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Abstract 

Water resources in the Indus basin are under acute and growing stress. How climate change 

will affect this situation in the coming decades depends substantially on responses in the data-

sparse mountains of the upper basin. However, model projections of changes in the 

cryosphere-dominated hydrology here are highly uncertain. Integral to this uncertainty are 

challenges in: characterising near-surface climate fields needed for model input; selecting 

appropriate model structures to balance process fidelity with data availability; and 

understanding the wide spread in climate model projections used in impact assessments. As 

such, this thesis aims to identify pathways for refined hydrological projections in the upper 

Indus basin through in-depth evaluation of climate, cryospheric and hydrological models.  

Firstly, using the High Asia Refined Analysis (HAR), the study assesses how relatively high 

resolution regional climate modelling can help describe spatiotemporal variability in near-

surface climate. The HAR exhibits substantial skill in many respects, but particularly in 

capturing the complex patterns of precipitation in the basin. Some seasonally varying biases 

in temperature and incoming radiation suggest deficiencies in snow and cloud representations 

that are likely resolvable. Secondly, the Factorial Snowpack Model (FSM) is driven with the 

HAR to examine the feasibility and required structure of process-based snowpack modelling. 

Model correspondence with local observations and remote sensing is good for a subset of 

FSM configurations using a prognostic albedo parameterisation, as well as a representation of 

liquid water retention, drainage and melt/refreezing cycles in the snowpack. The multi-

physics approach additionally highlights the inputs and processes needing further 

investigation, which include the atmospheric stability adjustment. Thirdly, using an adapted 

FSM program and TOPKAPI-ETH, simplified representations of cryospheric processes are 

compared with more process-based approaches. This helps to identify where systematic 

differences in hydrological response occur and their connection with spatial and temporal 

scales. It is found that an enhanced temperature index (ETI) model exhibits behaviour and 

climate sensitivity more akin to energy balance formulations than a classical temperature 

index model. However, there may be structural limits to the fidelity of the ETI formulation 

under cloudy conditions, while further attention is needed on the translation of surface melt to 

runoff, especially at high elevations. 
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The study then moves to examine controls on regional trends and variability simulated by 

climate models, focusing on temperature in CMIP5 GCMs. While the models partly 

reproduce key regional atmospheric circulation influences, variation in summer temperature 

responses depends on differing snow and albedo representations. Ultimately this may offer 

some potential to constrain temperature projections. Finally, using CMIP5 and HAPPI GCM 

outputs, the study explores climate and hydrological projections under selected global 

warming stabilisation scenarios. This shows that shifts in the timing of runoff are discernible 

even for low warming targets. Overall water availability may depend particularly on natural 

variability in precipitation, but in dry years the pressures on water resources in the basin could 

worsen in future. Further efforts to constrain the range of projections using observations and 

process-based reasoning are required, but effective water resources management in the basin 

is likely to depend on increasing resilience to a wide range of climatic and hydrological 

variability. 
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Chapter 1  

 

Introduction 

1.1 Background 

Water resources in the Indus basin are under acute and growing stress. In Pakistan, whose 

borders contain 63% of the basin, annual water availability per capita declined from 

approximately 5000 m
3
 in 1950 to 1000 m

3
 by 2010 (Briscoe 2010; Karki et al. 2011; UNDP 

2016). This stark reduction means the country is now hovering around the threshold used to 

define water scarcity (UNDP 2006). Such scarcity at the national scale cannot be ameliorated 

simply with supply-side measures. The available sources of water are in large part fully 

allocated for human uses, with the vast majority reserved for the irrigated agriculture so vital 

to livelihoods and the economy (Briscoe and Qamar 2007; Archer et al. 2010). This means 

that providing sufficient water to users in drought years is a particular problem. Only around 

30 days’ worth of the annual flow can be stored in the basin’s ageing infrastructure to 

alleviate dry conditions, compared with 900 days in the Colorado River basin, for example 

(Condon et al. 2014). The situation worsens when we consider that the substantial rates of 

groundwater abstraction in the low-lying plains are unsustainable (Sattar et al. 2017). 

It is therefore a major issue that the demand for water continues to accelerate. One driver is 

the nation’s immense population growth (Archer et al. 2010). Following a fivefold increase 

since 1950, the population is projected to rise from around 197 million in 2017 to 307 million 

by 2050 (UN 2017). Rapid urbanisation and industrialisation compound the implications of 

population growth alone, such that shortfalls in water supply are projected for the coming 

decades (Zawahri and Michel 2018). This is before even considering provisions for the 

environmental flows needed to support the Indus delta and other sensitive ecosystems (Inam 

et al. 2007). As such, water security seems liable to deteriorate further for the country as a 

whole. This burden will continue to be unequally distributed amongst the population, owing 

to the social, political and historical processes that produce uneven structures and realisations 

of scarcity (Akhter 2017). 

In conjunction with other issues, including deteriorating water and soil quality in vast 

agricultural areas, as well as acute flooding events, these challenges are termed an “emerging 
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water crisis” in the National Water Policy produced by the Government of Pakistan in April 

2018 (GOP 2018, p. 1). Within a framework of integrated catchment management, the Policy 

identifies a number of objectives to resolve these issues. Strategic priorities include water 

conservation and efficiency measures at multiple scales and across sectors. There is also an 

intention to develop storage options to buffer hydroclimatic variability and better harness the 

basin’s considerable renewable energy potential. However, the challenges to the Policy’s 

implementation are formidable. Relationships between the complex mosaic of institutions 

with water management responsibilities are often complicated and subject to bureaucratic 

inertia (Wescoat et al. 1991; Sattar et al. 2017). There are also substantial tensions between 

the nation’s provinces, as exemplified by the history of disagreements over the 1991 Water 

Apportionment Accord (Condon et al. 2014; Anwar and Bhatti 2018). As a transnational 

basin, successful management is additionally in thrall to the volatile relationships between 

nations sharing the resources (Briscoe 2010; Zawahri and Michel 2018). 

Compounding these multiple and interacting challenges is climate change. Efforts to unravel 

the potential impacts on the basin’s hydrology have intensified in recent years, but 

uncertainties in how river flow magnitude, timing, variability and extremes might change in 

the coming years are still very large  (Briscoe and Qamar 2007; Archer et al. 2010; Condon et 

al. 2014; Sattar et al. 2017; Bolch et al. 2012; Lutz et al. 2016a). Of particular concern are 

climate change impacts on runoff from the high mountains of the upper basin (hereafter 

Upper Indus Basin, UIB – Figure 1.1). As much of the Indus basin experiences low 

precipitation, the high-yielding catchments of the Hindu Kush, Karakoram and western 

Himalayan mountain ranges are vital for the water supplies, irrigated agriculture and 

hydropower on which downstream populations depend (Archer et al. 2010). Much of this 

runoff is derived from snow and glacier melt, supported in part by the largest perennial ice 

mass outside the poles. As the effects of climate change may be particularly pronounced at 

high elevations and in cryosphere-dominated runoff regimes (Pepin et al. 2015; Barnett et al. 

2005), understanding the functioning and fate of the coupled climatic, cryospheric and 

hydrological system in the mountains is therefore paramount. A full description of the UIB 

and its hydroclimatology is given in the next chapter (Section 2.2). 

In line with Wilby and Dessai’s (2010) conceptualisation, uncertainty in UIB hydrological 

projections cascades and grows with each successive stage of the climate change impact 

assessment process. This process generally starts by defining emissions and mitigation 

scenarios, which is followed by climate modelling, regional downscaling and hydrological 
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impact modelling. Each component of the chain is beset by substantial complexity, but we 

contend that there are three challenges pertaining to climate and hydrological modelling that 

require particularly urgent attention in the data-sparse UIB. Firstly, refined near-surface 

climate characterisation is needed to improve hydrological model inputs. Secondly, 

comparison of alternative hydrological modelling approaches is required to identify those 

model structures balancing process fidelity and data availability. Thirdly, further evaluation of 

climate models is needed to understand the drivers of the wide spread in hydrological 

projections. Expanded in the next section, these challenges guide the design of this research. 

 

Figure 1.1 – Map of the Upper Indus basin and surrounding region. 
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1.2 Research Needs 

1.2.1 Near-Surface Climate Characterisation 

Nearly 30 years ago, Klemeš (1990) described how the intersection of sparse observation 

networks with pronounced climate variability is at the core of problems in modelling 

mountain hydrology. While many advances have been made in the intervening period, this 

data paucity continues to present obstacles in UIB modelling. This is exemplified by issues in 

attaining credible water balance closure (see e.g. Immerzeel et al. 2009, 2010; Reggiani and 

Rientjes 2015). Some recent studies have partly addressed this by calibrating precipitation 

inputs to obtain agreement with observed river flows and/or glacial mass balance (e.g. 

Immerzeel et al. 2012b, 2015; Ragettli et al. 2013). The approach certainly represents an 

advance over previous work, but it is subject to uncertainties in calibration data and model 

configurations, while typically simplifying spatial and temporal variability. More generally, it 

is inherently difficult to develop physically consistent climate fields for multiple variables at 

high spatial and temporal resolution from sparse observations alone. These fields are 

particularly required to test the feasibility of process-based hydrological modelling strategies, 

as discussed below. 

One possible response to this problem harnesses modern computing facilities to simulate 

near-surface climate using high resolution numerical weather models (NWPs) or regional 

climate models. For example, it has been shown that the Weather Research and Forecasting 

(WRF) model (Skamarock et al. 2008) can perform well for hydrological applications in 

mountain regions, despite the complexity of terrain and the variability of climate processes 

(Ikeda et al. 2010; Rasmussen et al. 2011; Prein et al. 2012; Silverman et al. 2013; 

Duethmann et al. 2013). The small but growing number of applications in the Hindu Kush, 

Karakoram and Himalayan ranges show similar potential (e.g. Collier et al. 2013, 2015; 

Norris et al. 2016). However, application and evaluation of this approach for climate 

characterisation in the UIB has been very limited. This is particularly so at the basin and sub-

basin scales of hydrological models, as well as over multi-year periods. As such, there is a 

need to assess how well such relatively high resolution regional climate modelling can 

augment other datasets and provide improved spatiotemporal climate fields for the basin. To 

explore this, we focus on the publicly available WRF simulations comprising the High Asia 

Refined Analysis (HAR) (Maussion et al. 2014), which has not been evaluated or applied in 

the UIB. 
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1.2.2 Hydrological Model Structures 

Klemeš (1990) also discussed the difficulties in identifying appropriate model structures and 

parameterisations for the array of hydrological processes operating in mountain environments. 

In the UIB this issue is bound up with the particularly substantial limitations afflicting input 

and evaluation data noted previously. Quite understandably, it has led to the proliferation of 

relatively simple hydrological modelling approaches in the basin, as well as across the 

Himalayan arc more generally (e.g. Bocchiola et al. 2011; Rees and Collins 2006; Immerzeel 

et al. 2009, 2012a, 2013; Soncini et al. 2014; Ragettli et al. 2013, 2015; Immerzeel et al. 

2014; Minora et al. 2015). As such, there have been few applications of process-based, energy 

balance models for hydrological applications here at all (but see e.g. Shrestha et al. 2015; 

Brown et al. 2014; Prasch et al. 2013). Yet these models may confer advantages for testing 

hypotheses about processes, completing mass and energy balance frameworks in coupled 

land-atmosphere models, and making projections in non-stationary climates. The question is 

thus whether application of such models is now feasible and useful in UIB hydrological 

studies. This depends in large part on the success of deriving climate input fields from 

regional climate models, as outlined above. 

With this in mind, recent developments in systematic modelling frameworks present an 

interesting way to help assess the skill of such process-based modelling in the UIB. The 

framework approach usefully removes the confounding influences of variations in 

implementations between programs (Clark et al. 2015a,b). As such, it becomes possible to 

neatly synthesise the array of models in existence, while also more precisely delineating 

variations in model response that arise from alternative process representations and modelling 

decisions. Such frameworks have not been deployed so far in the Himalayan region, largely 

due to the difficulty in applying typical methods of performance evaluation with limited data. 

Yet this alone does not negate the need to better understand the implications of model 

configuration choices for practical applications. It also does not preclude the possibility of 

modelling frameworks being used for improving conceptual understanding of relevant 

processes, identifying critical areas for further investigation or taking an ensemble-based 

approach to explore uncertainties. 

One framework of particular interest is the Factorial Snowpack Model (FSM) (Essery 2015). 

As an intermediate complexity multi-physics ensemble, FSM provides a means of testing 

alternative representations of key snowpack processes and how they interact with each other 
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within a coupled mass and energy balance scheme. Not only does this form a systematic 

framework of the kind discussed above, it also usefully allows us to place an emphasis on 

snow. This is critical, as physical snow processes have been little studied in the Himalayan 

region, despite their vast importance. For example, snow melt is the single largest component 

of river flow in the UIB (Mukhopadhyay and Khan 2015). Snow processes also strongly 

influence regional climate, through land-atmosphere interactions, and glacial mass balance. 

The patterns and processes underlying variability and changes in seasonal snow cover are 

therefore critical for both climate and hydrological projections. The questions that follow 

from this pertain to the combined skill of new input datasets and FSM, as well as the 

inferences that can be made about model configuration choices. Addressing these points 

necessitates enhanced use of remote sensing for evaluation at the level of individual 

processes, as far as possible, in order to augment the constraint on mass balance provided by 

observed river flows. 

1.2.3 Climate Models and Projections 

Previous studies have evaluated a number of pertinent aspects of climate model behaviour 

over the Himalaya and Tibetan Plateau. This includes the climatology of key variables (e.g. 

Su et al. 2013; Palazzi et al. 2015), near-surface processes (e.g. Rangwala et al. 2016; Palazzi 

et al. 2017)  and aspects of regional circulation (e.g. Sperber et al. 2013; Levine et al. 2013). 

However, uncertainty in regional climate and hydrological projections remains large, due to 

substantial inter-model variation (e.g. Ragettli et al. 2013; Lutz et al. 2014, 2016a,b; Palazzi et 

al. 2015). It is therefore timely to consider how climate models simulate some of the 

processes underlying patterns of variability and change in critical near-surface variables. 

In this respect, one priority is to assess how well climate models simulate the Karakoram 

Vortex (KV) regional atmospheric circulation patterns (Forsythe et al. 2017; Li et al. 2018). In 

brief, the KV describes anomalous circulation patterns centred on or near the Karakoram 

throughout the year. Anticyclonic and cyclonic KV states are closely linked to anomalies in 

the position and intensity of the subtropical westerly jet (SWJ) in all seasons, as well as the 

South Asian monsoon (SASM) in summer. The strong, spatially extensive and homogenous 

temperature response to KV circulation anomalies in winter contracts substantially in 

summer, becoming focused on a more restricted zone around the Karakoram. In conjunction 

with trends in the SWJ, SASM and KV states, Forsythe et al. (2017) argued that this 

contraction during the peak ablation season provides a significant contribution to the unique 
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summer cooling (Fowler and Archer 2006; Forsythe et al. 2012b), neutral glacier mass 

balance (e.g. Hewitt 2005; Zhou et al. 2017; Bolch et al. 2017; Brun et al. 2017), and stable or 

declining river flow trends (Sharif et al. 2013) observed in the heavily glaciated catchments of 

the Karakoram and UIB. Although this is an emerging area of research, similar findings were 

recently reached by Mölg et al. (2017) and Norris et al. (2018). As such, understanding how 

well the KV system is represented by climate models may be critical for gauging the 

plausibility of the climate trajectories they simulate.  

With respect to these trajectories, a notable gap exists in that hydrological projections for the 

UIB have not yet explicitly considered possible changes in river flow regimes under the 

climate change targets set out in the Paris Agreement of 2015. These targets aim to limit 

global temperature change to 2°C above pre-industrial levels, with endeavours to restrict the 

change to 1.5°C. More in line with current trajectories, we could also ask what the 

implications of 3 or 4°C warmer worlds may be. Rather than characterising how such 

stabilisation scenarios may play out in the UIB, most previous work in the basin has focused 

on fixed time slices in the future (e.g. Immerzeel et al. 2013; Lutz et al. 2014; Soncini et al. 

2014; Ali et al. 2015). As such, framing the problem in terms of policy-relevant stabilisation 

scenarios raises some interesting questions about how much projections might vary for the 

same warming scenario in models of differing climate sensitivity, as well as appropriate 

methodology to identify any forced response in a context of substantial internal variability. 

There is thus a need to explore hydrological projections for these scenarios, in order to see if 

any clear signals are likely to emerge that could ultimately guide adaptation and support the 

broader evidence base motivating mitigation efforts. 

1.3 Aim and Objectives 

In light of the research needs outlined above, the aim of this thesis is to identify pathways for 

refined hydrological projections in the upper Indus basin. The thesis is structured around the 

following objectives:  

1. To evaluate how well the HAR represents near-surface climate in the UIB, with reference 

to its potential for improving climate inputs for hydrological modelling 

2. To assess the feasibility of process-based snow modelling in the UIB, as well as the 

implications of alternative process representations 



8 

 

3. To compare process-based models of snow and glacier ablation with simpler approaches 

for simulating UIB hydrology 

4. To analyse climate model skill in representing key controls on temperature variability and 

projections, focusing on the Karakoram Vortex 

5. To explore the implications of selected global warming targets for the climate and 

hydrology of the UIB. 

1.4 Thesis Structure 

The remainder of the thesis begins with an introduction to the UIB and a review of research 

on its climate, cryosphere and hydrology in Chapter 2. This helps to introduce some key 

background information on the UIB required to understand the subsequent chapters. Chapter 2 

also contains some further discussion of the research needs outlined above, although each of 

the subsequent chapters has a fairly detailed introduction taking the relevant literature into 

account. 

Each of the subsequent chapters focuses on one of the research objectives. The relationships 

between the chapters are summarised schematically in Figure 1.2. Chapter 3 evaluates how 

well the HAR simulates near-surface climate in the UIB, while Chapter 4 deploys the HAR in 

process-based snow modelling using FSM. The emphasis here is on establishing the 

feasibility of the input/model combination, as well as delineating the effects of different 

parameterisation options within a multi-physics ensemble. Chapter 5 introduces the 

extensions to this ensemble developed as part of this thesis for simulating key snow and 

glacier processes in the UIB. The extended version of FSM (referred to here as FSM+) is used 

alongside TOPKAPI-ETH in Chapter 5 to compare and evaluate cryospheric and hydrological 

modelling approaches of varying complexities. Climate model performance and behaviour are 

then evaluated in Chapter 6, focusing on critical controls on simulated temperature variability 

and trends. Chapter 7 then explores hydrological projections under selected climate 

stabilisation scenarios. Conclusions and further discussion are provided in Chapter 8. 
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Figure 1.2 – Schematic representation of thesis structure and relationships between chapters 3 to 7. 
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Chapter 2  

 

Review of Climate and Hydrology Research in the Upper Indus Basin 

2.1 Introduction 

This chapter reviews previous research on the climate and hydrology of the Upper Indus 

Basin (UIB). Substantial emphasis is placed on reviewing the literature relevant to our 

understanding of the behaviour of the coupled climatic, cryospheric and hydrological systems 

in the basin. This provides the context required to understand the results presented in 

subsequent chapters. An overview of the literature supporting the research gaps identified in 

Chapter 1 is also provided. However, more detailed discussion of the relevant studies is 

provided at the beginning of Chapters 3 to 7. 

2.2 Background on Upper Indus Basin 

Before reviewing our current understanding of the climate, cryosphere and hydrology of the 

UIB, this section provides some background information on the basin. Figure 2.1 shows a 

map of the UIB and its river network, gauged sub-basins, glaciated areas and climate station 

locations. While around 11% of the UIB area is glaciated according to the Randolph Glacier 

Inventory (RGI) 5.0 (Arendt et al. 2015), Figure 2.1 demonstrates that the majority of the 

UIB’s glaciers are situated in the Hunza, Shigar and Shyok sub-basins, which drain the 

Karakoram range (Figure 1.1). The very long tongues of some Karakoram glaciers are visible, 

with several glaciers running to tens of kilometres in length. The larger glaciated fractions of 

the three sub-basins draining the Karakoram range are accompanied by differences in 

hypsometry compared with the overall UIB, as reflected in Figure 2.2. This shows a shift 

upwards to higher elevations and a sharpening in the hypsometric curve for the Karakoram 

sub-basins relative to the whole UIB. Peaking at a higher elevation again, the larger glacial 

fraction in the Karakoram sub-basins is also visible on Figure 2.2. 

Based on the ESA GlobCover 2009 land cover product (Arino et al. 2012), 73% of the non-

glaciated area of the basin is comprised of a mixture of bare ground and herbaceous plants, 

such as grasses and low shrubs. Much of the remaining area is classified as mixed vegetation 

and cropland, which is found predominantly in the lower reaches of the UIB, around and 

upstream of Tarbela Dam. While 11% of the UIB is classified as perennial cryosphere through  
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Figure 2.1 – Map of the Upper Indus Basin showing the river network, gauged sub-basins (key ones labelled), glaciated areas and climate station locations. 
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glacier cover, the majority of the basin is subject to seasonal snow cover. Using MODIS 

remote sensing, Forsythe et al. (2012b) demonstrated that around 70% of the UIB is snow-

covered during the winter peak of the annual snow cover cycle. In some of the sub-basins, 

including Astore and Gilgit, the maximum annual snow cover routinely exceeds 90%. 

Seasonal snow cover thus has large implications for the climate and hydrology of the UIB. 

 

Figure 2.2 – UIB hypsometry showing the full basin (solid lines) and Karakoram (dashed lines), with 

the latter based on the Hunza, Shigar and Shyok sub-basins. Curves for all surface types (orange) 

and glacier surfaces only (blue) are plotted. 

Figure 2.1 also reflects the sparsity of the climate observation network, along with the bias of 

measurements towards valley locations in the north-west part of the basin. Only three of the 

stations have long records extending back more than 30 years (Section 3.3.2). In contrast, 

many of the sub-basins shown in Figure 2.1 have fairly long river flow records beginning in 

the 1960s or 1970s (Section 3.3.2). The smallest gauged sub-basin is the Astore, which covers 

an area of 3988 km
2
, while the UIB at Tarbela Dam is 172173 km

2
. Human influences and 

alterations in the basin are fairly minor, although the settlements that are present in the UIB 

have to contend with some severe hydrological hazards. These include glacial lake outburst 

floods, as well as damming of rivers by landslides resulting in large dam-burst floods (Hewitt 

1982). The biggest anthropogenic influence on hydrology is Tarbela Dam at the outlet of the 

UIB. The dam is used for hydropower, supplying 20% of national electricity demand, as well 

as irrigated agriculture through the Indus Basin Irrigation System, which is the largest 

irrigation network in the world (Archer et al. 2010). With high rates of glacial and fluvial 
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erosion and transport in the steep valleys of the UIB, rapid reservoir sedimentation is a major 

issue at Tarbela Dam. 

This brief introduction to the UIB thus demonstrates that the basin is characterised by its high 

mean and range of elevation, as well as its highly significant glaciated area and seasonal snow 

cover extent. The next sections of this chapter explain in detail how the climate, cryosphere 

and hydrology of the basin are related, according to our best understanding from the literature. 

2.3 Climate 

2.3.1 Precipitation 

Much of the precipitation in the UIB occurs in winter and spring as snowfall, often originating 

from western disturbances (Archer and Fowler 2004; Fowler and Archer 2005; Palazzi et al. 

2013). Western disturbances are essentially extratropical cyclones that can bring very heavy 

precipitation to Pakistan and northern India (Dimri et al. 2015; Hunt et al. 2018b). The 

subtropical westerly jet guides these synoptic scale low pressure systems eastward towards 

the UIB from their origins in the Atlantic and Mediterranean. As such, winter precipitation in 

the UIB has been shown to be well correlated with the North Atlantic Oscillation (NAO) 

index (Archer and Fowler 2004; Syed et al. 2006, 2010; Yadav et al. 2009). Filippi et al. 

(2014) found that the stronger jet during positive NAO phases intensifies western 

disturbances and moisture transport towards the Hindu Kush, Karakoram and western 

Himalaya (HKKH) ranges. Enhanced evaporation, particularly from the Arabian Sea, may be 

drawn in to provide a crucial source of moisture in some cases, thereby intensifying 

precipitation (Filippi et al. 2014; Tiwari et al. 2017; Hunt et al. 2018a).  

Subtropical westerly jet intensity/position, western disturbance activity and precipitation in 

the western HKKH in winter also correlate with several other major modes of variability. 

These include the El Niño Southern Oscillation (ENSO) (Fowler and Archer 2005; Syed et al. 

2006, 2010; Yadav et al. 2009, 2010; Cannon et al. 2017a), the Madden-Julian Oscillation 

(MJO) (Barlow et al. 2005; Cannon et al. 2017a) and the Polar Eurasia Pattern (Lang and 

Barros 2004). As Cannon et al. (2015, 2017a) note, interactions between modes influence 

both low level atmospheric states/fluxes and upper level circulation, which leads to substantial 

variation in the thermodynamic and dynamic conditions that shape the evolution of individual 

western disturbances. The underlying patterns driving temporal variability in winter and 

spring precipitation in the UIB are thus somewhat complex. 
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When winter and spring western disturbances reach the HKKH, its extreme elevation poses a 

substantial barrier. Orographic precipitation results, the intensity and duration of which is 

strongly influenced by cross-barrier wind speeds and moisture fluxes (Lang and Barros 2004). 

Variation in seasonal accumulations depends critically on whether the cyclones become 

terrain-locked in the notch formed where the Hindu Kush and Himalayan ranges meet, as this 

affects the time spent over the UIB and its southern slopes (Lang and Barros 2004; Norris et 

al. 2015; Dimri et al. 2015). Systems that do not become terrain-locked may pass more easily 

to the south and west of the western HKKH barrier, bringing precipitation farther east into the 

central Himalaya. Variations in the position/intensity of the subtropical westerly jet in relation 

to topography are strongly implicated in whether such terrain-locking occurs, which 

ultimately leaves a signature in precipitation distributions across the broader region 

(Schiemann et al. 2009). The hydrological implications of such variation can be enormous in 

the UIB, as evidenced by the drought years of the early 2000s (Archer et al. 2010). 

Secondary to the winter/spring maximum, a lower precipitation peak is evident in summer at 

most observation locations inside the UIB, which are admittedly few in number (Archer and 

Fowler 2004; Fowler and Archer 2005). While some summer precipitation in the UIB is 

thought to be associated with occasional incursions of South Asian monsoon offshoots, 

westerly tracking depressions can also bring precipitation at this time of year, even though the 

subtropical westerly jet shifts to the north of the Tibetan Plateau (Fowler and Archer 2005; 

Hewitt 2014). The role of westerly activity in summer is confirmed by the correlation between 

the NAO and observed precipitation at this time of year, which led Archer and Fowler (2004) 

to recognise the importance of interplay between westerly and monsoonal circulation systems 

(Krishnan et al. 2009). Much is still unknown about the nature of this interaction, but recent 

work has shown how mid-tropospheric north-westerlies affect the advance of monsoon onset 

by forming a wedge of dry air that initially suppresses convection (Parker et al. 2016). 

Interestingly, there is some suggestion from snow pits high in the accumulation area of the 

Biafo glacier that the proportion of annual precipitation falling in summer may actually be 

larger at high elevations than in valleys, where most measurements are taken (Wake 1989; 

Hewitt 2014). However, this is based on data from just one site for a short period, so 

substantial uncertainty remains regarding spatial and vertical variation in precipitation 

seasonality. More work has focused on spatial variation in mean annual precipitation. Winiger 

et al. (2005) used comparatively dense station networks in relatively small catchments to 

produce a logarithmic vertical profile. This increases from around 200 mm/a in valleys 
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(~2000 mASL) to more than 1500 mm/a at approximately 5000 mASL. The profile has 

formed the basis for a number of subsequent studies of UIB hydroclimatology (e.g. Bocchiola 

et al. 2011; Soncini et al. 2014; Reggiani et al. 2016). Drawing on the accumulation estimates 

from snow pits (Wake 1989), Hewitt (2014) show a similar albeit more linear profile, with 

precipitation increasing up to around 1000-2000 mm/a at 5000-6000 mASL before potentially 

decreasing at elevations above this due to exhaustion of moisture. 

While extremely useful, these mean annual profiles do not capture the notable inter-annual 

variability in total accumulations, spatial variation in orographic gradients and the elevation of 

maximum precipitation, or general variations in precipitation magnitude across the large area 

of the UIB (Hewitt 2014). Indeed, the interplay of precipitation sources and topographic 

barrier effects has been observed to incur substantial horizontal gradients in precipitation at 

multiple scales (Young and Hewitt 1990; Reggiani and Rientjes 2015). Given the mismatch 

between scales of variation and observation network density, these gradients are very difficult 

to characterise fully using measurements, although correlations between stations in different 

parts of the UIB suggest the spatial variation to be fairly systematic (Archer and Fowler 

2004). In an attempt to overcome the problem of sparse measurements, Dahri et al. (2016, 

2018) augment precipitation observations with inferences and reports from glaciological field 

expeditions. Through kriging with external drift, Dahri et al. obtain a plausible spatial 

distribution of precipitation and reasonable consistency with runoff variation between 

observed sub-basins. However, notable uncertainties remain due to omission of 

evapotranspiration and sublimation terms, as well as approximations of the contribution made 

by net glacial mass balance. 

In a contrasting approach, Immerzeel et al. (2012b, 2015) used coupled cryospheric-

hydrological modelling to work out the vertical precipitation gradients and profiles required to 

reproduce glacier mass balance estimates from remote sensing. This is an ambitious method, 

subject to simplifications of key ablation and mass redistribution processes in the model, 

which cannot all be independently validated. Despite the large resulting uncertainty, as 

evidenced by error bar magnitudes of over a third of the estimates, the approximated 

precipitation amounts and distribution are more credible than many of the coarse gridded data 

products that are sometimes applied in the UIB. For example, catchment-scale precipitation 

amounts in the raw APHRODITE data product (Yatagai et al. 2012) were shown to be too 

low to give a water balance consistent with both estimated glacial mass balance and observed 

runoff (Immerzeel et al. 2015). This is intuitive, given that APHRODITE is essentially based 
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on interpolation of station data, which are skewed towards the drier locations of valleys. The 

Tropical Rainfall Measuring Mission (TRMM) products (Huffman et al. 2007) are also 

known to exhibit a substantial low bias for precipitation in the UIB, largely due to 

underestimation of snowfall (Forsythe et al. 2012a; Reggiani and Rientjes 2015; Maussion et 

al. 2014). In contrast, more reasonable basin-scale seasonality and amounts are often apparent 

in global reanalyses (Reggiani et al. 2017), but their resolution tends to be too coarse for 

direct hydrological applications. 

From observed runoff and water balance considerations, Reggiani and Rientjes (2015) infer 

mean annual precipitation for the UIB at Tarbela Dam to be 675 ± 100 mm/a. Dahri et al. 

(2018) obtain an estimate of 541 mm/a, while Immerzeel et al. (2015) appear to obtain a 

median estimate of around 640 mm/a (Reggiani and Rientjes 2015). In conjunction with the 

relatively stable glacier mass balance in the basin (Section 2.4), the estimates by Dahri et al. 

(2018) may thus still be on the low side, once a reasonable amount of evapotranspiration is 

allowed for (Section 2.5.1). This highlights the substantial and persistent uncertainties 

regarding the amounts and spatiotemporal distribution of precipitation in the UIB. 

While no estimates of inter-annual variation or trends in basin-scale precipitation are 

available, analyses have been conducted based on station observations. Archer and Fowler 

(2004) found no trend for stations with long records covering the whole of the twentieth 

century, but identified significant increasing trends in annual, winter and summer 

precipitation at some stations between 1961 and 1999. With the data record updated into the 

twenty-first century, Hasson et al. (2017) also found winter precipitation to be rising at both 

valley and high elevation automatic weather stations (AWSs), although the latter have shorter 

records (1995-2012). Interestingly, Hasson et al. also suggested spring precipitation to be 

decreasing, while noting that summer precipitation may have exhibited a shift from long-term 

wetting since the early 1960s to drying since the mid-1990s. However, as only 18 years of 

data are available since the mid-1990s, it is unclear whether these recent tendencies are an 

artefact of natural variability or the origins of longer term shifts. 

The winter increasing trend could be consistent with studies identifying apparent rises in the 

frequency and strength of western disturbances, with a resultant upswing in extreme 

precipitation events (Cannon et al. 2015; Madhura et al. 2015). Interestingly, Yadav et al. 

(2009, 2010) found that the influences of the NAO and ENSO on winter precipitation 

variability in north-west India appear to have decreased and increased, respectively, in recent 
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decades. Yadav et al. proposed mechanisms by which western disturbances can be intensified 

under the warm phase of ENSO by passing through a cyclonic circulation anomaly in upper 

levels extending south-east from the Caspian Sea. The reduced influence of the NAO in 

winter is also borne out by the long records for the north-west Himalaya available to 

Bhutiyani et al. (2010), who suggest that the ENSO influence in summer has also weakened.   

Additional trends analyses have highlighted the notable inter-station variation in trends. As 

only some locations are classified as exhibiting statistically significant trends, the coherence 

of the regional signal is difficult to assess (Khattak et al. 2011; Bocchiola and Diolaiuti 2013). 

Part of the issue may be sensitivities to the differences in analysis windows used by different 

authors, the importance of which was demonstrated by Forsythe et al. (2012b). Moreover, 

methodologically, the precipitation trend analyses conducted previously have been relatively 

simple. The possibility of change points in the series has not been explored, as well as the 

potential for complex series that involve both change points and trends (e.g. Guerreiro et al. 

2014). The analyses may also be partly affected by fundamental criticisms of null hypothesis 

trend tests in hydrology, including flaws in methods commonly used to account for serial 

correlation, which have been raised recently by Serinaldi et al. (2018). 

2.3.2 Temperature 

Characterisation of the spatial and temporal variability in temperature in the UIB is paramount 

for hydrological modelling and water resources forecasting applications. Initial steps in this 

were taken by Archer (2004), who demonstrated that there is high spatial and vertical 

correlation of observed near-surface air temperatures on monthly, seasonal and annual time 

scales. Strong correlation was found to exist in fact for stations separated by large distances, 

suggesting that valley observations could provide a practically useful index of energy inputs 

across broad areas and vertical ranges, where finer scale variability is not measured. In trying 

to provide a more detailed picture of spatial variation, Mukhopadhyay and Khan (2016) 

attempted to quantify lapse rates by using single pairs of observation stations in gauged sub-

basins of the UIB. They documented notable intra-annual (monthly) and spatial variation 

between catchments, but it is possible that relying on just two stations in each sub-basin is 

overly sensitive to local variability, for example due to aspect effects (Daly et al. 2008). This 

was recognised by de Scally (1997) using observations in the proximate Kunhar catchment. 

Differences in lapse rates below and above the snowline were shown to be crucial.   
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Similar to findings from elsewhere in the world (e.g. Pepin et al. 1999; Blandford et al. 2008), 

the importance and extent of diurnal, synoptic, seasonal and inter-annual variability in lapse 

rates have been measured in the well-instrumented Langtang catchment in Nepal (Immerzeel 

et al. 2014; Heynen et al. 2016). The challenges in making similar characterisations from the 

sparse observation network in the UIB may be partly addressed using alternative data sources, 

particularly remote sensing. Forsythe et al. (2012a,b) demonstrated that land surface 

temperature (LST) retrieved from the Moderate Resolution Imaging Spectroradiometer 

(MODIS) is a proxy for energy inputs in the basin. The relatively high spatial resolution of 

some MODIS LST data products could also help to better characterise variations related to 

topography (e.g. aspect, slope), as well as hydrologically critical quantities like the freezing 

isotherm. That said, the relationship between LST and air temperature varies depending on the 

time of day, season, land surface and synoptic conditions, such that considerable care is 

required in interpretation (Pepin et al. 2016). Estimation of air temperature from LST is a 

developing endeavour (e.g. Benali et al. 2012; Wenbin et al. 2013; Zhang et al. 2018), 

although ground data are still required for statistical model development and validation. If 

multi-decadal products can ultimately be developed by combining MODIS with longer 

records from the Advanced Very High Resolution Radiometer (AVHRR) instrument then 

characterisation of trends could potentially also be undertaken (Forsythe et al. 2012a,b).  

To date, however, trend analysis has been based primarily on station observations, which 

show a number of interesting features relative to global trends. Fowler and Archer (2005, 

2006) found that measured winter temperatures (daily means and maxima) have increased 

since the middle of the twentieth century, while summer temperatures (daily means and 

minima) have in fact decreased over the same period. This has resulted in a widening diurnal 

temperature range (DTR) in all seasons, in contrast to climate model projections and global 

trends. Forsythe et al. (2012b) demonstrated the continuation of these trends into early in the 

twenty-first century. Other studies have independently confirmed these findings (Khattak et 

al. 2011; Bocchiola and Diolaiuti 2013; Hasson et al. 2017). In addition, Hasson et al. (2017) 

suggested that a summer cooling tendency could also be identified since the mid-1990s in 

high elevation automatic weather stations, which were not used in Fowler and Archer’s (2005, 

2006) original work. The trend is also evident in global reanalyses, including ERA-40 

(Quincey et al. 2009; Sharif et al. 2013) and ERA-Interim (Forsythe et al. 2015). The origins 

and likelihood of persistence of this summer cooling are major questions, as the implications 

for the basin’s cryosphere and hydrology are potentially huge. Potential drivers are explored 

in Section 2.6. 
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2.3.3 Surface Mass and Energy Balance Controls 

Studies of the full surface mass and energy balances in the UIB are limited due to poor data 

availability. Two studies attempt to use observed incoming shortwave radiation from the 

Water and Power Development Authority (WAPDA) automatic weather stations (AWSs) 

(Forsythe et al. 2015; Shrestha et al. 2015). However, the time series appear to exhibit severe 

and systematic under-estimation for a large part of the year, based on comparison with 

independent observations (Boerst 2013) and reanalyses (Forsythe et al. 2015). As such, 

seeking an alternative to local observations, Forsythe et al. (2015) used remotely sensed cloud 

cover fraction from MODIS with global reanalysis data to examine the modulating influence 

of cloud cover. This work characterised the seasonal, spatial and vertical variation in cloud 

cover, as well as the seasonally and diurnally varying connections between local cloud 

conditions and variability in near-surface air temperatures through cloud radiative effects. The 

possibility of diurnally asymmetric trends in cloud cover was also proposed as a contributor to 

the widening diurnal temperature range observed in the UIB. 

While Forsythe et al. (2015) noted that an extension of the remote sensing record would be 

required to assess this more conclusively, potentially through a combination of MODIS and 

AVHRR, two recent studies have gained access to cloud cover observed at Pakistan 

Meteorological Department (PMD) weather stations (Bashir et al. 2017; Waqas and Athar 

2018). Both studies report an increase in cloud cover in the summer months, which they relate 

to the observed summer cooling and widening diurnal temperature range through cloud 

reflection of incoming shortwave radiation. In principle this could be consistent with the 

explanations proposed by Forsythe et al. (2015), but the diurnal asymmetry in temperature (or 

cloud cover) change rates is not fully evaluated in either study. Moreover, as Forsythe et al. 

note, substantial complications are introduced by the correlation between daytime and night-

time cloud cover, and the potential for daytime anomalies to “carry-over” to dominate the 

night-time signal in summer. This complexity results in a noisy relationship, such that it is 

hard to delineate the precise role of cloud cover at present. 

The study by Bashir et al. (2017) also represents one of the only published evaluations of 

near-surface humidity and wind speed observations in the UIB. The authors show increases in 

both daytime and night-time humidity over recent decades, whereas wind speed observations 

show a decrease. Climatologies and inter-station variation are not reported. Other studies 

using available data on incoming radiation components, near-surface humidity and wind 



21 

 

speed are fairly few in number, generally focusing on glaciological applications or localised 

model input or evaluation, without climatological analysis (e.g. Mihalcea et al. 2006, 2008; 

Collier et al. 2013). There is thus substantial uncertainty in the spatiotemporal climatologies 

and variability of the climatic variables influencing (and being influenced by) surface mass 

and energy balances in the UIB. This is a clear problem for process-based evaluations of 

ablation, as well as wind transport and redistribution of snow. 

2.3.4 Ways Forward 

The previous sections have illustrated that substantial progress in understanding the climate of 

the UIB has been possible by using local observations, global reanalyses and remote sensing. 

However, it has also been argued that the spatiotemporal variability of hydrologically critical 

climate variables is still not well understood at a range of scales. Driven primarily by data 

paucity and limitations, as well as the restricted domains of applicability of complementary 

datasets, it continues to be difficult to describe climate fields at the relatively fine scales 

required in many types of process-based cryospheric and hydrological models, much like in 

most mountain regions in the world (Viviroli et al. 2011). 

One possible response to this problem harnesses modern computing facilities to simulate 

near-surface climate using high resolution numerical weather models (NWPs) or regional 

climate models. These models simulate the range of climate variables needed for process-

based cryospheric and hydrological studies, while maintaining physical consistency between 

variables. In various mountainous contexts, it has been shown that models like the Weather 

Research and Forecasting (WRF) model (Skamarock et al. 2008) can exhibit strong 

performance in hydrologically oriented applications, despite the complexity of terrain and 

variability of climate processes (Ikeda et al. 2010; Rasmussen et al. 2011; Prein et al. 2012; 

Silverman et al. 2013; Duethmann et al. 2013). The small but growing number of applications 

in the Hindu Kush, Karakoram and Himalayan ranges show similar potential (e.g. Collier et 

al. 2013, 2015; Norris et al. 2016). However, application and evaluation of this approach in 

the UIB is very limited, particularly at the basin and sub-basin scales of hydrological models. 

As such, we need to assess how well this relatively high resolution regional climate modelling 

can augment other datasets and improve our spatiotemporal climatologies in the basin. The 

High Asia Refined Analysis (HAR) is one such data product (Maussion et al. 2014), which 

has not been evaluated or applied in the UIB. This is introduced and discussed fully in 

Chapter 3.  
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2.4 Cryosphere 

2.4.1 Glaciers 

The most heavily glaciated part of the UIB is its share of the Karakoram mountain range 

(Figure 2.1). Glaciers here show a number of relatively unique features of relevance to 

hydrological and water resources studies. Firstly, avalanching on the extensive steep 

rockwalls is a key source of nourishment for a large number of glaciers, with avalanches often 

travelling well into the ablation zone (Hewitt 2011, 2014). From decades of field observation, 

Hewitt suggested that Karakoram glaciers may be classified by the relative contributions of 

avalanching, snowfall and wind-blown snow to accumulation, with some large glaciers in fact 

showing very limited accumulation areas compared with many alpine contexts. This largely 

prohibits application of basic glaciological measures, such as equilibrium line altitude (ELA) 

and accumulation area ratio (AAR), which are nevertheless still used in some studies 

(Mukhopadhyay and Khan 2016). Hewitt also suggested that the accumulation regime could 

be considered year-around, owing to summer storms and avalanching, while the ablation 

season is confined to summer. Ablation rates may be large due to high incoming shortwave 

radiation at this latitude, but sensitivity to summer weather is substantial. Storms can lead to 

sharp rises in albedo after snowfall, as well as suppressions in melt rates because of 

cloudiness. Capturing the influences of both snow redistribution and summer weather on 

accumulation and ablation would thus seem to be critical in water resources applications. 

The extensive debris cover in the lower parts of Karakoram glaciers has also been a subject of 

substantial interest. Quantification of the effects of surface topographic variation and debris 

thickness on ablation in the field has been undertaken, which confirmed the melt-enhancing 

effect of thin debris cover and the melt-inhibiting role of thicker cover (Mihalcea et al. 2006, 

2008). However, based on hypsometric considerations, Hewitt (2005, 2014) questioned 

whether the importance of debris cover has been overstated for water resources applications. 

Hewitt noted that, in general, most glacier ice (around 60 to 80%) is found between 3800 and 

5800 mASL, with 3800-4800 being the critical elevation band for most meltwater generation. 

This zone is mainly comprised of thin debris cover, dusty ice or bare ice. Several 

investigations in other areas have shown the significance of supraglacial ponds and ice cliffs 

as hotspots for intense melting (Reid and Brock 2014; Pellicciotti et al. 2015; Miles et al. 

2016), although the catchment-scale importance of these features is not well quantified in the 
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Karakoram. How to incorporate this partial understanding in hydrological studies is an open 

question. 

These points begin to highlight the huge importance of the vertical dimension for 

understanding Karakoram glaciers and their relationships with changing climate conditions 

over massive elevation ranges (Hewitt 2011, 2014). These large elevation ranges give rise to 

complex and varied thermal, hydrological and dynamic glacial regimes. Measurements are 

limited, but there is thought to be a mixture of cold, temperate and polythermal conditions 

present, while block flow induced by basal sliding is likely to underpin a large part of glacier 

motion (Hewitt 2011, 2014). Some limited quantification of glacier flow rates has been 

undertaken from field observations and remote sensing (e.g. Smiraglia et al. 2006; Quincey et 

al. 2009; Scherler and Strecker 2012), while a complex mixture of hydrological and thermal 

drivers appear to induce surging in numerous different glaciers at different times (Quincey et 

al. 2011, 2015). However, the inaccessibility of many glaciers is a substantial challenge for 

developing an integrated understanding of the multiple processes and nuances that connect 

glacier mass balance and dynamics. 

One of the most distinctive features of glaciers in the region is the so-called “Karakoram 

Anomaly” (Hewitt 2005). While other parts of the HKKH and Tibetan Plateau are generally 

following global trends of glacier recession, Karakoram glaciers appear to have shown 

relative stability overall in recent decades. Originally identified from observations of glacier 

expansions in the late 1990s (Hewitt 2005), several studies subsequently investigated and 

largely corroborated this finding using remote sensing for the early part of the twenty-first 

century (Bolch et al. 2012; Gardelle et al. 2013; Kääb et al. 2012; Gardner et al. 2013). These 

investigations variously used satellite gravimetry, laser altimetry and digital elevation model 

(DEM) differencing, but only covered a small number of years. Initial attempts to investigate 

the multi-decadal picture looked at area changes from satellite imagery (Bhambri et al. 2013; 

Rankl et al. 2014), which indicated the possibility of a shift from negative to stable or positive 

mass balance in the 1980s or 1990s, in broad agreement with observations (Hewitt 2005). 

More recently, digital elevation models have been constructed for multiple time slices and 

differenced to investigate mass changes since the 1970s. This has suggested that the 

Karakoram glaciers have largely shown stable or slightly negative mass balance for several 

decades (Bolch et al. 2017; Zhou et al. 2017). 
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While the anomaly was identified in the Karakoram, recent consensus is that it extends farther 

east (Cogley 2016; Azam et al. 2018). Based on ICESat laser altimetry for 2003-2008, Kääb 

et al. (2015) suggested that the anomaly of balanced/positive glacier mass balance is in fact 

centred on the western Kunlun Shan, with the Karakoram and Pamir mountains situated at the 

western margin of the anomaly. The findings from this short period study have been 

confirmed by repeat DEM differencing for a slightly longer time frame (2000-2016) (Brun et 

al. 2017). Wang et al. (2018) recently identified that area and surface elevation changes in the 

western Kunlun Shan since the 1970s are negligible. In conjunction with results for the same 

period from the Karakoram (Bolch et al. 2017; Zhou et al. 2017), this suggests that the glacier 

mass balance anomaly shows a relatively persistent spatial footprint over several decades. 

This raises some interesting questions about potential drivers of the anomaly, as discussed in 

Section 2.6 

2.4.2 Snow 

Snow processes in the UIB play critical roles with respect to glacier behaviour, hydrology and 

land-atmosphere interactions. The importance of snow redistribution by avalanches and wind 

for glacier accumulation has already been emphasised in Section 2.4.1 (Hewitt 2011, 2014), 

while Section 2.5 will show the huge contribution of seasonal snowmelt to river flows 

(Archer 2003; Mukhopadhyay and Khan 2015). As such, some attempts to investigate certain 

processes were undertaken several decades ago in the upper Kunhar catchment situated in the 

Jhelum basin, a tributary of the lower Indus that drains the southern slopes of the Himalaya. 

Particular emphasis was placed on quantifying avalanche mass (de Scally and Gardner 1989), 

the relative ablation rates of avalanched and undisturbed snow (de Scally and Gardner 1990), 

and the effects of avalanching on snowmelt runoff at the catchment scale (de Scally 1992).  

Ablation rates were found to be generally higher than in other mountain regions (de Scally 

and Gardner 1989). Reasonably high degree day factors for snow of around 6 mm/°C/day 

were also measured in the Garhwal Himalaya, to the south-east of the UIB, but the values are 

not necessarily outside of ranges reported from other regions (Singh and Kumar 1996; Singh 

et al. 2000) or indeed from other parts of the Himalaya (Hock 2003). Avalanche deposits 

showed higher surface melt rates compared with undisturbed snow, but the net effect of 

avalanching was in fact to delay runoff, as the deposits were concentrated in small areas of 

deeper, persistent snow (de Scally and Gardner 1989). For the Kunhar basin, it was estimated 
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that 6% of total runoff could be from avalanched snow following heavy winters, with 2 to 3 

months delay in snow disappearance possible relative to undisturbed snow (de Scally 1992). 

The work also confirmed that air temperature was strongly correlated with snowmelt, but the 

scatter in the relationship was large enough to give quite substantial error bounds for basin-

scale predictions, especially in the case of undisturbed snow, which was much more areally 

extensive (de Scally and Gardner 1989; de Scally 1992). Interestingly, flux measurements 

suggested a role for condensation as a source of melt energy, due to high near-surface vapour 

pressures following monsoon onset. This is somewhat of a contrast to common conditions 

where sensible and latent heat fluxes largely cancel each other, but measurements of the full 

surface energy balance were unavailable to explore this issue further unfortunately. Given the 

uncertainties over monsoon penetration into the HKH, as well as very limited characterisation 

of spatiotemporal variation in humidity, it is unclear how significant this process could be in 

the UIB. 

However, with the exception of a few studies like these ones, investigations of snow 

processes and snow dynamics in (or near) the UIB are limited, especially in comparison to 

glaciological studies (Hewitt 2014). This is in fact also true in much of the Himalayan arc, 

largely due to lack of observational data. A case for vastly expanding in-situ snow 

observations in the region was put forward by Rohrer et al. (2013), who demonstrated the 

need for local data to constrain remote sensing products in the face of potential changes in the 

surface energy balance resulting from climate change. In the absence of such observations, 

researchers have depended heavily on remote sensing. Forsythe et al. (2012a,b) characterised 

the annual cycle of snow-covered area (SCA) and its inter-annual variability using MODIS 

data products. They also provided some validation of the dataset using local observations and 

process-based reasoning, while showing the substantial potential of remote sensing data as a 

predictor in hydrological applications at multiple scales. Tahir et al. (2011a, 2015) also 

analysed MODIS SCA in relation to UIB hydrology, although their trend analysis was 

conducted for a very short record period. Trends in snow water equivalent (SWE) over a 

longer period were estimated using passive microwave remote sensing by Smith and 

Bookhagen (2018), but the absolute accuracy of these trends is likely to be limited by 

difficulties with SWE retrieval in complex terrain  

While remote sensing data have led to important developments in our understanding of snow 

cover dynamics, lots of unanswered questions remain with respect to snow processes in the 
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UIB. The energy balance of the snowpack and its spatiotemporal variability are poorly 

quantified, along with the relative magnitudes of melt and sublimation. Studies in other parts 

of the Himalaya and other high mountain regions suggest that sublimation could be large, 

particularly when considered jointly with wind transport (Strasser et al. 2008; Macdonald et 

al. 2010; Ayala et al. 2017; Stigter et al. 2018). Meanwhile, limited analyses of the surface 

energy balance composition mean caution is required in inferences about responses to future 

conditions or selection of model types. The importance of high incoming shortwave radiation 

has been highlighted, but studies of albedo and its variation at multiple scales are largely 

absent. Uncertainties in patterns and magnitudes of snow redistribution by avalanches and 

wind are also large. 

2.5 Hydrology 

2.5.1 Catchment Understanding 

Estimates of the mean annual water balance terms for the UIB at Tarbela Dam are given in 

Table 2.1. This suggests there to be reasonable agreement between the central estimates of 

both precipitation and evapotranspiration by Reggiani and Rientjes (2015) and Immerzeel et 

al. (2015). Estimates in the former study were derived primarily from water balance 

considerations, whereas estimates in the latter were based on inverse modelling to reconstruct 

precipitation from observed glacier mass balance and river flow (Section 2.3.1). While these 

estimates of precipitation and evapotranspiration are consistent with each other, uncertainty 

remains regarding their accuracy. Some degree of compensating error is likely, given that the 

precipitation and evapotranspiration terms cannot be validated independently. However, the 

estimates do represent an advance over earlier studies in which precipitation was severely 

underestimated, leading to implausible rates of glacier retreat (Reggiani and Rientjes 2015). 

Dahri et al.’s (2018) estimate of precipitation reported in Table 2.1 may still be a little low, 

but it is still more plausible than a precipitation rate of ~300 mm/a suggested in earlier 

investigations (e.g. Immerzeel et al. 2009, 2010). 

Three primary hydrological regimes can be identified in the UIB: glacial, nival and pluvial 

(Archer 2003). The higher parts of the basin give rise to the glacially dominated river flows of 

the Hunza, Shigar and Shyok sub-basins. Elsewhere, runoff mainly originates from seasonal 

snowmelt, derived from snowfall in the preceding winter and spring, or rainfall in the 

concurrent season. The coherent spatial differentiation of these glacial, nival and pluvial 

regimes stems in large part from variations in hypsometry and interactions of topography with 
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westerly and monsoonal weather systems. In each regime, runoff is low during winter, 

restricted to a baseflow with little fluctuation at sub-seasonal scales. River flows begin to rise 

in spring and peak in summer in all cases, although the precise timing of the peak varies 

depending on the relative contribution of glacial, nival and pluvial sources in a given 

catchment. As evidenced by comparing the annual cycle of catchment area with night-time 

temperatures above freezing (continuous melt area, CMA) with that of river flow, runoff in 

nival regimes tends to be limited by mass available for ablation, while energy inputs are the 

limiting factor in glacial regimes (Archer 2003; Forsythe et al. 2012b). In the UIB this tends 

to lead to relatively earlier and later runoff peaks in nival and glacial catchments, respectively, 

while inter-annual variability in flow rates and volumes can be very substantial in both cases. 

Source Precipitation (mm/a) Evapotranspiration (mm/a) Runoff (mm/a) 

Reggiani and Rientjes 

(2015) 

675 ± 100 200 ± 100 

460 
Immerzeel et al. (2015) 640 180* 

Dahri et al. (2018) 541 81* 

Table 2.1 – Mean annual water balance terms for the Upper Indus Basin at Tarbela Dam from the 

recent literature. Precipitation and evapotranspiration are estimated, but runoff is observed (1961-

2009 reference period). * indicates evapotranspiration calculated by subtracting observed runoff from 

estimated precipitation (where evapotranspiration was not reported in the study). 

Some attempts have been made to quantify the relative contributions of different components 

of river flow using hydrograph separation. For example, Mukhopadhyay and Khan (2015) 

estimated that on average 70% of the total flow reaching Tarbela reservoir is meltwater, of 

which 26% originates from glacier melt and 44% from snowmelt. The method underlying 

these estimates divides a catchment into three elevation bands, with simplifying assumptions 

about the relative contributions from snow and glaciers in each band for each month of the 

year. Rainfall-runoff is implicitly lumped in with the substantial baseflow components 

reported. The approach, informed by conceptual understanding, usefully takes into account 

catchment hypsometry and the vertical distribution of glacial areas. As such, it may give 

reasonable, rough approximations, but the uncertainties are likely to be significant, if 

unquantified so far. However, one of the alternative approaches to estimating flow 

components, numerical modelling, also leads to uncertain and substantially varying estimates. 

Taking the high elevation Hunza sub-basin as an example, model estimates of the glacier melt 
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contribution to mean annual flows range from 33% (Shrestha et al. 2015) to an implausibly 

high 85% (Lutz et al. 2016a), compared with 43% from the aforementioned hydrograph 

separation technique (Mukhopadhyay and Khan 2015). This reflects the ongoing modelling 

challenges in the UIB discussed in below, as well as the persistent uncertainties regarding the 

constitution of UIB river flows. 

While these uncertainties are important, seasonal river flows can still be forecast with a 

degree of skill sufficient to aid water managers. Fowler and Archer (2005, 2006) 

demonstrated that summer runoff in snow-dominated sub-basins is closely related to winter 

precipitation measured at valley stations. In contrast, in heavily glaciated sub-basins, it was 

found to be strongly associated with summer temperatures, again based on relatively low 

elevation observations. These findings support the idea that summer runoff in snow- and 

glacier-dominated catchments in the UIB is primarily limited by mass and energy constraints, 

respectively. They are also in agreement with the spatial correlation of observations, which 

show strong relationships in winter precipitation even for widely separated stations (Archer 

and Fowler 2004), as well as high correlations for summer temperatures at monthly and 

longer time scales (Archer 2004). Archer and Fowler (2008) used these findings to develop 

multiple linear regression models for seasonal river flow forecasting in the neighbouring 

Jhelum basin. Although the basin is influenced by the South Asian summer monsoon, winter 

(rather than summer) precipitation was found to be a key predictor of spring and summer 

runoff, in agreement with an earlier study (De Scally 1994). 

The success of flow forecasting here suggests that, although sparse, the observation network 

in the UIB and neighbouring basins provides significant information content for hydrological 

applications. Forsythe et al. (2012a,b) extended this using MODIS remote sensing data 

products. They found that quantities derived from snow-covered area (SCA) and land surface 

temperature (LST) products provide adequate proxies for anomalies in precipitation and near-

surface air temperature, respectively. As such, they also demonstrated the potential for these 

products to be used in hydrological forecasting at multiple scales. 

Previous hydrological analyses have also examined trends in river flows. Fowler and Archer 

(2006) found that summer (and therefore annual) flows in the high elevation, heavily 

glaciated Hunza catchment draining the western Karakoram declined substantially since the 

mid-1960s when records began. In contrast, river flows in the Shyok catchment farther east in 

the Karakoram did not show such a clear reduction. Mukhopadhyay et al. (2015) reached 
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similar conclusions for the Hunza catchment with updated flow records. Conversely, for the 

Shyok sub-basin, Mukhopadhyay et al. suggested that summer flows may be increasing. 

However, they only found these trends to be statistically significant after smoothing the data, 

whereas trends in the Hunza catchment were identified as significant with both raw and 

smoothed data. For the Shigar basin, which flows down from the central Karakoram, 

Mukhopadhyay and Khan (2014) again inferred rising river flows from smoothed series alone.  

With Mukhopadhyay and Khan’s (2014) and Mukhopadhyay et al.’s (2015) analyses 

conducted on (stratified) monthly time series (i.e. only 30-40 data points in the context of 

substantial inter-annual variability), applying trend analysis to smoothed series may not be 

sufficient to form definitive conclusions. This is particularly the case for the Shigar basin, 

where nearly half of the flow series was estimated from another gauging station. While 

reported correlations between the gauges may be reasonably high (explaining between 35 and 

77% of total variance in summer months), the (unquantified) errors are still likely to be large 

enough to significantly affect procedures as sensitive as trend analyses. More generally, 

approaches based on resampling or simulation may provide a better means of seeing whether 

any notable trend is present in the context of such variability. 

Sharif et al. (2013) also noted that middle elevation nival catchments tended to show 

increasing summer and annual flows, although the statistical significance of trends was found 

to be quite variable. This study also showed that trends in runoff timing are not clear or 

consistent between catchments. The picture of hydrological change is thus complicated and 

raises the question of how much meaningful signal can be identified from the noisy time 

series. Indeed, Sharif et al. note that even where strong trends are apparent, such as in the 

Hunza catchment, inter-annual variability tends to far exceed trend magnitude. Therefore, 

historical hydrological variability would likely provide a reasonable basis for short- or 

medium-term water resources and flood risk planning. 

This discussion suggests that we have a reasonable understanding of hydrological regimes, 

sources of river flows, and climatic controls on summer runoff in snow- and glacier-

dominated catchments and their spatial correlation. This provides good practical means for 

seasonal river flow forecasting. Trends are ambiguous to a degree, with heavily glaciated 

catchments most likely showing declining or stable river flows and nival catchments 

potentially showing increasing flows in some cases. Runoff timing trends are messy. 

However, this means that numerous gaps in our knowledge are present. Firstly, catchment 
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water balances are still poorly quantified. Observed runoff data are available for relatively 

large sub-basins, but the spatiotemporal distribution of precipitation is still uncertain (Section 

2.3.1) and evapotranspiration/sublimation estimates are few in number. Secondly, the relative 

contributions of different sources of river flow are still problematic, as evidenced by the large 

range of reported estimates in the literature. Thirdly, flow pathways and travel times are not 

well constrained. Data on surface and subsurface hydraulic properties are absent, with the role 

of substantial valley superficial deposits (glaciofluvial sediments) in the hydrological system 

little known. Finally, we need to understand the origins of the complex hydrological trends, in 

order to better understand how to manage water resources in the future. This is discussed in 

Section 2.6. 

2.5.2 Modelling 

In emphasising the need for uncertainty analysis in hydrological modelling, Hrachowitz and 

Clark (2017, p. 3966) recently suggested that “[w]e are currently in a position where we, in an 

exaggerated way, feed wrong models with wrong input data and calibrate them to wrong 

output data to obtain wrong parameters”. This is of course a simplification, and one which 

should not undermine the invaluable role of modelling in complex terrain and elsewhere 

(Burlando et al. 2002). However, it does allude to the challenges present in each aspect of 

modelling basins like the UIB. Amplified in mountain regions (Klemeš 1990), the often 

substantial uncertainties in input and evaluation data mean that in most cases we can only 

partially characterise the array of interacting processes and spatiotemporal variability in a 

catchment. In conjunction with the simplifications of reality necessary in models, it can thus 

be difficult to know if a given model is the most appropriate one, if it produces the right 

results for the right reasons, or if it is truly justified by available data. This has led to 

longstanding and unresolved debates on the appropriateness of different model formulations 

for different applications across the field of hydrology (e.g. Beven 1989; Grayson 1992; 

Beven 2001, 2002, 2006; Wood et al. 2011; Beven and Cloke 2012; Montanari and 

Koutsoyiannis 2012; Fatichi et al. 2016; Savenije and Hrachowitz 2017; Clark et al. 2017; 

Hrachowitz and Clark 2017). 

For the UIB specifically, we contend that its particularly severe data paucity lies at the heart 

of barriers to modelling improvements. For example, similar to other mountain contexts, the 

acute limitations in observation coverage, accuracy and representativeness mean that climate 

inputs to hydrological models need to be modelled themselves (Klemeš 1990). Most prior 
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modelling studies in the UIB and broader Himalayan region have taken simple approaches to 

this challenge. Temperature fields are typically distributed in space based on elevation alone, 

using lapse rates and time series from one or more observation locations. A similar approach 

is often taken with precipitation, with vertical gradients sometimes approximated from 

published orographic profiles (e.g. Bocchiola et al. 2011) and sometimes estimated through 

calibration procedures (e.g. Ragettli et al. 2013). Troublingly, data products with known 

limitations in reproducing precipitation amounts and gradients have also been used in some 

cases (see e.g. Immerzeel et al. 2009, 2010; Reggiani and Rientjes 2015), although the need to 

simulate a credible water balance is now more widely understood (Immerzeel et al. 2015). 

Other studies have used remote sensing products, often with snow-covered area (SCA) as an 

input instead of precipitation (e.g. Tahir et al. 2011b), which has the disadvantages of not 

tracking the water balance or being easily applied in climate change impact studies. Finally, a 

small number of studies have attempted to use statistical downscaling of coarse reanalysis 

products (e.g. Brown et al. 2014). However, there are not many such studies in the Himalaya, 

and the single example from the UIB appears to have used erroneous incoming radiation data 

in its downscaling (Shrestha et al. 2015). 

Most of these observation-based approaches are restricted to more commonly collected 

climate variables, namely precipitation and temperature. To some extent this limits the type of 

models that can then be applied. This fits with the tendency for applying simple modelling 

approaches in the UIB identified in Chapter 1. Focusing on snow and ice ablation, the primary 

source of river flows in the UIB, the algorithms applied in the majority of models are 

typically versions of temperature index (TI) (e.g. Bocchiola et al. 2011; Rees and Collins 

2006; Immerzeel et al. 2009, 2012a, 2013; Soncini et al. 2014) or enhanced temperature index 

(ETI) approaches (e.g. Ragettli et al. 2013, 2015; Immerzeel et al. 2014; Minora et al. 2015). 

The former scales melt with air temperature following exceedance of a critical temperature 

threshold, while the latter additionally incorporates a term for net shortwave radiation at the 

surface. Many of the aforementioned studies consider these approaches to perform 

satisfactorily with respect to observed river flows, remote sensing of snow cover dynamics 

and, increasingly, regional glacier mass balance estimates from geodetic or other methods. 

Yet, as essentially semi-empirical abstractions from the surface energy balance, there are 

several unresolved questions relating to these methods. This includes the extent to which the 

ETI method provides better performance or robustness compared with the classical TI 

method, especially in different climatic settings (e.g. MacDougall et al. 2011; Vincent and Six 
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2013; Gabbi et al. 2014; Réveillet et al. 2017). For both methods, the stability of parameters 

in space and time can also be questioned (Matthews et al. 2015), while sublimation and its 

enhancement by wind transport is usually neglected. 

The corollary to simple modelling approaches being preferred in the UIB is that more 

complex approaches are little explored. These include methods predicated on solution of the 

surface energy balance. Only one such attempt has been made in the UIB (Shrestha et al. 

2015), albeit with apparently erroneous incoming radiation inputs. Applications elsewhere in 

the Himalayan region are mainly restricted to short point-scale simulations driven with AWS 

measurements to help calibrate ETI parameters (Ragettli and Pellicciotti, 2012; Pellicciotti et 

al., 2012; Ragettli et al., 2013; Ragettli et al., 2015). Yet process-based energy balance models 

may confer advantages for testing hypotheses about processes, completing mass and energy 

balance frameworks in coupled land-atmosphere models, and making projections in non-

stationary climates. These potential advantages arise because of a closer approximation of the 

physics thought to best describe the relevant processes. However, in line with broader debates 

in hydrology (Beven 2012), there are questions as to whether higher complexity may be 

reasonably borne out by the data available for model input, parameter assignment and 

evaluation. Indeed, based on model inter-comparisons in other regions, it is likely that only 

groups of generally well-performing process-based model configurations are identifiable 

(Etchevers et al. 2004; Rutter et al. 2009; Essery et al. 2009, 2013; Magnusson et al. 2015; 

Lafaysse et al. 2017). 

The multiple climate variables needed in more complex models can be estimated from various 

parameterisations, but their accuracy may vary between contexts and their applicability is not 

always easy to determine in data sparse regions. Moreover, observation-based approaches 

tend to substantially simplify spatiotemporal variability where station density is low; the 

degree to which this is acceptable for a given application is often unclear. Elsewhere in the 

Himalaya, in small catchments where station density is higher, observation-based estimation 

of variability has been shown to give good performance, while permitting inferences about 

catchment behaviour (Ragettli et al. 2015). However, how to upscale to larger basins is an 

outstanding question, while most of the UIB does not have any detailed measurement 

networks in smaller scale catchments (at least where the data is in the public domain). These 

issues reinforce the need to investigate further the potential for high resolution regional 

climate modelling to augment other data sources in the UIB (Section 2.3.4) 
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The issues raised here are introduced in more detail in Chapters 3, 4 and 5, which provide 

additional discussion of the relevant literature. However, in concluding this section, we note 

that there is substantial scope for more model inter-comparison in the UIB and surrounding 

regions. There has been little work comparing simple and more complex model 

configurations. It is thus timely to consider whether recently developed data products enable 

the application of more process-based models, and whether this confers notable advantages in 

different applications. 

2.6 Climate Change 

As noted in Section 2.4.1, the “Karakoram anomaly” was initially designated as an essentially 

glaciological phenomenon. Specifically, the term referred to the relative stability of glacier 

mass balance compared with regional and global signals of glacier retreat. However, based on 

the climatic and hydrological data discussed above, it seems reasonable to assert that this 

region shows anomalous behaviour in other respects too. Climatically, this pertains 

particularly to the summer cooling temperatures and widening diurnal temperature range, 

driven particularly by declining daily minimum temperatures (Section 2.3.2). The significance 

of trends in observed precipitation is variable, although some increase may have occurred in 

winter. Meanwhile, depending on which part of the range is considered, river flows appear to 

have fallen or been roughly stable in the heavily glaciated catchments draining the Karakoram 

(Section 2.5). How these climatic, glaciological and hydrological patterns might be connected, 

as well as the nature of potential underlying drivers, are thus critical questions. 

Different studies have emphasised different aspects of this multi-dimensional anomaly, while 

also offering different explanations of its causes. Initial attempts to understand the anomaly 

focused primarily on glaciological factors, including the thick debris cover that can be found 

on long, relatively low-lying glacial tongues. Based on remote sensing of terminus dynamics, 

Scherler et al. (2011) suggested that faster rates of glacier retreat were found in areas with less 

extensive debris cover, whereas thick debris cover in the Karakoram was associated with 

terminus stability. However, subsequent work showed that rates of surface lowering of debris-

covered and clean ice glacier tongues were often in fact similar (Gardelle et al. 2012; Bolch et 

al. 2012). The factors contributing to this are thought to include “hotspots” of ablation on 

debris-covered glaciers, namely supraglacial ponds and ice cliffs, which partly compensate for 

the low melt rates under thick debris elsewhere, as well as lower fluxes of ice into slow-

moving debris-covered ablation zones with shallower gradients (e.g. Brun et al. 2018). 
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Thus, despite its importance, an explanation of the anomaly based on debris cover alone 

appears incomplete so far, especially as it does not consider the possible relationships 

between glaciological, climatic and hydrological behaviour in the region. Hewitt (2005, 2011) 

suggested instead that verticality and the differentiation of myriad processes by elevation may 

be key to the Karakoram’s anomalous behaviour, noting that only some of the processes and 

features (or some interaction of them) would be particular to the range. One such feature is the 

exceptional hypsometry of the Karakoram, with its unique fraction of very high elevation 

areas, which are additionally subject to a year-round accumulation regime. Summer snowfall 

would both nourish glaciers with additional mass and reduce ablation through increasing 

surface albedo and cloudiness. Fowler and Archer (2006) and Hewitt (2011) noted that the 

sensitivity of ablation to summer weather could mean that the observed trends of summer 

cooling contribute significantly to reduced ablation (see also Quincey et al. 2009), as manifest 

in observed river flows in some high elevation, heavily glaciated sub-basins (Section 2.5). 

This explanation essentially puts climate as the principal driver of recent glacier and river 

flow behaviour in glacially dominated UIB regimes. Other studies have also foregrounded the 

role of climate, albeit with different emphases and often with reference to only some 

dimensions of the climatic, glaciological and hydrological anomaly. For example, Kapnick et 

al. (2014) used relatively high resolution modelling to suggest that the larger winter snowfall 

in the Karakoram helps to make it less sensitive to warming than the Himalaya, such that the 

difference in seasonal precipitation cycles is important. Ridley et al. (2013) also emphasise 

precipitation, finding that increases in winter western disturbance activity may maintain a 

comparatively high mass input to Karakoram glaciers. Other authors suggest that rising 

summer precipitation could be important in directly supporting runoff, albeit based only on 

trend analysis using reanalyses rather than observations (Mukhopadhyay et al. 2015). The co-

variation of trends in cloudiness, humidity, precipitation and wind speed with falling summer 

temperatures has also recently been studied, albeit based on data from low elevations stations 

alone (Bashir et al. 2017). The authors hypothesise that increasing summer cloudiness has 

limited temperature rises and reduced ablation in the Karakoram. However, the drivers behind 

trends across multiple climate variables are not considered. 

One attempt to provide an integrated explanation of the climatic, glaciological and 

hydrological anomaly is the Karakoram Vortex (KV). As introduced in Chapter 1, Forsythe et 

al. (2017) introduced the KV as a means of better understanding the regionally differentiated 

trends across the Himalaya and Tibetan Plateau. A fuller description is provided in Chapter 6, 
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but in essence the KV describes anomalous circulation patterns centred on or near the 

Karakoram throughout the year. These anomalies are related to variations in the position and 

intensity of the subtropical westerly jet, as well as the South Asian monsoon in summer. A 

key feature of the KV is that its circulation anomalies contract from winter to summer, 

resulting in a dipole in climate response between the Karakoram and the eastern Himalaya 

and Tibetan Plateau. In conjunction with trends in westerly and monsoonal circulation, this 

may be critical for understanding divergent climate and glacier trajectories. Similar findings 

were recently reached by Mölg et al. (2017) and Norris et al. (2018). These explanations 

usefully start to relate regional circulation to local climate patterns, recognising the 

importance of interplay between westerly and monsoonal systems (Krishnan et al. 2009; 

Bothe et al. 2011; Saeed et al. 2011; Wei et al. 2017). However, much is still to be 

investigated, including the drivers of regional circulation variability and trends, as well as the 

mechanisms leading to sub-regional differentiation in climate trajectories. 

In terms of projections for the future, some general tendencies are common in most previous 

projections. These include initial increases in summer river flows due to higher rates of 

glacier melt in a warmer world. This is ultimately followed by a reduction in summer flows 

following glacier wastage, although this tends to be accompanied by a shift in the annual 

hydrograph involving higher flows in spring (e.g. Immerzeel et al. 2013; Lutz et al. 2014; 

Soncini et al. 2014; Ali et al. 2015). However, the rates and magnitudes of changes in the 

timing and magnitudes of river flows vary notably in model-based studies, particularly due to 

the wide range of projections from different climate models (e.g. Ragettli et al. 2013; Lutz et 

al. 2014, 2016a,b; Palazzi et al. 2015). Spread in both precipitation and temperature 

projections is very large (e.g. Palazzi et al. 2015; Lutz et al. 2016b), although most models 

tend to project warming. Uncertainties in potential climate and hydrological trajectories for 

the UIB are thus very large (Lutz et al. 2016a,b). 

In order to understand and potentially constrain this spread, it is first critical to evaluate how 

well GCMs simulate key features of the regional climate, and whether there are connections 

between model skill, process representations and projections. Previous studies have evaluated 

a number of pertinent aspects of GCM behaviour over the Himalaya and Tibetan Plateau. 

These include: precipitation and temperature climatology (e.g. Su et al. 2013; Palazzi et al. 

2015; Hasson 2016a; Hasson et al. 2016); land- and near-surface processes, feedbacks and 

elevation-dependent warming (e.g. Rangwala et al. 2013; Ghatak et al. 2014; Rangwala et al. 

2016; Palazzi et al. 2017; Guo et al. 2018); monsoon dynamics (e.g. Sperber et al. 2013; 
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Levine et al. 2013; Saha et al. 2014; Wang et al. 2017); and other relevant facets of global and 

regional atmospheric circulation (e.g. Lee et al. 2014; Xu et al. 2017). However, substantial 

gaps remain. These include identifying whether climate models reproduce some of the 

aforementioned processes likely to lead to the unique behaviour of the Karakoram and UIB 

over recent decades. This is examined at length in Chapter 6. 

While this study focuses particularly on KV regional circulation influences on climate, 

cryospheric and hydrological trajectories in the UIB, there are other factors that may also have 

important influences. With their pronounced dynamic and thermodynamic effects across large 

parts of Asia, aerosols are one such factor. Aerosols affect the flux of shortwave radiation 

reaching the surface, convective potential and atmospheric stability, atmospheric heating 

profiles, cloud microphysics and precipitation (Ramanathan et al. 2001, 2007; Li et al. 2016). 

This leads to effects on regional circulation patterns, including monsoon onset, development 

and evolution (Bollasina et al. 2013). Indeed, aerosols are thought to be implicated in the 

weakening of the South Asian summer monsoon circulation over recent decades, as well as 

the accompanying precipitation decrease over India (Bollasina et al. 2011, 2014; Li et al. 

2016). Given the important interplay between the subtropical westerly jet and the monsoon in 

shaping UIB summer climate, as described earlier, regional patterns and trends in aerosols are 

therefore of relevance to climate change and water resources in the basin.  

However, some of the more localised effects of aerosols on climate may be comparatively 

restricted in the UIB, owing to the lower aerosol optical depth in this part of Asia relative to 

regions farther to the south and east (Li et al. 2016). Nevertheless, there is still potential for 

some hydrologically significant aerosol influences, such as periodic deposition of black 

carbon or dust to reduce snow and ice surface albedo and increase melt rates (Gertler et al. 

2016). There may be variation within the UIB with respect to the occurrence and relevance of 

this process, with deposition potentially more prevalent in the western Himalaya than the 

Karakoram (Gautam et al. 2013). While it is clearly important to consider possible aerosol 

and deposition effects on UIB climate and surface properties, the issues represent an 

additional layer of complexity that should be studied after progress has been made on the core 

research gaps guiding this work, as outlined in Chapter 1.   

2.7 Conclusions 

The review suggests that, despite vital progress in many areas, uncertainties in the 

spatiotemporal variability of surface and near-surface climate in the basin are still large. It is 
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contended that regional climate modelling at moderate or high resolution represents a 

valuable but under-utilised source of data to augment local observations, remote sensing and 

global reanalyses in this context. With the increasing potential for these datasets and methods 

to partly address the data gap, it is suggested that evaluations of the applicability of process-

based models solving the full surface energy and mass balances are now needed. The ongoing 

difficulty in identifying appropriate model structures and process representations, even in 

well-instrumented contexts, suggests the need for systematic modelling frameworks to 

explore the influence of modeller decisions and identify where the ensemble of modelling 

possibilities can be constrained. The review also finds that there is increasing understanding 

of how the interplay and evolution of mid-latitude westerly and monsoonal circulation 

systems are shaping the unique climatic, cryospheric and hydrological trajectories in the 

basin. However, future trajectories remain highly uncertain. Further process-based evaluations 

of climate models are thus required to see if projections can be better constrained. 
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Chapter 3  

 

Near-Surface Climate Representation in the High Asia Refined Analysis 

3.1 Introduction 

Runoff generated in the high mountains of the Upper Indus Basin (UIB) is a vital resource for 

vast populations. Combined with concerns about the impacts of climate change, this has led to 

substantial interest in the UIB’s climate and hydrology over many decades (e.g. Young and 

Hewitt 1990; Archer et al. 2010). Yet here, like most mountain regions in the world, data 

paucity remains a persistent and major challenge for researchers and practitioners (Viviroli et 

al. 2011). Measurement networks are sparse and focused on lower elevation valley locations, 

while data quality and continuity issues are inherent in such a harsh and remote environment. 

This hinders application of one of the key tools for research and management in the basin, 

namely process-based cryospheric and hydrological modelling. 

One response to this problem harnesses modern computing facilities to simulate near-surface 

climate in the Himalaya using high resolution numerical weather models (NWPs) or regional 

climate models. For example, Collier and Immerzeel (2015) found that the Weather Research 

and Forecasting (WRF) model (Skamarock et al. 2008), with a 1 km resolution inner domain, 

reproduces the key features of variability in a detailed measurement network in the Langtang 

catchment, Nepal. Similarly, Karki et al. (2017) demonstrate the added value of convection-

permitting simulations elsewhere in the Nepalese Himalaya. Good correspondence between 

WRF and observations was also found by Collier et al. (2013, 2015) in simulating glacier-

atmosphere interactions in the Karakoram, and by Norris et al. (2016) in their study of the 

spatiotemporal distribution of precipitation across the Himalayan arc.  

The relatively small number of WRF simulations conducted to date for this region therefore 

show clear potential to supplement local observations. While most of these experiments are 

for reasonably short (<1 year) simulation periods, Maussion et al. (2014) performed high 

resolution WRF simulations of 14 years for the whole of the Tibetan Plateau and its adjoining 

mountain ranges. The resulting publicly available dataset is the High Asia Refined Analysis 

(HAR), which is in essence a dynamical downscaling of coarser global analysis using 30 and 

10 km nested domains. For this region, the HAR thus represents a uniquely fine spatial 

discretisation for a WRF simulation of this length over such a large area. As such, it has 
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recently been used to improve our understanding of spatial and temporal patterns of 

precipitation variability and atmospheric water transport (Maussion et al. 2014; Curio et al. 

2015; Curio and Scherer 2016). The HAR has also been employed to successfully provide 

offline meteorological forcing data for models of glacier mass balance and hydrology 

(Huintjes et al. 2015; Biskop et al. 2016; Tarasova et al. 2016), as well as to examine the 

connection between mid-latitude westerlies and glacier mass balance in monsoonal parts of 

the region (Mölg et al. 2014). 

In their evaluation of HAR precipitation skill, Maussion et al. (2014) found that the dataset 

corresponds well with local observations, certain features of the Tropical Rainfall Measuring 

Mission (TRMM) product (Huffman et al. 2007), and known relationships between 

precipitation and topography. Our aim in this paper is to extend the evaluation of the HAR 

dataset in several ways. Firstly, we focus in detail on the near-surface climate of the UIB, an 

area for which ground-based measurements were unavailable for Maussion et al.'s (2014) 

original assessment. Secondly, we go beyond precipitation to consider other climate variables 

related to surface mass and energy balances, including temperature, humidity and incoming 

radiation. Finally, we explore some of the key factors affecting HAR performance. For this, 

we concentrate on cloud and albedo influences, based on the nature of bias patterns identified 

in near-surface variables. 

The primary focus in our evaluation is on HAR climatological representations and biases, as 

reasonable performance in these respects is vital for numerous applications. The findings from 

this analysis can therefore inform future hydrological and cryospheric modelling and other 

applications in this part of the Himalayan arc, as well as regional WRF modelling. 

3.2 Study Area 

The UIB, shown in Figure 3.1, exhibits pronounced hydroclimatic variation on a range of 

scales. The higher parts of the basin give rise to the glacially dominated hydrological regimes 

of the Hunza, Shigar and Shyok sub-basins (Sharif et al. 2013). Elsewhere, runoff mainly 

originates from seasonal snowmelt, derived from snowfall in the preceding winter and spring, 

or rainfall in the concurrent season (Archer 2003). The coherent spatial differentiation of 

these glacial, nival and pluvial regimes stems in large part from variations in hypsometry and 

interactions of topography with westerly and monsoonal weather systems. 
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Figure 3.1 – Regional overview and study area maps. The inner HAR domain (HAR10), orography and 

the UIB study area are given in (a), while (b) indicates the locations of climate stations and river 

gauges used in this analysis (details in Table 3.2 and Table 3.3). The UIB boundary was delineated by 

Khan et al. (2014). 

Much of the precipitation in the basin occurs in winter and spring, often originating from 

westerly disturbances (Filippi et al. 2014; Archer and Fowler 2004). These synoptic scale low 

pressure systems are guided towards the UIB from the Atlantic and Mediterranean by the 

subtropical westerly jet. There are some relatively infrequent monsoon-related storms in 

summer, but westerly tracking depressions can also bring precipitation at this time of year, 

even though the subtropical westerly jet shifts to the north of the Karakoram (Hewitt 2014). 

Precipitation is strongly orographically forced, leading to a general increase with elevation to 

around 5500 mASL but then most likely a decrease at higher elevations, due to exhaustion of 
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moisture availability (Hewitt 2014). The interplay of precipitation sources and topographic 

barrier effects incurs substantial horizontal gradients in precipitation across the UIB (Young 

and Hewitt 1990; Reggiani and Rientjes 2015). 

Archer (2004) demonstrated that there is high spatial and vertical correlation of observed 

near-surface air temperatures in the UIB on monthly, seasonal and annual time scales. 

Temperature measured at a relatively small number of valley-based stations thus explains a 

substantial proportion of observed variability in melt season runoff in heavily glaciated, 

energy-limited catchments (Archer 2003; Fowler and Archer 2005). In contrast to many parts 

of the world, observed summer temperatures in the UIB show a cooling trend (Fowler and 

Archer 2006; Forsythe et al. 2012b), which is concurrent with comparative glacier mass 

stability (Hewitt 2005; Brun et al. 2017). This appears to be related to interactions between 

the summer monsoon and the Karakoram/Western Tibetan Vortex system (Forsythe et al. 

2017; Li et al. 2018). Studies of the full surface energy balance in the UIB are limited due to 

poor data availability, although the modulating influence of cloud cover has been examined 

by Forsythe et al. (2015). 

Here we focus particularly on the north-west part of the UIB (hereafter NWUIB) shown in 

Figure 3.1. This 52,473 km
2
 domain is high-yielding, contributing ~50% of UIB runoff to 

Besham, upstream of Tarbela Reservoir, despite comprising only ~30% of the catchment area. 

The NWUIB contains a mixture of the pluvial, nival and glacial hydrological regimes 

described above. 

3.3 Data and Methods 

We build our evaluation of the HAR climatology and biases primarily around local 

hydroclimatic measurements. For reference, we also incorporate some limited comparisons 

with gridded climate data products commonly applied in this region, namely TRMM and 

APHRODITE (Yatagai et al. 2012). However, these precipitation products exhibit important 

limitations in the UIB. Specifically, TRMM does not adequately detect snowfall, which 

comprises a substantial proportion of UIB precipitation (Forsythe et al. 2012a; Reggiani and 

Rientjes 2015; Maussion et al. 2014). APHRODITE is based on interpolation of the small 

number of in-situ observations, which are biased towards drier, valley locations. This  

inevitably leads to underestimation of precipitation at higher elevations and at the catchment 

scale (Immerzeel et al. 2015). Therefore, here we focus more on alternative datasets and 

approaches based on MODIS products, in order to supplement local observations and provide 
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broader spatial coverages, as detailed in Table 3.1 and Sections 3.3.2-3.3.3. In addition, we do 

integrate some comparisons with global reanalysis products, drawing on ERA-Interim (Dee et 

al. 2011), JRA55 (Kobayashi et al. 2015) and NASA MERRA2 (Gelaro et al. 2017). 

However, our primary aim is to evaluate the high resolution HAR with respect to the best 

available observations, rather than to compare it with datasets at generally coarser resolutions. 

Variable Comparison Datasets Used 

Precipitation 

Point-scale climatology In-situ observations, ERA-Interim, JRA55, MERRA2 

Catchment-scale water 

balance closure 

Gauged river flows, ERA-Interim, JRA55, MERRA2, 

APHRODITE, TRMM 

Vertical gradients Published precipitation-elevation relationships 

Horizontal gradients Snow water equivalent (SWE) reconstruction based on 

MODIS remote sensing (MOD10A1 SCA) 

Temperature 

Point-scale climatology In-situ observations 

Spatial patterns In-situ observations (with regression for lapse rates and 

freezing isotherms) 

Humidity 

Point-scale climatology In-situ observations 

Spatial patterns In-situ observations (vertical profiles) 

Radiation Point-scale climatology In-situ observations 

Cloud 

NWUIB spatial climatology MODIS remote sensing (MOD06L2 cloud cover fraction, CCF) 

Correlation with 

temperature variability 

MOD06L2 CCF and in-situ temperature observations 

Albedo 

NWUIB spatial climatology MODIS remote sensing (MCD43A3 albedo) 

Correlation with 

temperature variability 

MCD43A3 albedo and in-situ temperature observations 

Table 3.1 – Summary of climate variables investigated, comparisons undertaken and datasets used. 

3.3.1 High Asia Refined Analysis (HAR) 

The initial and boundary conditions for the WRF simulations comprising the HAR were 

provided by the NCEP FNL (Final) Operational Global Analysis dataset (ds083.2), which 

uses the same model as the NCEP Global Forecast System (GFS) (NOAA/NCEP 2000). The 
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FNL dataset integrates surface and upper air observation networks, as well as remote sensing 

products. The HAR used a daily re-initialisation strategy to prevent drift from observed 

synoptic conditions over its total simulation period (October 2000 to October 2014). Each day 

was simulated independently of all other days. For any given day, 36 hours were simulated, 

beginning at 12:00 UTC on the previous day. The first 12 hours were then discarded as a spin-

up to decrease the influence of the initial conditions, which were interpolated from the FNL 

dataset to the model grid. The outputs of all of the individual daily simulations were 

ultimately concatenated to produce the overall time series. 

This approach to initialisation and spin-up was found to perform well relative to other 

computationally feasible strategies during extensive testing (Maussion et al. 2011, 2014) and 

in other Himalayan modelling studies (e.g. Norris et al. 2015; Cannon et al. 2017b). However, 

it does lead to a degree of discontinuity in the time series for key land surface states, such as 

snow water equivalent (SWE). This has implications for the land surface water balance, as 

discussed in Sections 3.3.2 and Appendix A, Section A1.3. 

Two-way nesting was applied to run WRF with a 10 km resolution child domain (HAR10) 

within a broader 30 km resolution parent domain. The 30 km domain was then run separately, 

without the child domain, to remove any inconsistencies, thereby producing HAR30. 

Differences between HAR10 and HAR30 therefore provide insights into the effects of 

resolution and simulation strategy. Further details are given in Appendix A (Section A1.1) 

and Maussion et al. (2014). 

3.3.2 In-situ Observations and Data Processing 

Climate Observations 

This study uses local climate observations from 13 stations covering a range of elevations, as 

detailed in Table 3.2 (see also Figure 3.1b). These datasets have been subjected to quality 

control procedures and used in a number of previous studies (e.g. Archer and Fowler 2004; 

Fowler and Archer 2006; Collier et al. 2013; Soncini et al. 2014). We performed additional 

checks for inconsistencies, spurious values and outliers, particularly for the most recent parts 

of the data. For a given station, these checks included comparisons of recently obtained data 

with climatologies derived from earlier parts of the time series, as well as inspections of inter-

station and inter-variable consistency. 
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ID Station Latitude Longitude Elevation 

(mASL) 

Variables Period Source 

1 Astore 35.366 74.900 2394 P,T 1961-2010 PMD 

2 Gilgit 35.916 74.333 1460 P,T 1961-2010 PMD 

3 Skardu 35.300 75.683 2210 P,T 1961-2010 PMD 

4 Rama 35.358 74.805 3140 P,T 1995-2008 WAPDA 

5 Rattu 35.152 74.816 2920 P,T 1995-2008 WAPDA 

6 Yasin 36.369 73.300 3353 P,T,RH 1995-2008 WAPDA 

7 Ushkore 36.025 73.400 3353 P,T,RH 1995-2008 WAPDA 

8 Naltar 36.127 74.184 2810 P,T,RH 1995-2012 WAPDA 

9 Ziarat 74.418 36.829 3688 P,T,RH 1995-2012 WAPDA 

10 Khunjerab 36.850 75.400 4733 P,T,RH 1995-2012 WAPDA 

11 Askole 35.681 75.815 3015 T,RH,SW 2005-2014 EvK2CNR 

12 Urdukas 35.728 76.286 3926 T,RH,SW 2004-2014 EvK2CNR 

13 Concordia 35.744 76.514 4700 T,RH,SW,LW 2012-2014 EvK2CNR 

Table 3.2 – Climate stations used in this study. Variable name abbreviations are: P – precipitation, T – 

temperature, RH – relative humidity, SW – incoming shortwave radiation, LW – incoming longwave 

radiation. Data source abbreviations are: PMD – Pakistan Meteorological Department, WAPDA – 

Water Power and Development Authority, EvK2CNR – Everest-K2-Consiglio Nazionale delle Ricerche 

(research group). 

To compare the HAR with climate observations, we extracted hourly time series from the 

closest HAR grid point to each station location, similarly to Maussion et al. (2014). In the 

analyses, we include only days for which observations are available and months that are 

largely complete (less than 3 days missing data). For the evaluations of monthly temperature 

biases (Section 3.4.2, Figure 3.6a) and incoming longwave radiation (Section 3.4.4, Figure 

3.10), we apply corrections for elevation differences between stations and HAR grid points. 

The corrections are based on local, monthly climatological gradients (i.e. lapse rates), which 

were calculated from the 9 HAR grid cells surrounding the station location using linear 

regression. The elevation correction procedure reduced mean annual temperature and 

longwave radiation biases by 4.6°C and 12 W/m
2
, respectively. Details of the regressions and 
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sensitivity of the elevation correction to different timescales are discussed in Section A1.2 of 

Appendix A. We did not make similar elevation corrections in the other evaluations in Section 

3.4, due to the nature of the comparisons we employ, as well as the weaker, less consistent 

and more complicated dependence of the other variables on elevation. 

Limitations here include the difference in scale between weather stations and the HAR grid 

resolution, as well as uncertainties inherited from numerical approximations at grid cells. 

Where applied, the elevation correction also omits the important influence of more local 

aspect and slope variation (Daly et al. 2008). This is difficult to account for given the low 

station density and the limitations of the HAR orography. With these issues in mind, we 

compare the datasets at multiple locations in relative as well as absolute terms, generally at 

monthly or longer time scales to reduce noise and identify robust patterns. 

Hydrological Observations 

We consider the plausibility of HAR precipitation at the catchment scale based on river flow 

records for 11 gauged sub-basins of the UIB (Table 3.3 and Figure 3.1b). These data have 

been checked and applied in previous studies (Archer 2003; Sharif et al. 2013). We calculated 

HAR catchment means accounting for partial grid cell coverage, focusing on mean annual 

aggregations to diminish any confounding influences from inter-annual storage changes. We 

use overlapping periods of record as far as possible. In addition to comparing HAR 

precipitation with observed runoff directly, we also derived ‘effective precipitation’, defined 

here as precipitation minus evapotranspiration. This was calculated based on mean annual 

aggregations, with both terms taken from the HAR. Effective precipitation should be 

approximately equal to runoff in the mean annual case if storage changes are close to zero, an 

assumption which is consistent with the neutral glacier mass balances in much of the UIB 

(Hewitt 2005; Zhou et al. 2017; Bolch et al. 2017; Brun et al. 2017). 

The effective precipitation approach was taken primarily because the runoff simulated by the 

Noah LSM in the HAR was found to be strongly affected by the limited accuracy of daily 

SWE re-initialisation from the coarse FNL driving dataset. Limitations of our approach 

include notable uncertainty in HAR evapotranspiration, which means that this analysis should 

be considered indicative. These issues are discussed in Section 3.4.1 and Appendix A, Section 

A1.3. 
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ID Station River Latitude Longitude Area (km
2
) Period 

1 Kharmong Indus 34.933 76.228 70,030 1982-1997 

2 Yogo Shyok 35.176 76.100 33,157 1973-2008 

3 Shigar Shigar 35.366 75.676 7,040 1985-1987 

4 Kachura Indus 35.463 75.428 114,093 1970-2008 

5 Dainyor Hunza 35.926 74.371 13,732 1966-2012 

6 Gilgit Gilgit 35.925 74.300 12,671 1961-2008 

7 Alam Bridge Gilgit 35.766 74.600 27,272 1966-2008 

8 Partab Bridge Indus 35.716 74.633 144,407 1962-2008 

9 Doyian Astore 35.550 74.700 3,899 1974-2013 

10 Shatial Bridge Indus 35.533 73.566 155,689 1983-1997 

11 Besham Indus 34.916 72.875 164,867 1969-2013 

Table 3.3 – Details of WAPDA river flow gauges used in this study. 

3.3.3 MODIS Products and Processing 

Snow Water Equivalent (SWE) Reconstruction 

Using the Collection 6 MOD10A1 500 m daily snow cover product (Hall and Riggs 2016), 

with cloud gaps infilled using the method of Gafurov and Bárdossy (2009), we employed a 

well-established procedure for reconstructing spatially distributed peak SWE (e.g. Raleigh 

and Lundquist 2012). In this approach, the timing of snow disappearance is identified from 

remote sensing, and snowmelt prior to this date is calculated using a model. In line with other 

studies, we use a simple temperature-index (degree day) algorithm (e.g. Rice et al. 2011; 

Raleigh and Lundquist 2012). This is driven by observed daily temperature time series, 

adjusted for elevation with monthly climatological lapse rates estimated from linear 

regression using station data and elevations. The purpose of reconstructing peak SWE in this 

way is to gain a proxy for relative spatial variation in UIB mass input to evaluate the HAR’s 

spatial and vertical precipitation gradients. 
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This method is predicated on the previous finding that air temperature provides a good index 

of energy available for ablation in this region (Archer 2004). However, its applicability is 

limited to areas where melting is mass-constrained, i.e. locations that are not glacierised or 

perennial snowpacks. Elsewhere, the primary assumption is that patterns of relative spatial 

variation in SWE are roughly consistent with those of precipitation at fairly broad scales. 

There are of course methodological limitations, including the simplification of temperature 

variability and its relationship with ablation, as well as the omission of snow redistribution 

and sub-grid patterns. Nevertheless, our primary goal is only to indicate likely relative 

variation in mean annual mass input at much broader scales than the MODIS pixels. 

Cloud Cover 

The Collection 5.1 MOD06L2 daily 5 km cloud cover fraction (CCF) product (Platnick et al. 

2003) is used to understand some of the patterns identified in the HAR. The applicability of 

this dataset in the UIB was demonstrated by Forsythe et al. (2015). We use MOD06L2 spatial 

means of daily average CCF for the NWUIB, as well as time series of the means of the 9 

pixels in MOD06L2 surrounding each climate station location. The equivalent HAR cloud 

cover variable was calculated by Maussion et al. (2014) as the maximum CCF in a 50 km 

horizontal view field for each cell, based on classifying all model layers using a threshold 

condensate mixing ratio, following Mölg and Kaser (2011). While there are differences in the 

provenance of MODIS and HAR CCF, we take these datasets as indicative of cloud cover 

patterns at generally coarse aggregations. 

Albedo 

We also use spatial means and station location time series from the Collection 5 MCD43A3 

albedo product (shortwave band). The accuracy of this product has been established 

previously (e.g. Wang et al. 2012), although the challenges in albedo retrieval do increase in 

complex terrain (Wen et al. 2018). As such, we use the snow albedo from the MOD10A1 500 

m daily snow cover product (Hall and Riggs 2016) for comparison, infilling no-snow pixels 

using MCD43A3 white sky albedo to provide an upper estimate of albedo. 
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3.4 Results 

3.4.1 Precipitation  

Point-Scale Comparison 

For a first indication of precipitation performance, we compare HAR mean annual values with 

observations (Figure 3.2a). This shows that HAR10 is generally consistent with most 

observations, while HAR30 tends to overestimate relative to station records. The exceptions 

to good HAR10 agreement with measurements are three relatively high elevation stations – 

Khunjerab, Ziarat and Ushkore – for which the HAR simulates high annual totals. This could 

be due to HAR limitations. For example, reductions in precipitation downwind of the major 

topographic barriers to the south and east of Khunjerab and Ziarat could be underestimated 

(see Figure 3.1). However, the Khunjerab station is also located on an exposed, high mountain 

pass, such that the influences of strong local wind patterns unresolved by the HAR may be 

especially important. Ushkore and Ziarat both lie in relatively narrow valleys that are not 

captured in the HAR orography, such that local, valley-scale vertical precipitation gradients 

are not simulated in these cases. Figure 3.1b shows that most of the other stations recording 

precipitation sit in major valleys that are at least partly represented. These points highlight the 

challenge of scale differences for precipitation evaluation at station locations, while 

measurement limitations must also be acknowledged. As such, we augment our analysis with 

appraisal of precipitation gradients and sub-basin water balances below. 

To examine the intra-annual distribution of precipitation, we show the fractions of annual 

precipitation occurring in each month for the station ensemble in Figure 3.2b. From this we 

can see that the HAR essentially agrees with the observed annual cycle of precipitation, with a 

maximum in winter/spring and a minimum in summer. However, the HAR generally 

overestimates the proportion of precipitation falling in winter and early spring, while 

underestimating the summer fraction. Figure 3.2b also shows that the HAR10 and HAR30 

cycles are very similar, indicating little modification of precipitation seasonality by grid 

resolution. Notably, the observations exhibit more spatial variation in the shape of the annual 

precipitation cycle than exists in the HAR. 

Interestingly, Reggiani et al. (2017) show that some of the coarser resolution global 

reanalyses, including ERA-Interim and JRA55, have a less stark annual cycle, which is more 

consistent with observations (see also Appendix A, Section A2.1). This raises the possibility 
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that HAR seasonality could be improved with alternative boundary conditions, although it is 

also possible that the limitations stem from aspects of the HAR setup, for example 

parameterised convection. Additional point-scale comparisons are given in Appendix A 

(Section A2), including time series, which support Maussion et al.'s (2014) finding that the 

HAR reproduces precipitation inter-annual variability. 

 

Figure 3.2 – Comparison of HAR precipitation with station observations (OBS). Annual means are 

given in (a), with numbers identifying stations given next to HAR10 points, while (b) shows mean 

monthly precipitation normalised to mean annual totals for the station ensemble. The solid line in (b) 

shows the mean for all stations, while shading shows the range. 

Catchment-Scale Assessment 

Moving to the catchment scale, we first compare spatially averaged mean annual precipitation 

from the HAR with observed runoff for gauged sub-basins of the UIB (Figure 3.3a). The 

results indicate that the HAR reproduces the intuitively positive relationship between mean 

annual precipitation and observed runoff. It is also apparent that the simulated precipitation 

exceeds observed runoff for all catchments, although the nival Astore and Gilgit sub-basins 

do approach parity. Based on HAR10, we find the ratio of annual runoff to precipitation to be 

approximately 0.65. In addition, Table 3.4 shows that HAR annual precipitation for the UIB 

to Besham, upstream of Tarbela Reservoir, is similar to the ERA-Interim, JRA55 and 

MERRA2 global reanalyses, with all estimates falling in the range of 721 to 793 mm/a for the 

period considered. In contrast, precipitation from the APHRODITE and TRMM products is 

substantially lower than observed runoff. This highlights the limits to their applicability in the 

UIB, as discussed in Section 3.3. 
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Figure 3.3 – Comparison of HAR precipitation and water balance with observed runoff. HAR mean 

annual precipitation is compared with observed runoff in (a), while HAR effective precipitation is 

compared with observed runoff in (b). The dashed line in (a) is from regression, allowing estimation of 

a runoff coefficient. Effective precipitation in (b) is calculated by subtracting HAR-simulated 

evapotranspiration from precipitation. Red outlines denote stations without data overlapping the HAR 

period, such that only the available record period was used. Numbers identifying gauges are given 

next to HAR10 points. 

We examine the HAR precipitation further by accounting for evapotranspiration, as simulated 

by the HAR. The resulting quantity is termed effective precipitation here, which should be 

approximately equal to runoff at the mean annual scale considered, if storage changes are 

close to zero. Figure 3.3b shows that HAR mean annual effective precipitation and observed 

runoff do indeed generally converge, particularly for low- to moderate-yielding sub-basins. 

For higher-yielding sub-basins, larger errors are evident, although there does not appear to be 

systematic over- or under-estimation if all sub-basins are considered together, at least for 

HAR10. 

This suggests that the HAR may provide a reasonable approximation of catchment-scale 

precipitation on the whole, but the strength of this finding of course depends on the accuracy 

of HAR-simulated evapotranspiration and assumptions about storage changes. With glaciers 

being the major source of storage in the UIB, the storage change assumption is consistent with 

the approximately neutral glacier mass balances observed in the heavily glaciated parts of 

basin (Hewitt 2005; Zhou et al. 2017; Bolch et al. 2017; Brun et al. 2017). HAR mean annual 

evapotranspiration is approximately 275 mm for the UIB to its outlet at Besham, ranging from 

around 200 to 400 mm between sub-basins. These evapotranspiration values are within the 
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range of estimates from reanalyses (see Table 3.4), remote sensing and hydrological 

modelling used in other recent studies (Immerzeel et al. 2015; Reggiani et al. 2017; Reggiani 

and Rientjes 2015). 

Data Source P (mm/a) ET (mm/a) P - ET 

(mm/a) 

Qobs 

(mm/a) 

P - Qobs 

(mm/a) 

P - ET - Qobs 

(mm/a) 

APHRODITE 215 n/a n/a 

461 

-246 n/a 

ERAI 735 336 399 274 -62 

HAR10 721 276 445 260 -16 

HAR30 778 275 503 317 42 

JRA55 793 127 667 332 206 

MERRA2 724 184 540 263 79 

TRMM 3B42 288 n/a n/a -173 n/a 

TRMM 3B43 318 n/a n/a -143 n/a 

Reggiani and 

Rientjes 

(2015) 

675 ± 100 200 ± 100 n/a n/a n/a 

Table 3.4 – Comparison of HAR mean annual water balance for the UIB at Besham with other gridded 

data products (based on overlapping record period of October 2000 to September 2007). 

Abbreviations are for precipitation (P), evapotranspiration (ET), and observed runoff (Qobs), with “-“ 

representing the minus sign. APHRODITE and TRMM data products do not include 

evapotranspiration. 

While consistency with other data sources is useful, clearly it does not provide complete 

validation of the HAR’s absolute accuracy for evapotranspiration. Substantial uncertainties 

due to various errors and biases are of course associated with both HAR and alternative 

estimates. Although this means that the analysis should be considered indicative, it does at 

least suggest that the HAR shows notable potential as a source of catchment-scale 

precipitation for the data-sparse UIB, according to the best sources of information we have on 

other water balance terms at present (see also Appendix A, Section A1.3). Further analyses 

through process-based hydrological modelling could explore this in more detail. Moreover, 

we can conclude with some confidence that HAR precipitation outperforms APHRODITE 

and TRMM at the catchment scale. How much information it adds relative to global 
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reanalyses depends in part on its vertical gradients and patterns of spatial variation, as 

explored in the next section. 

Vertical Gradients and Spatial Variation 

We now examine whether the HAR simulates the vertical precipitation gradients required to 

accurately reproduce cryospheric accumulation and ablation patterns in the UIB, and therefore 

runoff amounts and timing (Hewitt 2014). The HAR hypsometry is provided in Figure 3.4a, 

demonstrating the substantial benefit of a 10 km resolution, while Figure 3.4b shows the 

precipitation-elevation relationship for the NWUIB (based on HAR10 only). This relationship 

takes a log-linear form. The points in Figure 3.4b, each representing a HAR10 grid cell, are 

coloured according to the standardised residuals calculated after applying regression to the 

HAR10 precipitation-elevation relationship. Two observation-based profiles of precipitation 

are also shown on Figure 3.4b (Hewitt 2014; Winiger et al. 2005), while additional profiles 

from model-based precipitation reconstructions are given in the Appendix A (Section A2.5). 

Importantly, Figure 3.4b suggests that the central tendency of the HAR10 vertical profile 

agrees quite closely with Winiger et al. (2005)’s profile, the formulation of which has been 

the basis for several studies of UIB hydroclimatology (e.g. Bocchiola et al. 2011; Soncini et 

al. 2014; Reggiani et al. 2016). Some contrasts with the observation-based profiles are of 

course expected, based on the differing and restricted spatial extents of the measurement 

networks used, for example. In addition, field observations suggest that precipitation may 

begin to decrease at very high elevations (above around 5000-5500 mASL) due to exhaustion 

of moisture availability, as noted in Section 3.2 (e.g. Hewitt 2014). However, Figure 3.4b 

indicates that HAR10 does not show a decrease in precipitation at its highest elevations. This 

may be related to topographic smoothing in HAR10, as its elevation peaks at around the same 

point at which the precipitation inversion is expected to start. This could mean that a decrease 

is simply not visible or is potentially inhibited by the effects of topographic smoothing on 

orographic precipitation dynamics and thermodynamics (Cannon et al. 2017b). 
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Figure 3.4 – Spatial and vertical precipitation gradients, compared with observation-based profiles and 

relative patterns of SWE reconstructed from remote sensing. HAR hypsometry is compared with the 

Shuttle Radar Topography Mission (SRTM) reference dataset in (a), while (b) shows a scatterplot of 

mean annual precipitation and elevation for each HAR10 cell in the NWUIB. The black line follows a 

log-linear profile determined from regression, and the points are coloured according to standardised 

residuals from this relationship. Two observation-based vertical precipitation profiles are also plotted 

(Hewitt 2014; Winiger et al. 2005). The spatial distribution of HAR standardised residuals from the 

precipitation-elevation relationship in (b) is shown in (c), using the same colour scale. The spatial 

distribution of standardised residuals after removing the elevation signal from (MODIS) reconstructed 

SWE is given in (d), using the same colour scale as (b) and (c). Glaciers are shown in (d) in grey. 

To understand the notable scatter in Figure 3.4b, we map the cell-wise standardised residuals 

back to the NWUIB domain in Figure 3.4c to reveal their patterns of spatial correlation. The 

red and blue areas can be interpreted as showing which parts of the NWUIB have relatively 

low or high precipitation, respectively, compared with what might be expected from elevation 
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alone (i.e. black line in Figure 3.4b). This allows us to see spatial variation at the sub-regional 

scale, but clearly scales finer than the HAR10 grid are unresolved. From Figure 3.4c we can 

see relatively high precipitation zones along the west and south-west margins of the NWUIB, 

the areas of the domain first encountered by the prevailing westerly flows. This is consistent 

with the high yield of the nival Astore sub-basin (Figure 3.3). A second zone of relatively 

high precipitation trending north-west to south-east (from the Hunza into the Shigar sub-

basin) can be seen to follow the terrain (see Figure 3.1b). To the north-west of this ridge in the 

Hunza basin, precipitation is comparatively low for its elevation, suggesting that the known 

rain shadow effect here is captured by the HAR to some degree at least (Winiger et al. 2005). 

Other prominent zones of relatively low precipitation and vertical gradients are found in the 

central Gilgit catchment, and the south-east corner of the NWUIB adjoining the Shigar sub-

basin (see also Figure 3.1b). 

For qualitative evaluation of these patterns, we compare the HAR with reconstructed SWE 

(Section 3.3.3). Similar to Figure 3.4c, we show a spatial distribution of standardised residuals 

in Figure 3.4d, but this time based on the regression of reconstructed SWE and elevation, 

rather than the regression of HAR precipitation and elevation that underpins Figure 3.4c. 

Glaciers are also shown, as SWE reconstruction is not undertaken in these areas. Comparing 

Figure 3.4c and Figure 3.4d shows several similarities, such as the relatively high 

precipitation amounts in the Astore sub-basin and around the southern margin of the Gilgit 

sub-basin. It is clear that the major band of glacierised area, running north-west to south-east 

from the Hunza into the Shigar sub-basin in Figure 3.4d, corresponds with a relatively high 

precipitation zone in the HAR. There is also agreement on the zones of comparatively low 

precipitation relative to their elevations, including the central part of the Gilgit sub-basin, but 

particularly the south-east and north-east corners of the NWUIB. 

There are of course limitations in this qualitative comparison. In particular, it presumes high 

correlation of precipitation, snowfall and peak SWE, but this is expected to be generally the 

case at the scale of multiple HAR cells discussed here (Appendix A, Section A2.5). Thus, 

despite the uncertainties, the key similarities between Figure 3.4c and Figure 3.4d suggest that 

the HAR patterns of relative spatial variation in precipitation are physically consistent with 

what we can infer from remote sensing. In conjunction with the generally reasonable 

agreement with both climate and hydrological observations, this analysis suggests that the 

HAR10 reproduces some critical features of UIB precipitation amounts and spatiotemporal 

distribution. The HAR10 may thus approach a resolution high enough to capture the most 
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important effects of orographic precipitation in this area, particularly given the dominance of 

westerly winter/spring events (Norris et al. 2016; Daly et al. 2017). 

3.4.2 Temperature 

The annual cycle of monthly mean near-surface (2 m) air temperature for the station ensemble 

is shown in Figure 3.5a. Prior to calculating the ensemble summary statistics, temperatures for 

each station were expressed as differences relative to their annual means, in order to remove 

the effects of elevation differences between stations. This provides a way to examine overall 

differences in the shape of the annual cycles. We can therefore see from Figure 3.5a that 

HAR10 and HAR30 have very similar annual cycles and both agree with observations in 

general. However, the amplitude of the cycle is overestimated by the HAR, mainly through a 

higher summer peak relative to the observed cycle. The rate of temperature increase in spring 

and early summer is also initially shallower than for observations, before becoming 

comparatively steeper. 

 

Figure 3.5 – Comparison of HAR annual temperature cycles with observations. Mean monthly 

temperatures are shown in (a) and diurnal temperature range (DTR) in (b). Solid lines show medians, 

whereas shaded areas and dashed lines show ranges across all stations. The mean monthly 

temperatures in (a) were first normalised for each station individually, by subtracting the respective 

annual mean. All stations were then used to compute the ensemble summary statistics. The OBS* 

profile in (b) omits two stations with particularly high DTR, Gilgit and Skardu, from the ensemble. 

Figure 3.5b displays the annual cycle of monthly mean diurnal temperature range (DTR), an 

important variable that contains signals from cloud influences on radiation and other factors 
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affecting near-surface heating and fluxes. Figure 3.5b demonstrates that observed DTR is 

typically higher than in the HAR. However, it does also show that the HAR captures the 

comparatively modest annual DTR cycle for most stations, with DTR highest in the summer 

months. On average, the HAR tends to be most biased in spring, early summer and autumn, 

underestimating DTR at these times, especially in HAR10. The largest underestimation of 

DTR occurs for lower elevation stations, especially Gilgit and Skardu, which could reflect a 

cold pool effect not present in the HAR. 

 

Figure 3.6 – HAR temperature bias and its hydrological implications. Differences between elevation-

adjusted HAR monthly mean temperatures and station observations are shown in (a). The median, 

interquartile range and the range of differences across all stations are given. The fraction of NWUIB 

area above the freezing isotherm according to linear regression is illustrated in (b), for both 

observations and the HAR (ranges show 95% confidence intervals). HAR temperatures were adjusted 

for elevation differences compared with stations, using local lapse rates in the HAR, identified through 

regression. 

Using the HAR elevation-corrected temperatures to examine the bias in the monthly means 

(Section 3.3.2) reveals that the HAR is generally colder than observations (Figure 3.6a). The 

bias is largest in spring and smallest in summer, with HAR30 generally being slightly colder 

than HAR10. In Appendix A (Section A1.2), we show that this annual cycle of bias is robust 

to the alternative methods of elevation correction tested. Importantly, the peak cold bias in 

spring coincides with the largest underestimation in the temperature cycle shown in Figure 

3.5a, suggesting that the HAR does not warm quickly enough at this time of year. The 

smallest temperature bias in summer occurs when the HAR shows a more rapid and 

pronounced increase in the annual temperature cycle than observations (Figure 3.5a). Controls 



58 

 

on rates of change in the annual temperature cycle are therefore likely to be critical to the 

seasonally varying magnitude of the cold bias in the HAR. 

To assess the implications of this temperature bias for runoff, we use linear regression of 

temperature and elevation to examine the proportion of the NWUIB area that lies above the 

freezing isotherm each month. This provides a broad indication of the area of the catchment 

where snow and ice melt can take place, termed here ‘melt area’. Figure 3.6b shows that the 

HAR has a substantially compressed annual cycle of melt area compared with what we can 

infer from observations. As melt area is a key control on runoff sensitivity and variability in 

the UIB (Forsythe et al. 2012b), understanding the causes and implications of this bias is 

important for hydrological applications, as well as for minimising biases in future WRF 

simulations. Additional analysis of temperature variability and lapse rates, both fairly well 

simulated, is given in Appendix A (Section A3). 

3.4.3 Humidity 

Figure 3.7a depicts the annual cycle of specific humidity variation as monthly differences 

relative to the annual mean, similarly to Figure 3.6a. There is generally good agreement 

between the observed and HAR datasets, although the HAR appears to underestimate the 

amplitude of the annual cycle. In particular, it shows a higher winter minimum than 

observations, but a lower summer peak. Expressed as relative humidity, the HAR provides an 

overestimate in winter, spring and autumn, before converging on observations in summer 

(Figure 3.7b). The HAR thus displays a comparatively pronounced annual relative humidity 

cycle. The closer match in summer in relative humidity coincides with the dampened peak in 

the specific humidity cycle, as well as lower apparent temperature bias at this time of year 

(see Section 3.4.2). Conversely, overestimation of the specific humidity minimum in winter – 

and relative humidity in winter, spring and autumn – occurs during periods of colder 

temperature bias. 

To see whether the HAR captures spatial and vertical variation in humidity, we plot seasonal 

elevation profiles for winter (December, January, February – DJF) and summer (June, July, 

August – JJA) in Figure 3.8a and Figure 3.8b, respectively. The strong elevation-dependence 

of specific humidity in winter is well simulated, although there may be some underestimation 

at lower elevations; more local observations would be required to demonstrate this. In 

summer, the HAR shows a substantial increase in spatial variation of specific humidity, which 

is also present in observations. This means the observations are likely to be less spatially 
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representative, but in general the level of consistency is good. Equivalent vertical profiles for 

relative humidity are given in Appendix A (Section A4), which shows better consistency with 

observations is present in summer. 

 

Figure 3.7 – Comparison of HAR humidity with station observations. Monthly specific humidity 

normalised by subtracting the annual mean is given in (a), while (b) displays monthly relative humidity. 

The median and ranges across stations are shown. 

 

 

Figure 3.8 – Comparison of observed and HAR vertical profiles of specific humidity for (a) winter (DJF) 

and (b) summer (JJA). HAR profiles show the elevation band means (solid lines) and ranges 

(shading). 
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There are several hydrological implications from these humidity patterns. Firstly, high relative 

humidity could lead to a low vapour pressure deficit, suppressing evapotranspiration 

calculated using the FAO Penman-Monteith approach for example (Allen et al. 1998). 

However, the relative humidity (and temperature) bias generally reduces in summer when 

evapotranspiration is most significant in the UIB (Reggiani et al. 2017), thereby diminishing 

the magnitude of this issue, although further simulations would be required to quantify this 

more precisely. Secondly, as specific humidity is reasonably well represented, it may provide 

useful direct inputs to snow and glacier surface energy balance models, where latent heat 

fluxes depend on near-surface gradients in specific humidity or vapour pressure. 

3.4.4 Incoming Radiation 

In Figure 3.9 we compare HAR incoming shortwave radiation time series (daily and 28-day 

moving average) with observations from the Askole EvK2CNR AWS. The daily time series 

demonstrates that the HAR and observed peaks match well throughout the year. This confirms 

that the HAR accurately simulates incoming shortwave radiation under clear-sky conditions. 

In contrast, the observed moving average series are clearly lower than the HAR, particularly 

in summer. This is also the case for the two other EvK2CNR AWSs, Urdukas and Concordia, 

as well as for other years where data are available (Appendix A, Section A5). Given the good 

level of agreement for incoming shortwave peaks, i.e. clear-sky conditions, the differences 

appear to be related to the underestimation of cloudiness or cloud reflection effects. This is 

particularly noticeable in the HAR daily time series in Figure 3.9, where the magnitude and 

frequency of cloud effects are visibly underestimated in summer. 

For incoming longwave radiation, we compare the HAR with observations from the 

Concordia AWS in Figure 3.10. The daily time series in this figure shows that in general the 

HAR captures quite accurately the observed peaks in incoming longwave radiation for much 

of the year. However, the HAR displays an overall underestimation of longwave radiation, 

particularly in summer. The magnitude of daily variability relative to observations is also too 

large in spring, summer and autumn. During clear-sky conditions the HAR, especially 

HAR10 in fact, may therefore underestimate incoming longwave radiation, while during 

cloudy conditions it may induce more longwave enhancement than apparent in observations. 

However, longer time series of in-situ observations from multiple stations would be required 

to confirm the generality of this finding. 
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Figure 3.9 – Time series of incoming shortwave radiation for Askole AWS, showing observations and 

corresponding HAR cell. Thin lines show daily time series, and bold lines show 28-day moving 

averages. For clarity, only HAR10 daily time series are plotted.  

 

 

Figure 3.10 – As Figure 3.9 but showing incoming longwave radiation at the Concordia AWS. 

Therefore, in late spring, summer and early autumn, the underestimation of cloudiness 

suggested by the incoming shortwave radiation comparison may correspond to a low bias in 

incoming longwave radiation. The bias towards too high a frequency of clear-sky conditions 

peaks in summer, which would be expected to lead to a positive bias in total incoming 

radiation, due to the higher magnitude of the shortwave flux at this time of year. 
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3.4.5 Cloud and Albedo Influences 

Climatology 

To see if the cloud bias implied by the incoming radiation comparison can be corroborated 

with independent data, we compare the HAR cloud cover climatology with MODIS remote 

sensing in Figure 3.11a. This does indeed confirm that the HAR underestimates overall 

cloudiness in the NWUIB, most severely in summer. Too little cloud therefore induces the 

summer underestimation of shortwave reflection identified in Section 3.4.4, which dominates 

total incoming radiation variability at this time of year. Similar conclusions regarding low 

cloud bias influences on shortwave radiation were also reached by Ruiz-Arias et al. (2016), 

albeit for a different climatic context. Interestingly, comparing the HAR cloud cover 

performance with the analysis in Forsythe et al. (2015) demonstrates that greater agreement 

with MODIS is evident for some global reanalyses, particularly ERA-Interim. Unravelling the 

causes of the apparent low cloud cover in the HAR is beyond the scope of this paper, but the 

microphysics, planetary boundary layer (PBL) and cumulus schemes might all play a role 

(e.g. Otkin and Greenwald 2008; Thompson et al. 2016; Ruiz-Arias et al. 2016). 

 

Figure 3.11 – Comparison of HAR cloud cover fraction (CCF) and albedo with MODIS products. The 

annual cycle of CCF for the NWUIB (spatial means) from MODIS (MOD06L2) is compared with the 

HAR in (a). Bold lines show the monthly means while ranges show the 10
th
 to 90

th
 percentiles (i.e. 

inter-annual variability). The HAR CCF variable is only available for HAR10. The annual cycle of 

spatial mean albedo for the NWUIB from MODIS and the HAR is shown in (b). MCD43b stands for 

MODIS MCD43A3 black sky albedo, MCD43w for MCD43A3 white sky albedo and MOD10 for 
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MOD10A1 snow albedo infilled using MCD43A3 for no-snow pixels. HAR ranges show the 10
th
 to 90

th
 

percentiles (i.e. inter-annual variability). 

Due to the important coupling between cloud radiative effects, snow cover and temperature 

(Betts et al. 2013, 2014; Forsythe et al. 2015), we also evaluate the HAR annual cycle of 

surface albedo, which is defined in general terms as the proportion of shortwave radiation 

received at the surface that is reflected. Figure 3.11b suggests that the HAR has notably 

higher albedo than MODIS in winter, spring and autumn. The largest overestimation occurs in 

spring, but there is potentially closer agreement in summer. The biases in albedo suggest that 

snow cover extent, the main control on the annual cycle of albedo variation in the UIB, does 

not decay sufficiently rapidly in spring and summer in the HAR. This issue is closely 

connected to the HAR’s daily re-initialisation strategy, especially in terms of the challenges of 

deriving higher resolution snow cover (SWE) for each day from the much coarser FNL 

dataset. The snowpack process parameterisations in the Noah land surface model (LSM) may 

also play a role, as discussed in Section 3.5. While there is some uncertainty in the MODIS 

reference datasets (Section 3.3.3), the magnitude of differences in the mean, amplitude and 

shape of the annual cycles are large, which suggests that the HAR overestimation issues are 

substantive. 

Relationships with Temperature 

To examine the implications of the apparent biases in cloud and albedo, we focus now on 

correlations of monthly (ranked) anomalies of CCF and near-surface air temperature (Figure 

3.12a), as well as correlations of surface albedo and temperature (Figure 3.12b). These 

correlations are performed separately for the HAR and observations (including MODIS) to 

see if the HAR adequately reproduces the observed dependencies between temperature and 

two of its controlling influences. From this we can infer whether there are process 

representation deficiencies in the HAR. 

Considering observations first, Figure 3.12a shows a characteristic annual cycle of observed 

cloud influences on temperature. In winter, the positive correlations reflect the net warming 

effect of cloud cover at this time of year, which occurs through the mechanism of longwave 

enhancement (Forsythe et al. 2015). The subsequent transition to negative correlations shows 

a change in dominant cloud radiative effects to cooling in spring, summer and autumn. This 

cooling is induced primarily by cloud shortwave reflection, which increases in importance in 

line with the annual cycle of incoming shortwave radiation (Forsythe et al. 2015; Betts et al. 
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2013). At this time of year, Figure 3.12b shows that correlations between surface albedo and 

temperature in observations drop to around zero on average, although variability amongst 

station locations is notable. This is consistent with snow cover retreat in the spring and 

summer, which allows cloud cover variations to dominate net shortwave radiation variability 

and thus surface heating. 

 

Figure 3.12 – Monthly correlations (Kendall’s tau) between near-surface air temperature and selected 

variables. Correlations between temperature (T) and cloud cover fraction (CF) are given in (a), while 

correlations with albedo (ALB) are presented in (b). HAR variables are correlated with HAR 

temperatures, whereas observed correlations are based on in-situ observations of temperature in 

conjunction with MODIS albedo and cloud cover fraction corresponding to the station locations. Lines 

show the mean correlations and the successive shading shows the full and interquartile ranges based 

on the ensemble of stations. 

Figure 3.12a suggests that the warming effects of cloud cover are present in winter, but the 

transition to negative correlations (cloud cooling effects) does not develop as early, strongly 

or consistently in the HAR. This is consistent with the concurrent low absolute cloud cover in 

the HAR, which suppresses the potential for inter-annual cloud variability to influence surface 

heating. For surface albedo, the HAR shows an annual cycle that is approximately the inverse 

of the pattern in observations. From spring into summer, with the exception of August, much 

stronger (negative) correlations between albedo and temperature exist in the HAR than in 

observations. The greater sensitivity to albedo variations likely reflects the influence of high 

biases in both the mean and variability of HAR albedo, but it is potentially compounded by 

the underestimation of cloud and its influences on temperature. 
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The implication of this is that the role of snow presence and its effects on albedo as a climate 

switch for cloud radiative effects is not entirely reproduced in the HAR (Betts et al. 2013, 

2014). However, we note that the station locations analysed here are primarily in valleys, 

although Figure 3.11a does suggest that the cloud underestimation problem affects much of 

the NWUIB in summer. 

The statistical significance of the correlations in Figure 3.12 is summarised in Appendix A 

(Section A7). This supports the point that there is a significant and physically coherent annual 

cycle of correlations between cloud and temperature in the observations, which does not 

develop as strongly in the HAR. It also confirms that the frequently significant sensitivity to 

albedo variation in the HAR in summer is higher than observations would suggest. However, 

we note that spread in Figure 3.12 can be large, which highlights the variability in these 

correlations and therefore the complexity of these relationships in reality. 

3.5 Discussion 

The results in Section 3.4 show both strengths and weaknesses in the HAR climatology for 

different variables. One important finding is that there are relationships between seasonal 

variations in bias in different variables. These relationships are relevant for various 

applications of the HAR dataset, as well as further regional climate modelling, such that we 

focus our discussion here on them. 

Starting with temperature, the HAR bias is largest (coldest) in spring and smallest in summer. 

This helps to induce the annual cycle of bias in relative humidity, whereby a general high bias 

peaks in spring but reduces in summer. Critically, the seasonal variation in temperature bias 

appears to be associated with annual cycles of bias in the surface radiative balance. In 

summer, incoming shortwave (longwave) radiation is generally overestimated 

(underestimated), largely due to insufficient cloud cover. This would generally lead to greater 

surface heating and so reduce the overall cold (low) bias in temperature (DTR), albeit through 

error compensation. The relatively low fraction of annual precipitation falling in summer 

months is also consistent with insufficient cloudiness and reduced temperature bias. 

Furthermore, in spring, the peak cold bias in temperature and slow warming rates in the HAR 

appear to be related to the high bias in surface albedo. This is because surface warming, 

associated with rising incoming shortwave radiation at this time of year, would be impeded by 

overestimation of reflection effects. 
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The importance of albedo and snow representations for near-surface radiative and temperature 

biases was also recently investigated by Tomasi et al. (2017). Modifications to snow 

initialisation, snow cover fraction and albedo parameterisations in both the Noah and 

NoahMP LSMs were needed to reduce winter cold biases in their WRF simulations of an 

Alpine valley. For the Tibetan Plateau, Meng et al. (2018) additionally found that inserting 

albedo derived from MODIS into WRF simulations substantially diminished the cold bias in 

winter, spring and to a lesser degree autumn. However, García-Díez et al. (2015) noted that 

albedo may act mainly as a feedback amplifying poor representations of the snowpack or 

snow-atmosphere interactions in the Noah LSM, rather than a primary driver of temperature 

bias. Indeed, it may be that such a feedback underpins the large peak cold bias in spring in the 

HAR, possibly by reinforcing biases induced by other aspects of the WRF configuration. 

While snow process representation in Noah has improved over time (e.g. Livneh et al. 2010; 

Barlage et al. 2010; Wang et al. 2010), these and other studies (e.g. Saha et al. 2017) agree 

with our suggestion that some of the UIB cold bias in the HAR could potentially be reduced 

with revisions to the snow initialisation approach, as well as snow process and sub-grid 

variability parameterisations. 

García-Díez et al. (2015) also highlighted the sensitivity of summer precipitation and 

temperature biases to different cumulus parameterisation schemes. Similar to our results, they 

demonstrated the potential for error compensation to reduce cold summer temperature biases 

through overestimation of incoming shortwave radiation. That summer humidity and 

temperature appear reasonably well simulated in the HAR, when cloud cover and 

precipitation are underestimated, confirms García-Díez et al.’s point that model evaluation 

needs to look at multiple climate variables to reveal possible error compensation and 

inconsistencies. 

The other influences that may contribute substantially to biases in the HAR include PBL 

schemes, which parameterise unresolved turbulent fluxes of heat, momentum and moisture. 

Hu et al. (2010) showed that the differences in temperature when using various schemes relate 

to the degree of vertical mixing and entrainment of air overlying the PBL. Interestingly, Hu et 

al. found the Mellor-Yamada-Janjić (MYJ) PBL scheme used by the HAR to be the coldest of 

the schemes they tested, which could contribute to the general cold bias identified here. 

García-Díez et al. (2013) also found the MYJ scheme to be relatively cold, but they noted that 

the differences between PBL schemes were relatively consistent throughout the year, despite 

the fact that the sign of temperature bias changed between seasons. This led García-Díez et al. 
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to suggest that further investigation of the surface radiative balance is required to understand 

seasonal variation in temperature bias, as opposed to mean annual bias, which is supported by 

the results of this study. 

Furthermore, several studies have shown that large errors can result from soil moisture 

initialisation using coarse resolution datasets (e.g. Case et al. 2008; Massey et al. 2016). 

Bastin et al. (2016) find that a dry soil bias leads to overestimated summer temperatures at 

their study site in France, with low cloud cover and consequent overestimation of incoming 

shortwave radiation acting to further dry the soil. The feedbacks between temperature, soil 

moisture, cloud cover and radiation biases in this example highlight the importance of 

interactions between multiple processes. Any local or regional soil moisture biases in the 

HAR could affect a range of surface and upper level variables through numerous feedbacks 

(Massey et al. 2016), particularly when snow cover declines in spring and summer. The 

scarcity of soil moisture data in the region for evaluation or assimilation is thus a significant 

issue, which is compounded by the challenge of providing sufficient spin-up with limited 

computational resources. 

Several important avenues for future work arise from this discussion. One is that more 

sensitivity and performance tests with different physics parameterisation schemes are needed 

in this region. These would ideally be conducted with a multi-physics approach to test 

different microphysics, cumulus, PBL and LSM schemes (e.g. García-Díez et al. 2015). For 

the LSM scheme, the biases in the HAR suggest that testing needs to include careful 

evaluation of snowpack processes, snow-atmosphere interactions and sub-grid variability, as 

well as glacier representations. As noted by Collier et al. (2013), limitations arise in the Noah 

LSM used in the HAR from assumptions on minimum snow depth and SWE in glaciated 

cells, which likely overestimate albedo by omitting the influences of bare ice and debris cover 

under thin or no snow cover. MODIS snow cover and albedo products may help to further 

constrain the relevant process parameterisations to some degree. 

In addition, the potential for improving initialisation strategies needs to be explored. This 

applies particularly to snow cover and surface albedo, which could again utilise MODIS 

remote sensing products (e.g. Meng et al. 2018). The NASA Soil Moisture Active Passive 

(SMAP) project may also ultimately provide a possibility to improve soil moisture 

initialisation, while the implications of spin-up period length should also be assessed. 

Moreover, it would be useful to test alternative data products for boundary conditions, such as 
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global reanalyses, in order to delineate the relative influences of WRF configuration choices 

and forcing datasets. In these tests, the boundaries of the inner model domain could be placed 

farther from the UIB, which would help determine if there is any residual boundary influence 

on the UIB in HAR10. With increasing computing power it may also be possible to test the 

feasibility of moving to higher resolution, convection-permitting climate simulations. This 

would be particularly useful for fine scale characterisation of near-surface climate, as well as 

hydrological and cryospheric modelling. 

3.6 Conclusions 

This evaluation of HAR performance for the UIB leads to three main conclusions. Firstly, we 

find that the HAR provides a good representation of UIB precipitation at multiple scales. In 

particular, HAR10 is consistent with most in-situ measurements, while also showing 

coherence with observed runoff for most gauged sub-basins. In addition, vertical precipitation 

gradients and spatial variation fit with other studies and inferences from MODIS data 

products. The HAR10 thus appears to represent a valuable source of precipitation data to 

supplement local observations in the UIB, although further testing through hydrological 

modelling should be undertaken. 

Secondly, our results suggest that HAR temperature, humidity and incoming radiation in the 

UIB show reasonable climatologies overall, but also distinct patterns of seasonal variation in 

their biases. Temperatures exhibit a cold bias, which is largest in spring and smallest in 

summer. DTR is slightly underestimated throughout the year, with bias a little larger in spring 

and autumn. The HAR also displays high relative humidity in winter, spring and autumn, but 

less bias in summer. The available observations show that incoming shortwave radiation is 

overestimated in spring, summer (particularly) and autumn, during which time incoming 

longwave radiation is also underestimated. 

Finally, we conclude that seasonal variation in biases is at least partially related to 

deficiencies in HAR cloud and albedo representations. Comparisons with MODIS products 

confirm that the HAR underestimates cloudiness, particularly during summer, which helps 

explain the biases in incoming radiation. Correlation analyses further suggest that the HAR 

does not fully reproduce the observed pattern of cloud radiative effects on temperature. 

Observations show a cycle of cloud warming effects in winter, through longwave 

enhancement, giving way to cloud cooling in summer, through shortwave reflection. This 

cycle does not develop to the same extent in the HAR. As such, the lower absolute 
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temperature bias in summer may stem at least partly from excess incoming shortwave 

radiation occurring in the HAR at a time when cloud reflection effects are strongly under-

represented and surface albedo is at its lowest, thereby heightening warming. The high bias in 

HAR surface albedo throughout much of the year is also likely to affect the seasonality of 

biases, particularly in spring by reflecting a high proportion of the rising incoming shortwave 

radiation, magnifying the general cold bias.  

Overall, our evaluation demonstrates the strong potential of simulations like the HAR for 

supplementing the limited local climate observations available in the Himalayan region. 

However, the findings also suggest that correctly parameterising cloud, snow cover and 

albedo processes appears to be critical for improved simulations of regional climate. 

Combining local observations and remote sensing data with more sensitivity tests may help to 

improve model representation, but of course uncertainties will be substantial in complex and 

data-sparse regions like the UIB. Further research is also required to see whether alternative 

datasets can provide improved boundary conditions and initialisation datasets for WRF. 
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Chapter 4  

 

Feasibility and Skill of Process-Based Snow Modelling 

4.1 Introduction 

Snow processes in the Himalaya and adjacent ranges have profound influences on regional 

climate, hydrology and water resources (Bookhagen and Burbank 2010). As such, they need 

to be adequately represented in cryospheric, hydrological and land surface models. However, 

model applications in high mountains typically face two longstanding and inter-related 

problems (e.g. Klemeš 1990). Firstly, severe data paucity makes it difficult to drive and/or 

evaluate models. This is compounded by the substantial climatic variability that characterises 

mountain regions. Secondly, identifying appropriate model structures, parameterisations and 

parameter values is not straight-forward. This is especially the case in the Himalaya, where 

various processes operate and data to constrain modelling choices are particularly lacking. 

For the data challenge, developments in high resolution regional climate modelling and 

remote sensing increasingly offer possibilities to supplement sparse local observations. For 

example, some studies have used the High Asia Refined Analysis (HAR) (Maussion et al. 

2014) for offline forcing of glaciological and hydrological models (Huintjes et al. 2015; 

Biskop et al. 2016; Tarasova et al. 2016). However, studies like these are still few in number, 

covering only a small fraction of the Himalayan arc’s diverse climate regimes. Crucially, 

there are especially few analyses characterising the skill of high resolution regional climate 

modelling to support snow model inter-comparison and identification. This also opens up the 

question of how far model (and input) evaluation in the Himalayan setting can be improved 

with remote sensing products that provide partial information on the surface energy balance, 

such as surface albedo and land surface temperature (LST) (e.g. Collier et al. 2013, 2015; 

Essery 2013). 

These data advances help to partly confront the challenge of identifying appropriate model 

formulations, but this challenge is one that persists even in well-instrumented contexts. For 

example, in the SnowMIP and SnowMIP2 model inter-comparison studies, no single model 

formulation emerged as optimal, with performance varying between locations and years 

(Etchevers et al. 2004; Rutter et al. 2009; Essery et al. 2009). More recently, inter-

comparisons using ensembles have generally also found there to be no single best model, but 
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instead groups of configurations that tend to perform consistently well, poorly or variably 

(Essery et al. 2013; Magnusson et al. 2015; Lafaysse et al. 2017). The systematic frameworks 

underpinning these latter analyses are an important advance for more precisely quantifying 

the influences of different parameterisations and identifying where improvements may be 

possible (Clark et al. 2015a). Furthermore, snow model complexity does not appear to be 

strongly (or necessarily positively) related to skill or transferability in space and time (see also 

Lute and Luce 2017), although data errors remain a large source of uncertainty even at well-

instrumented sites. 

While these site-based studies indicate which process representations may be generally 

robust, there have been very few analyses of transferability to the Himalaya. Indeed, there 

have been few applications of process-based, energy balance approaches here at all (Shrestha 

et al. 2015; Brown et al. 2014; but see e.g. Prasch et al. 2013). Yet these approaches are 

essential for testing hypotheses about snow processes, completing mass and energy balance 

frameworks in earth system models, and making projections in non-stationary climates. 

Therefore there is a need to better understand (1) how applicable process-based, energy 

balance snow models are, (2) how sensitive simulated snow processes are to modelling 

choices, (3) how transferable findings from model inter-comparisons in other regions are (i.e. 

performance), and (4) whether modelling improvements can be made using recent data 

advances. 

As such, in this study we aim to evaluate the importance, skill and tendencies of different 

snowpack process representations in the Himalaya, focusing on (offline) hydrological 

applications in the Upper Indus Basin (UIB). Firstly, we assess the potential of relatively high 

resolution climate simulations to drive energy balance snow models. For this we use the HAR 

(Maussion et al. 2014), which has not been applied for modelling in the UIB so far. Secondly, 

we use the Factorial Snowpack Model (FSM) (Essery 2015) multi-physics framework to 

identify the importance, skill and tendencies of model configurations employing different 

parameterisations of key snowpack processes. We characterise ensemble performance, 

structure and variability by evaluating FSM process options at point and catchment scales, 

using local observations and multiple remote sensing products. Finally, we examine the 

significance of process parameterisation choices in an example application, focusing on 

runoff responses in a climate sensitivity test. Together, these aims contribute to the need for 

more application-oriented model evaluations using unified frameworks (Essery et al. 2013; 
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Clark et al. 2015a), in a real case where understanding snow hydrology is important for 

managing essential water resources. 

4.2 Study Area 

This study focuses primarily on the steep, mountainous Astore catchment (Figure 4.1). The 

Astore is a 3988 km
2
 gauged sub-basin of the UIB, in which runoff is dominated by seasonal 

snowmelt (Archer 2003). This is derived primarily from orographically enhanced snowfall in 

the preceding winter and spring, which originates from westerly disturbances and strongly 

shapes inter-annual runoff variability (Archer and Fowler 2004). Snow redistribution 

processes are important but poorly quantified, whereas glacier cover is relatively limited, at 

around 6% according to the Randolph Glacier Inventory (RGI) 5.0 (Arendt et al. 2015). In 

addition, the ESA GlobCover 2009 product (Arino et al. 2012) confirms that vegetation cover 

is relatively sparse, with the catchment dominated by a mixture of bare ground, herbaceous 

plants, and perennial snow and ice.  

 

Figure 4.1 – Location of study area and local measurement points. The regional context is indicated in 

(a). The Astore catchment and observation locations (with labels for the most important sites in this 

study) are shown with topography and glacier extent in (b). This includes the Concordia site to the 

east of the Astore catchment, which is used for model validation at the point scale, as discussed in 

Section 4.3.5. 
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4.3 Data and Methods 

The methods applied here to evaluate the skill and tendencies of alternative snow model 

configurations in the Himalaya may be summarised as follows. Firstly, we adapted the FSM 

model to additionally permit catchment scale simulations. Secondly, we applied minimal bias 

correction and simple downscaling methods to the HAR in order to derive distributed input 

fields. Then we used local observations and multiple remote sensing products to help evaluate 

the model ensemble. Finally, to briefly assess variations in climate sensitivity within the 

ensemble, we applied simple perturbations focusing on temperature. In the following sections 

we elaborate this approach. 

4.3.1 Model 

FSM Overview 

The FSM multi-physics ensemble employed here is an intermediate complexity, systematic 

framework for testing alternative representations of key snowpack processes and how they 

interact with each other within a coupled mass and energy balance scheme (Essery 2015). 

With two parameterisation options (0/1) for five different snowpack processes, the FSM 

ensemble includes 32 possible model configurations. The five snowpack processes and their 

parameterisation options, which neatly synthesise common approaches in a range of widely 

applied models, are summarised in Table 4.1. Analyses of FSM to date have shown that it 

gives ensemble performance and spread comparable to larger multi-model ensembles (Essery 

2015). Its value for testing new process representations has also been demonstrated (Moeser 

et al. 2016). 

Adaptations and Implementation 

This study adapts the initial point-scale FSM implementation for distributed simulations on a 

regular grid, with spatially varying inputs. There are several reasons why this is useful. 

Crucially, appropriate data and sites for point-scale simulations in the Himalaya are very 

scarce and of limited spatial representativeness. Hydrological (and other) applications need to 

consider catchment heterogeneity, including the large elevation, aspect, slope and related 

near-surface climate variations that are critical to hydrological functioning in basins like the 

Astore. The core subroutines of FSM are left as described in Essery (2015), and each 

horizontal grid cell is simulated independently of other cells, i.e. inter-cell mass and energy 
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transfers are not considered, as in other distributed snow models (Liston and Elder 2006a; e.g. 

Lehning et al. 2006). 

Process Description Short Name Parameterisation 0 Parameterisation 1 

Snow albedo variation Albedo (AL) Diagnostic – function of 

surface temperature 

Prognostic – decays with 

time and increases with 

snowfall  

Density of fresh snow 

and snowpack density 

evolution 

Density (DE) Constant Specified fresh snow 

density and compaction 

increases with time 

Liquid water storage, 

drainage and 

refreezing 

Drainage (DR) Instant drainage, no 

refreezing 

Bucket model (drainage to 

layer below if liquid 

holding capacity 

exceeded), with refreezing 

(and latent heat release) 

allowed 

Atmospheric stability 

adjustment for 

turbulent heat fluxes 

Stability (S) No adjustment for 

atmospheric stability 

Stability factor is a 

function of the bulk 

Richardson number 

Thermal conductivity 

for heat conduction 

Thermal Conductivity (TC) Constant Function of density 

Table 4.1 – Summary of the process parameterisation options available in FSM. Full details are given 

in (Essery 2015). The short names by which the processes are referred to in the text are given. 

The simulations use a 500 m horizontal resolution grid and an hourly time step, with 

topography from the SRTM 90 m DEM v4.1 (Jarvis et al. 2008). Spatial variation in land 

surface properties is ignored on the basis that glacier and vegetation (including forest) cover 

are relatively low, while information on substrate properties is unavailable. Subgrid variability 

is not incorporated or (further) parameterised in these reasonably high resolution simulations, 

and snow redistribution by avalanching and wind are omitted. While some limitations on 

absolute model performance could follow from omitting these complicated factors, our 

emphasis is more on relative performance and the differences arising from alternative 

representations of snowpack processes. For this reason, we also opt not to apply hydrological 

routing in this steep, fast-draining catchment. The properties and geometries of both 

substrates and channels are unknown and typically calibrated even in process-based models 

(e.g. Ragettli et al. 2013; Shrestha et al. 2015), which could confound interpretation of 
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snowpack processes here. However, future work introducing these additional processes and 

complexities should be undertaken. 

4.3.2 Climate Inputs 

High Asia Refined Analysis (HAR) 

The HAR (Maussion et al. 2014) is used as the basis for spatiotemporally varying  input fields 

of rainfall, snowfall, air temperature, relative humidity, wind speed, surface air pressure, and 

incoming shortwave and longwave radiation. The HAR is effectively a 14-year dynamical 

downscaling of coarser global analysis to 10 km over the Himalaya and Tibetan Plateau, using 

the Weather Research and Forecasting model (WRF, Skamarock et al. 2008). The skill of the 

HAR in capturing aspects of regional near-surface climatology was demonstrated by 

Maussion et al. (2014). The evaluation in Chapter 3 used local observations and remote 

sensing to analyse HAR performance in more depth for the UIB. While some biases are 

present, the HAR has been shown to exhibit a skilful representation of climate in several 

hydrological and glaciological modelling studies in other parts of the region (Huintjes et al. 

2015; Biskop et al. 2016; Tarasova et al. 2016). 

Bias Correction and Downscaling 

Following preliminary testing of different strategies, a minimal bias correction approach was 

adopted. Specifically, we corrected near-surface air temperatures for biases in the mean, based 

on local observations in the Astore catchment (Figure 4.1b). We do not apply more detailed or 

complicated correction methods for several reasons. Firstly, the HAR shows many areas of 

good performance across a range of variables. Secondly, it is difficult to fully characterise 

spatial and temporal variation in biases based on limited observations, especially for less 

commonly observed variables. Indeed, after testing alternative approaches, including quantile-

based methods using observations from neighbouring catchments, it was found that the 

methods attempted did not lead to improvements in cross-validation or model performance. 

Finally, we aim to retain the physical consistency of the HAR fields as far as possible, in 

terms of both inter-variable and spatiotemporal dependence structures. Clearly substantial 

uncertainty exists for the resulting input fields, which we address below. 

The downscaling method draws on the approaches within the MicroMet meteorological pre-

processor of SnowModel (Liston and Elder 2006b), as well as the methods used by 
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Duethmann et al. (2013). With the exception of incoming shortwave radiation (see below), the 

method here uses linear regression to relate each variable to elevation, a primary control on 

climate variation here, with prior log-transformation for precipitation. The values at each 

HAR cell are then interpolated to a reference level using the gradient determined in 

regression. This gives a spatial (horizontal) anomaly field. This field is interpolated to high 

resolution, and then the elevation signal is reintroduced using the regression gradient. There 

are of course other possible methods and refinements that could help to bridge the scale gap, 

but analysing these is not the focus of this study. It is of course difficult to fully determine the 

effectiveness of this or any downscaling method from limited observations, but additional 

confidence can be gained from model ensemble validation (Section 4.4.1). 

Given the pronounced topography of the study area, we model clear-sky shortwave radiation 

at the surface based on the high resolution DEM using the approach developed by Corripio 

(2003). This approach has been successfully applied before in this region (e.g. Ragettli et al. 

2013) and additionally checked against measurements from EvK2CNR stations. We include 

the effects of variations in cloud/atmospheric transmissivity by calculating the ratios of clear-

sky to received incoming shortwave radiation at the surface in the HAR. We interpolate this 

to the higher resolution of the model grid and then adjust the clear-sky values accordingly. 

This approach helps to maintain consistency between variables and cloud influences while 

also capturing key topographic effects, although direct/diffuse partitioning and spatial 

heterogeneity of shortwave inputs under different cloud conditions are clearly simplified. 

Uncertainty 

In recognition of input uncertainty, we also perform simulations using two alternative input 

strategies. These are summarised in Table 4.2 below. The strategies are not independent, as 

their main purpose is to indicate whether the conclusions reached on snowpack process 

representations, the focus of this study, are unduly affected by the approaches described 

above. This is of course only a partial treatment of uncertainty. However, the baseline analysis 

presented here is a precursor to more detailed investigation of the difficult problem of how to 

quantify uncertainty in climate fields when observations are so sparse. 
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Input/Run Name Input Strategy 

FSM1 Downscaled HAR using approach described in Section 4.3.2, with simple bias 

correction of temperature fields 

FSM2 Downscaled HAR using approach described in Section 4.3.2, but no bias correction of 

temperature fields 

FSM3 Downscaled HAR precipitation as per Section 4.3.2, but other fields primarily estimated 

from observations. Specifically, temperature is lapsed based on observations 

(separately for daily minima and maxima, using monthly lapse rates), and the month’s 

climatological hourly diurnal cycle from EvK2CNR stations is applied. Relative humidity 

is estimated from daily minimum and maximum observations, and disaggregated using 

a similar approach. Incoming shortwave radiation is calculated as per FSM1 and 

FSM2, but a parameterisation of cloud transmissivity based on diurnal temperature 

range is used (Pellicciotti et al. 2011). Incoming longwave radiation is estimated as in 

MicroMet (Liston and Elder 2006b). Wind speed is taken from the HAR in the absence 

of observations. 

Table 4.2 – Model input strategies reported in this study.  

4.3.3 Model Evaluation 

In line with the study’s hydrological emphasis, the overall volume and timing of simulated 

runoff is evaluated using daily flows recorded at the Doyian gauging station by the Water and 

Power Development Authority (WAPDA). No local snow measurements are available, but we 

compare model outputs with SCA derived from the MODIS MOD10A1 product (Collection 

6) (Hall and Riggs 2016), as a further spatial constraint on catchment internal processes. We 

also explore the potential for MODIS albedo (MCD43A3 and MOD10A1) and LST 

(MOD11A1) products to support evaluation of processes affecting the surface energy balance. 

These products have been widely evaluated (Liu et al. 2009; e.g. Wan et al. 2004), although 

additional challenges are posed by complex terrain. Additional evaluation of LST is given in 

Appendix B (Section B1), which confirms that the MODIS product generally performs well, 

with low enough bias to indicate gross model errors. Each data source has its own limitations 

and uncertainties of course, but in combination they permit the qualitative and quantitative 

performance evaluations reported in Section 4.4.  

4.3.4 Climate Sensitivity 

To contextualise findings on how snowpack process representation choices affect model skill 

and tendencies, we perform a simple climate sensitivity test. For this we perturb summer air 
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temperatures (April to September) by -3 to +3°C, in 1°C increments. The approach taken here 

is essentially that used in other climate sensitivity studies (e.g. Rasouli et al. 2014; López-

Moreno et al. 2017), but without examining precipitation perturbations. In fact we keep 

October to March precipitation and temperature deliberately as per the baseline, in order to 

focus on differences arising in the melt season. The approach is clearly very simple and does 

not fully account for the spatiotemporal (and inter-variable) dependencies and variation that 

characterise more realistic climate sensitivity and change scenarios. However, it should be 

sufficient to see whether model configuration choices elicit notable differences in 

hydrological response, an important consideration for climate change impact studies. 

4.3.5 Point-Scale Simulations 

While our analysis here focuses on distributed simulations, we also performed point-scale 

runs with FSM for the Concordia monitoring site set up and run by EvK2CNR (Figure 4.1b). 

This site measures all input variables needed for FSM, but data are only available for a couple 

of years. The purpose of the point-scale simulations here is to check the performance of the 

FSM code and to provide selected additional checks on the findings of the distributed 

simulations. Full details are given in Appendix B (Section B2) and in Section 4.4 where 

relevant. 

4.4 Results and Discussion 

This section begins by examining overall ensemble performance for runoff and SCA (Section 

4.4.1). The significance, tendencies and realism of different process parameterisation choices 

are then evaluated and related to ensemble structure and variability, which helps to identify 

which configurations are likely to be most robust (Sections 4.4.2-4.4.4). To contextualise the 

importance of model parameterisation choices, a brief assessment of sensitivities to climate 

perturbations then follows (Section 4.4.6). 

4.4.1 Ensemble Evaluation 

Runoff 

Figure 4.2a shows that the modelled mean annual cumulative runoff curves are in overall 

agreement with observations, in terms of both shape and magnitude. However, the spread in 

the FSM ensemble is notable. This takes the form of groupings of ensemble members. Three 
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clear groups are distinguishable early in the melt season, but these groups subsequently split 

to give a more complicated ensemble structure. Focusing on the earlier part of the season, 

when snowmelt is expected to dominate runoff composition, the closest correspondence with 

observations is for the group with the shallowest runoff curve. The other groups tend to show 

significantly faster runoff rises. The differences between groups are significant from 

hydrological and water resources perspectives, with cumulative runoff by the beginning of 

June (July) around 2 (1.5) times larger in the fastest-responding group compared with the 

slowest. 

 

Figure 4.2 – Comparison of modelled snowmelt runoff with observed runoff. Mean annual cumulative 

runoff for the high-flow season for each of the 32 ensemble members is given in (a), along with 

observations. Inter-annual variation in the ensemble mean and observed runoff is shown in (b), where 

the solid lines denote the mean and the shaded/dashed areas indicate the inter-annual range. Model 

results are based on the FSM1 inputs and are shown in grey, with observations in black. 

To assess inter-annual variability, we compare the annual runoff cycle for the ensemble mean 

with observations in Figure 4.2b. The main point from this is that the modelled inter-annual 

mean and range of runoff are consistent with observations. Clearly the timing of melt onset is 

a little earlier than observed runoff for the ensemble as a whole, as expected from Figure 4.2a, 

while the modelled hydrograph also exhibits a steeper and more variable falling limb. These 

features may be partly related to the modelling simplifications discussed in Section 4.3.1, 

especially omission of routing and glaciers, but particularly to the fact that the ensemble mean 

might not provide the best representation of melt and runoff processes. Individual members or 

certain configurations may be better, as indicated in Figure 4.2a and explored in detail below 
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(Section 4.4.4). If the timing difference is then temporarily ignored, good correspondence in 

the range of inter-annual variability is apparent. 

Snow Cover 

Figure 4.3a demonstrates that the mean annual cycle of catchment snow cover variation is 

reproduced by the FSM ensemble. As with runoff, notable spread between ensemble members 

is present, especially in spring and early summer. During this period, most groups of 

ensemble members tend to lie between the two MODIS Normalised Difference Snow Index 

(NDSI) thresholds used here for snow cover classification (see figure caption). That most 

members are below the NDSI 0 threshold cycle (i.e. classification based on very limited or no 

snow cover in a pixel) is indicative of a faster decline (and slower subsequent rise) of 

modelled SCA compared with MODIS for the ensemble as a whole. This appears consistent 

with the finding above that modelled snowmelt runoff begins and rises earlier than in 

observations, potentially due to overly large spring melt rates. However, input uncertainty, 

scatter in the relationship between NDSI and fractional snow cover (Salomonson and Appel 

2004), and modelling simplifications are amongst the important caveats here. We return to 

this in more detail below. 

From Figure 4.3b it can be seen that the inter-annual range of SCA throughout its annual 

cycle is broadly consistent with MODIS. While both MODIS series are variably offset from 

the modelled ensemble mean cycle, their ranges are generally of similar magnitude in all 

seasons. Variation in both MODIS and the model is small during the period of extensive snow 

cover in winter, before increasing during spring and summer. This melt season variability 

reflects important inter-annual and spatiotemporal variations in both mass and energy inputs. 

The largest inter-annual variation in snow cover occurs during autumn, reflecting variability 

in the timing of significant snowfall events at this time of year. 



82 

 

 

Figure 4.3 – Comparison of modelled catchment snow cover with MODIS remote sensing. The mean 

annual cycle of snow cover for each ensemble member is displayed in (a), along with MOD10A1 snow 

cover. Inter-annual variations in the ensemble mean and MOD10A1 snow cover is plotted in (b) as the 

dashed/shaded areas. Model results are based on the FSM1 inputs. The two MOD10A1 series are in 

black and orange, which correspond to Normalised Difference Snow Index (NDSI) thresholds of 0/100 

and 40/100. Two thresholds are used to show the differences between how classifying pixels using 

approximately 0% and 50% snow cover affects SCA. The former threshold is more consistent with the 

model results (in grey), in which grid cells are classified based on whether or not any snow is present. 

In conjunction with the runoff evaluation above, this comparison therefore suggests that 

ensemble performance is adequate for further investigation of the importance, skill and 

tendencies of different snowpack process representations. This enables us to understand how 

they shape ensemble spread and grouping structures, and ultimately to quantify performance 

variations. We note that the simulations using the two alternative input strategies (Section 

4.3.2) also show reasonable runoff and SCA performance (Appendix B, Section B3), such 

that they are used for comparison in subsequent sections. The lowest performance is seen in 

the more observation-based approach (FSM3), which also shows the most spread in both the 

ensemble and its groupings. 

4.4.2 Process Importance 

Figure 4.4 helps us to gain an initial idea of the relative importance of the processes options in 

FSM for ensemble spread and structure in runoff. For each of the five snowpack processes, 

we average the ensemble members that use the 0 and 1 parameterisation options and then 

calculate the differences between these averages. From doing this we can see that the albedo, 
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drainage and stability processes are associated with notable deviations from zero. This means 

that they have important effects on ensemble spread in melt and runoff, similar to initial 

results from the French Alps (Essery 2015). Notably, the drainage process shows opposite 

signs of difference for melt and runoff initially. Inter-annual variability in differences is also 

substantial, particularly for the albedo option. The patterns of differences and their causes are 

explored in detail below, but for now we note that it is these three processes that are most 

critical for hydrological responses. 

Figure 4.4 – Differences in simulated daily melt and runoff according to model options. For a given 

process, differences are calculated each day by subtracting the mean of all ensemble members using 

option 0 from the mean of all ensemble members using option 1. The differences due to albedo (a), 

drainage (b), stability (c) and density (d) options are plotted. Differences in melt and runoff are shown 

in orange and blue respectively. Line types denote the inter-annual mean for each input strategy, while 

the shading shows inter-annual ranges for FSM1 only for clarity. 
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In contrast, the density process options show small differences in Figure 4.4d, which is also 

the case for thermal conductivity (shown in Appendix B, Section B4). However, this does not 

necessarily mean that these processes are unimportant, either for hydrology or other variables 

of interest. This is further explored in Appendix B (Section B4), where we show that the 

density option exerts influences on runoff timing in some years, especially later in the melt 

season. While we focus mainly on albedo, drainage and stability adjustment options in 

subsequent sections, as the primary controls identified in Figure 4.4, the hydrological 

implications of density and thermal conductivity options should be explored further. 

4.4.3 Process Evaluations 

Having established the relative importance of different processes, the hydrological tendencies 

arising from each of the albedo, drainage and stability adjustment options are now explored in 

turn and evaluated with additional data sources as far as possible. This is followed by an 

assessment of spatiotemporal variation. 

Albedo 

In Figure 4.4a we saw that the sensitivity of model response to the albedo option is large, in 

line with the known importance of net shortwave radiation as a driver of melt in this 

environment (Hewitt 2014). Specifically, switching on the prognostic albedo option leads to 

lower melt and runoff in the first part of the melt season, a pattern which reverses around the 

middle of the season. The prognostic albedo parameterisation thus initially delays and slows 

melt relative to the diagnostic option, with one implication being that higher SWE persists 

longer into the melt season when melt energy (and melt rates) are higher. While the mean 

differences are similar for each input strategy tested, inter-annual variability is substantial. 

The main reason for the faster melt in spring and early summer using the diagnostic 

parameterisation based on LST is its pronounced diurnal cycle. This is demonstrated in Figure 

4.5a, which shows that the diagnostic parameterisation has substantially lower albedo during 

the afternoon hours. As such, there is a feedback here, whereby rising incoming shortwave 

radiation increases LST, in turn decreasing simulated albedo and leading to higher net 

shortwave receipt. The prognostic parameterisation does not induce such a pronounced 

diurnal cycle, due to the longer timescales of albedo decay it represents. This explains why 

faster melting occurs with the diagnostic parameterisation in the earlier part of the melt 

season, when snow is abundant.  
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Figure 4.5 – Comparison of albedo parameterisations. The average diurnal cycle of differences in 

snowpack albedo arising from the two parameterisation options is shown in (a), for an example month 

and for different elevation bands (coloured). Differences are based on the averages of ensemble 

members using each option. The differences are calculated as prognostic (1) minus diagnostic (0), 

such that positive values indicate higher albedo with the prognostic parameterisation. In (b) we 

compare modelled catchment-average (normalised) snow albedo with MODIS remote sensing for an 

example year (2004). Modelled albedo is grouped by option, with diagnostic (0) in orange and 

prognostic (1) in blue. Both the mean (line) and range (shading) of ensemble members are shown. 

MCD43A3 is shown with black dots, while MOD10A1 (8-day moving averages) is shown with grey 

dots. The modelled series are normalised by subtracting the ensemble mean albedo (all members), 

while the MODIS series are normalised by subtracting their respective means. Normalisation was 

undertaken to emphasise functional behaviour rather than differences in absolute albedo, which are 

clearly important but more uncertain due to the challenges of albedo retrieval in complex terrain and 

the simplified treatment of subgrid variability in the model. 

While albedo does vary diurnally with solar zenith angle in reality, it does not necessarily 

follow that this is related simply to LST cycles or that the diagnostic approach is more 

accurate over daily and longer timescales. To independently evaluate the realism of the two 

albedo parameterisation options, we compare daily time series of modelled catchment-average 

snow albedo with MODIS remote sensing in Figure 4.5b. Acknowledging some timing 

offsets, this comparison suggests that the functional form of the prognostic parameterisation is 

much more consistent with remote sensing. In particular, this option more skilfully captures 

the sharp albedo increases following snowfall, which are an important factor behind melt rate 

variability in the spring and summer (Hewitt 2014). Moreover, the prognostic option better 

reproduces the shape of albedo decay. This can reduce albedo below the values from the 
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diagnostic parameterisation later in the season, which also contributes to the higher melt rates 

at this time when using the prognostic parameterisation. 

Point-scale simulations at Concordia (Section 4.3.5) further confirm that the prognostic option 

is more realistic (Appendix B, Section B5). Moreover, in data from Concordia and MODIS, 

the relationship between albedo and LST shows substantial scatter (Appendix B, Section B5). 

This further suggests that calibration of parameters in a simple diagnostic approach would 

struggle to rectify shortcomings in its functional form. The prognostic approach should 

therefore be preferred in hydrological models and LSMs. 

Drainage 

In Figure 4.4b we saw that melt is higher with the drainage option switched on. Conversely, 

runoff is initially lower, before switching midway through the melt season. This pattern 

results from the interactions of refreezing and storage tendencies in the snowpack. With the 

drainage option on, liquid water from melting is allowed to refreeze, leading to latent heat 

release, which maintains a higher snowpack temperature (confirmed in Appendix B, Section 

B6). This is conducive to higher melt rates, but it does not lead to higher runoff rates initially. 

Retention and delayed release of liquid water using the bucket approach are part of the reason 

for this, but importantly, multiple diurnal cycles of melting and refreezing may be required 

before a given unit of snow is entirely converted to runoff. The delaying effect of switching 

on the drainage option thus outweighs its tendency to increase melt rates. Yet by allowing 

snow to persist for longer, this enhanced storage ultimately leads to higher melt and runoff 

rates later in the season, as later-lying snow becomes subject to increasing energy inputs. 

Unfortunately data to evaluate these processes directly are unavailable, but we discuss the 

implications of these tendencies further below. 

Stability Adjustment 

Although inter-annual variability in Figure 4.4c is large, the mean difference series suggest 

that switching the stability adjustment option on leads to slightly lower melt and runoff rates 

in the middle of the season, but then higher rates subsequently. The primary explanation for 

this lies in the snowpack surface energy balance. Figure 4.6a shows that, during the early part 

of the year, the differences in turbulent fluxes arising from the stability adjustment choice are 

largely offset by differences in net radiation. However, as air temperatures and near-surface 

gradients increase in spring and summer, the net turbulent flux difference ultimately becomes 
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a key driver of the differences in the surface energy balance residual (i.e. the additional 

energy available for warming/melting the snowpack when no stability adjustment is applied). 

Figure 4.6 – Stability adjustment influences on snowpack surface energy balance (SEB) components. 

Daily time series of differences in snowpack SEB composition arising from stability option choice are 

shown in (a) for an example elevation band (3500-4000 mASL) transitioning from winter through to 

melting in summer. In (b) to (d) we show hourly time series for 3 days in April 2005 for successively 

lower elevations, which essentially represent non-melting, early melting and intense melting 

conditions. These panels show the averages of outgoing longwave radiation (LWOUT), as well as 

sensible (SEN), latent (LAT) and net (NTURB) turbulent heat fluxes, which are averaged for ensemble 

members using the 0 (no adjustment – solid line) and 1 (adjustment – dashed line) stability options. 

Results are based on FSM1 inputs. 

This progression is shown through example hourly time series in Figure 4.6b-d. These series 

correspond with non-melting, transitional and melting conditions. Specifically, from Figure 
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4.6b we can see that, when no stability adjustment is applied, outgoing longwave radiation 

increases to largely offset the additional turbulent heat transfer towards the surface, which is 

driven by the sensible heat component. This compensation occurs principally at night, with 

turbulent fluxes converging during the day. Figure 4.6c typifies the emergence of notable 

sensible heat fluxes towards the surface during the day as temperatures warm, which is most 

clearly developed in the late-lying snow case in Figure 4.6d. 

As turbulent flux measurements are unavailable, we examine whether LST from MODIS 

remote sensing can provide any partial constraints on the flux representations and their 

contribution to the surface energy balance (see Section 4.3.3 and Appendix B Section B1 for 

additional validation of MOD11A1 product). Figure 4.7 shows that the largest differences in 

vertical LST profiles due to stability option choice occur at night and increase with elevation, 

for the clear-sky conditions when MODIS retrievals are available. Switching off the stability 

adjustment generally leads to profiles that are significantly warmer and more consistent with 

MODIS, due to efficient near-surface mixing. In contrast, ensemble spread in day-time LST is 

relatively small and generally in good agreement with MODIS. There are slightly larger 

differences in summer, although the extent and influence of sub-pixel snow cover variation on 

MODIS LST likely increases during melting periods, giving some positive bias (Appendix B, 

Section B1). 

As air temperatures and LST generally converge here at night-time (Appendix B, Section B1), 

the simulated differences at night may stem from too strong a suppression of turbulent fluxes 

using the bulk Richardson number to correct for atmospheric stability. Importantly, the 

identification of this at night-time suggests that a similar issue could be present during the day 

under snowmelt conditions. There could also be other complications here, including (poorly 

observed) incoming longwave radiation and terrain enhancement effects (Sicart et al. 2006), 

as well as subgrid variability (Clark et al. 2011) and sensible and latent heat advection (e.g. 

Harder et al. 2017). The results here suggest that testing the inclusion of these effects, as well 

as using additional approaches for stability adjustment (see e.g. Andreadis et al. 2009), is 

therefore warranted in this context. The potential for error compensation is high, but the 

ensemble framework approach of FSM could allow for exploration of predictive uncertainty 

at the very least. 
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Figure 4.7 – Comparison of modelled seasonal mean elevation profiles of LST (stratified by stability 

option) with MODIS MOD11A1 remote sensing. In (a) to (d) we show night-time temperatures, with 

day-time temperatures in (e) to (h). Model results are based on the FSM1 inputs and correspond with 

the closest model time step to the Terra platform overpass times, as well as only days for which 

MODIS retrievals are available (i.e. clear-sky conditions). The 0 (no adjustment) and 1 (adjustment) 

stability options are shown in orange and blue, respectively, with the ensemble sub-group mean (line) 

and range (shading) shown. MODIS data are the black dots. 

In addition to runoff, the stability adjustment choice affects sublimation, with implications for 

the water (and glacial mass) balance. Switching on the adjustment approximately halves 

annual sublimation from 102 to 52 mm on average, with the mean relative reduction broadly 

consistent between input strategies. This means that sublimation accounts for around 9% and 

5% of total catchment ablation with the stability adjustment switched off and on, respectively. 

However, further work is required to understand the substantial uncertainties and balance of 
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sensible/latent heat flux effects here, as well as the role of other processes, such as 

sublimation during wind transport. 

Spatial Variation 

The results above demonstrate that model configurations with diagnostic albedo, no drainage 

parameterisation and no stability adjustment, i.e. “0” options (Table 4.1), tend to induce 

earlier runoff at the catchment scale. Here we examine how these tendencies are manifest 

spatially and how the influence of different processes depends on both space and time, 

focusing on the crucial vertical dimension.  

Figure 4.8 shows that S-shaped profiles of runoff differences develop and migrate upwards as 

the melt season progresses. These profiles form because early runoff at relatively high 

elevations using the “0” options leads to faster snow depletion relative to using the “1” 

options, leaving the latter with more mass to melt later in the season. This is consistent with 

the catchment responses described above. 

These S-shaped profiles migrate upwards in sequence, with drainage followed by albedo and 

stability. Drainage option choice is particularly critical around the freezing isotherm for daily 

maximum temperatures, determining whether early melt is released or subject to storage 

through refreezing/melting cycles. In comparison, the lower elevation of peak albedo 

parameterisation effects is consistent with a more efficient LST-albedo feedback under 

slightly higher daily mean temperatures. The peak effects of stability adjustment choice are at 

lower elevations again, as they depend on the development of large near-surface temperature 

gradients. Notably, for both albedo and drainage, differences in runoff are present up to the 

highest elevations. Therefore, how liquid water processes and albedo are represented is 

critical for simulating high elevation perennial snowpacks and glacier accumulation, as well 

as the timing of runoff generated at lower elevations. 
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Figure 4.8 – Spatial (vertical) and temporal (monthly) differences in simulated runoff as a result of 

albedo, drainage and stability option choices. The differences are calculated in the same way as for 

Figure 4.4, but using 500 m elevation bands. Monthly mean freezing isotherm elevations for daily 

minimum, mean and maximum temperatures are also shown. The runoff rates are calculated based on 

elevation band areas, such that hypsometry is not taken into account. Results are based on FSM1 

inputs. 

4.4.4 Model Choice Interactions 

In this section we examine how the tendencies of individual processes interact to shape the 

structure of the ensemble. This starts with the period mean case, which is followed by a 

consideration of inter-annual variability. 
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Period Mean 

Figure 4.9a shows mean annual cumulative runoff curves for the ensemble grouped according 

to their combination of albedo and drainage option choices. This indicates that the fast runoff 

responses in the ensemble are associated with members employing the diagnostic albedo 

parameterisation in combination with instantaneous drainage. In contrast, the slowest runoff 

response occurs for ensemble members using prognostic albedo and the drainage 

parameterisation. In these bounding/end-member cases, the choices of albedo and drainage 

therefore act to exacerbate each other’s individual tendencies to accelerate or slow runoff. 

However, the remaining two combinations of albedo and drainage options tend to result in 

similar cumulative runoff profiles, especially over the earlier part of the melt season. In this 

case, model choices can lead to a degree of compensation, i.e. combining the “fast” albedo 

option with the “slow” drainage option gives similar overall runoff results to combining 

“slow” albedo with “fast” drainage here. 

 

Figure 4.9 – Period mean cumulative runoff curves grouped by process options. Combinations of 

albedo (AL) and drainage (DR) options are shown in (a), with stability options additionally shown in 

(b). The latter panel is based on further differentiating the albedo/drainage combinations (shown in (a)) 

by stability option (i.e. 0 and 1). Both panels show mean annual cumulative runoff from observations 

(solid black line), as well as the ensemble mean (dashed line). Model results are based on FSM1 

inputs. 

Three of the albedo/drainage combinations in Figure 4.9a show increasing spread as the melt 

season progresses. Figure 4.9b confirms that this is due to the rising prominence of the 
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stability option choice later in the melt season, which becomes most prominent in the case of 

applying prognostic albedo together with the drainage parameterisation. Not applying the 

adjustment leads to more rapid runoff and earlier convergence with the other groupings. This 

fits with the explanation of the role of the stability adjustment above (Section 4.4.2), namely 

determining whether rapid melting can occur where snow is present under warm air 

temperatures. The observed mean cumulative runoff curve appears to be most consistent with 

the group applying prognostic albedo with the drainage parameterisation, but the 

correspondence with the stability option is more ambiguous. This is discussed further in 

Section 4.4.5.  

Inter-Annual Variability 

Figure 4.10 – Inter-annual variability in ensemble grouping structure. Mean deviations from the 

ensemble mean cumulative runoff curve (normalised to account for differences in annual runoff 

between years) for albedo (AL) and drainage (DR) option combinations are shown in (a) for each input 

strategy. Inter-annual variation in the rankings of groups within the ensemble compared with the 

period mean ensemble structure is shown in (b) as a time series of correlations (based on FSM1 

inputs). The inter-annual mean (line) and range (shading) are plotted. The correlations are calculated 

for each day by aggregating the full ensemble on albedo, drainage and stability options, ranking the 

groups based on cumulative runoff and then correlating rankings with the period mean. 

To see whether the pattern of groupings is consistent across years and input strategies, Figure 

4.10a shows average deviations from the ensemble mean cumulative runoff curves for each 

albedo/drainage option grouping. Positive deviations indicate cumulative runoff generally 

above the ensemble mean curve and vice versa. From this we can see that the overall role of 

albedo and drainage option choices and their interactions is similar across input strategies and 
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between years. Diagnostic albedo applied without representation of liquid water results in the 

steepest cumulative runoff (i.e. positive deviation), while prognostic albedo with drainage 

results in the shallowest curve (i.e. negative deviation). The remaining two combinations are 

both close to the ensemble mean, reflecting the compensation effect noted above. 

In Figure 4.10b we group the ensemble according to the possible combinations of albedo, 

drainage and stability options to look at how the group rankings correlate with the mean 

annual case over the course of the melt season. High correlations in the spring and early 

summer show that there is initially a consistent ranking across years. The correlation does 

deviate from unity, which is related to inter-annual variation in the two intermediate response 

albedo/drainage groups in Figure 4.9a and Figure 4.10a (Appendix B, Section B7). However, 

lower correlations from July onwards suggest more variable ensemble groupings later in the 

melt season. The significance of this for catchment runoff variations decreases as the end of 

the melt season approaches, as all groups approach similar cumulative runoff totals. Yet for 

some applications or critical zones these differences could be important, for example in 

perennial snow mass balance. 

4.4.5 Group Performance 

Section 4.4.4 thus show how different combinations of model options lead to exacerbation or 

compensation of their individual tendencies. This is driven primarily by albedo and drainage 

option choices at first, before the stability adjustment option also starts to play an increasingly 

significant role. The structure of the ensemble appears to be fundamentally similar in different 

years. We now consider how this relates to performance variation within the ensemble and 

between years. 

Figure 4.11a shows RMSE for both cumulative runoff (for April to June, the major period of 

snow cover depletion) and SCA, with the ensemble grouped by albedo, drainage and stability 

options. From this we can see that the groups that perform better in terms of runoff also tend 

to show more consistency with MODIS SCA. This suggests that more accurate runoff 

response arises from better simulation of intra-catchment variation, rather than error 

compensation. Crucially, the best-performing groups all use the prognostic albedo option, 

which fits with the process-level evaluation against remote sensing and local data above 

(Section 4.4.2). The two groups that additionally include the drainage parameterisation show 

some of the best performance. These two findings are both in line with Essery et al. (2013) 

and Magnusson et al. (2015). However, the group omitting the drainage parameterisation but 
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applying the stability correction also shows low RMSE overall. This alludes to compensatory 

effects in this combination, with lower melt rates under the stability correction counteracting 

the rapid response induced by omitting the drainage parameterisation. More generally, 

applying the stability adjustment tends to reduce SCA errors, but improvements for runoff are 

small or mixed. 

 

Figure 4.11 – Inter-annual variation in model performance by major groupings. Cumulative runoff 

RMSE is plotted against SCA RMSE in (a) for each of the albedo (AL) and drainage (DR) option 

combinations (i.e. averaging respective ensemble members), with differentiation by stability (S) option 

(shape and line type) also shown. SCA is based on an NDSI threshold of 0, consistent with the model 

classification of snow-covered cells as those containing any snow. Results are based on FSM1 inputs. 

In (b) the relationships between inter-annual variation in cumulative runoff RMSE for the three 

albedo/drainage/stability option combinations with the best overall performance are shown. RMSE for 

the two options incorporating the drainage parameterisation (AL-1 DR-1 S-0 and AL-1 DR-1 S-1) are 

differentiated by colour (blue and orange, respectively) and plotted against the next best configuration 

(AL-1 DR-0 S-1). Each of the input strategies are shown (different shapes). 

Importantly, inter-annual variability in all groups is high (shown by the bars in Figure 4.11a), 

with notable overlap between groups. To examine this further, we investigate the relationship 

between performances of different groups in Figure 4.11b. Focusing on runoff RMSE for the 

three best-performing groups overall, we can see that trade-offs resembling a Pareto front 

develop. This means that, for a number of the years simulated, performance in one group 

cannot increase without a corresponding reduction in performance in another group. 

Specifically, for the groups in Figure 4.11b, years with good performance with the drainage 

option off (and the stability adjustment applied) are associated with performance reductions in 
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configurations where the drainage option is switched on. This indicates that a model structural 

constraint on performance exists. As shown above, the tendencies from different 

parameterisation options and their interactions are essentially consistent between years. 

However, this likely limits the extent to which a single configuration can prove optimal in all 

years or for all variables of interest. 

This latter point builds on the findings of non-uniqueness in previous model inter-comparison 

studies (see Section 4.1) by showing that performance trade-offs are systematic for the best 

groups of model configurations in realistic applications. In Appendix B (Section B8) we 

provide more such inter-group comparisons, which show the range of relationships that exist 

when considering groups with a broader range of performance.  

There are of course limitations with this performance evaluation, which stem from modelling 

simplifications (Section 4.3.1) and input/evaluation data uncertainty (Section 4.3.2). 

However, the consistency between SCA and runoff performance metrics noted above does 

add confidence. Indeed, while absolute RMSEs might depend on the approaches taken here, 

their relative rankings at least are likely to be robust and consistent with physical reasoning. 

Moreover, the inter-annual and inter-group relationships in performance are shown to be 

consistent across input strategies. 

4.4.6 Climate Sensitivity 

To contextualise the significance of these findings, we briefly consider the simple climate 

sensitivity test described in Section 4.3.4. Figure 4.12 quantifies how monthly runoff in the 

two end-member albedo/drainage combinations (referred to here as the “fast” and “slow” 

combinations) responds differently to temperature perturbations. The “fast” combination 

shows a heightened sensitivity in April, which drops below that of the “slow” combination in 

May. By June, the “fast” combination actually shows a generally negative relationship 

between runoff and temperature perturbations, reflecting the fact that increased melting earlier 

in the season leaves less snow available during the peak energy inputs of summer. It takes 

longer for the “slow” combination to reach this situation, but by July both combinations show 

similar responses. Moreover, while runoff sensitivity is approximately linear on average, 

varying degrees of nonlinearity are present in individual years, particularly from May 

onwards. This is influenced by inter-annual variability in winter and spring snowfall through 

its control on how early runoff may become strongly mass-constrained. 
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Figure 4.12 – Differences in monthly runoff arising from summer (AMJJA) temperature perturbations 

for the two end-member ensemble groupings (based on albedo (A) and drainage (D). The “fast” group 

(A0-D0) is shown in orange and the “slow” group (A1-D1) is shown in blue. Dots denote the mean 

response across years, with simple linear regression lines (solid) shown. For clarity, the dots are 

slightly offset from the specified temperature perturbations on the bottom axis. Individual years 

corresponding with the minimum and maximum responses are also plotted using dashed lines. 

Differences are relative to the baseline (FSM1) inputs, i.e. without any perturbation. 

While more detailed analyses could be undertaken in future studies, these results have several 

important implications. For example, the “fast” albedo/drainage combination could lead to 

more rapid and pronounced shifts in runoff timing in hydrological projections, with larger 

changes at higher elevations also likely. This combination might also be expected to amplify 

the snow-albedo feedback that contributes substantially to spread in climate model 
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simulations (e.g. Qu and Hall 2014), which would strongly affect projections of elevation-

dependent warming (Pepin et al. 2015; Palazzi et al. 2017). Further investigation is needed to 

see how the magnitude of this tendency might change following parameter calibration, 

although the “fast” combination does appear intrinsically less realistic (Sections 4.4.3-4.4.4). 

Finally, we note that simpler snow models (e.g. temperature index) might respond differently 

to climate perturbations depending on how they represent (implicitly or explicitly) or lump 

processes related to albedo, storage/drainage and turbulent fluxes. This also requires further 

investigation. 

4.5 Conclusions 

This study finds that using HAR-based inputs with a spatially distributed version of the FSM 

leads to generally good model performance at the ensemble level in the Himalaya. Based on 

validation of both the HAR and model response against local observations and multiple 

remote sensing products (Chapter 3), this finding confirms the substantial potential for high 

resolution regional climate modelling to supplement other data sources in the Himalaya and 

support snow model applications. However, we also show that ensemble spread is significant 

and constituted by groupings with different levels of model performance. These different 

responses of FSM ensemble members are strongly controlled by how processes related to 

albedo and liquid water storage/drainage are represented, with a secondary influence from 

turbulent fluxes (i.e. stability adjustment). Consistent tendencies to accelerate or delay runoff 

arise depending on the option selected, but the relative importance of different processes 

depends on both space and time. In combination, these tendencies may have exacerbating or 

compensating effects, but these lead to a similar overall ensemble structure between years, 

especially in the first half of the melt season. 

From evaluation using local data and remote sensing products, we find that configurations 

with better performance for runoff also more accurately reproduce SCA. In addition, the 

results suggest that the prognostic albedo parameterisation should be consistently preferred, in 

agreement with other studies (Essery et al. 2013; Magnusson et al. 2015). The liquid water 

storage/drainage option is also applied in most of the well-performing configurations, which 

is physically realistic, but some compensatory effects arise depending on the stability 

adjustment option selected. Based on comparisons with MODIS LST, there is some 

suggestion that turbulent fluxes are overly suppressed by applying the stability adjustment. 

This is plausible based on previous studies (see e.g. Andreadis et al. 2009), but whether one 
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stability adjustment choice should be preferred is difficult to determine fully. However, the 

approach of using multiple datasets and process-based modelling allows us to identify such 

uncertainties and formulate possible responses. As discussed in Section 4.4.2, it would be 

useful in further work to test additional options for stability adjustment and possible missing 

processes, including terrain enhancement of incoming longwave radiation and sensible/latent 

heat advection. Regional climate modelling with higher resolutions than the HAR is desirable 

here, as it may well improve relevant inputs further, although more in-situ climate and snow 

measurements are needed to really quantify this. 

The findings above suggest that there are structural limits on model performance. As the 

process options essentially behave and interact similarly between years, it is difficult for a 

single model to capture all of the inter-annual variability. Trade-offs in performance may thus 

ensue. Furthermore, we show that different configurations can exhibit substantially different 

climate sensitivities, although more detailed analysis is required in further work. Together, 

these points suggest that the ensemble modelling approach should be retained in applications, 

including climate change impact assessment. In some cases at least, it could be reasonable to 

use a subset of the ensemble. This could be based on removing some members where 

processes have less influence on variables of interest, but particularly where good reasons 

exist to suggest that particular parameterisations are less appropriate (e.g. diagnostic albedo). 

Where uncertainties are larger, for example for stability adjustment, it makes sense to retain 

multiple options. This could help to better characterise uncertainty, which is urgently required 

to support water resources management in the Himalaya in a changing climate. 
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Chapter 5  

 

Comparison of Cryospheric-Hydrological Modelling Approaches 

5.1 Introduction 

The broad field of hydrological modelling has long been characterised by two competing 

modelling philosophies (Hrachowitz and Clark 2017). On the one hand there are detailed, 

typically high resolution models based on the small-scale equations best describing catchment 

processes. On the other hand there exist myriad conceptual, often spatially lumped and 

simpler formulations. Models in the latter class use functions to relate catchment inputs and 

outputs, without explicit regard to the physics underpinning hydrological processes. Along the 

continuum between these model types, substantial variation in complexity and resolution is 

found. Opinions vary on appropriate process descriptions at different scales, as well as 

suitable complexity in the face of partial data (e.g. Beven 1989; Grayson 1992; Beven 2001, 

2002, 2006; Wood et al. 2011; Beven and Cloke 2012; Montanari and Koutsoyiannis 2012; 

Fatichi et al. 2016; Savenije and Hrachowitz 2017). Yet, in seeking strategies to improve 

representations of hydrological processes and their scaling behaviour, the complementarity of 

contrasting models and the importance of systematic inter-comparison have recently been re-

emphasised (Hrachowitz and Clark 2017; Clark et al. 2017; Peters-Lidard et al. 2017). 

For the mountainous Upper Indus Basin (UIB), where the majority of river flow is derived 

from snow and ice melt, questions regarding the applicability of different hydrological models 

centre on representations of cryospheric processes. As exemplified by commonly applied 

ablation algorithms, severe data paucity has often led to simpler approaches being preferred 

across the Himalayan arc. These are typically versions of temperature index (TI) (e.g. 

Bocchiola et al. 2011; Rees and Collins 2006; Immerzeel et al. 2009, 2012a, 2013; Soncini et 

al. 2014) or enhanced temperature index (ETI) approaches (e.g. Ragettli et al. 2013, 2015; 

Immerzeel et al. 2014; Minora et al. 2015). The former scales melt with air temperature 

following exceedance of a critical temperature threshold, while the latter additionally 

incorporates a term for net shortwave radiation at the surface. Many of the aforementioned 

studies consider these approaches to perform satisfactorily with respect to observed river 

flows, remote sensing of snow cover dynamics and, increasingly, regional glacier mass 

balance estimates from geodetic or other methods. 
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As essentially conceptual formulations abstracted from the surface energy balance, one of the 

outstanding questions with respect to these melt modelling approaches is their transferability 

in space and time to conditions outside those experienced during calibration. This is highly 

relevant for hydrological projections in a changing climate. While it has long been established 

that TI parameters vary notably in space and time (e.g. Lang and Braun 1990; Hock 2003), 

Gabbi et al. (2014) found there to be substantial implications of temporal parameter variation 

for relatively long-term simulations of glacier mass balance. From their results, an ETI model 

was suggested to be more robust, although other studies question whether this finding is 

general. MacDougall et al. (2011) noted that optimising an ETI model (Pellicciotti et al. 2005) 

in their Canadian study area actually reduced it to a simple TI model. In the French Alps, 

Vincent and Six (2013) and Réveillet et al. (2017) argued that accounting for shortwave 

radiation variability is certainly important to help capture spatial variation in melt, but 

temperature variation primarily controls inter-annual variability and glacier-scale response. 

For the latter two studies, the findings may be partly guided by their emphasis on clear-sky 

(potential) rather than cloud-modulated shortwave radiation. The reasons behind MacDougall 

et al.’s (2011) findings were less clear to the authors, but possibly reflect climate-dependent 

performance of the ETI model. Indeed, Carenzo et al. (2009) found that ETI performance 

deteriorated under overcast conditions in the Swiss Alps, while the parameters associated with 

the temperature and net shortwave radiation components of the model varied spatially with 

wind regime and the relative importance of turbulent fluxes. Matthews et al. (2015) also 

showed that ETI parameters can be considered temporally variable, such that making model 

parameters a function of weather type improved performance for both TI and ETI models.  

An alternative to attempting to account for spatial and temporal parameter variation in TI or 

ETI models is to apply distributed surface energy balance (EB) modelling. This approach 

provides a closer approximation to the physics driving ablation, which has been shown to help 

delineate contrasting responses to climate changes in different climate-snow regimes (e.g. 

López-Moreno et al. 2017). Yet, distributed EB modelling in the Himalaya comes with its 

own challenges, not least in the form of supplying appropriate climate inputs. Various studies 

have demonstrated the performance drop due to forcing energy balance models with non-local 

or estimated climate data, particularly on glaciers (e.g. MacDougall and Flowers 2010; Gabbi 

et al. 2014; Réveillet et al. 2018), while turbulent fluxes, small-scale variability and 

unresolved processes contribute notable uncertainties. However, there is now the possibility 

that high resolution coupled land-atmosphere model outputs can be used to force such models 
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with more confidence, even in data-sparse areas. This approach is still relatively unexplored 

in the Himalayan region, although Chapters 3/4 demonstrate its clear potential, while other 

studies highlight the increasing skill of coupled land-atmosphere modelling in the region 

(Collier et al. 2013, 2015). As such, it seems reasonable to ask how such an approach would 

compare with more commonly used conceptual formulations like the TI and ETI models. 

While comparisons of TI, ETI and EB models have been undertaken previously, these have 

been typically for non-Himalayan climate, snow and glacier regimes (e.g. MacDougall et al. 

2011; Gabbi et al. 2014). This is partly due to available evaluation data for ablation processes 

being limited, indirect and somewhat noisy, with persistent uncertainties additionally 

remaining even in new sources of climate input data, such as the High Asia Refined Analysis 

(HAR) (Maussion et al. 2014). However, we contend that such a model comparison in the 

UIB may usefully consider differences in model response and climate sensitivity, as well as 

performance in relation to observations as far as is possible. This is because, for practical 

hydrological projections in a changing climate, the differences in sensitivity of alternative 

input/model combinations to climate variability and perturbations are of substantial interest. 

Even if a model appears to give good performance in typically short calibration and/or 

validation periods, this is no guarantee that it approximates climate sensitivity well enough for 

longer projections (e.g. Gabbi et al. 2014). This is particularly the case for glacier mass 

balance trajectories, where the cumulative effects of differing climate sensitivities could lead 

to substantial divergence. 

Within this context, the chapter aims to evaluate different cryospheric and hydrological 

modelling approaches in the UIB, focusing primarily on snow and glacier ablation. This is 

achieved in two parts. Firstly, the TOPKAPI-ETH model is set up and analysed for snow- and 

glacier-dominated sub-basins of the UIB. The purpose of this is to provide a performance 

benchmark for the ETI-centred approach, while also giving further validation of the climate 

inputs used. TOPKAPI-ETH has been successfully applied to partly glacierised catchments in 

the European Alps (Finger et al. 2011), the Karakoram (Pellicciotti et al. 2012; Ragettli et al. 

2013), the Nepalese Himalaya (Ragettli et al. 2015) and the Andes (Ragettli and Pellicciotti 

2012; Ragettli et al. 2014, 2016). Secondly, based on modifications and extensions to the 

Factorial Snowpack Model (FSM) (Essery 2015) to provide a framework for systematic 

ablation model inter-comparison, the chapter analyses TI, ETI and EB approaches to both 

snow and glacier melt modelling. The FSM extensions introduced here are intended 

ultimately to augment the existing open source framework for directly comparing different 
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model strategies, minimising the confounding influences of varying model component 

implementations between programs. The extended version of FSM coded in this work is 

denoted as FSM+. The analysis explores how spatial and temporal variability in climate and 

cryospheric processes leads to differences between the models. 

5.2 Data and Methods 

This section begins by describing the input and evaluation data used in the models of the 

Astore and Hunza sub-basins in this chapter. The Astore and Hunza are representative of 

snow-dominated and heavily glaciated hydrological regimes, respectively. Thereafter, the 

TOPKAPI-ETH model is introduced, along with the benchmark configuration analysed here. 

Finally, the section explains additional developments to the spatially distributed version of 

FSM introduced in Chapter 4 (referred to here as FSM+). 

5.2.1 Climate Inputs 

The climate inputs used in this chapter are based on the data sources and processing methods 

reported in Chapter 4 for the spatially distributed snow process simulations of the Astore sub-

basin. As such, the HAR (Maussion et al. 2014) is used as the basis for spatiotemporally 

varying  input fields of rainfall, snowfall, air temperature, relative humidity, wind speed, 

surface air pressure, and incoming shortwave and longwave radiation. Following preliminary 

testing of different strategies, a minimal bias correction approach was adopted. Specifically, 

we corrected near-surface air temperatures for biases in the mean, based on local 

observations. The reasons for this approach are outlined in full in Chapter 4. For the Hunza 

sub-basin, precipitation was also adjusted by a constant factor (0.8), which was estimated 

based on the mean annual water balance considerations for the HAR in Chapter 3. While 

FSM+ utilises all of the aforementioned climate variables to solve the surface energy balance, 

TOPKAPI-ETH only requires precipitation, temperature and cloud transmissivity. The latter 

variable is used to factor clear-sky incoming shortwave radiation for the TOPKAPI-ETH’s 

ETI component. 

The same methods were also used for disaggregation of the HAR to the higher resolution 

needed in this modelling. These methods draw on the approaches within the MicroMet 

(Liston and Elder 2006b) meteorological pre-processor of SnowModel (Liston and Elder 

2006a), as well as the methods used by Duethmann et al. (2013). The method uses linear 

regression to relate each variable to elevation, the primary control on climate variation in the 
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UIB, with prior log-transformation for precipitation. The values at each HAR cell are then 

interpolated to a reference level using the gradient determined in regression. This gives a 

spatial (horizontal) anomaly field, which is interpolated to high resolution, and then the 

elevation signal is reintroduced using the regression gradient. This helps to capture the most 

critical sub-regional variation at scales resolved in the HAR, but not more local, 

topographically modulated patterns. Where regression is not statistically significant at the 

95% interval, simple interpolation of the HAR input field is used. Moreover, the probable 

decrease in precipitation at very high elevations, above 5500 mASL, is handled simply by 

supposing that an elevation (z) above this threshold can be treated as 5500 - (z - 5500) for 

the purposes of precipitation disaggregation only. The only variable handled differently is 

incoming shortwave radiation, which is modelled following Corripio (2003), modulated by 

cloud transmissivity estimated from the HAR (see Chapter 4). 

Based on the results in Chapter 4, this approach appears to be adequate at least for the 

purposes of obtaining a plausible enough set of climate forcings for evaluating different 

cryospheric and hydrological modelling approaches. Nevertheless, there are of course a 

number of limitations present. These include challenges in quantitative bias correction from a 

small number of station locations measuring only selected variables, as well as accounting for 

topographic influences other than elevation. However, to some extent this represents a fairly 

typical application in the Himalayan region at present. While this makes it harder to make 

totally general statements regarding performance of different model types, it does help to 

provide some insight into how different models compare in a realistic case. 

To provide longer time series for model input, the HAR-based precipitation and temperature 

series were extended based on anomaly series derived from long-term observations. This 

helps to combine the information provided by the HAR’s good spatial resolution with the 

better temporal coverage of observed series. Monthly anomaly time series for the period 

1961-2010 were calculated from in-situ observations, which were then used to estimate 

absolute series for the HAR grid cells in the NWUIB for the same period. Testing showed that 

the correlation of anomalies between HAR grid cells in the domain was very high on a 

monthly and seasonal basis, such that it was not considered necessary to account for any 

further sub-domain variability. The estimated HAR monthly fields were then disaggregated in 

time using the observed daily time series as a guide to daily precipitation fractions and 

temperature quantiles. Sub-daily disaggregation was not undertaken, as the extended series 

are only applied with the TOPKAPI-ETH model, which was run using daily inputs only. The 
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efficacy of this method is demonstrated by the results in Section 5.3.1, although of course 

spatial and temporal variability is simplified to a degree. Simulations with the augmented 

FSM program are restricted to the HAR record period. 

5.2.2 Static Inputs 

The static inputs used are consistent between the TOPKAPI-ETH and FSM+ models. All 

static inputs are on the 500 m resolution model grid in a UTM43N projection. The digital 

elevation model (DEM) is based on the Shuttle Radar Topography Mission (SRTM) V4.1 

data product (Jarvis et al. 2008), while initial glacier area distributions are taken from the 

Randolph Glacier Inventory (RGI) V5.0 (Arendt et al. 2015). Maps of initial glacier thickness 

were estimated based on the equilibrium shear stress approach (Cuffey and Paterson 2010b), 

but climate inputs were cycled to reach an approximate dynamic equilibrium in the relevant 

model runs. This is clearly an over-simplification, although glacier mass balance, length and 

area have been reasonably stable in the Karakoram for several decades (Bolch et al. 2017; 

Zhou et al. 2017). Debris cover on glaciers is based on the discrete classification produced 

from Landsat imagery by Khan et al. (2015). The admittedly coarse distribution of soil types 

is taken from the Harmonised World Soil Database V1.2 (Fischer et al. 2008), while land 

cover is taken from the 0.05° ESA GlobCover 2009 product (Arino et al. 2012). 

5.2.3 Evaluation Data 

Available evaluation data include daily river flows recorded by the Water and Power 

Development Authority (WAPDA) for the Doyian (Astore) and Dainyor (Hunza) gauging 

stations. No local snow measurements are available, but we compare model outputs with 

snow-covered area SCA derived from the MODIS MOD10A1 product (Collection 6) (Hall 

and Riggs 2016), as a further spatial constraint on internal catchment processes. As cells are 

classified as snow-covered in TOPKAPI-ETH and FSM+ if any snow is present, MODIS 

SCA was determined using a normalised differential snow index (NDSI) threshold of 0.0. We 

also explore the potential for the MODIS land surface temperature (LST) (MOD11A1) 

product (Collection 6) to support evaluation of processes affecting the surface energy balance 

for glaciers. The equivalent analysis for snow cover was presented in Chapter 4. The LST 

products have been widely evaluated (Liu et al. 2009; e.g. Wan et al. 2004) and, as discussed 

in Chapter 4, additional evaluation using local observations at the Concordia site is given in 

Appendix C. This confirms that the MODIS product generally performs well, with low 

enough bias to indicate gross model errors. 
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5.2.4 TOPKAPI-ETH 

Background 

The TOPKAPI (TOPographic Kinematic APproximation and Integration) hydrological model 

was originally developed to improve upon the semi-distributed conceptual models ARNO 

(Todini 1996) and TOPMODEL (Beven and Kirkby 1979). ARNO is structured around 

simple functions governing soil moisture storage. TOPMODEL is based on a topographic 

index relating upstream drainage area to the local slope in a DEM, as well as a negative 

exponential relationship between water table depth and soil transmissivity. In both cases, 

some of the model parameters are not physically meaningful, at least at the scales required in 

catchment modelling (Todini 1995; Ciarapica and Todini 2002). This potentially inhibits their 

application to ungauged catchments, and under changing land use or climatic conditions. In 

addressing these issues, TOPKAPI adopts a more process-based, spatially distributed 

approach, accounting for variation in theoretically measurable catchment properties. 

At the core of TOPKAPI is its application of kinematic wave theory to soil, overland and 

channel flow routing. The structure of the resulting nonlinear reservoir equations is similar for 

these three components, all assuming that the role of topographic slope is predominant 

(Todini 1995; Ciarapica and Todini 2002; Liu and Todini 2002). This strategy exemplifies the 

intermediate position of TOPKAPI on the spectrum of hydrological model complexity. It 

exhibits reasonable process fidelity, especially in certain contexts, but without some of the 

additional accuracy, data requirements and computational costs of more advanced physically 

based models, such as SHETRAN (Abbott et al. 1986; Ewen et al. 2000). In theory, each of 

the required parameters in TOPKAPI can be derived from soil and land use maps and 

databases, although some calibration may of course still be required, partly due to the 

persistent challenges in mapping catchment heterogeneity, as well as inherent uncertainty and 

noise in hydrological data. With extension to include deeper soil layers, infiltration, 

percolation and groundwater flow, the TOPKAPI flow routing approach was shown to 

perform well in flood forecasting (Liu et al. 2005) and various geographical contexts (e.g. 

Ciarapica and Todini 2002; Liu and Todini 2002; Sinclair and Pegram 2010). 

Developments at ETH-Zurich 

The core features of TOPKAPI have been retained in the TOPKAPI-ETH variant, which 

represents an adaptation of the original model for improved representation of mountain region 
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processes (Finger et al. 2011). While linear reservoirs handle the routing of glacial meltwater 

in TOPKAPI-ETH, the fundamental kinematic wave approaches to soil, overland and channel 

runoff production and flow routing remain. Rather, the major changes to the original model 

are in representation of snow and glacier processes, including incorporation of an enhanced 

temperature-index (ETI) method to calculate melt (Pellicciotti et al. 2005). The ETI method is 

defined as 

𝑀 = {
𝑇𝐹 ∙ 𝑇 + 𝑆𝑅𝐹 ∙ (1 − 𝛼) ∙ 𝐺, 𝑇 > 𝑇𝑇

0, 𝑇 ≤ 𝑇𝑇
       (1) 

where M is melt (mm w.e. hr
-1

), TF is the temperature factor (mm hr
-1

 °C
-1

), T is the 

temperature (°C), SRF is a shortwave radiation factor (m
2
 mm W

–1
 hr

–1
), α is albedo, G is 

incoming shortwave radiation (W m
-2

), and TT is the threshold temperature for melt onset 

(°C). Incoming shortwave radiation under clear sky conditions in TOPKAPI-ETH is modelled 

following a vectorial algebra approach (Corripio 2003), which is then modified by a time-

varying and user-specified cloud transmissivity. Snow albedo is parameterised using a 

logarithmic function based on the cumulative sum of daily maximum positive air 

temperatures since the last snowfall (Brock et al. 2000). Ice albedo is left constant, while 

alternative temperature and shortwave radiation factors may be specified where debris cover 

is present on glaciers (referred to as ETId hereafter) (e.g. Ragettli et al. 2013). 

An adapted version of the ETI formulation was also recently developed to account for debris 

thickness, rather than just debris cover, albeit at the expense of introducing a number of 

additional calibration parameters. Specifically, the ETI model accounting for debris thickness 

(DETI model hereafter) introduced by Ragettli et al. (2015) and Carenzo et al. (2016) takes 

the form: 

𝑀 = {
𝑇𝐹𝑑 ∙ 𝑇(𝑡 − 𝑙𝑎𝑔) + 𝑆𝑅𝐹𝑑 ∙ (1 − 𝛼) ∙ 𝐺(𝑡 − 𝑙𝑎𝑔), 𝑇 > 𝑇𝑇

0, 𝑇 ≤ 𝑇𝑇
      (2) 

where TFd is the temperature factor (mm hr
-1

 °C
-1

), SRFd is a shortwave radiation factor (m
2
 

mm W
–1

 h
–1

), t is the current time step (hr) and lag is a delaying parameter (hr). This 

formulation thus parameterises transmission of temperature and shortwave radiation signals 

through debris cover by lagging the climate input variables. Moreover, the TFd and SRFd are 

also made dependent on debris thickness in the DETI formulation, based on the relationships  

obtained by Carenzo et al. (2016) from field measurements and an energy balance model 
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accounting for heat conduction through debris (referred to as the DEB model) (Reid and 

Brock 2010). This introduces six auxillary parameters that are required to calculate the TFd, 

SRFd and lag parameters in equation 2, which clearly increases the dimensionality of the 

parameter estimation problem relative to the ETId method. It is not yet established how such 

an approach might fare in the Karakoram when using direct parameter transfer, as might be 

reasonable in a context with limited appropriate data for parameter re-estimation. 

TOPKAPI-ETH also accounts for some key processes of snow and ice mass redistribution., 

including the aggregate effects of avalanches through the SnowSlide algorithm (Bernhardt 

and Schulz 2010). This simple approach defines a snow holding depth as an exponential 

function of the slope between neighbouring model cells that contain snow. Snow in excess of 

this threshold depth is transferred to the downstream cell. The model also approximates 

glacier mass redistribution using the Δh-parameterisation (Huss et al. 2010). The 

parameterisation proceeds by rescaling annual net mass balance by expressing normalised ice 

thickness change as a function of normalised elevation range. This method is essentially 

empirical; it requires parameters estimated from historical observations and is applicable to 

groups of glaciers. Nevertheless, Huss et al. demonstrate that it can perform well in 

comparison to 3D numerical models solving the nonlinear Stokes equations. As such, it 

represents one practical solution in areas where the data required for complex ice flow 

modelling is unavailable, although uncertainties over the transferability of empirical 

parameters to different regions may compromise its simplicity to some degree. 

Potential evapotranspiration in TOPKAPI-ETH is estimated using the Priestley-Taylor 

method, with crop factors varying seasonally and with land use to control demands on storage 

in the upper soil layer and at the surface. Infiltration is based on an explicit solution of the 

Green-Ampt equation (Salvucci and Entekhabi 1994), while the percolation rate increases 

with soil water content following a power law (Clapp and Hornberger 1978). 

Setup 

The TOPKAPI-ETH baseline is based largely on the configuration described in Ragettli et al. 

(2013). Critically, the parameters related to snow and ice melt, snow redistribution by gravity, 

glacier mass redistribution and glacial meltwater routing are all taken from Ragettli et al.’s 

setup. Parameters controlling soil, overland and channel routing were fixed based on cross-

referencing soil/land use maps and inferences on channel characteristics with standard tables 

of hydraulic properties (Maidment 1993). The climate and static inputs follow those outlined 
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in Sections 5.2.1 and 5.2.2, with the use of the HAR as the basis for climate inputs being the 

most important difference compared with Ragettli et al.  

5.2.5 FSM+ 

Snowpack Processes 

Snowpack processes in FSM+ are represented using the FSM multi-physics approach, which 

was adapted simply for spatially distributed simulations, as described in Chapter 4. To recap, 

the FSM multi-physics ensemble employed here is an intermediate complexity, systematic 

framework for testing alternative representations of key snowpack processes and how they 

interact with each other within a coupled mass and energy balance scheme (Essery 2015). 

With two parameterisation options (0/1) for five different snowpack processes, the FSM 

ensemble includes 32 possible model configurations. The parameterisation options neatly 

synthesise common approaches in a range of widely applied snow models. Analyses of FSM 

to date have shown that it gives ensemble performance and spread comparable to larger multi-

model ensembles (Essery 2015). Its value for testing new process representations has also 

been demonstrated (Moeser et al. 2016). 

Based on the evaluation of FSM for both the Concordia site and the snow-dominated Astore 

sub-basin in Chapter 4, the FSM ensemble is substantially restricted for the results presented 

in this chapter. Unless otherwise indicated, the members retained here use prognostic albedo, 

the liquid water retention and drainage parameterisation, prognostic density and variable snow 

thermal conductivity. Default parameter values from Essery (2015) are retained. The results in 

Chapter 4 suggest that the density and thermal conductivity representations may be of 

relatively minor importance where a study’s emphasis is primarily hydrological in nature. As 

well as being physically more realistic, the albedo and liquid water parameterisation choices 

generally lead to better model correspondence with observations. However, there are several 

complicating issues discussed at length in Chapter 4, including temporal variation in the 

ostensible optimality of any given model configuration. 

Another relevant finding from Chapter 4 is that selecting the most appropriate atmospheric 

stability adjustment option for the turbulent heat flux calculations is somewhat complicated. 

Comparisons with observed river flows, as well as MODIS SCA and LST, suggested that 

switching the stability adjustment on could lead to excessive dampening of turbulent fluxes. 

While this could partly represent the influence of unresolved processes, such as local (sub-
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grid) sensible heat advection due to patchy snow cover, the issue of appropriately accounting 

for stability conditions has been found in other EB applications for snow (e.g. Jordan 1991; 

Tarboton et al. 1995; Andreadis et al. 2009) and glacier modelling (e.g. Conway and Cullen 

2013). In light of this, Collier et al. (2015) elected to restrict the maximum damping of 

turbulent fluxes in stable conditions to 30% of the correction factor calculated by the bulk 

Richardson number approach. For this chapter, we decided instead to retain both the stability 

adjustment options in FSM, i.e. no adjustment and the unaltered bulk Richardson number 

method, in order to examine the differences between these two endpoints. 

Glacier Accumulation and Ablation 

A relatively simple approach to simulate clean ice ablation on glaciers was developed to fit in 

with the modular structure of FSM. For ablation calculations, the model considers the upper 

10m of ice where glaciers are present. This depth was selected to match the approximate limit 

of penetration of the signal from the annual surface temperature cycle in glacial ice (Cuffey 

and Paterson 2010a), a commonly employed strategy in process-based models of glacier 

ablation (e.g. Mölg et al. 2008, 2009; Collier et al. 2015). Heat conduction through the glacier 

ice was modelled following the implicit scheme formulated in FSM, with vertical 

discretisation based on progressively increasing layer thicknesses (from 0.1 to 1 m) at 

successively greater depths. A fixed temperature was prescribed at the base of the simulated 

ice column, again following Mölg et al. (2008, 2009) and Collier et al. (2013, 2015). The 

temperature was set to the mean annual air temperature estimated from observations (and 

lapse rates derived from observations), up to a maximum of 273.15 K for any low-lying, 

typically heavily debris-covered glacier tongues. As a one-dimensional approach, with each 

grid cell independent of all others, this is clearly a simplification of the complicated, spatially 

and temporally varying temperature distributions likely to be found in UIB glaciers, given 

their vast elevation range and patterns of motion. Nevertheless, the aforementioned studies 

suggest that it provides a reasonable first approximation. 

Glacier ice ablation is calculated using the surface energy balance approach, as in FSM, albeit 

with parameters appropriate for glacier ice. This includes albedo and aerodynamic roughness 

length, which were initially set at 0.35 (Cuffey and Paterson 2010a) and 0.001 m (Collier et 

al. 2015), respectively, although we note that literature estimates for the latter vary over one 

or more orders of magnitude (Brock et al. 2006). Glacier ablation does not occur in the model 

until any overlying snowpack has been completely removed. Similar to the case of snowpack 
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directly overlying a presumed soil substrate, heat conduction between the base of the 

snowpack and the upper glacier ice is calculated explicitly, as per FSM. While only the upper 

10m of a glacier are considered for ablation calculations, full glacier thicknesses are tracked 

for assessing glacier mass balance. As described in Section 5.2.2, initial glacier thicknesses 

were estimated from the equilibrium shear stress approach (Cuffey and Paterson 2010b), 

followed by cycling climate inputs to attain an approximate dynamic equilibrium. 

Uncertainties regarding firn processes and snow-ice transformations in the UIB are very high, 

with the additional complication that many glaciers are nourished by avalanching, such that 

“typical” accumulation zones are from ubiquitous (Hewitt 2014). This issue is set against a 

backdrop of ongoing challenges in modelling the moisture-dependent firn densification 

processes in mountain hydrological models. Forsythe (2012) used the parameterisation 

implemented by Saloranta (2012), noting that even then an empirical correction was required 

to keep the snow-ice transformation from occurring on unrealistic timescales. This is 

potentially an area requiring further development, but for now we adopt the simple approach 

to glacier ice accumulation in Soncini et al. (2014), where 10% of remaining snow mass in 

glaciated cells is transformed directly to glacier ice at the end of each melt season. 

Debris-Covered Glacier Ablation 

To account for the effect of extensive debris cover over parts of major glaciers in the 

Karakoram, a model of heat conduction through debris and sub-debris melt was also 

implemented in FSM+. This model is similar to the DEB formulation put forward by Reid and 

Brock (2010), as well as one of the model structures examined in Collier et al. (2014). Collier 

et al. compared the effects of including moisture and phase changes within debris on melt 

rates of underlying ice relative to a model omitting these influences (i.e. assuming “dry” 

debris). The model experiments indicated there to be some influence on the exact partitioning 

of surface energy balance terms, albeit with seemingly little net effect on simulated surface 

temperatures, with the omitted negative latent heat flux in the “dry” case being offset by a 

heightened (negative) sensible heat flux. Including a moisture parameterisation led to some 

difference in sub-debris melt when viewed cumulatively over the simulated ablation period, 

but the magnitude of these differences was reasonably small (3.1-7.5%), especially in the 

context of the errors and approximations inherent in UIB modelling. 

As such, we opted to use a formulation similar to the “dry” debris case for simplicity. That is 

not to say that the moisture effects are insignificant, especially for longer term glacier 



113 

 

evolution. Indeed, Collier et al. (2015) usefully take forward the model accounting for 

moisture effects in coupled land-atmosphere simulations in the Karakoram. This additional 

level of complexity could thus be investigated in further studies for hydrological applications. 

The debris component of the model implemented here again draws on the algorithms for 

surface energy balance and heat conduction at the core of FSM. Surface properties, including 

albedo and roughness length, are adjusted where debris is at the surface following Collier et 

al. (2015). As per the “dry” debris formulation in Collier et al. (2014), the latent heat flux at 

the surface is set to zero if debris is the uppermost model layer. Heat conduction between any 

snow overlying debris is accounted for analogous to the case of snow over soil, as are heat 

fluxes between the base of the debris and the upper glacier layer, albeit with appropriate 

specific heat capacity, density and thermal conductivity values for each layer. Energy from 

heat conduction through debris is the only source of energy driving glacier melt where debris 

is present. The debris is discretised vertically into thin layers of 2 cm, increasing to maximum 

layer thicknesses of 10 cm for the lower parts of the thickest debris cover. While Collier et al. 

(2014, 2015) apply an estimated porosity function to help estimate the change in debris 

properties with depth, we follow the simpler approach of prescribing bulk properties that are 

constant with depth and in time, as per Reid and Brock (2010).  

Similar to Collier et al. (2015), debris thickness was estimated based on distance along the 

glacier flowline from the upper limit of debris cover. As Collier et al. note, this appears to 

represent an improvement over parameterising debris thickness based on elevation alone. 

Collier et al. suggest that the linear relationship employed in their study may overestimate 

glacier thickness in the middle parts of the debris-covered ablation zone, while 

underestimating debris thickness towards glacier termini, although the latter issue may 

implicitly help to represent the ablation hotspots formed by supraglacial ice cliffs and ponds. 

To account slightly more for the nonlinear increase in debris thickness near glacier termini, 

we used an exponential function to estimate debris thickness based on distance along the 

flowline (up to a limit of 1 m thickness). The function is based on the debris thickness maps 

produced for the Baltoro glacier by Mihalcea et al. (2008) and Gibson et al. (2017), who in 

turn used field measurements, remote sensing and inverse modelling. The uncertainty here is 

of course large, but the strategy does represent a first estimate consistent with available 

information. 
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In line with most other models of sub-debris melt processes, the effect of very thin debris 

cover of up to 2-3 cm (or patchy cover) on accelerating melt relative to the clean ice case is 

not accounted for. Moreover, the role of supraglacial ice cliffs and ponds as “hotspots” of 

ablation is also not considered. In both cases, adequate representations for the larger scale 

simulations required to support water resources management are currently lacking. One 

option might be to use an effective debris thickness, which is lower than the actual thickness 

in heavy debris cover, although data to establish a possible relationship between effective and 

actual thickness are unavailable. The significance of these processes at the sub-basin and 

basin scales in the UIB certainly needs to be investigated, but for now we presume that the 

foremost effect of debris cover, especially thicker covers, is to suppress ablation (e.g. Hewitt 

2014; Vincent et al. 2016). 

Empirical Ablation Models 

To permit comparisons with the energy balance approach to ablation modelling in FSM+, 

several alternative approaches to melt computation have been implemented. That these 

methods are incorporated as options within FSM+ means that they can utilise all of the same 

climate inputs, static inputs and parameters, as far as is relevant for any given formulation. 

For snow and clean ice, both temperature index (TI) and enhanced temperature index (ETI) 

models were implemented. The ETI method is described above, while the TI method takes the 

following simple form: 

𝑀 = {
𝑇𝐹 ∙ 𝑇, 𝑇 > 𝑇𝑇

0, 𝑇 ≤ 𝑇𝑇
      (3) 

where the temperature factor (TF) is also referred to as a degree day factor (DDF). The TI and 

ETI models can also be run for glaciated cells with debris cover by adjusting the relevant 

parameters (referred to as TId and ETId methods, respectively). In addition, we implemented 

the new DETI parameterisation for sub-debris melt described earlier (Section 5.2.4, equation 

2). A range of parameter values have been tested for the empirical parameterisations. These 

ranges were determined from the literature, based on Hock (2003) for the TI method, as well 

as Finger et al. (2011) and Ragettli et al. (2013, 2015) for the ETI method. Less testing 

appears to have been undertaken for parameters modified for debris cover, such that we focus 

on the benchmarks provided by Lutz et al. (2016a) (TId), Ragettli et al. (2013) (ETId), and 

Ragettli et al. (2015) and Carenzo et al. (2016) (DETI). 
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Mass Redistribution 

With the emphasis of this work on ablation model inter-comparison, only simple 

parameterisations of snow and ice mass redistribution have been incorporated into FSM+ so 

far. Similar to TOPKAPI-ETH, these are the SnowSlide algorithms for gravitational 

redistribution of snow (Bernhardt and Schulz 2010), as well as the Δh-parameterisation of 

glacier flow. Further work could examine in more detail the implications of these model 

representations. For snow redistribution, it would be beneficial to examine the combined 

effects of wind and gravity on snow distributions and the high elevation water balance. 

Strasser et al. (2008) demonstrated the substantial influence of wind-related processes on 

sublimation in high, exposed locations in an Alpine context, although Bernhardt et al. (2012) 

showed that this is substantially reduced if a parameterisation of avalanching is included. 

Incorporating SnowSlide in FSM+ thus likely helps to reduce the error from omission of wind 

redistribution effects, if not completely so. 

For glacier flow, developments could include an approach related to the shallow ice 

approximation (SIA), similar to Forsythe (2012), Immerzeel et al. (2012a) or Plummer and 

Phillips (2003). Some of the assumptions underpinning this approach are unlikely to hold 

ubiquitously in the steep mountains of the UIB, but this level of complexity may nevertheless 

be reasonable to examine long-term glacier evolution in climate stabilisation scenario 

exercises. In such cases, the geometry of glaciers in an approximate dynamic equilibrium may 

be strongly controlled by mass balance, even if the SIA transient response would differ from 

higher order ice modelling. An appropriate flux limiter to guarantee mass conservation would 

also need to be implemented (Jarosch et al. 2013). This would help to answer questions about 

whether the Δh-parameterisation, with parameter transfer from the literature, deviates 

significantly from approaches based on simplified ice flow physics in applications like 

climate change projections. 

Hydrology 

With the runoff response of much of the UIB dominated by its seasonal and perennial 

cryosphere, we take fairly simple approaches to inclusion of some of the additional processes 

in the hydrological cycle at this stage. Potential evapotranspiration for cells without any snow 

or glacier cover in FSM+ is estimated using the FAO56 Penman-Monteith approach for 

reference evapotranspiration (ET0), which is multiplied by crop factors that vary monthly and 

as a function of land use. Along with surface and subsurface flow routing, actual 
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evapotranspiration is calculated following the open source Python implementation of 

TOPKAPI (PyTOPKAPI - Sinclair and Pegram 2013). The parameters were assigned to be 

equivalent to those used in TOPKAPI-ETH (Section 5.2.4). Future work could clearly explore 

the potential for more physically based models to represent the surface and subsurface 

hydrological flows in the UIB. These models may be quite successful even in the absence of 

detailed information on catchment properties in the UIB, potentially after some calibration of 

the most sensitive parameters. With the emphasis on ablation processes in this chapter, we 

leave detailed analysis of these aspects of UIB hydrology for further work. 

5.3 Results and Discussion 

This section begins by analysing the TOPKAPI-ETH benchmark. The model’s parameter 

sensitivity is then explored, which is followed by an examination of parameter optimality 

compared with re-calibration using a multi-objective optimisation algorithm. The analysis 

then moves to FSM+, beginning with a comparison of the underlying FSM snow model 

configuration with empirical alternatives. Examining the relationship between surface energy 

balance terms and melt rates subsequently leads to some insights into systematic differences 

between approaches. Thereafter, the focus moves to glacier ablation. Following appraisal of 

the glacier component developed for FSM+, the clean and debris-covered components of 

glacier ablation are assessed in turn relative to empirical alternatives. The implications of 

differing climate sensitivities in glacier ablation approaches are then considered in a simple 

temperature perturbation test. Finally, the analysis compares the catchment-scale performance 

and water balance components of TOPKAPI-ETH and FSM+. 

5.3.1 TOPKAPI-ETH Benchmark 

Figure 5.1 compares observed annual cycles of river flow with simulations using the 

TOPKAPI-ETH benchmark described in Section 5.2.4. Overall this shows that the magnitude 

and timing of flows are reasonably reproduced for the Astore and Hunza sub-basins by the 

combination of inputs and parameters employed. Figure 5.1 also shows that the TOPKAPI-

ETH models capture the range of inter-annual flow variability. Strong agreement is evident 

for the snow-dominated Astore sub-basin (Figure 5.1a), albeit with a possible slight high bias 

in the July peak flow. For the heavily glaciated Hunza sub-basin, flows in TOPKAPI-ETH 

appear to rise and peak a little earlier than in observations (Figure 5.1b). This could reflect 

some deficiency in the volume of simulated glacier melt, which is considered to be a key 

component of river flows during this month (Mukhopadhyay and Khan 2015). 
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Underestimation of melt is one possibility, but alternatively this could reflect some low bias 

in glacier volume following initialisation and/or warm-up. That the simulated Hunza flows 

peak in July, rather than being sustained through August, could also indicate some remnant 

bias in winter/spring snowfall amount. Specifically, surplus seasonal snow may remain on the 

ground into July, a time of high energy availability for melt. 

 

Figure 5.1 – Observed and simulated (TOPKAPI-ETH baseline) annual cycles of rivers flows in the (a) 

Astore and (b) Hunza sub-basins. OBS refers to observations and TPK refers to TOPKAPI-ETH. 

To confirm that the annual cycles in Figure 5.1 are associated with plausible shorter term 

variability, time series of daily flows are shown in Figure 5.2. Generally this suggests that 

TOPKAPI-ETH captures sub-seasonal variability reasonably well, with the alignment of 

observed and simulated variability adding some further confidence that the climatic inputs are 

reasonable and the model responses plausible. Some differences compared with observations 

are of course apparent, as might be reasonably expected in such data-sparse high mountain 

catchments. Interestingly, the benchmark configuration of TOPKAPI-ETH appears to show a 

comparatively peaky response for the Astore sub-basin relative to observations. With the 

exception of some peaks in summer 2004, the Hunza sub-basin does not appear to be so 

starkly afflicted by a similar issue. This begins to raise the question of whether the benchmark 

parameters are globally optimal across both snow- and glacier-dominated hydrological 

regimes in the UIB, as the Astore simulation in effect represents a blind validation of the 

configuration used by Ragettli et al. (2013) for the Hunza. 
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Figure 5.2a also suggests that the rising limb of the river flow hydrograph in spring tends to 

be delayed in the Astore simulation. This could reflect some residual bias in temperatures, a 

degree of underestimation of snowfall at lower elevations, or some issue with the parameters 

controlling melt and routing. 

 

Figure 5.2 – Observed and simulated (TOPKAPI-ETH baseline) daily rivers flow time series in the (a) 

Astore and (b) Hunza sub-basins. 

As a means of assessing runoff generation processes internal to the catchments, Figure 5.3 

compares the annual cycle of catchment snow-covered area (SCA) variation in TOPKAPI-

ETH with MODIS SCA. This helps to identify whether accurate catchment runoff is obtained 

for the right reasons, confirming the physical plausibility of the internal catchment response. 

Figure 5.3 shows that there is generally reasonable agreement between the simulated and 

remotely sensed annual cycles. Overall, this suggests that the cycles of mass and energy 

inputs to the sub-basins are reasonably well approximated, although there are some 

differences relative to MODIS. For the Astore sub-basin, the rate of SCA disappearance is 

initially a little faster than in MODIS, with the TOPKAPI-ETH annual minimum remaining 

slightly higher. Inter-annual variation is mostly consistent between TOPKAPI-ETH and 
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MODIS for Astore, with the exception of a discrepancy in November, most likely due to a 

precipitation timing issue in the driving dataset. 

In general, TOPKAPI-ETH also captures the fundamental difference in SCA cycles between 

the snow-dominated Astore and glacier-dominated Hunza sub-basins. Most notably, the 

smaller amplitude of the annual cycle in the Hunza is captured, along with the slower rate of 

SCA decline in spring/summer and the higher annual minimum SCA. These features of the 

simulated Hunza SCA cycle are encouraging, but there are also some disagreements with 

respect to MODIS. TOPKAPI-ETH simulates a higher winter snow cover extent than that 

suggested by MODIS, as well as substantially less inter-annual variability in winter SCA. The 

spring/summer SCA reduction is also comparatively rapid in TOPKAPI-ETH, leading to an 

annual minimum below its MODIS counterpart. Some of the differences could relate to 

difficulties in directly comparing model output with MODIS, for example due to the need to 

define thresholds for snow cover classification. However, Figure 5.3 suggests that the 

differences may be reasonably systematic, reflecting some level of input or model limitations. 

 

Figure 5.3 – Remote sensing (MODIS) and simulated (TOPKAPI-ETH baseline) annual cycles of 

snow-covered area (SCA) in the (a) Astore and (b) Hunza sub- basins. MOD stands for MODIS and 

TPK denotes TOPKAPI-ETH. 

To examine the skill of TOPKAPI-ETH forced by the HAR in capturing the structure as well 

as the range of inter-annual variability, Figure 5.4 compares simulated and MODIS monthly 

SCA anomaly time series. The anomaly for each month in the series is calculated as the 

difference in SCA compared with the period mean for that month. Figure 5.4 suggests that the 
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sequencing of anomalies is fairly well reproduced by the model. Particularly for the Astore 

sub-basin, the alignment of positive and negative SCA anomalies in Figure 5.4 is good, with 

the magnitude of anomalies often well simulated too. The agreement for the Hunza sub-basin 

appears slightly lesser, although the series do appear to generally track.  

 

Figure 5.4 – Remote sensing (MODIS) and simulated (TOPKAPI-ETH baseline) time series of snow-

covered area (SCA) anomalies in the (a) Astore and (b) Hunza sub-basins. 

5.3.2 TOPKAPI-ETH Sensitivity Analysis 

While the baseline TOPKAPI-ETH model run thus provides generally reasonable 

performance, this configuration is only one realisation of an array of uncertain input and 

parameter possibilities. To explore this further, the Morris method (Morris 1991) was selected 

as a practical approach for screening-level sensitivity analysis, focusing on the Astore sub-

basin. The Morris method is essentially a variant of a one-at-a-time local sensitivity method 

and begins by defining a possible range of values for each parameter. For each of the r sets of 

starting values of these parameters, an initial model run is carried out. Then each of the k 

parameters is adjusted in turn from its starting value. Within any one of the r sets, once a 

parameter has been adjusted from its starting value, it retains its new value until all 

parameters in the set have been altered. This means that r(k + 1) runs are required. The 

method thus exhibits comparatively low computational requirements. In an inter-comparison 

of sensitivity analysis methods, Gan et al. (2014) showed the Morris method to be efficient 

and generally adept at distinguishing between sensitive and insensitive parameters in a 
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hydrological model, although they note that it is not as robust as some more intensive 

alternatives. 

Absolute differences in a specified model output compared with the starting values are 

calculated for each run and then aggregated separately for each parameter. Aggregation is 

based on the mean (μ*) and standard deviation (σ). The position of parameters along the μ* 

(x) and σ (y) axes (see Figure 5.5) represents whether the model is consistently sensitive to a 

parameter/input (mu direction) or if its sensitivity varies depending on other parameters 

(sigma direction). 

In contrast to other TOPKAPI-ETH sensitivity analyses restricted to cryosphere-related 

parameters, we expose all of the adjustable parameters in our analysis. This includes those 

parameters related to evapotranspiration, soil/groundwater and routing, as well as parameters 

governing cryospheric processes. Parameter values are based on ranges derived from the 

literature (Ragettli et al. 2013). To examine uncertainty in climate inputs, as well as the its 

importance relative to model parameters, the elevation gradients used to help disaggregate the 

HAR precipitation and temperature field were based on a monthly gradient climatology, 

inferred from the HAR, and allowed to vary as parameters in the sensitivity test. A presumed 

bias in cloud transmissivity fields was also permitted. The ranges for the precipitation and 

temperature gradient tests were set based on the ranges tested for calibration in Ragettli et al. 

(2013). 

Figure 5.5 suggests that the most influential parameters in the TOPKAPI-ETH baseline model 

for the Astore sub-basin fall into several groups. Precipitation gradients and temperature lapse 

rates used to specify spatiotemporal climate fields are consistently important, along with any 

potential bias in cloud transmissivity. This is consistent with precipitation in the preceding 

winter/spring strongly determining summer runoff in the snow-dominated Astore sub-basin, 

as well as the high sensitivity of TOPKAPI-ETH to precipitation and temperature gradient 

variability demonstrated elsewhere in the Himalayan arc (Immerzeel et al. 2014). Intuitively, 

the shortwave and temperature factors of the ETI melt model are also strongly influential. In 

line with this, the two parameters governing the albedo parameterisation in the TOPKAPI-

ETH ETI implementation also show importance. There is strong similarity between Figure 

5.5a and Figure 5.5b in terms of the parameters implicated as predominant in modelled runoff 

and SCA responses, respectively, highlighting the strong mutual information in these datasets. 

The main difference between the two cases is that flow response does show some sensitivity 
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to some of the subsurface hydraulic properties, whereas the SCA-based analysis flags up 

precipitation phase partitioning as more significant. These contrasts arise due to the 

information provided by different evaluation criteria, i.e. integrated catchment mass 

input/output compared with internal snow cover state. 

 

Figure 5.5 – Sensitivity analysis based on the Morris method for (a) flows and (b) SCA for the Astore 

sub-basin. 

These findings are largely in line with expectations, but we note that the time period of the 

sensitivity test is relatively short (restricted to the length of the HAR dataset). Although 

reasonably short simulations help to facilitate sensitivity tests for models with high 
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dimensional parameter spaces, it would be interesting to investigate the relationship between 

parameters emerging as sensitive and the timescale of response in more detail. For example, 

glacier mass balance over longer periods could be more sensitive to parameters controlling 

snow redistribution at high elevations than may be inferred from short simulations alone. 

Moreover, while the method is primarily suited for qualitative, rank-based analysis, it is 

interesting to note the overall relationship between mu* and sigma. Thus, even for parameters 

identified as consistently important in their own right (high mu*), there appears to be 

substantial dependence on the values of other parameters. This may reflect the relatively high-

dimensional nature of the problem and the non-uniqueness of model input/parameter 

combinations in relation to achieving ostensibly adequate model behaviour with respect to 

observations.  

5.3.3 TOKPAPI-ETH Multi-Objective Optimisation 

The sensitivity screening analysis suggests that the ETI and albedo parameters are of critical 

importance, along with uncertainty in the key climate forcings. To explore further whether the 

ETI and albedo parameters in the benchmark are approximately optimal, we evaluated other 

possibilities using multi-objective optimisation. The purpose of this is to see whether the 

benchmark values for the most critical parameters are one of the better-performing sets, given 

the HAR climate forcing and other aspects of model configuration. The three objective 

functions specified in this application were minimisation of errors in monthly river flows, 

SCA and glacial mass balance. The latter criterion assumes an approximately neutral glacier 

mass balance over the simulation period, in line with the literature for this area (Hewitt 2005; 

Bolch et al. 2012; Gardelle et al. 2013; Kääb et al. 2012; Gardner et al. 2013; Bolch et al. 

2017; Zhou et al. 2017), as more specific, sub-catchment scale glacier mass balance data are 

unavailable. Nevertheless, recent high resolution estimates for a period largely coincident 

with the HAR record suggest this assumption may be a reasonable starting point (Brun et al. 

2017). The widely applied non-dominated sorting genetic algorithm NSGA-II was used (Deb 

et al. 2002), while climate inputs were fixed following the method described in Section 5.2.1, 

such that only ETI and albedo model parameters were permitted to vary within the same 

ranges from the literature used in the sensitivity analysis above. 

Using multiple objectives means that an individual solution is not generally present; rather, 

solutions lie on a Pareto front. Figure 5.6 shows two-dimensional visualisations of the trade-

offs between objective functions, and how the form of the Pareto front varies depending on 
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the dimensions of the objective function under consideration. In Figure 5.6a, the lower left 

corner, representing the best performing parameter sets, actually converge strongly towards a 

point. Better performance in SCA simulation is thus strongly linked with better river flow 

performance. These two datasets are thus highly complementary, ostensibly sharing a lot of 

mutual information. In contrast, Figure 5.6b illustrates that trade-offs between glacier mass 

balance simulation and river flow simulation errors induce a clear Pareto front. The smallest 

errors in river simulation do not coincide with the smallest errors in presumed glacier mass 

balance. This may be partly to do with the approximation of the glacier mass balance target, 

in the absence of sufficient data. Alternatively, it may reflect unavoidable trade-offs in multi-

objective optimisation, which could be compounded if input or structural model errors are 

present, although the curve of the Pareto front is quite steep, such that a relatively large 

apparent performance gain in glacier mass balance may be obtained with a relatively small 

decrease in river flow performance. 

 

Figure 5.6 – Trade-offs in multi-objective evolutionary optimisation for monthly flow and SCA errors 

(a), as well as monthly flow and overall glacier mass balance (b). 

Figure 5.6 also shows that the baseline parameter set (Section 5.2.4) falls relatively close to 

the fronts in both panels. This suggests that the parameter set is a reasonable choice in relation 

to the input data, which is in turn considered a fair approximation in the absence of more data. 

Yet, in neither case does the baseline TOPKAPI-ETH configuration lie on the Pareto front. As 

such, it seems that the multi-objective optimisation approach here can guide some parameter 

refinement relative to the simpler approach taken by Ragettli et al. (2013) that underlies the 
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baseline configuration. Despite this, the baseline model configuration does appear to show 

reasonably good performance with respect to available data sources, which helps to provide 

some further, partial validation of the ETI approach, as well as the climate and static inputs 

described in Sections 5.2.1 and 5.2.2. Therefore we consider it appropriate to take this 

intersection of model structure and input datasets forward for deconstruction in the remainder 

of this section.  

5.3.4 Snow Ablation – Baseline Comparison 

Sections 5.3.1-5.3.3 suggest that the TOPKAPI-ETH configuration based on Ragettli et al. 

(2013) provides reasonable performance for the Astore and Hunza sub-basins of the UIB, 

with respect to observed flows and MODIS SCA. In this section, we compare the ETI 

approach to snowmelt modelling from TOPKAPI-ETH with the energy balance approach 

adopted in FSM. As described in Section 5.2.5, we also incorporate comparisons with the TI 

method, using TI and ETI models implemented within the FSM+ framework. 

Figure 5.7 compares catchment-scale daily snowpack runoff calculated using the TI, ETI and 

FSM models for the snow-dominated Astore sub-basin for three contrasting melt seasons. The 

aim of this initial comparison is to provide an indication of how different modelled melt 

generation might be when using fairly typical parameter values. As noted in Section 5.2.5, the 

comparisons are provided for two members of the FSM+ ensemble: one with the stability 

option switched off (ST-0) and one with it switched on (ST-1). The snow degree day factor in 

the baseline TI model (5 mm °C d
-1

 ) was based on previous studies (Immerzeel et al. 2015; 

Lutz et al. 2016a), whereas the ETI parameters were taken directly from the benchmark 

TOPKAPI-ETH setup. Observed river flows at the catchment outlet are plotted for reference; 

however, they are not directly comparable with the model series, which show runoff released 

from the base of the catchment snowpack (i.e. melt released after any delay due to vertical 

flow and melt/refreezing cycles – referred to as snowpack runoff hereafter). The observed 

flows serve as a useful reference regarding the magnitude of melt and runoff, as well as the 

timing of the annual cycle of flows and intra-annual variability. We elected to evaluate the 

modelled series in this way to avoid some of the complicating influences of routing. 
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Figure 5.7 – Comparison of catchment-scale snowpack runoff calculated using the FSM energy 

balance model (blue) and (TI) a temperature index approach (orange) and enhanced temperature 

index (ETI) (grey) approach for three example years. FSM configurations with stability adjustment off 

(ST-0) and on (ST-1) are applied. Observed runoff is also shown (black dashed line). 

A number of points are evident from Figure 5.7. Firstly, the general tendency for FSM with 

ST-1 to exhibit a less peaky, more subdued melt response than ST-0 is apparent. This pertains 
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to the discussion in Chapter 4 about the strength of the required stability correction for 

turbulent fluxes, as well as the degree to which a relatively high sensible heat flux may be 

realistic or potentially compensate for sub-grid variability or topographically modulated 

influences on the surface energy balance, such as terrain enhancement of incoming longwave 

radiation. In general, Figure 5.7 shows greater correspondence between the TI/ETI methods 

and FSM when applying the ST-0 option. This could suggest that, at least for the baseline 

parameters here derived from the literature, the two empirical methods are more akin to an 

energy balance approach in which stability adjustment is treated at its limit, i.e. completely 

unadjusted. The generality of this point is explored shortly with respect to parameter 

sensitivity tests. Yet, even compared with ST-0, the TI and ETI models appear to show 

relative volatility, such that their day-to-day variability is fairly pronounced relative to both 

FSM cases. 

In general, the TI and ETI models show more snowpack runoff early in the melt season or, at 

the very least, more spikes in the early response. This reflects the notable role played by cold 

content and particularly melt/refreezing cycles early in the season. Without some 

incorporation of this the TI/ETI models show flashy melt generation patterns on warm days. 

However, the magnitude and frequency of these relatively early melt pulses in the TI and ETI 

models can be quite variable. Moreover, while the TI and ETI melt patterns are strongly in 

agreement in 2004 and 2005, much more divergence is apparent in 2006. Specifically, the TI 

response is comparatively delayed, while the ETI matches more closely with the FSM series. 

This suggests that relatively cold temperatures preclude significant runoff generation in the TI 

model in the early part of the 2006 melt season. That more substantial melt is sustained by the 

ETI model suggests that the temperatures must be large enough to permit melt, but that this 

must be largely driven by the net shortwave radiation term in the ETI baseline. In this case 

there appears to be greater agreement between the ETI and FSM models. 

5.3.5 Empirical Snow Model Parameter Uncertainty 

While some differences in snowpack runoff responses are evident in Figure 5.7, the baseline 

TI and ETI models in that comparison use parameters assigned a priori. This raises the 

question of how the comparison of TI/ETI models and FSM might differ with alternative 

parameter choices. To examine this, parameters were varied systematically for the TI and ETI 

models in separate runs (i.e. each parameter was held constant during a run). To some extent 

this replicates how the different types of models are typically used in the Himalayan region, 
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namely without accounting for spatial and temporal parameter variation but with calibration 

to attain effective or average parameters (e.g. Bocchiola et al. 2011; Rees and Collins 2006; 

Immerzeel et al. 2009, 2012a, 2013; Soncini et al. 2014; Ragettli et al. 2013, 2015; Immerzeel 

et al. 2014; Minora et al. 2015). More complicated EB approaches, such as FSM, tend to be 

used with minimal calibration in distributed applications such as this, with as many 

parameters as possible set based on reference values. This is in part due to the higher 

complexity and run times of such models, which makes exploration of their high-dimensional 

parameter space more challenging. Although more of the parameters in FSM may be 

physically measureable, this is often not completely the case for practical reasons or where 

simplified parameterisations of some processes need to be adopted. A comprehensive 

parameter uncertainty analysis of the FSM configurations may be useful in further work. 

TI – Catchment Scale 

Figure 5.8 shows the mean differences in runoff between the TI and FSM models as a 

function of selected degree day factors (DDFs). Differences were calculated as TI minus 

FSM. The range of DDFs tested was based on the collation of values reported for snow in 

different studies in Hock (2003) (see Section 5.2.5). Figure 5.8 indicates that, for a given 

DDF, there may be notable variation in the correspondence between the two types of models 

in different months. In April, the choice of DDF has a relatively small impact on mean runoff 

differences in absolute terms, owing to the lower snowpack runoff in the energy-constrained 

ablation conditions at this time of year. Nevertheless, the variation appears significant in 

relative terms. A DDF of between 4 and 6 mm/d/°C is most consistent with FSM for ST-0, 

although a slightly lower DDF may be required to mimic ST-1. Relative to April, higher 

DDFs tend to be more consistent with FSM in May. The relationship between mean runoff 

difference and DDF steepens, while inter-annual variability increases substantially. Indeed, 

for most of the DDFs tested, the differences span both positive and negative values in 

different years. One possible reason for the higher inferred DDFs in May is that rising net 

shortwave radiation provides a key driver for melt that is essentially unaccounted for in the TI 

model. The omission of melt/refreezing cycles and their effect on snowpack ripening may 

also be important in permitting melt at comparatively low positive air temperatures. Thus, 

while air temperatures exceed the critical threshold and permit melt, higher DDFs appear to 

be needed to match FSM snowpack runoff rates. This applies in both ST-0 and ST-1 FSM 

cases, which are similar but offset. 
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Figure 5.8 – Monthly mean differences (TI minus FSM) in snow melt between FSM and TI models for 

selected months. Both stability options are shown for FSM, with off (ST-0) and on (ST-1) in orange 

and blue respectively. Points show mean difference for all years of simulation, while lines show inter-

annual ranges. Horizontal lines show the 10
th
 and 90

th
 percentiles and mean of observed runoff, which 

is for reference only (as model results are only for snow melt component of total flows). 

The DDFs that might be required to mimic the FSM outputs in May are no longer appropriate 

in June. Rather, DDFs of 4 mm/d/°C or lower lead to more agreement between the models. As 

the higher DDFs are associated with higher melt in June, it is reasonable to consider the 

month as essentially energy- rather than mass-constrained in terms of ablation. Therefore 

Figure 5.8 suggests that for the FSM model there is a shift in the relationship between air 

temperature and snowpack runoff generation as the melt season progresses into June. As the 

melt season progresses, it could be that release of meltwater from the deeper snowpack at 
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higher elevations becomes more delayed relative to the shallower snowpack at lower 

elevations. This is explored further below. 

By July a situation develops whereby the highest mean runoff differences are associated with 

moderate DDFs. The smallest DDF tested still leads to negative differences on average, which 

suggests that they are insufficient to reproduce the rates of melt in FSM at this time of year. 

The largest DDF tested gives positive differences, but these may be smaller than those 

induced by more moderate DDFs. This likely arises because the higher DDFs lead to more 

melt earlier in the season, limiting the mass available for ablation earlier than in TI 

realisations applying lower DDFs. The inter-annual variability in difference tends to increase 

with DDF in July, especially for ST-1. This is again to do with the climate conditions and 

rates of ablation in the preceding months. If a year has particularly large winter/spring 

precipitation and/or a relatively cold early melt season and/or a very warm July (i.e. 

permitting the freezing isotherm to get up particularly high), it is possible for large DDFs to 

induce relative high July melt, as more mass is available. Conversely, with climate conditions 

leaving less mass by July, high DDFs lead to particularly negative differences relative to 

FSM. 

The analysis thus suggests that the DDFs most consistent with FSM snowpack runoff rates 

vary substantially throughout the melt season and on an inter-annual basis. This reflects the 

influence of variation in weather conditions. Yet, as the DDFs most consistent with FSM vary 

systematically within the melt season, rising and then falling, the results suggest that spatial 

and vertical patterns in the snow distribution may also be very important. This is explored 

below.  

ETI – Catchment Scale 

A similar analysis can also be conducted for the ETI model. Figure 5.9 again shows mean 

runoff differences relative to FSM, but this time for the ETI model and variation in its 

shortwave radiation factor (SRF) and temperature factor (TF). Beginning with the SRF of 

0.004 m
2
 mm W

–1
 hr

–1
, which is at the lower end of the range reported by Ragettli et al. 

(2013), TF values towards the upper end of the range reported by Ragettli et al. (2013) tend to 

be required in May to match the snowpack runoff rates of the FSM models. However, in each 

case the range of inter-annual variability spans both positive and negative differences. 

Thereafter, lower or moderate TF values are more consistent with FSM in June. This is 

similar to the TI model, in that higher TFs (or DDFs) appear more consistent with FSM in 
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May compared with June, with both months being relatively unconstrained in terms of mass 

available for ablation. In July, there is some indication of stabilisation in the higher TFs, while 

the relationship between TF and inter-annual spread in mean runoff differences shows almost 

opposing signals for the ST-0 and ST-1 cases. While the inter-annual range decreases with 

higher TFs for ST-0, the inverse occurs for ST-1. This is likely a function of the ST-0 case 

becoming mass-constrained earlier. The similarity between the two higher TFs may suggest 

that the SRF term is sufficient to melt all of the snow, such that the sensitivity to TF reduces 

somewhat. 

 

Figure 5.9 – Similar to Figure 5.8 but for ETI model. As the ETI model has two critical parameters, 

columns show the key months, while rows of the matrix are used for the shortwave radiation factor, 

with the temperature factor along the horizontal axis. The mean snowpack runoff difference is on the 

vertical axis, as per Figure 5.8. 

With an SRF of 0.01 m
2
 mm W

–1
 hr

–1
, which is the baseline value taken from Ragettli et al. 

(2013) and approximately consistent with the coefficient needed to convert net shortwave 

radiation directly to a water equivalent depth, on average there is relatively little variation in 
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mean difference with different TFs for May. A slight positive relationship is evident. 

However, in both ST-0 and ST-1 cases, the ETI model leads to higher melt than FSM for all 

TF values, even if TF is set to zero, implying no temperature-driven component of melt. This 

suggests that the SRF parameter set at 0.01 m
2
 mm W

–1
 hr

–1
 may in fact be relatively high, 

despite this being the baseline parameter and to some extent a physically interpretable value. 

Similarly, mean differences are high relative to FSM for all TFs during June, although in this 

case a stronger positive relationship between TF and snowpack runoff difference is evident. 

This fits with the generally abundant mass availability in June. By July, on average the ETI 

model is insensitive to the TF value, but the range of mean difference in runoff again 

increases with higher TFs. This suggests that sensitivity to the parameter at this time of year 

depends on the precipitation accumulation and ablation conditions, as well as contemporary 

temperatures. For ST-1, the ETI model still simulates higher snowpack runoff than FSM, 

owing to the overall slower rates of ablation in ST-1. 

TI – Elevation Variation 

An alternative approach to understand how TI/ETI parameters might vary to match an EB 

model is to inversely estimate the implied parameters based on the snowpack runoff simulated 

by FSM, in conjunction with the relevant climate fields. This approach is similar to that 

adopted by Raleigh and Clark (2014), in which the relationship between temperature and 

DDFs was examined for SNOTEL sites in the US. Raleigh and Clark used linear regression to 

identify the DDF at each site from the slope parameter of the relationship between cumulative 

positive degree days and cumulative snowmelt. The main difference in our application is that 

model outputs are used. The DDFs are estimated fortnightly for each grid cell by dividing the 

total snowpack runoff over the period by the cumulative positive degree days when snow was 

present. 

Based on the possible significance of spatial variation inferred from Figure 5.8, these results 

are summarised by elevation bands in Figure 5.10. This shows that there is generally a 

characteristic annual cycle of DDF variation, whereby DDFs rise fairly rapidly with snowpack 

runoff onset and then later decline. The decline may reflect late-lying snow on north-facing 

slopes, but in the case of the 4500-5000 mASL elevation band, if anything there appears to be 

a stabilisation in the inferred DDF until melt ceases, at which point the DDF becomes 

undefined. The amplitude of the annual DDF cycle tends to be larger for lower elevation 

bands, in agreement with the results in Figure 5.8, which showed how high DDFs were 
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required relatively early in the melt season (e.g. May) to reproduce the FSM snowpack runoff 

rates at this time of year on average. However, the inter-annual variability in inversely 

estimated DDFs also tends to be larger at lower elevations, suggesting substantial variation. In 

general the patterns of intra-annual variation are similar for ST-0 and ST-1, with the main 

difference being the magnitude of inferred DDFs. Together, these results suggest that both 

spatial and temporal variation in DDFs would be needed if the EB approach of FSM were to 

be replicated, although the latter is of course simply a reference to a different, more process-

based modelling approach rather than a truth. 

 

Figure 5.10 – Annual cycles of degree day factors inversely estimated from FSM shown for different 

elevation bands. FSM stability options are shown in orange (ST-0) and blue (ST-1) respectively. The 

catchment-average degree day factors are shown in black. Lines denote the mean and shading shows 

the range of inter-annual variation. 



134 

 

 

Figure 5.11 – Relationship between positive degree days (with snow cover) and annual snowmelt 

totals for two example years. 

The results suggest that the relationship between cumulated positive air temperatures and 

snowpack runoff rates in FSM varies spatially (vertically) and between years. This is 

confirmed by Figure 5.11, which shows the relationship between cumulated positive degree 

days when snow is present, total annual snowpack runoff and elevation for each model cell in 

the Astore sub-basin. Over most of the elevation range, total annual snowpack runoff is close 

to peak snow water equivalent (SWE), after any sublimation losses in the period prior to 

complete ablation. Figure 5.11 shows that low elevations are subject to some non-linearity, 

increasing slowly at first then more rapidly. This might relate to the shallower, warmer 

snowpack at low elevations ripening relatively quickly, with rising net shortwave radiation 

(aided by decaying albedo) then rapidly inducing snowpack melt. At moderate elevations the 

relationship between positive degree days with snow cover and snowpack runoff is more 

linear, fitting better with the TI formulation. However, there is some suggestion that the 

highest elevations permitting melt show a different gradient in the relationship between 
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cumulative positive degree days (with snow cover) and snowpack runoff. Moreover, this high 

elevation gradient appears to differ between years. In 2005, the gradient is shallower than that 

at more moderate elevations, while in 2009 the gradient appears steeper than for moderate 

elevations. As the higher elevations undergoing melt in Figure 5.11 are still below the critical 

elevation for precipitation inversion (Section 5.2.1), this might suggest a particularly strong 

dependence of DDFs on inter-annual climate variability at high elevations, with implications 

for the high elevation water balance and ultimately glacier mass balance.  

ETI Elevation Profiles – Threshold Temperature 

The preceding analysis indicates that typical parameter values associated with the TI and ETI 

models can lead to varying levels of agreement with FSM in terms of catchment-scale 

snowpack runoff generation. Crucially, the consistency with FSM for any given parameter 

choice (held constant through the simulation) varies notably in time, on both intra-annual and 

inter-annual time scales. One additional parameter requiring consideration is the temperature 

threshold above which melt is permitted (Tt). To exemplify the influence of the Tt parameter, 

Figure 5.12 shows elevation profiles of ETI and FSM simulated snowpack runoff for two 

values of Tt, which are based on the ranges discussed in Ragettli et al. (2013, 2015). The 

baseline ETI configuration following the TOPKAPI-ETH setup is applied here, while the 

snowpack runoff shown in Figure 5.12 is from whole water years, defined as October to 

September. Thus, in the lower half of the elevation range there is essentially no difference 

between the models, as all snowfall is ablated over the course of a year. For ST-1 there may 

be some patches of persistent snow at relatively low elevations, perhaps on north-facing 

slopes. 

The main difference between the ETI and FSM formulations occurs at higher elevations, 

where the ETI model experiences higher snowpack runoff rates. This suggests that the ETI 

formulation permits more rapid melt of the high elevation snowpack, getting into the 

relatively small fraction of the Astore catchment with perennial snow and ice. At this 

elevation, ablation in FSM is much lower and becomes dominated by sublimation. This could 

potentially be a manifestation of the earlier point, whereby the relationship between 

temperatures and release of snowpack runoff depends in part on snow depth, which is 

generally larger at high elevations as a function of simulated precipitation. Although the 

fraction of catchment area at high elevations is small, the high elevation water balance is 

important for the long-term evolution of the perennial snow and ice. Thus, while of lesser 
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significance for catchment-scale runoff total volumes over short time horizons, longer term 

trends in simulation of high elevation snowmelt will affect glacier mass balance and 

ultimately the degree of buffering of dry years by glacier melt, which can be significant even 

in Astore but especially in more glaciated areas (see below). These results suggest that 

parameters pertaining to melt onset delays in TOPKAPI-ETH may be really quite important, 

despite the fact that they did not appear in the sensitivity analysis results in Section 5.3.2. 

 

Figure 5.12 – Elevation profile of snowpack runoff (total over a year) in the baseline ETI model (i.e. 

baseline shortwave and temperature factors) but for different temperature thresholds compared with 

FSM. Both snowpack runoff released as liquid (i.e. melt) and total ablation are shown (i.e. additionally 

due to sublimation from the snowpack). Solid lines show means and ranges show inter-annual 

variability. 

5.3.6 Simplified Energy Balance (SEB) and ETI Formulations 

While the ETI melt model attempts to separate the temperature- and shortwave radiation-

dependent terms of the surface energy balance equation to build on the simple TI approach 

(Pellicciotti et al. 2005), there does not appear to have been much investigation of whether the 

approach taken represents the best strategy. To explore this we compare the ETI model with a 

very similar formulation, namely the simplified energy balance (SEB) to ablation modelling 
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proposed by Oerlemans (2001) (equation 4.18 therein). This model was assessed by Gabbi et 

al. (2014) for glacier melt in the Alps, as well as MacDougall et al. (2011) for the St Elias 

mountains in the Canadian Yukon. In both cases, the SEB model appeared to perform roughly 

as well or indeed better than the ETI approach in transferability tests. 

The SEB model following Oerlemans (2001) takes the following form: 

𝑄𝑚 = 𝑆𝑊𝑛 + 𝑐0 + 𝑐1 𝑇𝑎      (4) 

where Qm is energy available for surface melt (Wm
-2

), SWn is net shortwave radiation (Wm
-2

), 

c0 is a parameter (Wm
-2

), c1 is a second parameter (Wm
-2

K
-1

) and Ta is air temperature (K). 

This can be rearranged simply as follows: 

𝑄𝑚 − 𝑆𝑊𝑛 = 𝑐0 + 𝑐1 𝑇𝑎      (5) 

If the ETI model is re-written to give melt in terms of energy, rather than water equivalent, it 

takes the following form: 

𝑄𝑚 = 𝑎 𝑆𝑊𝑛 + 𝑏 𝑇𝑎      (6) 

where a is a dimensionless factor and b is a parameter (Wm
-2

K
-1

). With this formulation, 

dividing by SWn suggests that the following relationship would take a linear form: 

𝑄𝑚

𝑆𝑊𝑛
= 𝑎 + 𝑏 

𝑇𝑎

𝑆𝑊𝑛
      (7) 

with each of the three terms being effectively dimensionless. 

The linearity of the relationships proposed in equations 5 and 7 can be tested using outputs 

from FSM+, which computes melt energy based on solving the full surface energy balance. 

Figure 5.13 shows the relationships between the right- and left-hand sides of equation 5 for 

the SEB formulation and equation 7 for the ETI formulation, as calculated from FSM+ 

outputs. The FSM+ outputs are based on selecting a random sample of cells with snow melt at 

each time step, but where the snowpack has not completely melted (i.e. some snow mass 

remains at the end of the time step). The sample plotted in Figure 5.13 is for April to June, 

although similar patterns are found if the results are plotted for individual months separately 
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or for months later in the melt season. For each member of the sample, the melt energy, net 

shortwave radiation and air temperature from FSM+ were used to calculate the relevant terms 

of equations 5 and 7. The right- and left-hand sides of the equations are plotted on the vertical 

and horizontal axes, respectively. 

 

Figure 5.13 – Comparison of simplified energy balance (SEB) and ETI formulations in terms of implied 

relationships between temperature (Ta), net shortwave radiation (SWn) and melt energy (Qm). Each 

point is taken from one model cell selected randomly at each time step from the sample of cells where 

melt takes place but not all of the snow is ablated. The sample is for April to June. The comparisons 

for the SEB and ETI structures are given in (a) and (b) respectively, while the rationale for each is 

explained in the text. The dashed line in (a) marks 273.15 K. 
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For the SEB formulation, Figure 5.13a generally shows the linearity suggested by equation 5, 

but several complicating factors are evident. The most notable point is that there is 

additionally a strong dependence of the relationship between Ta and Qm – SWn on cloud 

transmissivity (CT). Cloud transmissivity is defined here as the fraction of actual incoming 

shortwave radiation at the surface relative to that which would occur under clear-sky (i.e. 

cloud-free) conditions. In the ST-0 case, it appears that the colour gradient denoting cloud 

transmissivity is oriented approximately perpendicular to the overall positive relationship 

between Ta and Qm – SWn. In effect this suggests that the c1 parameter is approximately 

constant, but that the c0 parameter varies as a function of cloud transmissivity. The pattern in 

the ST-1 case in Figure 5.13a is similar in general, although notably the scatterplot appears 

somewhat truncated in the case where Qm – SWn is close to zero. To some degree this gives 

the impression of possible non-linearity for cloudy conditions denoted by low cloud 

transmissivity, induced by the probably over-dampening of the sensible heat flux contribution 

to melting under stable conditions. In contrast, the relationship is strongly linear over most of 

the temperature range under relatively clear conditions. Some divergence from this occurs 

around freezing, where the gradient appears to steepen under all cloud conditions. 

Oerlemans (2001) noted that c1 could be fixed at around 10 Wm
-2

K
-1

. If c1 is estimated from 

Figure 5.13a by calculating the gradient for, say, clear-sky (high cloud transmissivity) 

conditions, values of around 10 and 5 Wm
-2

K
-1

 are obtained for the ST-0 and ST-1 cases, 

respectively. These values are thus broadly in agreement with Oerlemans (2001), but 

highlight the notable effect of stability adjustment assumptions on the form of this 

relationship. Oerlemans suggested that c0 could be a calibration parameter. In Oerleman’s 

example for Nigardsbreen glacier in Norway, a value of -10 Wm
-2

 was used. Interestingly, 

this value appears roughly in agreement with the results in Figure 5.13a for cloudy conditions. 

Under clearer conditions, a much lower value of c0 would be inferred from Figure 5.13a. In 

their application to long-term melt modelling for Rhonegletscher in Switzerland, Gabbi et al. 

found that a value of 15 Wm
-2

K
-1

 provided optimal results with respect to observations for c1 

over a multi-year calibration period, while a value of -75 Wm
-2

 was considered most 

appropriate for c0. This latter value is within the range of approximately -200 to ~0 Wm
-2

 that 

might be inferred from Figure 5.13a, depending on cloud conditions, such that it may in effect 

be a compromise value obtained by not making c0 explicitly dependent on cloud 

transmissivity. The climatic context of the UIB (lower latitude than the Alps, with higher 

clear-sky incoming shortwave radiation) may mean that the best compromise differs between 

locations. 
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Figure 5.13b shows that there are some similarities for the ETI formulation. Most notably, 

this includes an approximately linear relationship under clear-sky (high cloud transmissivity 

conditions). The major difference relative to the SEB case in Figure 5.13a is that the strength 

of the relationship breaks down very substantially as cloudiness increases. While the 

relationships in Figure 5.13a representing the SEB formulation remain comparatively tight as 

cloud transmissivity decreases, the relationships in Figure 5.13b representing the ETI 

formulation decay towards essentially showing very limited correlation between the 

constituent terms. This is consistent with the previous findings that the ETI formulation tends 

to work less effectively under cloudy conditions (Carenzo et al. 2009), which questions its 

applicability in particular climate settings to some extent. As cloud variation and trends are 

understood to be critical to ablation variability and climate change trajectories in the UIB 

(Forsythe et al. 2015), these results suggest that there may be important limits to the 

applicability of the ETI model in this context. 

5.3.7 Glacier Ablation 

Figure 5.14 shows daily snowpack runoff, glacier melt and total melt simulated by FSM+ 

along with observed total runoff for the heavily glaciated Hunza sub-basin. Total melt from 

FSM+ is the sum of snowpack runoff and glacier melt. Note that snowpack runoff refers to 

water discharged at the base of the snowpack, while glacier melt refers to surface melt, i.e. 

refreezing of glacier melt or glacier hydrology are not incorporated at this point. As per 

Section 5.3.4, rainfall runoff and evapotranspiration from model cells without snow or glacier 

present are not included here. Flow routing is also omitted here to focus on the runoff 

generation rather than routing processes. 

Several points are evident from Figure 5.14. Firstly, there appears to be some strong 

similarities between the total melt series simulated by FSM+ and observed runoff, albeit with 

some complications. The degree of agreement can vary between and within years. The ST-0 

case generally leads to higher total melt (through additional glacier melt), which leads to a 

series closer to observed runoff in some years (e.g. 2001) but not in other years, when peak 

melt rates may be notably overestimated. Quite plausibly, snowpack runoff leads glacier melt 

in the time series in all years, with the rate of rise and total magnitude of glacier melt quite 

substantially affected by the stability adjustment option selected. This is closely linked to the 

effects of stability adjustment on the rate of snowpack melt-out. With ST-1, snow overlying 

glacier cells may persistent for longer, thus delaying the onset of significant glacier melt. The 
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timing of intra-season fluctuations in snow/glacier melt generally match well with observed 

runoff. Overall then it appears that FSM+ provides potential for simulating catchment-scale 

glacier melt reasonably. 

 

Figure 5.14 – Comparison of daily snowpack runoff and glacier melt time series simulated by FSM+ 

with observed runoff for the Hunza basin for selected contrasting years. Snowpack runoff (blue), 

glacier melt (orange) and total melt (grey) simulated by FSM+ are not routed (and runoff and 

evapotranspiration from cells without snow or glacier present are not considered). 
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Figure 5.15 – Elevation profiles of melt components for the Hunza sub-basin. Lines show means 

across years, while shading denotes the range of inter-annual variability. 

Figure 5.15 shows elevation profiles of snowpack runoff and glacier melt for the Hunza sub-

basin for July and August, the two months typically having highest glacial runoff. Several 

similarities are apparent in both months and between stability adjustment options. Firstly, the 

peaks in sub-debris melt, bare ice melt and snowpack runoff are at successively higher 

elevations in a given month. The bare ice melt and snowpack runoff components peak at 

higher elevations in August than July. Secondly, the fraction of total glacier melt occurring at 

lower (but partly glaciated) elevations through sub-debris melt is notable. This is likely 

related to the general pattern of debris thickness increase towards glacier termini, where 

debris is present, such that fairly substantial melt rates can still occur higher up the glacier 

tongues and ablation areas where debris cover is thinner. Thirdly, inter-annual variability in 

glacier melt below the total ice melt peak is fairly limited for both the bare ice and sub-debris 

cases, especially in August. In the case of debris cover, this suggests that debris thickness is 

likely to be a more important control on melt rates than climate variability where debris is 
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present. The minimum temperature isotherm averages just under 5000 mASL in July and 

August, so it is reasonable that substantial energy is available for ablation in these months. 

Above 4000 mASL bare ice melt comes to dominate total ice melt, which is accompanied by 

a notable increase in inter-annual variability. This increase in variability coincides with the 

rise in relatively high elevation snowmelt. This has the largest variability of any of the melt 

components, largely as a function of precipitation variability in the preceding winter and 

spring. The results suggest that the persistence and rate of snowmelt strongly affect the 

simulated partitioning between snow and glacier melt in the higher part of the ablation zone. 

In July snowmelt tends to substantially exceed ice melt from around ~5000 mASL upwards, 

whereas by August the difference decreases owing to the depletion of the snowpack. 

While local data for full evaluation of the ablation from clean and debris-covered glacier ice 

are not available, MODIS LST provides one means of partially investigating how well FSM+ 

simulates the surface energy balance. Details of MODIS LST validation are given in Section 

5.2.3. Figure 5.16 shows elevation profiles of day and night surface temperatures (mean and 

inter-annual range – based on MODIS overpass times) for the main months of high glacier 

melt in the Hunza sub-basin. The temperatures are averaged over all glaciated cells or pixels 

within the elevation band, i.e. both clean and debris-covered. 

For day-time, this suggests that surface temperatures are well simulated in the upper reaches 

of glaciers under both stability options. MODIS LST then tends to increase above freezing at 

a slightly higher elevation than in FSM+, but the latter does indeed capture the transition to 

positive temperatures reflecting debris presence. This may suggest that debris cover extends 

higher in some places than inferred from Khan et al.’s (2015) mapping. However, at 

elevations below around 4000 mASL, surface temperatures tend to diverge from MODIS 

LST, which continues to increase. Possible explanations for this include uncertainties in 

debris thickness or debris bulk properties. Interestingly, Collier et al. (2015) show similar 

results in their equivalent elevation profile (their Figure 3a), whereby divergence from 

MODIS is highest between 5000 and 6000 mASL and then again at the lowest glaciated 

elevations. 

At night, Figure 5.16 becomes dominated by the discrepancy arising from stability option 

choice at higher elevations associated with clean ice conditions. With ST-0, reasonable 

agreement between FSM+ and MODIS is attained, but again FSM+ struggles to match the 

positive temperatures at low elevations suggested by MODIS.  
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Figure 5.16 – Comparison of glacier surface temperatures in FSM+ and MODIS. 

5.3.8 Glacier Clean Ice Ablation Comparison 

In the glacier melt model comparisons reported below, ice ablation using these empirical 

approaches (i.e. both clean ice and sub-debris melt) begins in a cell following ablation of the 

snowpack, which is simulated using the full surface energy balance approach of FSM+. This 

is to help isolate the glacier melt responses of the empirical parameterisations, without the 

confounding influences of different rates of snowpack ablation from alternative snow melt 

model options. 
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Figure 5.17 – Elevation profiles of glacier clean ice melt for FSM+ and TI (orange) and ETI (blue) 

empirical methods. For the ETI model, the cases of two separate shortwave radiation factors (SRF) 

are denoted by solid and dashed lines. For the lower SRF (0.006 m
2
 mm W

–1
 hr

–1
), profiles for 

temperature factor values of 0.0, 0.04, 0.08 and 0.12 mm hr
-1

 °C
-1

 are shown (each leading to 

successively higher melt rates), whereas profiles of temperature factor values of 0.0, 0.04 and 0.08 

mm hr
-1

 °C
-1

 are shown for the higher SRF case (0.008 m
2
 mm W

–1
 hr

–1
) (again each leading to 

successively higher melt rates). The TI models shown are for degree-day factors of 4 and 6 mm d
-1

 °C
-

1
. 

Figure 5.17 compares bare ice glacier melt calculated by FSM+ with that from TI and ETI 

models. While a range of parameters were tested for the TI and ETI models, only those close 

to the FSM+ outputs are shown to boost clarity. Focusing first on the shape of the profiles, it 

seems that the ETI model tends to agree more closely with the shape of the FSM+ profiles. 

This is because melt rates in the TI profile tend to increase relatively rapidly at lower 

elevations, compared with FSM+ and ETI profiles. Thus, there is some suggestion that the 

ETI functional form could be more appropriate. However, there are significant complications 

regarding parameter values. For the TI model, the DDF leading to most agreement with 

FSM+ varies with elevation, with higher DDFs being implied at higher elevations. For the 
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ETI model, the close overlap of the dashed and solid lines on Figure 5.17 demonstrates the 

high possibility of parameter compensation. Specifically, increasing the shortwave radiation 

factor (SRF) by 0.002 m
2
 mm W

–1
 hr

–1
 in Figure 5.17, and at the same time decreasing the 

temperature factor (TF) by 0.04 mm hr
-1

 °C
-1

 (down to a minimum of zero), leads to 

essentially very similar elevation profiles of bare ice melt. The ST-0 case generally implies 

higher melt, but interestingly cuts across some of the profiles for different parameter 

combinations, suggesting some variation of implied parameters with elevation. 

5.3.9 Debris-Covered Ice Ablation Comparison 

To examine the simulation of sub-debris glacier melt in FSM+, we compare daily time series 

with several empirical approaches in Figure 5.18. The first point to note is that there is notable 

difference between ST-0 and ST-1 series in FSM+, with the latter exceeding the former quite 

significantly. It is possible that a substantial portion of this difference relates to effects of 

stability adjustment on the diurnal cycle of melting. The degree of debris surface cooling at 

night-time might be somewhat limited in ST-0 (Figure 5.16), allowing higher debris 

temperatures to be maintained and so greater sub-debris melt. It is also clear that there is a 

fairly high degree of agreement between the FSM+ (ST-1) and the TId and ETId formulations 

using baseline parameters. ETId appears to show slightly less melt than the other two models, 

but the difference is relatively small compared with the overall magnitude of runoff at the 

catchment scale and the various sources of error involved. 

Interestingly, the two simulations with the DETI parameterisation approximately bound the 

other approaches. Transferring parameters from Carenzo et al.’s (2016) model development in 

the Alps leads to lower sub-debris glacier melt relative to transferring parameters from 

Ragettli et al.’s (2015) application in the Langtang valley (Nepal), which matches closely with 

FSM+ with no stability adjustment. In both of these studies, parameters were estimated by 

calibrating to outputs from an energy balance model accounting for heat conduction through 

supraglacial debris (Reid and Brock 2010), which led to good overall model performance in 

their test cases. Ragettli et al.’s application included debris thicknesses in excess of 2 m, while 

Carenzo et al.’s application concerned debris up to 0.5 m thick (with most of their 

measurements and experiments for debris layers of up to 0.2 m). 

One possible reason for the large differences relative to the FSM+ cases and the TId/ETId 

empirical approaches might lie in the structure of the DETI formulation. In effect the DETI 

method has 7 parameters compared with the standard ETI’s 3 parameters (including a 
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temperature threshold for melt). Several of the DETI parameters are calculated as nonlinear 

functions of debris thickness, such that its sensitivity to small changes in parameter values 

may be large. The structure is clearly flexible enough to mimic an energy balance model 

following calibration, but without calibration its transferability to different contexts could be 

quite limited.  

 

Figure 5.18 – Comparison of FSM+ and empirical approaches for modelling melt under debris cover in 

the Hunza sub-basin. Observed total runoff is shown for reference in black. The empirical approaches 

are: DETIc – DETI method accounting for debris thickness using parameters from Carenzo et al. 

(2016); DETIr – DETI method using parameters from Ragettli et al. (2015); ETId – ETI method with 

binary debris cover and modified ETI parameters following Ragettli et al. (2013); TId – TI method with 

binary debris cover using parameter from Lutz et al. (2016a). 

5.3.10 Glacier Ablation Temperature Sensitivity 

Figure 5.19 shows the results of a simple sensitivity test for the TI, ETI and FSM+ clean ice 

glacier melt formulations, in which the input air temperature time series was perturbed by 

constant increments. The TI and ETI results shown are based on parameter values (or 

combinations in the ETI case) where catchment-wide mean annual clean ice melt was within 

10% of the respective FSM+ model using the unperturbed input air temperatures. As none of 

the regular interval DDFs tested for the TI model were within 10% for the ST-1 case, this 

range was expanded to 20% in Figure 5.19b for the TI model only. 

Intuitively, Figure 5.19 suggests that the TI formulation exhibits the highest sensitivity to 

temperature perturbations. Unlike the other models, the TI approach depends only on 
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temperature. As such, rises in temperature lead to comparatively steep increases in melt where 

ablation is not mass-constrained, such as in the heavily glaciated Hunza sub-basin under 

typical conditions. In Figure 5.19b, the shallower of the two TI lines corresponds in fact with 

catchment-wide mean annual clean ice melt that is around 20% lower than in FSM+ in the 

unperturbed model run. Yet, its temperature sensitivity remains much higher than FSM+ with 

ST-1. With a perturbation of +3°C, this formulation results in approximately 100 mm/a of 

clean ice melt, compared with around 50 mm/a in the equivalent FSM+ scenario. 

For both ST-0 and ST-1, four (different) parameter combinations provided mean annual clean 

ice melt within 10% of the FSM+ simulated totals. In both cases, three of these parameter 

combinations remain relatively closely grouped together. These groups show the lowest 

temperature sensitivity of the empirical models and parameter values/combinations plotted. 

However, these groups also show notable differences from the FSM+ sensitivities, with the 

closely grouped ETI models being leading to clean ice melt around 25% and 50% higher than 

FSM+ in the ST-0 and ST-1 cases. In both the ST-0 and ST-1 cases, one of the ETI parameter 

combinations exhibits considerably more temperature sensitivity than the other three, as 

reflected by the steeper line in Figure 5.19. Clean ice melt is around 65% and 100% higher in 

the ETI model with these parameter combinations than FSM+ in the ST-0 and ST-1 cases, 

respectively. This highlights the importance of applying conceptual and process-based 

understanding to the ETI model parameters where insufficient data are available to truly test 

the ETI model for application at the catchment scale. To some extent it appears to be the 

modeller’s choice how much temperature sensitivity is assigned to the ETI model. 

Importantly, the differences between the ETI and FSM+ models appear to increase with 

magnitude of the temperature perturbation. This is also the case for the TI model. Even in the 

case of no stability adjustment in FSM+, offering the potential for substantial sensible heat 

flux to contribute to melt as the summer progresses, clean ice melt is more sensitive to 

temperature even in the more conservative ETI parameter combinations. It seems reasonable 

to suggest then that there is a strong possibility that the ETI formulation would lead to more 

rapid changes in glacier mass balance than the energy balance approach, at least in realistic 

(simplified) applications of climate change impact assessment. While differences in clean ice 

melt over a relatively short timeframe appear substantial within themselves, the impact could 

grow over time as the cumulative effect of higher/lower ablation plays out on glacier mass 

balance. It might be expected that river flows during dry years may be particularly affected by 

this. As glacier volume declines then so too does the buffering effect of glacier melt on inter-
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annual climate variability, such that the differences between model formulations could 

ultimately become very important during times of water stress. This is discussed further in 

Chapter 7. 

 

Figure 5.19 – Sensitivity of annual clean ice glacier melt in the Hunza sub-basin to simple temperature 

perturbations for TI, ETI and FSM+ models. The TI and ETI results use FSM+ to simulate the overlying 

snowpack, so total snowpack ablation occurs at the same time in the comparisons (but at different 

times in the ST-0 (a) and ST-1 (b) cases). The TI and ETI comparisons shown are for those parameter 

combinations producing catchment-wide mean annual clean ice melt within 10% of the respective 

FSM+ model with unperturbed temperatures. The exception is TI in (b), where the results correspond 

to +/- 20% of FSM+ in the unperturbed case, as the regular interval DDFs tested did not give any 

simulations within +/- 10%. 

5.4 Conclusions 

This chapter demonstrates that TOPKAPI-ETH configured following Ragettli et al. (2013) 

provides generally good performance relative to available observations. The parameter set is 

perhaps not quite optimal, but it seems to be a reasonable choice overall. This provides further 

confirmation of the value of the HAR for climate inputs when the full hydrological cycle is 

considered. While the benchmark TOPKAPI-ETH setup is reasonable, the chapter does also 

confirm that the ETI method used to compute ablation is subject to substantial parameter 

equifinality. There may be a case for reducing the parameter used to factor net shortwave 

radiation if the ETI model is to more closely mimic an energy balance approach. Otherwise 
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the potential ablation may be excessive, but overall we suggest that the benchmark parameter 

choices are reasonable and suitable for hydrological projections. 

The results also show that there are some notable differences between TI and ETI 

formulations compared with the FSM model for snowpack runoff modelling. Substantial 

variation of parameters in both space and time would be required to mimic the response of 

FSM. This is particularly the case for simple models omitting processes of liquid water 

retention, drainage and melt/refreezing cycles, the implications of which may be critical for 

the long-term evolution of high elevation water balances. Temporally, this variation follows a 

systematic seasonal pattern in general, but there is substantial inter-annual variation. Longer 

time series may be required to gain a better characterisation of the interactions between 

climate input fields and the modulating effects of snowpack processes. Yet, the results 

suggest that notable complexity is lost in both the TI and ETI approaches relative to the 

energy balance model at the heart of FSM. This complexity may pertain to the multiple 

dimensions of the climate inputs and the various feedbacks possible within the snowpack. 

How significant these omissions in simpler models are for hydrological projections is unclear.  

While the ETI model performs well based on available observations of river flows and SCA, 

its weaker performance under cloudy conditions may be a structural limitation. Specifically, 

the linear relationship between its inputs (temperature and net shortwave radiation) and output 

(melt) implied by its formulation breaks down with increasing cloud cover. In contrast, owing 

to a small difference in form, the simplified energy balance (SEB) method (Oerlemans 2001) 

retains a more stable relationship between the inputs and output under all cloud conditions. 

Albedo parameterisations aside, both the ETI and SEB formulations have two calibration 

parameters and the same input requirements. Thus the SEB approach could in theory be more 

robust. However, one of the parameters at least shows a dependence on cloud cover, which 

would need to be accounted for, perhaps with a simple parameterisation, unless an “average” 

value for all cloud conditions were deemed acceptable. 

For glaciers, the ETI approach shows fairly good functional agreement with energy balance 

models for clean and debris-covered ice ablation. The TI model may exhibit some more 

differences in behaviour. Potential differences in functional form become particularly critical 

when considering the temperature sensitivity of different models. The TI model exhibits a 

much stronger sensitivity to temperature perturbations than the energy balance formulations. 

The magnitude of this difference is large and significant for water resources applications. 
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Some parameter combinations for the ETI model show much more agreement with the 

sensitivity of the energy balance approach. Although the simplicity of the sensitivity tests 

should be acknowledged, ETI-based models do thus appear to provide an advance over TI 

models when the former are appropriately parameterised. 
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Chapter 6  

 

Controls on Temperature Patterns and Projections in CMIP5 

6.1 Introduction 

The substantial uncertainty in climate and hydrological projections for the Himalayan region 

poses huge challenges for water resources planning (Mishra 2015). One key contributor to 

this uncertainty is the large spread in GCM projections (e.g. Ragettli et al. 2013; Lutz et al. 

2014, 2016a,b; Palazzi et al. 2015). In order to understand and potentially constrain this 

spread, it is first critical to evaluate how well GCMs simulate key features of the regional 

climate, and whether there are connections between model skill, process representations and 

projections. Previous studies have evaluated a number of pertinent aspects of GCM behaviour 

over the Himalaya and Tibetan Plateau. These include: precipitation and temperature 

climatology (e.g. Su et al. 2013; Palazzi et al. 2015; Hasson 2016a; Hasson et al. 2016); land- 

and near-surface processes, feedbacks and elevation-dependent warming (e.g. Rangwala et al. 

2013; Ghatak et al. 2014; Rangwala et al. 2016; Palazzi et al. 2017; Guo et al. 2018); 

monsoon dynamics (e.g. Sperber et al. 2013; Levine et al. 2013; Saha et al. 2014; Wang et al. 

2017); and other relevant facets of global and regional atmospheric circulation (e.g. Lee et al. 

2014; Xu et al. 2017). 

One climate feature that has not been investigated in GCMs is the Karakoram Vortex (KV) 

(Forsythe et al. 2017; Li et al. 2018). As a new and emerging research area, the KV shows 

considerable promise for understanding the drivers of contrasting climate change signals 

across the Himalaya and Tibetan plateau. A fuller description is provided in Section 6.2, but 

in brief the KV describes anomalous circulation patterns centred on or near the Karakoram 

throughout the year. Anticyclonic and cyclonic KV states are closely linked to anomalies in 

the position and intensity of the subtropical westerly jet (SWJ) in all seasons, as well as the 

South Asian monsoon (SASM) in summer. The strong, spatially extensive and homogenous 

temperature response to KV circulation anomalies in winter contracts substantially in 

summer, becoming focused on a more restricted zone around the Karakoram. In conjunction 

with trends in the SWJ, SASM and KV states, Forsythe et al. (2017) argued that this 

contraction during the peak ablation season provides a significant contribution to the unique 

summer cooling (Fowler and Archer 2006; Forsythe et al. 2012b), neutral glacier mass 

balance (e.g. Hewitt 2005; Zhou et al. 2017; Bolch et al. 2017; Brun et al. 2017), and stable or 
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declining river flow trends (Sharif et al. 2013) observed in the Karakoram and Upper Indus 

Basin (UIB). 

Although the KV is a recently introduced concept, its role as a major control on regional 

temperature variability, particularly for the western Tibetan Plateau and adjoining mountain 

ranges (Li et al. 2018), is increasingly supported by other, independent studies. For the 

summer monsoon season, Mölg et al. (2017) demonstrated that southward shifts in mid-

latitude westerly activity and the SWJ are associated with a dipole in temperature response, 

with cooling (warming) in the west (east) of the Tibetan Plateau. Norris et al. (2018) 

additionally showed that contrasting cyclonic (anticyclonic) trends in the western 

(central/eastern) parts of the Himalayan arc and Tibetan Plateau help to partly explain 

regionally differentiated temperature and glaciological trends. These findings are largely 

consistent with the circulation anomalies, temperature responses and trends associated with 

the KV (Forsythe et al. 2017; Li et al. 2018). Therefore, we contend that the KV represents a 

valuable means of investigating and quantifying the year-round impacts of SWJ variability 

and summer SWJ-SASM interplay on regional near-surface climate. 

While KV representations and projections in GCMs have not yet been studied, a related 

summer circumglobal teleconnection pattern (CGT) (Ding and Wang 2005) has been assessed 

in the Coupled Model Inter-Comparison Project phase 5 (CMIP5) GCMs (Taylor et al. 2012). 

The CGT is associated with a global wave train closely guided by the SWJ, and the KV is 

broadly consistent with its west-central Asian action centre. Lee et al. (2014) showed that the 

CGT is reasonably well reproduced by some GCMs. From analysing Representative 

Concentration Pathway (RCP) scenario outputs, Lee et al. found that the CGT is projected to 

weaken under RCP4.5, while the relationships between the CGT and the SASM, as well as 

the SASM and the El Niño Southern Oscillation (ENSO), are also projected to decrease in 

strength. However, this analysis is restricted to summer, and it does not focus on GCM 

performance and projections in detail for the regional circulation and near-surface climate 

responses within the domain of the Himalaya and Tibetan Plateau influenced by the KV. 

As such, we evaluate three aspects of KV representation using an ensemble of GCMs from 

CMIP5. Firstly, we examine how well the basic indices and structure of the KV are 

represented in the CMIP5 ensemble in different seasons. Secondly, we focus on the 

Karakoram and UIB to consider how well the historical connections between regional 

circulation and near-surface air temperature variability and trends are captured by the GCMs. 
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This is a key test of whether the models reproduce the patterns of spatial variation in 

temperature response that underpin the divergent climatic, hydrological and glaciological 

trends across the Himalayan arc. Finally, we consider the connections between KV 

representation and ensemble spread in temperature projections for the Karakoram and UIB, 

focusing on global temperature stabilisation scenarios. This leads us to consider other critical 

influences on uncertainty in projected changes, as well as the degree to which they may be 

constrained by observations. 

6.2 Karakoram Vortex 

In this section, we review some basic features of the regional atmospheric circulation and 

explain the KV, thus providing the context for evaluation of the CMIP5 models. The 

explanations are based on the detailed accounts in Forsythe et al. (2017) and Li et al. (2018) 

Figure 6.1a shows the climatological horizontal winds at 200 hPa for winter (December, 

January, February - DJF) and summer (June, July, August - JJA). The band of high zonal 

wind velocity denoting the SWJ is especially clear in winter, when the SWJ is located to the 

south of the Karakoram. Between winter and summer, the SWJ reduces in speed and migrates 

north of the Karakoram and much of the Tibetan Plateau. The line of minimum zonal wind 

speed in summer is coincident with the ridge line of the South Asian High. Lower level south-

easterly flows from the Bay of Bengal and south-westerly flows from the Arabian Sea in 

summer are associated with the SASM. 

Figure 6.1a also shows the northern and southern areas used to define the Karakoram Zonal 

Shear (KZS) index. To calculate the KZS, zonal wind speeds are first spatially averaged over 

the northern and southern areas separately. The KZS is then defined as the resulting northern 

area value minus the southern area value. Calculated in all seasons, the KZS quantifies the 

position and intensity of the SWJ upstream of, and around, the Karakoram. The KZS is 

negative in winter when the SWJ is at its southernmost position and zonal wind speeds are 

higher in the southern area. KZS then increases to a maximum in summer, becoming positive 

and reflecting the northward migration of the SWJ. The majority of the amplitude in the KZS 

annual cycle derives from seasonal variation in the southern area. 
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Figure 6.1 – Summary of the Karakoram Vortex (KV) based on ERA-Interim (ERAI) 1979-2005 for 

winter (DJF) and summer (JJA). (a) Wind climatology at 200 hPa, with shading showing zonal wind 

speed. Boxes used to define Karakoram Zonal Shear (KZS) index are also shown (see Section 6.2). 

(b) Correlation of KZI with temperature (shading) and horizontal wind components (arrows). (c) 

Latitude-elevation transects (integrated over 70-80°E) of KZI correlations with temperature (shading), 

meridional and vertical wind (arrows) and geopotential height (contours – 0.1 spacing, solid for 0 and 

positive, dashed for negative), with topography shown. The dot in each plot shows the location of the 

Karakoram. Temperature (wind) correlations are shaded (black) only if significant at the 95% level. 
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To quantify inter-annual variation in the position and intensity of the SWJ, the Karakoram 

Zonal Index (KZI) is defined. This is calculated by standardising a KZS time series 

accounting for its seasonal cycle, typically on a monthly or seasonal basis. For example, for a 

given season, a KZI time series is calculated by extracting all values in the time series for the 

season, subtracting the season mean and dividing by the season standard deviation. The KZI 

therefore provides a dimensionless quantification of SWJ position-intensity anomalies relative 

to its climatology. In all seasons, positive (negative) KZI phases denote northward 

(southward) position-intensity anomalies relative to the mean state. 

Forsythe et al. (2017) and Li et al. (2018) demonstrate that SWJ position-intensity anomalies 

described by the KZI are associated with characteristic anomalous circulation and temperature 

responses. These responses form the essence of the KV. For winter and summer, Figure 6.1b 

shows the KV structure as maps of KZI correlations with 500 hPa horizontal wind component 

anomalies and temperature. In both seasons, the wind correlation vectors show an anomalous 

anticyclonic pattern surrounding positive temperature correlations. Therefore, for both 

seasons, when KZI is positive and the SWJ adopts an anomalous northward position-intensity, 

the KV shows an anticyclonic wind anomaly that is associated with warmer temperatures. 

Conversely, negative KZI is associated with a cyclonic wind anomaly and cooler 

temperatures. Crucially, the area occupied by the KV, especially its longitudinal extent, 

contracts from a wide expanse in winter to a much more restricted domain centred on the 

Karakoram in summer. 

Moreover, the deep KV system is coupled to the SASM circulation in summer by its southern 

branch. As such, the KV reflects the interaction between mid-latitude westerly circulation 

linked to the SWJ and the SASM. KZI can thus be interpreted as a metric of their interplay, as 

demonstrated by its correlation with monsoonal indices, such as the Webster Yang Monsoon 

Index (WYMI) (Forsythe et al. 2017). 

The connection between the KV circulation and temperature anomalies is considered to be 

closely related to adiabatic processes, especially in the vicinity of the Karakoram, near the 

centre of the KV. This is reflected in the latitude-elevation transects for winter and summer in 

Figure 6.1c. The correlation vectors in this case are for meridional and vertical wind 

components, with the downward vectors over the Karakoram showing that positive (negative) 

KZI is associated with anomalous sinking (rising) and thus warming (cooling). These 

transects also highlight the deep structure of the KV. Importantly, areas of positive 
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correlations between KZI and temperature extend down to the surface, but in summer the area 

is much more restricted and centred on the Karakoram. Other influences on temperature 

anomalies are correlated with KZI states, such as increased cloud cover and so decreased 

insolation under anomalous cyclonic conditions, for example. 

As noted in Section 6.1, Forsythe et al. (2017) argued that the KV likely contributes to the 

observed summer cooling (Fowler and Archer 2006; Forsythe et al. 2012b), neutral glacier 

mass balance (e.g. Hewitt 2005; Zhou et al. 2017; Bolch et al. 2017; Brun et al. 2017), and 

stable or declining river flow trends (Sharif et al. 2013) observed in heavily glaciated sub-

basins of the Karakoram and UIB. The mechanism for this is underpinned by the significant 

negative KZI trend in summer over recent decades, which suggests a southward shift of the 

SWJ coupled to observed weakening of the SASM (e.g. Saha et al. 2014) and so a higher 

prevalence of anomalous cyclonic conditions over the Karakoram. This leads in turn to 

cooling through adiabatic rising and potentially other influences, such as increased cloud 

cover. This provides climatic conditions conducive to reduced ablation, hence potentially 

helping to explain observed glacier mass balance and river flow trends, although the 

connections between air temperature and glacier melt ideally need to be interpreted with 

reference to the full surface energy and mass balances. Nevertheless, the summer contraction 

of the KV, such that positive correlations between KZI and temperature are restricted to the 

Karakoram, appears to provide a strong contribution in explaining why other parts of the 

Himalayan arc are experiencing rising temperatures and often substantial glacier retreat. 

6.3 Data and Methods 

6.3.1 CMIP5 

This study uses GCM outputs from CMIP5 (Taylor et al. 2012). Spanning a range of 

modelling groups, configurations and resolutions, the 22 models considered are listed in Table 

6.1. Details of the different models are summarised in Chapter 9 (Flato et al. 2013) of the 

Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC; 

IPCC 2013). To evaluate representation of the KV, we use model outputs from both historical 

model runs and atmosphere-only (AMIP) simulations. The latter are constrained by realistic 

sea surface temperatures (SSTs) and sea ice extents. This enables us to detect whether a 

model’s representation of ocean-atmosphere feedbacks play an appreciable role in shaping 

how its atmospheric component simulates the KV. In the analysis, the historical coupled 

atmosphere-ocean model runs are referred to with the abbreviation “CMIP”, while the 
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atmosphere-only runs are referred to as “AMIP”. These model results underpin the first and 

second objectives of this work, namely assessing how well the basic KV structure is 

represented in current GCMs, as well as the connections between the KV and temperature 

variability and trends in the Karakoram. 

In addition, the study uses model outputs from the midrange and high RCP emissions 

scenarios, RCP4.5 and RCP8.5, respectively. These datasets are used to address the third 

objective regarding projected changes. Specifically, we use these scenario runs to assess 

whether the associations between the KV and patterns of near-surface air temperature change 

may differ in the future. We also consider how large a role the KV has in shaping ensemble 

spread in projected temperature changes in the Karakoram, as well as the contribution of 

selected other factors. 

The analyses in this study are underpinned by KZS time series (Section 6.2). To calculate 

these, we extracted time series of zonal winds at 200 hPa spatially averaged over the north 

and south component areas of the KZS (Figure 6.1), as per Forsythe et al. (2017). KZS and 

KZI were then calculated on monthly and seasonal timescales. The KZS climatology for 

historical (CMIP) and AMIP runs can be compared directly to the reanalysis reference 

datasets introduced in Section 6.3.2. The KZI time series is primarily used as a basis for 

correlation analysis, with the resulting correlations amenable to comparison with reference 

data. To elucidate the basic structure of the KV in both horizontal and vertical planes, we 

calculated maps and latitude-elevation transects of KZI correlations with air temperature, 

geopotential height and wind components at multiple levels. This correlation-based approach 

reveals the KV structure in reanalyses, with composite analysis producing similar results 

(Forsythe et al. 2017; Li et al. 2018). Bilinear interpolation was used to regrid each model to a 

common grid for comparison with each other and reference data. 

In addition, we extracted time series of near-surface and 500 hPa air temperatures spatially 

averaged over the north-west UIB (NWUIB) domain, which is considered representative of 

temperature anomaly time series in the Karakoram (Forsythe et al. 2017). This allows us to 

evaluate the modulating effect of the KV on air temperatures in the models where its 

influence should be roughly at a maximum. Temperatures were also extracted for a larger 10° 

square area centred on the NWUIB, in order to test the sensitivity of correlations to the 

averaging domain chosen. Other variables related to the surface mass and energy balances 
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were also extracted for the NWUIB domain, particularly to explore how influences on near-

surface air temperatures other than the KV are represented in GCMs. 

Model Institution Resolution (lon° x lat°) 

CCSM4 NCAR 1.25 x 0.9 

CNRM-CM5 CNRM-CERFACS 1.40625 x 1.40625 

MIROC5 MIROC 1.40625 x 1.40625 

ACCESS1-0 CSIRO-BOM 1.875 x 1.25 

HadGEM2-AO NIMR-KMA 1.875 x 1.25 

HadGEM2-CC MOHC 1.875 x 1.25 

HadGEM2-ES MOHC 1.875 x 1.25 

IPSL-CM5A-MR IPSL 2.5 x 1.25 

inmcm4 INM 2 x 1.5 

MPI-ESM-LR MPIM 1.8 x 1.8 

CESM1-CAM5-1-FV2 NSF-DOE-NCAR 2 x 1.9 

NorESM1-M NCC 2.5 x 1.9 

GFDL-CM3 GFDL 2.5 x 2 

GFDL-ESM2G GFDL 2.5 x 2 

GISS-E2-R NASA/GISS 2.5 x 2 

IPSL-CM5A-LR IPSL 3.75 x 1.89 

FGOALS-s2 IAP 1.66 x 2.81 

MIROC-ESM MIROC 2.8125 x 2.8125 

BCC-CSM1-1 BCC 2.8125 x 2.8125 

BNU-ESM GCESS-BNU 2.8125 x 2.8125 

CanESM2 CCCMA 2.8125 x 2.8125 

FGOALS-g2 LASG-CESS 2.8125 x 2.8125 

Table 6.1 – CMIP5 models used in this study. 
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To assess projected changes, we calculated time series of global near-surface air temperatures 

using latitude cosine weighting. From this, we identified global temperature changes 

associated with specific time periods, using 1850-1900 as a pre-industrial reference. We also 

identified the time periods associated with specific global temperature changes relative to the 

pre-industrial mean. Using a 30-year moving window, we found the central year where the 

global temperature change was most similar to the specified target. We use this approach to 

account at least partially for the variations of equilibrium and transient climate sensitivities 

between models. This approach allows us to explore the residual spread in regional 

temperature projections in the model ensemble, but it is subject to limitations of climate 

responses not being stabilised (James et al. 2017). This is discussed further in conjunction 

with the results. 

6.3.2 Reference Datasets 

The main reference datasets used for evaluation of the CMIP5 models here are global 

reanalysis products. Specifically, the ensemble used comprises ERA-40 (Uppala et al. 2005), 

ERA-Interim (ERAI) (Dee et al. 2011), JRA-55 (Kobayashi et al. 2015), MERRA (Rienecker 

et al. 2011) and CFSR (Saha et al. 2010). As noted above, the KV and its relationship with 

temperature have been shown to exist in these reanalyses (Forsythe et al. 2017; Li et al. 2018). 

The reanalyses show strong similarity in their representations of the KZS cycle, as well as the 

sequencing of inter-annual KZI anomalies over recent decades. All of the reanalyses also 

show similar patterns of correlation between KZI and temperature, albeit with some variation 

in the magnitude of correlation. As such, we use the full reanalysis ensemble to evaluate the 

representation of KZS and KZI correlations with temperature. For looking at maps and 

transects of the basic KV structure, we focus on ERAI as a representative data product, based 

on Li et al. (2018). 

As additional reference data, we also use long-term locally observed temperature records from 

the Astore, Gilgit and Skardu stations run by the Pakistan Meteorological Department (PMD). 

These data have been subjected to quality control and extensive analysis previously (e.g. 

Fowler and Archer 2006; Forsythe et al. 2017). Data for the period 1958-2005 are largely 

complete and are primarily used here as an additional reference in trend analysis. Previous 

work has demonstrated the substantial skill of the reanalysis ensemble in capturing the 

sequencing of inter-annual temperature anomalies, such that we rely on reanalyses for 

producing the reference correlation analyses rather than local observations (Forsythe et al. 
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2017). The Collection 5 MODIS MCD43A3 data product is used as an additional reference 

dataset for albedo. 

6.4 Results 

6.4.1 Karakoram Vortex (KV) Representation 

Karakoram Zonal Shear (KZS) 

To evaluate how well CMIP5 GCMs simulate the KV, we first examine their representation 

of the KZS. Figure 6.2a shows that the annual cycle of the KZS is essentially well reproduced 

by the GCM ensemble. Some degree of spread is evident, but in general the shape, timing and 

amplitude of the cycle are largely consistent with reanalysis. Crucially, this indicates that the 

seasonal migration of the SWJ is reasonably simulated at the ensemble level. However, there 

is some tendency to marginally under-predict KZS, most notably in winter but also in spring 

and summer to varying degrees, although not all models exhibit this issue. Figure 6.2b shows 

that overall this under-prediction bias is slightly lesser in the atmosphere-only (AMIP) model 

ensemble compared with the historical (CMIP) runs. This suggests that bias in the coupled 

model ensemble could be related to deficiencies in sea surface temperature (SST) or sea ice 

extent in coupled model simulations. Nevertheless, overall KZS biases are essentially small 

relative to the amplitude of the annual cycle. 

Regional Temperature and Wind Correlations 

To assess whether reasonable KZS performance translates into the correct horizontal structure 

of the KV, maps of correlations between KZI and 500 hPa temperature (T500) and wind 

anomalies are introduced. The maps of winter (DJF) correlations in Figure 6.3 demonstrate 

that the basic traits of the KV are present in the CMIP ensemble at this time of year. Focusing 

on temperature first, a broad longitudinal band of positive KZI/T500 correlations is clearly in 

evidence in the ensemble, in agreement with the ERAI reference. The highest correlation 

coefficients are also correctly located in the vicinity of the Karakoram. Areas of significant 

KZI/T500 correlation in the multi-model mean (MMM) do not extend as far eastwards as in 

ERAI, although the MMM does reproduce both the latitudinal range and the westerly extent 

of significant correlations. Correlation strength is slightly lower in the MMM than ERAI, but 

amongst individual models there is substantial variation in the magnitude, areal extent and 

shape of zones with significant correlations. Some models have larger areas of strong positive 
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correlation than in ERAI (e.g. CanESM2, CCSM4), while others show much more modest 

positive correlation extents (e.g. CNRM-CM5 and GFDL-CM3). 

Figure 6.3 also confirms that in winter the CMIP models generally reproduce the anticyclonic 

pattern of KZI/wind correlation vectors shown for ERAI. The relationship between positive 

(negative) KZI, anticyclonic (cyclonic) circulation anomalies and positive (negative) 

temperature anomalies that characterises the KV is therefore present here. Again, inter-model 

variation in correlations is notable. Comparing individual models shows a generally close 

connection between the areal extent and shape of KZI/T500 and KZI/wind correlations. 

Models with larger bands of positive KZI/T500 correlation tend to show larger anticyclonic 

structures for KZI/wind correlation vectors and vice versa. While the anomalous circulation 

response to KZI is therefore present overall, some notable inter-model differences exist in its 

size, centroid and shape that are associated with the temperature response.  

Figure 6.2 – Representation of the Karakoram Zonal Shear (KZS) annual cycle in CMIP5 GCMs. 

Coupled model monthly climatology (blue) compared with the reanalysis ensemble (black) is shown in 

(a). Monthly range, 10
th
-90

th
 and 25

th
-75

th
 percentiles are shown with successive shading for the 

GCMs, and only the range is shown for the reanalysis ensemble. Lines represent ensemble means. In 

(b), biases in the KZS climatology for the coupled historical (CMIP) and atmosphere-only (AMIP) 

model ensembles are shown. Lines denote ensemble mean biases, while shading shows only the 10
th
-

90
th
 percentiles for clarity. 



164 

 

 

Figure 6.3 – Winter (DJF) correlation of KZI with temperature (shading) and horizontal wind 

components (arrows) at 500 hPa in CMIP5 compared with ERAI (1979-2005). Temperature  

correlations are shown if significant at the 95% level. Wind correlations are shown in black if either 

component is significant at the 95% level and in light grey otherwise. The dot marks the Karakoram. 
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Figure 6.4 – As Figure 6.3 but for summer (JJA). 

For summer (JJA), Figure 6.4 demonstrates that the most of the CMIP models capture the 

contraction of the band of positive KZI/T500 correlations relative to their wider extent in 

winter. The positive correlations become largely restricted to the Karakoram and the western 

Tibetan Plateau, with the anticyclonic structure of the KZI/wind vectors generally contracting 
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accordingly. This is well represented in the MMM when compared with ERAI. The degree of 

contraction of the KV influence area differs notably between individual models, with some 

models retaining overly large zones of positive correlation (e.g. CCSM4, inmcm4). In some 

cases, the contraction of the KZI/wind correlation vectors is inadequate, with the location 

and/or coherence of the KV structure becoming unclear. A centre of negative KZI/T500 

correlation corresponding with a cyclonic pattern of KZI/wind correlation vectors is also 

present in most models to the north of the zone of positive correlation characterising the KV. 

However, the correlation strength and size of this centre vary substantially between models. 

The CMIP5 models can thus essentially reproduce the key features of the KV in terms of 

temperature and wind at 500 hPa. We now ask whether they capture the relationship with 

near-surface (2m) air temperature T2. This is critical, as the KV is known to provide a 

substantial modulating influence close to the surface, which is often the key focus for many 

glaciological and hydrological applications of GCMs. For winter, Figure 6.5 indicates that, 

while a broad band of significant positive KZI/T2 correlation exists in ERAI, the coherence of 

this band breaks down in the CMIP ensemble to varying degrees. The MMM shows positive 

correlation over a fairly restricted area compared with ERAI and the 500 hPa case (Figure 

6.3). Correlations in the MMM are not statistically significant over much of the interior of the 

Tibetan Plateau. Indeed, a number of the individual models show breaks in the significance of 

their correlations that follow the shape of the TP or parts of it. This suggests some influence 

of the Tibetan Plateau’s topography and near-surface processes on temperature variability, 

diminishing the more extensive modulating influence of the KV at the 500 hPa level.  

With contraction of the KV in summer, the significant positive KZI/T2 correlation becomes 

largely restricted to the Karakoram and western Tibetan Plateau. This is accompanied by a 

zone of negative KZI/T2 correlation to the south (over the Indo-Gangetic plain) and extending 

eastward. Figure 6.6 shows that, compared with ERAI, the MMM exhibits these basic 

patterns but with notably smaller areal extents of significant correlations. Again, there is 

appreciable spread when examining individual models. Most models do capture the pattern of 

positive correlations in the Karakoram and western Tibetan Plateau but negative correlations 

to the south and east. Many of the models appear to simulate relatively small zones of positive 

correlation, with the exception of the overly large extent in CCSM4. However, some models 

do not appear to exhibit very much significant correlation over the Karakoram and western 

Tibetan Plateau at all. 
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Figure 6.5 – Winter (DJF) correlations as Figure 6.3 but showing 2m air temperature (rather than 500 

hPa temperature). 
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Figure 6.6 – Summer (JJA) correlations as Figure 6.4 but showing 2m air temperature (rather than 500 

hPa temperature). 
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Latitude-Elevation Transects 

The basic KV structure can be further assessed with respect to latitude-elevation transects. 

Figure 6.7 shows these transects passing through the Karakoram for winter. From this, we can 

see that the CMIP models agree with ERAI on a number of key aspects of the vertical 

structure of the KV. Crucially, the vertical dipole of positive and negative correlations 

between KZI and temperature is present in virtually all models. Both latitudinal and vertical 

variations in correlation are well represented in the MMM, although the strength of 

correlation is again a little lower than in ERAI. As inferred from the maps in Figure 6.3, some 

models show much larger latitudinal extents of significant positive correlation; Figure 6.7 

indicates that these relatively large correlation extents may be present on multiple pressure 

levels, up to the change in correlation sign in some cases. In addition, many of the CMIP 

models show the zone of positive correlation extending downwards to the surface. While 

Figure 6.5 illustrated relatively large patchiness in (significant) KZI/T2 correlations, 

averaging over a longitudinal band confirms that there is a tendency for positive correlations 

to exist down to the surface in most models. 

For models where KZI is significantly correlated with the meridional (v) and vertical (w) 

wind components over the Karakoram, the correlation vectors are in broad agreement with 

ERAI. Specifically, the correlation vectors point downwards, and to a lesser degree 

southwards. The downwards component indicates an increase in vertical wind velocity 

towards the surface when KZI increases and vice versa. This is consistent with ERAI and the 

inference of adiabatic warming (cooling) associated with the anomalous anticyclonic 

(cyclonic) circulation patterns that characterises positive (negative) KZI states. However, not 

all models exhibit significant KZI/wind correlation vectors over the Karakoram. This 

diversity means that the MMM also does not contain significant correlations in this respect. 

In summer, the CMIP models generally simulate the latitudinal contraction of the KV, in 

terms of the positive correlations between KZI and temperature (Figure 6.8). The models also 

capture the retreat of the zone of positive correlations upwards away from the surface, giving 

way to negative correlations to the south and north in most models. Acknowledging inter-

model variation, this critical feature of the KV annual cycle is therefore present. Similar to the 

winter case, the KZI/wind correlation vectors point downwards over the Karakoram in ERAI 

and a number of the models. However, not all models display significant correlations in this 

respect.  
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Figure 6.7 – Latitude-elevation transects (integrated over 70-80°E) of winter KZI correlations with temperature (shading), meridional and vertical wind (arrows) and 

geopotential height (contours – 0.1 spacing, solid for 0 and positive, dashed for negative), with topography shown. Correlation scales are as Figure 6.3. 
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Figure 6.8 – As Figure 6.7 but for summer. 
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6.4.2 Karakoram Inter-Annual Temperature Response 

Section 6.4.1 thus demonstrates that the key circulation and temperature responses associated 

with the KV are often present in GCMs, but there is notable inter-model variation and 

potential deficiencies in the strength of correlations with inter-annual KZI anomalies. We now 

focus in on the Karakoram region to explore this in more detail. 

Figure 6.9a compares KZI correlations with NWUIB T2 in the CMIP ensemble with the 

reanalysis ensemble described in Section 6.3.2. This confirms that the positive relationship 

between KZI and T2 throughout the year is present in most CMIP models. However, the 

ensemble mean (and inter-quartile range) tends to be generally lower than the reanalysis mean 

for much of the year. This is in agreement with the spatial patterns of correlation in Figure 6.5 

and Figure 6.6.  Interestingly, correlations in late autumn and early winter (October to 

December) do not experience the same reduction as is evident in the reanalysis ensemble. 

Rather, CMIP correlations are fairly consistent in all seasons. Notably, the bands showing the 

10
th

-90
th

 percentiles and the overall range on Figure 6.9a demonstrate that at least some 

models exhibit very weak KZI/T2 correlations over the Karakoram, while the models showing 

the strongest correlations reach the same levels as the reanalysis maxima (indeed exceeding 

them between October and December). 

Figure 6.9a therefore indicates that the distribution of KZI/T2 correlation coefficients within 

the CMIP ensemble is essentially characterised by a general low bias relative to reanalyses in 

most of the year for the NWUIB, but also notable inter-model variability. The differences 

between models are shown in full in Appendix C (Figure C1). One point to note from this is 

that 95% confidence intervals for the KZI/T2 correlations overlap with the range of reanalysis 

correlations for many models/months. While it is still likely that a low bias exists at the 

ensemble level, this highlights that differences for individual models/months should be 

interpreted with care. To evaluate the sensitivity of the correlations to the box used for T2, it 

is also demonstrated in Appendix C that the results are very similar if a 10° box centred on the 

Karakoram is used in the correlations, rather than the NWUIB domain (Figure C2). There are 

strong linear relationships in all seasons between KZI/T2 correlations using these two 

domains for T2, although the degree of scatter is noteworthy. 
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Figure 6.9 – (a) Monthly correlation of KZI and T2 in the NWUIB in CMIP5 and ERAI (1979-2005). The 

mean and range are shown for the reanalysis ensemble in black. The mean, 25-75
th
, 10-90

th
 and total 

ranges are shown in successive blue shading for the CMIP5 ensemble. (b) Scatter plot of seasonal 

correlations between CMIP and AMIP scenarios for individual models. Correlation coefficients 

(Kendall’s tau) are given in brackets, with significance at the 90 and 95% levels shown by * and **, 

respectively. 

A key question arising from this is what might cause the inter-model variation. Beginning 

with broader scale influences, we consider whether differences between CMIP and AMIP 

model runs help to explain inter-model differences in KZI/T2 correlation strength. Figure 6.9b 

shows the relationship between correlations in the CMIP and AMIP ensembles, with the latter 

prescribing observed SSTs and sea ice to reduce key sources of bias in coupled atmosphere-

ocean model simulations (Section 6.3.1). Essentially this shows that KZI/T2 correlations in 

CMIP and AMIP are positively related, falling around the 1:1 line. This means that, on 

average, KZI/T2 correlations in any given model are approximately equal in the CMIP and 

AMIP experiments. There is deviation present, but overall this scatter appears to be largely 

unstructured, possibly due to natural variability. The conclusion here is then that inter-model 

variations in simulated KZI/T2 correlations in the CMIP ensemble overall are not particularly 

related to any biases stemming from SST or sea ice errors. As shown in Figure 6.1b, some 

such biases influencing regional circulation (quantified by KZS) may be present in the CMIP 

ensemble that are reduced in the AMIP ensemble, but these biases appear to be fairly small 

and not closely linked to strength or biases in KZI/T2 correlation for the ensemble as a whole. 
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Model KZI vs T2 Correlation KZS T2 

 RMSE (-) Rank RMSE (m/s) Rank RMSE (°C) Rank 

CESM1-CAM5-1-FV2 0.16 1 4.90 7 4.49 15 

GFDL-ESM2G 0.17 2 5.23 9 1.12 1 

HadGEM2-CC 0.17 3 6.94 13 2.49 4 

MPI-ESM-LR 0.20 4 4.45 4 2.52 5 

FGOALS-g2 0.21 5 7.55 16 2.25 2 

ACCESS1-0 0.21 6 6.62 11 3.93 11 

IPSL-CM5A-MR 0.21 7 7.92 18 4.28 13 

MIROC5 0.21 8 3.99 3 3.80 10 

HadGEM2-AO 0.22 9 6.63 12 3.12 7 

BCC-CSM1-1 0.23 10 7.61 17 3.78 9 

CCSM4 0.23 11 7.15 15 5.41 20 

MIROC-ESM 0.25 12 3.77 2 3.17 8 

GISS-E2-R 0.25 13 10.57 21 4.37 14 

CanESM2 0.26 14 4.48 5 2.91 6 

HadGEM2-ES 0.26 15 6.54 10 2.29 3 

IPSL-CM5A-LR 0.27 16 11.54 22 5.21 18 

BNU-ESM 0.29 17 7.01 14 4.94 16 

NorESM1-M 0.35 18 9.53 19 4.27 12 

FGOALS-s2 0.36 19 4.92 8 5.26 19 

CNRM-CM5 0.38 20 4.77 6 11.43 22 

GFDL-CM3 0.38 21 10.50 20 8.42 21 

inmcm4 0.53 22 3.19 1 5.06 17 

Table 6.2 – CMIP model performance. 
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Another possibility is that inter-model in KZI/T2 correlation is related to KZS or T2 biases or 

errors. Table 6.2 summarises individual model performance for the CMIP runs, which 

indicates that the relationship between these three criteria are not straight-forward. It is 

possible to show good performance for one criterion and bad performance for at least one 

other, and vice versa. The point is further demonstrated in Appendix C, where Figure C3 and 

Table C1 additionally quantify the relationships between bias in KZS, T2 and KZI/T2 

correlations on a seasonal basis. This suggests that the relationships are generally weak. There 

may be some more connections in winter, but the scatter appears to be very substantial. As 

such, it is suggested that the relationships between KZS, T2 and KZI/T2 performance are 

somewhat complicated. 

 

Figure 6.10 – Comparison of seasonal correlations between KZI and temperature at 2m (T2) and 500 

hPa (T500) for CMIP models. Correlation coefficients (Kendall’s tau) are given in brackets, with 

significance at the 90 and 95% levels shown by * and **, respectively. 

One possibility for this is that the KZS provides an incomplete characterisation of the KV 

system and related processes. Another is that other aspects of model behaviour compromise 

the modulating influence of the KV on temperatures. To explore this further we compare KZI 

correlations with temperature for the NWUIB domain at 500 hPa and 2m levels in Figure 

6.10. This shows that there are fairly strong, ostensibly linear relationships between KZI and 

temperature correlations at these levels for winter (DJF) and summer (JJA). Although a 

reasonable degree of scatter is present, this means that models with higher correlations 

between KZI and temperature at one level will also have higher correlations at the other in 
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general. Interestingly, the strength of relationships appears to be lower for spring (MAM) and 

autumn (SON), which are in effect transition seasons between the two end-member states of 

the annual KV and temperature cycles. 

In all seasons there are more points above the 1:1 line in Figure 6.10 than below it, indicating 

that correlations between KZI and temperature are higher at 500 hPa than 2m in general. This 

suggests some decay in KV modulating influence from the mid-lower troposphere to the 

surface, which could reflect the increasing influence of near-surface processes on temperature 

variability, diminishing the signal from the larger scale dynamical state of the KV. This is 

explored in more detail below. 

6.4.3 Karakoram Historical Trends 

The preceding sections showing that the basic KV structure is reproduced in GCMs overall, 

while the KV’s strong relationship with inter-annual variation in Karakoram temperatures is 

generally present if slightly weak. This section now considers the relationship between KZI 

and T2 trends. While inter-annual variability in the CMIP runs is not expected to align with 

observed anomalies, it seems reasonable to ask whether what (if any) trends are present over 

the 1958-2005 period of overlap with observations, as well as whether the connection 

between negative KZI and T2 trends in summer found by Forsythe et al. (2017) is present.  

Figure 6.11 shows historical (1958-2005) KZI and T2 trends in the CMIP ensemble, as well 

as trends from the two reanalyses beginning in 1958 and observed temperatures. For winter, 

we can see that most models predict relatively limited KZI changes but some T2 increase 

(Figure 6.11a). This is similar to reanalysis and observations. The confidence intervals for 

most of the CMIP models in winter overlap with each other and reanalysis/observations, 

indicating little discernible difference. Figure 6.11a suggests that there may be some negative 

relationship between the KZI and T2 trends, in line with the association of negative KZI and 

T2 anomalies, but the scatter is substantial and the significance difficult to gauge. In spring, 

the CMIP models largely simulate a warming trend of similar magnitude to the observed T2 

trend (Figure 6.11b). The negative trend for KZI in the reanalyses is present in some CMIP 

ensemble members, but more of the models indicate limited trend. 
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Figure 6.11 – Historical trends in KZI and (standardised) 2m air temperature (T2) by season from 

1958-2001. Circles/dots show the trends estimated using the Sen’s slope method with the full time 

series, while lines indicate confidence intervals obtained via block bootstrapping. CMIP models are 

shown in blue. ERA40 and JRA55 reanalyses are shown; the other reanalyses have shorter record 

periods. Observed temperature trends are calculated from station observations, with the reanalysis 

ensemble mean used as a proxy for observed KZI. 

More striking differences are found in summer (Figure 6.11c). Here, we can see that the 

reanalyses show a clear negative trend in historical KZI, which is generally weaker in the 

CMIP models. Based on the confidence intervals, only a small number of the CMIP models 

have negative trends that are likely to be significant, but a number of the KZI confidence 

intervals do overlap with those of the reanalyses. However, while some of the KZI trends in 

the CMIP ensemble may therefore be in reasonable agreement with the reanalysis margins of 
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uncertainty, the models diverge substantially from observations in terms of T2 trend. Almost 

all models predict warming in summer over recent decades rather than the observed cooling. 

Only two models have confidence intervals overlapping those of the T2 trend in observations; 

incidentally these models also have negative KZI trends. Indeed, if the two outliers with 

negative KZI but positive T2 trends are temporarily ignored, visually there is some suggestion 

of a relatively weak (negative) relationship between KZI and T2 trends in the CMIP 

ensemble. There are some similarities in autumn with these summer patterns (Figure 6.11d), 

but in this case the reanalyses show no discernible T2 trend as opposed to cooling. The 

negative KZI trend is also weaker and the differences from the reanalyses less clear. 

A preliminary comparison in Appendix C (Figure C4) suggests that historical summer trends 

in KZI and T2 in the AMIP ensemble are similar to those in CMIP for their overlapping 

period of record. In both cases the GCMs show faster warming than observations and the 

reanalysis ensemble. However, it should be noted that the confidence intervals in both cases 

(and in Figure 6.11) are fairly large. Moreover, the AMIP runs are comparatively short (1979-

2005), such that trend analysis is at best indicative, although the suggestion that CMIP and 

AMIP temperature trends are less coupled with KZI trends than in observations and 

reanalyses is intriguing. 

The summer discrepancies could indicate that some important circulation connections are 

poorly simulated, leading to underestimation of the negative KZI trend. There is also the 

question of whether the summer T2 warming in the CMIP model is too closely connected to 

other factors, such as the level of “background” global warming or land- and near-surface 

processes and feedbacks, with the modulating influence of the KV insufficiently captured. 

Indeed, this would be consistent with the general tendency for the models to underestimate the 

KZI/T2 correlation (Sections 6.4.1 and 6.4.2). These issues are considered in more detail 

below. 

6.4.4 Projected Changes 

The analysis of trends and changes now moves to consider future projections, focusing again 

on the Karakoram region. We begin by looking at temperature changes expected in the 

twenty-first century and their relationships with the KV. We then focus on global temperature 

stabilisation scenarios to explore the residual spread in the CMIP5 ensemble and its drivers. 
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Twenty-First Century 

Figure 6.12 examines the projected changes in T2 and KZS with respect to the accompanying 

global temperature (T2) change for the future period 2051-2100. The first feature to note is 

the clear, positive relationship between global and NWUIB T2 changes. In all seasons, T2 

warming in the NWUIB tends to exceed the global changes, and by an increasing amount for 

larger global changes. There is thus amplification of warming in the NWUIB relative to the 

global signal, but the degree of global change predicted in a given model/scenario generally 

exerts a strong control on the magnitude of the local response in the NWUIB. However, 

scatter in the relationship between global and NWUIB T2 changes does vary seasonally; it is 

at its lowest in winter (Figure 6.12a) and its highest in summer (Figure 6.12c), as confirmed 

by the correlations in Table 6.3. Therefore, while the global T2 change is a particularly strong 

predictor of the NWUIB T2 change in winter, the strength of the relationship decreases in 

summer. As the influence of local scale processes on T2 variability and change is heightened 

in summer, the larger scatter in Figure 6.12c therefore likely reflects the importance of inter-

model variations in land surface process representations and thus land-atmosphere 

interactions. In contrast, winter T2 changes in the NWUIB appear to be more readily 

determined from differences in larger scale changes. Spring and autumn appear to essentially 

represent intermediate cases (Figure 6.12b,d), while all seasons show the highest degree of 

scatter for the highest global temperature changes. 

Moreover, there are generally consistent seasonal differences in the sign of change in KZS 

accompanying the global and NWUIB T2 changes. In autumn and winter, KZS changes in the 

future period are more often positive than negative, corresponding with a northward shift in 

the SWJ and more anomalous anticyclonic conditions over the Karakoram/WTP. However, in 

spring and summer, most of the model/scenario combinations are associated with negative 

changes in KZI. This effectively indicates a continuation of the historical pattern, particularly 

in summer, whereby (potentially underestimated) negative KZI trends are accompanied by T2 

warming rather than observed cooling. Interestingly then, the CMIP models project an 

increase in T2 despite a decrease in KZI. In contrast, reanalyses/observations indicate 

negative trends in KZI and T2 in summer for the historical period, with the former argued to 

be a strong contributing driver for the latter. 
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Figure 6.12 – Comparison of projected changes in global T2, NWUIB T2 and KZS for 2051-2100 

relative to 1951-2000. 

As the CMIP models do not fully capture this feature of the historical climate, it is plausible 

that they could also misrepresent the future of both the KZI and its modulating influence on 

T2 variability and potentially change. However, it could also indicate that factors other than 

the KV become dominant in determining the sign of change, due to “background” global 

warming and feedbacks or more local processes. We also note that there appears to be 

generally limited correlation between the magnitude of KZI changes and global or NWUIB 

T2 changes. This is reflected by the low correlation coefficients in Table 6.3, which suggest 

some comparatively weak correlation with global T2 change (except winter), as well as 

NWUIB T2 change in summer and autumn. 
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Season Correlation Coefficient (-) 

 Global T2 / NWUIB T2 Global T2 / KZI KZI / NWUIB T2 

DJF 0.76** 0.02 0.11 

MAM 0.64** -0.30** -0.06 

JJA 0.54** -0.35** -0.29** 

SON 0.75** 0.24** 0.30** 

Table 6.3 – Correlation coefficients for changes in KZI, NWUIB T2 and global T2 future (projected) 

changes. 

In Figure 6.13 we examine how the modulation of inter-annual variability in T2 by the KV 

may change in the future. If trends in the KZI and T2 series are not taken into account, there is 

generally a decrease in KZI/T2 correlation from the historical (grey) to future periods 

(orange). The starkest reduction in correlation occurs in summer. However, if the future series 

are detrended (blue), the correlations are essentially the same in the historical and future 

periods. This indicates that the modulating influence of the KV on inter-annual variability in 

T2 is projected to remain the same in the future, according to the CMIP ensemble. This is 

concordant with the finding that the GCMs provide a reasonable if slightly weak 

representation of connections between the KV and temperature for inter-annual variability, 

even if the strength of relationships between trends appears to be different. 

Projection Spread 

To account for variations in climate sensitivity between models, we identify the local 

temperature (T2) changes in the NWUIB associated with specific global changes, following 

the approach described in Section 6.3.1. Figure 6.14 shows that the residual spread in 

projected NWUIB T2 changes is large. While the ensemble minimum T2 changes are 

approximately equal to the global changes, most models project larger temperature increases. 

The degree of spread in the ensemble also increases substantially for larger global T2 change 

scenarios. Interestingly, some seasonality emerges whereby changes in winter and autumn 

exceed those in spring and summer.  
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Figure 6.13 – Comparison of correlations between KZI and NWUIB T2 for historical (20
th
 century) and 

future (21
st
 century) under RCP8.5.  

 

 

Figure 6.14 – Seasonal projected 2m temperature changes in the NWUIB for selected global 

temperature scenarios for the CMIP ensemble. The ensemble mean, 10-90
th
 and total ranges are 

shown, the latter with transparency applied. 

The question then arises as to what drives the residual spread in the ensemble, and whether 

the KV plays a leading role and how important other influences might be. To provide an 
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initial exploration of this, we used the ensemble to correlate a range of variables with seasonal 

T2 change factors for a 2°C warmer world. This tests whether a model with a high (low) value 

for a given variable tends to be associated with a relatively high (low) T2 change factor. We 

used KZS/KZI as a quantification of KV activity, as well as variables closely connected to the 

surface mass and energy balance, given their generally close relationship to climatological 

temperatures and variability. As well as KZS, the variables included are: precipitation, 

incoming shortwave radiation, albedo, incoming longwave radiation, sensible and latent heat 

fluxes, and temperature (T2). For each variable and season, the historical mean, standard 

deviation and correlation with T2 anomalies were calculated as potential covariates. We refer 

to the resulting combinations as variable/quantity pairs, e.g. precipitation/historical mean or 

albedo/historical standard deviation. The correlation between all combinations of these 

variable/quantity pairs were then calculated to give a correlation matrix. 

In the following exploratory analysis, we focus primarily on those variable/quantity pairs 

significantly correlated with T2 change factors. As the correlation matrices show large 

numbers of significant correlations between various variable/quantity pairs, reflecting the 

interconnectedness and feedbacks of the climate system, this approach is substantially 

reductionist. However, it is intended primarily to facilitate identification of some critical 

issues. Further work could potentially explore dimensionality reduction and higher order 

relationships inter alia. 

For winter, Table 6.4 shows that the variable/quantity pair most closely correlated with a 

model’s T2 change factor is its incoming longwave radiation change factor. This is intuitive, 

given the typically strong relationship between surface incoming longwave radiation and the 

temperature profile in the lower troposphere, such that the two variables would be expected to 

show some coevolution. Interestingly, the next largest correlation is with the incoming 

shortwave radiation change factor, which is negatively associated with the magnitude of T2 

change. One possible factor linking the longwave and shortwave radiation changes is cloud 

cover and so changes in cloud radiative effects. For example, models showing an increase in 

cloud cover would be likely to exhibit a decrease in incoming shortwave radiation but an 

increase in incoming longwave radiation. This is supported by the significant negative 

correlation between incoming shortwave and longwave change factors (-0.72) in the full 

correlation matrix. Thus, while high winter albedo ensures reflection of a high proportion of 

incoming shortwave radiation, incoming longwave radiation is readily absorbed and leads to 

surface and near-surface warming. 



184 

 

Covariate 

Correlation Coefficient (-) 

Variable Quantity 

Incoming Longwave Radiation Change Factor 0.76 

Incoming Shortwave Radiation Change Factor -0.55 

Precipitation Change Factor 0.54 

Sensible Heat Flux Historical Mean -0.50 

Table 6.4 – Winter (rank) correlations with NWUIB temperature (2m) change factor for a 2°C global 

warming scenario. Only correlations significant at the 95% level are shown. 

From the full correlation matrix, we find that the incoming shortwave radiation change factor 

is significantly correlated with its historical mean (-0.74), standard deviation (0.58) and 

correlation with T2 variability (0.62), amongst other variable/quantity pairs. Thus, models 

with lower incoming shortwave radiation in the historical period, but higher variability and 

association with T2 anomalies, tend to show larger increases in shortwave radiation. If cloud 

is the relevant mechanism, this could be interpreted as less cloudy models in the historical 

period experiencing the biggest increases in cloud cover, while relatively cloudy models 

experience smaller increases (or potentially decreases) in cloud cover. It is therefore relevant 

in future work to consider how well the models correspond with available data products for 

incoming shortwave radiation and cloud cover, as a potential guide to model reliability. 

Compared with winter, more variable/quantity pairs show significant relationships with T2 

changes in summer (Table 6.5). Importantly, while not the largest correlation, the historical 

mean KZS of a model does show an association with its T2 change factor (Table 6.5), which 

was not the case for winter. The negative sign of the relationship suggests that models with 

relatively northerly SWJ position in summer exhibit lesser T2 increases, but the mechanisms 

could be complicated and involve covariation with multiple variables. However, notably 

larger correlation coefficients are found for the sensible heat flux, albedo and incoming 

shortwave radiation, especially in terms of their change factors. The full correlation matrix 

reveals that the sensible heat flux change factor is strongly negatively correlated with albedo 

change (-0.9). Due to the suppression of cold snow and ice surfaces on surface heating and 

turbulent exchange, it is intuitive that larger reductions in albedo permit higher sensible heat 

fluxes in summer, with a resultant positive feedback. 
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Covariate 

Correlation Coefficient (-) 

Variable Quantity 

Sensible Heat Flux Change Factor 0.84 

Albedo Change Factor -0.83 

Incoming Shortwave Radiation Change Factor -0.77 

Albedo Historical Mean 0.70 

Sensible Heat Flux Historical T2 Correlation 0.70 

Albedo Historical Standard Deviation 0.66 

KZS Historical Mean -0.60 

Precipitation Historical Mean -0.60 

Incoming Longwave Radiation Historical Mean -0.59 

Albedo Historical T2 Correlation -0.54 

Temperature (2m) Historical Standard Deviation 0.54 

Incoming Longwave Radiation Change Factor 0.54 

Latent Heat Flux Historical Mean -0.51 

Sensible Heat Flux Historical Standard Deviation 0.51 

Temperature (2m) Historical Mean -0.50 

Table 6.5 – Summer (rank) correlations with NWUIB temperature (2m) change factor for a 2°C global 

warming scenario. Only correlations significant at the 95% level are shown. 

The negative correlation of T2 changes with incoming shortwave radiation changes is 

interesting, as it suggests that larger reductions in incoming shortwave radiation (i.e. potential 

increasing cloudiness) are associated with larger T2 increases, which seems initially 

counterintuitive. This could be reflective of diurnal effects, such as increased cloud 

enhancement of longwave radiation at night, which could induce warming and potentially 

nocturnal melting, reduced albedo and thus more warming during the day. Alternatively, it 

could be an artefact of correlation or potentially reflect the influence of higher order 

associations. This could be explored in further work. 
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Given the clearer influence of albedo changes, which are correlated with its historical mean (-

0.72) and standard deviation (-0.82), we now consider how it relates to proxy observations, 

leaving incoming shortwave radiation for further work. Figure 6.15 compares historical means 

and standard deviations of simulated albedo with albedo and temperature (2m, T2) change 

factors. Figure 6.15a shows that there is generally a non-linear relationship between historical 

albedo means and albedo change factors. T2 changes generally increase as albedo changes 

become more negative, with the largest albedo changes often found in models with the highest 

historical mean albedo. The range of estimates of historical mean albedo from MODIS remote 

sensing and ERA-Interim for the NWUIB differ notably, with most models falling somewhere 

in between. In most cases the estimates of T2 change factors based on RCP4.5 (circles) and 

RCP8.5 (triangles) are similar, suggesting that the approach to identifying change factors 

using model-specific time windows is sufficiently robust to natural variability. 

 

Figure 6.15 – Comparison of modelled mean (a) and standard deviation (b) of albedo with albedo 

change factor, as well as T2 change factor (colour). Black line denotes MODIS MCD43A3 reference 

and green dashed line shows ERAI reference. 

Figure 6.15b shows a potentially more linear relationship between historical albedo standard 

deviation and projected albedo changes. Interestingly, the largest T2 changes are associated 

with some of the largest historical albedo standard deviations. Historical variability may 

therefore provide some guide to a model’s likely projections. The difference in historical 

albedo standard deviation from ERA-Interim and MODIS is quite small, with most models 

falling outside the range this time. This offers potential to constrain the plausible range of 

summer T2 change factors. In particular, the analysis suggests that the largest changes may be 
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associated with deficient performance with respect to albedo representation, and probably 

snow albedo feedbacks, such that they may be considered less likely. 

In order to understand the outliers in Figure 6.15, it is necessary to consider the co-variation 

of historical mean and standard deviation of albedo. Figure 6.16 plots these statistics against 

each other, along with T2 change factors. This shows that the models with very high historical 

mean albedo are associated with low T2 change factors, regardless of historical albedo 

standard deviation. It is likely that their albedos are so high that the sensitivity to changes in 

the future is limited compared with models showing lower albedos. For the other models, 

there is most likely a non-linear relationship between historical means and standard deviations 

of albedo. Models with low albedo tend to show low variability and low T2 changes, while 

models with higher means are associated with higher variability and higher T2 changes. The 

area contained by the MODIS (black line) and ERA-Interim (dashed green line) statistics in 

theory shows the models most consistent with observations, which appear to exhibit moderate 

temperature projections, as do the models surrounding this box. Potentially then this analysis 

shows that the more extreme low and high changes are less consistent with observations and 

physical process representation than the moderate T2 changes. 

 

Figure 6.16 – As Figure 6.15 but showing historical mean and standard deviation of albedo together, 

with T2 change factors for RCP4.5 runs. 
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6.5 Discussion and Conclusions 

The analysis above demonstrates that the KV system is generally present in the CMIP5 

GCMs. The characteristic cycle of the KZS, an index for the position and intensity of the SWJ 

is well captured in most models, although a small southward/weak bias exists. This bias is 

reduced in the AMIP ensemble, suggesting that the small bias may be related to SST or sea 

ice biases in coupled models. However, the KZS bias is generally small and does not inhibit 

the virtually of the GCMS from capturing the basic structure of the KV. The correspondence 

of anomalous anticyclonic (cyclonic) circulation to positive (negative) KZI is present, as is 

the positive correlation with temperature through much of the troposphere. The magnitude of 

correlation does vary between models, as does the spatial extent of significant correlations. A 

summer contraction of the KV is also reasonably well simulated in the models, 

acknowledging inter-model variations in the centroid of the vortex and magnitude of 

correlation. 

For the Karakoram, the GCMs generally show lower association between the KZI and near-

surface air temperatures than reanalyses. However, the ensemble spread at this more local 

scale is reasonably large. There does not appear to be a simple connection between biases in 

KZS (or temperature) and the accuracy of correlations between KZI and temperature in the 

ensemble. Crucially, the GCMS do not fully capture the negative KZI trend of recent decades, 

but especially the summer temperature cooling present in observations. Therefore, while the 

models do reasonably in terms of representing the influence of the KV on inter-annual 

temperature variability, these results raise the question of why the historical trend in regional 

circulation and temperature does not appear to be adequately simulated. This has substantial 

implications, potentially reducing confidence in future projections if the models respond 

incorrectly to the changing conditions of the past decades. 

In terms of projected changes, the GCM ensemble consistently shows warming in the 

Karakoram and UIB above the global average changes. After accounting for different rates of 

global temperature change, the results suggest that model skill for the historical period with 

respect to the KV plays some role in shaping the residual spread in the ensemble. Specifically, 

the mean KZS in summer in the historical period is significantly correlated with the degree of 

temperature change projected for the Karakoram in a 2°C warmer world. The magnitude of 

historical KZI/T2 correlations is not significantly correlated with projected temperature 

change in summer, while neither KZS nor KZI/T2 correlation shows notable association with 
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temperature change in winter. Moreover, it appears that inter-model variation in local 

influences on the SEB have a larger influence. In winter, there is evidence to suggest that 

differences in projected cloud cover is important, although the mean partitioning of sensible 

and latent heat fluxes in the historical period is also crucial. In summer, feedbacks between 

incoming shortwave radiation, albedo and sensible heat fluxes are critical. 

The results provide some suggestion that temperature change projections can be constrained 

with reference to representation of some historical land surface states and processes, 

particularly related to surface albedo. This is essentially in line with findings on the role of 

snow albedo feedbacks at larger scales, in terms of how inter-model variation offers the 

potential for applying observational constraints to projected changes (Hall and Qu 2006; 

Essery 2013; Qu and Hall 2014). This analysis suggests that similar methods may be 

applicable at the regional scale. In contrast to approaches taking cold/warm and dry/wet 

extremes to produce a very wide envelope of climate projections (e.g. Lutz et al. 2016a,b), 

there may thus be scope to reduce the range of possible climatic and hydrological futures 

projected for the Karakoram, UIB and neighbouring basins draining the Himalaya and Tibetan 

Plateau. 
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Chapter 7  

 

Climate and Hydrological Projections for Global Warming Targets 

7.1 Introduction 

The coming years will be a critical period for devising and implementing climate change 

mitigation policy to meet the aims of the Paris Agreement. This is particularly so given the 

short timescales for action (Figueres et al. 2017), currently insufficient national emissions 

pledges (Hulme 2016), levels of committed warming from past emissions (Mauritsen and 

Pincus 2017) and uncertainty on whether the large role typically assumed for negative-

emissions technologies is realistic (Anderson and Peters 2016). For mitigation policy and 

action to progress in the face of these barriers, analyses are required to inform policy-makers 

of the possible differences in impacts between climate stabilisation scenarios. It is therefore a 

problem that the relative risks and opportunities of climate stabilisation at the global 

temperature targets referred to in the Paris Agreement – 1.5 and 2°C above pre-industrial 

levels – have received relatively little attention until recently (Mitchell et al. 2016). The 

Intergovernmental Panel on Climate Change (IPCC) report on impacts of 1.5°C warming 

sought to address this gap (IPCC 2018), but there remains significant scope for more detailed 

consideration of regional impacts for the Himalaya and Tibetan Plateau. 

For the focus of this study, the Upper Indus Basin (UIB), previous analyses of climate change 

impacts on basin hydrology have largely focused on fixed time slices for different emissions 

trajectories, rather than climate stabilisation targets. For example, several studies have 

suggested that summer river flows in the basin may initially increase over the coming decades 

under Representative Concentration Pathway (RCP) RCP4.5 and RCP8.5 pathways, due to 

higher glacial melt in a warming climate (e.g. Immerzeel et al. 2013; Lutz et al. 2014; Soncini 

et al. 2014; Ali et al. 2015). These projections also generally posit that glacier melt will 

subsequently decrease due to loss of glacier mass, but that this may be at least partly 

compensated for in total river flows by summer precipitation increases (Palazzi et al. 2015). 

The studies also suggest that the onset of seasonal snowpack melting may shift earlier in the 

year. However, Lutz et al. (2016a) emphasised the very high uncertainty in such projections, 

largely due to climate model spread. The apparent discrepancy between recent observed 

changes in the UIB and the warming predicted by climate models over both historical and 
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future periods has also been noted as a possible reflection of limits to climate model fidelity in 

this region (Hasson 2016b). 

In one of the few studies evaluating the possible impacts of climate stabilisation targets in the 

region, Kraaijenbrink et al. (2017) modelled glacier mass trajectories across the whole of the 

Himalayan arc. Based on a small subset of Coupled Model Inter-Comparison Project Phase 5 

(CMIP5) (Taylor et al. 2012) model outputs, their results suggested that, relative to present 

conditions, central estimates of glacier mass loss under a 1.5°C global warming scenario 

could be around 17% in the Karakoram, 48% in the Hindu Kush and 42% in the western 

Himalaya by the end of the century. This is in contrast with a projected region-wide mass loss 

of 36%, which increases to around 51% and 68% by the end of the century in simulations 

using RCP4.5 and RCP8.5 pathways, respectively. As Kraaijenbrink et al. noted, substantial 

uncertainty arises due to the region’s patchy and uncertain mass balance observations, against 

which the model was calibrated. There could also be notable implications from inaccuracy in 

the initial ice thicknesses prescribed, which can differ greatly as a function of alternative 

estimation methods (Farinotti et al. 2017). 

While Kraaijenbrink et al.’s (2017) study usefully highlights the possible differences in 

glacier response across the region, as well as the substantially lower mass loss under a 1.5°C 

global warming scenario, the hydrological dimensions of these changes have not been 

explored. Therefore, we explore here the impacts of selected climate stabilisation scenarios on 

the hydrology of the UIB. There are many uncertainties in this type of modelling exercise, 

deriving from climate models, downscaling methods and hydrological models (Clark et al. 

2016), such that it quickly becomes intractable to evaluate all of the possible combinations of 

methods and scenarios quantitatively. With this in mind, and in combination with the fact that 

climate stabilisation studies for UIB hydrology have not been undertaken previously, we start 

fairly simply in terms of methods employed and hydrological responses investigated. The 

intention is thus to provide an initial scoping exercise, against which the results from more 

sophisticated analyses of projections and uncertainties could be compared in further work. 

There are three components to the analysis presented here. Firstly, we assess the climate 

model runs conducted under the auspices of the Half a degree Additional warming, Prognosis 

and Projected Impacts (HAPPI) protocol (Mitchell et al. 2017). In contrast to CMIP5, the 

HAPPI simulations have not been evaluated in the UIB region before, such that we appraise 

their basic suitability for application here. Secondly, we analyse the climate stabilisation 
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projections for the UIB from HAPPI, comparing them with outputs from CMIP5. Finally, we 

explore the hydrological implications of different climate stabilisation scenarios. The 

emphasis here is on some basic water resources considerations, namely changes in annual 

flows and shifts in seasonality. Given its reasonably good performance in Chapter 5, the 

results focus on simulations with TOPKAPI-ETH. 

7.2 Data and Methods 

7.2.1 HAPPI Evaluation 

HAPPI Background 

The HAPPI protocol was designed to overcome some of the difficulties in delineating the 

impacts of 1.5 and 2°C warming scenarios from other climate model outputs (Mitchell et al. 

2017). These challenges include separation or identification of any signal associated with an 

additional half degree warming from the uncertainty and internal variability in coupled 

atmosphere-ocean simulations under comparatively low emissions trajectories. HAPPI 

attempts to address this issue with relatively large ensembles of integrations using perturbed 

initial conditions in atmosphere-only models. In this study, we focus on the Tier 1 experiment 

in HAPPI. Happily, the trajectories in the CMIP5 ensemble stabilise at around 1.5°C relative 

to preindustrial conditions in RCP2.6, such that the simulations in the Tier 1 experiment for 

the 1.5°C scenario use the end-of-century anthropogenic radiative forcing from RCP2.6. With 

no similarly convenient option for the 2°C scenario, Mitchell et al. (2017) undertook radiative 

forcing from RCP2.6 and RCP4.5 weighted by their respective global temperature changes at 

stabilisation. The Tier 1 experiment in HAPPI uses single estimates of sea surface 

temperatures (SST) and sea ice concentrations by perturbing historical observations using 

CMIP5 outputs, as described in Mitchell et al. (2017). The models used in the Tier 1 

experiments are summarised in Table 7.1.  

The HAPPI simulation outputs have been used in a growing number of applications. These 

include its extensive use in the recent IPCC report on 1.5°C warming (IPCC 2018). Of 

particular relevance to the broader region surrounding the UIB, HAPPI applications (hereafter 

HAPPlications) include an assessment highlighting South Asia as a possible hotspot for 

increasing extremes in river flows (Paltan et al. 2018). Supporting these findings, Lee et al. 

(2018) also noted larger increases in mean and extreme precipitation during the South Asian 

monsoon under a 2°C warming scenario in both HAPPI and CMIP5. Indeed, a strong part of 
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the rationale for the large-ensemble approach in HAPPI was to facilitate such evaluations of 

changes in regional extremes by concatenating runs to produce sufficiently long time series 

(Mitchell et al. 2017). However, Fischer et al. (2018) demonstrated that using prescribed 

SSTs, as in HAPPI, can lead to projected changes in extremes that are biased high and subject 

to a narrower range of uncertainty than in equivalent analyses coupled atmosphere-ocean 

models. Recognising these possible issues with prescribed SSTs, Mitchell et al. (2017) 

outlined Tier 2 experiments to evaluate SST-related uncertainties. However, these simulations 

were not completed in time for inclusion in this work unfortunately. As such, and for 

comparison with previous studies, we also consider CMIP5 outputs in our projections, as 

described below. 

Model Horizontal Resolution Runs per Scenario References 

CAM4 2 x 2° 500 Neale et al. (2013) 

CAM5.1.2 0.25 x 0.25° 5 Wehner et al. (2014) 

CanAM4 T63 100 von Salzen et al. (2013) 

ECHAM6.3-LR T63 100 Stevens et al. (2013) 

MIROC5 1.5 x 1.5° 100 Watanabe et al. (2010) 

NorESM1-HAPPI 1.25 x 0.94° 125 Bentsen et al. (2013) 

Table 7.1 – Summary of GCMs in the HAPPI Tier 1 experiment used in this study. 

HAPPI Evaluation 

For the HAPPI model evaluation, we focus on basic precipitation and temperature 

climatology. The evaluation of simulated climatology in the HAPPI models uses local climate 

observations from 13 stations covering a range of elevations in the north-west UIB (NWUIB 

hereafter), as introduced in Chapter 3. The purpose of this is to provide confirmation that the 

models simulate the UIB climate to at least a similar degree of accuracy as the CMIP5 

models. This may be expected, given that the models used in HAPPI are (or are closely 

related to) the atmospheric components of CMIP5 models (Mitchell et al. 2017). The main 

exception to this is the high resolution (0.25°) version of the Community Atmosphere Model 

v5 (CAM5.1.2) global climate model (GCM). This model thus attains a substantially higher 

spatial resolution than even the Coordinated Regional Climate Downscaling Experiment 

(CORDEX) regional climate model (RCM) simulations for South Asia. As such, we 
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performed a more detailed evaluation of CAM5.1.2 than the other, coarser models in the 

HAPPI ensemble. For this we transferred some of the evaluation approaches used for the High 

Asia Refined Analysis (HAR) (Maussion et al. 2014) in Chapter 3. This evaluation is 

provided in Appendix D (Section D.2). The main finding from the evaluation of the 

CAM5.1.2 outputs was that the advantages of its higher resolution may be at least partly 

counteracted by issues associated with the direct transfer of parameterisation tuning from 

coarser versions of the model (Wehner et al. 2014). As such, it is unclear that the model adds 

particularly to the HAPPI ensemble at present, while some aspects of model behaviour hint at 

possible issues in the simulations. Therefore, we do not use the CAM5.1.2 outputs as a basis 

for projections in this chapter. 

7.2.2 Climate Scenarios 

CMIP5 

While the CMIP5 ensemble was not specifically designed to answer questions about 1.5 and 

2°C global warming scenarios, it provides a useful complement to HAPPI (see discussion 

above), hence the inclusion of both in the recent IPCC report on 1.5°C warming (IPCC 2018). 

However, this raises the question of how best to use the CMIP5 outputs to derive climate 

scenarios. This has received recent attention in the literature, such that we adopt what Tebaldi 

and Knutti (2018) term the “time-shift” approach. The method involves identifying a time 

window in the transient CMIP5 simulations when the global mean temperature is at the 

desired target relative to pre-industrial levels. This time window can then be compared to a 

historical baseline period. 

The method has been applied in an increasing number of studies (Fischer and Knutti 2015; 

Schleussner et al. 2016; King et al. 2017), but one possible drawback is that different models 

reach the specified global temperature targets at different points and potentially in response to 

different forcing. This could partly reflect differential localised aerosol influences or natural 

variability at multi-decadal time scales (Mitchell et al. 2017; James et al. 2017). However, 

taking advantage of bespoke simulations with a fully coupled atmosphere-ocean model, 

Tebaldi and Knutti (2018) recently demonstrated that simple pattern scaling or time-shift 

approaches are likely sufficient for many applications. Specifically, they found that the errors 

from these methods are small in comparison to the range of forced response in a multi-model 

ensemble, as well as the internal variability overlying forced response in a given model. This 

may apply particularly for patterns of temperature change. 
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To identify the required time periods from each CMIP5 model (see Chapter 6), we used a 30-

year moving average with time series of simulated global mean temperatures. Outputs from 

both RCP4.5 and RCP8.5 runs were used to provide some elementary consideration of the 

differences in regional changes associated with different runs of a given model. Ideally we 

would consider multiple runs with perturbed initial conditions for each model/RCP 

combination, but not all models appear to have sufficient simulations available. However, we 

did additionally identify the time windows corresponding with 3 and 4°C global temperature 

change scenarios. This provides some means of comparing the ambitious 1.5 and 2°C targets 

referenced in the Paris Agreement with outcomes perhaps more in line with current 

trajectories. 

Climate Scenario Downscaling 

As this study represents an initial exploration of the hydrological implications of different 

climate stabilisation scenarios, we adopt a simple approach to developing the climate input 

fields required to drive hydrological models. Specifically, we use a delta change approach to 

perturb historical input fields based on the differences in monthly climatology between 

historical baseline and target scenarios. Change factors were calculated based on spatially 

averaging for grid cells overlapping the north-west UIB (hereafter NWUIB) domain 

introduced in previous chapters. The historical input fields are derived from the HAR, 

following the methodology discussed in Chapters 4 and 5. The delta change method has been 

very widely applied in the Himalayan region and elsewhere, being simple to implement and 

interpret. However, it does not capture differential changes across the (joint) distribution(s) of 

pertinent climate fields. As such, the method does not account for possible alterations to 

variability, extreme events or temporal patterns in future climates, such as changes to the 

duration or frequency of wet and dry spells (Fowler et al. 2007; Maraun et al. 2010). As 

applied here, the method also ignores spatial (vertical) variation in projected changes at sub-

NWUIB scales. This could be a subject of further work when adequate high resolution 

simulations are available. 

Some of these issues are partially mitigated by the focus of this study. Rather than examining 

changes in extremes, changes in overall flow volumes and seasonality are foregrounded. The 

temporal offset of the primary precipitation (winter/spring snowfall) and runoff (summer) 

seasons in the UIB also reduces the sensitivity of the system response to possible changes in 

the temporal distribution of precipitation at a sub-seasonal level during winter and spring. 
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Clearly though the joint distribution of precipitation and temperature remains important for 

possible phase changes. Moreover, preliminary analysis of the HAPPI ensemble suggested 

that, for a given month, change factors are fairly similar when calculated for different 

percentiles of the distribution arising from inter-annual variability, with differences in 

response across the distribution generally small relative to the mean change (Appendix D, 

Section D.1). Nevertheless, we emphasise that the approach adopted constitutes an initial 

analysis. Future work could compare the results here with more sophisticated downscaling 

approaches, such as a weather generator (Kilsby et al. 2007; Forsythe et al. 2014) or recently 

developed quasi-dynamical downscaling models that may be suitable for mountainous terrain 

(Gutmann et al. 2016). 

Experiment Climate Model 

Ensemble 

Global 

Temperature 

Targets (°C) 

Variables 

Perturbed 

 

Change Factor Calculation 

1 HAPPI 1.5, 2 Temperature Means of initial conditions 

ensemble for each model/scenario  

2 HAPPI 1.5, 2 Temperature, 

precipitation 

Means of initial conditions 

ensemble for each model/scenario 

3 HAPPI 1.5, 2 Temperature, 

precipitation 

100 randomly sampled 

combinations of runs from initial 

conditions ensemble for each 

model/scenario  

4 CMIP5 1.5, 2 Temperature Separate calculations for RCP4.5 

and RCP8.5 

5 CMIP5 1.5, 2 Temperature, 

precipitation 

Separate calculations for RCP4.5 

and RCP8.5 

6 CMIP5 3, 4 Temperature Separate calculations for RCP4.5 

and RCP8.5 

7 CMIP5 3, 4 Temperature, 

precipitation 

Separate calculations for RCP4.5 

and RCP8.5 

Table 7.2 – Summary of climate scenarios used for hydrological projections. 

Moreover, while we are not using a stochastic downscaling approach, such as a weather 

generator, we are able to make use of HAPPI’s large ensembles to take uncertainty into 

account to a degree. This is achieved by randomly sampling runs from the initial conditions 
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ensembles for each scenario, in order to calculate a range of change factors (CFs) with the 

sampled combinations. With less runs available for CMIP5, both RCP4.5 and RCP8.5 outputs 

were used to calculate CFs for each model, thereby providing a very elementary indication of 

uncertainty that could be developed further in future work. 

These strategies lead to the ensembles of climate scenarios described in Table 7.2. These are 

the scenarios investigated in the hydrological projections in this chapter. Notably they include 

scenarios perturbing both precipitation and temperature, as well as simulations involving only 

temperature changes. The purpose of this is to delineate the role of the temperature forcing, 

given the substantial variability associated with precipitation projections between models and 

indeed between different runs of any given model. Based on the analysis of HAPPI climate 

scenarios in Section 7.3.2, we focus solely on precipitation and temperature. CMIP5 outputs 

are used to provide 3 and 4°C global warming scenarios for comparison. 

While the results in Chapter 6 start to identify possible routes to constraining climate model 

ensembles based on process fidelity in this region, we retain the array of models in the HAPPI 

and CMIP5 ensembles in development of the climate scenarios used in this chapter. In part 

this is because further work is required on observational constraints. Examining the range of 

possible climate changes also represents a precautionary, conservative approach. This may be 

valuable in this application, given that it is one of the first attempts to focus on climate 

stabilisation scenarios in the UIB. 

7.2.3 Hydrological Projections 

Following the baseline setup described in Chapter 5, the TOPKAPI-ETH model was used to 

provide hydrological projections for each of the experiments detailed in Table 7.2. TOPKAPI-

ETH was shown to provide reasonable performance for both snow-dominated and heavily 

glaciated UIB sub-basins in Chapter 5. Moreover, the baseline parameter choices for the 

enhanced temperature index (ETI) melt model appear to be reasonable in terms of temperature 

sensitivity. This is particularly so compared with either a simple temperature index (TI) model 

or possible alternative choices for the ETI model. The model configuration applied here 

therefore largely follows that described in Chapter 5. As per Chapter 5, we simulated both the 

snow-dominated Astore and heavily glaciated Hunza sub-basins. As such, we leave it for 

further work to compare TOPKAPI-ETH projections with those made using models that solve 

the surface energy balance. Ideally, a weather generator or quasi-dynamical downscaling 

approach could be used to provide climate inputs in such a study. This would help to account 
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for the spatial, temporal and inter-variable dependence structures of the multiple climate fields 

required. 

As the focus of this study is climate stabilisation targets, we cycled the climate input time 

series multiple times to ensure that dynamic equilibrium conditions were reached. With 

glaciers representing the major storage term in the UIB, neutral glacier mass balance at the 

catchment-scale was taken to indicate dynamic equilibrium. The analysis is based on the last 

cycle of climate inputs for any given model run. The climate inputs cycled are for the period 

1961-2010, using the method described in Chapter 5 to extend the HAR time series based on 

anomaly time series from long-term in-situ observations. 

7.3 Results and Discussion 

This section begins with an evaluation of the model outputs in the HAPPI ensemble. This 

begins with the CAM5.1.2 model, which is analysed separately owing to its substantially 

higher spatial resolution, as noted in Section 7.2.1. After then assessing the climatology in the 

coarser models, the climate projections associated with the selected climate stabilisation 

targets are characterised. Finally, the hydrological implications of these climate scenarios are 

explored. 

7.3.1 HAPPI Evaluation 

Figure 7.1 compares the annual cycle of precipitation in the HAPPI models with station 

observations. This confirms that the models capture the winter/spring peak in NWUIB 

precipitation, albeit to varying degrees. CAM4 exhibits a particularly flat annual cycle, which 

indicates some possible issues capturing the balance between westerly disturbances and 

possible monsoon incursions. The higher resolution CAM5.1.2 model does show slightly 

more agreement with observations than the lower resolution CAM4, although the differences 

between these models go beyond resolution. Some of the models show a relatively large 

fraction of annual precipitation occurring in autumn compared with observations, while there 

is some variation in the extent to which the models simulate a secondary peak in summer. As 

such, the HAPPI models likely show a comparable level of performance in simulating 

precipitation seasonality as the CMIP5 ensemble. Previous CMIP5 analyses show that the 

models in CMIP5 are generally able to reproduce the differentiation of westerly- and 

monsoon-dominated precipitation regimes with progression eastwards along the Himalayan 

arc (e.g. Palazzi et al. 2015). However, a wet bias might be evident, along with some under-
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estimation of seasonal variation that may also be present in the HAPPI models, but the 

observational reference datasets used in these evaluations are not without limitations (Palazzi 

et al. 2015; Hasson et al. 2018). 

 

Figure 7.1 – Comparison of normalised annual cycle of precipitation for HAPPI and station 

observations. Shading corresponds with the 10-90
th
 percentile range for the HAPPI initial conditions 

ensemble, while the range for observations corresponds with the station ensemble. Solid lines show 

the mean. 

Figure 7.2 provides a similar comparison but this time for near-surface air temperature. This 

illustrates that the models all reproduce the annual cycle in general terms. The models 

generally show a larger amplitude cycle than observations, which may in part stem from the 

mismatch in scales between point measurements and coarse climate model grid cells. The 

modelled temperature often continues to rise above observations in late spring and early 

summer. This is particularly pronounced in MIROC5, which shows an especially steep peak. 

ECHAM6.3 shows greatest agreement with the observed normalised temperature cycle. 

Overall, however, this level of performance is similar to that reported for the CMIP5 

ensemble, with the models generally subject to a cold bias over the Himalaya and Tibetan 

Plateau (Hasson et al. 2018). Given that the HAPPI models show reasonable performance 
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comparable with CMIP5, we consider them acceptable as one source of data for climate and 

hydrological projections in this chapter. 

 

Figure 7.2 – As Figure 7.1 but for near-surface air temperature, with normalisation based on 

subtraction of the annual mean. 

7.3.2 Climate Projections 

HAPPI – Mean Changes 

The analysis of climate projections for the UIB under 1.5 and 2°C global warming scenarios 

begins with change factors for the monthly climatology for HAPPI models.  Figure 7.3 and 

Figure 7.4 display the change factors associated with each model for the 1.5 and 2°C 

scenarios, respectively. Expressed as heat maps, the change factors are calculated for each 

month by taking means using all runs in the initial conditions ensembles for each 

model/scenario combination separately. For temperature, this shows that increases are 

projected for both minimum (night-time) and maximum (day-time) temperatures in both 

scenarios for virtually all model/month combinations. This seems an intuitive outcome for 

warmer worlds, but we note the findings from Chapter 6 and Hasson (2016b) that such model 

behaviour may represent a departure from historical trends for the summer months. 
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Interestingly, the lowest warming in the 1.5°C scenario is associated with the NorESM1 

model in the summer months. This would seem to fit with the summer cooling/stable 

temperatures observed in recent decades, linked with the Karakoram Vortex (KV – see 

Chapter 6), apart from the fact that the NorESM1 model appears to exhibit relatively poor 

performance in simulating the relationship between the KV and near-surface air temperature, 

as demonstrated in Chapter 6.     

Comparing Figure 7.3 and Figure 7.4 suggests that, intuitively, larger projected temperature 

changes are found in the 2°C scenario. The differences between the scenarios average 0.7 to 

0.8°C for minimum and maximum temperatures, respectively, with a range of differences 

from around 0.5 to 1.4°C. As such, the temperature differences between the 1.5 and 2°C 

global warming scenarios exceed the 0.5°C global difference for virtually all combinations of 

models and months. There is thus regional amplification of the global warming signal 

afflicting the UIB in these projections. 

Figure 7.3 and Figure 7.4 do not appear to show very clearly defined patterns of seasonal 

variation in simulated temperature changes across temperature changes. The highest 

temperature changes are associated with the MIROC5 model, which reach 4°C in early 

summer in the 2°C global warming scenario. Note that this change is expressed relative to the 

recent historical baseline temperatures of the HAPPI runs, not the approximately 1°C cooler 

pre-industrial conditions, making this temperature change even more striking. While signals 

across the HAPPI models may not be clear, the patterns of seasonal variation are similar for 

any given model in both of the global warming scenarios. The 2°C scenario thus has the effect 

of largely amplifying the intra-annual cycle of change factors in the 1.5°C scenario. For some 

models, the patterns of seasonal variation are similar for minimum and maximum 

temperatures (e.g. NorESM1, ECHAM6-3-LR and CAM4), whereas for the others there is a 

suggestion of diurnal asymmetry in response in some months. 
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Figure 7.3 – Monthly change factors for HAPPI model initial conditions ensemble means for the 1.5°C 

warming scenario. Change factors are calculated relative to the recent historical baseline, which is 

approximately 1°C warmer than pre-industrial conditions. 
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Figure 7.4 – As Figure 7.3 but for the 2.0°C warming scenario. 

Compared with temperature, precipitation shows more mixed changes in the future scenarios 

in Figure 7.3 and Figure 7.4, with both positive and negative shifts being projected in 

different months in different models. These projected changes range from around -20 to +20% 

in some model/month combinations, but in most months changes are less than approximately 
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+/-10%. There is some suggestion of lower precipitation in the 1.5 and 2°C scenarios relative 

to the baseline in the summer and early autumn, although this diminishes a little in the 

warmer of the two cases. There is also an indication of some possible precipitation increases 

in the winter months. However, it seems unclear how significant these signals may be from 

examining changes based on means of initial conditions ensembles alone. This point is 

addressed shortly. 

Several additional variables relevant to the surface energy balance are also presented in Figure 

7.3 and Figure 7.4. For example, the figures confirm that specific humidity consistently 

increases in the warmer climates, while relative humidity remains largely unchanged for most 

months in most models. The main exception to this is the interesting reduction in relative 

humidity accompanying the large temperature increases in May and June in MIROC5. There 

is some correspondence between the magnitude of temperature and specific humidity changes 

in general, as might be expected. Possible implications for hydrological modelling applying 

such change factors would include latent heat flux calculations by altering near-surface 

humidity gradients, although the implications would potentially vary as a function of surface 

type and time of year. 

Figure 7.3 and Figure 7.4 also indicate that projected changes in simulated mean cloud cover 

in both of the future scenarios are relatively small in the HAPPI models. For most months and 

models, the changes are negative if present at all, especially in the 2°C scenario. There is 

generally some negative association between changes in cloud cover and changes in incoming 

shortwave radiation, with increased cloud cover leading to lower shortwave radiation received 

at the surface and vice versa. However, the relationship between the magnitude of cloud 

changes and the magnitude of shortwave radiation changes may not be straight-forward. 

NorESM1 simulates the largest increases in incoming shortwave radiation, which are 

counteracted by its comparatively limited changes in incoming longwave radiation. 

Otherwise, the models tend to simulate incoming longwave radiation increases that exceed 

any shortwave changes, particularly in the 2°C scenario. The annual cycles of variation in 

incoming longwave radiation changes bear some resemblance to the patterns in temperature 

and specific humidity, but again the relationships are not just a simple mapping. 

From the perspective of hydrological modelling implications, this raises the point that 

accounting for incoming longwave radiation changes could be useful in simulations of the full 

surface energy balance. Taking snow as an example, winter increases in incoming longwave 
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radiation might be largely counteracted by higher outgoing radiation from higher surface 

temperatures. However, the sensitivity to incoming longwave radiation may increase with 

progression into spring and summer, as temperatures and incoming shortwave radiation rise 

while the snow surface temperature is constrained to 0°C. The ideal route to investigating 

these issues further would be with a weather generator, potentially conditioned on high 

resolution coupled land-atmosphere modelling rather than sparse observations, or dynamical 

or quasi-dynamical downscaling. These approaches could provide more realistic, physically 

consistent fields than simple change factor approaches.  

HAPPI – Initial Conditions Ensemble Changes 

While Figure 7.3 and Figure 7.4 characterise changes associated with the means of the initial 

conditions ensembles in the HAPPI project, it is also instructive to make use of the large 

ensembles to consider the distributions arising from internal variability. As such, we now 

examine distributions of climatological monthly means in the historical and warming 

scenarios for the critical input variables for TOPKAPI-ETH, namely precipitation and 

temperature. To reiterate, this is not a consideration of inter-annual variability, but in effect an 

assessment of the uncertainty in climatological values arising from internal variability induced 

by perturbations of initial conditions. The aim is to provide some insight into the robustness 

of the mean changes apparent in Figure 7.3 and Figure 7.4. 

Beginning with precipitation, Figure 7.5 expresses the distributions of climatological monthly 

means from the initial conditions ensembles as anomalies relative to the historical scenario 

mean. This suggests that the overall differences between the monthly mean precipitation in 

the historical and future scenarios in HAPPI are fairly limited. Most of the distributions in 

Figure 7.5 are very similar to each other, typically peaking around the 0% anomaly relative to 

the historical mean. The substantial overlap between distributions raises the question of 

whether any clear shifts in climatological precipitation in warmer worlds are apparent, once 

the influence of internal variability is taken into account. Interestingly, the CAM4 model 

shows particularly striking similarity between the scenarios. CAM4 has 500 runs for each 

scenario in its ensemble, compared with 100 runs for the other models, such that its greater 

coherence could be at least partly a function of having a larger sample with which to 

characterise the distribution. While the other models show a range of precipitation changes 

from -23  to +18% (looking at all models and months), CAM4 precipitation change factors in 

Figure 7.3 and Figure 7.4 are consistently lower (range of -6 to +7%). In contrast, the most 
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discernible differences between scenarios occur for CanAM4 in summer, although the other 

models do not show corroborating patterns. 

 

Figure 7.5 – Distributions of climatological monthly mean precipitation based on HAPPI model (initial 

conditions) ensembles for selected months. Distributions are estimated from the climatological means 

associated with each run for a given model/scenario combination. 

Clearer differentiation between scenarios is evident in Figure 7.6 and Figure 7.7 for 

distributions of monthly means of daily minimum and daily maximum temperatures, 

respectively. This applies to almost all month/model combinations shown, supporting the 

findings from Figure 7.3 and Figure 7.4 that robust shifts in temperature changes are 

detectable in the HAPPI ensemble. Minimum temperatures represent an interesting case, as 
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there is notable difference in the shape of the distributions between the winter/spring and 

summer example months (Figure 7.6). While the distributions for winter/spring are 

comparatively flat, the spread reduces very markedly in the summer months. This implies that 

perturbing initial conditions can have a particularly large effect on simulated climatological 

minimum temperatures in winter and spring. In contrast, climatological minimum 

temperatures in summer show much lower sensitivity to initial conditions perturbations and 

thus internal variability. 

 

Figure 7.6 – As Figure 7.5, but for climatological monthly means of daily minimum (night-time) 

temperatures. 
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Figure 7.7 – As Figure 7.5, but for climatological monthly means of daily maximum (day-time) 

temperatures. 

One possible explanation for the summer response is that summer forcing of minimum 

temperatures is strongly controlled by local influences and sensitive to representation of these 

influences in different models. Yet, interestingly, maximum temperatures do not show such 

pronounced differences between the distributions in different months (Figure 7.7). There is 

less spread in winter and more in summer compared with the simulated minimum temperature 

distributions. The reasons for this diurnal asymmetry in the spread of climatological 

temperatures due to internal variability are not immediately apparent, but it may be worth 

investigating further in future studies as a possible guide to seasonally differentiated 

predictability of possible climate responses. 
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CMIP5 Comparison 

Figure 7.8 compares changes in the monthly climatology in a warmer world in the HAPPI 

model ensemble means with CMIP5. Only the 2°C warming scenario is shown, as the primary 

inferences are similar if the figure is reproduced with the 1.5°C scenario. Change factors are 

plotted by model, with separate lines for RCP4.5 and RCP8.5 realisations of the CMIP5 

models. For precipitation, this indicates that both HAPPI and CMIP5 show relatively little 

change in the warmer scenario on average. There is notable variability in CMIP5 change 

factors between models/runs, which are largely confined to a band of +/- 25% of the historical 

baseline. However, there does not appear to be a coherent seasonal pattern within those bands, 

so much as a noisy response. For both CMIP5 and HAPPI, visually there could be a 

suggestion of increasing variability in the ensembles in late summer and early autumn, but it 

is unclear whether this is significant. There are some relatively extreme responses that move 

well outside the range occupied by most model runs. Inspecting the individual models 

(Appendix D, Section D.3) suggests that the more extreme precipitation increases are mainly 

associated with GFDL-ESM2G and MIROC5, while the largest reductions are associated with 

the IPSL-CM5A models. 

For temperature, there is a clearer overall difference between the CMIP5 and HAPPI change 

factors, with the former being generally larger than the latter. This difference could pertain in 

part to the different historical baseline periods used out of necessity, as the two experiments 

cover different simulation periods. This could perhaps be partly addressed by reducing the 

size of the time window used in CMIP5 change factor calculations, but this might not be 

helpful given the limited number of runs with which to characterise internal variability 

relative to the HAPPI ensemble. There may also be some influence from the coupled models 

in CMIP5 representing a different type of experiment, with the resulting assumptions required 

to approximate a 2°C warmer world (Section 7.2.2). 

It is also apparent from Figure 7.8b that the relative agreement of the HAPPI models 

decreases in late spring and early summer, driven by the MIROC5 model. There is some 

suggestion of higher change factors in late spring and autumn in CMIP5, but this is 

confounded by notable inter-model/run variation. There are some notably large and small 

change factors in late spring/early summer and winter, respectively, in the CMIP5 ensemble. 

Referring again to the change factors for individual models in (Appendix D, Section D.3), the 
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largest changes accompany the MIROC5 model, while the smallest are associated with 

FGOALS-s2. 

This analysis therefore suggests that including both the HAPPI and CMIP5 ensembles in 

hydrological projections provides a reasonably large envelope of possible realisations of 

climate stabilisation in 1.5 and 2°C warmer worlds. Clearly there are multiple additional 

dimensions that could be considered here, including the effects of inter-annual and multi-

decadal variability leading to relatively extreme wet/dry and cold/warm periods of relevance 

to water resources managers. Such variability will of course be highly significant even in 

notionally stabilised climate scenarios. Further investigation of such topics would usefully 

build upon the analysis here, which centres primarily on shifts in climatological mean states.  

 

Figure 7.8 – Comparison of CMIP5 and HAPPI change factors for a 2°C warmer world. All models and 

realisations available are plotted as individual lines. 

7.3.3 Hydrological Projections 

The analysis of hydrological projections begins focusing on HAPPI climate scenarios using 

TOPKAPI-ETH. This is followed by a comparison of HAPPI and CMIP5 scenarios, again 

using TOPKAPI-ETH, which leads into an analysis of shifts in the annual water balance and 

flow components. Finally, a brief investigation of the influence of hydrological model choice 

is undertaken. 
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HAPPI Initial Conditions Ensemble Means 

Figure 7.9 shows annual hydrographs for the Astore (a) and Hunza (b) sub-basins simulated 

by TOPKAPI-ETH for the baseline, 1.5 and 2°C warming scenarios. The climate scenarios 

applied in this case are monthly climatological change factors, with one set of runs using 

temperature perturbations only (experiment 1 - see Table 7.2) and a second set using both 

precipitation and temperature perturbations (experiment 2 - see Table 7.2). Beginning with the 

snow-dominated Astore sub-basin, Figure 7.9a shows a general tendency for the rising limb 

of the annual hydrograph to rise faster in the late spring and early summer in both 1.5 and 2°C 

warming scenarios compared with the baseline. The 2°C scenario leads the 1.5°C scenario in 

this shift in river flow towards the earlier part of the melt season, although the difference 

between the two scenarios is reasonably small. 

There appears to be reasonable similarity in response between the GCMs, with the exception 

of MIROC5, which shows the most pronounced shift in the hydrograph. This fits with it 

exhibiting the highest temperature change factors in late spring and early summer (Section 

7.3.2). MIROC5 is also the only GCM showing a notable increase in peak flows 

accompanying the change in timing. Moreover, the differences between experiment 1 

(temperature perturbation only) and experiment 2 (temperature and precipitation perturbation) 

are minor. This reflects the limited change signals in precipitation in the means of the initial 

conditions ensembles for each model, such that temperature signals dominate the modelled 

response. 

For the heavily glaciated Hunza sub-basin, Figure 7.9b shows some similarities for the 

patterns associated with the Astore in Figure 7.9a. These include the general tendency for 

river flows to rise more rapidly in the early part of the melt season compared with the 

baseline. However, with the exception of the simulations driven by MIROC5, this does not 

lead to the annual peak flow shifting forward notably. There are varying degrees of decline in 

river flows in the later part of the melt season in Figure 7.9b, when glacier melt is expected to 

become a particularly key component of river flows. Again, MIROC5 stands out as the model 

exhibiting the largest shifts. The large reduction in August runoff when using the MIROC5 

future climate scenarios implies a substantial loss of glacier mass, as energy inputs are not 

likely to constrain glacier melt in this month. For all GCMs, the 2°C leads to both earlier 

runoff and lower late-season flows than the 1.5°C scenario, although for some models the 

differences relative to the baseline appear fairly small – particularly NorESM1. 
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Figure 7.9 – Simulated annual hydrographs for historical baseline (BASE) and warming scenarios 

based on HAPPI models (change factors calculated from initial conditions ensemble means). 

Responses from perturbing precipitation and temperature (P,T) and temperature only (T) are shown in 

the left and right columns for each sub-basin, respectively. Lines and shading show means and 10
th
-

90
th
 percentile ranges for monthly flows, respectively. 
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HAPPI Change Factor Sampling 

To investigate the influence of internal climate variability on possible hydrological changes, 

we now consider the groups of runs conducted based on sampling from the HAPPI initial 

conditions ensembles for each model. Corresponding with experiment 3 in Table 7.2, this 

sampling is based on using random pairs of runs from the baseline and warming scenarios to 

calculate change factors. Perturbations are applied for both precipitation and temperature. 

Further details of the method are given in Section 7.2.2. 

Figure 7.10 shows the range of responses in mean flows each month from adopting this 

sampling approach to change factor calculation. The ranges depicted for the two warming 

scenarios correspond to the interval between the 10
th

 and 90
th

 percentile of the distribution of 

monthly mean flows. For context, inter-annual variability is shown for the historical baseline 

scenario, again using a 10
th

 to 90
th

 percentile range. Figure 7.10 suggests that the possible 

range of future mean flows tends to increase as the hydrograph peak is approached and 

decreases thereafter. In most cases this uncertainty remains lower than the inter-annual 

variability for historical flows, but for some models the uncertainty is particularly large. This 

includes scenarios driven by MIROC5, especially for the Hunza sub-basin, as well as 

scenarios forced with CanAM4 change factors. Uncertainty is relatively similar for 1.5 and 

2°C scenarios, with some suggestion of slightly larger ranges for the latter for MIROC5 and 

CanAM4 at the height of the melt season. 

In part, the ranges in Figure 7.10 reflect a methodological point regarding the significance of 

internal variability in obscuring changes in the mean annual hydrograph if only a small 

sample of climate model runs is available, or a small record period to define a baseline. To 

some extent Figure 7.10 also highlights the notable range of response associated with longer 

term shifts or variation (e.g. multi-decadal) in the mean runoff cycle under notionally “stable” 

climates in both the historical period and warmer worlds. It may well be worth further 

investigating approaches to sampling this variability. At any rate, the results do appear to 

highlight the importance of baseline and future climate definition from typically relatively 

short record periods even in the case of mean flows, before more extreme flow situations are 

taken into consideration. 

Figure 7.11 is similar to Figure 7.10, except that it portrays uncertainty in the 10
th

 percentile 

of the (inter-annual) distribution of monthly flows, rather than uncertainty in the mean. The 

tendency for uncertainty to increase with progression towards the annual hydrograph peak in 
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summer is again apparent. Moreover, it is notable that the range of possible responses in the 

key summer months appear fairly large in relative terms, given the lower flows associated 

with the 10
th

 percentile of the distribution of flows in a month compared with the mean. This 

could have significant implications for water resources in dry years. However, there are of 

course limitations to this analysis, given that the projections apply monthly climatological 

change factors, without explicit consideration of inter-annual variability. Yet, as discussed in 

Section 7.2.2, this may still be an instructive sensitivity analysis at least, given the relatively 

small magnitude of change factor variation across the percentiles of the inter-annual 

distributions of both precipitation and temperature for most model/month combinations. 
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Figure 7.10 – Projections for monthly mean flows with TOPKAPI-ETH based on sampling from the HAPPI initial conditions ensembles for each model. The 10-90
th
 

percentile range and mean are shown for the HAPPI samples, with the baseline run showing inter-annual variability and mean runoff for context. 
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Figure 7.11 – As Figure 7.10 but for the 10
th
 percentile of the inter-annual distribution of monthly flows for the future scenarios. 
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HAPPI Annual Flow Changes 

Figure 7.12 shows the distributions of mean annual flow according to simulations based on 

sampling from the HAPPI initial conditions ensembles, as described above. This indicates that 

TOPKAPI-ETH driven by perturbations from HAPPI leads to a moderate increase in mean 

annual flow on average. The magnitude of this increase varies a little between models, but 

averages around 5-10% in the model/scenario combinations. There does not appear to be a 

consistent difference between 1.5 and 2°C scenarios in the mean annual flows in the model 

ensemble. Rather, most models show relatively minor differences, with the exception of 

MIROC5, which exhibits a more marked increase in flows under the 2°C warming scenario. 

This would seem to be driven by its larger increases in winter precipitation relative to the 

other models (Section 7.3.2). These patterns tend to hold for both the Astore and Hunza sub-

basins, although it is possible that the contribution from shifts in climatological precipitation 

is primarily noise rather than a robust signal. 

In most cases, the spread in the box plots in Figure 7.12 is fairly similar between models and 

1.5/2°C scenarios, albeit with some reasonably small offsets between models. For most 

models the box (interquartile range) tends to sit wholly or largely above the baseline flow. 

This is associated with mean annual flows that range from around -10% up to +15% of 

baseline flows. In all models/scenarios, the boxplot whiskers (interquartile range multiplied 

by 1.5) straddle the baseline flow. In general the whiskers extend to around +/-25% of the 

baseline mean annual flows. This reaffirms the possibility that natural variability can strongly 

affect hydrological projections in climate stabilisation scenarios if there is no (or limited) 

means of sampling internal climate variability.  

The HAPPI ensemble therefore suggests that there could be a shift towards higher flows 

earlier in the melt season under warming scenarios, as well as reduced flows later in the melt 

season. Sampling from the initial conditions ensembles suggests that changes in annual river 

flows may be fairly minor when averaged over sufficiently long periods, but it is also likely 

that variability due to inherent climate uncertainty may be quite significant even for mean 

flows over periods of a few decades. Hydrological projections based on HAPPI thus suggest 

that the primary issue for water resources managers in the Indus basin may be how to manage 

such variability in conjunction with a shift in flow timing, potentially including a 

concentration of flow into a potentially slightly shorter and earlier period. 
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Figure 7.12 – Distribution of mean annual flows based on sampling from the HAPPI initial conditions 

ensembles to derive a range of change factors. 

Comparison of HAPPI and CMIP5 

Figure 7.13 compares HAPPI and CMIP5 in terms of hydrological projections. Specifically, 

the HAPPI climate scenarios are from experiments 1 and 2 (using means from the initial 

conditions ensembles to derive change factors), with the CMIP5 scenarios derived from 

outputs from both RCP4.5 and RCP8.5 (Section 7.2.2). For the future scenarios, Figure 7.13 

shows the mean annual hydrograph for each simulation, but for the baseline scenario inter-

annual variability is also displayed to contextualise the results. Beginning with the 1.5°C 

scenario and temperature perturbations only, both the CMIP5 and HAPPI ensembles show 

fairly good inter-model agreement with respect to changes in the annual cycle of monthly 

mean river flows. In effect the responses almost appear to fall into two groups, with most 
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models staying fairly close to the historical baseline but a small number of models showing a 

steeper rising limb and an earlier peak. This seems to apply to both the Astore and Hunza sub-

basins, although the former possibly shows more CMIP5-driven ensemble members and a 

slightly higher peak flow in its group of runs exhibiting larger shifts from the baseline. In 

general the runs driven by HAPPI models also show smaller deviations from the baseline, 

especially for the Hunza, with the exception of the runs driven by MIROC5. This fits with the 

higher temperature change factors in CMIP5 evident in Figure 7.8. 

For the 2°C warming scenario, again with temperature perturbations only, there is a further 

shift of the hydrograph into the earlier part of the melt season (Figure 7.13c and d). This 

results in more notable deviation from the baseline relative to the 1.5°C scenario. There is 

also a suggestion that the spread in the CMIP5 ensemble begins to increase further. For both 

the Astore and Hunza, there appears to be a group of CMIP5-driven runs (represented by the 

highest density of grey lines) that show relatively similar responses, which again lead the 

HAPPI-driven runs in the hydrograph response. However, it is also apparent that the groups 

of CMIP5 runs showing the most substantial deviations from the baseline rise more rapidly in 

the early part of the melt season relative to the 1.5°C scenario. This leads to a more rapid 

drop-off in flows in the middle and later parts of the melt season, which suggests some 

increase in the total ensemble spread, especially for the Hunza sub-basin. The MIROC5-

driven HAPPI runs again deviate from the rest of the HAPPI ensemble, which show notable 

consistency. This may indicate that the magnitude of HAPPI inter-model differences in 

temperature change factors portrayed in Figure 7.3 and Figure 7.4 are generally of relatively 

minor importance for hydrological response, with the main exception of the very pronounced 

May/June temperature change factors in MIROC5. 

Figure 7.13e and f demonstrate that the complexity and divergence in hydrological response 

increases yet further if precipitation perturbations are accounted for, in addition to 

temperature. This is particularly the case for CMIP5. While the fundamental shifts in 

hydrograph timing are largely similar to the temperature-only perturbation case, the overall 

range of responses increases and the relatively coherent groupings in CMIP5-driven runs 

break down to a degree. There is also some more modest increase in spread in the HAPPI-

driven runs, more so for the Astore sub-basin. Yet, as only two realisations of future climate 

were used for the CMIP5 models (associated with RCP4.5 and RCP.5), the results again 

highlight the possibility of substantial hydrological implications arising from internal 

variability governing precipitation change factors in CMIP5 in the UIB. Where the large 
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initial conditions ensembles are available for HAPPI, the earlier results suggest that very 

long-term precipitation shifts in the warmer worlds may not be wholly detectable in the UIB. 

However, the variability shown in the CMIP5 responses, and indeed when sampling from the 

HAPPI initial conditions ensembles, may provide the more useful guide to the range of 

potential realisations of future climate to be accounted for in water resources planning. 

Clearly some models may be legitimately excluded based on process-based considerations, 

such as those in Chapter 6, but we leave it for additional detailed analysis to consider the 

many dimensions of this problem. 

Figure 7.14 provides a similar analysis to Figure 7.13, except this time for the 10
th

 percentile 

of monthly flows, rather than the mean. This provides an initial exploration of potential 

changes in lower flow conditions in warmer worlds, with the associated implications for water 

resources availability. In general, Figure 7.14 suggests that the fundamental shifts in flow 

timing and the structure of variability in simulated response are similar for the 10
th

 percentile 

of monthly flows as described above for mean flows. Particularly in the 2°C warmer world, 

the hydrograph rises more steeply in the early part of the melt season, before declining more 

rapidly in the middle and later part of the season. In relative terms, these changes can be very 

substantial. Moreover, for the Hunza there appears to be a particularly large spread in 

simulated CMIP5-driven responses, especially when both precipitation and temperature 

changes are taken into account. This likely pertains to the particularly high proportion of total 

runoff supplied usually by glacier melt in comparatively dry (lower flow) years. The results 

imply that the glacier mass balance trajectories in a 2°C world under CMIP5 are highly 

variable, such that the “buffering” function of glaciers in drier years is highly uncertain – but 

in some cases very substantially reduced.  
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Figure 7.13 – TOPKAPI-ETH monthly mean river flows using CMIP5 and HAPPI change factors (P – 

precipitation, T – temperature). Initial condition ensemble means are used for HAPPI change factor 

calculations, while CMIP5 change factors are calculated separately using RCP4.5 and RCP8.5 runs. 

For the baseline scenario, the mean and 10-90
th
 percentile range of monthly flows are shown. 
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Figure 7.14 – As Figure 7.13, but for the 10
th
 percentile of monthly flows, rather than the mean. 
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Comparison with Higher Global Temperature Scenarios 

As HAPPI scenarios are not available for global warming scenarios greater than 2°C, we use 

CMIP5 outputs to provide an initial indication of the implications of higher temperature 

changes. As an initial exploration of this we focus on overall water availability. However, a 

preliminary comparison of the annual cycle of river flows based on CMIP5 scenarios for 2 

and 3°C warmer worlds for the Astore and Hunza sub-basins is provided in Appendix D 

(Section D.4). The primary finding from this is that the rising limb and peak of the annual 

hydrograph are brought forward yet earlier in the year under a 3°C scenario in both flow 

regimes, while flows later in the melt season decline notably in most cases. Again, however, 

there is notable variation in the extent of change relative to the 2°C scenario depending on 

which CMIP5 model provides change factors. In most cases, there is in fact quite good 

agreement between the simulated responses when deriving change factors from different 

RCPs, especially when just temperature is perturbed. Including precipitation complicates the 

response, particularly after the annual hydrograph peak is reached and catchment response 

potentially becomes mass- rather than energy-limited. 

To explore the implications of 1.5, 2 and 3°C warming scenarios for overall water 

availability, Figure 7.15 and Figure 7.16 consider annual flows in the TOPKAPI-ETH 

hydrological projections driven by CMIP5 for the Astore and Hunza sub-basins. The 

scenarios use both precipitation and temperature perturbations. The first point to note is that, 

for the CMIP5 ensemble as a whole, there is little overall change in mean annual flows (of the 

order of a few percent relative to baseline flows) in each of the warming scenarios shown 

(panel a in Figure 7.15 and Figure 7.16). However, there is substantial inter-model variation, 

which leads to differences of up to -20% to +40% in a 3°C scenario relative to the baseline. 

This pattern of inter-model variation is similar for both sub-basins. Moreover, in the case of 

the drier conditions implied by the 10
th

 percentile of the distribution of annual flows (panel b 

in Figure 7.15 and Figure 7.16), a shift in water availability starts to become more noticeable 

for the ensemble as a whole in a 3°C scenario. This reflects the erosion of glacial storage 

referred to above, which is particularly relevant to the Hunza sub-basin and in drier periods. 

For some models in the 3°C scenario, reductions in annual water availability of over 25% are 

apparent in drier conditions. 
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Figure 7.15 – Annual flows in TOPKAPI-ETH driven by CMIP5-derived scenarios for the Astore sub-

basin. Panel (a) shows mean annual flows, while panel (b) shows the 10
th
 percentile of the distribution 

of annual flows (i.e. from inter-annual variability). Dashed lines show the ensemble mean change for 

each scenario, while dotted lines just indicated +/- 20% relative changes to help with interpretation. 

 

CMIP5 Q10 Runoff - Astore CMIP5 Mean Runoff - Astore 
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Figure 7.16 – As Figure 7.15 but for the Hunza sub-basin. 

To understand more fully the annual water balance implications of these various realisations 

of UIB climate in warmer worlds, Figure 7.17 and Figure 7.18 show the associated changes in 

mean annual precipitation and evapotranspiration. The key point here is the very strong 

similarity between the precipitation profiles in Figure 7.17 and the runoff profiles in Figure 

7.15 and Figure 7.16. This suggests that the inter-model variation in precipitation change 

factors dominates the variation in annual flow response. Evapotranspiration changes tend to 

be relatively coherent between models and proportionally larger than precipitation changes on 

average, but the absolute changes simulated by TOPKAPI-ETH seem to play a notably 

secondary role in shaping gross water availability under average conditions. This suggests 

that, for the mean annual case, temperature projections are primarily implicated in the nature 

and magnitude of seasonal shifts in flow timing. These shifts likely embody progressive 

transitions in flow regime, such that a strong glacial component gives way to increasing 

CMIP5 Q10 Runoff - Hunza CMIP5 Mean Runoff - Hunza 
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seasonal snow melt, which could ultimately be followed by increasing prominence of rainfall 

in comparatively lower elevation sub-basins (Lutz et al. 2016a). 

 

 

Figure 7.17 – Similar to Figure 7.15 but for mean annual precipitation, and with both the Astore and 

Hunza sub-basins  shown together. 
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Figure 7.18 – As Figure 7.17 but for mean annual actual evapotranspiration. 

However, as discussed above, the apparent significance of temperature begins to change in 

dry/low flow periods. Figure 7.19 reflects this point, showing that there are significant 

decreases in glacier contribution to flows in all of the warming scenarios, but very large inter-

model variation in the 1.5 and 2°C scenarios relative to the 3°C scenario. This variation is 

closely related to the magnitude of temperature change in different CMIP5 models, as 

evidenced by the anti-correlation with Figure 7.18. Interestingly, Figure 7.19 shows that there 

is much more uncertainty (inter-model variation) in the contribution of glacier melt to mean 

annual flow in the 1.5 and 2°C scenarios compared with the 3°C scenario. This suggests that, 

under low or moderate warming scenarios, the extent of simulated glacier wastage varies 

strongly with the different change factors in the climate model ensemble. By the time higher 

scenarios are reached, more ubiquitous glacier mass loss is consistently simulated. There is a 

strong possibility that variations in the representation of snow, albedo and temperature 
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feedbacks in the climate models are implicated in the larger inter-model differences under 1.5 

and 2°C scenarios. 

 

Figure 7.19 – As Figure 7.17 but just for the Hunza and for mean annual glacier melt. 

7.4 Conclusions 

This study provides the first analysis of climate and hydrological impacts in the UIB at 1.5°C, 

2°C and higher global warming stabilisation targets using large ensembles of climate model 

simulations. In terms of climate impacts, the HAPPI models suggest that there is a local or 

regional amplification of the global warming signal in the UIB in 1.5 and 2°C warmer worlds.  

Indeed, the difference between the 1.5 and 2°C scenarios tends to exceed the half degree 

difference in global temperatures – on average by 0.7-0.8°C, but by up to 1.4°C. Interestingly, 

the distributions associated with the initial conditions ensembles seem to show different levels 
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of uncertainty in projected temperature changes at different times of year. This is particularly 

the case for minimum (night-time) temperatures, where internal variability appears to be very 

important for climatological temperatures in winter/spring while having very limited 

influence in summer. On average, temperature increases derived from CMIP5 tend to exceed 

those in HAPPI, acknowledging notable within-ensemble variation in the former. This may be 

at least partly due to the different historical reference periods necessitated by the differences 

in the experiment designs. While Chapter 6 raises questions about whether UIB warming rates 

in climate models may be too rapid, owing to biases in snow-albedo feedbacks and other 

issues, the range of projected temperature rises in HAPPI and CMIP5 models do at least 

provide multiple possibilities to consider for adaptation. From a planning perspective, 

enhancing resilience to various warming rates is likely to represent a precautionary approach, 

given that notable uncertainty may persist for some time.  

For precipitation, the distributions associated with the initial conditions ensembles for HAPPI 

suggest that there may not be much clear difference in mean precipitation between the 

historical and future scenarios. However, different realisations of the HAPPI runs for a given 

model show notable variation in climatological precipitation. This suggests that internal 

variability may play a key role in water availability over inter-annual to multi-decadal time 

scales in 1.5 or 2°C warmer worlds, perhaps more so than forced response. The large initial 

conditions ensembles in HAPPI may also help to contextualise the notable variation in 

projected precipitation changes between CMIP5 models. Taken as a whole, the CMIP5 

ensemble shows little coherent change in precipitation in the 1.5 and 2°C warming scenarios. 

When viewed together with HAPPI, this may be in large part due to natural variability, 

although a role for model structure cannot be ruled out at this point. 

In the notionally stabilised climates associated with 1.5, 2 and 3°C warmer worlds, 

successively larger shifts in flow timing are simulated by TOPKAPI-ETH. Flows tend to 

increase in the early part of the melt season, with earlier onset in melting evident in the 3°C 

scenario particularly. Conversely, simulated flows decrease in the later part of the melt 

season. However, when sampling from the HAPPI initial conditions ensembles (to get a range 

of change factors) and considering the full CMIP5 ensemble, the uncertainty in hydrograph 

shifts can become relatively large compared with the magnitude of historical inter-annual 

variability. This variability in hydrological response increases particularly when precipitation 

is taken into consideration. With temperature perturbations alone, there are stronger groupings 

and lower spread in the simulated responses at sub-basin scales. 
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The results do not suggest a great deal of change in mean annual water availability from 

CMIP5 or HAPPI ensemble means. On average, the rising flows in the earlier part of the melt 

season are thus largely offset by decreasing flows in the later part. However, for drier years 

this begins to change under the 2 and 3°C warming scenarios, particularly for the Hunza sub-

basin where the buffering effect of glacier melt gets eroded by ice mass loss. More important 

perhaps is the variability in water availability in mean and drier conditions associated with 

natural climate variability. Exemplified by the CMIP5 ensemble, precipitation changes are the 

primary control on changes in annual water availability in the climate stabilisation scenarios. 

As noted above, this suggests that natural variability in precipitation over a range of time 

scales is likely to be critical to the apparent hydrological response over the coming decades. 

The increases in evapotranspiration in warmer worlds have less of an effect in the simulations, 

although there may be some degree of influence from the TOPKAPI-ETH evapotranspiration 

and soil moisture balance algorithms here. This could be investigated further. Therefore, the 

fact that quite a large range of precipitation possibilities are projected by both CMIP5 and the 

HAPPI initial conditions ensembles suggest water management needs to account for 

variability over inter-annual to multi-decadal time scales, in addition to the overall shift in 

flow timing and the possibility of greater reductions in flow during drier years/periods. 

One of the key questions arising from this is whether the range of climate projections can be 

constrained. The results in Chapter 6 may ultimately provide a basis for this. Specifically, 

observational constraints based on snow albedo climatology and temperature feedbacks may 

be suitable for eliminating some implausible models. Further investigation may reveal 

additional process-based considerations with which to constrain ensembles of climate 

projections for regional impact studies. In parallel, it would also be useful to re-examine the 

projections to compare the differences between TOPKAPI-ETH and process-based models 

solving the surface energy balance. One key aspect of this will be whether the models diverge 

substantially at higher elevations, which would affect the long-term trajectories of the 

perennial cryosphere. However, investigating this will require improved downscaling 

methods to obtain physically consistent climate fields across multiple variables in complex 

terrain. 
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Chapter 8  

 

Conclusions 

Projections of cryospheric and hydrological changes in the Upper Indus Basin (UIB) are 

highly uncertain. Much of this uncertainty arises due to challenges in: characterising near-

surface climate fields needed for model input; selecting appropriate model structures to 

balance process fidelity with data availability; and understanding the wide spread in climate 

model projections used in impact assessments. As such, this thesis has attempted to identify 

pathways for refined hydrological projections in the UIB. Five objectives were defined in 

Chapter 1 to help achieve this aim. The present chapter begins by summarising and discussing 

the main findings in relation to these objectives. This is followed by a discussion of possible 

further work. 

8.1 Summary and Discussion of Results 

Objective 1: To evaluate how well the High Asia Refined Analysis (HAR) represents near-

surface climate in the UIB, with reference to its potential for improving climate inputs for 

hydrological modelling 

With data paucity underpinning many of the challenges in modelling the hydrology of the 

UIB, it is timely to consider how alternative products such as the HAR may be best employed. 

While the HAR has shown great potential in studies of climate and the cryosphere in other 

parts of the Himalaya and Tibetan Plateau (Maussion et al. 2014; Curio et al. 2015; Curio and 

Scherer 2016; Huintjes et al. 2015; Biskop et al. 2016; Tarasova et al. 2016; Mölg et al. 

2014), it has not previously been evaluated in the UIB. Moreover, prior work has not placed 

its emphasis on biases in the climatology of multiple variables and how they relate to each 

other. Such analyses are necessary to determine the potential of model-based products like the 

HAR to support applications in the UIB. They also provide some insights into possible causes 

of deficiencies in the HAR, which may inform future coupled land-atmosphere modelling 

efforts in the region.  

The evaluation in Chapter 3 shows that the HAR has both strengths and weaknesses in 

simulating UIB near-surface climate. One of the major strengths is its precipitation 

climatology. This is evidenced by its generally good consistency with multiple reference 
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datasets pertaining to different scales. These include in-situ point measurements and 

catchment-scale observed runoff, as well as vertical/spatial gradients inferred from 

observations and remote sensing. The HAR also exhibits reasonable consistency with in-situ 

observations for temperature, humidity and incoming radiation in many respects. However, 

some notable, seasonally varying biases are present. Perhaps most crucially, temperature 

exhibits a cold bias that worsens in spring but reduces in summer. This seasonal variation 

appears to be at least partially related to deficiencies in HAR cloud, snow and albedo 

representations affecting surface radiative balances and fluxes. Specifically, high albedo in 

spring may suppress surface warming, while low cloud cover in summer may induce 

overestimation of incoming shortwave radiation and thus surface heating. 

On the issue of seasonally varying biases, the importance of snow and albedo representations 

in the Weather Research and Forecasting (WRF) model has recently been demonstrated in 

several other contexts (e.g. Tomasi et al. 2017; Meng et al. 2018; Saha et al. 2017). García-

Díez et al. (2015) also noted that albedo issues may act mainly as a feedback amplifying poor 

representations of the snowpack or snow-atmosphere interactions, rather than a primary driver 

of temperature bias. Indeed, it may be that such a feedback underpins the large peak cold bias 

in spring in the HAR, possibly by reinforcing biases induced by other aspects of the WRF 

configuration. For example, the combination of snow process parameterisations with 

planetary boundary layer (PBL) schemes could be crucial (García-Díez et al. 2013). Thus, an 

important question raised by this work regards the extent to which WRF simulations for the 

UIB could be improved by revisions to snow initialisation, snow process representations and 

sub-grid variability parameterisations. Yet despite issues such as these, the results in Chapter 

3 confirm that the methods underpinning the HAR show considerable potential for 

augmenting sparse observations and other data sources in the UIB.  

Objective 2: To assess the feasibility of process-based snow modelling in the UIB, as well as 

the implications of alternative process representations 

As the HAR shows a number of positive features with respect to local observations, remote 

sensing and other gridded data products, it opens up the possibility of testing the feasibility 

and skill of process-based cryospheric and hydrological models in the UIB. In the past this 

was largely inhibited by the dearth of physically consistent, high resolution climate fields 

needed for model input. In parallel with this, recent developments in modelling frameworks 

have created opportunities to better understand how different representations of processes 
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shape model responses and performance. Such frameworks have not been much applied in the 

UIB and neighbouring basins. As such, they offer a largely unexploited potential to 

understand modelling choices and improve conceptual understanding. This potential is 

heightened by the availability of multiple remote sensing products to augment local 

observations. The application of these frameworks is particularly key with respect to snow 

processes, which remain little studied despite their vast climatic and hydrological 

significance.  

The results in Chapter 4 suggest that spatially distributed, process-based snow modelling for 

hydrological applications in the UIB is feasible with HAR-based climate inputs. The overall 

correspondence of snow model outputs with multiple reference datasets thus provides further 

verification of the HAR and its practical utility following minimal bias correction and spatial 

disaggregation. Critically, however, different snow model configurations lead to notable 

variation in model response and performance. For hydrological applications in the study area, 

the Factorial Snowpack Model (FSM) ensemble spread depends primarily on how processes 

related to albedo, liquid water in the snowpack and turbulent heat fluxes are represented. 

Propensities to accelerate or delay snowpack runoff are present in different parameterisations 

of these processes, which interact to exacerbate or compensate each other’s tendencies. Based 

on observations and multiple remote sensing products, combining prognostic albedo with 

inclusion of snowpack hydrology generally leads to the best model performance. This is 

largely consistent with previous (e.g. Essery et al. 2013; Magnusson et al. 2015), although at 

the catchment-scale and with a hydrological focus we find a lower sensitivity to snow density 

parameterisations than in some other contexts. 

The results also suggest that applying the atmospheric stability adjustment may suppress 

turbulent fluxes too much. The roles of input uncertainty and unresolved processes, such as 

local heat advection, may provide some confounding influence here, but this issue of 

excessive flux damping under stable conditions has been highlighted previously in various 

contexts (e.g. Jordan 1991; Tarboton et al. 1995; Andreadis et al. 2009; Conway and Cullen 

2013; Collier et al. 2015). The issue is thus likely to be both substantive and persistent, given 

the paucity and difficulty of turbulent heat flux measurements in mountainous environments 

like the Himalaya (e.g. Stigter et al. 2018). Empirical corrections may be more feasible in the 

immediate term, such as the constant adjustment factor applied by Collier et al. (2015). This 

raises the question of how best to partition and use the observations and remote sensing 

available for calibration and/or evaluation. 
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The process options in FSM essentially behave and interact similarly between years, but no 

single configuration appears to perform the best in all years simulated. Rather, trade-offs in 

performance are apparent, with models that perform better in some years being worse in 

others and vice versa. This may reflect possible structural constraints on model performance, 

input uncertainties, or perhaps an undesirable and systematic dependence of model response 

on climate conditions. In many ways, these possibilities fit with issues raised in previous 

snow model inter-comparison studies. Using data from well-instrumented sites, these studies 

have generally found model performance to vary between locations and years, albeit with 

groups of configurations that tend to perform consistently well, poorly or variably (Etchevers 

et al. 2004; Rutter et al. 2009; Essery et al. 2009, 2013; Magnusson et al. 2015; Lafaysse et al. 

2017). The UIB represents a case of much higher uncertainty in both input and evaluation 

data, but it is interesting that the catchment-scale inter-comparison undertaken with FSM 

raises similar issues to small-scale site-based analyses. The issues leading to spatial and 

temporal performance variation may thus be similar at larger scales. 

In conjunction with potentially significant variations in climate sensitivity between FSM 

configurations, this suggests that an ensemble-based approach would be useful in applications 

such as climate change impact assessment. However, some configurations could be excluded. 

These would most likely be configurations using diagnostic albedo and omitting the liquid 

water drainage and retention parameterisation. Beyond hydrological applications, the results 

here raise questions about the snow process representations applied in different land surface 

models (LSMs) for regional or global climate modelling. As discussed above in relation to the 

HAR, deficiencies in snow process parameterisations may be strongly implicated in the 

shortcomings of coupled land-atmosphere modelling in the UIB and neighbouring basins. The 

results may therefore provide a partial guide to assessing which LSMs applied in different 

weather and climate models are more or less reasonable. 

Objective 3: To compare process-based models of snow and glacier ablation with simpler 

approaches for simulating UIB hydrology 

While this study shows that the scope for applying process-based models like FSM in the UIB 

is growing, some important questions remain regarding how they differ from more widely 

applied, simpler models. In part these questions pertain to differences in model performance. 

Perhaps more critical, however, is how contrasting model formulations might systematically 

affect hydrological projections. Simpler models often show very good performance relative to 
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observations, acknowledging the data limitations of the UIB, but fundamentally they need to 

show appropriate sensitivity to climate perturbations to provide reasonable hydrological 

projections. This is not necessarily straight-forward to deduce from historical performance 

alone, especially when evaluations are often unavoidably limited to short time periods relative 

to the memory and response times of cryosphere-dominated hydrological regimes. Therefore, 

there is a need to compare the functional form of model response in simple and more process-

based models. 

Focusing on ablation, the results in Chapter 5 suggest that there are indeed some notable 

differences in behaviour between model formulations of contrasting complexity. For 

snowpack modelling, parameters would need to be varied substantially for temperature index 

(TI) and enhanced temperature index (ETI) formulations to match the responses of a more 

process-based model like FSM. This variation is partly systematic, meaning that some 

consistent spatial and seasonal patterns of implied parameter variation are evident. However, 

there is also substantial inter-annual variability. While FSM is itself a simplification of reality, 

the degree of inter-annual variability raises the possibility that important feedbacks are missed 

in the simple formulations. This issue may become particularly pronounced at high elevations, 

where the relationship between temperature (through positive degree days) and annual melt 

totals begins to deviate from that observed over much of the elevation range. Representation 

of liquid water drainage, retention and melt/refreezing cycles in snow may be particularly 

critical in simulating the high elevation water balance appropriately, with associated 

implications for perennial snowpacks and glacial mass balance. 

By additionally incorporating a term for net shortwave radiation, the ETI model shows more 

agreement with energy balance approaches like FSM than the TI model. However, using FSM 

outputs to deconstruct the ETI formulation (Pellicciotti et al. 2005) suggests that its weaker 

performance under cloudy conditions may be a structural limitation. Specifically, the linear 

relationship between its inputs (temperature and net shortwave radiation) and output (melt) 

implied by its formulation breaks down with increasing cloud cover. In contrast, owing to a 

small difference in form, the simplified energy balance (SEB) method (Oerlemans 2001) 

retains a more stable relationship between the inputs and output under all cloud conditions. 

Albedo parameterisations aside, both the ETI and SEB formulations have two calibration 

parameters and the same input requirements. Thus the SEB approach could in theory be more 

robust. However, one of the parameters at least shows a dependence on cloud cover, which 
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would need to be accounted for, perhaps with a simple parameterisation, unless an “average” 

value for all cloud conditions were deemed acceptable. 

For glacier ablation, the results in Chapter 5 show that the simple energy balance models for 

ablation of clean and debris-covered ice developed in this study offer melt responses that 

accord well with observed runoff. There is also general agreement with profiles of land 

surface temperature (LST) inferred from MODIS. However, similar to other studies (Collier 

et al. 2015), the vertical gradient of LST is not fully represented in the lower elevation glacier 

reaches. Similar to the case of snow, there is stronger agreement between the ETI model and 

energy balance approaches compared with the TI model, although considerable parameter 

equifinality is evident. Crucially, however, it is also shown that multiple ETI parameter 

combinations can result in relatively similar sensitivities to temperature perturbations. 

Moreover, these ETI sensitivities are much more similar to an energy balance formulation 

compared with the TI model. Although the simplicity of the climate scenarios tested must be 

acknowledged, this suggests that, despite its limitations, the ETI model likely represents a 

more suitable formulation for hydrological projections than the TI model. Nevertheless, a 

longer-term objective to produce hydrological projections with an energy balance model 

would seem worthwhile. 

Objective 4: To analyse climate model skill in representing key controls on temperature 

variability and projections, focusing on the Karakoram Vortex 

With spread in climate projections for the UIB being so wide, there is a need to understand 

how well the drivers of variability and trends are represented in climate models before 

assessing potential hydrological changes. This is a large, multi-dimensional problem. 

Addressing it means bringing together evaluations of how a vast array of processes and 

patterns are simulated in coupled land-atmosphere-ocean modelling. Of particular relevance 

to the UIB are model representations of the Karakoram Vortex (KV). The regional circulation 

anomalies manifest in the KV appear to be strongly implicated in the unique climatic, 

glaciological and hydrological trends discernible in the UIB in recent decades. Much is still to 

be investigated regarding the KV, but the underlying signature it embodies is gaining traction 

as an entry-point for understanding regionally differentiated climate patterns and trajectories 

(Mölg et al. 2017; Norris et al. 2018). Thus, assessing KV representation in climate models is 

a useful and necessary starting point for bringing analyses of critical processes shaping near-

surface climate trajectories into hydrological projections. 
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Chapter 6 shows that the characteristic features of the KV are essentially reproduced in 

CMIP5 climate models, albeit to varying degrees. Crucially, the models capture the general 

patterns of correlation between a standardised zonal shear index, which quantifies KV states, 

and temperature anomalies throughout much of the troposphere. The associated anomaly 

patterns in horizontal and vertical winds are also present in the ensemble overall. This 

provides some initial indication that the anomalies in adiabatic processes connecting the KV 

and temperature responses are faithfully represented (Forsythe et al. 2017; Li et al. 2018). In 

addition, the models simulate the observed contraction from winter to summer in the area of 

positive correlation between KV circulation and temperature anomalies. Correctly 

reproducing this seasonal contraction is critical, as it is considered to be a substantial 

contributor to the divergent temperature trends across the Himalayan arc in recent decades 

(Forsythe et al. 2017). 

However, there are some potential shortcomings in model performance. For the ensemble as a 

whole, the magnitude of correlation between KV and near-surface temperature anomalies is 

generally lower than in observations and reanalyses. Moreover, the spatial extent and centroid 

of correlation patterns characterising the KV vary notably between models. Although difficult 

to determine definitively, there is also a suggestion that simulated trends in temperature and 

the zonal shear index describing KV behaviour are less closely coupled in the CMIP5 models 

compared with observations. This is particularly the case in summer, when reanalyses and 

observations show cyclonic and stable/falling trends in KV behaviour and UIB temperature, 

respectively, over the second half of the twentieth century. In contrast, the CMIP5 models 

show warming in the absence of clear trends in KV behaviour. The very limited relationship 

between KV behaviour and temperature trends for models within the CMIP5 ensemble could 

indicate that near-surface temperature in the models shows heightened sensitivity to other 

factors in summer, as well as potentially insufficient sensitivity to KV variations. The results 

also raise other questions, such as whether the observed trends represent a response to 

ongoing climate change or a manifestation of natural variability, given that the circulation 

trends differ.  

Analysing future projections indicates that the KV continues to modulate inter-annual 

variability in temperature in the CMIP5 models to a similar extent as in the historical period. 

However, other influences appear to be more important in shaping temperature trends. 

Focusing on summer as the season of anomalous recent historical temperature trends and 

runoff generation in the UIB, feedbacks between incoming shortwave radiation, albedo and 
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sensible heat fluxes are critical in projected trends. The results provide some suggestion that 

summer temperature change projections can be constrained with reference to representation of 

some historical land surface states and processes, particularly related to surface albedo. This is 

essentially in line with findings on the role of snow albedo feedbacks at larger scales, in terms 

of how inter-model variation offers the potential for applying observational constraints to 

projected changes (Hall and Qu 2006; Essery 2013; Qu and Hall 2014). This analysis suggests 

that similar methods may be applicable at the regional scale. In contrast to approaches taking 

cold/warm and dry/wet extremes to produce a very wide envelope of climate projections (e.g. 

Lutz et al. 2016a,b), there may thus be scope to reduce the range of possible climatic and 

hydrological futures projected for the Karakoram, UIB and neighbouring basins draining the 

Himalaya and Tibetan Plateau. This would be of substantial benefit for water resources 

planning, but resilience to a range of possible changes and variability will still need to be 

enhanced. 

Objective 5: To explore the implications of selected global warming targets for the climate 

and hydrology of the UIB 

Previous hydrological projections for the UIB have not explicitly considered changes in river 

flow regimes under the climate change targets set out in the Paris Agreement of 2015. More in 

line with current trajectories, we could also ask what the implications of 3 or 4°C warmer 

worlds may be. There is thus a need to frame the climate change impact problem in terms of 

stabilisation scenarios, with the ultimate aim of guiding both mitigation and adaptation 

efforts. This study provides the first analysis of climate and hydrological impacts in the UIB 

at 1.5°C, 2°C and higher global warming stabilisation targets using large ensembles of climate 

model simulations. 

Chapter 7 indicates that climate models project amplified warming in the UIB compared with 

global temperature rises under the assessed stabilisation targets. Interestingly, the spread in 

simulated temperatures is much larger in winter/spring than in summer, according to the large 

HAPPI initial conditions ensembles. This may well relate to the strong controls on summer 

temperature changes exerted by model-specific snow and albedo climatology, variability and 

feedbacks discussed in Chapter 6. However, while temperature shows clear patterns of change 

in historical and future scenarios, precipitation does not show particularly clear shifts when 

the full HAPPI ensembles are considered. Thus, for CMIP5, where large initial conditions 

ensembles are unavailable for most participating models, it is unclear how much the projected 
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precipitation changes are simply reflections of natural variability, at least under the warming 

scenarios evaluated. Given the magnitude of spread in climatological precipitation in the 

HAPPI ensembles, it may well be that, over multi-decadal time scales, natural variability in 

precipitation will be a bigger challenge than any forced response to climate change.  

Generally, the hydrological response to the warmer worlds evaluated is characterised by 

increasing flows in the earlier part of the melt season and decreasing flows in the later part. 

Note that this is under notionally stabilised climates; hydrological changes during the 

transitions from historical to future worlds are not explored in this project. Global warming 

scenarios of 1.5, 2 and 3°C lead to progressively more pronounced shifts in flow timing. 

When considering both sampling from the HAPPI initial conditions ensembles (to get a range 

of change factors) and the CMIP5 ensemble, the uncertainty in the mean response (and for 

drier/lower flow conditions) can become relatively large compared with the magnitude of 

inter-annual variability. With temperature perturbations alone, there are some notable 

groupings and coherence in the ensemble of hydrological responses, but the variability in 

response increases substantially when precipitation is taken into consideration. Building 

resilience to a range of potential shifts in flow timing will thus be necessary. 

Based on CMIP5 and HAPPI ensemble means, there is not a large suggestion of notable 

changes in mean annual water availability. However, for drier years this begins to change 

under the 2 and 3°C warming scenarios, particularly for the Hunza sub-basin, where the 

buffering effect of glacier melt gets eroded by ice mass loss. More important perhaps is the 

variability in water availability in mean and drier conditions associated with natural climate 

variability. Exemplified by the CMIP5 ensemble, precipitation changes are the primary 

control on changes in annual water availability in the climate stabilisation scenarios. The 

increases in evapotranspiration in warmer worlds have less of an effect. There may be some 

relatively minor influence from the TOPKAPI-ETH evapotranspiration and soil moisture 

balance approach here, which could be investigated further. 

Therefore, the fact that a large range of precipitation possibilities are projected by both 

CMIP5 and the HAPPI initial conditions ensembles suggest water management needs to 

account for the possibility of notable variability in mean annual flows over inter-annual to 

multi-decadal time scales. The overall shift in flow timing and the possibility of greater 

reductions in flow during drier periods are also particularly important water resources 

considerations. Given the challenges in meeting the needs of water users in the Indus under 
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present conditions, especially in drought periods (see Chapter 1), these findings suggest that 

developing new infrastructure to increase storage capacity in the basin is an urgent priority. 

This would help to buffer hydroclimatic variability and account for likely shifts in river flow 

timing over time. Whether resilience through enhanced storage can be achieved within the 

institutional context of Indus basin water management is a key question. If not, there is a 

strong possibility that severe shortfalls in water supply could occur in the coming decades 

during relatively dry periods, particularly given the ongoing rise in demand for water 

discussed in Chapter 1. 

Transferability to Other Regions  

A number of the findings presented here may be relevant for studies in other regions. Firstly, 

the delineation of the HAR’s strengths and weaknesses may help to guide the design of 

similar WRF simulations for other mountainous contexts. This is particularly the case for 

regions with a pronounced annual cycle of snow cover, such as the European Alps or the 

North American and Canadian Rockies. As noted above, the results in this study suggest that 

improved snow state initialisation strategies and alternative land surface model choices could 

lead to better near-surface climate simulations. Secondly, the good performance of process-

based snow modelling in the UIB opens up the possibility of taking a similar approach 

elsewhere. In particular, using a multi-physics ensemble and evaluating it with remote sensing 

of multiple land surface state variables may help to constrain process parameterisation choices 

and identify structural deficiencies in other data-sparse mountain regions. Thirdly, the 

findings on the behaviour and climate sensitivity of different model complexities may help to 

guide model selection for climate change impact studies. For example, the SEB variant of the 

ETI approach may ultimately be the most robust choice amongst the semi-empirical models, 

especially in cloudier contexts. Finally, the sensitivity of UIB hydrology to projected climate 

change even under low warming scenarios has implications for other catchments with 

cryosphere-dominated hydrological regimes in Asia and around the world. The results also 

indicate the importance of moving to the use of large ensembles of climate model simulations 

when conducting impact projections in mountainous contexts. 

8.2 Further Work 

The findings presented in this thesis raise a number of questions that could be investigated in 

further work. These are discussed in turn below. 
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Coupled Land-Atmosphere Modelling in the Himalaya 

While the results presented suggest that the HAR exhibits many good features, it could 

potentially be improved in several ways. One of the most useful improvements might be 

revisions to the snow state initialisation approach, as well as snow process and sub-grid 

variability parameterisations. As discussed above, these aspects of the HAR methods and 

models appear to be linked to some of the key deficiencies in its performance. This concerns 

the seasonal variation in its bias patterns particularly. Initial steps to explore this might 

include examining how remote sensing could be used in initialisation of snow states and to 

parameterise snowpack processes. Indeed, this could draw on the findings regarding 

appropriate process representations derived from the offline FSM simulations in this study. 

Part of the solution may be switching from the Noah land surface model (LSM), whose snow 

process representation has admittedly improved over time (e.g. Livneh et al. 2010; Barlage et 

al. 2010; Wang et al. 2010), to the more recent Noah-MP or Community Land Model LSMs. 

More generally, there is a need for further sensitivity testing of coupled land-atmosphere 

model inputs and physics parameterisation schemes in the UIB and surrounding region. These 

would ideally be conducted with a multi-physics approach to test different microphysics, 

cumulus, planetary boundary layer (PBL) and LSM schemes (e.g. García-Díez et al. 2015). It 

would also be interesting to examine further the role of boundary conditions and initialisation 

datasets (i.e. in addition to snow). This might include testing the recently released ERA5 

reanalysis product, which could provide an improved forcing dataset. Together, these various 

avenues could form the basis for generating a multi-decadal, higher resolution successor to 

the HAR that uses improved driving data and physics schemes. Such a data product could be 

the biggest single way of spurring further advances in cryospheric and hydrological modelling 

in the UIB. 

Cryospheric and Hydrological Modelling 

There are several areas that could be investigated in attempts to improve further process-based 

snow modelling in the UIB. These include approaches to adjusting turbulent heat fluxes for 

atmospheric stability conditions. The most practical solution may be an intermediate 

adjustment that lies between the two end-point cases represented by the FSM options (e.g. 

Collier et al. 2015). While the data to parameterise this process directly do not really exist in 

this context, it could be that the multiple variables available from remote sensing provide a 

good enough basis for evaluation or calibration. However, testing of intermediate stability 
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adjustment options would ideally be preceded by further refinement of climate inputs. If some 

of the aforementioned issues with the HAR can be at least partly resolved, the additional 

confidence in model inputs may translate to additional confidence in the discrimination of 

snow process parameterisation.  

Similarly, it is desirable for refined climate inputs to be developed before testing 

parameterisations of other processes. These include treatments of sub-grid variability, heat 

advection under conditions of patchy snow cover, terrain enhancement of longwave radiation, 

and deposition of aerosols and black carbon. They also include the effects of wind on snow 

redistribution and sublimation. While gravitational snow redistribution can be modelled fairly 

simply based primarily on terrain parameters, higher resolution simulations than the HAR 

would be better for incorporating wind effects. Incorporating these processes may help to 

better simulate the high elevation water balance, which is integral to the long-term trajectory 

of the basin’s cryosphere. However, the complex nature of the climate in the UIB is such that 

model inputs will still be approximate even if HAR-type approaches can be refined. As such, 

if additional processes are incorporated it may be worth retaining an ensemble of roughly 

behavioural models to explore uncertainty in applications. 

For glacier modelling, more attention should be devoted to accumulation and ice 

redistribution processes. While it has been shown that clean and debris-covered ice ablation 

can be modelled with formulations of varying complexity, alternative representations of 

snow-ice transitions could be explored. It would also be useful to investigate compare simple 

approaches to glacier mass redistribution, such as the Δh-parameterisation applied here (Huss 

et al. 2010), with solutions of simplified ice flow equations. In both cases, the emphasis could 

be more on whether significant divergences occur in climate change projections or other 

applications. This may be practically useful in a context where it is difficult to discriminate 

between model approaches on grounds of performance, given data limitations. 

Climate and Hydrological Projections 

For climate projections, it would be useful to develop further the climate model evaluations 

undertaken in the present work. It seems likely that model ensembles could be constrained at 

least to some degree using observations and process-based reasoning. For temperature 

projections, a key aspect of this is the representation of snow and the snow-albedo feedback. 

Improved observational constraints on the relevant processes may depend on further 
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developments in algorithms for retrieving surface albedo from remote sensing in complex 

terrain. This topic may be critical for refining climate projections in the UIB. 

As understanding of the Karakoram Vortex and its relationship with regionally differentiated 

climate trajectories grows, this will also need to be investigated in climate models. In 

addition, it would be useful to draw on centennial reanalyses and paleoclimate records for the 

recent past to better characterise the nature of climate variability in the UIB and surrounding 

basins. This may provide some further contextualisation of recent climate changes, 

particularly in terms of their connection to anthropogenic warming compared with natural 

cycles. Characterisation of natural variability will be particularly important for managing the 

range of potential precipitation scenarios in the coming decades. 

Further work should also seek to apply process-based snow and glacier models for 

hydrological projections, given their differing climate sensitivities compared with simpler 

models. Facilitating this depends on refined approaches to deriving climate scenarios, 

however. This could take the form of a weather generator or perhaps a dynamical or quasi-

dynamical downscaling approach (Gutmann et al. 2016). Any method selected will need to 

take account of the complicated patterns of dependence and variability in climate fields in the 

complex terrain of the UIB. This would include accounting for elevation-dependent climate 

change (Pepin et al. 2015). 
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Appendix A  

 

Supplementary Information for Chapter 3 

A.1 Data and Methods 

A.1.1 High Asia Refined Analysis (HAR) 

In this section we provide additional background on the High Asia Refined Analysis (HAR) 

re-initialisation strategy (Maussion et al. 2014). Re-initialisation here refers to the approach in 

which multiple model runs covering consecutive time periods are performed, with each run 

having its own initialisation of atmospheric and land surface states. A long, continuous series 

of model results is thus generated by concatenating multiple runs that cover subsets of the 

overall period. This can be contrasted with continuous, long-term integrations based on a 

single initialisation of the atmospheric and land surface variables. 

From preliminary testing (Maussion et al. 2011), Maussion et al. (2011, 2014) found that re-

initialising the model on a daily basis outperformed weekly re-initialisation. They also 

concluded that spectral nudging would likely lead to unacceptable levels of drift in land 

surface and near-surface variables. This would have been problematic, as they aimed to 

simulate near-surface / boundary layer conditions as accurately as possible, in line with their 

intention for the HAR to be used to support offline hydrological and cryospheric modelling. 

The daily re-initialisation strategy they adopted is outlined in Section 3.3.1, but basically it 

involves performing a separate, independent WRF simulation for each day in the October 

2000 to October 2014 period. For any given day, the atmospheric and land surface states 

required as initial conditions in the simulation are interpolated to the model grid from the 

driving FNL dataset. Atmospheric variables required include quantities like temperature and 

humidity, whereas land surface states needed include variables like snow water equivalent 

(SWE) and soil moisture. 

The daily re-initialisation strategy substantially reduces the potential for excessive drift from 

initial states of both atmospheric and land surface variables derived from the FNL dataset. As 

described in Section 3.3.1, each simulation was for 36 hours, with the first 12 hours (i.e. the 

second half of the previous day) regarded as spin-up. This is common to all components of 
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the WRF model, i.e. atmosphere and land surface. This could be a limitation for slower 

responding land surface variables like soil moisture, but details on this are not reported by 

Maussion et al. (2014). Moreover, while simulating all the days independently enabled 

parallelisation and so computational tractability, it also means that the value added by the high 

resolution of the HAR does not feed into improved initial conditions each day (relative to the 

coarse FNL dataset). 

These issues exemplify the compromises between competing objectives and feasibility in the 

HAR design. Despite this, the HAR re-initialisation and spin-up approach has already been 

demonstrated to be sufficient for a number of applications (Section 3.1), and the results in this 

study further support its utility and potential as an approach to characterising near-surface 

climate in the data-sparse Upper Indus Basin (UIB). Moreover, very similar re-initialisation 

and spin-up approaches have been adopted in other recent Himalayan modelling studies (e.g. 

Norris et al. 2015; Cannon et al. 2017). Nevertheless, future work could use sensitivity tests to 

further explore the implications of this approach and compare it with simulations allowing for 

longer spin-up periods, as discussed in Section 5. 

A.1.2 Elevation Corrections 

This section expands on the elevation corrections for the monthly mean temperature bias and 

incoming longwave radiation evaluations discussed in the main manuscript. The regressions 

used in correction are based on monthly climatologies of the 9 HAR grid cells surrounding 

each station, such that we get one gradient for each month of the year (i.e. 12 in total) for each 

station. Using monthly climatology as the basis for regression provides a balance between 

capturing intra-annual variation and ensuring stability in the calculations. 

We summarise the results of the regressions of climatological monthly mean temperatures and 

elevation in Table A.1. The consistently high R
2
 values demonstrate that elevation explains a 

very high proportion of variance in climatological monthly mean temperature in the 9 HAR 

grid cells surrounding each station. This is the case for all of the stations and throughout the 

year (monthly variation is shown as minima and maxima). The P values are all low and 

statistically significant at the 95% interval, with almost all significant at the 99% interval too. 

This suggests that the calculated gradients are robust for elevation corrections at this time 

aggregation. 
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Station Gradient (°C/km) R
2
 P value 

 Avg Min Max Avg Min Max Avg Min Max 

Askole -6.92 -8.29 -5.71 0.96 0.87 1.00 0.000 0.000 0.000 

Astore -5.80 -6.92 -4.38 0.89 0.65 0.99 0.002 0.000 0.009 

Concordia -7.21 -8.69 -6.39 0.99 0.97 1.00 0.000 0.000 0.000 

Gilgit -6.58 -7.89 -5.67 0.99 0.95 1.00 0.000 0.000 0.000 

Khunjerab -6.75 -8.15 -5.64 0.85 0.70 1.00 0.001 0.000 0.005 

Naltar -6.88 -8.73 -6.09 0.98 0.93 1.00 0.000 0.000 0.000 

Rama -5.71 -7.19 -4.38 0.89 0.65 0.99 0.002 0.000 0.009 

Rattu -5.46 -6.92 -4.38 0.86 0.65 0.99 0.002 0.000 0.009 

Skardu -5.49 -7.37 -3.51 0.89 0.50 1.00 0.002 0.000 0.033 

Urdukas -6.78 -8.10 -5.62 0.98 0.95 1.00 0.000 0.000 0.000 

Ushkore -6.43 -8.09 -5.43 0.91 0.67 1.00 0.001 0.000 0.007 

Yasin -6.83 -8.75 -5.48 0.97 0.95 0.99 0.000 0.000 0.000 

Ziarat -7.16 -8.24 -5.84 0.92 0.78 0.99 0.000 0.000 0.002 

Mean -6.46 -7.95 -5.27 0.93 0.79 1.00 0.00 0.00 0.01 

Table A.1 – Regression summary for climatological monthly mean temperatures and elevation. The 

average (avg), minimum (min) and maximum (max) aggregations summarise intra-annual (monthly) 

variation. 

These gradients are only used in the evaluation of bias in the monthly mean temperature 

climatology in Section 3.4 (Figure 3.6a) in the main manuscript. To test the sensitivity of the 

bias calculations to our approach, we also calculated an elevation-adjusted climatology based 

on a constant lapse rate of -6.5°C/km. As shown in Figure A.1, this reduces the variation in 

bias compared with the monthly climatological lapse rate approach, but it does not ameliorate 

the cold bias or alter the seasonality of the bias. Therefore, we consider the bias pattern to be 

robust. If no elevation adjustment is made at all, the annual cycle of bias again remains 

similar but the overall magnitude of the bias increases, i.e. it becomes colder. For example, 
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while the HAR10 mean annual bias with an elevation correction using a constant -6.5°C/km is 

-3.9°C, this worsens to -8.5°C if elevation is not accounted for at all. 

 

Figure A.1 – Comparison of monthly mean temperature biases at station locations using (a) monthly 

varying (climatological) lapse rate correction and (b) constant (-6.5°C/km) lapse rate correction. 

In terms of longwave radiation, a relatively small performance gain is achieved with elevation 

correction using monthly climatological lapse rates. For example, mean annual bias in 

HAR10 decreases from 67 W/m
2
 to 56 W/m

2
, while HAR30 mean annual bias reduces from 

50 W/m
2
 to 41 W/m

2
. Most of the improvement is evident in winter, spring and autumn, 

whereas in summer the strength of association with elevation decreases and so the 

performance gain is lesser, as shown in Figure A.2. This suggests that our conclusions in 

Section 4 on underestimation of incoming longwave radiation at this location, particularly in 

summer, hold both with and without the application of an elevation correction. 
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Figure A.2 – Comparison of incoming longwave radiation time series at Concordia AWS with (a) and 

without (a) elevation correction based on monthly climatological lapse rates. 

A.1.3 Water Balance Calculations 

This section provides some further discussion of why we compare mean annual effective 

precipitation to observed runoff, rather than HAR-simulated runoff. Essentially, the main 

reason follows from the daily re-initialisation strategy employed in the HAR. As described in 

Section 3.3.1 and Maussion et al. (2014), each day was initialised and run separately, which 

permitted parallelisation and therefore computational tractability of the project. One corollary 

of this approach is that SWE was initialised each day from the coarser FNL driving dataset. 

The accuracy of the SWE field is limited by the fact that insufficient data are available to 

produce a representative SWE analysis in this region, as well as the coarse resolution of the 

FNL data product. As so much of the runoff in the UIB originates from snow and ice melt, 
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simulated runoff from the Noah LSM becomes dominated by the limitations of the SWE field 

from the FNL initialisation dataset. 

We determined this from a preliminary analysis of the HAR-computed runoff at a mean 

annual time scale, which showed HAR runoff to be very low relative to HAR effective 

precipitation (calculated as precipitation minus actual evapotranspiration). Consistent with 

this, we found the HAR peak SWE to be low relative to simulated snowfall. While there are 

multiple limitations to the representation of snow, glacier and hydrological processes in the 

Noah LSM, the daily initialisation of SWE from the FNL dataset appears dominant in shaping 

the underestimation of mean annual runoff. 

In contrast, Figure 3b shows that mean annual HAR effective precipitation is more consistent 

with observed runoff, acknowledging the variation between sub-basins. This leads to the 

question of whether effective precipitation may be a more useful quantity to look at for 

establishing the plausibility of HAR precipitation for the water balance. Indeed, this is the 

main point that we wish to investigate here, as the primary purpose of our study is to assess 

the near-surface climate representation in the HAR. As discussed in Chapter 3, the utility of 

effective precipitation depends on the plausibility of the actual evapotranspiration (ET) 

estimates from the HAR. We find that HAR ET falls in the range of estimates from other data 

sources (see Table 3.4 and references in Section 3.4.1). This provides some empirical support 

for the HAR ET estimates, but we stress that the uncertainties in all estimates are large in this 

data-sparse region. Consistency between datasets is not a guide to their absolute accuracy, 

given that each dataset has its own errors and biases, but it still helps to provide some 

indication that HAR precipitation may be a useful starting point for further studies of the UIB 

and its water balance.  

A.2 Precipitation 

A.2.1 Seasonality Comparison 

Figure A.3 compares HAR10 precipitation seasonality with selected global reanalyses and 

HAR10. Spatial means for the NWUIB area are used in this comparison, in line with the 

coarser resolution of the global reanalyses. This explains why the HAR10 series is slightly 

different to that plotted on Figure 3.2b, which is just based on station locations, although the 

important pattern of having a relatively high fraction of annual precipitation in the first few 

months of the year and a relatively low fraction in summer is the same. Figure A.3 shows that 
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ERA-Interim and NASA MERRA2 have quite similar precipitation climatologies, which are 

in reasonable agreement with the mean of the observations. In both of these reanalyses, more 

of the annual precipitation occurs in winter and spring, but there is a non-negligible 

contribution in the summer months, which is in line with the mean of the observations. The 

HAR10 line shows a starker annual cycle, as expected from Figure 3.2b, while JRA55 is 

almost an intermediate case, with a relatively high fraction in the early part of the year but 

still more summer precipitation compared with the HAR. 

This indicates that there is reasonable consistency in the shape of the annual precipitation 

cycle in the global reanalyses examined here, which are in overall agreement with 

observations, although of course there is some degree of variation. It is interesting then that 

the HAR tends to under-predict the fraction of annual precipitation occurring in summer 

relative to both observations and global reanalyses. 

 

Figure A.3 – Comparison of precipitation seasonality between HAR10, selected global reanalyses and 

station observations for the NWUIB for the overlapping record period. 

A.2.2 Inter-Annual Variability 

Figure A.4a shows that, in addition to reproducing most mean annual observations (see 

Section 3.4.1), HAR10 matches observed inter-annual variability fairly well in most cases. 

The higher variation evident for HAR30 is a corollary of its larger mean precipitation. 

Normalising for this difference shows that both products have a similar coefficient of 

variation (CV) for each station (not shown). The HAR CV values are also of the correct order 
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of magnitude, but do not display particularly clear association with observed variation 

between stations. We extend the comparison in Figure A.4b by examining the (absolute) 

monthly variability, which is well captured in HAR10 and higher in HAR30, again owing to 

the latter’s larger overall magnitude. Overall this supports Maussion et al.'s (2014) finding 

that the HAR contains a useful representation of inter-annual precipitation variability. 

 

Figure A.4 – Comparison of HAR precipitation variability with station observations. Annual standard 

deviations are given in (a), while (b) shows monthly standard deviations. The solid line in (b) shows 

the mean for all stations, while shading shows the range. 

A.2.3 Time Series 

Monthly time series for the station locations are given in Figure A.5. These series clearly 

show the added value of the HAR10’s high resolution in most cases. As expected from Figure 

3.2, the greatest differences are at the Khunjerab, Ushkore and Ziarat stations. 
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Figure A.5 – Comparison of monthly precipitation time series between the HAR and observations at 

station locations. 

A.2.4 Mean Annual Precipitation Maps 

To illustrate the effects of resolution on precipitation skill, we plot mean annual precipitation 

for the HAR10 and the HAR30 in Figure A.6. This is similar to maps shown in Maussion et 

al. (2014), but limited to the UIB extent. Figure A.6 shows that both the HAR10 and HAR30 

generally agree on the major zones of orographic enhancement in the front ranges to the 

south-west of the UIB, as well as in the Hunza, Shigar and northern parts of the Shyok basin. 

However, the differences between Figure A.6a and Figure A.6b highlight the enhanced ability 

of the HAR10 to represent topographic variation and its influences on precipitation contrasts 

between valleys and ridges. This helps to explain why HAR30 provides an overestimate 

relative to observed precipitation and runoff (see Section 3.4.1). 



288 

 

 

Figure A.6 – Maps of mean annual precipitation for (a) HAR10 and (b) HAR30. 

A.2.5 Spatial and Vertical Gradients 

To complement the evaluation of spatial and vertical precipitation gradients in the main text 

(Section 3.4.1), we analyse additional published vertical profiles here. In addition to the small 

number of observation-based vertical profiles available in other studies (Hewitt 2014; Winiger 

et al. 2005), these include model-based precipitation reconstructions from glacier mass 

balance. The profile attributed to Lutz et al. (2016) was derived by the present authors for the 

NWUIB domain based on the historical baseline precipitation datasets released with their 

paper, which are in turn based on Immerzeel et al.'s (2015) model-based reconstruction.  
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Figure A.7 – Comparison of mean annual vertical precipitation profiles between the HAR and other 

studies. Hypsometry for the NWUIB is given in (a), which compares the Shuttle Radar Topography 

Mission (SRTM) reference with HAR10 and HAR30. Vertical precipitation profiles are given in (b). 

Mean and ranges (10
th
 to 90

th
 percentiles) of the spatial climatology are shown for the HAR and Lutz 

et al. (2016), with the latter profile inferred from the data made available with their study. HAR and 

Lutz et al. (2016) profiles are calculated for the NWUIB, while other profiles were derived for different 

sub-domains of the NWUIB. Hew2014 is Hewitt (2014), Lut2016 is Lutz et al. (2016), Imm2012 is 

Immerzeel et al. (2012), and Win2005 is Winiger et al. (2005). 

We reproduce the NWUIB hypsometry in Figure A.7a for reference. The vertical precipitation 

profiles are shown in Figure A.7b, which suggests that there is generally agreement in 

precipitation-elevation relationships up to around 3500 mASL. Above this elevation, the 

profiles differ significantly, which is at least partially a function of differences in 

methodology and the precise areas of the NWUIB considered in each analysis. Interestingly, 

the central tendency of the HAR10 vertical profile agrees quite closely with Winiger et al. 

(2005)’s profile, the formulation of which has been the basis for a number of other studies of 

UIB climate and hydrology (Bocchiola et al. 2011; Soncini et al. 2014; Reggiani et al. 2016). 

HAR30 shows a change in its precipitation-elevation relationship at the sharp changes in its 

hypsometric profile at around 4500 mASL, but its profile is more uncertain due to the smaller 

number of grid cells. 
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Figure A.8 – Comparison of standardised residuals after removing elevation signal for total annual (a) 

precipitation and (b) snowfall. Colour scale is as per Figure 4 in the main text. 

The two profiles which provide an indication of spread in the relationship, HAR10 and Lutz 

et al. (2016), suggest that a substantial degree of spatial variation exists in precipitation-

elevation scaling across this domain. This is likely to be very hydrologically significant, 

affecting precipitation phase simulations, runoff timing and glacier accumulation. It is also of 

note that the Lutz et al. (2016) and Immerzeel et al. (2012) profiles imply lower precipitation 

overall, particularly when considered in relation to the hypsometric profile. 

In addition, we reproduce Figure 3.4c to compare the differences between using total annual 

precipitation and snowfall in Figure A.8. This shows that the patterns are very similar, owing 

to the high correlation between total precipitation and snowfall in the HAR. This is consistent 

with a higher fraction of annual precipitation falling in colder months and at higher elevations 

in the NWUIB. This also adds weight to the notion that a comparison of anomalies in 

precipitation and peak SWE derived from MODIS is possible at sub-regional scales, although 

at finer scales the influences of snow redistribution by wind and avalanches will reduce the 

correlation. 

A.3 Temperature 

A.3.1 Variability 

In terms of variability, plotting the annual cycle of standard deviations of monthly 

temperature indicates good overall HAR performance (Figure A.9). The main difference is 
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that the HAR shows slightly higher inter-annual variability in summer and autumn. The 

observed peak in variability in May also happens a month later in the HAR, while the HAR 

has an additional peak in September/October that is less pronounced in observations. 

 

Figure A.9 – Comparison of the HAR and observed monthly standard deviation. Median and ranges 

calculated across all stations are shown. 

A.3.2 Lapse Rates 

We apply linear regression to estimate near-surface air temperature lapse rates for both the 

HAR and observations. We use the NWUIB domain in our estimation for the HAR and all 

available stations for the observed lapse rates. From Figure A.10a, we can see that the HAR 

and observed lapse rates are in good general agreement. The HAR exhibits higher lapse rates 

in summer, implying a faster rate of temperature decrease with elevation in the HAR. Indeed, 

there may be a connection here with the reduction in temperature bias in summer months 

(Figure 3.6a). We also note that there is closer agreement between HAR10 and HAR30 in 

summer months. 
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Figure A.10 – Comparison of lapse rates based on monthly mean temperatures determined through 

linear regression for the HAR (NWUIB domain) and observations. The ranges show 95% confidence 

intervals for the estimated lapse rates. 

A.4 Humidity 

Figure A.11 shows winter and summer vertical profiles for relative humidity (as opposed to 

specific humidity, given in Section 3.4.3). The most striking feature here is that the HAR 

shows a clear increase in relative humidity with elevation in winter, whereas the observations 

contain very little elevation dependence. In contrast, the nonlinear profile of relative humidity 

increase with elevation in summer in the HAR appears consistent with the available 

observations. As HAR temperature lapse rates are reasonable in winter, the difference could 

be attributable to a greater influence of cold temperature bias on the relative lowering of 

saturation specific humidity at higher elevations. Lesser absolute temperature biases in 

summer may help to explain the greater conformity in the HAR’s relative humidity profiles at 

this time of year, although the lower peak in the specific humidity cycle may also contribute. 

HAR10 performance is better than the HAR30 for relative humidity in both seasons, which 

accords with its typically lower absolute temperature bias throughout the year. 
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Figure A.11 – Comparison of observed and HAR vertical profiles of relative humidity for (a) winter 

(DJF) and (b) summer (JJA). HAR profiles show the elevation band means and ranges. 

A.5 Incoming Shortwave Radiation 

To support the finding of a clear-sky bias that peaks in summer, Figure A.12 shows incoming 

shortwave radiation time series for additional stations and years. This confirms that the HAR 

accurately simulates incoming shortwave radiation under clear-sky conditions at all available 

station locations. It also demonstrates that incoming shortwave variability is underestimated 

by the HAR in summer in different years and at all stations, particularly Askole and Urdukas. 

Lower data availability for Concordia makes it harder to be definitive for this station, but 

there does seem to be overestimation by the HAR in the summer months in 2012. This 

supports the conclusion drawn in Section 3.4.4, namely that the HAR exhibits 

underestimation of cloudiness or cloud reflection effects. 
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Figure A.12 – Time series of daily incoming shortwave radiation (SW) for (a) Askole, (b) Urdukas and 

(c) Concordia AWSs for both observations and corresponding HAR cells. Bold lines show 28-day 

moving average series. 

A.6 Wind Speed 

Due to its importance for turbulent heat fluxes between the atmosphere and surface, we made 

a preliminary comparison of HAR wind speeds with observations from the EvK2CNR 
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stations. We used a logarithmic profile (assuming stability) to adjust the HAR wind speeds 

from their height above the surface (10 m) to the observation heights. This shows that the 

HAR cells have higher wind speeds compared with observations – between 2 and 5 m/s 

higher on average – as well as higher inter-annual variability. This is likely due to the 

significant differences in scale between point measurements and HAR grid cells, a 

particularly pertinent issue here, given the substantial variability of wind at multiple scales. 

However, the HAR and observed coefficients of variation are relatively similar (around 0.3), 

suggesting reasonable HAR performance in relative terms. 

 

Figure A.13 - Wind speed climatology comparison. Annual cycles of mean monthly wind speeds are 

shown for (a) Askole, (b) Concordia and (c) Urdukas EvK2CNR stations. Comparison of monthly 

coefficients of variation for the same stations is given in (d). 
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A.7 Cloud, Albedo and Temperature Correlations 

In Table A.2 we provide a summary of the significance of correlations presented in Figure 

3.12.  

 Cloud Cover Fraction vs Temperature Albedo vs Temperature 

 HAR10 Observations HAR10 Observations 

Month P<0.1 P<0.05 P<0.1 P<0.05 P<0.1 P<0.05 P<0.1 P<0.05 

Jan 2 0 0 0 2 0 3 2 

Feb 1 0 0 0 0 0 0 0 

Mar 0 0 2 1 0 0 2 1 

Apr 4 2 0 0 4 3 4 1 

May 0 0 3 1 7 6 3 0 

Jun 6 4 2 1 10 10 1 1 

Jul 0 0 7 5 9 7 0 0 

Aug 0 0 2 1 1 0 3 1 

Sep 0 0 2 2 10 10 1 0 

Oct 0 0 0 0 10 10 1 0 

Nov 0 0 1 0 2 1 2 1 

Dec 4 4 6 2 2 1 0 0 

Table A.2 – Number of stations with significant correlations for each month based on threshold P 

values of 0.1 and 0.05. The total number of stations used in the correlations is 10. 
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Appendix B  

 

Supporting Information for Chapter 4 

B.1 MODIS Land Surface Temperature (LST) Evaluation 

Here we provide additional validation of MOD11A1 Collection 6 land surface temperature 

(LST). The LST values are based on the average of the 9 pixels surrounding a station location 

and are corrected for elevation differences using local lapse rates (estimated from linear 

regression). Beginning with a direct comparison at the Concordia site, one of very few 

locations with outgoing longwave radiation measurements with which to estimate LST, we 

can see that the MODIS data show good correspondence with observations overall (Figure 

B.1 and Figure B.2).  

 

Figure B.1 – Comparison of LST from observations (of outgoing longwave radiation) and MODIS 

remote sensing at the Concordia site. 
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Season Bias (°C) RMSE (°C) 

Night Day Night Day 

Annual -1.6 0.5 5.0 3.7 

DJF -3.5 -1.4 3.4 7.2 

MAM -0.2 2.1 3.6 4.7 

JJA -0.7 1.4 5.0 3.7 

SON -2.8 -1.4 2.2 4.3 

Table B.1 – Summary statistics for MOD11A1 performance at Concordia site. 

 

 

Figure B.2 – Time series comparison of observed LST and air temperature with MODIS LST for the 

Concordia site. 

Summary statistics in Table B.1 confirm that bias is slightly larger for individual seasons than 

at the annual timescale, but overall it is low. Importantly, this indicates that MOD11A1 is 
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accurate enough to estimate climatological LST to within 2-3°C, depending on season. 

Therefore, modelled LST that departs from MODIS retrievals by notably more than this is 

likely to be in error. 

We also examine the relationship between LST and air temperature. For the Concordia site, 

where both quantities are available, Figure B.3 shows that there is strong similarity between 

LST and air temperatures. This is particularly the case at night-time, where the relationship is 

almost 1:1 and scatter is much reduced, although there is some divergence at the lowest 

temperatures. The relationship in the day-time is more complicated and variable, showing a 

discontinuity around 0°C. This likely indicates abrupt changes as a result of snow cover 

disappearance. 

Unfortunately observed LST is not available at other climate stations. As such, we compare 

observed air temperature with MODIS LST at these locations in Figure B.4 and Figure B.5. 

This shows that there is also a close, often approximately 1:1 relationship between LST and 

air temperature at night-time at other station locations, strengthening the findings from the 

Concordia site. The day-time case generally shows that air temperatures are warmer than LST 

in cold conditions, but that the opposite is true in warmer conditions. Much more scatter is 

present relative to the night-time comparison. 

 

Figure B.3 – Comparison of observed LST (calculated from outgoing longwave radiation) and air 

temperature at the Concordia site. 
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Figure B.4 – Comparison of observed night-time / minimum air temperatures with MODIS LST at 

observation sites that do not measure outgoing longwave radiation. 
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Figure B.5 – Comparison of observed day-time / maximum air temperatures with MODIS LST at 

observation sites that do not measure outgoing longwave radiation. 
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B.2 Point-Scale Simulations at Concordia 

The Concordia site is situated at 4700 mASL on supra-glacial debris in the upper zone 

ablation of the Baltoro glacier in the Shigar sub-basin of the Upper Indus Basin (UIB). This 

location is shown on Figure 4.1 in Chapter 4. Concordia is one of very few sites in the region 

recording the climate variables required to simulate (and partially evaluate) the energy 

balance in FSM. No such sites are present in the Astore sub-basin. As such, we use 

simulations at Concordia for verification of the FSM code and for selected comparisons with 

the distributed simulations. The key results from this are given in Section B.5. 

We obtained quality-controlled data for Concordia from EvK2CNR, as well as additional raw 

data that we checked for consistency and outliers. The available record period for Concordia 

is short, such that we conducted two-year simulations, cycling the climate inputs to 

equilibrate the substrate state variables. We filled small gaps in the hourly time series using 

simple interpolation. The data include measurements of outgoing shortwave and longwave 

radiation, which we use to assist in model evaluation. However, precipitation is not reliably 

recorded at Concordia. To overcome this, we use data from the High Asia Refined Analysis 

(HAR) (Maussion et al., 2014).  

FSM is based on the presumption of soil layers beneath any snow present. This is not the case 

at the Concordia site. However, we use the results of point-scale simulations here to support 

particular findings from the distributed modelling in the Astore catchment – specifically 

conclusions on albedo evolution and stability effects on land surface temperature that depend 

less heavily on substrate properties. While this modelling therefore represents a notable 

simplification of the reality of the site, we consider it useful to further understand FSM 

behaviour in this data-sparse context.  

B.3 Ensemble Evaluation for Alternative Input Strategies 

In this section we provide evaluation of the distributed FSM simulations for the Astore 

catchment using the two alternative input strategies described in Section 4.3.2. One strategy is 

essentially HAR-based with no bias correction (FSM2), whereas the other strategy uses local 

observations as far as possible (FSM3). From Figure B.6 and Figure B.7 we can see that 

simulated runoff in both strategies is reasonable. FSM2 shows a generally similar form to 

FSM1 reported in the main text, whereas FSM3 shows a little more difference. In particular, 

ensemble spread using FSM3 is larger and the coherence of the ensemble sub-groups 
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decreases faster. At the ensemble level, runoff is also a little earlier in FSM3, leading to lower 

peak runoff rates in the middle of the season, although some ensemble members actually tend 

to respond quite slowly. 

Similar comparisons are shown for snow-covered area (SCA) in Figure B.8 and Figure B.9. 

This confirms that SCA is reasonably well simulated when using both FSM2 and FSM3 input 

strategies. Larger spread is evident for FSM3, consistent with the runoff responses described 

above. In combination with adequate runoff performance, these results suggest that the 

alternative input strategies are sufficient to see if key findings based on FSM1 are also 

evident. This provides a partial treatment of uncertainty, as discussed in Section 4.3.2. 

 

 

Figure B.6 – Comparison of modelled snowmelt runoff with observed runoff for the FSM2 input 

strategy. Mean annual cumulative runoff for the high-flow season for each of the 32 ensemble 

members is given in (a), along with observations. Inter-annual variation in the ensemble mean and 

observed runoff is shown in (b), where the solid lines denote the mean and the shaded/dashed areas 

indicate the inter-annual range. Model results are are shown in blue, with observations in black. 
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Figure B.7 – As Figure B.6 but for FSM3 input strategy (modelled series in orange). 

 

 

Figure B.8 – Comparison of modelled catchment snow cover with MODIS remote sensing for FSM2 

inputs. The mean annual cycle of snow cover for each ensemble member is displayed in (a), along 

with MOD10A1 snow cover. Inter-annual variations in the ensemble mean and MOD10A1 snow cover 

is plotted in (b) as the dashed/shaded areas. 
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Figure B.9 – As Figure B.8 but for FSM3 inputs (model series in orange). 

B.4 Process Influence on Runoff Response 

In Figure B.10 we confirm that the thermal conductivity option plays a comparatively minor 

role in shaping ensemble spread in runoff. 

 

Figure B.10 – Differences in melt and runoff arising from thermal conductivity option choices (as 

Figure 4 in main text). 

Figure B.11 additionally shows the average effects of each process option choice on timing. 

This approximately indicates differences in runoff onset and cessation, by quantifying how 
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many more/less days are needed to exceed the 10
th

 and 90
th

 percentiles of cumulative runoff 

each year when using different process options. The main point from this is that the density 

option can exert a notable effect on runoff timing in some years, especially in the later part of 

the melt season. Possible mechanisms for this include FSM’s use of snow depth to adjust 

albedo for patchy cover, which confirms the importance of subgrid variability in these 

conditions (Clark et al., 2011). Other possibilities include influences on porosity and so liquid 

water holding capacity and related processes. While we focus mainly on albedo, drainage and 

stability adjustment options in this study, the hydrological implications of density and thermal 

conductivity options should be explored further. 

 

Figure B.11 – Differences in runoff timing according to model options. The differences are calculated 

by first averaging all ensemble members using options 0 and 1, separately for each of the 5 processes 

(AL – albedo, DE – density, DR – drainage, ST – stability, TC – thermal conductivity). The day of year 

at which the 10th (a) and 90th (b) percentiles of annual cumulative runoff are exceeded are then 

identified and differences calculated (option 1 minus option 0). Positive differences therefore indicate 

later timing when using option 1 for a given process and vice versa. The average (dot), inter-quartile 

range (solid lines) and range (dotted lines) for all years are plotted. Colours denote the different input 

strategies. 

B.5 Albedo Evaluation 

We now evaluate the point-scale simulations at Concordia with reference to albedo options, in 

order to support the findings in Section 4.4.3. Figure B.12a confirms that the prognostic 

albedo parameterisation is more realistic at the point-scale. This is based on observations of 

incoming and outgoing shortwave radiation, rather than remote sensing. Figure B.12b shows 
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that LST is well simulated at the site. This indicates that fundamental energy balance 

inaccuracies, for example due to input data uncertainties, are not the cause of poor 

performance with the diagnostic albedo parameterisation. This is likely to be the case even 

when the LST-albedo feedback induced by this parameterisation is taken into account. 

Plotting albedo against LST in Figure B.13 shows that there is substantial scatter in their 

relationship, which depends at least partly (or indirectly) on the time of year. Similar patterns 

are evident when using observations from Concordia and MODIS retrievals (for pixels with 

NDSI greater than 70, i.e. substantial snow cover). This is further confirmation that a simple 

deterministic parameterisation of albedo based on LST is not the most appropriate 

representation in this context. The effects of fresh snowfall and subsequent albedo decay 

during dry periods are important and better simulated using a prognostic parameterisation. 

 

Figure B.12 – Modelled and observed daily mean albedo (a) and LST (b) at Concordia. The OBS* 

series in (a) corresponds with an 8-day moving average. The FSM ensemble is split according to 

members using option 0 (orange) and 1 (blue). The mean (line) and range (shading) of each group are 

shown. Daily observed albedo calculated from incoming and outgoing shortwave radiation 

measurements are shown in grey in (a), with the 8-day moving average shown in black (OBS*). 
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Figure B.13 – Relationship between LST and albedo based on observations at Concordia (a) and 

MODIS remote sensing (b). The dots are coloured by the day of the water year (defined as October to 

September). 

B.6 Drainage Evaluation 

With the drainage option on, liquid water is allowed to refreeze, leading to latent heat release. 

This maintains a higher snowpack temperature, which is conducive to higher melt rates. This 

is exemplified in Figure B.14, which shows how the drainage option choice becomes a 

primary control on snowpack temperature from the onset of melting. Following ripening, the 

ensemble spread in snowpack temperature for models applying the drainage option is very 

small and remains close to melting point, which also implies that the diurnal range is small. 

This is conducive to higher melt rates.  
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Figure B.14 – Comparison of snowpack mean (mass-weighted) temperatures for elevation band 3500-

4000 mASL using each drainage option. 

B.7 Process Interactions 

Examples of cumulative runoff curves grouped by their major controls are given in Figure 

B.15. This confirms the general year-to-year consistency in ensemble structure discussed in 

Section 4.4.4. It also shows how the two intermediate groups exhibit differing degrees of 

equivalence and rank order in different years. 
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Figure B.15 – Examples of ensemble interactions / groupings for individual years (see Figure 10 in 

main text). 

B.8 Performance Relationships 

To expand on the relationships between model performance for different ensemble groups, as 

discussed in Section 4.4.5 in the main text, we show scatterplot matrices in Figure B.16 and 

Figure B.17 for runoff and SCA RMSE in individual years. This indicates whether 

performance for a given year is similar in different model groups, or whether more 

complicated relationships exist. From the matrices we can see that a range of relationships are 

present. These include the Pareto fronts discussed in Section 4.4.5, which primarily develop 

for better-performing configurations. In other cases there are simple, positive linear 

relationships, indicating that performance for a given year is good or bad in both 
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configurations in question. There are also examples of very limited relationships in 

performance, as well as multiple linear relationships for the same pairs. 

 

Figure B.16 – Scatterplot matrix comparing cumulative runoff RMSE for ensemble groups using 

different configurations of albedo (A), drainage (D) and stability adjustment (S) options. Scatterplots 

are shown in the upper right and density estimations in the lower left. 
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Figure B.17 – As Figure B.16 but for SCA. 
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Appendix C  

 

Supporting Information for Chapter 6 

 

Figure C.1 – Comparison of KZI vs T2 correlations in CMIP and AMIP ensembles with reanalysis 

ensemble. Lines show means and shaded ranges (dashed lines) show 95% confidence intervals. 
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Figure C.2 – Comparison of KZI and temperature (2m) correlations for the NWUIB and 10° box 

domains. Numbers in brackets are Kendall’s tau correlations, with ** representing significance at the 

95% interval. 

 

 

Figure C.3 – Comparison of KZS and KZI vs T2 correlation, both normalised by reanalysis ensemble 

means. 
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Season KZS Temperature (T2) 

 CMIP AMIP CMIP AMIP 

DJF 0.33** 0.04 0.36** 0.34* 

MAM 0.12 0.19 0.15 0.12 

JJA 0.19 0.18 0.03 0.15 

SON 0.22 0.13 0.29* 0.16 

Table C.1 – Correlation between biases in KZS, 2m temperature (T2) and KZI/T2 relationship 

(NWUIB). 

 

 

Figure C.4 – Comparison of (a) CMIP and (b) AMIP trends in KZI and T2 for the overlapping period of 

record (1979-2005). 
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Appendix D  

 

Supporting Information for Chapter 7 

D.1 Change Factors for the Distributions of Inter-Annual Variability 

 

Figure D.1 – Precipitation change factors for different percentiles of the inter-annual distribution for 

specified months for the HAPPI models. 
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Figure D.2 – As Figure D.1 but for near-surface air temperature. 

D.2 HAPPI Evaluation – High Resolution CAM5.1.2 Model 

Temperature 

Figure D.3a demonstrates that the annual cycle of monthly mean temperatures in CAM5.1.2 

model exhibits a large amplitude when compared with both observations and the HAR. While 

only HAR10 is shown on Figure D.3a, the HAR10 and HAR30 annual temperature cycles are 

very similar (see Chapter 3). As such, and given the notable difference between CAM5.1.2 

and HAR10, this suggests that the difference in annual cycles may not arise solely as a 

function of spatial resolution, because of the similarities between the HAR30 and CAM5.1.2 
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grid spacing. Figure D.3b shows that this large annual temperature cycle is also associated 

with a pronounced seasonal variation in bias relative to station observations. As it accounts 

for elevation differences between model cells and station locations, Figure D.3b suggests that 

there is a large cold bias in CAM5.1.2 in winter. The bias reduces during spring, such that by 

summer it approaches zero, although some variation between stations remains. This 

fundamental pattern is evident regardless of whether a constant (6.5°C/km) or model-derived, 

monthly lapse rate climatology is used to adjust the simulated time series to station elevations. 

The difference in bias as a result of methodological choice is thus likely to be small compared 

with the amplitude of the annual cycle of temperature bias.  

 

Figure D.3 – Evaluation of mean temperature climatology in CAM5.1.2. Annual cycles of monthly 

mean temperature are shown for CAM5.1.2, station observations and HAR10 in (a). Before 

summarising the station ensemble in (a), temperatures are normalised by subtracting the annual 

mean. The annual cycle of monthly mean temperature bias at station locations is in shown in (b). The 

two series show the implications of using time-varying lapse rates derived from CAM5.1.2 and a 

constant 6.5°C/km lapse rate to correct for elevation differences between model cells and station 

locations. Lines and shading in both panels show ensemble means and ranges, respectively 

Figure D.4a compares the diurnal temperature range (DTR) simulated by CAM5.1.2 with 

observations and the HAR at station locations. Only HAR10 is shown, but Chapter 3 

demonstrates that HAR10 and HAR30 have similar annual cycles of DTR. The most striking 

feature of Figure D.4a is that the DTR cycle for CAM5.1.2 is effectively the inverse of 

observations and the HAR. Unlike the HAR and observations, the largest DTR in CAM5.1.2 

occurs in winter, rather than in summer. Figure D.4b suggests that this is primarily driven by 
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a more pronounced annual cycle of (monthly means of) daily minimum (night-time) 

temperatures compared with daily maximum (day-time) temperatures. This is apparent from 

the greater divergence of the minimum and maximum temperatures during winter months. We 

note that, even though the HAR representation of DTR is not in perfect agreement with 

observations, it does at least show an increase from winter to summer. This begs the questions 

of why DTR in CAM5.1.2 is so large and why minimum (night-time) temperatures diverge so 

much from maximum (day-time) temperatures in winter. 

 

Figure D.4 – Evaluation of annual cycles of (a) diurnal temperature range and (b) daily minimum and 

maximum  temperatures in CAM5.1.2. CAM5.1.2 is compared with HAR10 and observations in (a), 

while the monthly averages of daily minimum and maximum temperature at station locations in (b) are 

for CAM5.1.2 only. Lines and shading denoting the station ensemble mean and ranges, respectively 

While Figure D.3 and Figure D.4 suggest notable seasonal variation in temperature bias in 

CAM5.1.2, Figure D.5 shows that mean temperature lapse rates in CAM5.1.2 tend to be 

notably steeper than those inferred from the HAR and observations. Again, Chapter 3 

suggests that HAR10 and HAR30 show reasonably similar lapse rates, with both in more 

agreement with observations than HAR10. Moreover, the magnitude of intra-annual variation 

in CAM5.1.2 is comparatively large. The annual cycle shows two peaks, the first in May/June 

and the second in October/November, while the shallowest lapse rate is found in August. This 

seasonal variation is broadly present in the HAR and observations, even if their month-to-

month variation and precise timing differs. 



321 

 

As lapse rates are at their steepest in spring and autumn, it may well be that a signal from the 

retreat and growth of snow-covered area (SCA) is strongly implicated in the lapse rate cycle 

in all datasets. If this is the case, it raises the question of why steeper lapse rates across the 

snowline occur in CAM5.1.2 compared with other model products, such as the HAR. 

Preliminary analysis (not shown) suggests that temperature biases are larger at higher 

elevations in the spring and autumn seasons in CAM5.1.2, but relatively constant across the 

elevation range in winter and, to a lesser degree, summer. This would again likely implicate 

snow cover as a possibly significant source of error, given that snow persists for longer at 

higher elevations in the spring and autumn seasons, while it extends across much of the UIB 

in winter. In conjunction with the fact that the temperature bias is much reduced in summer, 

this suggests that the representations of processes related to the surface energy balance and/or 

land-atmosphere fluxes over snow applied in CAM5.1.2 may need further investigation for 

applications in this region. However, initial analyses suggested that there might be errors in 

the aggregated model outputs for some of the energy balance components, so it is not clear 

whether new simulations would actually be required to investigate this fully. 

 

Figure D.5 – Comparison of annual cycle of monthly mean temperature lapse rates in CAM5.1.2, 

HAR10 and observations. Lapse rates were estimated using linear regression from station data for 

observations, while model outputs for cells within the NWUIB domain were used for CAM5.1.2 and 

HAR10. Ranges show 95% confidence intervals. 

Returning to the issue of an ostensibly large DTR in winter, one possible contributor could be 

a deficiency in cloud cover. This might occur through excessive radiative cooling at night, if 
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cloudiness were underestimated. To investigate this, Figure D.6 compares the cloud cover 

fraction climatology from CAM5.1.2 with the MOD06L2 product. Interestingly, this suggests 

that the cloud cover representation in CAM5.1.2 may in fact be quite reasonable. The model’s 

cloud cover fraction is a little lower compared with MODIS in some winter months, as well as 

in late spring and summer. Yet, overall the pattern seems reasonable, comparing favourably 

with the equivalent analysis of the HAR in Chapter 3. We note that this evaluation is based 

solely on mean cloud cover, without consideration of any diurnal asymmetry, as sub-daily 

outputs are not available for CAM5.1.2. However, the MODIS data products suggest day-time 

and night-time cloud cover annual cycles are really quite similar for the NWUIB domain 

(Forsythe et al. 2015). As such, if day-time and night-time annual cycles are also similar in 

CAM5.1.2, it could be that cloud cover is not at the root of the large winter DTR in the 

model. Delving further into this is beyond the scope of this work, but future efforts might 

again consider snow representation.  

 

Figure D.6 – Comparison of CAM5.1.2 and MODIS (MOD06L2) mean cloud cover (NWUIB). Lines and 

ranges denote means and 10
th
-90

th
 percentile ranges from inter-annual variation, respectively. 

Precipitation 

Figure D.7a describes the annual cycle of precipitation in the NWUIB for CAM5.1.2, station 

observations and the HAR. Firstly we note that the HAR agrees with observations insofar as it 

simulates a generally higher fraction of annual precipitation occurring in winter/spring 

compared with summer. As discussed in Chapter 3, the HAR appears to underestimate the 
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fraction of precipitation occurring in summer, as well as inter-station variability. In contrast, 

CAM5.1.2 exhibits a relatively diminished annual cycle in Figure D.7a, with comparatively 

moderate intra-annual variation. A smaller fraction of annual precipitation occurs in the 

December to February period in CAM5.1.2, but from March onwards fractional precipitation 

is reasonably constant on average, although inter-station variability grows in the summer 

months. This suggests that the model does not fully capture the relative balance between 

winter/spring snowfall brought by westerly disturbances and summer precipitation from 

monsoon offshoots or westerly-tracking depressions.  

 

Figure D.7 – Evaluation of CAM5.1.2 precipitation climatology. Annual cycles of precipitation 

expressed as the fraction of the annual total falling each month at the station locations are given in (a) 

for CAM5.1.2, HAR10 and observations. Lines and shading show the mean and range from the station 

ensemble. Elevation profiles for mean annual precipitation are given in (b) for CAM5.1.2, HAR10, 

HAR30 and the observation-derived profile (Win05) of Winiger et al. (Winiger et al. 2005). Shading 

denotes inter-quartile range of model cells within the NWUIB domain for CAM5.1.2 and the HAR. 

For an absolute comparison, Figure D.7b shows vertical profiles of precipitation for the 

NWUIB for CAM5.1.2, the two HAR products, and an observational-based curve (Winiger et 

al. 2005). This indicates some differences in form between CAM5.1.2 and the HAR. 

CAM5.1.2 exhibits comparatively high precipitation at lower elevations (less than ~4000 

mASL) compared with the HAR, which matches relatively well with Winiger et al.’s profile, 

especially in the case of HAR10. At elevations above ~4000 mASL, CAM5.1.2 precipitation 

begins to decrease overall, while HAR precipitation continues to increase with elevation. 

While precipitation is often considered to decrease above a critical elevation in the UIB (see 
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Chapter 3), this is typically thought to be around 5000-5500 mASL, rather than the ~4000 

mASL level in CAM5.1.2. It is also notable that the HAR30 profile agrees more closely with 

HAR10 than the CAM5.1.2 profile. As HAR30 is at a comparable resolution to CAM5.1.2, 

this suggests that the discrepancies in the latter’s elevation profiles may not be a simple 

function of resolution differences relative to the higher resolution HAR10 product. Possible 

avenues to consider may be the implications of transferring “tuning” from coarser to high 

resolution in the model. Indeed, Wehner et al. (2014) demonstrate that performance in some 

respects is degraded in the 0.25° version of CAM5 relative to its 1° counterpart.  

 

Figure D.8 – Difference in normalised seasonal mean precipitation between CAM5.1.2 and HAR10, 

with the latter re-gridded to match the 0.25° resolution of CAM5.1.2. Normalisation was carried out 

separately for each dataset by scaling the modelled values to the 0-1 based on the (spatial) minimum 

and maximum values in the window surrounding the UIB. Differences were then calculated as 

CAM5.1.2 minus HAR10. 
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To provide a slightly broader view of CAM5.1.2’s precipitation fields, Figure D.8 shows the 

spatial distribution of differences in normalised seasonal precipitation between CAM5.1.2 and 

HAR10, after the latter was re-gridded to the CAM5.1.2 resolution. Normalisation was 

undertaken by scaling the precipitation in each model cell to the range 0-1 using the minimum 

and maximum values from all cells in the window surrounding the UIB shown in Figure D.8. 

This helps to indicate the underlying similarity of the spatial distributions of precipitation in 

each season by removing some of the influence of biases in magnitude.  

In each season, Figure D.8 suggests that there is a tendency for CAM5.1.2 to simulate 

relatively higher precipitation along the “front ranges” situated upwind of the UIB with 

respect to the prevailing westerlies. The front ranges follow the linear band of positive 

differences (blue in Figure D.8) oriented north-west to south-east, which sits to the south-east 

of the UIB. In winter (DJF) and spring (MAM), there is also a tendency for CAM5.1.2 to 

over-predict the relative precipitation in major valleys in the NWUIB, as well in the major 

Shyok tributary. This accords with the over-estimation at low elevations in Figure D.7b, as 

does the underestimation (in relative terms) of precipitation at higher elevations in the 

NWUIB. In summer (JJA), the differences between CAM5.1.2 and HAR10 within the 

NWUIB and UIB actually tend to reduce somewhat, potentially reflecting a reduction in the 

strength, coherence and magnitude of orographic gradients in summer precipitation conditions 

in the basin. Yet, by autumn (SON), there is major disagreement along the front ranges 

forming the south-east side of the UIB. There is also widespread over-estimation of relative 

precipitation within the NWUIB and Shyok domains again. 

Of course the HAR is itself a model dataset and so an imperfect reference, but it is interesting 

to note the differences in the spatial distribution of precipitation between the two data 

products. The strong relationship between orography and divergences between the models 

implied by Figure D.8 suggests that the processes underpinning orographic precipitation could 

need further refinement in CAM5.1.2 if it were to provide WRF-like behaviour. Indeed, this 

may be desirable, given that WRF shows great promise for simulating precipitation in the 

data-sparse Himalayan region (see e.g. Chapter 3 and Maussion et al. (2014)). In conjunction 

with the temperature analysis, this evaluation of the HAPPI CAM5.1.2 model therefore 

suggests that, despite its high resolution, it exhibits a number of deficiencies with respect to 

simulating UIB climatology. As such, and given the smaller ensembles available for the 

model relative to the other HAPPI models, we suggest that further analysis and potentially 

refinement of CAM5.1.2 would be useful before application in this region. It is not clear that 
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its high resolution adds much at this point, such that we omit it from the remainder of the 

chapter. 

D.3 CMIP5 Change Factors by Model 
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Figure D.9 – Change factors for the monthly precipitation climatology in CMIP5 models 
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Figure D.10 – As Figure D.9 but for near-surface air temperature. 
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D.4 Higher Temperature Scenarios in CMIP5 
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Figure D.11 – Simulated mean monthly flows in TOPKAPI-ETH for 2 and 3°C warmer worlds for the Astore sub-basin, based on change factors from CMIP5. Runs 

using change factors calculated separately for RCP4.5 and RCP8.5 are both shown. The responses are also differentiated by runs including temperature-only 

perturbations and runs considering both precipitation and temperature perturbations. 
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Figure D.12 –  As Figure D.11 but for the Hunza sub-basin. 

  



 

 

 


