural source of IL-10, in the cecal tonsil 

amongst 4000 IU/kg OHD-fed coccidia-infected layers may have caused the upregulation of 

IL-10 mRNA (Morris et al., 2015). Again, a surprising outcome of their experiment was that 

OHD-induced increase in IL-10 mRNA, as well as the percentage of CD8+ cells in the cecal 

tonsils, did not affect oocysts output. Trout and Lillehoj (1995) demonstrated the involvement 

of CD8+ T cells in transporting coccidia sporozoites, and their capacity to increase oocyst 

shedding, which partly relates to the increased parasite burden with VitD activity for broilers 

in this thesis [Chapter 3]. Indeed, the scientific literature holds minimal information on the 

immune-potentials of dietary VitD for coccidiosis-infected chickens. It is recommended that 

priority should be given to dissecting the mechanism underlying a possible association of 

higher parasite burden with increased VitD activity [Chapter 3] or none (Morris et al., 2015) 

in a comprehensive study. 

Although there is a scarcity of information on the effects of dietary VitD supply in other host-

parasite systems, the few available studies in the scientific literature report variable effects 

depending on the parasite involved. Rajapakse et al. (2005) associated VitD with increased 
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mortality in Toxoplasma gondii-infected mice due to its downregulation of Th1 cytokine 

response. The mice received dietary 1,25D3 supplementation at 800 IU/kg of feed and 

survival rate reduced by 37% at d10 following infection (Rajapakse et al., 2005). 

Contrariwise, intraperitoneal injection with VitD conferred protection against inoculation with 

trypomastigotes of Trypanosoma cruzi, with histopathology revealing diminished tissue 

inflammation and parasitism, in another murine infection model (Silva et al., 1993). Overall, 

detailed research is required to elucidate the effects of VitD supply in other host-parasite 

systems. 

6.3.3 Combination of VitD with other nutritional strategies 

Since a higher VitD supply results in improved performance, despite its adverse effects on 

parasite replication, it might be preferable to combine it with other immunonutrition strategies 

which target the attenuation of parasite-induced gut damage such as dietary supplementation 

with nucleotide-rich yeast extracts (YN) (Leung et al., 2018). The recent work by Leung et al. 

(2018) highlighted the potentials of dietary YN to attenuate gut damage during coccidiosis 

suggesting that YN is even more beneficial for infected than uninfected broilers. This finding 

was in line with previous studies, which reported that nucleotide is conditionally essential and 

more useful for broilers subjected to stress or health challenge (Jung and Batal, 2012; 

Alizadeh et al., 2016).  

Leung et al. (2018) supplemented YN at 500g/MT of feed, and it contained CP (32.7%) 

carbohydrates (14.3%), cell wall polysaccharides (21.6%) and a mixture of five nucleotides 

(1.1%); adenosine monophosphate, cytosine monophosphate, guanosine monophosphate, 

uridine monophosphate and inosine monophosphate. A gram of YN supplied approximately 

0.1% of mixed nucleotides. Specifically, Leung et al. (2018) provided experimental evidence 

that YN supplementation was more effective in improving villi height (1.7-fold), final BW 

(3.3-fold), body weight gain (1.8-fold) and FCR (3.3-fold) amongst coccidiosis-infected 

compared to uninfected broilers. Furthermore, YN supplementation did not affect lesion 

scores, oocyst shedding and blood carotenoid concentration in that study, suggesting that it 

does not affect parasite burden (Leung et al., 2018). Therefore, VitD/nucleotide co-

supplementation is here recommended for further investigations as a tool to circumvent gut 

damage from the increased parasite burden associated with VitD nutrition during coccidiosis 

[Chapter 3]. Researchers may also want to explore other derivable benefits from the duo for 

coccidiosis-infected broilers.  



142 
 

6.3.4 VitD and bone mineralisation 

In this thesis, the markers used to assess how dietary VitD supplementation affects 

coccidiosis-impaired long bone mineralisation of modern fast-growing broilers include 1) 

tibia and femur breaking strength relative to body weight (BW) at dissection (BS/BW), 2) 

tibia ash weight in proportion to BW at dissection (Ash/BW), and 3) ash percentage in dry 

defatted tibia bone (AP). Chapters 3 and 4 further suggested that the significantly reduced 

concentrations of OHD, Ca and P in the blood plasma of broilers during the acute phase of 

coccidia infection (d6 pi), are essential factors contributing to the significant penalties on long 

bone mineralisation during the recovery phase of infection, d12 or 14 pi. The thesis 

consistently showed that the beneficial effects of VitD supplementation on broiler bone 

mineralisation were attainable to a similar degree in the presence or absence of coccidiosis. 

The hypothesis of more pronounced effects of dietary VitD supplementation on long bone 

mineralisation amongst infected than uninfected broilers was accepted for femur BS at d10 pi 

[Chapter 3] in this thesis. High compared to low (4000 vs 1000 IU/kg) VitD supply 

significantly increased femur strength amongst coccidia-infected but not amongst uninfected 

broilers, which had similar femur BS values irrespective of VitD supply level. Furthermore, a 

low level of vitamin supply resulted in the lowest amount of tibia ash/BW at late stages post 

coccidia infection (d14 pi). Collectively these results suggest that a higher level of dietary 

vitD supply may confer additional benefits to infected broilers regarding long bone quality. 

A major driver of chapter 4 experiment was the need to reduce P levels in broiler diets for 

environmental and economic benefits (Miles et al., 2003; Maguire et al., 2005; Huang et al., 

2018). However, contrary to expectations, there was no evidence of a VitD and infection 

status interaction suggesting a more pronounced effect on long bone mineralisation amongst 

the infected broilers. Tibia strength was significantly improved amongst uninfected but 

similar amongst infected broilers receiving adequate compared to the marginally deficient 

Ca/P diets. These results are in accordance with those of studies where phytase 

supplementation has been shown to have more limited effects in infected as opposed to non-

infected broilers (Shaw et al., 2011).  

Supplying dietary P above the nutrition requirements did not improve tibia ash parameters in 

E. acervulina infected birds (Willis and Baker, 1981). Phytase supplementation was more 

effective in increasing tibia ash percentage and performance in uninfected starter control 

chicken compared to E. acervulina-infected (4 x105) chicken (Watson et al., 2005). Phytase 

supplementation in grower chicks infected with E. acervulina (1 x 105) and E. tenella (5 x 
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103) did not improve bone breaking strength (Shaw et al., 2011). Contrary to the above 

studies, the addition of phytases increased the absorptive capacity of the intestine in E. 

acervulina infected chicks (Mansoori et al., 2010). Excess Ca supplementation did not affect 

tibia ash in E. acervulina-infected birds, whilst it reduced it in control birds (Watkins et al., 

1989). On the other hand, feeding Ca and nPP deficient diets decreased tibia ash percentage to 

a higher degree in control than in infected chicks (Watson et al., 2005). Further studies should 

include femur relative ash weight (Ash/BW) and ash percentage based on the different 

mineralisation rate established between tibia and femur in chapter 5 and other studies 

(Applegate and Lilburn, 2002) 

6.4 Growth rate effects in coccidiosis-infected modern broilers 

Rapid growth rate (GR) with the associated skeletal disorders constitute a major source of 

concern regarding modern broilers (Knowles et al., 2008). This thesis tested the effects of 

altering broiler GR using any of two conventional methods, i.e. genetic [Chapter 2] and 

nutritional or artificial [Chapter 5], on coccidiosis-impaired long bone quality. It provided 

novel evidence that both these GR reduction methods led to a similar degree of improvement 

in long bone mineralisation for modern broilers in the presence or absence of coccidiosis. 

Furthermore, the thesis reported a more pronounced effect of GR on femur than tibia 

mineralisation irrespective of the GR alteration method utilised. However, it is worth noting 

that nutritional GR reduction using poor vs good quality diets [Chapter 5] might elicit a 

higher magnitude of anorexia and weight loss post-coccidia infection amongst broilers 

receiving the good quality diet (see Chapter 5 discussion for details). In essence, the thesis 

suggests that offering adequate diets to two broiler lines with divergent genetic growth 

potentials [Chapter 2] or utilising a poor quality (up to 15% lignocellulose-diluted) diet to 

reduce the GR of the fast-growing broiler line in chapter 2 [Chapter 5] achieved similar 

results in the context of coccidiosis-impaired long bone quality. 

6.4.1 Genetically influenced broiler growth rate 

A decisive stance like that of the Dutch Organisation of retails to only sell chicken meat from 

slow-growing birds because of the problems associated with rapid GR may spread quickly 

across Europe (Burton et al., 2016) and indeed globally. In the context of coccidiosis, the 

thesis showed no evidence that selection for improved GR compromised resistance and 

tolerance of broilers per se [Chapter 2]. However, this was an exception in relation to the 

several studies highlighting the negative consequences of the genetically increased GR of 

modern broilers (Knowles et al., 2008; Tallentire et al., 2016). Broiler breeders are advised to 
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incorporate robust selection schemes covering essential traits like bone quality and disease 

resistance alongside improved performance into their breeding programmes. Also, since 

femur mineralisation differed between fast- and slow-growing broilers [Chapters 2 and 5], it 

is advisable that the industry incorporated markers of femur mineralisation on long bone 

development in genetic selection schemes. Furthermore, selection-improved GR is strongly 

correlated with reduced activity levels, which reduce bone quality in broilers (Bizeray et al., 

2000; Bizeray et al., 2002a; Rutten et al., 2002) according to Wolff’s law (1982). Wolff’s law 

postulated that bone would adapt to loads under which it is placed, which means that 

deposition of bone and invariably bone strength will increase in response to imposed stress. 

Therefore, farmers can be encouraged to explore husbandry tools to facilitate exercise or 

higher activity levels amongst fast-growing broilers for beneficial effects on bone quality. 

6.4.2 Nutritional or artificial reduction in growth rate  

Substantial economic returns derive from genetic selection for increased GR, but skeletal and 

welfare disorders constitute a significant drawback in the poultry industry. It is now known 

that reducing early GR of modern fast-growing broilers during the second and third week or 

life via diet dilution has beneficial effects on the skeletal development irrespective of coccidia 

infection status [Chapter 5]. However, this method stands a high risk of rejection by profit-

seeking commercial broiler producers due to the delays (2 to 5 days) it may cause in attaining 

market weight. Further investigations are, therefore, required to compare the economic and 

welfare implications of adding a few days to the production period, with the huge loss 

reported due to skeletal and other rapid GR-related disorders (Knowles et al., 2008; Pines and 

Reshef, 2015; Pratt and Cooper, 2018). The outcome of such a study could make the method 

more appealing to commercial farmers, especially if reducing early GR turns out to be more 

profitable. Also, incentives for broiler welfare could add to the value of the product. 

6.5 Scope for future research 

In the course of this project, several potential research areas geared toward improving the long 

bone quality and the general welfare of modern fast-growing broilers in the presence or 

absence of coccidia infections were identified. 

 Future research on the bone quality of coccidiosis infected birds could be improved by 

the use of Dual Energy X-Ray Absorptiometry (DEXA) Bone Scan technology 

(Morris, 2018). This will allow for effective monitoring and assessment of bone 

https://scholarworks.uvm.edu/cgi/viewcontent.cgi?article=1459&context=fmclerk
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development in the same chicken across the period post-infection. It will also simplify 

the data collection process creating time for more data to be collected and analysed. 

 

 The concentration of specific minerals in the bone following Eimeria infection could 

be investigated to provide further knowledge on the effects of coccidiosis on the bone. 

Markers of bone resorption (Akbari Moghaddam Kakhki et al., 2018) should also be 

examined alongside bone mineral content. 

 

 Assessment of the immune response could be done over multiple time points post-

infection including cytokines and CD4 CD8. 

 

 Value could also be added to future studies by investigating using different Eimeria 

species to ascertain the ameliorative effects of Vit on the consequences of infection. A 

mixed infection model and the use of 1,25D3 metabolite could also be investigated. 

 

 Gait scoring and locomotion capacity assessment could be incorporated into future 

studies to investigate the effect of coccidiosis on walking ability and if VitD has any 

beneficial effects in this regards. 

 

 A co-supplementation of VitD with nucleotide-rich yeast extracts (Leung et al., 2018) 

could be investigated for any beneficial effects on damaged gut morphology arising 

from increased parasite burden associated with VitD supply [Chapter 3]. 

 

 The economic and welfare implications of extending the production cycle of modern 

fast-growing broilers by few days compared to skeletal and other rapid GR-related 

disorders losses (Knowles et al., 2008; Pines and Reshef, 2015; Pratt and Cooper, 

2018) could be investigated. The outcome of this study could influence the decision of 

commercial farmers on employing reduction in early GR as a means of improving 

long bone quality of broilers. 
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