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Abstract

In order to deal with the challenges of the exponentially growing com-

munication traffic and spectrum bands with wider bandwidth, massive

MIMO technology was been proposed, which employs an unprecedented

number of base station antennas simultaneously to serve a smaller num-

ber of user terminals in the same channel. Although the very large

antenna arrays for massive multiple-input multiple-output (MIMO) sys-

tems lead to unprecedented data throughputs and beamforming gains

to meet these data traffic demands, they also lead to prohibitively high

energy consumption and hardware complexity. In terms of precoding

schemes, the conventional linear precoding entirely processes the com-

plex signals in the digital domain and then upconverts to the carrier

frequency after passing through radio frequency (RF) chains, which can

achieve near-optimal performance with the large antenna arrays. How-

ever, it is infeasible because with fully digital precoding, every antenna

element needs to be coupled with one RF chain, including the digital-to-

analog convertors, mixers and filters, which is accountable for excessively

high hardware cost and power consumption. This thesis focuses on the

design and analysis of low complexity precoding schemes.

The novel contributions in this thesis are presented in three sections.

First, a low complexity hybrid precoding scheme is proposed for the

downlink transmission of massive multi-user MIMO systems with a finite

dimensional channel model. By analysing the structure of the channel

model, the beamsteering codebooks are combined with extracting the



phase of the conjugate transpose of the fast fading matrix to design the

RF precoder, which thereby harvests the large array gain achieved by an

unprecedented number of base station antennas. Then a baseband pre-

coder is designed based on the equivalent channel with zero forcing (ZF)

precoding. In addition, a tight upper bound on the spectral efficiency is

derived and the performance of hybrid precoding is investigated.

Second, based on successive refinement, a new iterative hybrid precod-

ing scheme is proposed with a sub-connected architecture for mmWave

MIMO systems.In each iteration, the first step is to design the RF pre-

coder and the second step is to design the baseband precoder. The RF

precoder is regarded as an input to update the baseband precoder until

the stopping criterion is triggered. Phase extraction is used to obtain the

RF precoder and then the baseband precoder is optimized by the orthog-

onal property. This algorithm effectively optimizes the hybrid precoders

and reduces the hardware complexity with sub-connected architecture.

A closed-form expression of upper bound for the spectral efficiency is

derived and the energy efficiency and the complexity of the proposed

hybrid precoding scheme are analyzed.

Finally, the use of low-resolution digital-to-analog converters (DACs) for

each antenna and RF chain is considered. Moreover, in a more practical

scenario, the hardware mismatch between the uplink and the downlink

for the channel matrix is a focus, where the downlink is not the trans-

pose of the uplink in time-division duplex mode. The impact of one-bit

DACs on linear precoding is studied for the massive MIMO systems with

hardware mismatch. Using the Bussgang theorem and random matrix

theorem, a closed-form expression for the signal to quantization, inter-

ference and noise ratio with consideration of hardware mismatch and

one-bit ZF precoding is derived, which can be used to derive the achiev-



able rate. Then a performance approximation is also derived in the high

signal-to-noise ratio (SNR) region, which is related to the ratio of the

number of base station antennas and the number of mobile users , and

the statistics of the circuit gains at the base station.

In conclusion, analytical and numerical results show that the proposed

techniques are able to achieve close-to-optimal performances with low

hardware complexity, thus the low complexity precoding schemes can be

valid candidates for practical implementations of modern communication

systems.
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Chapter 1

Introduction

1.1 Introduction

In the past few years, 4G wireless systems, which were standardized in 2012, have

provided improved service quality in terms of throughput, spectral efficiency and

latency [1]. There are two 4G candidate systems commercially deployed, the Mobile

WiMAX 2.0 and the LTE Advanced [1]. The common feature of both candidate sys-

tems is that they will provide All-IP connectivity with flexible bit rates and quality

of service guarantees for multiple classes of services including voice, mainly using

voice over IP, data and video services. This offers theoretical speeds of up to 1.5

Gbps, but the current crop of LTE Advanced networks have a maximum potential

speed of 300 Mbps with real world speeds falling a lot lower. With the benefits of

4G networks, wireless internet connectivity will be faster and more affordable. How-

ever, with the development of the information and communication technology, recent

studies predict that the number of mobile-connected devices is expected to reach

11.6 billion by 2021, including machine-to-machine modules. According to a white

paper from Cisco [2], mobile data traffic will grow at a compound annual growth

rate (CAGR) of 47 percent from 2016 to 2021, reaching 49 exabytes per month by

2021. Consequently, 5G wireless systems are proposed to deal with the challenges

of the exponentially growing communication traffic and spectrum bands with wider

1



1.1 Introduction

bandwidth [3–5]. In order to achieve high array gain and high spatial multiplex-

ing gain, massive MIMO [6–8] employs an unprecedented number of base station

antennas simultaneously to serve a small number of single-antenna user terminals

in the same channel. Based on the massive MIMO systems, research on hardware

complexity and energy consumption has captured the attention of researchers all

over the world.

Massive MIMO technology brings huge improvements in spectral efficiency and

energy efficiency with the employment of very large antenna arrays at the base sta-

tions. Compared with conventional MIMO, massive MIMO can increase the spectral

efficiency 10 times or more and simultaneously improve the energy efficiency on the

order of 100 times [4]. Additionally, massive MIMO can reduce the latency, simplify

the multiple access layer and increase the robustness against interference and inten-

tional jamming [4]. Although massive MIMO systems offer huge advantages, there

are still challenges ahead for practical implementation, such as hardware require-

ments and signal processing [7]. Conventional MIMO systems process the complex

signals digitally in the digital domain and then upconvert to the carrier frequency,

thus every antenna element needs to be coupled with one RF chain, which includes

the digital-to-analog convertors, mixers and power amplifiers. When the number

of antennas at the base station is very large, a large number of RF chains will re-

sult in excessively high hardware cost and power consumption [9]. Because of these

considerations, this thesis focuses on the design of novel hybrid precoding schemes

to overcome the constraints of limited number of RF chains. Moreover, in terms

of the spectral efficiency, the performance of low complexity precoding schemes is

analyzed.

2



1.2 Motivation and Challenges

1.2 Motivation and Challenges

With an increase in the number of antennas at the base station, traditional linear

precoding schemes such as ZF and minimum mean square error (MMSE) are able to

achieve near optimal performance achieved by the dirty paper coding in the downlink

communication [6] [8]. However, when the antenna size scales large, traditional

schemes require a large number of RF chains. Due to the tremendous number of

RF chains, massive MIMO systems will suffer from huge fabrication cost and energy

consumption [10]. In order to deal with this problem, cost-effective variable phase

shifters are employed to handle the mismatch between the number of RF chains and

of antennas. Variable phase shifters with high-dimensional phase-only RF processing

are exploited to control the phases of the upconverted RF signal [11–13], which are

digitally controlled and changed in a reasonably low time scale for variable channels.

Therefore, hybrid precoding schemes are proposed [10,14–16], which exploit a phase-

only RF precoder in the analog domain and a baseband precoder in the digital

domain. Although the hybrid precoding contributes to reduce power consumption

and increase energy efficiency, it leads to the performance degradations. The efficient

hybrid precoding schemes should be developed to achieve the best tradeoff between

performance and hardware complexity.

Moreover, the millimetre wave (mmWave) frequencies have been put forward as

prime candidates for future generation cellular systems, with the potential band-

width reaching 10 GHz [17] [18]. Thanks to the decrease in the wavelength of

mmWave MIMO systems, the large scale antenna arrays at the transmitters can

provide significant beamforming gains to overcome path loss. The hybrid baseband

and RF processing is particularly appropriate for mmWave MIMO systems, because

the mmWave systems rely heavily on RF processing and the hybrid processing can

effectively reduce the excessive cost of RF chains. In order to further reduce the

hardware complexity, the number of phase shifters in use can also be reduced. There-

fore, the hybrid precoding architectures can be categorized into the fully-connected

3
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and sub-connected architectures [19]. In the fully-connected architecture, each RF

chain is connected to all transmitting antennas via phase shifters, while in the sub-

connected architecture, each RF chain is connected to only a subset of transmitting

antennas [20]. Although the sub-connected architecture sacrifices some beamforming

gain, it can significantly reduce the hardware implementation complexity without

obvious performance loss.

Likewise, another approach to reduce the power consumption is the use of low-

resolution DACs for each antenna and RF chain [21] [22]. The power consumption

of the DACs grows linearly with increases in bandwidth and exponentially with the

number of quantization bits [23]. With a large number of required DACs in massive

MIMO systems, the systems will suffer from prohibitively high power consumption.

Therefore, the resolution of DACs must be limited to make the power consumption

acceptable. It is worth studying the impact of quantized precoding for the downlink

massive MIMO systems.

1.3 Aims and Objectives

The aim of this thesis is to provide a framework to achieve efficient massive MIMO

systems with low computational and hardware complexity through the introduc-

tion of proposed hybrid precoding schemes. Moreover, the performance of different

precoding schemes will be explored and analyzed. The objectives of this thesis are:

• To design the hybrid precoding scheme with fully-connected architecture for

the finite dimensional channel in massive MIMO systems.

• To design the hybrid precoding scheme with sub-connected architecture for

mmWave massive MIMO systems.

• To analyze the performance of the low complexity precoding schemes in terms

of spectral efficiency and bit error rate (BER).

4
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1.4 Summary of Contributions

The contributions of this thesis are focused on the design and performance analysis of

novel low complexity precoding schemes for massive MIMO systems. The following

list highlights and summarizes the main contributions of this thesis:

In Chapter 3, a low complexity hybrid precoding scheme is proposed for the

downlink transmission of massive multi-user MIMO systems with a finite dimen-

sional channel model. A tight upper bound on the spectral efficiency is derived and

the performance of hybrid precoding is investigated. Simulation results show that

the proposed hybrid precoding achieves spectral efficiency close to that achieved

by the optimal ZF precoding and performs better than existing hybrid precoding

schemes from the literature.

In Chapter 4, based on successive refinement, a new iterative hybrid precod-

ing scheme is proposed with a sub-connected architecture for mmWave massive

MIMO systems. Then an upper bound on the spectral efficiency is derived with a

closed-form expression. The energy efficiency and the complexity of different hybrid

precoding schemes are analyzed. Numerical results demonstrate that the proposed

hybrid precoding scheme approaches the performance of the optimal unconstrained

singular value decomposition (SVD) and has higher energy efficiency and better

BER performance than the fully-connected architecture.

In Chapter 5, the impact of one-bit ZF precoding is studied for massive MIMO

systems with the uplink and downlink hardware mismatch. The Bussgang theorem

and random matrix theorem are used to derive the closed-form expressions for the

achievable rate, through the evaluation of expectations and asymptotic deterministic

equivalents (ADEs) of a series of random variables. The numerical simulations

indicate the validation of the accuracy of the approximation expressions.

5



1.5 Organization of the Thesis

1.5 Organization of the Thesis

This thesis is organized as follows:

Chapter 2 provides the background theory and current research related to this

work. The fundamentals of massive MIMO are introduced and millimetre wave

communications are presented in detail. In addition, a comprehensive survey of the

precoding schemes is described, such as, linear precoding, non-linear precoding and

hybrid precoding, where the theoretical and methodological contributions to the

MIMO precoding are summarized.

Chapter 3 introduces a hybrid precoding design for an M -dimensional channel

model. By analyzing the structure of the channel model, the beamsteering code-

books are combined with extracting the phase of the conjugate transpose of the fast

fading matrix to design the RF precoder. Then the baseband precoder is designed

with ZF precoding based on the equivalent channel obtained from the product of the

RF precoder and the channel matrix. With perfect channel state information, the

spectral efficiency is analyzed and the performance of the proposed hybrid precoding

scheme is evaluated in simulation.

Chapter 4 presents an iterative hybrid precoding scheme with a sub-connected

architecture. Based on successive refinement, in each iteration, the first step is to

design the RF precoder and the second step is to design the baseband precoder.

The RF precoder is regarded as an input to update the baseband precoder until the

stopping criterion is triggered. Phase extraction is used to obtain the RF precoder

and then the baseband precoder is optimized by the orthogonal property. A com-

prehensive performance analysis is then carried out in terms of spectral efficiency,

energy efficiency and computational complexity.

Chapter 5 studies the impact of one-bit ZF precoding for massive MIMO systems

with the uplink and downlink hardware mismatch. With the use of low-resolution

DACs for each antenna and RF chain, the hardware complexity can be reduced ef-

fectively. Moreover, in more practical scenario, the hardware mismatch is considered

6



1.6 Publications Related to the Thesis

between the uplink and the downlink for the channel matrix, where the downlink

is not the transpose of the uplink in TDD mode. Based on these, using the Buss-

gang theorem and random matrix theorem, the closed-form analytical expressions

are derived for the achievable rate and the performance approximation.

Chapter 6 concludes the thesis and future work in this field is also presented.

1.6 Publications Related to the Thesis

1. Y. Chen, S. Boussakta, C. Tsimenidis, J. Chambers and S. Jin, “Low com-

plexity hybrid precoding in finite dimensional channel for massive MIMO sys-

tems”, in Proc. 25rd European Signal Processing Conference (EUSIPCO),

Kos, Greece, 2017.
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Chapter 2

Literature Review

2.1 MIMO Communications

MIMO communication systems were first investigated to focus on point-to-point

scenarios. At the transmitter, the serial data is transformed into several parallel

data sub-stream and sent by multiple transmit antennas. The multiplex signals

received by multiple receive antennas are processed in space and time domain and

then switched back to the serial original data at the receiver. The benefits offered by

multiple antennas are mainly to harvest the spatial diversity and spatial multiplex-

ing gains. The spatial diversity gain aims to enhance the communication reliability

by reducing BER [24] [25] and the spatial multiplexing gain contributes to substan-

tially increase the communication capacity of the system by multiplexing more data

streams [26].

With the development of MIMO communication technology, multi-user MIMO is

proposed [27], where a base station equipped with multiple antennas simultaneously

communicates with a set of single antenna mobile terminals. In multi-user MIMO

scenarios, the base station requires expensive equipment and the mobile terminals

can be relatively cheap using single antenna devices. Therefore, multi-user MIMO

is more practical to provide the high capacity, increased diversity and interference

suppression and being deployed throughout the world.

8



2.1 MIMO Communications

Point-to-point MIMO channel is shown in Fig. 2.1, where the numbers of the

transmitter antennas and the receiver antennas are denoted as Nt and Nr, re-

spectively. It is assumed that H ∈ CNr×Nt denotes the channel matrix and n ∼

CN(0, σ2
nINr) represents an additive white Gaussian noise vector with elements hav-

ing zero mean and σ2
n variance. The processed received signal can be written as

y = Hs + n, (2.1)

where y is the CNr×1 received signal vector and s is the CNt×1 transmitted signal

vector.

Pre-

processing

RF Chain

Ns

. . .

Nt

. . .

.  .  .

RF Chain

RF Chain

Post-

processing

RF Chain

Ns

. . .

RF Chain

RF Chain

H

.  .  .

Nr . . .

s y

Figure 2.1: Point-to-point MIMO system.

It is assumed that perfect channel state information is known at both transmitter

and receiver sides, the capacity of point-to-point MIMO systems can be expressed

as

C = log2det

(
I +

Pt
Nsσ2

n

HWHH

)
, (2.2)

where Pt is the total average transmit power, Ns is the number of transmitted

data streams and W is the power allocation matrix. W = diag{w1, w2, . . . , wNt}

with wi being different transmit power. The SVD of the channel matrix is H =

UΣVH [28], where U ∈ CNr×Nr and V ∈ CNt×Nt are unitary matrices and Σ is

an Nr × Nt diagonal matrix of singular values λi in descendant order. Therefore,

by decomposing the MIMO channel into Nmin single-input single-output (SISO)

9



2.2 Massive MIMO

channels, (2.2) can be written as

C =

Nmin∑
i=1

log2

(
1 +

Pt
Nsσ2

n

ŵiλ
2
i

)
, (2.3)

where Nmin = min(Nr, Nt) is the rank of channel matrix and ŵi is the optimal power

allocation value using the waterfilling algorithm to maximize the system capacity.

ŵi can be given as

ŵi = max

(
0, µ− Nsσ

2
n

Ptλ2i

)
, (2.4)

where µ is the waterfilling level, which is chosen to respect the total power constraint.

2.2 Massive MIMO

In recent years, massive MIMO, upgraded from the conventional MIMO technology,

has been widely studied to achieve substantial improvements in spectral efficiency

and energy efficiency [6] [7]. Massive MIMO was proposed by Thomas L.Marzetta

in 2010 [8], which employs an unprecedented number of base station antennas simul-

taneously to serve a smaller number of mobile terminals in the same channel. When

the number of base station antennas grows asymptotically to infinity, the effects of

uncorrelated noise, small-scale fading and intra-cell interference will be eliminated,

which makes the channel between the base station and each mobile terminal near-

orthogonal. Moreover, large antenna arrays can also achieve large multiplexing and

array gains.

Massive MIMO depends on spatial multiplexing, which further relies on the

base station to have perfect channel state information, both on the uplink and

downlink. Time-division duplex (TDD) is preferred in massive MIMO system, where

channel reciprocity can be exploited to get channel state information (CSI) from

channel estimation for the uplink. That means the mobile terminals could obtain

the same CSI directly for the downlink as it is estimated by using uplink received

10



2.2 Massive MIMO

pilots. Of course in practical, compared with the downlink CSI, the uplink CSI could

be inaccurate or outdated as the channel is fast time-varying, which would affect

the performance of the system. Unlike TDD, frequency-division duplexing (FDD),

where channel reciprocity cannot be exploitable, is less used. The reason is that the

overhead scales linearly with the number of antennas in FDD [29], which makes it

difficult to be deployed in massive MIMO system. Nonetheless, FDD mode is still

a promising research direction and many researchers have been working on it.

2.2.1 Multi-user Channel

Consider a multi-user massive MIMO system in a single cell scenario shown in

Fig. 2.2, where the base station is equipped with N antennas and serves K single-

antenna mobile terminals. The channel coefficient is denoted from the n-th antenna

of the base station to the k-th mobile terminal as hk,n:

hk,n =
√
dktk,n, (2.5)

where dk represents the real large-scale fading coefficients and tk,n represents the

Precoding

RF Chain

. . .

N

. . .

RF Chain

RF Chain

Mobile Terminal 1

Mobile Terminal 2

Mobile Terminal K

. . .

xd

H

sd

y2

y1

yK

. . .

K
K

Figure 2.2: Multiuser massive MIMO system.

complex small-scale fading coefficients. The large-scale fading accounts for path loss

and shadow fading, thus the fading coefficients D1/2 are assumed to be the same for

different base station antennas. The small-scale fading coefficients T are assumed

to be different for each mobile terminal and each antenna at the base station. Then,
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the downlink channel matrix H from the base station to all K mobile terminals can

be represented as the product of a K×K diagonal matrix D1/2 and a K×N matrix

T:

H = D1/2T, (2.6)

where

D =



d1

d2

. . .

dK


, (2.7)

T =


t1,1 · · · t1,N

...
. . .

...

tK,1 · · · tK,N

 . (2.8)

In the downlink transmission, the received signal yd can be written as

yd =
√
ρdHxd + nd, (2.9)

where xd = [xd1, x
d
2, · · · , xdN ]T is the vector of the transmitted signal with E[xdx

H
d ] =

IN , nd ∈ CK×1 represents an additive white Gaussian noise vector with elements

having zero mean and unit variance and ρd is the downlink transmit power.

The channel state information is assumed to be known at both base station

and mobile terminals. Therefore, in order to maximize the sum transmission rate,

the sum capacity of the downlink multi-user massive MIMO systems with power

allocations is defined as [4] [30]

C = max
W

log2det(IN + ρdH
HWH), (2.10)
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2.2 Massive MIMO

where W is a positive diagonal matrix whose diagonal elements (w1, w2, · · · , wK)

represent the power allocations for each mobile terminal. The power constraint is

denoted as
∑K

k=1wk = 1. In multi-user massive MIMO systems, the number of

base station antennas N tends to infinity [8], which exceeds the number of mobile

terminals. Because the small-scale fading coefficients of T are independent for dif-

ferent mobile terminals, the row-vectors of the channel matrix for different mobile

terminals are asymptotically orthogonal, hence [31]

HHH = D1/2TTHD1/2

≈ ND1/2IKD1/2

= ND. (2.11)

Then the asymptotic sum capacity can be expressed as

C ≈ max
W

log2det(IK + ρdNWD). (2.12)

For simplicity, matched filter (MF) precoder is used to process the vector of signal

for all mobile terminals and the transmitted signal is given by

xd = PD−1/2W1/2sd

= HHD−1/2W1/2sd, (2.13)

where sd ∈ CK×1 is the vector of source signal and P is the precoding matrix. The

processed received signal in (2.9) can be rewritten as

yd =
√
ρdHHHD−1/2W1/2sd + nd

≈ √ρdND1/2W1/2sd + nd. (2.14)

From (2.12), due to the diagonal matrices W and D, the MIMO transmission from
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2.2 Massive MIMO

the base station to all mobile terminals can be decomposed to multiple SISO trans-

mission. When the power allocation is optimized, the sum capacity can be maxi-

mized to achieve capacity optimization.

In the uplink transmission, TDD operation is assumed, thus the uplink channel

matrix is the transpose of the downlink channel matrix. The received signal vector

yu can be described as

yu =
√
ρuH

Txu + nu, (2.15)

where xu = [xu1 , x
u
2 , · · · , xuK ]T is the vector of the transmitted signal from all the

mobile terminals to the base station with E[|xuk|2] = 1, nu ∈ CN×1 represents an

additive white Gaussian noise vector with elements having zero mean and unit vari-

ance and ρu is the uplink transmit power. Assuming that the base station knows

the CSI, the capacity for the uplink is

C = log2det(IK + ρuH
∗HT ). (2.16)

Based on the result in (2.11), the asymptotic capacity is given by

C ≈ log2det(IK +NρuD)

=
K∑
k=1

log2(1 +Nρudk). (2.17)

Due to the asymptotic orthogonality of the channel vectors, MF processing at

the base station becomes asymptotically optimal. Therefore, the processed received

signal is the product of the conjugate-transpose of the uplink channel matrix and

the received signal vector, as

H∗yu = H∗(
√
ρuH

Txu + nu)

≈ N
√
ρuDxu + H∗nu. (2.18)
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2.2 Massive MIMO

From (2.18), the processed received signals from different mobile terminals are effi-

ciently and perfectly separated into different streams and the inter-user interference

is asymptotically neglected. The signal transmission from each mobile terminal can

be considered as a SISO channel with SNR = Nρudk.

2.2.2 Millimetre Wave Channel

The exponentially growth in communication traffic has exacerbated spectrum con-

gestion in current frequency bands, thus new spectrum bands are exploited for future

communications. MmWave wireless communications have been demonstrated as a

promising approach to solve the spectrum congestion problem, which make the use

of spectrum from 30 GHz to 300 GHz [17, 18, 32, 33]. Recent studies show that

mmWave frequencies can be used to augment the current microwave frequencies in

the range between 700 MHz - 2.6 GHz and the comparison of available bandwidth

at microwave and mmWave frequencies is shown in Table 2.1 [34].

On one hand, the use of mmWave frequencies in wireless communications still

needs to overcome some technical difficulties. Because of the atmospheric absorp-

tion [35], rain attenuation [36] and low penetration, the ten-fold increase in carrier

frequency will suffer from less favourable propagation loss [34] [37], which is much

higher than that of conventional frequency bands. On the other hand, the decreased

wavelength of mmWave enables a large antenna array to be packed in small physi-

cal dimension [18]. The large antenna array can provide sufficient antenna gain to

overcome the severe path loss of mmWave channel. Further, by the use of precod-

ing techniques, the large antenna array may support the transmission of multiple

data streams to improve spectral efficiency and allow systems to approach capac-

ity [10] [38].

In the mmWave systems, due to the practical consideration of the high frequency

and bandwidth, there are new constraints on the hardware, such as power consump-

tion and circuit technology, which stimulate intensive interest in overcoming these

15



2.2 Massive MIMO

Table 2.1: The Comparison of Available Bandwidth at Microwave and MmWave
Frequencies

Band Generation
Wavelength

(m)

Frequency

Range (GHz)

Available

Bandwidth (GHz)

0.3750 0.791 - 0.862
2G

0.3333 0.880 - 0.959

3G 0.1667 1.710 - 1.880

0.1429 1.920 - 2.169
4G

0.1154 2.500 - 2.690

0.5000 0.470 - 0.694

0.4286 0.694 - 0.790

0.2000 1.427 - 1.518

0.0857 3.300 - 3.800

0.0638 4.500 - 4.990

microwave

5G

0.0536 5.500 - 5.700

2.5

0.0130 22.55 - 23.55

0.0107 27.50 - 31.23

0.0079 38.6 - 40.0

0.0075 40.5 - 42.5

0.0065 45.5 - 46.9

0.0064 47.2 - 48.2

0.0061 48.2 - 50.2

0.0041 71 - 76

0.0036 81 - 86

mmWave 5G

0.0032 92 - 95

23
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2.2 Massive MIMO

constraints. In order to reduce the number of digital-to-analog converters and their

resolutions, the signal processing operations can be partitioned into digital and ana-

log domains, which lead to the research on hybrid precoding schemes, beamspace

signal processing [39] and low resolution DAC methods. Moreover, since the phase

sifters may suffer from quantized phase and insertion loss [40], the performance

analysis of the impairments of the analog components and the novel algorithms

which can achieve good performance even in presence of impairments are promising

research areas.

2.2.2.1 Propagation Characteristics

For mmWave massive MIMO systems with free space propagation, based on the

Friis’ Law [41], the ratio between received power Pr and transmitted power Pt is

given by

Pr
Pt

= GrGt

(
λ

4πd

)2

, (2.19)

where Gr and Gt are the receive and transmit antenna gains, respectively, λ is the

wavelength and d is the distance between transmitter and receiver. The path loss

in (2.19) is given by 16π2(d/λ)2, which implies that if the system is operated at

two different frequencies with the same transmitter and receiver gains, mmWave

propagation will experience a higher path loss than conventional lower frequencies.

MmWave signals are very susceptible to blockages, because the reduced diffrac-

tion and specular propagation are exhibited in mmWave frequencies, which will lead

to a nearly bimodal channel based on the presence or absence of line-of-sight. Due

to the sensitivity to blockages, the transmission link can be easily influenced.

However, mmWave frequencies with shorter wavelengths lead to a tremendous

increase in the number of antenna elements within the same physical area, which can

provide higher array gains to compensate large path loss values. For an N -element

uniform linear array (ULA) with constant length L, we define the inter-element
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2.2 Massive MIMO

spacing is λ/2, thus the number of elements N can be expressed as

N =
2L

λ
. (2.20)

The array gains are proportional to the number of elements N . Therefore, the higher

array gains at high frequencies can compensate for the increased path loss in free

space propagation.

The research on mmWave propagation characteristics has captured the attention

of researchers over the past years. In small cell scenarios, for distance of up to

200m, the path loss with mmWave frequencies achieves as good performance as

conventional cellular frequencies [17,42,43], which shows the feasibility of mmWave

system in outdoor urban environments. For the urban cellular deployments, the

absorption of atmospheric and rain can be beneficial because it further attenuates

interference from more distant base stations. In addition, the limitation of mmWave,

which can not penetrate brick and concrete, may make the mmWave cells located

strictly indoor or strictly outdoor.

2.2.2.2 Channel Model

Due to the high free space path loss, mmWave propagation suffers from the limited

spatial selectivity or scattering. The large antenna array is implemented to combat

the high path loss, which leads to high levels of antenna correlation. In sparse

scattering environments, the large antenna array makes many of the statistical fading

distributions used in traditional MIMO analysis inaccurate for mmWave channel.

Therefore, a clustered mmWave channel model is introduced to characterize its key

features.

When describing the channel model for mmWave systems with Nt transmit and

Nr receive antennas, we generally refer to the array response vectors as a function of

the antenna array structure only. For an N -element ULA, the array response vector
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can be given by [14]

a(θ) =
1√
N

[1, ej
2π
λ
dsin(θ), ej

4π
λ
dsin(θ), · · · , ej(N−1)

2π
λ
dsin(θ)]T , (2.21)

where λ is the wavelength of the signal and d denotes the distance between any

two adjacent antenna elements and θ is the physical angle of arrival or departure.

Based on the form of (2.21), the channel matrix is assumed to be the sum of all

Nc scattering clusters, where each cluster contributes Np propagation paths. Under

these circumstances, the mmWave channel model can be defined as [10,44,45]

H =

√
NtNr

NcNp

Nc∑
i=1

Np∑
j=1

βijΛr(θij)Λt(φij)ar(θij)at(φij)
H , (2.22)

where βij is the complex gain of the j-th path in the i-th scattering cluster. θij

and φij represent the azimuth angles of arrival and departure, respectively. The

functions Λr(θij) and Λt(φij) are the receive and transmit antenna element gains at

the azimuth angles of θij and φij, respectively. ar(θij) and at(φij) are the receive

and transmit array response vectors at the azimuth angles of arrival and departure.

In terms of the Np azimuth angles of arrival and departure in the i-th cluster,

θij and φij are assumed to be randomly distributed with a uniformly random mean

values of θi and φi, respectively. The ranges of θij and φij are defined as [θmin, θmax]

and [φmin, φmax]. In addition, the angular spreads of θij and φij in all clusters are

assumed to be constant with σθ and σφ. The distribution for the angles of arrival

and departure is found that the Laplacian distribution is a good choice to generate

all the θij’s and φij’s [46]. Based on these definitions, it is assumed that the transmit

and receive antenna elements are modelled as being ideal sectored elements. Thus,

Λt(φij) can be given by [10]

Λt(φij) =

 1 ∀φij ∈ [φmin, φmax],

0 otherwise,

(2.23)
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and Λr(θij) can be given by

Λr(θij) =

 1 ∀θij ∈ [θmin, θmax],

0 otherwise,

(2.24)

where the transmit and receive antenna element gains are unit over the azimuth

sectors.

2.2.3 Potentials and Challenges

2.2.3.1 Potentials

1) Massive MIMO has the capability that it can improve the energy efficiency

by 100 times and increase the capacity by 10 times or more [47]. In massive

MIMO systems, the spatial multiplexing technique leads to the increase in

capacity. The improvement of energy efficiency is because the energy can be

concentrated in small regions in the space, with the large number of anten-

nas. Based on the coherent superposition of wavefronts, after sending out the

shaped signals from the antennas, the base station can confirm that all the

wavefronts emitted from the antennas will add up constructively at the in-

tended terminals’ locations and destructively elsewhere. In order to suppress

the interference between mobile terminals, ZF algorithm is used at the cost of

increased transmitted power.

Besides ZF, MF is also a good choice for massive MIMO systems, because

it reduces the computational complexity with multiplication of the received

signals by the conjugate channel responses and is performed in a distributed

mode, independently at every antenna element. Although MF performs worse

than ZF for the conventional MIMO systems, it works well for massive MIMO

systems, because, with large number of base station antennas, the channel

responses with different mobile terminals tend to be almost orthogonal. With
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MF algorithm, the power can be scaled down as much as possible without

seriously affecting the overall spectral efficiency and multi-user interference.

Compared to conventional MIMO systems, massive MIMO achieves the overall

10 times higher spectral efficiency, because the systems serve more terminals

simultaneously in the same time frequency resource [48].

2) Massive MIMO systems can be built with low-cost and low-power components.

In conventional MIMO systems, the base station equips with few antennas,

which are fed from high power amplifiers. However, in massive MIMO systems,

a large number of antennas lead to hundreds of amplifiers, thus it is infeasible

to use high power amplifiers. In order to overcome the problem, the low-

cost amplifiers with output power in the milliwatt range are used in massive

MIMO systems. Using a large number of antennas, the limits on accuracy and

linearity of every amplifier and RF chain are reduced and their combination

action becomes more significant. Moreover, the noise, fading and hardware

imperfections are averaged with the signals from a large number of antennas

combined together in the free space, which increase the robustness of massive

MIMO systems.

In addition, in order to reduce the huge energy consumed by the cellular base

stations, the renewable resources such as solar or wind can be used to consume

less power. If the base stations are deployed to the places where electricity

is not available, the renewable resources can be a good choice to address this

problem. Along with this, the electromagnetic interference generated by the

base stations can also be substantially reduced.

3) Massive MIMO permits a significant decrease in latency on the air interface.

When the signal is transmitted from the base station to the terminal, it will

travel through multiple paths, which results from the scattering, reflection

and diffraction. The fading makes the wireless communication systems suffer
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from latency, because the strength of the signal through different paths can

be reduced to a considerable low point. If the terminal is trapped in a fading

dip, it has to wait until the transmission channel changes until any data can

be received. However, in massive MIMO systems, based on the large antenna

arrays, beamforming can effectively avoid fading dip and further decrease the

latency [4].

Massive MIMO can also simplify the multiple access layer. Thanks to the

use of large antenna arrays, the channel strengthens and the frequency do-

main scheduling is not suitable. In orthogonal frequency division multiplex-

ing (OFDM) systems, massive MIMO provides each subcarrier with the same

channel gain, because each terminal can be provided with the whole band-

width. Therefore, most of the physical layer control signalling can be redun-

dant [4].

4) Massive MIMO increases the strength against the unintended man-made inter-

ference and intentional jamming. For the cyber security, intentional jamming

is a growing concern. Massive MIMO can provide the methods to improve ro-

bustness of wireless communications by the multiple antennas. Massive MIMO

also offers an excess of degrees of freedom to cancel the signals from intended

jammers. Using joint channel estimation and decoding, massive MIMO sys-

tems can reduce the harmful interference by smart jammers, instead of the

conventional uplink pilots of channel estimation [47].

2.2.3.2 Challenges

1) Channel State Information Acquisition:

Due to channel estimation and feedback issues, the TDD transmission mode

relying on channel reciprocity is regarded almost as a requirement for realistic

implementations of massive MIMO systems [49] [50]. Channel reciprocity can

be exploited to get CSI from channel estimation for the uplink. That means
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the mobile terminals could obtain the same CSI directly for the downlink as it

is estimated by using uplink received pilots. Of course in practical, compared

with the downlink CSI, the uplink CSI could be inaccurate or outdated as

the channel is fast time-varying, which would affect the performance of the

system.

Unlike TDD, in the FDD transmission mode, channel reciprocity cannot be

exploitable, where the downlink and uplink transmissions operate at different

frequencies [51]. Using FDD, the uplink and downlink channels are charac-

terized by two separate channel matrices. For the uplink channel estimation,

all terminals send different pilot sequences to the base station and the time

required for uplink pilot transmission is independent of the number of base

station antennas. For the downlink channel estimation, the time required for

downlink pilot transmission is proportional to the number of base station an-

tennas, because the pilot signals are transmitted from the base station to all

terminals first and then all terminals feed back estimated CSI for the downlink

channels to the base station. The whole coherence time may be used for the

downlink channel estimation, leaving no time for data transmission. There-

fore, in massive MIMO systems, the large antenna arrays make the FDD mode

infeasible.

However, the research on the FDD transmission has captured the attention of

researchers as a very interesting approach in massive MIMO systems. There

are several possible methods to enable FDD mode. One way is to design effi-

cient precoding schemes based on partial CSI or even no CSI. Another way is

to use the idea of compressed sensing to reduce the feedback overhead. There-

fore, more investigations of the challenges and feasibility for FDD operation

in massive MIMO are needed.

2) Pilot Contamination:
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In typical multi-cell massive MIMO systems, the pilot sequences employed by

the terminals in adjacent cells may no longer be orthogonal to those within

the cell, because the number of orthogonal pilots is smaller than the number

of terminals. This inevitably causes interference among pilots in different

cells and incurs an ultimate limitation to obtain optimal system performance

and sufficiently accurate channel estimation for the uplink, leading to the

pilot contamination problem [7]. The channel parameters are estimated from

not only the desired link in the target cell but also the interference links in

neighbouring cells. The interference rejection performance on massive MIMO

systems is challenging in practice due to huge CSI signalling overhead and

backhaul signalling latency.

In the multi-cell scenario, it is assumed that the pilot sequence of the k-th

terminal in the l-th cell is ψk,l = [ψ1
k,l, ψ

2
k,l, · · · , ψτk,l]T , where τ denotes the

length of the pilot sequence. In terms of non-interference between terminals,

the pilot sequences employed by the terminals within the same cell and between

neighbouring cells are orthogonal, thus

ψH
k,lψi,j = δ[k − i]δ[l − j], (2.25)

where δ[·] is defined as

δ[x] =

 1 x = 0,

0 x 6= 0.

(2.26)

Therefore, the base station can obtain the estimation of the channel matrix

without pilot contamination. However, if the period and bandwidth are lim-

ited, the number of orthogonal pilot sequences limits the number of terminals

that can be served by the multi-cell multi-user systems. In massive MIMO

systems, the base stations are expected to serve more terminals, thus non-
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orthogonal pilot sequences are utilized in adjacent cells. In this case, suffering

from pilot contamination,

ψH
k,lψi,j 6= 0. (2.27)

Thus, the estimation of channel matrix will be affected by the non-orthogonal

pilot sequences.

Recently, various approaches are proposed to reduce and even eliminate the

pilot contamination phenomenon. For example, the efficient channel estima-

tion algorithms or blind transmission techniques that circumvent the use of

pilots can be used to mitigate the influence of pilot contamination. The pilot

contamination precoding is also a promising method to reduce the interference

with cooperative transmission.

3) Hardware and Computational Complexity

With hundreds of antennas at the base station, massive MIMO systems require

hundreds of RF chains, which include a large number of digital-to-analog con-

vertors, mixers and power amplifiers. This leads to huge power consumption,

hardware cost and complexity. Therefore, the need for cheaper and low power

hardware becomes a significant factor for massive MIMO systems. To re-

duce implementation cost and complexity without obvious performance loss,

an electromagnetic lens antenna is proposed in [52] [53] to provide spatial

multipath separation and energy focusing functions.

In addition, the computational complexity of precoding schemes increases to-

gether with the number of antennas at the base station. Therefore, the design

of low complexity precoding algorithms is needed in massive MIMO systems,

which reduces the time for data transmission. Moreover, the hybrid precoding

schemes can also contribute to reduce the hardware complexity by reducing

the number of RF chains.
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2.3 MIMO Precoding

Precoding is a generalization of beamforming to support multi-stream transmission

in multi-antenna wireless communications. In multi-user MIMO systems, precoding

techniques are generally preferred for the downlink communications. The precoding

techniques are applied at the source signals before they are transmitted which can

overcome the interference between mobile terminals. Moreover, because the base

station has high computing ability and power supply, precoding is a reliable tech-

nique that exploits the channel state information available at the transmitting side

in order to be convenient for signal detection at the receiving side, which can reduce

the burdens of signal processing and simplify the structure at the mobile terminals.

For regular MIMO systems, precoding techniques can be divided into two cate-

gories, linear precoding [54–56] and non-linear precoding [57] and there are essential

differences between them. Linear precoding has poor performance with low imple-

mentation complexity, while non-linear precoding has good performance with high

implementation complexity. Theoretical analysis illustrates that the non-linear pre-

coding methods such as Dirty Paper Coding (DPC) could achieve the capacity of

MIMO Gaussian broadcast channel [58]. In massive MIMO systems, linear precod-

ing schemes are shown to be near-optimal with the large antenna arrays. Thus, it is

more practical to use low complexity linear precoding techniques in massive MIMO

systems. However, the use of linear precoding brings us new problems in massive

MIMO systems, which makes the systems suffer from excessively high hardware cost

and power consumption. Then we introduce some efficient hybrid precoding schemes

to overcome the constraints of hardware complexity.

2.3.1 Linear Precoding

With the perfect CSI known at the transmitter, we define the transmitted signal x

is derived as a linear combination of the source signal s. Therefore, the transmitted

26



2.3 MIMO Precoding

signal can be calculated as

x = Ps, (2.28)

where P is the precoding matrix. Since the transmitted power is limited by Pt, the

precoding matrix has to be designed to satisfy the transmit power constraint, that

is

E[‖Ps‖22] = Pt. (2.29)

Some fundamental linear precoding techniques are introduced for MIMO communi-

cations as follows.

MF is the simplest linear precoding scheme to maximize the received SNR, ig-

noring multi-user interference. The MF precoding matrix PMF can be computed as

the Hermitian of the channel matrix H,

PMF =
1

βMF

HH , (2.30)

where βMF = 1√
Pt

√
tr(HHH) is a power normalization factor.

In multi-user scenarios, if each terminal is equipped with a single antenna, inter-

ferences from other signals cannot be cancelled. In order to deal with the multi-user

interference, ZF precoding is widely used. The ZF precoding matrix PZF can be

computed as the pseudoinverse of the channel matrix,

PZF =
1

βZF
HH(HHH)−1, (2.31)

where βZF = 1√
Pt

√
tr((HHH)−1) is a power normalization factor. ZF precoding tech-

nique is attractive due to their simplicity, however, when the terminals are equipped

with multiple antennas, block diagonalization (BD) method is more suitable. It is
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defined that the base station with Nt antennas serves K terminals in the commu-

nication systems. The number of antennas for each terminal is Nr. For the i-th

terminal, the received signal yi ∈ CNr×1 can be expressed as

yi = Hi

K∑
k=1

PBD
k xk + ni, (2.32)

where Hi ∈ CNr×Nt is the channel matrix between the base station and the i-

th terminal, PBD
k ∈ CNt×Nr is the BD precoding matrix for the k-th terminal,

xk ∈ CNr×1 is the source signal vector and ni ∈ CNr×1 is the noise vector. The

equivalent combined channel matrix of all terminals is given by

H =



H1 H1 · · · H1

H2 H2 · · · H2

...
...

. . .
...

HK HK · · · HK


. (2.33)

Therefore, the received signals for all terminals are written as



y1

y2

...

yK


=



H1 H1 · · · H1

H2 H2 · · · H2

...
...

. . .
...

HK HK · · · HK





PBD
1 x1

PBD
2 x2

...

PBD
K xK


+



n1

n2

...

nK



=



H1P
BD
1 H1P

BD
2 · · · H1P

BD
K

H2P
BD
1 H2P

BD
2 · · · H2P

BD
K

...
...

. . .
...

HKPBD
1 HKPBD

2 · · · HKPBD
K





x1

x2

...

xK


+



n1

n2

...

nK


. (2.34)

Based on (2.34), a matrix H−i is constructed excluding the channel matrix of i-th
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terminal as

H−i = [HH
1 · · ·HH

i−1H
H
i+1 · · ·HH

K ]H , (2.35)

where H−i ∈ C(Nt−Nr)×Nt and Nt = KNr. In order to eliminate the multi-user

interference, BD method is used to make the off-diagonal term HiP
BD
j in (2.34)

equal to 0Nr×Nr . Thus, (2.35) should be satisfied with the constraint

H−iPBD
i = 0(Nt−Nr)×Nr , i = 1, 2, · · · , K. (2.36)

This implies that the precoding matrix PBD
i must be designed to lie in the null space

of H−i. With the use of BD, the received signals for all terminals can be rewritten

as



y1

y2

...

yK


=



H1P
BD
1 0 · · · 0

0 H2P
BD
2 · · · 0

...
...

. . .
...

0 0 · · · HKPBD
K





x1

x2

...

xK


+



n1

n2

...

nK


. (2.37)

In terms of the design of BD precoding matrix, it is assumed the rank of H−i is

Nrank = Nt −Nr. The SVD of H−i can be expressed as

H−i = UiΣiV
H
i

= UiΣi

[
V

(1)
i V

(2)
i

]H
, (2.38)

where Ui is an Nrank×Nrank unitary matrix, Vi is an Nt×Nt unitary matrix and Σi

is an Nrank×Nt diagonal matrix of singular values in descendant order. Vi is divided

into two parts, V
(1)
i ∈ CNt×Nrank consists of the Nrank non-zero singular vectors and
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V
(2)
i ∈ CNt×Nr consists of the Nr zero singular vectors. Multiplying H−i with V

(2)
i ,

H−iV
(2)
i = Ui

[
Σ

(1)
i 0

] V
(1)H

i

V
(2)H

i

V
(2)
i

= UiΣ
(1)
i V

(1)H

i V
(2)
i

= UiΣ
(1)
i 0

= 0, (2.39)

where Σ
(1)
i is the first partition of dimension Nrank × Nrank. Thus, V

(2)
i forms an

orthogonal for the null space of H−i and PBD
i = V

(2)
i can be used for precoding

the signal of the i-th terminal with BD constraint. However, the main computa-

tional complexity of BD precoding comes from the SVD operation, which makes the

computational complexity increase with the number of terminals and the system

dimensions.

2.3.2 Non-linear Precoding

Compared with linear precoding methods, non-linear methods, such as DPC [29],

Tomlinson-Harashima (TH) precoding and vector perturbation (VP) offer significant

sum-rates benefits, however, with the use of non-linear operations, the systems will

suffer from higher implementation complexity.

DPC method was proposed by Costa in 1983, which showed that if the interfer-

ence is known to the transmitter, the theoretical channel capacity can be achieved

and the effect of the interference can be cancelled. In multi-user systems, when

designing precoding matrix for the k-th terminal, the interferences caused by the

first up to (k − 1)-th terminals are considered to be cancelled. In addition, such

remarkable performance can be achieved without the need of additional power in

transmission nor of shared CSI with the receiver. However, DPC is infeasible in

practical, because it requires infinite length codewords and complicated methods for
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signal processing.

TH precoding is an equalization technique originally proposed to cancel the inter-

symbol interference. In MIMO systems, TH precoding can be used to eliminate

the interference between different sub-channels. Although TH precoding suffers a

performance loss compared to DPC, it is feasible to implement in practice instead

of DPC method.

modτ+

B - I

F + modτ

n

s  𝒙 r  𝐬
H G

Figure 2.3: The block diagram of TH precoding based on LQ decomposition.

Fig. 2.3 shows the structure of TH precoding and we assume the numbers of

transmitter and receiver antennas are equal to N for simplicity. TH precoding can

be implemented on the basis of LQ decomposition, thus, the channel matrix H is

decomposed into the multiplication of a lower triangular matrix L and a unitary

matrix Q,

H = LQ. (2.40)

A scaling matrix G is defined to contain the corresponding weighted coefficient for

each stream. Thus it should have a diagonal structure and the diagonal elements is

corresponding to the inverse of the diagonal elements of L, which is given by

G =



l−111 0 · · · 0

0 l−122 · · · 0

...
...

. . .
...

0 0 · · · l−1NN


, (2.41)

where lii is the i-th diagonal element of the matrix L. The feedback matrix B is
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the product of G and L, which is utilized to cancel the interference caused by the

previous streams from the current stream. The feedback matrix B is computed as

B = GL. (2.42)

Therefore, the matrix B is a lower triangular matrix with ones on the main diagonal.

It is defined the feedforward matrix F as the conjugate transpose of the unitary

matrix Q, because the power of the transmitted signal keeps constant using the

unitary matrix. The feedforward matrix F is implemented at the transmitter to

enforce the spatial causality.

It is assumed that s = [s1, s2, · · · , sN ]T is the source signal and x̃ = [x̃1, x̃2, · · · , x̃N ]T

is the pre-signal. Based on the idea of serial interference cancellation, the interfer-

ence of the transmit signals can be cancelled and the amplitude of pre-signals can

be also limited by modulus operation. The pre-signal x̃ is computed as

x̃1 = s1

x̃2 = modτ [s2 − b2,1x̃1]

...

x̃i = modτ

[
si −

i−1∑
j=1

bi,jx̃j

]
...

x̃N = modτ

[
sN −

N−1∑
j=1

bN,jx̃j

]
, (2.43)

where bi,j is the element of the matrix B in i-th row and j-th column and modτ

is the function of modulus operation to adjust the transmission power. τ is a real

number that depends on the chosen modulation. From (2.43), the i-th terminal

needs to cancel the interferences caused by the first up to (i−1)-th terminals, which

is similar to DPC method.
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With the effect of the modulus operation, a modified source signal can be ob-

tained by adding a perturbation vector d to the source signal s, which is given

by

v = s + d. (2.44)

Based on Fig. 2.3, the feedback processing is mathematically equivalent to an inver-

sion operation B−1, thus the received signal can be expressed as

r = G(HFB−1v + n)

= GHFB−1v + Gn. (2.45)

Finally, the receiver needs to apply an additional modulo operation in order to

estimate the received signal.

In addition, [59] proposed a new non-linear precoding method called VP ap-

proach. When using VP, a perturbation vector is added to the source signal vector.

However, the perturbation vector can not be arbitrary, because this vector is not

known to the receivers, thus the receivers cannot eliminate the effect of the pertur-

bation effectively. Based on TH precoding, the elements of the source signal are

perturbed by an integer, then the effect of the perturbation vector can be elimi-

nated by the modulus operation at the receiver. Assume the channel matrix is H

of dimension N ×N and the source signal vector is s of dimension N × 1 , and the

perturbed signal vector s̃ is written by

s̃ = s + τ l, (2.46)

where τ is a positive real number and l is a N -dimensional complex integer vector.
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Based on the ZF-VP, the transmitted signal x is given by

x =
1
√
γ

HH(HHH)−1s̃, (2.47)

where γ = ‖HH(HHH)−1s̃‖2F is the power of the transmitted signal vector. Then

the received signal vector y is expressed as

y =
√
γ(Hx + n)

=
√
γ(

1
√
γ

HHH(HHH)−1s̃ + n)

= s̃ +
√
γn, (2.48)

where n is the noise vector. After the received signal is processed by the modulus

operation, ignoring the effect of n,

modτ (y) = modτ (s + τ l) = s, (2.49)

where τ is a real number that depends on the chosen modulation. Therefore, we

can recover the source signal with VP method. From (2.48),
√
γ is the main factor

to design the perturbation vector l. If γ is very large, the system performance will

degrades significantly. Thus the transmit power normalization γ is minimized to

design the optimal perturbation vector l,

l = arg min
l
γ

= arg min
l
‖HH(HHH)−1s̃‖2F

= arg min
l
‖HH(HHH)−1(s + τ l)‖2F . (2.50)

The choice of l is a N -dimensional integer-lattice least-squares problem, for which

there exist a large number of approximate algorithms.
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2.3.3 Hybrid Precoding

In mmWave MIMO system with a large number of antennas, the conventional linear

and non-linear precoding schemes are infeasible, because the system will suffer from

prohibitively high energy consumption and hardware complexity. To solve this prob-

lem, the hybrid precoding schemes are proposed to reduce the number of RF chains,

with cost-effective variable phase shifters employed to handle the mismatch between

the number of antennas and RF chains. The comparison between conventional

precoding and hybrid precoding is shown in Fig. 2.4, where NRF << Nt. Hybrid

precoding exploits a high-dimensional phase-only RF precoder in the analog domain

and a low-dimensional baseband precoder in the digital domain. The transmitted

signals are precoded by the baseband precoding first to guarantee the performance,

and then precoded by the RF precoding to save the energy consumption and reduce

the hardware complexity.

In mmWave massive MIMO systems, [60] and [10] use hybrid methods to obtain

near optimal SVD performance, which decompose the optimal precoder and com-

biner through the concept of orthogonal matching pursuit. Due to the high complex-

ity of searching columns of the overcomplete matrix in [10], a low-complexity hybrid

sparse precoding method is proposed in [61] using a greedy method with the element-

wise normalization of the first singular vector of the residual. Unlike the point-to-

point MIMO systems, the multi-user MIMO systems not only suffer from the noise

and inter-antenna interference but are also influenced by the multi-user interference.

Thus, the methods above are not suitable for the multi-user scenario. Several hy-

brid precoding schemes are proposed to solve the problem. In [14], limited feedback

hybrid precoding is proposed with short training and feedback overhead to achieve

near optimal block diagonalization performance. A phased ZF precoding in [9] ap-

plies phase-only control at the RF domain and then performs a low-dimensional

baseband ZF precoding based on the effective channel seen from baseband, which

approaches the performance of the virtually optimal full complexity ZF precoding
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in a massive multi-user MIMO scenario.

Conventional

Precoder

RF Chain

RF Chain

Ns

. . .

. . .

RF Chain

Nt

(a) Conventional precoding scheme

Baseband

Precoder

RF Chain

RF Chain

Ns

. . .

. . .NRF

RF

Precoder

RF Chain

Nt

. . .

(b) Hybrid precoding scheme

Figure 2.4: The comparison between conventional precoding and hybrid precoding
schemes.

The precoding schemes above are called fully-connected architecture, which means

each RF chain is connected to all base station antennas. When the base station an-

tenna number is fairly large, the fully-connected architecture requires a large number

of phase shifters for the RF precoder, which leads to both high energy consumption

and hardware complexity. In order to further reduce the energy consumption and

hardware complexity, the hybrid precoding design with sub-connected architecture is

considered in mmWave massive MIMO systems. In the sub-connected architecture,

each RF chain is connected to only a subset of base station antennas, instead of all

base station antennas. The advantage of the sub-connected architecture is to reduce

the number of required phase shifters, which can be more energy-efficient and more

practical for antenna deployment. In [19], some hybrid MIMO architectures are pro-

posed to reduce the cost, complexity, and power consumption of mmWave MIMO

systems, while incurring small loss in the system performance. The constraints on

the original hybrid precoding problem with sub-connected architecture is different
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from that with fully-connected architecture. Focusing on the optimization of achiev-

able capacity, [62] proposes a successive interference cancellation (SIC)-based hybrid

precoding with near-optimal performance and low complexity.

In this section, two effective hybrid precoding schemes are introduced in detail. In

point-to-point communication scenario, formulating the achievable rate optimization

problem as a sparse approximation problem, the spatially sparse precoding can

obtain near optimal SVD performance through the concept of orthogonal matching

pursuit. In multi-user communication scenario, limited feedback hybrid precoding is

proposed to achieve near optimal block diagonalization performance, which involves

an iterative searching procedure among the predefined codebook.

2.3.3.1 Spatially Sparse Precoding

In point-to-point massive MIMO scenario, the mmWave channel matrix H is defined

as (2.22) and the spectral efficiency is given by

R = log2 det

(
INs +

Pt
Ns

R−1n WH
BBWH

RFHFRFFBBFH
BBFH

RFHHWRFWBB

)
, (2.51)

where Ns is the number of data streams from the transmitter with Nt antennas to

the receiver with Nr antennas. WRF is the Nr × NRF
r RF combining matrix and

WBB is the NRF
r ×Ns baseband combining matrix, where NRF

r is the number of RF

chains at the receiver. FRF is the Nt × NRF
t RF precoding matrix and FBB is the

NRF
t × Ns baseband precoding matrix, where NRF

t is the number of RF chains at

the transmitter. Rn = σ2
nW

H
BBWH

RFWRFWBB is the noise covariance matrix after

combining.

The hybrid precoding scheme proposed in [10] is design to maximize the spectral

efficiency expression in (2.51). To simplify the design, assuming that the optimal

combiners are used at the receiver, the hybrid precoding is design to maximize the

mutual information. The mutual information is equivalent to the spectral efficiency
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over MIMO channel when Gaussian inputs are used, which is expressed as

I = log2 det

(
INs +

Pt
Nsσ2

n

HFRFFBBFH
BBFH

RFHH

)
. (2.52)

Therefore, the precoding optimization problem can be stated as

max
FRF,FBB

I, (2.53)

s.t. ‖FRFFBB‖2F = Ns,

FRF ∈ FRF,

where FRF is the set of matrices with all constant amplitude entries.

To obtain the optimal unconstrained precoder Fopt, the SVD of the channel

matrix H = UΣVH is considered, where U is an Nr × Nr unitary matrix, Σ is an

Nr×Nt diagonal matrix of singular values in descendant order and V is an Nt×Nt

unitary matrix. Therefore, (2.52) can be rewritten as

I = log2 det

(
INs +

Pt
Nsσ2

n

Σ2VHFRFFBBFH
BBFH

RFV

)
. (2.54)

The matrices Σ and V are defined as

Σ =

 Σ1 0

0 Σ2

 ,V =

[
V1 V2

]
, (2.55)

where Σ1 is the first partition of dimension Ns ×Ns and V1 is the first Ns columns

of V. The optimal precoder can be simply given by

Fopt = V1. (2.56)

In order to find practical near-optimal precoders that can be implemented in Fig. 2.4(b),

the hybrid precoder FRFFBB can be made sufficiently close to the optimal precoder
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V1. Therefore, [10] makes the following system assumption,

VH
1 FRFFBB ≈ INs ,V

H
2 FRFFBB ≈ 0. (2.57)

Based on the partitions defined in (2.55), the following partition of the matrix

VHFRFFBBFH
BBFH

RFV can be defined as

VHFRFFBBFH
BBFH

RFV =

 VH
1 FRFFBBFH

BBFH
RFV1 VH

1 FRFFBBFH
BBFH

RFV2

VH
2 FRFFBBFH

BBFH
RFV1 VH

2 FRFFBBFH
BBFH

RFV2


=

 Q11 Q12

Q21 Q22

 . (2.58)

The equivalent approximations defined in (2.57) imply that Q12, Q21 and Q22 are

approximately zero. Using (2.55) and (2.58), (2.54) can be approximated as

I = log2 det

(
INs +

Pt
Nsσ2

n

Σ2VHFRFFBBFH
BBFH

RFV

)

= log2 det

INs +
Pt
Nsσ2

n

 Σ2
1 0

0 Σ2
2


 Q11 Q12

Q21 Q22




≈ log2 det

(
INs +

Pt
Nsσ2

n

Σ2
1Q11

)
= log2 det

(
INs +

Pt
Nsσ2

n

Σ2
1V

H
1 FRFFBBFH

BBFH
RFV1

)
(a)
= log2 det

(
INs +

Pt
Nsσ2

n

Σ2
1

)
+ log2 det

(
INs −

(
INs +

Pt
Nsσ2

n

Σ2
1

)−1
Pt
Nsσ2

n

Σ2
1(INs −VH

1 FRFFBBFH
BBFH

RFV1)

)
(b)
≈ log2 det

(
INs +

Pt
Nsσ2

n

Σ2
1

)
− tr

((
INs +

Pt
Nsσ2

n

Σ2
1

)−1
Pt
Nsσ2

n

Σ2
1(INs −VH

1 FRFFBBFH
BBFH

RFV1)

)
(c)
≈ log2 det

(
INs +

Pt
Nsσ2

n

Σ2
1

)
− tr(INs −VH

1 FRFFBBFH
BBFH

RFV1)

= log2det

(
INs +

Pt
Nsσ2

n

Σ2
1

)
−
(
Ns − ‖VH

1 FRFFBB‖2F
)
, (2.59)
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where step (a) can be obtained by defining the matrices B = Pt
Nsσ2

n
Σ2

1 and

A = VH
1 FRFFBBFH

BBFH
RFV1 and noting that I+BA = (I+B)(I−(I+B)−1B(I−A)).

Step (b) follows from (2.57), which implies that the eigenvalues of the matrix X =(
INs + Pt

Nsσ2
n
Σ2

1

)−1
Pt

Nsσ2
n
Σ2

1(INs −VH
1 FRFFBBFH

BBFH
RFV1) are small and thus the ap-

proximation log2 det (INs −X) ≈ log2(1− tr(X)) ≈ −tr(X) is valid. Step (c) follows

from adopting a high effective-SNR approximation, where
(
INs + Pt

Nsσ2
n
Σ2

1

)−1
Pt

Nsσ2
n
Σ2

1 ≈

INs .

Based on (2.59), the optimization problem in (2.53) is approximately equivalent

to minimizing ‖Fopt − FRFFBB‖F , therefore, the hybrid precoding design problem

can be rewritten as

min
FRF,FBB

‖Fopt − FRFFBB‖F (2.60)

s.t. ‖FRFFBB‖2F = Ns,

FRF ∈ FRF.

By exploiting the structure of H, the near-optimal RF precoder can be found by

further restricting FRF to be the set of vectors of the form at(φi,j). Therefore, the

design problem (2.60) can be expressed as

min
FRF,FBB

‖Fopt − FRFFBB‖F (2.61)

s.t. ‖FRFFBB‖2F = Ns,

F
(i)
RF ∈ {at(φi,j), ∀i, j}.

In order to solve the design problem above, the solution consists of selecting the

best NRF
t array response vectors and finding their optimal baseband combination.

An algorithmic solution is proposed with the concept of orthogonal matching pursuit.

The algorithm finds the appropriate array response vectors at(φi,j) first, which has

the maximum projection with the optimal unconstrained precoder Fopt and the
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selected column of at(φi,j) is appended to the RF precoder FRF. After the dominant

vector is found, the baseband precoder FBB is calculated by

FBB = (FH
RFFRF)−1FH

RFFopt. (2.62)

Then the residual matrix Fres is obtained by removing the contribution of the se-

lected vector, which is defined as

Fres =
Fopt − FRFFBB

‖Fopt − FRFFBB‖F
. (2.63)

With Fres, the iteration is utilized to find the remaining NRF
t − 1 vectors at(φi,j),

which have the maximum projection with Fres. The process above repeats NRF
t

times to construct RF precoder FRF with dimension of Nt × NRF
t and baseband

precoder FBB with dimension ofNRF
t ×Ns, which can minimize the objective function

‖Fopt − FRFFBB‖F . Therefore, this algorithm succeeds in selecting the best NRF
t

steering directions and forming appropriate linear combinations of the obtained

response vectors, which is close to the optimal precoder.

Fig. 2.5 shows the spectral efficiency achieved by optimal unconstrained pre-

coding and sparse spatially precoding in mmWave massive MIMO systems, where

the transmitter and the receiver are equipped with Nt = 128 and Nr = 8 anten-

nas. Assuming that NRF
t = Ns = 4, sparse spatially precoding achieves spectral

efficiency close to that achieved by optimal unconstrained precoding, which implies

that this algorithm can accurately approximate the dominant singular vectors of

channel matrix with a combination of four steering vectors.
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Figure 2.5: Spectral efficiency achieved by spatially sparse precoding for mmWave
massive MIMO systems where Nt = 128, Nr = 8, NRF

t = Ns = 4.

2.3.3.2 Limited Feedback Hybrid Precoding

In multi-user massive MIMO scenario, the received signal at the k-th mobile terminal

is defined as [14]

yk = wRFH

k Hk

K∑
i=1

FRFfBB
i si + wRFH

k nk, (2.64)

where Hk is the Nr×Nt mmWave channel matrix between the base station and k-th

mobile terminal. For simplicity, it is assumed the number of RF chains is equal to

the number of mobile terminals K, thus FRF = [fRF
1 , fRF

1 , · · · , fRF
K ] is the Nt×K RF

precoder and FBB = [fBB
1 , fBB

1 , · · · , fBB
K ] is the K×K baseband precoder. wRF

k is the

RF combiner with the similar constraints as the RF precoder.

The achievable rate of the k-th mobile terminal can be expressed as

Rk = log2

(
1 +

Pt
K
|wRFH

k HkFRFfBB
k |2

Pt
K

∑
i 6=k |wRFH

k HkFRFfBB
i |2 + σ2

n

)
. (2.65)

The sum rate of the system is R =
∑K

k=1Rk.
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2.3 MIMO Precoding

In [14], the beamsteering codebooks are adopted for the design of the analog

beamforming vectors. The beamsteering codebooks have the same form of the array

response vector and can be parameterized by a simple angle. The beamsteering

codebook is defined as F and F consists of NQ vectors at

(
2πnQ
NQ

)
where nQ takes the

values 0, 1, · · · , NQ − 1. Similarly, the beamsteering codebook of the RF combining

can be defined as W.

In order to maximize the sum rate of the system, the precoding design problem

is given by

{
ḞRF, {ḟ

BB

k }Kk=1, {ẇRF
k }Kk=1

}
=arg max

K∑
k=1

log2

(
1 +

Pt
K
|wRFH

k HkFRFfBB
k |2

Pt
K

∑
i 6=k |wRFH

k HkFRFfBB
i |2 + σ2

n

)
(2.66)

s.t. [FRF]:,k ∈ F,

wRF
k ∈W,

‖FRFFBB‖2F = K.

In order to solve the problem above, [14] proposed to divide the calculation

of the precoders into two stage with limited feedback. In the first stage, the RF

precoding vectors fRF
k and combining vectors wRF

k are jointly designed to maximize

the desired signal power for the k-th mobile terminal, neglecting the interference

caused by other terminals. The design of RF precoder vectors is a typical single-user

RF beamforming design problem, thus efficient beam training algorithms developed

for single-user systems can be used [63] [64], which do not require explicit channel

estimation and have a low training overhead. Then the selected RF precoding vectors

are combined into the RF precoding matrx FRF. In the second stage, the effective

channel for each mobile terminal is computed as

h̄
H
k = wRFH

k HkFRF, k = 1, 2, · · ·K. (2.67)
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2.3 MIMO Precoding

Based on (2.67), the effective channel vector h̄k for the system can be obtained with

the dimension of K×1 and each mobile terminal quantizes its effective channel using

a codebook. Therefore, the index of the quantized channel vector can be fed back

to the base station and the baseband precoder is easily designed using ZF algorithm

based on the quantized channel.
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Figure 2.6: Spectral efficiency achieved by limited feedback hybrid precoding for
mmWave massive MIMO systems where Nt = 64, Nr = K = 4.

As shown in Fig. 2.6, the spectral efficiency achieved by the limited feedback

hybrid precoding is compared with the single user transmission and analog-only

beamsteering. It is assumed that the base station equipped with 64 antennas serves

4 mobile terminals, each having 4 antennas. The figure indicates that the proposed

hybrid precoding scheme achieves the spectral efficiency close to that achieved by

single user, because the design of baseband precoder can cancel the inter-user inter-

ference in the second stage. Moreover, due to the interference limitation, analog-only

beamsteering performs significantly worse than the proposed precoding in the high

SNR region. Therefore, limited feedback hybrid precoding can achieve good perfor-
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2.4 Summary

mance with low complexity.

2.4 Summary

In this chapter, based on the introduction of massive MIMO systems, the potentials

and challenges have been presented, which gives me the inspiration for my research.

In particular, the mmWave channel model has been explained in detail, because

mmWave communication is a promising candidate for future cellular systems and

widely used in massive MIMO systems. Moreover, this chapter has given the details

of different precoding schemes, such as, linear precoding, non-linear precoding and

hybrid precoding. With a good knowledge of different precoding schemes, we can

further develop the novel precoding techniques and improve the performance of

massive MIMO systems. To conclude, this chapter provides the essential background

theory for the following novel chapters.
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Chapter 3

Low Complexity Hybrid Precoding

in Finite Dimensional Channel for

Massive MIMO Systems

In this chapter, the downlink transmission of massive multi-user MIMO systems is

considered with a finite dimensional channel model, in which a limited number of

dimensions M is defined to model the channel matrix. The performance of MIMO

systems depends critically on the complexity of the propagation environment and

the properties of the antenna arrays being used. In massive MIMO systems, large

antenna arrays operating at high frequency will imply channel vectors are corre-

lated, hence many statistical fading models of traditional MIMO systems are not

applicable. Many previous works focus on point-to-point mmWave channels using

the clustered channel model [10,44,45], but in a realistic scenario, very little research

has been reported on the multi-user channel model. Therefore, a finite dimensional

channel model is designed and analyzed for the large multi-user MIMO systems. The

reason is that the finite dimensional channel is able to reflect the property of the

poor scattering channel environment caused by high pathloss at high frequency [65]

and the angles of arrival at the mobile stations can be neglected. The finite dimen-

sional channel vectors for different mobile stations can be more applicable to obtain
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generally correlated or not asymptotically orthogonal channel [66]. In terms of the

number of dimensions M , it is assumed that M is much smaller than the number of

base station antennas, where M is the number of angular bins.

The hybrid precoding exploits a phase-only RF precoder in the analog domain

and a baseband precoder in the digital domain. The RF precoder uses the phase

shifters, which are digitally controlled and changed in reasonably low time scale for

variable channels. In this chapter, a novel hybrid precoding method is introduced

by analyzing the structure of the channel model. The RF precoder is designed by

combining the beamsteering codebooks with extracting the phase of the conjugate

transpose of the fast fading matrix, which thereby harvests the large array gain

achieved by an unprecedented number of base station antennas. Then a baseband

precoder is designed based on the equivalent channel with ZF precoding in order to

cancel the multi-user interference.
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3.1 System Model

3.1 System Model

The downlink of a massive multi-user MIMO system is considered in Fig. 3.1, where

the base station employs Nt transmit antennas to communicate with a population

of K single-antenna mobile stations, Nt � K. For simplicity, the base station is

assumed to utilize K RF chains to serve the mobile stations and single data stream

handled by the base station is transmitted to every mobile station.

Baseband 

Precoder

B

RF Chain

+

+

RF Chain

H

Mobile 

Station 1

Mobile 

Station K

RF Precoder F

Ns
. . .NRF

. . .
. . .

Nt

Hybrid Precoder

. . .

. . .

Figure 3.1: System diagram of massive multi-user MIMO systems with hybrid pre-
coding for a finite dimensional channel.

On the downlink, the transmit signal is given by

x = FBs, (3.1)

where s = [s1, s2, · · · , sK ]T . s ∈ CK×1 is the vector of signal for K mobile stations

and E[ssH ] = Pt
K

IK where Pt is the total transmit power.

Furthermore, it is assumed that perfect channel state information is known at

the base station. The signal received at the k-th mobile station is given by

yk = Hk

K∑
n=1

FBnsn + nk, (3.2)
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3.2 Channel Model

where Hk represents the 1 × Nt downlink channel gains between the base station

and k-th mobile station and nk represents additive white Gaussian noise with i.i.d.

entries of zero mean and unit variance, i.e. CN(0, σ2). F = [F1,F2, · · · ,FK ] is

the RF precoder of dimension Nt × K and B = [B1,B2, · · · ,BK ] is the baseband

precoder of dimension K×K. The baseband precoder modifies both amplitude and

phase while only phase changes can be made by the RF precoder with a network

of variable analog phase shifters. Thus, the entries Fm,n in the RF precoder are of

constant modulus, which are normalized to satisfy |Fm,n|2 = 1
Nt

. Due to the total

transmit power constraint, the entries of B are normalized to satisfy ‖FB‖2F = K.

In this system model, combiners are not used at the mobile stations, which reduces

the hardware cost and power consumption.

3.2 Channel Model

The M -dimensional channel model divides the transmitted angular region into M

directions, where Nt � M . In each direction, the angles of departure are denoted

as θm ∈ [−π/2, π/2], where m = 1, · · · ,M . The ULA is employed in this chapter,

thus the array response vector aBS(θm) associated with θm presents the transmit

antenna array structure, which can be defined as

aBS(θm) =
1√
M

[1, e−j
2π
λ
dsinθm , · · · , e−j(Nt−1)

2π
λ
dsinθm ]T , (3.3)

where λ is the wavelength of the signal and d is the distance between antenna

elements.

The M -dimensional channel matrix between the base station and K mobile sta-

tions can be expressed as

H = GAH , (3.4)
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3.3 Proposed Hybrid Precoding Scheme

where A = [aBS(θ1) aBS(θ2) · · · aBS(θM)] is an Nt ×M matrix and G presents the

propagation coefficient matrix of dimension K ×M from the base station to mobile

stations. The propagation matrix G is used to model independent fast fading,

geometric attenuation and shadow fading [66], which can be given by

G = DW, (3.5)

where D, of dimension K ×K, is the diagonal matrix of the geometric attenuation

and shadow fading coefficients for the multi-cell scenario. The diagonal elements of

D, which are given by βkk, are assumed to be constant, because they vary slowly with

time. βkk represents the (k, k)-th entry of D. The entries in the K ×M matrix W

represent the fast fading coefficients between the base station and mobile stations,

which are assumed to have zero mean and unit variance [66]. Therefore, assuming

W = [W1,W2, · · · ,WK ]T , (3.2) can be written as

yk = βkkWkA
H

K∑
n=1

FBnsn + nk, (3.6)

3.3 Proposed Hybrid Precoding Scheme

The main objective is to achieve optimal spectral efficiency with low hardware com-

plexity. The simplest precoding scheme is to invert the channel matrix using pseu-

doinverse, which is referred to as ZF precoding. However, in massive MIMO systems,

although ZF precoding achieves near optimal capacity performance, a large num-

ber of RF chains are required to perform analog-to-digital conversion and frequency

translation between baseband and RF, which suffers from high hardware cost and re-

stricts the array size at the base station from scaling to a large dimension. Thus, the

proposed precoding scheme leverages the structure of the finite dimensional channel

to address the hardware constraints.
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3.3 Proposed Hybrid Precoding Scheme

3.3.1 RF Precoder Design

The RF precoder F utilizes the phase shifters to couple K RF chains with Nt base

station antennas based on phase-only control of the upconverted RF signal.

Beamsteering codebooks are used and have similar form to the array response

vector. A is assumed to be the beamsteering codebook and because of the phase-only

processing, it is designed by the normalized array response vector. The matrix Ã is

selected from A to maximize the desired signal power of mobile station, neglecting

the other users’ interference.

Then, perfect channel state information is assumed known at the base station.

The phases of the conjugate transpose of the fast fading coefficient matrix W is

extracted as W̃m,n = 1√
M
ejϕm,n , where ϕm,n is the phase of the (m,n)-th entry of

the conjugate transpose of W. The the diagonal term of WW̃ can be expressed as

WjW̃j =
1√
M

M∑
i=1

|Wi,j|, (3.7)

where W̃j is the the j-th column of W̃ and Wi,j is the (i, j)-th entry of W. Because

each entry of W is i.i.d. complex Gaussian random variable with unit variance and

zero mean, based on the central limit theorem,

WjW̃j ∼ N(

√
πM

2
, 1− π

4
), (3.8)

where M has a large value. In addition, in terms of the off-diagonal term of WW̃,

we have

WjW̃k =
1√
M

M∑
i=1

Wi,je
jϕi,k , (3.9)

where j 6= k. Because WjW̃k follows the distribution with unit variance and zero

mean, i.e., WjW̃k ∼ CN(0, 1), |WjW̃k| has the mean of π
2
. Compared with the

diagonal terms, the off-diagonal terms can be negligible if M is large enough. W̃ is
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3.3 Proposed Hybrid Precoding Scheme

used to further maximize the desired signal power of mobile stations.

Therefore, the design of the RF precoder F can be given by

F = ÃW̃, (3.10)

In realistic application scenarios, the practical constraints of phase shifters makes

the phase of each entry of F suffer from the impact of coarse quantization, which

influences the performance of hybrid precoding. Therefore, instead of the continuous

values, the situation where the phases of the entries of F are quantized up to B bits

of precision is also considered, i.e., B = 4 or 5. The quantized phase is computed

by the closest Euclidean distance of its nearest neighbor phase.

3.3.2 Baseband Precoder Design

The baseband precoder B performs low-dimensional multiple stream processing to

change the amplitude and phase of the transmitted complex signal based on ZF

precoding.

After obtaining the RF precoder F, an equivalent channel is defined as

H = HF, (3.11)

where H = [H1,H2, · · · ,HK ].The equivalent channel H is applied to design the

baseband precoder B. The dimension of H is K × K, which is much lower than

the Nt × K dimension of the original channel. Based on ZF precoding, the direct

baseband precoding matrix B is then defined as

B = H
H

(HH
H

)−1, (3.12)
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3.4 Analysis of Spectral Efficiency

The normalized baseband precoder B is

B =
B√
‖FB‖2F

, (3.13)

where B = [B1,B2, · · · ,BK ] to satisfy the precoding power constraints ‖FBk‖22 = 1.

From (3.10) and (3.13), F and B of the hybrid precoding are both obtained. The

transmitter supports simultaneous transmission of K data streams and the hardware

complexity is obviously reduced because there are only K RF chains using the

proposed precoding instead of Nt RF chains required by the traditional ZF precoding

and K � Nt, giving a significant reduction of hardware complexity.

3.4 Analysis of Spectral Efficiency

In this section, the achievable spectral efficiency of the transmission is analyzed with

perfect channel state information, which is given by

Rk = log2(1 +
Pt
K
|HkFBk|2

Pt
K

∑K
n=1,n6=k |HkFBn|2 + σ2

). (3.14)

The sum spectral efficiency of the system is R =
∑K

k=1Rk.

Based on (3.14), a tight upper bound on spectral efficiency achieved by hybrid

precoding is derived for the finite dimensional channel model, which can be charac-

terized by the following theorem.

Theorem 4.1 The upper bound of the spectral efficiency for the k-th mobile

station can be expressed as

Rk ≤ log2(1 +
SNR

K
λapp(AAH)(WkW

H
k )), (3.15)

where SNR = Pt
σ2 and λapp(AAH) is the appropriate eigenvalue of matrix AAH .
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3.4 Analysis of Spectral Efficiency

Proof 4.1 The spectral efficiency for the k-th mobile station is

Rk = log2(1 +
SNR

K
|HkBk|2)

= log2(1 +
SNR

K
|Hk

Bk√
‖FBk‖22

|2)

= log2(1 +
SNR

K

1

‖FBk‖22
). (3.16)

Based on (3.10) (3.11) and (3.12),

FBk = ÃW̃
H

W̃Ã
H

AWH
k (WkA

HÃW̃
H

W̃Ã
H

AWH
k )−1. (3.17)

Using the property of the beamsteering codebooks, Ã =
√

M
Nt

A is obtained to

maximize the desired signal power of mobile stations. Therefore, (3.17) can be

rewritten by

FBk = AW̃
H

W̃AHAWH
k (WkA

HAW̃
H

W̃AHAWH
k )−1, (3.18)

Next,

1

‖FBk‖22
=

|WkA
HAW̃

H
W̃AHAWH

k |2

(AW̃
H

W̃AHAWH
k )H(AW̃

H
W̃AHAWH

k )
. (3.19)

Briefly, by defining X ,WkA
HAW̃

H
and Y = W̃AHA, (3.19) can given by

1

‖FBk‖22
=
|XYWH

k |2

XYW̃
H

XH

(a)

6
XY(XY)HWkW

H
k

XYW̃
H

XH
, (3.20)

where (a) is valid by applying the Cauchy-Schwarz inequality [67]. Substituting X
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3.4 Analysis of Spectral Efficiency

and Y into (3.20) and defining Z = WkA
HAW̃

H
W̃AH , (3.20) can be rewritten by

1

‖FBk‖22
6

ZAAHZH

ZZH
WkW

H
k

(b)

6 λapp(AAH)WkW
H
k , (3.21)

where the Rayleigh-Ritz theorem [68] is used in (b) because AAH is a Hermitian

matrix. �

Proof of (a) Because the vectors XY ∈ C1×M and Wk ∈ C1×M , a vector T is

defined as

T = WH
k −

(XY)WH
k (XY)H

‖(XY)H‖22
(3.22)

Then due to XYT = 0,

‖T‖22 = THWH
k −

(XY)WH
k TH(XY)H

‖(XY)H‖22

= WkW
H
k −

(XY)WH
k Wk(XY)H

‖(XY)H‖22

= WkW
H
k −

|XYWH
k |2

(XY)(XY)H

> 0 (3.23)

Thus, the results in (3.20) are obtained. �

The upper bound on the spectral efficiency is achieved by (3.15) with the pro-

posed hybrid precoding scheme. The upper bound separates the dependence on

the array response vectors and the fast fading coefficients matrix and shows the

optimality of the hybrid precoding.
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3.5 Simulation Results

3.5 Simulation Results

In this section, the performance of the proposed hybrid precoding scheme is evalu-

ated. In our simulation, the relative element spacing of the ULA is d
λ

= 0.3 and the

angles of departure are uniformly distributed as θm = −π/2 + (m − 1)π/M , where

m = 1, 2, · · · ,M .
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Figure 3.2: Spectral efficiency achieved by different precoding schemes with infinite
resolution in downlink massive MU-MIMO systems where Nt = 128, K = NRF = 4
and the finite dimension M is 64.

First, the spectral efficiency achieved by different precoding schemes with infinite

resolution is compared, together with the tight upper bound in Fig. 3.2. The base

station is assumed to employ the ULA with Nt = 128 antennas, serving K = 4

mobile stations each with a single antenna. There are NRF = 4 RF chains and the

finite dimension M is 64. Although ZF precoding is optimal in the simulation, it is

infeasible because of the requirement of costly RF chains in the large antenna array.

It is observed that the proposed hybrid precoding achieves spectral efficiency close

to that achieved by the optimal ZF precoding with less than 1 dB loss. The tight

upper bound derived in Section 3.4 is also plotted. Obviously, the proposed hybrid

precoding method performs better than the limited feedback hybrid precoding and
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Figure 3.3: Spectral efficiency achieved by different quantized precoding schemes
with 4 bits of precision in downlink massive MU-MIMO systems where Nt =
128, K = NRF = 4 and the finite dimension M is 64.
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Figure 3.4: Spectral efficiency of precoding schemes versus the geometric attenuation
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the sparse precoding.

Then Fig. 3.3 illustrates the spectral efficiency achieved by different quantized

precoding schemes, considering the same setup as Fig. 3.2. For the quantized phase,

we simulate with B = 4 bits of precision and the phase control candidates are

(2πn)/(2B) where n ∈ {0, · · · , 2B − 1}. It is observed that the quantized hybrid

precoding schemes all suffer degradation, while the proposed hybrid precoding still

has better performance than the limited feedback hybrid precoding and the sparse

precoding.

In Fig. 3.4, the effort of the multi-cell transmission is considered at SNR =

−10dB, but with different numbers of base station antennas, Nt = 32, 128 and

512. The spectral efficiency for different precoding schemes versus the geometric

attenuation and shadow fading coefficients is simulated with K = 4 mobile stations.

The number of RF chains is equal to the number of mobile stations and the finite

dimension M is 16. It is assumed that βkk are equal to 1 when the mobile stations are

in the cell of the transmitting base station, but βkk are equal to a when the mobile

stations are in other cells, where 0 < a < 1. When the value of the coefficients is

low, the effect of the antenna number at the base station tends to be small, while

when the coefficients becomes higher, the spectral efficiency gap between different

numbers of base station antennas is increasingly obvious.

As shown in Figs. 3.5 - 3.7, the different beam patterns are generated by optimal

ZF precoding, proposed precoding and quantized proposed precoding, respectively.

It is assumed that the base station equipped with Nt = 64 antennas serves K = 4

mobile terminals at SNR = 5dB. The directions of 4 different mobile terminals are

defined as 20◦, 30◦, 60◦, 140◦. In Fig. 3.6, the beam patterns generated by the pro-

posed hybrid precoding scheme closely resemble the patterns generated by optimal

ZF precoding without obvious gain loss. However, due to the influence of the quan-

tization, the beam patterns generated by the quantized proposed precoding suffer

from degradation, which is shown in Fig. 3.7. Therefore, the proposed scheme is
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Figure 3.5: Beam pattern with optimal ZF precoding where Nt = 64, K = NRF = 4
and SNR is 5dB.
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Figure 3.6: Beam pattern with proposed hybrid precoding where Nt = 64, K =
NRF = 4 and SNR is 5dB.
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Figure 3.7: Beam pattern with quantized proposed hybrid precoding with 4 bits of
precision where Nt = 64, K = NRF = 4 and SNR is 5dB.

proved to perform good in beamforming.

In Fig. 3.8, the BER between different precoding schemes is compared, including

optimal ZF precoding, the proposed hybrid precoding, spatially sparse precoding

and limited feedback hybrid precoding. The massive MIMO system is considered

with Nt = 128 base station antennas and K = 4 mobile terminals. Based on the

simulation results, the gap between the performance of optimal ZF precoding and

the performance of the proposed hybrid precoding is remarkably small, about 1dB

for a target BER of 10−4. Moreover, the BER of the proposed hybrid precoding

outperforms the spatially sparse precoding and the BER for limited feedback hybrid

precoding saturates at 10−2. Thus, the proposed method can yield satisfactory BER

performance for a range of SNR and offer a better trade-off between performance

and complexity.
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Figure 3.8: BER comparison of the proposed hybrid precoding with optimal ZF
precoding, spatially sparse precoding and limited feedback hybrid precoding where
Nt = 128, K = NRF = 4 and the finite dimension M = 16.

3.6 Summary

In this chapter, a low complexity hybrid precoding scheme is proposed for multiple

mobile stations for the finite dimensional channel. The geometric channel model

with finite dimension is applicable to obtain generally correlated or not asymptot-

ically orthogonal channel. The proposed precoding with non-iterative design gives

a significant reduction of RF chains, which reduces the hardware complexity in

massive MIMO systems. In terms of the performance of spectral efficiency, the pro-

posed method approaches the optimal ZF performance and performs better than

other precoding schemes, which is showed in the simulation results. In addition, the

numerical results also show the BER performance of the proposed precoding scheme

is still better than other precoding schemes.
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Chapter 4

Energy Efficient Iterative Hybrid

Precoding Scheme with

Sub-Connected Architecture for

Massive MIMO Systems

4.1 Introduction

In massive MIMO systems, the very large arrays of transmit antennas lead to a

prohibitive hardware complexity and the RF chains can be accountable for 50-80%

of the total power consumption [69]. Therefore, a hybrid precoding scheme with

fully-connected architecture is proposed to address the RF hardware constraints in

Chapter 3. The variable phase shifters with high-dimensional phase-only RF pro-

cessing are introduced, which are exploited to control the phases of the upconverted

RF signal.

In this chapter, in order to further reduce the energy consumption and hardware

complexity, the hybrid precoding design with sub-connected architecture is consid-

ered in mmWave massive MIMO systems. The total achievable rate optimization

problem can be formulated to minimize the Frobenius norm of the matrix of differ-
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ence between the unconstrained precoding matrix and products of the hybrid RF

and baseband precoding matrices. Therefore, the closed-form expression of base-

band precoder is obtained by mathematical analysis and the phase extraction is

used to obtain the RF precoder. Based on successive refinement [70], the RF pre-

coder becomes the new input for the next iteration to update the baseband precoder

until the stopping criterion is triggered. Therefore, the proposed hybrid scheme can

be close to the optimal precoder with less performance loss.
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4.2 System Model

A communication scenario consisting of a single-user mmWave massive MIMO sys-

tem is considered as shown in Fig. 4.1, where the numbers of the transmitter anten-

nas and the receiver antennas are denoted as Nt and Nr respectively. It is assumed

there are only NRF RF chains at the transmitter and the number of transmitted

data streams is equal to NRF for simplicity. In the sub-connected architecture, each

RF chain is only connected with Na antennas where Na is assumed to be integer

and Na = Nt/NRF, thus the total number of phase shifters is Nt. However, the

fully-connected architecture requires NtNRF phase shifters, because each RF chain

is connected with Nt antennas.

Baseband 

Precoder

B

RF Chain

RF Chain

RF Precoder F

Ns

. . .NRF

Hybrid Precoder

. . .

. . . Nt/NRF

. . . Nt/NRF

Figure 4.1: Hybrid precoding scheme with sub-connected architecture for mmWave
massive MIMO systems.

A hybrid precoding scheme with a sub-connected architecture is proposed. In the

digital domain, data streams are precoded by the baseband precoder B of dimension

NRF × NRF. Then in the analog domain, let F be the RF precoder of dimension
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4.2 System Model

Nt ×NRF comprising NRF vectors fi of dimension Na as

F =



f1 0 · · · 0

0 f2 · · · 0

...
. . .

...

0 0 · · · fNRF


. (4.1)

The elements of fi have constant amplitude and satisfy |fi(j)|2 = NRF/Nt, where

fi(j) is the j-th element of fi. Therefore, the precoded signal can be calculated as

x = FBs, (4.2)

where s = [s1, s2, · · · , sNRF
]T is the vector of the transmitted signal with E[ssH ] =

1
NRF

INRF
. Due to the total transmit power constraint, the entries of B are normalized

to satisfy ‖FB‖2F = NRF. The processed received signal can be written as

y =
√
ρWHFBs + n, (4.3)

where y = [y1, y2, · · · , yNr ]T is the received signal vector and ρ is the average received

power of the transmission. The matrix W of dimension Nr × Nr is the combiner

at the receiver. H ∈ CNr×Nt denotes the channel matrix and n ∼ CN(0, σ2
nINr)

represents an additive white Gaussian noise vector with elements having zero mean

and unit variance. The channel state information is known at both the transmitter

and the receiver.
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4.3 Channel Model

In this section, the narrowband mmWave channel matrix follows a geometric channel

model [9] given by

H =

√
NtNr

Np

Np∑
p=1

βpar(θp)at(φp)
H , (4.4)

where Np donates the number of propagation paths for mmWave communication

systems. βp is the gain of the p-th path. θp and φp are the angles of arrival and

departure, respectively. ar(θp) and at(φp) are the receive and transmit array re-

sponse vectors determined by the array structures. For an U -element ULA, the

array response vector can be given by

aULA(ϕ) =
1√
U

[1, ej
2π
λ
dsin(ϕ), · · · , ej(U−1)

2π
λ
dsin(ϕ)]T , (4.5)

where λ is the wavelength of the signal and d denotes the distance between antenna

elements.

4.4 Problem Formulation

Assuming perfect channel state information known at the receiver, the design of the

hybrid precoders is explored to maximize the spectral efficiency of the system

R = log2 det

(
INr +

ρ

NRF

R−1n WHHFBBHFHHHW

)
, (4.6)

where Rn = σ2
nW

HW is the noise covariance matrix after combining. We consider

the SVD of the channel matrix H = UΣVH to obtain the optimal precoder Popt.

Assuming that the right unitary matrix U of size Nr × Nr is used for the optimal

combiner at the receiver, we only focus on the design of the precoding matrices at
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4.4 Problem Formulation

the transmitter. Therefore, (4.6) can be rewritten as

R = log2 det

(
INr +

ρ

NRFσ2
n

HFBBHFHHH

)
. (4.7)

Because V is an Nt × Nt unitary matrix and Σ is an Nr × Nt diagonal matrix of

singular values in descendant order, the matrices are defined as

Σ =

 Σ1 0

0 Σ2

 ,V =

[
V1 V2

]
, (4.8)

where Σ1 is the first partition of dimension NRF × NRF and V1 is the first NRF

columns of V. The optimal precoder can be given by

Popt = V1. (4.9)

The optimal hybrid precoding scheme ensures the product of the RF precoder and

the baseband precoder is close to the optimal precoder [10]. The hybrid precoding

design problem can be written as

minimize
F,B

‖Popt − FB‖F (4.10)

subject to ‖FB‖2F = NRF,

|fi(j)| =
√
NRF

Nt

.

To deal with the nonconvex constraint of F, assuming B is a unitary matrix, the ob-

jective function can be reformulated. When BHB = I, ‖FB‖2F = Tr(BHFHFB) =
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4.5 The design of the hybrid precoding with sub-connected architecture

Tr(INRF
) = NRF. Then (4.10) has an upper bound expressed as

‖Popt − FB‖F = ‖PoptB
HB− FB‖F

≤ ‖PoptB
H − F‖F‖B‖F

=
√
NRF‖PoptB

H − F‖F . (4.11)

By adopting (4.11) as the objective function, the hybrid precoder design problem

is reformulated as

minimize
F,B

‖PoptB
H − F‖2F (4.12)

subject to BHB = I,

|fi(j)| =
√
NRF

Nt

.

In the following section, a hybrid precoding algorithm is proposed with a convergent

method to solve the problem in (4.12).

4.5 The design of the hybrid precoding with sub-

connected architecture

In this section, an iterative design of hybrid precoding algorithm with sub-connected

architecture is proposed in order to achieve the near-optimal performance and reduce

the hardware complexity.

4.5.1 RF Precoder Design

By adopting (4.12) as the objective function, the design of F is considered assuming

that the unitary matrix B is fixed. The RF precoder design problem is formulated
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4.5 The design of the hybrid precoding with sub-connected architecture

as

minimize
F

‖PoptB
H − F‖2F (4.13)

subject to |fi(j)| =
√
NRF

Nt

.

Because of the special characteristic of F, (4.13) can be expressed as

minimize
θm

‖(Popt)m,:(B)n,:
H −

√
NRF

Nt

ejθm‖22, (4.14)

where 1 ≤ m ≤ Nt and n = dmNRF

Nt
e. Therefore, F can be presented by a closed-

form expression based on phase rotation. Because there are zero elements in F, the

nonzero elements Fm,n in F can be written as

Fm,n =

√
NRF√
Nt

ejangle{(Popt)m,:(B)n,:
H} (4.15)

The constant amplitude of the elements in F is
√
NRF/

√
Nt so that the constraint

in (4.12) is satisfied.

4.5.2 Baseband Precoder Design

In this section, a closed-form solution for B is proposed assuming that F is fixed.

To deal with the constrained problem

minimize
B

‖PoptB
H − F‖2F (4.16)

subject to BHB = I,

(4.16) can be further expressed as

‖PoptB
H − F‖2F

=Tr(PH
optPopt)− 2<{Tr(BPH

optF)}+ Tr(FHF). (4.17)
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4.5 The design of the hybrid precoding with sub-connected architecture

Therefore, in terms of optimising the variable matrix B, (4.16) can be reformulated

as an optimization problem as

maximize
B

<{Tr(BPH
optF)} (4.18)

subject to BHB = I.

Theorem1 : Denote the hybrid precoders at the t-th iteration by (F(t)B(t)) and

assume F(t) is fixed. An optimal closed-form solution for B is obtained to solve the

problem (4.18) by

B(t) = (Û
(t)

V̂
(t)H

)−1, (4.19)

where PH
optF

(t) = Û
(t)

Σ̂(t)V̂
(t)H

.

Proof : For notational convenience, the iteration number is omitted in the proof.

The upper bound of the problem minimize
B

‖Popt − FB‖2F is derived as

<{Tr(BPH
optF)} = <{Tr(BÛΣ̂V̂

H
)}

= <{Tr(V̂
H

BÛΣ̂)}

= <{Tr(TΣ̂)}

(a)

≤
NRF∑
i=1

δiσi, (4.20)

where T is defined as T = V̂
H

BÛ. The parameters δ1, ..., δNRF
and σ1, ..., σNRF

are the non-zero singular values of T and Σ̂, respectively. <{Tr(BPH
optF)} reaches

the maximum, when the equation in (a) is satisfied. Assume rank(T) = NRF and
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4.5 The design of the hybrid precoding with sub-connected architecture

δ1 ≥ · · · ≥ δNRF
> 0. Define T̃ =

 0 T

TH 0

, then

det(λI− T̃) = det

λINRF
−T

−TH λINRF


= det(λINRF

)det(λINRF
− λ−1THT)

= det(λ2I−THT) = 0, (4.21)

where λ denotes the eigenvalues of T̃ given by δ1, · · · , δNRF
,−δNRF

, · · · ,−δ1. Simi-

larly, defining Σ̃ =

 0 Σ̂

Σ̂H 0

, the eigenvalues of Σ̃ can be presented as

σ1, · · · , σNRF
,−σNRF

, · · · ,−σ1, so

Tr(T̃Σ̃) = Tr(TΣ̂H) + Tr(THΣ̂)

= 2<{Tr(TΣ̂H)}

(b)

≤
NRF∑
i=1

δiσi +

NRF∑
i=1

(−δi)(−σi)

= 2

NRF∑
i=1

δiσi. (4.22)

Therefore, (4.20) is proved. When the equality in (b) is achieved, then T̃ =∑2NRF

i=1 λi(T̃)eie
H
i using Von Neumann’s trace inequality [71], where ei denote the

eigenvector of Σ̃. Because Σ̂ is a diagonal matrix, the eigenvectors of Σ̃ are obtained

though simple computations as

e1 =

ẽ1

ẽ1

 , · · · , eNRF
=

ẽNRF

ẽNRF

 , eNRF+1 =

−ẽNRF

ẽNRF

 ,

· · · , e2NRF
=

−ẽ1

ẽ1

 , (4.23)
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4.5 The design of the hybrid precoding with sub-connected architecture

where ẽi ∈ RNRF×1 has only one non-zero element. The i-th non-zero element in ẽi

is defined as wi where |wi| = 1√
2
. Therefore,

T̃ =

2NRF∑
i=1

λi(T̃)eie
H
i

=

NRF∑
i=1

δi

ẽi

ẽi

(ẽHi ẽHi

)
+

NRF∑
i=1

−δi

−ẽi

ẽi

(−ẽHi ẽHi

)

=

 0 2
∑NRF

i=1 δiẽiẽ
H
i

2
∑NRF

i=1 δiẽiẽ
H
i 0

 . (4.24)

Then the diagonal matrix

T = 2

NRF∑
i=1

δiẽiẽ
H
i =



δ1

δ2

. . .

δNRF


. (4.25)

Moreover, because V̂, B and Û are unitary matrices, hence

TTH = I. (4.26)

Based on (4.25) and (4.26), the matrix T can be written by

T = V̂
H

BÛ = I, (4.27)

therefore the closed-form expression of B can be given as

B = (ÛV̂
H

)−1. (4.28)

Due to the property of the unitary matrix, B satisfies the constraint BHB = I.

�
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4.5 The design of the hybrid precoding with sub-connected architecture

4.5.3 Successive Refinement

The hybrid precoders are designed by minimizing the objective function in (4.12)

instead of the original objective function, which will result in some performance

loss. In order to solve this problem, the process of successive refinement is used

to update the baseband precoder and the RF precoder until a stopping criterion

is triggered. The stopping criterion is determined by the difference between the

chordal distances of two successive iterations. The chordal distance is defined as the

difference between the optimal precoder and the product of the baseband and RF

precoders, which can be expressed as

η(t) =
1√
2
‖PoptP

H
opt − (F(t)B(t))(F(t)B(t))H‖F . (4.29)

The difference between the chordal distances of two consecutive successive iterations

is denoted as ε(t) = η(t−1)−η(t). The iteration continues until ε(t) falls below a given

convergence threshold ε0, where ε0 is sufficiently small. B(t−1) is used as a new

input for the next iteration to design F(t) and B(t). A step-by-step summary of the

proposed hybrid precoder design is given in Algorithm 1.

Algorithm 1 Hybrid precoding design with sub-connected architecture.

Input: The optimal precoder, Popt; The number of RF chains, NRF;
Output: The RF precoder, F; The baseband precoder, B;
1: Initialize t = 0 and F(0) with random phases;
2: repeat

3: Compute the SVD of PH
optF

(t), PH
optF

(t) = Û
(t)

Σ̂(t)V̂
(t)H

;

4: Obtain B(t) = (Û
(t)

V̂
(t)H

)−1;
5: η(t) = 1√

2
‖PoptP

H
opt − (F(t)B(t))(F(t)B(t))H‖F ;

6: if (η(t−1) − η(t)) > ε0 then
7: t← t+ 1;
8: Obtain F(t+1) by (4.15);
9: end if
10: until (η(t−1) − η(t)) ≤ ε0;
11: return F = F(t), B = B(t);
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4.6 Analysis of Spectral Efficiency

In this section, with perfect channel state information, an upper bound on the

spectral efficiency achieved by the proposed hybrid precoding is derived. The upper

bound can be expressed as

R ≤
NRF∑
i=1

log2

(
1 +

ρ

NRFσ2
n

λ1(H
H
i Hi)

)
, (4.30)

where λ1(H
H
i Hi) is the largest eigenvalue of HH

i Hi.

Proof : The spectral efficiency of the system is given by

R = log2 det

(
INr +

ρ

NRF

R−1n WHHFBBHFHHHW

)
, (4.31)

where Rn = σ2
nW

HW. Because the optimal combiner W and the baseband precoder

B are both unitary matrices, (4.31) can be rewritten as

R = log2 det
(
INr + γHFFHHH

)
, (4.32)

where γ = ρ
NRFσ2

n
. The RF precoder is set as F = [̃f1, f̃2, · · · , f̃NRF

] and it is defined

as

F
M
=

(
FNRF−1 f̃NRF

)
, (4.33)

where FNRF−1 denotes the sub-matrix containing the first (NRF − 1) columns of F

and f̃NRF
is the NRF-th column of F. Thus, from (4.32),

R = log2 det

(
INr + γH

(
FNRF−1 f̃NRF

)(
FNRF−1 f̃NRF

)H
HH

)

= log2 det
(
INr + γHFNRF−1F

H
NRF−1H

H + γHf̃NRF
f̃
H

NRF
HH
)
. (4.34)
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Defining

QNRF−1
M
= INr + γHFNRF−1F

H
NRF−1H

H , (4.35)

(4.34) can be rewritten as

R = log2 det
(
QNRF−1

)
+ log2 det

(
INr + γQ−1NRF−1Hf̃NRF

f̃
H

NRF
HH
)

(c)
= log2 det

(
QNRF−1

)
+ log2

(
1 + γ f̃

H

NRF
HHQ−1NRF−1Hf̃NRF

)
, (4.36)

where (c) is valid by applying det (I + XY) = det (I + YX) by defining Q−1NRF−1Hf̃NRF

and f̃
H

NRF
HH . It is easy to know that (4.32) and (4.35) have similar expressions, thus

we can obtain the expression for QNRF−1 with QNRF−2 using the same method. After

NRF such transformations, (4.36) can be further stated as

R =

NRF∑
i=1

log2

(
1 + γ f̃

H

i HHQ−1i−1Hf̃i

)
, (4.37)

where Qi can be presented as

Qi =

 INr , i = 0,

INr + γHFi−1F
H
i−1H

H , i ≥ 1.

(4.38)

From (4.37), the total spectral efficiency is the sum of NRF sub-rates. Next, focusing

on f̃
H

i HHQ−1i−1Hf̃i, the upper bound can be derived. Due to the sub-connected

architecture, we define f̃i
M
= [01×Na(i−1), fi,01×Na(NRF−i)]

T , where fi is the Na × 1

non-zero vector of the i-th column f̃i of F. The channel matrix is divided into NRF
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sub-matrices H = [H1,H2, · · · ,HNRF
], where Hi ∈ CNr×Na . Then

f̃
H

i HHQ−1i−1Hf̃i = fHi HH
i Q−1i−1Hifi

= Tr(fHi HH
i Q−1i−1Hifi)

= Tr(Hifif
H
i HH

i Q−1i−1)

(d)

≤ Tr(Hifif
H
i HH

i )λ1(Q
−1
i−1)

(e)

≤ Tr(Hifif
H
i HH

i )

= Tr(fHi HH
i Hifi)

= λ1(f
H
i HH

i Hifi)

(f)

≤ λ1(H
H
i Hi). (4.39)

Defining X
M
= Hifif

H
i HH

i and Y
M
= Q−1i−1, since X and Y are both positive semi-

definite Hermitian matrices, step (d) is obtained due to the fact that Tr(XY) ≤

Tr(X)λ1(Y). As can be observed from (4.38), each eigenvalue of Qi−1 is equal to or

larger than 1 because Qi−1 is the sum of a unit matrix and a positive semi-definite

Hermitian matrix when i ≥ 2. Therefore, step (e) is valid since the largest eigenvalue

of Qi−1 is smaller than 1, i.e. λ1(Q
−1
i−1) < 1. Step (f) follows from adopting Poincaré

separation theorem, where HH
i Hi is a Hermitian matrix and fHi fi = 1.

�

Proof of (f) For the term λ1(f
H
i HH

i Hifi) in (4.39), due to fHi fi = 1, we first

extend the vector fi to an unitary matrix W, which can be expressed as

W = [fi | V] . (4.40)
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Then

A = WHHH
i HiW

=

 fHi HH
i Hifi fHi HH

i HiV

VHHH
i Hifi VHHH

i HiV

 , (4.41)

and

λ1(A) = λ1(H
H
i Hi). (4.42)

Based on Sturm’s theorem, since fHi HH
i Hifi is the principal sub-matrix of A, we get

λ1(f
H
i HH

i Hifi) ≤ λ1(A)

= λ1(H
H
i Hi). (4.43)

�

Then the upper bound on the spectral efficiency in (4.30) is obtained using the

proposed hybrid precoding scheme with sub-connected architecture, which is only

based on the channel state information. The derived upper bound can be shown to

be tight and verified in the simulation results in Fig. 4.2. Thus, this bound shows the

asymptotic optimality of the spectral efficiency achieved by the proposed precoding.

4.7 Energy Efficiency

The energy efficiency is defined as the ratio of capacity versus transmitted power

consumption, presenting the number of bits transmitted per Joule. The hybrid

precoding with the sub-connected architecture is proposed in order to reduce the

hardware complexity and power consumption. Therefore, the energy efficiency is a

main factor to evaluate the performance of the hybrid precoding schemes.

Compared with the fully-connected architecture, the hybrid precoding with the
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sub-connected architecture uses fewer phase shifters. Because of more design degrees

of freedom in the RF domain, the spectral efficiency of the fully-connected archi-

tecture performs better than that of the sub-connected architecture. However, the

energy efficiency of the sub-connected architecture outperforms the fully-connected

architecture. Since a large number of antennas are involved, the power consump-

tion is additionally yielded by RF chains, phase shifters and power amplifiers. The

energy efficiency is defined as follow,

ξ
M
=

R

Pa
, (4.44)

where R is the spectral efficiency and Pa is the total power consumption. Pa can

be calculated by Pa = PS + NRFPRF + NPSPPS + NLNAPLNA. PS is the idle power

consumption. PRF is the RF chain power consumption. NPS is the number of phase

shifters and PPS is the phase shifter power consumption, which depends on the type

and the resolution of the quantized phases. NLNA is the number of the low noise

amplifiers and PLNA is the low noise amplifier power consumption. The number of

phase shifters is equal to NRFNt and the number of low noise amplifiers is equal

to Nt(NRF + 1) in the fully-connected architecture, while it is reduced to Nt phase

shifters and Nt low noise amplifiers in the sub-connected architecture, respectively.

The numerical comparison will be presented in the simulation results in Section 4.9.

4.8 Analysis of Complexity

In this section, the complexity of the proposed hybrid precoding described in Algo-

rithm 1 is analyzed. The complexity of the successive refinement is dominated by

the calculation of the baseband and RF precoders.

In each iteration, the complexity of the baseband precoder comes from three

parts. The first part comes from computing the product of the matrix PH
opt of size

NRF×Nt with the matrix F(t) of size Nt×NRF, which is O(NtN
2
RF). The second part

78



4.9 Results and Discussion

originates from the computation of the SVD of PH
optF

(t). Note that PH
optF

(t) has size

NRF×NRF. Therefore, the order of complexity of this part is O(N3
RF). The last part

is from calculating B(t) in (4.19), which can be expressed as B(t) = (Û
(t)

V̂
(t)H

)−1.

Thus the complexity of the last part is equal to the complexity of computing the

product of the matrix Û
(t)

of size NRF×NRF with the matrix V̂
(t)H

of size NRF×NRF,

which is O(N3
RF), plus that of computing the inverse of a matrix of size NRF×NRF,

which is also O(N3
RF).

In terms of the complexity of updating the RF precoder to F(t+1), the RF pre-

coder is computed using (4.15), which is an element-wise normalization stage that

enforces the unit magnitude constraint. Therefore, the order of the complexity of

the RF precoder is O(NtNRF).

To sum up, the computational complexity of a single iteration in Algorithm 1

is O(NtN
2
RF) and assuming the algorithm will run for K iterations, the complexity

of Algorithm 1 is in the order of O(KNtN
2
RF). Compared with the method in

[20], the computational complexity of SIC-based precoding scheme is O(SNtNa),

where S is the number of iterations. Since the numbers of iterations K and S

have the same order of magnitude, the computational complexity of the proposed

scheme is comparable with that of [20]. In contrast, the complexity of the spatially

sparse precoding [10] is in the order of O(N2
t N

2
RF). Due to the large number of the

transmitter antennas, the proposed precoding scheme has much lower computational

complexity. In next section, the performance of the proposed precoding scheme will

be numerically evaluated.

4.9 Results and Discussion

In this section, the simulation results are presented to demonstrate the performance

of the proposed hybrid precoding algorithm with sub-connected architecture using

the mmWave MIMO channel model in (4.4). In the simulation, the relative element
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spacing of the ULA is d
λ

= 0.5 and the number of propagation paths is set as 8.

Using the directional antennas, the angles of departure are assumed to follow the

uniform distribution within [−π
4
, π
4
]. The angles of arrival follow the uniform dis-

tribution within [−π, π], because the mobile stations will locate random position.

The convergence threshold ε0 is defined as 1 × 10−6. We evaluate the spectral effi-
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Figure 4.2: Spectral efficiency achieved by different precoding schemes with infinite
resolution in mmWave massive MIMO systems where Nt = 128, Nr = 8, NRF = 4.

ciency achieved by different precoding schemes in mmWave MIMO systems, where

the transmitter and the receiver are equipped with Nt = 128 and Nr = 8 antennas,

respectively. It is assumed that the number of RF chains is NRF = 4. In Fig. 4.2, the

proposed hybrid precoding performs slightly worse than the optimal unconstrained

precoding, with less than 5 dB loss but substantially reduced complexity. However,

it is observed that the proposed hybrid precoding with sub-connected architecture

achieves the spectral efficiency close to that achieved by the spatially sparse precod-

ing with fully-connected architecture and outperforms the SIC-based precoding with

sub-connected architecture in the whole simulated SNR range. The proposed hybrid
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4.9 Results and Discussion

precoding reduces the hardware complexity, achieving a better trade-off between the

spectral efficiency and the hardware complexity.
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Figure 4.3: Spectral efficiency achieved by different quantized precoding schemes
with 4 bits of precision in mmWave massive MIMO systems where Nt = 128, Nr =
8, NRF = 4.

Due to the high cost of variable phase shifters with infinite resolution, the RF

precoder suffers from the heavily quantized phase control. The phases of the RF

precoder are quantized to a finite set with finite resolution phase shifters using the

closet neighbor based on the nearest Euclidean distance, which can be expressed as

ϕ̃ = (2πñ)/2B, where ñ = arg minn∈{0,··· ,2B−1}|ϕ − 2πn
2B
| and ϕ is the unquantized

phase. We assume B = 4 bits of precision in the simulation. In terms of the

heavily quantized phase control, Fig. 4.3 illustrates the spectral efficiency achieved

by different quantized precoding schemes, considering the same setup as Fig. 4.2.

It is observed that both hybrid precoding schemes with sub-connected architecture

suffer degradation, thus there is a small gap between the fully-connected and sub-

connected architectures. However, the performance of the proposed precoding still

outperforms the SIC-based precoding.
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Figure 4.4: Spectral efficiency achieved by different precoding schemes with infinite
resolution in mmWave massive MIMO systems where Nt = 128, Nr = NRF = 4.
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Figure 4.5: Spectral efficiency achieved by different precoding schemes with infinite
resolution in mmWave massive MIMO systems where Nt = 128, Nr = NRF = 4.
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Under a special condition that the number of the receiver antennas is equal to

the number of RF chains in the transmitter, Fig. 4.4 demonstrates the spectral ef-

ficiency of the above precoding schemes. Assuming Nt = 128 and Nr = NRF = 4,

note that in the high SNR region, the spectral efficiency of the proposed hybrid

scheme outperforms that of the precoding scheme with fully-connected architecture.

However, when the SNR is less than 11dB, the proposed scheme performs worse

than the scheme with fully-connected architecture. Nevertheless, the resluts show

the potential of our proposed algorithm, because the sub-connected architecture can

even have better spectral efficiency performance than fully-connected architecture.

In Fig. 4.5, the quantized versions results in 6dB loss in performance, which illus-

trates that the sub-connected architecture will be more affected by the quantization.
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Figure 4.6: The average chordal distance as a function of the number of RF chains
where Nt = 120, Nr = 20 and SNR = 0 dB.

Fig. 4.6 shows the chordal distance given by (4.29) to compare the performance

of the proposed hybrid precoding with and without refinement process. In Fig. 4.6,
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4.9 Results and Discussion

the numbers of antennas of the transmitters and the receivers are assumed to be

Nt = 120 and Nr = 20, respectively. It is shown that the chordal distance with

the refinement process is much smaller than that without refinement. Thus, the

successive refinement improves the proposed algorithm to further approach the per-

formance of the optimal precoding.
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Figure 4.7: Energy efficiency of the fully-connected and sub-connected architectures
against the number of RF chains where Nt = 120, Nr = 20 and SNR = 20 dB.

The energy efficiency defined in (4.44) of the sub-connected and fully-connected

architectures is evaluated in Fig. 4.7. The simulation parameters are defined as

PS = 5W, PRF = 40mW, PPS = 30mW and PLNA = 20mW [19]. When increasing

NRF, the numbers of phase shifters and low noise amplifiers increase in the fully-

connected architecture, which makes the power consumption grow faster than that in

the sub-connected architecture. The reason is that the numbers of phase shifters and

low noise amplifiers are both independent of NRF in the sub-connected architecture,

thus the power consumption remains almost unchanged compared with the fully-

connected architecture. Equation (4.44) illustrates substantially different behaviours
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Figure 4.8: BER comparison of the proposed hybrid precoding with optimal un-
constrained precoding, spatially sparse precoding and SIC-based preocidng where
Nt = 128, Nr = 8, NRF = 4.

for the two architectures. Obviously, the sub-connected architecture achieves higher

energy efficiency than the fully-connected architecture in the whole simulated NRF

range. Note that there is a peak at NRF = 10. When designing the hybrid schemes

in the future, this phenomenon inspires us to consider the appropriate number of

RF chains, which can maximize the energy efficiency.

Fig. 4.8 plots the BER results of each for the various hybrid precoding schemes.

As shown in Fig. 4.8, there is a small gap between the optimal precoding and the

proposed hybrid precoding. The BER of the proposed hybrid precoding outperforms

the spatially sparse precodjng and the SIC-based precoding. Therefore, with lower

hardware complexity, the proposed hybrid scheme performs better than the other

schemes with sub-connected architecture, even that with fully-connected architec-

ture.
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4.10 Summary

In this chapter, a new iterative hybrid precoding scheme with a sub-connected ar-

chitecture is proposed for mmWave MIMO systems. The main advantage of the

proposed method is the reduction of the hardware complexity and the power con-

sumption. On the basis of mathematical analysis, the closed-form expressions for the

baseband and RF precoders are developed along with the successive refinement pro-

cess. The simulation results of the performance of the proposed hybrid precoding

scheme are presented and it is showed that it performs close to the spectral effi-

ciency of the fully-connected architecture. Moreover, it performs much better than

other existing hybrid precoding schemes with sub-connected architecture. Based on

the evaluation of energy efficiency, the proposed hybrid precoding can have a good

trade-off between the spectral efficiency and the power consumption.
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Chapter 5

Performance Analysis of Linear

Quantized Precoding for the

Multiuser Massive MIMO Systems

with Hardware Mismatch

5.1 Introduction

In massive multi-user MIMO systems, the data converters at the base station are

main sources for power consumption. Although hybrid precoding schemes can effi-

ciently reduce the number of required number of RF chains, they can not scale well

for wideband systems. In this chapter, another direction of reducing the power con-

sumption is used for massive MIMO systems, which employs low-resolution DACs

for every RF chain connected to an antenna. In the downlink communications, the

transmitted signal at each RF chain is generated by a pair of DACs. The power

consumption of DACs grows exponentially with the number of quantization bits

and linearly with the bandwidth and sampling rate [22] [23]. Obviously, if each RF

chain is equipped with a pair of high-resolution DACs in massive MIMO systems,

the systems will suffer from prohibitively high power consumption due to the large
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number of required DACs. Therefore, the resolution of DACs should be limited to

keep the power consumption within bearable levels.

In practice, the performance of massive MIMO systems is not only affected by

the wireless channel, but also by the transceiver RF circuits [72]. Due to the differ-

ence between the hardware employed at the base station and the mobile terminals,

the practical channel coefficients for the uplink and the downlink will be different

with the analog circuit gains, which is called hardware mismatch. This means the

downlink is not the transpose of the uplink in TDD mode. Therefore, the hardware

mismatch leads to an significant constraint on the performance of the downlink

communications, because the precoding matrix becomes inaccurate with the use of

uplink channel estimation.

There is little theoretical analysis on the impact of hardware mismatch on system

performance for massive MIMO systems. In [73], the analysis on the performance

of massive MIMO systems with hardware mismatch is presented, using regularized

ZF and MF precoding schemes. However, as mentioned above, the conventional

ZF and MF precoding schemes are infeasible for massive MIMO systems, thus the

quantized precoding is taken into consideration. There has only been little research

that consider the influence of low-resolution DACs for the downlink massive multi-

user MIMO systems. For the case of one-bit DACs, [22] studies the performance of

one-bit quantized ZF precoding on Rayleigh fading channel. In [21], simple closed-

form approximations are developed for the achievable rate with both one-bit and

multi-bit DACs.

Therefore, in consideration of both hardware mismatch and low-resolution DACs,

we study the impact of one-bit ZF precoding with hardware mismatch for the down-

link massive multi-user MIMO systems. Hardware mismatch makes the communi-

cation channel be corrupted by two diagonal matrices of the transmit and receive

circuit gains, which increases the difficulty of analysis. With the use of the Buss-

gang theorem and random matrix theorem, a analytical approximation expression
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is derived for the achievable rate. In addition, for a special case, a performance

approximation is also derived in the high SNR region, which is related to the ratio

of the number of base station antennas and the number of mobile users , and the

statistics of the circuit gains at the base station.
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5.2 System Model and Quantized Precoding

5.2.1 System Model

The downlink of a single-cell massive multi-user MIMO system is considered oper-

ating in TDD mode. In this system, a base station with N antennas serves K single

antenna mobile users simultaneously and usually N � K. In consideration of hard-

ware mismatch, hk = [hk1, hk2, · · · , hkN ] and h̃k = [h̃k1, h̃k2, · · · , h̃kN ] are the uplink

and downlink channel vectors for the k-th user, respectively. hkn is the channel gain

from the k-th user to the n-th base station antenna for the uplink and h̃kn is the

channel gain from the n-th base station antenna to the k-th user for the downlink.

Because the communication channel comprises not only the wireless propagation

channel, but also the transmit and receive circuits, as shown in Fig. 5.1, we model

the channel gains hkn and h̃kn as

hkn = t̃kvknrn,

h̃kn = r̃kṽkntn, (5.1)

where vkn and ṽkn are the corresponding uplink and downlink wireless channel gains.

Base 

Station

𝒕𝒏
Mobile 

User

 𝒓𝒌

Base 

Station

𝒓𝒏
Mobile 

User

 𝒕𝒌

n-th antenna

n-th antenna

k-th user

k-th user

Downlink

Uplink

𝒗𝒌𝒏

 𝒗𝒌𝒏

Figure 5.1: Hardware mismatch for the downlink and uplink transmissions.

It is assumed the wireless channel gains in the uplink and downlink transmission are
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5.2 System Model and Quantized Precoding

the same within the channel coherent time, thus

vkn = ṽkn. (5.2)

t̃k and r̃k are the transmit and receive circuit gains for the k-th user and tn and rn are

the transmit and receive circuit gains for the n-th base station antenna. Because of

different hardware employed by the base station and the mobile users in the uplink

and downlink, the circuit gains satisfy the condition,

t̃i 6= r̃i, ti 6= ri, t̃k 6= ti, r̃i 6= ri. (5.3)

Although the circuit gains change with the working conditions, they vary slowly

compared with the wireless channel gains, thus the circuit gains are regarded as

constant in this chapter.

Under these assumption, the diagonal elements of T and R denote the coefficients

of the transmit and receive circuit gains of the base station, respectively. Similarly,

the diagonal elements of T̃ and R̃ denote the coefficients of the transmit and receive

circuit gains of all the mobile users, respectively. Thus, all these diagonal matrices

of the circuit gains are defined as

T = diag(t1, t2, · · · , tN), (5.4)

R = diag(r1, r2, · · · , rN), (5.5)

T̃ = diag(t̃1, t̃2, · · · , t̃K), (5.6)

R̃ = diag(r̃1, r̃2, · · · , r̃K). (5.7)

Then the entries in the matrix V = [vkn]K×N represent the wireless channel coeffi-

cients, which contains the i.i.d. complex Gaussian entries with zero mean and unit
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5.2 System Model and Quantized Precoding

variance. The uplink and downlink channels can be expressed as

HU = T̃VR, (5.8)

HD = R̃VT. (5.9)

Due to the hardware mismatch between the uplink and downlink communication,

HU and HD are not exactly the same. The received signal at all the users can be

expressed as

y =
√

PHDx + n, (5.10)

where P = diag(p1, p2, · · · , pK) is the power loading matrix with pk being the power

loading factor for the k-th user, x = [x1, x2, · · · , xK ]T ∈ CK×1 is the vector of

transmitted signal for K mobile users and the vector n ∈ CK×1 represents the

additive white Gaussian noise with n ∼ CN(0, σ2
nIK).

5.2.2 Linear Quantized Precoding

The transmitted signal vector x is the product of the precoding matrix F ∈ CN×K

and the symbol vector s ∈ CK×1, which is given by

x = Fs, (5.11)

where s is the vector of Quadrature Phase Shift Keying (QPSK) symbols with zero

mean and unit variance. Because the linear precoding can achieve near optimal per-

formance with relatively low computational complexity in massive MIMO systems,

the linear precoding is used for the analysis. We first design the linear precod-

ing matrix with infinite-resolution DACs and then quantize the resulting precoded

vector. Quantizing the precoded vector implies no additional computational com-

plexity. Thus, in Fig. 5.2, with the use of quantization, the transmitted signal vector
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in (5.11) is given by

x = Q(Fs), (5.12)

where Q(·) denotes the non-linear quantizer-mapping function. The one-bit quan-

QuantizerPrecoding
s z x

Figure 5.2: Diagram of linear quantized precoding.

tization operation is expressed as

Q(z) = sign(<(z)) + jsign(=(z)), (5.13)

where <(·) is the real part, =(·) is the imaginary part and sign(·) is the sign of their

arguments. Therefore, the received signal vector can be rewritten as

y =
√

PHDQ(Fs) + n, (5.14)

5.3 Analysis of One-bit Quantized Precoding Us-

ing Bussgang Theorem

The Bussgang theorem has recently been used to analyze the massive multi-user

MIMO downlink with one-bit quantization. Based on the Bussgang theorem, the

quantized signal vector x can be decomposed into a linear function of the input to

the quantizers and a distortion that is uncorrelated with the input to the quantizer,

thus

x = Q(z) = Gz + q, (5.15)
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where z = Fs ∈ CN×1 and d is the quantization noise. The matrix G is a N × N

diagonal matrix to satisfy the covariance matrix Rzq = E[zqH ] = 0, hence

E[qzH ] = E[(x−Gz)zH ],

= E[xzH ]− E[GzzH ],

= Rxz −GRzz,

= 0, (5.16)

where Rxz denotes the the covariance matrix of the output vector x of the quantizer

with the input vector z of the quantizer and Rzz denotes the variance matrix of the

precoded signal vector z. Note that

Rzz = E[zzH ] = FE[ssH ]FH = FFH . (5.17)

Assuming the elements of z is Gaussian distributed, the inter-correlation between

the one-bit quantized xi and unquantized zj can be represented as the normalized

inter-correlation of the unquantized signals with a factor
√

2
π

[74],

E[xiz
∗
j ] =

√
2

π

E[ziz
∗
j ]√

E[ziz∗i ]
. (5.18)

Based on (5.18), Rxz in (5.17) can be defined as

Rxz =

√
2

π
{diag(E[zzH ])}−

1
2E[zzH ]

=

√
2

π
{diag(FFH)}−

1
2 FFH . (5.19)

Therefore, substituting (5.17) and (5.19) into (5.16),

G =

√
2

π
{diag(FFH)}−

1
2 . (5.20)

94
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Next, (5.15) is used to write the covariance matrix Rqq of the quantization noise

vector q as

Rqq = E[(x−Gz)(x−Gz)H ]

= E[xxH ]− E[xzH ]GH −GE[zxH ] + GE[zzH ]GH

= Rxx −RxzG
H −GRzx + GRzzG

H

= Rxx −GFFHGH , (5.21)

where Rxx is the covariance matrix of the quantized signal vector x. Based on

the arcsin law, for a one-bit hard limiting quantizer, the inter-correlation of the

quantized signals can be given by [74]

E[xix
∗
j ] =

2

π
arcsin

<
 E[ziz

∗
j ]√

E[ziz∗i ]E[zjz∗j ]

+ j
2

π
arcsin

=
 E[ziz

∗
j ]√

E[ziz∗i ]E[zjz∗j ]

 .

(5.22)

From (5.22), Rxx can be expressed as

Rxx =
2

π
arcsin{{diag(Rzz)}−

1
2<(Rzz){diag(Rzz)}−

1
2}

+ j
2

π
arcsin{{diag(Rzz)}−

1
2=(Rzz){diag(Rzz)}−

1
2}

=
2

π
arcsin{{diag(FFH)}−

1
2<(FFH){diag(FFH)}−

1
2}

+ j
2

π
arcsin{{diag(FFH)}−

1
2=(FFH){diag(FFH)}−

1
2}. (5.23)

Thus,

Rqq =
2

π
{arcsin{{diag(FFH)}−

1
2<(FFH){diag(FFH)}−

1
2}

+ jarcsin{{diag(FFH)}−
1
2=(FFH){diag(FFH)}−

1
2}

− {diag(FFH)}−
1
2 FFH{diag(FFH)}−

1
2}. (5.24)
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5.4 Analysis of Achievable Rate

Based on the Bussgang theorem, the received signal vector y after quantization can

be expressed as follows,

y =
√

PHDx + n

=
√

PHDGFs +
√

PHDq + n. (5.25)

For the k-th user, the received signal yk is given by

yk =
√
pkh̃

T

kGFs +
√
pkh̃

T

k q + nk

=
√
pkh̃

T

kGfksk +
K∑

i=1,i 6=k

√
pkh̃

T

kGfisi +
√
pkh̃

T

k q + nk

=
√
pkgk,ksk +

K∑
i=1,i 6=k

√
pkgk,isi +

√
pkh̃

T

k q + nk, (5.26)

where gk,k denotes the equivalent channel gain and gk,i denotes correlated channel

gain. Therefore, the achievable rate Rk for the k-th user can be expressed as

Rk = log2(1 + γk), k = 1, 2, · · · , K, (5.27)

where

γk =
pk|E[gk,k]|2

K∑
i=1,i 6=k

pkE[|gk,i|2] + pkh̃
T

kRqqh̃
∗
k + σ2

n

(5.28)

is the signal-to-quantization-interference-noise ratio (SQINR) for the k-th user.
K∑

i=1,i 6=k
pkE[|gk,i|2] accounts for the multi-user interference and pkh̃

T

kRqqh̃
∗
k accounts

for the quantization noise.

Then with the effect of hardware mismatch, the analytical expressions of the

achievable rate is derived for one-bit linear precoding. In this section, focusing on
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the special case of ZF precoding, the precoding matrix is defined by

F = HH
U (HUHH

U )−1. (5.29)

To deal with the mathematical expectation in (5.28), the asymptotic deterministic

equivalents (ADEs) of the random variables are derived. Assuming N and K are

large with the ratio N
K
> 1, the expectation can be approximated by their corre-

sponding ADEs. That means if a random variable x −→ x0 and x0 is deterministic,

x0 is the ADE of x.

In the asymptotic analysis, Lemma 1 is used, which is stated below,

Lemma 1 : Let A ∈ CN×N and x ∼ CN(0, 1
N

Φx), y ∼ CN(0, 1
N

Φy). Assume

that A has uniformly bounded spectral norm (with respect to N) and that x and y

are mutually independent and independent of A. Then for all p ≥ 1.

(1) E
{∣∣∣∣xHAx− 1

N
Tr(AΦx)

∣∣∣∣p} = O
(
N−

p
2

)
,

(2) xHAx− 1

N
Tr(AΦx)→ 0,

(3) xHAy→ 0,

(4) E

{∣∣∣∣∣(xHAx)2 −
(

1

N
Tr(AΦx)

)2
∣∣∣∣∣
}
→ 0. (5.30)

For analyzing the ZF precoding matrix, we consider the asymptotic behaviour

of the matrix HUHH
U first and have

HUHH
U = T̃VRRHVHT̃

H
. (5.31)

97



5.4 Analysis of Achievable Rate

Since T̃ and R are known constant matrices,

VRRHVH = [v1,v2, · · · ,vN ]



r1r
∗
1 0 · · · 0

0 r2r
∗
2 · · · 0

...
...

. . .
...

0 0 · · · rNr
∗
N





vH1

vH2

...

vHN


= |r1|2v1v

H
1 + |r2|2v2v

H
2 + · · ·+ |rN |2vNvHN , (5.32)

where vi is the i-th column of the wireless channel matrix V. The term |ri|2vivHi

can be expressed as

|ri|2vivHi = |ri|2



v1i

v2i

...

vKi


[
v∗1i v∗2i · · · v∗Ki

]

= |ri|2



v1iv
∗
1i v1iv

∗
2i · · · v1iv

∗
Ki

v2iv
∗
1i v2iv

∗
2i · · · v2iv

∗
Ki

...
...

. . .
...

vKiv
∗
1i vKiv

∗
2i · · · vKiv

∗
Ki


. (5.33)

Therefore, the diagonal elements djj of the matrix VRRHVH can be computed by

djj =
N∑
i=1

|ri|2vjiv∗ji

=

[
vj1 vj2 · · · vjN

]


|r1|2 0 · · · 0

0 |r2|2 · · · 0

...
...

. . .
...

0 0 · · · |rN |2





v∗j1

v∗j2

...

v∗jN


. (5.34)

v′j is defined as the j-th row of the matrix V. Because v′j ∼ CN(0, I), we have
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1
N

v′j ∼ CN(0, 1
N

I). Thus,

djj = N

(√
1

N
v′j

)
RRH

(√
1

N
v′Hj

)
. (5.35)

According to Lemma 1,

djj → Tr(RRH). (5.36)

Similarly, the off-diagonal elements djl,j 6=l of VRRHVH will approximate to 0.

Therefore,

VRRHVH → Tr(RRH)IK . (5.37)

From (5.31),

HUHH
U → Tr(RRH)T̃T̃

H
. (5.38)

Using the results of the previous section,

FFH = HH
U

(
HUHH

U

)−2
HU

→ RHVHT̃
H
(

Tr(RRH)T̃T̃
H
)−2

T̃VR

=
(
Tr(RRH)

)−2
RHVH

(
T̃T̃

H
)−1

VR. (5.39)

Because the matrix G =
√

2
π
{diag(FFH)}− 1

2 only focuses on the diagonal elements

of FFH , when K is large, using Lemma 1 for the diagonal elements, the approxima-

tion of the matrix G can be expressed as

G→
√

2

π
Tr(RRH)Tr

(
(T̃T̃

H
)−1
)− 1

2 (
RHR

)− 1
2 . (5.40)

In the same way, based on (5.38), the precoding matrix F has the asymptotic
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approximation as

F→ RHVHT̃
H
(

Tr(RRH)T̃T̃
H
)−1

. (5.41)

It is assumed that fk denotes the k-th column of F, then

fk →
(
Tr(RRH)|t̃k|2

)−1
RHvHk t̃

∗
k. (5.42)

From (5.26), gk,k is given by

gk,k = h̃
T

kGfk

= r̃kvkTGfk

→ r̃k t̃
∗
k

(
Tr(RRH)|t̃k|2

)−1
vkTGRHvHk . (5.43)

Using Lemma 1,

gk,k → r̃k t̃
∗
k

(
Tr(RRH)|t̃k|2

)−1
Tr
(
TGRH

)
, E[gk,k]. (5.44)

Next, handling the ADE of |gk,i|2, gk,i can be expressed as

gk,i = r̃kvkTGfi, (5.45)

then

|gk,i|2 = |r̃k|2fHi GTHvHk vkTGfi

→ |r̃k|2
(
|t̃i|Tr(RRH)

)−2
viRGTHvHk vkTGRHvHi . (5.46)
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Using Lemma 1, (5.46) can be rewritten as

|gk,i|2 → |r̃k|2
(
|t̃i|Tr(RRH)

)−2
Tr
(
RGTHvHk vkTGRH

)
= |r̃k|2

(
|t̃i|Tr(RRH)

)−2
Tr
(
vkTGRHRGTHvHk

)
→ |r̃k|2

(
|t̃i|Tr(RRH)

)−2
Tr
(
TGRHRGTH

)
, E[|gk,i|2]. (5.47)

In terms of the quantization noise h̃
T

kRqqh̃
∗
k, the expression of FFH should be

first considered. Although FFH is rank deficient, if assuming that N and K tend

to infinity, FFH can approximatively converge to a diagonal matrix. From (5.39),

FFH →
(
Tr(RRH)

)−2
Tr
(

(T̃T̃
H

)−1
)

RHR. (5.48)

Therefore,

<(FFH)→
(
Tr(RRH)

)−2
Tr
(

(T̃T̃
H

)−1
)

RHR, (5.49)

=(FFH)→ 0. (5.50)

Based on (5.24), the covariance matrix Rqq can be approximated as

Rqq →
2

π

(π
2
− 1
)

= 1− 2

π
, (5.51)

and the quantization noise h̃
T

kRqqh̃
∗
k

h̃
T

kRqqh̃
∗
k = r̃kvkTRqqT

HvHk r̃
∗
k

→
(

1− 2

π

)
|r̃k|2Tr(TTH). (5.52)

Therefore, substituting (5.44), (5.47) and (5.52) into (5.28), the SQINR can be
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expressed in closed form as

γk →
pk

∣∣∣r̃k t̃∗k (Tr(RRH)|t̃k|2
)−1

Tr
(
TGRH

)∣∣∣2
K∑

i=1,i 6=k
pk|r̃k|2

(
|t̃i|Tr(RRH)

)−2
Tr
(
TGRHRGTH

)
+ pk

(
1− 2

π

)
|r̃k|2Tr(TTH) + σ2

n

.

(5.53)

Then the achievable rate of one-bit quantized ZF precoding with the effect of hard-

ware mismatch can be calculated according to (5.53).

For a simple scenario, in the high SNR region, the coefficients of the transmit

and receive circuit gains of the base station are assumed to be random variables with

independent and identical distribution, while those of the mobile users are constant

and well compensated with t̃i = r̃i = 1. Then assuming equal power allocation is

used, N and K tend to infinite with the ratio α = N
K

. With these assumption, in

the high SNR region, the SQINR of the k-th user can be given as

γk →
2
πK

∣∣∣Tr
(
RHT(RHR)−

1
2

)∣∣∣2
K∑

i=1,i 6=k

2
πK

Tr(TTH) +
(
1− 2

π

)
Tr(TTH)

. (5.54)

Based on the Law of Large Number (LLN), as N and K →∞,

1

N
Tr
(
RHT(RHR)−

1
2

)
→ E

[
r∗i ti

1

|ri|

]
,

1

N
Tr
(
TTH

)
→ E

[
|ti|2

]
. (5.55)

Substituting (5.55) into (5.54),

γk →
2α
π

∣∣∣E [r∗i ti 1
|ri|

]∣∣∣2
E [|ti|2]

. (5.56)

Therefore, (5.56) can be regarded as the performance approximation with con-

stant value for the one-bit quantized ZF precoding in the high SNR region and
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the performance are related to α and the statistics of the circuit gains at the base

station.

5.5 Results and Discussion

In this section, the performances of achievable rate and SER are evaluated for one-

bit ZF precoding with hardware mismatch. In the simulation, it is assumed that the

circuit gains ti, ri, t̃i, r̃i are identically and uniformly distributed as U(1 − 0.5δ, 1 +

0.5δ) and δ is set as 0.4. Note that, if δ is large, the influence of hardware mismatch

will be severe. All the simulation results are averaged over randomly generated

coefficients of hardware mismatch and channel realizations.

In Fig. 5.3, the performance loss caused by the effect of the hardware mismatch

is evaluated. It is assumed that the transmit power is equally allocated among all

the mobile users and the number of base station antennas is N = 100. Compared

with one-bit ZF precoding without hardware mismatch, achievable rate of one-bit

ZF precoding with hardware mismatch suffers obvious degradation. This indicates

that ZF precoding is sensitive to the influence of hardware mismatch, because the ZF

preocoding matrix is computed based on the estimation of uplink channel matrix.

In addition, as shown in Fig. 5.3, achievable rate of K=5 performs better than that

of K=20. Thus, if the number of base station antennas is fixed, fewer number of

mobile users can achieve better performance of achievable rate.

In Fig. 5.4, the performance loss is evaluated with different conditions. With

the constant ratio α = N
K

, the results of achievable rate are simulated for different

numbers of base station antennas and mobile users. The achievable rate with large

values N = 100, K = 5 performs better than that with small values N = 40, K = 2,

which shows the benefits of massive MIMO systems. Therefore, the results reinforces

the observation that the performance is influenced by specific numbers of both base

station antennas and mobile users.
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Figure 5.3: Achievable rates of one-bit ZF precoding with and without hardware
mismatch, where N = 100.
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Figure 5.4: Achievable rates of one-bit ZF precoding with and without hardware
mismatch, where α = 2.
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Figure 5.5: Achievable rates of one-bit ZF precoding with hardware mismatch, where
N = 100.

The simulation results in Fig. 5.5 are conducted to validate the accuracy of the

derived closed-form expression of the achievable rate, with N = 100. From Fig. 5.5,

with the effect of hardware mismatch, our analytical approximation of one-bit ZF

precoding in (5.53) can match well with the simulations for the cases of K = 5 and

K = 20 ,which shows the accuracy of the analysis. The achievable rate for the case

of K = 5 is better than that for the case of K = 20. Moreover, in the range of SNR,

the analytical approximation with K = 5 is more accurate than that with K = 20.

Therefore, larger value of the ratio α = N/K we use, higher achievable rate per

user and more accurate approximation expression can be obtained for the one-bit

ZF precoding with hardware mismatch.

Then Fig. 5.6 and Fig. 5.7 illustrate the performance approximation of achievable

rate for one-bit ZF precoding in the high SNR region, considering the same setup

as Fig. 5.5. Based on (5.56), the circuit gains at the mobile user is defined as

T̃ = R̃ = IK . When the effect of hardware mismatch exists, the performance
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approximation for one-bit ZF precoding is tight, which does not increase linearly

with respect to SNR. When SNR is more than 20 dB, the achievable rates will

saturate.
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Figure 5.6: Performance approximation of one-bit ZF precoding with hardware mis-
match, where N = 100 and K = 5.

In Fig. 5.8, the average SER for the unquantized ZF precoding is plotted to eval-

uate the influence of hardware mismatch with the number of base station antennas

N = 100. For varied number of mobile users, the SER without hardware mismatch

obviously outperforms that with hardware mismatch. For a target SER of 10−4,

the SER with hardware mismatch suffers from 3 dB performance loss. Similar to

Fig. 5.8, Fig. 5.9 illustrates that the SER of one-bit ZF precoding is also influenced

by hardware mismatch. In the high SNR region, the SER of one-bit ZF precoding

with K = 20 approaches an error floor around 10−2 with and without hardware

mismatch. The SER floor with K = 5 is of the order of 10−4 without hardware

mismatch, while that with K = 5 is of the order of 10−3 with hardware mismatch.

Fig. 5.10 plots the SER results of unquantized and quantized ZF precoding when
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Figure 5.7: Performance approximation of one-bit ZF precoding with hardware mis-
match, where N = 100 and K = 20.
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Figure 5.8: SER of unquantized ZF precoding with and without hardware mismatch,
where N = 100.
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Figure 5.9: SER of one-bit ZF precoding with and without hardware mismatch,
where N = 100.
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Figure 5.10: SER of unquantized and quantized ZF precoding with hardware mis-
match, where N = 100.
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hardware mismatch exists. It is observed that the SER of ZF precoding is adversely

affected by the coarse one-bit quantization. When N = 100 and K = 10, the SER

undergoes an error floor around 10−3. However, when N = 100 and K = 20, the

SER undergoes an error floor around 10−2. Therefore, the smaller value of the ratio

α = N
K

will lead to a better SER performance.

5.6 Summary

In this chapter, the performance of one-bit ZF precoding is investigated with the

hardware mismatch for massive multi-user MIMO systems. A closed-form expres-

sion of the achievable rate is derived using the Bussgang theorem and random matrix

theorem. In addition, a performance approximation on the achievable rate is also

derived. As discussed in the result section, the accuracy of the derived approxima-

tion expression is validated and the performance approximation is related to the

ratio α = N
K

and the statistics of hardware mismatch parameters. Moreover, the

ratio α is proved to be a significant factor to obtain higher achievable rate and more

accuracy approximation expression in consideration of both hardware mismatch and

one-bit ZF precoding.
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Chapter 6

Conclusions and Further Work

6.1 Conclusions

In downlink massive MIMO systems, due to the prohibitively high energy consump-

tion and hardware complexity caused by the very large antenna arrays, the low com-

plexity precoding schemes are often used to address this problem. Therefore, this

thesis focuses on the design and analysis of the low complexity precoding schemes

for massive MIMO systems. In this thesis, we have proposed novel hybrid precod-

ing schemes with a comparable performance as the optimal methods, which can

effectively reduce the energy consumption and hardware complexity without obvi-

ous performance loss. Moreover, the performance of the low complexity precoding

schemes is analyzed .

In Chapter 3, a low complexity hybrid precoding scheme is proposed in massive

multi-user MIMO systems with a finite dimensional channel model. The hybrid

precoding exploits a high-dimensional RF precoder in the analog domain and a

low-dimensional baseband precoder in the digital domain, which employs fewer RF

chains to reduce the hardware complexity. In terms of the channel model, the

finite dimensional channel is considered, because it can reflect the property of the

poor scattering channel environment caused by high path loss at high frequency.

Based on this channel model, the proposed method can achieve spectral efficiency
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close to that achieved by the optimal ZF precoding. Then a tight upper bound on

spectral efficiency achieved by the proposed precoding is derived, which separates

the dependence on the array response vectors and the fast fading coefficients matrix

and shows the optimality of the proposed hybrid precoding.

In Chapter 4, using successive refinement, an iterative hybrid precoding scheme

is proposed with a sub-connected architecture for mmWave MIMO systems. Base

on the hybrid precoding scheme with the fully-connected architecture in Chapter 3,

the sub-connected architecture is utilized to reduce the number of phase shifters for

the hybrid precoding design, which can further reduce the hardware complexity. In

mmWave channel model, the iterative algorithm is used to effectively optimize the

hybrid precoding matrices. In addition, an upper bound on the spectral efficiency

achieved by the proposed hybrid precoding is derived with a closed-form expression

and the comparable performance of the spectral efficiency as the hybrid precoding

schemes with the fully-connected architecture is obtained by the proposed precoding

scheme. Then the energy efficiency and the complexity of the hybrid precoding

schemes are both analyzed, which show the sub-connected architecture achieves

higher energy efficiency and lower complexity than the fully-connected architecture

with the increase of the number of RF chains.

In Chapter 5, the impact of one-bit ZF precoding is studied for massive MIMO

system with the uplink and downlink hardware mismatch. Due to the limitation of

the hybrid precoding schemes, the low-resolution DACs are employed to reduce the

hardware complexity and the power consumption. Because the hardware employed

at the base station and the mobile terminals is different, the channel for massive

MIMO system with hardware mismatch is considered. Based on these, a analytical

approximation expression for the achievable rate is derived with the use of the

Bussgang theorem and random matrix theorem. Then a performance approximation

of the achievable rate is also derived in the high SNR region, which is related to the

ratio of the number of base station antennas and the number of mobile users , and
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the statistics of the circuit gains at the base station. The simulation results show the

accuracy of the derived approximation expression. In addition, the performance of

SER is also simulated to study the influence of one-bit ZF precoding and hardware

mismatch.

6.2 Further Work

In order to reduce the hardware complexity deriving from the use of very large

antenna arrays in massive MIMO system, antenna selection is an effective method to

exploit the diversity gains and achieve complexity reduction. However, the antenna

selection and the precoding schemes are two disjointed optimization problems. For

future work, the research on a combination of low complexity precoding schemes

with the antenna selection can be carried out to achieve the highest benefits from

both techniques.

Due to the large number of required DACs in massive MIMO system, the low

resolution DACs are used to reduce prohibitively high power consumption. The

conventional linear precoding methods with quantization are far from optimal in

terms of both BER and achievable rate, thus the design of low complexity precoding

schemes with quantization poses an appealing challenge for future research, aiming

to achieve near-optimal performance.

Furthermore, most prior work employs the low resolution DACs with a number of

RF chains equal to the number of transmitting antennas, which will lead to a great

performance loss. To deal with this problem, a mixed DAC architecture can be

considered, in which some antennas are equipped with low-resolution DACs, while

the rest of the antennas are composed of high-resolution DACs. Hence, a study of

the trade-off between the achievable rate and power consumption for the different

numbers of high and low resolution DACs is also a very challenging topic that will

keep researchers busy in the future.
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