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Abstract 

 

Bronchiectasis (BR) patients show risk for developing rheumatoid arthritis (BROS). As 

citrullination is implicated in rheumatoid arthritis pathogenesis it is possible that 

neutrophil extracellular trap (NET) formation, which is associated with PAD enzyme 

activity (i.e. citrullination), may be the mechanism connecting the two diseases. This 

body of work took 4 separate approaches to study the process of NETosis/PAD activity in 

the context of BR. 

Firstly, healthy peripheral blood neutrophils were assayed for changes in NETosis/PAD 

following stimulation with BR relevant molecules. Both NETosis and PAD activity 

increased following incubation, suggesting BR related stimuli promote NETosis and 

citrullination. Secondly, LPS signalling was assessed to determine how inhibition of the 

two arms of the signalling pathway (TRIF and MyD88) impacted NETosis/PAD activity. 

Pre-treatment with either inhibitor downregulated both NETosis rates in vitro, 

suggesting molecular signalling underpinning NETosis is broader and more complex than 

predicted. 

Thirdly, the impact of Cl-amidine (a PAD inhibitor) on NETosis, PAD activity and 

neutrophil function was assessed in vitro. Cl-amidine was shown to significantly reduce 

NETosis and PAD activity in response to BR stimuli. Superoxide production and 

phagocytosis was also shown to be inhibited by Cl-amidine, suggesting PAD plays some 

role these aspects of neutrophil function. Finally, NETosis, PAD activity and neutrophil 

function was assessed in healthy, BR and BROS neutrophils. Several differences in these 

results were observed between the groups, however limited sample size and lack of age 

matched healthy comparators complicate results interpretation. 

These results imply that the molecular mechanisms underpinning NETosis/PAD 

activation is likely more complicated than previously suggested, with the results also 

indicating that PAD activity may play a role in neutrophil function. BR relevant stimuli 

appear to promote both NETosis and citrullination, with preliminary data suggesting 

there may be some difference in these processes between healthy, BR and BROS 

patients.  
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Chapter 1: Introduction 

 

1.1 Bronchiectasis as an emerging problem 

1.1.1 Pathogenesis underpinning the onset of bronchiectasis 

Bronchiectasis is a chronic pulmonary condition defined by thickening and dilation of the 

bronchial airways and airflow obstruction which was first identified in the 1800’s by 

Rene Laënnec (Lohani 2011, Rougin 2006). Commonly the disease is viewed to arise 

from a “vicious cycle” of pulmonary infection and inflammation. Typically, in healthy 

individuals’ pulmonary infections are short lived and eradicated by a specific controlled 

immune response. However, in some individuals the ability to clear these infections is 

decreased leading to an exaggerated or imbalanced inflammatory response to resolve 

infection (Cole 1986). 

This exaggerated inflammatory response leads to damaged local airway structures 

resulting in impaired clearance of mucus by airways, which increases the risk for severe 

repeat pulmonary infections to occur (Mandal 2013). Over time this cumulative damage 

from chronic airway inflammation and pulmonary infections leads to destruction of the 

airway infrastructure, which results in the permanent dilation of the bronchi and airway 

obstruction defining the disease (Nikolic 2018). 

As bronchiectasis results from impaired immune defences within the lung, which results 

in accumulating damage due to infections/inflammation, there are a variety of diseases 

that progress to bronchiectasis (Bergin 2013). When examining bronchiectasis patient 

cohorts, the widespread aetiology is often easily observable with commonly seen causes 

including: cystic fibrosis (a major cause of paediatric bronchiectasis), severe respiratory 

infection, inherited immunodeficiency, cilia dysfunction etc. (Dodd et al 2015, Shoemark 

2007, McDonnel 2013). However, a majority of bronchiectasis cases are idiopathic, 

highlighting the gap in knowledge surrounding the pathogenesis of the disease 

(Milosevic 2013). 

1.1.2 Epidemiology of bronchiectasis and economic/healthcare burden 

In the past decades bronchiectasis was often viewed to be an uncommon pulmonary 

disease with a low prevalence worldwide (Mandal et al 2013). However, in recent years 
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this perception has become increasingly challenged. Largely due to the wider 

implementation of CT-scans in diagnosing the disease in the developed world, coupled 

with advancements in the technology allowing more accurate diagnosis and reduced 

cost (Goeminne 2016). 

Epidemiological studies have already demonstrated an increasing prevalence over a 

relatively short timescale of observation. In 2012 Seitz et al carried out a study in 

patients of the Medicare health system in the USA. They found that over 1% of those 

identified as using Medicare were already diagnosed with bronchiectasis. In addition, 

they also demonstrated over the course of their study that the prevalence of 

bronchiectasis seemed to be increasing by almost 95% per year (Seitz et al 2012). 

Two European bronchiectasis epidemiological studies have shown similar results. In the 

UK population it has been observed that the prevalence and incidence of bronchiectasis 

in the population appeared to be increasing every year (Quint et al 2012). Furthermore, 

a similar study in Germany indicated that 67 out of 100,000 individuals in the country 

are diagnosed with bronchiectasis, which is higher than previously estimated 

(Ringshausen et al. 2015). 

Hence there is a consistent increasing trend across developing countries that 

bronchiectasis is far more frequent than previously believed. With the knowledge that 

bronchiectasis patients are frequently hospitalised (with longer stays in hospital), need 

more follow up appointments and need repeated antibiotic treatments during 

exacerbation it is no surprise that bronchiectasis places a significant burden on public 

healthcare systems (Poppelwell 2014, Weycker 2005), in addition having severe 

implications on patient quality of life and mortality (Loebinger et al. 2009, Chalmers et al 

2014). For these reasons there is great interest in further research into bronchiectasis to 

improve patient quality of life and potentially reduce healthcare burden. 

1.1.3 Bronchiectasis as heterogeneous disease 

Heterogeneity in bronchiectasis extends beyond the aetiology underpinning individual 

bronchiectasis cases. High-resolution CT scans demonstrate that many patients differ in 

the morphology of the airway dilation. There are 3 established classes: cystic, varicose 

and cylindrical, with significant variation in the location/distribution of the airway 
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damage in the pulmonary compartment e.g. single lobar diseases and multi lobar 

disease (Silva et al. 2010).  

The clinical manifestation of the disease also varies between patients. The most 

common symptoms are productive cough and increased mucus production, however the 

combination of symptoms that manifest and their severity varies greatly between 

patients (ten Hacken 2007). Due to this heterogeneity in clinical phenotypes seen 

bronchiectasis there is surprisingly no single factor that can accurately indicate current 

disease severity or predict disease trajectory. 

1.1.4 Assessing severity of bronchiectasis 

The challenge in assessing bronchiectasis severity has resulted in many studies 

attempting to identify clinical indices that help in defining disease severity. A number of 

certain clinical factors (e.g. % FEV1, airway colonisation, exacerbations per year) have 

been shown to be related to the severity of disease. This has allowed the development 

of severity assessment tools such as the bronchiectasis severity index (BSI), which help 

guide physicians in diagnosing/monitoring/treating patients (Chalmers et al. 2014). This 

index has been improved upon in later years by the development of the bronchiectasis 

aetiology comorbidity index (BACI) and FACED score, which both support the diagnostic 

capabilities of the BSI (McDonnel et al 2016, Guan et al 2015, Martínez-García 2014). 

Given time most patients with bronchiectasis are seen to develop a more severe 

phenotype of disease (Athanazio 2012). However, the rate at which this occurs varies 

greatly, creating great problems for physicians in attempting to predict which patients 

are at most risk from the disease and require more stringent monitoring and/or 

treatment. 

1.1.5 Bronchiectasis and its overlapping disease states 

Frequently patients with bronchiectasis are diagnosed with the disease after having 

been previously diagnosed with another pulmonary disease state such as asthma, 

chronic obstructive pulmonary disorder and cystic fibrosis (CF) (Gao et al 2016). 

However, CF bronchiectasis patients are often viewed as a distinct group separate from 

the rest of the BR patient population (i.e. non-cystic fibrosis bronchiectasis) due to 

differences in the pathogenesis and effective treatment between CF and non-CF 
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bronchiectasis (McShane et al 2013). These patients can be described as “overlap 

patients” and are understandably expected to exhibit a more severely affected quality of 

life and survival rates than patients with bronchiectasis alone. 

One established and studied example of these bronchiectasis overlap patients are those 

diagnosed with bronchiectasis and overlapping COPD (BCOS). As predicted BCOS 

patients appear to have worse prognosis in terms of airway colonisation and 

exacerbations (Martinez-Garcia et al. 2015). The mortality rates in BCOS patients has 

also been seen to be far worse in comparison to all other non-cystic fibrosis 

bronchiectasis patient subgroups, with 55% of BCOS patients dying over a 5-year period 

whereas the 5 year mortality rates of the idiopathic and post-infectious BR patient 

groups was reported as 14% and 16% respectively (Goeminne 2014). Furthermore, in 

their 2015 paper on BCOS, Hurst et al. argued strongly that there are distinct differences 

within the BCOS cohort between primary-bronchiectasis patients (bronchiectasis 

developed first then COPD) and primary-COPD patients (COPD developed first then 

bronchiectasis) and that increasing our understanding of the mechanistic link between 

the two is critical to improving patient care. 

The co-existence of pulmonary conditions such as COPD and cystic fibrosis with 

bronchiectasis is largely understandable given the pathogenesis of bronchiectasis (i.e. 

chronic pulmonary damage), however a sub-group of bronchiectasis patients exist 

whom are simultaneously diagnosed with rheumatoid arthritis (RA). These patients are 

referred to as “bronchiectasis rheumatoid overlap syndrome” (BROS) patients.  

 

1.2 Rheumatoid arthritis: intra and extra articular effects 

1.2.1 Rheumatoid arthritis pathogenesis 

RA is a common autoimmune condition which primarily affects joints, typically those in 

the: fingers, wrists, elbow, ankle and knees (Glynn et al. 1972). Current understanding 

surrounding the initiation of the disease is limited, with many “triggers” (e.g. 

autoreactive antibodies) being suggested to play a potential role in paving the way for 

the inflammatory response seen in the disease. What is well established is that the early 

stages of the disease feature the synovial membrane becoming extremely inflamed 
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(with a large number of blood derived immune cells migrating into the tissue). The 

damage from this inflammation leads to a loss of anatomical integrity within the synovial 

lining associated with increased elasticity (Choy et al. 2012). Following this 

inflammation, invading neutrophils and osteoclasts are believed to drive degradation of 

bones and cartilage within the joint (Sato et al. 2006, Pillinger et al. 1995). Over time this 

inflammation of the synovial tissue coupled with the destruction of the bone and 

cartilage leads to the clinical manifestations classically associated with RA: joint pain, 

deformities and loss of mobility (Choy et al 2012). 

1.2.2 Extra-articular rheumatoid arthritis 

In addition to the debilitating joint destruction seen in RA, patients are also observed to 

exhibit systemic inflammation which places them at risk of various clinical complications 

outside of the joint. This manifestation of the disease is commonly referred to as extra-

articular rheumatoid arthritis (ExRA). Systemic inflammation is argued to be the source 

of these extra-articular symptoms on the basis that many patients with ExRA have 

elevated levels of inflammatory associated molecules such as TNF-α, C-reactive protein 

(CRP) and rheumatoid factor (Sattar et al 2003, Turesson et al. 2007, Jonsson et al. 

1995). Some of the commonly observed extra-articular complications seen in patients 

with RA include: fatigue, scleritis, stroke, limb nodules, anaemia, pericarditis, interstitial 

lung disease, cardiovascular disease (Vela 2014, Cimmino et al 2000, Shaw et al 2015). 

As expected the implications of ExRA appear to have a largely negative impact on 

patient prognosis. Of the various observed ExRA phenotypes it has been suggested that 

those involving impaired cardiovascular function have been shown to have the highest 

mortality rate (Turesson et al 1999). However, there is some disagreement from other 

researchers who suggest that ExRA related pulmonary disease is the most common 

cause of mortality in patients with RA (Bluett et al 2017). 

1.2.3 Frequency of extra-articular rheumatoid arthritis 

The frequency of ExRA in RA patients is a controversial issue with several different 

international studies reporting different estimates. For example, three individual studies 

carried out in the USA, Sweden and Saudi Arabia respectively reported ExRA frequencies 

within the RA patient cohort of 70%, 8% and 41% (Turesson et al. 1999, Al-Ghamdi et al 
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2009, Turesson et al 2003). Furthermore, a study in 2000 by Cimmino et al showed that 

in Italy (which has an ExRA prevalence of ~40% in the RA patient cohort) there was a 

significant difference in the number of ExRA cases in northern Italy compared to the 

south. This suggests that the RA population may be diverse on a global level with 

important differences between the patient groups from different nations (or even 

regions), meaning different approaches to monitoring the healthcare of RA patients may 

be needed for different regional populations. 

1.2.4 Extra-articular rheumatoid arthritis and pulmonary disease 

As ExRA is argued to be the result of systemic inflammation it is unsurprising that 

manifestations are commonly seen in the pulmonary compartment which has a high 

amount of vascular tissue distributed throughout it (Cojocaru et al 2010). This relatively 

high frequency of pulmonary manifestations within the ExRA cohort poses a significant 

problem considering that a diagnosis of pulmonary ExRA is often associated with far 

greater morbidity and mortality rates and therefore a far worse prognosis for the 

patient (Shaw et al 2015). 

A great challenge with regards to treating/managing healthcare for pulmonary ExRA 

patients relates to the wide diversity in tissues affected and pulmonary diseases 

presenting. It has been shown that RA is able to impact all manner of pulmonary tissue 

including: the parenchyma, pleura, bronchial airways and the vascular tissue (Shaw et al. 

2015). Each of which has a variety of pulmonary disease states that have been linked to 

RA (table 1.1). 
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1.2.5 Bronchiectasis as an extra-articular manifestation of rheumatoid arthritis? 

As ExRA may result in a variety of disease states in several pulmonary tissues, including 

the airway, there is an understandable link between RA and the onset of bronchiectasis. 

However, published studies of the BROS patient cohort suggest that many developed 

the bronchiectasis often a decade before RA, with one study suggesting that this was the 

case for 90% of clinically monitored patients (McMahon et al. 1993, Despaux et al 1997). 

As BROS patients are shown to have poorer 5 year survival than healthy, bronchiectasis 

and RA patients (Swinson et al 1997) there is potential clinical benefit in developing a 

better understanding of how bronchiectasis could potentially lead to the onset of RA.  

1.2.6 Bronchiectasis lung as an origin of rheumatoid arthritis? 

The observation that a large number of BROS patients developed bronchiectasis long 

before RA has evoked several debates within the literature with regards to an 

explanation for this phenomenon. One emerging explanation over the years being that 

the accumulating infections commonly seen in bronchiectasis may result in the 

generation of an autoimmune response and the onset of RA by an at first unknown 

mechanism (Al-Shirawi et al 2006). This is supported by several studies showing that 

Table 1.1 Pulmonary diseases in various regions of the respiratory system which are 
associated with extra-articular rheumatoid arthritis. Summary of some of the different 
diseases associated with different compartments of the lung (Adapted from published work 
by Shaw et al 2015). 

Pulmonary compartment 
Diseases associated with  

extra-articular rheumatoid arthritis 

Parenchyma • Interstitial lung disease 

Pleura 

• Pleural Effusion 

• Pleural effusion 

• Pneumothorax 

Airway 

• Bronchiectasis 

• Obliterative bronchiolitis 

• Follicular bronchiolitis 

Vasculature 
• Pulmonary hypertension 

• Rheumatoid vasculitis 
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clinical samples from bronchiectasis patients (without RA) are often seen to possess 

significantly higher quantities of biological markers associated with the onset of RA 

including rheumatoid factor and anti-CCP, which suggests that the bronchiectasis lung  

may potentially act as a trigger for the onset of RA (Hilton et al. 1978, Perry et al. 2014, 

Chatzidionisyou et al 2016). 

Some opposed the suggestion that the bronchiectasis lung can initiate RA, with an 

alternative explanation for these studies results being that the RA related autoimmune 

molecules (i.e. autoantibody production) in clinical samples are not originating from the 

BR lung, but are instead the result of the underlying RA which has not yet been 

diagnosed and/or progressed to presenting joint disease. Therefore, implying the 

presence of these molecules is simply a marker of extra-articular inflammation that may 

predict RA but is not a cause of the disease.  

However, there is growing support for the concept that RA imunopathogenesis and the 

loss of tolerance may in several cases be initiated outside the primarily affected joints, 

which suggests the development of auto-antibodies and RA-related inflammatory 

molecules begins in other tissues. One of the best-defined arguments for this being 

periodontitis. Periodontitis is a gum disease heavily linked to the onset of RA (Lappin et 

al 2013). Initially the disease was believed (much like bronchiectasis) to be the result of 

underlying RA inflammatory activity. Research has however demonstrated that P. 

gingivalis (the main pathogen seen in periodontitis) expresses an enzyme homologous 

to a protein modifying enzyme expressed in humans known as peptidylarginine 

deiminase (PAD), which could potentially modify host proteins in the infected gum 

leading to the formation neoantigens with citrullinated peptide motifs. In a genetically 

susceptible individual this could elicit the production of anti-citrullinated peptide 

antibodies (ACPA) that may play a role in the onset of RA (Maresz et al 2013). 

This phenomenon of the diseased gums serving as an origin point of the onset of RA has 

given greater consideration for the concept that the lung may also act as a site for the 

development of autoimmune responses that promote RA. To determine whether this is 

the case we must examine the cells implicated in each disease and the potential 

biological mechanisms which may play a role in the onset of autoimmune responses 

relevant to RA.  
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1.3 Cellular components in bronchiectasis and rheumatoid arthritis 

1.3.1 Inflammatory cells seen in the bronchiectasis lung and airway 

With the two key features in bronchiectasis being inflammation and infection it is no 

surprise that immune cells are heavily implicated in the disease. Bronchial mucosa 

biopsies taken from adult bronchiectasis patients are known to contain a diverse range 

of infiltrating immune cells including macrophages, CD4+ lymphocytes and a large 

number of polymorphonuclear neutrophils (Gaga et al 1998).  The importance of 

infiltrating CD4+ lymphocytes in bronchiectasis is still relatively unexplored. A prior study 

by Emad et al suggested that CD4+ lymphocytes may have a role in initiating 

bronchiectasis based on their observation that the number of CD4+ lymphocytes in 

bronchoalveolar lavage (BAL) appears to directly correlate with patient diagnostic HRCT 

scores (Emad et al. 2007). However, as this paper specifically focused on war veterans 

with bronchiectasis resulting from exposure to mustard gas it is unclear if these results 

extend to the broader bronchiectasis population. 

A further study by Zheng et al (2001) supported the findings of Gaga et al (1998), by 

demonstrating that the lamina propria of bronchiectasis airways possessed significantly 

higher amounts of macrophages and neutrophils than healthy comparators. Although 

macrophages are present in higher number in bronchiectasis patients with more 

frequent bouts of sputum production there appears to be no direct correlation between 

macrophage number and markers for bronchiectasis severity/onset. This raises doubts 

that macrophages play a major role in the progression of the disease. However, 

pulmonary macrophages may still contribute to bronchiectasis pathogenesis indirectly, 

by promoting neutrophil migration to the lung via TNF-α secretion (Zheng et al 2001). 

1.3.2 The role of neutrophils in bronchiectasis disease progression 

Neutrophils are classically known for their abundance in circulation and their role of 

migrating into infected/damage tissue where they phagocytose any potential pathogens 

in addition to releasing a host of protective anti-microbial and pro-inflammatory 

molecules to protect from any threat to the host tissue (Amulic et al. 2012). Given their 

function of migrating to inflamed/infected tissue it is no surprise that neutrophils have 
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been shown to be present in high amounts within the bronchiectasis lung (Gaga 1998, 

Zheng et al 2001). 

Given the importance of neutrophils in protecting tissues from infection it was in the 

past believed that neutrophils served simply a protective function in BR, which they no 

doubt do. However, as our understanding of neutrophil biology and bronchiectasis 

pathophysiology has improved we are now becoming aware that in BR neutrophils do 

not only serve a protective role. Rather they can carry out a destructive role via an 

exaggerated and prolonged response in the bronchiectasis lung (in response to the 

repeated cycle of inflammation and infection) that results in the progression to a more 

severe disease phenotype for the patient.  

The link between pulmonary neutrophils and bronchiectasis disease severity progression 

is understandable given their function of releasing pro-inflammatory cytokines and 

broad targeting destructive proteinases such as proteinase 3, neutrophil elastase and 

cathepsin G following migration to inflamed/infected tissue (Wiedow et al. 2005). The 

release of these molecules in large amounts would plausibly lead to the 

destruction/degradation of airway structural tissue critical for the progression seen in 

bronchiectasis (Schaaf et al. 2000). This hypothesised mechanism of neutrophils driving 

airway destruction is furthermore supported by recent work from Chalmers et al that 

identified neutrophil elastase in sputum as a biomarker for predicting decline in lung 

function and increased risk of exacerbation in bronchiectasis (Chalmers et al 2017).  

Therefore, although bronchiectasis lungs are infiltrated by a variety of immune cells 

from circulation, neutrophils are the most frequent migrator into the disease tissue and 

their dysfunction likely play a key role in the progression of the disease state. 

1.3.3 Cells implicated in rheumatoid arthritis 

As already established, the progression of RA within the joint is known to classically 

feature inflammation of the synovial membrane (i.e. synovitis) and the degradation of 

the bone/cartilage structure. This progressive destruction is enabled by a large influx of 

a variety of leukocytes (figure 1.1) into the RA afflicted joints due to the increased local 

angiogenesis resulting from increased expression of pro-angiogenic molecules such as 

VEGF and Hif-1α (Szekanecz et al. 2009).  



11 
 

Typically, synovitis is believed to occur first in joints affected by RA and has been linked 

to the presence of various cell types within the synovial membrane including: dendritic 

cells, B cells, plasma cells, T cells, macrophages and mast cells (Choy 2012). Our current 

understanding of RA pathology indicates that the synovial inflammation underpinning 

the disease largely depends upon the interaction between the antigen presenting cells in 

the joint (e.g. macrophages and B cells) and the large number of CD4+ T cells present 

within the joint (Choy 2012). These activated T cells then secrete several pro-

inflammatory cytokines (IFN-γ, IL-17, IL-2), which activate resident macrophages and B 

cells leading to the production of auto-antibodies (e.g. rheumatoid factor) and more 

cytokines (e.g. IL-1, IL-6, TNF-α) that results in an extreme pro-inflammatory 

environment in the joint causing damage to the synovial lining structure (Smolen et al. 

2007). 
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Figure 1.1 Comparison of cells within healthy and rheumatoid arthritis afflicted joints (A) 

Healthy joints are typically seen to have minimal swelling and minimal presence of 

infiltrating cells within the synovium. (B) In rheumatoid arthritis joints become severely 

damaged due to the influx of fluid and a variety of immune cells into the synovium, which 

promote synovitis (leading to hyper elasticity and loss of controlled architecture) and the 

destruction of the cartilage and bones, driven by neutrophils in the synovial cavity and 

osteoclasts in the synovium (figure adapted from Choy et al 2012) 
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1.3.4 Activation of bone/cartilage destroying cells in rheumatoid arthritis 

The presence of these pro-inflammatory molecules leads to both the activation of 

osteoclasts, which degrade the bone tissue within the joint, as well as the recruitment 

and activation of neutrophils to the site of inflammation. Once recruited and activated 

neutrophils contribute to RA by secreting various proteases into the synovial fluid which 

destroy the cartilage structures contributing to the infrastructure damage widely seen in 

joints of affected RA patients (Kudo et al. 2003, Lally et al. 2005). In addition to their 

ability to destroy cartilage tissues, once activated neutrophils will also secrete CXCL8 

(that recruits more neutrophils to the inflamed tissue) and reactive oxygen species (ROS) 

which cause tissue damage (Hitchon et al 2004). There is also some evidence suggesting 

neutrophils may alter the structure of local antibodies leading to the production of 

immune complexes such as rheumatoid factor which can also activate other neutrophils 

present (Rasheed 2008). 

With our increased understanding of the key players in RA pathology more therapeutic 

targets have become identified. In previous decades many of the developed therapies 

for RA have targeted elements of the adaptive immune system (e.g. anti-B cell and T cell 

treatments) or cytokines (e.g. anti-TNF-α treatments) known to be central in RA. 

Perhaps due to the relative success of these treatments research has largely focused on 

understanding the roles of the targets of these therapies in RA. Meaning neutrophils in 

the disease has arguably been under investigated in terms of importance to the progress 

of the disease. However, there are some studies that suggest the observed success of 

some of these therapies (particularly those targeting TNF-α) may be effective at limiting 

RA severity partly due to their impact on neutrophil recruitment and activity in the 

synovium (Dominical et al 2011, Capsoni et al 2005). This implies a more important role 

for neutrophils in RA pathogenesis than initially thought and potential for neutrophils to 

be a target of interest in RA treatment. 
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1.3.5 The common ground between rheumatoid arthritis and bronchiectasis 

From these studies it is clear that the pathogenesis of RA is an extremely complex 

system of interactions between several types of cells within the joint and the action of 

various cytokines. The pathogenesis of bronchiectasis has been comparatively 

understudied; however, it is suggested that neutrophils drive the progression of the 

disease by destroying the tissue structure within the airway (Russel et al 2016) similar to 

the action of neutrophils on the cartilage in the RA afflicted joints. 

As this thesis aims to study the potential role the bronchiectasis lung plays in leading to 

the onset of RA it stands to reason that, as the drivers of bronchiectasis, neutrophils 

likely play some role within the bronchiectasis lung which contributes to the 

development of this autoimmune disease. The question this creates is how could the 

activity of neutrophils in the lung lead to the onset of RA?  

 

1.4 NETosis, PAD enzymes and citrullination 

1.4.1 Neutrophil extracellular traps 

The primary roles of neutrophils has classically been identified as phagocytic activity and 

degranulation of protective molecules such as superoxide, elastase, cathepsin G and 

myeloperoxidase to defend against pathogen invasion and proliferation. However in 

2004 Brinkmann et al described a newly discovered method of protection against 

pathogens by neutrophils in which neutrophils release their intracellular contents to the 

external environment to trap potential pathogens. This structure release by neutrophils 

for this purpose is now defined as a neutrophil extracellular trap (NET).   

NETs are the result of a unique method of cell death now called NETosis. Following 

specific stimuli (e.g. activation of protein kinase C pathway with Phorbol 12-myristate 

13-acetate) the chromatin structures with the neutrophils decondense after which the 

membrane of the nucleus disintegrates allowing the nuclear material and the 

cytoplasm/granular contents to mix. This results in proteins such as myeloperoxidase 

(MPO) and neutrophil elastase (NE) binding to the chromatin structure forming a large 

macromolecular complex. The cell membrane then ruptures releasing the complex to 

the extracellular environment (Kobayashi 2015) (fig 1.2).  
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1.4.2 NETs as a protection mechanism against infection 

The release of NETs is largely believed to be of importance in infection where the 

structures act as a physical barrier to pathogens to prevent dissemination. It is possible 

that molecules such as MPO and elastase contained within NETs may also directly kill 

trapped pathogens (Brinkmann et al 2004, papayannopolous et al. 2009). However, this 

has yet to be directly demonstrated. One study by Menegazzi et al (2012) has claimed to 

demonstrate the opposite, i.e. that microbes (S. aureus and C. albicans) trapped by NETs 

were not killed, however given the pathogens in the study were only exposed to NETs 

for 20 minutes before NET degradation by DNase it is possible that NETs may kill 

bacteria with longer exposure time. Therefore, the precise role of NETs in killing 

 

Figure 1.2 Cellular processes underpinning the release of NETs. (A) Neutrophils encounter 

NETosis inducing stimuli that promotes activation of NADPH oxidase activity and PAD4. (B) 

PAD4 is translocated to the nucleus and targets histones within the chromatin structure. 

Histone citrullination leads to the chromatin structure becoming decondensed. (C) 

Cytoplasmic and granular contents in neutrophils (e.g. neutrophil elastase and 

myeloperoxidase) mixes with the contents of the nucleus. (D) In the final stage of NETosis 

the neutrophil undergoes lysis, releasing the intracellular content to the external 

environment as a neutrophil extracellular trap which traps pathogens within the vicinity of 

the neutrophil (Adapted from figure produced by Abdallah et al 2012). 
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microbial pathogens remains unclear. 

Some have suggested that NETosis is defensive mechanism targeted primarily against 

fungi by showing a preferential formation of NETs in response to large pathogens (e.g. C 

albicans hyphae structures) over small single cell bacteria and yeast (Branzk et al. 2014, 

Urban et al 2009). Whilst this may potentially be true this does not negate the existing 

evidence that NETs may offer some protection against non-fungal pathogens. Already 

there is ample evidence that NETs form in response to the presence of a variety of 

bacteria (e.g. S. aureus and E. coli) as well as protozoa such as T. gondii, suggesting that 

NETosis is a broad protection mechanism against infection (Pieterse et al. 2016, Abdallah 

et al 2012). 

1.4.3 NETs are implicated in a variety of inflammatory/infectious disease 

Due to their apparent involvement in immune function and restricting pathogens it is no 

surprise that several studies have suggested that NETs may be implicated in several 

diseases. Potential markers for the presence of NETs (e.g. DNA-elastase complexes, high 

elastase concentrations, microbes entangled in DNA) have been detected in a range of 

clinical samples (i.e. sputum and endobronchial biopsies) from patients with pulmonary 

diseases such as: cystic fibrosis (Manzenreiter et al 2012, Dwyer et al 2014), asthma 

(Dworski et al 2011) and COPD (Obermayer et al 2014). Recently a paper by Dicker et al 

(2018) reported a strong correlation between the presence of NETs and severity of 

COPD, with the conclusion drawn by the author being that NETs in serum/sputum could 

act as a biomarker for disease severity 

Several studies have also been published suggesting a relationship between NETosis and 

the onset of autoimmunity. Serum samples from systemic lupus erythematosus (SLE) 

patients have been reported to contain self-DNA containing immune complexes believed 

to be derived from neutrophils undergoing NETosis (Lande et al 2011), in addition 

mature SLE peripheral blood neutrophils have been observed to be undergo NETosis at a 

higher rate than healthy controls (Garcia-Romo et al 2011). Similar results have been 

seen in patients with anti-neutrophilic cytoplasmic antibodies (ANCAs) associated 

vasculitis, whom have higher levels of NETs detected in circulation than healthy controls 

(Söderberg et al 2015), with additional animal studies showing that myeloid dendritic 
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cells stimulated with NETs promote the production of ANCAs and disease relevant renal 

damage when injected into mice (Sangaletti et al 2012). 

1.4.4 Molecular processes underpinning NETosis 

Since they were first reported in 2004 a great deal of research has gone into determining 

the molecular mechanisms involved in the onset of NETosis. Whilst a variety of stimuli 

have been suggested to induce NETosis including those from an infectious origin (e.g. 

LPS) and an endogenous inflammatory origin (e.g. CXCL8) (Fuchs et al 2007), only three 

intracellular processes have been identified as being linked to NETosis. Firstly, it has 

been shown that transport of calcium stores following activation is essential for a 

neutrophil to successfully undergo NETosis, but the precise explanation as to why this is 

necessary remains elusive (Gupta et al 2014). 

Secondly, it has been observed that NADPH oxidase deficient mice neutrophils (both in 

vivo and ex vivo) are unable to form NETs in response to Aspergillus fumigatus (Röhm et 

al 2014). Therefore activation of NADPH oxidase (by protein kinase C and/or MAPK 

activation) has been identified as essential for NETosis (Branzk et al 2013). There have 

been several explanations put forward to explain the importance of NADPH oxidase in 

NET formation. One explanation suggests that ROS, resulting from NADPH oxidase, 

causes the release of NE and MPO from their granules which are then transported to the 

nucleus to assist in decondensation of chromatin structures (Papayannopoulos et al 

2010). Another is that ROS production is needed in order to inhibit pro-apoptotic 

caspases and trigger autophagy which results in breakdown of cellular membranes and 

mixing of cytoplasmic/nuclear compartments that is essential to NETosis (Remijsen et al 

2011, Kaplan et al 2012). Despite the various explanations suggested the precise role of 

NADPH oxidase activity in NETosis remains unclear. 

The final NETosis linked intracellular process involves the citrullination (i.e. a post-

translational modification) of neutrophil histones within the nucleus. This process may 

initiate the decondensation of the chromatin within the nucleus that forms the core 

structure of the NET prior to release (Wang et al. 2009). 
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1.4.5 Citrullination and PAD enzymes in human biology 

Citrullination describes a post-translational modification involving the conversion of an 

arginine residue within a peptide sequence to a non-coded citrulline residue (figure 1.3), 

typically catalysed by peptidylarginine deiminase (PAD) enzymes. The modification has 

been implicated in several key cellular processes including cell differentiation, apoptosis 

and epigenetic regulation (Slade et al 2014, Asaga et al 1998, Osamar et al. 2016). 

 

 

Figure 1.3 Conversion of an arginine residue to citrulline by a PAD enzyme. Positively 

charged citrulline residues within a peptide sequence are converted to citrulline via a PAD 

enzyme in the presence of calcium ions and water molecules. This results in the loss of a 

positive charge from the residue which can have a major impact on the protein structure 

and function (Adapted from Van Venrooji et al 2000). 
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In humans there have been 5 PAD enzymes identified to date: PAD1-4 and PAD6. Each 

has been shown to differ in terms of tissue expressing the enzymes and their individual 

roles (summarised in Table 1.2). PAD1,2, 3 and 6 are currently identified as being 

cytoplasmic proteins. PAD4 differs in this regard with structural studies showing the 

protein also localises to the nucleus due to a nuclear localisation signal within the 

peptidyl sequence (Bicker et al 2013, Nakashima K et al 2002).  

Table 1.2 Summary of the differences between human PAD enzymes. The enzymes are 
expressed in a variety of tissue types and have been shown to target a broad range of 
protein targets which have various physiological effects (adapted from Mohanan et al 
2012). 

PAD enzyme Tissue expressed in Targets/Roles 

PAD1 
• Uterus 

• Epidermal 
epithelial cells 

• Citrullinates keratin. 
Maintains epithelial 

barrier. 

PAD2 

• Ubiquitously 
expressed 

• Ovaries, muscle, 
stem cells, blood 
cells, neurones 

• Citrullinates histones, 
myelin basic protein 

and vimentin 

• Epigenetic 
modification, 
maintaining 

neurophysiological 
function, apoptosis 

PAD3 
• Epithelium 

• Follicular cells 

• Citrullinates filaggrin 

• Maintains epidermal 
barrier 

PAD4 

• Variety of 
leukocytes 
including: 

neutrophils, 
macrophages and 

monocytes 

• Also expressed in 
several 

carcinomas 

• Variety of substrates 
can be citrullinated by 

PAD4: Vimentin, α-
enolase, antithrombin, 

histones 

• Potential functions 
regulated by PAD4 

include: cytoskeletal 
remodelling, 

angiogenesis epigenetic 
modification and 

NETosis 

PAD6 
• Embryos and 

oocytes 

• Appears vital for 
development of 
embryo to multi-

cellular state 
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Due to PAD4 being primarily expressed in neutrophils (as well as its ability to localise 

towards the nucleus), PAD4 is the member of the PAD family most explicitly linked to 

NETosis. Furthermore, animal studies have shown that PAD4-/- mice are both unable to 

form NETs in response to NET inducing stimuli (e.g. LPS and live bacteria) and have 

greater susceptibility to bacterial infection, but not to viral infections as can be expected 

given no evidence has been published demonstrating beneficial anti-viral defence from 

the ability to undergo NETosis (Li et al 2010, Kaplan et al 2012). 

It is worth noting, with regards to PAD enzymes and NETosis, that several papers have 

reported elevated levels of histone citrullination correlating with an increase in PAD2 

transcription/activity in the absence of any increase in PAD4 concentration (McNee et al 

2016, Zhang et al 2012). However, given that to date there is no publications detailing 

how PAD2 localises to the nucleus, and that it has been demonstrated that PAD4 activity 

can increase up to 10,000-fold under given conditions (e.g. high intracellular calcium) 

without any change in concentration (Knuckley et al. 2011), there is some debate 

whether PAD2 does truly play a large role in histone modification and NETosis. 

1.4.6 Citrullination in disease 

Due to the variety of targets of the PAD enzymatic family, and the broad range of 

physiologically functions they are implicated in, the process of citrullination is believed 

to be linked to several clinically important diseases including: cancer, multiple sclerosis 

and Alzheimer’s disease (György et al 2006). As citrullination is key to NETosis and given 

that NETosis and citrullination are observed in a large range of diseases there is strong 

interest in examining these phenomena in diseases with neutrophilic component, such 

as RA and BR, in relation to these characteristics. 

1.4.7 Citrullination and NETs in rheumatoid arthritis  

Since the 1960s several autoantibodies have been discovered within serum and synovial 

fluid from RA patients (e.g. rheumatoid factor, anti-perinuclear factor), however In the 

late 1990s a new RA-associated autoantibody was discovered which was directed solely 

against citrullinated peptides (Puszczewic et al. 2010, Girbal-Neuhause et al. 1999). 

These anti-citrullinated peptide antibodies (ACPAs) have since been recognised as a 

commonly observed phenotype within a majority of the RA patient population, to such 

an extent that the antibodies are now used as a marker for confirming diagnosis 
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(Aletaha et al. 2010). There is also growing evidence suggesting the ACPAs may also be 

implicated in the early pathogenesis of RA. Patients testing positive for ACPAs are often 

seen to have a more severe phenotype of disease and display differences in response to 

conventional RA therapies (e.g. corticosteroids) than APCA negative patients (Seegobin 

et al 2014).  

Comparatively less is known in relation to NETs in RA. In vitro studies of peripheral blood 

neutrophils from RA patients have shown elevated markers for NET formation including 

production of ROS, secretion of MPO and elastase, with elevated histone citrullination 

also being detected in comparison to controls (Chowdhury et al. 2014). However these 

factors are arguably broad markers of neutrophil activity and could simply indicate 

neutrophil activation (which would be expected in RA). This highlights one of the 

greatest problems with studying NETosis in a biological setting, largely that many 

methods for detecting the structures focus on a molecule commonly associated with 

other physiological processes (e.g. elastase and degranulation, extracellular DNA and cell 

death).  

A separate study by Khandpar et al (2013) also assessed NETosis in RA using two 

commonly observed approachs: immunofluorescent staining of NETs and the detection 

of extracellular DNA. From their comprehensive work they drew several conclusions 

relevant to NETosis in RA. Firstly that RA neutrophils in circulation and in the synovial 

fluid had higher levels of NETosis than controls. Secondly, NETosis rates appeared to 

correlate with ACPAs and levels of pro-inflammatory cytokines. Thirdly, their proteomic 

analysis suggested that both vimentin and α-enolase (two common targets of clinical 

ACPAs) were present in NET structures formed from healthy and RA neutrophils. Finally, 

exposure of NETs to synovial fibroblasts appeared to alter immunomodulatory function 

with greater expression of molecules such as IL-6 and CXCL8 observed, with similar 

results shown by Papadaki et al (2016) in regard to dendritic cell activity and maturation 

differing following exposure to NETs.  

Overall this evidence suggests that NETosis is linked to the formation of ACPAs in RA, 

and that NETs may alter the expression of other immune cells within affected RA joints 

contributing to the pathogenesis of the disease. 
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1.4.8 Citrullination and NETs in bronchiectasis  

Relatively little has been published regarding NETosis in bronchiectasis, with most 

studies into pulmonary-relevant NETs instead focusing on detecting the presence of NET 

structures in cystic fibrosis patients pulmonary tissue (Law et al 2017). However, 

research by Pumphrey et al presented in abstract form at the American thoracic society 

2017 conference suggests that NETs can be detected in both serum and sputum samples 

from BR patients and could serve as a biomarker for a variety of disease outcomes (e.g. 

exacerbation risk, mortality). 

Citrullination is gaining interest as a phenomenon in bronchiectasis, particularly in 

relation to the BROS patient cohort. Work by Quirke et al (2015) showed that although 

RA-relevant autoantibodies (e.g. anti-vimentin) were observed in some patients with BR, 

only autoantibodies obtained from BROS patients were specific to citrullinated versions 

of these target peptides. From this the authors concluded that a switch to a “citrulline 

specific” autoimmune response occurs in BROS following gradual breakdown of immune 

tolerance in patients with bronchiectasis. Furthermore, Clarke et al (2017) have reported 

similar results by showing that the levels of antibodies to citrullinated calreticulin (a RA-

related pro-inflammatory molecules) are higher in BROS patient serum than BR and RA 

patient groups (Clarke et al. 2017).  

1.5 Neutrophil citrullination as a generator of autoimmunity in bronchiectasis? 

The overlap between bronchiectasis and RA has created great interest in the two fields 

of research. As there is documented evidence of RA pathogenesis being initiated at 

extra-articular sites (e.g. periodontitis) it stands to reason that the pulmonary 

environment in bronchiectasis may be the origin site for the onset of RA in BROS 

patients. The literature supports that neutrophils play a role in the pathogenesis of both 

diseases (more so in bronchiectasis), furthermore it appears that NETs and citrullination 

(which is associated with NETosis) appears to be implicated in early 

pathogenesis/progression of RA.  

Information regarding NETosis and citrullination in bronchiectasis is limited however 

available data suggests some difference in the citrullination responses in BROS patients 

in comparison to those whom are diagnosed with bronchiectasis alone. Despite this 
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however there is little available data examining the possibility of increased NETosis 

and/or citrullination in bronchiectasis and BROS, which would be useful for gaining a 

better understanding of the link between the two disease states and guiding future 

developments in therapeutics and diagnosis for prevention/treatment of BROS. 

In this thesis I aim to summarise my work examining the various aspects of neutrophil 

biology in relation to NETosis and citrullination with a focus on how this applies to 

bronchiectasis as a disease state. 
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Chapter 2: Aims and Hypotheses 

 

The following aims and hypotheses were established for the four chapters of 

experimental work presented in this thesis. 

2.1 Chapter 4: Impact of Bronchiectasis relevant molecules on healthy volunteer 

neutrophils citrullination and NETosis 

Chapter four aimed to assess whether bronchiectasis relevant stimuli induce NETosis in 

healthy peripheral blood neutrophils and promote a pro-citrullination extracellular 

environment in vitro. The following hypotheses was established for experimental work: 

• Neutrophils stimulated in vitro with bronchiectasis disease relevant molecules 

and bacterial cell lysates will show signs of elevated NETosis  

• Neutrophil mediated citrullination will increase following stimulation with 

bronchiectasis relevant stimuli in comparison to unstimulated neutrophils. 

 

2.2 Chapter 5: Assessing the LPS signalling pathway and its role in neutrophil citrullination 

and NETosis 

Chapter five aimed to investigate the roles of the two arms of the LPS signalling pathway 

(MyD88 dependent and TRIF dependent) in neutrophil mediated citrullination and 

NETosis. As prior studies imply the MyD88 pathway (via MAPK-ERK signalling) is directly 

related to NETosis and/or PAD activity it is expected that inhibition of MyD88 will have 

inhibitory effects on citrullination/NETosis whereas TRIF inhibition will have no impact.  

The following hypothesis determined this body of work: 

• Inhibition of MyD88 function in neutrophils will significantly reduce NETosis rates 

and/or PAD activity, whereas TRIF inhibition will have no impact on either 

feature.  
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2.3 Chapter 6: Examining the effect of Cl-amidine on NETosis, citrullination and neutrophil 

function 

Chapter 6 presents work involving the incubation of healthy peripheral blood 

neutrophils with a PAD enzyme inhibitor known as Cl-amidine. This work aimed to 

establish if Cl-amidine successfully inhibited neutrophil PAD activity and NETosis, whilst 

also assessing if Cl-amidine had any effect on other aspects of neutrophil function. 

Two hypotheses were tested in this chapter: 

• Pre-treatment of healthy volunteer derived peripheral blood neutrophils in vitro 

with the PAD inhibitor Cl-amidine will significantly decrease PAD activity and 

NETosis rates. 

• Cl-amidine will significantly alter various aspects of neutrophil function (i.e. 

phagocytosis, superoxide production, lifespan and CXCL8 secretion). 

 

2.4 Chapter 7: Differences in citrullination, NETosis and neutrophil function in the 

bronchiectasis patient cohort 

Chapter 7 details the results of a feasibility study which aimed to produce preliminary data on 

NETosis rates, PAD activity and neutrophil function in peripheral blood neutrophils obtained from 

healthy volunteers, bronchiectasis patients, rheumatoid arthritis patients and Bronchiectasis-

rheumatoid overlap patients. 

As BROS patient neutrophils are theorised to have elevated rates of NETosis and 

citrullination, we tested this hypothesis in this chapter: 

• Peripheral blood neutrophils from BROS patients will exhibit higher levels of 

NETosis and citrullination than neutrophils from BR patients without comorbid 

rheumatoid arthritis. 
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Chapter 3: Methodology 

 

3.1 Equipment and materials 

3.1.1 Reagents Used 

The following reagents used throughout the thesis were obtained from Thermo fisher 

Scientific (Illinois, USA): Quant-iT# PicoGreen® dsDNA Assay Kit (P11496), SYBR® Green I 

Nucleic Acid Gel Stain (S7563), DNase I (EN0525), SYTOX green nucleic acid stain (S7020). 

Sigma-Aldrich (Missouri, USA) provided the following reagents: Mowiol 4-88 (81381), 

Glycerol (G5516), Paraformaldehyde (P6148), Bisbenzimide Hoechst 33342 

trihydrochloride (B2261), Human Neutrophil Elastase lyophilized powder – from human 

leucocytes (E8140-1UN), N-Methoxysuccinyl-Ala-Ala-Pro-Val p-nitroanilide (M4765), 

Sodium chloride (746398), Sodium hydroxide (221465), 36.5-38% hydrocholoric acid 

(H1758), Sodium acetate (S2889), HEPES (H3375), Propidium Iodide (81845), Phorbol 12-

myristate 13-acetate (P8139), N-Formyl-Met-Leu-Phe (F3506), Lipopolysaccharide from 

Pseudomonas aeruginosa (L8643), Cytochrome C (Sigma: C6749), SOD (Sigma: S9697), 

Zymosan from Saccharomyces cerevisiae (Sigma: Z4250). 

Rabbit Anti-Histone H3 (citrulline R2 + R8 + R17) antibody (ab5103), Goat anti-rabbit IgG 

FITC conjugated 1 : 1000 dilution (ab6717), Goat anti-mouse IgG antibody Alexa Fluor® 

647 conjugated 1 : 200 dilution (ab15011), Human PMN ELISA kit (ab119552), mouse 

monoclonal antibody to histone H1 (ab71594), rabbit polyclonal antibody to neutrophil 

elastase (ab21595), goat polyclonal antibody to rabbit IgG – HRP labelled (ab6721) were 

all provided by Abcam (Cambridge, UK). Recombinant human TNF-α and a human IL-

8/CXCL8 DuoSet ELISA kit was purchased from R&D (Minneapolis, USA) systems (210-TA 

and DY208 respectively). Biolegend (California, USA) provided APC Annexin V (640919) 

and Annexin V binding buffer (422201). Cayman chemicals (Michigan, USA) supplied a 

PAD4 human ELISA kit (501460) and Cl-amidine (10599). The PAD activity assay kit 

(MQ17.101) used throughout the thesis was provided by Modiquest Research (Oss, 

Netherlands). The following signalling pathway inhibitors were provided by Invivogen 

(Massachusetts, USA): TRIF inhibitory peptide (tlrl-pitrif) and MyD88 inhibitory peptide 

(tlrl-pimyd). Finally, anti-neutrophil elastase antibody (SC-53388) was purchased from 

Santa Cruz Biotechnology (California, USA).   



27 
 

3.1.2 Equipment and software 

Filtropor S 0.2µM filters (83.1826.001) and disposable 50ml syringes (94.607.137) for 

filtration of prepared solutions were purchased from Sarstedt (Nümbrecht, Germany). 

pH of prepared solutions was confirmed using a Mettler Toledo FiveEasy pH monitor 

(Greifensee, Switzerland). The Sorvall (Hanau, Germany) Primo R centrifuge, Shandon 

Cytospin 3 and microscope slides (11562203) were from Thermo Fisher scientific (Illinois, 

USA). Sigma Aldrich (Missouri, USA) provided the 24 well plates and 96 well plates used 

in cell culture (CLS3527 and CLS3358) whilst the Prism microcentrifuge used to pellet 

cultured cells and CO2 incubator used to incubate neutrophils was from Labnet (New 

Jersey, USA) and Sanyo (Osaka, Japan) respectively. A FACSCanto II cytometer from 

Beckton Dickinson Biosciences (New Jersey, USA) was used for all flow cytometric work. 

Absorbance and fluorescence in 96 well plates was measured using a FLUOstar Omega 

Multiplex microplate reader with Omega data analysis for analysis of results, both 

purchased from BMG labtech (Ortenberg, Germany). Glass circular 13mm coverslips 

used for immunofluorescence were provided by Agar scientific (London, UK)). Isolated 

neutrophil counts, purity assessments and phagocytosis counts were carried out using a 

Laborlux II brightfield microscope from Leitz (Wetzlar, Germany). Fluorescence 

microscopy was carried out using a Nikon (Amstelveen, Netherlands) A1R confocal 

microscope initially, with a Zeiss (Oberkochen, Germany) axiomager widefield 

microscope (with mounted Zeiss AxioCam MRC) being used for counts and image 

capture of fixed samples, Zen Pro software v2.3 was used for image processing. A Boeco 

(Hamburg, Germany) S-20 spectrophotometer was used for monitoring optical density 

(OD) of bacterial cultures. 

Microsoft (New Mexico, USA) excel and Minitab (Pennsylvania, USA) 17 software was 

used for storage of collected data, creation of figures and all statistical analysis. 
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3.2 Bacterial whole cell lysate preparation 

3.2.1 Clinical bacterial isolate growth 

Aliquots of several clinical strains from two bacterial species implicated in bronchiectasis 

(Pseudomonas aeruginosa and Haemophilus influenzae) were thawed and plated out on 

blood agar plates and incubated at 37°C (See table 3.1 for details of clinical isolates). 

Once the plate surface showed adequate growth of the bacterial strains, a sterile loop 

was used to harvest the bacteria present and transfer the bacteria to 1900µl of sterile 

PBS.  

 

 

 

 

Table 3.1 Details on clinical isolates collected for experimental work. Information on the 
origins of the P. aeruginosa and H. influenzae strains used in this work. Details on P. 
aeruginosa clinical isolates are described De Soyza et al (2013), information on H. 
influenzae isolates were provided by staff at the  Freeman hospital (Newcastle UK) where 
the isolates were initially provided from. 

Source ID Bacterial species Origin 

PA01 Pseudomonas aeruginosa 

Genome sequenced lab 

strain from Melbourne, 

Australia 

968333S Pseudomonas aeruginosa 

Non-cystic fibrosis (CF) 

bronchiectasis patient from 

UK 

57P31PA Pseudomonas aeruginosa 

COPD patient, 

phenotypically well 

characterised. USA origin 

DK2 Pseudomonas aeruginosa CF patient from Denmark 

2386 Haemophilus influenzae 

Bronchiectasis patient, UK 

(Amoxicillin and Co-

trimoxazole resistant) 
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3.2.2 Killing and degradation of bacteria 

Bacterial strain suspensions were then split into five 380µl aliquots. Each aliquot was 

then placed on ice and sonicated eight times at 15 kHz (30 seconds on and 30 seconds 

off). Following sonication, DNAse I was added (final concentration of 200µg/ml) for 1 

hour at 37°C. Following DNAse treatment proteinase K (final concentration of 1mg/ml) 

was added to the suspension and incubated for 2 hours at 60°C. To inactivate the 

proteinase K bacterial lysate suspensions were then incubated at 100°C for 20 minutes. 

Samples were stored at -80°C for use in future work. Prior work has demonstrated these 

contain no viable bacteria but are rich in LPS (De Soyza et al 2004).  

3.2.3 Confirmation of bacterial death 

Prior to storing the samples at -80°C, a sterile loop was used to spread each of the 

bacterial strains on a sterile blood agar plate. Plates were then sealed and incubated at 

37°C for 72 hours. At 12, 24 and 72 hours the plates were checked for the presence of 

any bacterial colonies forming on the plate surface to confirm the protocol had 

successfully killed the clinical strains. Figure 3.1 shows images of the plate at 12, 24 and 

72 hours with no bacterial colonies visible. 

 

Figure 3.1 Images of growth plates streaked with bacterial whole cell lysates of 
Pseudomonas aeruginosa and Haemophilus influenzae. Row A shows Haemophilus WCLs 
influenzae (strain 2386) incubated on blood agar and chocolate agar plates for 12, 24 and 72 
hours with no growth being visible. Row B shows 4 strains of Pseudomonas aeruginosa 
incubated on a single blood agar plate for 12, 24 and 72 hours with no growth being visible 
after 72 hours, confirming successful killing of the clinical strains. 

A

B
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3.3 Peripheral blood neutrophil preparation 

3.3.1 Obtaining healthy volunteer blood samples 

Ethical approval for obtaining blood from healthy volunteers for use in the research was 

provided by the County Durham and Tees Valley regional ethics committee 

(12/NE/0121). Healthy volunteers attended morning appointments at the clinical 

research facility (CRF) in the Royal Victoria Hospital (Newcastle, UK). A trained clinician 

obtained written consent and collected between 50-150ml of blood into falcon tubes 

containing 1ml of citrate (4%) per 10ml of blood (Fig 3.2A). Whole blood was then 

transported from the CRF to the lab (<3-minute transit time) for the cell separation 

protocol to be carried out. 

3.3.2 Dextran sedimentation and Percoll separation 

Whole blood was centrifuged at 300xg for 20 minutes at room temperature resulting in 

separation of plasma from the erythrocyte and leukocytes of the blood (Fig 3.2B). During 

this centrifugation step which 6% dextran (in 0.9% NaCl) and saline (0.9% NaCl) solutions 

were warmed to 37°C in a water bath. Once centrifugation of the blood was complete 

the platelet rich plasma upper layer was carefully transferred to a glass tube (Fig 3.2C). 

220µl of 1M CaCl2 was then added to the plasma (per 10ml of plasma) before incubating 

the solution 37°C, by 60 minutes a clot was formed within the former plasma solution, 

due to the activation of clotting factors by CaCl2, which resulted in a clear serum to be 

used in later experiments (Fig 3.2D). 

To the remaining cell pellet warmed 6% dextran solution was added (2.5ml of dextran 

per 10ml of cell pellet), after which warm saline was added to make the cell suspension 

up to the original volume of the whole blood. The tube was then mixed by gentle 

inversion and left to sediment at room temperature. After 30 minutes a leukocyte rich 

translucent upper layer should form within the solution (Fig 3.2E). This upper layer was 

then carefully extracted (taking care to not disturb the erythrocyte rich cell pellet) and 

transferred to a new 50ml falcon tube, with warm saline added to reconstitute to the 

original volume of whole blood before centrifuging at 200xg for 5 mins at room 

temperature (Fig 3.2F).  
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During this spin the Percoll concentrations needed for the upcoming separation step 

were set up. Percoll plus was diluted to 90% v/v in 10x PBS without Ca2+ and Mg2+ (the 

absence of Ca2+ and Mg2+ is required to avoid priming the neutrophils). This 90% Percoll 

solution was then mixed with 1x PBS without Ca2+ and Mg2+ in 15 ml falcon tubes (See 

table 3.2 for volumes of reagents used) to give 55%, 70% and 81% 2.5ml Percoll 

solutions. Once these solutions were created the 70% Percoll solution was then gently 

overlaid on top of the 81% Percoll solution to avoid mixing or disturbing the two layers. 

Once the leukocyte suspension had finished centrifugation the supernatant is discarded 

and the remaining cell pellet is gently resuspended in 55% Percoll solution. The 

cell/Percoll solution was then gently overlaid on top of the 70%/81% Percoll solution 

gradient previously set up (Fig 3.2G). Once complete the Percoll gradient was then 

centrifuged at 720xg for 20 minutes at room temperature. 

Following centrifugation two bands of cells are visible. One at the 55%/70% Percoll 

solution border containing peripheral blood monocytes (PBMCs) and a larger band at 

the 70%/81% Percoll solution border containing polymorphonuclear cells (PMNs) (Fig 

3.2H). Each layer was then carefully extracted and placed into two separate falcon tubes 

prior to being suspended in HBSS (without Ca2+ / Mg2+) and centrifuged (200xg for 5 

minutes). After this wash step the supernatant was discarded and the remaining cell 

pellets were suspended in a suitable volume of HBSS (without Ca2+ / Mg2+) after which 

cell counts and purity assessments are carried out. 

Table 3.2 Volumes of 90% Percoll solution and PBS needed to make up 55%, 70% and 

81% Percoll solutions for neutrophil isolation. Three concentrations of percoll were 

created to separate cells based on size and density during the neutrophil isolation 

procedure 

Percoll 

Percentage 

90% Percoll 

solution volume 

(ml) 

1x PBS without Ca2+ 

and Mg2+ volume 

(ml) 

Total volume 

(ml) 

55% 1.375 1.125 2.5 

70% 1.75 0.75 2.5 

81% 2.025 0.475 2.5 
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Figure 3.2 Summary of the neutrophil isolation procedure. (A) Whole blood is taken from 

mixed with citrate. (B) Centrifugation results in the formation of a plasma upper layer, (C) 

which is extracted and placed in a glass vial. (D) Activation of plasma clotting factors results 

in the formation of plasma for later use. (E) The remaining cell pellet from previous is 

suspended in dextran and saline resulting in a leukocyte rich upper layer, (F) which is then 

removed and centrifuged. (G) After discarding the supernatant, the cell pellet is 

resuspended in 55% Percoll and added to a 70%/81% Percoll gradient. (H) Centrifugation 

allows separation of monocytes and PMNs. 
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3.3.3 Cell counts and purity assessments 

For cell counts a 100µl aliquot of the PMN cell suspension was taken. 5µl of 0.4% Trypan 

blue solution was added to the 100µl cell aliquot and gently mixed with the pipette. 

100µl of this suspension was then applied directly to the grid of a haemocytometer 

(Hausser Scientific: cat. no. 1483) and sealed with a coverslip. Brightfield microscopy 

(x40 magnification) was used to examine the haemocytometer and record the number 

of cells within the 25 squares of the grid. The number of observed cells was then used to 

determine the number of cells per ml for the original PMN stock, which allows aliquoting 

of accurate numbers of cells for individual experiments. 

It was also essential to record the purity of the isolated PMN cell suspension to be 

consistent with the quality of the work conducted and determine if any unusual results 

obtained are due to a large contamination of individual samples by other leukocytes. To 

determine purity a 150µl aliquot of the PMN suspension was loaded into a cytospin 

chamber attached to a microscope slide. Chambers are centrifuged at 300xg for 3 mins 

after which the chambers are dismantled. The microscope slides were then fixed in 

acetone for 10 minutes before being removed and allowed to dry. A 1:10 dilution of 

giemsa (diluted in PBS with 0.05% Tween) was then prepared and pipetted onto the 

surface of the slides. After 10 minutes the slides were gently rinsed with water, leaving 

the fixed and now stained PMNs on the surface. As mature neutrophils possess a 

characteristic multi-lobed shape it was possible to determine the purity of neutrophil 

isolations by nuclear morphology. Using brightfield microscopy, 300 cells were examined 

and assessed according to their nuclear morphology. The number of recorded 

“suspected neutrophils” within the sample are then divided by the total number of 

counted cells (i.e. 300) giving the proportion of neutrophils, which acts as an indicator of 

purity of the PMN stock. To maintain a set standard throughout the work only results 

from cell preps with a purity of 85% or higher would be used to obtain results for the 

thesis. 
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3.4 Neutrophil stimulation and inhibition assay 

3.4.1 Incubation of neutrophils with stimulatory molecules 

Following isolation of peripheral blood neutrophils and cell counts, the volume of PMN 

stock needed to provide adequate cell number for all conditions of the stimulation assay 

was aliquoted. This aliquot was then centrifuged at 200xg for 5 minutes, after which the 

supernatant was discarded with the remaining the cell pellet being gently resuspended 

in IMDM media at a concentration of 8 million cells/ml (phenol red free). 

Neutrophil stimulation was carried out in a 24 well plate at 37°C, with 7 stimulatory 

conditions used in the experiments: untreated, 50nM PMA, 1µg/ml LPS, 100nM fMLP, 

10ng/ml TNF-α, 2.5% WCL Pseudomonas aeruginosa and 2.5% Haemophilus influenzae. 

To each well of the plate; IMDM media, autologous serum (final volume 1% v/v) and 

250µl of cell-media suspension was added giving 2 million neutrophils per condition (see 

table 3.3 for example of volumes). After 30 minutes incubation at 37°C, set volumes of 

stimuli were added to relevant wells to bring the final volume in each well to 500µl and 

each stimuli to set final concentration. Cells were then incubated for 4 hours at 37°C. 

 

Table 3.3 Example of volumes of cell suspension, serum, stimuli and media used in 

neutrophils stimulatory experiments 

        

Experimental 
conditions 

Volume Cell 
suspension 

(8million/ml) 

Volume 
autologous 

serum 

Volume 
stimuli  

Volume 
IMDM 
media 

Final 
volume 

Untreated 
 

250µl 5µl - 245µL 500µl 

50nM PMA 
 

250µl 5µl 2.5µL 242.5µL 500µl 

1µg/ml LPS 
 

250µl 5µl 5µL 240µL 500µl 

100nM fMLP  
  

250µl 5µl 0.5µL 244.5µL 500µl 

10ng/ml 
TNF-α 

250µl 5µl 2.5µL 242.5µL 500µl 

2.5% WCL P. 
aeruginosa 

250µl 5µl 12.5µL 232.5µL 500µl 

2.5% WCL H. 
influenzae 

250µl 5µl 12.5µL 232.5µL 500µl 
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3.4.2 Isolation of cell supernatant and storage 

After 4 hours incubation, the cell solutions in each of the wells of the plate were 

collected and transferred to a corresponding labelled 1.5ml Eppendorf tube. Samples 

were then centrifuged at 7200RCF for 5 minutes separating the supernatant and cell 

fraction. Following centrifugation, the supernatant was carefully aspirated and 

transferred to another labelled 1.5ml Eppendorf tube. Supernatants were then stored at 

-80°C for use in future experiments. 

3.4.3 Confirmation of neutrophil activation by CXCL8 ELISA 

A “Human IL-8/CXCL8 Duoset ELISA” kit from R&D systems (D8000C) was used to 

measure CXCL8 secretion by stimulated neutrophils to determine if the PAMPs and 

cytokines used in the stimulatory assay were biologically activating the neutrophils. 

Supernatants collected from stimulated neutrophils were removed from -80°C storage 

and left to thaw at room temperature before being diluted 1:5 in assay specific reagent 

diluent and ran in duplicate with concentrations determined from a standard curve of 

recombinant CXCL8. The assay was run to manufacturers specifications at all points of 

the protocol.  

 

3.5 Assessing PAD activity and PAD4 concentration 

3.5.1 PAD activity assay 

A “PAD enzyme assay kit” (Modiquest research) was used to assess the levels of PAD 

activity in neutrophil supernatant samples. Stored supernatant samples were thawed at 

room temperature then diluted  1:10 in the kits provided reagent diluent. 

Manufacturer’s instructions were followed for the whole protocol.  

3.5.2 PAD4 ELISA 

Neutrophil supernatant samples stored at -80°C were thawed at room temperature 

before being diluted 1:10 in reagent diluent. Diluted samples were analysed for PAD4 

concentration using a “PAD4 ELISA kit” (Cayman chemicals), following manufacturer’s 

protocol.  
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3.6 Measuring Neutrophil extracellular traps 

3.6.1 Selection of methods to measure NET formation 

Due to NETs being a relatively new phenomena discovered in neutrophil biology, 

(coupled with the mechanism involving death and lysis of the neutrophil) there is great 

difficulty in accurately assessing NETosis rates in vitro. Consultation with Prof James 

Chalmers and his team at Dundee university revealed that although several methods of 

measuring NETosis have been proposed, each has flaws in their design that result in 

questionable accuracy/validity.  

For this reason several approaches were used to measure in vitro NETosis in order to 

provide a clearer picture of whether NETosis rates were increasing/decreasing across 

the experiments. These methods include semi-quantitative measures of free-NETs in 

supernatant (with methodology provided by Prof Chalmers), measures of extracellular 

DNA and counts of immunofluorescent stained adherent NETs which according to Prof 

Chalmers and published research examining NET formation (Ginley et al 2017, Chan et al 

2017) is currently the gold standard for measuring NETosis in vitro. The protocol for each 

of these methods will now be discussed in greater detail with their strengths and 

limitations discussed further in the thesis. 

 

3.6.2 Early attempt at immunofluorescent NET staining 

Initial attempts at establishing an immunofluorescent staining protocol followed the 

same process outline later in section 3.6.4, with three distinct differences. Firstly, NETs 

were only stained for the presence of DNA and neutrophil elastase. Secondly neutrophils 

were incubated in 24 well plastic bottomed plates. Thirdly as the neutrophils adhere to a 

plastic surface (rather than thin glass coverslips) confocal microscopy was needed to 

visualise neutrophils/NETs. This protocol was ultimately abandoned due to the low 

number of neutrophils observed in each well (believed to be due to loss of neutrophils 

during the harsh wash steps) and the poor-quality staining seen for neutrophils 

incubated and imaged in this manner (Fig 3.3). To correct these issues, a new staining 

protocol was established which instead incorporated three stains (DNA, elastase and 

citrullinated histones) to confirm the presence of NETs (improving the validity of the 

assay) and had glass coverslips placed at the bottom of each well for neutrophils to 
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adhere to, which allowed more delicate washing of neutrophils (reducing undesirable 

loss of cells) and the use of widefield microscopy to count NETs. 

 

 

 

 

 

 

 

Figure 3.3 Image of NET staining using initial immunofluorescent staining protocol. Images 

were captured of 50nM PMA treated neutrophils adherent to the plastic base of a 24 well 

plate. High numbers of neutrophils (500,000) were added to each condition/well to 

compensate for loss of cells during washing/staining. Staining was seen to be problematic 

with clear issues detecting fluorescence in neutrophil elastase staining (image C) where 

excessive exposure was needed to detect any possible fluorescence (A = brightfield, B = DNA, 

C = Elastase, D =merge). 

A B

C D
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3.6.3 Coverslip preparation for immunofluorescent staining 

Coverslips were sterilised by autoclaving then washing in 100% ethanol for 15 minutes, 

followed by two more 15-minute washes in 70% ethanol. Once dried, the sterile 

coverslips were placed on the bottom surface of a 24 well plate using sterile tweezers. 

300µl of autologous serum was then added to each well with the plate to coat the 

coverslips. The plate was then incubated at 37°C for 20 minutes before being washed 5 

times with ultrapure culture grade water and allowed to dry prior to addition of cells.  

3.6.4 Paraformaldehyde and Mowiol solution preparation for immunofluorescent staining 

Preparation of 8% paraformaldehyde (PFA) solution for use in cell fixation was carried 

out using all appropriate personal protective equipment and safety guidelines. To make 

the solution, 2g of Paraformaldehyde was first added to 50ml falcon tube containing 

40ml of distilled water. This solution was then heated to 60°C and incubated with mixing 

for 2 hours. After 2 hours 1M NaOH was added to the PFA (dropwise) until the solution 

became clear in appearance. Following this the volume was made up to 50ml final 

volume using distilled water and mixed by vortex. The solution was then divided into 

twenty-five 2ml aliquots and stored at -20°C for future use. 

Mowiol solution needed to mount and preserve fixed samples for long term analysis was 

prepared by following the protocol (Technical data sheet 777) described by Polysciences 

Inc. (Pennsylvania, USA). 4.8g of Mowiol and 12g of glycerol were added to a 50ml falcon 

tube containing 12ml of distilled water. The tube was then left on a shaking incubator at 

room temperature for 3 hours, after which sodium azide (final concentration 0.02%) and 

24ml of 0.2M Tris HCl was added to the solution. After brief mixing to solution by 

vortexing the solution was then divided into 36 x 1ml aliquots and incubated at 60°C for 

30 minutes until the solution became clear. Aliquots were then centrifuged at 5000 RCF 

for 15 minutes, after which 500µl was aspirated from the supernatant and transferred 

into a 2ml Eppendorf. These aliquots were then stored at -20°C until further use. Once 

opened the aliquots were stored for a maximum of one month at 4°C 

3.6.5 NET immunofluorescent staining protocol 

A protocol published by Brinkmann et al (2010) was used to assess in vitro NET 

formation rates. Once neutrophils were isolated and cell counts determined, cells 

(suspended in IMDM media with 1% v/v autologous serum) were added to each well and 
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left incubating at 37°C for 30 minutes, giving neutrophils time to adhere to the serum 

coated glass coverslips. 

After 30 minutes stimulatory PAMPs and cytokines were added to the wells to give the 

desired final concentration. The plate was then incubated for 4 hours at 37°C, after 

which PFA was carefully added to each well at a final concentration of 4% (v/v) and 

incubated at room temperature for 40 minutes to fix the adherent cells. Following 

fixation, the PFA-media solution was aspirated with the remaining coverslips being 

removed with tweezers and placed inverted (cells facing down) on a 350µl drop of 

sterile PBS (on sterile lab parafilm) for 5 minutes to wash the coverslip. This washing 

procedure was repeated a further 3 times. 

Slips were then transferred to a 250µl drop of 0.5% triton-X-100 for 5 minutes to 

permeabilise the fixed cells, after which the slips were then washed 4 more times in 

sterile PBS. Coverslips were then blocked by placing the slips on a 300µl drop of 5% BSA 

solutions (BSA diluted in PBS) for 30 minutes at 37°C. After blocking, slips were placed 

on a 250µl droplet of primary antibody solution (Mouse anti-neutrophil elastase 

antibody 1:50 dilution, Rabbit anti-Histone H3 (citrulline R2 + R8 + R17) antibody 1 : 200 

dilution) and incubated at 4°C overnight. 

The following day coverslips were again washed in a droplet of sterile PBS 4 times (5 

minutes per wash) before being incubated with 250µl of secondary antibody solution 

(Goat anti-rabbit IgG FITC conjugated 1:1000 dilution, Goat anti-mouse IgG antibody 

Alexa Fluor® 647 conjugated 1:200 dilution) for 2 hours at 37°C. Coverslips were then 

washed 5 times in sterile PBS and incubated at room temperature for 10 minutes in 

1µg/ml Hoechst 33342 DNA staining solution (protected from light exposure).  

The coverslips were then washed 4 times (5 minutes per wash) in ultrapure culture 

grade water. During these wash steps 7µl of mowiol solution was placed onto a labelled 

glass slides, with the coverslips being placed onto the mowiol (cells facing the mowiol). 

The slides were then left in the dark at room temperature for 1 hour, giving the mowiol 

time to solidify and seal the coverslip. Slides were then stored at 4°C for microscopic 

analysis within three weeks. 
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3.6.6 Establishing number of neutrophils needed for immunofluorescent staining 

Once the final staining protocol using coverslips was established images were taken of 

staining procedures carried out on wells with varying numbers of neutrophils. Fig 3.4 

shows an image of neutrophils/NETs taken from LPS stimulated neutrophils with 

100,000, 75,000, and 50,000 neutrophils per well respectively. Based on the number of 

neutrophils/NETs per field of vision, to avoid overcrowding which would increase 

difficulty of counting individual NETs, 50,000 cells/condition was selected as an optimal 

number of cells for all future immunofluorescent staining. 
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Figure 3.4 Immunofluorescent staining of DNA and neutrophil elastase for differing 
numbers of LPS treated neutrophils. Row A shows immunofluorescent staining of 100,000 
cells, Both DNA and elastase staining show heavy overcrowding which would make accurate 
individual cell/NET counts impossible. Row B (75,000 cells) shows a decrease in the number 
of cells within the field of vision compared to row A. Row C (50,000 cells) resulted in a field of 
vision without excessive crowding (similar to as seen in row B). For this reason, 50,000 cells/ 
condition was used for all future immunostaining experiments. 

A

DNA NE

B

C
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3.6.7 Adherent cell counts and NET counts using microscopy 

Coverslips which had been fixed, stained and mounted onto microscope slides were 

examined by fluorescent microscopy for the presence of FITC (Citrullinated histones), 

Cy5 (neutrophil elastase) and Hoechst (DNA) positive staining. For determination of 

NETosis rates, 300 neutrophils per condition were examined for staining and 

morphology. Structures which appeared positive for all described stains and possessed 

the characteristic NET shape (i.e. a large dispersed web like) were recorded as being a 

NET+ve (Fig 3.5), those that did not stain positive for all three stains and/or showed a 

classical neutrophil nucleus morphology (e.g. multi-lobed, band cell) were recorded as 

being NET-ve (Fig 3.6 And 3.7).  

To compare neutrophil adhesion to the coverslips between different conditions (which 

could feasibly impact NETosis estimates), five fields of view (20x magnification) were 

selected at random for each coverslip and the number of cells (determined Hoechst 

positive staining and nuclear morphology shape) in each field was recorded in an 

unblinded manner (i.e. with the observer aware of each condition being assessed). This 

was used to calculate the mean number of neutrophils per field of vision for the 

conditions and determine if there were any differences in the number of neutrophils 

remaining adherent at the tested conditions.   

For the staining protocols a number of staining controls were included with each run to 

address potential concerns of factors including autofluorescence, antibody cross-

reactivity and non-specific binding. The details of the various staining controls are 

summarised in Table 3.4. 

 

 

 

 

 

 



43 
 

 

 

 

 

Table 3.4 The staining controls used for immunofluorescent staining of NETs in vitro. A 

variety of controls were included with each immunofluorescent staining procedure in order to 

control variables such as autofluorescence, antibody cross-reactiviy and antibody non-specific 

binding 

Control Description 

No stain 
Samples incubated with no primary or 
secondary staining antibodies. 

Single stain 

Samples stained with one set of 
primary and secondary antibodies (e.g. 
“Rabbit anti-Histone H3 primary” and 
“Goat anti-rabbit IgG FITC conjugated). 

Primary stain 

Samples incubated with primary 
staining antibodies (i.e. “Rabbit anti-
Histone H3” and “mouse anti-
neutrophil elastase”) without 
secondary antibodies. 

Secondary stain 

Samples incubated with secondary 
staining antibodies (i.e. “goat anti-
rabbit IgG FITC conjugated” and “goat 
anti-mouse IgG Alexa Fluor® 647 
conjugated) without primary 
antibodies. 

Mixed stain 

Samples incubated with non-matching 
antibody pairs (e.g. “rabbit anti-
Histone H3” primary and “goat anti-
mouse IgG Alexa Fluor® 647 
conjugated” secondary) 
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Figure 3.5 Neutrophil recorded as positive for having undergone NETosis. The cell has 

stained positive for the 3 markers of NETs: DNA (A), neutrophil elastase (B) and citrullinated 

histones (C) (D representing a merged of the three stains). There is also a clear dispersed 

nuclear morphology characteristic of NETs. 

A B

C D
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Figure 3.6 Neutrophils recorded as negative for having undergone NETosis due to 
incomplete staining. The cells in this image have stained positive for DNA and neutrophil 
elastase (A and B respectively), however no staining was observed in these cells for 
citrullinated histones (C). This would result in the cells being recorded as negative for 
NETosis. (Image D = merge). 

A B

C D
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Figure 3.7 Neutrophil recorded as negative for having undergone NETosis due to nuclear 
morphology. The cell in the centre of each image has stained positive for DNA, neutrophil 
elastase and citrullinated histone (A, B and C respectively, D = merge). However, as the 
nucleus does not have a dispersed morphology this neutrophil would be recorded as 
negative for NETosis. Particular biases that may impact accurate NETosis predictions using 
this methodology include: unblinded assessment of samples, samples only being assessed by 
one observer and the lack of spatial validation for NET formation (e.g. the use of a measuring 
tool to identidy the width of positively stained structures to confirm the presence of a NET). 
All of which are points for consideration in future work. 

A B

C D
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3.6.8 Assessing elastase concentration and activity 

To determine the concentration of neutrophil elastase in supernatant, samples were 

removed from -80°C and assessed using a “human elastase ELISA” kit (abcam). Samples 

were diluted by 1:5 in the reagent diluent provided by the manufacturer. All instructions 

provided with the kit were followed with the standard curve being used to determine 

individual sample elastase concentration. 

For assessing elastase activity in peripheral blood neutrophils, the neutrophils were 

stimulated as previously described (chapter 3.5.1), however the neutrophils were 

incubated in the absence of autologous serum. The rationale for this decision is that 

autologous serum contains protease inhibitors that would block the elastase function in 

vitro. After stimulation neutrophil supernatants were collected as previously described 

by centrifugation and stored at -80°C. 

By adapting a protocol kindly provided by Prof. James Chalmers (Dundee university) the 

levels of elastase activity in several samples was also determined. Firstly, 1UN of 

biologically active human neutrophil elastase (purchased from Sigma) was suspended in 

suspended in 50mM sodium acetate, 200mM NaCl and diH2O. On the day of each assay 

serum free supernatant samples were thawed to room temperature, during which a 

standard curve of neutrophil elastase was prepared (diluted with a 50mM HEPES, 

150mM NaCl. pH8 assay buffer).  

Supernatant samples were then added to a 96 well plate (undiluted) along with the 

prepared elastase standard curve and blank (elastase free assay buffer). Following this 

N-Methoxysuccinyl-Ala-Ala-Pro-Val p-nitroanilide (MeoSAAPvN), a substrate of elastase 

which impacts absorbance at 405nm when cleaved, was added to each well to a final 

concentration of 100µg/ml. Using a plate reader warmed to 37°C the absorbance 

(405nm) in each well was read 24 hours after addition of MeoSAAPvN. The elastase 

enzyme activity based standard curve was then used to determine the relative levels of 

elastase activity in each of the assayed samples.  
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3.6.9 Initial attempts at determining extracellular DNA to measure NETosis 

An established methodology for studying the occurrence of NETs involves the use of 

extracellular DNA binding dyes to detect extracellular NET structures (Hair et al 2018, 

Patel et al 2018). Initial attempts at developing an assay such as this involved the use of 

PicoGreen, a fluorescent DNA dye used in a similar protocol in a 2010 study by Hakkim 

et al, and setting up a DNA standard curve (provided with the PicoGreen commercial kit) 

to quantify the concentration of extracellular DNA in each condition/sample (allowing 

easier comparison of separate samples). Despite several attempts there was no clear 

correlation between the recorded PicoGreen induced fluorescence and DNA standard 

concentration (see figure 3.8). Use of an additional DNA binding fluorescence dye (SYBR 

green) produced similar results. Due to the inability of this method to produce a 

consistent and accurate change in fluorescence relevant to a DNA standard, attempts at 

quantifying DNA using set concentrations of DNA were abandoned for future 

experiments.  

 

 

Figure 3.8 Standard curve of DNA concentration against blank subtracted picogreen 
dependent fluorescence intensity. As the data shows although an increase in fluorescence 
was observed when comparing the lowest concentrations of DNA (50 and 100ng/ml) to the 
highest (1000ng/ml), the increase in fluorescence between the concentrations of DNA was 
often inconsistent (in addition to several overlapping 95% confidence intervals) and not 
consistently statistically significant (n=4 +/-95% CI). 
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3.6.10 Validation and use of SYTOX staining to measure extracellular DNA  

Following a visit to the Chalmers lab at the university of Dundee, a new protocol using a 

fluorescent DNA binding dye (SYTOX) to measure extracellular DNA within an individual 

set of samples was obtained and successfully replicated here in Newcastle. To confirm 

the DNA binding dye was functioning as expected two sets of experiments were 

performed; the first involved incubating various numbers of cells (ranging from 10,000 

to 250,000) in a 96-well plate for 4 hours at 37°C, after which SYTOX was added at a final 

concentration of 500nM with the fluorescence in each well measured to confirm a 

correlation between cell number and fluorescence.  

The second experiment aimed to confirm the fluorescence detected when mixing SYTOX 

with cells was due to the presence of DNA. To assess this, cells were incubated for 4 

hours either with or without LPS in duplicate with one experimental arm being pre-

treated with DNAse I for 30 minutes before the addition of SYTOX after which 

fluorescence in the wells of each experimental arm was read using a plate reader.  

To measure the extracellular DNA release by stimulated/unstimulated peripheral blood 

neutrophils, the cells were incubated in a 96-well plate in HBSS+ (in the absence of 

autologous serum) with/without stimuli for 4 hours (50,000 cells per well, ran in 

quadruplicate). After 4 hours SYTOX was added to each well (final concentration of 

500nM) with the fluorescence in each well being measured (480nm excitation, 520nm 

emission). For each individual volunteer/patient sample the level of extracellular DNA in 

each stimulatory condition was expressed as a percentage relative to the unstimulated 

condition (which was set as 100%). 

3.6.11 Histone-elastase complex ELISA 

A H1-elastase complex ELISA protocol (provided by Prof. James Chalmers) was used to 

assess the relative amount of NETs in cell free supernatants (figure 3.9). This assay 

assumes that the use of two antibodies directed against separate molecules present 

within NETs (i.e. histones and elastase) will allow quantification of the number of NETs 

within a given sample. Anti-H1 antibody was diluted 1:4000 in PBS to a final volume of 

10ml. 100µl of this antibody solution was then added to each well of a 96-well ELISA 

plate and incubated for 1 hour at room temperature. Each well of the plate was then 

washed three times with wash buffer (0.05% Tween 20 in PBS). 100µL of 1% BSA (pH 
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7.2-7.4) was then added to each well for 1 hour to block the wells. During the blocking 

step samples are diluted 1:10 in blocking buffer for the assay whilst also setting up a 2 

fold serial dilution of a biological standard (sputum sample possessing a high number of 

H1-elastase complexes, provided by Prof. Chalmers) to be used as a standard curve. 

After 1 hour the blocking buffer is aspirated from the wells of the plate and each well 

washed 3 times with wash buffer. Following this 100µl of sample/standard/blank is 

added to the relevant well of the plate in triplicate. The plate is then incubated at room 

temperature for two hours before repeating the previous wash step. 100µl of rabbit 

anti-neutrophil elastase antibody (1:4000 dilution in block buffer) is added to each well 

and incubated at room temperature for two hours. After repeating the wash step, 100µl 

of HRP conjugated goat anti-rabbit IgG (1:40000 dilution in block buffer) is added to 

each well and incubated for 1 hour at room temperature. 

The plate is then washed three more times before 100µl of TMB substrate solution is 

added to each well. Colour change is monitored and after 10-20 minutes H2SO4 is added 

to stop the reaction. Within 30 minutes the absorbance in each well was measured, with 

the absorbance values of the standard curve being used to assign each sample on the 

plate relative arbitrary units (allowing comparisons to samples ran on other plates 

alongside the same biological standard). 
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Figure 3.9 Neutrophil extracellular trap ELISA protocol (A) Well plates are coated with a 
mouse anti-H1 antibody and washed. (B) Samples and standards containing NETs (Dark blue 
= DNA/Histones, Red = Elastase) are added to each individual well and incubated. (C) After 
washing the wells, rabbit anti-neutrophil elastase antibody is added to each well, the plate is 
then incubated and washed to remove unbound antibody. (D) Goat anti-rabbit IgG 
(conjugated to HRP) is added to each well incubated before the plate is washed a final time 
and TMB solution is added. Once colour change is observed the reaction is stopped and 
fluorescence for each well recorded. 
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3.7 Assessing neutrophil function 

3.7.1 Detecting superoxide production by cytochrome C reduction 

Isolated neutrophils were resuspended in HBSS+ (HBSS media with Ca2+ and Mg2+) at a 

cell concentration of 2 million cells per ml. 250µl of this cell suspension was then added 

to several marked 1.5ml Eppendorf tubes in duplicate. Using HBSS+ and 1% (final 

volume) autologous serum each well was made up to 500µl. After being incubated for 

30 minutes (37°C), neutrophils were primed by adding platelet activating factor (PAF) at 

a final concentration of 1µmol/L then incubated at 37°C for 10 minutes. Respiratory 

burst was then induced by the addition of stimulatory molecules (50nM PMA, 1µg/ml 

LPS and 100nM fMLP) and an additional 1 hour incubation period at 37°C.  

Following incubation 62.5µl of supernatant was carefully removed from each tube. To 

one set of duplicate tubes 25µl  superoxide dismutase (SOD) was added (giving a final 

enzymatic activity of 200U/ml), to the other set of duplicate tubes an equal volume of 

HBSS+ was added. 37.5µl of cytochrome c (end concentration 1mg/ml) was then added 

to each Eppendorf. As oxidation of cytochrome c results in a change of the molecules 

absorbance at 550 nm, the underpinning theory is that by measuring the absorbance 

difference between SOD+ and SOD- samples we can determine the change in 

absorbance due to superoxide (as SOD metabolises superoxide). 

All Eppendorf’s were briefly and gently mixed, then incubated at 37°C for 1 hour, after 

which the contents of each Eppendorf was split into five 100µl aliquots and transferred 

to a respective lane of a 96 well plate. The absorbance in each well at 550nm was then 

measured and recorded. The average absorbance values for the SOD+ve wells were then 

subtracted from their counterpart SOD-ve wells in order to determine the change in 

absorbance due to the presence of superoxide. Using Beer-Lambert law with these 

absorbance values allows the concentration of superoxide to be determined.  

3.7.2 Zymosan based phagocytosis assay 

Prior to completion of neutrophil isolation from whole blood, 4µl of zymosan stock 

(0.2mg/ml) was added to a 0.5ml Eppendorf containing 96µl of IMDM media and 100µl 

of autologous serum. The solution was then incubated in a heated water bath at 37°C 

for 60 minutes then centrifuged at 10,000xg for 2 minutes. The supernatant was 
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carefully aspirated, with the remaining zymosan pellet being resuspended in 200µl of 

IMDM media. This wash step was repeated an additional time with the pellet being 

resuspended in 200µl of IMDM media for use in the assay. 

Once neutrophil isolations and counts were performed neutrophils were resuspended in 

IMDM media at a cell concentration of 2 million cells per ml. 500,000 neutrophils were 

added to 4 marked wells of a 24 well plate, with IMDM media being added to make each 

well up to a final volume of 500µl. After 30 minutes incubation at 37°C, 50µl of 

supernatant was carefully aspirated from each of the 4 wells. To two wells 50µl of 

zymosan-media solution was added, to the remaining two wells 50µl of IMDM media 

was added (giving a duplicate of zymosan +ve and -ve wells). After 1 hour incubation 

37°C, all media from each well was carefully removed. Sterile PBS was then carefully 

used to wash each well a total of 5 times (extreme care being taken to avoid 

detachment of neutrophils from the plate).  

After the final wash, the wells were left to dry before 500µl of absolute ethanol was 

added to each well for 15 minutes in order to fix the cells. The ethanol was then 

aspirated from each well with 5 more PBS wash steps being carried out. 500µl of giemsa 

solution (1:10 dilution of giemsa in 0.05% PBS Tween) was then added to each well and 

left to stain for 15 minutes. Finally, distilled H2O was then used to wash each well of the 

plate a total of 7 times (or until all visible presence of giemsa was removed). 

Brightfield microscopy was then used to examine the fixed/stained cells in each well. By 

examining the cells in the zymosan-positive wells it is possible to see zymosan particles 

that have been phagocytosed by the neutrophils. For each well 300 cells were examined 

in total with the number of neutrophils which had phagocytosed 2 or more zymosan 

particles being recorded and used as a marker of phagocytic ability.  

To confirm counts were accurately assessing neutrophil phagocytosis of zymosan, an 

additional two duplicate wells were included in which neutrophils were incubated with 

Salbutamol, which has previously been shown by our lab to inhibit phagocytosis was 

used at a concentration of 10µM (Scott et al 2016).  
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3.7.3 Neutrophil viability assay 

Flow cytometric analysis of Annexin V and propidium iodide (PI) binding was used to 

assess neutrophil viability rates in several experiments. 500,000 neutrophils (suspended 

in phenol-red free media and 1% autologous serum) were added to 1.5ml Eppendorf’s at 

a final volume of 500µl. After a specified period of incubation relevant Eppendorf’s were 

gently centrifuged at 300xg for 5 minutes. 275µl of supernatant was then carefully 

extracted and discarded from the centrifuged tubes. 

275µl of Annexin V binding buffer was then added to the remaining volume/pellet in 

each tube before centrifuging the samples again (300xg for 5 minutes). Following this 

wash step 275µl of supernatant was again extracted and discarded. 225µl of annexin V 

binding buffer was then added to resuspend the cell pellet. 100µl of the resuspended 

cell suspension was then added to a corresponding flow cytometry tube either left 

empty or containing propidium iodide (0.5mg/ml stock) and/or APC conjugated annexin 

V stock (see table 3.6). 

 

 

 

 

 

 

 

Table 3.5 Volumes of cells, propidium iodide and Annexin V placed in control and sample 
tubes for viability assay. 

Condition 
Cell solution  

(µl) 
Propidium 
iodide (µl) 

Annexin V  
(µl) 

Annexin V 
binding 

buffer (µl) 

Unstained 100 - - 5 

PI single stain 100 1 - 4 

Annexin V single stain 100 - 2 3 

Experimental sample 100 1 2 2 
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After 15 minutes incubation (protected from light exposure) 200µl of annexin V binding 

buffer was added to each tube and gently mixed. Samples were then analysed for 

Annexin V and PI staining of cells within the sample by flow cytometry. Samples ran 

through the flow cytometer were gated to isolate neutrophils (excluding cells with low 

size and granularity) and remove double cells from the assessed population. Using 

unstained, PI single stain and Annexin V single stain controls, the samples were gated to 

allow recognition of cells staining positive and negative for PI and Annexin V (see figure 

3.10 for an example of gating strategy). The flow cytometer software was then used to 

determine the percentage of neutrophils within the samples staining -ve for both PI and 

annexin V (i.e. viable neutrophils), +ve for annexin V (early apoptotic cells) and +ve for 

propidium iodide and annexin V (dead cells). 
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Figure 3.10 Flow cytometric gating for controls and samples assessed for viability. Rows A, 
B, C and D show the gating for unstained control, PI stain control, annexin V stain control 
and dual stained sample respectively. Column I shows gating for neutrophils on the basis of 
size and granularity in order to isolate neutrophils scanned by the flow cytometer (residing 
within gate P1). Column II shows the gating used to remove double clusters of cells which 
have passed through the flow cytometer (i.e. only single cells will be present in P2). Column 
III shows the gating for Annexin V (x-axis) and PI (y-axis), using the controls (rows A-C) the 
gates were set in place to determine the cut off point for staining positive for annexin V and 
PI, which was used to measure viability in samples such as that seen in Row D. The 
quadrants (Q1,2,3 and 4) on the final plots (Column 3) are used to determine the percentage 
of viable cells within a sample. Q1 = PI+ve/Annexin V-ve (typically only seen in PI stain 
control only), Q2 = PI+ve/Annexin V+ve (Apoptotic), Q3 = PI-ve/Annexin-ve (viable), Q4 = PI-
ve/Annexin V+ve (early apoptosis). 
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D
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3.8 Bronchiectasis and rheumatoid arthritis patient sampling 

3.8.1 Recruitment of patients and handling of samples 

A broad range of patients were recruited to take part in the study including idiopatic BR 

patients (n=9), BROS patiets (n=3) and a patient with BR and overlapping COPD. A broad 

range of phenotypical data was collected for patients including: age, gender, BMI, 

height, weight, number of exacerbations in previous 12 months, medical research 

council dyspnoea score, SQRQ score, QoL-B questionnaire score, FEV1 (plus predicted), 

FVC (plus predicted), FEV1/FVC, currently receiving nebulised antibiotic, long term 

macrolide use and other recieved medications (demographic data presented in chapter 

7). 

Approval for the study was granted by the North West – Greater Manchester East 

Research Ethics Committee (17/NW/0409) with the recruitment and processing of 

parents being undertaken at the Freeman hospital in Newcastle Upon Tyne, UK. 36ml of 

whole blood was taken from consented patients (consent and blood taken by a clinically 

trained research nurse) and mixed with citrate (same concentration described in 3.3.1) 

to prevent clotting. Blood samples were then collected and transported to the Institute 

of cellular medicine (Newcastle Upon Tyne, UK) for processing, with a transit time 

between the sites of roughly 20 minutes. 

3.8.2 Protocols used with BROS samples 

Peripheral blood neutrophils were isolated from whole blood using the Percoll gradient 

methodology described in chapter 3.3.2. Counts and purity assessment were then 

carried out as previously described to confirm the quality of the neutrophil isolation and 

ensure an accurate number of cells was used in each planned experiment. In total 6 of 

the previously described experimental methods were used to assess patient neutrophil 

responses; PAD activity assay, NET immunofluorescent staining, SYTOX extracellular DNA 

assay, phagocytosis assay, superoxide assay and neutrophil viability assay.  

Healthy samples (obtained as described in 3.4.1) were also run simultaneously to patient 

samples, to confirm any anomalous results for patient samples were not due to a 

problem with the reagents/methodology on the given day. Given that these healthy 

volunteer samples were from a range of ages (18-55 years of age) they were viewed as a 

biological test for the assay rather than an accurate comparator for patient samples. 
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3.8.3 Patient demographics recorded and analysis of data 

All assays and results were collected and processed in a blinded fashion, with only the 

clinical research staff at the Freeman hospital (whom played no part in processing of 

samples in the lab) knowing the demographics of the individual patients. Following 

collection of the final patient sample, the study became unblinded with details on 

demographics (e.g. patient diagnosis, age, gender) becoming available. 

 

3.9 Use of inhibitors in experimental work 

3.9.1 Pre-treatment of neutrophils with cl-amidine 

In the thesis a large chapter of the work focused on examining the effect of the inhibitor 

Cl-amidine on NETosis, citrullination and general neutrophil function. Cl-amidine is an 

inhibitor of PAD enzymes previously used in neutrophil based research (Biron et al 2017, 

Kusonoki et al 2016, Knight et al 2013), which has been shown to have varying 

specificities, with IC50 values of 0.8µM, 6.2µM and 5.9µM reported for Cl-amidine in 

relation to PAD1, PAD3 and PAD4 respectively (Luo et al 2006, Knuckely et al 2010).  

To establish the toxicity of Cl-amidine, neutrophils were incubated with various 

concentrations of the inhibitor for 4 hours at 37°C before being assessed for viability 

(chapter 3.7.3). Once a non-toxic concentration of Cl-amidine was established, in future 

experiments neutrophil were incubated with 200µM Cl-amidine for 30 minutes. 

Following this all experimental work using the assays previously described was carried 

out as stated, with a parallel set of conditions from the same individual volunteer 

without Cl-amidine pre-treatment.  

3.9.2 Use of LPS signalling inhibitors 

Two peptide inhibitors of separate components of the LPS signalling pathway were used 

in experiments: TRIF-pep and MyD88-pep. TRIF-pep is a 14 amino acid peptide first 

designed and described by Toschakov et al (2005), which blocks TRIF mediated signalling 

by blocking interaction between TRIF and the LPS receptor complex. MyD88-pep is a 26 

amino acid peptide initially described by Loiarro et al (2005), which inhibits the MyD88 

dependent pathway of LPS signalling by binding MyD88 and preventing 

homodimerization needed for the signalling process. The manufacturer of the inhibitors 
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(invivogen) advised incubation periods of 8 hours and beyond in cell based in vitro 

experiments, which may explain the lack of any previous work demonstrating the use 

and efficacy of these molecules in inhibiting LPS signalling in neutrophils (due to the 

technical difficulties of work requiring long incubation periods with neutrophils). 

The toxicity of the two inhibitors was assessed on isolated neutrophils at 7 hours 

(suggested incubation time based on manufacturers recommendation description) by 

incubating the neutrophils (in IMDM media and 1% v/v serum) with a range of 

concentrations of the two inhibitors and establishing differences in viability at 7 hours 

using PI/ Annexin V by flow cytometry (FC) (as was done for establishing Cl-amidine 

viability).  

After establishing concentrations of the inhibitors that had no impact on neutrophil 

viability but still effectively inhibited neutrophil activation (confirmed by CXCL8 ELISA of 

inhibited neutrophil supernatants showing decreased CXCL8 secretion in response to 

LPS) at 7 hours, cells were incubated in IMDM, serum and either TRIF-pep or MyD88-pep 

for 3 hours at 37°C. Following this incubation LPS was added to relevant wells and all 

conditions were incubated at 37°C for a further 4 hours. After which supernatants were 

collected and relevant assays (e.g. PAD activity assay) were carried out. Due to the 

longer periods on incubation needed for LPS inhibition some assays (e.g. superoxide 

detection, phagocytosis) could not be reliably carried out on these samples. 

 

3.10 Statistical analysis 

Microsoft Excel and PowerPoint 2016 were used for the collection/processing of all data 

and the creation of figures, with Minitab 17 being used for statistical analysis. The 

number of samples collected for each experiment is available in the description for each 

figure. A Shapiro-Wilk normality test was used to assess each data for normal 

distribution. Averages of results with a normal distribution were presented as means 

with 95% confidence intervals with stats tests used including; Pearson correlation 

coefficient test, paired t-test, repeated measures ANOVA and One-way ANOVA. Post hoc 

stats tests selected were the Dunnett’s, Bonferroni and Tukey’s test dependent on the 

type of data comparison. 
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Data with non-normal distribution were presented with their median value as the 

average and interquartile range values as the error bars on presented figure. Spearman-

Rho correlational analysis was used to determine whether correlations of non-significant 

data was statistically significant. For all results, p=0.05 was set as the establishing point 

for establishing significance, with a p-value lower than this suggesting statistical 

significance. 
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Chapter 4: Impact of Bronchiectasis relevant molecules on healthy volunteer 

neutrophil mediated citrullination and NETosis 

 

4.1 Introduction 

4.1.1 Overview 

Since their discovery in 2004, several molecular triggers of NETosis have been reported. 

Classically Phorbol 12-myristate 13-acetate (PMA) and calcium ionophores have been 

argued to be the most potent inducers of the process in neutrophils (Remijsen et al. 

2011, Douda et al. 2015), with several other molecules (e.g. LPS and TNF-α) and bacterial 

pathogens such as P. aeruginosa and H. influenzae (both of which are relevant to BR) 

also suggested to induce NETosis (Guimarães-Costa et al. 2012). However, there are 

large differences between pieces of research documenting these molecular triggers of 

NETosis including the methodology design used to assess NETosis (e.g. targets used in 

immunofluorescent staining for NETs) and the types of cells assessed (e.g. human 

neutrophils, animal derived neutrophils, HL-60 cells). Furthermore, there is limited data 

on the impact of these disease relevant molecules in relation to citrullination which 

underpins NETosis and is associated with RA and possibly BROS. 

Peripheral blood neutrophils obtained from healthy volunteers were incubated with 

several disease relevant molecules including: the Protein kinase C (PKC) agonist PMA, 

LPS derived from P. aeruginosa, the bacterial derived chemokine N-Formyl-Met-Leu-Phe 

(fMLP) and the rheumatoid arthritis (RA) associated TNF-α. After which a variety of 

methodologies were used to assess NETosis rates and citrullination to establish an 

accurate representation of each stimuluses ability to alter these processes. In addition, 

whole cell lysates (WCL) generated using bronchiectasis patient derived clinical strains of 

P. aeruginosa (strain 968333S) and H. influenzae (strain 2386), were also incubated with 

peripheral blood neutrophils, in order to assess the impact of bacterial cell remains 

(which would arguably be present chronically within the lungs of bronchiectasis 

patients) on neutrophils in regard to citrullination and NETosis in vitro. 
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4.1.2 Hypothesis 

• Neutrophils stimulated in vitro with bronchiectasis disease relevant molecules 

and bacterial cell lysates will show signs of elevated NETosis.  

• Neutrophil mediated citrullination will increase following stimulation with 

bronchiectasis relevant stimuli in comparison to unstimulated neutrophils. 

 

. 
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4.2 Results 

4.2.1 Purity of peripheral blood neutrophil isolations 

As the work throughout the thesis involved assessing the responses of peripheral blood 

neutrophils it was essential that the purity of each neutrophil isolation procedure was 

assessed. Table 4.1 shows an example of the recorded purity of 22 neutrophil 

preparations carried out within a 4-month time span during the thesis. As can be seen 

the median purity of the neutrophil isolation procedure was 94%, with the lowest 

recorded purity in this period being 85%, which remained within the acceptable range 

for experimental work (85% or higher). 

 

Table 4.1 Purity of neutrophil preparations carried out between December 2015 – 
April 2016. All neutrophil preparations in this timespan had a purity of 85% or higher, 
which was higher than the set arbitrary cut off point for any work involving neutrophils 

Sample ID Date obtained Purity (%) Sample ID Date obtained Purity (%) 

HV01 1.12.2015 91 HV12 9.3.2016 96 

HV02 14.12.2015 85 HV13 10.3.2016 88 

HV03 12.1.2016 98 HV14 11.3.2016 91 

HV04 10.2.2016 94 HV15 14.3.2016 89 

HV05 11.2.2016 96 HV16 15.3.2016 96 

HV06 12.2.2016 97 HV17 21.3.2016 97 

HV07 25.2.2016 94 HV18 3.3.2016 87 

HV08 1.3.2016 94 HV19 17.3.2016 90 

HV09 2.3.2016 92 HV20 30.3.2016 97 

HV10 7.3.2016 93 HV21 31.3.2016 95 

HV11 8.3.2016 87 HV22 12.4.2016 96 

Median Purity: 94.00% 

St. Dev: 3.86% 

SEM: 0.82% 
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4.2.2 Establishing neutrophil incubation times 

As neutrophils are a mature terminal cell (i.e. non-dividing), long term culturing of 

neutrophils and expansion of obtained peripheral blood neutrophil samples from 

healthy volunteers is not possible. Therefore, it is critical to establish the lifespan of 

neutrophils in vitro, in order to guide experimental design and ensure all functional 

assays were carried out in a time period (post-isolation) where the vast majority of 

neutrophils will remain largely functional and viable (i.e. not entering the early stages of 

apoptosis).  Neutrophil viability at set time intervals (4 hours, 6 hours 8 hours and 24 

hours) was recorded using flow cytometric analysis of annexin V and PI staining. 

Viability was observed to drop significantly at each timepoint measured with median 

viabilities of 85.9%, 65.9%, 49% and 3.7% at 4, 6, 8 and 24 hours respectively (fig 4.1a). 

Correlational analysis of neutrophil viability against time showed this strong negative 

correlation (Spearman-Rho = -0.962) was highly significant (p < 0.001, fig 4.1b ), as 

expected given our understanding of neutrophil biology in relation to biological lifespan. 

Based on these results it was decided that functional work e.g. neutrophil incubation 

should attempt to remain within the 4-hour timespan post isolation where possible, as 

after this timespan neutrophil function will likely begin to decline and may impact 

functional assay results. 
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Figure 4.1 Neutrophil viability in vitro over a 24-hour timespan post-isolation from whole 
blood. (A) The viability for peripheral blood neutrophils decreased significantly at each 
observed time interval, at each observed timepoint (n=5 +/- IQR, ** p < 0.01, *** p < 0.001). 
(B) The decrease in viability at each timepoint was reflected in the correlation plot of the 
data, in which the same data showed a strong negative correlation (Spearman Rho 
correlation value = -0.946) that was statistically significant (+/- IQR, p < 0.001). 
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4.2.3 Confirming biological activation of neutrophils by disease relevant PAMPs 

To confirm the stimulatory molecules and bacterial lysates were biologically active, the 

supernatants of neutrophils (both untreated and stimulated) were assessed for CXCL8 

concentration. CXCL8 was selected based on previously published and well-established 

research showing that CXCL8 secretion occurs in neutrophils in response to a broad 

range of stimuli (Fujishima et al. 1993). CXCL8 secretion was elevated when neutrophils 

were treated with all selected stimuli (Fig 4.2a). Although all stimuli resulted in a 

significant increase in supernatant CXCL8 concentration, PMA was seen to result in a 

much higher increase in CXCL8 release than other stimuli. However, when observing the 

differences in supernatant CXCL8 concentration between unstimulated neutrophils and 

those stimulated with other molecules (excluding PMA), a 8-fold, 3-fold, 7- fold, 9-fold 

and 8-fold increase in CXCL8 concentration was seen in regards to untreated neutrophils 

for LPS, fMLP, TNF-α, WCL P. aeruginosa and WCL H. influenzae respectively (Fig 4.2b).  

Therefore, all of the tested stimuli successfully triggered CXCL8 secretion and by 

extension activating the isolated neutrophils in vitro. Once this was confirmed, the 

stimuli (at the established concentrations) were used in the following experiments to 

assess NETosis rates and citrullination. It is important to note that no inference is made 

on the relative potency of each stimulus, as dose response curves for each stimuli were 

not conducted. 
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Figure 4.2 CXCL8 concentration in neutrophil treated with bronchiectasis and rheumatoid 
arthritis relevant stimuli. (A) CXCL8 concentration was significantly higher than untreated in 
every condition, with PMA showing the largest increase. Graph B shows the same data seen 
in graph A, with the PMA condition results being excluded to demonstrate the large 
differences between the CXCL8concentration for neutrophils stimulated with the other 
molecules/lysates and untreated neutrophils (n=10, mean +/- 95% CI, ** p < 0.01, *** p < 
0.0001) 
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4.2.4 NET immunofluorescent staining 

Before assessing NETosis rates in response to tested PAMPs and lysates, the 

immunofluorescent assay was first validated by a dose response experiment using PMA. 

As PMA is an established inducer of NETosis, it is expected that neutrophils incubated 

with increasing concentrations of PMA should in response show higher rates of NETosis. 

When left untreated or stimulated with 25nM, 50nM and 100nM PMA for four hours 

and assessed for the presence of NETs with immunofluorescent staining there is a 

significant positive correlation (p< 0.001, Pearson correlation = 0.921) between PMA 

concentration and the number of NETs detected (Fig 4.3a), with the number of detected 

NETs increasing significantly between each increase in PMA concentration (Fig 4.3b). 

Supporting the assumption that the staining counts does correspond to NETosis. 

Immunofluorescent staining was then used to assess the impact of the selected 

stimulatory molecules on isolated neutrophil NETosis rates in vitro. After 4 hours 

incubation, 4% of unstimulated neutrophils were recorded as undergoing NETosis, 

identical to the rate seen in fMLP stimulated neutrophils. PMA, LPS, TNF-α, WCL P. 

aeruginosa and WCL H. influenzae all induced a higher rate of NETosis (53%, 37%, 18%, 

29% and 24% respectively), with all conditions, excluding H. influenzae, resulting in 

statistically significant increase in NETosis (Fig 4.4). This support previous work 

identifying PMA, LPS and TNF-α as inducers of NETosis (although TNF-α as an initiator of 

NETosis has previously only been demonstrated in HL-60 cells) (Guimarães-Costa et al. 

2012, Wang et al. 2009). Live P. aeruginosa has been shown to induce NETosis in mast 

cells, however our results suggest that pathogen associate molecular patterns contained 

in whole cell lysates of the bacteria alone can also induce NETosis rates in human 

neutrophils (von Köckritz-Blickwede et al. 2008). 
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Figure 4.3 Increasing concentrations of PMA on NETosis rates assessed by 
immunofluorescent microscopy. (A) The percentage of neutrophils undergoing NETosis 
showed a significant positive correlation with PMA (p < 0.001, Pearson correlation = 0.921). 
(B) Comparison of each incremental increase in PMA concentration (25, 50 and 100nM PMA) 
showed a significant increase in NETosis rates between each increase (n=6 +/- 95% CIs, * p < 
0.05, ** p<0.01, *** p < 0.001). 
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Figure 4.4 Immunofluorescent microscopy determined NETosis rates in response to 
bronchiectasis and rheumatoid arthritis relevant stimuli. All conditions except fMLP showed 
an increase in the percentage of neutrophils that had underwent NETosis, however only 
treatment PMA, LPS, TNF-α and WCLs of P. aeruginosa resulted in a significant increase in 
NETosis rates (n=11 +/- 95% CIs, ** p < 0.01, *** p < 0.001). 
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4.2.5 Supernatants from stimulated neutrophils have higher levels of PAD activity but no 

corresponding increase in PAD4 concentration 

Using a PAD activity assay, the levels of PAD activity in the supernatant of neutrophils 

incubated for four hours with/without stimulation was assayed (Fig 4.5). PMA, LPS, 

fMLP, TNF-α and WCL P. aeruginosa treatment all resulted in an increase in PAD enzyme 

activity for the supernatant, with PMA showing the largest increase in enzyme activity 

(3-fold increase), with this increase for all of these conditions excluding fMLP being 

statistically significant. WCL of H. influenzae appeared to have no significant effect on 

extracellular PAD enzymatic activity compared to untreated, however further repeats 

would be useful to confirm this. 

Using a PAD4 ELISA to measure the concentration of PAD4 in neutrophil supernatants 

incubated under the given conditions for 4 hours showed opposing results. As an 

increase in citrullination was seen in supernatants treated with PMA, LPS, and WCL P. 

aeruginosa it is expected that there may be a corresponding increase in PAD4 

concentration in stimulated supernatants. As seen in Fig 4.6, there were slight 

differences in the supernatant PAD4 concentration for all conditions however there was 

no significant difference between the conditions. 
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Figure 4.5 PAD activity rates in supernatants from unstimulated and stimulated peripheral 
blood neutrophils. Supernatant PAD enzyme activity was significantly increased in PMA (n=16), 
LPS (n=16), TNF-α (n=10) and WCL P. aeruginosa (n=16) in comparison to untreated (n=16). 
fMLP (n=16) also showed an increase in PAD activity but this was not shown to be significant. 
WCL H. influenzae (n=6) showed a decrease in PAD activity, which also did not reach statistical 
significance (+/- 95% CIs * p < 0.05, ** p <0.01, *** p < 0.001). 
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Figure 4.6 PAD4 concentration in supernatants from unstimulated and stimulated peripheral 
blood neutrophils. Small differences in PAD4 concentration was observed for the tested stimuli 
however no statistically significant difference was seen in comparison to untreated neutrophil 
supernatants (n=7, +/- 95% CIs). 
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4.2.6 No difference in supernatant PAD activity following stimulation with differing strains 

of Pseudomonas aeruginosa 

As WCLs of of P. aeruginosa (strain 968333S, a bronchiectasis patient derived strain) was 

shown to increase extracellular PAD activity, the impact of other non-bronchiectasis P. 

aeruginosa strains on neutrophil extracellular PAD activity was assessed. WCLs for three 

additional strains were assessed for supernatant PAD activity and compared to the 

previously used 968333S strain and unstimulated neutrophils; PA01 (genome sequenced 

lab strain), 57931PA (COPD patient derived clinical strain) and DK2 (cystic fibrosis clinical 

strain). 

Mean extracellular PAD activity was higher in neutrophils stimulated with each of the P. 

aeruginosa strains, none of the results were significantly higher than unstimulated 

neutrophil supernatants (Figure 4.7). Although small differences in mean supernatant 

PAD activity were seen between the four strains the 95% confidence intervals for each 

condition showed a great deal of overlap, with no significant difference between any of 

the strains being detected.  

 

Figure 4.7 PAD activity in supernatants from neutrophils stimulated with whole cell lysates 
from a range of Pseudomonas aeruginosa strains. Stimulation with each of the 4 WCLs 
resulted in an increase in mean PAD activity. No significant differences were detected in 
supernatant PAD activity between the various P. aeruginosa WCLs (n=5, +/- 95% CI). 
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4.2.7 Extracellular DNA concentration is higher in neutrophils stimulated with 

Bronchiectasis relevant PAMPs 

As extracellular DNA release is a key feature of NETosis, extracellular DNA release in 

response to incubation with the selected PAMPs/lysates was assessed by measuring 

emitted fluorescence when incubated with SYTOX (a DNA binding fluorescent dye). To 

validate the assay two experiments were carried out. Firstly, increasing numbers of 

neutrophils (ranging from 10,000 to 250,000) were incubated for four hours before the 

addition of SYTOX. As seen in Fig 4.8 there was a strong positive correlation (Pearson 

correlation = 0.951, Spearman Rho correlation = 0.962), which was statistically 

significant (p < 0.001). This supports the conclusion that any detected fluorescence 

signal within the SYTOX treated wells is due to the presence of neutrophils rather than 

other contaminates or variables. 

A second validation experiment was also carried out to confirm the fluorescence 

detected was due to the SYTOX binding DNA rather than any other present nucleic acids 

(e.g. RNA). To confirm this, neutrophils were incubated for 4 hours in the absence or 

presence of LPS (1µg/ml). After this incubation period DNase I (RNase free) or media 

was added to each of the conditions. Fig 4.9 shows the fluorescence values for the 

various experimental conditions in relation to neutrophils untreated by LPS and DNase I 

(which is set as the baseline value of 100%). In each of the DNase I treated samples a 

large drop in fluorescence was seen, with the LPS treated neutrophil showing a 

significant decrease in fluorescence when treated with DNase I. This confirms that the 

fluorescence detected within the wells containing neutrophils is largely due to the 

presence of DNA rather than other nucleic acids not implicated in NETosis. 
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Figure 4.8 Correlation between the number of neutrophils and SYTOX dependent 
fluorescence. A strong positive correlation is clearly visible with a Pearson correlation 
value of 0.951 detected. This correlation was confirmed to be statistically significant (p 
< 0.001, n=7, +/- 95% CI). 
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Figure 4.9 Fluorescence of untreated and LPS stimulated neutrophils in the absence and 

presence of DNase I. SYTOX dependent fluorescence was measured using neutrophils 

untreated by DNase I or LPS as a baseline 100% value (with 0% representing the fluorescence 

value recorded for the blank condition). Treatments with DNase I resulted in a decrease in 

observed fluorescence (for both unstimulated and LPS stimulated neutrophils). The decrease 

in fluorescence seen between the “LPS+ve DNase-ve” and “LPS+ve DNase+ve” treated 

samples was shown to be statistically significant (n=5, 95% CI ** p < 0.01) 

0%

50%

100%

150%

200%

250%

300%

Untreated 1µg/ml LPS

Fl
u

o
re

sc
e

n
ce

 r
e

la
ti

ve
 t

o
 n

e
u

tr
o

p
h

ils
 n

o
t 

tr
e

at
e

d
 w

it
h

 L
P

S 
o

r 
D

N
as

e
 I

DNase -ve DNase +ve

**



78 
 

Once the SYTOX based assay was validated, the amount of extracellular DNA released 

was determined by measuring the SYTOX dependent fluorescence in each of the 

conditions, with the fluorescence value of untreated neutrophils being assigned as the 

baseline (i.e. 100%) value. The relative fluorescence for PMA and LPS were the only 

conditions with a significant increase (p < 0.001 and p < 0.01 respectively). There was no 

difference between the baseline unstimulated and fMLP in fluorescence. TNF-α showed 

a slight decrease in fluorescence compared to untreated neutrophils, however this was 

not statistically significant (Fig 4.10). These results suggest that of the four stimuli only 

PMA and LPS cause an increase in extracellular DNA, which corresponds with the 

previous results of immunofluorescent NET counts. TNF-α however should no increase in 

extracellular DNA, whereas NET counts suggested an increase in NETosis rates in 

neutrophil stimulated by the molecule (Fig 4.4).  

 

Figure 4.10 Extracellular DNA release in response to various bronchiectasis and rheumatoid 

arthritis stimuli. PMA and LPS both showed a significant increase in relative fluorescence, 

suggesting higher extracellular DNA release. No significant change in fluorescence was seen 

in neutrophils treated with fMLP and TNF-α (n=6 +/- 95% CI, ** p < 0.01, *** p < 0.001). 
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4.2.8 Increased NETs in supernatants of neutrophils treated with LPS and PMA 

Supernatants from neutrophils incubated in the absence or presence of the various 

bronchiectasis and rheumatoid arthritis stimuli were assessed for the presence of NETs using a 

histone-elastase complex ELISA assay. As there is no agreed method for quantifying the number 

of NETs within a soluble sample, the samples tested by the ELISA were semi-quantified using a 

biological standard confirmed to contain high amounts of NETs (provided and confirmed by Prof. 

James Chalmers, Dundee University, UK). This allowed each sample to be assigned an arbitrary 

unit (in relation to the biological standard) allowing comparison between samples ran on 

different plates. 

All tested stimulatory conditions showed some increase in the amount of NETs detected within 

the supernatant (Fig 4.11). Only PMA, LPS and TNF-α had a significant increase in comparison to 

untreated neutrophils (p < 0.001, p < 0.001 and p < 0.05 respectively). This suggests that there 

are a greater number of non-adherent NETs present in neutrophil culture mediums treated with 

these samples, which may also be an indicator of the greater rate of NETosis occurring in the 

neutrophil population in response to these stimuli. 
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Figure 4.11 NETs present in supernatants of stimulated and unstimulated peripheral blood 

neutrophils. (A) The relative amount of NETs in the supernatants was elevated in all 

conditions, however only PMA, LPS and TNF-α were significantly higher than unstimulated 

neutrophil supernatants. Graph B shows the same data set as A, only with the y-axis set to a 

baseline value of 0.25 in order to more clearly demonstrate the differences between the 

conditions and little overlap of error bars (n=16 +/- 95% CI, * p < 0.05, *** p < 0.001). 
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4.2.9 Elastase concentration and activity is elevated in stimulated neutrophils 

Neutrophil elastase is a key component of the NETosis pathway and is commonly 

present within the structure of fully formed NETs (Papayannopoulos et al 2010). 

Neutrophil elastase concentration and activity was measured in neutrophil culture 

supernatants to serve as an additional marker for the presence of NETs in supernatants. 

The concentration of free elastase (i.e. elastase free in neutrophil supernatant and not 

bound to formed NETs) was measured using a “Human PMN Elastase ELISA Kit” (Abcam: 

ab119553). An increase in free elastase concentration was seen in all of the stimulatory 

conditions, with at least a 4-fold increase (compared to unstimulated) in free elastase 

being detected for all conditions (Fig 4.12). Despite this increase for all conditions, only 

PMA, TNF-α, P. aeruginosa and H. influenzae treatment resulted in a significant increase 

in free elastase concentration in neutrophil supernatants. 

Elastase activity in neutrophil supernatants was assessed using an “in house” assay 

protocol developed by Prof.  James Chalmers (Dundee University). Elastase activity 

determined using the protocol produced results which conflicted with the general 

increase in supernatant elastase concentration (Fig 4.13). Stimulation with LPS, fMLP, 

WCLs P. aeruginosa and WCLs H. influenzae resulted in a 2-3 fold increase in supernatant 

elastase activity compared to unstimulated (with only LPS resulting in a significant 

increase in elastase activity). PMA and TNF-α treated neutrophils showed a greater 

increase in supernatant elastase activity (8-fold increase), both of which were 

statistically significant. In general, the assay results showed wide confidence intervals. 
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Figure 4.12 Neutrophil free elastase concentration in the supernatants of stimulated 

neutrophils. All conditions showed an increase in supernatant free elastase concentration in 

comparison to unstimulated neutrophils. PMA, TNF-Α, P. aeruginosa and H. influenzae WCLs 

all caused a significant increase in extracellular elastase concentration (n=7 95% CIs, * p < 

0.05, ** p < 0.01). 
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Figure 4.13 Elastase activity in in vitro neutrophil supernatants. All conditions resulted in 

some increase in mean supernatant elastase activity in comparison to unstimulated 

neutrophils. Only LPS, PMA and TNF-α resulted in a statistically significant increase in 

elastase activity (n=7 95% CIs, * p < 0.05, ** p < 0.01). 
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4.2.10 Summary 

The bronchiectasis and rheumatoid arthritis relevant stimuli were confirmed to be 

biologically activate when applied to isolated peripheral blood neutrophils in vitro. 

Immunofluorescence (IF) counts of adherent NETs suggested that PMA, LPS, TNF-α and 

WCL of P. aeruginosa all caused a significant increase in the presence of adherent NETs 

in vitro. This pattern of results was reflected in the relative number of non-adherent 

NETs (NET ELISA results) in neutrophil culture supernatants, however the number of 

soluble NETs in WCL of P. aeruginosa treated neutrophils was not significantly higher. 

Extracellular DNA measurements of selected stimulatory conditions (PMA, LPS, fMLP 

and TNF-α) suggested PMA caused the highest increase in extracellular DNA, followed by 

LPS, which is similar to the results for IF counts of adherent NETs and the measurements 

of soluble NETs. Contradictory to the results in the other NET measurement assays there 

was no observed increase in extracellular DNA for TNF-α stimulated neutrophils. 

Assays of neutrophil elastase, as a marker for NETosis produced conflicting results. 

Supernatant elastase concentration was increased for all conditions; however activity 

was only greatly elevated in supernatants of neutrophils incubated with PMA and TNF-α. 

Supernatants of PMA, LPS, TNF-α and WCL of P. aeruginosa treated neutrophils all 

showed a significant increase in the amount of PAD enzyme activity, which parallels the 

results seen for the IF adherent NET counts and soluble NET measurements. 

Unexpectedly there was no significant increase in PAD4 supernatant concentration seen 

in these or any other stimulatory conditions. 
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4.3 Discussion 

4.3.1 NETosis rates in stimulated neutrophils 

Of all tested stimuli, PMA consistently resulted in the highest rates of NETosis (IF NET 

counts, supernatant NET ELISA, extracellular DNA detection). Given this molecules 

widespread use as a positive control for inducing NETosis this was expected and 

supports the assays used are successfully measuring NETosis. IF NET stains of 

neutrophils stimulated with 50nM PMA for four hours resulted in a mean NETosis rate of 

52.7% (95% CI: 45.7%, 59.7%), which was significantly higher than unstimulated 

neutrophil NETosis rates. Similar work by Brinkmann et al (2013) reported NETosis rates 

in two human donor samples (determined by IF staining) of 40% and 80% when 

incubated with 50nM PMA, however this is of limited use for comparison given the low 

sample size and difference in incubation time (6 hours as opposed to 4 hours). 

Contradictory to our results, Gupta et al (2014) reported a NETosis rate (also using IF 

microscopy) of near 100% within 3 hours when stimulating human neutrophils with 

50nM of PMA. This large difference between results highlights the difficulty of 

comparing published data on NETosis rates. 

The similar results presented in this chapter for IF staining of adherent NETs and the NET 

ELISA used to assess neutrophil supernatant implies that of the tested stimuli (at the 

concentrations used) PMA, LPS and TNF-α all resulted in increased numbers of NETs 

formed in vitro. These data confirm previously published studies showing these 

molecules as inducers of NETosis (Fuchs et al 2007). Whilst extracellular DNA was higher 

in PMA and LPS, no increase was seen in TNF-α however this could be attributed to the 

lower specifictiy (comparative to immunofluorescence and ELISA) of the assay for 

detecting NET dependent increases in extracellular DNA concentration in vitro. 

Incubation of healthy neutrophils with WCLs of P. aeruginosa also resulted in a 

significant increase in adherent NET IF microscopy counts (but no significant increase in 

the NET ELISA results). As IF microscopy counts are a fully quantitative method of 

measuring NETosis (as opposed to the semi-quantitative method used in ELISA analysis) 

that is well established in the literature, this is still ample evidence to suggest P. 

aeruginosa lysates may trigger NETosis. Previously the literature has only reported the 

ability of live P. aeruginosa bacteria to trigger NETosis (Guimarães-Costa et al. 2012), the 
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results in this thesis suggest that even once P. aeruginosa is killed and heavily degraded 

(lysis and proteolytic degradation leaving a LPS rich fraction) the lysate solution can still 

induce NETosis in vitro at the given concentration (2.5% v/v).  

Neutrophils stimulated by fMLP and WCLs of H. influenzae showed no significant 

difference in the number of detected NETs compared to unstimulated neutrophils. As 

fMLP is a simple chemokine that recruits neutrophils towards a site of infection then it is 

expected the molecule would have little (or no) impact on NETosis rates, as activation of 

NETosis would theoretically be most beneficial after reaching the recruitment site 

(where other molecules, e.g. LPS, will be present). WCLs of H. influenzae could be 

expected to induce NETosis given that live H. influenzae have been reported to cause 

NET formation (Guimarães-Costa et al. 2012) and as WCLs of P. aeruginosa was shown 

to promote NETosis in these results. A potential explanation of the difference between 

the two WCLs could be the content within the lysates. It is possible the P. aeruginosa 

WCLs contain higher relative amounts of a given immunostimulatory molecule which is 

resistant to degradation (e.g. LPS) than the H. influenzae WCLs.  

4.3.2 Use of elastase as a measure of NETosis 

The use of neutrophil elastase activity/concentration was initially planned to be used in 

a similar manner to that of extracellular DNA release (i.e. as a secondary assessment of 

NETosis to confirm results using the more accurate/valid protocols of IF NET counts and 

NET ELISA). Although the commercial ELISA kit used to assess elastase concentration is 

well validated, the in-house activity assay is not widely used. Furthermore it was found 

that the reagents used in the assay (which changes absorbance when cleaved) was also 

reactive to other neutrophil derived proteases (e.g. cathepsin G), meaning the assay is 

likely less an indicator of elastase activity but rather broad neutrophil protease activity.  

Furthermore, neutrophil elastase release is a commonly seen occurrence in neutrophil 

degranulation in vitro in response to stimulation as a host defence mechanism, meaning 

the validity of using this molecule to assess NETosis rates in vitro comes under great 

scrutiny. Therefore, the results collected in relation to elastase concentration and 

activity should be interpreted with caution as a marker of NETosis (supported by the 

clear differences in elastase concentration/activity in comparison to measure NET rates 

show in this chapter).  



87 
 

4.3.3 PAD mediated citrullination in response to disease relevant stimuli 

Supernatant PAD activity was significantly higher following stimulation with PMA, LPS, 

TNF-α and WCL P. aeruginosa, which were also indicated to promote NETosis in vitro. As 

citrullination is a central feature to NETosis, and as NETosis results in the release of 

intracellular contents (e.g. possibly including PAD enzymes), this increase in PAD activity 

in the enzyme activity could be a result of increased NETosis rather than secretion of 

activated PAD enzymes. As there is limited information available, whether this increase 

in extracellular PAD activity would have any substantial impact on the modification of 

self-antigens cannot be determined. However, the increase in extracellular PAD activity 

in response to these stimuli does suggest that bronchiectasis disease relevant stimuli 

may support the production of a chronic pro-citrullination environment. 

Unexpectedly the PAD4 detected by ELISA in supernatants did not show a similar result 

with no significant increase in PAD4 concentration noted. This could be explained by the 

given stimulatory conditions (PMA, LPS, TNF-α and WCL P. aeruginosa) resulting in 

greater activation of PAD4 (e.g. by protein-protein interaction) which increased activity 

prior to release by NETosis. This is potentially feasible given publications reporting a 

10,000-fold increase in PAD4 activity when activated by Ca2+ (Knuckley et al. 2011). 

However, a paper by Zhou et al (2017) suggested that whilst neutrophil supernatants 

showed PAD activity (confirmed by citrullination of extracellular histones and fibrinogen) 

it was PAD2 that was predominantly secreted to the extracellular medium and not 

PAD4. This means the increase in PAD activity for the supernatant samples seen in this 

chapter could be the result of increased release of PAD2.  

Whilst this would explain the presence of citrullination in the absence of any change in 

PAD4 concentration, there is still some question as to why PAD4 was detected in 

supernatants from unstimulated neutrophils (which had comparatively low NETosis 

rates). Zhou et al (2017) also reported that biologically active PAD4 is expressed on the 

surface of neutrophils (which they confirmed was not the result of neutrophils binding 

secreted soluble PAD4) and that the enzyme may be released following cell death. As 

the supernatants studied in this chapter were cell free this rules out the potential for cell 

membrane anchored PAD4 to be the cause of the observed increased PAD activity. It is 

possible however, that the isolation procedure may result in the activation/death of a 
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proportion of neutrophils releasing PAD4 to the extracellular medium (explaining the 

detected PAD4 in all neutrophil supernatants).  

Although there was no other assay used to establish citrullination rates, due to the 

difficulty in precisely measuring citrullination in biological samples, it is possible that the 

IF staining results could also serve as an indicator of citrullination activity. As one of the 

stains used in the IF staining was targeted against citrullinated-histone all counts of 

NET+ve structures were neutrophils with citrullinated histones. Therefore, the increase 

in NETosis rates for PMA, LPS, TNF-α and WCL P. aeruginosa treated neutrophils could 

be viewed as an indicator of increased intracellular histone citrullination. This parallels 

the results seen for supernatant PAD activity and suggests that in addition to increasing 

extracellular PAD activity the stimuli may also increase intracellular PAD activity (i.e. 

primarily histone citrullination). 

4.3.4 No difference in PAD activity following stimulation by differing strains of P. 

aeruginosa 

The results suggested that when neutrophils were stimulated with WCLs generated from 

four separate strains of P. aeruginosa there was a consistent increase in extracellular 

PAD activity between the strains, but no difference in PAD activity elicited across the 

strains used. Given the WCLs were created by lysis followed by destruction of bacterial 

proteins/DNA this is to be expected as there may theoretically be very little separating 

the WCLs of the four strains in terms of content. Therefore, this result cannot 

conclusively show there is no difference in response of neutrophils (in relation to 

citrullination) to the differing bacterial strains. To establish this, further study would 

likely need to be carried out involving the incubation of isolated neutrophils with viable 

bacterial strains rather than WCLs (or sonicated but undigested bacteria). 

4.3.5 Differences in response to stimuli 

Throughout this chapter there was a consistent trend of the stimuli producing differing 

levels of responses in relation to NETosis and citrullination. i.e. PMA producing the 

largest increase, followed by LPS and with the other stimuli (TNF-α and WCLs of P. 

aeruginosa) following. This raises a question of why there is such a consistent difference 

in the responses to the different stimuli. It is likely this is a combination of the 

biochemical properties of each individual stimulus in relation to neutrophil function and 
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a dose-response effect (i.e. Increased dosage of LPS may produce results similar to 

50nM PMA), which was not assessed in this body of work. 

4.3.6 Conclusion 

Collectively the results presented in this chapter suggest that at the tested 

concentrations; PMA, LPS. TNF-α and WCL P. aeruginosa all caused an increase in 

NETosis rates and PAD activity in the extracellular environment. These stimuli are either 

known to be present in the bronchiectasis airway (TNF-α, LPS and Pseudomonas) or 

activate pathways biologically plausible as involved in bronchiectasis (PMA) This 

supports the hypothesis underpinning this work, which suggests that 

infection/inflammatory stimuli commonly seen in bronchiectasis promote NETosis and 

may help establish a pro-citrullination extracellular environment. 
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Chapter 5: Assessing the LPS signalling pathway and its role in neutrophil citrullination 

and NETosis 

 

5.1 Introduction 

5.1.1 Overview 

The previous chapter showed that a wide variety of infection/inflammation related 

molecules promote NET formation and citrullination in vitro. These include PMA, LPS 

and TNF-α which have all been previously suggested to be inducers of NETosis (Remijsen 

et al. 2011, Douda et al. 2015, Gupta et al 2014, Guimarães-Costa et al. 2012). A large 

amount of published work attempting to determine the signalling mechanisms linking 

stimulation by these molecules to NETosis and/or citrullination has focused on PMA. 

As PMA is a protein kinase C (PKC) activator and a potent inducer of NETosis, along with 

observations that chronic granulomatous disease patients whom have faulty NADPH 

oxidase pathway function (which is activated by PKC via the MAPK-ERK pathway) cannot 

form NETs in response to PMA, it has become gradually accepted that PKC and NADPH 

oxidase plays a central role in NETosis (Branzk et al 2013, Fuchs et al 2007). A paper by 

Neeli et al (2013) examined the relationship further, suggesting that the PKCζ isoform 

was specifically associated with increased histone citrullination and NETosis when 

stimulated. Given the broad effects of PKCζ activation of a variety on cell function, 

including NADPH oxidase formation (Dang et al 2001), it is plausible that the isoform 

may also promote processes such as histone citrullination and NETosis.  

Whilst the research has focused on the PMA pathway in citrullination and NETosis, an 

unaddressed aspect of the research is the molecular mechanism by which the other 

stimuli shown to induce citrullination and/or NETosis (e.g. LPS and TNF-α). As both the 

LPS and TNF-α signalling pathways have been shown to lead into the MAPK-ERK 

pathway, and subsequently activate NADPH oxidase (Figure 5.1), it’s plausible that this 

may be the route by which such a broad range of stimuli can promote citrullination and 

NETosis. 

This chapter aimed to evaluate the LPS signalling pathway in relation to citrullination 

and NETosis, which despite its biological and clinical relevance has been understudied. 
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Peptide inhibitors of myeloid differentiation primary response 88 (MyD88) and TIR-

domain-containing adapter-inducing interferon-β (TRIF) were assayed for their impact 

on citrullination and NETosis rates from healthy volunteer peripheral blood neutrophils 

in vitro.  

MyD88 and TRIF are both adaptor proteins playing a role in the first stages of the LPS 

signalling pathway. As shown in figure 5.2, the pathway is believed to divert largely at 

the first stage of the signalling cascade, with the TRIF dependent pathway leading into 

transcriptional changes by activation of IRF3 and the MyD88 dependent pathway leading 

to the activation of the MAPK-ERK pathway, with NFκB activation being mutual to both 

pathways.  

This work will establish if there are any distinct differences in citrullination and NETosis 

between the two arms of the TLR4 signalling pathway, which will provide a foundation 

for future work examining the TLR4 signalling pathway in citrullination/NETosis. As the 

MyD88 pathway is believed to involve the activation of the MAPK-ERK pathway (and 

NADPH oxidase) it is expected that inhibition of MyD88 will significantly impact 

citrullination/NETosis. Given our current understanding of the LPS signalling there is no 

reason supported by published literature to suspect that TRIF inhibition will have any 

impact on citrullination/NETosis. 

 

 

5.1.2 Hypothesis 

Inhibition of MyD88 function in neutrophils will significantly reduce NETosis rates and/or 

PAD activity, whereas TRIF inhibition will have no impact on either feature. 
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Figure 5.2 Separation of LPS signalling into MyD88 and TRIF dependent pathways. 

Following binding of LPS to the toll like receptor 4 (TLR4), the adaptor proteins MyD88 and 

TRIF are both activated. This leads to two separate signalling cascades one dependent of 

MyD88 signalling and one dependent of TRIF. Notable differences between the two include 

the activation of the MAPK-ERK pathway (MyD88 dependent), which may be implicated in 

hypercitrullination and NETosis (via activation of NADPH oxidase), and the activation of the 

transcriptional factor IRF (TRIF dependent). There is some expected crossover of the 

pathways with both pathways leading to the activation of the broad targeting transcriptional 

factor NFκB (adapted from Guo et al 2010, Piras et al 2014 and Kiziltaş et al 2016). 
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5.2 Results 

5.2.1 TRIF and MyD88 inhibitors on neutrophil viability 

A broad concentration range of two peptide inhibitors of TRIF and MyD88 (TRIF-pep and 

MyD88-pep) were selected and assayed for their impact on neutrophil viability after 7 

hours incubation. 7 hours was selected as an incubation time as all experiments for this 

work would involve 3 hours pre-treatment with TRIF-pep/MyD88-pep followed by 4 

hours stimulation with LPS.  

The results for TRIF-pep treated neutrophils suggest that neutrophil viability only 

showed a significant change in comparison to untreated neutrophils, when 

concentration reached 40µM or higher (Figure 5.3). There was an observed decrease in 

mean viability for neutrophils incubated with 35µM TRIF-pep, however this was not 

shown to be statistically significant. As the sample size for this experiment was limited it 

is possible that with a higher number of samples 35µM TRIF-pep may impact viability, 

because of this 30µM TRIF-pep was selected as the concentration for all experiments 

involving TRIF inhibition. 

MyD88-pep treated neutrophils showed a significant decrease in mean viability at 75µM 

and 100µM concentrations (Fig 5.4). Neutrophil viability appeared unaffected when 

incubated for 7 hours with 50µM MyD88-pep, for this reason this concentration was 

selected for all experiments requiring inhibition of MyD88. 
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Figure 5.3 The impact of various TRIF-pep concentrations on neutrophil viability. Viability 

for neutrophils treated with a range of TRIF-pep concentrations and 50nM PMA (as a positive 

control) was assessed after 7 hours incubation. Viability significantly decreased at 

concentrations exceeding 40µM. A decrease in mean viability was observed at 35µM TRIF-

pep, however this was not significant (n=4, * p < 0.05). 
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5.2.2 Selected TRIF-pep and MyD88-pep concentrations inhibit neutrophil activation by 

LPS 

In order to confirm the TRIF-pep and MyD88-pep were active the ability of the inhibitors 

to successfully limit LPS stimulation of neutrophils was assayed. As NFκB activation 

occurs in both the MyD88 and TRIF pathway, and given CXCL8 production/secretion is 

dependent on activation of the transcription factor (Wang et al 2010), CXCL8 secretion 

was used as a marker of neutrophil activation by LPS. 

 

Figure 5.4 The impact of various MyD88-pep concentrations on neutrophil viability. 

Viability for neutrophils treated with a range of MyD88-pep concentrations and 50nM PMA 

(as a positive control) was assessed after 7 hours incubation. 75µM and 100µM MyD88-pep 

resulted in a significant decrease in neutrophil viability (n=4, * p < 0.05). 
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Figure 5.5 shows the CXCL8 secretion of neutrophils either uninhibited or incubated with 

TRIF-pep or MyD88-pep prior to stimulation with LPS. The mean supernatant 

concentration of CXCL8 in uninhibited neutrophils was determined to 768.96pg/ml (95% 

CI: 550.28, 987.55). A significant decrease in supernatant CXCL8 concentration was seen 

for both TRIF-pep and MyD88-pep treated neutrophils, with means of 470.41pg/ml (95% 

CI: 263.63, 677.20) and 476.79pg/ml (95% CI: 162.92, 790.65) respectively. This shows 

CXCL8 secretion by neutrophils in response to LPS stimulation was significantly lower 

following incubation with the inhibitors, suggesting they are successfully inhibiting the 

signalling pathway as expected. 

 

 

 

 

Figure 5.5 Supernatant CXCL8 concentration in TRIF-pep and MyD88-pep treated 

neutrophils. Significant decreases in supernatant CXCL8 concentration were observed for 

neutrophils inhibited with TRIF-pep and MyD88-pep prior to LPS stimulation (n=5, ** p < 

0.01). 
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5.2.3 Extracellular PAD activity unchanged by TRIF or MyD88 inhibition 

Supernatants of stimulated and inhibited neutrophils were assessed for extracellular 

PAD activity as in the previous chapter. Mean PAD activity in supernatants of uninhibited 

neutrophils stimulated with LPS (1.35mU) was higher than the supernatants of 

neutrophils incubated with TRIF-pep and MyD88-pep (0.98mU and 0.77mU respectively) 

(Fig 5.6).  

Neither of the decreases in supernatant PAD activity when neutrophils were incubated 

with TRIF-pep or MyD88-pep were found to be statistically significant, however this 

could be attributed to the large spread of the data visible in the large 95% confidence 

intervals for each condition. From these results there is no conclusive impact of the 

inhibitors on extracellular PAD activity in neutrophils in vitro. 
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Figure 5.6 Extracellular PAD activity in neutrophils pre-treated with TRIF-pep and MyD88-

pep. Although supernatant PAD activity appeared to increase in uninhibited neutrophils 

following LPS stimulation, and mean PAD activity decreased when LPS stimulated neutrophils 

were pre-treated with TRIF-pep and MyD88-pep, no statistically significant differences were 

found (n=8). 

 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4
Su

p
e

rn
at

an
t 

PA
D

 a
ct

iv
it

y 
(m

U
)



100 
 

5.2.4 inhibition of TRIF and MyD88 decreased extracellular DNA and supernatant NET 

concentration 

The effect of TRIF and MyD88 inhibition on in vitro NETosis rates was first examined 

using two assays described in the previous chapter; extracellular DNA release and NET 

ELISA measurements of non-adherent free NETs in neutrophil supernatants. 

Extracellular DNA release (detected by SYTOX staining) was measured for all 

stimulatory/inhibitory conditions, with the SYTOX dependent fluorescence value of 

unstimulated and uninhibited neutrophils being used as the baseline (i.e. 100%) value 

for measuring extracellular DNA release in other conditions. Figure 5.7 shows that 

relative extracellular DNA release for uninhibited neutrophils increased following LPS 

stimulation (to 276.29%, CI: 162.27%, 390.32%). LPS stimulated neutrophils pre-treated 

with TRIF-pep and MyD88-pep had a significant decrease in relative extracellular DNA 

(93.18, 108.93%), to similar levels of the baseline value seen in neutrophils not 

stimulated with LPS. These results suggest that inhibition of both TRIF and MyD88 

signalling had a significant impact on extracellular DNA release and possibly NETosis 

rates in LPS stimulated neutrophils. 
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NET ELISA based detection of non-adherent NETs within neutrophil supernatants 

showed similar results (Fig 5.8A). The relative arbitrary units (AU), indicating the amount 

of NETs in supernatant, was higher for neutrophils stimulated with LPS in comparison to 

unstimulated neutrophil supernatants (0.328 and 0.405 AU respectively). TRIF-pep and 

MyD88-pep treatment were both shown to decrease mean AU values for both 

unstimulated and LPS stimulated neutrophil supernatants, however only LPS stimulated 

neutrophils incubated with the inhibitors showed a significant decrease in mean 

supernatant AU. This supports the extracellular DNA results in concluding that TRIF and 

MyD88 inhibition both have an impact on NETosis rates. 

 

Figure 5.7 Extracellular DNA release in unstimulated and LPS stimulated neutrophils 

following inhibition of TRIF and MyD88. In both unstimulated and LPS stimulated 

neutrophils, pre-treatment with TRIF-pep and MyD88-pep resulted in a decrease in relative 

extracellular DNA release. However, only LPS stimulated neutrophils showed a statistically 

significant decrease in extracellular DNA release following incubation with both TRIF-pep and 

MyD88-pep (n=6, ** p < 0.01, *** p < 0.001). 
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Figure 5.8A NET supernatant ELISA results for LPS stimulated neutrophils incubated with 

TRIF and MyD88 inhibitors. Pre-treatment of LPS stimulated neutrophils with the peptide 

inhibitors resulted in a significant decrease in the mean supernatant AU values, indicating 

decreased presence of non-adherent NETs present within supernatant (n=8, * p < 0.05, ** p 

< 0.01). 
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Figure 5.8B NET supernatant ELISA results for LPS stimulated neutrophils incubated with 

TRIF and MyD88 inhibitors with baseline. This graph shows the same data seen in figure 

5.8A, with an arbitrary baseline value of 0.2 AU set for the y-axis, to better demonstrate the 

differences between the means following inhibition of TRIF and MyD88 (n=8, * p < 0.05, ** p 

< 0.01). 
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5.2.5 Assessment of adherent NET formation following TRIF and MyD88 inhibition 

In the previous chapter immunofluorescent (IF) staining of NETs and microscopy counts 

was used to assess NETosis rates with regards to the formation of adherent NETs. A 

concern with using this assay in assessing adherent NET formation in TRIF/MyD88 

inhibited samples was that the inhibitors may impact the ability of neutrophils to remain 

adhered to the glass coverslips, potentially impacting NETosis counts. 

To address this concern, unstimulated and LPS stimulated neutrophils were incubated 

for 7 hours, either with or without pre-treatment with TRIF-pep or MyD88-pep. Samples 

were then fixed and IF stained (as previously described in chapter 3.6.4). The mean 

number of cells present within a single field of view (x20mag) was then determined for 

all conditions. As shown in figure 5.9, although some decrease was seen in the mean 

number of adherent LPS stimulated neutrophils when pre-treated with TRIF-pep and 

MyD88-pep, this was not statistically significant. Furthermore, this pattern was not 

reflected in unstimulated neutrophils. This suggests that the TRIF/MyD88 inhibitors did 

not significantly impact adherence rates of neutrophils in vitro and should therefore not 

impact IF count results. 

IF NET counts (Fig 5.10) showed that LPS stimulated neutrophils had an adherent NET 

rate of 39.3% (95% CI: 31.9%, 46.6%). The NET rates in LPS stimulated neutrophils pre-

treated with TRIF-pep and MyD88-pep was significantly lower (24.6% and 22.6% 

respectively). Unstimulated neutrophils also showed a decrease in adherent NET rates 

when incubated with TRIF-pep and MyD88-pep, however this was not statistically 

significant.  
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Figure 5.9 Mean number of adherent neutrophils following LPS stimulation and pre-

treatment with TRIF and MyD88 inhibitors. Despite an observed decrease in the mean 

number of adherent cells for LPS stimulated neutrophils when incubated with TRIF-pep and 

MyD88-pep, no significant difference was observed suggesting inhibition of the signalling 

proteins did no impact 7-hour adhesion rates of neutrophils to glass coverslips in vitro (n=8). 
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Figure 5.10 NETosis rates in LPS stimulated neutrophils pre-treated with TRIF-pep and 

MyD88-pep determined by immunofluorescent microscopy. The number of NETs detected 

significantly decreased when LPS stimulated neutrophils were incubated with TRIF-pep and 

MyD88-pep (n=8 ** p < 0.01, *** p < 0.001). 
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5.2.6 Summary 

The results of this chapter collectively show that the selected concentrations of TRIF-pep 

and MyD88-pep both suppressed LPS induced CXCL8 secretion by neutrophils, which 

supports the inhibitors are having their intended effect on LPS signalling. No difference 

in extracellular PAD activity was detected following inhibition of TRIF and MyD88, 

however all assays measuring NETosis rates collectively suggest that both MyD88 and 

TRIF inhibition significantly decreased the formation of NETs in vitro  
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5.3 Discussion 

5.3.1 Inhibition of LPS signalling on extracellular citrullination 

The observed decrease in mean supernatant PAD activity was not shown to be 

statistically significant for TRIF or MyD88 inhibited neutrophils. However, given the large 

confidence intervals within each data set it is possible this lack of significance is due to 

low sample size. Repeating the experiment with a larger number of samples would 

reduce the deviation within the data set, giving a more accurate estimation of the true 

mean supernatant PAD activity levels in each condition and therefore allow valid 

statistical testing to be carried out to determine if any true difference in PAD activity 

occurred following TRIF and MyD88 inhibition. However, with the data set presently 

available no conclusions can be made on the impact of inhibition of TRIF/MyD88 on 

neutrophil citrullination. 

5.3.2 Interpretation of LPS signalling inhibition on NET formation 

Results for extracellular DNA release, supernatant NET concentration and adherent NET 

counts consistently showed a significant decrease in NETs for both MyD88 and TRIF 

inhibited neutrophils. The consistency in the results between each of the methods 

strongly supports the conclusion that inhibition of TRIF and MyD88 had similar inhibitory 

effects on NETosis rates by stimulated neutrophils. This conclusion opposes the 

hypothesis underpinning this work, which predicted only MyD88 inhibition would impact 

NETosis rates, and instead suggests that TRIF dependent signalling, which does not 

activate the MAPK-ERK pathway and NADPH oxidase, also plays a role in the induction of 

NETosis. As PKC, MAPK-ERK and NADPH oxidase activation are one of the few molecular 

events clearly implicated in NETosis, this could indicate that other molecules in the LPS 

signalling pathway, particularly those linked to TRIF dependent signalling (e.g. NEMO) 

may play a role in NETosis. To confirm or refute this in future work, a sensible follow up 

experiment would involve using the established methods to assess if inhibitors of 

proteins within the TRIF dependent signalling pathway impact NETosis, or another 

approach may be to determine if neutrophils from patients with TRIF-dependent 

signalling protein deficiencies undergo NETosis following stimulation. 

Despite the results showing a consistent decrease in predicted NETosis for TRIF and 

MyD88, there was a difference in the relative levels of inhibition for the three methods 
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of NET measurement. Extracellular DNA and supernatant NET concentration in TRIF and 

MyD88 inhibited LPS stimulated neutrophils were observed to decrease to near baseline 

values (i.e. those seen in unstimulated neutrophils), implying complete inhibition of LPS 

induced NETosis was occurring. IF counts of adherent NETs however only showed a 

partial decrease in NETosis for LPS stimulated neutrophils following inhibition (40% in 

uninhibited neutrophils to 25% and 22.5% in TRIF and MyD88 inhibited neutrophils 

respectively, with unstimulated neutrophils showing a NETosis rate of 6%). Of the 

utilised assays, NET counts by IF microscopy is arguably the most valid and accurate 

measurement of NETosis rates (due to its quantifiability and use of NETosis specific 

markers such as citrullinated histones, see discussion chapter, 8.3.1), which gives 

stronger support to the conclusion that only partial inhibition of NETosis is occurring 

when neutrophils are pre-treated with TRIF-pep and MyD88-pep. 

A partial decrease in NETosis rates when incubated with TRIF-pep and MyD88-pep could 

be explained by a dose response issue with the peptide inhibitors (i.e. higher 

concentrations would give stronger inhibition of NETosis), however given that higher 

concentrations were suggested to negatively impact neutrophil viability stronger 

inhibition of TRIF and MyD88 by tested peptide inhibitors may not be possible. Another 

interpretation of the partial inhibition of NETosis by TRIF-pep and MyD88-pep is that the 

previous conclusion (i.e. the TRIF pathway is also implicated in NETosis) is correct. 

Assuming complete inhibition of TRIF and MyD88 was occurring following treatment 

with TRIF-pep or MyD88-pep, then the observed partial inhibition of NETosis would 

suggest that NET formation was still possible by signalling via the uninhibited pathway 

(e.g. partial inhibition of NETosis following MyD88-pep treatment, suggests TRIF 

signalling induced NETosis). 

To assess this interpretation, future work building on these results would include an 

experiment involving incubation of neutrophils with TRIF-pep and MyD88-pep 

simultaneously (after confirming no negative impacts on cell viability) then determining 

NETosis rates by IF microscopy. Providing both pathways (TRIF and MyD88) are 

implicated in NETosis, it is expected this experiment would result in complete inhibition 

of NETosis rates when treated with TRIF-pep and MyD88-pep simultaneously, and only 

partial inhibition (as seen in this chapter) when treated with each inhibitor individually.  
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5.3.3 Limitations of LPS pathway MyD88 inhibition results 

A central criticism with the interpretation of the results detailed in this chapter is the 

potential oversimplification of the cell signalling pathway. In most biological signalling 

pathways, signalling proteins are often observed to interact with a large variety of other 

proteins within the pathway resulting in cross-talk which complicates isolating individual 

elements of a pathway. Therefore, it is questionable whether TRIF signalling is truly 

isolated from the MyD88 dependent pathway and has no impact on activation of the 

MAPK-ERK pathway and NADPH oxidase activation.  

The role of the MAPK-ERK pathway and PKC activation in LPS signalling could be 

assessed in future work by using specific inhibitors of the various proteins within this 

pathway, as previously done in other published work (Neeli et al 2013, Schuh et al 2009), 

on isolated neutrophils with NET formation rates assessed as shown in this work. A 

potential problem with this methodology is the prolonged period of incubation often 

suggested for the inhibitors, is not always feasible given the isolated neutrophil lifespan. 

A solution to this difficulty may be to instead use neutrophils derived from animals pre-

treated with the inhibitors, however this presents additional ethical and technical 

challenges, particularly with translating the results to human biology. One alternative 

would be study neutrophils from patients with genetic defects in the pathways of 

interest  

5.3.3 Conclusion 

Despite the inability to draw conclusions on the relationship between PKC and MAPK-

ERK on NETosis the results presented do allow the conclusion that both the TRIF and 

MyD88 signalling proteins (and their respective signalling pathways) are implicated in 

the formation of NETs. These data provide a starting point for future work determining 

which aspects of TLR4 mediated cell signalling are implicated in NETosis. This may 

provide a greater understanding of the molecular mechanisms underpinning the 

formation of NETs in response to infection.  
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Chapter 6: Examining the effect of Cl-amidine on NETosis, citrullination and neutrophil 

function 

 

6.1 Introduction 

6.1.1 Overview 

NETosis and citrullination have been implicated in microbial infection (Branzk et al 2013) 

and a growing number of disease states including; rheumatoid arthritis (Bicker et al 

2013, Lundberg et al 2005), COPD (Dicker et al 2018), psoriasis (Hu et al 2016) and 

cancer (Mohanan et al 2012, van der Windt DJ et al 2018). Because of this, interest in 

the potential therapeutic benefit of inhibiting these processes has greatly increased in 

previous years. The majority of PAD inhibitory research focuses upon the use of Cl-

amidine, an irreversible non-specific inhibitor of PAD enzymes first synthesised in 2006 

as an analogue to the previous (and less potent) synthesised PAD inhibitor F-amidine 

(Luo et al 2006). 

Due to the limited information regarding the safety of Cl-amidine for use in humans 

much of the in vivo research looking at the impact of Cl-amidine on NETosis and disease 

severity is currently based on murine models. However, the results of these studies 

suggest that the molecule may offer potential therapeutic benefits as an anti-

inflammatory treatment and may reduce the severity of several diseases. Examples of 

this include results showing Cl-amidine promotes wound healing in diabetic ulcers 

(Fadini et al 2016) as well as reduced severity of ulcerative colitis and arthritis 

(Chumanevich et al 2011, Willis et al 2011). 

Prior studies suggest that in addition to inhibiting PAD activity, Cl-amidine also inhibits 

NETosis (Lewis et al 2015), however there are relatively little data evaluating the 

molecules impact on other aspects of neutrophil biology (e.g. phagocytosis, superoxide 

production, cytokine secretion). The published data suggests Cl-amidine has anti-

inflammatory properties in mouse models (with potential for therapeutic use) but may 

have an underlying impact on several key neutrophilic functions. It is possible Cl-amidine 

may alter processes that play an important role in the infection-inflammatory response. 

I therefore obtained data on the effect of Cl-amidine on these aspects of neutrophil 
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function to guide future decision making regarding the potential of Cl-amidine as a 

therapy 

6.1.2 Hypothesis 

PAD inhibitor (Cl-amidine) pre-treatment of healthy volunteer derived peripheral blood 

neutrophils in vitro will significantly decrease PAD activity and NETosis rates.  

Other aspects of neutrophil function (i.e. phagocytosis, superoxide production, longevity 

and CXCL8 secretion) will be significantly impacted by Cl-amidine treatment. 
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6.2 Results 

6.2.1 Establishing a non-toxic concentration of Cl-amidine 

As several of the assays used in the thesis may be impacted by apoptosis/necrosis rates, 

it was first important to establish a concentration of Cl-amidine that would not promote 

neutrophil death within the timeframe that experiments were taking place. Other in 

vitro studies examining the effect of Cl-amidine on NETosis reported using Cl-amidine at 

a concentration of 200µM (Kraaij et al 2018, Knight et al 2013, Li et al 2017), however 

there appears to be no published information on any impact of this concentration of Cl-

amidine on neutrophil viability. 

Three concentrations of Cl-amidine (100µM, 200µM and 300µM) were selected and 

assessed for their impact on neutrophil viability after 5-hour incubation. As shown in 

figure 6.1, of the assessed concentrations only 300µM Cl-amidine was observed to result 

in a statistically significant decrease of 9% in neutrophil viability at 5 hours compared to 

untreated neutrophils. Using these results, 200µM was the selected concentration used 

in all experiments involving Cl-amidine inhibition of neutrophils. 

 

 

Figure 6.1 Cl-amidine concentration on 5-hour viability rates of neutrophils in vitro. 

Neutrophil viability showed no change with 100µM and 200µM Cl-amidine. Incubation with 

300µM Cl-amidine significantly decreased 5-hour viability (n=5 95% CI, ** p < 0.01). 
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6.2.2 Cl-amidine decreases extracellular citrullination activity 

Supernatants from neutrophils incubated with/without Cl-amidine then stimulated with 

PMA, LPS and TNF-α were assessed for PAD activity (Figure 6.2). Stimulation with PMA, 

LPS and TNF-α resulted in a 3.3-fold, 1.8-fold and 1.9-fold increase in supernatant PAD 

activity (measured by commercial Modiquest Research PAD activity assay) compared to 

unstimulated neutrophils. Pre-treatment and incubation of neutrophils with Cl-amidine 

resulted in an observed decrease in PAD activity for all conditions with large decreases 

seen for neutrophils stimulated with PMA (2.02mU PAD activity without Cl-amidine, 

0.68mU PAD activity with Cl-amidine), LPS (1.10mU PAD activity without Cl-amidine, 

0.60mU PAD activity with Cl-amidine) and TNF-α (1.12mU PAD activity without Cl-

amidine, 0.52mU PAD activity with Cl-amidine). The decrease between uninhibited and 

Cl-amidine treated neutrophils was found to be statistically significant for PMA and TNF-

α stimulated neutrophils. This suggests that Cl-amidine significantly inhibits any increase 

in extracellular PAD activity following stimulation. 

 

Figure 6.2 Supernatant PAD activity from stimulated neutrophils incubated with Cl-

amidine. Cl-amidine resulted in decreases in PAD activity for all conditions. PAD activity was 

significantly lower in supernatants from Cl-amidine treated neutrophils stimulated with PMA 

and TNF-α. Despite the large decrease in PAD activity with Cl-amidine seen for LPS 

stimulated neutrophil no significant difference was shown, perhaps explained by the larger 

variation in spread for these results highlighted by the overlapping error bars (n=8 95% CI, * 

p < 0.05, *** p < 0.001) 
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6.2.3 Cl-amidine decreases in vitro NETosis rates in healthy peripheral blood neutrophils 

Immunofluorescent (IF) counts (adherent NETs), NET ELISAs (non-adherent NETs) and 

SYTOX extracellular DNA staining were used to assess NETosis rates in samples 

incubated with and without 200µM Cl-amidine. IF counts of NETs for neutrophils 

stimulated with PMA and LPS showed a statistically significant decrease in the number 

of NETs observed when incubated with Cl-amidine (Figure 6.3). Interestingly, treatment 

with Cl-amidine did not result in a complete reduction of adherent NETs to the levels 

seen in unstimulated neutrophils, instead a decrease in NETosis rates of 14% and 11% 

was observed for PMA and LPS respectively. 

 

Figure 6.3 Cl-amidine on NETosis rates in adherent neutrophils in vitro. Incubation with Cl-

amidine resulted in a decrease in NETosis rates for PMA and LPS stimulated adherent 

neutrophils. Although NETosis was not completely inhibited the decrease was shown to be 

statistically significant (n=8 95% CI, * p < 0.05, ** p < 0.01). 
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NET ELISAs of supernatants obtained from neutrophils stimulated with PMA, LPS, fMLP 

and TNF-α showed a much larger relative decrease in NETosis (Figure 6.4). For all 

conditions (including unstimulated neutrophils) there was a highly significant decrease in 

the arbitrary units (AU) measurements with Cl-amidine, to a nearly undetectable level 

with several results falling below the lower limit of detection (LLD = 0.01AU).  This 

suggests there are significantly fewer NETs present in supernatants from 

unstimulated/stimulated neutrophils incubated with Cl-amidine. 

 

 

 

 

 

Figure 6.4 NET ELISAs of supernatants from stimulated neutrophils treated with Cl-

amidine. The mean AU measurements for each condition decreased significantly when the 

neutrophils were incubated in the presence of Cl-amidine. As AU is determined using a NET 

ELISA, with a biological standard curve known to contain high number of NETs, this suggests 

the levels of non-adherent NETs in each supernatant has decreased significantly following 

incubation with Cl-amidine (n=8 95% CI, *** p < 0.001). 
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Finally, SYTOX staining was used to assess extracellular DNA release as a measure of 

total NETosis (adherent and non-adherent) within given conditions in vitro (Figure 6.5). 

Stimulation with PMA, as expected, resulted in a significant increase in relative 

fluorescence (i.e. fluorescent relative to unstimulated neutrophils), from 100% to 

191.7% (95% CI: 172.3%, 211.1%). Incubation with Cl-amidine alone had no significant 

impact on extracellular DNA release of unstimulated neutrophils. However, incubation 

of PMA stimulated neutrophils with Cl-amidine resulted in significant decrease of 53% in 

comparison to PMA stimulated neutrophil in the absence of Cl-amidine. These results 

suggest that Cl-amidine did result in a significant decrease in extracellular DNA release in 

response to PMA stimulation in vitro.  

 

Figure 6.5 Cl-amidine on extracellular DNA release by PMA stimulated neutrophils in vitro. 

PMA treatment caused a significant increase in SYTOX depended relative fluorescence 

compared to untreated neutrophils. When incubated with Cl-amidine the increase in relative 

fluorescence is less than neutrophil stimulated with PMA alone. The decrease in fluorescence 

between PMA stimulated neutrophils incubated with/without Cl-amidine was found to be 

statistically significant (n=7 95% CI, ** p < 0.01, *** p < 0.001). 

0%

25%

50%

75%

100%

125%

150%

175%

200%

225%

250%

Untreated 200µM Cl-
amidine

50nM PMA 200µM Cl-
amidine +

50nM PMA

Pe
rc

en
ta

ge
 fl

u
o

re
sc

en
ce

(R
el

at
iv

e 
to

 u
n

tr
ea

te
d

 n
eu

tr
o

p
h

ils
)

***
**



118 
 

6.2.4 200µM Cl-amidine has no impact on neutrophil longevity in vitro 

As neutrophils an early responder to inflammation/infection they play a critical role in 

host defence. However, a key feature of neutrophil biology is their lack of proliferation 

capabilities and limited lifespan, which was reflected chapter 4 where only 5% of 

neutrophils remained viable after 24 hours incubated at 37°C in culture medium in vitro. 

This limited lifespan in some manner is a protective mechanism, as it ensures prolonged/ 

excessive neutrophil accumulation in tissues with resolved infection does not occur.  

The work in this chapter has shown Cl-amidine did not impact viability at 5 hours, 

however there is some question if it may impact viability at later timepoints. This may be 

of significance for in vivo use of Cl-amidine as any change in neutrophil longevity could 

have severe implications for the health/survival of the organism receiving the molecule 

(e.g. neutropenia and infection susceptibility or excessive neutrophilic inflammation). 

Neutrophil viability in the presence/absence of Cl-amidine was assessed over a 24-hour 

period with measurements taken every 4 hours. As seen in figure 6.6, there was no clear 

difference in the viability rates at the various timepoints, with no statistically significant 

differences being shown. 

 

 

Figure 6.6 Neutrophil viability over 24-hour period when incubated with Cl-amidine. There 

was no significant difference in neutrophil viability over a 24-hour period (post-isolation) 

when incubated with Cl-amidine (n=3). 
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6.2.5 Superoxide production and phagocytosis decreased following inhibition by Cl-

amidine  

Two key features of broad microbial defence carried out by neutrophils are the 

processes of oxidative burst and phagocytosis. Decreases in function of one or both 

processes can have severe implications in neutrophil microbial responses. To assess the 

oxidative bust response of neutrophils treated with Cl-amidine, superoxide anion release 

was measured by recording absorbance changes due to superoxide dependent 

reduction of cytochrome c in vitro (using Beet-Lambert law to determine the molar 

concentration of superoxide anions released by the neutrophils). 

Neutrophils stimulated with PMA and LPS (both of which activate NADPH oxidase and 

increase superoxide production) had mean superoxide anion concentrations higher than 

unstimulated neutrophils (Figure 6.7), with the increase in response to PMA and LPS 

being statistically significant (p<0.001 and p<0.01 respectively). Treatment with Cl-

amidine resulted in a significant decrease in superoxide anion release for both PMA and 

LPS stimulated neutrophils. This suggests that Cl-amidine does have an inhibitory effect 

on the oxidative burst response in neutrophils. 

 

 

Figure 6.7 Superoxide anion release by stimulated neutrophil incubated with Cl-amidine. 

Stimulation with PMA and LPS resulted in the release of significantly higher quantities of 

superoxide anions (p<0.001 and p<0.01). Significant decreases in superoxide anion were 

recorded in PMA and LPS stimulated neutrophils incubated with Cl-amidine (n=7, * p<0.05). 
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Microscopy counts of neutrophils (fixed and Giemsa stained) that had been incubate 

with and engulfed 2 or more zymosan particles (similar to as done previously by Morris 

et al 2009) allowed analysis of phagocytosis rates following incubation with Cl-amidine 

(figure 6.8). Mean phagocytosis rates in uninhibited neutrophils were 69% (95% CI: 

62.4%, 75.6%) compared to the significantly lower paired results for Cl-amidine treated 

neutrophils which had a mean phagocytosis rate of 58% (95% CI: 50.5%, 65.5%). These 

results suggest that Cl-amidine has some inhibitory effect on phagocytosis rates in 

neutrophils. 

 

 

 

 

Figure 6.8 Phagocytosis rates in uninhibited and Cl-amidine treated neutrophils. 

Phagocytosis rates were assessed by microscopy recording of the number of neutrophils that 

had phagocytosed 2 or more zymosan particles. A significant decrease in mean phagocytosis 

rate of 11% was seen when neutrophils were incubated with 200µM Cl-amidine (n=10, ** p 

< 0.01). 
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6.2.6 CXCL8 secretion inhibited by Cl-amidine  

CXCL8 has long been established as an activator and potent chemoattractant for 

recruiting neutrophils to sites of infection/inflammation. As neutrophils are also a source 

of CXCL8 when activated, CXCL8 secretion by neutrophils is likely an important factor in 

essential neutrophil responses to infections. CXCL8 concentrations in supernatants from 

stimulated neutrophils were confirmed using ELISA and compared to paired values 

obtained from neutrophils incubated with Cl-amidine. 

Figure 6.9 shows the mean CXCL8 concentrations in collected neutrophil supernatants. 

Stimulation with PMA, LPS and fMLP resulted in a highly significant (p < 0.001 for PMA, 

LPS and fMLP) increase in CXCL8 secretion compared to unstimulated neutrophils 

(similar to as shown in chapter 4.2.3). The mean supernatant CXCL8 concentrations for 

Cl-amidine inhibited neutrophils were lower than uninhibited neutrophils in all 

conditions, however only PMA stimulated neutrophils showed a significant decrease in 

supernatant CXCL8 concentration when inhibited by Cl-amidine. This suggests Cl-

amidine has an impact on CXCL8 secretion by neutrophils following stimulation. 
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Figure 6.9 CXCL8 secretion by stimulated neutrophils inhibited by Cl-amidine. 

CXCL8secretion was significantly higher when neutrophils were stimulated by PMA, 

LPS and fMLP (p < 0.001 for all stimuli). Cl-amidine resulted in a decrease in CXCL8 

secretion by neutrophils for all condition, however only PMA stimulated neutrophils 

showed a significant decrease in CXCL8 secretion in response to Cl-amidine (n=4, *** p 

< 0.001). 

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Untreated 50nM PMA 1µg/ml LPS 100nM Fmlp

Su
p

e
rn

at
an

t 
IL

-8
 (

p
g

/m
l)

 

Uninhibited 200µM Cl-amidine

***

100nM fMLP

Su
p

er
n

at
an

t C
XC

L8
 (

p
g/

m
l)



123 
 

6.2.7 Summary 

Cl-amidine treatment significantly reduced extracellular PAD activity in response to all 

stimuli. NETosis assays all suggested a decrease in NET formation when neutrophils were 

incubated with Cl-amidine, which is expected given the suggested role of citrullination in 

NETosis. Assays of neutrophil function effected by Cl-amidine showed no difference in 

long term (24-hour) viability in vitro for neutrophils, however there was some evidence 

that superoxide anion release, phagocytosis rates and CXCL8 secretion were inhibited by 

Cl-amidine. 
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6.3 Discussion 

6.3.1 PAD inhibition on extracellular citrullination 

Prior studies examining Cl-amidine and biological citrullination have used measurements 

such as IF staining for citrullinated histone to measure intracellular citrullination activity 

(Li et al 2017, Kan et al 2012), this thesis have included assessing PAD activity in the 

extracellular environment. This approach was selected as the results from a previous 

chapter (Chapter 4) had shown that stimulated neutrophil supernatants had higher 

levels of PAD activity, with an interpretation of this result being that activated 

neutrophils in vivo may create a pro-citrullination microenvironment over chronic 

periods of disease. Whilst methods such as IF staining for citrullinated histones or 

proteomic analysis would provide insight into the intracellular environment of Cl-

amidine treated neutrophils it was deemed more important to evaluate the impact of Cl-

amidine on neutrophils ability to create a promote extracellular environment, which is 

arguably likely to be a greater contributor to the development of neo-antigens and the 

onset of autoimmunity. 

PAD activity was observed to significantly decrease in two conditions (PMA and TNF-α) 

when neutrophils were incubated with Cl-amidine. All conditions treated with Cl-

amidine appeared to show a supernatant PAD activity close to that of unstimulated 

neutrophils (i.e. 0.5mU). Why PAD activity was not completely inhibited is unclear. One 

potential explanation is that Cl-amidine has different selectivity for the PAD enzymes. 

Data provided by the manufacturer suggest an IC50 value of 0.8, 6.2 and 5.9µM for 

PAD1,3 and 4 (no data available on value for PAD2), meaning the remaining PAD activity 

in supernatants detected in Cl-amidine treated neutrophils may be a result of a PAD 

enzyme that Cl-amidine has lower potency towards (compared to the one responsible 

for the increase in citrullination seen upon stimulation). Despite this, overall the data 

herein suggests that Cl-amidine can successfully inhibit PAD enzyme activity in an 

extracellular environment.  

6.3.2 PAD inhibition on NETosis 

A significant decrease in extracellular DNA release (SYTOX assay) in response to PMA 

was observed when neutrophils were inhibited by Cl-amidine, suggesting that Cl-

amidine was downregulating NETosis. This matches the results of Fadini et al (2016) who 
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showed a significant decrease in extracellular DNA release in murine neutrophils treated 

with Cl-amidine. Although there were some differences between the results of this 

chapter and Fadini et al, which showed a larger decrease in PMA induced extracellular 

DNA release following pre-treatment with Cl-amidine, this is easily explainable by 

differences in experiment format (e.g. concentration of SYTOX used) and the use of 

human neutrophils in comparison to mouse derived neutrophils. Whilst the results may 

be interpreted as demonstration that Cl-amidine effects NETosis rates in vitro the low 

specificity of the assay (i.e. inability to establish NETosis from other cell death processes) 

must be considered. 

Results from adherent NET counts (IF staining) and semi-quantification of free NETs in 

supernatant (NET ELISA) both supported the conclusion that NETosis rates significantly 

decrease in response to Cl-amidine. NET IF staining showed a significant decrease in the 

number of adherent NETs detected for PMA and LPS stimulated neutrophils when 

incubated with Cl-amidine. Other published work quantifying NETosis rates report a 

much larger decrease, to levels indicating almost no NETs are present (Kusonoki et al 

2016, Braster et al 2016). However, it is important to note key differences between the 

research that may explain this difference. For example, Braster et al used a 

concentration of Cl-amidine 5-fold higher than that used in this work, whilst the 

methodology of Kusonoki et al featured several distinct differences including; 

stimulation with 20nM concentration of PMA (as opposed to 50nM), using only 

citrullinated histone H3 as a staining target for IF microscopy and using the total number 

of NETs counted for analysis (rather than proportions).  

The lack of complete inhibition of NETosis seen in the IF staining counts could be 

explained by dosing or that Cl-amidine only partially inhibited intracellular histone 

citrullination, therefore resulting in partial inhibition of NETosis. The results for 

extracellular PAD activity following Cl-amidine treatment (i.e. significant decrease but 

not complete inhibition) appear to support this explanation for incomplete inhibition of 

NETosis. It can be expected that intracellular PAD activity would be of greater difficulty 

for Cl-amidine to effectively inhibit than extracellular PAD activity. Therefore, if 

extracellular PAD activity also showed incomplete inhibition following PAD activity it is 
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arguable that intracellular histone citrullination would also be expected to show partial 

inhibition by Cl-amidine. 

The NET ELISA results indicate that supernatants of neutrophils treated with Cl-amidine, 

in all stimulatory conditions (e.g. unstimulated, PMA, LPS), showed a significant decrease 

in the relative number of NETs detected by the assay. In contrast to the results obtained 

for IF staining counts of adherent NETs, the results from the NET ELISA suggest the 

number of supernatant NETs from stimulated neutrophils inhibited by Cl-amidine was 

even lower than that of unstimulated neutrophil supernatants. This could suggest that 

Cl-amidine is having a far greater inhibitory impact on NETosis rates following 

stimulation than predicted in the IF staining results, however as the NET ELISA is a semi-

quantified measure (i.e. values relating to a biological standard known to contain high 

amounts of NETs) this decrease in NETosis rate cannot be used to establish the extent to 

which the number of free non-adherent NETs has decreased.   

Overall the results obtained using the separate methodologies for assessing NETosis 

rates collectively suggest that NET formation in vitro is significantly inhibited by Cl-

amidine treatment. 

 

6.3.3 Neutrophil function linked to citrullination 

As Cl-amidine has reported anti-inflammatory properties in vivo, the impact of Cl-

amidine on selected aspects of neutrophil biology was assessed. There was no difference 

in viability between uninhibited and Cl-amidine treated neutrophils across a 24-hour 

period in vitro. A criticism of these results may be that neutrophil lifespan in circulation 

in vivo may be extremely different. The subject of in vivo half life itself is a debated 

matter with key pieces of the literature claiming a circulating half-life of 8-10 hours and 

some papers proposing a neutrophils life span of 5.4 days in circulation (Pillay et al 2010, 

Tofts et al 2011). The separation between in vivo and in vitro conditions does present 

many complications to result interpretations in neutrophil research. However, from the 

results obtained in this thesis we can currently conclude there is no clear difference in 

lifespan in vitro for neutrophil incubated with 200µM Cl-amidine  
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There was a significant increase in superoxide anion release by neutrophils stimulated 

with PMA and LPS. These results (in regard to unstimulated and LPS stimulated 

neutrophils) showed great similarity to the values reported in previously published work 

from our lab group that used the same methodology, supporting the accuracy of the 

results obtained (Ruchaud-Sparagano et al 2014). Treatment with Cl-amidine resulted in 

a significant decrease in the concentration of superoxide anion release by neutrophils 

when stimulated with PMA and LPS, suggesting that inhibition of PAD enzymes has some 

effect on the NADPH oxidase pathway. Publications on superoxide in relation to PAD 

function and/or NETosis are largely focused on reporting NADPH oxidase activation (and 

subsequent superoxide formation/activity) as being a requirement for the activation of 

PAD and/or the onset of NETosis (Remijsen et al 2011, Rohrbach et al 2012).  

Currently the only similar published data is that detailed in an abstract presented at the 

105th meeting of the American Association for Cancer Research (2014), which describes 

a finding that inflammatory cells produced less reactive oxygen species in response to Cl-

amidine (Witalison et al 2014). Whilst the value of this information is largely limited (as 

no information is available on precise results or methodology), the notion that PAD 

inhibition has some impact on superoxide activity is an interesting one. This would have 

two implications; firstly, bacterial killing may be impaired by Cl-amidine (suggesting 

potential issues with therapeutic use) and secondly there may be some form of positive 

feedback control loop for PAD and superoxide, i.e. superoxide activity results in 

activation of PAD which in some way promotes further formation of superoxide. 

However, there is no current evidence demonstrating this is the case or how such a 

mechanism may potentially function. 

Neutrophil phagocytosis also appeared to be inhibited by Cl-amidine. A relationship 

between PAD activity and phagocytosis has not been previously described. However, 

this could be explained by Cl-amidine disrupting “normal” PAD mediated citrullination of 

phagocytosis relevant proteins within the cell (e.g. cytoskeletal proteins) which impedes 

function. It has been shown that (in rheumatoid arthritis patients) PAD enzymes are 

capable of citrullinating cytoskeletal related proteins such as vimentin and β-actin (van 

Beers et al 2012) and that excessive citrullination of vimentin in macrophages is 

reported to disrupt vimentin polymerisation and have a severe impact on cytoskeletal 
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function (Hojo-Nakashima et al 2009). Furthermore, citrullination of intermediate 

filaments has been reported to be a physiological response to retinal trauma in mouse 

models (Wizeman et al 2016), showing PAD can be upregulated to alter cellular 

citrullination under certain circumstances. Whether citrullination plays any role in 

cytoskeletal regulation and phagocytosis in healthy functional neutrophils however is 

currently unknown,  

Similar to superoxide, a decrease in phagocytic ability of neutrophils would have severe 

implications due to the critical importance of phagocytosis as an anti-microbial defence 

mechanism. In the current data the mean phagocytosis rate of Cl-amidine treated 

neutrophils was 55% (95% CI; 47.5%, 62.5%), 14% lower than uninhibited neutrophils. In 

their 2009 paper examining phagocytosis rates (using the same zymosan methodology) 

in patients with suspected ventilator associated pneumonia (VAP), Morris et al 

demonstrated that patient peripheral blood neutrophils had average phagocytosis rates 

lower than healthy (with the majority being <50%). Whilst direct comparisons between 

these results and the Morris results cannot be made (e.g. difference in age, health etc.), 

our results do suggest that 200µM Cl-amidine reduced peripheral blood phagocytosis 

rates in healthy volunteer derived neutrophils to values similar in severely ill VAP 

patients.  

In addition to the possible inhibition of superoxide anion release and phagocytosis by Cl-

amidine, CXCL8 secretion also appeared inhibited in response to Cl-amidine. Whilst 

decreases in mean CXCL8 supernatant concentration was observed for all conditions 

only PMA showed a significant decrease in CXCL8 secretion when treated with Cl-

amidine. This is likely attributable to the relatively low sample size (n=4) when 

considering the spread of the data visible in figure 6.9. Regardless of this the results 

show that Cl-amidine is capable of inhibiting CXCL8 secretion from neutrophils upon 

stimulation, which could potentially in vivo reduce the ability of neutrophils to promote 

migration of other neutrophils to sites of infection/inflammation. Relatively little 

published information is available on the impact of PAD inhibition of cytokine secretion 

by neutrophils, however this result suggests that Cl-amidine (and by extension PAD 

enzymes) may have wide implications on cellular signalling. 
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The results for assessing neutrophil function in response to Cl-amidine inhibition suggest 

that inhibited neutrophils may have reduced superoxide anion release, phagocytic 

capacity and CXCL8 secretion (and potentially the secretion of other cytokines). Whilst 

several of these functions are central to neutrophil anti-microbial defence, future work 

would benefit from assessing bacterial killing rate by Cl-amidine treated neutrophils in 

vitro. 

Some of these inhibitory effects of Cl-amidine on neutrophil function may in part explain 

results from in vivo animal studies showing improved survival in inflammatory disease 

models (e.g. diabetic limb ulcers and ulcerative colitis), however this raises concern over 

potential increased risk of severe/fatal microbial infections. This is somewhat refuted by 

a paper published in 2016 by Zhao et al, which demonstrated increased survival rates in 

mouse models of sepsis when administered Cl-amidine, suggesting no severe 

susceptibility risk. The increase in survival of mice in this paper was attributed to the 

reduction in pro-inflammatory cytokine secretion and a reported increase in circulating 

monocytes following Cl-amidine administration, which aided in resolving the systemic 

infection and promoting survival. 

Collectively the available literature surrounding Cl-amidine and the work in this chapter 

highlight that Cl-amidine has a wide range of effects on neutrophil function, which may 

extend to other cell types within an organism. To address the questions surrounding the 

impact of Cl-amidine on individual cells and at a whole organism level, further research 

is required to guide potential future clinical trailing of Cl-amidine. 

 

6.3.4 Conclusion 

In conclusion Cl-amidine significantly inhibited extracellular citrullination and NETosis 

rates in vitro suggesting the molecule may prevent the formation of a pro-citrullination 

environment and the uncontrolled release of neutrophil cytoplasmic contents. 

Neutrophil functional assay results suggest that Cl-amidine had inhibitory effects on 

superoxide anion release, phagocytosis and CXCL8 secretion. Whilst this may explain the 

observed anti-inflammatory effects of Cl-amidine in published in vivo work further work 
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is needed to understand the broad effects of Cl-amidine (and PAD activity) on cell, tissue 

and whole organism function.  
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Chapter 7:  Differences in citrullination, NETosis and neutrophil function in the 

bronchiectasis patient cohort 

 

7.1 Introduction 

7.1.1 Overview 

The previous chapters have indicated increased neutrophil derived citrullination and 

NETosis occurs in response to bronchiectasis (BR) relevant stimuli, which may explain 

why BR may in some cases lead to an individual developing RA later in life (i.e. BROS 

patients). However, a question raised by these results is why only 3-5% of the BR patient 

patients’ cohort develop rheumatoid arthritis? (Solanki et al 1992, Pasteur et al 2000)  

It is possible that some BR patients have intrinsic differences which results in their 

neutrophils being more susceptible to undergoing NETosis and promoting citrullination 

in response to BR pathophysiology. Over time this would lead to the generation of 

higher quantities (and possible qualitative differences) of citrullinated self-peptide which 

may initiate an adaptive immune response and contribute to the onset of rheumatoid 

arthritis in some patients. 

Given the lack of an appropriate animal model to study the impact of BR on NETosis and 

citrullination the best method to assess whether citrullination/NETosis is elevated in 

BROS patients would likely involve an appropriately powered pilot study. With interest 

in citrullination/NETosis increasing, owing partly to several studies identifying the 

phenomena as potential biomarkers and therapeutic targets for a range of diseases 

(Manzenreiter et al 2012, Obermayer et al 2014, György et al 2006), there may be 

potential soon for a pilot study of this kind to be carried out. However, due to a lack of 

existing data on NETosis, citrullination rates and general neutrophil function in the BR 

and BROS groups there is insufficient information available to power and inform the 

development of a methodology for such a pilot study. 

The work presented in this chapter aimed to carry out a feasibility study to produce 

preliminary data on NETosis/citrullination responses by BR and BROS patient peripheral 

blood neutrophils in addition to assessing other aspects of neutrophil function (i.e. in 

vitro lifespan, CXCL8 secretion superoxide, phagocytosis rates) in these groups.  
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Whilst it would be arguably of greater relevance to study NETosis/citrullination 

responses in pulmonary neutrophils obtained from BR and BROS patients there are a 

number of clinical and technical difficulties in this approach. Therefore the responses of 

peripheral blood neutrophils were assessed (as a more pragmatic approach) before 

giving consideration to assessing these phenomena in airway sampled neutrophils. 

 

7.1.2 Hypothesis 

Peripheral blood neutrophils from BROS patients will show indications of higher levels of 

NETosis and citrullination than neutrophils from BR patients without comorbid 

rheumatoid arthritis. 
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7.2 Results 

7.2.1 Patient population demographics 

Initially the study was planned to involve age matched healthy volunteers and patients 

diagnosed with BR (including “BR only” diagnosis and BROS diagnosis) or RA. However, 

due to time constraints only a limited number of BR and BROS patients were recruited 

for use in the study. Although age matched healthy volunteers were not obtained for 

this study, samples/results obtained from healthy volunteers as part of a separate study 

(used in prior results chapters) were available to act as comparators to patient 

population results in this chapter. As these healthy volunteers were not age matched 

(ranging from 18-55 years of age) to the BR patients recruited, age differences between 

healthy volunteer results and BR patient results must be considered in interpretation of 

all results 

A total of 15 bronchiectasis patients consented to take part in the study, with 2 patients 

being excluded from taking part due to failure to obtain peripheral blood. Samples were 

collected and processed blinded to disease category until all lab data relating to the 

samples was collected. Clinical data recorded by research staff was used to establish the 

demographics of the BR and BROS patient subgroups within the recruited cohort (table 

7.1). The BR population had a mean age of 62.7 (SEM: 4.8) years of age at the time of 

recruitment, with the BROS having a similar mean age of 65.3 (SEM: 6.4). All other key 

clinical characteristics (including BSI) for the two patient groups showed a great deal of 

overlap, with the only distinct difference being in gender distribution. 

Additional information was gathered on other variables which may impact patient 

results including patient comorbidities and colonisation status (described on an 

individual patient basis in table 7.2). As can be seen in the table the majority of the BR 

subgroup presented without any comorbidities (with only one patient presenting with 

COPD) and are classified as idiopathic bronchiectasis patients. In relation to colonisation 

status there also appears to be a difference between the BR and BROS subgroup, where 

none of the BROS patients were positive for colonisation status whereas there are two 

individual cases of colonisation by E. coli and H. influenzae in the BR patient subgroup.  
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In addition to the information on colonisation status, information on individual 

participant medication usage was also recorded to better characterise differences in 

treatments received between the groups (see table 7.3). This included current antibiotic 

therapies as well as current and recent (<18 months) treatment with RA targeting 

therapeutics and steroidal anti-inflammatory medication. No patient in either subgroup 

was reported as having received leflunomide, methotrexate and hydroxychloroquine, 

however some patients in both groups were reported as having received other 

medications including: nebulised antibiotics, long term macrolide therapy, rituximab and 

prednisolone. 

In summary, the two groups appear to be matched on several key demographics 

however some differences were observed in gender distribution, colonisation status and 

medication usage within the subgroups. As this work was relatively small in scale (i.e. 

aiming to establish preliminary date) these differences are not currently of great 

concern in the context of the work. However future work building on this research 

should take note of potential differences in these individual variables between groups. 

Table 7.1 Demographic information for bronchiectasis and BROS patients recruited for 

study. Information on a variety of clinical characteristics were recorded by research staff 

during recruitment of patients to take part in the study (± = SEM, A n=8 , B n=2) 

Characteristics 
Bronchiectasis patients 

(n=10) 
BROS patients (n=3) 

Age at consent 62.7 ± 4.8 65.3 ± 6.4 

Percentage male 56% 0% 

BMI 27.1 ± 1.2 23.2 ± 0.1 

BSI Scores 7.4 ± 1.2A 5.5 ± 0.4B 

Number of exacerbations in 
the last 12 months 

2.9 ± 0.6 2 ± 0.00 

FEV1 2.1 ± 0.2 2.2 ± 0.2 

FEV1 % Predicted 75.7 ± 6.7 96.1 ± 18.6 

SGRQ - Symptoms 58.2 ± 8.5 34.0 ± 13.5 

SGRQ - Activity 40.6 ± 10.5 60.5 ± 15.6 

SGRQ - Impacts 33.4 ± 8.6 27.5 ± 6.1 

SGRQ - Total 39.7 ± 8.6 39.1 ± 8.8 
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Table 7.2 Demographic information and colonisation status for individual patients within 

the bronchiectasis and BROS subgroups. The demographic info (e.g. age, BMI, gender) for 

each individual participant in the two disease subgroup was documented in addition to the 

followingred for each individual including: BSI scores, number of exacerbations in the past 

year, whether participants are diagnosed with osteoporosis and the colonisation status of 

participants (in cases where the patient was able to produce sputum for analysis). 

 

Bronchiectasis subgroup

Study 
Number

BMI Comorbidities Age Male or Female BSI Known osteoporosis? 
No. exacerbations in last 

12 months
Colonisation status

01/003 20.8 None 71 M 9 No 4 E. coli

01/005 29.7 None 80 F 10 Yes 2 Negative

01/006 32.2 None 50 F 5 No 3 Negative

01/009 22.1 None 71 M 8 No 2 H. influenzae

01/010 28.5 None 79 M 8 Yes 0 Negative

01/011 22.8 COPD 63 F 15 No 4 Negative

01/012 29.6 None 60 F 5 No 3 N/A (Difficulty expectorating)

01/013 27.1 None 66 M NA Yes 7 N/A (Difficulty expectorating)

01/014 26.1 None 38 M 4 No 3 Negative

01/015 27.6 None 49 F 3 No 2 Negative

BROS subgroup

Study 
Number

BMI Comorbidities Age Male or Female BSI Known osteoporosis? 
No. exacerbations in last 

12 months
Colonisation status

01/001 23.4 RA 64 F NA No 2 N/A (Difficulty expectorating)

01/004 22.9 RA 55 F 6 No 2 Negative

01/008 23.2 RA 77 F 5 Yes 2 Negative

Table 7.3 Reported medication usage by patients in the Bronchiectasis and BROS 

subgroups. Information was gathered for each participant on their current and/or recent 

(within past 18 months of enrolment) prescribed medications. These covered a range of 

standard of care medications used in the treatment of bronchiectasis and rheumatoid 

arthritis (i.e. antibiotics, RA therapies, steroidal anti-inflammatories). As expected there are 

some differences in medications used between the groups, most notable for rituximab which 

can be expected given its use as an RA therapeutic.  

 

Bronchiectasis subgroup

Study 
Number

Current therapies Current or Recent (past 18 months)  therapies 

Nebulised 
antibiotic? 

Long term 
macrolide?

Leflunomide? Methotrexate? Rituximab? Hydroxychloroquine?
Long term 

prednisolone?

01/003 No Yes No No No No No

01/005 No No No No No No No

01/006 No No No No No No No

01/009 No No No No No No No

01/010 No No No No No No No

01/011 No Yes No No No No No

01/012 No No No No No No No

01/013 Yes Yes No No No No No

01/014 No No No No No No No

01/015 No No No No No No No

BROS subgroup

Study 
Number

Current therapies Current or Recent (past 18 months)  therapies 

Nebulised 
antibiotic? 

Long term 
macrolide?

Leflunomide? Methotrexate? Rituximab? Hydroxychloroquine?
Long term 

prednisolone?

01/001 No No No No Yes No No

01/004 No Yes No No Yes No No

01/008 No No No No No No Yes
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7.2.2 Confirming purity of patient neutrophil isolations 

Isolation of peripheral blood neutrophils from BR patient whole blood samples was 

carried out using the same methodology used to isolate neutrophils from healthy 

volunteer whole blood by percoll gradient separation. Purity of neutrophils isolations of 

BR patient samples was assessed alongside a healthy parallel sample isolated on the 

same day by nuclear morphology counts (figure 7.1).  Healthy volunteer blood preps 

were shown to have a mean neutrophil purity of 94.9% (95% CI: 93.8%, 96%), similarly 

BR patient blood preps had a mean purity of 93.8% (95% CI: 92.9%, 94.7%). There was 

no significant difference in purity values.  

 

 

 

 

 

Figure 7.1 Purity of neutrophil isolations from whole blood of healthy volunteer and 

bronchiectasis patient samples. Purity of neutrophil isolations were seen to be similar in 

both healthy volunteer and bronchiectasis patient samples. With the mean purity of both 

results being above the arbitrary cut off point for work involving the study of neutrophils (i.e. 

85% purity). 
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7.2.3 PAD activity in Bronchiectasis patients 

Similar to results obtained from healthy volunteers, stimulation of BR derived peripheral 

blood neutrophils resulted in a statistically significant increase in supernatant PAD 

activity for PMA (p<0.001), LPS (p<0.001) and P. aeruginosa WCLs (p<0.01), however BR 

patient neutrophils were also observed to have a significant increase in supernatant PAD 

activity for H. influenzae WCLs stimulated neutrophils (p<0.05). In comparison to 

supernatant PAD activity for stimulated healthy volunteer neutrophils (previously 

presented in chapter 4), mean neutrophils supernatant PAD activity in bronchiectasis 

patient derived samples was observed to be higher following stimulation with PMA, LPS, 

P. aeruginosa WCLs and H. influenzae (figure 7.2). However only H. influenzae 

stimulated BR neutrophils were suggested to have significantly higher supernatant PAD 

activity than healthy volunteer neutrophils. 

Comparison of BR and BROS patient groups showed no significant difference in PAD 

activity in any of the assayed conditions, with a large amount of overlap seen in the 

error bars for the results obtained from the two patient groups (figure 7.3). Collectively 

these results suggest extracellular PAD activity increases in BR patient peripheral blood 

neutrophils following stimulation with relevant stimuli (as was shown in healthy 

neutrophil responses to the same stimuli). However, increased citrullination in response 

to H. influenzae WCLs was only seen in BR patient neutrophils. Differences in neutrophils 

extracellular PAD activity between patients diagnosed with BR and BROS patients was 

minimal with no significant difference being shown between the two groups in response 

to any of the tested stimuli. 
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Figure 7.2 Mean supernatant PAD activity in neutrophils from healthy volunteers and 

bronchiectasis patients. Supernatant PAD activity was assessed in healthy neutrophils either 

unstimulated (n=16) or incubated with PMA (n=16), LPS (n=16), TNF-α (n=10), WCL P. 

aeruginosa (n=16) and WCL H. influenzae (n=6). Supernatant PAD activity in response to the 

same stimuli was assessed for bronchiectasis patient neutrophils (all conditions n=13). 

Comparing supernatant PAD activity in healthy and bronchiectasis derived neutrophils 

suggested only H. influenzae resulted in a significant difference between the two groups (* p 

< 0.05, +/- 95% CI). 
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Figure 7.3 Mean supernatant PAD activity in neutrophils from bronchiectasis and BROS 

patients. Mean supernatant PAD activity was reportedly higher in BROS patient neutrophils 

(n=3) in comparison to bronchiectasis patient neutrophils (n=10), however none of these 

differences were shown to be statistically significant (+/- 95% CI). 

0.0

0.4

0.8

1.2

1.6

2.0

2.4

2.8

3.2

3.6

4.0

4.4

4.8
Su

p
e

rn
at

an
t 

PA
D

 e
n

zy
m

e
 a

ct
iv

it
y 

(m
U

)

Bronchiectasis patient BROS patient



140 
 

 

7.2.4 Extracellular DNA release in Bronchiectasis patients 

Extracellular DNA release (determined by SYTOX dependent fluorescence) in patient 

samples significantly increased following stimulation with PMA and LPS (p<0.001). No 

significant increase in DNA release (in comparison to unstimulated neutrophils) was 

observed following stimulation with fMLP and TNF-α. Mean DNA release in all 

stimulatory conditions for patient derived neutrophils showed similar levels of relative 

extracellular DNA release in comparison to healthy volunteer derived neutrophils (figure 

7.4), suggesting no difference in NETosis rates between healthy volunteers and patient 

peripheral blood neutrophils. Comparison of extracellular DNA release in BR patients 

and the BROS patient subgroup showed no difference in DNA release in all conditions, 

with a large degree of overlap being seen in the 95% confidence intervals for the two 

groups (figure 7.5). 
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Figure 7.4 Extracellular DNA release in healthy volunteer and bronchiectasis patient 

peripheral blood neutrophil samples. Bronchiectasis patient peripheral blood neutrophils 

(n=13) showed significant increases in extracellular DNA release following stimulation with 

PMA and LPS. No significant differences were found between patient and healthy volunteer 

(n=6) neutrophil DNA release for any assayed conditions (+/- 95% CI). 
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Figure 7.5 Extracellular DNA release in neutrophils obtained from Bronchiectasis and BROS 

patients. Bronchiectasis (n=10) and BROS (n=3) patient neutrophils showed similar levels of 

extracellular DNA release in response to stimulation with no significant differences being 

detected (+/- 95% CI). 
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7.2.5 Supernatant NET concentration in bronchiectasis samples 

Relative NET concentration in culture supernatants was assessed for all collected 

bronchiectasis patient samples and healthy volunteer comparators. Patient neutrophil 

supernatants were shown to have significantly higher levels of NETs in supernatant 

following stimulation with; PMA (p<0.001), LPS (p<0.001), TNF-α (p<0.05), P. aeruginosa 

WCLs (p<0.001) and H. influenzae WCLs (p<0.001). In comparison to healthy volunteer 

results, patient supernatant samples were shown to have a significantly lower number 

of NETs when unstimulated (p<0.001) or stimulated with fMLP (p<0.001) and TNF-α 

(p<0.01) (figure 7.6).  

BR and BROS subgroups showed similar levels of NETs present in supernatant samples 

for the majority of stimulatory conditions, however BROS patients were observed to 

have significantly higher amounts of supernatant NETs following stimulation with fMLP 

(p<0.05) and H. influenzae WCLs (p<0.05) (figure 7.7). Which suggests that NET 

formation may be elevated in BROS patient neutrophils in response to certain stimuli. 
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Figure 7.6 Supernatant NET ELISA results for healthy volunteer and bronchiectasis patient 

neutrophils. Healthy volunteer neutrophil supernatants (n=16) had similar relative amounts 

of non-adherent NETs to samples from recruited bronchiectasis samples (n=13) in several 

conditions. However significant differences were seen in the two groups for samples 

obtained from unstimulated, fMLP stimulated and TNF-α stimulated neutrophils (p < 0.001) 

(+/- 95% CI). 
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Figure 7.7 Supernatant NET ELISA results for Bronchiectasis and BROS patient neutrophils. 

BROS patient neutrophil supernatants (n=3) had a significantly higher amount of NETs than 

BR patient samples (n=10) following stimulation with fMLP and WCLs of H. influenzae (p < 

0.05) (+/- 95% CI). 
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7.2.6 Adherent NETosis rates in bronchiectasis patient samples 

IF counts were used to determine the proportion of adherent neutrophils that had fully 

underwent NETosis. Patient neutrophils showed similar results to NET counts for healthy 

volunteer neutrophils, with all stimulatory conditions (excluding fMLP) resulting in a 

highly significant increase (p < 0.001) in the number of adherent NETs formed in 

comparison to unstimulated neutrophils. No significant difference was found in the 

NETosis rates between healthy and patient neutrophils for all stimulatory conditions 

(figure 7.8). 

Adherent NET formation rate results for BR and BROS patient subgroups showed no 

significant differences between the two groups (figure 7.9). This is reflected by the 

similar mean values determined for the two groups and large overlapping 95% 

confidence intervals in all conditions. Contradictory to the supernatant NET results for 

patient samples, this suggests no difference in NET formation between BR and BROS 

patient subgroups. 
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Figure 7.8 Adherent NET formation in healthy volunteer and Bronchiectasis patient 

samples. NETosis rates were significantly (p<0.001) higher in BR patient samples (n=13) 

following stimulation with PMA, LPS, TNF-α, P. aeruginosa and H. influenzae WCLs. No 

difference was observed in NETosis rates for healthy (n=6) and bronchiectasis peripheral 

blood neutrophil samples (+/- 95% CI). 
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Figure 7.9 Adherent NET formation in Bronchiectasis and BROS patient subgroups. No 

significant difference was observed in NETosis rates for BR (n=10) and BROS patient (n=3) 

derived peripheral blood neutrophils (+/- 95% CI).  
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7.2.7 In vitro lifespan differences between healthy and bronchiectasis patient neutrophils 

To investigate neutrophil function in patient peripheral blood neutrophils (in comparison 

to healthy volunteer peripheral blood neutrophils), viability of neutrophils was observed 

at 4-hour timepoints across a 24-hour period during in vitro incubation (as done in 

chapter 5). Although some slight differences were observed between the two groups 

(e.g. 4 and 8-hour BR viability being slightly lower, 16 and 20-hour viability being slightly 

higher), no significant difference in viability was shown between healthy and 

bronchiectasis patient neutrophils at any of the measured timepoints (figure 7.10). 

Which suggests there is no difference in in vitro viability between the two groups. 

 

 

 

 

 

Figure 7.10 Viability of healthy and bronchiectasis peripheral blood neutrophils across a 

24-hour period of in vitro incubation. As expected viability decreased over the 24-hour in 

vitro incubation period for both healthy (n=3) and bronchiectasis patients (n=3). No 

significant difference was observed in viability between the two groups during the 24-hours 

assessment period (+/- 95% CI). 
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7.2.8 CXCL8 secretion by bronchiectasis patient peripheral blood neutrophils 

CXCL8 secretion by bronchiectasis patient neutrophils was significantly higher when 

stimulated by PMA (p<0.001), LPS (p<0.05), TNF-α (p<0.01), P. aeruginosa WCLs (p<0.05) 

and H. influenzae (p<0.05), similar to the trend in the results seen in healthy peripheral 

blood neutrophils. Mean CXCL8 neutrophil supernatant concentration was observed to 

be higher in all conditions for patient derived samples in comparison to healthy 

comparator results (figure 7.11). However, of all the assayed conditions significant 

increases in CXCL8 concentration was only observed in patient neutrophils when left 

unstimulated (p<0.001) or stimulated with TNF-α (p<0.01), P. aeruginosa WCLs (p<0.01) 

and H. influenzae WCLs (p<0.01). This suggests that suggests that CXCL8 secretion is 

elevated in bronchiectasis patient derived peripheral blood neutrophils in comparison to 

healthy peripheral blood neutrophils. 

Comparison of CXCL8 neutrophil supernatant concentrations for BR and BROS patient 

derived samples showed the mean CXCL8 concentration of BROS samples was in most 

conditions lower than that seen in BR patient samples (excluding LPS) (figure 7.12). 

However, none of these differences were shown to be statistically significant. As the 

confidence intervals for all results (excluding unstimulated) were extremely large and 

overlapping (owing to the limited sample size available for the two groups) this cannot 

be used to form accurate predictions on potential differences in CXCL8 secretions 

between the patient subgroups. 
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Figure 7.11 CXCL8 supernatant concertation in stimulated neutrophils obtained from 

healthy volunteers and bronchiectasis patients. BR patient (n=11) CXCL8 supernatant 

concentration was significantly higher neutrophils following stimulation with all conditions 

excluding fMLP (in comparison to unstimulated neutrophils). BR patient neutrophils were 

observed to have significantly higher CXCL8 supernatant concentrations than healthy 

neutrophil samples (n=12) in the following conditions; unstimulated, TNF-α, P. aeruginosa 

WCLs and H. influenzae WCLs (** p < 0.01, *** p < 0.001, +/- 95% CI). 
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Figure 7.12 CXCL8 supernatant concertation in bronchiectasis and BROS patient samples. 

Differences in mean supernatant CXCL8 concentration were observed between 

bronchiectasis (n=8) and BROS (n=3) results, however none of these differences were shown 

to be statistically significant (*** p < 0.001, +/- 95% CI). 
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7.2.9 Superoxide production by patient neutrophils 

As previously shown with healthy volunteer peripheral blood neutrophils (chapter 4), 

bronchiectasis neutrophils produced significantly (p<0.001) larger quantities of 

superoxide anions following stimulation with PMA (14.34nM, 95% CI: 12.67, 16.01), LPS 

(8.89nM, 95% CI: 7.31, 10.46) and fMLP (6.06nM, 95% CI: 4.53, 7.58) in comparison to 

unstimulated neutrophils (2.43nM, 95% CI: 1.53, 3.33). Mean superoxide anion release 

for healthy and bronchiectasis patients were similar for all conditions with no results 

showing statistical significance (figure 7.13). Comparison of BR and BROS subgroups 

results showed little difference in mean superoxide anion release across all stimulatory 

conditions with no significant difference being shown (figure 7.14). 

 

 

 

 

 

Figure 7.13 Superoxide production by healthy and bronchiectasis patient neutrophils. All 

stimulatory conditions caused a significant (p<0.001) increase in superoxide production in 

bronchiectasis patient (n=13). Healthy volunteer derived neutrophils (n=8) produced similar 

results with no significant differences between healthy and bronchiectasis samples being 

detected (+/- 95% CI). 
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Figure 7.14 Superoxide production by bronchiectasis and BROS patient neutrophils. 

Superoxide production was similar across all conditions for neutrophils from bronchiectasis 

patients (n=10) and BROS patients (n=3) (+/- 95% CI). 
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7.2.10 Phagocytosis rates in patient neutrophils 

Phagocytosis rates were assessed in neutrophils obtained from healthy volunteers and 

the recruited bronchiectasis patients. In addition, phagocytosis rates in healthy 

volunteers incubated with dexamethasone, a clinically used steroid argued to suppress 

phagocytosis of zymosan particles (Mlambo et al 2003), was also assessed as an 

additional comparator for patient results. Healthy neutrophils had a mean zymosan 

phagocytosis rate of 75.7% (95% CI: 71.5%, 79.9%), 30-minute incubation (pre-

stimulation) with dexamethasone resulted in the mean phagocytosis rate in the same 

healthy volunteer samples decreasing to 61.6% (95% CI: 57.9%, 65.3%).  

BR patient neutrophils has a mean phagocytosis rate of 66.4% (95% CI: 64.0%, 68.8%), 

which was significantly (p<0.001) lower than uninhibited neutrophils healthy neutrophils 

(figure 7.15). Comparison of BR and BROS phagocytosis rates showed similar mean 

values (63.6% and 64.6% respectively) with no statistically significant difference 

between the two being detected (figure 7.16). 
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Figure 7.15 Phagocytosis rates for uninhibited and dexamethasone inhibited healthy 

volunteer neutrophils in comparison to bronchiectasis patient neutrophils. Phagocytosis 

rates in healthy volunteers (n=6) was shown to decrease following treatment with 

dexamethasone (n=6). Rates in patient neutrophils were significantly lower than that of 

uninhibited healthy neutrophils (n=13) (*** p < 0.001, +/- 95% CI). 
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Figure 7.16 Phagocytosis rates for bronchiectasis and BROS patient derived neutrophils. 

Phagocytosis rates for BR (n=10) and BROS (n=3) patient subgroups were highly similar with 

no statistically significant difference between the groups being shown (+/- 95% CI). 
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7.2.11 Summary 

The primary aim of this chapter was to utilise established methodologies and available 

patient samples to establish preliminary data in relation to extracellular citrullination, 

NETosis rates, in vitro lifespan, CXCL8 secretion, superoxide production and phagocytosis 

rates in the BR and BROS patient groups, which has been successful. The produced 

results suggest there may be some potential difference between healthy and 

bronchiectasis peripheral blood neutrophils in relation to citrullination, NETosis, CXCL8 

production and phagocytosis. Data comparing the BR and BROS patient groups predicts 

relatively little differ (excluding one indication of increased NETosis in response to H. 

influenzae WCLs). Due to limitations of this study (i.e. sample size and demographics) 

interpretation of this work becomes difficult.  
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7.3 Discussion 

7.3.1 Comparison of healthy and bronchiectasis peripheral blood neutrophil responses 

Several results obtained suggested differences in neutrophil responses between healthy 

volunteer and BR patient samples. Citrullination rates were largely similar between the 

two groups, with one clear difference being PAD activity in response to H. influenzae 

WCL stimulation where patient neutrophils supernatant PAD activity was significantly 

higher than healthy neutrophil PAD activity rates.  

Results for NETosis rates between the groups were conflicting. Extracellular DNA 

measurements and IF NET results showed no difference in NET formation between 

healthy and patient samples, however measurement of free NETs present in neutrophil 

supernatants (NET ELISA) suggested there were significantly fewer NETs in BR patient 

supernatant for several stimulatory conditions. As the NET ELISA assay is only semi-

quantified and cannot provide an exact measurement of the decrease in the amount of 

NETs present in each sample, and given that two of the three methodologies 

consistently suggested there was no difference in NETosis, with one of these methods 

(IF microscopy) being one of the best-established methods for measuring NETosis, the 

data collectively supports the conclusion that there is no large difference in NET 

formation between healthy and BR patient peripheral blood neutrophils. 

Neutrophil biology was similar in several aspects between the two population samples. 

No clear difference was shown in the 24-hour in vitro neutrophil viability rates, although 

limited sample size (n=3) may have some impact on this result. Similarly, no difference 

was seen in superoxide anion production between healthy and BR peripheral blood 

neutrophils, suggesting this aspect of neutrophil function is unchanged in peripheral 

blood neutrophils in bronchiectasis patients, which is to be expected given the lack of 

published data suggesting otherwise. 

BR peripheral blood neutrophils may have had differences to healthy volunteers in two 

aspects; CXCL8 secretion and phagocytosis rates. BR peripheral blood neutrophil 

secreted significantly greater quantities of CXCL8 than healthy neutrophils following 

stimulation with disease relevant stimuli, with TNF-α induced CXCL8 secretion being 3-

fold higher in BR neutrophils. Although all conditions showed higher levels of CXCL8 
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secretion in BR patient neutrophils, only four conditions (unstimulated, TNF-α, P. 

aeruginosa and H. influenzae) showed a significant difference. This lack of statistical 

significance in other stimulatory conditions may however be attributed to low sample 

size for patient samples which would need to be addressed in further study. 

Phagocytosis rates in BR patient neutrophils was also shown to be significantly lower 

than those seen in healthy volunteers, with the mean phagocytosis rate being near that 

of healthy peripheral blood neutrophils inhibited by dexamethasone. Whilst these 

results present interesting differences between the healthy and BR derived neutrophils, 

there are several important considerations regarding the demographics of the two 

groups in the interpretation of these results. 

The healthy volunteers whose blood was obtained for use in this study were not age-

matched to bronchiectasis patients. As a result, the two groups likely differ greatly in 

mean age and age distribution. The recruited BR patient group has a mean age of 63.3 

years old (95% CI: 56.4, 70.2), with the lowest age recorded being 38 years old. Healthy 

volunteers were recruited to take part in the study providing they were over that age 18 

(with many volunteers coming from the research institute/university). Meaning there is 

likely great difference in the average age between the two groups. This becomes 

problematic in regard to the difference in phagocytosis results between the groups as 

published work has previously suggested neutrophil phagocytic ability decreases as age 

increases (Chiu et al 2011, Wei Li 2013). Therefore, it is possible that this difference may 

be a consequence of age differences between rather than disease state.  

In addition, it is well established that the BR population is highly heterogenous in regard 

to several clinical aspects (ten Hacken 2007). Therefore, the limited sample size of BR 

patients recruited to take part in this work (n=13) means the results should be 

interpreted with caution. However, given this work was carried out as a feasibility study 

with the aim to establish preliminary data to guide further work, rather than 

conclusively establish differences between healthy volunteers and BR patient peripheral 

blood neutrophil responses, these issues of age matching and sample size do not 

undermine the value of the data acquired but instead serve as points for consideration 

in the design of future studies in this field.  
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7.3.2 Bronchiectasis and BROS peripheral blood neutrophils responses 

Comparison of peripheral blood neutrophil responses showed no obvious differences in 

supernatant PAD activity, in vitro viability, CXCL8 secretion, superoxide and phagocytosis 

between the BROS and BR patient samples; the sample sizes however are limited 

meaning no firm conclusions can be made. Whilst NETosis results collected using 

extracellular DNA measurement and IF microscopy assessment methods also suggested 

no difference between the two patient sub-groups, NET ELISA suggested a greater 

number of NETs were present in BROS supernatants following incubation with fMLP or 

H. influenzae WCLs.  

Although the difference in non-adherent supernatant NETs between the BR and BROS 

samples in these conditions was small (35% higher with fMLP, 26% higher with H. 

influenzae WCLs), the detection of a significant increase despite the limited sample size 

of each group (BR = 10, BROS = 3) implies that NET formation may be higher in BROS 

peripheral blood neutrophils. Whilst the extracellular DNA measurement and adherent 

NETs count assay results failed to show any significant difference in NET formation, 

several results from these assays showed some difference in the mean NETosis rates of 

BR and BROS patient samples (with the confidence intervals for these results 

overlapping greatly). Therefore, there may be potential for some difference in NETosis 

rates between the two patient subgroups which may be determined by further study 

using a larger sample size. 

An additional point for consideration when interpreting the BR and BROS results focuses 

on the demographic differences between the two groups. As seen in table 7.1, the 

groups appeared largely similar in most recorded values differing only in gender 

distribution (BR = 56% male, BROS = 0% male), however the groups also differed in 

relation to medication taken by individual patient. BROS patients were reported to be 

currently taking several medications the majority of the BR cohort were not (rituximab, 

prednisolone and long-term macrolide therapy). As some of these medications have 

been suggested to impact neutrophil function (Wolach et al 2010, Trowald-Wigh et al 

1998, Arai et al 2015) it is important to take these variables into consideration during 

interpretation of results (particularly in results relating to general neutrophil function 

e.g. phagocytosis, CXCL8 secretion).  
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7.3.3 Conclusion 

There were several delays in getting ethical approval leading to a shortened recruitment 

period in the final year of the PhD. This led to a limited sample size, potentially making 

the BR/BROS sample population unrepresentative, which make addressing the 

hypothesis of validly establishing any differences in peripheral blood neutrophil 

citrullination, NETosis and neutrophil function between healthy volunteers, BR and BROS 

patients difficult. Therefore, the results of this chapter cannot be used to strongly 

support or dispute the established hypothesis for this chapter. However, given one of 

the central aims of this work was to establish preliminary data in order to guide the 

establishment of larger scale studies on the topic of neutrophil citrullination, NETosis 

and/or function, this chapter can be viewed as made significant progress towards this 

aim. 
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Chapter 8: Discussion & Conclusions 
 

8.1 Bronchiectasis rheumatoid arthritis overlap syndrome, citrullination and NETosis 

overview 

BR and RA have been long recognised to be comorbidities, with a significant minority of 

BR patients proceeding to develop RA (i.e. BROS patients). The comorbidity of two 

diseases is recognised as clinically important given BROS patients showing higher rates 

of mortality than patients with BR alone (De Soyza et al 2017). Despite this clinical 

importance our understanding of why recurring infection/inflammation of the airways 

may lead to the development of autoimmunity is lacking. Despite a large amount of 

research, the exact pathogenesis of RA remains elusive, with many factors (both genetic 

and environmental) likely playing a role in promoting the disease.   

Amongst the many processes proposed to play a role in RA pathogenesis, citrullination 

has been identified as a common clinical feature in most RA patients (i.e. majority of 

patients testing positive for anti-citrullinated peptide antibodies) (Aletaha et al. 2010). It 

is believed that this uncommon modification of self-peptides may lead to a host’s 

adaptive immune system misrecognising citrullinated peptides as foreign and therefore 

contribute to promoting an autoimmune response in RA patients as evidenced by ACPA. 

It is clear that this process is common but not universal in RA as ACPA negative cases 

arise. 

As citrullination is carried out by members of the PAD enzyme family (which are 

expressed by a broad range of human cell types) it is plausible that cells known to 

express these PAD enzymes may play some role in initiating the onset of RA. In both RA 

and BR neutrophils are argued to play an important role in the progression of the 

disease (Lally et al. 2005, Schaaf et al. 2000, Chalmers et al 2017). Importantly 

neutrophils have also been identified as a cell type that expresses PAD enzymes, in 

particular PAD4 which plays a key role in the formation of NETs in response to infection 

and certain molecular triggers (e.g. PMA). 

During the formation of NETs (NETosis), PAD4 migrates to the nucleus of the neutrophil 

where the enzyme citrullinates histones triggering chromatin decondensation. Following 

the breakdown of the nuclear envelope the contents of the neutrophil (including PAD4) 
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are released to the extracellular environment to restrict and possibly kill invading 

pathogens (Abdallah et al 2012). 

Based on these features it is proposed that the chronic inflammatory and infectious 

airway environment in BR leads to the recruitment of neutrophils, which then undergo 

NETosis in response to the diseased airway environment. Over time this leads to the 

pulmonary microenvironment having rates of citrullination of self-peptides and/or the 

citrullination of peptides not typically targeted by PAD enzymes during normal healing 

and repair. Just as neutrophil elastase is thought to “spill over” from normal repair and 

cause damage it is possible that neutrophil derived PAD enzymes similarly cross a 

threshold to become harmful.  In some genetically susceptible individuals the adaptive 

immune response may recognised these citrullinated peptides, which may promote the 

generation of an autoimmune response when combined with other factors (e.g. genetic 

predisposition) leading to the BR patient developing BROS. 

The aims of this body of work largely focused on addressing several topics relating to BR, 

NETosis and BROS patient, including: whether BR relevant stimuli do promote neutrophil 

mediated citrullination and/or NETosis, the role of the two arms of the infection relevant 

LPS signalling pathway in citrullination and/or NETosis, the impact of PAD inhibition on 

citrullination, NETosis and neutrophil function and finally whether there are differences 

in neutrophil responses (citrullination, NETosis, phagocytosis, viability etc) between 

healthy, BR and BROS patients. 

 

8.2 Summary of findings 

8.2.1 NETosis and citrullination increase in response to bronchiectasis relevant stimuli 

Chapter 4 described work investigating the ability of BR relevant stimuli to induce 

NETosis and neutrophil derived citrullination, the following two hypotheses were 

established for this work: 

• Neutrophils stimulated in vitro with disease relevant molecules and bacterial cell 

lysates will show signs of elevated NETosis  

• Neutrophil mediated citrullination will increase following stimulation with BR 

relevant stimuli in comparison to unstimulated neutrophils. 
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These hypotheses were tested by incubating healthy volunteer derived peripheral blood 

neutrophils in vitro with a BR relevant stimuli (e.g. PMA, LPS, WCLs of P. aeruginosa and 

H. influenzae), after which measurements were taken for changes in NETosis rates (using 

immunofluorescent staining of NETs, a NET ELISA assay and extracellular DNA 

measurements) and PAD activity (using an antibody based PAD activity assay). 

The results suggest that in vitro NETosis rates and supernatant PAD activity increased 

following 4-hour incubation with 50nM PMA, 1µg/ml LPS, 10ng/ml TNF-α and 2.5%v/v P. 

aeruginosa WCLs, whereas no significant difference in NETosis or PAD activity was 

observed following stimulation with 100nM fMLP and 2.5%v/v H. influenza WCLs. As P. 

aeruginosa, LPS and TNF-α are common features within the infection prone pro-

inflammatory airway environment in BR, or in the case of PMA activate signalling 

pathways central to neutrophil responses, these results support the hypotheses 

established for this chapter. 

8.2.2 Inhibition of MyD88 and TRIF reduces in vitro NET formation 

Chapter 5 described work addressing whether inhibition of the MyD88 dependent and 

the TRIF dependent arms of the LPS signalling pathway reduced LPS induced NETosis and 

PAD activation, with the hypothesis for this work being: 

• Inhibition of MyD88 function in neutrophils will significantly reduce NETosis rates 

and/or PAD activity, whereas TRIF inhibition will have no impact on either 

feature.  

To test the hypothesis healthy peripheral blood neutrophils were incubated with an 

inhibitor of TRIF or MyD88 (TRIF-pep and MyD88-pep respectively) for 3 hours prior to 

the addition of LPS (final concentration of 1µg/ml) for 4 hours, NETosis rates and PAD 

activity was then measured using the same methods described in chapter 4.  

Although mean supernatant PAD activity was lower in LPS stimulated neutrophils pre-

treated with TRIF-pep and MyD88-pep this decrease was not significant. Significant 

decreases were however observed in extracellular DNA measurements, NET ELISA 

results and immunofluorescent microscopy NET counts for LPS stimulated neutrophils 

pre-treated with TRIF-pep and MyD88-pep (in comparison to uninhibited LPS stimulated 

neutrophils), suggesting inhibition of either TRIF or MyD88 had inhibitory effects on LPS 
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induced NETosis. Therefore whilst TRIF and MyD88 inhibition had no impact on 

supernatant PAD activity, the results for NETosis rates suggest both the TRIF and MyD88 

arm of the LPS pathway are implicated in NETosis, which disputes the hypothesis 

underpinning this body of work. 

8.2.3 Cl-amidine treatment inhibits NETosis, PAD activity and additional neutrophil 

functions 

Chapter 6 details work examining the impact of a PAD inhibitor (Cl-amidine) on healthy 

peripheral blood neutrophil NETosis rates, PAD activity and neutrophil function. Two 

hypotheses were created for this work to address: 

• Pre-treatment of healthy volunteer derived peripheral blood neutrophils in vitro 

with the PAD inhibitor Cl-amidine will significantly decrease PAD activity and 

NETosis rates. 

• Cl-amidine will significantly alter various aspects of neutrophil function (i.e. 

phagocytosis, superoxide production, lifespan and CXCL8 secretion). 

Freshly isolated neutrophils were incubated for 30 minutes with 200µM Cl-amidine, 

after which bronchiectasis relevant stimuli were added to each condition and incubated 

for 4 hours. Following incubation NETosis rates and PAD activity were assessed as done 

for the previous chapters, in addition phagocytosis, superoxide, 24-hour viability and 

CXCL8 secretion were also assessed (methodologies outlined in chapter 3). 

Results showed that pre-treatment with Cl-amidine significantly inhibited NET formation 

in response to all stimuli, with supernatant PAD activity (in response to PMA and TNF-α) 

also showing a significant decrease when incubated with Cl-amidine. Whilst viability over 

a 24-hour period appeared unchanged when peripheral blood neutrophil were 

incubated with Cl-amidine, significant decreases in superoxide release, phagocytosis 

rates and CXCL8 secretion in response to stimuli were observed for Cl-amidine treated 

neutrophils. Therefore the results produced from this work suggest Cl-amidine had 

inhibitory effects on NETosis, neutrophil PAD activity and general neutrophil immune 

function, which supports both hypotheses.  
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8.2.4 Differences in NETosis, PAD activity and neutrophil function between healthy, 

bronchiectasis and BROS neutrophils 

Chapter 7 describes a study carried out which aimed to establish preliminary data on 

several biological responses/functions in peripheral blood neutrophils obtained from BR 

and BROS patients, with the following hypothesis established:  

• Peripheral blood neutrophils from BROS patients will exhibit higher levels of 

NETosis and citrullination than BR patients without comorbid bronchiectasis 

results. 

Peripheral blood neutrophils were obtained from healthy volunteers, BR patients and 

BROS patients. Following stimulation neutrophils were assessed for in vitro NETosis 

rates, extracellular PAD activity, viability, phagocytosis rates, superoxide production and 

CXCL8 secretion (using the methodologies described in the previous results chapters). 

The available results suggest there may be some differences between healthy and the 

whole BR patient cohort (i.e. BR and BROS) in regard to extracellular citrullination, 

phagocytosis rates, NETosis rates and CXCL8 secretion, however little difference was 

observed in neutrophil responses between BR and BROS patient samples. 

Whilst these results oppose the initial hypothesis, issues with the patient population (i.e. 

limited size due to delays in approval and time constraints) make interpretation of these 

results difficult, therefore the results cannot be used to support or refute the 

established hypothesis. However as this body of work aimed to establish preliminary 

data to guide the powering of future larger studies, the results presented have arguably 

progressed towards achieving this purpose. 

8.2.5 Summary of chapters results and conclusions 

In conclusion the four bodies of work described have collectively attempted to establish: 

whether bronchiectasis stimuli can induce neutrophil PAD activation and NETosis 

(chapter 4), the roles of the two arms of the TLR4 signalling pathways in these processes 

(chapter 5) and the role of PAD in NETosis and other key neutrophil functions (chapter 

6). 

Whilst limitations to the population sample recruited for the work comparing healthy 

neutrophils to those from BR and BROS (chapter 7) prevent the work addressing the 
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underlying hypothesis the research has provided useful preliminary data on the 

responses of BR and BROS patient peripheral blood neutrophils in regards to 

citrullination, NETosis and other aspects of neutrophil function. Figure 8.? Summarises 

the questions raised for each results chapter along with the key findings and conclusions 

drawn. 
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8.3 Strengths of work 

8.3.1 Measurements of NETosis 

A common criticism of work studying NETosis relates to the choice of methodologies. 

Although a variety of methodologies have been demonstrated within the literature, each 

have intrinsic flaws which make application of the method or valid interpretation of 

collected data difficult in most cases, because of this there is no established gold-

standard methodology for the measurement of NETosis (Masuda et al 2016). Three well-

established methodologies were used throughout this work to measure NETosis rates in 

isolated peripheral blood neutrophils; Immunofluorescent (IF) staining and microscopy 

counts of adherent NETs (Patel et al 2018, Hair et al 2018, Zou et al 2018), Histone-

elastase complex (i.e. NET) ELISAs of supernatants (Nakazawa et al 2009, Söderberg et al 

2015, Elaskalani et al 2018) and extracellular DNA measurements (Hakkim et al 2010, 

Zhang et al 2014, Hair et al 2018). 

Each of these three methodologies have some limitation; extracellular DNA 

measurements having low specificity for NETosis, IF staining being subject to bias as well 

as potentially disregarding NETs which become detached prior to fixing (i.e. free NETs) 

and NET ELISAs disregard the adherent NETs left behind following extraction of 

supernatant whilst also only being semi-quantifiable. However, by using the three 

methodologies collectively we overcame several of these limitations (e.g. obtaining data 

on the presence of adherent and free NETs in samples) and are able to identify trends in 

the results (e.g. PMA elicited the highest NETosis rates in results collected using all three 

methodologies). Therefore the conclusions drawn from the three NET measuring assays 

results throughout this work (i.e. BR relevant stimuli promote NETosis, TRIF and MyD88 

are both implicated in LPS induced NETosis, PAD inhibition downregulates NET 

formation) are given more validity than would be possible if only a single NET measuring 

methodology was used. 

8.3.2 Supernatant PAD activity assessments 

Another feature seen in all chapters of the thesis was the assessment of changes in 

citrullination (due to its central role in NETosis and rheumatoid arthritis pathogenesis). 

At the start of the research a central question arose regarding how to study this aspect 

of neutrophil biology. Two potential routes for investigating this phenomenon were 
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presented; investigating changes in intracellular PAD activity or extracellular PAD 

activity. After careful consideration it was decided to observe changes in extracellular 

PAD activity, this decision was made on the basis that the thesis was largely focused 

upon investigating whether neutrophils alter their extracellular environment (by NETosis 

dependent protein release and PAD release) to promote citrullination in BR. Therefore, 

whilst qualitative changes in intracellular PAD activity would be of great interest 

(although of some difficulty to study) it was deemed more relevant and vital to address 

each chapter in relation to how the extracellular environment is altered by neutrophils. 

Several methods for studying PAD activity have been published, with the earliest dating 

back to 1939. However most of the known assays have several issues with sensitivity or 

their ability to be used with biological samples such as neutrophils. The ABAP assay (i.e. 

the commercial modiquest assay used in this work) however has been demonstrated to 

show high sensitivity for PAD dependent citrullination and function correctly with 

complex biological samples (Hensen et al 2014, Spengler et al 2015, Laugisch et al 2016), 

which made this methodology the best choice for assessing the large number of 

biological samples assessed throughout the thesis. 

8.3.3 Neutrophil inhibition work 

Whilst Cl-amidine has previously been used in several pieces of published neutrophil 

based in vitro work, with several papers using a concentration of 200µM (as done in the 

work presented in this thesis) (Wang et al 2009, Knight et al 2013, Li et al 2017), viability 

rates were assessed to confirm the inhibitor was not having a toxic effect upon 

neutrophils. Viability rates were also assessed in response to inhibition by MyD88-pep 

and TRIF-pep in vitro to establish a concentration of the inhibitors that was non-toxic but 

still successfully inhibited LPS induced activation of neutrophil function. 

By confirming non-toxic but effective concentrations of the inhibitors for in vitro 

incubation, the possibility that inhibitor induced neutrophil death may be an explanation 

for any decrease in response is resolved. This allowed more valid conclusions to be 

drawn relating to the impact of these inhibitors on NETosis, PAD activity and general 

neutrophil function, allowing the hypotheses underpinning the bodies of work to be 

better addressed. 
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8.4 Limitations of work 

8.4.1 Applicability of results 

Both chapters 4 and 7 attempted to provide evidence to determine whether BR relevant 

stimuli promote NETosis/citrullination and whether BR (and BROS) patient derived 

neutrophils differ to healthy regarding NETosis/citrullination, which may explain why a 

proportion of BR patients proceed to develop RA. However there are several limitations 

in relation to the methodology which would prevent the results being extended to an in 

vivo disease environment; firstly, the work assesses neutrophil responses within a sterile 

in vitro environment with no other disease relevant cells/molecules present (e.g. 

endothelial cells, lymphocytes, epithelial cells, antibodies), secondly cells are given single 

stimuli (e.g. LPS) at a much higher concentration than likely seen in a physiological 

environment (as opposed to a range of inflammatory/infections stimuli at a low 

concentration) and finally the work involves the use of peripheral blood neutrophils 

which have not been exposed to the chronic inflammatory/infection pulmonary 

environment seen in bronchiectasis. 

Whilst a true in vivo model of BR would involve a range of immune cell types and 

molecules, the purpose of this study was to assess neutrophil specific responses in 

relation to BR stimuli, therefore the inclusion of other disease relevant cells would over-

complicate analysis and reduce the ability of the work to address its main focus of 

neutrophil biology in relation to BR. This was also the reason underpinning the decision 

to use single stimuli at concentrations likely far greater than physiologically relevant. As 

the work aimed to address whether specific stimuli could promote NETosis and 

extracellular citrullination, the main priority was not to replicate in vivo conditions as 

best as possible, but to instead achieve maximum stimulation of isolated neutrophils 

with each of the stimuli to determine if this had any impact on NETosis and PAD activity.  

The use of pulmonary neutrophils would be of far greater relevance to assessing BR 

neutrophil responses (than the use of peripheral blood neutrophils as done in this work), 

however obtaining pulmonary neutrophils from human healthy volunteers is a difficult 

logistical obstacle (given the lack of inflammation and neutrophils present within the 
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healthy lung) and even obtaining pulmonary neutrophils samples from patients can 

present a difficult challenge for recruitment and sampling a sufficient number of 

patients to address research questions. Furthermore, as there is no well-established 

animal model for bronchiectasis there is no effective approach currently for assessing 

the in vivo environment of chronic pulmonary inflammation/infection seen in 

bronchiectasis. 

8.4.2 Exclusion of vital NETosis 

In the literature there have been two proposed types of NETosis; suicidal NETosis and 

vital NETosis. Suicidal NETosis is the mechanism of NETosis first described by Brinkmann 

et al (2004), known to involve hypercitrullination of histones and the death of the 

neutrophil within a roughly 4-hour period. Vital NETosis was first suggested by Clark et al 

(2007) and is described as a rapid (<30 minutes) alternative pathway of the process in 

which the neutrophil remains alive whilst excluding condensed chromatin with no 

evidence of hypercitrullination (Yipp et al 2013., Pilsczek et al 2010). 

As NET measurements throughout the thesis were carried out on neutrophils incubated 

for at least 4 hours, and as the main methodology for studying NETosis responses (IF 

microscopic NET counts) used citrullinated histones as a marker for determining the 

presence of NETs, the results presented are likely a measure of changes in suicidal 

NETosis rates, potentially overlooking any changes or differences in vital NETosis. The 

decision to prioritise the study of suicidal NETosis over vital NETosis was made on two 

principles; firstly, that suicidal NETosis is more established within the literature with 

more validated methods for recording the process (whereas far less is known 

surrounding the molecular events associated with vital NETosis meaning specific assays 

are limited) and secondly that only suicidal NETosis is known to involve citrullination. 

Therefore, as the citrullination was a focus throughout the whole thesis, suicidal NETosis 

was decided to be the better choice to prioritise. 

8.4.3 Choice of methodologies 

Whilst the strengths and limitations of the methodologies used to assess NETosis rates 

throughout the thesis has previously been discussed in this chapter there are some 

potential limitations with regards to the the choice of other methods used in the 

research. 
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Neutrophil function was assessed using a variety of assays to measure viability rates 

(annexin V and propidium iodide stain), superoxide production (cytochrome C 

reduction), phagocytosis rates (zymosan phagocytosis) and CXCL8 secretion (commercial 

ELISA) in vitro. Whilst all these methods are well established in previous literature and 

address a variety of aspects of neutrophil function (Biswas et al 2015, Ruchaud-

Sparagano et al 2014, Morris et al 2009), some aspects of neutrophil function were not 

assessed within the thesis, with two potentially important examples being chemotaxis 

and bacterial killing. Results collected using assays addressing these processes would be 

particularly useful in relation to chapter 6 (Cl-amidine), which showed decreased 

superoxide, phagocytosis and CXCL8 secretion in response to incubation with Cl-amidine 

(all relevant to anti-microbial activity and chemotaxis) and chapter 7, which would have 

provided more information on a broader range of healthy, BR and BROS patient 

neutrophils responses.   

Another limitation with the methodology used in this work arises in regard to chapter 4 

(BR relevant stimuli). The results from chapter 4 showed significant increases in healthy 

neutrophil supernatant PAD activity following stimulation, however no change in 

supernatant PAD4 concentration to match this (assessed by PAD4 ELISA). Inclusion of 

additional methods to confirm this was the case (i.e. PAD4 western blot) or assaying the 

same samples for the presence of other neutrophil derived PAD enzymes (i.e. PAD2) 

would have provided more information to establish whether the change in supernatant 

PAD activity was due to increased activation of PAD4 or release of PAD2, as suggested by 

other published research (Zhou et al 2017).  

Furthermore, whilst the ABAP assay used to assess supernatant PAD activity is well 

validated and produced interesting results suggesting increased citrullination in 

response to BR stimuli there are questions raised by the results which were not 

addressed in the presented research. These included; was there any qualitative change 

in neutrophil derived protein citrullination following stimulation and whether the 

observed increase in PAD activity would have any substantial impact on the citrullination 

of host proteins? (such as those implicated in rheumatoid arthritis: α-enolase, 

fibrinogen). Both would be of interest if trying to place the produced results in context 

of BR and the formation of BROS. 
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8.4.4 Study of bronchiectasis and rheumatoid overlap patients 

The limitations of using non-age matched healthy volunteers as a comparator and the 

limited sample size have already been discussed in chapter 7, however a further 

problem relating to studying the responses of BROS and BR patients is the ability to 

accurately distinguish the two. As described in the introduction of the thesis, there are 

likely two categories of BROS patients; those whom developed RA first (then due to 

extra-articular manifestations developed BR) and those whom developed BR first. As this 

thesis was focused upon “BR first” BROS patients, an important consideration when 

recruiting patients for this nature of research is establishing a clinical history of which 

condition was diagnosed first in BROS patient (and the difference in time between the 

diagnoses), which was not done for the study described in this thesis and should be 

considered in future study design and patient recruitment.  

A further limitation to the work presented in chapter 7 relates to the lack of additional 

approaches in assessing BR and BROS patient responses. The approach selected focused 

upon identifying theorised differences in neutrophil mediated NETosis and PAD release 

in BROS patients (in comparison to healthy and BR patients) that may explain the onset 

of rheumatoid arthritis in these BR patients (i.e. via hypercitrullination). However, it is 

also possible that BROS patients do not differ to BR patients in neutrophil responses, but 

instead differ in adaptive immune responses (i.e. more likely present/recognise 

citrullinated self-peptides), which may be an explanation for why the patients developed 

RA (i.e. the adaptive immune response is pre-disposed to recognise citrullination). 

Whilst this question of differences in adaptive immune response was not assessed 

(owing to time constraints and sensitivity of neutrophil work) possessing unreported 

data on adaptive immune responses in healthy, BR and BROS would provide valuable 

insight into potential differences in the BROS cohort.   

 

8.5 Future Work 

8.5.1 Expanding on bronchiectasis relevant stimuli work 

Future work for chapter 4 (BR stimuli) would first determine whether stimulated 

neutrophil supernatants showed any significant increase in PAD2 concentration (by 
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ELISA and/or western blot), which would establish which neutrophil expressed PAD 

enzyme was responsible for the observed increase in PAD activity. Initially neutrophil 

specific PAD enzyme production was going to be measured using real time PCR (rtPCR) in 

addition to ELISAs, however several challenges exist when attempting to apply this 

method in neutrophil based work (i.e. difficulty of complete neutrophil RNA isolation 

and the comparatively little mRNA expressed by neutrophils in comparison to other 

peripheral leukocytes) which make the potential for this technique to validly measure 

PAD production questionable. 

Additional experiments would be included to compare the levels of citrullination of a 

protein relevant to rheumatoid arthritis citrullination (e.g. α-enolase) by supernatants 

from differing stimulatory conditions (e.g. unstimulated vs LPS stimulated). A proposed 

methodology for assessing this would involve incubation of the target protein with 

supernatants with various levels of PAD activity, with proteomic analysis (e.g. mass 

spectrometry) used to compare qualitative and quantitative differences in target protein 

citrullination between the various supernatants. Consultation with proteomics experts in 

Newcastle and Dundee university have suggested that whilst this approach is possible 

there are several issues in the current methodologies used to isolate, identify and 

quantify citrullination of peptides that make carrying out this work in complex biological 

samples difficult. These difficulties include: anti-citrulline antibodies lacking specificity, 

Phenylglyocal-rhodamine probes (another method of fluorescently identifying citrulline 

residues) having broad reactivities in biological complex samples, distinguishing between 

citrullinated and deamidated amino acid residues using mass spectrometry and 

detecting a specific citrullinated peptide at low abundance in a biological sample 

(Hensen et al 2014, Slade et al 2014, Lee et al 2018). Therefore future work of this 

nature will likely require a great deal of proteomic expertise, time and resources in order 

to validly assess any qualitative or quantitative changes in peptide specific citrullination 

by neutrophil derived PAD. 

Other potential routes for further work leading on from the work in chapter 4 would 

include attempting to better replicate BR in vivo conditions to observe if any significant 

differences are seen in results obtained. Some improvements on the established in vitro 

model used in this study would include coating plastic well plates with a biologically 
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relevant matrix molecule such as fibrinogen to better replicate in vivo conditions. A 

further improvement would include using hypoxic conditions for the incubation and 

stimulation of isolated neutrophils. As neutrophils are arguably evolved to function 

optimally under hypoxia (i.e. due to the hypoxic environment within inflamed tissue) 

there is a possibility that neutrophil function may differ under these conditions (in 

comparison to responses in 21% normoxic atmospheric conditions). Therefore 

measuring neutrophil responses (as demonstrated in this thesis) under hypoxic 

conditions in vitro to would be of great interest and would likely be more representative 

of the conditions within the BR airway (Lodge et al 2016, Sarkar et al 2017). 

8.5.2 Cell signalling and NETosis 

As the results suggested that inhibition of TRIF and MyD88 (two upstream proteins in 

the LPS signalling pathway) impacted NETosis and citrullination, the next step in 

investigating signalling pathways implicated in these processes would involve inhibition 

of other downstream proteins in the LPS signalling pathway. The effect of inhibition of 

proteins within in the MAPK/ERK section of the LPS signalling pathway on NETosis/PAD 

activity would be the first assessed, as these proteins are believed to be a primary route 

by which NET inducing stimuli induce NETosis, inhibition of this pathway should 

theoretically prevent the initiation of NETosis. If NETosis persisted despite inhibition of 

MAPK/ERK, further work would involve examining other proteins associated with the 

LPS signalling pathway which are common to both TRIF and MyD88 signalling (e.g. NF-

κB) to observe the impact of inhibition of these molecules on NETosis in order to 

establish specific molecules with a key role in TLR4 mediated pro-NETosis signalling. 

8.5.3 Inhibition of PAD activity by Cl-amidine 

From the results obtained in chapter 6, it was suggested that Cl-amidine downregulates 

both NETosis and citrullination (as expected), but also has negative effects on several 

aspects of neutrophil function. Two potential routes for future work building on the 

results of this chapter are proposed. Firstly, neutrophils pre-treated with Cl-amidine 

(unstimulated and stimulated) would be assessed in comparison to uninhibited 

neutrophils for qualitative differences in PAD activity. The results of this chapter showed 

a decrease in extracellular PAD activity, however changes in citrullination of neutrophil 

derived proteins were not assessed. To determine this, neutrophils (following inhibition 
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and stimulation) would be lysed with the resulting intracellular proteins analysed using a 

proteomic approach to determine how the neutrophil citrullination profile changes 

following inhibition of PAD. This would assist in addressing the question raised in the 

discussion of chapter 6 involving whether inhibition of NETosis by Cl-amidine only partial 

(compared to full inhibition of extracellular PAD activity) due to inability of the inhibitor 

to effectively inhibit citrullination within the neutrophil. 

Secondly, the effect of Cl-amidine on other neutrophil functions would also be 

investigated. Cl-amidine was shown to inhibit superoxide, phagocytosis and CXCL8 

secretion, all of which are important features in neutrophil function and may suggest Cl-

amidine could have an immunosuppressive effect in an in vivo context. Additional 

methods would be used to assess the impact of the inhibitor on neutrophil mechanisms 

including; elastase secretion, chemotaxis ability and bacterial killing, all of which are also 

key aspects of physiological neutrophil function and likely of important clinical 

relevance. 

8.5.4 Study of Bronchiectasis and BROS patient cohort 

With the completion of the feasibility study and processing of results shown in chapter 

7, there were some potential differences between the groups results relating to NETosis, 

PAD activity and neutrophil function. The results obtained will assist in the design and 

correct powering of future large-scale studies involving the BR and BROS patient groups, 

which will be better equipped to assess if any true significant differences between the 

groups exist. 

Several changes should be applied to future study design to allow more valid 

comparisons between results obtained for the groups including; the use of a larger 

sample size, age matching the groups where possible, matching other aspects of key 

demographics (e.g. gender, bronchiectasis severity scores, colonisation status, 

medication usage) where possible and the inclusion of a group of RA only patients. 

Furthermore, as CXCL8 secretion showed the most potentially for difference between 

the groups (despite a limited sample size) it would be beneficial to assess differences in 

the secretion of other neutrophil derived molecules (e.g. elastase, IFN-γ, TNF-α) 

between the groups to better categorise differences in pro-inflammatory responses of 

peripheral blood neutrophils between patients. 
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8.6 Conclusions 

By isolating peripheral blood neutrophils and using a variety of in vitro methodologies, 

this thesis has produced a large amount of data on NETosis and citrullination in relation 

to neutrophil biology and BR pathology. Using validated assays for measuring NETosis, 

several BR relevant stimuli have been shown to promote NETosis under in vitro 

conditions, with results also suggesting an increase in extracellular PAD activity following 

stimulation with these molecules. This may suggest BR relevant conditions promote 

NETosis and citrullination which may have impact on disease progression and the onset 

of autoimmunity, however this has not been established. Experiments exploring the 

under-investigated LPS signalling pathway in relation to NETosis/PAD activity suggests 

that the signalling pathways underpinning these processes may be more complex than 

initially thought, with further work required to gain a better understanding of the 

signalling events implicated in NETosis and neutrophil mediated citrullination. 

Whilst Cl-amidine was shown to have an inhibitory effect on NETosis and citrullination, 

which may be of potential therapeutic use, the results obtained also suggest that Cl-

amidine also impaired important immune functions carried out by neutrophils including 

superoxide generation, phagocytosis and CXCL8 secretion. This may imply that PAD 

activity may regulate aspects of neutrophil function other than NETosis and that the PAD 

inhibitor could have a negative impact on immune response generation in an in vivo 

context. Finally, preliminary data was obtained which suggested some potential 

differences between healthy volunteer peripheral blood neutrophil responses and BR 

patients, and whilst there are limitations which limit the interpretation of the results, 

the data obtained can be used to guide future larger scale studies to investigate true 

significant differences between healthy, BR and BROS peripheral blood neutrophil 

responses in vitro. 
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Chapter 9: Presentations and Publications 

The work generated from this research has been presented at the following 

academic conferences: The World Bronchiectasis conference 2017 (poster 

presentation), the ERS congress 2017 (poster presentation) and the British 

thoracic society 2018 winter meeting (two spoken presentations), with the 

work also being printed in the Thorax supplementary publications for the 

2018 winter meeting which can be located using the following two 

references  

1. C Cole, J Scott, G Davies, G Jones, K Jiwa, J Chalmers, J Simpson, A De 

Soyza (2018) “Bronchiectasis relevant molecules promote NETosis 

and citrullination in human peripheral blood neutrophils” BTS Winter 

meeting Thorax 73: A54 

 

2. C Cole, J Scott, G Davies, G Jones, K Jiwa, J Chalmers, J Simpson, A De 

Soyza (2018) “Interleukin 8 secretion but not superoxide anion 

production is different between healthy and bronchiectasis patients 

neutrophils” BTS winter meeting Thorax 73: A54 
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