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Abstract 

A sustainability assessment framework combines life cycle and triple bottom line approach is 

proposed in this study; and a life cycle sustainability assessment model that is generic and 

suitable to examine and compare sustainability performance of decentralised electricity 

technologies on a regional scale is designed under the proposed framework. The assessment 

model is designed based on the context of Northeast region of England; the framework is generic, 

and the model can be tailored to be suitable to assess different technologies in different regions. 

In the proposed model, sustainability performance is evaluated using three sets of nineteen 

indicators in total, with five examining the techno-economic impact, twelve measuring the 

environmental impact and two assess the social impact of selected energy technologies. 

Three decentralized energy technologies were assessed in this thesis, they are solar photovoltaic 

(PV), onshore wind and biomass. Three types of most commonly deployed solar photovoltaic 

electricity generation systems are considered to represent the current technology, they are: 

monocrystalline (s-Si), polycrystalline (p-Si) and Cadmium telluride (CdTe) thin film. Three 

wind turbines with highest installation capacity are considered to be representative for present 

day onshore wind technology, they are: Vesta V80, Vesta V90, and Repower MM82; For 

biomass technology, the largest biomass combined heat and power plant both within the region 

and the UK –Wilton 10 is considered to be representative of state of art for the technology. 

Results obtained from the assessment is then ranked and compare against each other to conclude 

the sustainability performance of each assessed technology. ReCiPe method is also applied as 

part of sensitivity analysis; and finally data quality assessment is carried out using criteria 

produced by Stamford and Azapagic (2012, p. 415). 

  The study reveals that no technology is superior to another; the sustainability performance needs 

to be expressed in relation to the resource availability and regional development strategy. The 

common belief that renewable energy is totally emission free is because the significant 

environmental impacts associated with upstream manufacturing and end-of-life process are not 

accounted for. For example solar PV is almost emission free during electricity generation but 

production of the system components do pose significant environmental impact; its merit resides 
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being an effective tool to alleviate fuel poverty due to its ability to reduce energy bills for the 

system host and its low capital cost.  

Since sustainability is a dynamic process, the choice for the most sustainability electricity 

options will also progress over the time; depending on the need of society and resource 

availability. Planning for a sustainable energy future requires holistic review of suitable energy 

options and strategic energy planning. 
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Chapter 1 Introduction 
 

Sustainability is commonly known as the developmet gives balanced attention to the needs of 

both present and future generations (WCED, 1987).The “three pillars” of sustainability, also 

known as “triple bottom line” referring to equal presentation of environment, economy, and 

social values is the core component of sustainable development (Hopwood et al., 2005). Since the 

concept of sustainability was first defined in the Brundtland report, there is increasing interest in 

developing methods to better understand sustainability. Sustainability assessment is an appraisal 

methodology that can assist decision making to adhere to the sustainability values; and the 

approach to sustainability assessment varies depending on the objectives, scale and scope of 

decision making (Devuyst et al., 2001, p. 9; Cinelli et al., 2014; Kamali et al., 2018). Life cycle 

approach, also known as life cycle thinking, encourages considering a product’s impact 

throughout every stage of its life cycle, is increasingly incorporated in the field of sustainability 

management and research (Blass and Corbett, 2018; Ekener et al., 2018). The combination of 

sustainability assessment and life cycle approach forms the Life Cycle Sustainability Assessment 

(LCSA), is recommended by the United Nations Environment Programme and Society of 

Environmental Toxicology and Chemistry for its ability to enable decision-makers, stakeholders, 

enterprises and consumers to organise complex sustainability related information in a structured 

form and therefore identifying weakness which enable future improvements of a product life 

cycle (UNEP, 2012). 

Sustainable energy is one of the sustainable development objectives identified by the United 

Nations (United, 2015). Electricity is the fastest growing among all energy sources (Roinioti and 

Koroneos, 2019) and is projected to overtake oil products become the largest final energy carrier 

(IEA, 2017). Although fossil fuel still remains a significant source of electricity at present days, 

the path to a non-fossil fuel based electricity future is widely agreed upon. In investigating what 

this sustainable future entails and how to achieve the sustainability transition, numbers of LSCA 

have been proposed to compare the sustainability performance of electricity technologies. 

Majority of the studies carried out the comparison by forming scenarios of electricity technology 

mix (e.g. (Stamford and Azapagic, 2014; Rehman and Deyuan, 2018)) or applying Multi-criteria 
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Decision Analysis to give scores and rankings to assessed technologies (e.g. (Roth et al., 2009; 

Santoyo-Castelazo and Azapagic, 2014)).  

Research team led by Professor Adisa Azapagic had carried out the most extensive rearch on 

sustainability of electricity options in the UK; and the assessment proposed by Stamford and 

Azapagic (2012) is by far the most comprehensive in this context, where five technoloiges 

including coal, nuclear, natrual gas, biomass, hydro were compared using 43 indicators covering 

techno-economic, environmental and social aspects; despite its comprehensiveness, however, the 

focus of this research remains at a national level where questions reflecting how the regional 

characteristic were not inquired. For example. in case of biomass, does the region have sufficient 

biomass resource or it has to rely on importing from elsewhere? In addition, the trend renewable 

electricity in the UK is moving centralised towards decentralised supply1, however due to scope 

of the study, decentralised technologies were not considered as an option.   

As illustrated in Figure 1.1, increased geographical scale of assessment may compromise the 

level of detail; on the other hand, downscaled assessment narrows the assessment scope (Ulgiati 

et al., 2011), and regional level is where social institution, ecological boundaries and economic 

phenomena overlap (Graymore et al., 2008; Graymore et al., 2010; Lein, 2014). Therefore, a 

regional based assessment on decentralised energy technoloiges can offer a more detailed view on 

sustainability performance of electricity options. 

                                                 
1 Driven by the development post industrial revolution, a nationally connected electricity grid was constructed in 

the UK since 1926 to connect the large power plants and the end users Lehtonen, M. and Nye, S. (2009) 'History of 

electricity network control and distributed generation in the UK and Western Denmark', Energy Policy, 37(6), pp. 

2338-2345.. Due to lack of upgrade, the aging national grid is increasinly struggling with addition of intermiddent 

renewable electricity when the demand is much lower than the supply; several wind farms were ordered to switch off 

during low demand periods to avoid reverse voltage incurred blackout Gosden, E. (2016) 'UK will have too much 

electricity this summer, National Grid forecasts', The Telegraphedn). (Accessed: 20/03/2019).  

Consequently, any renewable electricity generator applied to join the grid is required to pay a network upgrade 

fee, in addition the application can take up to two years. Therefore, many generators have opted to not join the grid 

and remain a decentralised generator.   
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Figure1.1  Impact of sustainability assessment scale (Hay et al., 2014) 

 

 

1.1 Aims and Objectives 

 

Aim of this study is to design a regional sustainability assessment model combing life cycle and 

triple bottom line approaches based on the characteristics of Northeat region of England, to assess 

and compare the sustainability performance of existing decentralised electricity options within the 

region.The task is devided into following objectives: 

1. Carry out literature survey on existing assessment methods; 

2. Construct assessment framework and model based on the goal and scopes of this study; 

3. Carry out assessment to compare the sustainability performance of selected technologies;  

4. Provide policy recommendation and advise on future works.  
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1.2 Novelty of the thesis 

 

Novelty of this study can be concluded as following:  

I. The designed assessment method is the first sustainability assessment framework 

developed to examine and compare electricity technologies with regional scope; 

II. The proposed model can be applied to compare electricity options in other regions not 

restricted to the UK. Modification on indicator selection can be made to be suitable for the 

context following the International Guideline on Life Cycle Assessment ISO14040 listed 

in page16; 

III. As part of this study, the author modified the designed model, and applied the assessment 

on community energy projects in the UK (Li et al., 2016a); 

IV. This study proposed a novel indicator to examine a technology or product’s circularity, to 

author’s knowledge this is first time circularity is included in sustainability assessment on 

energy technologies; 

V. Three widely established technologies were assessed in this thesis based on their 

performance within the region 

 

1.3 Thesis structure 

 

This thesis contains 8 chapters. Literature survey is analysed in chapter 2, and methodology is 

explained in chapter 3.  Chapter 4-6 covers the assessment of the selected electricity generation 

technologies. Chapter 7 discusses the results obtained from chapter 4-6, and finally chapter 8 

summarises the study and provide recommendation to policy and future works.  
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Chapter 2 Literature Review 
 

This chapter first explores the conceptualisation of the sustainability, then reviews the existing 

methods for assessing sustainability. It is sometimes argued that sustainability and sustainable 

development do not share the same definition where sustainability refers to a state and sustainable 

development concerns with the process(Aras and Crowther, 2009). To avoid confusion, the term 

sustainability and sustainable development are used interchangeably in this thesis.  

2.1 Conceptualisation of sustainability  

The concept of sustainability was brought into the public realm in 1980 in the World 

Conservation Strategy(IUCN, 1980); in 1987 it was officially introduced in the Brundtland 

Report, as “the development that meet[s]the needs of the present without compromising the 

ability of future generations to meet their own needs” (WCED, 1987, p. 43). Despite the idea 

was progressive for the time, due to the ambiguity of its definitely, the term sustainability 

became an article of faith that was often used, but little explained (Loorbach et al., 2009; 

Tolba, 2013); for a long period of time sustainability was adopted by politicians and 

organizations as a the new jargon phrase in the development business (Conroy and Litvinoff, 

1988). Some scholars even argued that sustainability is a contradiction in terms as it only 

serves as symbolic rhetoric with competing interests each redefining it to suit their own 

political agendas, and decision makers use the term to their advantage (Beatley, 1997; Biely et 

al., 2018).   

The “triple bottom line” concept of sustainability was brought into discussion by Elkington 

(1994) whom tirelessly advocates that the bottom line of sustainability shall rest on the social, 

economic, and environmental aspects, these are also known as the three pillars of 

sustainability. Although these three aspects are commonly agreed upon in present days, the 

difference in interpretation of sustainability divides the scientific community.   

School of weak sustainability believes that in order to achieve growth, trade-offs between 

these three aspects should be allowed. This idea was first proposed by scholars such as Pearce 

and Atkinson (1993) and Costanza et al. (1997) who suggested that the service of ecological 

systems can be assigned with an economic value, which contribute to the total economic value 
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of the planet and affects the quality of human welfare. In this way, sustainability can be 

quantified and managed; and income obtained from the use of nonrenewable resources should 

be invested back to generate and maintain renewable sources in order to prevent social-

wellbeing from declining overtime (Hartwick, 1990); in addition, the non-declining capital 

needs to be maintained cross generations (Dasgupta and Mäler, 2001; Hamilton et al., 2006). 

The school of weak sustainability generally acknowledges that given the trend of 

technological advancement, future generations can maximize their wellbeing with minimal 

consumption of natural resources; therefore some economic aspects can be temporarily traded 

off for environmental aspects. This idea is challenged by the school of strong sustainability. 

Mainstream advocates of strong sustainability concept does not agree with the trade-offs since 

each of these three aspects serves the human wellbeing in different way and they are not 

substitutable; and after all, future technology may not guarantee solutions for sustainability 

(Ekins et al., 2003; Pelenc and Ballet, 2015; Biely et al., 2018).  

In recent years, researchers such as Davies (2013) and Koirala et al. (2011)are searching for a 

middle ground between the weak and strong sustainability debate. One argument is that 

sustainability has a temporal dimension as described by Grossman and Krueger (1991) using 

the Environmental Kuznets Curve, which refers to the inverted –U relationship between 

environmental degradation and economy-social development; that pollution increases in the 

initial level of development and then until the development reaches a turning point were 

enlightenment of environmental value occurs the pollution subsequently decreases (López-

Menéndez et al., 2014). For example, in the case of the western world, the general public’s 

environmental awareness was improved through a series of events such as the Clean Air Act in 

1956 and the Stockholm Conference in 1972, and this is partially achieved by heightened 

social development at the time; thus there is a shift on what sustainability entails depending 

the priorities of society at the time. 

Another argument is that although the widely discussed weak and strong sustainability 

concepts have their roots in economics (Hartwick, 1990), ethical and philosophical values are 

also associated with how sustainability is practiced in reality. This can be observed from how 

the “end-of-pipe” solution to pollution control have led many developed countries displaces 

pollutive activities to developing countries, for example Japan is among the global frontier at 
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forest protection, but it imports forest resources from other countries for the production and 

packaging for consumer goods (Baker, 2006; Davies, 2013).  

Regardless of the difference in interpretations, one common ground can be established that 

sustainability is not an end state but a dynamic process that is continuously evolving 

(Gaziulusoy et al., 2013). This dynamic process involves complex interactions between 

components within the human-nature network at different organizational and spatial levels, 

from technosphere to biosphere; and these interactions evolve as even more complex adaptive 

systems (Levin, 1998). To understand sustainability, is to regard the dynamic process as an 

integrated entity instead of separate aspects of economic, environmental and social values, and 

to understand the interaction between the components within the system using an integrated 

approach, which requires cutting across boundaries and blending ideas from various 

disciplines (Cheng et al., 2009; Lam et al., 2014).    

 

2.2 Sustainability assessment models 
 

There is increasing need for individuals and organisations to find models and metrics to pin-point 

what activates are not sustainable. As defined by Ness et al. (2007), the purpose of sustainability 

assessment is to provide decision makers with information on impact of an activity or a plan in 

order to determine which actions should or should not be taken in an attempt to make society 

sustainable. The U.S. National Research Council (1999) advised three components needs to be 

addressed in sustainability assessment, they are: what is to be sustained, what is to be developed, 

and the impact on intergenerational equality.   

The key questions of sustainability assessment are addressed by Kates et al. (2001, p. 641) :  

1. “How can today's operational systems for monitoring and reporting on 

environmental and social conditions be integrated or extended to provide more 

useful guidance for efforts to navigate a transition towards sustainability?” 
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2. “How can today's relatively independent activities of research planning, 

monitoring, assessment, and decision support be better integrated into systems for 

adaptive management and societal learning?” 

Defining the goal and scopes of sustainability assessment may appear easy but it is crucial for 

selection and development of indicators; as concluded by Singh et al. (2012), alignment of goal 

with identified indicators become more difficult when measurement is made on multi-dimensions 

and aggregated into single values. The goals and scope can decide what assessment tools are 

appropriate for the context. There are two major categories of sustainability assessment tools: one 

is product related assessment which provides information on material use and energy flow of  

products or anything can be regarded as a product (e.g. cycle assessment, life cycle costing, 

exergy analysis etc.); another category is prospective and integrated assessment, they examine the 

impact of policy or products that may occur at a future time (e.g. cost-benefit analysis, 

environmental impact assessment etc.) (Ness et al., 2007).  

Many of the product related tools originated from elaboration of Life Cycle Assessment (LCA). 

LCA was initiated as an internal study in 1969 for the Coca-Cola Company in a comparison of 

different beverage containers to identify the option with lowest environmental impact; a few 

years later, similar study was also conducted by Sundström (1979). A few years later in 1997 

the first international LCA standard ISO 1400 was published by ISO (1997); and LCA was then 

increasingly used to support policy making, especially in bioenergy performance related 

regulations. The well-known carbon footprint standards were formed based on the LCA 

methodology; other tools such as Life Cycle Costing (LCC) and social life costing were also 

developed later (Clift and Druckman, 2015). The broadening of LCA’s environmental scope by 

joining it with other aspects of sustainability forms the Life Cycle Sustainability Assessment 

(LCSA). The term LCSA was first used by Zhou et al. (2007) by evaluate and compare 

sustainability of six fossil fuel options, but the assessment only considers life cycle costing, 

climate change and resource depletion impacts, other impacts such as social aspect were absent 

from the study; and the exclusion of social impact is common among the early LSCA studies. 

For example Afgan and Carvalho (2008)  employed only one social indicator NOx emission to 

compare the sustainability of renewable hybrid energy systems. Indeed NOx emission do have 

impact on human health such as increased risk in respiratory diseases, but gaseous emission is 
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normally considered to be under environmental impact categories. Shortly after  Zhou et al. 

(2007), definition of LCSA were proposed as model combining  LCA, LCC, and Social Life 

Cycle Assessment (SLCA), this definition is sometimes presented as LCSA=LCA+LCC+SLCA 

(Kloepffer, 2008). Guinee et al. (2010) suggests that LCSA should be regarded as a framework 

rather than a model after reviewing the question proposed by Zamagni et al. (2009) as part of 

the EU FP6 CALCAS (Co-ordination Action for innovation in Life Cycle Analysis For 

Sustainability ) project, on whether LCSA should be conducted in segments of LCA, LCC and 

SLCA, i.e. LCSA as the sum of three separate analysis; or should it be carried out as examining 

a system in three ways using environmental economic and social indicators, i.e. design LCSA 

model using three sets of indicator. The difference between these two approaches leads to 

further questions such as, if LCSA acts as sum of three models, how to ensure these models 

share the same goal and scope, and system boundary2? Some scholars also argue that the 

method of combing three models may risk overlooking some sustainability issues (Jørgensen et 

al., 2013; Onat et al., 2014), for example Kucukvar and Tatari (2013)uses the 

LCSA=LCA+LCC+SLCA method to investigate the sustainability of building materials in the 

US, and concluded that the assessment is a “starting point for more comprehensive LCSA of 

buildings since no study in this kind had been found”, but aggregated data are unavoidably used 

in supply chain SLCA, which may not share the same system boundary with the LCC or LCA 

analysis.   

Benoît and Mazijn (2009) reviewed Over 150 social sustainability indicator, and reveals that 

only a few indicators can be directly assessed to products or processes. Vinyes et al. (2013) 

discovered the difficulty of quantification on social indicators through the application of LCSA 

on used cooking oil waste; the author is not alone in facing this difficulty. Hu et al. (2013) also 

experienced problematic implementation of LCSA while compare sustainability of various 

concrete recycling scenarios, because many social indicators that were developed in SLCA 

method are qualitative and therefore it is difficult to link these indicators to unit process and 

functional units. 

                                                 
2There are four phases in an LCA study, they are: goal and scope definition, life cycle inventory analysis, life cycle 
impact assessment and interpretation of assessment results. In any LCA study, functional unit defines the amount, 
weight and quality of the assessed product, and system boundary defines what processes in the product life cycle is 
considered for the assessment. 
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Using research derived from findings of EU project PROSUITE, Blok et al. (2013) proposed a 

life-cycle based sustainability assessment framework with five main areas to be addressed 

when assessing sustainability of technologies, they are:  

1) Impacts on human health;  

2) Impacts on social wellbeing, such as impact on safety and equal opportunities of the 

public etc. ; 

3) Impacts on prosperity, this includes labor, capital and resource productivity, and new 

market development etc. ; 

4) Impacts on natural environment;  

5) Impacts on exhaustible resources. 

 The main challenge of the project is the identification and quantification of indicators that 

can sufficiently examine impacts of the above five areas. The author discovered that the 

methodologies for examining environmental impacts is most well established and 

methodologies for assessing the impact on social well-being is still in early age; most of the 

time there is no sufficient primary data for existing social indicators. 

Some researchers avoid these difficulties by only taking a qualitative approach and not 

include any quantitative indicators; for example in assessing renewable energy use in Austria, 

Madlener et al. (2007) examines the social aspect of energy technologies using qualitative 

measures such as social cohesion, smell, social justice and empowerment etc., results for these 

indicators were obtained relying author’s interpretation of stakeholder interviews, and thus 

these results are very unlikely to be reproducible by future studies.    

Zamagni et al. (2013) believes that the lack of quantitative indicators is because LCSA 

framework is still at the conceptual level, and future research should focus on making it 

practical and operational. Additional case studies are still required to move the LCSA into the 

practical realm from theoretical research. This conclusion is confirmed by Hu et al. (2013), 

whom also believe there is weak understanding on the interdependence of the three pillars and 

to improve practicality of LCSA, the modeling technological system should start from local 

and regional level, and then scale it up using knowledge gained from studies at higher level of 
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analysis (e.g. global policy analysis).   

On the other hand, there are cases where quantifiable measures are evaluated in qualitative 

measures. For example, cost of electricity product is one of the most commonly used indicator 

in LCSA studies on energy technologies, it is a useful indicator as it allows direct comparison 

between energy technology options; de Souza et al. (2016)  evaluated system’s economic 

feasibility using two indicators, they are: direct and indirect costs, and profit and avoided 

costs, author obtained the results by interpreting on stakeholder’s opinions on these two 

measures, which introduced unnecessary uncertainties to the analysis.  

Begić and Afgan (2007) compared sustainability of a range of energy technologies including 

solar photovoltaic (PV), biomass, wind turbine and natural gas combined cycle; although 

author employed quantitative measures such as quantitative measure such electricity 

generation cost, but only focus on cost involved in electricity generation stage and therefore 

the result could be biased towards technologies such as natural gas combined cycle where cost 

involved in constructing the plant is higher than operate and maintain the plant. In comparison, 

the levelised cost method which accounts for the unit cost of electricity over the lifetime, is 

more appropriate on providing information on cost-effectiveness of energy technologies 

(Ouyang and Lin, 2014; Stamford and Azapagic, 2014).  

A high upfront cost is commonly associated with renewable energy technologies; and thus 

financial subsidy plays important role in implementation of these technologies, especially in 

the cases of large scale installation (Painuly, 2001). Therefore, subsidies received should also 

be accounted for in levelised cost estimation.  

Over the past decade, investor’s perception of risk and return on renewable energy 

technologies is becoming detrimental for deployment of these technologies (Salm et al., 2016). 

Globally, the primary concern in this area is the payback period (Reddy and Painuly, 2004; 

Adams et al., 2011). According to Salm et al. (2016), over 60% of the retail investors 

interviewed in Germany perceive renewable energy as high risk profile investment, similar to 

the risk of investing into a high-risk start-up company, and over 81% of the interviewees feel 

this way because of the long holding period of investment.  

On the other hand, renewable energy technologies are more than just an investment options, it 
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is also a solution to combat fuel poverty. UK is one of the most affluent countries in the world, 

and it has an ongoing fuel poverty issue where 11.1% of its household is fuel poor3. Fuel 

poverty results from several factors, the four main issues are: low incomes, rising fuel prices, 

poor housing stock and house under-occupancy (Hills, 2012; Liddell et al., 2012; Boardman, 

2013). Series actions are taken by the UK government, and community energy groups were set 

up to combat this issue locally. Decentralized renewable energy technologies like rooftop solar 

PV are seen as practical option for their relatively low overall cost compare to other energy 

technologies and their easiness to install (Walker, 2008), these technologies have been made 

available through various schemes to provide affordable and accessible energy to 

underprivileged communities. 

In the assessment of building materials in the US, Onat et al. (2014) employed government tax 

as a positive sustainability indicator for social welfare under the presumptions that collected 

taxes will be used for supporting the national health and education systems, public 

transportation, highways, and other civil infrastructures; and this idea is challenged by Gilbert 

(2017),  who argues it is the increased welfare expenditure that improves the social wellbeing 

instead of tax collected. Another indicator also has debatable direction of preference is 

“human-machine interaction time” proposed by Khan et al. (2004) which is defined as the 

percentage of time where machines need to be operated by human, where lower value is 

preferred as it indicates advanceness of the technology and hence cost reduction; while on the 

other hand, it can be argued that lower human-machine interaction time implies reduced 

workforce, and hence less employment opportunity created which does not have positive 

social impact.  

In terms of environmental sustainability, trend of assessment approach is slowly moving from 

over simplifying, where only few indicators are involved and the impacts are inadequately 

                                                 
3 According to the latest report DBEIS (2018a) ANNUAL FUEL POVERTY STATISTICS REPORT., fuel poverty in 
England is now measured using the Low Income High Costs indicator, under this indicator, a household is considered 
be in fuel poverty if: 

1. they have required fuel costs that are above the national median level; 
2. Were they to spend that amount, they would be left with a residual income below the official poverty line. 

The report also pointed out three important elements in determining fuel poverty, they are:  
1) Household income,  
2) Household energy requirements 
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assessed, towards more comprehensive and life-cycle oriented approach. For instance, in an 

earlier study on development of wind park in Troizina carried out by Polatidis and 

Haralambopoulos (2007), only four indcators were considered in the environmental impact 

category where one of them being qualitatively assessing the aesthetic impact on the local 

landscape, and another three quantitative indicators are landuse, noise creation and 

contribution to mitigating climate change. Clearly these four indicators are not sufficient to 

demonstrate the envirnmental impact of a wind park; in addition,author did not specify what 

was the purpose of landuse prior to installation of and wind farm and whether the purpose of 

land use is altered due to the installation, if the case was that the location was abondonded land 

then installation of wind farm does not create negative environmental impact on local 

environment. In comparison, a recent study of LCSA on the Greek electricity system took a 

more comprehensive life cycle approach, where six environmental indicators were proposed in 

line with LCA methodologies, exmaining the the global warming potential, acidification 

potential, tropospheric ozone precursor potential, eutrophication potential, photochemical 

oxidation potential, and ozone depletion potential of the electricicity system (Roinioti and 

Koroneos, 2019).  

2.4 Summary  

In this chapter the concept of sustainability reviewed and sustainability assessment methods 

are explored. The findings can be concluded as following:  

1. The definition of sustainability is often criticized for being blurred (Biely et al., 2018), 

while on the other hand this leaves flexibility for a customized working definition of 

sustainability reflecting the needs and priorities of a society.  

2. Sustainability is an evolving process requires the balance between economic, 

environment and social development. 

3. Indicators serves as message carriers and it facilitates the communication between 

sustainability research and practice. Sustainability assessment is moving towards a life 

cycle based assessment method with balanced attention given the three pillars of 

sustainability. This needs be reflected in the assessment indicators.  
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4. Methodologies for sustainability assessment should be made transparent and feasible 

with consideration for feasibility of data collection.  

5. System boundary needs to be consistent across indicators; quantitative measures not 

only enhances the reproducibility of research also reduces the unnecessary uncertainty 

of results.  
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Chapter 3 Methodology 

 
    This chapter introduces the sustainability assessment framework proposed in this research, 

with detailed explanation on how the indicators shall be quantified. 

3.1 Sustainability Assessment Framework. 

      In proposed framework electricity generated is regarded as the final product, and 

sustainability performance of this product is examined throughout its entire life cycle (including 

manufacture electricity system components, installation of the system, electricity generation and 

end of life stages) using three sets of indicators reflecting the product’s economic, environmental 

and social impacts.  

 

Two stages are involved in designing the assessment model. First stage is establishing the goal 

and scope of the assessment, which to assess and compare the sustainability performance of 

existing decentralised electricity options within the Northeast region of England.  

 

 Stage two is to design the assessment model within the established framework, where indicators 

are selected and designed to examine the aspects of sustainability issues. Stakeholder (including 

experts in the industry, local council and academic researchers) opinions were sought in this 

stage.  

  The international guideline on life cycle assessment studies ISO14040 studies is adopted as 

the basis of indicator selection criteria4, as follows:  

1. Relevancy to energy technologies  

2. Avoid double counting.  

3. Indicators must be quantifiable 

4. Feasibility of application  

                                                 
4 It shall be noted that weighing method which includes applying the value of importance onto results of indicators 

is not recommended as stated in ISO14040. Therefore weighing is not considered in this proposed model. 
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The designed model is demonstrated in table 3.2. A total of nineteen indicators were selected, 

with five examining the techno-economic impact, twelve measuring the environmental impact 

and two assess the social impact of selected energy technologies; the life cycle stages considered 

for each indicator is also listed in the table.  

3.2 Sustainability Assessment indicators 
   
  The selected sustainability assessment indicators are explained in this section in three 

categories: techno-economic indicators, environmental indicators and social indicators. Techno-

economic category examines the reliability, cost and financial feasibility of a technology. 

  The environmental category examines the circularity, energy payback period and specific 

environmental impact including: acidification potential, eutrophication potential, freshwater and 

marine aquatic ecotoxiciy potential, global warming potential, ozone layer depletion potential, 

photochemical ozone creation potential and terrestric ecotoxiciy potential. CML impact 

assessment method5 (Guinée, 2002)  is applied in this study to calculate the environmental 

impacts, for it is the most well-established mid-point methodology and it is regional valid for 

European based cases(Handbook, 2010). Therefore the indicators (except circularity and energy 

payback indicator) included in this category are named in accordance with the CML 

methodology.  

3.2.1 Techno-economic Indicators 

The techno-economic performance of an energy technology is examined in four categories: 

reliability, dispatchability, levelised cost of generation and profitability. 

Reliability of the technology is measured through two indicators: availability factor and 

capacity factor. Availability factor is the ratio of time in which a plant is available to generate 

electricity over its maximum working hours (IEEE, 2006), over a certain period, and is 

calculated as (1):  

 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐹𝐹𝐴𝐴𝐹𝐹𝐴𝐴𝐹𝐹𝐹𝐹 =
𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
𝑇𝑇𝑚𝑚𝑎𝑎𝑎𝑎

× 100(%) 

 

⑴

 

                                                 
5 CML methodology, is named after where it was first developed, the Centrum voor Milieuwetenschappen (Faculty 
of science, University of Leiden), is an impact assessment method which restricts quantitative modelling to midpoint 
analysis, and also provides best practice for midpoint assessment following the ISO14040 standards.  

 



 
 

17 
 

Where, 

 

𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

− 𝑇𝑇𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴 ℎ𝐹𝐹𝑜𝑜𝐹𝐹𝑜𝑜 𝐴𝐴ℎ𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒𝐴𝐴 𝑜𝑜𝐴𝐴𝑜𝑜𝐴𝐴𝑒𝑒𝑠𝑠 𝐴𝐴𝑜𝑜 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑒𝑒 𝐴𝐴𝐹𝐹 𝑑𝑑𝑒𝑒𝐴𝐴𝐴𝐴𝐴𝐴𝑒𝑒𝐹𝐹 𝑝𝑝𝐹𝐹𝑝𝑝𝑒𝑒𝐹𝐹 

𝑇𝑇𝑚𝑚𝑎𝑎𝑎𝑎 − 𝑀𝑀𝐴𝐴𝑀𝑀𝐴𝐴𝑠𝑠𝑜𝑜𝑠𝑠 𝐴𝐴𝑒𝑒𝑒𝑒𝑜𝑜𝐴𝐴𝐴𝐴 𝑝𝑝𝐹𝐹𝐹𝐹𝑤𝑤𝐴𝐴𝑒𝑒𝑒𝑒 ℎ𝐹𝐹𝑜𝑜𝐹𝐹𝑜𝑜 𝐹𝐹𝑜𝑜 𝐴𝐴ℎ𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒𝐴𝐴 𝑜𝑜𝐴𝐴𝑜𝑜𝐴𝐴𝑒𝑒𝑠𝑠 

 

 

Capacity factor is the ratio of a plant’s actual output in comparison to its potential maximum 

output at full production capacity over a given period. This ratio varies in time and also depends 

on the availability of resources particularly in cases of intermittent technology such as solar and 

wind. It is calculated as (2):  

 𝐶𝐶𝐴𝐴𝑝𝑝𝐴𝐴𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴 𝐹𝐹𝐴𝐴𝐹𝐹𝐴𝐴𝐹𝐹𝐹𝐹 =
𝐸𝐸𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
𝐸𝐸𝑚𝑚𝑎𝑎𝑎𝑎

× 100(%) 
⑵

 

Where, 

 

 

 

 

𝐸𝐸𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑇𝑇ℎ𝑒𝑒 𝐴𝐴𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴 𝑒𝑒𝐴𝐴𝑒𝑒𝐹𝐹𝐴𝐴𝐹𝐹𝐴𝐴𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴 𝐹𝐹𝑜𝑜𝐴𝐴𝑝𝑝𝑜𝑜𝐴𝐴 𝐹𝐹𝑜𝑜 𝐴𝐴 𝑜𝑜𝐴𝐴𝑜𝑜𝐴𝐴𝑒𝑒𝑠𝑠  

𝐸𝐸𝑚𝑚𝑎𝑎𝑎𝑎 − 𝑃𝑃𝐴𝐴𝐴𝐴𝑒𝑒𝐴𝐴 𝑠𝑠𝐴𝐴𝑀𝑀𝐴𝐴𝑠𝑠𝑜𝑜𝑠𝑠 𝐹𝐹𝐴𝐴𝑝𝑝𝐴𝐴𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴 
 

Dispatchability of an energy technology is its ability to increase or decrease output according 

to demand. Most of the conventional energy technologies are dispatchable, means their output 

can be controlled by the operator in response to demand. This is an important characteristic, 

because electricity is difficult and expensive to store at present days, therefore having a power 

plant that is able to reduce electricity output when the demand is low and able to ramp up output 

when the demand is high is both economically attractive and essential for electricity network to 

respond to peak demand. Most of the renewable technologies such as solar and wind energy are 

considered to be intermittent source of supply, because their output cannot be controlled in 

response to demand, and their output cam vary from day to day, or from hour to hour.  

Dispatchability of a technology is measured using method proposed by Stamford and Azapagic 

(2012), that the ramp-up rate, ramp-down rate, minimum up time and minimum down time 

should be ranked and summed to make up to a total of dispatchability ranking, where the higher 

the score is less dispatchable a technology is. It is calculated as follows as follows:  

 



 
 

18 
 

𝐷𝐷𝐴𝐴𝑜𝑜𝑝𝑝𝐴𝐴𝐴𝐴𝐴𝐴𝐹𝐹ℎ𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑅𝑅𝑜𝑜𝑜𝑜 + 𝑅𝑅𝑑𝑑𝑜𝑜𝑑𝑑𝑑𝑑 + 𝑅𝑅𝑜𝑜𝑚𝑚𝑚𝑚𝑑𝑑 + 𝑅𝑅𝐷𝐷𝑚𝑚𝑚𝑚𝑑𝑑                     ⑶ 

Where 

𝑅𝑅𝑜𝑜𝑜𝑜 − 𝑅𝑅𝐴𝐴𝑒𝑒𝑤𝑤𝐴𝐴𝑒𝑒𝑒𝑒 𝑜𝑜𝐹𝐹𝐹𝐹 𝐹𝐹𝐴𝐴𝑠𝑠𝑝𝑝 𝑜𝑜𝑝𝑝 𝐹𝐹𝐴𝐴𝐴𝐴𝑒𝑒 

𝑅𝑅𝑜𝑜𝑜𝑜 − 𝑅𝑅𝐴𝐴𝑒𝑒𝑤𝑤𝐴𝐴𝑒𝑒𝑒𝑒 𝑜𝑜𝐹𝐹𝐹𝐹 𝐹𝐹𝐴𝐴𝑠𝑠𝑝𝑝 𝑑𝑑𝐹𝐹𝑝𝑝𝑒𝑒 𝐹𝐹𝐴𝐴𝐴𝐴𝑒𝑒 

𝑅𝑅𝑅𝑅𝑚𝑚𝑚𝑚𝑑𝑑 − 𝑅𝑅𝐴𝐴𝑒𝑒𝑤𝑤𝐴𝐴𝑒𝑒𝑒𝑒 𝑜𝑜𝐹𝐹𝐹𝐹 𝑠𝑠𝐴𝐴𝑒𝑒𝐴𝐴𝑠𝑠𝑜𝑜𝑠𝑠 𝑜𝑜𝑝𝑝 𝐴𝐴𝐴𝐴𝑠𝑠𝑒𝑒 

𝑅𝑅𝐷𝐷𝑚𝑚𝑚𝑚𝑑𝑑 − 𝑅𝑅𝐴𝐴𝑒𝑒𝑤𝑤𝐴𝐴𝑒𝑒𝑒𝑒 𝑜𝑜𝐹𝐹𝐹𝐹 𝑠𝑠𝐴𝐴𝑒𝑒𝐴𝐴𝑠𝑠𝑜𝑜𝑠𝑠 𝑑𝑑𝐹𝐹𝑝𝑝𝑒𝑒𝐴𝐴𝐴𝐴𝑠𝑠𝑒𝑒 

Levelised cost of generation stands for the totalised cost of energy technology throughout 

lifetime. It is included in capital cost as well as operational expense totals. Capital costs cover 

expenses at both the construction stage and decommissioning stage of an energy project, whereas 

operational costs cover costs generated for operation and maintenance of an energy project and 

expenditures on waste disposal. The total levelised costs are the sum of capital costs and 

operational costs. A discount rate of 3.5 is applied according to the Green Book. (Book, 2003) 

The formula for this indicator is an integration of methods by Stamford and Azapagic (2011) 

and IEA and NEA (2015, p. 28), as (4):  

 
𝐿𝐿𝑒𝑒𝐴𝐴𝑒𝑒𝐴𝐴𝐴𝐴𝑜𝑜𝑒𝑒𝑑𝑑 𝐶𝐶𝐹𝐹𝑜𝑜𝐴𝐴 =

∑ 𝐶𝐶𝐶𝐶 + 𝑀𝑀𝑜𝑜 + 𝐹𝐹𝑜𝑜
(1 + 𝐹𝐹)

𝑁𝑁
𝑑𝑑=1

∑
𝐸𝐸𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

(1 + 𝑅𝑅)𝑑𝑑
𝑁𝑁
𝑑𝑑=1

 

 

⑷ 

Where, 

 

𝐶𝐶𝐶𝐶𝑜𝑜 − 𝐶𝐶𝐴𝐴𝑝𝑝𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐹𝐹𝐹𝐹𝑜𝑜𝐴𝐴 

𝑀𝑀𝑜𝑜- Maintenance cost 

𝐹𝐹𝑜𝑜 − 𝐹𝐹𝑜𝑜𝑒𝑒𝐴𝐴 𝐹𝐹𝐹𝐹𝑜𝑜𝐴𝐴 

𝐹𝐹 − 𝐷𝐷𝐴𝐴𝑜𝑜𝐹𝐹𝐹𝐹𝑜𝑜𝑒𝑒𝐴𝐴 𝐹𝐹𝐴𝐴𝐴𝐴𝑒𝑒 

 

   

    
Renewable energy in the UK generates income through two main streams, renewable 

incentives offered by the government (e.g. feed in tariff) and export of electricity. Except for 

CHP, any installation with less than 2MW capacity benefits from Feed in Tariff 
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(FiT) 6approximate 4.39pence/kWh7; any electric exported to the distribution grid, the host also 

receives payment for the amount of electricity at the export rate (approximately 4.85pence/kWh) . 

(DECC, 2015) 

For installations with capacity large than 2MW each unit of electricity generated is eligible for 

one renewable obligation certificate (ROC). Each energy supplier is obliged to produce certain 

proportion of renewable electricity or they will be penalised by Office of Gas and Electricity 

Markets (Ofgem); therefore when the generation falls short the suppliers will have to purchase 

auctioned ROCs on the trading system (such as eROC) to make up to the requirement; the ROCs 

are sold in auction, ranges between £45-£50 per ROC. The payment received for trade in the 

ROCs is another income stream for hosts of larger scale renewable energy installations. 8 

Financial feasibility of energy technology is examined using payback period, the amount of 

time for income generated through a technology to break even with total capital and operational 

expenditure. The payback period is calculated as (5):  

 𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐹𝐹𝑤𝑤 𝑃𝑃𝑒𝑒𝐹𝐹𝐴𝐴𝐹𝐹𝑑𝑑 =
𝐶𝐶𝐶𝐶 + 𝑀𝑀𝑜𝑜 + 𝐹𝐹𝑜𝑜 

𝐼𝐼𝑒𝑒𝑜𝑜
 

⑸

 

Where, 

 

𝐼𝐼𝑒𝑒𝑜𝑜 − 𝑇𝑇𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝑒𝑒𝐹𝐹𝐹𝐹𝑠𝑠𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝐹𝐹𝐴𝐴𝐴𝐴𝑒𝑒𝑑𝑑 

 

 

 

3.2.2 Environmental Indicators  

One of the many strengths of LCA is its ability to produce results that are based on scientific 

data; there are two ways to calculate and visualise these results: mid-point and end-point 

methods. These two approaches examine different stages in the cause-effect chain to calculate the 

environmental impact. End-point methodology examines impact at the end of the cause-effect 

chain such as the impact on human health, ecosystem quality, etc., while mid-point methodology 

examines impact at the earlier end of the cause-effect chain before the end is reached. Although 

                                                 
6 The FiT will stop accepting new applications after 31st March, 2019. FiT rates are adjusted annually in accordance 
with the Retail Price Index. Latest FiT is published on ofgem website: www.ofgem.gov.uk 
7 FiT varies depending on the type and size of installations, this figure was the average FiT for technologies assessed 
in this study. The FiT rate for assessed technologies had changed by the time of submitting this thesis. For period 1 
January 2019 to 31 March 2019, the FiT for assessed solar PV technology is 3.41pence/kWh.  
8 ROC application is closed for new applications post 31st March 2017, this change does not affect any existing 
installations that is already under the scheme, and therefore does not alter the results of this study.  
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the end-point methodology is favoured by decision makers for its simplicity in communicating 

LCA information, however, due to its high level of uncertainty the mid-point methodology is 

chosen for this study. Software GaBi professional v6.115 and Ecoinvent 3.4 integrated database 

(EcoinventCentre, 2017a) are used for producing the environmental results  

The idea of circularity originates from the concept of “circular economy”. In contrast to the 

current economic paradigm of  a “linear economy” where the production chain depends on the 

extraction of virgin material resources, a circular economy calls for an economy that sustains on 

the finite resources available by treating waste as resource and opportunity instead of a burden. 

The idea of the circular economy was first introduced in the 1960s (Boulding, 1966), and further 

developed in the fields of industrial ecology (Erkman, 1997), the blue economy (Pauli, 2010) and 

cradle-to-cradle (McDonough and Braungart, 2010). Many countries such as Netherlands and 

China have integrated this concept into national policies and development strategies (Yuan et al., 

2006; Bastein et al., 2013). The integration of first Circular Economy Strategy as part of 

sustainable development policy in 2015 was the European Commission’s response to the need of 

a regional circular economy (Commission, 2015), and in 2016 the Ellen MacArthur Foundation 

introduced a first official methodology for measuring material circularity (EMF, 2016). As the 

first European-level official response to material circularity, this method has received mixed 

reviews. Criticism mainly surrounds its complexity of application, and also for its “Euro-

centricicity” data requirement for carrying out the assessment (Griffiths and Cayzer, 2016).  A 

novel indicator for circularity of material use and fuel in energy technologies is introduced in this 

study, to broaden the horizon of existing sustainability assessment. To the author’s knowledge 

this indicator is first of its kind to be applied in sustainability assessment for energy technologies. 

In this study, the circularity is measured using two indicators, material circularity which 

examines the circularity of all the material consumed; and fuel circularity examines the circularity 

of the fuel used for electricity production. Material circularity is calculated as in (6):  

 𝑀𝑀𝐴𝐴𝐴𝐴𝑒𝑒𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴 𝐶𝐶𝐴𝐴𝐹𝐹𝐹𝐹𝑜𝑜𝐴𝐴𝐴𝐴𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴 =
∑ ( 𝑀𝑀𝑅𝑅𝑚𝑚𝑑𝑑 + 𝑀𝑀𝑅𝑅𝑑𝑑𝑎𝑎𝑤𝑤𝑜𝑜𝑤𝑤)𝐽𝐽
𝑗𝑗

2 ∗ 𝑀𝑀𝑜𝑜𝑜𝑜𝑜𝑜𝑎𝑎𝑡𝑡
× 100(%) 

 

⑹

 

Where, 
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𝑀𝑀𝑅𝑅𝑚𝑚𝑑𝑑 − 𝑇𝑇𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴 𝐹𝐹𝑜𝑜 𝐹𝐹𝑒𝑒𝐹𝐹𝐹𝐹𝐴𝐴𝑒𝑒𝐹𝐹𝑒𝑒𝑑𝑑 𝑠𝑠𝐴𝐴𝐴𝐴𝑒𝑒𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴 𝑜𝑜𝐹𝐹𝐹𝐹 𝑒𝑒𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒𝐴𝐴 𝑜𝑜𝐴𝐴𝑜𝑜𝐴𝐴𝑒𝑒𝑠𝑠  

𝑀𝑀𝑅𝑅𝑑𝑑𝑎𝑎𝑤𝑤𝑜𝑜𝑤𝑤 − 𝐴𝐴𝑠𝑠𝐹𝐹𝑜𝑜𝑒𝑒𝐴𝐴 𝐹𝐹𝑜𝑜 𝐹𝐹𝑒𝑒𝐹𝐹𝐹𝐹𝐴𝐴𝑒𝑒𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴𝑒𝑒 𝑝𝑝𝐴𝐴𝑜𝑜𝐴𝐴𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝐹𝐹𝐴𝐴𝐴𝐴𝑒𝑒𝑑𝑑 𝐴𝐴𝑒𝑒 𝐴𝐴𝐴𝐴𝑜𝑜𝑒𝑒 𝐹𝐹𝐴𝐴𝐹𝐹𝐴𝐴𝑒𝑒 𝑗𝑗 

𝑀𝑀𝑜𝑜𝑜𝑜𝑜𝑜𝑎𝑎𝑡𝑡 − 𝑇𝑇𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝑠𝑠𝐹𝐹𝑜𝑜𝑒𝑒𝐴𝐴 𝐹𝐹𝑜𝑜 𝑠𝑠𝐴𝐴𝐴𝐴𝑒𝑒𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴 𝐹𝐹𝑒𝑒𝑟𝑟𝑜𝑜𝐴𝐴𝐹𝐹𝑒𝑒𝑑𝑑 𝑜𝑜𝐹𝐹𝐹𝐹 𝑒𝑒𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒𝐴𝐴 𝑜𝑜𝐴𝐴𝑜𝑜𝐴𝐴𝑒𝑒𝑠𝑠  

 

 

And fuel circularity is calculated as follows:  

 𝐹𝐹𝑜𝑜𝑒𝑒𝐴𝐴 𝐶𝐶𝐴𝐴𝐹𝐹𝐹𝐹𝑜𝑜𝐴𝐴𝐴𝐴𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴 = �
𝑅𝑅𝐹𝐹
𝐹𝐹𝑜𝑜𝑜𝑜𝑜𝑜𝑎𝑎𝑡𝑡

𝐽𝐽

𝑗𝑗

× 100(%) 
⑺

 

Where, 

 

𝑅𝑅𝐹𝐹 − 𝐴𝐴𝑠𝑠𝐹𝐹𝑜𝑜𝑒𝑒𝐴𝐴 𝐹𝐹𝑜𝑜 𝐴𝐴𝑒𝑒𝑝𝑝𝑜𝑜𝐴𝐴 𝑜𝑜𝑜𝑜𝑒𝑒𝐴𝐴 𝐴𝐴𝑜𝑜 𝐹𝐹𝑒𝑒𝐹𝐹𝐹𝐹𝐴𝐴𝑒𝑒𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴𝑒𝑒 𝑠𝑠𝐴𝐴𝐴𝐴𝑒𝑒𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴 

𝐹𝐹𝑜𝑜𝑜𝑜𝑜𝑜𝑎𝑎𝑡𝑡 − 𝑇𝑇𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴 𝑜𝑜𝑜𝑜𝑒𝑒𝐴𝐴 𝐹𝐹𝑒𝑒𝑟𝑟𝑜𝑜𝐴𝐴𝐹𝐹𝑒𝑒𝑑𝑑 𝑜𝑜𝐹𝐹𝐹𝐹 𝑝𝑝𝐹𝐹𝑝𝑝𝑒𝑒𝐹𝐹 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴𝐹𝐹𝑒𝑒  

 

 

Down-cycled material can be included in the reusable material category if it can be used as 

feedstock. For example, a particular aluminium and plastic material mix can in theory can be re-

used, but in reality that there is currently no market mechanism that supports such a process, and 

material as such cannot be considered as re-usable material. 

Ideally material recycle rate should be calculated using site specific data. However, due to 

unavailability of this data, the recycling rate of materials is calculated using UK current recycling 

rate, as this is considered to be the most accurate available information. They are shown in table 

3.1 below: 
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Material Recycle rate Source 

Aluminium 96.0% (CSI, 2010) 

Copper 57.4% (DEFRA, 2015) 

Board box 86.5% (DEFRA, 2015) 

Wood  60% (WRAP, 2017) 

Glass fibre reinforced plastic, polyamide  10.0% (Asokan et al., 2009) 

Polyethylene terephthalate 60.0% (RECOUP, 2016) 

Silicon product  85.0% (DEFRA, 2015) 

Glass  67.8% (DEFRA, 2015) 

Steel 52.0% (UNEP, 2015) 

Unrefined semiconductor material  95.0% (P. Sinha, 2012) 

Plastic  26.0% (Al-Salem et al., 2014) 

Table 3.1 Material recycling rate in the UK 

 

The energy payback period measures the timespan (years) that an energy system require to 

break-even with the energy required to produce the system. It is calculated as (8):  

 𝐸𝐸𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒𝐴𝐴 𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐹𝐹𝑤𝑤 𝑃𝑃𝑒𝑒𝐹𝐹𝐴𝐴𝐹𝐹𝑑𝑑 =
𝐸𝐸𝑚𝑚𝑑𝑑
𝐸𝐸𝑜𝑜𝑜𝑜𝑜𝑜

 
⑻

 

Where, 

 

𝐸𝐸𝑚𝑚𝑑𝑑 − 𝐸𝐸𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒𝐴𝐴 𝐹𝐹𝐹𝐹𝑒𝑒𝑜𝑜𝑜𝑜𝑠𝑠𝑝𝑝𝐴𝐴𝐴𝐴𝐹𝐹𝑒𝑒 𝑜𝑜𝐹𝐹𝐹𝐹 𝐴𝐴ℎ𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒𝐴𝐴 𝑜𝑜𝐴𝐴𝑜𝑜𝐴𝐴𝑒𝑒𝑠𝑠 

𝐸𝐸𝑜𝑜𝑜𝑜𝑜𝑜 − 𝐴𝐴𝑒𝑒𝑒𝑒𝑜𝑜𝐴𝐴𝐴𝐴 𝑒𝑒𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒𝐴𝐴 𝐹𝐹𝑜𝑜𝐴𝐴𝑝𝑝𝑜𝑜𝐴𝐴 𝑜𝑜𝐹𝐹𝐹𝐹𝑠𝑠 𝐴𝐴ℎ𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒𝐴𝐴 𝑜𝑜𝐴𝐴𝑜𝑜𝐴𝐴𝑒𝑒𝑠𝑠 

 

 

Lifetime energy consumption is estimated using Ecoinvent 3.4 database (EcoinventCentre, 

2017a), including the end of life treatment for both recoverable and unrecoverable waste, and it is 

in line with existing literature(Peng et al., 2013).  

All activities involved in the life cycle of electricity production emit acidic gases such as 

Sulphur dioxide, nitrogen oxides, ammonia and hydrogen chlorides, which all contribute to the 
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acidification of water bodies and thus increase the mortality rate of aquatic organisms. The 

acidification potential of each acidic chemical is interpreted as per kg of Sulphur dioxide 

equivalent. The acidification potential of the energy technology is calculated as (9):  

 𝐴𝐴𝐹𝐹𝐴𝐴𝑑𝑑𝐴𝐴𝑜𝑜𝐴𝐴𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴𝐹𝐹𝑒𝑒 𝑃𝑃𝐹𝐹𝐴𝐴𝑒𝑒𝑒𝑒𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = �𝐴𝐴𝑃𝑃𝑎𝑎

𝑋𝑋

𝑎𝑎

× 𝑀𝑀𝑎𝑎𝑎𝑎 (𝑤𝑤𝑒𝑒𝑆𝑆𝑆𝑆2 𝑒𝑒𝑟𝑟./𝑀𝑀𝑀𝑀ℎ) 
⑼ 

 

Where, 

 

𝐴𝐴𝑃𝑃𝑎𝑎 − 𝐴𝐴𝐹𝐹𝐴𝐴𝑑𝑑𝐴𝐴𝑜𝑜𝐴𝐴𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴𝐹𝐹𝑒𝑒 𝑝𝑝𝐹𝐹𝐴𝐴𝑒𝑒𝑒𝑒𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 (𝑝𝑝𝑒𝑒𝐹𝐹 𝑤𝑤𝑒𝑒𝑆𝑆𝑆𝑆2 𝑒𝑒𝑟𝑟. )𝐹𝐹𝑜𝑜 𝑒𝑒𝑠𝑠𝐴𝐴𝑜𝑜𝑜𝑜𝐴𝐴𝐹𝐹𝑒𝑒 𝑀𝑀  

 𝑀𝑀𝑎𝑎𝑎𝑎 − 𝑇𝑇𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴 𝑠𝑠𝐴𝐴𝑜𝑜𝑜𝑜 𝐹𝐹𝑜𝑜 𝐴𝐴𝐹𝐹𝐴𝐴𝑑𝑑𝐴𝐴𝐹𝐹 𝑒𝑒𝑠𝑠𝐴𝐴𝑜𝑜𝑜𝑜𝐴𝐴𝐹𝐹𝑒𝑒 𝑀𝑀 𝑝𝑝𝑒𝑒𝐹𝐹 𝑜𝑜𝑒𝑒𝐴𝐴𝐴𝐴 𝑒𝑒𝐴𝐴𝑒𝑒𝐹𝐹𝐴𝐴𝐹𝐹𝐴𝐴𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝐹𝐹𝐴𝐴𝐴𝐴𝑒𝑒𝑑𝑑  

 

 

Eutrophication potential measures the excessive richness of nutrient in waterbodies introduced 

by the assessed energy technology, which promotes excessive growth of biomass in the ecosystem. 

It is calculated as (10):  

 𝐸𝐸𝑜𝑜𝐴𝐴𝐹𝐹𝐹𝐹𝑝𝑝ℎ𝐴𝐴𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴𝐹𝐹𝑒𝑒 𝑃𝑃𝐹𝐹𝐴𝐴𝑒𝑒𝑒𝑒𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = �𝐸𝐸𝑃𝑃𝑎𝑎

𝑋𝑋

𝑎𝑎

× 𝑀𝑀𝑤𝑤𝑎𝑎 (𝑤𝑤𝑒𝑒𝑃𝑃𝑆𝑆−42  𝑒𝑒𝑟𝑟./𝑀𝑀𝑀𝑀ℎ) 
⑽ 

 

Where, 

 
𝐸𝐸𝑃𝑃𝑎𝑎 − 𝐸𝐸𝑜𝑜𝐴𝐴𝐹𝐹𝐹𝐹𝑝𝑝ℎ𝐴𝐴𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴𝐹𝐹𝑒𝑒 𝑝𝑝𝐹𝐹𝐴𝐴𝑒𝑒𝑒𝑒𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ( 𝑝𝑝𝑒𝑒𝐹𝐹 𝑃𝑃𝑆𝑆−42  𝑒𝑒𝑟𝑟. ) 𝐹𝐹𝑜𝑜 𝑒𝑒𝑜𝑜𝐴𝐴𝐹𝐹𝐴𝐴𝑒𝑒𝑒𝑒𝐴𝐴 𝑜𝑜𝑜𝑜𝐴𝐴𝑜𝑜𝐴𝐴𝐴𝐴𝑒𝑒𝐹𝐹𝑒𝑒𝑀𝑀 

𝑀𝑀𝑑𝑑𝑎𝑎 − 𝑇𝑇𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴 𝑠𝑠𝐴𝐴𝑜𝑜𝑜𝑜 𝐹𝐹𝑜𝑜 𝑒𝑒𝑜𝑜𝐴𝐴𝐹𝐹𝐴𝐴𝑒𝑒𝑒𝑒𝐴𝐴 𝑜𝑜𝑜𝑜𝐴𝐴𝑜𝑜𝐴𝐴𝐴𝐴𝑒𝑒𝐹𝐹𝑒𝑒 𝑀𝑀 𝑝𝑝𝑒𝑒𝐹𝐹 𝑜𝑜𝑒𝑒𝐴𝐴𝐴𝐴 𝑒𝑒𝐴𝐴𝑒𝑒𝐹𝐹𝐴𝐴𝐹𝐹𝐴𝐴𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝐹𝐹𝐴𝐴𝐴𝐴𝑒𝑒𝑑𝑑 
 

 

    Emission of toxic substance to the environment can lead to ecotoxiciy, three indicators are 

proposed in this research to examine the toxicity impact on the ecosystem, expressed as 1,4-

dichlorobenzene (DCB) per MWh electricity generated, categorized as different medium where 

the toxic mechanism take place, they are fresh water aquatic ecotoxity potential, marine aquatic 

ecotoxiciy potential, and terrestric ecotoxiciy potential. Similarly, the direct effect of toxic 

substance on human environment is also expressed as 1,4-DCB equiv.kg/MWh electricity 

generated, These indicators are calculated as follows (11-14):    

 

𝐹𝐹𝐹𝐹𝑒𝑒𝑜𝑜ℎ𝑝𝑝𝐴𝐴𝐴𝐴𝑒𝑒𝐹𝐹 𝐴𝐴𝑟𝑟𝑜𝑜𝐴𝐴𝐴𝐴𝐴𝐴𝐹𝐹 𝐸𝐸𝐹𝐹𝐹𝐹𝐴𝐴𝐹𝐹𝑀𝑀𝐴𝐴𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴 𝑃𝑃𝐹𝐹𝐴𝐴𝑒𝑒𝑒𝑒𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = ∑ 𝐹𝐹𝐴𝐴𝐸𝐸𝑇𝑇𝑃𝑃𝑎𝑎𝑋𝑋
𝑎𝑎 × 𝑀𝑀𝑜𝑜 (𝑤𝑤𝑒𝑒1,4 −

𝐷𝐷𝐶𝐶𝐷𝐷 𝑒𝑒𝑟𝑟./𝑀𝑀𝑀𝑀ℎ)      ⑾ 
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𝑀𝑀𝐴𝐴𝐹𝐹𝐴𝐴𝑒𝑒𝑒𝑒 𝐴𝐴𝑟𝑟𝑜𝑜𝐴𝐴𝐴𝐴𝐴𝐴𝐹𝐹 𝐸𝐸𝐹𝐹𝐹𝐹𝐴𝐴𝐹𝐹𝑀𝑀𝐴𝐴𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴 𝑃𝑃𝐹𝐹𝐴𝐴𝑒𝑒𝑒𝑒𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = ∑ 𝑀𝑀𝐴𝐴𝐸𝐸𝑇𝑇𝑃𝑃𝑎𝑎𝑋𝑋
𝑎𝑎 × 𝑀𝑀𝑜𝑜  (𝑤𝑤𝑒𝑒1,4 − 𝐷𝐷𝐶𝐶𝐷𝐷 𝑒𝑒𝑟𝑟./𝑀𝑀𝑀𝑀ℎ)             

⑿ 

𝑇𝑇𝑒𝑒𝐹𝐹𝐹𝐹𝑒𝑒𝑜𝑜𝐴𝐴𝐹𝐹𝐴𝐴𝐹𝐹 𝐸𝐸𝐹𝐹𝐹𝐹𝐴𝐴𝐹𝐹𝑀𝑀𝐴𝐴𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴 𝑃𝑃𝐹𝐹𝐴𝐴𝑒𝑒𝑒𝑒𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = ∑ 𝑇𝑇𝐸𝐸𝑃𝑃𝑎𝑎𝑋𝑋
𝑎𝑎 × 𝑀𝑀𝑜𝑜  (𝑤𝑤𝑒𝑒1,4 − 𝐷𝐷𝐶𝐶𝐷𝐷 𝑒𝑒𝑟𝑟./𝑀𝑀𝑀𝑀ℎ)                         

⒀𝐻𝐻𝑜𝑜𝑠𝑠𝐴𝐴𝑒𝑒 𝑇𝑇𝐹𝐹𝑀𝑀𝐴𝐴𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴 𝑃𝑃𝐹𝐹𝐴𝐴𝑒𝑒𝑒𝑒𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = ∑ 𝐻𝐻𝑇𝑇𝑃𝑃𝑎𝑎𝑋𝑋
𝑎𝑎 × 𝑀𝑀𝑜𝑜 (𝑤𝑤𝑒𝑒1,4 − 𝐷𝐷𝐶𝐶𝐷𝐷 𝑒𝑒𝑟𝑟./𝑀𝑀𝑀𝑀ℎ)                                          

⒁ 

  Where, 

𝐹𝐹𝑀𝑀𝐴𝐴𝐸𝐸𝑇𝑇𝑃𝑃 − 𝑇𝑇ℎ𝑒𝑒 𝑜𝑜𝐹𝐹𝑒𝑒𝑜𝑜ℎ𝑝𝑝𝐴𝐴𝐴𝐴𝑒𝑒𝐹𝐹 𝐴𝐴𝑟𝑟𝑜𝑜𝐴𝐴𝐴𝐴𝐴𝐴𝐹𝐹 𝐴𝐴𝐹𝐹𝑀𝑀𝐴𝐴𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴 𝑝𝑝𝐹𝐹𝐴𝐴𝑒𝑒𝑒𝑒𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐹𝐹𝑜𝑜 𝐴𝐴𝐹𝐹𝑀𝑀𝐴𝐴𝐹𝐹 𝑜𝑜𝑜𝑜𝐴𝐴𝐴𝐴𝐴𝐴𝑒𝑒𝐹𝐹𝑒𝑒 

𝑀𝑀𝐴𝐴𝐸𝐸𝑇𝑇𝑃𝑃 − 𝑇𝑇ℎ𝑒𝑒 𝑠𝑠𝐴𝐴𝐹𝐹𝐴𝐴𝑒𝑒𝑒𝑒 𝐴𝐴𝑟𝑟𝑜𝑜𝐴𝐴𝐴𝐴𝐴𝐴𝐹𝐹 𝐴𝐴𝐹𝐹𝑀𝑀𝐴𝐴𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴 𝑝𝑝𝐹𝐹𝐴𝐴𝑒𝑒𝑒𝑒𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐹𝐹𝑜𝑜 𝐴𝐴𝐹𝐹𝑀𝑀𝐴𝐴𝐹𝐹 𝑜𝑜𝑜𝑜𝐴𝐴𝐴𝐴𝐴𝐴𝑒𝑒𝐹𝐹𝑒𝑒  

𝑇𝑇𝐸𝐸𝑃𝑃 − 𝑇𝑇ℎ𝑒𝑒 𝐴𝐴𝑒𝑒𝐹𝐹𝐹𝐹𝐴𝐴𝑜𝑜𝐴𝐴𝐹𝐹𝐴𝐴𝐹𝐹 𝐴𝐴𝐹𝐹𝑀𝑀𝐴𝐴𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴 𝑝𝑝𝐹𝐹𝐴𝐴𝑒𝑒𝑒𝑒𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐹𝐹𝑜𝑜 𝐴𝐴𝐹𝐹𝑀𝑀𝐴𝐴𝐹𝐹 𝑜𝑜𝑜𝑜𝐴𝐴𝑜𝑜𝐴𝐴𝐴𝐴𝑒𝑒𝐹𝐹𝑒𝑒 

𝐻𝐻𝑇𝑇𝑃𝑃 − 𝑇𝑇ℎ𝑒𝑒 ℎ𝑜𝑜𝑠𝑠𝐴𝐴𝑒𝑒 𝐴𝐴𝐹𝐹𝑀𝑀𝐴𝐴𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴 𝑝𝑝𝐹𝐹𝐴𝐴𝑒𝑒𝑒𝑒𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐹𝐹𝑜𝑜 𝐴𝐴𝐹𝐹𝑀𝑀𝐴𝐴𝐹𝐹 𝑜𝑜𝑜𝑜𝐴𝐴𝑜𝑜𝐴𝐴𝐴𝐴𝑒𝑒𝐹𝐹𝑒𝑒 

𝑀𝑀𝑜𝑜 − 𝑇𝑇ℎ𝑒𝑒 𝑒𝑒𝑠𝑠𝐴𝐴𝑜𝑜𝑜𝑜𝐴𝐴𝐹𝐹𝑒𝑒 𝐹𝐹𝑜𝑜 𝐴𝐴𝐹𝐹𝑀𝑀𝐴𝐴𝐹𝐹 𝑜𝑜𝑜𝑜𝐴𝐴𝑜𝑜𝐴𝐴𝐴𝐴𝑒𝑒𝐹𝐹𝑒𝑒 𝐴𝐴𝐹𝐹 𝐴𝐴ℎ𝑒𝑒 𝑒𝑒𝑒𝑒𝐴𝐴𝐴𝐴𝐹𝐹𝐹𝐹𝑒𝑒𝑠𝑠𝑒𝑒𝑒𝑒𝐴𝐴  

 

Global warming potential is the total greenhouse gas emitted throughout the entire life cycle of 

the energy technology. The calculation follows the CML2001 impact method, as this is the most 

widely-used method of accounting for the life cycle climate change contribution of a product 

(Guinée, 2001; Stamford, 2012, p. 80). It is calculated as (15):  

 𝐺𝐺𝐴𝐴𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴 𝑀𝑀𝐴𝐴𝐹𝐹𝑠𝑠𝐴𝐴𝑒𝑒𝑒𝑒 𝑃𝑃𝐹𝐹𝐴𝐴𝑒𝑒𝑒𝑒𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = �𝐺𝐺𝑀𝑀𝑃𝑃𝑎𝑎

𝑋𝑋

𝑎𝑎

× 𝑀𝑀𝑔𝑔𝑎𝑎 (𝑤𝑤𝑒𝑒 𝐶𝐶𝑆𝑆2 𝑒𝑒𝑟𝑟./𝑀𝑀𝑀𝑀ℎ) 
⒂ 

 

Where, 

 

𝐺𝐺𝑀𝑀𝑃𝑃𝑎𝑎 − 𝐺𝐺𝐴𝐴𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴 𝑝𝑝𝐴𝐴𝐹𝐹𝑠𝑠𝐴𝐴𝑒𝑒𝑒𝑒 𝑝𝑝𝐹𝐹𝐴𝐴𝑒𝑒𝑒𝑒𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐴𝐴𝑒𝑒 𝑤𝑤𝑒𝑒𝐶𝐶𝑆𝑆2 𝑒𝑒𝑟𝑟. )𝐹𝐹𝑜𝑜 𝑒𝑒𝐹𝐹𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝐹𝐹𝑜𝑜𝑜𝑜𝑒𝑒 𝑒𝑒𝐴𝐴𝑜𝑜 𝑀𝑀   

𝑀𝑀𝑔𝑔𝑎𝑎 − 𝑇𝑇𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴 𝑠𝑠𝐴𝐴𝑜𝑜𝑜𝑜 𝐹𝐹𝑜𝑜 𝑒𝑒𝐹𝐹𝑒𝑒𝑒𝑒𝑒𝑒 ℎ𝐹𝐹𝑜𝑜𝑜𝑜𝑒𝑒 𝑒𝑒𝐴𝐴𝑜𝑜 𝑒𝑒𝑠𝑠𝐴𝐴𝑜𝑜𝑜𝑜𝐴𝐴𝐹𝐹𝑒𝑒 𝑝𝑝𝑒𝑒𝐹𝐹 𝑜𝑜𝑒𝑒𝐴𝐴𝐴𝐴 𝑒𝑒𝐴𝐴𝑒𝑒𝐹𝐹𝐴𝐴𝐹𝐹𝐴𝐴𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝐹𝐹𝐴𝐴𝐴𝐴𝑒𝑒d 

 

 

Ozone is a variant of oxygen, an ozone molecule having three atoms of oxygen. The ozone 

layer coats the earth’s stratosphere, protecting the earth against the harmful ultraviolet rays of the 

sun by absorbing most of the hazardous UV-B radiation. Damage of this layer of ozone exposes 

the earth’s surface to increased UV-B radiation. Emission of chlorofluorocarbons (CFCs) can 

cause thinning of ozone layers. The majority of ozone depleting substances were banned in the 
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Montreal Protocol in 1989; however since this protocol does not prohibit non-signatory countries 

from using products that use CFCs in manufacturing, CFCs along with other halogenated 

hydrocarbons are still widely used in industrial non-signatory countries. The energy technology’s 

ozone depletion potential is calculated as (16):  

 𝑆𝑆𝑂𝑂𝐹𝐹𝑒𝑒𝑒𝑒 𝐿𝐿𝐴𝐴𝐴𝐴𝑒𝑒𝐹𝐹 𝐷𝐷𝑒𝑒𝑝𝑝𝐴𝐴𝑒𝑒𝐴𝐴𝐴𝐴𝐹𝐹𝑒𝑒 𝑃𝑃𝐹𝐹𝐴𝐴𝑒𝑒𝑒𝑒𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = �𝑆𝑆𝑃𝑃𝑎𝑎

𝑋𝑋

𝑎𝑎

× 𝑀𝑀𝑜𝑜𝑎𝑎 (𝑤𝑤𝑒𝑒𝐶𝐶𝐹𝐹𝐶𝐶−11 𝑒𝑒𝑟𝑟./𝑤𝑤𝑀𝑀ℎ) 
⒃

 

Where, 

𝑆𝑆𝑃𝑃𝑎𝑎 − 𝑆𝑆𝑂𝑂𝐹𝐹𝑒𝑒𝑒𝑒 𝑑𝑑𝑒𝑒𝑝𝑝𝐴𝐴𝑒𝑒𝐴𝐴𝐴𝐴𝐹𝐹𝑒𝑒 𝑝𝑝𝐹𝐹𝐴𝐴𝑒𝑒𝑒𝑒𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ( 𝑝𝑝𝑒𝑒𝐹𝐹 𝐶𝐶𝐹𝐹𝐶𝐶−11 𝑒𝑒𝑟𝑟. ) 𝐹𝐹𝑜𝑜 𝑒𝑒𝑠𝑠𝐴𝐴𝑜𝑜𝑜𝑜𝐴𝐴𝐹𝐹𝑒𝑒 𝑀𝑀 

𝑀𝑀𝑜𝑜𝑎𝑎 − 𝑇𝑇𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴 𝑠𝑠𝐴𝐴𝑜𝑜𝑜𝑜 𝐹𝐹𝑜𝑜 𝐹𝐹𝑂𝑂𝐹𝐹𝑒𝑒𝑒𝑒 𝑑𝑑𝑒𝑒𝑝𝑝𝐴𝐴𝑒𝑒𝐴𝐴𝐴𝐴𝐹𝐹𝑒𝑒 𝑜𝑜𝑜𝑜𝐴𝐴𝑜𝑜𝐴𝐴𝐴𝐴𝑒𝑒𝐹𝐹𝑒𝑒 𝑝𝑝𝑒𝑒𝐹𝐹 𝑜𝑜𝑒𝑒𝐴𝐴𝐴𝐴 𝑒𝑒𝐴𝐴𝑒𝑒𝐹𝐹𝐴𝐴𝐹𝐹𝐴𝐴𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝐹𝐹𝐴𝐴𝐴𝐴𝑒𝑒𝑑𝑑  

 

    Photochemical oxidant formation (or photochemical smog) refers to a phenomenon that occurs 

under the influence of ultraviolet light, Volatile Organic compounds (VOCs) and carbon 

monoxide (CO) undergoing photochemical oxidation with presence of nitrogen oxides (NOx). 

Photochemical ozone creation potential investigates the formation of photo-oxidants, Ozone, 

derived from activities associated with electricity generation, it is calculated as (17): 

𝑃𝑃ℎ𝐹𝐹𝐴𝐴𝐹𝐹𝐹𝐹ℎ𝑒𝑒𝑠𝑠𝐴𝐴𝐹𝐹𝐴𝐴𝐴𝐴 𝐹𝐹𝑂𝑂𝐹𝐹𝑒𝑒𝑒𝑒 𝐹𝐹𝐹𝐹𝑒𝑒𝐴𝐴𝐴𝐴𝐴𝐴𝐹𝐹𝑒𝑒 𝑝𝑝𝐹𝐹𝐴𝐴𝑒𝑒𝑒𝑒𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = ∑ 𝑃𝑃𝑆𝑆𝐶𝐶𝑃𝑃𝑎𝑎𝑋𝑋
𝑎𝑎 × 𝑀𝑀𝑜𝑜 (𝑤𝑤𝑒𝑒𝐶𝐶𝐹𝐹𝐶𝐶−11 𝑒𝑒𝑟𝑟./𝑤𝑤𝑀𝑀ℎ)            ⒄ 

Where  

𝑃𝑃𝑆𝑆𝐶𝐶𝑃𝑃 − 𝑃𝑃ℎ𝐹𝐹𝐴𝐴𝐹𝐹𝐹𝐹ℎ𝑒𝑒𝑠𝑠𝐴𝐴𝐹𝐹𝐴𝐴𝐴𝐴 𝐹𝐹𝑂𝑂𝐹𝐹𝑒𝑒𝑒𝑒 𝑜𝑜𝐹𝐹𝐹𝐹𝑠𝑠𝐴𝐴𝑒𝑒𝑒𝑒 𝑝𝑝𝐹𝐹𝐴𝐴𝑒𝑒𝑒𝑒𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐹𝐹𝑜𝑜 𝑒𝑒𝑠𝑠𝐴𝐴𝑜𝑜𝑜𝑜𝐴𝐴𝐹𝐹𝑒𝑒𝑜𝑜 

𝑀𝑀𝑜𝑜 − 𝐸𝐸𝑠𝑠𝐴𝐴𝑜𝑜𝑜𝑜𝐴𝐴𝐹𝐹𝑒𝑒 𝐹𝐹𝑜𝑜 𝑜𝑜𝑜𝑜𝑠𝑠𝑠𝑠𝑒𝑒𝐹𝐹 𝑜𝑜𝑠𝑠𝐹𝐹𝑒𝑒 𝐹𝐹𝐹𝐹𝑒𝑒𝐴𝐴𝐴𝐴𝐴𝐴𝐹𝐹𝑒𝑒 𝑜𝑜𝑜𝑜𝐴𝐴𝑜𝑜𝐴𝐴𝐴𝐴𝑒𝑒𝐹𝐹𝑒𝑒 

 

3.2.3 Social Sustainability Indicators  

The social impact of energy technology is measured in two categories; its ability to 

alleviate fuel poverty, and provision of employment.   

An energy technology’s ability to reduce fuel poverty is assessed using the energy bill 

reduction rate achieved through the deployment of the chosen energy technology. It is 

calculated as (18):  

 𝐷𝐷𝐴𝐴𝐴𝐴𝐴𝐴 𝑅𝑅𝑒𝑒𝑑𝑑𝑜𝑜𝐹𝐹𝐴𝐴𝐴𝐴𝐹𝐹𝑒𝑒 𝑅𝑅𝐴𝐴𝐴𝐴𝑒𝑒 =
𝐸𝐸
𝐸𝐸𝑜𝑜

× 100(%) ⒅ 
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Where, 

𝐸𝐸 − 𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴𝑒𝑒𝑒𝑒𝑜𝑜 𝐹𝐹𝑒𝑒 𝑒𝑒𝐴𝐴𝑒𝑒𝐹𝐹𝐴𝐴𝐹𝐹𝐴𝐴𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴 𝑒𝑒𝑀𝑀𝑝𝑝𝑒𝑒𝑒𝑒𝑜𝑜𝑒𝑒𝑜𝑜 𝐴𝐴ℎ𝐹𝐹𝐹𝐹𝑜𝑜𝑒𝑒ℎ 𝐴𝐴𝑒𝑒𝑜𝑜𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐹𝐹𝑒𝑒 𝐹𝐹𝑜𝑜 𝑒𝑒𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒𝐴𝐴 𝐴𝐴𝑒𝑒𝐹𝐹ℎ𝑒𝑒𝐹𝐹𝐴𝐴𝐹𝐹𝑒𝑒𝐴𝐴𝑒𝑒𝑜𝑜  

𝐸𝐸𝑜𝑜 − 𝐸𝐸𝐴𝐴𝑒𝑒𝐹𝐹𝐴𝐴𝐹𝐹𝐴𝐴𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴 𝑒𝑒𝑀𝑀𝑝𝑝𝑒𝑒𝑒𝑒𝑜𝑜𝑒𝑒𝑜𝑜  𝑝𝑝𝐹𝐹𝐴𝐴𝐹𝐹𝐹𝐹 𝐴𝐴𝐹𝐹 𝐴𝐴𝑒𝑒𝑜𝑜𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐹𝐹𝑒𝑒 𝐹𝐹𝑜𝑜 𝑒𝑒𝑒𝑒𝑒𝑒𝐹𝐹𝑒𝑒𝐴𝐴 𝐴𝐴𝑒𝑒𝐹𝐹ℎ𝑒𝑒𝐹𝐹𝐴𝐴𝐹𝐹𝑒𝑒𝐴𝐴𝑒𝑒𝑜𝑜 

 

Renewable energy is often promoted for its associated effect on job creation. A major social 

contribution that an energy technology is expected to deliver is employment provision, and it is 

calculated as (19): 

 
𝐸𝐸𝑠𝑠𝑝𝑝𝐴𝐴𝐹𝐹𝐴𝐴𝑠𝑠𝑒𝑒𝑒𝑒𝐴𝐴 𝑝𝑝𝐹𝐹𝐹𝐹𝐴𝐴𝐴𝐴𝑜𝑜𝐴𝐴𝐹𝐹𝑒𝑒 =  

∑ 𝐿𝐿𝐸𝐸𝑚𝑚𝐼𝐼
𝑚𝑚

𝐸𝐸𝑚𝑚
 

 
⒆ 

Where, 

 

𝐿𝐿𝐸𝐸𝑚𝑚 − 𝐸𝐸𝑠𝑠𝑝𝑝𝐴𝐴𝐹𝐹𝐴𝐴𝑠𝑠𝑒𝑒𝑒𝑒𝐴𝐴 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝐹𝐹𝐴𝐴𝐴𝐴𝑒𝑒𝑑𝑑 𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴𝑜𝑜𝑒𝑒 𝐹𝐹𝐴𝐴𝐹𝐹𝐴𝐴𝑒𝑒 𝑜𝑜𝐴𝐴𝐴𝐴𝑒𝑒𝑒𝑒 𝐴𝐴 

𝐸𝐸𝑚𝑚 − 𝐼𝐼𝑒𝑒𝑜𝑜𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑒𝑒𝑑𝑑 𝐹𝐹𝐴𝐴𝑝𝑝𝐴𝐴𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴  

 

 

   

3.3 Ranking of scores  
 

The assessment results are organized using a total ranking system to identify the strengths and 

weakness of each assessed technology. Assuming all indicators are equally important9, a ranking 

score from 1 to 3 is assigned to each indicator based on the performance score of the assessed 

technology at each category; where 1 represents the best performance and 3 accounts for the 

worst performance. The same ranking score is given to technologies that share the same 

performance within one category. All the scores are finally summed up to represent the 

sustainability performance of each technology, where a lower score indicates better performance 

and a higher score worse performance.10 

                                                 
9 In accordance to sustainability theory, all three-pillars are considered to be equally 

important; therefore all indicators are considered to be equally important and no importance 
ranking score is applied. 

 
10 The ranking does not take into account that the number of indicators is not evenly 

distributed among the three sustainability impact categories.  
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3.4 Quality assurance  
  
In LCA practice data quality issues have been broadly discussed since the 1990s (USEPA, 1995), 

but robustness of the modelled results is not commonly addressed in the LCAs. Two approaches 

are employed in this study to examine the sensitivity and degree of uncertainty of the data, they 

are sensitivity analysis and data quality assessment.  

  In compliance with ISO 14044(ISO, 2006b, p. 22), additional analysis should be carried out for 

data quality assurance purpose, and sensitivity analysis is chosen to be appropriate for this study.  

ReCiPe method is another both geographically valid and widely applied LCA method where its 

impact categories had been thoroughly peer reviewed(De Schryver et al., 2009; Handbook, 

2010); it is therefore used to cross-check with the environmental result produced using CML 

method. ReCiPe method involves both mid-point and end-point method, for consistency purpose 

only mid-point criteria of indicators that emphasizes same environmental impacts are included in 

this study. The results obtained from ReCiPe method uses same assumption, system boundary 

and process with that of the CML method. 

  Data quality assessment is to give an estimate of degree of uncertainties introduced by use of 

data. A number of data quality assessment criteria have been developed and practiced in the field 

of carbon foot printing, such as PAS 2050 (BSI, 2011) developed by British Standard Institute 

and CCaLC(Azapagic, 2011) developed by Manchester university; a modified version the data 

quality assessment method developed by Stamford and Azapagic (2012) is employed in this 

study. Each indicator assessed in each case study will have its data assessed using data quality 

assessment criteria illustrated in table 3.3. The total ranking score for each indicator will be 

summed and then to give a normalised total.  An overall rating of 1 (or 100%) is an indication of 

perfect quality, and lower score means quality of the data has larger room for improvement 
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 Time 

specificity 

Geographical 

specificity 

Technological 

specificity 

Completeness 

of data 
Data source Auditability 

Sc
or

e 

3 
(h

ig
h)

 
 

<5 years 
old; valid 
for new 

build 

 

Matches 
general 

Northeast 
England 

conditions 
throughout life 

cycle 

 

Data for the 
exact 

technology 
under question 

All significant 
inputs and 

outputs 
considered; 
whole life 

cycle 
considered 

Primary or 
reputable 
secondary 

(e.g. data from 
company or 

peer- 

reviewed) 

 

All data 
sources 

documented 

2 
(m

ed
iu

m
) 

 

5-15 years 
old; valid 
only for 
current 

capacity 

 

Partly matches 
Northeast 
England 

conditions 
throughout life 

cycle 

 

Data for 
technology 

very similar to 
that under 
question 

 

Majority of 
inputs and 

outputs 
considered; 
most of life 

cycle considered 

 

Mainly 
secondary; 

some 
estimation 
based on 

expert 
judgment 

 

Partly 
documented 

1 
(lo

w
) 

 

>15 years 
old 

 

Geographically 
generic 

 

More generic 
data 

Missing 
potentially 
significant 

inputs, outputs 

or life cycle 
stages 

 

Estimated 
based on 

expert 
judgment 

 

No link to 
original data 

Table 3.2 Data quality assessment criteria (Stamford and Azapagic, 2012, p. 415) 

3.3 Summary 
 

This chapter explained the sustainability assessment framework proposed in this study. The 

assessment process can be simplified into four stages as illustrated in figure 3.2. First of all, the 

assessed technology is identified, then the sustainability assessment framework (table 3.3) is 

applied on the selected technologies; the result obtained from the assessment can be ranked 

against each indicator, the technology with the lower score will have the better ranking; for 

quality assurance purpose, the environmental assessment results are also calculated using ReCiPe 

method to find out if similar pattern of impact can be observed and the quality of data employed 

in the assessment is also analyzed using data quality assessment.   
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Figure 3.1 Application of sustainability assessment process   

Product/Technol
ogy 

identification 

Apply the 
proposed 

sustainability 
assessment 
framework 

Result Comparison of 
performance 

Quality 
assurance
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Sustainability issues Indicator Unit 
Life cycle stage considered 

Manufacture Installation Operation End of 
life 

Te
ch

no
-e

co
no

m
ic

 
C

at
eg

or
y 

 

Reliability  
Availability factor %     x   

Capacity factor %     x   
Dispatchability        x   

Cost Levelised cost £/MWh x x x   

Financial feasibility Payback period  years x x x   

En
vi

ro
nm

en
ta

l C
at

eg
or

y 
 

Circularity  
Material circularity  % x x x x 

Fuel circularity % x x x x 
Energy Payback  Energy payback period  years x x x   

Acidification Potential (AP)    x x x   
Eutrophication Potential (EP)    x x x   

Freshwater Aquatic Ecotoxicity Pot. (FAETP 
inf.)    x x x   

Global Warming Potential (GWP 100 years)   x x x   
Human Toxicity Potential (HTP inf.)    x x x   

Marine Aquatic Ecotoxicity Pot. (MAETP inf.)   x x x   
Ozone Layer Depletion Potential (ODP, steady 

state)   x x x   

Photochem. Ozone Creation Potential (POCP)   x x x   
Terrestric Ecotoxicity Potential (TETP inf.)   x x x   

Social 
Category  

Fuel poverty Bill reduction rate  % x x x   
Employment provision Employment provision job/MW x x x   

Table 3.3 Proposed sustainability assessment framework with indicators and life cycle stage considered 
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Chapter 4 Solar Photovoltaics 
 

4.1Introduction  
 

Solar PV is one of the fastest growing renewable energy technologies in the world 

(Branker et al., 2011), and the UK now has approximately 2% of the total global installations 

(BRE, 2018). Approximately 80%-90% of solar cells produced today are made from single- 

(or mono-) and poly-crystalline(Jungbluth et al., 2012). Mono-crystalline silicon (also known 

as single-crystalline silicon, or s-Si) cells are made from silicon in the form of single crystal, 

and there are no boundaries between the silicon grains. This type of solar cell has high grade 

silicon material content and is known for its highest efficiencies (13%-18%) among all the 

commercialised solar cell types, and thus it is more costly compared to other types of solar 

cells. Poly-crystalline silicon (p-Si) cells are of relatively lower silicon content that the silicon 

is made from an agglomeration of crystals distributed in various orientations, which means 

electron-hole-recombination losses are unavoidable due to the boundaries between silicon 

grains. The p-Si cells has a lower efficiency compare to s-Si cells, and it is less costly. 

Another type of solar cells is thin film solar cells, it is a less popular option for its lower 

efficiency compared to the silicon based solar cells. They are made of exceedingly thin layers 

of photovoltaic materials spread on glass or stainless steel, and sometimes plastic backings. 

Because of the reduced use of semiconductor materials, the efficiencies are lower for thin film 

solar cells and thus this type of cell is less costly in comparison to the previous two types. 

Cadmium telluride (CdTe) solar cells are the most common thin film solar cell; it is also the 

most controversial type of PV technology for its use of cadmium, which is a toxic and hazardous 

material. Although under normal circumstances the toxic substance is not released into the 

environment, in cases of fire, breakage and inappropriate recycle handling, currently-available 

CdTe can escape from the solar cells and contaminate the environment. 

Almost all installed solar PV systems in the UK are connected to the existing electricity grid. 

A proportion of the power generated is consumed on site by the host, with any surplus power 

generated being exported to the distribution network for regional distribution.  

In the North East region, 95% of installed solar PV systems are residential, grid connected 

systems (IEA-PVPS, 2016) at 4kW (nominal maximum) capacity, and include the solar 

modules themselves, inverters and mounting parts (also known as Balance of the System, BoS). 

This study is focused on solar PV technologies that are already installed in the North East 

England. Therefore a 4kWp residential roof-mounted grid-connected system is considered for 
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this study. Solar cells of two types of silicon material as well as CdTe solar cells are selected to 

be representative of the existing installation type.  

4.2 Assumptions  
 

Four life cycle stages of solar PV are included in this study: manufacture of the equipment, 

installation, operation and end of life (Figure 4.1). The electrical grid connection is already in 

place prior to deployment of solar PV; therefore it is not included in the system boundary. A 

solar PV system includes the solar panel, the inverter and the mounting parts. The 

manufacturer-guaranteed lifetime of a solar PV system is 25-30 years, while the inverter 

needs to be changed every 10 years; after this period the energy system is still able to generate 

electricity at reduced efficiency, but to date there is no established data defining the drop-off 

time or efficiency reduction amounts. Therefore, a range of 25-30 years is considered to be the 

lifetime of a solar PV system.  

 

Figure 4.1 Lifecycle stages of solar PV 

4.2.1 Key technical parameters  

 A list of key technical parameters is presented in Table 4.1.  The efficiencies of the 

different types of solar PV modules are mentioned in the previous section. The cost of 

solar PV system varies depending on the manufacturer and equipment provider. A 

quotation provided by a local solar PV installer, Minel Energy, suggests that the cost of a 

4kWp system alone varies from £3000 for the less popular CdTe cells to a maximum of 

£6000 for an s-Si system, with the installation cost ranging between £800 and £1000 for 

each system installed regardless of the panel material. Throughout their lifetime solar 

modules need to be cleaned to ensure optimum power output, and in some cases, the 

inverter needs to be replaced after 10 years. The majority of the solar installers offers a 

maintenance plan at the cost of £1200-£1500. A discount rate of 3.5% is applied 

according to the Green Book (Book, 2003). Lifetime energy consumption is estimated by 

Ecoinvent (EcoinventCentre, 2015), including the end of life treatment for both 

recoverable and unrecoverable waste, and is in line with existing literature (Peng et al., 

2013). 

Manufacture

• Solar panel 
• Inverter 

• Mounting parts

Installation

• Intallation work

Operation 

• Generating 
electricity 

End of life

• Recycle 



 
 

33 
 

The average annual sunlight hours of the North East region is between 1230 and 1316 

hours (MO, 2016). Annual energy yield is estimated based on the module efficiency rate 

and solar irradiation and ranges from 1600 kWh generated by CdTe at an efficiency of 

6%, to 4800 kWh generated by the maximum possible efficiency of s-Si. A general 

annual efficiency degradation rate of 1% is applied to all solar PV systems (Zweibel et 

al., 2008). 

Income from a solar PV installation is generated through a Feed in Tariff (FiT) and the 

export of surplus electricity to the grid, in addition to bill reduction achieved by 

consuming the on-site generated electricity. The UK FiT currently offers a solar PV host 

4.39 pence per kWh generation (DECC, 2015). PV systems in the UK are mostly 

currently installed without export meters and exported electricity is set to a deemed 

amount of 50% for such systems. System hosts receive a rate of 4.85p/kWh for the 

deemed 50% of electricity exported, which is thus irrespective of the actual surplus 

export amount. As mentioned in previous chapter, both FiT rate and export rate are 

discounted in the analysis by a Retail Price Index of 1.3%.  

Parameters 

Types of material 
Silicon Thin film 

s-Si p-Si CdTe 
Min  Max Min  Max Min  Max 

Life-time (years)  25 30 25 30 25 30 
Module Efficiency  16% 18% 15% 16% 6% 10% 
System Cost (£/system) 5000 6000 4000 4500 3000 3500 
Installation cost (£/system)  800-1000 
O&M cost (£/system life time)  1200-1500 
Discount rate  3.5% 
Annual Sunlight hours (hour) 1230-1316 
Annual energy yield per system 
(kWh) 4280 4800 4000 4280 1600 2680 

Table 4.1 Key techno-economic parameters for solar PV 
 

4.2.2 Environmental parameters  

Material composition for solar PV system varies slightly depending on the model and 

manufacturer. Therefore an estimate of the total material consumption per system according to 

a European dataset provided by EcoinventCentre (2017a) is considered to be representative of 

the installed systems in the UK and is applied in this study. The total material consumption of 

solar PV systems is listed in Table 4.2. The dataset for s-Si and p-Si are identical in Ecoinvent 

3.4. Hence a general estimation of the silicon-based system is used instead.   
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Recyclability is the percentage of material that can be reused after the product is recycled. 

In theory all metal, glass and silicon products have 100% recyclability; however in reality 

only a proportion of the material is sorted and recycled, the amount varying depending on the 

common recycling practice in the region. Table 4.3 shows the recoverable mass for the 

assessed CdTe and silicon solar PV.   

Material use (kg/system) Types of solar panel material 
Silicon CdTe 

In
pu

t m
at

er
ia

l 

Aluminium 73.64 0.42 
Copper 6.16 14.56 
Board box 30.80 38.36 
Ethyvinylacetate 28.00 16.80 
Glass fibre reinforced plastic, polyamide  5.32 3.08 
Polyethylene terephthalate 10.44 0.00 
Silicon product  3.42 0.00 
Silica sand  0.00 1.40 
Glass  565.60 793.80 
Steel 0.00 6.50 
Sodium chloride 0.00 1.40 
Sodium hydroxide 0.00 1.40 

W
as

te
 fo

r 
tr

ea
tm

en
t  Municipal solid waste 0.84 27.28 

Waste plastic mixture 47.32 19.88 

Waste polyvinyl fluoride 3.08 0.00 
Table 4.2 Material consumption and waste for the treatment of solar PV system, data source: 

EcoinventCentre (2017a) 

 Material (kg/system) 
Types of solar panel 

Silicon CdTe 

R
ec

ov
er

ab
le

 m
as

s 

Aluminium 70.69 0.4 
Copper 3.54 8.36 
Board box 26.64 33.18 
Glass fibre reinforced plastic, 
polyamide  0.53 0.31 

Polyethylene terephthalate 6.27 0 
Silicon product  2.9 0 
Glass  383.48 538.2 
Steel 0 3.38 
Waste plastic  12.3032 5.1688 

 Material circularity  38% 35% 
Table 4.3 Recoverable mass for the two assessed solar PV 
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4.2.3 Social Assumptions  

 

The average UK domestic electricity bill is £578 per household in North East England 

based on an annual consumption of 3,800kWh in 2015 (Bradley et al., 2013). Solar PV is able 

to achieve employment provision of 653 person-year/TWh (Stamford, 2012) regardless of the 

material used in the panel.  

4.3. Results  
This section presents the assessment results of solar PV systems. The techno-economic, 

environmental and social performances of the selected PV systems will be discussed 

separately, then a total ranking system will be applied to compare sustainability performances 

between the three selected types of PV systems.  

4.3.1 Techno-economic performance  

The results for techno-economic performances are presented in Figure 4.2 using the 

average number obtained for each assessed model.  

The levelised cost of electricity generation varies from £74/MWh to £169/MWh. The 

availability factor entirely depends on the regional sunlight duration; it is thus at the same 

level for all PV systems. Conversely, the difference between silicon and CdTe for the rest of 

the indicators are rather noticeable. Despite the low system cost, the payback period and 

levelised cost of CdTe systems are almost double that of silicon-based systems. The 

profitability factor of CdTe in particular reaches negative values, which indicates high 

investment risk. It can be concluded that the economic performance of CdTe systems is 

constrained by their low efficiency; the levelised cost is compromised by its low lifetime 

electricity output, which thus further compromises both the payback period and profitability.  

Other than cost and materials, climate and geographical location are the other factors that 

constrain the return on investment (ROI) for solar PV systems. For instance, a silicon-based 

solar panel installed in California has a capacity factor of 20%, which brings the levelised 

generation cost to as low as $7/MWh (Reichelstein and Yorston, 2013); a horizontally-

mounted silicon solar panel in Scandinavia has a capacity as low as 5.4% (Stamford and 

Azapagic, 2012) which is almost as low as the lowest estimation for the worst performing 

CdTe systems in this study.  

The two selected silicon PV systems are both able to pay back the capital costs between 

10-14 years, which is approximately within the first half of their generating lifetime (normally 

25 years). The p-Si system can achieve break-even as early as four years ahead of s-Si 
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systems. Due to its lower generation capacity, the CdTe system will not break even until 

possibly after manufacturer guaranteed lifetime has passed.   

 

Figure 4.2 Techno-economic performance of solar PV systems 

 Based on present technology, solar PV is still considered to be not dispatchable therefore 

equal score is applied to all assessed panels. In summary, solar PV systems made of silicon 

materials perform better as a result of a higher yield of electricity, and also lower investment 

risk, in comparison to CdTe systems. The p-Si systems require the least capital investment 

and have the best performance among the three selected solar PV systems in the techno-

economic category.    

4.3.2 Environmental performance  

Environmental performance of silicon and CdTe systems are illustrated in Figure 4.3. A 

generalized silicon-based PV system is used as a representative of both s-Si and p-Si systems.  

The minor difference on material circularity can be found between the two compared 

systems, with the silicon-based system valued slightly higher than the CdTe system on this 

indicator. The circularity of both assessed systems is compromised by the current material 

recycling rate in the UK. In theory, silicon-based solar PV has a recycling rate of as high as 

99.7% (Li et al., 2016b); however result from this study conveys that less than half of the 

material consumed and waste produced is neither recycled nor recyclable. For example, as 

previously shown in table 4.2, the bulk of the mass for both PV systems is glass; in theory, the 

glass is 100% recyclable without loss in quality (Zapata and Hall, 2013), while compare to 

currently only 67.8% of the glass is recycled in the UK (DEFRA, 2015). The CdTe systems 

Availability
Factor

Capacity Factor Payback Period
(years)

Levelised cost
(£/MWh)

CdTe 0.145 0.065 22.5 135
p-si 0.145 0.115 11 78
s-si 0.145 0.13 13.5 85

Techno-economic performance of solar PV systems  
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has higher toxicity related impacts compare to the silicon based system, this is because the use 

of cadmium material. Cadmium has high toxicity and it is largely soluble in water (Benavides 

et al., 2005), incidents associated with cadmium poisoning can be found around the 

world(Järup, 2003). The use of cadmium is highly restricted, and Restriction of Hazardous 

Substances Directive (Directive, 2002) only permits its use in solar PV panels.  

The total life time energy consumption for the silicon system is 11.25MWh and for the 

CdTe system is 8832kWh. In comparison with CdTe systems, the manufacturing process for 

silicon-based systems is more energy intensive, this can be explained by the difference in 

manufacture briefly illustrated in Figure 4.4. The process for producing each solar cell begins 

with quartz reduction; then metallurgical grade silicon is purified by a Siemens or modified 

Siemens process which requires high temperatures in order for trichlorosilane and hydrogen to 

react in the reactor chamber; this is then followed by the silicon crystallisation process. In the 

case of s-Si panels, the Czochralski process which involves gradually extracting the growing 

crystal from the melting pot is required to produce silicon of single form. These processes all 

requires a considerable amount of heat which therefore explains the high energy demand. In 

comparison, production of CdTe panels only involves applying a thin layer of semiconductor 

metal onto the glass backing, followed by a thermal treatment carried out with CdCl2 (Kato et 

al., 2001). Although CdTe consumes less energy than silicon based PV, but its energy 

payback period is let down by its lower conversion efficiency.  

The silicon purification process and the significant proportion of aluminium (76.64kg) in 

the silicon-based system add to the system’s high acidification and eutrophication potential.  

The ozone depletion potential originates from the silicon solar PV manufacture process and 

can be traced to panel wafer production where 30% are generated by German production and 

60% are emitted from Asian and US factories, where environmental legislation for the 

manufacturing process varies greatly from that in Europe.  Silicon PV has higher impact in the 

category of terrestric toxicity potential, ozone layer depletion potential and photochemical 

ozone creation potential; this is caused by the heavy use of aluminium in the system.  
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Figure 4.3 Environmental performance of Silicon and CdTe solar PV systems
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Ethene-
Equiv.]

CML2001 -
Jan. 2016,
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(TETP inf.)
[kg DCB-
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Silicon 0.38 2.5 50.3 29.2 1.32E+04 4.72E+03 2.36E+04 2.94E+07 0.000282 4.84 146
CdTe 0.35 4.1 66.8 64 3.10E+05 2.06E+05 1.67E+06 1.58E+08 0.000273 4.37 90

Environmental impact of Silicon and CdTe solar PV systems
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Figure 4.4  Manufacture process of silicon-based (top) and thin film (down) solar PV 

systems(Peng et al., 2013) 
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4.3.3 Social impacts  

Existing data on employment creation through solar PV installation varies greatly. 

Cameron and van der Zwaan (2015) estimated an average of 11.2/MW of employment 

opportunities can be generated through installation of PV systems, survey undertook by 

Atherton and Rutovitz (2009) gives employment figure of 31.9person/MW installation, 

while a private sector study by Maia et al. (2011) conveys a total of 7 jobs can be created 

through 1 MW solar PV installation projects.  

This can be understood as the significant amount of job opportunities created through 

solar PV deployment are transferrable from other existing sectors such as construction 

and sales. In addition, there is a general lack of agreement on how job creation rate is 

recorded, which makes it difficult to form a complete picture on solar PV’s ability to 

provide employment opportunities. Stamford (2012) estimated a job creation rate of 653 

person-year/TWh for the UK. As informed by Minel Energy, the difference in types of 

solar PV technology and geographical location has little impact on the number of 

employment opportunities created for installing and maintain solar PV.     

The North East of England suffers from the highest proportion of households in fuel 

poverty across England, with 11.1% of the households falling into fuel poverty(DBEIS, 

2018a). It can be observed from Figure 4.5 that installation of a solar PV system can 

achieve a 36%-54% bill reduction rate, which can assist in alleviating fuel poverty within 

the region.  
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Figure 4.5 Bill reduction rate achieved by s-Si, p-Si and CdTe solar PV systems 
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Table 4.4 Sustainability assessment results for selected solar PV system

Sustainability issues Indicator 

Type of solar photovoltaic systems  
Silicon Thin Film 

s-Si p-Si CdTe 
min max min max min max 

T
ec

hn
o-

ec
on

om
ic

 
C

at
eg

or
y 

 Reliability  
Availability factor 0.14-0.15 

Capacity factor 12% 14% 11% 12% 5% 8% 
Cost Levelised cost 74 96 68 88 101 169 

Dispatchability 24 24 24 24 24 24 
Financial 
feasibility 

Payback period  13 14 10 12 13 26 
Profitability  0.84 2.12 0.65 2.12 -1.2 1.53 

E
nv

ir
on

m
en

ta
l C

at
eg

or
y 

 

Material circularity  Circularity  0.38 0.35 

Energy Payback  
Energy payback 

period  2.5 4.1 

Global warming 
Global warming 

potential  1.19E+04 2.06E+05 

Acidification  
Acidification 

potential 77.5 66.8 

Eutrophication 
Eutrophication 

potential 28.8 64 

Ozone depletion  Ozone layer 
depletion potential  1.48E-03 2.73E-04 

So
ci

al
 

C
at

eg
or

y 
 

Fuel poverty Bill reduction rate  47% 54% 47% 51% 36% 39% 

Employment 
provision 

Employment 
provision 653 
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4.3.4 Summary of solar PV technology comparison   

The assessment results are organized using a total ranking system to identify the 

strengths and shortcomings of each assessed technology, as displayed in Table 4.5. 

Assuming all indicators are equally important, a ranking score from 1 to 3 is assigned to 

each indicator based on the performance score of solar PV system at each category; 

where 1 represents the best performance and 3 accounts for the worst performance. The 

same ranking score is given to technologies that share the same performance within one 

category. All the scores are finally added  to demonstrate the sustainability performance 

of each technology, where a lower score indicates better performance and a higher score 

worse performance. 

Sustainability issues Indicator 

Type of solar 
photovoltaic systems  
Silicon Thin Film 

s-Si p-Si CdTe 

T
ec

hn
o-

ec
on

om
ic

 
C

at
eg

or
y 

 Reliability  Availability factor 1 1 1 
Capacity factor 2 1 3 

Cost Levelised cost 2 1 3 
Dispatchability 1 1 1 

Financial 
feasibility 

Payback period  2 1 3 
Profitability  1 2 3 

Sub-total  9 7 14 

E
nv

ir
on

m
en

ta
l C

at
eg

or
y 

 

Material 
circularity  Circularity  1 1 2 

Energy Payback  
Energy payback 

period  1 1 2 

Global warming 
Global warming 

potential  1 1 2 

Acidification  
Acidification 

potential 2 2 1 

Eutrophication 
Eutrophication 

potential 1 1 2 

Ozone depletion  Ozone layer 
depletion potential  1 1 2 

Sub-total  7 7 11 

So
ci

al
 

C
at

eg
or

y 
 

Fuel poverty Bill reduction rate  1 2 3 
Employment 

provision 
Employment 

provision 1 1 1 

Sub-total  2 3 4 
Grand Total 18 17 29 

Table 4.5 Summarised sustainability ranking of solar PV systems 

Examining the results listed in table 4.5, thin film solar PV system has the worst 

performance across all categories, and s-Si system ranks higher in the social impact 
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category owing to its higher energy conversion efficiency. Overall, the p-Si system is the 

most sustainable option.  

4.4. Discussion  

 
This section discusses the results obtained from the sustainability assessment and other 

sustainability relevant issues associated with solar PV technology.   

4.4.1 Economic assumptions  

In the assessment carried out in this study, a standard real discount rate of 3.5% is applied 

to all solar PV systems in accordance to Social Time Preference Rate (STPR) published in the 

Green Book (Book, 2003). In practice, investors or decision makers may select a different 

discount rate to reflect their perception of financial risks, and thus discount rate varies from 

one case to another (IEA and NEA, 2015). Financial risks can be influenced by some factors 

such as maturity of the technology, the proportion of marginal cost, the lumpiness of 

investment, market incentives, and policy. For instance, as suggested by Oxera (2011, p. 11), 

when carrying out financial analysis, renewable energy technologies such as wind and solar 

PV should be given a discount rate of 6-9%, as these technologies possesses moderate 

financial risk for their low dependence on subsidies. Nevertheless, this discount rate was 

calculated in 2011, and so the most recent discount rate had been adjusted to 3.5% to reflect 

the recent reduction on FiT reduction and geopolitical changes (DECC, 2015; Dhingra et al., 

2016)  

Finally, financial analysis carried out in this study does include the impact of 

administrative costs such as insurance cost and financing costs on the levelised cost of 

generation. These costs are influenced by the individual financing method and future 

technology learning, and these factors are not in the scope of this study. Nonetheless, these 

factors are recommended to be considered for future studies, particularly for the case of 

silicon-based solar PV modules, where the manufacturing cost of silicon wafers accounts for 

over 65% towards the total manufacturing cost of a solar cell and the majority of this cost 

occurs during the extraction and processing of silicon materials. 

Recycling silicon PV is still unprofitable at present stage; with the positive role of 

learning economies and improved competitiveness of the recycled materials market, the 

system cost of solar PV systems can be expected to reduce in the future (D’Adamo et al., 

2017; Smith and Bogust, 2018).  
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4.5.2 Policy support 

Economic barriers are both complex and significant when it comes to the deployment of 

renewable energy technologies (Allen et al., 2008). Successful renewable energy diffusion 

with help from policy support are evident in many countries such as Japan (Yamada and Ikki, 

2013), Germany (Network, 2014) and the US(Kann et al., 2013). Strong policy support not 

only softens financial burdens but also encourages investor confidence which then 

subsequently advances R&D of the technology itself. Solar PV as an investment option 

requires a substantial proportion of capital investment which exceeds 60% of the total 

investment. Additionally, the economic feasibility of solar PV heavily relies on available 

financial incentives where FiT tariff accounts for 25%-60% of the total levelised cost (at 3.5% 

discount rate)(Oxera, 2011, p. 11; Dhingra et al., 2016). 

4.5.3 End of Life  

As discussed in previous section, cadmium is a highly toxic substance, hence safe and 

efficient end of life treatment is required to ensure no harmful substance is leaked into the 

environmental. End of life scenario is carried out here to examine the potential environmental 

impact of the decommission process. 

 The UK is a relatively new market for PV; there have not been enough retired PV systems 

for the industry to establish a standard end of life treatment approach. So far, most of the 

UK’s retired solar PV panels are processed as domestic waste, or occasionally transported to 

centralised European treatment facilities(Weckend et al., 2016). Therefore assumptions about 

end of life treatment are made presuming the assessed PV panels are recycled to the maximum 

amount at current technology: silicon panels are dismantled, and components are recycled 

separately at the current material recycling rate. However, the case is different for CdTe 

systems because of the toxicity of the semiconductor material. Therefore the end of life solar 

panel scenario for CdTe system is assumed to follow the practice of the largest European-

based manufacturer, First Solar’s Frankfurt-Oder plant in Germany (as shown in Figure 4.6). 

The retired CdTe panels are treated through shredding, removal of the semiconductor film, 

solid-liquid separation, laminate foil-glass separation and rinsing, semiconductor 

precipitation, and dewatering. Eventually, the module is reduced to glass cullet and unrefined 

semiconductor material and recycled at their current material recycling rate. Due to lack of 

data for this practice, the environmental performance of the end of life treatment cannot be 

estimated in this study.  
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Furthermore, it should be noted that the end of life treatment technology for retired solar 

PV currently is still at development stage. Although recent technology enables a 60% 

recovery rate of silicon materials from retired PV panels (Kang et al., 2012), this technology 

has yet to be commercialised. Considering the material recovering rate of solar panels has the 

potential to reach as high as 96-99.7% (Li et al., 2016b), and the UK WEEE regulations have 

have created a separate category for retired PV panels and introduced a new requirement for 

PV installers to join a “distributor take-back scheme”. The scheme have been approved by the 

Department for Environment Food and Rural Affairs, and its implementation is currently 

under review(DEFRA, 2018a). Therefore the future for reduced environmental impact 

through improvement in both recycling practice and technology remains optimistic. 

 

 

 

Figure 4.6 End of life treatment of retired CdTe solar PV panels (P. Sinha, 2012) 

4.5.4. Sensitivity analysis  

In compliance with LCA standard ISO 14044 (ISO, 2006b, p. 22), additional analysis has 

been carried out for data quality assurance purpose. Other than the CML method used in this 

study, ReCiPe is another both geographically valid and widely applied LCA method with 

thoroughly peer-reviewed impact categories (De Schryver et al., 2009; Handbook, 2010). 

ReCiPe consists of both the mid-point and end-point method. For consistency purposes, only 

mid-point indicators that assess the same environmental impacts are included in this section. 

The results obtained from the ReCiPe method uses the same assumption, system boundary 

and process with that of the CML method.  
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Figures 4.7 show the environmental impact assessment result (apart from circularity and 

energy payback period as they were not assessed using CML method) for silicon and CdTe 

solar PV systems carried out using ReCiPe method. In the ReCiPe method, eutrophication 

potential is divided into freshwater and marine eutrophication potential, and acidification 

potential is defined as terrestrial acidification potential.  

The environmental impact for both solar PV systems is almost identical using LCA 

methods, apart from the eutrophication potential. The difference is more prominent for silicon 

systems, where the eutrophication potential using the CML method amount to much higher 

value (28.73) than the value obtained using ReCiPe method (10.84). This difference originates 

from different eutrophication potential calculation algorithms between the CML and ReCiPe 

methods. The CML method calculates eutrophication potential based on LCA background 

research carried out in 1992 (Heijungs et al., 1992), which assumes the worst case scenario by 

summing all nitrogen, potassium and organic matter emission in the phytoplankton molar 

element ratio of 106:16:1 for C:N:P, and no cause-effect mechanism is taken into 

consideration. On the other hand, the ReCiPe method is based on more recent research 

(Goedkoop et al., 2009), and calculates eutrophication potential by categorising the receiving 

body where eutrophication substances are deposited which provides more precise modelling 

of environmental mechanisms with fewer substances covered (Bach and Finkbeiner, 2016). 

Considering the above circumstances, it is considered that eutrophication potential results 

obtained using the ReCiPe method provide more credible estimation compared to the results 

obtained using CML method.    

 



 
 

48 
 

 

Figure 4.7 Environmental impact of silicon and CdTe solar PV using ReCiPe method
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PM10 eq]

ReCiPe 1.08
Midpoint (H) -
Photochemical

oxidant formation
[kg NMVOC]

ReCiPe 1.08
Midpoint (H) -

Terrestrial
acidification [kg

SO2 eq]

Silicon 4.68E+03 1.16E+03 8.25 1.67E+04 0.00035 17 22.2 43.7
CdTe 2.07E+05 3.69E+04 5.58 8.52E+04 0.000278 23.5 74.3 65.4

Environmental impact of silicon and CdTe solar PV using ReCiPe method
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4.5.5 Sustainable supply chain  

Solar PV is considered a “clean energy” by the general public, for the reason that it does 

not emit greenhouse gases during electricity generation. However, results from this study 

show that although solar PV technologies are emission-free during operation, the 

environmental impact derived from the manufacture and end of life treatment process are not 

negligible.  

The economic globalisation and outsourcing of services has advanced the service of the 

supply chain, at the same time making it increasingly difficult for businesses and consumers 

to acknowledge and manage the impact of their decisions. Large companies have already 

started to demand more information from their suppliers and deploy LCA to track and 

optimise the sustainability performance of their products; and some companies have started to 

integrate LCSA in their sustainability strategy (Bonanni et al., 2010; Herva et al., 2011; 

Čuček et al., 2012). 

4.5.6 Data quality assessment  

Table 4.6 below summaries the data quality analysis. The average score is 88%, slightly lower 

than that of onshore wind (90%) and higher than that of biomass CHP (82%). The weakest 

area is social indicators, where primary employment data was unable to obtain and literature 

sourced data was used to give an estimate. Overall, the quality of the data is considered to be 

good considering the goal and scope of this study. Recommendation for future work may 

include:  

1. Improving the data quality by using primary data on employment provision 

and bill reduction achievements.  

2. Explore hidden subsidies and incentives.  

3. Including primary data on local material recycle practice to give a better 

estimate on circularity of solar PV.  
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Sustainability issues Indicator Normalised total 

Te
ch

no
-e

co
no

m
ic

 
C

at
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y 

 Reliability  
Availability factor 0.89 

Capacity factor 0.94 
Dispatchability  1.00 

Cost Levelised cost 1.00 
Financial feasibility Payback period  1.00 

En
vi

ro
nm

en
ta

l C
at

eg
or

y 
 

Circularity  
Material circularity  0.83 

Fuel circularity 1.00 
Energy Payback  Energy payback period  0.89 

Acidification Potential (AP)  0.83 
Eutrophication Potential (EP)  0.83 

Freshwater Aquatic Ecotoxicity Pot. (FAETP inf.)  0.83 
Global Warming Potential (GWP 100 years) 0.83 

Human Toxicity Potential (HTP inf.)  0.83 
Marine Aquatic Ecotoxicity Pot. (MAETP inf.) 0.83 

Ozone Layer Depletion Potential (ODP, steady state) 0.83 
Photochem. Ozone Creation Potential (POCP) 0.83 

Terrestric Ecotoxicity Potential (TETP inf.) 0.83 

Social 
Category  

Fuel poverty Bill reduction rate  0.89 
Employment 

provision Employment provision 
0.78 

Table 4.6 Data quality assessment result for solar PV 

4.6 Summary 

Three solar PV technologies that are widely deployed within the region were considered to be 

representative for existing solar PV deployment, and were selected for the assessment. 

Examining from the sustainability performance obtained from the assessment, it can be 

concluded that: 

1. Although solar PV is commonly considered to be a “clean” energy option for its low 

emission during generation stage, the environmental impact caused during 

manufacturing stage is not negligible; 

2. Solar PV installation in the Northeast region of England does not have excellent 

techno-economic performance, this is mainly due to the limited sunlight resource 

available within the region;  

3. Fuel poverty can be effectively alleviated through bill reduction achieved by 

installation of solar PV;  

4. The p-Si solar panel system is the most sustainable option among the solar PV systems 
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made of p-Si, s-Si and CdTe materials. The sustainability performance of solar PV 

systems can be improved with future technology advancement.  
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Chapter 5 Onshore wind 
     

Wind energy had been widely implemented throughout Europe since1980s, fostered by the 

EU, as a renewable alternative to conventional energy technologies. By end of 2016 installed 

onshore wind capacity of the UK reaches 14,543MW, ranked the 3rd in the Europe (DECC, 

2017). UK is one of the best locations for wind power in the world, and the wind resource of 

North of England is among the best across the Europe. (Rubert et al., 2016). This chapter 

provides a sustainability assessment on the deployed onshore wind energy in the Northeast 

England. The chapter first introduces the design of wind turbines and explains the energy 

outlook within the region, then lays out the assumptions made for the assessment followed 

with the assessment results and discussion surrounding the sustainability issues of onshore 

wind technology.  

5.1 Introduction 

A wind turbine utilises the wind energy by converting the kinetic energy of wind into 

electrical energy. The world’s wind energy system had been evolving gradually since the first 

electricity generation turbine was developed in the beginning of the 20th century. (Kumar et 

al., 2016). One of the most important trend for onshore wind today is the expanded option of 

turbines offered by manufactures to meet wider range of site constraint and lower the 

levelised cost for developers. (IRENA, 2018a, p. 90) Wind turbine price is influenced by both 

demand-and-supply and commodity prices, such as the cost of copper, iron, steel and cement. 

The cost of turbines see a decrease since 2010 driven by the falling of commodity prices, 

increased supply chain competition and improvements in manufacturing process. 

 Another trend can observed in the wind industry over the past decade is the need for turbines 

with longer blades (proportionally larger rotors and higher hubs) which outputs greater 

energy, (Kumar et al., 2016), and this trend demands lighter and slender turbine blades for the 

maximum energy yield. Traditionally, blades were made of glass fibre and polyester 

resin.(Serrano‐González and Lacal‐Arántegui, 2016), over the past few years manufactures 

started to integrate carbon fibres in the making of turbines to offer light, stiff and slender 

turbine blades that is required by the recent trend. The technology of carbon fibre blades is 

still in developing stage due to the high cost and difficulties in manufacturing process. 

(Serrano‐González and Lacal‐Arántegui, 2016). One of the reason for the shift towards larger 

turbines is because they liquidates project development cost over higher energy yield; 

however this sometimes contribute to higher economic cost (Fingersh et al., 2006). In 
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addition, the larger turbine blades is also a challenge for land transportation because of large 

turning radius. (Cotrell et al., 2014) 

Social barrier to onshore wind implementation not only within the UK had put constraint on 

the deployment of onshore wind technology. For example, Martindale wind farm (also known 

as high volts wind farm) constitutes of three wind turbines was put in place by EON energy, 

and this development had split the local community since 2003, with some accepting the 

turbines and others strongly opposing them. (BBC, 2014). One of the mitigation strategies 

offered by the wind farm hosts to soften the resistance is to set up community funds which 

can be used to support local community activities, such as replace roof of local churches and 

purchase of equipment for local football clubs etc.  

There are approximately 270 wind farms installed in the UK. Factors such as regulatory 

restrictions on tip height, duration of the project and wind speeds are detrimental for selecting 

the suitable turbines for any location. Most of them are connected to the low voltage regional 

electricity networks as part of electricity distribution network (REF, 2015). Figure 5.1 below 

shows the location and installed capacity of wind farms throughout the region, using data 

extracted from UKWED (2018). Vast majority of the onshore wind installation in the 

Northeast region exists in forms of wind farms. The residential installations are not very 

common mainly due to the high investment and maintenance cost, difficulties with finding the 

ideal installation locations and limited wind resource in residential areas. Most of the turbines 

currently installed in the UK has rated power between 2-3MW. (WindEurope, 2018). This can 

be observed in table 5.1 where majority of the installations constitutes of turbines with rated 

power of 2MW and 2.05MW,the most popular models are Repower MM82, Vesta V80 and 

Sevenion MM92.There are only two wind farms opted for models with rated power less than 

2MW, and one of them, high sharply wind farm is closed for retirement since December 2017 

(Michaël.PIERROT, 2018)  
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Figure 5.1 Map showing installation of wind farms within the Northeast region of England



 
 

55 
 

 

Turbine Model  
Installed 
Capacity   Installation Sites  

Repower MM82 

4*2MW   Broom Hill Wind Farm 
4*2MW   Langley Wind Farm 
5*2MW    Haswell Moor Wind Farm 
7*2 MW   Walkway Wind Farm 
4*2MW  Great Eppleton Wind Farm 
5*2MW    Seamer Wind Farm 

10*2 MW   Wandylaw Wind Farm 
12*2 MW   West Durham Wind Farm 

Vesta V80 

2*2MW   High Haswell Wind Farm 
2*2MW   Cramlington Wind Farm 
3*2MW    South Sharpley Wind Farm 
6*2MW   Barmoor Wind Farm 

18*2MW   Green Rigg Wind Farm 
Gamesa G87 13*2MW Lynemouth Wind Farm 
Neg Micon 
NM80/2750 

2*2.75MW   Holmside Hall Wind Farm 
3*2.75MW Martindale Wind Farm 

Nordex N90 6*2.5MW   Wingates Wind Farm 
Vesta V90 18*3MW   Middlemoor Wind Farm 
REpower M104 1*3.4MW   Blyth Harbour Wind Farm 

Nordex N60/1300 
2*1.3MW   High Sharpley Wind Farm 
4*1.3MW   Trimdon Wind Farm 

Table 5.1 Installation of wind farms within the Northeast region of England 

5.2 Assumption  

Three wind turbine models are selected in this study: Repower MM82, Vesta V80, and Vesta 

V90; for that reason that MM82 and V80 are the most popular options within the region, and 

V90 is the model with rated power at 3MW with second highest installed capacity within the 

region. Figure 5.2 shows system boundary of the assessed technologies. Manufacture of a 

turbine including the production of the nacelle, tower and rotor; installation stage including 

construction of the foundation of the turbine, network connection and road building. Inventory 

data used for road buildings and grid connection for each assessed wind turbine model is 

scaled up of dataset provided by Garrett and Ronde (2011).Operation involves transportation 

to the site and the grease required for maintenance work. In the end of life stage all the 

materials constituted the turbine is assumed to be recycled at current recycling rate in the UK. 

The designed operational life-time of a turbine is assumed to be 20 years, this applies to all 

the parts and components of the plant. (IEC, 2005-08)  
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Figure 5.2 system boundaries of assessment on onshore wind turbines 

 

5.2.1 Key techno-economic parameters  

Table 5.2 displays key techno-economic parameters for wind technologies assessed in this 

study.  

The availability factor, as defined by Vestas, is that “the percentage of a given period that a 

wind turbine is available for operation”(Conroy et al., 2011, p. 2969), the designed 

availability of a wind turbine is generally 98%; the operational availability is reduced by 

events such as scheduled and unscheduled maintenance, power system outages and control 

system faults.  

Various tools for predicting a wind farm’s output had been developed (e.g. SCADA system, 

WaSP system are commonly used by renewable energy consultancies like Garrad Hassan), 

however data deployed in those analysis are not made publicly available. Therefore, in this 

study site specific data are used where possible to reveal the actual performance of wind 

energy within the region. Wind turbine performance data are obtained from Renewable 

Energy Foundation that is organised and corrected by G.Hughes (2012), as part his research 

on the wind turbine performance in the UK and Denmark. This dataset contains the actual 

output of each of the 282 recorded wind farms during the period of 2002-2012. Although not 

all wind farms are covered in the database, the data on following sites was able to be extracted 

for this study:  

• High Haswell wind farm  

• Haswell moor wind farm  

• West Durham wind farm 

• Langley wind farm  

• Great Appleton wind farm 

Manufacture

•Nacelle
•Tower 
•Rotor

Installation

•Foundation
•Road 
•Grid 
connection

Operation 

•Transportat
ion to site

•Oil and 
grease

End of life

•Recycle 
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 The performance data for Middlemoor wind farm is not available from this dataset, therefore 

the data for Aikengall wind farm is used instead, because these two wind farms are 

geographically adjacent to each other and shares similar wind resource. Capacity factors of 

each turbine model is then calculated from the dataset, which gives estimate to both annual 

and life-time electricity output.  

Wind turbine investment cost can vary substantially, based on the turbine type, size of 

contract, location, region, commodity prices, demand and supply, as well as the level of 

subsidies (Blanco, 2009). Price of Vesta V80  and V90 are provided by the wind turbine 

manufacture Vesta, installation and operational costs are directly obtained as quota from local 

installation company the New Day Energy; the figures obtained are cross-checked to be in 

line with the onshore wind cost reviewed by  (DECC, 2013) and FE (2013). Each wind farm 

can stay on the support of Renewable Obligation for 20 years, as mentioned in the 

methodology chapter the income generated through ROCs and exporting electricity to the 

amounts to £97.44/MWh. 
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2MW Rated Power Turbines 3MW Rated Power Turbine 

Vesta V80 Repower MM82 V90 
Min Average Max Min Average Max Min Average Max 

Hub Height (m) 60 63 77 59 63 80 65 78 85 
Cut-in speed (m/s) 4 3.5 4 
Cut-out speed (m/s) 25 25 25 
Rated wind speed 
(m/s) 15 15 13 

Availability (%) 98% 
Capacity factor (%)  11% 26% 49% 9% 24% 47% 12% 33% 54% 
Life time (years) 20 
Output per turbine 
per year(MWh)  1,927 4,555 8,585 1,577 4,205 8,234 2,102 5,782 9,461 

Output per turbine 
lifetime (MWh)   38,544 91,104 171,696 31,536 84,096 164,688 42,048 115,632 189,216 

Turbine cost 
(£/turbine) 2,000,000 

/ 

3,000,000 

Installation 
cost(£/turbine) 500,000 725,000 

Annual O&M 
cost(£/turbine) 33,000 47,000 

Lifetime O&M 
cost(£/turbine) 660,000 940,000 

Levelised cost 
(£/MWh)  18 35 82 25 40 111 

Table 5.2 Techno-economic parameters of assessed wind turbines  



 
 

59 
 

5.2.3 Environmental parameters  

Table 5.3 shows the material consumptions for three assessed wind turbines, and table 5.4 

shows the recoverable mass calculated based on the UK current material recycling rate.  

Despite turbine V90 has higher rated output power than MM82, it requires less material mass 

in total. Turbine MM82 has a heavier nacelle and rotor compare to the other Vesta models, 

and therefore it requires larger foundation proportionally, to support the machine weight.  

 

Material use(t/system) Turbine models 

V80 
(Hirschberg 
et al., 2008) 

REpower 
MM82 
(Guezuraga 
et al., 2012) 

V90 
(Crawford, 
2009) 

Manufacture Rotor  Steel  11.0 20.0 19.9 
Glass fibre 
reinforced 
plastic  

29.7 24.3 20.1 

Epoxy  0.0 1.8 8.0 
Nacelle Steel  64.5 90.0 61.0 

Copper 1.0 2.4 4.0 
Aluminium 2.8 0.0 70.6 
Polyethylene 0.0 2.4 0.7 

Tower  Epoxy  0.6 8.1 0.0 
Steel  113.2 186.4 158.8 

sub-Total Mass 182.0 335.4 343.1 
Installation  Foundation  Steel  80.0 80.0 36.0 

Concrete 1095.0 1164.0 1140.0 
Road  Gravel  147.0 147.0 147.0 

Sodium 
Chloride  

2.3 2.3 2.3 

Network 
connection 

Steel, low 
alloyed 

8.8 8.8 9.2 

Copper  3.9 3.9 4.2 
Lead  7.6 7.6 8.0 
PVC 3.5 3.5 4.5 

O&M Lubricating 
oil  

Lubricating 
oil  

0.9 0.9 1.0 

Total Mass 1531.1 1753.5 1695.3 
Table 5.3 Material consumption for three assessed wind turbines 
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Recyclable material ( t/system) Turbine models 

V80  MM82 V90  

Rotor  Steel  5.70 10.42 10.36 
Glass fibre reinforced plastic 2.97 2.43 2.01 
Epoxy  0.00 0.00 0.00 

Nacelle Steel  33.52 46.80 31.72 
Copper 0.56 1.37 2.29 
Aluminium 2.73 0.00 67.80 
Polyethylene 0.00 0.00 0.00 

Tower  Epoxy  0.00 0.00 0.00 
Steel  58.86 96.93 82.56 

Material circularity (%) 47% 47% 57% 
Table 5.4 Recoverable mass of three assessed wind turbines  

 

5.2.4 Social parameters  

Onshore wind has contributed 4.1% to the employment and 7.9% of the turnover of UK’s low 

carbon and renewable energy economy in 2016. (ONS, 2016) UK is one of the leading 

countries in the world in providing employment through wind energy, 40,000 employment 

opportunities was created in 2017 alone. (IRENA, 2018b)  

In the year 2013, onshore wind contributed 700 employment to the Northeast region(DBEIS, 

2015), and the total installed capacity for onshore wind in the region is 348.3MW (DBEIS, 

2017b). The installation opportunity provided is 2 job/MW. Although there is no direct 

statistic data stating the O&M jobs created within the region through onshore wind projects, 

according to Cameron and van der Zwaan (2015) the O&M employment generated from 

onshore wind in the UK is 0.12 job/MW. Although majority of the manufacture job created is 

not located within the UK, it is 12.5 job/MW(Rutovitz and Atherton, 2009) 

5.3 Result  

The detailed assessment result is presented in table 5.8 in the end of the section; and 

the ranking of performances is listed in table 5.7. 

5.3.1 Techno-economic performance  

Capacity factor of three assessed turbines are shown in figure 5.3.Capacity factor and 

availability factor are closely linked; wind resource is abundant in the Northeast region of 

England where average wind speed (8-9m/s) already passed the cut-in speed for all turbines at 
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just 45m above ground (DECC, 2012). The capacity factor is similar for all assessed turbines, 

where the average is 26% for the 2MW models and slightly higher at 33% for the 3MW 

model.  

 

Figure 5.3 Capacity factor for three assessed wind turbines 

Figure 5.4 shows the levelised cost for the three assessed wind turbines. Levelised cost for all 

assessed turbines range between £35-£40/MWh, is in line with data published by BEIS 

(2016). The levelised cost of V90 is only slightly higher than that of V80, the difference for 

average levelised cost is only £1/MWh. 

  

Figure 5.4 Levelised cost for three assessed wind turbines 
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5.3.2 Environmental performance 

Figure5.5 shows the environmental impact of three assessed turbines, although the difference 

between different turbine models is not significant, turbine MM82 has the highest impact 

across almost all categories, this is due to the highest material consumption of this turbine 

(figure 5.6); and although model V90 consumes more material than V80, the total impact is 

discounted by highest energy yield. However, V90 has higher impact than MM82 in the 

terrestric ecotoxity potential, due to more copper used (figure 5.7-5.9).  

Majority of the environmental impact occurred during manufacturing stage and installation 

stage (Figure 5.10-5.12), from the production of metal materials used in the turbine. Steel, the 

dominate metal used in wind turbines, has large environmental impacts, according to Allwood 

et al. (2012) 25% of the world’s industrial CO2 emission originates from steel production. 

Steel is generally extracted from iron ore and scrap electric steelmaking  where raw materials 

are melted together then further purified through a refining vessel (Habashi, 1997; Norgate et 

al., 2007). These manufacture processes requires large amount of heat which generally came 

from and the burning of fossil fuels releases greenhouse gases which then contributes to 

GWP. In addition, the metal production process also releases heavy metal and dust into the 

environmental, which then results in acidification, human, terrestric and freshwater toxicity. 

(Burchart-Korol, 2013) 

Most of the wind farms locates in remote areas, therefore a combination of tarred roads and 

dirt roads need to be built to provide convenient access to the turbines. Observing figure5.13-

5.15, the impact of road construction also plays significant part in the overall environmental 

performance. Table 5.6 shows the environmental impact of road construction. NMVOC in the 

table stands for non-methane volatile organic compounds, where the major source of this type 

of emission is use of solvent, combustion activities and production processes. (EEA, 2015) 

Non-biogenic NMVOCs contribute to the formation of tropospheric zone, altogether with the 

harmful chemical release into the water and soil causes damage to human and ecosystem 

health. (Marzouk et al., 2017) 

Blades of the turbine are mainly made of prepreg, a type of glass-fibre reinforced plastic 

where fabrics and fibres are pre-impregnated with epoxy resin and polyester thermosetting 

plastic under heat and pressure. (REpower, 2011; Vestas, 2013). Despite the lightweight of 

these materials, the energy consumed for producing these materials accounts for large 

proportion of the overall energy consumption.   
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There is no substantial difference between circularity of three assessed turbines, this can be 

explained by their similar material composition and same recycling rate applied for the 

materials. The average energy payback period for three turbines are all under one year, V90 

has the best performance in this category due to its higher energy yield comparing to V80 and 

MM82. Under high wind condition, all turbines can break-even with the energy consumption 

within a quarter of the year.  

  



 
 

64 
 

  

Figure 5.5 Environmental impact assessment of three selected wind turbines  
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Figure 5.6 Material composition of three selected wind turbines 

          

Figure 5.7 Energy consumption for manufacturing Vestas V80 
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Polyethylene 3.09 2.4 0.7
Fiberglass 14.2 24.3 12.04
Epoxy 9.46 10 9.27
Alumnium 10 0 1.621
Copper 4.2 2.4 3.991
Cast iron 40 39.95 40
Steel 193.36 296.4 239.69

Material composition of three assessed wind turbines

Energy consumption for manufacturing V80 (net calorific value) 
[MJ/turbine]

GLO: market for cast iron ecoinvent

GLO: market for copper ecoinvent

GLO: market for epoxy resin, liquid ecoinvent

GLO: market for glass fibre reinforced plastic, polyamide, injection moulded ecoinvent

GLO: market for polyethylene, high density, granulate ecoinvent

GLO: market for reinforcing steel ecoinvent
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Figure 5.8 Energy consumption for manufacturing Repower MM82 

 

Figure 5.9 Energy consumption for manufacturing Vestas V90 

 

Energy consumption for manufacture MM82 (net calorific value) 
[MJ/turbine]

GLO: market for cast iron ecoinvent

GLO: market for copper ecoinvent

GLO: market for epoxy resin, liquid ecoinvent

GLO: market for glass fibre reinforced plastic, polyamide, injection moulded ecoinvent

GLO: market for polyethylene, high density, granulate ecoinvent

GLO: market for reinforcing steel ecoinvent

Energy consumption for manufacture V90 (net calorific 
value) [MJ/turbine]

GLO: market for aluminium, cast alloy ecoinvent
GLO: market for aluminium, wrought alloy ecoinvent
GLO: market for cast iron ecoinvent
GLO: market for copper ecoinvent
GLO: market for epoxy resin, liquid ecoinvent
GLO: market for glass fibre reinforced plastic, polyamide, injection moulded ecoinvent
GLO: market for polyethylene, high density, granulate ecoinvent
GLO: market for reinforcing steel ecoinvent
GLO: market for zinc ecoinvent
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Figure 5.10 Environmental impact assessment of Repower MM82 at different life cycle stages  
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 O&M MM82 4.41E-12 6.35E-13 1.30E-10 -7.00E-10 3.17E-10 4.19E-07 4.03E-16 1.04E-12 4.18E-12
Installation MM82 2.81E-02 1.33E-02 3.73E+00 3.82E+00 1.02E+01 8.72E+03 4.60E-07 2.92E-03 6.69E-02
Manufacture  MM82 0.0688 0.0296 8.13 12.3 22.3 1.82E+04 6.00E-07 0.00991 0.378

Environmental impact of MM82
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Figure 5.11 Environmental impact assessment of Vestas V80 at different life cycle stages  
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Environmental impact of V80
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Figure 5.12 Environmental impact assessment of Vestas V90 at different life cycle stages  
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Environmental impact of V90
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Polychlorinated dibenzo-p-dioxins (2,3,7,8 - TCDD) 
[Halogenated organic emissions to air] 3.05E-11 
Polycyclic aromatic hydrocarbons (PAH, unspec.) [Group 
PAH to air] 1.20E-07 

Copper [Heavy metals to air] 2.50E-05 

Chromium [Heavy metals to air] 1.85E-04 

Lead [Heavy metals to air] 5.15E-04 

Manganese [Heavy metals to air] 6.05E-04 

Nitrogen oxides [Inorganic emissions to air] 1.25E-02 

Dust (PM2.5) [Particles to air] 4.75E-02 

Carbon monoxide [Inorganic emissions to air] 4.73E+00 

Carbon dioxide [Inorganic emissions to air] 7.56E+01 
Table 5.5 Emission per tonne of Steel production (kg/ton) (EcoinventCentre, 2017a) 
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Figure 5.13 Environmental impact assessment of Repower MM82 
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Detailed envrionmental imapct of MM82

RoW: wind turbine network connection construction, 2MW, onshore ecoinvent RER: transport, freight, lorry 7.5-16 metric ton, EURO3 ecoinvent
GLO: market for waste mineral oil ecoinvent GLO: market for lubricating oil ecoinvent
GLO: market for reinforcing steel ecoinvent GLO: market for polyethylene, high density, granulate ecoinvent
GLO: market for glass fibre reinforced plastic, polyamide, injection moulded ecoinvent GLO: market for epoxy resin, liquid ecoinvent
GLO: market for copper ecoinvent GLO: market for cast iron ecoinvent
RER: sheet rolling, aluminium ecoinvent GLO: market for sheet rolling, chromium steel ecoinvent
GLO: market for road ecoinvent GLO: market for copper ecoinvent
GLO: market for concrete, normal ecoinvent GLO: market for cast iron ecoinvent
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Figure 5.14 Environmental impact assessment of Vestas V80 
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Detailed envrionmental impact of V80

RoW: wind turbine network connection construction, 750kW, onshore ecoinvent RER: transport, freight, lorry 7.5-16 metric ton, EURO3 ecoinvent
GLO: market for waste mineral oil ecoinvent GLO: market for lubricating oil ecoinvent
GLO: market for reinforcing steel ecoinvent GLO: market for polyethylene, high density, granulate ecoinvent
GLO: market for glass fibre reinforced plastic, polyamide, injection moulded ecoinvent GLO: market for epoxy resin, liquid ecoinvent
GLO: market for copper ecoinvent GLO: market for cast iron ecoinvent
RER: wire drawing, copper ecoinvent RER: sheet rolling, steel ecoinvent
GLO: market for sheet rolling, chromium steel ecoinvent GLO: market for road ecoinvent
GLO: market for copper ecoinvent GLO: market for concrete, normal ecoinvent
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Figure 5.15 Environmental impact assessment of Vestas V90
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Detailed envrionmental impact of V90

RoW: wind turbine network connection construction, 2MW, onshore ecoinvent
RER: transport, freight, lorry 7.5-16 metric ton, EURO3 ecoinvent
GLO: market for waste mineral oil ecoinvent
GLO: market for zinc ecoinvent
GLO: market for reinforcing steel ecoinvent
GLO: market for polyethylene, high density, granulate ecoinvent
GLO: market for glass fibre reinforced plastic, polyamide, injection moulded ecoinvent
GLO: market for epoxy resin, liquid ecoinvent
GLO: market for copper ecoinvent
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1,1,1-Trichloroethane [Halogenated organic emissions to fresh water] 2.72E-18 

1,1,1-Trichloroethane [Halogenated organic emissions to air] 4.37E-09 

1-Butanol [Organic emissions to fresh water] 4.76E-08 

1-Butanol [Group NMVOC to air] 2.52E-11 

1-Pentanol [Organic emissions to fresh water] 5.58E-11 

1-Pentanol [Group NMVOC to air] 2.32E-11 

1-Pentene [Organic emissions to fresh water] 4.22E-11 

1-Pentene [Group NMVOC to air] 7.29E-11 

1-Propanol [Group NMVOC to air] 2.94E-10 

2,4-Dichlorophenol [Halogenated organic emissions to air] 6.18E-11 

2,4-Dichlorophenoxyacetic acid (2,4-D) [Pesticides to air] 4.27E-10 

2,4-Dichlorophenoxyacetic acid (2,4-D) [Pesticides to agricultural soil] 1.43E-07 

2-Aminopropanol [Organic emissions to fresh water] 2.35E-11 

2-Aminopropanol [Group NMVOC to air] 9.76E-12 

2-Chlorotoluene [Halogenated organic emissions to fresh water] 1.32E-10 

2-Chlorotoluene [Halogenated organic emissions to air] 7.41E-11 

2-Methyl-2-butene [Hydrocarbons to fresh water] 1.80E-11 

2-Methyl-2-butene [Group NMVOC to air] 7.51E-12 

2-Nitrobenzoic acid [Group NMVOC to air] 1.87E-11 

3-Methylpentane [Group NMVOC to air] 5.21E-09 

Acenaphthene [Hydrocarbons to sea water] 9.44E-11 

Acenaphthene [Group NMVOC to air] 1.27E-10 

Acenaphthene [Hydrocarbons to fresh water] 1.56E-09 

Acenaphthylene [Hydrocarbons to sea water] 5.90E-12 

Acenaphthylene [Group PAH to air] 1.12E-10 

Acenaphthylene [Hydrocarbons to fresh water] 9.74E-11 

Acephate [Pesticides to air] 4.54E-11 

Acephate [Pesticides to agricultural soil] 3.13E-10 

Acetaldehyde (Ethanal) [Organic emissions to fresh water] 1.64E-07 

Acetaldehyde (Ethanal) [Group NMVOC to air] 2.50E-05 

Acetamide [Pesticides to sea water] 1.12E-11 
Table 5.6 Emission road construction ( kg/meter annual) (EcoinventCentre, 2017a) 
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5.3.3 Social 

Wind turbines do not directly contribute to bill reduction for the end consumers. A total of 

employment provision of 14.5job/MW can be achieved, where 0.12 job/MW is created at 

installation stage and majority 12.5job/MW is created during manufacture stage.  

5.3.4 Summary of comparison  

Table 4.7 below shows the performance ranking of three assessed wind turbines. It can be 

observed that turbine V90 has the best performance across all categories while V80 and 

MM82 shares the same score. V80 has slightly better performance in techno-economic 

category and MM82 better in environmental category. Although V90 is designed with 

higher output capacity, the levelised cost is slightly higher than that of V80, this is due to 

the higher cost associated with the V90 model, could also be explained by that since V90 

is a newer model thus there is potential for the cost to be reduced further in the future.   
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Assessed turbine 

models 
Sustainability issues Indicator V80 MM82 V90 

Techno-economic 
Category  

Reliability  Availability factor (%) 1 1 1 
Capacity factor (%) 3 2 1 

Cost Levelised cost 
(£/MWh) 1 2 2 

Financial 
feasibility Payback period  1 1 1 

Sub-total 7 6 4 

Environmental 
Category  

Material circularity  Circularity (%) 1 3 2 

Energy Payback  Energy payback 
period (years) 2 3 1 

Acidification Potential (AP)  2 3 1 
Eutrophication Potential (EP)  2 3 1 

Freshwater Aquatic Ecotoxity Pot. (FAETP 
inf.)  3 2 1 

Global Warming Potential (GWP 100 years) 2 3 1 
Human Toxicity Potential (HTP inf.)  3 2 1 

Marine Aquatic Ecotoxity Pot. (MAETP 
inf.) 3 2 1 

Ozone Layer Depletion Potential (ODP, 
steady state) 3 2 1 

Photochem. Ozone Creation Potential 
(POCP) 2 3 1 

Terrestric Ecotoxity Potential (TETP inf.) 3 1 2 
Sub-total 26 27 13 

Social Category  

Fuel poverty Bill reduction rate  0 0 0 
Employment 

provision 
Employment 

provision (job/MW) 1 1 1 
Sub-total 1 1 1 

Grand Total 34 34 18 
Table 5.7 Summarised sustainability ranking of assessed wind turbines
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Table 5.8 Sustainability assessment results for three assessed wind turbines

Sustainability issues Indicator 
V80 MM82 V90 

Min Average Max Min Average Max Min Average Max 

Techno-
economic 
Category  

Reliability  
Availability factor 

(%) 98% 
Capacity factor (%) 9% 26% 49% 11% 26% 47% 12% 33% 54% 

Dispatchability 24 24 24 24 24 24 24 

Cost Levelised cost 
(£/MWh) 18 35 82       25 40 111 

Financial 
feasibility Payback period  3 3.5 4 3 3.5 4 3 3.5 4 

Environmental 
Category  

Material 
circularity  Circularity (%) 

62.6% 61.8% 62.1% 

Energy 
Payback  

Energy payback 
period (years) 0.31 0.58 1.37 0.46 0.89 2.38 0.33 0.54 1.48 

Acidification Potential (AP)  3.97E-02 7.49E-02 1.77E-01 4.05E-02 7.92E-02 2.11E-01 4.14E-02 6.77E-02 1.86E-01 

Eutrophication Potential (EP)  1.77E-02 3.33E-02 7.86E-02 1.82E-02 3.57E-02 9.51E-02 1.81E-02 2.96E-02 8.13E-02 
Freshwater Aquatic Ecotoxity Pot. 

(FAETP inf.)  7.10E+00 1.34E+01 3.16E+01 4.87E+00 9.54E+00 2.54E+01 5.09E+00 8.32E+00 2.29E+01 
Global Warming Potential (GWP 

100 years) 6.46E+00 1.22E+01 2.88E+01 6.44E+00 1.26E+01 3.36E+01 6.93E+00 1.13E+01 3.12E+01 
Human Toxicity Potential (HTP inf.)  2.17E+01 4.09E+01 9.66E+01 1.38E+01 2.70E+01 7.21E+01 1.38E+01 2.26E+01 6.22E+01 

Marine Aquatic Ecotoxity Pot. 
(MAETP inf.) 1.40E+04 2.64E+04 6.23E+04 1.14E+04 2.23E+04 5.95E+04 1.15E+04 1.88E+04 5.18E+04 

Ozone Layer Depletion Potential 
(ODP, steady state) 4.66E-07 8.79E-07 2.08E-06 4.36E-07 8.53E-07 2.28E-06 4.65E-07 7.59E-07 2.09E-06 

Photochem. Ozone Creation 
Potential (POCP) 4.50E-03 8.49E-03 2.01E-02 4.90E-03 9.59E-03 2.56E-02 5.43E-03 8.88E-03 2.44E-02 

Terrestric Ecotoxity Potential (TETP 
inf.) 5.13E-01 9.67E-01 2.29E+00 1.59E-01 3.11E-01 8.28E-01 1.96E-01 3.20E-01 8.80E-01 

Social Category  
Fuel poverty Bill reduction rate  n/a n/a n/a 
Employment 

provision 
Employment 

provision (job/MW) 14.62 
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5.4 Discussion  

The assessed onshore wind technologies appeared well performed in all three categories. The 

availability factor is much higher than that of solar PV partially due to the advance of 

technology and also the abundant wind resource within the region. Capacity factor is less than 

50% which is far from ideal. This means onshore wind can be considered as a suitable option 

for non-industrial areas or regions with high wind condition and low electricity demand, such 

as island of Orkney; it cannot offer sufficient supply for areas with high peak demand. The 

environmental impact is lower than that of solar PV, one of the reason being the impact is 

diluted by higher energy yield. Onshore wind is also more effective on employment provision 

compare to solar PV. Installation of onshore wind involves larger construction activities and 

the maintenance also requires workforce. 

Although wind farm does not directly contribute to bill reduction, as stated in previous 

section, community funds are normally offered by the energy developers for spending on local 

projects. (Cowell et al., 2011) For example, a list of part of the community grants provided 

within the County Durham is shown in table 5.9. This provision of community benefits and 

payments to the communities as received attention from policy makers in recent years. The 

DECC (2014) published Guidance on Community Benefits for Onshore Wind Developments: 

Best Practice Guidance for England, which sets out the principles and best practice for 

designing and managing community benefits for wind developments in England. Disregard 

the argument that these community benefit flows constitute a compensation device for 

affected communities, (Armeni, 2016), it is evident that wind energy projects had presented 

additional opportunities to the local community(Munday et al., 2011). 

 
Name of grant Grant range 

High Hedley Hope II Wind Farm Community Benefits 
Fund up to £1,000 
Broom Hill Wind Farm Community Benefits Fund up to £1,000 
Langley Wind Farm Community Benefits Fund up to £1,000 
Boundary Lane Wind Farm Community Benefits Fund up to £5,000 
 Trimdon Grange Wind Farm Community Benefits Fund up to £2,000 
Walkway Wind Farm Fund up to £5,000 
Butterwick Moor Wind Farm Community Benefits Fund up to £5,000 
West Durham Wind Farm Community Benefits Fund up to £5,000 

Table 5.9 A list of wind farm community fund within County Durham 

5.4.1 Noise  
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Despite the benefit of wind energy had been well perceived and highly desired, large majority 

of the general public do not want have wind turbines locate near them, mainly for noise of 

operating turbines and their visual impact, as even as far as degrading the surrounding house 

price (Sims et al., 2008; Kaldellis et al., 2013; Mulvaney et al., 2013; Tampakis et al., 2013; 

Fokaides et al., 2014), known as the “Not In My Backyard” (NIBY) syndrome. The general 

trend towards larger turbines is further stirring the public resistance of wind 

deployment(Lothian, 2008; Zografos and Martínez-Alier, 2009).  

There are two types of noise generated by a turbine: mechanical noise, mainly from the 

gearbox and generator and aerodynamic noise; and aerodynamic noise, which mainly 

originates from the airflow around the turbine blade. (Pedersen and Persson Waye, 2004) 

Many claim that the aerodynamic noise is becoming a critical issue (Pedersen and Persson 

Waye, 2004; Bowdler and Leventhall, 2011) that the low frequency of this noise may cause 

annoyance to people who live nearby (Oerlemans et al., 2007; Punch and Pabst, 2010) yet 

factual evidence is still lacking on this topic(Leung and Yang, 2012).  

The noise level of a wind turbine normally ranges between 98-104Db(A) at wind speed of 

8m/s; larger turbine such as V90 has noise level of 109Db (A) at 10m height(Vattenfall, 

2013), which amount for approximately 40dB(A) for residence 500m away from the 

installations, and Waye and Öhrström (2002) argues that nose at such magnitude is equivalent 

to other source of community noise such as road traffic, which do not cause 

annoyance.(Pedersen et al., 2010)  

As a noise mitigation strategy, sometimes wind farm host will purchase properties near the 

wind farms and take them out of residential use except for short-term lets. (Vattenfall, 2013) 

In addition, noise reduction equipment had been made commercially available by companies 

such as Svenborg Brakes to reduce the noise impact.    

5.4.2 Visual impact 

Although a number of assessment method had been developed to examine the visual impact of 

wind turbines, such as Quechee Test(Owens, 2003), the Spanish Method (Tsoutsos et al., 

2006), the Visualisation tool (Miller et al., 2005), perceptions modelling(Ladenburg, 2009) 

etc., the visual impact is difficult to measure, mainly because it is subject to personal 

perceptions(Bishop, 2002). Despite surveys convey that more than 70% in the UK do not 

opposite the installation of wind turbines for their visual impacts, some still believe that wind 

turbines can damage local tourism (Gourlay, 2008) 

5.4.3Impact on wildlife 
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There had also been discussions surrounding the impact of wind turbines on wildlife, 

particularly bats (Barrios and Rodriguez, 2004; Bull et al., 2013; Premalatha et al., 2014); 

however these researches are also subject to uncertainties, e.g. whether the impact of 

scavenger removal is considered (Drewitt and Langston, 2006). Also, it is argued that the 

quantity of bird killed by predators than wind turbines; as suggested by MacKay (2008) there 

are more birds killed by cat than wind turbines. In mountainous regions, wind farms have 

been installed along mountain passes and other areas having high wind potential, and many of 

these locations also serve as key migratory routes for various species of birds. In some cases, 

collision-related mortality can result in population level effects on certain high-incidence bird 

species (Drewitt & Langston, 2008). Various site-specific mitigation and avoidance measures 

have been implemented, including modifications to turbine heights, spacing, and positioning. 

In the case of offshore wind power, interference with marine navigation, loss of benthic biota, 

and interference with cultural and visual resources (USACE, 2006) are further risks are 

implementation. 

5.4.4 Radio interference  

The operation of wind turbine causes electromagnetic interference which disturbs the 

transmission of radio when signals passing through the moving blades(Binopoulos and 

Haviaropoulos, 2006), the  interference on air surveillance radar(Poupart, 2003; Tognolatti 

and Orlandi, 2008), weather radar(Vogt, 2011) and military radar(Kent et al., 2008) had been 

investigated. Wind turbine manufactures had made effort to increase the use of synthetic 

materials and great deal of research had been done to look into the stealth turbine technology 

which applies radar cross section reduction techniques in designing the nacelle and blades to 

allow the co-existence of wind turbines and radars. For example, the QinetiQ used the Stealth 

Wind Turbine (SWT) technology in an EDF wind farm Perpignan, south France, had been 

proved to mitigate the impact on a nearby weather radar. However, the cost associated with 

the technologies is still high at the moment. (Kong et al., 2013) 

5.4.5 Sensitivity analysis 

Figure 4.17 below demonstrates the environmental impact of three assessed turbines using 

ReCiPe method, the results is almost identical to that using the CML method, that V90 model 

has the lowest impact and MM82 has the highest impact across all categories; except in 

terrestric ecotoxiciy potential category, where V80 scores higher than MM82 using the 

ReCiPe method. Figure 5.16-5.18 below demonstrates the comparison of terrestric ecotoxity 

potential using both CML and ReCiPe methods for V80 and MM82 turbines. A noticeable 

difference can be spot in the impact of copper; where in ReCiPe method, the same mass of 
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copper are given higher terrestrial ecotoxity character compare to the CML method; and since 

turbine V80 uses more copper than MM82 ( figure material composition), the terrestrial 

ecotoxity potential for V80 became higher using ReCiPe method.   

A new set of ranking scores is established using the result obtained from ReCiPe method as 

shown in table 5.10. It can be concluded that despite the difference in impact characterisation 

of copper, the total ranking for environmental impact remains the same using ReCiPe method.  
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Figure 5.16 Environmental impact of three assessed turbines using ReCiPe method   
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V90 11.1 0.293 0.007521 0.423 45.35 0.252 3.86E-06 0.052 108
V80 11.2 0.352 0.010677 0.52 72.36 0.259 4.47E-06 0.0618 165
MM82 16.5 0.39 0.01167 0.574 69.63 0.327 6.51E-06 0.0775 161

Environmental impact of three assessed turbines using ReCiPe method
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Figure 5.17 Comparison of terrestric ecotoxiciy of Vestas V80 turbine using CML and 
ReCiPe methods 

 

Figure 5.18 Comparison of terrestric ecotoxiciy of Repower MM82 turbine using CML and 
ReCiPe methods 
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Terrestric ecotoxicity of V80 turbine using CML and ReCiPe methods

RoW: wind turbine network connection construction, 750kW, onshore ecoinvent
RER: transport, freight, lorry 7.5-16 metric ton, EURO3 ecoinvent
GLO: market for waste mineral oil ecoinvent
GLO: market for lubricating oil ecoinvent
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RER: sheet rolling, steel ecoinvent
GLO: market for sheet rolling, chromium steel ecoinvent
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RoW: wind turbine network connection construction, 2MW, onshore ecoinvent
RER: transport, freight, lorry 7.5-16 metric ton, EURO3 ecoinvent
GLO: market for waste mineral oil ecoinvent
GLO: market for lubricating oil ecoinvent
GLO: market for reinforcing steel ecoinvent
GLO: market for polyethylene, high density, granulate ecoinvent
GLO: market for glass fibre reinforced plastic, polyamide, injection moulded ecoinvent
GLO: market for epoxy resin, liquid ecoinvent
GLO: market for copper ecoinvent
GLO: market for cast iron ecoinvent
RER: sheet rolling, aluminium ecoinvent
GLO: market for sheet rolling, chromium steel ecoinvent
GLO: market for road ecoinvent
GLO: market for copper ecoinvent
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` V80 MM82 V90 

Acidification Potential (AP)  2 3 1 

Eutrophication Potential (EP)  2 3 1 

Freshwater Aquatic Ecotoxity Pot. (FAETP inf.)  2 3 1 

Global Warming Potential (GWP 100 years) 2 3 1 

Human Toxicity Potential (HTP inf.)  3 2 1 

Marine Aquatic Ecotoxity Pot. (MAETP inf.) 2 3 1 

Ozone Layer Depletion Potential (ODP, steady state) 2 3 1 

Photochem. Ozone Creation Potential (POCP) 2 3 1 

Terrestric Ecotoxity Potential (TETP inf.) 3 2 1 

Total score  20 25 9 
Table 5.10 Ranking of environmental impacts of three assessed turbines using ReCiPe method 

5.4.6 End of life  

The large scale deployment of wind technology is still relatively new, only 12% of installed 

wind turbines in Europe reached 15 years of life time by 2016, 19 onshore wind farms within 

the UK had exceed 20 years of operational life, (Rubert et al., 2016; Ziegler et al., 2018) 

therefore no common practice have been established in this field and very little research have 

been carried out analysing the economics of end of life decision for wind turbines.(Ortegon et 

al., 2013).  

At present, the most common practice are repower and decommission.  For repowering, a 

series of test will be carried out and the turbines of little repower value or ability will be 

removed and replaced with upgraded turbine, the wind farm will continue its service. 

Repowering offers advantages of higher efficiency, potential reduction in the number of 

turbines and lower operational cost. For decommissioning option, all the structures both above 

and underneath the ground will be completely removed, the topsoil of the land will be 

replaced and the area will be revegetated, then another two-years of remediation and 

monitoring programme will be carried out in the area till the land is recovered to its original 

state. (MDEP, 2010)  

The retired turbines in most cases will be either remanufactured or recycled. Remanufacture is 

a process that a turbine will be refurbished and recovered to the performance of the original 

equipment manufacturer specifications. Although remanufacture and refurbish wind turbines 

are less than prevalent in the UK, it had been a growing business across the world over the 

past few years. (CRR, 2017). The original equipment manufacturers had been keen to 

remanufacture their products not only motivated by the profit this process brought, also 

because of high demand for spare parts during the warranty period, the brand and technology 
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protection from independent operators.(Seitz, 2007). In addition, many retired turbines were 

had very little tear and wear; for example in the case of Germany, under the encouragement of 

government energy policy, many turbines were installed in the past decade regardless of wind 

resource of the installed location; as a result, many turbines that were installed in low wind 

areas hadn’t been through intensive wear and tear and those can be sold as second hand 

turbine straight away without having to be refurbished. For example, as quoted by energy 

service company Solvento11, a Vestas V80 made in 2002 located in the Northern Germany 

can be sold for £230,000; and a Vestas V90 first installed in 2008 has resale value of 

£650,000.  

Moreover, lately there had been discussion on lifetime extension of the turbines where the 

turbines structural life will be examined and maintained to extend its service life to a longer 

period (DNV.GL, 2016; MEGAVIND, 2016; Ziegler et al., 2018). In cases where a turbine 

has sufficient life to serve without compromising its safety level, extend an aging turbine may 

translate into higher maintenance costs.  

Other than the technical and economic aspects, legal aspect is also detrimental for end of life 

decisions. For example, changes in legislation may outlaw the possibilities of having wind 

turbines installed within a given region; also since the contract and land lease expiries too, 

whether the end of life option is lifetime extension or repowering, it can only be made 

possible if the land owner agrees to further contract.  

Finally, recycle provides a least economically attractive but feasible end of life solution for 

wind turbines; the global demand of metal materials such as steel, aluminium, iron keeps 

recycling as the last resort for turbine end of life options (Vestas, 2012)  

5.4.7 Data quality assessment  

Table 5.11 shows the results of data quality assessment for onshore wind technology. The 

overall score is 91%, higher than that of solar PV (88%), indicating that although uncertainties 

can be introduced by the 13% loss of data quality, yet it is considered to be good for the 

purpose of this study. The weakest area is once again the social category. The employment 

data was generic statistic data provided in existing literature, which although is sufficient for 

the purpose but the accuracy can be improved by adoption of field collected data. The techno 

economic category has the best data quality due to the results were obtained using actual 

performance data. Overall, the data quality used for assessing the sustainability of onshore 

                                                 
11 Solvento energy consulting gmbh, An Austria based energy consulting company specialise in onshore wind 
energy.  
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wind is considered to be good, recommendation for future work can include:  

1. Adoption of primary data on employment provision; 

2. Further information on funding and grants received for the onshore wind projects to 

increase the accuracy of cost estimation; 

3. Including data on new built wind farms to have an updated view on the performance 

of onshore wind technology.   

Sustainability issues Indicator Normalised total 
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 Reliability  
Availability 

factor 1.00 
Capacity factor 1.00 

Dispatchability  1.00 
Cost Levelised cost 0.94 

Financial feasibility Payback period  0.94 

E
nv
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l C
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eg

or
y 

 

Circularity  
Material 

circularity  0.78 
Fuel circularity 1.00 

Energy Payback  Energy payback 
period  0.78 

Acidification Potential (AP)  0.89 
Eutrophication Potential (EP)  0.89 

Freshwater Aquatic Ecotoxicity Pot. (FAETP inf.)  0.89 
Global Warming Potential (GWP 100 years) 0.89 

Human Toxicity Potential (HTP inf.)  0.89 
Marine Aquatic Ecotoxicity Pot. (MAETP inf.) 0.89 

Ozone Layer Depletion Potential (ODP, steady state) 0.89 
Photochem. Ozone Creation Potential (POCP) 0.89 

Terrestric Ecotoxicity Potential (TETP inf.) 0.89 

So
ci

al
 

C
at

eg
or

y 
 

Fuel poverty Bill reduction 
rate  1 

Employment provision Employment 
provision 0.83 

Table 5.11 Data quality assessment result for onshore wind 
 
5.5 Summary  

The sustainability results from onshore wind technology in this chapter can be summarised as 

follows: 

1. There are difference of sustainability performance between turbines of different rated 

power, but differences are not significant.  

2. Capacity factor of onshore wind technologies (average 26%-33%) is significantly 

higher than that of sola PV (average 6%-13%), the levelised cost is almost half of solar 

PV (£96-101/MWh), all these results in shorter financially payback period and energy 

payback period.  
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3. Material circularity for wind turbines are higher than that of solar PV, because of 

larger proportion of metal composition in the machine.  

4. Onshore wind projects do not directly contribute to reduce fuel poverty; however, the 

local investment provided by developers do bring economic opportunities to the local 

community. 
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Chapter 6 Biomass CHP 
This chapter assess the sustainability of biomass CHP deployed within the Northeast region. 

The chapter starts with introducing the outlook of the assessed technology followed with 

overview of the case study in which the assessed investigates; then results obtained from the 

assessment is explained and discussed.  

6.1 Introduction 
Biomass is the organic material derived from plant that may be converted into other forms of 

energy. It is the only combustible renewable source for electricity generation. It had been a 

favoured energy source in human history for a long time because it is easily produced in 

almost any environment and regenerates quickly.(Evans et al., 2010) There are many types of 

biomass available for electricity generation e.g. bagasse, agriculture residuals, dedicated 

energy crops etc. UK has large quantities of agricultural and forestry residues currently go to 

waste. Utilising these biomass represent an important opportunity to improve the management 

of UK’s rural areas and to reduce waste. (Parliament, 2004)  

Observing from figure 6.1-6.2, Northeast region of England has abundant biomass resource 

particularly along the coast line and the Tyne River. The most dominate type of biomass 

within the region is willow with some miscanthus towards north of the region. 

  

 Figure 6.1 Map showing maximum energy crop yield in the England and Wales (Bauen et al., 
2010) 
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Figure 6.2 Map showing maximum yielding biomass type in the England and Wales (Bauen et 
al., 2010) 

Currently there are three primary technologies that for combustion based biomass-to-energy 

conversion: pyrolysis, gasification and direction combustion. Direct combustion is the 

simplest and oldest technology among the three; where pyrolysis and gasification involves 

firstly modifying property of the biomass fuel to transform it into combustible gases as well as 

condensable vapours in case of pyrolysis (Bain et al., 1997; Tabberer and Tabberer, 1998; 

Ganesh and Banerjee, 2001), then these gases with high calorific values are then combusted in 

a gas turbine to convert into energy. Pyrolysis and gasification has higher efficiency than 

direct combustion, but they are more costly options; especially in the case of gasification, 

normally only clean fuel source such as wood pellets and wood chips can be used since the 

gas combusted in the engine has to be clean.  

When converting the energy embedded within the biomass to electricity using these 

technologies, heat in form of steam is also generated alongside the process. “Cogeneration”, 

also known as Combined Heat and Power generation harvests both forms of energy, thereby 

significantly increase the utilization of fuel. The main components of a CHP system consist of 

prime mover, generator, and heat recovery equipment. The prime mover, sometimes also 

known as the heat engine is the centre of the overall CHP system; for biomass CHP systems, 

steam turbine and Stirling engine are the two typically known prime movers. Stirling engine 
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has a much smaller output (≤ 2kw), so far had been only limited for commercial introduction 

and demonstration purpose; steam turbines had been in use for over 100 years, is the most 

widely used prime mover for CHP applications. In a typical steam turbine driven biomass 

CHP, steam is produced in a biomass steam boiler, then drives the turbine which generates 

electricity, and the remaining heat is also harvested.  

 

6.1.1 Wilton 10 power plant  

Northeast region of England has the largest gas and steam turbine CHP electrical capacity 

across the UK, and 77% of the market for CHP is dominated large scale plant( >10MWe). 

(DBEIS, 2017a)The case study selected for the biomass CHP technology is Wilton 10 power 

station (referred as Wilton10 from this point). Wilton 10 locates in the southbound of the 

Northeast region of England (figure 6.3-6.4), is the largest biomass project in the UK. The 

power plant owned by a Singapore company SembCorp Utilities, was in built since 2005 and 

officially opened on 12 Nov 2007. The plant has a total installed capacity of 38MW with heat 

to electrical ratio 4:15, was built to power the entire Wilton industrial estate (equivalent to 

powering 30,000 homes) (DUKES, 2018). 

A total of 300,000 tons of wood is consumed at the plant every year. Feedstock comes from 

four sources: 40% is recycled wood supplied by company UKWR12, 20% is supplied from 

surrounding recycling sites as offcuts from sawmills; 20% of feedstocks is collected, with 

help from the Forestry Commission, from local forests in form of small round wood logs after 

routine tree felling operations with help from; 20% comprises short rotation coppice willow, a 

type of specially grown energy crops collected from farmers within 50 miles radius of 

Wilton10, and it is supplied by local company Greenery. It is claimed that feedstock demand 

of the biomass plant promoted the growth of approximately 7,500 acres of coppices in the 

region which had created havens for local wildlife (McIlveen-Wright et al., 2013; Utilities, 

2015). 

 

                                                 
12 UK Wood Recycling Ltd (UKWR) was launched in 2006 next to Wilton 10 support the plant by supplying 
80,000 tonnes of wood chips per year WRAP (2017) Regional Market Assessment for Wood Waste for North 
East England..  
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Figure 6.3 Location of Wilton 10 power station  

 

Figure 6.4 Photo of Wilton 10 power station 

McIlveen-Wright et al. (2013) investigated the techno-environmental performance of the 

Wilton 10 plant along with another two biomass plant in the UK using ECLIPSE modelling 

approach; the author also provided a schematic graph of Wilton 10, which is illustrated in 

figure 6.5 below. The primary mover used in Wilton is SST 400 steam turbine supplied by 

Siemens, includes a condenser, fender gearbox, oil system, and PCS7 system. (SIEMENS, 

2003) The bubbling fluidized-bed boiler is provided by Foster Wheeler under $53 million 

contract including design, build and commission the complete boiler island. The boiler 

included the fuel handling system, biomass fuelled boiler and flue gas treatment system. 

Fluidized bed combustion is the best technology to process fuel with low quality and high ash 

content(Saidur et al., 2011), which is the case for the fuel processed at Wilton 10.This 

particular boiler is ideal for handling biofuels with high moisture content and difficult ash 
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characteristics at low level of emission. (Wheeler, 2008).The feedstock are processed and 

mixed before being fed into the boiler.  

 

Figure 6.5 Schematic of Wilton 10. (McIlveen-Wright et al., 2013) 

6.2 Assumption  
 

This section provides the assumptions made for sustainability assessment on the case study 

Wilton 10. 

6.2.1 System boundary 

The guaranteed operational life time for the system is 20 years. The system boundary of the 

assessment is illustrated in figure 6.6 below. Manufacture stage includes production all the 

main components of the system, the steam turbine, the boiler and the pump and installation 

stage includes construction of the plant. For operation stage, fuel combusted in the plant and 

oil required for occasional maintenance are accounted for. The transport range for the biomass 

is within 20miles. Life time of the plant is assumed to be 40 years according to the industrial 

standard; the plant may be given life time extension post the designed lifetime.   
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Figure 6.6 System boundary for Wilton 10 

6.2.2 Product impact allocation  

Each CHP system produces two products, heat and electricity. For systems with multiple 

products, the ISO standard (ISO, 2006a) recommends a hierarchy for decisions on allocating 

the impacts between products: 1. System expansion, that the system boundary to include the 

impacts of all products(Ekvall and Finnveden, 2001) and hence allocation can be avoided; 2. 

Allocation based on the physical, economic, social and biological causality caused by final 

products(Rebitzer et al., 2004); 3. When causality cannot be determined, allocation should be 

made based on the other output-input relationships, such as economic value, product mass, 

volume etc. (Svanes et al., 2011). The principle of product impact allocation is to reflects the 

underlying physical relationships between the products(ISO, 2006a), i.e. “ the inputs and 

outputs are changed by quantitative changes in the products or functions delivered by the 

system”(EEA, 1998). Since the goal of this study is defined as investigate the impact of solely 

electricity production, therefore the impact allocation cannot be avoided. In this study, a gross 

energy allocation approach is applied, that impact of the heat and electricity in the category of 

levelised cost and environmental impact categories are allocated based on their output ratio.  

6.2.3 Carbon neutrality 

There’s been discussion surrounding the carbon emission of biomass combustion. Bioenergy 

is thought a carbon neutral energy option, since it can be used to avoid greenhouse gas 

emissions from fossil fuels (Nakicenovic et al., 2000). Some argues that Forests acts as a 

carbon sink, and combustion can release the carbon to the atmosphere(Kelsey et al., 

2014);using bioenergy instead of fossil fuels does not alter combustion emission, because the 

amount of CO2 released is roughly the same per unit of energy regardless of the source. 

(Searchinger et al., 2009). In the domain of carbon foot printing, prominent guidance such as 

European Union Emissions Trading Scheme(EC, 2007) and UK Standard Assessment 

Procedure for Energy Rating of Dwellings(DBEIS, 2008) defines biomass a carbon neutral 

Manufacture

•Steam turbine 
SST-040

•BFB Boiler 
•Furnace and 
pump

Installation

•Construction 
of the power 
plant 

Operation 
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energy fuel; organisations such as World Business Council for Sustainable and World 

Resources (2001) considers the carbon neutrality of biomass to be problematic, yet still 

considers the carbon emission from combustion of biomass should be excluded from carbon 

footprint.  

 Emission of biomass energy can be classified as product chain emission and resource 

emission. The former is the emission associate with produce, transport and convert the fuel; 

and the later means the emission released when the biomass is burnt. (Zanchi et al., 2012). In 

this study, emission from biomass combustion is considered to be carbon neutral, because the 

biomass combusted in the study are mainly recycled woods and co-products from sawmill, 

they will forest will eventually decay and decompose which eventually release the carbon 

back to the atmosphere; in addition, the database applied in this study Ecoinvent(Werner et 

al., 2007) also offsets carbon emission from biomass combustion with a sequestration credit 

which is equal to the combustion emission, which leads to zero carbon emission footprint. 

6.2.4 Techno-economic assumptions 

Table 6.1 shows the key techno-economic assumption made for Wilton 10. The capacity 

factor is calculated using actual generation data from 2007-2018 (DECC, 2018). The 

availability of the system is determined in two folds, the feedstock availability and the system 

operational availability. Typically, a well-designed biomass CHP system has an average 

availability factor of 92%-98%, the only downtime is due to scheduled maintenance and 

occasional incidents. (USEPA, 2007, p. 37) In case of Wilton 10, there had been records of 

down time due to feedstock, therefore the availability factor is assumed to be between 92% 

and 98%. Capacity factor of Wilton 10 is between 55% and 70% at most of the time and 

sometimes reaches as high as 100%.  

Since the detailed cost information for Wilton10 is not made available to the public, the costs 

used in the assumptions are derived from UK specific biomass CHP associated costs from  

BEIS (2016). The data presented by BEIS (2016) is considered to be accurate and up to date.  
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  Min Ave Max 
Capacity factor (%)  24% 62% 80% 

Availability (%) 92%   98% 
Life time (years) 40 

Output per year(MWh)  62,321 162,852 209,964 
Output lifetime (MWh)   1,558,025 4,713,987 8,398,560 
Capital cost (£/MWh) 5.3 6.1 7.0 

Construction cost (£/MWh) 69.8 76.4 83.0 
Fuel cost(£/MWh) 26.2 31.1 36.0 
O&M (£/MWh)  35.0 38.0 41.0 

Levelised cost (£/MWh) 136 152 167 
Table 6.1 Key techno-economic parameters for Wilton 10 

 

6.2.3Environmental assumptions 

Table 6.2 shows the material composition of Wilton 10, and table 6.3 shows the material use 

during installation stage. Since the boiler equipment’s are bespoke designed for Wilton 10, the 

data on material use is restricted to public access. The data for boiler material use is scaled up 

from Kelly et al. (2014), and the material use for pump production is scaled up from material 

use for 1MW capacity pump using data from EcoinventCentre (2017b). The steam turbine 

data is directly obtained from Siemens brochures (SIEMENS, 2003; SIEMENS, 2013). No 

site specific data available for installation activities, Ecoinvent data set for constructing 1MW 

co-generation unit is scaled up and used (EcoinventCentre, 2010), other than all the necessary 

construction material needed the dataset also include transport activities (1.5*103km of 

transport by car per unit construction) 

Only material used for the equipment are considered for recycling process. The dataset based 

on a wood combustion CHP generation dataset (EcoinventCentre, 2017c) is used to estimate 

the impact of the combustion process; activities including combustion, emissions to air, 

disposal of ashes and all substances needed for the operation (e.g. lubricating oil, organic 

chemicals, sodium chloride, chlorine etc.) Feedstock is wood chips with moisture level of 

30%, 529kg (dry mass) of feedstock is consumed to produce 1MWhe. (McIlveen-Wright et 

al., 2013).  

According to EcoinventCentre (2017c), 5.29kg wood ash mixture is created as waste for each 

1MWhe electricity generated. There is currently no process in Wilton power plant to process 

this ash. Although there had been recent studies looking into utilization of the ash, for 

example to recycle it back to the ground of forest; however the argument surrounding the 

unburnt carbon content and heavy metal contamination of the ash, this recycling options had 

not been made widely available.  (Neves et al., 2011; James et al., 2012)  
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Main components  Material  Consumption 

mass 
Recoverable 
mass 

Steam turbine SST-040 and 
Silo 

Non-alloy 
steel 342.97 178.34 

Cast iron 79.15 41.16 
Low alloy 
steel 395.73 205.78 

High alloy 
steel 61.56 32.01 

sub-total 
mass 879.4 457.3 

 Boiler  

Steel  778.30 404.72 
Copper 57.89 33.00 
Cast iron 38.34 19.94 
Glass wool 7.48 0.00 
Glass fiber  2.88 0.29 
Aluminum  5.75 5.52 
Nylon  0.58 0.00 
sub-total 
mass 891.21 463.46 

Pump 

Reinforcing 
steel 147.50 76.70 

Low-alloyed 
steel 147.50 76.70 

sub-total mass 295.00 153.40 
Total 2065.61 1074.15 
Total Recyclability 52% 

Table 6.2 Material composition and recyclability of Wilton 10 (t/system) 
 

  Components Material  Mass 
(t/system)  

Recoverable mass 
(t/system) 

Input 
material 

Valves 
brass and 
polyvinylchloride 6.33 3.61 

Hydraulic fittings  brass  3.45 1.97 
Expansion vase steel 11.50 5.98 
Tubes copper 2.11 1.20 
Packaging cardboard 2.49 2.16 

Waste 
material  Packaging  

plastic 0.38 0.10 
cardboard 2.11 1.82 
wood 84.35 50.61 

 Material circularity  59.8% 
Table 6.3  Materia composition and recyclability of Wilton 10 during installation 

stage 
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6.2.4 Social parameters  

Wilton 10 is directly supplying for the Wilton estate, no bill reduction for local communities. 

According to Sembsolutions (2017), 400 employment opportunities were created during 

construction of the plant and a further 15 permanent employment is required directly at the 

operation stage; this gives an estimate of 10.92 job/MWe. Thornley et al. (2008) thoroughly 

studied quantification of employment for biomass plants, including two short rotation coppice 

biomass CHP facilities in the UK with capacity of 2MWe and 25 MWe; concluded that the 

larger the plant is the more job opportunities it offers. The 25MWe plant included in the 

referenced study created 160 full time positions over the lifetime of the plant,36 jobs are 

directly created at the at the operation phase,124 are created during construction phase, which 

gives an estimate of 6.4job/MWe.  Therefore assumption can be made that 6.4-10.92 jobs can 

be created throughout the construction and O&M phase. 

6.3 Results  

The final assessment result of Wilton 10 is present in table 6.4; and the performances are 

discussed in categories below. 

 6.3.1 Techno-economic performances  

Biomass CHP proven to be a reliable yet expensive energy supply; where both the capacity 

(41%-100%) and levelised costs (£136-167/MWh) are higher than that of onshore wind 

(capacity factor 9-54%, levelised cost £35-111/MWh).  Although the payback period is much 

longer than that of the onshore wind (0.3-1.5 years), plant can break-even towards the end of 

its first quarter life-time. Components of the levelised cost is demonstrated in figure 6.7. 

Different from onshore wind and solar PV, the capital cost for biomass power plant only 

makes up to 4% of the total levelised cost, while on the other hand, construction cost makes 

up the largest segment in levelised cost, the second come in place is the fuel cost. Although 

biomass is considered to be renewable energy, but costs associated with the fuel plays a 

continuous role throughout the plant’s life time.  
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Figure 6.7 Composition of total levelised cost for biomass CHP plant 

 
 

6.3.2 Environmental performances  

Figure 6.8 below shows the overall environmental impact of Wilton 10 at each life cycle 

stages. In contrary to common belief, the combustion of the biomass outweighs the impact of 

rest of the activities; while on the other hand, impact of the plant make presence in ecotoxiciy 

to marine and freshwater systems, which is largely caused by the use of electricity and use of 

plywood, as well as other construction materials such as concrete and steel; and the impact of 

plywood originates from the transportation of the material from suppliers to the final user.  

Intensive construction work is involved in installation stage of the assessed CHP plant as 

displayed in figure 6.9; and the environmental impact of transportation is the most noticeable 

in the construction of CHP plant than onshore wind projects. The fossil fuel required for the 

transportation activities had contributed to all impact categories, particularly in the impact 

category of ODP, where the transport impact surpassed the impact of steel. In summary, the 

impact of installation is caused by the consumption of fossil fuel for the electricity needed and 

transportation activities. 

Figure 6.10 shows the impact occurred during manufacture stage. Like the case of onshore 

wind, majority of the impact derived from the use of metal material, mainly copper, steel and 

aluminium. Electricity consumed to produce this equipment also has noticeable impact, 

particularly in the category of ozone depletion and global warming.   

Payback period for the assessed system is between 0.5-1.24 years. This value is significantly 

lower than the result of the same power plant presented by McIlveen-Wright et al. 

4%

51%

19%

26%

Total levelised cost for Biomass CHP plant

Capital cost (£/MWh) Construction cost (£/MWh) Fuel cost(£/MWh) O&M (£/MWh)
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(2013),which is 13-19 years; however, the methodology of McIlveen-Wright et al. (2013) is 

not clearly explained, therefore a comparison cannot be made.  

The assumptions used to estimate the energy consumption is detrimental to the payback 

period; some studies considers the biomass embodied energy to be part of the energy 

consumed, which leads to longer payback periods, between nine to ten years (Proka et al., 

2014; Odavić et al., 2017); some argues that the biomass energy is converted to the form of 

electricity and heat, and therefore it should be not be considered to be part of energy 

consumption(Mann and Spath, 2001), which applies to the case of this study and explains the 

shorter payback period.    

Circularity of the CHP is divided into material circularity and fuel circularity. The overall 

material circularity of the CHP plant (52%) is lower than that of onshore wind (62%) and 

higher than that of solar PV (35%-38%).  
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Figure 6.8 Environmental impact of Wilton 10 at life cycle stages  
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Figure 6.9 Environmental impact of Wilton 10 at installation stage 
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Environmental impact of Wilton 10 at installation stage
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Figure 6.10 Environmental impact of Wilton 10 at manufacture stage 
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Environmental impact of Wilton 10 at Manufacture stage
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GLO: market for sheet rolling, steel ecoinvent GLO: market for wastewater, average ecoinvent

RER: nylon 6 production ecoinvent RoW: market for electricity, medium voltage ecoinvent

RoW: market for tap water ecoinvent
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6.3.2 Social performances  

Like vast majority of the industrial CHP systems, Wilton 10 was built to support its industrial 

state and hence do not assist local residence in energy bill reduction.  

Most jobs are created during construction of the plant, but they are not long-term employment 

opportunities; on the other hand, less jobs are created at the operational stage, but these 

employment opportunities has a longer term impact on the local community. Despite the large 

scale of construction, Wilton 10 appear to create less employment opportunities compare to 

onshore wind.  

Sustainability issues Indicator 
Wilton 10 

Min. Ave. Max. 

Techno-
economic 
Category  

Reliability  Availability factor 92% 95% 98% 
Capacity factor 41% 80% 100% 

Cost Levelised cost 136 152 167 
Financial 
feasibility Payback period  13 16 19 

Environmental 
Category  

Circularity  
Material Circularity  56% 

Fuel circularity 0% 

Energy Payback  Energy payback 
period  4 8.5 13 

Acidification Potential (AP)  8.35E-04 7.68E-03 8.52E-01 
Eutrophication Potential (EP)  2.89E-04 4.66E-03 2.99E-01 

Freshwater Aquatic Ecotoxicity Pot. 
(FAETP inf.)  1.54E-02 1.19E+00 1.83E+01 

Global Warming Potential (GWP 100 
years) 5.73E-02 4.66E-01 5.83E+01 

Human Toxicity Potential (HTP inf.)  8.84E-02 4.24E+00 9.87E+01 
Marine Aquatic Ecotoxicity Pot. 

(MAETP inf.) 2.63E+01 3.20E+03 3.41E+04 
Ozone Layer Depletion Potential (ODP, 

steady state) 3.77E-09 3.85E-08 3.85E-06 
Photochem. Ozone Creation Potential 

(POCP) 9.29E-05 5.24E-04 9.40E-02 
Terrestric Ecotoxicity Potential (TETP 

inf.) 3.87E-03 2.73E-02 3.92E+00 

Social 
Category  

Fuel poverty Bill reduction rate  n/a 
Employment 

provision 
Employment 

provision 6.4 8.7 10.92 
Table 6.4  Sustainability assessment results of Wilton 10 

6.4 Discussion  

CHP systems are often located onsite, in case of this study, Wilton 10 is used to supply energy 

for the entire Wilton industrial estate, not only this reduces the energy lost in transmission and 
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distribution, it also make the industrial estate less reliant on the electrical grid and has less 

chance of losing power.  In addition, Wilton 10 provides heat and electricity to the estate on a 

continuous basis, this is particularly financially beneficial when the electricity price is high.   

6.4.1 Uncertainty in results  

This assessment involves collation of data (e.g. assumptions for environmental impact of CHP 

installation is the scaled-up value of a 1MW CHP system), although these assumptions are 

made within reasonable range, but they do present source of uncertainty. The uncertainties 

limit the predictive capacity of the study, but does neither diminish its ability to be 

representative for the technology assessed nor lessen its usefulness in carrying out comparison 

with the other two assessed technologies, solar PV and onshore wind.  

6.4.2 Sensitivity analysis  

Figure 6.11-6.13 shows the environmental impact of Wilton10 calculated using ReCiPe 

method, the pattern of share of impact during each life cycle stage resemble great similarity to 

the results obtained using CML method; where combustion of biomass dominates the impact 

across all categories and installation stage has the smallest share of impact. There is noticeable 

impact of manufacture at eutrophication and water body ecotoxiciy.  Copper has overall large 

impact at all categories throughout the manufacture stage; the proportion of copper’s impact 

in terrestrial ecotoxiciy using ReCiPe method is higher than that using the CML method; as 

explained in previous chapter, this is due to the higher characterisation factor given to copper 

in ReCiPe methodology. Another difference is that the impact of insulation material used in 

boiler, glass wool does not show any impact using the ReCiPe method; while showing impact 

in ODP and GWP categories using the CML method. The impact of electricity used in 

installation stage appears to take up smaller proportion in ReCiPe method; while the impact of 

transport and metal materials remain prominent in the overall impact.  
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Figure 6.11 Environmental imapct of Wilton 10 using ReCiPe method  
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O&M 0.00337 0.0000631 0.000000835 0.000367 0.000141 0.000121 2.68E-08 0.0000747 1.00E-01
Manufacture of steam turbine SST040 <LC> 0.0867 0.039 5.08E-05 0.0432 0.0473 0.00334 2.67E-08 0.000465 0.818
Manufacture of boiler  <LC> 0.203 0.0254 0.00104 0.0907 0.0205 0.000599 1.79E-07 0.00406 20
Installation of boiler <LC> 0.0132 0.00403 0.000159 0.00818 0.00658 0.000229 1.94E-08 0.000566 3.43
Construction CHP <LC> 0.141 0.0211 5.75E-05 0.0108 0.0256 0.00633 4.47E-08 0.000547 0.453

Environmental impact of Wilton 10 using ReCiPe method 
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Figure 6.12 Environmental impact of Wilton 10 at manufacture stage using ReCiPe method 
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ReCiPe 2016 v1.1 Midpoint (H) - Climate change, default, excl biogenic carbon [kg CO2
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ReCiPe 2016 v1.1 Midpoint (H) -  Eutrophication [kg P eq.]

ReCiPe 2016 v1.1 Midpoint (H) - Human toxicity [kg 1,4-DB eq.]

ReCiPe 2016 v1.1 Midpoint (H) - Marine ecotoxicity [kg 1,4-DB eq.]

ReCiPe 2016 v1.1 Midpoint (H) - Metal depletion [kg Cu eq.]

ReCiPe 2016 v1.1 Midpoint (H) - Photochemical Ozone Formation [kg NOx eq.]

ReCiPe 2016 v1.1 Midpoint (H) - Stratospheric Ozone Depletion [kg CFC-11 eq.]

ReCiPe 2016 v1.1 Midpoint (H) - Terrestrial Acidification [kg SO2 eq.]

ReCiPe 2016 v1.1 Midpoint (H) - Terrestrial ecotoxicity [kg 1,4-DB eq.]

Environmental impact of Wilton 10 at manufacture stage using ReCiPe method

GLO: glass wool mat production, without cullet ecoinvent GLO: market for aluminium, cast alloy ecoinvent

GLO: market for cast iron ecoinvent GLO: market for copper ecoinvent

GLO: market for glass fibre ecoinvent GLO: market for sheet rolling, steel ecoinvent

RER: nylon 6 production ecoinvent RoW: market for electricity, medium voltage ecoinvent

RoW: market for tap water ecoinvent GLO: market for cast iron ecoinvent

GLO: market for furnace, wood chips, with silo, 5000kW ecoinvent GLO: market for steel, chromium steel 18/8 ecoinvent

GLO: market for steel, low-alloyed ecoinvent GLO: market for steel, unalloyed ecoinvent
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Figure 6.13 Environmental impact of Wilton 10 at installation stage using ReCiPe method

-20% 0% 20% 40% 60% 80% 100%

ReCiPe 2016 v1.1 Midpoint (H) - Climate change, default, excl biogenic carbon [kg CO2…

ReCiPe 2016 v1.1 Midpoint (H) - Freshwater ecotoxicity [kg 1,4 DB eq.]

ReCiPe 2016 v1.1 Midpoint (H) - Eutrophication [kg P eq.]

ReCiPe 2016 v1.1 Midpoint (H) - Human toxicity [kg 1,4-DB eq.]

ReCiPe 2016 v1.1 Midpoint (H) - Marine ecotoxicity [kg 1,4-DB eq.]

ReCiPe 2016 v1.1 Midpoint (H) - Photochemical Ozone Formation [kg NOx eq.]

ReCiPe 2016 v1.1 Midpoint (H) - Stratospheric Ozone Depletion [kg CFC-11 eq.]

ReCiPe 2016 v1.1 Midpoint (H) - Terrestrial Acidification [kg SO2 eq.]

ReCiPe 2016 v1.1 Midpoint (H) - Terrestrial ecotoxicity [kg 1,4-DB eq.]

Environmental impact of Wilton 10 at installation stage using ReCiPe method

market for electricity, low voltage ecoinvent
Europe without Switzerland: market for heat, district or industrial, other than natural gas ecoinvent
GLO: market for concrete, sole plate and foundation ecoinvent
GLO: market for waste plastic, mixture ecoinvent
GLO: market for waste wood, untreated ecoinvent
GLO: market for wastewater from pig iron production ecoinvent
RER: plywood production, for indoor use ecoinvent
RER: transport, passenger car ecoinvent
GLO: market for brass ecoinvent
GLO: market for copper ecoinvent
GLO: market for sheet rolling, steel ecoinvent
GLO: market for waste plastic, mixture ecoinvent
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6.4.3 Domestic installation  

In addition to large scale biomass CHP plants, some micro-generation biomass CHP plants 

have been installed at domestic dwellings, community estates etc. These micro CHP plants are 

not made widely available partially due to their low cost-effectiveness unless heavy subsidy is 

offered, also because of its high capital cost which makes it inaccessible for low-income 

owners. (Walker, 2008) With the current subsidy scheme, for example Low Carbon Buildings 

Programme, 70% of the system and installation cost still need to be paid upfront by the CHP 

hosts.  

There are CHP systems set up by social housing and housing associations for their low-

income tenants, but the actual impact are often hard to examine, sometimes due to poor 

management. For example Byker Community trust installed one CHP plant aim to assist its 

tenant with energy costs, but the assistance it offered to relive fuel poverty, as disclosed by the 

trust, that due to the “complexity of the system”, it is not possible to quantity the exact level 

of savings can be delivered. (BCT, 2016) 

Project financing is usual tied to biomass fuel availability and investors seem only willing to 

embark upon investment if 10 or 15 years supply contracts are in place; and such contracts are 

not currently often offered by biomass fuel suppliers. In the case of Wilton10, to ensure a 

stable supply chain, as stated previously UKWR Company was established on the fuel supply; 

however many other smaller projects such as local schools do not have the ability to establish 

such facility are facing difficulties with financing the project.  

6.4.4 Supply chain  

A typical biomass supply chain is comprised of several discrete processes. These processes 

may include ground preparation and planting, cultivation, harvesting, handling, storage, in-

field/forest transportation, road transportation and utilization of the fuel at the power station. 

Although biomass is considered to be a ‘carbon neutral’ fuel source, since using it for energy 

generation emits the same amount of carbon that the plants have absorbed while growing, 

there are processes required that use conventional fuel sources (e.g. logistics of biomass, 

pelleting) or require the use of other resources that might have an adverse impact on the 

environment and human health (pesticides, fertilisers etc.). Furthermore, biomass production 

and use could potentially have positive or negative social effects when performed in large 

scale, such as employment levels, health effects, noise from transportation, visual impact, loss 
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of biodiversity etc. Therefore, the sustainability of using biomass for energy generation 

purposes cannot be considered as a given 

A reliable and financially efficient supply chain is crucial to the success of a CHP plant. The 

forestry biomass resource, especially forestry biomass is abundant in the UK thanks to the 

mild winters, plentiful rainfall, fertile soil and hill sheltered topography. UK forestry is well 

regulated and majority of the wood demand s associated with biomass electricity projects, and 

so far very few of these projects have reached beyond the drawing board.  (S.Cirell, 2018) 

However, for other type of resources such as agriculture biomass, the supply is seasonal. As 

indicated in the result section, fuel cost makes up to 42% of the total operational costs, 

therefore the seasonal change in supply-demand leads to significant increase in the cost of the 

fuel; or sometimes storage space would be required to balance the cost. Although the case of 

Wilton 10, the fuel stock is available all year round, and the fuel price does not subject to 

seasonal fluctuation; but CHP systems with this function is still rare in practice (Rentizelas, 

2014).  

According to Caputo et al. (2005), 56–76% of the fuel cost are due to the biomass logistics. 

The typical transportation mode for biomass in the UK is road; ship and train are also 

considered when long distance transport is required (Hamelinck et al., 2004). Although 

biomass is considered to be a ‘carbon neutral’ fuel source, results obtained in this study 

conveyed that transportation of biomass has unneglectable environmental impact. The key 

issue that biomass transportation faces is that biomass is low-density, and it leads to increased 

cost of collection, handling, transport and storage of the supply chain. (Rentizelas, 2014) 

In addition, it had been argued that removal of forest residues may result in a decrease of the 

carbon pool within the litter on the forest floor. This may affect the interaction between the 

litter pool and top layer of soil, which could manifest itself as a reduction in soil carbon in the 

long term. This could reduce soil fertility and impact on the greenhouse gas balance. 

However, there are studies suggests that the loss of soil fertility is minimal (James and 

Harrison, 2016). Further investigation is evidently needed to clarify the extent of the impact.  

6.4.5 Data quality assessment  

Table 6.5 below shows data quality assessment for sustainability assessment on the selected 

biomass CHP technology. The average score is 88%, much lower than that of the other two 

assessed technologies (solar PV88% and onshore wind 91%). The weakness lies on the 

techno-economic data. Due to the reason that the cost related data are not made available for 

public, generic data obtained from literature are used in this study. Although the employed 
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data are selected to be geographically and technologically representative, but adoption of 

primary data can largely improve accuracy of this study. On the other hand, the employment 

data shows to have higher quality than the data used in solar PV assessment.  

Overall, the data quality of biomass CHP case study is considered to be sufficient for purpose 

of this study, future work can improve in the following areas:  

1. Obtaining primary cost data on the power plant, including the hidden incentives and 

subsidies   

2. Investigate relevant pollution control measures that are already installed in the plant, 

as well as collect actual operational data, to thus increase the accuracy of the 

assessment results.  

   
Sustainability issues Indicator Normalised total 

Te
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m
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Reliability  
Availability factor 

0.83 
Capacity factor 0.83 

Cost Levelised cost 0.83 
Financial feasibility Payback period  0.83 

En
vi

ro
nm

en
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l C
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y 
 

Circularity  
Material circularity  

0.89 
Fuel circularity 0.83 

Energy Payback  Energy payback period  
0.89 

Acidification Potential (AP)  0.89 
Eutrophication Potential (EP)  0.89 

Freshwater Aquatic Ecotoxicity Pot. (FAETP inf.)  0.89 
Global Warming Potential (GWP 100 years) 0.89 

Human Toxicity Potential (HTP inf.)  0.89 
Marine Aquatic Ecotoxicity Pot. (MAETP inf.) 0.89 

Ozone Layer Depletion Potential (ODP, steady state) 0.89 
Photochem. Ozone Creation Potential (POCP) 0.89 

Terrestric Ecotoxicity Potential (TETP inf.) 0.89 

So
ci

al
 

C
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y 
 

Fuel poverty Bill reduction rate  
1.00 

Employment 
provision Employment provision 

0.83 
Table 6.5 Data quality assessment result for biomass CHP 
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6.5 Summary  

The outcome of the assessment can be concluded as follows:  

1. Biomass CHP is a dispatchable energy supply, with high capacity factor means the 

technology is capable to meet peak demand; however scheduled or non-scheduled 

downtime means biomass CHP cannot be the solo energy source and it needed to be 

paired with other energy technology to ensure a stable supply.  

2. The impact of biomass used for this technology needs to be investigated further.  

3. The recyclability of the burnt ash can be further explored to increase fuel circularity 
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Chapter 7 Discussion  
 

Following on from sustainability assessment of the three energy technologies, this chapter 

first compares the sustainability performance of three assessed technologies, then 

demonstrates how the designed framework can be applied to assessing the sustainability of 

electricity mixes through scenario analysis.  

7.1 Comparison of three assessed technologies 

The sustainability performance of solar PV, onshore wind and biomass CHP has been 

discussed in chapter 4-6, this section provides summary of direct comparison of these three 

technologies. Table 7.1 compares the sustainability performance of the assessed technologies 

using the average value obtained as result for each indicator; and table 7.2 presents the 

ranking of each technology.  

Observe from the ranking, onshore wind has the best overall performance and followed with 

biomass CHP. The performance of solar PV is not ideal. The worst performing category for 

solar PV is its environmental performance which is mainly let down by the low reliability of 

the technology. A solar PV system installed in the Northeast region is only able to perform at 

10% of its design capacity; which means 90% more installation would be required to achieve 

the designed maximum electricity supply. The general capacity factor of solar PV is only 

16%-22% (Besarati et al., 2013; Chandel et al., 2014), but to a large extend the low 

performance of solar PV is related to the limited solar irradiation within the Northeast region, 

and this can be seen from the low availability factor at 15%. On the other hand, solar PV 

systems installed in the southwest coast of the country, such as Cornwall where solar 

irradiation is almost 50% more than the Northeast region of England would score higher in 

the reliability category and reduce the overall environmental impact. The same can be said for 

onshore wind, which has the best performance across all categories largely due to the high 

wind speed in the Northeast region which enables the turbines to operate at 98% of the time. 

This reflects the importance of regional based sustainability assessment that renewable energy 

perform differently throughout different regions in the country.  

Although solar PV is not the best performing technology supply, and even in country like 

Germany where the deployment of solar PV is high, the amount of electricity generated 

through solar PV in the past ten years is between 0.8% and 6% of the total electricity 

generation (EuroStat, 2018). However, observing from the overall performance of solar PV, 

the merit of the energy is the ability to reduce fuel poverty. System cost for solar PV is the 
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most accessible energy option among the three, it has low system cost and short installation 

time; and with financial assistance it can be installed at point where fuel poverty is a 

concerning issue. Although it does not have high energy yield, but a 4KWp system can offer 

substantial electricity to a household need.  

Onshore wind is known as an intermittent energy source because it is not available to generate 

at all times; however, the results conveys the otherwise: the availability factor of the assessed 

wind energy is even higher than the CHP plant. Present day’s wind turbines are designed to 

suit most wind conditions, given the location of installation is carefully selected, most of the 

time the turbine will be able to operate. In comparison, the CHP appeared to offer less 

stability in terms of continuous energy supply. That the onshore wind technology can be 

deployed as a standalone source of energy supply for areas with low energy demand in 

general, while on the other hand CHP needs to be paired with other energy technology to 

ensure a stable supply over the time. The merit of CHP lies in its high dispatchability and 

capacity. As mentioned, that onshore wind cannot be regarded as a suitable standalone option 

for areas with high peak demand because its energy output cannot be ramped up or ramped 

down in response to demand curve.  

One reason for the slower deployment rate of CHP can be observed here, that the lower price 

offered by solar PV and onshore wind took over the market share of CHP technology. The 

fuel cost is a continuous investment that needs to be secured throughout the entire operational 

life of the technology, and the cost can be substantial as the size of installed capacity 

increases.  

Decommission procedures is not well established for all the assessed energy technologies. 

The end of life stage is assessed in this study through material circularity, and the possible 

decommission options for solar PV and onshore wind are discussed in previous chapters. 

Partially due to the reason that renewable energy is still “young” and the standard 

decommission practice had not formed; but from what have discussed in the study can 

conclude that the impacts are not negligible. For example, for construction projects such as 

onshore wind and biomass power station, decommission of the plant would involve use of 

explosive materials to break down the structure, which may lead to pollution and degradation 

of environment. The real-life decommission practice also affect the circularity of these 

technologies. For example if the windfarm is decommissioned using explosives, then most of 

the materials will be regarded as construction and demolition waste, and a different recycling 

rate shall be applied to the circularity indicator(DEFRA, 2018b). 
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Sustainability issues Indicator Solar PV  Onshore 
wind  

Biomass 
CHP 

T
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hn
o-
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 C
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Reliability 
Availability factor 15% 98% 95% 

Capacity factor 10% 30% 80% 

Dispatchability 8 8 4 

Cost Levelised cost 99 52 152 

Financial feasibility Payback period 9 4 10.5 

E
nv

ir
on

m
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l C

at
eg

or
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Circularity 
Material circularity 56% 62% 56% 

Fuel circularity 0% 0% 0% 

Energy Payback Energy payback period 3.3 1 0.87 

Acidification Potential (AP) 5.26E+01 1.02E-01 8.42E-01 

Eutrophication Potential (EP) 8.08E+04 4.53E-02 2.93E-01 

Freshwater Aquatic Ecotoxicity Pot. (FAETP inf.) 1.33E+05 1.42E+01 1.65E+01 

Global Warming Potential (GWP 100 years) 4.76E+05 1.66E+01 5.77E+01 

Human Toxicity Potential (HTP inf.) 4.73E+07 4.12E+01 9.25E+01 

Marine Aquatic Ecotoxicity Pot. (MAETP inf.) 4.69E+07 3.09E+04 2.94E+04 

Ozone Layer Depletion Potential (ODP, steady state) 2.30E+00 1.15E-06 3.80E-06 

Photochemical. Ozone Creation Potential (POCP) 6.13E+01 1.24E-02 9.33E-02 

Terrestric Ecotoxicity Potential (TETP inf.) 1.18E+02 7.18E-01 3.89E+00 

Social Category 
Fuel poverty Bill reduction rate 54% n/a n/a 

Employment provision Employment provision 0.65 14.62 8.7 

Table 7.1 Sustainability performance of three assessed technologies: solar PV, onshore wind and biomass CHP
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Sustainability issues Indicator Solar PV  Onshore 
wind  Biomass CHP 

T
ec
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C
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Reliability 
Availability factor 3 1 2 

Capacity factor 3 2 1 

Dispatchability 2 2 1 

Cost Levelised cost 2 1 3 

Financial feasibility Payback period 2 1 3 

Subtotal 10 5 9 

E
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m
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y 

Circularity 
Material circularity 1 2 1 

Fuel circularity 0 0 0 
Energy Payback Energy payback period 3 2 1 

Acidification Potential (AP) 3 1 2 
Eutrophication Potential (EP) 3 1 2 

Freshwater Aquatic Ecotoxicity Pot. (FAETP inf.) 3 1 2 
Global Warming Potential (GWP 100 years) 3 1 2 

Human Toxicity Potential (HTP inf.) 3 1 2 
Marine Aquatic Ecotoxicity Pot. (MAETP inf.) 3 2 1 

Ozone Layer Depletion Potential (ODP, steady state) 3 1 0 
Photochem. Ozone Creation Potential (POCP) 3 0 0 

Terrestric Ecotoxicity Potential (TETP inf.) 3 1 2 
Subtotal 31 13 15 

Social Category 
Fuel poverty Bill reduction rate 1 2 2 

Employment provision Employment provision 3 1 2 
Subtotal 4 3 4 

Grand Total 44 21 27 
Table 7.2 Sustainability performance ranking of three assessed technologies: solar PV, onshore wind and biomass CHP
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7.2 Energy mix scenarios  

Three fictional scenarios of energy mix using existing decentralised energy technology within 
the Northeast region are analysed in this section. Purpose of carrying out this scenarios 
analysis are in two folds: firstly, is to demonstrate how the designed mode can be applied to 
examine energy mix scenarios and assists with decision making and energy planning; 
secondly, it aims to explore the implication of potential future regional electricity mix 
scenarios in the Northeast region of UK.   

Presume the annual electricity demand is equivalent to assumption of the Northeast region of 
England at 1,162,200 MWh (DBEIS, 2017c), and this demand is to be supplied by solar PV, 
onshore wind and biomass CHP; the three analysed scenarios are:    

1) Base case scenario. This scenario is based on the ratio of biomass, onshore Wind and 
Solar PV in the present day electricity mix (DBEIS, 2018b). The energy mix is made 
of solar PV 12%, onshore wind 55% and biomass CHP 33%.  

 
2) Low carbon scenario. This scenario is established based on energy mix achieving 25% 

carbon emission reduction in comparison to the base case scenario, the carbon 
emission is computerized using CO2 equivalent emission. The energy mix is made up 
with 9% solar PV, 60% onshore wind and 31% biomass CHP.  

 
3) High demand scenario. This scenario is driven by the goal of achieving 64% of 

average operational capacity; therefore it is assumed that biomass CHP is the baseload 
technology and supplies 90% of the energy requirement, and solar with the lowest 
score in the techno-economic performance will share 3% of total energy load and 
onshore wind will share 7% of the total demand.   

Based on the annual energy demand, and assumed energy mix, the required installed capacity 
for each technology is listed in table 7.3 below.  

Base scenario 

Energy technology Solar PV Onshore Wind Biomass 
CHP 

Energy mix (%) 12% 55% 33% 
Required installed 

capacity (MW) 15 24 5 

Low Carbon 
scenario 

Energy technology Solar PV Onshore Wind Biomass 
CHP 

Energy mix (%) 9% 60% 31% 
Required installed 

capacity  (MW) 12 27 5 

High Demand 
scenario 

Energy technology Solar PV Onshore Wind Biomass 
CHP 

Energy mix (%) 3% 7% 90% 
Required installed 

capacity  (MW) 3 3 15 
Table 7.3 Summary of scenarios considered  

5 
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Results for these scenarios are illustrated in table 7.4, and ranking of scores is shown in table 

7.5 below. The high demand scenario has the best performance among all, particular in 

environmental category which is unexpected; but it scores the lowest in the social category for 

its limited ability to alleviate fuel poverty and employment provision; in addition, the energy 

cost per unit is also much higher than the other two scenarios and this also result in longer 

payback period. This scenario may favour stakeholders with higher energy demand and 

flexible budgets, and also interest in improving environmental impacts from energy 

consumption.  

Interestingly the Low carbon scenario does not have the best environmental performance 

among all categories despite the effort of achieving over 25% carbon reduction, this is 

predominately caused by higher proportion of solar PV involvement in the energy mix; it also 

has the lowest energy cost but also the lowest dispatchability due to smaller proportion of 

biomass CHP included in the energy mix. The positive side is that the levelised energy cost is 

low, therefore this may favour stakeholders with aim to achieve carbon reductions within 

limited budget. The low carbon scenario also scores higher in employment provision and 

energy period; but the difference is less than 5% in both indicators means unless large scale of 

installation is involved otherwise this character will not be very prominent.  

The base scenario scores the lowest in overall performance, but it offers the highest bill 

reduction rate; therefore this may be suitable for stakeholders with tackling fuel poverty as 

key goal in mind. 
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  Scenarios 
Sustainability 

issues Indicator Base scenario Low carbon High demand 

T
ec
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om
ic
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Availability factor (%) 86.99% 89.56% 92.65% 
Capacity factor (%) 31.00% 43.73% 64.40% 
Dispatchability 8 12 4 
Levelised cost (£/MWh) 90.64 87.23 142.42 
Payback period (year/MWh) 6.745 6.465 9.91 

E
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m
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Material circularity (%) 59.26% 59.56% 55.77% 
Fuel circularity (%) 0% 0% 0% 
Energy payback period (year/MWh) 1.23 1.1667 0.919 
Acidification Potential (AP) [kg SO2 eq.] 6.64E+00 5.05E+00 1.82E+00 
Eutrophication Potential (EP) [kg Phosphate eq.] 9.70E+03 7.27E+03 1.62E+03 
Freshwater Aquatic Ecotoxicity Pot. (FAETP inf.) [kg DCB eq.] 1.60E+04 1.20E+04 2.69E+03 
Global Warming Potential (GWP 100 years), excl biogenic carbon [kg 
CO2 eq.] 5.72E+04 4.29E+04 9.57E+03 

Human Toxicity Potential (HTP inf.) [kg DCB eq.] 5.67E+06 4.25E+06 9.46E+05 
Marine Aquatic Ecotoxicity Pot. (MAETP inf.) [kg DCB eq.] 5.65E+06 4.24E+06 9.66E+05 
Ozone Layer Depletion Potential (ODP, steady state) [kg R11 eq.] 2.76E-01 2.07E-01 4.61E-02 
Photochem. Ozone Creation Potential (POCP) [kg Ethene eq.] 7.39E+00 5.55E+00 1.31E+00 
Terrestric Ecotoxicity Potential (TETP inf.) [kg DCB eq.] 1.58E+01 1.23E+01 1.47E+01 

Social 
Category 

Bill reduction rate (%) 6.48% 4.86% 5.40% 
Employment provision (job/MW) 10.99 11.53 9.08 

Table 7.4 Sustainability performance results of three assessed scenarios 
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Table 7.5 Ranking of sustainability performance for three assessed scenarios 

  

 Scenarios 

Sustainability 
issues Indicator Base 

scenario  
Low 

carbon 
High 

demand 
T

ec
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Availability factor (%) 3 2 1 
Dispatchability 2 3 1 
Capacity factor (%) 3 2 1 
Levelised cost (£/MWh) 2 1 3 
Payback period (year/MWh) 2 1 3 

sub-total 13 8 9 

E
nv
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m
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Material circularity (%) 2 3 1 
Fuel circularity (%) 0 0 0 
Energy payback period (year/MWh) 3 2 1 
Acidification Potential (AP) [kg SO2 eq.] 3 2 1 
Eutrophication Potential (EP) [kg Phosphate eq.] 3 2 1 
Freshwater Aquatic Ecotoxicity Pot. (FAETP inf.) [kg DCB eq.] 3 2 1 
Global Warming Potential (GWP 100 years), excl biogenic carbon [kg 
CO2 eq.] 3 2 1 

Human Toxicity Potential (HTP inf.) [kg DCB eq.] 3 2 1 
Marine Aquatic Ecotoxicity Pot. (MAETP inf.) [kg DCB eq.] 3 2 1 
Ozone Layer Depletion Potential (ODP, steady state) [kg R11 eq.] 3 2 1 
Photochem. Ozone Creation Potential (POCP) [kg Ethene eq.] 3 2 1 
Terrestric Ecotoxicity Potential (TETP inf.) [kg DCB eq.] 3 1 2 

sub-total 32 22 12 

Social Category Bill reduction rate (%) 1 3 2 
Employment provision (job/MW) 2 1 3 

sub-total 3 4 5 
Grand total 46 35 26 
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7.3 Summary 

The outcomes of this chapter can be summarised as follows:  

1. In terms of sustainability performance, no technology is superior to another; and 

definition of sustainability needs to be addressed in the context of regional 

development target and resource profile. 

2. Wind is commonly categorized as intermittent energy source, and thus onshore wind is 

often associated with unstable electricity supply; however, due to the ideal wind 

condition of Northeast region, the availability of installed wind turbines appear to 

exceed that of the other two assessed technologies. This conveys the importance of 

considering regional characteristics for energy planning.  

3. Solar PV is widely considered to be “green energy” technology to the general publics, 

this is due to the low emission during electricity generation stage. The research 

discovered that the negative impact of solar PV is mainly occurred during manufacture 

the system components. This ascertains the necessity of life cycle study when 

examining sustainability of technologies.     

4. Biomass CHP is a stable supply; when supply chain can be sustainably managed, it 

can be a reliable and dispatchable energy supply with low environmental impacts.  

5. Energy sustainability is complex, and energy decision making cannot be single-goal 

oriented; instead an integrated assessment needs to be conducted in order to achieve 

the best solution.  Although the low carbon scenario satisfies the goal of reducing the 

carbon emission by 25% in comparison to the base scenario, it does effectively reduce 

the overall environmental impact; on the other hand, the high demand scenario not 

only offers the most stable energy supply, it can achieve better environmental 

performance comparing to the other two scenarios, with the higher electricity cost as 

the downside. 
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Chapter 8 Summary  
 

This research developed a regional life cycle sustainability assessment framework combines the 

triple bottom line principle and life cycle approach, and this framework was applied to three 

dominate decentralised renewable energy options in the Northeast region of UK, they are: solar 

PV, onshore wind and biomass CHP.  The objectives of this research have been met as follows:  

1. Existing sustainability assessment framework and indicators have been reviewed in chapter 2  

2.  A regional life cycle sustainability assessment framework have been established and presented 

in chapter 3  

3. The framework is then applied to assess sustainability of solar PV (chapter 4), onshore wind 

(chapter5) and biomass CHP (chapter 6) 

4. The sustainability performance of the assessed electricity options are then compared. 

Moreover, the application of the designed framework is demonstrated by applying on three 

energy mix scenarios (chapter 7)  

Assessment on the energy mix scenarios (chapter 7) demonstrated the complexity of energy 

decision making, and also the effectiveness of the proposed framework in assist sustainable 

energy decision making process. Before exploring the “most sustainable” energy technology, the 

definition of sustainability needs to be established in accordance with the regional development 

strategy and resource profile. And since achieving sustainability is a dynamic process, the energy 

planning requires constant adjusting.  Based on the findings of this study, policy 

recommendations can be made in the following section.  

8.1 Policy recommendations  

Based on the findings of this study, policy recommendations can be made as follows: 

1. A working definition of sustainability is required in order to establish what energy options 

are sustainable; 

2. There is no “one-fits-all” energy solutions, due to regional social, economic and 

environmental characteristic, and therefore energy planning is more effective to be carried 

out on a regional scale;  
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3. Understanding the impact of a product throughout its entire life cycle is crucial to ensure 

that decision made in one place does not place burden on the development of another;  

4. with many of the installed renewable energy systems soon approaching end of their life 

time, guidelines and codes of best practice on energy decommission practice needs to be 

integrated into national legislation to make clean energy technologies really “clean”; 

8.2 Recommendation for future work  

1. Collation of data is involved and assumptions are made in this research where primary 

data is not available. Although data sourced and assumptions made were considered to be 

reliable and representative but they do introduce certainties to the result. The application 

of assumption and secondary data does not diminish the representativeness and validity of 

the research, but it does limit the predictive capacity for particular applications. Future 

study shall include the missing information; for example the hidden subsidies, actual cost 

information on power plants and employment number etc. 

2. Other currently operating grid-connected technologies in the region (such as offshore 

wind, natural gas CHP, natural gas with CCS etc. ) may be included in future studies, to 

allow a more comprehensive comparison.  

3. Decommission practice of energy technologies shall be further investigated.  

For future application to cases involving different policymaking processes and market 

mechanisms, the assessment indicators can be modified to cater to the particulars of the 

application. The indicator selection process should follow the guidelines provided in this study, 

and the structure of the proposed framework should remain unchanged. 
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