Synthesis of aerogels, nanocomposites and lightweight silica aerogel superinsulation nanocomposites by ambient pressure drying method

by

Khalil Thabit Hassan

A thesis presented for the degree of

Doctor of Philosophy

School of Engineering
Newcastle University, UK

July 2019
Abstract

This thesis mainly investigates the improvement of the new ambient pressure approach used to synthesise aerogels by using a solvent comprising of sodium bicarbonate and water instead of a low surface tension solvent. Firstly, to improve the efficiency of thermal insulation, the sodium bicarbonate approach is utilised to synthesise cost effective ceramic blanket silica aerogels (CBSA) and short ceramic fibres silica aerogel composites (CSSA).

To reduce the manufacturing cost and scalable of silica aerogels, we propose applying the sodium bicarbonate approach to synthesis silica aerogels from sodium silicate (water glass) precursor. In addition, the approach is used to synthesise alumina-based aerogel (dawsonite-sodium aluminium carbonate hydroxide) from Aluminium sec-butoxide precursor (ASB).

To mimic the structure and thickness of the wings of the damselfly, which was the main source of inspiration for this study, multi-layered silica aerogel films with a thickness of 0.3 mm were synthesised using the bicarbonate approach.

Finally, wavy nickel nanowires (NiNWs) were synthesised and immobilised on mesoporous silica (SiO₂) aerogels by the sol-gel method. In addition, nickel nanoparticles (NiNPs) were immobilised in silica aerogels to do a comparative study between the catalytic activity of immobilised NiNWs and NiNPs in silica aerogels for CO₂ hydration reaction (CHR) in gaseous phase. Dynamic vapour sorption (DVS) analysis is used for that purpose. The analysis is performed at levels of 50% CO₂ and 50% H₂O vapour for SiO₂ aerogels, immobilised nickel nanoparticles (NiNPs) on silica aerogels and NiNWs-SiO₂ aerogels composites.

Transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), uniaxial compression test, Brunauer-Emmett-Teller (BET) and Barrett-Joyner-Halenda (BJH) methods are used to characterise the synthesised materials.
ACKNOWLEDGEMENTS

Firstly, all praises to Allah to help me in completing this thesis. I would like to express my extreme gratefulness to my Supervisor Dr. Lidija Šiller (Professor in Nanoscale Science, School of Engineering, Newcastle University, UK) for her professional guidance, motivation and thoughtful advice during my PhD. Her advice encouraged me to be creative and to think deeper. I have enjoyed working with her and she has helped me learn many techniques under her supervision.

I would also like to thank the Higher Committee for Education Development in Iraq (HCED) for a PhD scholarship.

I would also like to thank my lab mates especially Dr. Xiao Han for their help during my research.

I owe my deepest gratitude and special words of thanks to the partner of my life my wife Maryam Alrawe, without her continuous support, I cannot finish my work.

My deepest gratitude goes to my beloved parents. Your contribution in my life made it more comfortable and my loss is more bearable.

Finally, yet importantly, as it would be impossible to thank them as they deserved, I would like to dedicate my work to the spirit of my father (Thabit Al-Fityan), my aunt (Naseemah Al-Fityan) and my uncle (Husham Al-Fityan) who all passed away during my studying journey, my mother, my sisters, my wife and my children.
Contents

Abstract .. i

ACKNOWLEDGEMENTS .. ii

Contents .. iii

List of Figures .. v

List of tables ... xiv

Abbreviations .. xv

Chapter 1 General background and literature review ... 1

1.1 Introduction .. 1

1.2 Sol-gel process ... 5

1.3 Ageing ... 7

1.4 Drying .. 7

1.5 Mechanical reinforcement of silica aerogels .. 14

1.6 Aerogels applications ... 19

1.6.1. Thermal insulation ... 19

1.6.2. Silica aerogels as support to catalysts .. 22

1.6.3. Other applications of aerogels .. 22

1.7 Research objectives and motivations .. 23

1.8 Conclusion .. 25

Chapter 2 Experimental Methods .. 34

2.1 Materials and methods ... 34

2.1.1 Fibre reinforced silica aerogel composites synthesised by the novel ambient pressure drying method .. 34

2.1.1.a Silica gel preparation ... 35

2.1.2 Synthesis of silica aerogels from sodium silicate precursor using the bicarbonate ambient pressure drying method ... 36

2.1.3 Synthesis of dawsonite aerogels via using novel ambient pressure drying method ... 38

2.1.4 Synthesis of multi-layered silica aerogel films via novel ambient pressure drying approach ... 39

2.1.5 Synthesis and immobilised nickel nanowires on silica aerogels 40

2.2 Characterisation and techniques ... 42

2.2.1 Physics of electron microscopy .. 45

2.2.2 Transmission electron microscope structure ... 46

2.2.3 Scanning electron microscopy (SEM) ... 50

2.2.4 X-ray diffraction (XRD) ... 52

2.2.5 Surface area and pore size analysis ... 53
Chapter 9 Appendix .. 146
9.1 Appendix A. Degassing process and surface area measurements with Surfer analyser .. 146
9.2 Appendix B. Thermal conductivity measurement by the hot-disk 151
9.3 Appendix C. List of publications .. 155
9.4 List of posters and oral presentation ... 156
9.5 List of academic awards: ... 157

List of Figures

Figure 1.1 Current aerogels applications (Stergar and Maver, 2016). 2
Figure 1.2. Total number of publications by year for the last 30 years that contains “aerogel” in their content (web of Science, date of search/14th September 2018). 3
Figure 1.3 general stages of aerogels synthesis. Step 4 is only for carbon-based aerogels (Zuo et al., 2015). .. 4
Figure 1.4 Core silica aerogels research topics (Dourbash et al., 2017). 5
Figure 1.5. Sol-gel reaction for an alkoxy silane (Maleki, 2016).................................... 6
Figure 1.6. Ostwald ripening process on gel nanoparticles during ageing (Maleki, 2016) 7
Figure 1.7. Schematic of capillary to demonstrate measurements used in the Young-Laplace equation. .. 8
Figure 1.8. Supercritical drying method phase diagram (Aegerter et al., 2011)........... 9
Figure 1.9 Schematic representation of supercritical drying autoclave (Gurav et al., 2010). 10
Figure 1.10. The mechanism of surface modification and solvent exchange (Shao et al., 2013). .. 12
Figure 1.11. A schematic comparison between ambient pressure drying methods for aerogels. (a) conventional APD using an organic low surface tension (LST) solvent. (b) APD using inorganic sodium bicarbonate solution. (c) A proposed net-chemical-reaction route in the sodium bicarbonate solution APD method with TMCS ((CH$_3$)$_3$SiCl) (Han et al., 2018)...... 14
Figure 1. 12. In-situ amine modification, hydrophobisation and isocyanate cross-linking of silica aerogels. Where (APTES) is 3-aminopropyltriethoxysilane and (HDI) is hexamethylene diisocyanate (Li et al., 2017b)..16

Figure 1. 13. Reinforcing fibres of silica aerogels nanocomposites (Slosarczyk, 2017a)........18

Figure 1. 14. Real scanning electron microscopy image of silica aerogels with glass fibres and assumed physical structure of silica aerogels with glass fibres (Yang et al., 2017). 19

Figure 1. 15. Market share displayed by cost/performance: high-performance (superinsulation) and low-cost products have smaller market shares. The red arrows symbolize the expected development of each segment in the future (Koebel et al., 2012)...20

Figure 1. 16. Comparison between superinsulation and conventional insulation in terms of costs and space savings (Cuce et al., 2014)..21

Figure 2. 1. Schematic diagram of synthesis of CSSA and CBSA by bicarbonate ambient pressure drying method. ..36
Figure 2. 2. (a) Schematic diagram of synthesis silica aerogels from water glass precursor via novel ambient pressure drying method, (b) multi surface modification process to obtain monolithic silica aerogels. ..37
Figure 2. 3. Schematic diagram of synthesis steps of dawsonite aerogels via using novel ambient pressure drying approach..39
Figure 2. 4. Schematic diagram of immobilising process of NiNWs on silica aerogels.41
Figure 2. 5. Schematic representation of the wealth of information resulting from the interaction between the electron beam and the specimen in an electron microscope (Watt, 1997).42
Figure 2. 6. Approximate energies of electrons signals for a given primary beam energy. Region I and II are backscattered electrons contributions. Region III refer to the secondary electron contribution (Stokes, 2008)..43
Figure 2. 7. Secondary electron emission from a solid target (Wells et al., 1974).44
Figure 2. 8. Auger electron an X-ray photon emission mechanisms (Wolstenholme, 2015)...45
Figure 2. 25. Average increase of sensor temperature (ΔT) as a function of time during a typical hot disk measurement (Yi, 2005). .. 71

Figure 2. 26. A schematic for DVS Vacuum instrument with kind permission of Surface Measurement Systems. .. 73

Figure 3. 1. X-ray diffraction pattern of ceramic fibres reinforced silica aerogels, (a) ceramic fibres, (b) washed ceramic fibre reinforced- silica aerogels, (c) unwashed ceramic fibre reinforced silica aerogels that contain sodium chloride salt. .. 81

Figure 3. 2. (a) Nitrogen adsorption –desorption isotherms of ceramic blankets reinforced silica aerogels composites and (b) corresponding pore size distribution.. 82

Figure 3. 3. (a) Nitrogen adsorption –desorption isotherms of ceramic short fibres reinforced silica aerogel composites and (b) corresponding pore size distribution.......................... 83

Figure 3. 4. SEM images of (a) ceramic blanket, (b) CBF reinforced silica aerogels, (c) CSF reinforced silica aerogels, (d) silica aerogel’s macropores of sample (c), (e) further magnification of sample (c), detection of silica aerogel’s mesopores, (f) further magnification of sample (c), detection of narrow size of silica aerogel’s mesopores.. 85

Figure 3. 5. Compression stress-strain curves of ceramic blanket reinforced silica aerogel composites. The inset in figure shows the linear part of the curve from which Young modulus are calculated. .. 86

Figure 3. 6. Compression stress-strain curves of ceramic short fibres reinforced silica aerogel composites. The inset in figure shows linear part of curves from which Young modulus were calculated and with the brittle fracture for pure silica aerogels (AE) and SA1 sample, which contain a low weight fraction of short fibres (see a very abrupt drop signature of braking point of blue and red curves in inset). .. 87

Figure 3. 7. a) and c) Compressive strength of CBSA and CSSA composites, respectively. b) and d) Young’s modulus of CBSA and CSSA composites, respectively.......................... 88

Figure 3. 8. TGA-DTA curves for (a) sample AB5, (b) sample SA5. .. 89
Figure 3. 9. Temperature dependence-thermal conductivity of CBSA composites. 90
Figure 3. 10. Temperature dependence-thermal conductivity of CSSA composites. 90

Figure 4. 1. Silica aerogels synthesised from water glass precursor by using bicarbonate ambient pressure drying method (Han et al., 2018), (a) water-glass based silica aerogels of 1:4.5 volumetric ration of water glass and deionised water, (b) monolithic silica aerogel of same volumetric ratio obtained by multi-treatment with TMCS-ethanol mixture (see synthesis process in section 2.2.2, chapter 2)... 97
Figure 4. 2. XRD 2θ scan of a silica aerogel prepared using a water glass (sodium silicate) precursor by using bicarbonate APD method (Han et al., 2018). ... 98
Figure 4. 3. Nitrogen adsorption-desorption isotherms of water glass based-silica aerogel samples with use of ion exchange method for different volume ratio of water glass: water. The adsorption isotherms are shown by filled circles, desorption isotherms are shown by filled squares. ... 99
Figure 4. 4. Pore size distribution curves (BJH method) for water glass based silica aerogels synthesised by using an ion exchange method for a different volume ratio of water glass: water. ... 100
Figure 4. 5. Nitrogen adsorption-desorption isotherms of water glass based-silica aerogel samples washed with only DI water for different volume ratio of water glass: water. The adsorption isotherms are shown by filled circles, desorption isotherms are shown by filled squares. ... 101
Figure 4. 6. Pore size distribution curves (BJH method) for water glass based-silica aerogels which are washed with only water for different volume ratio of water glass: water. 102
Figure 4. 7. SEM micrographs of water glass based silica aerogels for the highest surface area samples with including of typical pore diameters, (a) sample of volume ratio 1:4.5 with using of amberlite, (b) sample of volume ratio 1:4 washed with water only. ... 102
Figure 4. 8. Thermal conductivity of water glass-derived aerogel monoliths (volume ratio 1:4.5) measured over a range of temperature by the hot-disk technique .. 103

Figure 4. 9. Scalability of the process: 350 cm³ of salt washed aerogel granules produced in a single batch from a water glass precursor by ambient pressure drying using TMCS and bicarbonate solution .. 104

Figure 5. 1. Dawsonite - sodium aluminium carbonate hydroxide aerogel granules 107

Figure 5. 2. SEM image of dawsonite (NaAlCO3(OH)2) aerogels synthesized with aluminium sec-butoxide and ambient pressure drying using bicarbonate solution and TMCS. 108

Figure 5. 3. XRD 2θ scan of a sodium aluminium carbonate hydroxide aerogel sample..... 109

Figure 5. 4. FTIR spectrum of an as-synthesised Dawsonite aerogel. 110

Figure 5. 5. N₂ adsorption-desorption isotherm curve of as-synthesised dawsonite aerogels. The adsorption isotherm is shown by the filled circles, the desorption isotherm is presented by the open squares. .. 111

Figure 5. 6. Pore size distribution curve of as-synthesised dawsonite aerogels 111

Figure 6. 1. SEM images of the membrane of the damselfly Lestes virens (Odonata, Zygoptera: Lestidae): (a) base of the wing; (b) multi-layered structure (5 layers are visible) of the base of the wing; (c) two layer structure of the end of the wing (Han et al., 2018) 114

Figure 6. 2. Bioinspired wing-membrane-like multi-layered silica aerogels. (a-c), Photos of silica aerogels formed by the sodium bicarbonate solution based APD method using TEOS precursor .. 114

Figure 6. 3. SEM micrograph of Bioinspired wing-membrane-like multi-layered silica aerogels. (a) SEM micrograph of bilayer. (b) SEM micrograph of triple layers aerogel material. (c) SEM micrograph of the interface in the bilayer aerogel. (d-e) nine layers porous aerogel structures. (f) SEM micrograph of mesoporous structure .. 115
Figure 6. 4. N$_2$ adsorption-desorption isotherm for multi-layer silica aerogels. The adsorption isotherm is presented by the filled circles, desorption isotherm is presented by open squares. ... 116

Figure 6. 5. Pore size distribution for multi-layer silica aerogels. ... 116

Figure 6. 6. (a-b), thickness measurements of layered silica aerogels by scanning electron microscopy. Sample thickness was found to vary in the range ~ 250 – 350 nm. The scale bar is 200 nm. ... 117

Figure 6. 7. Stress-strain curve for a typical layered silica aerogel. ... 118

Figure 6. 8. Optical micrographs showing the surface area of a layered aerogel before (left) and after (right) compression testing. ... 118

Figure 7. 1. Transmission electron microscopy (TEM) images, (a) and (b) of NiNWs, (c) and (d) are TEM images of NiNPs, (e) and (f) are TEM images of NiNWs-silica aerogels (sample N3). ... 124

Figure 7. 2. (a) SiO$_2$ aerogels (b) Nickel nanowires (NiNWs) immobilised on SiO$_2$ aerogels synthesised with different nanowires concentrations. ... 125

Figure 7. 3. Nitrogen adsorption–desorption isotherm of pure NiNWs, sample N0. 125

Figure 7. 4. Nitrogen adsorption–desorption isotherms, (a) pure silica aerogel (S), (b) 700 ppm of nickel nanoparticles in silica aerogel (Np), (c) 400 ppm of nickel nanowires in silica aerogel (N1), (d) 500 ppm of nickel nanowires in silica aerogel (N2) and (e) 700 ppm of nickel nanowires in silica aerogel (N3). ... 126

Figure 7. 5. Barrett–Joyner–Halenda (BJH) method of pore size distribution, (a) pure silica aerogel (S), (b) 700 ppm of nickel nanoparticles in silica aerogel (Np), (c) 400 ppm of nickel nanowires in silica aerogel (N1), (d) 500 ppm of nickel nanowires in silica aerogel (N2) and (e) 700 ppm of nickel nanowires in silica aerogel (N3). ... 127

Figure 7. 6. X-ray diffraction (XRD) patterns of pure NiNWs and immobilised NiNWs on SiO$_2$ aerogels. .. 128
Figure 7. 7. SEM images at different magnifications and different concentrations of NiNWs immobilised on SiO\textsubscript{2} aerogels. (a and b) SEM images for N1, (c and d) SEM images for N2 and (e and f) SEM images for N3. (Denotation: 400 ppm of nickel nanowires in silica aerogel (N1), 500 ppm of nickel nanowires in silica aerogel (N2) and 700 ppm of nickel nanowires in silica aerogel (N3)).

Figure 7. 8. pH changes during bubbling of CO\textsubscript{2} through DI water (grey), NiNWs suspension (N0-black), SiO\textsubscript{2} aerogels suspension (blue), and Ni nanowire-SiO\textsubscript{2} aerogels composites at 400 ppm (N1-red), 500 ppm (N2-orange) and 700 ppm (N3-green). All experiments are performed at RT and atmospheric pressure.

Figure 7. 9. Adsorption-desorption cycles and adsorption-desorption isotherms showing CO\textsubscript{2} sorption kinetics at 25 °C. (a) sorption kinetics for SiO\textsubscript{2} aerogels, (b) sorption kinetics for 700 ppm NiNPs-SiO\textsubscript{2} aerogel composites, (c) sorption kinetics for 700 ppm NiNWs-SiO\textsubscript{2} aerogel composites, (d) adsorption-desorption isotherm curves of SiO\textsubscript{2} aerogels, (e) adsorption-desorption isotherm curves of 700 ppm NiNPs-SiO\textsubscript{2} aerogel composites and (f) adsorption-desorption isotherm curves of 700 ppm NiNWs-SiO\textsubscript{2} aerogel composites.

Figure 7. 10. Adsorption-desorption cycles and adsorption-desorption isotherms showing H\textsubscript{2}O vapour sorption kinetics at 25 °C. (a) sorption kinetics for SiO\textsubscript{2} aerogels, (b) sorption kinetics for 700 ppm NiNPs-SiO\textsubscript{2} aerogel composites, (c) sorption kinetics for 700 ppm NiNWs-SiO\textsubscript{2} aerogel composites, (d) adsorption-desorption isotherm curves of SiO\textsubscript{2} aerogels, (e) adsorption-desorption isotherm curves of 700 ppm NiNPs-SiO\textsubscript{2} aerogel composites and (f) adsorption-desorption isotherm curves of 700 ppm NiNWs-SiO\textsubscript{2} aerogel composites.

Figure 7. 11. Adsorption-desorption cycles and adsorption-desorption isotherms curves showing 50/50 H\textsubscript{2}O/CO\textsubscript{2} sorption kinetics at 25 °C. (a) sorption kinetics for SiO\textsubscript{2} aerogels, (b) sorption kinetics for 700 ppm NiNPs-SiO\textsubscript{2} aerogel composites, (c) sorption kinetics for 700 ppm NiNWs-SiO\textsubscript{2} aerogel composites, (d) adsorption-desorption isotherm curves of SiO\textsubscript{2} aerogels, (e) adsorption-desorption isotherm curves of 700 ppm NiNPs-SiO\textsubscript{2} aerogel composites and (f) adsorption-desorption isotherm curves of 700 ppm NiNWs-SiO\textsubscript{2} aerogel composites.
composites and (f) adsorption-desorption isotherm curves of 700 ppm NiNWs-SiO$_2$ aerogel composites. ... 134

Figure 7. 12. Comparison of 50/50 H$_2$O/CO$_2$ adsorption (ads) and desorption isotherms (des) for 700 ppm NiNPs-SiO$_2$ aerogel composites (ads is in pink and des is in green), for 700 NiNWs-SiO$_2$ aerogel composites (ads is in red and des is in blue) and pure silica aerogels (ads in brown and des in turquoise). Data are taken at 25 °C. ... 135

Figure 8. 1. Epoxy and silica aerogels-epoxy samples with a different volumetric ratio. 140
Figure 8. 2. CO$_2$ adsorption isotherms normalised for surface area of samples.............. 142
Figure 8. 3. Raman spectra of samples when follow CO$_2$ adsorption experiments above presented in Figure 8.2. ... 143

Figure a. 1. Surfer acquisition main page... 146
Figure a. 2. Automatic temperature control.. 147
Figure a. 3. Load method from acquisition parameters tab.................................... 148
Figure a. 4. Sample info page... 149
Figure a. 5. Blank parameters tab ... 150

Figure b. 1. Experiment type selection dialog box .. 151
Figure b. 2. Experiment window, standard method. Experiment parameter of sample AB5 in Table 3.1, chapter 3. ... 152
Figure b. 3. Temperature drift graph of sample AB5 in Table 3.1, chapter 3........ 153
Figure b. 4. Transient measurement sample of AB5 in Table 3.1, chapter 3........... 153
Figure b. 5. Residual of the selected area for thermal conductivity measurement of AB5 in Table 3.1, chapter 3. ... 154
Figure b. 6. Linear curve of thermal conductivity calculation of AB5 sample........ 154
List of tables

Table 1. 1. Critical conditions of commonly used solvents (Sone et al., 2013). 11

Table 2. 1. Synthesised samples of ceramic fibre blankets (CFB) and Ceramic short fibres (CSF)-silica aerogels composites. ... 35

Table 3. 1. Physical properties of silica aerogels, CBSA and CSSA composites synthesised by NAPD method. ... 80

Table 4. 1. Volumetric ratio of water glass: deionised water with BET and BJH results for water glass-base silica aerogels. ... 98

Table 7. 1. Surface area and pore size and pore volume properties of NiNWs, NiNPs composites and NiNWs composites (pure nickel nanowires (N0), pure silica aerogel (S), 700ppm of nickel nanoparticles in silica aerogel (Np), 400ppm of nickel nanowires in silica aerogel (N1), 500ppm of nickel nanowires in silica aerogel (N2) and 700ppm of nickel nanowires in silica aerogel (N3). ... 124

Table 7. 2. DVS adsorption capacity (Ads. C.) and retain mass (R.M.) of sorption gases 132

Table 8. 1. Thermal conductivity of Epoxy-silica aerogel composites. 140
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>APD</td>
<td>Ambient pressure drying</td>
</tr>
<tr>
<td>APTES</td>
<td>3-aminopropyltriethoxysilane</td>
</tr>
<tr>
<td>ASB</td>
<td>Aluminum sec-butoxide</td>
</tr>
<tr>
<td>BET</td>
<td>Brunauer-Emmett-Teller</td>
</tr>
<tr>
<td>BJH</td>
<td>Barrett-Joyner-Halenda</td>
</tr>
<tr>
<td>BSEs</td>
<td>Backscattered electrons</td>
</tr>
<tr>
<td>CBSA</td>
<td>Ceramic blanket-silica aerogel composites</td>
</tr>
<tr>
<td>CHR</td>
<td>Carbon dioxide hydration reaction</td>
</tr>
<tr>
<td>CFB</td>
<td>Ceramic fibre blanket</td>
</tr>
<tr>
<td>CeB₆</td>
<td>Cerium hexaboride</td>
</tr>
<tr>
<td>CSF</td>
<td>Ceramic short fibres</td>
</tr>
<tr>
<td>CSSA</td>
<td>Short fibres reinforced-aerogel composites</td>
</tr>
<tr>
<td>DI</td>
<td>Deionised water</td>
</tr>
<tr>
<td>DMF</td>
<td>N,N–dimethylformamide</td>
</tr>
<tr>
<td>DVS</td>
<td>Dynamic vapour sorption</td>
</tr>
<tr>
<td>E–T</td>
<td>Everhart-Thornley detector</td>
</tr>
<tr>
<td>EtOH</td>
<td>Ethanol</td>
</tr>
<tr>
<td>FEGs</td>
<td>Field emission guns</td>
</tr>
<tr>
<td>HDI</td>
<td>Hexamethylene diisocyanate</td>
</tr>
<tr>
<td>HVAC</td>
<td>Heating, ventilation and air conditioning</td>
</tr>
<tr>
<td>IUPAC</td>
<td>International Union of Pure and Applied Chemistry</td>
</tr>
<tr>
<td>LaB₆</td>
<td>Lanthanum hexaboride</td>
</tr>
<tr>
<td>LST</td>
<td>Low surface tension</td>
</tr>
<tr>
<td>MTES</td>
<td>Methyltriethoxysilane</td>
</tr>
<tr>
<td>MTMS</td>
<td>Methyltrimethoxysilane</td>
</tr>
<tr>
<td>NA</td>
<td>Numerical aperture</td>
</tr>
<tr>
<td>NiNPs</td>
<td>Nickel nanoparticles</td>
</tr>
<tr>
<td>NiNWs</td>
<td>Nickel nanowires</td>
</tr>
<tr>
<td>Acronym</td>
<td>Full Form</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td>PEI</td>
<td>Poly(ethyleneimine) solution</td>
</tr>
<tr>
<td>PTES</td>
<td>Propyltriethoxysilane</td>
</tr>
<tr>
<td>R-value</td>
<td>Thermal resistance</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning electron microscopy</td>
</tr>
<tr>
<td>SEs</td>
<td>Secondary electrons</td>
</tr>
<tr>
<td>TEM</td>
<td>Transmission electron microscopy</td>
</tr>
<tr>
<td>TEOS</td>
<td>Tetraethyl orthosilicate</td>
</tr>
<tr>
<td>TEPA</td>
<td>Tetraethylenepentamine</td>
</tr>
<tr>
<td>TMCS</td>
<td>Chlorotrimethylsilane</td>
</tr>
<tr>
<td>TMOS</td>
<td>Tetramethyl orthosilicate</td>
</tr>
<tr>
<td>TPS</td>
<td>Transient Plane source</td>
</tr>
<tr>
<td>U-value</td>
<td>Thermal transmittance</td>
</tr>
<tr>
<td>VIPs</td>
<td>Vacuum insulation panels</td>
</tr>
<tr>
<td>XRD</td>
<td>X-ray powder diffraction</td>
</tr>
</tbody>
</table>
Chapter 1 General background and literature review

This chapter is an introduction and brief review on silica aerogel synthesis techniques including the common drying processes that is used to synthesise aerogels, reinforcement techniques utilised for enhancing mechanical properties and recent industrial applications of aerogels. This chapter also outlines main aims of this thesis.

1.1 Introduction

Aerogel is a fascinating nanostructured material which is synthesised by replacing the solvent, present within the pores of a gel, with air. This substitution can be done such that the structure of the gel is retained (Zhang et al., 2017). Historically, gels have been known about and used since the beginning of human civilization. In comparison with gels, the history of aerogels started at the beginning of the 20th century after some scientists proposed the capability of replacing the liquid inside the gel’s pores with air. The first successful attempt to synthesise silica aerogel was carried out by Steven Kistler at Stanford University in 1931 using a supercritical drying method (Wan et al., 2018). Aerogels can be classified in different ways. They can be classified as monoliths, powders and films according to their appearance or they could be classified as inorganic, organic and hybrid aerogels according to their composition (Stergar and Maver, 2016). The open cell porous structure gives silica aerogel excellent heat insulation performance. Due to their unique properties such as high porosity, small pore size (2 to 50 nm) and a low solid conductivity of the silica skeleton, silica aerogels are considered among the best insulators. In addition to having the lowest measured thermal conductivity of any material, silica aerogel offers a promising opportunity to produce a non-flammable insulation which is inert, transparent to solar light and strongly blocks infrared thermal radiation (Rolison and Dunn, 2001). At room temperature, silica aerogels have a very low thermal conductivity, even lower than the thermal conductivity of air (25 mW/m K); the values can be as low as between 0.005-0.02 W/m K (Kistler, 1931; Lu et al., 1992; Rolison and Dunn, 2001; Sorensen et al., 2006; Hayase et al., 2014; Jiang et al., 2017a; Liu et al., 2017).

In addition to their superinsulation properties, a tremendous amount of studies have been carried out to investigate the capability for efficient use of silica aerogels in different applications such as humidity sensors (Wang et al., 2005), gas sensors (Yamada et al., 2002), supercapacitors (Kim and Popov, 2002), drug delivery (Rajanna et al., 2015), CO2 capture (Lin and Kuo, 2016), catalyst supporters, acoustic insulators (Feng et al., 2016) and as heat storage
devices (Ulker et al., 2013; Maleki et al., 2014b). A brief of different applications of aerogels are presented in the diagram seen in Figure 1.1

Figure 1.1 Current aerogels applications (Stergar and Maver, 2016).

The recent increase of industrial applications for aerogel in sectors such as thermal insulation for aerospace, building or any application which requires high surface area and porosity is reflected by the pronounced increase of scientific research and publications in the field of aerogels in the recent years (Maleki, 2016). Figure 1.2 illustrates the growth in scientific publications on aerogels over the last three decades.

More recently, publications have been focusing on producing new fascinating types of aerogels, employing new applications for aerogels and improving upon the production of aerogels in an attempt to reduce the manufacturing time. Despite the wide range of applications, the inherited poor mechanical properties and fragility are the reasons behind the drawback in commercialization of silica aerogels. The poor strength under compression is reported so far in literature (Yang et al., 2011). Therefore, several attempts have been carried out to enhance the strength of silica aerogel networks to improve the material’s mechanical properties (Leventis et al., 2002). One effective method for enhancing mechanical properties is achieved by recruiting secondary materials such as fibres. For example; xonotlite, nonwoven fibres and ceramic or carbon fibre were utilized for that purpose (Deng et al., 1998; Yang et al., 2011).
Chapter 1 Background and literature review

Figure 1.2. Total number of publications by year for the last 30 years that contains “aerogel” in their content (web of Science, date of search/28th May 2019).

Generally, silica aerogel synthesis takes place in three main stages: gelation (transition of sol into gel), ageing (enhancing the mechanical properties of the gel) and drying (replacing the solvent inside pores with air at a certain temperature and pressure). In gelation, a sol-gel method is used to prepare the silica gel. A gel of nanostructured network is formed via polymerization process in a liquid reaction medium. Silica precursor delivers the siloxane bridges (≡Si–O–Si≡) between the Si atoms. After gelation, the gel needs to be aged before the final stage of drying. The most common precursor which is used for the synthesis of silica aerogels is Tetraethyl orthosilicate (TEOS). The drying process of the gel can be utilized by one of three common methods: freeze drying, ambient pressure drying and supercritical drying; these methods will be discussed in more detail later in this chapter. Figure 1.3 illustrates the general steps for the synthesis of aerogel.
Chapter 1 Background and literature review

The recent research on aerogels are focusing on three main branches. First is concerned on developing ambient pressure drying method to reduce the production cost and use cheaper precursors such as water glass. Where the second is about enhancing the strength and fragility of the silica aerogel structure, which can be achieved by either modifying the microstructure through hybridization or by reinforcing the material with inorganic or organic substances. The final category focuses on the introduction of silica aerogel into other materials such as polymers, insulation materials or encapsulating structures (Dourbash et al., 2017). Figure 1. 4 presents the core research about silica aerogels (Dourbash et al., 2017).

Figure 1. 3 general stages of aerogels synthesis. Step 4 is only for carbon-based aerogels (Zuo et al., 2015).
1.2 Sol-gel process

Sol-gel is the process by which most aerogels are synthesised from different precursors. Sol can be described as a colloidal solution of primary particles or monomers. In general, the sol consists of a mixture of starting precursor, water, solvent and catalyst (Maleki, 2016). The structure of the gel is formed after successive reactions and reverses of hydrolysis and condensation. Hydrolysis is the process by which the nucleophilic attack of water leads to replacement of alkoxide groups by hydroxyl groups. While condensation is the process of forming M-O-M bonds between two species of M-OH (where M is a metal element) or M-OH and M-OR (OR is an alkoxide group). The process releases water or alcohol molecules, respectively (Wan et al., 2018).

Metal oxide sol-gel process from alkoxide precursors can be described through three reactions of formation the polymeric M-O-M bonds as illustrated in Figure 1.5 (Brinker, 1988; Maleki, 2016).
Many parameters may influence a sol-gel process. Those parameters are the pH of the solution, temperature, precursor activity and the water / precursor ratio. In addition, the rate of hydrolysis and condensation reactions can be controlled by adding some catalysts, (Brinker, 1988; Gurav et al., 2010), varying the molar ratio or the type of catalyst that is employed to control the hydrolysis and condensation rates as well as the time of gelation.

The silica precursor could be either sodium silicate (water glass) or alkoxides. The most common alkoxides, which are used as a silica precursor, are tetraethyl orthosilicate (TEOS), methyltrimethoxysilane (MTMS) and tetramethyl orthosilicate (TMOS) (Zhang et al., 2004; Bhagat et al., 2007; He et al., 2009). From commercial perspective, water glass is the cheapest and promised precursor for silica aerogel production, however, it requires several treatments, such as ionic exchange to remove Na+ ions, in addition to a huge consumption of expensive solvents for surface modification (Shi et al., 2006).

One of the biggest advantages of the sol-gel process is the ability to amend the molecular or the nanoscale structure of the aerogel by incorporating an extra phase or chemical groups such as alkoxide organofunctions or additives and nanoparticles in the porous network (Maleki, 2016).
1.3 Ageing

During gelation, silica gel for instance, primary particles are linked together to form the necklace structure of silica gel. However, at that stage the linking among those particles are quite weak and there is a need for enhancement (Iswar et al., 2017). Therefore, several attempts were conducted to enhance the strength of the necklace structure of the gel. Haereid et al. (1995) applied heating treatment (hot water) on the wet gel to enhance the mechanical properties of the silica aerogel. The enhanced strength of the wet gel backbone, when heat treatment is utilised, was attributed to the effect of Ostwald ripening process (Reichenauer, 2004). Ageing is also strengthening the structure of the gel and minimising the shrinking of the gel during drying. The ageing process provides additional time for the reaction of some reactive species and unreactive monomers inside the pores with solvent that are not finished during gelation step. The ageing process is carried out by soaking the gel in a proper solvent (such as a mixture of water and ethanol (Einarsrud et al., 2001) or mother solvent (He et al., 2009)) for a period from several hours to days. For instance, using water as the ageing solvent promotes dissolution and reprecipitation of silica species into the contact points of particles (see Figure 1. 6 which illustrates Ostwald ripening on the gel); while ageing with mother solvent provides more hydrolysis and condensation reaction which will increase the strength of the gel (He et al., 2009). In addition, the ageing process could be controlled by many parameters such as temperature, pH and time (Maleki, 2016).

![Figure 1. 6. Ostwald ripening process on gel nanoparticles during ageing (Maleki, 2016).](image)

1.4 Drying

The aim of the drying process is to obtain aerogels with the original porous structure of gels. The main parameter that affects drying of gels is the presence of capillary forces inside pores, which cause the gel’s shrinkage. As a result of shrinking, chemical groups in the internal surface
of the pores react with each other (if the walls of pores are shrunk enough to touch each other) and cause the collapse of the aerogel structure (Schwertfeger F., 1998). Before discussing the main drying methods, it is important to explain the capillary forces which arise at the solid-liquid-vapour interface inside the pores.

Capillary

The big challenge for any drying method of aerogels is overcoming the generated capillary forces. The smaller radius of the pores becomes, the higher the hydrostatic pressure is or the higher the liquid column inside the pores will be. To calculate the capillary pressure inside the pores (see Figure 1.7), Young- Laplace equation is used to balance the static forces

\[2\pi \gamma \cos \theta = \pi r^2 \rho g \]

\[2\rho g = p_r = 2\frac{\gamma \cos \theta}{r} \]

(1.1)

![Diagram of a capillary to demonstrate measurements used in the Young-Laplace equation.](image)

Figure 1.7. Diagram of a capillary to demonstrate measurements used in the Young-Laplace equation.

where, \(r \) is the radius of the pore, \(\gamma \) is the surface tension, \(\theta \) is the contact angle, \(h \) is the height of liquid column, \(\rho \) is liquid density and \(p_r \) is the interfacial pressure. Since the pore diameter is measured in nanometres, the hydrostatic pressure inside pores is very high; therefore, the particles will compact on each other under the effect of surface tension and the meniscus. Consequently, the collapse occurs due to the porous structure especially if the gel has very fine pores (Gurav et al., 2010). In addition, the surface of the wet gel is terminated by either hydroxyl (OH) or alkoxy (OR) groups and these groups could react and yield \(=\text{SiO}_2-\text{O}-\text{Si} = \) bonds during drying. This will create an irreversible shrinking and produce high density silica xerogels (>0.5 g/m) (Rao et al., 2001).
Freeze drying method

This is an easy and cost effective drying method which depends on bypassing the triple point as shown in Figure 1.8 (Aegerter et al., 2011). Generally, the obtained material from this drying method is called cryogel (maximum porosity of 80%). In this drying method, the process is going around the liquid- gas boundary and the solvent inside the pores is frozen and then extracted via sublimation under vacuum (Blaszczyński et al., 2013; Maleki et al., 2014a; Maleki, 2016). The porous structure of aerogels that are produced by the freeze drying method is dependent on the rate of freezing. Small pore size aerogel is obtained when fast freezing rates are applied while slow rates produce large pore size aerogels (Kumar et al., 2018).

However, this drying method has not proven to produce monolithic aerogels. Products are either cracked pieces or powder, where the ice inside the pores leads to the filling of the porous structure. The process also needs solvent exchange with low expansion coefficient solvents (such as hexane, toluene and THF) (Aegerter et al., 2011; Maleki, 2016).

![Supercritical drying method phase diagram](image)

Figure 1.8. Supercritical drying method phase diagram (Aegerter et al., 2011).

Supercritical drying method

To maintain the porous structure during drying of the gel and to produce high quality silica aerogels, a supercritical drying method is utilised to avoid the effect of capillary forces, which is the main cause for the destruction of the porous structure. When Kistler and Charles 1931 have successfully developed a drying method to replace the liquid inside pores of gels by the air without collapsing the porous structure of the gel, soon after that they have synthesised SiO₂
aerogel with density of only 0.02 g/cm3 (Kistler, 1931). Then they synthesised alumina, stannic oxide, nickel tartrate, tungstic oxide, agar, gelatine and cellulose aerogels. Kistler utilised autoclave to elevate the temperature of the gel, which was already impregnated in liquid, above the critical temperature of that liquid and to maintain the pressure over the vapour pressure. The evaporation of the liquid occurs without the collapsing of the aerogel network due to the absence of a liquid-vapour meniscus caused by traditional drying methods (Kistler, 1931; Aegerter et al., 2011).

As mentioned earlier, the supercritical drying method is designed to overcome the capillary forces. To explain that, at a specific point, critical point in Figure 1.8, the liquid inside the pores behave as a supercritical fluid. At that stage, each molecule moves freely due to the absence of the surface tension and forming of liquid-vapour interfaces. Therefore, there is no presence of capillary forces at the pore’s walls and the drying occurs without the collapse of the aerogel structure (Smith et al., 1995).

The supercritical drying method is performed with either organic solvent or by solvent exchange with CO$_2$. Figure 1.9 illustrates the autoclave that is used in the supercritical drying method (Gurav et al., 2010). A supercritical drying method is called a hot process if an organic solvent is used for drying because it is carried out at high pressure and temperature. In general, alcohol is the most commonly used solvent in this process. Using ethanol or methanol for drying requires the temperature and the pressure of the autoclave to be set to the critical values of 243oC and 7.9 MPa, respectively (Gurav et al., 2010; Aegerter et al., 2011).

Figure 1.9 Schematic representation of supercritical drying autoclave (Gurav et al., 2010).
On the other hand, the cold process is carried out by exchanging the solvent with CO$_2$ during the drying process. The critical point for carbon dioxide is (31.1 °C at 7.39 MPa) (Blaszczynski et al., 2013). The lower temperature for the cold supercritical drying makes that process cheaper and preferable to produce monolithic aerogels compared with the hot process (Blaszczynski et al., 2013). Table 1.1 shows the critical temperature and pressure for some commonly used solvents in the supercritical drying method (Sone et al., 2013).

Table 1.1. Critical conditions of commonly used solvents (Sone et al., 2013).

<table>
<thead>
<tr>
<th>Fluid</th>
<th>Critical Temperature (K)</th>
<th>Critical Pressure (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO$_2$</td>
<td>304.1</td>
<td>7.39</td>
</tr>
<tr>
<td>NH$_3$</td>
<td>405.5</td>
<td>11.35</td>
</tr>
<tr>
<td>H$_2$O</td>
<td>647.3</td>
<td>22.12</td>
</tr>
<tr>
<td>n-Pentane</td>
<td>469.7</td>
<td>3.37</td>
</tr>
<tr>
<td>Toluene</td>
<td>591.8</td>
<td>4.10</td>
</tr>
</tbody>
</table>

Ambient pressure drying method

The supercritical drying method is typically used for commercial production of monolithic aerogels. However, this drying method has some commercial restrictions which limit the scaling up. Such restrictions demand special equipment (special kinds of autoclaves) and involve some special safety and cost issues related to operation at high pressures and temperatures (Sarawade et al., 2010; Smitha et al., 2011; Bangi et al., 2012; Mazraeh-shahi et al., 2013; Toivonen et al., 2015). After Prakash et al. (1995) introduced synthesis of silica aerogels by ambient pressure drying method (APD), which is much safer and less expensive, the process has been developed to be an alternative method for commercial production of silica aerogels. APD includes aging and many solvent exchange stages in order to strengthen and to modify the silica gel surface before drying. From the Young Laplace equation, see Eq. 1.1, in order to prevent the pore from collapsing, the pressure inside the pores can be decreased via reducing the surface tension inside the pores. Furthermore, the gel needs surface modifications before the drying as the gel without modifications experience an irreversible shrinking and cracking because of the capillary pressure. Surface modification of silica network occurs
through modifying hydroxyl groups with non-polar methyl groups usually from silanes (Rao et al., 2001; Smitha et al., 2011; Shao et al., 2013). Typically, trimethylchlorosilane (TMCS) is used for surface modification of silica gel. Eq. (1.2), (1.3) and Figure 1. 10 show the reactions on surface between TMCS and hydroxyl groups. In addition, TMCS reacts with water inside pores simultaneously.

\[
\begin{align*}
\text{Silica alcogel} & \quad \text{TMCS} & \quad \text{Modified silica gel} \\
\text{O} & \quad \text{Si} & \quad \text{O} & \quad \text{Si} & \quad \text{O} & \quad \text{Si} & \quad \text{OH} & \quad \text{CH}_3 & \quad \text{O} & \quad \text{Si} & \quad \text{O} & \quad \text{Si}(\text{CH}_3)_3 & \quad \text{O} & \quad \text{Si} & \quad \text{O} & \quad \text{Si}(\text{CH}_3)_3 \\
\text{O} & \quad \text{Si} & \quad \text{O} & \quad \text{OH}_2 & \quad + & \quad 3 \text{H}_2\text{C} & \quad \text{Si} & \quad \text{Cl} & \quad \rightarrow & \quad \text{O} & \quad \text{Si} & \quad \text{O} & \quad \text{Si} & \quad \text{CH}_3 & \quad \text{CH}_3 & \quad + & \quad 3\text{HCl} \\
\text{2H}_3\text{C} & \quad \text{Si} & \quad \text{Cl} & \quad + & \quad \text{H}_2\text{O} & \quad \text{(pore water)} & \quad \rightarrow & \quad \text{H}_3\text{C} & \quad \text{Si} & \quad \text{O} & \quad \text{Si} & \quad \text{CH}_2 & \quad + & \quad 2\text{HCl}
\end{align*}
\]

Figure 1. 10. The mechanism of surface modification and solvent exchange (Shao et al., 2013).
However, this method requires multi-steps of solvent exchange and surface modification in order to preserve the porous network (Sarawade et al., 2011). Although using low cost sodium silicate precursor will reduce the manufacturing cost of silica aerogels synthesised via APD, the production cost of silica aerogels using APD is still high. Furthermore, APD produces a large amount of chemical waste (Gurav et al., 2009).

Bicarbonate based ambient pressure drying method

Recently, Han and Šiller (2015) developed a new ambient pressure drying approach by reducing the solvent exchange and surface modification process that in turn reduces the cost for synthesising silica aerogels. The novel ambient pressure drying approach uses sodium bicarbonate solution instead of organic low surface tension solvents in conventional ambient pressure drying method, in order to generate CO\(_2\) gas in the pores of the wet-gel before drying at a certain temperature. The approach is inspired from the life cycle of a damselfly and more specifically from the drying process of their wings. The process generates CO\(_2\) inside the pores during gel stage prior to drying. Therefore, instead of reducing the capillary pressure by undertaking surface modification and solvent exchange in APD, combination of TMCS and sodium bicarbonate solution generates CO\(_2\) gas without surface modification. The formed CO\(_2\) is trapped inside the wet gel that generates pressure (CO\(_2\) bubbles) are found opposing to the capillary pressure. The pressure, which is formed by CO\(_2\) generation, prevents collapsing of the wet gel structure during ambient pressure drying. The dried aerogel has hydrophilic properties. The diagram in Figure 1. 11 illustrates the difference between APD using an organic low-surface-tension (LST) solvent and APD using inorganic sodium bicarbonate solution (Han and Šiller, 2015; Han et al., 2018).
Chapter 1 Background and literature review

1.5 Mechanical reinforcement of silica aerogels

The inherited properties of brittleness, low compressive strength and overall low mechanical properties of aerogels are the main barriers for the commercialisation of aerogels (Chen et al., 2012). A great effort is dedicated by researchers to improve mechanical properties of silica aerogels (Leventis, 2007). Three outlined challenges could limit the industrialisation of silica aerogels which are: brittleness, high manufacturing cost and instability in moist atmospheres. Therefore, further optimisation of the manufacturing cost and mechanical properties of aerogels will ensure their use as thermal or acoustic insulators (Meador et al., 2005).
Many strategies are used to overcome the associated drawbacks of the weakness and brittleness of silica aerogels. Here is a short description of some common reinforcing strategies.

Hybridisation

The strengthening of silica aerogels can be achieved through hybridisation. (Yim *et al.*, 2002). Modifying the internal surface of the pores to be hydrophobic rather than hydrophilic via emerging organic functional groups improves the resistance of silica gel against shrinking and water (Hayase *et al.*, 2011). Hybridisation is carried out by co-gelation of silicon alkoxide like TEOS with trifunctional organosilane precursors such as methyltrimethoxysilane (MTMS) and methyltriethoxysilane (MTES). The obtained flexibility and elastic properties of silica aerogels are achieved by hybridisation that comes from obtaining the organosilane compounds when one silicon atom has a non-hydrolysable group. Hybrid aerogels were intensively studied in literature in order to improve the mechanical and hydrophobicity properties of aerogels. Hegde and Rao (2007) investigated the change in flexibility of hybrid silica aerogels with the change in molar ratio of MeOH/MTMS. The molar ratio of MTMS: MeOH: acidic water: basic water was 1:35:3.97:3.97, respectively which gives the best elastic and hydrophobic properties to silica aerogels.

Pan *et al.* (2017) used a freeze-drying method for the synthesis of a hybrid silica aerogels from MTMS and water glass precursors aiming to enhance the mechanical performance, maintain the mesoporous structure and produce a suitable low thermal conductivity material for thermal insulation application.

Employing inorganic functional groups could also enhance the mechanical properties and provide elastic recovery properties for silica aerogels. Ehgartner *et al.* (2017) produced flexible silica aerogels using MTMS precursor and organic functional alkoxysilanes via drying by supercritical extraction with CO₂. The synthesised aerogels were found to have a good elastic recovery of up to 60% under uniaxial compression test.

Polymer cross-linking

Introducing crosslinking polymers into silica backbone is a common way to improve the mechanical strength of the silica aerogels (Lamy-Mendes *et al.*, 2018). Resulting composites have unique properties from both organic and inorganic materials (Randall *et al.*, 2011; Maleki *et al.*, 2014a). Chemically, polymer-aerogels composites can be classified into two classes. Class I which can be described as a physical mixing in which both polymer and silica network phases are completely independent from each other and bonded via van der Waals forces or
hydrogen bonding. While in class II there are covalent bonds between the components (Sanchez and Ribot, 1994; Capadona et al., 2006). The most notable examples of class I is the physical dissolving of biomolecules or organic dyes with inorganic precursor such as TEOS or TOMS (Maleki et al., 2014a). Class II provides lightweight insulation materials for space and commercial applications (Capadona et al., 2006). Introducing cross-linking polymers into the structure enhances the strength of silica aerogels. Cross-linking can be achieved by modifying the structure of silica aerogel with functional groups such as di or tri isocyanate to form urethane groups or using amine groups to make crosslinking with polymers such as poly-functionalised epoxy, isocyanates and cyanoacrylate (Shahzamani et al., 2016).

Modifying aerogel’s structure by amine groups is reported to introduce the hydrophobicity and to introduce organic groups to native silica structure, which gives flexibility to silica aerogel. Li et al. (2017b) utilised 3-aminopropyltriethoxysilane (APTES) to introduce hydrophobicity and to strengthen the structure of the silica aerogel via reacting those groups with isocyanates (hexamethylene diisocyanate (HDI), see Figure 1. 12).

![Figure 1. 12. In-situ amine modification, hydrophobisation and isocyanate cross-linking of silica aerogels. Where (APTES) is 3-aminopropyltriethoxysilane and (HDI) is hexamethylene diisocyanate (Li et al., 2017b).](image-url)
Wu et al. (2018) investigated the synthesis for robust and more hydrophobic silica aerogels by using in situ synthesis hybridisation method of propyltriethoxysilane (PTES) with tetraethylorthosilicate (TEOS) by sol-gel process.

Reinforcement by secondary materials

Synthesis of silica aerogels by the sol-gel process enables amending and improving native properties of silica aerogel networks. Some common silica aerogel additives are nanoparticles, fibres or nanofibers (Lamy-Mendes et al., 2018). Reinforcement with fibres or mats is a common solution to tackle the drawback of scaling up silica aerogel. Recently, tremendous efforts on fibres reinforcement of silica aerogels were devoted to produce appropriate composite materials for industrial applications. For instance, glass-fibres is reported by Ul Haq et al. (2017) to be used for reinforcing silica aerogels derived from MTMS and from TEOS precursors and dried by the freeze drying method to produce hydrophobic and hydrophilic silica aerogels composites. While Li et al. (2017a) prepared glass fibres reinforced TEOS-based silica aerogel composites via ambient pressure drying method for fire resistance. Also, microglass fibres are used to reinforce silica aerogels (Jiang et al., 2017b).

On the other hand, reinforcement with organic fibres have been reported in the literature too. For example, polyacrylonitrile fibres are utilised to improve the mechanical properties of silica aerogels and to produce lightweight hydrophobic silica aerogel composites for oil absorption applications (Shi et al., 2017). Polyester fibres are also used for reinforcing silica aerogel composites for vacuum insulation panels (VIPs) production (Li et al., 2016). Furthermore, Aramid fibres (He et al., 2017), carbon fibres (Slosarczyk, 2017b), graphene oxide (Dervin et al., 2017) and cellulose fibres (Jaxel et al., 2017) are devoted to enhance the mechanical properties of silica aerogels.

In order to obtain the desired properties, it is important to insure the homogeneous distribution of fibres inside the aerogel. This can be achieved through control of the gelation stage by preventing the fibres sedimentation. A summary of reported fibres used to enhance the mechanical properties of silica aerogels are presented in the schematic diagram in Figure 1. 13 (Slosarczyk, 2017a).

In the past few years, aerogel blankets (fibres, silica aerogels, opacifiers and optional binders) have been developed as effective materials for thermal insulation in aerospace applications. In general, the synthesis is based on organic or inorganic porous fibre blankets that are soaked in the silica sol during sol-gel process and then dried via supercritical or ambient pressure drying.
method (Hoseini et al., 2016a; Berthon-Fabry et al., 2017; Lakatos, 2017b; Lakatos, 2017a; Lee et al., 2018).

![Diagram of fibres reinforcement of silica aerogel nanocomposites](image)

Figure 1.13 Reinforcing fibres of silica aerogels nanocomposites (Slosarczyk, 2017a).

Due to its mechanical stability and low thermal conductivity (0.017-0.04 W m$^{-1}$ K$^{-1}$), the aerogel’s blanket structure provides a solution for the improvement of the mechanical properties of silica aerogels and a reduction of the heat transfer through original fibres mat. An additional advantage of incorporating aerogel is filling the gaps between fibres, which reduces the further gas conducting (Hoseini et al., 2016b). Reinforcement fibres are coated with silica aerogel particles as can be seen in Figure 1.14 in case of silica aerogels reinforced with glass fibres (Yang et al., 2017).
1.6 Aerogels applications

Currently there is a consensus among scientists about the outstanding properties of aerogels, which enables the material to be used for a wide range of applications. It can be used in roofs, on windows, as solar collectors or sound insulators. This section highlights the most recent research and applications of aerogels.

1.6.1. Thermal insulation

In the last few decades and as a result of increased greenhouse emission, tremendous effort has been carried out on optimising transportation systems such as cars, trains and aviation. Today, it is necessary to optimise the energy consumption of HVAC system (heating, ventilation and air conditioning) of buildings. To do that, it is important to increase the isolation efficiency. Reducing the heat loss through thermal insulation can be carried out by increasing the thickness of the insulation materials. However, that solution is accompanied with additional space consumption (Koebel et al., 2012).

With the continuous increase in construction of commercial and residential buildings, it is necessary to employ high performance thermal insulation materials in order to reduce both the consumption of energy and the space that is occupied by the conventional insulators. In addition, usage of superinsulation materials in HVAC systems of building is a facile solution to tackle the increase in emission of the greenhouse gases (Hoseini et al., 2016b). Figure 1. 15 illustrates the relationship between the performance and the cost of the insulation materials (Koebel et al., 2012).
The recent development for the synthesis of silica aerogels and their composites at ambient pressure indicates a promising super insulative material could potentially be produced for the superinsulation materials in building sector. For example, aerogel blankets have shown many benefits such as effective insulation properties, lightweight and space saver while the incorporation of aerogels in glazing systems is under development (Berardi, 2018).

Despite the promising thermal properties of silica aerogel composites, the thermal insulation market is still dominated by conventional insulators due to their lower costs. The thermal efficiency of insulative materials is commonly described by a factor of thermal transmittance which is also known as the U-value. The U-value for a surface of a designed construction material is defined as the rate of heat transfer in watts per square meter for each degree difference in temperature of air between the outdoor and indoor of construction (Selves et al., 2013). Therefore, in order to calculate the U-value for a simple construction, the U-value is found to be the reciprocal of the total thermal resistance (R-value),

\[
U = \frac{1}{R} \text{ (W/m}^2 \text{ K)} \\
(1.4)
\]
where total thermal resistance R is

$$R = R_{si} + R_1 + R_2 + R_3 + R_a + R_{so}$$ \hspace{1cm} (1.5)$$

where R_{si} and R_{so} are the thermal resistances of the inner and outer surfaces of layer, respectively. R_1, R_2 and R_3 are the thermal resistances of elements. R_a is the thermal resistance of an air space or cavity. The thermal resistance can be calculated from the following formula:

$$R = \frac{t}{\lambda} \text{ m}^2 \text{K/W}$$ \hspace{1cm} (1.6)$$

where t is the thickness of the material and λ is the thermal conductivity (Selves et al., 2013).

For example, in the UK, the insulation thickness for modern houses must achieve a U-value of 0.3 W m$^{-2}$ K$^{-1}$. To reach that value, using conventional insulation materials, a thick layer of insulation is required. Figure 1.16 illustrates the cost gap between the conventional insulation and superinsulation. However, (Cuce et al., 2014) reported that by 2050, the predicted manufacturing cost of silica aerogels is to be below £500 per m3. It is a clear fact that in order to compete with conventional insulative materials, an intensive effort needs to be done on manufacturing cost of aerogels to be more cost effective (Cuce et al., 2014).

![Table: Comparison between superinsulation and conventional insulation in terms of costs and space savings](Cuce et al., 2014)

Figure 1.16. Comparison between superinsulation and conventional insulation in terms of costs and space savings (Cuce et al., 2014).
1.6.2. Silica aerogels as support to catalysts

The open porous structure and high surface area properties of aerogels among nanostructure materials empower the effective hosting of nanoparticles. In addition, the open porous structure of aerogels enables an effective mass transfer of gas-phase or reactant molecules to reach the active sites. All those properties in addition to good thermal stability makes aerogels attractive hosting materials for catalytic applications (Amiri et al., 2016).

Because of the thermal stability of SiO$_2$ and Al$_2$O$_3$, they were used more than other materials as catalysts supports (Zheng et al., 2015; Zhao et al., 2017). Amiri and Moghaddas (2015) synthesised copper-silica aerogels catalysts for hydrogen production from methanol reforming by cogelation of copper and sodium silicate precursors followed by ambient pressure drying method. Li et al. (2013) utilised silica aerogels to support Ni nanoparticles as a catalyst for a partial oxidation of methane. In addition, silica aerogels are used with Fe and Mo bimetallic nanoparticles to make a porous nanocomposite catalyst in synthesis multi wall carbon nanotubes by chemical vapour deposition method (Marras et al., 2015). While, Han et al. (2015) employed silica aerogels synthesised by ambient pressure drying method to support Ni nanoparticles for carbon dioxide hydration reaction. Alumina aerogels are also employed to support catalyst nanoparticles. Zhao et al. (2017) synthesised Ni nanoparticles confined in alumina aerogel and silicon carbide (SiC) in order to promote catalysis of dry reforming of methane (DRM). The high stability of mesoporous alumina aerogels prevents Ni nanoparticles from sintering and allows the SiC decoration for better catalytic performance.

1.6.3. Other applications of aerogels

Recently, aerogels have been widely used in many applications. One promising usage of aerogels is to minimise anthropogenic emission of greenhouse gases. Modifying aerogel with amine groups is a facile way for CO$_2$ capture (Kong et al., 2016). For example, silica aerogels which are modified using 3-aminopropyltriethoxysilane (APTES) (Kong et al., 2016), tetraethylenepentamine (TEPA) and polyethyleneimine (PEI) (Sanz et al., 2013) are employed for CO$_2$ capture. Air pollution also involves vapours of organics, which are emitted by vehicle exhausts and industries. Activated carbon and silica aerogels indicate the possibility to be excellent sorbent candidates to adsorb organic vapours (Maleki, 2016). Water remediation is another important application of aerogels. Graphene oxide based-aerogels are reported to have adsorption capacity of 220 mg g$^{-1}$ in one hour and as high as 397 mg g$^{-1}$ at equilibrium for adsorption of indigo disulphonate dye (Pan et al., 2018). In addition, incorporation of graphene
in SiO$_2$ aerogels promote the hydrophobic properties and develops the selectivity towards oil sorbent from water (Mi et al., 2018). In pharmaceutical applications, the high porosity and surface area of aerogels provide a good solution to overcome the drawbacks in drug delivery that are related to both toxicity and water solubility. Depending on the affinity and stability properties of the drug in the solvent, it is possible to load the drug at any stage of aerogel synthesis while the release of the drug will depend on the nature of the aerogel (Maleki et al., 2016). Aerogels are also used as an efficient material for solar energy harvesting (Fu et al., 2017). Recently, graphene oxide and graphene aerogels have been receiving a lot of attention in solar stream generation which is used to generate solar vapour because of their large surface area, porosity, and high light absorbance. Those unique properties enlarged their evaporation efficiency (Fu et al., 2017; Fu et al., 2018).

1.7 Research objectives and motivations

Currently, scientists are spending a great deal of effort on the development of aerogels and getting the benefits from their distinctive properties is always faced with the manufacturing costs and environmental and safety issues. Therefore, in an attempt to cut off the manufacturing cost and to reduce the produced chemical waste of ambient pressure drying method, a novel approach has been developed by Xiao Han and Lidija Šiller in our nanoscale science and nanotechnology group at Newcastle university, based on drying silica aerogels synthesised from TEOS precursor and dried at ambient pressure using sodium bicarbonate solution rather than organic solvents (Han and Šiller, 2015). However, the mechanical properties of silica aerogels which are prepared by this novel method still have to be improved. In addition, in order to prove the general validity of the novel approach, the proposed approach has to be applied to other precursors.

The current proposed PhD work is an attempt to reach the following goals:

Fibre-reinforced silica aerogels

One of the most promising applications of silica aerogels is replacing the currently used conventional insolation materials with super-insulators. Reinforcement with different kinds of fibres is the best way to tackle the drawback in mechanical properties of silica aerogels and to produce reinforced-silica aerogels composites for thermal applications. The aim of this part of the thesis is to produce low cost, lightweight and environmentally friendly super-thermal insulation panels, which can be used for a variety of applications. Fabrication of silica aerogel blankets and fibre-reinforced silica aerogel composites using short ceramic fibres are the main
focus of this part of the thesis. In addition, an investigation into the mechanical and thermal properties of silica aerogels composites had to be performed. The characterisation of both types of fibre reinforcement aerogel composites are presented in chapter 3 of this thesis.

Extending the novel approach

The capability of the novel approach to become a facile low cost and environmentally friendly method for the synthesis of aerogels had to be proved further. To fulfil that, the approach needs to be extended and applied to other precursors. Therefore, the credibility of the approach was investigated on the synthesis of silica aerogels from water glass precursor, which is the cheapest and most promising precursors to produce low cost silica aerogels. In addition, an alumina precursor was utilised to produce aerogels using the novel approach. The results and characterisations of synthesised water glass-based silica aerogels and dawsonite aerogels are presented in chapter 4 and chapter 5 of this thesis, respectively.

Synthesis of multi-layered silica aerogels

The novel approach was originally inspired by the drying process of a damselfly’s wings. Damselfly wings are lightweight, relatively strong and they consist of very thin porous layers. The structure of these wings inspired us to synthesise multi-layered silica aerogel films. The novel approach has been applied for that purpose. Synthesis and characterisations of the multi-layered silica aerogels are presented in detail in chapter 6 of this thesis.

Immobilisation of Nickle Nanowires (NiNWs) in silica aerogels

An early study of embedded nickel nanoparticles in silica aerogels was carried out by Han et al. (2015). That study focused on supporting NiNPs by silica aerogel and investigating the catalytic activity of embedded NiNPs for carbon dioxide hydration reaction in aqueous solution (Han et al., 2015). However, it is important to investigate different types of nanostructures of nickel in addition to the investigation of the catalytic activity in the gaseous phase. Therefore, the main aim of this part (all characterisation and experiments are presented in chapter 7 of this thesis) of thesis was to synthesise and investigate the catalytic activity of immobilised nickel nanowires (NiNWs) in silica aerogels in gaseous phase for carbon dioxide hydration reaction by using dynamic vapour sorption analysis (DVS) technology.
1.8 Conclusion

Chapter 1 focuses on summarising different techniques used to synthesise aerogel as well as potential applications of silica aerogels prepared via the sol-gel process. This chapter also describes the main three common drying methods (supercritical drying, freeze-drying and ambient pressure drying methods) to produce aerogels. In addition, we present the recently proposed sodium bicarbonate based-ambient pressure drying approach which is developed by Han and Šiller (Han and Šiller, 2015) to synthesise silica aerogels from TEOS precursor. In addition, this chapter highlights some promising applications of aerogels. Furthermore, this review outlines aims, and objects of the research presented in the next chapters of this PhD thesis.

References

Slosarczyk, A. (2017a) 'Recent advances in research on the synthetic fiber based silica aerogel nanocomposites', *Nanomaterials*, 7(2), p. 15.

Chapter 2 Experimental Methods

This chapter describes the synthesis methods and principles behind the experimental techniques that are used during characterisation of fibre reinforced silica aerogels composites, water glass-based silica aerogels, dawsonite, nickel nanowires immobilised on silica aerogels and multi-layered silica aerogel films. A transmission electron microscope (TEM) and scanning electron microscope (SEM) are used to investigate the microstructures and morphologies of aerogels and aerogel composites. X-Ray diffraction was used to quantify the structures of the synthesised aerogels. The surface areas and pore size distributions were determined from nitrogen adsorption-desorption isotherms by using Brunauer-Emmett-Teller (BET) method and Barrett-Joyner-Halenda (BJH) methods, respectively. Uniaxial compression tests were utilised to investigate the mechanical properties of fibre-reinforced silica aerogel and multi-layers silica aerogels. A hot disk method was used to measure the thermal conductivity of silica aerogels and their composites. Dynamic vapour sorption (DVS) is employed to investigate the gas sorption kinetics and catalytic activity for nickel nanowires and nickel nanoparticles immobilised on silica aerogels for CO$_2$ hydration reaction (CHR) in gaseous phase. All techniques are discussed in detail.

2.1 Materials and methods

2.1.1 Fibre reinforced silica aerogel composites synthesised by the novel ambient pressure drying method

All materials that are used in the synthesis of reinforced silica aerogels are used with no further treatment. Tetraethoxysilane (98%; TEOS), chlorotrimethylsilane (≥98%; TMCS), sodium-bicarbonate (99.7-100.3 %), ammonium hydroxide (≥99.99%) and ammonium fluoride (≥98%) were purchased from Sigma Aldrich. Ethanol (99.99%; EtOH) is supplied by Fisher Scientific. Ceramic short fibres (T/3740/48 Triton™ Kaowool Epsilon Ceramic Fibre, Pure) were provided by Fisher Chemical. Ceramic blanket (Superwool 607 Max) is purchased from Bath Potters' Supplies.
2.1.1.1 Silica gel preparation

The sol-gel process was used to synthesise silica gels by hydrolysis of TEOS precursor in ethanol. Two beakers were prepared for use in the experiment. The first one contains a mixture of TEOS and ethanol. The second one contains a mixture of ethanol, water and catalyst (the catalyst is a mixture of ammonium hydroxide (28-30%), ammonium fluoride (≥98%) and deionised water of molar ratio 1:8:111, respectively). The molar ratio of TEOS: ethanol: water was 2:38:33, respectively. For example, in typical synthesis of AB5 and CSSA samples, the first beaker contained 7.2 ml of TEOS and 16 ml of ethanol and the second beaker contained of 16 ml, 10.25 ml and 1.25 ml of ethanol, water and catalyst, respectively. The mixture of both beakers was stirred and dissolved at room temperature and then the content of beaker two was added and mixed with beaker one, while beaker one was constantly stirred. The mixed of solvents was poured on ceramic blanket (CFB) and ceramic short fibres (CSF). The gelation process was accomplished within 3 to 5 minutes and transparent gel was obtained. Figure 2.1 shows a diagram of the synthesis and drying processes by ambient pressure drying method of both CBSA and CSSA.

Table 2.1. Synthesised samples of ceramic fibre blankets (CFB) and Ceramic short fibres (CSF)-silica aerogels composites.

<table>
<thead>
<tr>
<th>Sample</th>
<th>CFB</th>
<th>AE</th>
<th>AB1</th>
<th>AB2</th>
<th>AB3</th>
<th>AB4</th>
<th>AB5</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂ wt.%</td>
<td>0</td>
<td>100</td>
<td>23</td>
<td>26</td>
<td>28</td>
<td>30</td>
<td>34</td>
</tr>
<tr>
<td>CF wt.%</td>
<td>100</td>
<td>0</td>
<td>77</td>
<td>74</td>
<td>72</td>
<td>70</td>
<td>66</td>
</tr>
<tr>
<td>Sample</td>
<td>CSF</td>
<td>SA1</td>
<td>SA2</td>
<td>SA3</td>
<td>SA4</td>
<td>SA5</td>
<td></td>
</tr>
<tr>
<td>SiO₂ wt.%</td>
<td>0</td>
<td>98.4</td>
<td>96.2</td>
<td>94.8</td>
<td>92.5</td>
<td>88.8</td>
<td></td>
</tr>
<tr>
<td>CF wt.%</td>
<td>100</td>
<td>1.62</td>
<td>3.8</td>
<td>5.2</td>
<td>7.5</td>
<td>11.2</td>
<td></td>
</tr>
</tbody>
</table>
2.1.2 Synthesis of silica aerogels from sodium silicate precursor using the bicarbonate ambient pressure drying method

Silica hydrogels were synthesised by the sol-gel method then dried by the novel APD (Han and Šiller, 2015). Water glass (sodium silicate, 338443 Sigma-Aldrich: Na$_2$O ~10.6%, SiO$_2$ ~26.5%) was diluted with deionised water at different volume ratios (1:3, 1:3.5, 1:4, 1:4.5 and 1:5). Two treatment processes are used during the synthesis of wet the gels. The first process
included ion exchange by using a strongly acidic cation exchange resin (Amberlite® IR 120 hydrogen form: 39389-20-3, supplied by Sigma-Aldrich). Figure 2. 2 shows a diagram of the synthesis of silica aerogels from water glass precursor.

Figure 2. (a) Schematic for the synthesis of silica aerogels from water glass precursor via novel ambient pressure drying method, (b) multi surface modification process to obtain monolithic silica aerogels.
2.1.3 *Synthesis of dawsonite aerogels via using novel ambient pressure drying method*

All materials used during experiments conducted in Chapter 5 are supplied by Sigma-Aldrich with no further purification. Synthesis of dawsonite aerogels involved three main steps: preparation of the alcogel; treatment with sodium bicarbonate and TMCS and solvent displacement; removal of trapped solvent from the pores by APD. The sol was prepared by mixing aluminum tri-sec butoxide (≥ 97%), deionised water (resistivity of 18 MΩ.cm⁻¹), ethyl acetoacetate (≥ 99%) and ethanol (99.99%, supplied by Fisher Scientific) in a molar ratio of 1:0.6:0.58:16, for 45 min at 60°C. Hydrolysis and condensation reactions were carried out by mixing the sol with a mixture of methanol (≥ 99.9%), DI water, acetic acid (≥ 99.7%), and N, N–dimethylformamide (DMF, ≥ 99.8%) in a weight ratio Sol:MeOH:H₂O:DMF of 1:0.2:0.003:0.03. 1 ml of acetic acid was added for each 30 ml of mixture while stirring for 30 mins at room temperature. The resulting homogeneous sol was transferred to airtight boxes and kept for 7 days at room temperature to complete gelation. After gelation was completed, the gel was then treated and dried by our approach. Figure 2. 3 displays a diagram of the synthesis steps of dawsonite aerogel by using our novel approach (Han *et al.*, 2018).
2.1.4 Synthesis of multi-layered silica aerogel films via novel ambient pressure drying approach

Multi-layered silica aerogel films were synthesised and characterised in chapter 6 of this thesis from tetraethoxysilane (TEOS) precursor using the same method and molar ratios detailed of describing silica gel preparation with TEOS precursor in section (2.1.1), above. Briefly (Han et al., 2018), cling film was pulled tight over a petri dish to create a flat surface and the silica sol dripped on the film by pipette. The drying mechanism of aerogels using the bicarbonate based ambient pressure drying method is illustrated in Figure 1. 11 in chapter 1.
2.1.5 Synthesis and immobilised nickel nanowires on silica aerogels

All chemicals that were used to synthesis the materials of chapter 7’s experiments were used as received from Sigma-Aldrich without further purification. Nickel chloride hexahydrate (NiCl$_2$·6H$_2$O) and hydrazine hydrate (N$_2$H$_4$·H$_2$O; 80 wt %), Ethylene glycol anhydrous (EG) (99.8%), sodium hydroxide (≥98%), hexane (≥97.0%), tetramethyloethoxysilicate (TEOS), (98% ammonium hydroxide (28-30%) and ammonium fluoride (≥98%) were supplied by Sigma-Aldrich. Ethanol (99.99%) was purchased from Fisher Scientific. Nickel nanoparticles purchased from Nano Technologies (Korea). CO$_2$ (99 %) was bought from BOC. Deionised water of resistivity 18 MΩ·cm$^{-1}$ was used for preparation of solutions and washing.

Synthesis of nickel nanowires (NiNWs)

Nickel nanowires were synthesized following solvothermal process as reported by Chen et al. (2015) with modification. Typically, 137 mg of NiCl$_2$·6H$_2$O was first added to 60 ml of ethylene glycol (EG) in a round bottom flask. After NiCl$_2$·6H$_2$O had fully dissolved in EG, 5 ml of 1M NaOH and 2.3 ml of N$_2$H$_4$·H$_2$O was then added into this solution. This solution was then kept in a water bath at 60 °C for 3 hours, the solution turned black indicating synthesis of Ni nanowires. These nickel nanowires were then dried in an oven at 60 °C for 8 hours. It was observed that when these nanowires were suspended in DI water, the pH of the suspension was acidic. It was suspected that the low pH could be due to the presence of residual reactants at the nanowire surface. Therefore, in order to remove these residuals, the nanowires were washed with 6M NaOH solution followed with DI water until the nanowire suspension had near neutral pH. Typically, 30 mg of NiNWs were mixed with 20 mL of 6 M NaOH and sonicated for 3 min. NaOH solution was refreshed and the process was repeated five times. A high-power magnet was used to separate NiNWs from the solution. In order to remove any excess NaOH from the samples, additional post-washing with DI water was introduced. NiNWs were dispersed in 20 ml of DI water followed by sonication for 3 min. DI water was then refreshed and the process was repeated 20 times. Finally, NiNWs were washed by ethanol five times before drying at 60 °C for 8 hours.

Immobilisation of nickel nanowires (NiNWs) on silica aerogels

The sol-gel process was used to synthesise silica aerogel. Immobilisation of NiNWs (see Figure 2. 4) and NiNPs (for comparison) were carried out according to process proposed by Han et al. (2015). NiNWs were dispersed during the sol stage prior to gelation. Silica aerogel samples with 0, 400, 500 and 700 ppm of NiNWs (S, N1, N2 and N3 in Table 7.1 chapter 7,
respectively) were synthesized (Figure 7. 2a and b). For the procedure, the desired amount of NiNWs were suspended in 5 ml of DI water using a sonic horn (Sonopuls, Bandelin) for 2 minutes. The hydrolysis of TEOS in ethanol and deionised water was used to prepare the silica gel with a molar ratio of 2:38:33 of TEOS: ethanol: water, respectively.

To accelerate the gelation process, a 1 ml mixture of ammonium hydroxide, ammonium fluoride and DI water in a molar ratio 1:8:111 was used as a catalyst. Subsequently, the mixture was stirred for 3 minutes and poured in a plastic mould for gelation. When gelation was complete, the mould was removed, and the gel was soaked in ethanol for aging. After 24 hours, the ethanol solvent was replaced by hexane. The hexane was refreshed every 24 hours for three days. Finally, the gel was dried at room temperature for 24 hours. After which the gel was transferred to an oven for 8 hours at 60 °C, after which the temperature was increased to 100 °C for a further 2 hours, see Figure 2. 4.

Figure 2. 4. Schematic diagram of the immobilising process of NiNWs on silica aerogels.
2.2 Characterisation and techniques

Background of electron microscopy

Electron microscopy works on the principle of bombarding a specimen with highly energetic primary electrons. The bombardment of these electrons causes unique interactions which depend upon the atoms present within the specimen. A wide range of charged particles and photons are generated as a result of that collision. Those interactions can be divided into elastic and inelastic interactions. Elastic scattering results from electrons deflection without loss of energy either by the specimen’s atomic nucleus or by the outer shell electrons of similar energies. Inelastic scattering causes transferring a substantial energy from the primary electrons beam to the atoms of specimen (Stokes, 2008). Figure 2. 5 illustrates a diagram of the emitted particles and photons which result from interactions between primary electron beams and the specimen (Watt, 1997).

![Diagram of electron microscopy interactions](image)

Figure 2. 5. Schematic representation of the wealth of information resulting from the interaction between the electron beam and the specimen in an electron microscope (Watt, 1997).

Backscattered electrons. Backscattered electrons (BSEs) are the primary electrons that have undergone a single or multiple scattering (scattered with an angle higher than 90°) after colliding with the atoms of the solid. Elastic scattering is caused by electrons deflecting and ejecting from a specimen’s atomic nucleus with a wide angle and energy of approximately 50 eV (Zhou and Wang, 2006; Egerton, 2016). It may have energy from that of the primary electrons beam down to SE (Figure 2. 6) (Stokes, 2008). On an average 10-15 % of the primary electrons beams are backscattered and hold approximately 60-80 % of their initial energy (Zhou and Wang, 2006).
Chapter 2 Experimental Methods

Figure 2.6. Approximate energies of electrons signals for a given primary beam energy. Region I and II are backscattered electrons contributions. Region III refer to the secondary electron contribution (Stokes, 2008).

The ratio between the number of emitted backscattered electrons (n_{BSE}) and the number of primary electrons (n_{PE}) or their currents, which have bombarded a sample, is known as BSE coefficient η.

$$\eta = \frac{n_{BSE}}{n_{PE}} = \frac{i_{BSE}}{i_{PE}}$$ (2.1)

The value of η is found to be proportional with the atomic number Z and provides an important contrast which enables to distinguish the different materials (Stokes, 2008).

Secondary electrons. Secondary electrons (SEs) are low energy electrons (less than 50 eV, majority < 10 eV (Stokes, 2008)) emitted from a solid as a result of inelastic collision. The outermost electrons are detached from the atoms leaving ionized atoms with a positive charge. Those electrons are immediately captured after their emission by the nearest ionised atoms. Some of the generated SE receive sufficient energy allowing them to escape from the surface (Watt, 1997; Goldstein et al., 2003; Stokes, 2008). SE can be subdivided into two categories (Figure 2.7). First category is the SE that are excited after penetration by primary electrons in the solid target. Those are beneficial in high-resolution scanning microscopy and provide information about the surface of the sample. While the second are the SE that are generated by the backscattered electrons; this type adds a noise to the signal. (Wells et al., 1974).
A ratio of the number of emitted secondary electrons n_{SE} to the number of bombarded primary electrons n_{PE} on sample or their equivalent current i is known as SEs coefficient δ.

$$\delta = \frac{n_{SE}}{n_{PE}} = \frac{i_{SE}}{i_{PE}}$$ \hspace{1cm} (2.2)

The SE coefficient is insensitive to the atomic number and their typical value is ~ 0.1. Due to their low energies, the SEs travel for a few nanometres and can therefore provide information about the surface of the specimen (used in SEM) (Stokes, 2008).

X-ray photons. If a specimen is subjected to bombardment by a primary electron beam, the electron of the atom will be knocked out leaving a vacancy and the remaining atom shifts to its excited state. Later, the atom tends to relax by filling the empty electron state with an electron from a higher energy orbital and releasing the excess energy in the form of a secondary photon effect. If the knocked electron was from the inner shell of the atom (see Figure 2. 8), the amount of released energy is huge which could be emitted in the form of an X-ray (Goodhew and Humphreys, 1997). X-rays are classified as electromagnetic waves with wavelengths shorter than visible light by two to five orders. X-rays can be emitted due to the atom being bombarded with electrons, α-particles or irradiate by higher energy gamma rays (Watt, 1997).

Auger electrons. Auger electron injection is an alternative process to X-ray emission (Figure 2. 8a) when the excited atom follows the relaxation process. Auger electron ejection is a three electrons contribution process. The first electron is the elected SE which leaves a hole (in the case of Figure 2. 8 in a K level) in the inner shell energy level. The process is followed by filling the hole by the second electron from higher energy levels (an L_1 level in the case of Figure 2. 8a) and the final electron (Auger electron) is also ejected from $L_{2,3}$ levels (Goodhew and Humphreys, 1997; Wolstenholme, 2015).
Physics of electron microscopy

The basic principles of electron microscopy is backed to the early 20th century when Louis de Broglie proposed the relation that connects an electron’s wavelength and Einstein’s description of photon,

\[
\lambda = \frac{h}{p} = \frac{h}{mv}
\]

(2.3)

where \(h \) is the Plank constant \((6.626 \times 10^{-34})\), \(p \) and \(m \) are the momentum and the mass of electron, respectively. It was observed that electrons, which are emitted from a heated filament into vacuum chamber and potentially accelerated to 50 V, have a speed of \(v \approx 4.2 \times 10^6 \) m/s and \(\lambda \approx 0.17 \) nm, and they experience energetic diffraction when passed through an array of atoms at the crystal surface. If the acceleration potential is raised to 50 kV, the electron’s wavelength is \(\sim 0.005 \) nm and such high energetic electrons can penetrate several microns into the solid. When the specimen is thin enough, it is possible for passing electrons to form a transmission electron diffraction pattern (Egerton, 2016). Figure 2.9 demonstrates the different electron scattering effects for an incident electrons beam by a thin sample (Zuo and Spence, 2017).
The resolution, obtained using electrons, is better than that of a light microscope (Egerton, 2016; Zuo and Spence, 2017). The resolution of a microscope d_{min} is limited by diffraction and it is obtained from Rayleigh formula (Zuo and Spence, 2017):

$$d_{\text{min}} = 0.61 \frac{\lambda}{n \sin \theta}$$ \hspace{1cm} (2.4)

where λ is the wavelength of light or electron, θ is half of the acceptance angle of the lens and the term $n \sin \theta$ is the lens numerical aperture (NA). For electrons under vacuum $n = 1$ and d_{min} is equal to 2.3 Å at 10 kV, $\lambda = 0.037$ Å and $\theta = 10$ mrad.

2.2.2 Transmission electron microscope structure

Basic transmission electron microscopes have a similar mode of operation as an optical microscope unless electrons and electrons magnetic lens are used instead of light and glass lens for optical wavelength.

Generally, TEM (Figure 2. 10 illustrates the geometry of basic TEM (Zuo and Spence, 2017)) is consisting of the electron gun which generates electron beams, condenser lenses which focus the electrons toward a specimen, objective lenses which focus electrons into intermediate image, projector lenses for further enlargement of the image and finally the fluorescent screen (Watt, 1997).
Two types of electron guns are typically used to provide the electrons: thermionic and field emission guns (FEGs). The most common electron gun used in TEM is the thermionic gun. The current of electrons is emitted from a filament which is commonly made from tungsten (W) or lanthanum hexaboride (LaB$_6$) or cerium hexaboride (CeB$_6$) crystals (Luo, 2016).

Figure 2. 11.a illustrates the thermionic emission where E is the energy of an electron, E_F is the Fermi energy and ϕ is the work function.
The amplitude of vibration for nuclei of cathode’s atoms increases with the raising of the temperature and therefore some electrons from conductive band can escape after holding energies above the vacuum level. Richardson law describes the rate of electron emission at the cathode (Egerton, 2016).

\[J_e = A T^2 e^{\phi/kT} \]

(2.5)

where \(J_e \) is the current density in A/m\(^2\), \(A \) is the Richardson constant (\(\approx 10^6 \) A m\(^2\) K\(^{-2}\)), \(T \) (in K) is the absolute temperature and \(k \) is the Boltzmann constant (1.38 \times 10^{-23} \) J/K).

Despite its high work function (\(\phi = 4.5 \) eV), tungsten’s high melting point allows the (material / cathode) to sustain temperatures up to 2500-3000 K under a vacuum which promotes electron emission by lowering exponent \(\phi/kT \) in Eq. (2.5). Employing materials with a low work function (LaB\(_6\); \(\phi = 2.7 \) eV) is an alternative strategy to the use of high temperatures. However, LaB\(_6\) crystals need a better vacuum (pressure < 10^{-4} Pa) than tungsten in order to not react with the residual oxygen.

On the other side, the potential barrier, which keeps electrons inside the cathode, can be lowered by an amount of \(\Delta \phi \) (consequently increasing the thermionic emission) via applying an electrostatic field. That is a so-called Schottky effect (illustrated in Figure 2.11b). Therefore, \(J_e \) could be enlarged by a factor of \(\exp (\Delta \phi/kT) \), typically factor of 10 (Egerton, 2016).

Although thermionic guns are inexpensive and require a relatively low vacuum, their use is restricted because of many disadvantages such as a short lifetime, a low brightness and they consume large energy. Modern electron microscopes used FEGs. In FEGs, the electron source

Figure 2. 11. a) thermionic emission of electrons (dashed line) when no electric field is applied into metal, b) field and Schottky emission of electrons (Egerton, 2016).
is a very sharp tip, which is usually made from a single tungsten crystal. Field emission is the process by which electrons escape toward anode by a quantum-mechanical tunnelling when an electrostatic field at a cathode becomes high enough to lower the width of the potential barrier (Figure 2.11b) (Zhou and Wang, 2006; Egerton, 2016).

Condenser lens

TEM magnification must be high enough (M=10⁵) in order to produce a highly magnified image on the fluorescent screen. However, sometimes a large area of the specimen needs to be investigated which requires low magnification of 2000. Therefore, condenser lenses that have at least two electron lenses are used. The condenser lenses (see Figure 2.10) are located above the specimen and their function is to provide the ability to control the illumination strength in the specimen plane. For a high resolution, double condenser lenses are used to reduce the diameter of the focused electron beam to micrometre size or less. The function of the first condenser lens (C1) is to control the beam size where the second lens (C2) controls the beam intensity (Watt, 1997; Luo, 2016).

Objective lens and objective aperture

This is the most important lens which is employed to form the first intermediate image and diffraction pattern of the specimen (Goodhew and Humphreys, 1997). The produced image is magnified by M ≈ 50-100. In TEM, the location of the specimen is close to the objective lens (centre in the gap of pole-piece). The gap is adjusted according to the application for example in a high resolution TEM, the pole-piece is configured to have a smaller gap in order to obtain higher resolution images. The function of the objective aperture, which is located just below the specimen, is to conduct a regular imaging (Luo, 2016).

Intermediate lens

Also called a first projector lens, its purpose is to magnify the images and to transform the imaging mode to the diffraction mode and vice versa. It operates over a wide range of focal lengths.

Projector lens or second projector lens

The function of the projector lens is to provide further magnification of the image, which was formed by the intermediate lens. The magnification is controlled by modifying the strength of
one or both lenses. The great focus depth of the projector lens provides a focus image for a long distance.

Fluorescent screen and camera

A visible image is formed after an electron image falls on a coated screen with a phosphorescent powder. The screen could be damaged if the intensity of image mode or diffraction spot is too strong. A film camera or CCD camera can be used for recording under high vacuum. By using a CCD camera, recording of TEM data can be done on a digital film (Watt, 1997; Luo, 2016).

2.2.3 Scanning electron microscopy (SEM)

The capability of imaging by SEM depends on collecting the emitted backscattered electron (BSEs) and secondary electrons (SEs) (Zhou and Wang, 2006). SEM consists of two major parts (see Figure 2. 12). The first part consists of the electron gun and two or more lenses. This component is well-known as an electron column. The electrons, which are generated and accelerated by the electron gun with a typical energy range of 0.1-30 keV, travel through an evacuated tube (vacuum of 10^{-4} Pa) and are de-magnified by the lenses into a small electron spot on the specimen (spot size $>$10 nm). Sweeping the electron beam across the specimen is carried out by a couple of pairs of electromagnetic deflection coils. Therefore, the magnification can be controlled by adjusting the coils. The second part is the control console, which consists of the viewing screen (the cathode ray tube (CRT) and the computer keyboard). The standard Everhart-Thornley detector (E-T), illustrated in Figure 2. 13, is utilised to collect SEs and BSEs. The operation of E-T detector depends on converting the energetic electrons (~10 keV) into light when it strikes the scintillator. This light is guided to the photomultiplier by a light-pipe. The light is converted back into electrons at the output of the photomultiplier with a typical gain of 10^5-10^6.
Originally, most BSEs have sufficient energy to enable direct excitation of the scintillator. To collect both SEs and low energies BSEs, a positive potential of 10 to 12 kV is applied on the scintillator in order to accelerate those electrons to generate a light in the scintillator. However, when a negative bias is applied to the E-T detector, SEs are rejected and only BSEs are detected. The captured electrons are amplified for display on CRT (Thornton, 1968; Goldstein et al., 2003).

Figure 2. 12. Schematic of SEM spectroscopy parts (Goldstein et al., 2003).

Figure 2. 13. Schematic diagram of the standard Everhart-Thornley detector: B, backscattered electrons; SE, secondary electrons; F, faraday cage (bias range -50 V to +250 V); Scintillator with thin metallic coating; high bias (+ 12 kV) supply to the scintillator coating; LG, light guide; PM, photomultiplier (Goldstein et al., 2003).
2.2.4 X-ray diffraction (XRD)

X-rays are electromagnetic waves in the energy range from 100 eV to 10 MeV and with wavelengths much shorter than visible light (typically order of 1 Å). To produce X-rays, a high voltage should be applied between the cathode (electron emitting filament) and the anode electrode (a metallic target). Upon collision with the target, the electrons rapidly slow down losing their energies and generating continuous X-rays with various wavelengths (Dinnebier and Billinge, 2008; Waseda et al., 2011).

X-ray diffraction is a non-destructive experimental technique, which is used to study the crystallography of solids and powdered materials. XRD analysis is sensitive to the surface reflectivity and because an X-ray beam has a shallow penetration, the density and surface roughness of the tested materials affects their scattering. When the X-ray beam incidents on a specimen’s surface, it is diffracted with different angles. However, at some incident angles (the constructive interference), the scattered waves from objects are reflected with a path length of the order of wavelength λ as illustrated in Figure 2.14. Therefore, some of the scattered waves are in the same phase.

![Figure 2.14. Diffraction of X-ray from the planes of crystal (Dinnebier and Billinge, 2008).](image)

W.L. Bragg (1912) described diffraction of X-rays in term of refractivity from a set of lattice planes. Bragg’s analysis considered lattice planes behaviour like a mirror reflecting X-rays and because of the deep penetration of X-rays inside the material, additional reflections occur in parallel planes. In Figure 2.14, the second wave travels a longer distance before and after
reflection \(\Delta = PN + NQ \) and the constructive interference occurs only when \(\Delta \) is a multiple of the wave length

\[
\Delta = n\lambda \quad (2.6)
\]

\(n = 0, \pm 1, \pm 2, \ldots \)

Therefore, Bragg’s equation can be written as;

\[
n\lambda = 2d \sin \theta \quad (2.7)
\]

where \(d \) is the distance between the planes, \(\theta \) is the incident angle (Lifshin, 1999; Dinnebier and Billinge, 2008; Quinn and Yi, 2018).

In this thesis, X-ray diffraction analysis is carried out in Newcastle University using Panalytical X’Pert Pro multipurpose diffractometer with a wavelength of 0.15418 nm of Cu-Kα X-ray. X-ray was utilised to investigate the structure of the samples and to quantify the crystal structure of dawsonite in chapter 5 and the weight percentage of the NiNPs and NiNWs in chapter 7. The quantification test was determined by mixing an 80% of the sample with a 20% of standard sample (alumina) to quantify the amorphous and the crystalline structures.

2.2.5 Surface area and pore size analysis

Adsorption of solids

In general, the surface energy for a clean solid surface is relatively high. Adsorbing gases such as oxygen, nitrogen and carbon monoxide are the processes by which the solid can release the excess surface energy. Depending on the interaction between the solid and gas, adsorption can be classified into a physical or a chemical adsorption process. Physical adsorption processes involve only nonspecific van der Waals forces while in chemical adsorption there is a chemical bonding. Solid-vapour adsorption is an exothermic process in which increasing the temperature of the system decreases the amount of adsorbed gas by solid.

Physical adsorption is a reversible process and equilibrium is instantaneously accomplished in the absence of capillary condensation and a competitive adsorption. Generally, physical adsorption is a multilayer process (see Figure 2. 15) in which the solid surface area does not restrict the number of adsorbed molecules. Unlike physical adsorption, chemisorption is an irreversible process and is limited to form a monomolecular adsorbed layer (Lowell and Shields, 1984; Myers, 1999).

In the context of physisorption, it is important to define the pores. The pores according to their size can be classified into three types:

i) Macropores: the width of the pores is exceeding about 50 nm.
ii) Mesopores: the width of the pores is between 2 nm and 50 nm.

iii) Micropores: the width of the pores is not exceeding 2 nm.

Physical adsorption phenomenon is the base of BET (Brunauer, Emmet and Teller) theory for surface area determination of porous materials. If such materials are in equilibrium with a certain surrounded gas, at the internal and external surfaces pore, a certain amount of the surrounding gas is physically adsorbed at a certain temperature and a relative vapour pressure P/P_0 (Fagerlund, 1973).

![Figure 2.15. Multilayers adsorption on a solid surface (Myers, 1999).](image)

2.2.4.1 Classification of adsorption isotherms

Brunauer, Deming, Deming and Teller proposed after an intensive study of literature the classification of adsorption isotherm curves. The classification divides isotherms into five main types and all adsorption isotherms must fit into one of them (Lowell and Shields, 1984). Later deBoer developed the sixth isotherm and it was supplemented by Gregg and Sing (Condon, 2006). Each isotherm in Figure 2. 16 reflects some unique conditions.

Type I isotherm. This type is limited to a few molecular layers and it is characterised as either a chemical isotherm or a physical isotherm or a microporous solid such as some activated carbons, zeolites and certain porous oxides.

Type II isotherm. This type is a monolayer-multilayer adsorption isotherm and has the inflection point (point B in Figure 2. 16) that occurs almost near the completion of the monolayer or the start of the secondary layer, caused by multiplayer adsorption. By increasing the relative pressure, layer by layer are completed until they reach saturation. However, this type is characteristic for nonporous and macroporous materials or powders with diameters exceeding micropores. In addition, such materials should have a high adsorption energy (Sing *et al.*, 1985; Thommes *et al.*, 2015).
Type III isotherm. This is not a common isotherm. It is characteristic of nonporous materials or macroporous materials that have a low adsorption energy (Sing *et al.*, 1985; Thommes *et al.*, 2015).

Type IV isotherm. This type of isotherms contains a hysteresis loop characteristic to mesoporous adsorbents that have a high adsorption energy. The initial part of this type is similar to type II for a monolayer-multilayer adsorption. Furthermore, the range of pores radius of such adsorbent are ~ 1.5-100 nm.

Type V isotherm. Type V is an uncommon isotherm and is close in shape to a type III isotherm due to a small interaction between the adsorbate and adsorbent. This type of isotherms can be seen by the adsorption of water by mesoporous or microporous adsorbents (Thommes *et al.*, 2015).

Type VI isotherm. Several possibilities could be attributed to this type of isotherm. The most likely is a multilayer adsorption of nonporous material. Another possibility is a varying pore size (Lowell and Shields, 1984; Sing *et al.*, 1985).

Figure 2. 16. Types of physical adsorption isotherms (Sing *et al.*, 1985).

2.2.4.2 Langmuir Theory

In chemisorption, the adsorbed molecules can form only one bonding layer with the surface of the adsorbent and that makes chemisorption exhibit a type I isotherm. The bonding between the adsorbed molecules and the adsorbent surface depends on adsorbent surface structure and the size of adsorbate molecules. As molecules are unable to compact among each other, spaces
form between the molecules causing a lower molecule capacity to occur on the substance’s surface. This creates a difficulty in measuring the surface area as the measured value would be lower than the true value (Lowell and Shields, 1984).

Langmuir described adsorption as a dynamic process in which the rate of adsorption is equal to the rate of desorption. Using the kinetic theory of gas, Langmuir describes the type I isotherm by assuming that the adsorption is limited to the monolayer (Flood, 1967; Lowell and Shields, 1984). Therefore, the number of striking molecules \(N \) to the unit area per unit time is given by (Lowell and Shields, 1984):

\[
N = \frac{\bar{N}P}{(2\pi MRT)^{1/2}} \tag{2.8}
\]

where \(\bar{N}, P, \bar{M}, R, \) and \(T \) are Avogadro’s number, the adsorbate pressure, the adsorbate molecular weight, the gas constant and the absolute temperature, respectively. Then the number of collisions per square centimetre per second at the bare surface (with no adsorbed molecules) can be written as:

\[
N' = kP\theta_0 \tag{2.9}
\]

where \(\theta_0 \) is the fraction of bare surface and \(k \) is a constant \((\bar{N}/(2\pi \bar{M} RT)^{1/2})\).

Consequently, the number of adhered molecules to each square centimetre is

\[
N_{ads} = kP\theta_0 A_1 \tag{2.10}
\]

where \(A_1 \) is the condensation coefficient.

The rate of desorption from each square centimetre of the surface of sample is given by

\[
N_{des} = N_m\theta_1 v_1 e^{-E/RT} \tag{2.11}
\]

where \(N_m, \theta_1, v_1 \) and \(E \) are the number of adsorbed molecules in square centimetres of a completed monolayer, fraction of surface occupied by adsorbed molecules, frequency of vibration of the normal adsorbate of the surface and the energy of adsorption, respectively. Equation (2.11) describes the rate at which molecules leave the surface of adsorbent at each square centimetre.

At equilibrium the rate of adsorption is equal to the rate of desorption, therefore:

\[
N_m\theta_1 v_1 e^{-E/RT} = kP\theta_0 A_1 \tag{2.12}
\]

\[
\theta_0 = 1 - \theta_1, \text{ then}
\]
\[\theta_1 = \frac{kPA_1}{N_mV_1e^{-E/RT+kPA_1}} \]

(2.13)

If the adsorption energy \(E \) is constant, the surface is energetically uniform,

\[K = \frac{kA_1}{N_mV_1e^{-E/RT}} \]

(2.14)

dependence, Eq. (2.13) can be written as:

\[\theta_1 = \frac{KP}{1+KP} \]

(2.15)

Considering a one layer of coverage, we can write

\[\theta_1 = \frac{N}{N_m} = \frac{W}{W_m} \]

(2.16)

where \(N \) is the number of adsorbed molecules in the uncompleted monolayer and \(N_m \) is the number of molecules in completed monolayer. \(W \) and \(W_m \) are the weight adsorbed and the weight adsorbed of the completed monolayer, respectively. Substituting \(W/W_m \) in Eq. (2.15) gives:

\[\frac{P}{W} = \frac{1}{KW_m} + \frac{P}{W_m} \]

(2.16)

Eq. (2.16) is the Langmuir equation for type I isotherms. \(K \) and \(W_m \) can be calculated by plotting \(P/W \) versus \(P \), to give a straight line, where their slope is \(1/W_m \) and the intercept is \(1/KW_m \).

Once \(W_m \) is known, the surface area, \(S_t \), can be estimated from the following equation:

\[S_t = N_mA = \frac{W_m\bar{N}A}{M} \]

(2.17)

where \(A \) is the cross-section area.

2.2.4.3 The Brunauer, Emmett and Teller (BET) theory

The Langmuir equation describes the chemisorption of a type I of isotherm. However, it fails to deal with a physical sorption and other types of isotherms. At a low relative pressure during a physical adsorption process, sites of higher energies are firstly covered. These high energetic sites are within narrow pores and between the vertical and horizontal edges of surface steps. As the adsorbate’s pressure increases, the surface of the adsorbent is gradually coated by the adsorbed molecules and the probability of adsorbing molecules to the previously bonded molecules increases.
In 1938, Brunauer, Emmett and Teller generalised Langmuir’s theory to multilayer adsorption. Brunauer, Emmett and Teller (BET) theory has proposed a state of dynamic equilibrium between the uppermost molecules of adsorbed stacks and the vapour. Therefore, whether one or more layers of adsorbate cover the surface, a dynamic equilibrium exists between the vapour and the upper layer and the number of molecules remains constant in each layer (Lowell and Shields, 1984).

The equilibrium between the vapour and adsorbate in the first layer can be described by using the Langmuir’s theory and equation (2.12). Generalising Eq. (2.12) for \(n \)th layer one obtains
\[
N_m \theta_n v_n e^{-E_n/RT} = kP \theta_{n-1} A_n
\] (2.18)

BET theory assumes \(v, E \) and \(A \) in Eq. (2.18) remains constant for the second and higher layers. This assumption is valid when the layers are away from the surface and all layers are equivalent to the liquid state. Therefore, Eq. (2.18) can be written as
\[
N_m \theta_n v e^{-L/RT} = kP \theta_{n-1} A
\] (2.19)

where \(L \) is the heat of liquefaction.

\[
\frac{\theta_1}{\theta_0} = \frac{kPA_1}{N_m v_1 e^{-E_1/RT}} = \alpha
\] (2.20a)

\[
\frac{\theta_2}{\theta_1} = \frac{kPA}{N_m v e^{-L/RT}} = \beta
\] (2.20b)

and generally

\[
\frac{\theta_n}{\theta_{n-1}} = \frac{kPA}{N_m v e^{-L/RT}} = \beta
\] (2.20d)

then

\[
\theta_n = n_{n-1} \beta = \alpha \beta^{n-1} \theta_0
\] (2.21)

At equilibrium, the total number of adsorbed molecules is

\[
N = N_m \theta_1 + 2N_m \theta_2 + \cdots + nN_m \theta_n = N_m (\theta_1 + 2\theta_2 + \cdots + n\theta_n)
\] (2.22)

Substitution of Eq. (2.20a-d) in Eq. (2.22)

\[
\frac{N}{N_m} = \alpha \theta_0 + 2\alpha \beta \theta_0 + 3\alpha \beta^2 \theta_0 + \cdots + n\alpha \beta^{n-1} \theta_0
\]

\[
= \alpha \theta_0 (1 + 2\beta + 3\beta^2 + \cdots + n\beta^{n-1})
\] (2.23)

since \(\alpha \) and \(\beta \) are assumed to be constants,
\(\alpha = C \beta \)
(2.24)

from Eq. (2.20a) and Eq. (2.20b), \(C \) can be defined as

\[
C = A_1 v_2 \left(\frac{E_1 - L}{R T} \right)
\]
(2.25)

Substitution of Eq. (2.24) in Eq. (2.23) yields to:

\[
\frac{N}{N_m} = C \theta_0 (\beta + 2 \beta^2 + 3 \beta^3 + \cdots + n \beta^n)
\]
(2.26)

This summation can be written as \(\beta / (1 - \beta)^2 \), therefore:

\[
\frac{N}{N_m} = \frac{C \theta_0 \beta}{(1 - \beta)^2}
\]
(2.27)

\(\theta_0 \) can be defined as

\[
\theta_0 = 1 - (\theta_1 + \theta_2 + \theta_3 + \cdots + \theta_n) = 1 - \sum_{n=1}^{\infty} \theta_n
\]
(2.28)

Substitution of Eq. (2.28) in Eq. (2.27) and replacing \(\theta_n \) and \(C \beta \) from Eq. (2.21) and Eq. (2.24), yields to:

\[
\frac{N}{N_m} = \frac{C \beta}{(1 - \beta)^2} \left(1 - C \theta_0 \sum_{n=1}^{\infty} \beta^n \right)
\]
(2.29)

since

\[
\sum_{n=1}^{\infty} \beta^n = \beta + \beta^2 + \beta^3 + \cdots + \beta^n = \frac{\beta}{1 - \beta}
\]
(2.30)

then

\[
\frac{N}{N_m} = \frac{C \beta}{(1 - \beta)^2} \left(1 - C \theta_0 \frac{\beta}{1 - \beta} \right)
\]
(2.31)

Substitution of Eq. (2.31) in Eq. (2.27) gives

\[
\theta_0 = \frac{1}{1 + \frac{C \beta}{1 - \beta}}
\]
(2.32)

Substitution of \(\theta_0 \) in Eq. (2.27)

\[
\frac{N}{N_m} = \frac{C \beta}{(1 - \beta)(1 - \beta + C \beta)}
\]
(2.33)

\(\frac{N}{N_m} \) becomes infinity if \(\beta \) is equal unity. Physically that situation occurs if the adsorbed molecules are condensed on the surface or \(P/P_0 = 1 \). Rearranging Eq. (2.20b) for \(P = P_0 \)
\[1 = \frac{kA_P}{N_m v e^{-\frac{L}{RT}}} \]
(2.34)

but from Eq. (2.20d)

\[\beta = \frac{kA_P}{N_m v e^{-\frac{L}{RT}}} \]

then

\[\beta = \frac{P}{P_0} \]
(2.35)

Introducing of \(\beta \) from Eq. (2.35) into Eq. (2.33) gives

\[\frac{N}{N_m} = \frac{C\left(\frac{P}{P_0}\right)}{(1-P/P_0)(1-P/P_0+C(P/P_0))} \]
(2.36)

Replacing the term \(N / N_m \) by \(W / W_m \) from Eq. (2.16) and rearranging Eq. (2.36), BET in final form becomes (Lowell and Shields, 1984):

\[\frac{1}{W((P/P_0)-1)} = \frac{1}{W_m C} + \frac{C-1}{W_m C} \left(\frac{P}{P_0}\right) \]
(2.37)

Determination of the surface area from BET equation

Plotting \(1/W((P/P_0)-1) \) versus \(P/P_0 \) from BET equation (Eq. 2.37) provides a straight line if \(C \) is constant (see Figure 2.17). \(C \) is constant for the majority of vapour adsorption isotherms in the very important region \(0.05 \leq P/P_0 \leq 0.35 \) (Flood, 1967; Lowell and Shields, 1984). The slope of the plot \(s \) and interception \(i \) are given by:

\[s = \frac{C-1}{W_m C}, \quad i = \frac{1}{W_m C} \]
therefore, \(C \) can be given as:

\[
C = \frac{s}{t} + 1
\]

(2.38)

The specific surface area can be calculated by dividing the total surface area \(s \) in Eq. (2.17) by the sample’s weight.

2.2.4.4 Barret, Joyner and Halenda (BJH) theory and the pore size distribution

The common technique to determine pore size distribution of solid materials through the physical gas adsorption. Depending on the nature of the adsorbent material or the expected information, many adsorptive gases such as \(N_2 \), \(Ar \), and \(CO_2 \) are utilised for that purpose. Applying \(N_2 \) adsorption at 77 K over a wide range of relative pressures \((P/P_0)\) provides an information about micro-, meso-, and macro- porosity of the samples in the range of 0.5-200 nm (Groen et al., 2003). Barrett et al. (1951) proposed a technique to estimate the pore volume and area for a range of pore sizes of relatively rough porous materials. Barrett et al. (1951) proposed their technique based on the Wheeler theory which can be expressed by the following equation:

\[
V_s - V = \pi \int_{r_{pn}}^{\infty} (r - t)^2 L(r)dr
\]

(2.39)

where \(V_s \) and \(V \) are the volume of adsorbate at saturation pressure \(P_o \) and pressure \(P \), respectively. \(L(r) \ dr \) represent the total length of pores in which the radii range are filled between \(r \) and \(r+dr \). Where \(t \) is the multilayer’s thickness at pressure \(P \) and \(r_{pn} \) is the critical
radius which is defined as the largest pore that is filled completely by condensed adsorbate molecules at any pressure.

Barrett et al. (1951) proposed to calculate the pore size distribution from the desorption isotherm and assumed that controlled equilibrium is reached by the contribution of two different mechanisms. The first mechanism occurs due to physical adsorption which causes layers of adsorbate molecules to form on the surface of the pore’s walls and the second is caused by capillary condensation.

Barrett et al. (1951) assumed that the system consists of open-ended cylindrical pores (see Figure 2.18) where to any change in the relative pressure \((P/P_0) \), all pores of equal radius respond in a similar way. When \((P/P_0)_1 \) is close to the saturation pressure, the liquid fills all the pores and evaporation occurs by lowering \((P/P_0) \). Under equilibrium, the largest pore (see Figure 2.18) of radius \(r_p \) has adsorbed a layer of thickness \(r_k \). Therefore, the relation, which connects the volume of pore, \(V_{p_1} \), and the volume of the inner capillary, \(V_k \), can be written as:

\[
V_{p_1} = \frac{V_{k_1} r_{p_1}^3}{r_{k_1}^2} \quad (2.40)
\]

However, since \(V_{k_1} \) is not known, this equation is not valuable.

Desorbing of a measurable volume of adsorbate molecules \(\Delta V_1 \) lowers the relative pressure from \((P/P_0)_1 \) to \((P/P_0)_2 \). The reduction of \((P/P_0) \) in the large pore is accompanied with both emptying of its capillary condensation and reducing the thickness of adsorbate molecules layer by \(\Delta t_1 \). Therefore Eq. (2.40) can be written as:

\[
V_{p_1} = R_1 \Delta V_1 \quad (2.41)
\]

where \(R_1 = r_{p_1}^2 / (r_{k_1} + \Delta t_1)^2 \).

However, the problem arises when one applies the assumption on the second pore. Lowering the relative pressure from \((P/P_0)_2 \) to \((P/P_0)_3 \) will cause a complication when determining the volume. In fact, the reduction of the liquid’s volume is a contribution of the second pore and the second thinning of adsorbate molecules layer of the first pore. Therefore, one can write

\[
V_{p_2} = R_2 (\Delta V_2 - V_{\Delta t_2}) \quad (2.42)
\]

where \(R_2 = r_{p_2}^2 / (r_{k_2} + \Delta t_2)^2 \), and \(V_{\Delta t_2} \) is the volume of the second thinning.
From figure 2.18, one can write:

\[V_{\Delta t_2} = \pi L_1 (r_{k_1} + \Delta t_1 + \Delta t_2)^2 - \pi L_1 (r_{k_1} + \Delta t_1)^2 \]

(2.43)

where \(L_1 \) is the pore length of the first pore. However, a practical calculation of \(V_{\Delta t_2} \) from Eq. (2.43) becomes more sophisticated as the number of involved pores increased.

Another definition for \(V_{\Delta t_2} \) is

\[V_{\Delta t_2} = \Delta t_2 A_{c_1} \]

(2.44)

where \(A_{c_1} \) is the average area from which the adsorbate molecules are desorbed.

![Figure 2.18. Schematic of the assumption for desorption mechanism for three different pores (Barrett et al., 1951).](image)

Eq. (2.44) can be generalised to

\[V_{\Delta t_n} = \Delta t_n \sum_{j=1}^{n-1} A_{c_j} \]

(2.44a)

The summation in Eq. (2.44a) represents the summation of the average area for unfilled pores. However, it does not include the pore for which the condensate molecules layers were emptied off during \(n \)th desorption.

By generalising and substituting Eq. (2.44a) into Eq. (2.42), one can get the porous model

\[V_{P_n} = R_n \Delta V_n - R_n \Delta t_n \sum_{j=1}^{n-1} A_{c_j} \]

(2.45)
In an empty pore, any decrease in P/P_0 is accompanied with a change in the quantity of A_c which makes Eq. (2.45) unsatisfactory. That makes $\sum A_c$ during desorption an unknown quantity.

Since the capillaries are coaxial with pores and the area of each pore ($A_p = 2V_p/r_p$) is a constant quantity, with the successive decrease in P/P_0, Eq. (2.45) becomes satisfactory to calculate the pore volume, if $\sum A_c$ is calculated with respect to $\sum A_p$. To find that relationship, Figure 2. 19 assumed that each capillary that is emptied from condensate molecules layers has an average radius \hat{r}_p between that measured during higher and lower values of P/P_0.

In Figure 2. 19, r_{n-1} and r_n are the capillary’s radius before and after desorption and \hat{r}_c is their average value. During desorption of Δt_n, the average area of the capillary is equal to $A_p \times (\hat{r}_c / \hat{r}_p)$. If t_r is the thickness of the adsorbed molecular layer then $\hat{r}_c = \hat{r}_p - t_r$ can substitute A_c in Eq. (2.45) in the last term and one gets:

$$V_{P_n} = R_n \Delta V_n - R_n \Delta t_n \sum_{j=1}^{n-1} c_j A_{P_j}$$

(2.46)

where $c = (\hat{r}_p - t_r) / \hat{r}_p$.

Equation (2.46) is the basis for the practical calculation of the pore size distribution. It is built on only two basic assumptions: (1) pores have a cylindrical shape, and (2) the mechanisms that retain the adsorbed molecular layers in equilibrium with the vapour phase are the physical adsorption and the capillary condensation.

It is necessary to know that r_k is calculated by using Kelvin equation (Barrett et al., 1951).

$$\log\left(\frac{P}{P_0}\right) = \frac{-2\sigma V}{8.316 \times 10^7 \times 2.303 T r_k} = \frac{-4.14}{r_k}$$

(2.47)
where \(\sigma \) is the surface tension of liquid nitrogen, \(V \) is liquid nitrogen’s molar volume, \(r_k \) is the capillary radius in centimetres and \(T \) is the absolute temperature.

The surface area, pore size distribution and \(\text{N}_2 \) adsorption-desorption curves are presented in this thesis in chapters 3-7 and were calculated using Brunauer, Emmet and Teller (BET) and Barrett–Joyner–Halenda (BJH) methods. Nitrogen adsorption-desorption analysis SURFER (Thermo Scientific) is utilised to perform the analysis (see Figure 2. 20).

![Figure 2. 20. SURFER (Thermo Scientific) main parts. a-External degasser unit b- Surfer cabinet.](image)

All samples were degassed under a vacuum and heated. The degassing stage was carried out in two steps. The first step was carried out on an empty glass burette at 120 °C for 15 minutes. The mass of the burette was recorded as \(m_1 \). After which about 100-200 mg of the investigated aerogels materials was dropped in the burette. The second step of degassing was performed at temperature of 200 °C for 8 hours. Subsequently, the mass of the materials and burette were recorded as \(m_2 \). The net mass of aerogels (m) was calculated by subtracting \(m_2 \) from \(m_1 \). The mass m was then entered to the software of the instrument. The degassed burette was then plugged in the analyser (see Figure 2. 20b) and the drawer, which is filled with liquid nitrogen, was automatically elevated to submerge the burette, in order to cool the sample temperature to 77 K during the analysis.

2.2.6 Mechanical properties and compression testing of materials

When an applied load is subjected to the external surface of a material, a reversible deformation arises as a response to that load. This is known as the elastic behaviour of the
material. The material behaves under loading in the elastic region of the stress-strain curve (see Figure 2. 21) according to Hooke’s law.

\[\sigma_x = E \varepsilon_x \]

(2.48)

where \(\sigma \) is the stress, \(E \) is Young’s modulus and \(\varepsilon \) is the strain.

Plastic deformation starts after elastic deformation at the point on stress/strain curve called the yield stress or yield point. Materials, depending on their behaviour under loading, are classified as either brittle or ductile. Brittle materials cannot withstand a large stress and they break in the elastic region, where ductile material can bear a relatively large stress.

Figure 2. 21 demonstrates a typical tensile stress-strain curve, which is obtained from subjecting a continuously increasing tensile uniaxial load on a specimen.

![Schematic diagram of stress-strain curve in a tensile test](Image)

Another type of stress is the compressive stress (Figure 2. 22 shows typical compression stress-strain curve). Applying a compressive stress on a specimen generally reduces its size. Ductile materials show similar results in the compression and tensile tests, where brittle materials show a higher strength and a greater strain before the fracture in the compression test than in the tension test.

The difference between compression stress-strain curves and tensile curves is the absence of the necking phenomena. After reaching the ultimate tensile strength, the stress decreases until a fracture occurs. While in compression, the stress is continuing to rise until fracture (Figure 2. 22 shows typical compression stress-strain curve). A compression test is usually employed to measure the mechanical properties for a nonstandard material rather than the tension test.
because the shape of the sample for a compression test is simpler than that for a tension. However, the feasibility of obtaining a reliable result from a nonstandard specimen is limited by taking the proper length (h) to diameter (d) specimen ratio. The ratio must be h/d < 2-3 (Pelleg, 2013).

Figure 2.22. Typical stress-strain curve in a compression test. (Pelleg, 2013)

In chapter 3 of this thesis, uniaxial compression tests were carried out with ASTM D695 by using a universal test machine (Tinius Olsen H25KS). In case of the ceramic blanket-silica aerogel composites (CBSA), the samples were cut in disk shapes of 20 mm diameter and thickness of 8 mm. The displacement’s speed was controlled by 0.5 mm/min and the load cell was 5000 N for the loading-displacement evaluations. While for the short fibres reinforced-aerogel composites (CSSA), the samples were cut in a square shape of 4 mm x 4 mm x 8 mm and the load cell was 100 N with a displacement’s speed of 0.5 mm/min.

2.2.7 Thermal conductivity measurement

Generally, the most common techniques that are used to measure the thermal conductivity for bulk materials can be classified into two major categories. The first classification is known as steady state methods and these include the comparative technique, radial heat flow method and parallel conductance method. Determination of the thermal conductivity in steady state methods is conducted by measuring the difference in temperature through a known distance of a sample under a steady state heat flow. The second classification is called transient techniques. The measurements are performed with a time dependent heat energy transfer through a sample.
Chapter 2 Experimental Methods

The main transient techniques are the Pulsed power technique, the hot-wire method, the laser flash method and the transient plane source (TPS) method (also called Hot-disk method) (Zhao et al., 2016).

The author of this thesis has conducted the hot-disk method (TPS 2500s) to measure the thermal conductivity of aerogel samples because this method provides quick and accurate measurement for small size samples.

Transient Plane source (TPS)

Transient plane source (TPS) is a practically instant and very precise technique that offers accurate thermal conductivity measurements in the range of 0.005-500 Wm\(^{-1}\) K\(^{-1}\) in a temperature range of -250 to 900 °C. In the TPS technique, a double spiral made of the electrical conductor, a thin pure nickel foil of 10 μm thickness, is employed as a transient plane sensor. Thin sheets of Kapton® are used as an insulator to retain the spiral. The determination of the thermal properties by the TPS method are performed when the heating sensor is sandwiched (see Figure 2.23) between two samples of similar properties (Anis-ur-Rehman and Maqsood, 2003; Gustavsson et al., 2006; Solorzano et al., 2008).

Figure 2.23. Schematic diagram of the thermal conductivity measurement by TPS with Kapton® sensor shape (Solorzano et al., 2008).

Theory

The principles of the plane source method was first proposed to measure the thermal conductivity of electrically insulating solid and liquid insulators by Gustafsson et al. (1979).
Later it was developed to determine the thermal conductivity of electrically conductive solids (Gustafsson et al., 1986).

The TPS method is valid based on three assumptions:

1. The heating source is composed of concentric equal spaced circles.
2. The dimension of the tested sample is semi-infinite for the tested material.
3. The sensor thickness is negligible.

In the TPS method, the function of sensor is to be a heat source and a temperature sensor at the same time (Zhang et al., 2017). Once a sufficient constant current is passed through the sensor (to increase the temperature by 1-2 K), the resistance will change associated with a corresponding drop in voltage over the sensor. Over a certain time, the heat flow between the sensor and the tested material can be obtained by recording the variation in the voltage and the current. Although there will be a small drop in the temperature, ΔT, over the layer of the Kapton (which is electrically insulating material), it will stay constant after a short initial period (Log and Gustafsson, 1995).

The relation between the resistance of the sensor $R(t)$ and the increase in temperature ΔT of the heating element can be expressed by:

$$R(t) = R_0 (1 + \alpha \Delta T) = R_0 \left[1 + \alpha \Delta T_i + \alpha \overline{\Delta T(\tau)} \right]$$

(2.49)

where R_0 is the initial resistance of the heating element (nickel) at the beginning of the analysis, α is a temperature coefficient of resistance for a nickel foil, and $\overline{\Delta T(\tau)}$ is the average increase in temperature of the nickel element when there is perfect contact between the two halves of the specimen.

The average $\overline{\Delta T(\tau)}$ can be obtained from the following relationship:

$$\overline{\Delta T(\tau)} = \frac{P_0}{\pi^{3/2} r k} D(\tau)$$

(2.50)

where P_0 is the sensor’s heat liberation, k is the thermal conductivity of the tested material, r is the sensor’s radius, $D(\tau)$ is the dimensionless time function, and τ is a variable defined as (Dixon et al., 2000):

$$\tau = \frac{\sqrt{\alpha t}}{r} = \sqrt{\frac{t}{\theta}}$$

(2.51)
where a is the specimen’s thermal diffusivity, t is the time of measurement, and $\Theta \approx r^2/a$ is the measurement characteristic time.

By combining Eq. (2.50) with Eq. (2.49), one can get the following linear equation:

$$R(t) = R^* + CD(\tau)$$ \hspace{1cm} (2.52)

where $R^* = R_0(1 + \alpha \Delta T_i)$, and $C = \frac{\alpha R_0 \rho_0}{\pi^{3/2} r_k}$

According to Eq. (2.52) when Θ value is correct, plotting $R(t)$ versus $D(\tau)$ gives a straight line. After a transient recording, the thermal conductivity is determined by fitting the straight line of Eq. (2.52) to the experimental data. Once fitting is completed, the thermal conductivity can be obtained from the slope of Eq. (2.52).

Figure 2. 24 and Figure 2.25 show the typical drift graph and transient graph for samples tested by the hot-disk method, respectively. The temperature drift must be randomly scattered across the horizontal axis and the temperature drift must be avoided to obtain accurate results. Therefore, the experiments must be performed in an environment with a stable temperature.

![Drift Graph](image)

Figure 2. 24. An example of a drift graph.

The transient curve of increasing temperature should be continuous with no discontinuities or sudden jumps, alternatively the test must be repeated. The initial part of Figure 2. 25 which shows sharp increase in temperature is due to the contribution of the contact resistance between the sample and the contribution of the insulation material of the sensor. That part of the curve...
and the end part of the curve (near boundary of the sample where data interfere with the air) must not be considered in the thermal conductivity calculation in order to obtain accurate results. A detailed example of the thermal conductivity measurement can be seen in appendix (A), chapter 9.

![Figure 2.25](image.png)

Figure 2.25. Average increase of sensor temperature (ΔT) as a function of time during a typical hot disk measurement (Yi, 2005).

The author of this thesis has used a Hot-disk thermal constants analyser (TPS 2500 S) to determine the thermal conductivities of synthesised silica aerogels and reinforced silica aerogel composites in chapters 3 and 4. The hot disk sensor (C5465, radius of 3.189 mm) was held between two smooth and identical shaped pieces of the sample, which had a thickness of 6-10 mm. This analysis was carried out at range of temperatures, from 20 °C to 150 °C by oven. For accuracy, the temperature was increased by 10 °C each time and held for 30 minutes before taking each measurement. At each temperature, three measurements were carried out with an interval time of 10 mins between any two measurements.

2.2.8 Dynamic vapour sorption DVS

The term sorption is firstly utilised for food materials to describe the penetration and diffusion of the molecules into their network and later was generalised to include all types of polymeric materials. Sorption includes both adsorption and desorption processes and the formation of the cluster of adsorbates of water.

At a given temperature and humidity, the equilibrium of the sorption isotherm can be described by the following relationship (Guillard et al., 2013):
\[Q_w = f(a_w) \] (2.53)

where \(a_w \) is the ambient water activity, and \(Q_w \) is the water’s concentration. \(Q_w \) can be obtained from the following relationship (Guillard et al., 2013):

\[Q_w = \frac{M_w}{M_d} \] (2.54)

where \(M_w \) is the sorbed water’s mass at equilibrium and \(M_d \) is the dry matter mass.

At a given temperature, \(a_w \) can be obtained from (Guillard et al., 2013)

\[a_w = \frac{P_w}{P_{w,0}} \] (2.55)

where \(P_w \) is the water vapour pressure and \(P_{w,0} \) is the water vapour pressure at its saturation state.

Models of water sorption are employed for many functions such as the predicting of sorption properties, analysing mechanisms of sorption and the interactions between water and materials.

Recently, a completed isotherm of water sorption (from 0-95% RH) can be obtained from a small sample in less than a week by utilising microbalance at controlled atmosphere and using automatic dynamic sorption methods (Guillard et al., 2013).

The dynamic vapour sorption (DVS) system was designed by the company Surface Measurement Systems (illustrated in Figure 2.26) to measure the amount and kinetics of solvent sorbed by a solid. This can be measured by recording the change in mass of the solid while varying the vapour concentration of sorbed solvent with the time (Sheokand et al., 2014).

In chapter 7 of this thesis, sorption experiments were carried out in (Surface Measurement Systems Company) by using a DVS vacuum instrument. The schematic diagram of DVS is illustrated in Figure 2.26. The instrument was used to investigate gas sorption kinetics and catalytic activity for a \(\text{CO}_2 \) hydration reaction (CHR) in gaseous phase of silica aerogel samples embedded with nickel nanowires and nickel nanoparticles. The mass data was recorded using ultra balance in dynamic mode, whereby both sorbate entry rate (upstream control by mass flow controllers) and sorbate exit rate (downstream control by butterfly valve) were controlled. During experiments, the pressure inside the chamber was controlled by a butterfly valve which has a regulated sorbate exit rate, whilst the mass flow controller delivered a gas at a constant flow rate.
Prior to the sorption analysis, the samples were in-situ degassed under a high vacuum and a temperature of 150 °C by using a heating rate of 5 °C in 120 mins. Upon the completion of the degassing stage, the samples were in-situ cooled down to 25 °C under high vacuum for 100 mins before starting the analysis. Sorption measurements were performed at 25 °C using a water vapour pressure (P_0) of 23.8 Torr and CO$_2$ of 760 Torr. The experiments were performed by measuring the mass change with time ($\frac{dm}{dt}$) by using criterion of 0.006%/min. Desorption branch were collected in a similar way.

2.3 Conclusion

The current chapter outlines synthesis methods of the materials presented in chapters 3-7. In addition, chapter 2 gives principles of operation of the techniques that are utilised in this thesis to characterise synthesised aerogels and their composites. Techniques such as TEM, SEM, XRD, BET, BJH, Hot-disk (TPS2500s) and DVS were described in detail.
References

Chapter 3 Fibre reinforced silica aerogels composites synthesised by bicarbonate ambient pressure drying method

This chapter details the reinforcement of silica aerogels by ceramic fibre blankets (CFB) and ceramic short fibres (CSF); these composites were synthesised using the ambient pressure drying method which utilises bicarbonate solvents and TMCS to reduce the production cost. The thermal conductivity of pure silica aerogel was found to be approximately (19 mW/m K). Reinforcing just by 11.2 wt % of CSF, the compressive strength of silica aerogels is increased ten times with a little decrease in the surface area and only a small increase in the thermal conductivity. Despite the small amount of the CSF (1.62-11.2 wt %), CSF reinforced silica aerogel composites (CSSA) exhibit low thermal conductivities of (21-28 mW/m K) while still exhibiting high surface areas (500-645 m²g⁻¹). CFB reinforced silica aerogels composites (CBSA) were produced by introducing a small weight percentage of silica aerogels (23-34 wt %) to CFB. The composites had improved thermal insulation properties compared to pure CFB, with thermal conductivities in the range of 38-48 mW/m K. Both CBSA and CSSA composites could replace conventional insulation materials with an effective cost reduction.

3.1 Fibre reinforcement of silica aerogels

Preparation of ceramic blanket reinforced silica aerogels

Ceramic fibre blankets (CFB) with a size of 100 mm, 80 mm and 8 mm, were soaked in silica sol after mixing the contents of the two beakers. The gelation of the silica sol on ceramic fibres blanket was completed within 5 minutes. For ageing, silica gel-ceramic blanket composites are soaked in 150 ml of ethanol and covered for 24 h at room temperature and atmospheric pressure. Samples were synthesised for a range of silica aerogel weight percentages (see Table 3. 1, chapter 2) and named as AB1, AB2, AB3, AB4 and AB5.
Preparation of short ceramic fibre reinforced silica aerogels

Ceramic short fibres (CSF) were dispersed in DI water and then kept in sonication bath (Hilsonic) for 15 minutes. The solvents were prepared and mixed as mentioned in (2.1.1.a). Prior to the gelation stage, the sol was poured inside a plastic mould (size of 10 cm x 8 cm x 5 cm). Within 5 minutes the gel had been formed after which the gel was removed from the mould. Subsequently, the gel was soaked in ethanol solvent for 48h at room temperature and atmospheric pressure for the aging process. Samples were synthesised with different weight percentages (see Table 2.1) of ceramic fibres and silica aerogel and named as SA1, SA2, SA3, SA4 and SA5.

Drying process

After aging the reinforced gels, sodium bicarbonate and surface modification treatment with TMCS was carried out as reported in Han et al. (2018). Briefly, the ethanol solvent was replaced with a mixture of sodium bicarbonate/deionised water solution (4.4 g for each 100 ml DI) and the gels were left for 24 hours under stirring. After that step, gels were removed and soaked in a trimethylchlorosilane (TMCS): ethanol mixture (1:20 volumetric ratio). Immediately after soaking, CO$_2$ gas bubbling could be observed and that continued for 24 h. Reinforced gels were then washed with DI water to ensure that no salt (sodium chloride) remained inside the pores. Subsequently, reinforced gels were soaked in ethanol solvent for 24 hours to replace the water in the pores with ethanol. The gel was dried at 60°C for 24 hour and 1 hour at 100°C to get reinforced silica aerogels composites.

3.2 Results and Discussion

In modern construction, efficient insulation materials must have lower thicknesses to mitigate problem of reduction of the space. However, conventional insulation materials are limited as a reduction in thickness lowers the effectiveness of the materials insulating properties. A solution is to use highly insulating materials with thermal conductivities lower than 25 mW/m K (Bouquerel et al., 2012; Martinez et al., 2016). Aerogels are a fascinating nanostructured material synthesised by replacing the solvent inside the pores of a wet gel with air while retaining the porous structure (Zhang et al., 2017). Open cell pores give aerogel excellent heat insulation performance. Due to their unique properties such as high porosity, small pore size (2 to 50nm) and low solid conductivity of the silica skeleton, silica aerogels are considered among the best insulators. In addition to being known as the material having the smallest thermal...
conductivity, silica aerogels offer a promising opportunity to produce a non-flammable insulator which is inert and transparent to solar light (Rolison and Dunn, 2001). At room temperature, silica aerogels have very low thermal conductivity in the range of 0.005-0.02 W/m K (Kistler, 1931; Lu et al., 1992; Rolison and Dunn, 2001; Sorensen et al., 2006; Hayase et al., 2014; Jiang et al., 2017; Liu et al., 2017). However, widespread commercialisation is inhibited by their poor mechanical properties, fragility even under a low stress, moisture sensitivity and high production cost. Therefore, different methods are pursued to reinforce silica aerogels to improve their mechanical properties, such as, cross-linking with polymers, incorporation of macro objects (fibres) or nanomaterials (nanoparticles, nanotubes) and the addition of fibrous scaffolds (Sai et al., 2013; Zhao et al., 2015a; Zhao et al., 2015b). Recently, fibre reinforced silica aerogel composites have attracted attention in fabricating energy saving thermal insulators, such as aramid fibres (Li et al., 2016), carbon nanotubes (Pinero et al., 2018), cellulose fibres (Markevicius et al., 2017; He et al., 2018), glass fibres (Zhou et al., 2018), silica nanowires (Tang et al., 2017), and hydroxyapatite nanowires (Chen et al., 2018). Silica aerogel-blanket panels have also been used for building insulation (Lee et al., 2018; Nocentini et al., 2018). Their commercial applications, however, are still not widespread because of the high production cost of aerogels (Lakatos, 2017). In the current work, we aim to investigate the capability of producing affordable superinsulation materials using the recently developed low cost ambient pressure drying method (Han and Šiller, 2015; Han et al., 2018). The manufacturing cost of aerogels is lowered ~10 fold when compared to standard ambient pressure drying methods with organic solvents (Han et al., 2018). Herein, silica aerogel composites are reinforced with two types of fibre reinforcement, ceramic fibres blanket (CFB) and ceramic short fibres (CSF), and the mechanical and thermal properties were investigated. The work explores way towards real manufacturing requirements with preferable properties.

Table 3.1 shows the weight percentage, the textural characteristics, thermal conductivities and the mechanical properties of silica aerogel composites.
Table 3.1. Physical properties of silica aerogels, CBSA and CSSA composites synthesised by NAPD method.

<table>
<thead>
<tr>
<th>Samples</th>
<th>SiO₂ wt.%</th>
<th>CF wt.%</th>
<th>Surface area (m²/g) [± 2 m² g⁻¹]</th>
<th>Average pore diameter (nm) [± 0.1nm]</th>
<th>Pore specific volume (cm³/g) [± 0.02 cm³ g⁻¹]</th>
<th>Compressive strength (MPa) [± 0.02 MPa]</th>
<th>Young’s modulus (MPa) [± 0.001 MPa]</th>
<th>Th. conductivity (W/m.K) [± 0.002 W/m.K]</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFB</td>
<td>0</td>
<td>100</td>
<td>0.6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.048</td>
</tr>
<tr>
<td>AE</td>
<td>100</td>
<td>0</td>
<td>585</td>
<td>6.4</td>
<td>0.9</td>
<td>0.1</td>
<td>1.11</td>
<td>0.019</td>
</tr>
<tr>
<td>AB1</td>
<td>23</td>
<td>77</td>
<td>83</td>
<td>10.3</td>
<td>0.3</td>
<td>3.1</td>
<td>0.043</td>
<td>0.049</td>
</tr>
<tr>
<td>AB2</td>
<td>26</td>
<td>74</td>
<td>86</td>
<td>6.5</td>
<td>0.18</td>
<td>6.6</td>
<td>0.06</td>
<td>0.047</td>
</tr>
<tr>
<td>AB3</td>
<td>28</td>
<td>72</td>
<td>93</td>
<td>7.1</td>
<td>0.19</td>
<td>10.3</td>
<td>0.068</td>
<td>0.043</td>
</tr>
<tr>
<td>AB4</td>
<td>30</td>
<td>70</td>
<td>109</td>
<td>6.8</td>
<td>0.26</td>
<td>11.2</td>
<td>0.066</td>
<td>0.039</td>
</tr>
<tr>
<td>AB5</td>
<td>34</td>
<td>66</td>
<td>117</td>
<td>7.9</td>
<td>0.23</td>
<td>11.4</td>
<td>0.096</td>
<td>0.038</td>
</tr>
<tr>
<td>CSF</td>
<td>0</td>
<td>100</td>
<td>0.21</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>SA1</td>
<td>98.4</td>
<td>1.62</td>
<td>646</td>
<td>5.3</td>
<td>0.85</td>
<td>0.3</td>
<td>1.35</td>
<td>0.021</td>
</tr>
<tr>
<td>SA2</td>
<td>96.2</td>
<td>3.8</td>
<td>554</td>
<td>5.8</td>
<td>0.82</td>
<td>0.6</td>
<td>1.3</td>
<td>0.023</td>
</tr>
<tr>
<td>SA3</td>
<td>94.8</td>
<td>5.2</td>
<td>536</td>
<td>8.9</td>
<td>1.19</td>
<td>0.8</td>
<td>1.3</td>
<td>0.024</td>
</tr>
<tr>
<td>SA4</td>
<td>92.5</td>
<td>7.5</td>
<td>492</td>
<td>5.5</td>
<td>0.69</td>
<td>0.9</td>
<td>1.5</td>
<td>0.026</td>
</tr>
<tr>
<td>SA5</td>
<td>88.8</td>
<td>11.2</td>
<td>435</td>
<td>8.6</td>
<td>0.87</td>
<td>1.1</td>
<td>4.76</td>
<td>0.028</td>
</tr>
</tbody>
</table>

Figure 3.1 a, b and c show the XRD patterns for CFB alone, washed ceramic fibres reinforced silica aerogel composites and unwashed ceramic fibre reinforced aerogel composites, respectively. A XRD analysis was carried out to ensure that all fibre reinforced silica aerogel samples are well prepared without any residual sodium chloride. Sodium chloride is generated before the silica gel is dried with bicarbonate and TMCS (Han et al., 2018) (see Figure 1.11 chapter 1). The broad peaks around 2θ = 20 in all patterns are for amorphous silica. On the other hand, pattern C in Figure 3.1 shows the characteristic peaks for sodium chloride.

Figure 3.2 and Figure 3.3 show the nitrogen adsorption-desorption isotherms and corresponding pore size distribution curves of CBSA and CSSA composites, respectively. Surface area, pore size distribution, average diameter and the specific volume of composites are given in Table 3.1.
Figure 3.1. X-ray diffraction pattern of ceramic fibres reinforced silica aerogels, (a) ceramic fibres (sample CFB), (b) washed ceramic fibre reinforced silica aerogels (sample AB5 after washing with water), (c) unwashed ceramic fibre reinforced silica aerogels that contain sodium chloride salt (sample AB5 dried without washing with water).

For comparison, the surface area of pure silica aerogel (AE) produced by this low cost ambient pressure drying method, is also listed in Table 3.1 and has a value of 582 m²/g. The surface area of the AE sample is close to the value obtained by Malfait (2015), that used TEOS as a silica precursor and dried the gel using a standard ambient pressure drying method (by using hexane solvent during drying).
Figure 3.2. (a) Nitrogen adsorption–desorption isotherms of ceramic blankets reinforced silica aerogels composites and (b) corresponding pore size distribution.
Figure 3. 3. (a) Nitrogen adsorption –desorption isotherms of ceramic short fibres reinforced silica aerogel composites and (b) corresponding pore size distribution.
Overall, the surface area of ceramic blanket reinforced silica aerogel composites is in the range from 83 m²/g to 117 m²/g (see values AB1-AB5 in Table 3.1). The surface area for CBSA composites were low in comparison to that of AE. The surface area of the CFB was substantially enlarged by the addition of silica aerogels inside the blankets, as the surface area of non-modified CFB is only 0.6 m²/g. The BJH method of analysis indicates narrow mesoporous ranges of pore size distributions. The average pore diameters vary from 6.5 nm to 10.3 nm for samples AB2 and AB1, respectively. Samples of CSSA composites exhibit high surface areas and small average pore diameters. As expected, (see Figure 3.3), the surface area decreases with the increase of CFB content and vary from 500-645 m²/g by added reinforcement with 0.11 wt. % and 1.62 wt. % of CSF, respectively. On the other hand, the pore diameters have a very narrow size range of 5.3-8.9 nm. In literature (Oh et al., 2009), the surface area of silica aerogel- glass fibre composites synthesised via standard ambient pressure drying method (by using hexane solvent) were reported to be between 380-445 m²/g and the pore size between 9.4-26 nm.

Accordingly, reinforced silica aerogels that are synthesised via our approach show a significant improvement over those reported previously (Oh et al., 2009). All nitrogen adsorption-desorption isotherm curves match the characteristics of a type IV isotherm and a hysteresis loops type H2 according to IUPAC and are characteristic of mesoporous materials (Yang, 2011). Figure 3.4 (a) and (b) show SEM images of fibres of CFB before and after they’ve been impregnated with silica aerogel, respectively. The clusters of silica aerogels inside CBSA composites (Figure 3.4b) are stacked and surround ceramic fibres. The image, seen in Figure 3.4c, shows the silica aerogel reinforcement with short ceramic fibre (CSF), there is a better cohesion between the short fibres and silica aerogel. The sedimentation of silica aerogel formed on the surface of ceramic fibres is known to be due to Van der Waals forces (Oh et al., 2009). Furthermore, higher magnification of silica aerogels reinforced with CSF, Figure 3.4d image, detects some macropores in the silica aerogel structure. The diameters of the macropores are in the range of 1-7.5 µm. Higher magnification of silica aerogel composites with CSF samples, Figure 3.4e and f images illustrate SiO₂ secondary particles and the mesoporous structure of silica aerogels. The diameters of mesopores are distributed with the short size range of 3-15 nm. The average pore diameters, obtained with SEM imaging, matched those obtained from the BJH method of analysis. Figure 3.5 shows the typical stress-strain curves of a compression test for all CBSA composites. The overall shape of the curves are the same but the compressive strength values increase with the increase of the silica aerogel content inside the ceramic blanket. The increase is from 3.15 MPa for AB1 specimen to 11.2 MPa for AB5 specimen. However, a further increase in silica aerogel weight ratio does not significantly
change the compressive strength of the samples. This is because the fibres are supporting the main load. Stress-strain curves show a high fracture strain over 85% for sample AB5. Compression stress-strain curves are divided into three main regions. The linear region (Hook region, see inset in Figure 3.5) is observed when the strain is in the range between 0 to 0.05, the elastic modulus was measured at this point. The yield region (collapsed plateau) occurs where the strain is less than 0.3 and plastic hardening occurs. Finally, the densification region arises when the strain is over 0.3 to fracture (Hrubesh and Pekala, 1994; Siligardi et al., 2017).

Figure 3. 4. SEM images of (a) ceramic blanket, (b) CBF reinforced silica aerogels, (c) CSF reinforced silica aerogels, (d) silica aerogel’s macropores of sample (c), (e) further magnification of sample (c), detection of silica aerogel’s mesopores, (f) further magnification of sample (c), detection of narrow size of silica aerogel’s mesopores.
Because of silica aerogel’s brittle nature, the aerogel’s structure collapsed early meaning that the elastic region is very short. Similarly, compression stress-strain curves of pure silica aerogel and CSSA composites are presented in Figure 3.6. The stress-strain compression curves are similar to that carried out by Yang (2011) for fibre reinforced-silica aerogels. The stress-strain curve of AE not only showed a typical curve for brittle materials, but also that the fracture occurred after a short time of applying the compressive stress. The deformation area is small ~3% of strain axis and the compressive strength is only 0.12 MPa. Furthermore, the pure aerogel AE (blue curve in inset of Figure 3.6) shows a very small elastic region then a high rough region due to successive cracks that are generated during load propagation in the material. Sample SA1 which had a low weight percentage of CSF showed a stress-strain curve quite similar to that of pure silica aerogel but with significantly higher compressive strength (see red curve in inset of Figure 3.6).

However, CSSA composites with a larger loading of CSF (SA2 to SA5 curves in Figure 3.6) show nonlinear compression stress-strain curves and the nonlinearity is more dominant as the percentage of fibres increases in the composites. Sample SA2 (pink curve in Figure 3.6) shows an intermediate behaviour in compression regions, the yield stage is wide, and the densification stage is reached with a clear brake point. Further increase in the percentage of fibres, leads to an increase in the deformation in all CSSA composite. In the elastic region, all curves (see inset...
Figure 3. 6) have the same mechanism of compression, the load bearing is carried out by the open pores of the silica aerogel.

![Figure 3. 6. Compression stress-strain curves of ceramic short fibres reinforced silica aerogel composites. The inset in figure shows linear part of curves from which Young modulus were calculated and with the brittle fracture for pure silica aerogels (AE) and SA1 sample, which contain a low weight fraction of short fibres (see a very abrupt drop signature of braking point of blue and red curves in inset).](image)

Once composites reach the yield stage, the fibres become the responsible for bearing the load. Where, both aerogel and the fibres would be responsible upon the densification stage (Wang, 2006). Figure 3. 7 presents the summary of compressive strengths and Young’s modulus for all CBSA and CSSA composites. The compressive strength and Young’s modulus in CBSA were found to increase when the silica aerogel content was increased, this is due to silica aerogel initially occupying empty spaces in the ceramic blanket and improved adhesion of fibres. This is also observed clearly in SEM images (compare Figure 3. 4 a with b). A noticeable increase in compressive strength and Young’s modulus of CSSA composites (Figure 3. 7 c and d) is observed when compared to that of pure silica aerogels. For example, the compressive strength is increased by ~ 10 times that of a pure silica aerogel (from 0.1 MPa to 1.1 MPa) when reinforced by 11 wt % of CSF and the Young’s modulus increased from 1.11 MPa to 4.77 MPa.

Thermal stability of both types of silica aerogel composites were studied using TGA-DTA curves for AB5 and SA5 specimens (see Figure 3. 8). At the beginning of heat ramping for both
samples, an endothermic peak is observed at ~ 135 °C for AB5 (Figure 3. 9a) and ~153 °C for SA5 (Figure 3. 8b) which indicated the removal of adsorbed species. The weight loss was much higher for SA5 (7.47 wt. %), than for AB5 (0.88 wt. %). This is because of the larger amount of silica aerogels inside SA5 compared to that in AB5. In addition, the hydrophilic nature of the synthesised silica aerogels (Han et al., 2018) leads to adsorption of moisture, as well as other adsorbed species after ~ 1 year exposed to atmospheric pressure. A sharp exothermic peak at 1005 °C for AB5 and at 1010 °C for SA5 has a relatively high weight loss (see Figure 3. 8 b, 2.47 wt. %) indicating the phase change in materials. This can be attributed to the crystallisation of the ceramic fibres, where SiO₂ is the major component (Siligardi et al., 2017). This can be seen in Figure 3.8 c.

Figure 3. 7. a) and c) Compressive strength of CBSA and CSSA composites, respectively. b) and d) Young’s modulus of CBSA and CSSA composites, respectively.
Figure 3. 8. TGA-DTA curves for (a) sample AB5, (b) sample SA5, and sample CFB.

Figure 3. 9 shows the change in thermal conductivities in the range of 295 K to 423 K for CBSA composites. Thermal conductivities of CBSA composites decrease with the increase of silica aerogel content. Although, at low percentage of silica aerogel (see AB1 and AB2 in Figure 3. 9) the thermal conductivity has slightly increased compared to pure CFB, but for other CBSA samples the thermal conductivity decreased with the increase in silica aerogels’ weight percent. This initial increase of sample AB1 and AB2 might be because silica aerogel acted as a glue and caused a linking of fibres. Consequently, the thermal conduction by solid materials (mainly fibres) increased despite the fact that silica aerogels have low thermal conductivity. At room temperature, the thermal conductivity of CBSA composites decreased from 0.049 to 0.038 W/m K for the ceramic blanket when incorporating 0.34 wt % of silica aerogels which clearly indicated improvement in the thermal insulation. Figure 3. 10 shows the change in the thermal conductivity, in range of 295 K to 423 K, for pure silica aerogels and CSSA composites. The synthesis of silica aerogels by bicarbonate ambient pressure method produces silica aerogels with a low thermal conductivity of 0.019 W/m K at room temperature. Previously, it has been reported that the thermal conductivity, under the same conditions, of silica aerogels is between 0.01-0.03 W/m K and it would drop to 0.002 W/m K under evacuation (Hrubesh and Pekala,
Chapter 3 Fibre reinforced silica aerogels composites

1994; Yoldas et al., 2000; Yuan et al., 2012). Our synthesis method produced silica aerogels with excellent thermal insulation at room temperature. The narrow range of AE pore sizes used in this work, as indicated by BJH analysis in Table 3. 1, provides confirmation that this can lower thermal conductivity of aerogels and their composites (Feng et al., 2011).

Figure 3. 9. Temperature dependence-thermal conductivity of CBSA composites.

Figure 3. 10. Temperature dependence-thermal conductivity of CSSA composites.

In addition, the thermal conductivity of pure silica aerogels increases with an increase in temperature. This is attributed to an increase of radiative conduction at high temperatures.
Chapter 3 Fibre reinforced silica aerogels composites

because silica aerogels are transparent to infrared radiation due to the small absorption coefficient of SiO₂ in this region (Zeng et al., 1995). Thermal conductivity of CSSA composites also increased with the increase of the fibre’s weight fraction. A higher fibre content in composites increased the solid’s thermal conductivity because they act as a heat transfer pathway (Yuan et al., 2012). As mentioned earlier, the reinforcement of silica aerogels with CSF improved the mechanical properties of the material and provided better thermal stability for silica aerogel composites at high temperature than that seen in pure silica aerogels. This could be attributed to the fact that ceramic fibres contain some metal oxides that could work as an opacifier material for radiative heat transport (Wang et al., 1995). Also, results here agree with those reported by Zheng (2015), that inorganic fibres could improve aerogel’s ability to shield heat radiation at high temperatures.

3.3 Conclusion

Mechanical and thermal properties of reinforced silica aerogels with ceramic blankets and ceramic short fibres synthesised using bicarbonate solutions with TMCS as reagent for CO₂ gas formation, within the gel as ambient pressure drying method, have been investigated as a possible insulation material. Pure silica aerogels are produced with a low thermal conductivity of 0.019 W/m K and high surface area of 584 m²/g. Both methods of fibre reinforcement have been optimised and improved mechanical properties have been obtained. The thermal insulation of commercial ceramic blanket insulation materials was improved from 0.048 to 0.038 W/m K by the incorporation of 34 weight percent of silica aerogel. A small percentage of silica aerogels, in this cost-effective synthesis approach, drastically increased the thermal insulation properties of the commercial ceramic blanket. Reinforcement with short fibres (CSSA composites) exhibited a significant enhancement in the compressive strength, increasing tenfold with a little decrease in the surface area of ~14 % and an increase in thermal conductivity from 0.019 to 0.028 W/m K. The bicarbonate approach indicates that it is possible to produced superinsulation materials or improve the insulative properties of the conventional insulation materials with an affordable cost.
References

Chapter 3 Fibre reinforced silica aerogels composites

Chapter 4 Synthesis and characterisation of sodium silicate-based silica aerogels by using bicarbonate ambient pressure drying method

The main challenge in silica aerogel synthesis is producing low cost and scalable silica aerogels. This chapter describes the synthesis of low cost and scalable silica aerogels from sodium silicate (water glass) precursor using novel ambient pressure drying approach. In addition, this chapter investigates the structural properties of silica aerogels in the case of using an ion exchange method to remove Na\(^+\) or without using an ion exchange method. In both cases, washing with water was conducted to remove the generated sodium salts. XRD, BET, BJH, SEM, and a hot disk analysis are utilised to characterise the synthesised water glass-based silica aerogels.

4.1 Synthesis of silica aerogels from sodium silicate precursor

The gels are prepared by two methods. The first is cured out using ion exchange method. The silica sol had a pH in the range of 2 - 3 after ion exchange. The sol was transferred to a beaker and stirred for 5 min. The second process was carried out without ionic exchange. For the gelation step, in the first process, the catalytic mixture of ammonium hydroxide and ammonium fluoride solutions (molar ratio was mentioned in 2.1.1.a) were used to modify the pH of the sol to a pH of 6. While in the second process, (5 M) HCl solution was used to obtain the gel. In both cases, silica sol was then transferred to a plastic mould for gelation. Gelation is completed within 15 mins, followed by the soaking of the hydrogel in deionised water for 24 hours for aging. The water was exchanged with sodium bicarbonate solution (4.4 g for each 100 ml water). The gel was treated with a mixture of 6 ml TMCS and 150 ml ethanol for 24 hours (Han et al., 2018), soaked in ethanol for 8 hours to remove unreacted TMCS and residual HCl and then rinsed with water several times to remove the salt which is produced during the reaction between TMCS and sodium bicarbonate. Finally, the gel was soaked in ethanol for 24 hours with the ethanol refreshed every 12 hours and dried at 60 °C for 24 hours. To obtain monolithic silica aerogels, final addition of TMCS with ethanol was added to a wet gel (the wet-gel was soaked in TMCS and ethanol mixture for 24 hours followed by soaking in pure ethanol). Ethanol was exchanged two times and the gel dried at 60 °C for 24 hours and at 100 °C for 1 hour.
Chapter 4 Sodium silicate-based silica aerogels

4.2 Results and Discussion

Sodium silicate Na$_2$SiO$_3$ (water glass) is used as a precursor to synthesis low cost silica aerogels. As mentioned earlier, in chapter 2 (section 2.1.2), water glass-based silica aerogels were synthesised in different volumetric ratios of water glass precursor and deionised water (see Table 4. 1) with and without the use of Amberlite® IR 120 hydrogen (Sigma-Aldrich) for sodium ion exchange. Sodium ions (Na$^+$) must be removed from the solution of sodium silicate precursor and water in order to improve the optical properties of silica aerogel (He et al., 2015a). After soaking gels in sodium bicarbonate solution for 3 days, silica gels were treated with a mix of TMCS and ethanol. Sodium chloride is generated as a result of the reaction between HCl and sodium bicarbonate solution (see Figure 1. 10 in chapter 1) (Han et al., 2018). Removing the trapped sodium salt inside pores of silica gels is a very important step because it introduces an opacity and a hydrophilicity to aerogels. The ion exchange method is reported to be used for removing Na$^+$ ions from water glass sol during synthesis of silica aerogels via ambient pressure drying method (Hwang et al., 2008; He et al., 2015b). Treating hydrogels with water vapour is also reported to remove Na$^+$ (Gurav et al., 2009). In our synthesis approach, washing hydrogels with deionised water is an essential step of obtaining typical properties of the final silica aerogel product either or not an ion exchange method is used. Washing with water is used to remove the sodium salt from hydrogel prior to drying.

The aim behind using the ion exchange method or washing with only deionised water in this research is to investigate differences in silica aerogel properties such as surface area, pore sizes and pore diameters.

We have prepared a small-scale monolithic aerogel (Figure 4. 1 shows monolithic and fragments of water glass-based silica aerogel which are synthesised by using bicarbonate APD) indicating the potential of our process for a low-cost fabrication of larger freestanding aerogel materials.
Figure 4.1. Silica aerogels synthesised from water glass precursor by using bicarbonate ambient pressure drying method (Han et al., 2018), (a) water-glass based silica aerogels of 1:4.5 volumetric ratio of water glass and deionised water, (b) monolithic silica aerogel of same volumetric ratio obtained by multi-treatment with TMCS-ethanol mixture (see synthesis process in section 2.2.2, chapter 2).

XRD pattern of a monoliths silica aerogel produced from a water glass (sodium silicate) precursor, which is prepared with volume ration of water glass: water 1:4.5 is demonstrated in Figure 4.2. It is clear from the diffraction scan that water glass-derived aerogels have an amorphous structure with no NaCl by-products remained after washing the aerogel with water.
Figure 4.2. XRD 2θ scan of a silica aerogel prepared using a water glass (sodium silicate) precursor by using bicarbonate APD method (Han et al., 2018).

Table 4.1. Volumetric ratio of water glass: deionised water with BET and BJH results for water glass-based silica aerogels.

<table>
<thead>
<tr>
<th>Water glass: deionised water Vol. ratio</th>
<th>1:3</th>
<th>1:3.5</th>
<th>1:4</th>
<th>1:4.5</th>
<th>1:5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water glass-based silica aerogel synthesis using Amberlite® IR 120 hydrogen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surface area (m²/g) [± 5 m² g⁻¹]</td>
<td>524</td>
<td>604</td>
<td>677</td>
<td>703</td>
<td>611</td>
</tr>
<tr>
<td>Pore volume (cm³/g) [± 0.02 cm³ g⁻¹]</td>
<td>0.98</td>
<td>0.53</td>
<td>0.85</td>
<td>0.78</td>
<td>1.17</td>
</tr>
<tr>
<td>Average pore diameter (nm) [± 0.1 nm]</td>
<td>6.17</td>
<td>4</td>
<td>5.04</td>
<td>4.2</td>
<td>7.52</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Water glass-based silica aerogel with no ionic exchange</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface area (m²/g) [± 5 m² g⁻¹]</td>
<td>401</td>
<td>526</td>
<td>500</td>
<td>440</td>
</tr>
<tr>
<td>Pore volume (cm³/g) [± 0.02 cm³ g⁻¹]</td>
<td>2.06</td>
<td>1.33</td>
<td>1.6</td>
<td>1.49</td>
</tr>
<tr>
<td>Average pore diameter (nm) [± 0.1 nm]</td>
<td>18</td>
<td>11</td>
<td>24</td>
<td>14</td>
</tr>
</tbody>
</table>

Figure 4.3 shows the nitrogen adsorption desorption isotherms of synthesised water glass based-silica aerogels samples with different water volume in the case of using Amberlite® IR 120 hydrogen for an ion exchange method to remove Na⁺ ions from the silica sol. The surface
area of an aerogel monolith (presented in Figure 4.1b), obtained by the BET method, is for water-glass silica aerogel samples with a volume ratio of water glass: water of 1:4.5 found to be 703 m2 g$^{-1}$ (see Table 4.1). The nitrogen adsorption-desorption isotherms (see Figure 4.3) are a combination of type I (microporous) and type IV isotherms according to IUPAC classification. A type IV isotherm is characteristic to mesoporous structure of porous materials (Sing et al., 1985; Thommes et al., 2015). In the case of using the ion exchange method, the surface areas of all water glass silica aerogel samples were in the range of 524-703 m2 g$^{-1}$. The specific surface area of water glass silica aerogels are in the range or are higher than reported surface areas for the typical synthesis of water glass silica aerogel samples synthesised using ion exchange method via standard ambient pressure drying method (Shi et al., 2006; Hwang et al., 2008).

![Figure 4.3](image)

Figure 4.3. Nitrogen adsorption-desorption isotherms of water glass based-silica aerogel samples with use of ion exchange method for different volume ratio of water glass: water. The adsorption isotherms are shown by filled circles, desorption isotherms are shown by filled squares.

The bulk density (ρ_b) of water glass silica aerogel sample, with a typical surface area, was measured using a microbalance of 10^{-6} g accuracy, in order to measure the mass of a known
volume of water glass silica aerogel and it was found to be 0.051 g/cm³. ρₘ is the skeletal density of silica 2.65 g/cm³. The porosity measured using the formula 4.1 was found to be 98.1%.

\[
\text{% Porosity} = \left(1 - \frac{\rho_b}{\rho_s}\right) \times 100 \tag{4.1}
\]

Pore size distribution curves in Figure 4.4 are measured using the BJH method. The pore diameters are small and distributed from a few nanometres up to twenty nanometres. The average pore diameters were between 4-7.5 nm for all samples and an average pore diameter of 4.2 nm is determined with a specific pore volume of 1.2 cm³ g⁻¹ for the highest surface area sample (see orange colour, which is for volumetric ratio of 1:4.5 in Figure 4.4).

Figure 4. 4. Pore size distribution curves (BJH method) for water glass based-silica aerogels synthesised by using an ion exchange method for a different volume ratio of water glass: water.

Figure 4. 5 shows the nitrogen adsorption desorption isotherms of synthesised water glass based-silica aerogel samples of different water volumes without the use of the ion exchange method were silica gels were washed with deionised water before drying. According to a BET analysis, a water-glass silica aerogel sample with a volume ratio of water glass: water of 1:4 was found to have the highest specific surface area of 526 m² g⁻¹. The surface areas are between 401-526 m² g⁻¹, and for the same volume ratio they were lower than that obtained using the
amberlite (see Table 4.1). However, surface areas are in the range of typical values for silica aerogels.

![Graph showing nitrogen adsorption-desorption isotherms](image)

Figure 4.5. Nitrogen adsorption-desorption isotherms of water glass based-silica aerogel samples washed with only DI water for different volume ratio of water glass: water. The adsorption isotherms are shown by filled circles, desorption isotherms are shown by filled squares.

Figure 4.6 shows relative BJH pore size distribution curves of the same samples as seen in Figure 4.5. The pore size distributions of those samples are distributed in a wide range of mesoporous diameters i.e. 10-50 nm. The average pore diameter and specific pore volume of water glass silica aerogel sample (with volume ratio 1:4) with highest surface area was 24 nm and 1.6 cm3 g$^{-1}$, respectively. In general, it can be seen from Table 4.1 that the average pore diameter and specific pore volume of water glass silica aerogels, which are synthesised without using an ion exchange method, are much higher than that obtained when the ion exchange method is used to remove Na$^+$ ions. The reason is the formation of sodium salt inside the gel structure, which later removed during washing with deionised water.
Figure 4.6. Pore size distribution curves (BJH method) for water glass based-silica aerogels which are washed with only water for different volume ratio of water glass: water.

Figure 4.7 shows SEM micrographs for the highest surface area for both types of treatments of Na+ ions. SEM micrographs show the high porosity of both samples. Employing ion exchange during the synthesis of the water glass silica aerogels (Figure 4.7 a) produces aerogels that have smaller pore diameters (less than 20 nm), while samples which are treated with washing with DI water only, produce silica aerogels with pore diameter from 20-50 nm and with some macropores (>50 nm). The microstructure results from SEM images agree well with the results obtained by the BJH method.

Figure 4.7. SEM micrographs of water glass based silica aerogels for the highest surface area samples with including of typical pore diameters, (a) sample of volume ratio 1:4.5 with using of amberlite, (b) sample of volume ratio 1:4 washed with water only.
Figure 4. 8 shows the thermal conductivity results of the water glass silica aerogel sample with the highest surface area (703 m2 g$^{-1}$). The thermal conductivity was measured from room temperature to 425 K, using a hot-disk technique. Each point on these curves is the mean of three independent measurements, and the time between the measurements was 10 minutes to allow the temperature to equilibrate. The thermal conductivity is found to increase monotonically as a function of temperature and at room temperature was found to be 0.016 W m$^{-1}$ K$^{-1}$, demonstrating a good insulating performance equal to aerogels produced by conventional supercritical drying process (Fricke et al., 1992).

In order to determine the viability of our APD approach for large-scale industrial production, the scalability has been considered too. The volume of aerogel which can be produced even within the laboratory context is scaled through appropriate increases in the quantities of reactants, and Figure 4. 9 shows an image of 350 cm3 of salt washed aerogel granules produced in a single batch from a water glass precursor by ambient pressure drying using TMCS and bicarbonate solution.

![Graph showing thermal conductivity vs. temperature](image-url)
4.3 Conclusion

Silica aerogel has been successfully synthesised from water glass precursor using sodium bicarbonate solution and TMCS. The obtained salt free silica aerogel, in the case of using ion exchange method to remove Na\(^+\) ions from silica sol, was found to have a surface area of 703 m\(^2\) g\(^{-1}\), an average pore diameter of 4.4 nm, a pore volume of 1.2 cm\(^3\) g\(^{-1}\), a density of 0.051 g/cm\(^3\), and a porosity of 98.1% (for silica aerogel sample of a volume ratio of water-glass: water of 1:4.5). While the best properties of the silica aerogel samples, that are synthesised without using ion exchange method, had surface an area of 526 m\(^2\) g\(^{-1}\), an average pore diameter of 24 nm, and a pore volume of 1.6 cm\(^3\) g\(^{-1}\) (for the silica aerogel sample of a volume ratio of water-glass: water of 1:4). The thermal conductivity of water glass-based silica aerogel sample with the highest surface area at room temperature is 0.016 W m\(^{-1}\) K\(^{-1}\).
References

Chapter 5 Synthesis and characterisation of alumina-based aerogel (dawsonite - sodium aluminium carbonate hydroxide) by using bicarbonate ambient pressure drying method.

The main purpose of this chapter is to prove that the new APD approach can be applied to different aerogel precursors. Aluminium sec-butoxide precursor (ASB) has been used to synthesise alumina aerogels by applying the new APD approach. This chapter presents results of characterisations such as XRD, FTIR, SEM, BET and BJH that were carried out on the synthesised material.

5.1 Synthesis of dawsonite aerogels using novel ambient pressure drying method

To demonstrate that the new APD approach is applicable to different aerogel compositions, we have also produced an alumina-based aerogel (dawsonite - sodium aluminium carbonate hydroxide) by the same method. Alumina-based aerogels are produced from an aluminium sec-butoxide precursor (ASB). The alumina gels were synthesised according to the method reported by Wu et al. (2010) with modifications. Many factors such as the type of alkoxide, water and alkoxide ratio, hydrolysis rate, type of catalyst used, pH of the mixture and the temperature of the reaction affect the final structure of the gel. Therefore, the form of the final alumina aerogels produced could be powder or monolithic, amorphous or crystalline (Poco et al., 2001).

Wu et al. (2010) reported using a mixture of ASB, water, ethyl acetoacetate and ethanol in a molar ratio of 1:0.6:0.72:16, respectively to obtain the gel. However, following that molar ratio we could not reach the gelation state. Therefore, firstly, the molar ratio was modified by changing the percentage of ethyl acetoacetate because the presence of ethyl acetoacetate causes a reduction in the rate of hydrolysis of ASB (Pierre et al., 1999) and has an influence on the structure of the dried alumina aerogels (Le Bihan et al., 2002). The optimum molar ratio of gelation in our work was observed to be 1:0.6:0.58:16 during synthesis. The second modification was on the ageing time, to find the optimum time for the completing of the gelation stage. Therefore, the gels were aged in an airtight box for 1, 2, 3, 6, 7, and 10 days. The gelation was completed after 7 days as there was no need for additional time. The gel was soaked in sodium bicarbonate solution (4.4 g for each 100 ml water) while stirring for 2 h. CO₂ was generated within the aerogel by soaking the aerogels in an ethanol solution containing TMCS (14 ml TMCS in 100 ml ethanol) for 24 h at room temperature. The gel was rinsed with ethanol.
to remove the unreacted TMCS, soaked with water and stirred for 8 h. Finally, the gel was immersed in ethanol for 24 h and dried at room temperature for 72 h followed by 100°C for 2 h under ambient pressure.

5.2 Results and discussion

Figure 5. 1 shows the granules of the dawsonite-sodium aluminium carbonate hydroxide aerogels.

Figure 5. 1. Dawsonite - sodium aluminium carbonate hydroxide aerogel granules.

Figure 5. 2 presents scanning electron microscopy (SEM) images of alumina-based aerogel (dawsonite—sodium aluminium carbonate hydroxide). SEM images show the mesoporous structure of the dawsonite aerogels.
Figure 5. 2. SEM image of dawsonite (NaAlCO$_3$(OH)$_2$) aerogels synthesized with aluminium sec-butoxide and ambient pressure drying using bicarbonate solution and TMCS.

The samples were firstly characterised using x-ray diffraction technique. Figure 5. 3 shows an XRD pattern from a dawsonite aerogel. The peaks in the XRD scans from these aerogels match with crystalline sodium aluminium carbonate hydroxide (Benezeth et al., 2007; Stoica et al., 2009). The XRD pattern is in agreement with previous reports that dawsonite is accompanied by boehmite (AlOOH) (Benezeth et al., 2007). The dawsonite fraction of the aerogel was determined as it was mentioned in chapter 2 section 2.2.3. The weight fraction of dawsonite was found to be 58 wt.% of the sample.
Figure 5. 3. XRD 2θ scan of a sodium aluminium carbonate hydroxide aerogel sample.

Figure 5. 4 presents a FTIR spectrum of a dawsonite aerogel. A number of distinct bands are observed, corresponding to the hydroxyl group (-OH), v_{OH} at 3270 cm$^{-1}$ and δ_{OH} at 955.7 cm$^{-1}$ and 927 cm$^{-1}$. The bands at 1549 cm$^{-1}$, 1390.8 cm$^{-1}$, 1096 cm$^{-1}$ 845 cm$^{-1}$, and at 730.7 cm$^{-1}$ correspond to -CO$_3$, while the band at 671 cm$^{-1}$ is the sodium aluminium carbonate hydroxide lattice vibration (Serna et al., 1985; Stoica et al., 2009; Chukanov, 2014). The FTIR spectra confirms the conclusions drawn from XRD regarding the composition of the aerogels.
The surface area and pore size distribution of the dawsonite aerogels were analysed by nitrogen adsorption/desorption isotherms using the BET and BJH methods. Figure 5. 5 shows the nitrogen adsorption-desorption curves. The analysis indicates that the dawsonite aerogels have a mesoporous structure with a surface area of 350 m2 g$^{-1}$.

Figure 5. 6 shows the BJH analysis results of pore size distribution of the dawsonite aerogels which is taken from the desorption curve in Figure 5. 5. The results of BJH analysis shows that the pores are in a mesoporous range of pore size distribution, with an average pore diameter of 5.7 nm and pore specific volume of 0.54 cm3 g$^{-1}$.
Figure 5. 5. N_2 adsorption-desorption isotherm curve of as-synthesised dawsonite aerogels. The adsorption isotherm is shown by the filled circles, the desorption isotherm is presented by the open squares.

Figure 5. 6. Pore size distribution curve of as-synthesised dawsonite aerogels.
5.3 Conclusion

Alumina-based aerogels (dawsonite - sodium aluminium carbonate hydroxide) have been successfully synthesised using our novel ambient pressure drying approach with bicarbonate solution and TMCS. The as-synthesised dawsonite aerogel has a mesoporous structure and a surface area of 350 m2 g$^{-1}$ with an average pore diameter of 5.7 nm and pore specific volume of 0.54 cm3 g$^{-1}$.

References

Chapter 6 Synthesis and characterisation of layered silica aerogels

This chapter presents bio-inspired synthesis of multi-layered silica aerogels to mimic the structure and thickness of the wings of the damselfly. The microstructure, surface area, pore size and mechanical properties of the multi-layered silica aerogel film of 0.3mm thickness were measured using SEM, BET, BJH and uniaxial compression analysis, respectively.

6.1 Synthesis of multi-layered silica aerogel films

To prepare uniform films, 1 ml of sol was spread using a glass rod. Once gelation of the first layer was completed, another layer of silica sol was dripped on the gel surface until gelation was completed. The process was repeated until the required number of layers was complete. After completing gelation, the cling film was placed inside the petri dish and the gel was soaked with ethanol for 8 hours. After ageing, ethanol was replaced by a mixture of deionised water and sodium bicarbonate for 8 hours. The gel was then soaked in a TMCS and ethanol mixture with a 16:100 volumetric ratio for 4 hours. Following this, the gel was rinsed with ethanol to remove unreacted TMCS. Finally, the gel film was dried at ambient pressure and room temperature for 12 hours, then at 100°C for 1 hour. Attempts to produce a single aerogel layer of the same overall thickness of the multi-layered aerogel samples, produced materials which were too brittle to successfully remove from the cling-film support.

6.2 Results and Discussion

Many material synthesis problems have been solved by biological systems as they provide inspiration for the design and production of man-made analogues (Meyers et al., 2013; Tao et al., 2015; Wegst et al., 2015; Picot et al., 2017). Lightweight and porous materials are key elements of many biological structures: for example, the wings of Odonata – dragonflies and damselflies – which are among the fastest and most agile flying insects,(Rajabi and Darvizeh, 2013; Appel et al., 2015) consist of super-lightweight composites made of chitin microfibrils embedded in a protein matrix (resilin, an elastomeric protein) that have complex configurations at both macro and micro scale (Appel et al., 2015). Typically, the wing weight is less than 2%
of a dragonfly’s total body mass (Rajendran et al., 2012). The SEM images, seen in Figure 6.1 (a-c), of the wing of the damselfly Lestes virens (Odonata, Zygoptera: Lestidae), which are taken by Dr. L. Šiller and Dr. D. Kulijer, present a porous and layered structure similar to an aerogel-like material. It is clear that the thickness of the membrane varies across the wing and the wings are made from porous tactile multilayers (Han et al., 2018).

In the current work, the purpose of multi-layered aerogel synthesis is to show that we can obtain similar freestanding submillimetre structured aerogel layers to mimic the structure and thickness of the wings of the damselfly (compare Figure 6.1c with Figure 6.3a, b). Normally it is known that laminated materials provide better toughness. Mechanical properties of non-layered free-standing silica aerogels are difficult to measure if they are under 0.5 mm thick.

Layered silica aerogels are prepared by the same novel AMD approach with bicarbonate solution and TMCS (see Figure 6.2), enabling compositional variation through an aerogel monolith and providing a route by which large thickness monoliths may be built up. The synthesis of layered silica aerogels was mentioned in detail in chapter 2, section 2.1.4.

Figure 6.1. SEM images of the membrane of the damselfly Lestes virens (Odonata, Zygoptera: Lestidae): (a) base of the wing; (b) multi-layered structure (5 layers are visible) of the base of the wing; (c) two layer structure of the end of the wing (Han et al., 2018).

Figure 6.2. Bioinspired wing-membrane-like multi-layered silica aerogels. (a-c), Photos of silica aerogels formed by the sodium bicarbonate solution based APD method using TEOS precursor.
Figure 6.3 shows SEM images for multi-layered silica aerogel samples, which are displayed in Figure 6.2. Figure 6.3 (a, b) shows SEM micrographs of bilayer and triple-layered aerogel material show similarity to the structure in figure 6.1c from Lestes virens. The interface between two layers is shown in Figure 6.3c, the SEM image clearly shows the porosity and excellent tactility of the interface. SEM micrographs in Figure 6.3 (d, e) show the nine-layered structure of the silica aerogel where the thickness of each layer is between 16 to 35.6 μm. Further magnification shows the mesoporous structure of this layered silica aerogel (Figure 6.3f). These layered aerogel structures display a remarkable similarity to the multi-layered structure of a damselfly’s wings, as might be expected given the original inspiration for the APD approach presented here.

Figure 6.4 shows the nitrogen adsorption desorption curves for layered silica aerogel. From nitrogen adsorption-desorption isotherms and pore size distribution analysis (see Figure 6.5), we find that the multi-layered silica aerogel films exhibit a surface area of 520 m2 g$^{-1}$. The isotherm curves display type IV behaviour, indicating mesoporous structure (Thommes et al., 2015). The pore size diameters are distributed in a cross a wide range of mesoporous diameters with an average pore diameter of 15.6 nm and a pore volume of 1.6 cm3 g$^{-1}$.
Figure 6. 4. N₂ adsorption-desorption isotherm for multi-layer silica aerogels. The adsorption isotherm is presented by the filled circles, desorption isotherm is presented by open squares.

Figure 6. 5. Pore size distribution for multi-layer silica aerogels.
Layering the aerogel structure considerably increases aerogel durability – it was possible to produce free-standing aerogel with typical thicknesses of ~ 0.3 mm, whilst attempts to produce non-layered samples of similar thicknesses with the same composition and preparation approach failed as these more brittle samples broke up upon the most gentle of handling. These ultra-thin layered aerogel samples were sufficiently robust to allow for compression testing.

Compression tests were carried out on layered silica aerogels with an overall thickness, measured by SEM, to be approximately ~ 0.3 mm (see Figure 6. 6). Five samples were tested using a Tinius-Olsen mechanical testing frame at a crosshead speed of 0.5 mm min\(^{-1}\). Typical stress-strain curves are shown in Figure 6. 7. The compression, the slope of the stress-strain curves, was used to calculate the compressive elastic modulus. The value obtained was \(E_{\text{layered}} = 0.20 \pm 0.07\) GPa. The surface area needed for determination of moduli was determined with optical microscopy (as shown in Figure 6. 8).

![Figure 6. 6. (a-b), thickness measurements of layered silica aerogels by scanning electron microscopy. Sample thickness was found to vary in the range ~ 250 – 350 nm. The scale bar is 200 nm.](image)
Figure 6. 7. Stress-strain curve for a typical layered silica aerogel.

Figure 6. 8. Optical micrographs showing the surface area of a layered aerogel before (left) and after (right) compression testing.

Similar tests on monolithic aerogels of the same thickness, as the layered samples, were attempted but were found to be inconclusive. Without layering, aerogels of such small thickness were found to be too fragile to detach them from the support without complete breakage. The
mere fact that it was possible to extract the layered aerogel samples and perform stress tests indicate that they are much tougher than uniform monoliths.

6.3 Conclusion

An attempt to mimic the structure and thickness of the wings of the damselfly led to the synthesis of multi-layered silica aerogel films with a thickness of 0.3 mm. However, all attempts to synthesise the same thickness of silica aerogels without layering were found to be unsuccessful. Layering the aerogel structure considerably increases aerogel durability. Performing stress tests on such a small thickness of silica aerogel films indicate that they are much tougher than uniform monoliths. Silica aerogel films show high surface area and a porous structure.

References

surface area and pore size distribution (IUPAC technical report), *Pure Appl. Chem.*, 87(9-10), pp. 1051-1069.

Chapter 7 Synthesis and immobilised nickel nanowires on silica aerogels

The shape and size of nanomaterials is known to affect their catalytic behaviour. In this work, wavy nickel nanowires (NiNWs) and nickel nanoparticles (NiNPs) were immobilised in mesoporous silica (SiO$_2$) aerogels by the sol-gel method to compare their catalytic activity toward CO$_2$ hydration reaction (CHR). We measured the catalytic activity of pure NiNWs and NiNWs-SiO$_2$ aerogel composites toward the CO$_2$ hydration reaction (CHR) when submerged in water. A dynamic vapour sorption (DVS) analysis was performed at levels of 50% CO$_2$ and 50% H$_2$O vapour for SiO$_2$ aerogels, immobilised nickel nanoparticles (NiNPs) on silica aerogels and NiNWs-SiO$_2$ aerogel composites, in order to determine catalytic activity for CHR in gaseous phase. The results from the DVS analysis (gaseous phase) and CHR (aqueous phase) showed that NiNWs-SiO$_2$ aerogel composites are good heterogeneous catalysts for CHR in both gaseous and aqueous phases but they are less active than NiNPs-SiO$_2$ aerogel composites.

7.1 Synthesis of nickel nanowires (NiNWs)

Nickel nanowires were synthesized following solvothermal process as reported by Chen et al. (2015b) with modification. Typically, 137 mg of NiCl$_2$·6H$_2$O was first added to 60 ml of ethylene glycol (EG) in a round bottom flask. After NiCl$_2$·6H$_2$O had fully dissolved in EG, 5 ml of 1M NaOH and 2.3 ml of N$_2$H$_4$·H$_2$O was then added into this solution. This solution was then kept in a water bath at 60 °C for 3 hours, the solution turned black indicating synthesis of Ni nanowires. These nickel nanowires were then dried in an oven at 60 °C for 8 hours. It was observed that when these nanowires were suspended in DI water, the pH of the suspension was acidic. It was suspected that the low pH could be due to the presence of residual reactants at the nanowire surface. Therefore, in order to remove these residuals, the nanowires were washed with 6M NaOH solution followed with DI water until the nanowire suspension had near neutral pH. Typically, 30 mg of NiNWs were mixed with 20 mL of 6 M NaOH and sonicated for 3 min. NaOH solution was refreshed and the process was repeated five times. A high-power magnet was used to separate NiNWs from the solution. In order to remove any excess NaOH from the samples, additional post-washing with DI water was introduced. NiNWs were dispersed in 20 ml of DI water followed by sonication for 3 min. DI water was then refreshed
and the process was repeated 20 times. Finally, NiNWs were washed by ethanol five times before drying at 60 °C for 8 hours.

7.2 Immobilisation of nickel nanowires (NiNWs) on silica aerogels

The sol-gel process was used to synthesise silica aerogel. Immobilisation of NiNWs (see Figure 2. 4) and NiNPs (for comparison) were carried out according to process proposed by Han et al. (2015). NiNWs were dispersed during the sol stage prior to gelation. Silica aerogels samples with 0, 400, 500 and 700 ppm of NiNWs (S, N1, N2 and N3 in Table 7. 1 chapter 7, respectively) were synthesized (Figure 7. 2 a and b). For the procedure, the desired amount of NiNWs were suspended in 5 ml of DI water using a sonic horn (Sonopuls, Bandelin) for 2 minutes. The hydrolysis of TEOS in ethanol and deionised water was used to prepare the silica gel with a molar ratio of 2:38:33 of TEOS: ethanol: water, respectively.

To accelerate the gelation process, a 1 ml mixture of ammonium hydroxide, ammonium fluoride and DI water in a molar ratio 1:8:111 was used as a catalyst. Subsequently, the mixture was stirred for 3 minutes and poured in a plastic mould for gelation. When gelation was complete, the mould was removed, and the gel was soaked in ethanol for aging. After 24 hours, the ethanol solvent was replaced by hexane. The hexane was refreshed every 24 hours for three days. Finally, the gel was dried at room temperature for 24 hours. After which the gel was transferred to an oven for 8 hours at 60 °C, after which the temperature was increase to 100 °C for a further 2 hours, see Figure 2. 4.

7.3 Results and discussion

Many technologies such as absorption, desorption, chemical looping combustion, membrane separation, hydrate-based separation and cryogenic distillation have been developed to isolate CO₂ from flue gas streams (Leung et al., 2014). Another promising CCSU technology is removing the CO₂ by utilizing the CO₂ hydration reaction. However, in the absence of a catalyst the reaction is slow. A known catalyst for this reaction is carbonic anhydrase. The study of carbonic anhydrase led to the development of bio-inspired metal based catalysts to convert CO₂ into other chemical compounds such as the reduction of CO₂ into methanol or producing cyclic carbonates via coupling with oxiranes (Bandeira et al., 2015). Siller and Bhaduri at Newcastle University (UK) discovered experimentally that nickel nanoparticles (NiNPs) are inorganic heterogeneous catalysts which catalyses the CHR. (Bhaduri and Siller, 2013; Siller and Bahduri,
2013) proposed mechanism of CHR, in presence of NiNPs in the aqueous phase involves the formation of hydroxyl groups on the surface of NiNPs, which are then converted to bicarbonate groups through the nucleophilic attack of \(\text{CO}_2 \) \(_\text{aq} \) molecules. Subsequently, bicarbonate ions are displaced by \(\text{H}_2\text{O} \) molecules which then dissociate, giving their proton to the solvent, whilst the remaining hydroxyl group forms on the surface of NiNPs (Bhaduri and Siller, 2013; Siller and Bahduri, 2013). In order to improve handling of NiNPs catalysts for potential scale up applications, it has been suggested a use of magnetic separator for recycle and reuse of NiNPs for CHR (Bhaduri and Siller, 2013) or NiNPs can be immobilised on mesoporous silica (\(\text{SiO}_2 \)) aerogels (Han et al., 2015). Often the difference in surface area and surface structure, due to different dimensionality of nanomaterials, could also affect their catalytic activity. Here, we study the difference in catalytic activity for CHR in a vapour phase when two different forms of nickel nanomaterials (NiNPs and NiNWs) are immobilised in silica aerogels, which has not been studied previously, as it was only known to enhance catalytic activity of NiNPs for CHR in aqueous solutions (Bhaduri et al., 2015). The catalytic activity in a vapour phase by the co-sorption at high concentration levels of \(\text{CO}_2 \) and water was studied by adsorption-desorption kinetics and isotherms with a dynamic vapour sorption analyser (DVS Vacuum).

TEM images (see, Figure 7. 1) show the wavy shape of the NiNWs, which are similar to that reported by Chen et al. (2015b). Wavy NiNWs have a non-uniform diameter (with the mean diameter \(\sim 400 \) nm) and \(\sim 4\mu\text{m} \) in length.

Figure 7. 1 c-d show the TEM images of NiNPs. The diameter of NiNPs in Figure 7. 1d is \(\sim 125 \) nm. Where TEM images (e) and (f) in Figure 7. 1 show the porous structure of 700 ppm NiNWs-silica aerogels composite. The photo images of NiNWs-\(\text{SiO}_2 \) aerogels composites (at 400, 500 and 700 ppm) are presented in Figure 7. 2b.
Chapter 7 Immobilisation of nickel nanowires in silica aerogels

Figure 7.1. Transmission electron microscopy (TEM) images, (a) and (b) of NiNWs, (c) and (d) are TEM images of NiNPs, (e) and (f) are TEM images of NiNWs-silica aerogels (sample N3).

Table 7.1. Surface area and pore size and pore volume properties of NiNWs, NiNPs composites and NiNWs composites (pure nickel nanowires (N0), pure silica aerogel (S), 700 ppm of nickel nanoparticles in silica aerogel (Np), 400 ppm of nickel nanowires in silica aerogel (N1), 500 ppm of nickel nanowires in silica aerogel (N2) and 700 ppm of nickel nanowires in silica aerogel (N3).

<table>
<thead>
<tr>
<th>Sample</th>
<th>NiNWs wt. %</th>
<th>NiNPs wt. %</th>
<th>Surface area (m²/g) [± 5 m² g⁻¹]</th>
<th>Pore specific volume (cm³/g) [± 0.02 cm³ g⁻¹]</th>
<th>Average diameter (nm) [± 0.2 nm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>N0</td>
<td>100</td>
<td>-</td>
<td>9.3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S</td>
<td>-</td>
<td>-</td>
<td>509</td>
<td>1.48</td>
<td>17.3</td>
</tr>
<tr>
<td>Np</td>
<td>-</td>
<td>3.25</td>
<td>515</td>
<td>1.61</td>
<td>11.6</td>
</tr>
<tr>
<td>N1</td>
<td>0.5</td>
<td>-</td>
<td>421</td>
<td>1.8</td>
<td>30.16</td>
</tr>
<tr>
<td>N2</td>
<td>0.6</td>
<td>-</td>
<td>410</td>
<td>1.54</td>
<td>25.6</td>
</tr>
<tr>
<td>N3</td>
<td>1.25</td>
<td>-</td>
<td>470</td>
<td>1.22</td>
<td>23.64</td>
</tr>
</tbody>
</table>
Chapter 7 Immobilisation of nickel nanowires in silica aerogels

Figure 7. 2. (a) SiO$_2$ aerogels (b) Nickel nanowires (NiNWs) immobilised on SiO$_2$ aerogels synthesised with different nanowires concentrations.

The N$_2$ adsorption-desorption isotherm of pure NiNWs is shown in Figure 7. 3. The surface area of NiNWs was 9.3 m2/g. N$_2$ adsorption-desorption isotherms of silica aerogels and NiNWs-SiO$_2$ aerogel composites (see, Figure 7. 4) show a type IV of isotherms and hysteresis loops of H1 type. According to IUPAC classification, a type IV isotherm indicates a mesoporous structure and H1 hysteresis loops are characteristic of materials that exhibit a narrow range of uniform mesopores (Sing et al., 1985; Thommes et al., 2015).

Figure 7. 3. Nitrogen adsorption–desorption isotherm of pure NiNWs, sample N0.
Chapter 7 Immobilisation of nickel nanowires in silica aerogels

Figure 7.4. Nitrogen adsorption–desorption isotherms, (a) pure silica aerogel (S), (b) 700 ppm of nickel nanoparticles in silica aerogel (Np), (c) 400 ppm of nickel nanowires in silica aerogel (N1), (d) 500 ppm of nickel nanowires in silica aerogel (N2) and (e) 700 ppm of nickel nanowires in silica aerogel (N3).

A summary of the surface area, pore volume and pore diameter data are listed in Table 7.1. SiO$_2$ aerogel alone has a surface area of 509 m2/g. While, the surface area for the 400 ppm, 500 ppm and 700 ppm NiNWs-SiO$_2$ aerogel composites were found to be 421 m2/g, 410 m2/g and 470 m2/g, respectively. The pore size distribution curves are shown in Figure 7.5. These are determined from N$_2$ desorption isotherms presented in Figure 7.4 by the BHJ method. Most samples have mesoporous diameters with a broad pore size distribution. In addition, the pore
volume (see Table 7.1) decreases with an increase of the NiNWs concentration inside silica aerogels. As expected, the pore specific volume for NiNWs in silica aerogel (N3) is smaller than that for NiNPs in silica aerogels (Np) (see Table 7.1).

Figure 7.5. Barrett–Joyner–Halenda (BJH) method of pore size distribution, (a) pure silica aerogel (S), (b) 700 ppm of nickel nanoparticles in silica aerogel (Np), (c) 400 ppm of nickel nanowires in silica aerogel (N1), (d) 500 ppm of nickel nanowires in silica aerogel (N2) and (e) 700 ppm of nickel nanowires in silica aerogel (N3).
Figure 7.6 shows XRD patterns from NiNWs and NiNWs-SiO\textsubscript{2} aerogel composites. The border peak around 2\(\theta\) = 20\(^\circ\) in Figure 7.6 is for amorphous silica (Amiri and Moghaddas, 2015). The three characteristic peaks observed at 2\(\theta\) = 44.58\(^\circ\), 51.9\(^\circ\) and 76.5\(^\circ\) corresponds to the nickel with Miller indices (111), (200), and (220), respectively, indicating the pure face centre cube structure (fcc) of the NiNWs (Wang et al., 2010). No other peaks suggesting oxidisation were recorded which means a high purity of synthesis take place (Wang et al., 2010). The XRD pattern of NiNWs immobilised in silica aerogels was also observed in Figure 7.6. The quantification of NiNWs and NiNPs weight percentages (wt. %) in silica aerogels are presented in Table 7.1.

![X-ray diffraction (XRD) patterns of pure NiNWs and immobilised NiNWs on SiO\textsubscript{2} aerogels.](image)

SEM images of NiNWs-SiO\textsubscript{2} aerogel composites (Figure 7.7 a-f) confirm the mesoporous nature of the support as obtained by the BHJ analysis (Figure 7.5). An estimation of the pore diameters from SEM images show that the majority of the pore diameters are in the range between 20-40 nm. However, some macropores (>50 nm) are observed for N3 sample. The presence of macropores in porous materials enhances the diffusion of gases through pores and therefore enhances CO\textsubscript{2} capture (Zelenak et al., 2008; Drese et al., 2009).
Chapter 7 Immobilisation of nickel nanowires in silica aerogels

Figure 7. 7. SEM images at different magnifications and different concentrations of NiNWs immobilised on SiO$_2$ aerogels. (a and b) SEM images for N1, (c and d) SEM images for N2 and (e and f) SEM images for N3. (Denotation: 400 ppm of nickel nanowires in silica aerogel (N1), 500 ppm of nickel nanowires in silica aerogel (N2) and 700 ppm of nickel nanowires in silica aerogel (N3).)

CO$_2$ dissolution

Figure 7. 8 shows CO$_2$ dissolution in DI water and in NiNWs suspensions. We plot the average values of the increase in saturation concentration of CO$_2$ dissolved in DI water and with suspended NiNWs in DI water as a function of the concentration of nanowires, taken at room temperature and atmospheric pressure. The maximum uptake of CO$_2$ is at NiNWs concentration of ~30 ppm. The amount of CO$_2$ dissolved in water without NiNWs was similar to that reported in literature (~39 mM) (Favre et al., 2009). Therefore, further pH change analysis was performed in suspensions with a NiNWs concentration of ~30 ppm.

Catalytic and non-catalytic CHR

Figure 7. 8 shows pH changes during the bubbling of carbon dioxide through DI water, including silica aerogel supported or freely suspended NiNWs catalyst in a fluidized bed reactor. All experiments are taken at room temperature and atmospheric pressure. DI water was used as a control to observe the effectiveness of the catalysts towards the CHR. Silica aerogels alone do not catalyse the CHR (see grey and blue curves in Figure 7. 8). The three supported catalysts at different NiNWs concentration (N1, N2 and N3, see Table 7. 1) all show catalytic activity for CHR; however, they are less effective when compared to freely suspended NiNWs. We
observe enhancement in catalytic activity of NiNWs-SiO2 aerogel composites as a function of NiNWs concentration i.e. N1<N2<N3. This is due to CO2’s mass transfer limitations created by the small size of the pores in silica aerogel. Another reason for the loss in activity could be due to a loss of active sites on NiNWs, as freely suspended NiNWs have higher active surface area than immobilised NiNWs in silica aerogels.

Figure 7. 8. pH changes during the bubbling of CO2 through DI water (grey), NiNWs suspension (N0-black), SiO2 aerogels suspension (blue), and Ni nanowire-SiO2 aerogels composites at 400 ppm (N1-red), 500 ppm (N2-orange) and 700 ppm (N3-green). All experiments are performed at RT and atmospheric pressure.

Dynamic water vapour/CO2 adsorption-desorption test

DVS was used to investigate catalytic activity of immobilised NiNWs on SiO2 aerogels for CHR in vapour phase. The experiments were performed on 700 ppm NiNWs-SiO2 aerogels, 700 ppm NiNPs-SiO2 aerogels and pure SiO2 aerogels at same experimental conditions. Adsorption-desorption curves were plotted based on mass equilibrium with time. Figure 7. 9 a-c show CO2 uptake cycles of SiO2 aerogels, 700 ppm NiNPs-SiO2 aerogels and 700 ppm NiNWs-SiO2 aerogels composites at 25 °C, respectively. Adsorption-desorption cycles (red
line) are presented by changes in mass with time while the blue line represents the relative pressure changes with time.

Figure 7.9. Adsorption-desorption cycles and adsorption-desorption isotherms showing CO₂ sorption kinetics at 25 °C. (a) sorption kinetics for SiO₂ aerogels, (b) sorption kinetics for 700 ppm NiNPs-SiO₂ aerogel composites, (c) sorption kinetics for 700 ppm NiNWs-SiO₂ aerogel composites, (d) adsorption-desorption isotherm curves of SiO₂ aerogels, (e) adsorption-desorption isotherm curves of 700 ppm NiNPs-SiO₂ aerogel composites and (f) adsorption-desorption isotherm curves of 700 ppm NiNWs-SiO₂ aerogel composites.

All samples show the capability of CO₂ uptake. The adsorption capacities were 41.5 mg, 37.5 mg and 34 mg of CO₂ per gram of adsorbent at 25 °C for pure silica aerogels, NiNPs-SiO₂ aerogel composites and NiNWs-SiO₂ aerogel composites, respectively (see Table 7.2). Pure silica aerogels exhibit a higher uptake capacity than NiNPs-SiO₂ and NiNWs-SiO₂ aerogel composites. However, the adsorption and desorption curves (Figure 7.9 d-f) were almost identical meaning the process is approximately reversible (the desorption curve almost returns to same point as at the start of the analysis). Consequently, no hysteresis loops were associated with the adsorption-desorption isotherms indicating no tensile strength is applied to the pores (Al-Janabi et al., 2015). Water vapour dynamic uptake curves (Figure 7.10 a-c) of the investigated materials demonstrated a high interaction between water vapour molecules and the solid.
Table 7.2. DVS adsorption capacity (Ads. C.) and retain mass (R.M.) of sorption gases

<table>
<thead>
<tr>
<th>Sample</th>
<th>CO₂ Ads.C. mg/g</th>
<th>CO₂ R.M. mg/g</th>
<th>H₂O Ads.C. mg/g</th>
<th>H₂O R.M. mg/g</th>
<th>H₂O/CO₂ Ads.C. mg/g</th>
<th>H₂O/CO₂ R.M. mg/g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silica aerogel</td>
<td>41.5</td>
<td>2.4</td>
<td>194.5</td>
<td>21</td>
<td>79.8</td>
<td>18</td>
</tr>
<tr>
<td>NiNWs</td>
<td>34</td>
<td>1.95</td>
<td>188</td>
<td>23</td>
<td>93</td>
<td>20</td>
</tr>
<tr>
<td>NiNPs</td>
<td>37.5</td>
<td>2.6</td>
<td>197.5</td>
<td>19.2</td>
<td>90</td>
<td>10</td>
</tr>
</tbody>
</table>

It is widely accepted that the water adsorption mechanism includes four steps; (1) water adsorption on surface functional groups; (2) formation of a cluster of water molecules through adsorption, due to the water molecules adsorbing on the previous adsorbed water molecules; (3) at a relative pressure (of approximately P/P₀=0.5) pore filling occurred and (4) when the pressure becomes high, the pores are completely filled and the plateau is reached (Brennan et al., 2001; Chen et al., 2015a). Relatively high-water vapour adsorption capacities at 25°C were recorded (194.5 mg, 197.5 mg and 188 mg of H₂O per gram of adsorbent, for pure silica aerogels, NiNPs-SiO₂ and NiNWs-SiO₂ aerogel composites, respectively; see Table 7.2). Again, NiNWs-SiO₂ aerogel composites showed lower water adsorption capacity than pure silica aerogels or NiNPs-SiO₂ aerogel composites. It is likely that hydroxyl groups at SiO₂ aerogel surfaces via H-bonding interact with water vapour molecules and work as adsorption sites (Wei et al., 2013). The formation of hysteresis loops (see Figure 7.10 d-f) are due to capillary condensation and the formation of irreversible hydrate (capillary condensation is the dominated adsorption mechanism at high level of humidity loading (Li et al., 2008)). The isotherms demonstrated as an open loop system (do not come back to zero) meaning some moisture is retained in the solid matrices. In particular, water is more strongly bonded to NiNWs-SiO₂ aerogel composites than NiNPs -SiO₂ aerogel composites. The retention mass for NiNWs was larger than for NiNPs, see column 4, Table 7.2. Since NiNWs are wavy (see TEM images in Figure 7.1a-b), there is larger number of defect sites on step edges, which they will act as a stronger bonding sites for water molecules.

Comparing the uptake of CO₂ and water vapour for the different aerogel compositions, it was observed that NiNWs-SiO₂ aerogel composites show the highest uptake for water vapour when compared to CO₂ uptake (188/34=5.5 times higher). Figure 7.11 shows the co-sorption cycles and isotherm behaviour for investigated samples at a gaseous volumetric mixture of 50/50 H₂O/CO₂. The desorption behaviour is similar to that observed for H₂O in Figure 7.10.
Isotherms have an open loop hysteresis and samples retain liquids (see Table 7.2, 6th column). Since there is a high level of humidity and CO\textsubscript{2} during loading, water vapour could condense and form carbonic acid (Li et al., 2008).

Figure 7. 10. Adsorption-desorption cycles and adsorption-desorption isotherms showing H\textsubscript{2}O vapour sorption kinetics at 25 °C. (a) sorption kinetics for SiO\textsubscript{2} aerogels, (b) sorption kinetics for 700 ppm NiNPs-SiO\textsubscript{2} aerogel composites, (c) sorption kinetics for 700 ppm NiNWs-SiO\textsubscript{2} aerogel composites, (d) adsorption-desorption isotherm curves of SiO\textsubscript{2} aerogels, (e) adsorption-desorption isotherm curves of 700 ppm NiNPs-SiO\textsubscript{2} aerogel composites and (f) adsorption-desorption isotherm curves of 700 ppm NiNWs-SiO\textsubscript{2} aerogel composites.

NiNWs-SiO\textsubscript{2} aerogel composite (93 mg of H\textsubscript{2}O/CO\textsubscript{2} /g-adsorbent) and NiNPs-SiO\textsubscript{2} aerogel composite (90 mg of H\textsubscript{2}O/CO\textsubscript{2} /g-adsorbent) exhibited higher adsorption capacity than pure silica aerogels (79.8 mg of H\textsubscript{2}O/CO\textsubscript{2} /g-adsorbent), see the 5th number column in Table 7.2.

The slopes of the linear part of the adsorption curves in Figure 7. 12, the adsorption parts, for silica aerogel, NiNPs-silica aerogel composites and NiNWs silica aerogel composites are 0.088, 0.1196 and 0.105, respectively. This change could be or due to different catalytic activities or due to different pore size diameters that could influence the flow rate of vapour through material. However, we see in Table 7.1 that the pore diameter of NiNWs – silica aerogel composites is much larger than for NiNPs – silica composites that can rule out this second possibility. In addition, because we have retention of water on NiNWs silica aerogel samples much larger than on NiNPs silica aerogels, this implies that the bonding of water molecules is stronger. Therefore, the changes in slope are due to changes in catalytic activities of NiNPs and NiNWs trapped in silica aerogels. The catalytic activity towards CO\textsubscript{2}-H\textsubscript{2}O co-adsorption is fastest on NiNPs-silica
Chapter 7 Immobilisation of nickel nanowires in silica aerogels

aerogel composites, followed by NiNWs-silica aerogel composite and then followed by silica aerogels.

Figure 7.11. Adsorption-desorption cycles and adsorption-desorption isotherm curves showing 50/50 H₂O/CO₂ sorption kinetics at 25 °C. (a) sorption kinetics for SiO₂ aerogels, (b) sorption kinetics for 700 ppm NiNPs-SiO₂ aerogel composites, (c) sorption kinetics for 700 ppm NiNWs-SiO₂ aerogel composites, (d) adsorption-desorption isotherm curves of SiO₂ aerogels, (e) adsorption-desorption isotherm curves of 700 ppm NiNPs-SiO₂ aerogel composites and (f) adsorption-desorption isotherm curves of 700 ppm NiNWs-SiO₂ aerogel composites.

The mechanism of adsorption-desorption of H₂O/CO₂ vapour mixture on Ni nanowires could be similar to previous experimental (Bhaduri and Siller, 2013; Siller and Bahduri, 2013) and theoretical work (Verma et al., 2016) on NiNPs. Adsorption of CO₂ and H₂O molecules in the liquid phase are energetically favourable at Ni surface when compared to the gas phase (Verma et al., 2016; Xu et al., 2016). The adsorption free energy of H₂O complex that is formed on the Ni surface was found to decrease from 9.95 kcal/mol in vacuum to 5.4 kcal/mol in solvent state (Verma et al., 2016). This H₂O dissociates into OH and H groups on the surface of the Ni cluster, with the activation barrier for deprotonation found to be lower in solvent state than in a vacuum (Verma et al., 2016). When CO₂ molecules react with the surface of Ni, a bent intermediate CO₂⁻ is formed and this transformation from a linear to a bent structure is associated with a significant reduction in the activation energy barrier (Ding et al., 2007). When adsorbed CO₂ molecules interact with hydroxyl groups to form a bent OH—CO₂ complex, the oxygen atom of the hydroxyl group can lose a proton to a CO₂ oxygen atom forming a Ni—HCO₃⁻ complex. As mentioned, due to high capillary condensation, water vapour tends to be condensed in mesoporous SiO₂ aerogels forming a liquid phase. The HCO₃⁻ complex would be released from
the surface of Ni either by another water vapour molecule or directly dissolved in the generated water phase.

Figure 7.12. Comparison of 50/50 H₂O/CO₂ adsorption (ads) and desorption isotherms (des) for 700 ppm NiNPs-SiO₂ aerogel composites (ads is in pink and des is in green), for 700 NiNWs-SiO₂ aerogel composites (ads is in red and des is in blue) and pure silica aerogels (ads in brown and des in turquoise). Data are taken at 25 °C.

7.4 Conclusion

The results of the catalytic activity analysis of wavy NiNWs and immobilised wavy NiNWs on silica aerogels for CHR that performed in aqueous phase at room temperature exhibit enhancement in the rate of dissolution of carbon dioxide. The rate of carbon dioxide dissolution in presence of supported NiNWs increased with the increase NiNWs concentration. The best catalytic efficiency was seen when testing the NiNWs-SiO₂ aerogel composites with a concentration of 700ppm NiNWs. The thermos gravimetric results that were obtained from the DVS showed that utilising NiNWs as a heterogeneous catalyst promoted the catalytic activity for CHR, agreeing with the results found in the aqueous catalytic activity testing. However, NiNPs on aerogel support are found to be better catalysts towards CHR than NiNWs aerogel composites.
References

Chapter 8 Conclusions and Future Work

This chapter summarize the conclusion of results of the work which is carried out in this thesis and suggests the areas that could be investigated in future.

8.1 Thesis conclusion

This thesis reports on investigations of the capability of bicarbonate ambient pressure drying approach to synthesise aerogels from different precursors. In addition, this thesis presents synthesis of efficient low-cost superinsulation silica aerogel composites and silica aerogel composites for CO\textsubscript{2} capture applications.

In chapter 3 of this thesis, bicarbonate ambient pressure drying approach is used to synthesise low cost silica aerogel thermal insulation materials. Ceramic blankets and ceramic short fibres are used for the reinforcement. The synthesised composites exhibit reasonable mechanical and thermal properties. Incorporation of 34 wt. % of silica aerogels in ceramic blankets reduces the thermal conductivity from 0.048 to 0.038 W/m K. While reinforcement with short ceramic fibres improves mechanical properties by tenfold of that for pure silica aerogels and produces thermal insulators with thermal conductivities of 0.019-0.028 W/m K.

Chapter 4 presents synthesis of silica aerogels from water glass precursor by using the bicarbonate approach (Han and Šiller, 2015). The salt free silica aerogels are synthesised by two ways depending on whether using or not the ion exchange method in order to remove Na+ ions from silica sol. Using the ion exchange method during synthesis, it produced silica aerogels with surface area of 703 m2g-1 when compared with 526 m2g-1 when the water glass-based silica aerogels are carried out without using of the ion exchange method. The lowest thermal conductivity of the highest surface area sample is 0.016 W/m K.

Chapter 5 presents synthesis of alumina-based aerogels (dawsonite - sodium aluminium carbonate hydroxide) from an aluminium sec-butoxide precursor (ASB) by using the bicarbonate ambient drying pressure approach. The as-synthesised dawsonite aerogel has a mesoporous structure and a surface area of 350 m2 g-1 with an average pore diameter of 5.7 nm and pore specific volume of 0.54 cm3 g-1.

In chapter 6, we present a bio-inspired synthesis of multi-layered silica aerogels to mimic the structure and thickness of the wings of the damselfly. This has led to synthesis of multi-layered silica aerogel films of thickness of 0.3 mm. Silica aerogel films show a high surface area and a porous structure. Layering of the silica aerogel structure increased the aerogel durability.
The catalytic activities for CO\textsubscript{2} hydration reaction (CHR) in gaseous phase of pure SiO\textsubscript{2} aerogels, NiNPs- SiO\textsubscript{2} composites and NiNWs-SiO\textsubscript{2} aerogels composites are investigated in chapter 7 by using the dynamic vapour sorption (DVS) technique. The analysis was performed with 50% CO\textsubscript{2} and 50% H\textsubscript{2}O vapour. The thermo gravimetric results that are obtained from DVS showed that utilising the NiNWs as a heterogeneous catalyst, it promoted the catalytic activity for CHR. However, NiNPs-aerogel support is found to be a better catalyst towards CHR than NiNWs aerogel composites.

8.2 Future work

8.2.1 Epoxy-silica aerogel coatings

Nowadays, construction industries focus on the improvement of the energy savings. A number of research is dedicated on developing efficient thermal insulation properties of insulation materials and coatings in order to lower the space-cooling load. A great effort is conducted on producing thermal insulator paints that have a low thickness and a high efficiency in order to improve the thermal insulation of the roofs and ceilings of buildings. For example, epoxy resins are widely used as protective coatings in buildings and in many different applications because of their excellent adhesion, mechanical properties and chemical resistance in a different media (Akbarzade et al., 2017). Introducing the micro- or nano-structural materials with excellent thermal properties into conventional adhesives lowers their thermal conductivities. Silica aerogels are the most promising inorganic additives that could be mixed with adhesives because of their excellent physical properties such as low thermal conductivity (0.013-0.04 W/m K), low density (0.003-0.1 g/cm3), high porosity (>99%) and a high specific surface area (500-1200 m2/g) (Vahtrus et al., 2017). Therefore, many studies were reported on mixing of hydrophobic aerogels with epoxy resin to improve the mechanical, thermal and hydrophobic properties of epoxy-silica aerogel composites (Ge et al., 2009; Maghsoudi and Motahari, 2018). However, direct mixing of epoxy with silica aerogel powders does not provide a satisfactory low thermal conductivity composites unless aerogel pores are not impregnated with polymer resin from the beginning of fabrication process (Kim et al., 2015b). Therefore, Kim et al. (2015a) proposed a preparation method to prevent epoxy resin from filling aerogel pores and to preserve aerogel pores in final composite by using ethanol evaporation.

The aim of the future work is to develop thermal insulation properties of epoxy coatings by getting the benefit of incorporating a proper amount of silica aerogels which is synthesis via new low cost and environmental ambient pressure approach that is developed at Newcastle
university (Han and Šiller, 2015). We propose to use toluene solvent rather than ethanol for pore preserving because it is expected that toluene will provide an additional time for finishing polymerisation of the resin before evaporating. In addition, the high boiling point for toluene comparing to ethanol gives flexibility to do fabrication process at higher temperature than that when ethanol is used in order to prevent filling pores. The preliminary thermal conductivity results of our proposition show promised results when compared to pure epoxy resin (see Table 8.1).

Table 8.1. Thermal conductivity of Epoxy-silica aerogel composites.

<table>
<thead>
<tr>
<th>Material</th>
<th>Silica aerogel (Vol. %)</th>
<th>Thermal conductivity (W/m K)</th>
<th>Sample thickness (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epoxy</td>
<td>0</td>
<td>0.227</td>
<td>12</td>
</tr>
<tr>
<td>Epoxy-Silica aerogel</td>
<td>13.5</td>
<td>0.176</td>
<td>12</td>
</tr>
<tr>
<td>Epoxy-Silica aerogel</td>
<td>40</td>
<td>0.154</td>
<td>7</td>
</tr>
<tr>
<td>Epoxy-Silica aerogel</td>
<td>58</td>
<td>0.104</td>
<td>9</td>
</tr>
</tbody>
</table>

In brief, silica aerogel powders are mixed with toluene solvent to fill pores of silica aerogels. Then the wet silica aerogel powders are left for ~ 5 minutes to evaporate the excessive toluene solvent prior to mix under stirring with epoxy solvents at 50 °C. After which the mixture is poured in a cylindrical mould for solidification. Figure 8.1 shows as prepared samples with different volumetric ratios of silica aerogels. The future work could concentrate on synthesis of epoxy samples that contain silica aerogels with additives such as milled glass fibres, with aim to reduce the manufacturing costs, improve mechanical properties and to maintain the thermal insulation properties of the epoxy paint.

Figure 8.1. Epoxy and silica aerogels-epoxy samples with a different volumetric ratio.
8.2.2 Amino-functionalisation of pure nickel nanoparticles-silica aerogels for CO$_2$ capture

The most effective technique to reduce emission of CO$_2$ is capturing of CO$_2$ emitted as a flue gas from power plants (Wang et al., 2015). Amino-functionalised silica aerogels are widely investigated to be promising as excellent solid sorbents for CO$_2$ capture from a flue gas (Kong et al., 2016; Chen et al., 2017). The real flue gas contains a certain amount of water vapour (Wang et al., 2015). The presence of water vapour can improve the CO$_2$ capture of solid amine sorbents (Huang et al., 2003). Therefore, we propose here incorporation of nickel nanoparticles (NiNPs) with amine in post functionalised silica aerogel composites to investigate the catalytic activity of NiNPs toward the CO$_2$ capture. A preliminary study is carried out to amino-functionalised silica aerogels with NiNPs when immobilised on silica aerogels.

Synthesis of gels and the amine post-functionalisation of silica aerogel composites.

Synthesis of pure silica gels and immobilisation of nickel nanoparticles in silica gels were carried out as was described in chapter 2, section 2.1.5. Gels are then aged for 24 hours in ethanol before the amine functionalisation process. Synthesis of amine modified pure silica aerogels and NiNPs immobilised silica aerogels are carried out in the same way as it was reported by (Cui et al., 2011). Briefly, after ageing of gels in ethanol for 24h, amine functionalisation is carried out by mixing 3-(Aminopropyl) triethoxysilane (AP) (≥98% Sigma-Aldrich) with ethanol with a volume ratio of (1:50 v/v) and the molar ratio of AP to TEOS was 1:2. Gels are then soaked in an AP/ethanol solution and stored for 6 days at 50 °C, for the AP functionalisation. After modification, the gels are washed with ethanol to remove unreacted AP and then ethanol solution was exchanged by the hexane. The hexane was refreshed every 24 h three times before drying the gels at room temperature and atmospheric pressure for 24 h, and then for 8h in oven at 60°C and finally at 100 °C for 2 h.

As the AP contains only one amine group, therefore longer organosilane groups of two or three amino groups could be further used to increase the efficiency of CO$_2$ capturing such as triethylenetetramine (TEPA) and polyethyleneimine (PEI). The preliminary experiments are carried out as follow: 5 g of methanol and 214 mg of PEI or TEPA are mixed at 50 °C. Then 497 mg of as prepared AP-silica aerogels (SA-AP) is soaked for 30 mins in the mixture at 50 °C then it is left for 20 hours before being washed with toluene and dried at room temperature for 24 hours. The aim of further future work is to develop CO$_2$ solid sorbents by taking the advantages of the ability to functionalise silica aerogels with amine groups and at the same time, the catalytic activity of NiNPs for CO$_2$ in gaseous phase in presence of water vapour, as it has been concluded in this thesis. Therefore, the effect of amino-functionalising and immobilising
of NiNPs in silica aerogels for CO₂ separation and capture in presence of water vapour has been investigated by CO₂ adsorption isotherms at low partial pressure of CO₂ (see Figure 8. 2).

Figure 8. 2. CO₂ adsorption isotherms normalised for surface area of samples.

In addition, Raman spectra of samples are also recorded during CO₂ adsorption (see Figure 8. 3). Results of Figure 8. 2 and Figure 8. 3 reveal the increase of CO₂ adsorption capacity with the increase of amine functionalisation groups. However, presence of NiNPs in the samples show a slight decrease in CO₂ adsorption capacity (which is unexpected). However, in order to do a quantitative analysis, we need to measure the amount of amine groups in each sample, by using TGA technique before we draw a conclusion about NiNPs as additives to catalysis of the CO₂ adsorption. During preparation, AP may be reacted with NiNPs and consequently decreases the number of amine groups in aerogels compared to those samples with no NiNPs. Depending on TGA results, we could either further increase the percentage of amine functionalisation or use another loading mechanism such as functionalisation by co-condensation (Wormeyer et al., 2012) by replacing 3-Aminopropyl) trimethoxysilane to the ammonia hydroxide (the catalyst used in the gelation). Further studies are needed to draw firm conclusions.
8.2.3 Graphene oxide encapsulated silica aerogels for metal ions remediation

Pollution of water by various toxic heavy metal ions and chemicals is a serious problem that affects people’s health because of their toxicity and tendency to accumulate in human body (Yí et al., 2018). Graphene oxide has been efficiently used either solely or with nanoparticles to remove the metal ions from the water (Salihi et al., 2016; Wan et al., 2018). Here as future work, we propose encapsulation of graphene oxide or graphene oxide-metal oxide nanoparticles (such as magnesium oxide nanoparticles) in silica aerogels for metal ions remediation such as Pb(II), Cd(II), Cu(II) Ni (II). The main aim of using silica aerogels is to support and to prevent accumulation of graphene oxide and nanoparticles. That will increase the sorption efficiency and help to recycle graphene oxide- metal oxide nanoparticles.

Figure 8.3. Raman spectra of samples when follow CO₂ adsorption experiments above presented in Figure 8.2.
References

Chapter 9 Appendix

9.1 Appendix A. Degassing process and surface area measurements with Surfer analyser

The main page of Surfer acquisition program (see Figure a. 1) contains the commands and dialog boxes to set parameters and to save the analysis. Prior to set samples for BET and BJH analysis, samples must be degassed. Degassing process starts with degassing of empty burette for 15 minutes at 120 °C to evaporate water adsorbed on the glass surface of the burette. Then the weight \(m_I\) of the empty degassed burette is measured by using a microbalance. The second step is degassing the sample of desired mass (0.1-0.2 g in our case according to the manufacture recommendations of materials of the surface area \(\geq 30 \text{ m}^2/\text{g}\)) for \(\geq 8\) hours at 200 °C. Figure a. 2 shows automatic temperature control page for degassing the samples.

Figure a. 1. Surfer acquisition main page.
The next step after finishing degassing is to measure the mass of sample and burette \((m_2) \). Therefore, the net mass of the degassed sample \((m) \) can be calculated as below:

\[
m = m_2 - m_1
\]

Figure a. 2. Automatic temperature control.

After finishing degassing of the sample, the burette is inserted in the Surfer acquisition. It must be insured that the adsorbate gas used is nitrogen (see gag measurement tab, main page, Figure a. 1) and the liquid nitrogen in the drawer (see Figure 2.20 b, chapter 2) is enough to fulfil the analysis. The next step is loading the method from the acquisition parameters tab of the main page (see Figure a. 1). For mesoporous material, it is recommended by the manufacturer company to used "METHOD MACROPORE and MESOPORE WITH 10 TORR TRANSD.mtd" (see Figure a. 3).
Sample information such as the name, the date of operation, the sample mass \((m)\) and the density of the sample are inserted by using the sample info tab to display the page of the sample information in Figure a. 4.
The blank parameter of the burette must be loaded by using blank param. tab (see Figure a. 5). After finishing the setting of all parameters, it is recommended to set the pre-run time and the delay time at 30 mins for each (seen at the left side in main page of Figure a. 1).
After insuring that all information and parameters are inserted, the file of the analysis is saved by using save analysis as tab in the sample info page (located at the bottom of the left side of sample info page, see Figure a. 4). Before starting the analysis, the system needs to be outgassed by pressing on all valves tab in the main page (Figure a. 1). Once degassing of the system is completed, the pressure of the system should reach E-03 torr (see analyser (torr), top left corner of the main page, see Figure a. 1) and when the burette stopcock is opened, the pressure must be in E-03 torr range as well. Then the turbo pump is used (by using Surfer turbo tab, Figure a. 1) to reach vacuum of E-06 torr. Once vacuum is reach E-06 torr, the analysis is started by pressing the start analysis tab.
9.2 Appendix B. Thermal conductivity measurement by the hot-disk

Measuring thermal conductivity for a material under investigation by using a hot-disk technique requires placing the sensor between the plane surfaces of two pieces of the sample. An accurate determination of thermal conductivity needs samples of thicknesses higher than the radius of the hot disk sensor because the theory of this technique assumes that the sensor must be located in an infinite material. In addition, the size of samples with low thermal conductivity must be increased because of the heat capacity of the sensor and the need to increase the measuring time (in all thermal conductivity measurement which are carried out in this thesis, the thickness of samples was double ≥ the radius of the sensor).

Selecting experimental parameters

As soon as we open the software, the window of the type of experiments is displayed (Figure b. 1). After clicking on Bulk (type I), the sample setup window will be displayed as shown in Figure b. 2

![Figure b. 1. Experiment type selection dialog box.](image)

In the setting window, the proper Kapton sensor must be carefully chosen (sensor C5465, radius of 3.189 mm was used for all samples in this thesis). In addition, the available depth is the thickness of one pieces of the sample where during transient recording, the thermal wave should not reach the outside boundaries of the sample. The measurement time and the heating power parameters are quite important and depend on the material itself and the radius of the
used sensor. In this work, the heating power and measurement time for a typical transient curve of silica aerogel and fibre reinforced composites (when Kapton sensor of 3.189 mm is used) are set to be 10 mW and 20 sec, respectively (see Figure b. 2).

![Figure b. 2. Experiment window, standard method. Experiment parameter of sample AB5 in Table 3.1, chapter 3.](image)

The heat power is chosen to be 10 mW because thermal conductivity measurement of insulation materials required low heat power. While measuring time is measured from the following relation:

\[
d_p = 2\sqrt{a.t}
\]

Where \(d_p\) is the probing depth (in our case 8 mm), \(a\) is the thermal diffusivity (for our silica aerogel composites is \(\sim 1.76\) mm/sec), and \(t\) is the measurement time. After setting up all parameters and starting the analysis, the transient recording is start and as soon as recording is finished, the drift graph (see Figure b. 3) and transient graph (see Figure b. 4) are displayed.
Figure b. 3. Temperature drift graph of sample AB5 in Table 3.1, chapter 3.

Figure b. 3 shows the typical drift graph for Sample AB5 where the distribution of the data is vibrated around the X-axis. If there is any draft in temperature, the measurement must be repeated again.

Figure b. 4. Transient measurement sample of AB5 in Table 3.1, chapter 3.

Figure b. 4 shows the transient graph of sample AB5. The transient curve should be continuous with no discontinuities or sudden jumps. As it can be seen in Figure b. 4 the initial and the final parts of the curve have not incorporated in the measurement to eliminate the contribution of the sensor and the environment. The highlighted area on the curve in Figure b. 4 is chosen so that the thermal conductivity measurement is calculated from a well distributed residual which should distributed randomly around the horizontal (see Figure b. 5).
Once we get good residual, the validity of data fitting can be considered. The calculation page (see Figure b. 6) shows a linear and a continuous graph as that in.

Figure b. 5. Residual of the selected area for thermal conductivity measurement of AB5 in Table 3.1, chapter 3.

Figure b. 6. Linear curve of thermal conductivity calculation of AB5 sample.
9.3 Appendix C. List of publications

9.4 List of posters and oral presentation

3. 8th Chemical Nanoscience Symposium Newcastle, “Bioinspired Synthesis of monolithic and layered aerogels”, CNSN-8, 23rd March 2018, UK.

6. 7th Chemical Nanoscience Symposium, “Catalytic activity of nickel nanowires (NiNWs) immobilised on silica aerogels for CO$_2$ hydration reaction “, CNSN-7, 28th March 2017, Newcastle, UK.

7. 7th Chemical Nanoscience Symposium, “Thermoelectrically characterisation of nickel-nanoparticles embedded in silica aerogels”, CNSN-7, 28th March 2017, Newcastle, UK.

9. 6th Chemical Nanoscience Symposium, “Enhancing the mechanical properties of silica aerogels by reinforcement with short ceramic fibres”, 17th March 2016, Newcastle, UK.
10. 5th Chemical Nanoscience Symposium, “Structural and mechanical properties of silica aerogel/ceramic fibre blanket composites”, 26th March 2015, Newcastle, UK.

9.5 List of academic awards:

1. Second prize of the Postgraduate Conference of Chemical Engineering and Advance Materials 26th May 2017

2. Poster award “Thermoelectrically characterisation of nickel-nanoparticles embedded in silica aerogels”, CNSN-7, 28th March 2017, UK

3. Third prize of the Postgraduate Conference of Chemical Engineering and Advance Materials 2nd June 2016

4. Second prize of the Postgraduate Conference of Chemical Engineering and Advance Materials 28th March 2015