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PREFACE 

This thesis describes original work which has not been submitted for a degree at any 

university. 

The investigations were carried out in the Materials Division of the Department of 

Mechanical, Materials and Manufacturing Engineering of the University of Newcastle 

upon Tyne, United Kingdom under the supervision of Professor J. R. White. 

This thesis describes an investigation into the computations of residual stress 

distributions in injection Mouldings. 
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Abstract 

Residual stress distributions in injection moulded polystyrene plaques have been 

computed using various calculation methods based on procedures from the literature. 

Some of the mathematical procedures have been extended to provide improved analysis 
of the process. The results have been compared with measured distributions obtained 
using the layer removal technique. The purpose of this work was to resolve some of the 
disagreements between the measured residual stress distributions in injection moulded 
parts and those predicted by computations made in the literature. 

The calculations are made using the general purpose software "Mathcad". Various 

temperature, time and pressure dependent material models have been used to calculate 
the residual stress and they are compared. Special attention has been paid to choosing 
boundary conditions that match the moulding parameters used in the manufacture of the 
injection mouldings on which the measurements were made. Similarly, care has been 

taken to choose boundary conditions that correspond with the different actual storage 
times before analysis for the samples and also boundary conditions that correspond with 
the post-moulding conditioning. 

Measurements of residual stresses distributions were made on mouldings produced 
under conditions chosen to simplify the modelling requirements. The sensitivity of the 
calculations to the materials property data and to the boundary conditions used have 
been examined. The experimental verification includes examination of the post- 
moulding changes. 

The predicted residual stress distributions over the entire moulding and post-moulding 
history have been found to be in generally good agreement with the corresponding 
experimental results under various processing conditions and post-moulding changes. In 
particular, kinematic boundary conditions for the moulding conditions and the post- 
moulding conditions, due to different temperatures and relaxation times of the polymer, 
have been found to be critical ingredients in the calculation of the residual stress 
distributions. 
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Glossary 

Latin symbols 

a(T, Tg) is the shift factor between the temperature T and the glass transition temperature 

T9 

A is a mechanical parameter defined as 
ag x Eg 

1-Vg 

B is the quantity between 0.08 and 1 defined as follows when T is below the glass 

30-lnq 
transition temperature: B=T 

T 

C represents constants 

e is the thickness of sample 

E(t) is the time-dependent Young's modulus 

J(z, t) is the dimensionless function defined in a way similar to the temperature 

difference ratio in the Fourier heat transfer analysis 

G(t) is the time-dependent shear modulus 

h(z) is a periodic step function 

H(t) is the position of the solidification or glass transition plane 

k represents Boltzmann's constant 

K(t) is the time-dependent bulk modulus 

L is the length of sample bars used in the experimental part 

m is the exponent parameter in the KWW equation 

P is the pressure 

q is the local cooling rate q=T(z, t) 
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I... ý... - K is a mecnamcal parameter ctennea as tollows K= 
1-v 

t is time 

T is the temperature 

t (z, t) is the cooling rate 

t stands for the differentiation of temperature with respect to time 

V is the volume 

W is the width of sample bars 

x is the coordinate measured along the length of samples 

y is the coordinate measured in the width direction of samples 

z is the coordinate measured in the normal direction to the plane faces of the bars 
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Latin and subscript symbols 

a, b, a� and b� are Fourier sum coefficients 

aos, ao., a, 5, a,., b5, b, 
� are the constants in the Tait equations 

A, is a mechanical parameter defined as 
ag x Eg 

= a, " R, 
1-vg 

C, and C2 are universal constants that appear in the WLF equation 

C,, is the specific heat at constant pressure 

Eo is the unrelaxed Young's modulus (Sections 2.3.1,2.3.2 and 3.5.1) 

Eo is the reference Young's modulus ( Section 3.5.2) 

E, is the Young's modulus in the rubbery core 

g, (z, t) = u, (z) " v; (t) where v; (t) is an exponential decay function and u, (z) is a cosine 
function 

J, is the relaxed compliance as expressed in the single relaxation time model 

J� is the unrelaxed compliance as expressed in the single relaxation time model 

k, -k'l el 
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K, (z, t2) is a bulk modulus 

Po is the packing pressure 

P, is the atmospheric pressure 

1-v, 

t�(7) is the relaxation time at the temperature T that appears in the KWW equation 

t, (z) is the time at which the solidification plane reaches the position z 

tdem is the cooling time after demoulding 

tg is defined as the time at which solidification of the whole moulding is just complete, 
that is the time at which the material which cools most slowly just reaches Tg 

To is the initial temperature of the molten polymer within the mould cavity walls 

Tm is the temperature at the cold cavity walls 

Tom, � 
(z, t) is the temperature distribution after demoulding 

Tg is the glass transition temperature 

Tg, (t, ) is the glass transition temperature when t=t, 

T. is the melt temperature 

Tm(z, t,, ) is the melt temperature when t is t,, 

T.,,, is the melt temperature 

T, is the reference temperature 

T, 
ý, � 

is the room temperature 
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zo is the half thickness of samples 
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Greek symbols 

a(7) is the temperature-dependent thermal expansion coefficient 

,8 
is a variable 

AH is the activation energy of a secondary relaxation process 

AV, yr)=¢(z, t)-«(z, yr) 

e and e' are respectively the strains in the glassy shell and in the rubbery core 

0 is the heat flux vector 

q(z, t) is the reduced time 

is is the thermal diffusivity of the polymer 

A is the coefficient of heat conduction 

B is an integration variable or an angle used 

p is the density 

r is the relaxation time in the single relaxation time model 

ý is a space integration variable 

f(t) and gp(z, t) are unknown functions 
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Greek and subscript symbols 

ag is the thermal expansion coefficient in the glassy shell 

a,. is the thermal expansion coefficient in the rubbery region 

a, volumetric thermal expansion 

AP, is the average pressure drop 

AV, is the volumetric change in an element of material at z 

AT, is the temperature defined as T, (z, t, )-T2(z, t2) 

s�,, (t) is the strain in the x-direction 

s,, (t) is the strain rate in the x-direction 

vg is the Poisson's ratio in the glassy shell 

v, is the Poisson's ratio in the rubbery core 

V, is the measured specific volume at temperature T 

VO is the occupied volume 

p�(t�, P=O, z) is the density when the pressure is atmospheric 

p�(t�, P=O, z) is the density when the pressure is atmospheric 

P, z) is the density when the temperature has fallen to below Tg at all 

locations 

p, and p,, are the components of curvature in the x and y directions 

a, is the true stress for a simple extension 

a,,, (z, t), 6,,, (z, t), q _(z, t), represent the equi-biaxial stress distribution 

Q(z, t) is the normal stress rate according to the x-direction 

& (t) is the stress rate in the x-direction 

ýxxmell (t) is the stress rate in the x-direction 
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Miscellaneous symbols 

V is the 3-dimensional delta operator 
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CHAPTER I 

INTRODUCTION 

1.1 Research objective 

Polymers are one of the most important families of materials and widely used in 

engineering structures. Residual stresses are known to occur in injection moulded 

polymers. They can influence the mechanical properties and also cause warping and 

other changes in dimensions of mouldings. 

The surface regions of the moulding cool and solidify before the interior cools 

significantly. The subsequent thermal shrinkage of the material in the interior causes the 

formation of tensile stresses there and of compressive stresses near to the surface. In the 

case of parts made by moulding operations that involve flow in the melt state, there may 

be an additional contribution to the residual stresses related to the thermo-mechanical 

history prior to solidification. Changes in residual stresses can occur after the moulding 

is made. In some polymers, the magnitude of the residual stresses may even change 

significantly on ageing at room temperature. Larger and more rapid changes occur as 

the result of ageing at elevated temperature or application of a temperature gradient. The 

reasons for the changes in stress distribution are many and will be discussed in this 

thesis. 

Mathematical models have been proposed and widely developed by various research 

groups for the residual stress computations. The purpose of this study is to resolve some 
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of the disagreements between the measured residual stress distributions in injection 

moulded parts and those predicted by computations made in the literature. 

1.2 The research program me 

The samples used in this study were injection moulded bars made of polystyrene (PS). 

Polystyrene was moulded into ASTM D638 type I tensile test bars and straight test bars 

(190xl2.7x3.2mm) with a deep gate system (2.5mm) and a shallow gate system 

(0.5mm). The test methods applied and the properties measured include (i) The layer 

removal procedure to determine the residual stress distribution; (ii) stress relaxation 

tests at constant strain at a constant temperature. 

Residual stress distributions in injection moulded polystyrene plaques were computed 

using various calculation methods from the literature. The calculations were made using 

the general purpose software "Mathcad". Various temperature, time and pressure 

dependent material models were used in the calculation of the residual stress and the 

results obtained from the different methods are compared. 

1.3 Outline of this thesis 

The literature survey in chapter 2 deals with mechanical, thermal properties and 

analytical descriptions of polymer behaviour which form the basis of the calculations 

presented in Chapter 3. Reviews of computer-aided calculations are covered here. 

Chapter 3 deals with modelling of residual stress distributions. Calculations are divided 

into two procedures: firstly, using the procedure based on Struik's method (Method A), 

and secondly, using the new procedure (Method B) developed during this research, in 
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which the pressure profile was calculated and used to estimate density distributions 

through the depth and the stress distribution. 

Chapter 4 deals with residual stress calculations performed using both Method A and 

Method B. Various temperature, time and pressure dependent material models were 

used. Special attention was paid to choosing boundary conditions that match the 

moulding parameters used in the manufacture of the injection mouldings on which the 

measurements were made. Similarly, care was taken to choose boundary conditions that 

correspond with the different actual storage times before analysis for the samples and 

also boundary conditions that correspond with the post-moulding conditioning. 

The layer removal procedure and the stress relaxation tests are discussed in Chapter 5. 

Chapter 6 covers the experimental results. The results include residual stress 

distributions and stress relaxation. 

Chapter 7 contains general discussion covering comparisons between the experiments 

and the calculations. Some of the disagreements between the measured residual stress 

distributions in injection moulded parts and those predicted by computations are 

discussed. The main conclusions are given in Chapter 8. 
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CHAPTER 2 

LITERATURE SURVEY 

This chapter is divided into eleven sections. Sections 2.1 and 2.2 begin with very 

general introductions to injection moulding and the properties of polystyrene. 

Sections 2.3 and 2.4 review the literature about the time and temperature dependence of 

Young's modulus of polymers, in particular near the glass transition temperature. 

Section 2.5 deals with temperature and pressure dependence of specific volume. 

Section 2.6 describes rate of heat transport in polymers. Section 2.7 deals with thermal 

residual stress. Section 2.8 describes effect of moulding conditions on residual stress. 

The analytical description of polymer behaviour developed in the literature in Sections 

2.3 to 2.8 form the basis of the calculations presented in Chapter 3. Section 2.9 shows 

post moulding changes in residual stress. Section 2.10 outlines computer-aided 

calculations. Section 2.11 deals with residual stress measurement. 

2.1 The injection moulding process 

A simplified sketch of an injection moulding machine is given in Fig. 2.1.1 The material 

is inserted into the hopper and fed into the extruder where it is mixed and heated with 

the intention to obtain a melt which is as homogeneous as possible, with respect to 

temperature and mixture, and to transport it towards the nozzle. The screw is allowed to 

travel backwards (away from the mould) and a charge accumulates in front of it. When 

there is sufficient charge to fill the mould cavity the screw is propelled forward and the 

material is injected into the mould at a very high speed at very high pressures (up to 250 

MPa). After the product has cooled down sufficiently in the mould, it is ejected! " 
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Hopper 

Fig. 21 .1 
Schematic presentation of moulding machine 

A typical pressure profile at a certain position in the cavity is shown in Fig. 2.1.2. From 

a conceptual point of view, three stages are defined. First, the injection stage, with 

moderate pressures. Thereafter follows the compression stage in which the material is 

compressed to conform to the mould cavity. After compression the post-filling stage 

begins, the high pressure at the entrance of the cavity allows material to flow into the 

cavity as the polymer cools down, again with the purpose to compensate for the thermal 

shrinkage. Eventually, the gate freezes off and no more material flows into the cavity. 

This stage is also referred to as the cooling stage. ") 

ý 

CA H 

Time º 

Fig. 2.1.2 Pressure trace in a cavity during the ejection mouldings cleel 
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2.2 Properties of Polystyrene 

Many polymers show regions of high order and should be considered as semi- 

crystalline'). The major factor which is determining whether a polymer can crystallise 

depends on the occurrence of successive units in the chain in a configuration of high 

structural regularity. If the chain elements are small as in linear polyethylene (see Fig. 

2.2. a), crystallinity is highly developed. If the chain elements are complex, containing 

bulky side groups (see Fig. 2.2. b), as in polystyrene (PS), the material can crystallise 

only if these substitute groups are arranged in an ordered or tactic configuration! ') 

In linear thermoplastic semi-crystalline polymers, it is possible to identify a melting 

temperature (Tm). Above this melting temperature, the polymer may be liquid, 

viscoelastic or rubbery according to its molecular mass. However, below it, in the high 

molecular mass range, it will tend to act like a viscoelastic solid down to the glass 

transition temperature. " 

CHZ CHF-- 

r- 
CH2-CH-1 1 

Jn ý_1 n 

Fig. 2.2. a the structure of polyethylene Fig. 2.2. b the structure of polystyrene 

The semi-crystalline melting point (Tm) is theoretically the highest temperature at which 

polymer crystallites can exist. Normally, polymer crystallises in a certain temperature 

range. Secondary semi-crystalline transitions (below Tm) occur if the material 

transforms from one type of crystal to another. These transitions, like the melting point, 

are thermodynamic first-order transitions. In crystalline polymers, T. rather than Tg 
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determines the upper service temperature of plastics and the lower service temperature 

of rubbers, Tg is still very important. The reason is that between Tg and T. the polymer is 

likely to be tough; the best use region of the polymer may therefore be expected at the 

lower end of the leathery range (Fig. 2.2.1). Below the glass transition temperature, 

many polymers tend to be brittle, especially if the molecular weight is not very high. 

Secondary transitions may be responsible if a rigid material is tough rather than brittle(s). 

Diffuse transition zone 

I 
Melting Point (T. ) 

Glass transition (Ti) 

Molecular Mass -º 

Fig. 2.2.1 T-M Diagram for semi crystalline polpners(13) 

Temperature-Molecular Diagram for semi crystalline polymers. Leathery range is 

shown in between two curves (melting point and glass transition) 

Polystyrene is regarded as an amorphous glassy thermoplastic. Because of its atacticity, 

Polystyrene is unlikely to crystallise even if it is drawn to give molecular alignment, as 

happens in the soft blocks in copolymers of polyurethane. The mechanical properties 

and integrity are due to entanglements among the main chains. The density of 

entanglements is high below the glass transition temperature and decreases as the 

temperature rises. The drop in the Young's modulus when the temperature increases is 

connected to this decrease of the density of entanglements below Tg. As polystyrene 
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does not have cross-links, which are permanent covalent bonds connecting adjacent 

main chains, at high temperatures, it may not display an elastic behaviour when being 

stretched, for the density of entanglements is too low. Consequently, it can be assumed 

that the Young's modulus of PS will totally vanish when the polymer flow is liquid-like 

(above TgP). There is no residual mechanical integrity due to cross-links. Such an 

assumption is a premise for Lodge's constitutive model of a rubber-like liquid(). 

me and temnerature Clenendence oI YOUng"S moou 

The Young's modulus of polystyrene and other thermoplastics is time-dependent and 

changes continuously as temperature changes and it is required to chose a suitable 

expression to represent it that can be inserted into computations(''8'9, 

Materials have non-elastic properties under certain circumstances. This is especially the 

nature of polymers. They may show non-elastic deformation under conditions in which 

other materials may be regarded as purely elastic. ') It can be said that viscoelastic 

deformations cover for all deformations that are not purely elastic. This means that 

viscoelasticity deals with a number of quite different phenomena. Viscoelasticity is the 

combination of viscous and elastic properties'). 

2.3.1 Stress relaxation 

Stress relaxation is the time-dependent change in stress at a constant deformation and 

temperature. It is common use to call the momentary ratio of tensile stress to strain the 

"relaxation modulus" (E,, ) and to present the results of the experiments in the form of 

E,, as a function of time. The stress-relaxation behaviour of polymers is extremely 

temperature-dependent, especially in the region of the glass transition temperature. 
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2.3.1.1 The single relaxation time model 

The single relaxation time model due to Nowick (1953)"2) is introduced which permits 

derivation of an expression for the time-dependent compliance: 

J(t)=Ju + (JR 
- Ju)" 1-exp -t (2.3.1) 

z 

where 

Ju, JR are the unrelaxed and the relaxed compliance respectively and T is the 

characteristic relaxation time. 

When t<< r, J(t)=J. and when r>> -r, J(t) JR. In the same way, the Young's modulus can 

be written: Eo " exp(t 
) 

where Eo stands for the unrelaxed modulus. Here the relaxed 
T 

modulus (t-*w)equals zero. Such relationships include the decay of the Young's 

modulus controlled by a single relaxation time present in an exponential function and 

approximate the behaviour of thermoplastics shown by experimental data (Fig. 2.3.1(22)). 

Great care has to be taken to describe theoretically the true shape (sigmoid curve) of the 

time-dependence of the Young's modulus. A model taking into an account a distribution 

of relaxation times has also been developed to better match the experimental data. (4,22) 

i . -. ý ý 

log tO(T) ' 

Fig. 2.3.1 Compliance of PS showing the glass transition(") 

9 



2.3.1.2 Struik's adapted equation 

In the transition region a plot of the logarithm of the tensile relaxation function (a(t)/so, ) 

against the logarithm of time is nearly a straight line with a negative slope; at both 

higher and lower temperatures the slope becomes less steep"'). 

This behaviour can be approximated by the Maxwell model: 

Q(t) 
=- E., (t) = Eo exp 

t 
Co 

(E), 

1 

(2.3.2) 

where 

O,, is the relaxation time, i. e. the time necessary to reduce a to a fraction 1/e of its 

original value and co is the applied strain. 

Eq. 2.3.1 is valid only in a rather limited time interval. If the behaviour over a longer 

time period must be described, a number of equations of this type can be superposed, 

each with a different relaxation time. Ultimately, a whole relaxation spectrum is 

developed("'. 

The formulae for stress relaxation which give best agreement with measured time 

dependent behaviour were proposed by Struik (1978)('sß. 

Q(t) ° Eýr (t) = Eo ' exp -t (2.3.3) 
CO to 

and for long-term tests 

Q(t) 
mt 

- E, 1 (t) = Eo " exp - 
te 

" In 1+ (2.3.4) 
E0 to to 

IM] 

where 

to is a characteristic constant for the material, dependent on T. to is an ageing time of 
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polymer, elapsed after quenching of melt and m is a constant with a value about 1/3 

2.3.1.3 Kohlrausch-Williams-Watts equation 

The single relaxation time model can be modified by an empirical formula of general 

applicability"), the Kohlrausch-Williams-Watts (KWW)(l') equation, as follows: 

E(T, t) = E(Tg, at) = Eo " exp - 
at 

to (Tg ) )ýý (2.3.5) 

where 

E(T, t) is the time-dependent Young's modulus at temperature T 

a is the shift factor describing displacement along the time axis and is a function of 

temperature 

to(T) is the associated relaxation time at the same temperature and has the same 

significance as r in Eq. 2.3.1. and m is a parameter different from unity 

Consequently, the KWW equation introduces a departure from the single relaxation 

time model. This equation has come closer to agreement with the experimental 

measurements. Actually, m is considerably smaller than unity (e. g. 1/3-1/2)(18) and many 

materials show very similar m-values. For all these materials the shape of the time- 

dependent stress-relaxation curve is roughly the same('S). This can be readily understood, 

for the shape of the curve is determined by the development of the main chain-diffusion 

process at a long range scale; which main chains actually diffuse is obviously of less 

importance. 

t0(7) is temperature-dependent and does not follow an Arrhenius law with constant 

activation energy, to(7) is expected instead to obey the WLF equation (see later). The 

definition of the glass transition temperature may be ambiguous because it is reported°8) 
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to be the temperature at which the associated relaxation time in the KWW equation is 

within the interval 1s-100s('ß. The latter interval has a length of two orders of 

magnitude, which is the upper tolerance as regards the intervals of values for to(Tg). In 

these calculations, the latter relaxation time is assumed to equal to either 1s or 100s. In 

the article written by Gortemaker et al (1974)("), when the shear rate is less than 102 s', 

the time for the adjustment of a steady flow is controlled by a relaxation time equal to 

100s. When the shear rate is about 1 s', this relaxation time becomes very small (Is or 

less than Is). It seems that an accurate value for t0(Tg) will depend on the nature of the 

problem (e. g. thermal stress calculations or relaxation of the first normal stress 

difference after steady shear flow) and the previous applied shear rate 1 s'. 

2.3.2 Time-temperature superposability (T. T. S) of Polymers 

Struik (1990)06) developed the time-temperature superposability of polymers which 

considers both the KWW and the WLF equations. The plots representing the Young's 

modulus at various temperatures versus logarithmic time can be superimposed by 

shifting according to a horizontal shift factor. If the mastercurve is taken at the reference 

temperature equal to the glass transition temperature, it can be seen that: 

E(T, t) = E(Tg, a(T, Tg )" t) (2.3.6) 

where 

a(T, Tg) is the shift factor between T and Tg which will be given by Eq. 2.3.10. 

When 7>Tg, a(T, Tg)>1. When T<Tg, a(T, Tg)<1. Finally when T=Tg, a(T, Tg)=1 

(Fig. 2.3.1). 
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G(r) 

In a(7) 

Shift 

z(T, ) z(T2) 
log t -10 

Fig. 2.3.1 Stress relaxation and the effect of temperature 16) 

The two curves (the mastercurve at Tg and the curve at temperature 7) are superimposed 

when a translation, for which the translation vector is ln(a(T, Tg)), is performed. Such a 

behaviour is said to be thermorheologically simple and was first observed in the 

1940s and 195Os(26,27). Its interpretation is that temperature only affects the position of 

the relaxation curve, the shape of this curve being independent of temperature. 

The KWW equation at TR gives: 

E(Tgt) _ Eo exp 

[_[ý(g)]m] 
I 

By applying the T. T. S principle, it follows from Eq. 2.3.5 

E(T, t) = E(Tg, atT, T&)"t) = Eo exd - 

This yields 

T, >Ti 

a(T, TR)'t ý 

j=Eo. eH tý (Tg ) 

(2.3.7) 

-(To (2.3.8) 
ro (T) 

M 
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-ln 
t°(T) 1 =ln(a(T, Tg)) 

lz-(Tig) 
(2.3.9) 

Now the WLF expression for time-temperature superposition can be applied 

g) 1n(a(T, Tg ))= 
exp -C, (T-T 

C2+(T-Tg) 
(2.3.10) 

where T represents a modified temperature field, for the latter equation is only valid for 

a limited temperature range around the glass transition temperature. For the purpose of 

moulding solidification in moulding operations, this modified temperature field can be 

allowed to take all values above Tg for the shift factors between the mastercurve and the 

curve of the time dependence of Young's modulus (this is the method adopted in 

Section 4.4.2). In the case of polystyrene, Struik allowed the temperature to drop until it 

reached 350K (23 degrees below Tg). According to the authors (4) the WLF equation is 

only valid for a limited temperature range below Tg, and this is why a limited drop of 

amplitude 23 degrees has been chosen(16). A new temperature field S(t) was then defined 

as follows: 

if T(t)>350K then T(t)=S(t) 

if T(t)5350K, then S(t)=350K 

If such a limit is not imposed, the viscosity as predicted by the WLF equation becomes 

infinite, which is contrary to observation even with a polymer in its glassy state. 

Combination of Eq. 2.3.8, Eq. 2.3.9 and Eq. 2.3.10 gives 

E(T, Tg, t) = Eo " exp 

ex, '(T -Tg) ` p C2 +(T - Tg) 

-I to (Tg ) 

j 

(2.3.11) 
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2.3.3 Creep (elasto-plasticity) 

Long term dimensional stability under force is one of the most important properties of 

solid materials, but few materials are perfect in this respect. Creep is the time-dependent 

(also temperature dependent) relative deformation under a constant force (tension, shear 

or compression). In contradistinction to stress relaxation, creep is in general a 

combination of relaxation and viscous deformation phenomena. For small deformations 

(i. e. under the influence of small forces) relaxation phenomena predominate. It is under 

these conditions that stress relaxation and creep can be quantitatively correlated. As the 

amount of deformation increases, viscous phenomena become increasingly important. 

At a given moment, the specimen may show yielding, i. e. rapid viscous deformation. 

The results of creep experiments are usually expressed as the quantity creep compliance, 

the time-dependent quotient of strain/stress. Creep properties are very much dependent 

upon temperature. Well below the glass-transition point, very little creep will take place, 

even after long periods of time. As the temperature is raised, the rate of creep increases. 

In the glass-transition region the creep properties become extremely temperature- 

dependent. In many polymers, the creep rate goes through a maximum near the glass- 

transition point" '. 

A well-known simplified equation for the tensile creep function is the Voigt model. 

t E(t) 
° S, r (t) = So 1- exp - 

(E)n 

ao 
(2.3.1 2) 

where 

O, is the retardation time. 

In addition, in this case, several retardation phenomena with different retardation times 
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may be superposed". 

Struik (1978)('S) modified the expression for creep strain in manner similar to that used 

to describe Young's modulus, giving a form similar to the KWW function, ie. 

m 

s(t) 
- S(t) = So exp 

t 
CO to 

and for long term experiments 

im] E(t) 
- S(t) = So " exp " [i1i-4 nr 

Qo to tý 

(2.3.13) 

(2.3.14) 

where 

to is a characteristic constant for the material, dependent on T. 

t,, is an ageing time of polymer, elapsed after quenching of melt and m is a constant with 

a value about 1/3 

2.4 Glass transition processes 

The properties of polymers change very significantly as the material cools through the 

glass transition. This is a critical regime in the injection moulding process. 

There are many theories that try to explain the glass transition process. They all 

emphasise a diffusion mechanism of main chains according to a long-range scale. These 

theories can be divided into three main groups. 

2.4.1 Normal mode theories 

The first group deals with normal mode theories based on the Gaussian sub-molecular 

model. A chain is arbitrarily divided into a number of segments or "submolecules" each 
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of which is sufficiently long (e. g. more than 50 monomer units) that its end-to-end 

distance may also be approximated by the Gaussian distributionn20ý. The motion of this 

chain is then described as the superposition of a number of normal modes. Local 

motions of chain segments which are shorter than the hypothetical submolecule are 

excluded. The treatment of the normal mode theory as done by Rouse (1953)(21) gives 

the following time relaxation distribution: 

-l 

rn =z'"12 "5.24k"T"sin2 
pr 

where 

(2.4.1) 

z' =n: the number of links in each submolecule, n is the number of links in the overall 
v 

macromolecule and v'represents the number of sub-molecules. 

1 is the length of one link, ;r is a constant and p is the discrete index that defines the 

distribution. 

The pth mode corresponds to motions in p+l submolecules, a mode existing between 

each submolecule. ; is the frictional coefficient that appears in the definition of the 

frictional force f =-Cv where v stands for the velocity of the submolecule. Other normal 

mode theories have been formulated"". They differ from each other because some take 

account of the effects of hydrodynamic interactions more completely than others. These 

interactions may be illustrated as follows: when a polymer chain segment moves 

relative to its liquid environment it will exert frictional forces on the surrounding liquid 

medium. These forces will modify the velocity distribution of the liquid medium in the 

vicinity of the polymer chain. This effect will, in turn, influence the motions of other 

segments of the same polymer coil. The treatment of Rouse does not include these 

hydrodynamic interactions. 
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2.4.2 Detailed chain dynamics theories 

The second group is composed of theories that try to treat the local motions neglected 

by the normal mode theories because these motions are shorter than the dimensions of 

the corresponding submolecules. Kirkwood and Fuoss (1941)(23) considered the motions 

of a polymer chain in a viscous medium, neglecting the effects of hydrodynamic 

interaction. Their procedure involved a solution of the diffusion equation in which the 

time-dependent probability distribution function was expressed in a general way. 

Yamafuji and Ishida (1962)(24) proposed a theory for the dielectric relaxation of a linear 

polymer chain which also takes into account local chain motions. In order to avoid the 

complications of the Kirkwood and Fuoss formulation (1941)(23), they neglected 

translational motions of the chain dipoles on the grounds that these do not alter potential 

energy with regard to an external electric field. Bueche (1961)(25) suggested that the 

major portion of the prime dielectric dispersion might be explained by ignoring co- 

operative motions of a chain, considering only the motions of a single chain bond. 

2.4.3 Free volume theories 

The last group deals with free-volume theories. A definition of free volume often used 

in polymer studies is that employed by Doolittle (1951)(z6a>>: 

VF = VS - Vo (2.4.2) 

where VF is the "free volume" per unit volume, Vs represents the measured "specific 

volume" of the polymer at temperature T and VO stands for the "occupied volume". 

Because the temperature is above absolute zero, the links of a given main chain have 

oscillatory motions, whose extension above the dimensions of the links at rest defines 

Vo 
" 
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Doolittle found that the flow viscosity of low molecular weight hydrocarbon liquids 

could be represented by an empirical equation as follows: i=a" exp 
f 

where a and 

b are constants, f= 
VF 

is the fractional free volume and q is the viscosity of the liquid. 
VS 

It follows that f(T) =f 
(Tg )+ af" (T 

-Tg) where f(Tg) represents the fractional free 

volume at the glass transition temperature and aj stands for the difference of thermal 

expansion coefficients above Tg and below T. The glass transition temperature has been 

chosen as the reference temperature. From this starting point, one can derive the 

Williams-Landel-Ferry equation". 

In i7(T) 
=-C, 

"(T-Tg) 
77 Tg C2 +T- Tg 

(2.4.3) 

where 

C, and C2 are universal constants that can be calculated from the universal values of af 

and j(Tg), which are respectively equal to 4.8.10-4K"' and to 0.025. Therefore C, =40 and 

C2 =52. Such a formula has been experimentally verified for numerous polymers when 

T varies within a limited temperature range around Tg Because the viscosity is 

proportional to the time between two diffusional molecular group jumps and because 

this time is nearly equal to the average relaxation time, the WLF equation can be 

rewritten by quoting the average relaxation times at temperatures T and Tg: 

In to(T) -C, (T-Tg) 

to (Tg ) C2 + (T - Tg ) 
(2.4.4) 

It has been found by Kovacs (1964)(28) that the relaxation time, which appears in the 

KWW equation, does not follow an Arrhenius law but obeys the WLF equation. 
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2.5 Specific volume 

The specific volume as a function of temperature and pressure is usually given in a PVT 

diagram(29). Fig. 2.5.1 gives an example for amorphous polymers and Fig. 2.5.2 for 

semi-crystalline polymers("'. The volume increases by thermal expansion as 

temperature increases and the volume reduces as the pressure increases. 

Fluid Low pressure 

Solid 

T' 

Fig. 2.5.1 PVT diagram for an amorphous polymeP> 

(Tg is glass transition temperature: depends on pressure) 

Fluid Low pressure 

ý 
ý E 
ý ö 
> 
C) 

!:. 

C) 
N 
ts. 

V) 

Crystallisation process 

T -º 

Fig. 2.5.2 PVT diagram for a semi-crystalline polymerý29) 
(T. is crystal melting temperature: depends on pressure) 
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2.5.1 The Spencer-Gilmore equation 

Spencer and Gilmore (1949)(3132) showed that the PVT behaviour of polymer melts can 

be represented reasonably well by the following modified Van der Waals equation of 

state (33): 

(P+ýrýý 
-cö = 

RT 

where 

P is the applied pressure 

V is the specific volume of the polymer 

M is the molecular weight of an interacting unit 

(2.5.1) 

r and w are constants which must be determined experimentally, just as the interaction 

unit M. r in this equation is the internal pressure, which is independent of specific 

volume and, therefore, of temperature and pressure. It is obvious that the internal 

pressure will be related to the cohesive energy density measured in (N/m'). 

Spencer and Gilmore evaluated the constants r and M, from a series of PVT 

measurements at fixed temperatures. In synthetic linear polymers, M could be identified 

with the molecular weight of the structural unit. In this case (Mw =V(0)) the equation of 

state becomes: 

(P+; rXV -V(0))= RT (2.5.2) 

At atmospheric conditions the internal pressure ;r is much greater than the external 

pressure P, so that for the liquid polyme? 33): 

RT R 
ýc- V(T)-V(0) a, 

(2.5.3) 
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where a, is molar thermal expansivity of a liquid 

The same result is obtained by differentiation of the equation of state: 

aV R 
aT p-M; aT JP M7i 

(2.5.4) 

From the equation of state, equations for the linear thermal expansion coefficient (a) 

and for the compressibility (x) can he obtained. Rearrangement of Eq. 2.5.2 gives 

_. _.. ý. 
RT 

v=V (U)+ P+; r 

from which the following partial derivatives are obtained 

av R 
aTr- P+; r 

and 

aV 
__ 

RT 
aP , 

(P+; r)2 

Substitution gives (34 : 

I av 
=i aV( aT V (O) 

P T+ (P +ýcý 
R 

K- _i 
av i 

z v 8P - V(O) T (P+; r)+ RT 
(P+; c) 

(2.5.5) 

(2.5.6) 

(2.5.7) 

(2.5.8) 

(2.5.9) 

The compressibility x is the reciprocal of the compression modulus or bulk modulus of 

the material. 
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2.5.2 The Tait equation 

One of the most useful expressions to represent the V(P, 7)-behaviour of liquids, 

including polymeric liquids, is the Tait-relation"": 

V(O, T) - V(P, T) 
-C"1n1 +P V(O, T) B(T) 

(2.5.10) 

where 

C is a dimensionless constant 

B(7) is a temperature dependent constant with the same dimension as pressure 

For practical calculations V(0,7) may be approximated by V(T, P=1 bar). This purely 

empirical relation was suggested by Tait. 

Simha et al (1973) (36) have shown that C is almost constant (best average value 

C=0.0894) and that the temperature dependent factor B(7) can be expressed by 

B(T) = b, exp(-bZT') (2.5.11) 

where 

b, and b2 are empirical constants 

T' is the temperature in °K 

Substituting (2.5.11) into (2.5.10) gives 

V(PA) - V(P) 
= 0.0894 " In 1+f exp(bz T'ý 

V(Pa) 
i 

(2.5.1 2) 

Simha et al (1973)(36) showed that the Tait relation is also valid for polymers in the 

glassy state. In this case, the value of b, is about the same as for polymer melts, but b2 is 

smaller. 
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2.5.3 Semi-empirical equations 

There are several semi-empirical equations that have been proposed. Two of them are 

discussed here. 

2.5.3.1 The Hartmann-Hague e4 atio 

Hartmann and Haque (1985)(37,38) combined the zero-pressure isobar of Simha and 

Somzynsky (1969)(") with the theoretically derived dependence of the thermal pressure 

by Pastime and Warfield (1981)('0). This led to an equation of state of a simple form 

PVS =TY2-1nV (2.5.13) 

where 

P is the reduced pressure= 
B 

0 

V: is the reduced specific volume = 
V 
VO 

T: is the reduced temperature =T TO 

This equation was verified by application of the PVT data of the melts of 23 polymers 

of very different structure, adapting the reducing parameters Bo , Vo, and To, to the closest 

fit with the experiments. The average deviation between calculated and experimental 

V(P, T) data is the same as that obtained with the Tait relation. The advantage of 

Hartmann's equation is that it contains only 3 constants, whereas the Tait equation 

involves 4. 

Hartmann and Haque applied their equation also to solid polymers, and with some 

success"'. The reducing parameters appeared to be of the same order as for polymeric 

melts, but different, as would be expected. Their values are given in 
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Table 2.5.1. 

Hartmann already pointed out that the reducing parameter Bo is equal to the 

compression or bulk modulus K, extrapolated to zero temperature and pressure and that 

To is related to the glass transition temperature. Analysing the data of Hartmann and 

Haque found the results shown in Table 2.5.2. 

Parameters Melt Solids 

Polymer 
Bo 

(GPa) 3V0 m kg-1) 
To 

(K) 
Bo 

(GPa) 3V0 mk 
To 

(K) 
Polyethylene 2.80 1036 1203 5.59 959 1829 

Polypropylene 2.05 1087 1394 - - - 
Poly(1-butene) 2.10 1077 1426 - - - 

Poly(4-methyl pentene-1) 1.67 1118 1423 2.61 1121 1658 
poly(vinylfluoride) - - - 4.86 754 1972 

poly(vinylidene fluoride) - - - 5 78 589 1490 
Poly(trifluoro-chloro-ethene) - - - 4.97 447 2373 

Poly(tetrafluoro-ethene) 3.64 359 875 - - - 
Poly(vinyl alcohol) - - - - - - 

Poly(ethylene terephthalate) 4.14 677 1464 - - - 
Poly(vinyl acetate) 3.82 738 1156 4.49 796 1955 

Poly(methyl methacrylate) 3.84 757 1453 4.17 813 2535 
Poly(butyl methacrylate) 3.10 854 1284 3.62 885 1781 

Poly(cyclohexyl methacrylate) 3.14 816 1449 4.43 876 2567 
Polystyrene 2.97 873 1581 4.25 919 2422 

Poly(o-methyl styrene) 3.11 887 1590 4.19 936 2301 
Poly(dimethyl phenylene ether) 3.10 784 1307 3.74 913 2947 

Polyarylate (Ardel) 3.71 738 1590 4.58 798 2702 
Phenoxy resin 4.27 776 1459 5.87 817 2425 
Polycarbonate 3.63 744 1473 4.55 804 2476 
polysulfone 3.97 720 1585 5.33 782 2727 

poly(dimethyl siloxane) 1.85 878 999 - - - 

Table 2.5.1 
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Parameter Melts Solid 
Bo (GPa) 2/3 K (298) (dynamic) K (298) (dynamic) 

Vo (m3 kg) 1425 VW /M 150 VO�/M for glasses 
140 V /M for semi-crystalline 

To (K) 2. OTg+700 5.0 Tg+500 

Table 2.5.2 

Hartmann and Haque also gave some useful equations for estimations: 

R"To 
=C Bo " Vo 

where 

C: 5.4 t 0.65 (g/mol) for amorphous solid polymers 

C: 4.2 t1 25 (g/mol) for semi-crystalline solid polymers 

From the Hartmann-Haque equation the following expressions 

derived(13ý: 

3T 

1(av) 2 T0 
VýBT)P Pi V 

1+5P 
Bo V. 

) 

1(av) i 
x--V a-B r_° +5P (v/Vo ) 5 

2.6 Transport of thermal energy 

(2.5.14) 

for a and is can be 

(2.5.15) 

(2.5.16) 

The rate of heat transport in polymers is important in order to obtain an accurate 

temperature distribution. For good thermal insulation, the thermal conductivity has to be 

low. On the other hand, polymer processing requires that the polymer can be heated to 

the processing temperature and cooled to ambient temperature in a reasonable time. 
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2.6.1 Thermal Conductivity 

No adequate theory exists which may be used to predict accurately the thermal 

conductivity of polymeric melts or solids"'41' Most of the theoretical or semi- 

theoretical expressions proposed are based on Debye's treatment of heat conductivity"'), 

which give rise to the equation: 

A =ACvpuL (2.6.1) 

where 

Cv is specific heat capacity, p is density, L is average free path length between the 

molecules, u is velocity of elastic waves, A is a constant in the order of magnitude of 

unity 

Kardos (1934)('and, later, Sakiadis and Coates (1955)(', ") proposed an analogous 

equation but redefining L as the distance between the molecules in adjacent isothermal 

layers. 

The general shape of the 2-T curve of amorphous polymers is given in Fig. 2.6.1. a. The 

curve passes through a rather flat maximum at Tg and shows a gradual but slow decline 

in the liquid state. Also the slopes of the CP-T (Fig. 2.6.1b), p-T(Fig. 2.6.1. c) and 

u-T (Fig. 2.6.1 d) curves are shown, being the components of the Z-T curve according to 

Eq. 2.6.1. Multiplication of Cp, p and u gives the expected behaviour of 
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i 
A 

Tg T -º 

2.6.1. a Thermal conductivity as a function of tempera Ire(13"41) 

i 
CP 

Tg T -f 

Fig. 2.6.1. b. Heat capacity as a function of tem ra ur (13,41 

P 

Tg T P. 

Fig. 2.6.1. c Density as a function of temp ra r (13,41) 
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U 

Tg T -º 

Fig. 2.6.1. d Elastic wave velocity as a function of temperature (13,41) 

2.6.2 Specific heat as a function of temperature 

The specific heat capacity of the crystalline component of a polymer follows the curve 

in Fig. 2.6.2 for the solid state to the melting pointy...... as) The value of CP at T. 

increases to that of the liquid polymer. The molar heat capacity of the amorphous 

component of the polymer follows the same curve for the solid up to the glass transition 

temperature, where the value increases to that of the rubbery (liquid) material. 

1 Cr Amorphous 
ý 

..,,,. r^.... ý 

... 
ý 

/ 

Crystalline 

Tg Tm 

-º T 

Fig. 2.6.2 Heat capacity as a function of temperature (13) 
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Cooling stresses arise when a sample is cooled inhomogeneously and when the cooling 

causes it to stiffen. The explanation of their origin lies in the fact that no appreciable 

stresses are built up during the first cooling phase, when the contraction of the outside 

solidified layers occurs but the counteracting resistance of the core (molten) is so small 

that hardly any stresses are actually built up. Thermal stresses only arise when both the 

skin and the core are solidified (e. g. during the second phase). These stresses will now 

persist when cooling is completed, the skin being under compression and the core in a 

state of tensiod49,50I The assessment of both transient thermal stresses (e. g. stresses that 

build up during the solidification) and residual thermal stresses (when t tends towards 

co) is worthwhile and forms the main subject of chapter 3. Key contributions have been 

made by: 

Dimensional changes and residual stresses in parts which were made by solidifying 

molten material (not polymer) have been calculated at least since 1920. Adams and 

Williamson (1920)(51) calculated tempering stresses in a glass plate. The proposed 

parabolic, through-thickness residual stress distribution was later verified to be a good 

approximation for an unconstrained, rapidly solidified glass plate. 

Leaderman (1958)(52) progressed in predicting residual stresses and dimensional changes 

caused by solidification. The prediction was closely related to the development of 

thermoviscoelasticity theory and to its application to inorganic glasses and 

thermoplastics. 

Moreland and Lee (1960)(53) extended linear viscoelasticity to account for time- 

dependent temperature variations by introducing the concept of pseudotime or material 

time. The model was applied to a cylinder of incompressible linear thermorheologically 
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simple material. Subsequently, Lee and Rogers (1963)154) showed that Laplace 

transforms can be effectively used for viscoelastic stress analysis only for a restricted 

class of problems. This method is utilised for a symmetrically cooled glass plate. 

Following Lee and Rogers, Lee et al. (1965)(55) accounted for glass relaxation effects('). 

Measured temperature-dependent relaxation characteristics of glass were used in the 

form of a thermorheologically simple material model. The transient stresses calculated 

by using a thermorheologically simple model for a glass plate quenched from above the 

glass temperature differed from the experimental data significantly. 

The simplest basic thermo-elastic analysis can be traced back to Timoshenko and 

predicts the parabolic distribution given in Eq. 2.7.1(578) 

3z2 
a, =60 1- 

2 
Z0 

(2.7.1) 

where a, is the residual stresses in the x -y plane at a distance z, from the mid-plane of a 

parallel-sided moulding of total thickness 2zo and co is the stress at the midplane. 

Struik (1978)"" classified internal stresses in injection moulded thermoplastic parts into 

molecular orientation, physical aging and thermal stresses during part moulding. The 

stresses caused by molecular orientation depend not only on the level of deformation 

but also on the degree of intermolecular interaction for amorphous thermoplastics. 

Struik attributes physical aging to internal hydrostatic stresses that induce a gradual 

material contraction by a process of bulk creep. Finally, the stresses resulting from rapid, 

nonhomogeneous cooling (thermal stresses) are accounted for in an "instant freeze" 

theory developed by Aggarwala and Saibel (see later in this section) that neglects 

viscoelastic and volume relaxation effects at all temperatures. Struik applied this theory 

to solidifying parts of arbitrary shape to account for the temperature dependence of the 
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glassy state. The glassy state elastic modulus and the thermal expansion coefficient 

were assumed to be temperature-dependent. The solidification of semi-crystalline 

thermoplastics is assumed to be identical to amorphous thermoplastics. Struik did not 

consider latent heat effects and significant density changes(16,59). 

Isayev and Crouthamel and Eduljee et al (1984)(60) consider that the strain during 

cooling has three components: an elastic component, a plastic component and a thermal 

component. The material is assumed to be perfectly plastic when the temperature is 

above Tg and perfectly elastic below Tg, and the thermal stress is proportional to the 

difference between the local temperature and the original temperature of the melt. It is 

observed that the average elastic strain through the part of the moulding that is below Tg 

must be zero (if the Young's modulus is uniform through the depth of this region) and it 

is then relatively straightforward to derive the stress distribution when the part has 

finally cooled to a uniform temperature (60,61) This predicts stress distributions that are 

fairly close to parabolic(61). 

Early attempts to take account of the relaxation effects used viscoelastic models 

developed originally for inorganic glasses and are reviewed by Isayev and 

Crouthamel (1984)(60). More recent treatments are given elsewhere and use a range of 

methods to describe and account for the viscoelastic behaviour of the 

polymer (7M(70), (l»'(9), (62 Liu (1996)(8) calculated that the stresses should be compressive at 

the surface, in agreement with the results from earlier, simpler treatments, but some 

calculations predict that the stress very close to the surface of the moulding will be 

tensile (not compressive), changing to compressive a short distance from the surface 

(63), (69), (6x), Zoetlief et al (1996) calculated that the stress very close to the surface should 

be tensile on ejection from the mould but that the stress there will reverse, becoming 

compressive, when the moulding reaches a uniform temperature. ý80' 
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Wimberger-Friedl (1994)(65) compared the layer removal technique and the 

birefringence method for measuring flow induced stresses (see Section 2.7.3). He 

showed an important deficiency of the birefringence method to determine the residual 

stress because the birefringence from thermally induced stress was found to be of 

comparable magnitude to that from flow induced orientation. 

Williams (1981)(66) described three major sources of residual stress. They are 

nonhomogeneity caused by differences in crystallinity levels between the skin and core 

layers, anisotropy caused by molecular orientation and thermal stresses resulting from 

the nonhomogeneous temperature history during solidification. Williams neglected 

packing-pressure effects. Lee et al. (1990)(67) also outlined the effects of the elastic 

properties, specimen size, and thickness on the shrinkage and warpage of injection- 

moulded bars of nylon 6 and poly (ethylene terephthalate). Shrinkage was found to 

increase with the bar thickness, both in the flow and cross-flow directions. The elastic 

properties of the materials, the bar thickness, and the distance from the gate had a large 

effect on the through-thickness shrinkage. 

Santhanam (1992)(68) used a thermoviscoelastic model to assess residual stresses and 

post moulding deformations in injection-moulded parts. Packing-pressure effects were 

taken into account to specify the initial strains in the thermoplastic at the end of filling. 

Consequently, initial strain for a given material only depends on the melt pressure. 

Bushko and Stokes (1995)(69,70,71,72) took into account a processing history that includes 

packing pressure and a fixed set of boundary conditions (temperature, pressure and in- 

plane boundary conditions i. e. fully constrained in-plane direction) for the known 

dependence (specific volume and relaxation effect) of residual stress and dimensional 

changes. The result was not compared with an experimental result. 

Zoetelief, Douven and Ingen Housz (1996)(80) took into account the influence of the 
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holding stage with a linear viscoelastic constitutive law. The results were compared 

with experimental results obtained with the layer removal method. The magnitude of 

calculated stress was 1.0 to 3.5 times higher than the experimental results. 

Jansen and Titomanlio (1994,1996)(73,74) accounted for shrinkage anisotropy between 

in-plane and thickness direction, which was caused by different constraints in 

deformation. They used local values for temperature, pressure and crystallisation. The 

magnitude of their calculated stress was 2.8 to 3.6 times higher than the experimental 

results. 

2.7.1 The thermo-elastic model 

This model was first derived by Aggarwala and Saibel (1961)(75). It neglects not only 

viscoelasticity (time effects in the elastic behaviour of mechanical properties) but also 

volume relaxation. This model assumes that mechanical parameters are constant and 

independent of temperature below as well as above Tg and that the changes occur only at 

a certain temperature T, and are discontinuous. Moreover, the non-discrete nature of the 

glass transition is disregarded. For a simple geometry like an infinitely large flat sheet 

with a thickness e in the z direction and the coordinates x and y in directions parallel to 

planes of the sheet, the equi-biaxial stress distribution a, (z, t) = Q,, (z, t) can be calculated 

by using the following equation(75,76,77): (z is measured from the mid-plane located in the 

core) 

( 
Q' ý , t) - Tg -T(z, t)+ 

e1ý 
ý(w)T (ý, ýVýýdll/ 

2- H(ýV) 

where 

(2.7.2) 

H(t) is the position z--H(t) of the solidification plane (defined by T=Tg) moving inwards 
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t, (z)is the time at which this solidification plane reaches the depth z 

A= agEg (subscript g stands for glassy). ag, Eg and vg are respectively the thermal 
1- Vg 

expansion coefficient, the unrelaxed Young's modulus, and the Poisson's ratio in the 

glassy state 

and yr are respectively time and space integration variables; 

T is the derivative of the temperature field with respect to W This solution neglects the 

contribution due to thermal stresses that build up in the rubbery core, for the stiffness of 

this core is negligible with respect to that of the solidifying glassy skin. Both transient 

thermal stresses and residual stresses can be assessed in this way. 

2.7.2 The viscoelastic model 

Struik considered a fully restrained material cooled at constant length, from initial 

temperature To to final temperature T,, The tensile bar is rigidly supported and is stresses 

free at To. Tensile stresses are built up during cooling because the free thermal 

contraction is restrained. The thermal stresses built up at the final temperature are 

obtained by summing the contributions of all temperature intervals 6T: 

Struik's approach(16) began by calculating the incremental stress, 8Q when the 

temperature changes between T and T-6T. 

(SQ(T) = a(T) " E(T, 
Bg)bT 

where 

a(T) is the linear thermal expansivity at T 

B is a quantity between 0.08 and 1, as follows: 

(2.7.3) 
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when T is below the glass transition temperature B= 
30 T-nq (I6) (see note 2.7.1), 

when T is above the glass transition temperature B= 
C1C2 

2 
(16) in which C, 

(C2 + (T - Tg )) 

and C2 are the constants in the WLF equation. (see earlier discussion in Section 2.5) 

q is the local cooling rate: 
dT 

Note 2.7.1(16,181: The relaxation time rk(T) is determined by the activation energy Hk of 

the process: 

rk (T) = To exp 
Hk 

RT 
(2.7.1.1) 

where R is the gas constant, and ro is a universal constant (10'13s) 

For relaxation times of I/q at temperature T, activation energies are given by: 

HK 
RT - ln 

q1ro 
=30-lnq (2.7.1.2) 

Finally, the following equations were obtained"" that permit the calculation of thermal 

strains and stresses: 

F ! /l - 

Jyý, )R[T' g]. a(T ). T (ý't)dý 
9 

°xr %'/ - e( r1 

= RLT, '-Jdý r) 

Bq J 

Qxx(t) = R(T, 
ýg)ýxx(t)-a(T)"T)"T} 

where 

H(t) is the position of the solidification or glass transition plane: 

n--- --' ' --- -- _. _ f ,-, -E -a is a rnecnanlcal parameter uennea asR= 1-v 

(2.7.4) 

(2.7.5) 
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ý is a space integration variable on the z (coordinate) scale 

2.7.3 Flow-related stresses 

When the polymer melt is injected into the mould under pressure, fountain flow occurs 

and the melt that is deposited at the mould cavity wall is rolled into place with 

orientation produced by elongational flow at the (almost semi-circular) flow frone"). 

The bending moment produced by the shear stresses in the half of the moulding on one 

side of the central plane is balanced by that in the other half. Discussion of the 

calculation of the flow stresses has been provided by Hieber (1987)"") and extended by 

Baaijens and Douven (1991)(79), who improved the analysis by employing the 

compressive Leonov model to describe the behaviour of the polyme? 16). Calculations 

indicate that this stress is one or two orders of magnitude smaller than the thermoplastic 

stressý7'80) and it is quite common to neglect it when calculating stress magnitudes(69). 

2 .8 Effect of moulding condition on residual stress 

The injection moulding process parameters that are expected to have the most important 

influence over the residual stresses are the melt temperature, the mould temperature and 

the pressure, in particular the hold pressure. The effect of all of these on mouldings 

made from a commercial blend of poly (phenylene oxide) with polystyrene has been 

investigated by Siegmann et al (1982) (84) They give results separately for the effect of 

melt temperature and mould temperature whereas it would have been more valuable to 

consider them together. The residual stresses were always compressive near to the 

surface and changed rapidly with distance from the surface whereas they were tensile 

and slowly varying over a large proportion of the interior. The magnitude of the stresses 

fell with increasing melt temperature and with increasing mould temperature (with 
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slight variations on this trend near to the gate). Hindle et al found that the residual stress 

magnitudes in polypropylene mouldings were slightly higher when the mould 

temperature was 80°C that when it was 30°081). This may be because the stresses 

largely formed during cooling after ejection from the mould rather than during the 

period of residence in the mould. El-Rafey (1994) et at82) found that the effect of melt 

temperature on residual stresses in polystyrene was different to that observed by 

Siegmann (1982) et at"). Liou and Suh (1989) (83) investigated the use of low-thermal- 

inertia mould with a passive insulation layer on the cavity surface to permit greater 

control over temperature during moulding and claimed that this is a promising route to 

the production of mouldings with low levels of residual stress. 

Siegmann et al found that the dependence of the residual stress distribution on injection 

and hold pressure was fairly marked(8; ). It was possible to produce tensile stresses at the 

surface by using high pressures though the actual values quoted by the authors for the 

pressures required to cause this seem to be approximately an order of magnitude too 

low (presumably due to their omission of an amplification factor in the injection system 

in their reported pressure data). The effect was not very large compared to differences 

observed by Kwok et al (1996)(86) when using different coolants. Sandilands and White 

(1980)(85) characterised the distribution of residual stress and the relaxation of 

polystyrene tensile bar specimens (190x12.5x 3 mm) using the layer removal technique. 

The specimens were moulded at different packing pressures ranging from a nozzle 

pressure of 37 MPa to 143 MPa. The residual stresses were well approximated by a 

parabolic distribution having characteristic tensile stresses in the core and compressive 

stresses in the surface layers. Moulding pressure was found to have an insignificant 

effect on the stress distribution. Mouldings from the same batches were tested in stress 

relaxation. The time variation of the average stresses which were measured at a constant 
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temperature of 40`C, was approximated by a power law. The exponent of the time was 

found to be very sensitive to the moulding pressure. It was probably significant that 

Sandilands and White cooled their mouldings in ice-water and stored them in liquid- 

nitrogen after ejection. In another set of experiments, the magnitude of stress in bars 

cooled in liquid nitrogen was 4.2 times higher than the value in bars cooled in ice 

water"". They gave a closely parabolic residual stress distribution, a feature that seems 

to be associated with this type of cooling procedure as opposed to air cooline8s"86). The 

residual stresses change with distance from the gate (84 and this is probably largely due to 

the pressure history of the material. Pham et al found that the residual stress distribution 

reversed near to the gate in their polycarbonate mouldings"). The effect of oscillating 

packing pressures on residual stresses in very thick (40 mm) mouldings of polyethylene 

has been studied by Allan and Mortazavi (1985)(88). Reversal of the sense of the usual 

stress distribution was possible under long packing times (88). 

Siegmann et al (1982) also found that the residual stresses were influenced by the 

injection rate(84. They used a quite wide range of injection rates and obtained 

compressive stresses near the surface for all but the very slowest rate, for which tensile 

stresses were observed there. The slowest rate (4 gs') was much less than conventional 

moulding rates and does not demand close scrutiny. They noted that the injection rate 

influenced the Young's modulus distribution but did not attempt to allow for this when 

performing the residual stress analysis: this might account for some of the apparent 

changes in measured residual stress distribution profiles. 

2.8.1 Effect of the pressure 

Melt pressure has an important effect on residual stresses. Titomanlio et al. (1987)(89) 

were the first who recognised the importance in injection moulded products. They 
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solved the equations numerically using the same elastic model and the thermal model. 

There are four ways of dealing with pressure history. The most accurate method is to 

use a recorded pressure curve of an injection moulding experimene90). This is only 

possible if these experimental data are available and reliable (91,92,93) 
. Secondly, the 

pressure curve is predicted by numerical simulations(9', n , 95) 
. Thirdly, the pressure 

history in the cavity is calculated from the equilibrium (PVT) equation of state for the 

material. And, finally, the pressure curve is approximated by dividing it into two 

separate periods corresponding to the filling, holding and cooling stages of the injection 

moulding process(96) 

Pp t <_ tgr 
P- (Pp-P, )exp[-Ap(t-t,,, )]+P, t>t9f 

(2.8.1) 

where 

P, is the peak pressure, P, is the residual pressure, AP and t,, f (the gate freeze off time) 

are empirically adjusted parameters (Fig. 2.8.1) 

0 
$, z 
ý 
w 

Pr 

Pfin 

0 tf, tv, t 

Time º 

Fig. 2.8.1 

A typical injection-moulding process cycle 

r. �. t. 
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Based on McKinney, Simha (1977)(97) and the various phenomenological studies on 

pressure induced densification'9s, ", ýoo>, Greener (1986) 

positions z (the positions within the cavity). 

P. (z) = Po 
[l + xPf (z)] 

where 

(101) 

(2.8.2) 

po is the density of the undensified sample (the density when the pressure is zero) 

Kc' is the pseudo compressibility determined by x' =1 
öV 

V aP f T, P, 7' 

Pf is the formation pressure 

at 

The magnitudes of the stresses depend on the moulding conditions, in particular on the 

surface temperature of the mouldings during solidification(6'. '""). Many of the 

calculations appear to give overestimates of the stress magnitudes when compared with 

experimental measurements. This is probably because of relaxation effects'). Another 

effect that is often not taken into account when modelling the residual stresses in 

injection moulding is shrinkage within the mould (before ejection). It is usually 

assumed that the material in contact with the mould cavity at the surface does not slip (64). 

The effect of this has been considered by Bushko and Stokes (1995)(70). Agreement is 

better when the calculated predictions are compared with residual stress distributions 

measured in quenched slabs. This is because the boundary conditions during cooling 

match those used in the calculations much more closely than occurs in the injection 

moulding process. The same applies to residual stress distributions measured on 

injection mouldings ejected into a quenching medium(86). They also show reasonable 

calculated densities 
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agreement with those calculated using procedures which do not allow for the 

temperature rise in the mould or for the thermal resistance of the air gap when shrinkage 

away from the mould occurs because these effects are less important in this case. 

2.9 Post moulding changes in residual stresses 

Residual stresses may change considerably after the moulding operation is complete and 

the part has established thermal equilibrium with the surroundings. If the residual 

stresses have an influence on properties, it is necessary to consider the effect of the 

service environment on their magnitude and distribution as well as their state in the as- 

moulded condition. 

2.9.1 Aging and annealing 

In most thermoplastics creep and stress relaxation proceed at fairly significant rates at 

room temperature. Therefore, it can be expected that residual stress will relax during 

ageing at room temperature (60,81,102,153) It is not expected that the residual stress will relax 

away completely('o3, I04, iso) 

On the other hand, El-Rafey et al found that the stress distribution in polystyrene 

injection mouldings reversed after an extended period of room temperature ageine '°5 

Their mouldings had an approximately parabolic residual stress distribution with 

compressive stresses near to the surface one day after moulding but after periods of 30, 

60 and 300 days ageing at room temperature the stress reversed becoming progressively 

more tensile as the ageing period increased. 

Relaxation can be accelerated by annealing at an elevated temperature and this method 

is sometimes used to reduce the residual stresses(", 106,15,107) 

The detailed consideration has been given to these processes in Section 2.3. 
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2.9.2 Temperature gradient conditioning 

If the stresses relax non-uniformly there will be a change in the residual stress 

distribution when the moulding is returned to uniform temperature. This has been 

discussed elsewhere by White and co-workers who conducted laboratory experiments to 

investigate the effect(", " , l" They showed that, after returning the moulding to a 

uniform temperature, tensile stresses could develop at the surface that had been held at 

the higher temperature, reminiscent of observations made in polymer mouldings after a 

period of weathering in a hot climate(109'110' Surface tensile stresses are especially 

unwelcome because they may assist cracking and the imbalance in the stress change 

causes warping. 

2 . 10 Computer-aided calculations 

Mathematical models have been proposed and widely developed by various research 

groups for the cavity-filling analysis. Many researchers 011,112,113,114.115) analysed simple 

one-dimensional flow behaviour in rectangular and centre-gated disk-shaped thin 

cavities in the 1960s and 1970s. During the 1970s and early 1980s, many 

papers (116,117,118,119,120) were published concerning flow in thin cavities of arbitrary planar 

geometry based on a Hele-Shaw type of flow(121). 

The Finite Element Method (FEM) is a computational technique that started early in the 

1950s (122,123) as a tool for the structural and stress analysis of complex shapes. Later, in 

the 1960s and 1970, its connections with the fundamental principles of mechanics were 

established"124,12s) As a result, FEM has become a versatile computational tool in several 

branches of engineering. In the 1980s, the era of engineering work stations (DEC, SUN, 
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HP and so on) started. This increased the commercial ability for applications of use of 

FEM in Computer Aided Engineering (CAE) (126). In the mid-eighties, Wang et al 

combined the FEM and Finite Difference Method (FDM) formulation for generalised 

Hele-Shaw flow(127). 

Calculation of residual stress distributions requires that the temperature distribution and 

the changes in pressure are followed throughout the solidification process and that the 

relaxation at all locations is taken into account while simultaneously satisfying the 

boundary conditions and the conditions for force equilibrium(96,128,129,130,131,132) Examples 

of how the different components of the computations can be coupled together are given 

by Wang and co-workers (1991,1992,1993)(133,134,135)Akay 

et al found that some of the measured values of warpage in ABS and 

polycarbonate mouldings made with quite large temperature gradients in the mould 

agreed reasonably well with values predicted by a commercial software package 

whereas in other parts the predicted warpage was actually in the opposite sense to that 

observed(136). Ni and Wang (1993)(137) claim better success with their comparison, using a 

different software package. Gennari similarly provides an optimistic view, though his 

paper deals mainly with the related but less sensitive property of shrinkage('38 

In the case of fibre-reinforced mouldings the calculations must also include prediction 

of the fibre orientation distribution(139,140,141,142,143,144,145) Notable contributions to this area 

'43 have been made by Tucker and co-workers (1992)ß, 144,146614n 

2.11 Residual stress measurements 

There are several experimental methods that can be employed to measure residual 

stress (60,148,155) The layer removal technique is one of the most useful methods. It was 

introduced by Treuting and Read (195 1)(141) for metals. The detail of the removal 
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process for determining residual stress distribution for polymers can be found in 

White's review (1984)(150). The method essentially is to remove uniform thin layers from 

mouldings in the shape of rectangular parallelepipeds (148,155). After each layer removal, 

the curvature of the unloaded moulding is measured. The curvature-depth plots can be 

converted to calculate the stress-depth profile. The curvature measurement is an 

important procedure in layer removal method. 

Akay and Ozden (1994)"151" have compared the advantages and disadvantages of 

different methods of curvature measurement that cover the dial gauge method, optical 

lever method, curvature measurement with a coordinate machine, laser beam scan 

method, then recommended that the bending moment measurement is a more accurate 

method to estimate of residual stress in plastics moulding because the layer removal 

method is time consuming, fiddly and so on. The bending moment method presents 

experimental difficulties and in this research work, an optical method was used to 

measure the curvature. 

White (1996)(49) highlighted the disadvantage of the bending moment method because 

simple loading arrangements may result in the bar taking up an "S" shape, making it 

difficult to determine the position at which the internal bending moment due to the 

imbalanced residual stresses is exactly matched by the externally applied moment. 

2 . 11 1 The layer removal technique 

This technique is the method most frequently employed to measure the residual stresses 

in polymeric bars or sheets through their thickness. The analysis was introduced by 

Treuting and Read"" for measurement of residual stresses in metal plates and improved 

for different plastics by White and co workers('sz, ls3, isa, iss) Successive uniform layers are 

machined from one side of the sample in the form of a rectangular trapezoid and the 
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measurement of the resulting curvature arising from the force imbalance thus created 

allows the determination of the residual stresses. Treuting and Read derived the general 

equation: 

a[()2 
jdpx(z, ) 

+ 
vdpy(z, )'" 

61-v2 zo+z, t dz, dz, f 

+ 4(zo + z, ){ps(z, ) + vp y(z, 
)}- 2 Jý° 

{p,, (z) + vp y(z)}dz 
I 

(2.11.1) 

where 

Q. (z, ) is the residual stress in the x direction at the plane z=z, 

zo is the half-thickness of the bar or plate. (=e/2 in other parts of this thesis; z0 is used 

here for consistency with the literature: it is the symbol used by the majority of authors 

in this subject area). 

E and v are assumed uniform throughout the sample. 

pX and p, are the components of curvature in the x and y directions respectively 

The Treuting and Read treatment is for biaxial in-plane stresses. Sometimes it is 

possible to make simplifying assumptions that permit an approximate solution to be 

obtained using measurements of curvature in one direction only. 

Consideration of the injection direction (x-axis) and the contribution to the residual 

stresses of randomisation of flow-oriented moleculd20) leads to the expectation that the 

transverse stress, cr ,, and p,, will be less, possibly much less, than p,, in some cases. If 

Eq. 2.10.1 is modified with the condition p,, =0, it follows that: 

Q (z )_- 
E [(z 

+z, )' 
dp 

+4(z +z ) 2° 
a° 16 1- v2 0 dz, ot P- f Pdz] (2.11.2) 

For this equation to be valid, it is necessary for the specimen to be in a state of pure 

bending i. e. to form the arc of a circle after the removal of each layer. Moreover, the 
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machining process should not introduce new stresses into the specimen. 

The Curvature p versus the sample depth (zö z,, Fig. 2.11.1) can be converted to a stress 

versus (zö z, ) profile using Eq. 2.11.1 and Eq. 2.11.2. 

When the stresses are caused by isotropic thermal shrinkage only, giving an equi-biaxial 

stress distribution( ...... > Therefore, 

Q. (ZI) E 
61-vý[(zo+z, 

)Z ý +4(zo+z, )P-2ýýý] 
,' 

ýi 
i 

Fig. 2.11.1 The test sample and the cordinate system 

olý 

(2.11.3) 

ZO 

z, 

0 
-ZO 

47 



CHAPTER 3 

MODELLING OF RESIDUAL STRESS CALCULATIONS 

This chapter deals with modelling of residual stress distributions. Section 3.1 gives the 

geometry used for the calculations. Section 3.2 deals with the principles of 

development of thermal residual stresses. Section 3.3 gives the basic assumptions in 

order to make the problem solvable. Section 3.4 gives the solution for the temperature 

distributions that arise in a sample of material, initially at constant temperature, 

sandwiched between two infinitely large, parallel plates constrained at a different 

constant temperature. This solution follows a Fourier treatment. Section 3.5 deals with 

representation of Young's modulus for amorphous polymers, in particular near the glass 

transition temperature. Section 3.6 gives the temperature and the pressure dependent 

thermal expansion. Section 3.7 discuss the Tg-plane position during cooling. Section 3.8 

to 3.10 deal with the calculations of the residual stress using the procedure based on 

Struik's method (Method A). Section 3.11 gives the new procedure (Method B) 

developed during this research, in which the pressure profile was calculated and used to 

estimate density distributions through the depth and the stress distribution. 

3.1 Geometry 

The geometry, as shown in Fig. 3.1, is analysed in order to predict the residual stress of 

a simple injection-moulded plastic part. The cavity geometry consists of an ASTM 

D638 type I tensile test bar. 
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Fig. 3.1 Geometry of tensile bars used in the experiments 

3.2 Development of the thermal residual stresses 

The principles of the development of thermal residual stresses are illustrated in 

Fig. 3.2. Cooling is idealised in five steps in which the pressure varies as a function of 

time. As the cooling front moves inwards, the temperature drops from To, through T. to 

T� It is assumed that the material behaves as an ideal fluid when 

T> Tg. Therefore, (T=-Pa in the region where T> Tg and Po is the packing pressure. 

At time t=to the mould is completely filled. For t >to, the residual thermal stress develop 

as follows: 

1) t=to: The temperature is homogeneous and equal to To, The pressure is zero and the 

material is free of stresses. 

2) t=t,: The outer layers are constrained by the non slip condition at the mould walls. A 

small tensile stress a is introduced in the solidified outer shells. If the stresses are due 

to thermal contraction alone, they will be equi-biaxial in the xy plane, i. e. 6, c. 

3) t=t2: An injection pressure P acts on the melt resulting in a compressive stresses 

c--Po , compressing the rigid shell. If all displacements in the x-direction in the shell 
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are suppressed, the stress in the layers is decreased by Ao = -! 
P-O. 

1-v 

4) t=t3: The pressure remains constant during the holding stage, while the material 

solidifies layer by layer during the time interval t2 to t3. Contraction of the newly cooled 

material decreases the compressive stresses in the surface layers. 

5) t=ta: The pressure is set to zero and the stresses in the melt disappear. The stresses in 

the rigid shell falls as moulding continue to cool. 

6) t=t3 Finally, the product is released from the mould. Further cooling is similar to a 

free quench. This results in tensile stresses in the core that are in equilibrium with the 

stresses in the outer shells. 

t, 

to 

ý 
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t 

(a) Pressure trace in the cavity during the injection moulding 
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3.3 Basic assumptions 

In order to make the problem solvable, some assumptions have to be made 

1) The heat conduction problem can be solved independently of the thermal stress 

problem. 

2) It assumed that no gap will develop between the product surface and the mould wall. 

3) Calculations for a flat sheet will be made because the only important dimension will 

be thickness of the sample bar. 

4) The solid polymer is assumed to be elastic. 

5) Flow induced stresses will be neglected. 

3.4 Temperature distribution 

We consider a heat conduction problem of the geometry shown in Fig. 3.4.1 in a slab of 

thickness e, initially at the uniform temperature To, and exchanging heat by conduction 

at z=-e/2 and z=e/2 and a final equilibrium constant temperature, T,,. 

The fundamental equation for this case is the Fourier conduction equation. 

df= 
-kOZT 

C7 

Where 

a2 a2 a2 OZ = ý+ 2+ al2 ý 

(3.4.1) 

(3.4.2) 

The geometry is shown in Fig. 3.4.1. The polymer is bounded by mould surfaces at 

z=_ýe/2. The initial temperature of the melt is To, and final equilibrium temperature of 

the moulding is T� Thus for one-dimensional flow, we have 
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ý 

N 
ý 

Fig. 3.4.1 The geometry of the melt 

(3.4.3) 

Z 

Following the procedure used by Carslaw"5", a dimension-less function f(z, t) is defined 

in a similar way to AT in the Fourier heat transfer analysis, 

i. e. f (z, t) = 
T(z, t) - T. 

= AT 
To -T. 

with boundary conditions 

(1) For all z within -e/2 _<z Se/2, at time t=ar. T(z, t=c)=T. 

T -T, ý 
.f 

(z, t-> oo) = T- T-0 O T. 

(2) For all z within -e/2 Sz Se/2, at time t=0: T(z, t=0)=To 

. 
f(z, t)=T-T, -1 

O T. 

(3) At z=±2, for all times t >_ 0: T(± (e/2), t)=T. 

therefore 

(3.4.4) 

(3.4.5) 

(3.4.6) 
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f(f (e/2), t)= 
T -T =0 (3.4.7) 
To - T. 

The solution to the heat equation can be described as a linear superposition of 

fundamental and harmonic sine modes corresponding to standing waves. J(z, t) is then 

represented by: 

Az, t) _1S, (z, t) (3.4.8) 

where i goes over the whole ensemble of integers (i. e. i=0 -; ý + 00). Furthermore, the 

spatial and time parts can be dealt with independently so that each g, function is equal to 

u; (z) " v, (t) where the functions u, (z) and v, (t) are not known. 

The next task is to work out the g; functions to ensure that the first boundary condition 

((i), above) is obeyed; it is assumed that, for all i values, v, (t) is not divergent, 

v, (t)-0 when i-++av To fulfil the third boundary condition, u, (z) is represented by a 

cosine function, i. e. 

u, (z) = cos 
(2i+i). 

27z 
(e) 

will obey this condition, as the heat conduction equation is linear. 

Now, we consider the function f(z, t) defined by the series 

pz, +, " cosj (2i + 1) ýeý" expý- k2, 
+It) \ 

(3.4.9) 

(3.4.10) 

This series owes its convergence to the factor exp(- k2r+1t) which is uniformly 

convergent. The coefficients a2, +, are determined by using the second boundary 

condition and standard Fourier analysis. 
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g, (z, t) = co( 
2i + 1)nzl 

, ex t 
`) P(-k z, +, ) (3.4.11) 

e 

((2i +e1); czl 
= co J exp(-kz, +, t) ' 

(- kz, 
+l 

) (3.4.12) 

exP(-kz, +, t) "II- 
(2i 

e 

1)z 
I" sin((21ý1»i) 

e(3.4.13) / JJ 

O'g, 
Ölz = exp(-k2, +1t) -I (2i + 1) 1I2 

" cosý (2i + 1) ýzI (3.4.14) 
` e) \e/ 

if g, is a solution of the heat equation, then 

ý l), r C=k 
a2 and k,, 

-,, = k' 

For t=0, f (z, 0) a2i+1 coý 
1ý2i 

+ 1) 
e 

z) is a Fourier sum 

A periodic function h(z) is defined 

z--! --+h(z) (the period is 2e (Fig. 3.4.2) ) 

Z 

N 
r __ ý 

d cl Z=o 

N 
_____ ý 

* h(z) 

-1 

Fig. 3.4 
.2 Definition of the function h(zl 

(3.4.15) 
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so that 

h(z) can be written as a Fourier sum. 

h(z)=aö+I a�cost ný I ni +b,, sing 
n=I ee 

(3.4.16) 

where ao =0 and for all positive integers, (n): b,, =0 because h(z) is symmetrical. 

The Fourier sum simply converges towards the function h(z) for all z except at the 

discontinuities at z= ±( e+ 
ne) (n = positive integer) Actually this sum will converge 

towards 
2 

(h(z+) + h(z- )) which is half of the sum of limits just to the left and just to the 

right of any given discontinuous point, e. g. at z= -e or z= 
e 

22 

Since h(- ) =+1, hl -e I =-1 and h(+e)=-1, h(± e) 
=+1 2+ 2-) 2 2- 

the sum will converge to 0 at z=±2. The function h(z) at these points was defined as 

zero and was chosen so that there may be complete equality in the associated Fourier 

sum. Because this h(z) function is written in terms of a Fourier sum that obeys both the 

second and the third boundary conditions for t=0 (h(z) f(z, t)), the coefficients of the 

latter sum are the same as those of f(z, 0). 

For all positive integer values 

2 
i: a2; +, = T, 

Lcos[(21+1) ýý" h(z)dz =e 
£ecos( (2i + 1) ý ýh(z)dz 

e 

_I cos(2i + l)ý dz +1 re cos(2i + l)ý dz -1 
ýcos(2i 

+ lý 
ý 

dz 
Oe0Onn 10 
., ý eý2 ee2e 
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where 

4" (-1)' 
sin 

ýr(2i+1) 
=(-1),, 

(a2, 
+t)=(a2; +t), a - 

2 2+l 

Then, the temperature field is finally, for the region -e/2 <z< e/2 and 0<_ t 

(3.4.1 7) 

2 

f(z, t) = 
4ý(-1)ý 

cos (2i+1)ý z exp -k 
(2i+1)ýl 

t (3.4.18) 
ýz _ 

2i+1 

(e)(e) 

ý-ý \ 

enranon or Youngs moan 

The Young's modulus of polystyrene and other thermoplastics is time dependent and 

changes continuously as temperature changes and it is required to chose a suitable 

expression to represent it that can be inserted into the computations. 

3.5.1 Representation of Young's modulus using K. W. W and W. L. F equations 

Struik (1978) found that the formula that best represented the short term stress 

relaxation of a range of polymers was the Kohlrausch-Williams-Watt formulation(14): 

E(T, t) = Eo " eXP -( 
I 

to (T) 
(3.5.1.1) 

where Eo is the initial value of the Young's modulus, to(T) is a characteristic constant for 

the material which depends on T, and m is a constant with a value about 1/P). When 

T=Tg, this takes this value 
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E(Tg, t) = Eo " exp -tm to(Tg) 
(3.5.1.2) 

The general shapes of the curves E(T, t) and E(Tg, t) versus lnt are shown in Fig. 3.5.1 

T 
E 

In a(7) 

E(T, t) 

In to(Tg) In to(T) 
In t 

Fig. 3.5.1 Stress relaxation and the effect of temperature 

It is normally found that the relaxation curves superimpose when shifted parallel to the 

In t axis. Thus, we can put 

to(T) = at,, (Tg) (3.5.1.3) 

It follows that 

E(T, t) = E(Tg, at) = Eo exp - 
at 

m 

to (Tg ) 
(3.5.1.4) 

The shift function, a, is a function of T and Tg and can be represented by the WLF 

expression. Also T is a function of z and t, so the shift factor can be written as 

E(T,, t) 

m 
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lna(z, t)=1n 
to(T(z, t)) 

_ 
C, (T(z, t)-Tg) 

to(Tg) C2 +(T(z, t)-Tg) 

where C, and C2 are universal constants 

therefore 

C, (T(z, t)-Tg) 
a(z, t) = exp 

C2 +(T(z, t)-Tg) 

Now, Eq. 3.5.1.6 is substituted into Eq. 3.5.1.4 and then finally 

C, "(S(z, t)-Tg) m 
E(z, t) =Eo "exp to(Tg) 

exp(CZ 
+(S(z, t)-Tg), 

(3.5.1.6) 

(3.5.1.7) 

moauius repres entea oy ine van nreveien-rioirvzer eauation 
(13) 

An alternative way of representing the time-temperature variation of Young's modulus 

has been described by Van Krevelen and Hoftyzer. 

We see from Fig. 3.5.2 that at the glass transition temperature the rigidity of amorphous 

polymers falls rapidly. In the glassy polymers, the rigidity is obviously highly 

dependent on the temperature, especially near to the glass transition temperature. The 

empirical expressions (Eq. 3.5.2.1, Eq. 3.5.2.2) of Van Krevelen and Hoftyzer can be 

3.5.2) to describe the polymer rigidity as a function of temperature("' . 5.2) 

Tg 
+2 

E(z, t) = 
T, 

" Eo (T STg) 
Tg 

+ 
2T(z, t) 

T, T, 

m 

(3.5.2.1) 
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E(z, t) = 

exp 2.65 

Eo 

Tg 
+ 

Tg 

T, T(z, t) 
Tg 

T, 

(T > Tg) (3.5.2.2) 

where T, is the reference temperature. 

Note 3.5.2: As the temperature increases through the glass transition temperature, the 

rigidity of amorphous polymers falls rapidly. 

L4 
0 

Fig. 3.5.2 Viscoelastic behaviour of a typical amorphous polymer 

3.6 Calculations for the thermal expansion 

The specific volume as a function of temperature and pressure is usually given on a 

PVT diagram(29I0) (Fig. 3.6.1). The volume increases by thermal expansion as 

temperature increases and the volume reduces as the pressure increased. Both effects 

must be dealt with by the computation. 
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One of the most useful representations of the V( P, T)-behaviour of polymeric liquids is 

by the Tait-equations (35 : 

i 
ý 
ý E 
ý ö 
> 
U 

U 
N 
t3. 

(ID 

T -ý 

Fig. 3.6.1 PVT diagram 29) 

V(P'T)=(a0s +als(T-Tg)) 1-C"ln 1+ fJJ (TSTg) (3.6.1) 
s 

V(P, T)=(a0m+alm(T-Tg)) 1-C"ln 1+ (T>Tg) (3.6.2) 

m 

where 

bs bole-bi, T (z"t ) 
= 

-bl. T (z. l) b, 
�=borne 

a,, (m3/kg), aom (m3/kg), a,, (m3/kg. K), alm (m3/kg. K), bo, (Pa), bom(Pa), b15 (KK'), btm (K: ') 

are constants. 

Simha et al. (1973)(36) have shown that C is indeed almost constant and gave the best 
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average value as: C=0.0894 

The fundamental equation for volumetric thermal expansion is 

I dV 
a" V dT 

(3.6.3) 

Now, Eq. 3.6.1 and Eq. 3.6.2 are applied to Eq. 3.6.3 to give the linear expansion 

coefficients below and above Tg as 

a(z, t) = 

a(z, t) = 

a, s 
3" (aos + a, s 

(T (z, t) - Tg ) 

al 
m 

3"(aom +aalm(T(z, t)-Tg) 

(T STg) (3.6.4) 

(T _>Tg) (3.6.5) 

Note that the linear expansion coefficients are functions of the temperature, T. They are 

given in the form a(z, t) because the temperature is uniquely defined by z and t, and 

because z and t are the valuables of interest in the following calculations. 

3.7 Calculation of the Tg- lane position according to the time 

An initial change occurs in the material within the moulding when the temperature falls 

below Tg. Calculations must normally be split into two parts dealing separately with 

changes occurring respectively at T> Tg and at T< Tg. Thus, it is necessary to know the 

time at which the temperature is at Tg for all locations. For the one dimensional heat 

flow case examined, this amounts to following the plane of T=Tg as it travels through 

the moulding. 
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Starting with the result given already as Eq. 3.4.18 

lt 
(3.4.18) f (z, t) =4ý 

(-1), 
cos[(2i +1)'r z1 exp -k 

(2i + 1)ýc 2 

;r=, 2i+1 eJ( ý 

The first term of this series is given when i=0, 

1\21 
(z, t) =4 cos ý z1 exp - ký 

e 
z) 

lIt eJ 

(2i+lýrl Z 
The factor exp - k( 

e)t 
falls rapidly as i increases 

e 

A relaxation time r can be defined for all i values: 

111 
Tzt+t 2 lz k2t+t lk (2i+11 

e 

when i=0 

1 
T2f+1 TI 2 

(e) "k 

Therefore, all r2. +. can be expressed in terms of z, as z2r+, 
z' 

ý (2i+1)2 

Thus, when i=1 r, =9 and when i=2 r, = 
25 etc. 

(3.7.1) 

(3.7.2) 

(3.7.3) 

There is a further factor 1 in the summation in Eq. 3.4.18 which also falls with 
2i+1 

increasing i. Thus successive terms in Eq. 3.4.18 fall rapidly as i increases. Next the 

effect of terminating the sum after a small number of terms is examined. 

Approximations have been calculated for the sum evaluated using one, two and three 
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terms respectively and they are compared in Fig. 3.7.1 

TI 
_.. Tj . 

rs 

r1: V term 
r2: sum of 1 sc and 2d terms 
rj: sum of 1S`22"d and 3rd 

terms 

IIIIIII 
z=o Z 

Fie. 3.7.1 

The graphs are virtually indistinguishable and therefore to a good approximation the 

series can be represented by the first term only, 

i. e. f (z, t) =T 
(z, t) T,, 4 

cosý 
e 

z) exp - k( e)t (3.7.4) 
To T. 

hence the position of the solidification front, i. e. of the glass transition plane is 

H (t) =ý" arccos 4T-T. J' exp kleJZt (3.7.5) 

gý 

3.8 Calculations of the residual stress using method A (based on 

Struik's method) 

By following Lee's viscoelastic treatment(s), Struik(16) has considered a fully restrained 

material cooled at constant length (e. g. a bar kept at constant length), with stress- 

relaxation modulus E(T, t) and linear thermal expansibility a(T). He introduces the local 

63 



cooling rate q=- 
aT in the time-dependent Young's moduli and states that the cooling 

over the interval between T and T-8produces an incremental stress given by: 

456(T)=a(T)"E T, bT 
4 

where 

a(T): linear thermal expansivity at T 

B: quantity between 0.08 and 1, as follows: 

, ixwhen Tic helnw the olncc trnncitinn ternnerntnre R= 

(16) 

30-lnq 
.... v.. a .. a vv. v.. ... v b.... s.. ý......, ý. ý..... waa. rvawýwva T9 

when T is above the glass transition temperature B= 
C1C2 (16) 

C2+ T-Tg 

where C, and C2 are the constants in the WLF equation. 

q(z, t) is the local cooling rate: 
dt 

T 

(3.8.1) 

Finally, the following equations were obtained that permit the calculation of thermal 

strains and stresses rate: 

Exx (t) _ 
R T, B 

a(Tý T(ýýý)dý 
9 

C 

fdý 
JR Tý 
yM Bq 

(3.8.2) 

Qý(t)=R T, 
ýq [(sxx(t)-a(T)"T)"T, 

(3.8.3) 

where 

H(t) is the position of the solidification or glass transition plane 

R is a mechanical parameter defined as R=E 
1-v 

ý is a space integration variable on the z (co-ordinate) scale 
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We consider the formation of cooling stresses for the geometry shown in Fig. 3.8.1 in a 

slab of thickness e, cooled symmetrically from the both surfaces, e/2 and -e/2. The 

temperature T(z, t) depends on t and z only. 

e/2 

+H 
A 

Z 

-H 

-e/2 

I 
T 

Fig. 3.8.1 The geometry of the bar 

Since the temperature depends on only z and t, the stress and strain components do not 

depend on either x or y. 

From the equations of equilibrium( '.., 158) then the shear stresses Tu, Tn and the normal 

stress a= must be independent of z, x or y. Since there are no forces normal to the 

surfaces at z=-e/2 and z=e/2, 

T= Zy` = 6ü =0 (3.8.4) 

In the thermo-elastic range, strain y xZ 
(z, t) depends on only Tx. or T (z, t) for T <_ t. 

From similar considerations, Eq. 3.8.4 implies that 

YX: =yr=0 (3.8.5) 

Since the bar remains flat, the displacement w in the z direction cannot depend on x or y. 

Therefore, together with Eq. 3.8.5, and the definition of the strain tenso? 'S'. 15.1, it is 

evident that s,, and e., do not depend on z. Thus, s and eY, depend only on time and, 
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by the symmetry of this problem, c is equal to sy, and y,, is zero. Consequently, zxr 

will be zero too. The only non-vanishing stress components are therefore a. and a.; 

for symmetry reasons they must be equal and they do not depend on x and y. We obtain 

£. = £yy = Az, t) 

6. = 6yy =0 (Z, t) 

Tsy=Tý, =Tý=6r_ Ysy=yy=Y= 

(3.8.6) 

(3.8.7) 

(3.8.8) 

Let us now apply this result to the inhomogeneously cooled bar. The incremental 

temperature changes aT (z, t) occurring between t and t+ at, according to Hooke's law, 

produces a stress change öo (z, t) = öo 
ß, 

(z, t) given by 

au. � 
(z, r)= R[as� (z, r)-a(Z, r)aT(Z, r)]; x <ýz, <2 (3.8.9) 

öv.. (z, t)=R, [aýý(z, t)-a, (z, t)aT(z, t)]; 0<IzI <H (3.8.10) 

where 

e is the strain in the glassy shell and a is the strain in the rubbery core 

E 
R(z, t)= 

1(zv) ; B(z, t)= a(z, t)E(z, t) 
-a(z, t)R(z, t) 

, t) 
E, (z, t) 

z, t= a'ýz't)E'(z't) R =a (z r= 1-v, 
A. () 

1-v, . 
(z, t)R. (z' t) 

where 

a, is the linear thermal expansion coefficient in the rubbery core 

E, is the Young's modulus in the rubbery core 

v, is the Poisson ratio in the rubbery core 

(3.8.11) 
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At the boundary between the zones, the displacements in the x-direction must be 

continuous, and therefore: 

aE" (z, r) = as; 
ý 

(z, r) (3.8.12) 

The value of ac (z, t) can be found when we remember that no forces are acting on the 

end faces of the bar. According to Saint-Venant's principle (1S8), it is therefore required 

that: 

1e äa (z, r)dz =0 (3.8.13) 

Substituting Eq. 3.8.9, Eq. 3.8.10 and Eq. 3.8.12 into Eq. 3.8.13 and using the fact that 

ac.,, is independent of z, we find: 

ý_ ý_ .ý 
A' Je 

(r)aT ro 

vs,, kz, 11 = 
R, H(z, t)+Rr2 -H(z, t) 

(3.8.14) 

The treatment of the cooling over the interval between T(z, t)and T(z, t)-S(z, t)°6) 

produces an incremental stress given by: 

8Q(z, t)=a(z, t)"E(z, t)bT (3.8.15) 

Recall that this is for the fully restrained core: the element of material at position z is not 

allowed to change dimension in the x -y plane. 

Note that the stress-relaxation modulus E(T, t) is a function of the temperature T. 

It is given in the form E(z, t) because the temperature is uniquely defined by z and t, and 

because z and t are the values of interest in the following calculations. 

e 

67 



We consider a tensile bar cooled at constant length, from initial temperature To to final 

temperature T,, The tensile bar is rigidly supported and is stress free at To. Tensile 

stresses are built up during cooling because the free thermal contraction is restrained. 

The thermal stresses built up at the final temperature are obtained by summing the 

contributions of all temperature intervals bT: 

Q(T,, )= JaT (z, t)"E(z, t)dT (3.8.16) 

where 

E(z, t): stress-relaxation modulus at temperature T 

a(z, t): linear thermal expansivity at temperature T 

These results on the constrained bar open up a new way of calculating the cooling 

stresses in general. We may consider the material as an elastic solid of which the elastic 

constants E, K, v, R=E and thermal expansivity depend on temperature. The 
1-v 

proper values of E, K, v, R=E are found from E(z, t). 1-v 

To illustrate the method, we reconsider the rapidly cooled plate with the stress state 

described in Eq. 3.8.4 to Eq. 3.8.8. Because R(zt)= E(z, t) is now dependent on the 
1- v(z, t) 

temperature and the relaxation time, as presented in Section 3.5.1 (Eq. 3.5.1.7), we no 

longer need the two stress-strain relations of Eq. 3.8.9 and Eq. 3.8.10. These are 

replaced by the single equation given by: 

öQ. 
�(z, t) = R(z, t){8E. (z, t)- a(z, t)aT } (3.8.17) 

Eq. 3.8.12 and Eq. 3.8.13 remain valid, but Eq. 3.8.14 is replaced by 
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e 

aE (z, r)= . 
ýR(z, t)a(z, t)aT(ý, t)dý 

f R(z, t)dý 

where ý is a space integration variable 

These equations can be used to assess the importance of the viscoelastic effects above 

as well as below Tg. It immediately follows that the viscoelasticity of the material above 

Tg will slightly affect the cooling stresses. In the rubbery core R will be 100 to 1000 

times smaller than in the glassy shell. Consequently, for H-values not too close to a/2, 

the contributions of the soft layers to the integrals of Eq. 3.8.18 can be neglected, and 

we obtain: 

e 

rR(z, tý(z, t)T(ý, t)dý aEý (Z t) = (, ) e 

Jyýý, R(z'tpý 
(3.8.19) 

Now, R in Eq. 3.8.19 only refers to the glassy shell. The rubbery shell can be neglected 

above Tg . It directly leads to the approximated solution taking into account 

viscoelasticity, which can be formulated as: 

e 

(Zr(, )R(zet11lýNý, 
(z, tý(ý, týý 

r(t)R(Z, t)dý 
(3.8.20) 

where 

H(t) is the position of the solidification or glass transition plane: 

H(to) = e/2 when t=0 

H(tg) =0 when t= tg: defined as the time at which the centre of the moulding reaches 

the temperature Tg as appears in the KWW equation. 
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0<H(t)<e/2when 0<t<tg 

whilst Eq. 3.8.19 leads to the formula for the stress-production rate: 

(z, t) =R (z, t ýE (z, t) -a 
(z, t )t (z, t) ] 

We find a(z, t) by integration 

(3.8.2 1) 

a(z, t) = Jtg 6(z, t)dt (3.8.22) 

3.9 Calculation of the apcking pressure induced strain 

To determine the strain state in a pressurised melt, the change in the specific volume of 

the melt from V (P0, T) to V (P� T) is calculated as 
V. 

This leads to a corresponding 

linear strain of 

1 V(P1, T)-V(Po, T) 
ýroer! =3xVP ( o, T) 

(3.9.1) 

where 

Po is the packing pressure 

P, is the atmospheric pressure 

with respect to the specific volume at Po- Eq. 3.9.1 is valid for infinitesimal changes in 

the specific volume. An analysis of pressure-volume-temperature (PVT) data for typical 

thermoplastics suggests that the packing pressure may change the specific volume by as 

much as 15%(72). Therefore, a better definition for strain of this application is 

1 V(P,, T) 
Emelr 31n VP ( o, T) 

(3.9.2) 
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where 

V(P'T)-(a0s+als(T-Tg)1-0.0894 "In 1+ý 0s 
(T<_ Tg) (3.9.3) 

V(POT)-(a0m +alm(T -Tg)) 1-0.0894 - In 1+ 
B 

PO 
(T>Tg) (3.9.4) 

m 

V(P1'T)-(a0s +als(T -Tg)) 1-0.0894 - In 1+ l (T_<Tg) (3.9.5) 
Bs 

P 
V(P1'T)=(a0m +alm(T - Tg)) 1 -0.0894 - In 1+ 

BI 
(T>Tg) (3.9.6) 

m 

The stress-production rate after de-moulding is calculated in the same way as in 

Eq. 3.8.22. Therefore, 

6xxme,, 
(z, t)=R(z, t)[E (z, t)+Ezxmeh -a(z, t)T(z, t)] (3.9.7) 

We find Q(z, t) by integration. 

tg 6xxmelt (z't)dt (3.9.8) a xxmelt 
(z't) = ft 

3.10 Calculation of the temperature distribution after de -moulding 

The temperature distribution after de-moulding can be calculated using Eq. 3.7.4 

Therefore, 

r1( lz Tdem (z, t) = 
Tdem (z, t) - Tmom 4 

cost ýzI exp - kl t 
e) 

t T (z, t) - T. 
oom ýe) `e ) 

where 

(3.1 0.1) 
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T, 
oom 

is the room temperature. 

The strain-production rate can be calculated as for Eq. 3.8.20. Therefore, 

ý`e 
1 R(Z, t)Cr(Z, tý]' /`dem 

r 
\ý, 

t/"`]ý 

. ""MrbUU 

ý 

.. 
!_ .l_ tzxdemV"' J- 

ýR(z, t)dý 
(3.1 0.2) 

And the stress-production rate is 

6xr dem 
(z, t) = R(T, t){Exrdem 

(z, t) - a(z, t) 
dem (z, t)} (3.10.3) 

Finally, 

6sxdem 
(Z, t) = 

f&. 
a=de. (z, t)dt (3.10.4) 

where tdem is the cooling time after de-moulding. 

3.11 Calculation of the residual stress using method B (taking account 

of the pressure rp ofile) 

This section deals with residual stresses calculations performed taking account of the 

pressure profile. Section 3.11.1 gives the pressure history within half of the bar for 

different cooling times. Section 3.11.2 provides residual stresses calculations at T=Tg 

using the pressure history. Section 3.11.3 gives residual stresses for T<Tg. 

3.11.1 Calculations of the pressure profile 

The specific volume as a function of temperature and pressure are usually given by the 

Tait equations. The volume decreases as the temperature decreases and the volume 
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increases as the pressure decreases. The pressure drop is calculated as functions of 

temperature and volume in this section. 

3.11.1.1 Volumetric changes when T drops from TTT2 

As discussed in Section 3.6, the volumetric change in an element of material at z when 

T(z, t) drops from T, (z, t, ) to T2(z, t2) is 

OV, (Z, t, , t2 
a, s "OT(z, t,, t2) (T <_Tg) 
a, 

m "AT(z, t,, t2) (T>Tg) 

where 

(3.1 1.1.1) 

AT, (z, t,, t2) =T (z, t, )-T2 (z, t2) 

3.11.1.2 Pseudo compressibility when T zt)=T1(z12) 

From the differentiation of the Tait equation by pressure, we obtain the pseudo 

compressibility when the temperature is T2(z, t2) 

K''(Z, tZ) _ 
- ý, +crl,,, '(T(z, tz)-g, (t, )ý"0.0894" 

J: Tz(zJz) 

ý J2) T<_gl (t1) IL +P, "eýw 
"T2( 

ý. Tz(zJz) 

- 
«(ký+cý"(T(z, 

t2)-g, (t, )ý"Q0894" 
T2(ýJ2 ) T>gl (t1) X +P" ý,. 

(3.1 1.1.2) 

where the pressure-dependence of the glass transition temperature must be accounted 

for, as given by Mengesý29). 

Tg, (t, )=Tg+s"P(t1) 

3.11.1.3 Calculation of the pressure distributions 

The volumetric changes throughout the bar are added in a short time interval and the 

result used to calculate the corresponding drop in pressure. 

Using Eq. 3.11.1.1 and Eq. 3.11.1.2, the average pressure drop from t, to t2 within the 

73 



half of the bar is given by: 

2 i2 0 V(z, t t2) 
, AP, (z, t) =ef x'(z, t2 

)' 
dz 

This is used to calculate the new average pressure at the end of the time interval, i. e. at 

t=tt, i. e. the new pressure is P2(t2)=P, (t, )+iP, (z, t). 

Note 3.11.1: The new value of pressure, P2, is inserted into Eq. 3.11.1.1 and 3.11.1.2 

and the calculations are repeated for the next time interval (t2 to t3). The calculation is 

repeated until the bar reaches the required state, e. g. when the pressure has dropped to 

zero. At this condition the moulding shrinks away from the mould cavity walls and a 

new calculation procedure is required. 

3.11.2 Calculations of the pressure induced stress at T(I, 1 Tgj 

The stress present at z when the temperature falls to Tg(t) is assumed to remain 

unchanged. There will, of course, be changes due to differential thermal contraction 

because of the changing temperature distribution. The material at different locations (z) 

solidifies at different pressures and may show different properties (e. g. density, heat 

content and so on) as a consequence of this. 

3.11.2.1 Rate of change of specific volume at T= 

From the differentiation of the Tait equation for T<_Tg by pressure, we obtain the rate of 

change of specific volume at T=Tg(t) at all locations z. 

dV eý'°'r(`) 

dP =-0.0894"(Clom+alm(T(t)-Tg(t))' (3.11.2.1) 
r, gos + P(t) "e 

where 
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Tg(t)=Tg+s"P(t) 

Note: The pressure dependent glass transition temperature Tg(P(t)) is a function of the 

pressure, P. It is given in the form Tg(t) because the glass transition temperature is 

uniquely defined by t for a given location, z. 

3.11.2.2 Density at T=T 

From the Tait equation, the density at T=Tg(t) at different cooling times is given by: 

a+ aT 1-0.0894-In 1+ P(t). (3.11.2.2) P(z, Tg (t)) _ý os ºs 
( (t) -Tg (t)))' Bos -e -a,, r(r) 

3.11.2.3 Pressure induced stresses at T=T.. j 1 

Using Eq. 4.11.2.1 and Eq. 4.11.2.2, the pressure induced strain is given by: 

s, (z, Tg (t)) 
3( dP 

) 
P(z, Tg (t)) P(t) (3.11.2.3) 

T 

and the pressure induced stress is 

Q, (z, t) = s, (z, Tg (t)) " E(z, t) (3.11.2.4) 

where 

E(z, t): time and temperature dependent Young's modulus (Eq. 3.5.1.7 in 

Section 3.5). 

3.11.3 Pressure induced stresses for T< 

When the temperature has fallen to below Tg at all locations, a new calculation 
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procedure is required. 

3.11.3.1 Density distributions for T<Tg 

From the Tait equations, density for T<Tg is 

p(z, t) _ 

{[aos+ 

aIs" (T(t) 
-Tg (t))j" 1-0.0894-In 1+ 

P(t) 
Bo,, "¢ 

-B,, -T(l) 

3.11.3.2 Volumetric shrinkage at T<Tg 

ý2 (Z' t) =1 äv 
_1 

pn (P = 0, 

(Z) 

- Pn+1 (t("-1), Pn 
ý Z) 

33 plt(n-1)' Pn 
9 Z) 

where 

(3.1 1.3.1) 

(3.11.3.2) 

p� (t,,, P=0, z) is the density when the pressure is atmospheric 

p�+, (t(�_, ), P,,, z) is the density when the temperature has fallen to below Tg at all 

locations. 

And the pressure induced stresses for T<Tg can be written 

62 (z, 0= E2 (z, t) " E(z, t) (3.11.3.3) 

3.11.4 Temperature induced stresses 

3.11.4.1 Temperature induced stresses when the temperature reaches T. at the centre 

Temperature induced stresses when the temperature has fallen to below Tg at all 

locations are given by: 

1 -1 
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63(z, t) = 
(Tmelt -T(Tg(t))) "a(z, t)"E(z, t) (3.11.4.1) 

where 

T. 
e,, 

is the melt temperature. 

T(Tg (t)) is the temperature distribution when the temperature has fallen to below Tg at 

all locations. 

a(z, t) is calculated by Eq. 3.6.4 and Eq. 3.6.5. 

3.11.4.2 Temperature induced stresses for T(7. t)-<-Tg 

Temperature induced stresses when the temperature has fallen to below Tg at all 

locations is written by: 

v4 (z, t) _ (T(Tg (t)) -T,, (z, t� ))" a(z, t) " E(z, t) (3.11.4.2) 

where 

T�(z, t�) is the temperature distribution when the pressure is atmospheric(see 

Fig. 3.11.4) 

P 

centre surface r -º rý, r. 

(a) 

Fig 3.11.4 
t�_, is the time when the temperature distribution is l(Tg(t)) 

(b) 
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3.11.4.3 Distributions of the stress throughout the moulding 

The final result of the stress distributions is obtained using Eqs. 3.11.2.4,3.11.3.3, 

3.11.4.1 and 3.11.4.2. As the moulding shrinks away from the mould cavity walls when 

the pressure has dropped to zero, the integration of tensile stress and compressive stress 

over z is zero. 

6(Z, t) = Utw (Z, t) -1 6tot \Z, t) 

e 

where 

(3.11.4.3) 

a'ror(z, t)=ut(z, t)+Q2(Z, t)+Q3(Z, t)+Qa(Z, t) (3.11.4.4) 
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CHAPTER 4 

RESULTS OF CALCULATIONS 

This chapter deals with residual stresses calculations performed using Mathcad 

(mathematical software for general purpose). Section 4.1 gives the geometry used for 

the calculations. Sections 4.2 provide the materials data and the parameters for the 

calculations. Section 4.3 gives the calculations of the residual stress using method A 

(procedure based on Struik's method). Section 4.4 describes the new procedure 

method B (taking account of the pressure profile) developed during this research, in 

which the pressure profile was calculated and used to estimate density distributions 

through the depth and finally, the stress distribution. Section 4.5 gives the result of the 

calculations of stress relaxation after demoulding. Sections 4.6 deals with computed 

residual stress distributions for different boundary conditions using both method A and 

method B. 

4.1 Geometry 

The geometry is shown in Fig. 4.1 The polymer is bounded by mould surfaces at z=±1.6 

mm. 

E 
E 
ý 

El 
E 

A 

I 
v 

ý 
Fig. 4.1 The geometry of the melt 

z 
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4.2 Material data 

Table 4.2.1 shows the material properties of Dow chemical DE409 GPPS Styron 634. 

These data and resin are kindly sent by Dow chemical. 
Properties constants Note 
Glass transition temperature at 0 MPa T, -=373 K 
Thermal diffusivity for rubbery state ic=--7.259.10.8 m2"s'' 
Thermal diffusivity for glassy state K--8.59.10-'(m'-s-) 

Note 4.2.1 

Young's modules at 293 K° E03.4" 109 (Pa) 
Poisson ratio for rubbery state v=0.5 Literature data 
Poisson ratio for glassy state v, =0.35 Literature data 

C=40 Coefficients in the WLF equation C =52 (K) Literature data 
Power index in the KWW equation m=113 

a0 = 9.72.10 m3"k '' 
a=9.72.10 m3"k '' 
a=2.42.10' m3"k -'"K'' 
a=6.25.10-' m3"k ''"K'' 

Coefficients in Tait equations bo = 100(Pa) Note 4.2.2 
born = 100 (Pa) 
b =10-3 K'' 
b =10-3 K'' 
s=5.1.10-8 (K"Pa') 

Table 4.2.1 material properties of Dow chemical DE409 GPPS Stvron 634 

Note 4.2.1 

ý ... . ....... 
A. 

Thermal dittusivity is calculated using is = 

where 

p"CP 

Thermal conductivity: 2=0.138 (Wm '"K"') 

Specific heat: C; =1811 (J"kg-'"K'') 

Density: p-=887 (kg"m3) (T>Tg) 

j1049 (kg"m 3) (TSTg) 

Therefore, 

rc7.259.10 (m2"s) (75Tg) 

'8.59.10-8 (m2"s'') (TSTg) 
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Note 4.2.2: 

These constants are calculated from the PVT diagram of Dow chemical DE409 GPPS 

Styron 634 by comparing the measured data with the appropriate Tait equations 

(Section 3.6). 

4.3 Result of the calculations using method A (based on Struik's method) 

This section deals with stresses calculations performed using method A (based on 

Struik's method). Fig 4.3 (p. 105) shows the block diagram of the procedure based on 

Struik's method. Struik's method is based on Aggarwala and Saibel's thermo-elastic 

model(75. Struik modified their model, considering viscoelasticity (time effects in the 

elastic behaviour of mechanical properties) and volume relaxation by following Lee's 

viscoelastic treatmene53). Struik introduced the local cooling rate q=- aT 
in the time- 

dependent Young's moduli and calculated an incremental stress caused by cooling over 

the interval between T and T-8. Significant modifications were made to his method and 

used to calculate stages ®, ®, Q, ® and ® in Fig 4.3. 

Numerical calculation methods are applied to each calculation stage. 

4.3.1 Process controls 

The process parameters used for the calculation are shown in Table 4.3.1 and Fig. 4.3.1. 

Note 
Melt temperature 433 (K) 
Mould temperature 308 (K) 
Cooling time in the moulds t =5,10,15,20 (s) Note 4.3.1 
Packing pressure Po= 170 (MPa) 
Atmospheric pressure Pj=O (MP 
Relaxation time at T (s) t0(T)=1 .0 (sec) 
Thickness increment z=2.0.10 m Note 4.3.2 

Table 4.3.1 process parameters used for the calculation 
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Fig. 4.3.1 Simple representation of the pressure history 

Note 4.3.1: 

The parameters in Table 4.3.1 correspond to the moulding conditions in the 

experiments. 

Note 4.3.2: 

The calculation points for Mathcad are defined using this control. 

i. e. z=0,0.2... 1.6.104 (m) 

43.2 Temperature distributions 

As explained in Section 3.4, Eq. 3.4.18 is evaluated using one, two and three terms 

respectively and compared in Fig. 3.7.1 (p. 62). The graphs are virtually 

indistinguishable and therefore a good approximation to the series can be represented by 

the first term only. This is of significant value as it can be used to reduce the run time in 

Mathcad. 

This approximation is examined here again in Fig. 4.3.2 (p. 106). This graph shows that 

the approximation does not affect the temperature distribution when the cooling time is 

more than 5 seconds. However, when the cooling time is less than 3 seconds, the 

approximation affects the temperature distribution dramatically. Therefore, 
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consideration should be made when calculations are made for short cooling time, using 

reduced parameters 69-72.159) and so on. 

4 (-1)' r ýr 1 r(2i+1)ýr12 
T(z, t)=-ý cos (2i+1)-z exp -k )t (Tm, 

-T, �o)+T, �o z _o 
2i +1ee 

(3.4.18) 

On the other hand, the approximation is still effective practically for the moulding 

conditions shown in Table 4.3.1. Therefore, Eq. 4.3.2.1 is used for this temperature 

distribution calculation. 

l lz 
T(z, t)=4"cos(e "zl "exp - k"(e I "t "(Tm, -Tmo)+Tmo (4.3.2.1) 

4.3.3 Distributions of the Young's modulus 

There are many ways to represent temperature and time dependence of Young's 

modulus. Some are empirical; others have a physical origin (e. g. the WLF equation is 

theoretically derived from the standpoint of the free volume theory). Some of the 

empirical expressions are presented by Van Krevelen and Hoftyzer (Eq. 3.5.2.1 and 

3.5.2.2). The WLF equation and the KWW equation are given below. These equations 

are compared in Fig. 4.3.3 (p. 107). The graphs represent the temperature and time 

dependent Young's modulus quite well and eventually both the distributions of the 

Young's modulus are tolerably similar. The effect of using different equations on the 

computed residual stress distributions is examined later. 

T' +2 
E(z, t) = TT, " Eo (T 5 Tg) 

+ 
2T(Z, t) 

T, T, T, T, 

(3.5.2.1) 
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E(z, t) = 

exp 2.65 

E° 
(T > Tg ) 

Tg+ Tg 

T, T(z, t) 
Tg 

-1 LT, 

where T, is the reference temperature when E(z, t)=Eo 

(3.5.2.2) 

E(z, t) = Eo "exp - to(T )'exp C'+(C(ZZt 
j Tg)l m (3.5.1.7) 

a(z 
t- Tg)J 

where S(z, t) represents a modified temperature field. Since the WLF equation 

(Eq. 3.5.1.7) is only valid for a limited temperature range around the glass transition 

temperature we have 

40"(T-T) 40. (T-T) 
e. g. lim exp g= oo, lim exp g=0 and the table below: 

x-4321 52 + (T - Tg) r-º321` 52 + (T - Tg ) 

Temperature (K) 314 323 330 340 350 360 370 

ex c, "(T-Ta) 2,63.10146=0o 0 0 0 1.67"10''4 1.62"10-6 0.086 C=+(T-Tj) 

An approximate limited drop of amplitude 23 degrees below Tg (350K) has been chosen 

according to the table above. As can be seen from the table exp 
C, " (T - Tg) is very 
C2+(T-Tg) 

low and therefore E(z, t) is vanishingly small for T<350K and this modified temperature 

field is used to save computing time with no loss of accuracy in results. 

S(z, t) = 
350 (T(z, t) <350) 
T(z, t) (T(z, t) >_ 350) 
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4.3.4 Distributions of the Poisson ratio 

Poisson ratio as an affine function defined by('): 

Poisson ratio below 343K 

v(z, t)= v, =0.35 (4.3.4.1) 

Poisson ratio, linear function of the temperature above 343 (K) and below 403 (K) 

vz(z, t) = 
Vr-Vg 

60 "(T(z, t)-Tg +30)+vg 

Poisson ratio above 403K 

v3(z, t)=0.5 (4.3.4.3) 

This result is shown in Fig. 4.3.4 (p. 108). 

4.3.5 Distributions of the linear thermal expansions coefficient 

Calculations of the linear thermal coefficient were made using Eq. 3.6.4 and Eq. 3.6.5 in 

(4.3.4.2) 

Section 3.6. The constants a,,, ao,, a, 5 and a, m, aom, a, m are calculated from a PVT 

diagram of Dow chemical DE409 GPPS Styron 634. 

a(z, t) = 3" aos +a,, T(z, t) -Tg 
(T: 5 Tg) (3.6.4) 

a(a, t) = 
aim 

3'laom +alm T(Z, t)-Tg 
(T>_Tg) (3.6.5) 

Fig. 4.3.5 (p. 108) shows the distribution of the linear thermal expansion coefficient. 

After a cooling time of 10 seconds, only Eq. 3.6.4 is required for the distribution of the 

linear thermal expansion coefficient. 

A linear thermal expansion coefficient calculated using Eq. 3.6.4 and Eq. 3.6.5 at 293K 
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is compared with that of DE409 GPPS Styron 634 from Dow chemical. Consequently, 

they are in good agreement. (8.43.10"5 and 8.35.10"5K''). 

4.3.6 Calculation of the Tý lnane positions according to the cooling time 

As discussed in Section 3.7, Tg plane positions at different cooling times are calculated 

using Eq. 3.7.5. Fig. 4.3.6 (p. 109) shows the positions of the Tg plane at different 

cooling times. After a cooling time of 10 seconds, the Tg plane no longer exists within 

the bar: the temperature has fallen to below Tg at all locations. 

2 
e 
; r. 

Tm, T. 9r 
rc 

et 
H(t) _ý" arccos 4Tg_Tmo J ex (3.7.5) 

Note: Eq. 3.7.5 is derived from Eq. 3.7.1 (the first term only). Therefore, consideration 

should be made again (the same reason as in Section 4.3.2) when calculations are made 

for short cooling time, using reduced parameters (69-72,159) and so on. 

4.3 .7 Calculations of the stress distributions 

From Section 4.1 to Section 4.3.6, knowing the temperature field and the materials data, 

four series of stress calculations are made in this section. Section 4.3.7.1 gives stress 

calculations when the bar surfaces are fixed to the mould cavity surfaces and also 

examines the effect of the changes in Young's modulus described by the two different 

models (combination of the WLF and the KWW equations; and the Van Krevelen- 

Hoftyzer equations). Sections 4.3.7.2 and 4.3.7.3 deals with stress calculations when the 

packing pressure effect is taken into account. Section 4.3.7.4 gives residual stress 

distributions when the bar is not constrained by adhesion to the mould cavity walls. 

86 



aeons a Dns when the bar surtaces are constrainea oy Im 

mould cavity walls and the effect of the Young's modulus 

As described by Eq. 3.8.20 (Section 3.8), average strain rate distributions are calculated 

for different cooling times (5 s, 10 s, 15 s and 20 s). In the fully constrained state, the 

strain in the sample when the temperature changes is zero if referred to the initial 

dimensions. If, instead, strain is referred to the dimensions which the moulding would 

have if removed from the cavity and freed from all surface tractions but with the 

temperature distribution at time t (within the cavity) the changes in strain can be 

expressed by 

e 

rl ,r R(Z, t)a(Z, t)1'(Z, t)dZ Exx(Z, t/- 
H(l) 

e 
r(1)R(z, týdz 

(3.8.20) 

where H(t) is the position of the glass transition plane. As discussed in Section 4.3.6, the 

Tg plane disappears after 10 seconds since the centre of the bar has fallen to below Tg by 

this time. Therefore, the value for H(t) is always 0 for the each cooling time after 10 

seconds. 

R(z, t) is calculated using R(z, t) = 
E(z, t) 
1-v 

T (z, t) is the cooling rate calculated using the following equation: 

2 

T(z, t)= 
d4 

"cos 
Zz 

"exp -k . 
;Z. t "(Tm, -Tmo)+Tmo (4.3.7.1) 

dt ;7ee 

Mathcad directly solves the equation above (Eq. 4.3.7.1) and of course this result is 

exactly the same as for the following equation: 

(eJlz ke 7'(z, t)=-4"; c"cosl 
ý"z I"exp -k 

e "( 
ý )"t 

"(Tm! T, 
�a) 

(4.3.7.2) 
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When the cooling times are greater than 5 seconds, the average strain rates are shown in 

Table 4.3.2 and Fig. 4.3.7 (p. 109) Table 4.3.2 and Fig 4.3.7 show that the average 

strain rate decreases as the cooling time increases before 10 seconds and the average 

strain increases as the cooling time decreases after 10 seconds. Both effects are mainly 

due to the distributions of the linear thermal expansion coefficients (Fig. 4.3.5). The 

average strain rate is less significant than the local strain rate calculated using 

a(z, t)T(z, t) (approximately 1/10 of a(z, t)T(z, t) ). 

Times Strain rates'' (KLV) Strain rate s' (WLF) 
5 -2.75.10 -2.62.104 
10 -3.13.104 -3.01.104 
15 -1.92.10 -1.94.101 
20 -1.19.10 -1.20.104 

Table 4.3.2 Distributions of the strain rate 

The stress rate distributions calculated using Eq. 3.8.21 are shown in Fig. 4.3.8 (p. 110) 

and Fig. 4.3.9 (p. 110). As the result, when the temperature is below Tg, the stress rate 

distributions between using the WLF-KWW equations and the Van Krevelen-Hoftyzer 

equations is obviously different. However, they are quite similar after a cooling time of 

15 seconds. 

6ý(z, t)=R(z, t){s,. (z, t)-a(z, t)7(z, t)} (3.8.21) 

The stress distributions are calculated using Eq. 3.8.22 (in Section 3.8) below and the 

results are shown in Fig. 4.3.10 (p. 111) and Fig. 4.3.11 (p. 111). The graphs are quite 

similar for each cooling time. 

Q(z, t) = J`, Q(z, t)dt 
ý 

(3.8.22) 

Note 4.3.7.1: when the calculation is made using the Van Krevelen-Hoftyzer equations, 
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tg=O is assumed in Eq. 3.8.22. 

EN on oI me packing pressure mauce ne comDinauon 

of the WLF and the KWW equations) 

The result of the packing pressure induced stress (Using the combination of the WLF 

and the KWW equations is shown in Fig. 4.3.12 (p. 112). 

The specific volume of the polystyrene is 9.70.10 (m3/kg) at Pý= 170 (MPa) and 

T=433 (K) at all points within the sample because immediately after the molten polymer 

has been injected into the mould, the temperature distribution and packing pressure 

distribution are homogeneous. 

The specific volume distribution is calculated at P1=O (MPa), T=T(z, t) (the temperature 

distributions calculated in Section 4.3.2 are shown in Fig. 4.3.2) and cooling time=20 

seconds (because only when the cooling time is 20 seconds, the pressure is assumed to 

be 0 (MPa)). 

Note 4.3.7.2: 

The cooling time 20 seconds is used to correspond with the moulding conditions in the 

experiments. 

1 V(P,, T) 
ýpress - 31n VPT 

E° 
ý 

oý 
) 

where 

v(PO'T )- (a0s + als (T - Tg )) 1-0.0894 " In 1+P 
BS 

(3.9.2) 

(T<_ Tg) (3.9.3) 

P 
v(P0'T) = (a0m + alm (T -Tg )) 1- 0.0894 " In 1+ 

BO 
(T> Tg) (3.9.4) 

m 
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v(P1'T )= (a0s + a1s (T - Tg )) 1-0.0894 " In 1+ 
PBl 

Bs 

_ v(P1'T)-(a0m +a1m(T-Tg)) 1-0.0894 - In 1+ 
Pl 

Bm 

-bý�"T bm =bom "C 

4.3.7.3 Residual stress distributions considering packing pressure 

(T: 5 Td (3.9.5) 

(T> Tg) (3.9.6) 

(3.9.7) 

Equations Eq. 3.8.22 (Section 3.8), Eq. 3.9.2 (Section 3.9) and Eq. 4.3.7.2 are added to 

give the final stress distribution. This is shown in Fig. 4.3.13 (p. 113). 

Uta (Z, t) = 6(Z, t) + 6press (Z, t) (4.3.7.3) 

4.3.7.4 Stress distributions after d emoulding 

When the bar is ejected from the mould, the bar is free from frictional constraint. 

Therefore, the integration of tensile stress and compressive stress over z is zero. 

The stress distribution in the case for which the moulding is not restrained by the mould 

is calculated using Eq. 4.3.7.4. 

The result is shown in Fig. 4.3.14 (p. 113) 

Qjree = alof (Z, t) 
1 ý6tot 

(Z, t)cL- 

e 
(4.3.7.4) 

4.4 Result of the calculations using method B (taking account of the pressure 

profil 

This section deals with stresses calculations performed using the Method B (taking 

account of the pressure profile). Fig 4.4 (p. 114) shows the block diagram of the new 
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procedure developed during this research, in which the pressure profile was calculated 

and used to estimate density distributions through the depth and, here, the stress 

distribution. This method starts by calculating the pressure profile and is based on the 

specific volume rate from the differentiation of the Tait equations by pressure. The 

strain as a function of pressure is calculated using the specific volume and the density. 

This method was used to calculate stages 0-®9 in Fig. 4.4. 

Section 4.4.1 gives the process controls used for the calculations. Section 4.4.2 provides 

the calculation of the pressure history. Section 4.4.3 offers the calculations of the 

pressure induced stress at T(z, t)=Tg(t). Section 4.4.4 gives the pressure induced stress for 

T<Tg. Section 4.4.5 describes temperature induced stress. Section 4.4.6 gives the 

distributions of the stress through out the moulding. 

4.4.1 Process controls 

The parameters used for the calculation are shown Table 4.4.1 
Note 

Melt temperature 433 (K) 
Mould temperature 308 (K) 
Cooling time 7>T t 7>T =10 s 
Cooling time T<T t 75T)=1 (s) Note 4.4.1 

Packing pressure P O=170 MPa 
Atmospheric pressure P , =O MPa Note 4.4.2 
Relaxation time at Ts t0(T)1 .0 sec 

Table 4.4.1 Process controls 

Note 4.4.1: The total cooling time is 11 seconds. 

Note 4.4.2: When the pressure reaches 0 (MPa), the cooling time is 11 seconds. This 

cooling time is calculated implicitly by the pressure. This calculation will be explained 

in the next section. 
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4.4.2 Calculation of the pressure history 

The pressure drop is calculated as functions of both temperature and volume in this 

section. 

4.4.2.1 Temperature distributions 

As explained in Section 3.4, Eq. 3.4.18 is used to this calculation because the truncated 

sum does not give a good approximation when the cooling time is less then one second 

as is required for these calculations. 

T(z, t) =4ý 
(-1)' 

cos((2i+1)lZeXpl -ký(2i+1)ýrZt l(T., -Tmo)+T(3.4.18) 
; 7, =o 02i+1 eJe 

JJ 

Also the temperature distribution calculated by Eq. 3.4.18 is compared with the result of 

FDM (finite difference method) in Fig. 4.4.1 (p. 115). As the result, the graphs are 

tolerably similar. 

nd 

Calculations of the volumetric change was made using Eq. 3.11.1.1 in Section 3.11.1. 

OV(z, t,, t2)= 
Ja, 

s "OT(z, t,, t2) (T: 5 Tg) 

a,, � "OT(z, t,, t2) (T>Tg) 

4.4.2.3 Pseudo compressibility at T 
(L12) 

nouuons or me voium erric cnange wnen 1 tz. r) aron 

(3.11.1.1) 

Calculation of the bulk modulus was made using Eq. 3.11.1.2 in Section 3.11.1.2. 

)AZ42 

ý: T2(=12) 

' +a.. '(T(zt2)-g, (t, ))"0.0894" ý, Tz(=ý2) T<_g(tý) 
+P"e 
ý, "T2(=12) 

c{ý+a, s "(T(z, t2)-g, (t, ))"0.0894" 
k+ , "eA, T2(=12) JT> gj (t) 

(3.11.1.2) 
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where 

Tg, (t, )=Tg+s"P, (t, ) 

4.4.2.4 Calculation of the pressure history 

As explained in Section 3.11.1.3, Eq. 3.11.1.3 was used to calculate the pressure 

history. 

eP, (z, t) =? 
'2oy, (z, t,, t2) 

. dz 
e K'(Z, t2 ) 

(3.11.1.3) 

The result is shown in Fig. 4.4.2 (p. 116) 

4.4.3 Calculations of the pressure induced stress at T(z, 1 T (J) 

In order to calculate the rate of change of specific volume: (dV) at T=Tg(t) and the 
Ti 

density at T=Tg(t), the following Table (Table 4.4.2) is used to determine the relation 

among the cooling time Tg layer position and the pressure. 

Cooling time (s) 0 1 4 6 7 8 9 10 

layer from the Position of the T 
g 1.6 1.125 0.944 0.769 0.652 0.498 0.24 0 

centre point (mm) 
Pressure (MPa) 170 136 64.5 34.9 23.6 14.5 8.3 4.0 

Table 4.4.2 

4.4.3.1 Calculation of the specific volume rate 

Calculation of the specific volume rate was made using Eq. 3.11.2.1 in Section 3.11.2.2 

dV Cd= -0.0894 " (aom + a, m (T (t) - Tg (t)) "e 
el. Tu) 

BP" e-B'ý'T 
(3.11.2.1) 

T8 Om + (t) 

where 
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Tg(t)=Tg+s"P(t) 

The result is shown in Fig. 4.4.3 (p. 116). 

Note 4.4.1: The pressure dependent glass transition temperature Tg(P(t)) is a function of 

the pressure, P. It is given in the form Tg(t) because the glass transition temperature is 

uniquely defined by t for a given z. 

4.4.3.2 Density at T=T_ 

Calculation of the Density at T=Tg was made using Eq. 3.11.2.2 in Section 3.11.2.2 

p(z, Tg (t)) = aos " 1-0.0894-In 1+ 
P(t) 

.r Bo. -e 
(3.11.2.2) 

The result is shown in Fig. 4.4.4 (p. 117) 

4.4.3.3 Pressure induced stress at T=Tg 

As explained in Section 3.11.2.3, Eq. 3.11.2.3 and Eq. 3.11.2.4 were used to calculate 

the pressure history. 

c(z, Tg (t)) =3(0) P(Z, Tg (t)) . P(t) (3.11.2.3) 
T 

c; -(z, Tg (t)) = e(z, Tg (t)) . E(z, t) (3.11.2.4) 

The result is shown in Fig. 4.4.5 (p. 117). 

4.4.4 Pressure induced stresses for T<Tg 

4.4.4.1 Density distributions at T<Tg 

As explained in Section 3.11.3, Eq. 3.11.3.1 was used to calculate the density 
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distribution. 

z +a "(T(t)-Ts(t))]' 1-0.0894.1n 1+ 
P(t) 

(3.11.3.1) P( ýt)_ 

{[aos 

iJ Bos -e -B�"r(l) 

4.4.4.2 Volumetric shrinkage at T<T_ and the pressure drops from P to P=O 

As explained in Section 3.11.3, Eq. 3.11.3.2 was used to calculate the volumetric 

shrinkage at T<Tg and the pressure drops from P to P=O. 

£2(Z, 't) _ 
10V 

_1 
P(t�, P = 0,2)- p(t(n-, ), P�, z) 

33 p(t(�-, ) , P,,, Z) 

The pressure induced stresses for T<Tg is can be written 

-1 

(3.1 1.3.2) 

C2 (z, 0= £2 (z, t) " E(z, t) (3.11.3.3) 

4.4.5 Temperature induced stresses 

4.4.5.1 Temperature induced stresses when the temperature reaches T. at the centre 

As explained in Section 3.11.4, Eq. 3.11.4.1 was used to calculate the temperature 

induced stresses when the temperature reaches Tg at the centre. 

Q3 (z, t) = 
(T. 

e,, - 
T(z, t = t(Tg)))a(z, t) " E(z, t) (3.11.4.1) 

4.4.5.2 Temperature induced stresses for T(Zt)<Tr 

As explained in Section 3.11.4, Eq. 3.11.4.2 was used to calculate the temperature 
induced stresses for T(z, t)<T. 

Qa(z, t)=(T(Tg(t))-T,, (z, t�))"a(z, t)"E(z, t) (3.11.4.2) 
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4.4.6 Distributions of the stress throughout the moulding 

The result of the stress distribution through out the moulding is calculated using 

Eq. 3.11.4.3 in Section 3.11.4.3. 

6(Z, tý = 6ra (Z, t) -1 Qror lZ, 
e 

(3.1 1.4.3) 

where 

error(z, t)=o (z, t)+a2(z, t)+63(z, t)+64(z, t) (3.11.4.4) 

The result is shown in Fig. 4.4.6 (p. 118). The stress distributions are compared in 

Fig. 4.4.7 (p. 118) with the results obtained using Eq 4.3.7.4 in Section 4.3.7.4 and they 

are in good agreement. 

4 .5 Stress relaxation after demoulding 

There are also many ways to represent stress relaxation after demoulding. Some are 

empirical; others are derived from theory (e. g. the WLF equation is theoretically 

derived from the standpoint of the free volume theory). In this section, the KWW 

equation is used to predict long term stress relaxation after the demoulding. The graph 

in Fig. 4.5.1.1 (p. 119) represents stress relaxation reasonably. The effect of using this 

equation on the residual stress distributions is examined with experimental data in 

Chapter 7. 

4.5.1 Stress relaxation after d emoulding 

The stress relaxation after demoulding is calculated using Eq. 4.5.1. The result is shown 

in Fig. 4.5.1.1 (p. 119). 
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6= Co. exp(-, 8" t m) (4.5.1) 

where 

o is an initial stress 

ß is a constant with a value about 0.025 

m is a constant with a value of 0.32 

Note 4.5.1: These constants are calculated from the stress relaxation measurement of 

Dow chemical DE409 GPPS Styron 634 by comparing the measured data with the 

appropriate Eq. 4.5.1. 

4.6 Computed residual stress distributions for different boundary conditions 

This section deals with computations made using both method A and method B. Section 

4.6.1 gives the residual stress results using method A. Section 4.6.2 shows the residual 

stress results using method B. Comparisons and discussions between the experimental 

results and both calculations are made in Chapter 7. 

4.6.1 Results using method A (based on Struik's method) 

The parameters used for the calculations are shown on Table 4.6.1.1. Calculations are 

divided into three groups in this section. Section 4.6.1.1 (K0172 and K018) calculates 

the effect on residual stresses of different cooling temperatures (room temperature and 

ice water) after de-moulding. Section 4.6.1.2 (K019 and K020) shows the effect on 

residual stresses of different cooling temperature (ice water and liquid nitrogen) after 

de-moulding. Section 4.6.1.3 (K013 and K0171) gives the difference in residual stresses 

obtained if the samples surfaces are friction-constrained or not constrained by the mould 

surfaces. Each calculation is made for a different elapsed time after demoulding 

obtained by measurement. These elapsed times correspond to the actual storage times 
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before measurement of residual stress by the layer removal analysis. 

K018 K0172 K019 K020 K013 K0171 
Melt temperature (K) 443 443 488 488 443 443 
Mould temperature (K) 315 315 313 313 315 315 
In mould cooling times 12 12 8 8 12 12 
Packing pressure (MPa) 170 170 170 170 170 170 
Coolant temperature (K) 293 275 77 275 275 275 
Out mould relaxation time (hour) 650 216 3 168 650 650 

Table 4.6.1.1 Process controls 

bars (KO 172 and KO 18) 

The comparison of the effect of using different cooling temperatures, using ice water 

and room temperature, is shown in Fig. 4.6.1.1. (p. 120) The labels in Fig 4.6.1.1 refer 

to the computed stress obtained using the temperature of ice water (KO172) and the 

stress obtained using room temperature (K018). The computed residual stress 

magnitude for the bars which were cooled in ice water was everywhere 1.03 times 

higher than the computed magnitude for bars cooled at room temperature. 

4.6.1.2 Comparison of the effect of using different cooling temperatures, using tensile 
bars (K019 and K020) 

The comparison of the effect of using different cooling temperatures, using ice water 

and liquid nitrogen, is shown in Fig. 4.6.1.2 (p. 120). The labels in Fig 4.6.1.2 refer to 

the computed stress obtained using temperature of liquid nitrogen (K019) and the 

computed stress obtained using the temperature of ice water (K020). The computed 

residual stress magnitude for the bars which were cooled in liquid nitrogen was 13.7 

times higher than the computed magnitude cooled in ice water on average. 
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K01711 

The comparison of the effect of friction constraint for both the pressure and the 

temperature induced stresses in the mould are shown in Fig. 4.6.1.3 (p. 121) and 

Fig. 4.6.1.4 (p. 121). 

It is assumed that when the pressure drops to atmospheric pressure, the friction becomes 

zero. This result is shown in Fig. 4.6.1.5 (p. 122). The labels in Fig 4.6.1.5 refer to the 

computed stress obtained without friction constraint (K013) and the computed stress 

obtained with friction constraint (KO171). 

0 6 .2 Results using method B (taking account of the pressure prc 

The parameters used for the calculations are shown on Table 4.6.2.1. Calculations are 

divided into three groups in this section. Section 4.6.2.1 (L006 and L007) calculates the 

effect of different cooling temperatures after de-moulding on residual stresses. Section 

4.6.2.2 (L004 and L005) shows the difference in residual stresses when the samples 

surfaces are friction constrained or not fixed by the mould surfaces. 

Section 4.6.2.3 (L002 and L003) gives the effect of different pressures on residual stress. 

Each calculation is conducted for a different time after demoulding taking into account 

relaxation. These times correspond to the actual storage times for samples on which 

layer removed analysis were made. (Section 5.3) 

L006 L007 L004 L005 L002 L003 
Melt temperature (K) 488 488 443 443 503 513 
Mould temperature (K) 313 313 315 315 313 313 
In mould cooling times 8 8 12 12 30 25 
Packing pressure (MPa) 170 170 170 170 87 143 
Coolant temperature (K) 77 275 275 275 287 287 
Out mould relaxation time (hour) 3 168 650 216 168 168 

Table 4.6.2.1 Process controls 
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4.6.2.1 Comparison of the effect of using different cooling temperatures. using tensile 

bars (L006 and L007) 

This section considers the effect of cooling temperature using ice water and liquid 

nitrogen. The following components of the analysis are considered. 

(1) Determination of the relationship between the cooling time, the Tg layer position and 
the pressure 

In order to calculate the rate of change of specific volume: ) 
dP 

I at T=Tg(t) and the 
T, 

density at T=Tg(t), the following Tables (Table 4.6.2.2 and Table 4.6.2.3) are used to 

determine the relation between the cooling time, the Tg layer position and the pressure. 

Cooling time (s) 0 1.0 2.0 3.0 4.5 8.0 9.5 10.0 11.7 

Position of the Tg layer (mm) 1.55 1.40 1.32 1.26 1.17 0.97 0.63 0.53 0 

Pressure (MPa) 170.0 109.7 69.1 38.1 0 0 0 0 0 

Table 4.6.2.2 (LO06) 

Cooling time (s) 0 1.0 2.0 3.0 4.5 8.0 9.5 10.0 14.2 

Position of the Tg layer (mm) 1.55 1.4 1.32 1.26 1.17 0.97 0.77 0.71 0 

Pressure (MPa) 170.0 109.7 69.1 38.1 0 0 0 0 0 

Table 4.6.2.3 (L007) 

(2) History of the pressure within half of the bar for different cooling times calculated 
using Eq. 3.11.1.3. 

The result is shown in Fig. 4.6.2.1 (p. 123). 

(3) History of the specific volume rate within half of the bar for different cooling times 

calculated using Eq. 3.11.2.1. 

The result is shown in Fig. 4.6.2.2 (p. 123) 
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(4) History of the density within the half of the bar for different cooling times calculated 

using Eq. 3.11.2.2. 

The result is shown in Fig. 4.6.2.3 (p. 124) 

(5) The stress distribution throughout the moulding 

The results are shown in Fig. 4.6.2.4 (p. 124). The labels in Fig 4.6.2.4 refer to the 

computed stress obtained using the liquid nitrogen temperature (L006) and the 

computed stress obtained using the temperature of ice water (L007). The computed 

residual stress magnitude for the bars which were cooled in liquid nitrogen was 7.2 

times higher than the computed magnitude for bars cooled in ice water in average. As 

both the calculation models, L006 and L007, used the same in-mould cooling conditions, 

the calculated pressure history, the specific volume rate history and the density history 

are the same results for them. The difference in the residual stress magnitude was 

mainly produced by the temperature of the cooling mediums in this case. 

a omnanson or errect or rrtcuon constrain D04 and LOG 

This section considers the effect of friction constraint on residual stress distributions 

when using ice water and liquid nitrogen as cooling media. 

(1) Determination of the relationship between the cooling time, the Tg layer positions 
and the pressure 

In order to calculate the rate of change of specific volume: 1! '1 at T=Tg(t) and the 
T. 

density at T=Tg(t), the following Table (Table 4.6.2.4) is used to determine the 

relationship between the cooling time, T. layer position and the pressure. The same table 

is used for this section because L004 and L005 use the same cooling time and injection 

pressure. 
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Cooling time (s) 0 1.0 2.0 4.0 6.0 7.0 7.9 9.0 10.0 10.7 

Position of the Tg layer (mm) 1.55 1.31 1.219 1.057 0.904 0.814 0.721 0.571 0.377 0 

Pressure (MPa) 170.0 127.7 96.1 52.6 21.1 8.1 0 0 0 0 

Table 4.6.2.4 (L004 and L005) 

(2) History of the pressure within half of the bar for different cooling times calculated 

using Eq. 3.11.1.3. 

The result is shown in Fig. 4.6.2.5 (p. 125). 

Note: 4.6.2.1: The result in Fig. 4.4.2 is different to Fig. 4.6.2.5 because the 

computations were made using different melt temperatures and mould temperatures. 

(3) History of the specific volume rate within half of the bar for different cooling times 

calculated using Eq. 3.11.2.1. 

The result is shown in Fig. 4.6.2.6 (p. 125). 

(4) History of the density within the half of the bar for different cooling time calculated 
using Eq. 3.11.2.2. 

The result is shown in Fig. 4.6.2.7 (p. 126). 

(5) Pressure induced stress and temperature induced stress 

The comparison of the effect of the friction constraint for both the pressure and the 

temperature induced stresses in the mould are shown in Fig. 4.6.2.8 (p. 127) and 

Fig. 4.6.2.9 (p. 127). 

It is assumed that, when the pressure drops to atmospheric pressure, the friction 
becomes zero, because there is now no normal force at the bar surface. 

(6) The stress distribution throughout the moulding 

The result is shown in Fig. 4.6.2.10 (p. 128). The labels in Fig 4.6.2.10 refer to the 
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computed stress obtained without friction constraint (L004) and the computed stress 

obtained with friction constraint (LOOS). The computed residual stress magnitude 

without friction constraint was 0.66 to 0.94 times that when using friction constraint. 

4.6.2.3 Comparison of effect of packing pressure, using straight bars (L002 and L003) 

This section considers the effect of injection pressure using 87 (MPa) (L002) and 

143 (MPa) (L003). 

(1) Determination of the relation among the cooling time, the Tg layer position and the 

pressure 

In order to calculate the rate of change of specific volume: 
dV 

r8 
at T=Tg(t) and the 

density at T=Tg(t), the following Tables (Table 4.6.2.5 and Table 4.6.2.6) are used to 

determine the relationship between the cooling time, Tg layer position and the pressure. 

Cooling time (s) 0 1.0 1.5 2.0 2.4 4.0 10.0 12.0 14.0 14.5 

Position of the TR layer (mm) 1.55 1.42 1.38 1.34 1.32 1.23 0.88 0.68 0.3 0 

Pressure (MPa) 87.0 57.2 33.7 14.6 0 0 0 0 0 0 

Table 4.6.2.5 (L002) 

Cooling time (s) 0 1.0 2.0 3.1 4.0 10.0 12.0 14.0 15.0 

Position of the Tg layer (mm) 1.55 1.43 1.36 1.30 1.25 0.92 0.74 0.44 0 

Pressure (MPa) 143.0 77.9 35.1 0 0 0 0 0 0 

Table 4.6.2.6 (003) 

(2) History of the pressure within half of the bar for different cooling times calculated 
using Eq. 3.11.1.3. 

This result is shown in Fig. 4.6.2.11 (p. 129). The labels in Fig 4.6.2.11 refer to the 

pressure history obtained using 143 (MPa) injection pressure (L002) and the using 87 

(MPa) injection pressure (L003). 
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(3) History of the specific volume rate within half of the bar for different cooling times 

calculated using Eq. 3.11.2.1. 

This result is shown in Fig. 4.6.2.12 (p. 129). 

(4) History of the density within the half of the bar for different cooling times calculated 

using Eq. 3.11.2.2. 

This result is shown in Fig. 4.6.2.13 (p. 130). 

(5) The stress distribution throughout the moulding 

The result is shown in Fig. 4.6.2.14(p. 130). The labels in Fig 4.6.2.14 refer to the 

computed stress obtained using 143 (MPa) injection pressure (L002) and the computed 

stress obtained using 87 (MPa) injection pressure (L003). The computed residual stress 

magnitude for the bars which were made using 143 (MPa) was 0.68 times the computed 

magnitude for bars made using 87 (MPa) on average. 
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CHAPTER 5 

EXPERIMENTAL 

5.1 Materials and preparation of samples 

5.1.1 Materials 

Polystyrene (Dow chemical DE409) was used. The material properties are shown in 

Table 5.1.1. These data and polystyrene were kindly sent by Dow chemical. 

Conductivity 0.138 Wm'`-°C` 
Specific Heat 1811 (J"k ''"°C'' 
Melt Density 887 (k "m'3) 
Solid Density 1049.82 k "m3 
Ejection Temperature 102 °C 
No Flow Temperature 130 °C) 
Tensile Modulus Parallel 3400 (MPa) 
Tensile Modulus Perpendicular 3400 (MPa) 
Poisson Ratio 0.35 
Viscosity 

Temperature °C Shear rate (s') Viscosity (Pa-s) 
200 1000 168.1 
220 100 529.2 
220 1000 121.2 
220 10000 21.8 
240 100 347.4 
240 1000 87.4 

Specific Volume 
Temperature °C Pressure (MPa) Specific Volume (m3/kg) 

0 0 948 
0 160 919 

20 0 953 
20 160 921 

103.2 0 972 
160.3 160 937 
210 0 1036 
210 160 952 
250 0 1060 
250 160 965 

Table 5.1.1 Properties of DE409 
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5.1.2 Injection moulding 

The Samples were prepared using a Butler-Smith 100/60 reciprocating screw machine 

with a single end gated tool. The material was moulded into ASTM D638 type I tensile 

test bars (190x 12.7x3 2 mm. Fig. 5.1.1) and straight test bars (190x 12.7x3.2 mm. 

Fig. 5.1.2) with a deep gate system (2.5 mm) and a shallow gate system (0.5 mm). The 

moulding conditions are shown in Fig. 5.1.3 and Table 5.1.2. 
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Fig 5.1 .3 
Position of the cooling and heating system 

Temperature (°K) 

Zone I Zone 2 Zone 3 Zone4 Zone 5 

443 443 443 315 315 

(190°C) (190°C) (190°C) (42°C) (42°C) 

Table 5.1.2 Moulding conditions 

Nl 

Injection Cooling 

Time (s) Time (s) 

11.0 12.01 
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The over all preparation conditions the samples is shown in Table 5.1.3. Individual 

treatment of the samples is described later. 

Sample Bar type 
Mould release 

agent 

Coolant 
temperature (K) 

Coolant Gate system 

W Tensile NO 275 Water Shallow 

MW Tensile YES 275 Water Shallow 

E Tensile NO 293 Ethylene glycol Shallow 

ME Tensile YES 293 Ethylene glycol Shallow 

a Straight NO 275 Water Shallow 

b Straight YES 275 Water Shallow 

c Straight YES 275 Water Deep 

d Straight NO 275 Water Deep 
Table 5.1.3 Conditioning of specimens 

5.1.3.1 Mould release agent 

Mould release agent (Rocol non silicone mould release spray) was used for the series of 

samples, MW, ME, a, and c. The mould surfaces (cavity and core) were coated by the 

mould release agent each cycle of the injection moulding. The coating was performed as 

quickly as possible. In order to avoid contamination, the series of samples were made 

after series of samples, W, E, a, and d (corresponding series of the specimens without 

mould release agent). 

5.1.3.2 Coolant and coolant temperature 

As soon as samples were ejected, they were transferred into a coolant, either ice-water 

or ethylene glycol for 10 minutes. The transfer was performed as quickly as possible, 

less than 10 sec after completing mould filling. Other samples made in the same 

conditions were allowed to cool in air. The samples cooled in air were stored at room 
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temperature. 

Note: 5.1.3.1: In order to avoid the samples are not wetted by water, ethylene glycol 

was chosen as a coolant because they are coated with mould release agent. 

5.2 Residual stress measurement 

Residual stresses occur when polymers are injection-moulded, and depend on the 

injection pressure, the rate of cooling (both in mould and after demoulding) and many 

other factors. The stress magnitude changes with time, temperature, and the conditions 

of the environment after being injection moulded. 

5.2.1 The layer removal method 

The residual stress distribution was determined using the layer removal procedure. An 

Elliott high-speed milling machine and a single point cutter were used to remove 

successive layers. The sample bar was held on the machine bed by a vacuum clamp. 

The path traced out by the cutter was slightly larger than that of the width of the sample 

so that one sweep was sufficient to remove each successive uniform layer. In order to 

avoid building up heat, thin uniform layers (0.2 mm in average) were removed from one 

surface of the sample by the cutter. The cutting was started from the gate direction in 

order to standardise the surface condition. After each layer was removed, the radius of 

curvature of the sample was measured using a laser and the optical lever principle"sz-'s, ) 

Then a plot was developed of curvature versus depth of removal, and this was then used 

to calculate residual stress, using the Treuting and Read procedure. "", 149,155) 

5.2.2 Curvature measurement and calculation 

The method was based on optical reflection. A highly-directional laser beam was 
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directed at different selected points of the sample and curvature was characterised 

according to the direction of the laser reflections from slivers of glass attached to the 

surface of the sample using water as adhesive. The arrangement is shown in Fig. 5.2.1. 
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ý 

Fig. 5.2.1 Diagram showing laser reflections and construction lines 

A (1.002 m) is the distance between the sample and the pivot point about which the laser 

is rotated during measurements. B (0.986 m) is the distance between the screen and the 

sample, R is the radius of curvature of the sample, Xis a measured distance between the 

centre of the graduated screen and the reflected light spot and a (0.03 m) is a half of the 

separation of the marks on the sample. 

From Fig. 5.2.1, 

sinB-0 =a - 2R 

X-a 
tan O= 

(5.2.1) 

(5.2.2) 
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(5.2.3) 

all the angles involved are small so that we can rewrite equations. 

9-ý a 
2R 

B= 
X -a 

B 

_a 0 

Combining the above equations gives: 

a x-a a 
R 2B 2A 

Re-arranging leads to the final equation: 

1 A(X - a) - Ba 
R 2BAa 

5 .3 Stress relaxation measurement 

(5.2.4) 

(5.2.5) 

(5.2.6) 

(5.2.7) 

(5.2.8) 

Stress relaxation data were required for calculations of the relaxation of residual stress 

in the moulded bars after the bars had cooled to room temperature. 

The stress relaxation tests were conducted using Lloyd tensile testing machine T5003 

set to maintain a constant strain (Fig. 5.3.1) at a constant temperature (293 K). A cross 

head speed of 20mm/min was used to apply the initial deformation. The sample was 

loaded to the selected stress, the cross head movement stopped and the change in the 

stress with time was recorded. 
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Fig. 5.3.1 Lloyd tensile testing machine T5003 
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CHAPTER 6 

EXPERIMENTAL RESULTS 

The results are divided into nine sections. Section 6.1 to Section 6.8 contain the results 

for residual stress distributions. The samples were tested after the residual stress had 

decayed in room temperature ageing. The elapsed ageing times were recorded in order 

to apply to the computations in Chapter 4. 

Section 6.9 covers the results for stress relaxation. To examine the relaxation 

characteristics of the material, samples were tested on a tensile test jig and measured 

over period of 70 to 100 hours. 

6.1 Residual stress 

Residual stress distribution measurements were made on different samples. The results 

have been divided into eight series of samples: 

(1) Tensile bars made using a shallow gate system and cooled in ice water (W) 

(2) Tensile bars made using mould release agent and a shallow gate system and cooled 

in ice water (MW) 

(3) Tensile bars made using a shallow gate system and cooled in ethylene glycol (E) 

(4) Tensile bars made using mould release agent and a shallow gate system and cooled 

in ethylene glycol (ME) 

(5) Straight bars made using a shallow gate system and cooled in ice water, (a) 

(6) Straight bars made using mould release agent and a shallow gate system and cooled 

in ice water (b) 

(7) Straight bars made using a deep gate system and cooled in ice water, (c) 
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(8) Straight bars made using mould release agent and a deep gate system and cooled in 

ice water (d) 

Note 1: The material data on Table. 5.1.1 (Section 5.1.1) were taken to calculate the 

residual stress. 

6.1.1 Comparison of the effect of different cooling temperatures and coolants, 

using tensile bars (W and E) 

These experiments aimed to analyse the effect of different cooling temperatures and 

thermal properties of different cooling mediums. The results are shown in Fig. 6.1 

(p. 144), Fig. 6.2 (p. 144) and Table 6.1. Fig. 6.1 shows curvature measurements as a 

function of material removed in one half of the bar cooled in ice water, using tensile 

bars and a shallow gate system (W). The two curves in Fig. 6.2 correspond to cooling in 

two different mediums just after the injection moulding: ice water (solid line, 275 K) 

and ethylene glycol (broken line, 293 K). For both analyses the curvature versus depth- 

removed plots were straight lines, corresponding to parabolic stress distributions. Thus 

the residual stresses for the two specimens were everywhere proportional' ... ). The 

magnitude of stress in bars cooled in ice water was 1.15 times higher than the value in 

bars cooled in ethylene glycol. 

Sample Maximum stress (MPa) Minimum stress (MPa) Thickness (mm) 
W 2.6 -5.2 3.11 
E 2.3 -4.6 3.12 

Table 6.1 

6.1.2 Comparison of the effect of different cooling temperatures and coolants, 
using tensile bars and mould release agent (MW and ME) 

The objective of these experiments was to investigate the effect of different cooling 

temperatures and thermal properties of cooling mediums. This section also deals with 
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the effect of the friction (friction constraint) between the mould surfaces and the 

surfaces of the samples, using mould release agent. The results are shown in 

Fig. 6.3 (p. 145) and Table 6.2. There are two curves in Fig. 6.3, corresponding to 

cooling in two different mediums just after the injection moulding: ice water (solid line, 

275 K) and ethylene glycol (broken line, 293 K). The residual stress magnitude for the 

bars which were cooled in ice water was every where 1.18 times higher than the value 

produced in bars cooled in ethylene glycol. 

Sample Maximum stress MPa Minimum stress (MPa) Thickness (mm) 
MW 2.5 -5.0 3.12 
ME 2.15 -4.3 3.12 

Table 6.2 

Qmnarison of the effect of mould z" rig tensiie oa wate 

cooling) (W and 11MW) 

These experiments aimed to analyse the effect of the friction between the mould 

surfaces and the surfaces of the samples, using mould release agent. The results are 

shown in Fig. 6.4 (p. 145) and Table 6.3. The two curves in Fig. 6.4 represent W (solid 

line, without mould release agent) and MW (broken line, using mould release agent). 

The two curves were virtually the same. 

Sample Maximum stress (MPa) Minimum stress (MPa) Thickness (mm) 
W 2.6 -5.2 3.12 

MW 2.5 -5.0 3.12 

Table F, 3 
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6.1.4 Comparison of the effect of mould release agent, using tensile bars (cooled 

using ethylene glycol) (E and ME) 

The objective of these experiments was to investigate the effect of the friction (friction 

constraint) between the mould surfaces and the surfaces of the samples, using mould 

release agent. The results are shown in Fig. 6.5 (p. 146) and Table 6.4. 

There are two curves in Fig. 6.5, corresponding to E (solid line, without mould release 

agent) and ME (broken line, using mould release agent). 

The curves were virtually the same. 

Sample Maximum stress (MPa) Minimum stress (MPa) Thickness (mm) 
E 2.3 -4.6 3.12 

ME 2.15 -4.3 3.12 
Table 6.4 

Qmnarison of the effe ems" usinQ 0 m a ana 
d) 

These experiments aimed to analyse the effect of different gate systems. The results are 

shown in Fig. 6.6 (p. 146) and Table 6.5. The two curves in Fig. 6.6 represent different 

gate systems: a (solid line, shallow gate system) and d (broken line, deep gate system). 

The residual stress magnitude for the bars which used the shallow gate system was 

everywhere 1.39 times higher than the value in bars produced using the deep gate 

system. 

Sample Maximum stress (MPa) Minimum stress (MPa) Thickness (mm) 
a 3.2 -6.4 3.20 
d 2.3 -4.6 3.21 

Table 6.5 
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6.1.6 Comparison of the effect of different gate systems, using straight bars and 

mould release agent (b and c) 

The objective of these experiments was to investigate the effect of different gate 

systems using mould release agent. The results are shown in Fig. 6.7 and Table 6.6. 

There are two curves in Fig. 6.7 (p. 147), corresponding to b (solid line, shallow gate 

system) and c (broken line, deep gate system). The curves were virtually the same. 

Sample Maximum stress (MPa) Minimum stress (MPa) Thickness (mm) 
b 1.6 -3.2 3.20 
c 1.65 -3.3 3.21 

Table 6.6 

6.1.7 Comparison of the effect of mould release agent, using straight bars and 
shallow gate system (a and b) 

These experiments aimed to analyse the effect of the friction (friction constraint) 

between the mould surfaces and the surfaces of the samples, using the shallow gate 

system. The results are shown in Fig. 6.8 (p. 147) and Table 6.7. The two curves in Fig. 

6.8 represent a (solid line, without mould release agent) and b (broken line, with mould 

release agent). The residual stress magnitudes in the bars without mould release agent 

were 1.96 times higher than those in bars value produced using mould release agent. 

Sample Maximum stress (MPa) Minimum stress (MPa) Thickness (mm) 
a 3.2 -6.4 3.20 
b 1.6 -3.2 3.20 

Table 6.7 
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omnarison oi ine 
deep gate system. (c and d) 

moul a enr, using ars ana 

The objective of these experiments was to investigate the effect of the friction (friction 

constraint) between the mould surfaces and the surfaces of the samples, using deep gate 

system. The results are shown in Fig. 6.9 (p. 148) and Table 6.8. There are two curves 

in Fig. 6.9, corresponding to c (solid line, with mould release agent) and d (broken line, 

without mould release agent). The residual stress magnitudes in bars without mould 

release agent were everywhere 1.4 times higher than the values in bars made using 

mould release agent. 

Sample Maximum stress (MPa) Minimum stress (MPa) Thickness (mm) 
c 1.65 -3.3 3.21 
d 2.30 -4.6 3.21 

Table 6.8 

6.2 Stress relaxation measurement 

The stress relaxation tests were conducted on tensile tests and the relaxation curves 

were plotted as load - time diagrams in Fig. 6.10 (p. 148). 

There are two curves in Fig. 6.10, corresponding to different initial stress, WI (solid 

line, at 21 MPa) and W2 (broken line, at 17 MPa). 
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CHAPTER 7 

DISCUSSION 

A unified theoretical model to calculate the residual stress distributions of the moulding 

and the post-moulding stages of the entire injection-moulding process has been 

presented in Chapter 3. The various experiments and the computations have been 

conducted to determine the effect of different kinematic boundary conditions for the 

moulding conditions and the post-moulding conditions, due to different process 

temperatures. The effect of different polymer relaxation times on the residual stress 

distributions has been examined in Chapter 4,5 and 6. In the discussion in Section 7.1, 

the effect of different cooling temperatures after the demoulding are dealt with. Section 

7.2 discusses the effect of packing pressure. Section 7.3 deals with the friction 

constraint effect. Section 7.4 discusses the stress relaxation effect. The effect of the gate 

system is dealt in Section 7.5. 

7.1 Cooling temperature effect 

The effect of different cooling temperatures after the demoulding are discussed in this 

section. Computations considering the effect of different cooling temperatures after the 

demoulding and comparison between the computed results and experimental 

measurements have not been found in the literature and it is believed that such results 

are presented for the first time in this thesis. 

7.1.1 liquid nitrogen and ice water 

Fig. 7.1.1 (p. 160) and Table 7.1.1 show the measured and the computed residual stress 
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distributions using method A (based on Struik's method). The labels in Fig 7.1.1 refer to 

the computed stress obtained using the temperature of liquid nitrogen (KO 19), the 

computed stress obtained using the temperature of ice water (K020), the observed stress 

obtained using liquid nitrogen (N) and the observed stress obtained using ice water (I). 

The observed residual stress magnitude for the bars which were cooled in liquid 

nitrogen was everywhere 4.6 times higher than in the bars cooled in ice water. The 

computed residual stress magnitude for the bars which were cooled in liquid nitrogen 

was 13.7 times the computed magnitude for bars cooled in ice water on average. The 

observed residual stress magnitude for the bars which were cooled in liquid nitrogen 

was 6 times that of the computed magnitude on average. The observed residual stress 

magnitude for the bars which were cooled in ice water was 2.2 times that of the 

computed magnitude on average. All four stress distributions have compressive stresses 

at the surfaces and tensile stresses in the core of the sample. The positions of the 

maxima are better predicted than those of the minima. The calculated stress 

distributions shown in Fig 7.1.1 were in qualitative agreement with the experimental 

results. 

K019 N K020 I 
Maximum stress (MPa) 24.6 17.0 1.6 4.0 
Minimum stress (MPa) -42.7 -28.2 -3.3 6.6 

Table 7.1.1 

Fig. 7.1.2 (p. 160) and Table 7.1.2 show the measured stress and the computed residual 

stress distributions using method B. The labels in Fig 7.1.2 refer to the computed stress 

obtained using the temperature of liquid nitrogen (L006), the computed stress obtained 

using the temperature of ice water (L007), the observed stress obtained using liquid 
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nitrogen (N) and the observed stress obtained using ice water (I). The computed residual 

stress magnitude for the bars which were cooled in liquid nitrogen was 7.2 times the 

computed magnitude in the bars cooled in ice water on average. The observed residual 

stress magnitude for the bars which were for the bars cooled in liquid nitrogen was 0.6 

times that of the computed magnitude on average. The observed residual stress 

magnitude for the bars which were cooled in ice water was 1.1 times that of the 

computed magnitude on average. All four stress distributions have compressive stresses 

at the surfaces and tensile stresses in the core of the sample. The positions of the 

maxima are better predicted quantitatively. However, the compressive stress near the 

surfaces are under predicted. 

L006 N L007 I 
Maximum stress (MPa) 22.1 17.0 1.1 4.0 
Minimum stress (MPa) -47.8 -28.2 -8.6 -6.6 

Table 7.1.2 

As described in Sections 3 and 4, Method A (based on Struik's method) refers to 

boundary conditions which are based on local cooling rate and incremental temperature 

changes whereas using method B (taking account of the pressure profile) starts by 

calculating the pressure profile and is based on the specific volume rate from the 

differentiation of the Tait equations by pressure. The strain as a function of pressure is 

calculated using the specific volume and the density. The predictions of residual stress 

distributions using method B show slightly better agreement with the experimental 

results than the method A. This is as would be expected from Section 4.4.2.1 

(temperature distributions) and Table 4.6.2.1 in Section 4 (process controls) since the 

procedure using method B deals with the process controls (particularly detailed pressure 

profiles) in a better manner than method A. 
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The calculations predict much large residual stress magnitudes at the surfaces of 

samples when the samples are cooled in liquid nitrogen than the corresponding 

experimental resul&8`'. A possible reason for this is that when the samples are cooled 

by liquid nitrogen, bubbles appear near the surfaces due to the evaporation of liquid 

nitrogen. This causes the cooling condition to be milder than that modelled in the 

calculations. In order to verify this reason, using liquid nitrogen slush (solid nitrogen- 

liquid nitrogen mixture) would be effective. The use of a better agreement between 

experimental conditions and boundary conditions for calculations would result in a 

better prediction of residual stresses. 

7.1 .2 Ice water and room temperature 

Fig 7.1.3 (p. 161) and Table 7.1.3 show the measured stress and the computed residual 

stress distributions using method A. The labels in Fig 7.1.3 refer to the computed stress 

obtained using temperature of ice water (K0172), the computed stress obtained using 

room temperature (K018), the observed stress obtained using ice water (W) and the 

observed stress obtained using room temperature (E). The observed residual stress 

magnitude for the bars which were cooled in ice water was everywhere 1.1 times the 

value produced in bars cooled in a room temperature. The computed residual stress 

magnitude for the bars which were cooled in ice water was everywhere 1.03 times the 

computed magnitude for the bars cooled in ice water. The observed residual stress 

magnitude for the bars which were cooled in ice water was 0.34 times that of the 

computed magnitude on average. The observed residual stress magnitude for the bars 

which were cooled using a room temperature was 0.32 times the computed magnitude 

on average. All four stress distributions have compressive stresses at the surfaces and 

tensile stresses in the core of the sample. The calculated stress distributions shown in 
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Fig 7.1.3 were in qualitative agreement with the experimental results. However, the 

compressive stresses near the surfaces were over predicted and the tensile stresses in the 

core were under predicted. 

K0172 W K018 E 
Maximum stress (MPa) 6.2 2.6 6.0 2.3 
Minimum stress (MPa) -15.8 -5.2 -15.5 4.6 

Table 7.1.3 

7.2 Packing pressure effect 

Fig. 7.2.1 (p. 161) and Table 7.2.1 show the measured stress and the computed residual 

stress distributions using the WLF equations. The labels in Fig 7.2.1 refer to the 

computed stress obtained using 143 MPa of injection pressure (L002), the computed 

stress obtained using 87 MPa of injection pressure (L003) and the observed stress 

obtained using both the pressures 143 MPa and 87 MPa (Exp). The computed residual 

stress magnitude for the bars which were made using 143 MPa was 0.68 times the 

computed magnitude using 87 MPa on average. The observed residual stress 

magnitudes for the bars which were made using both the pressure 143 MPa and 87 MPa 

was 0.83 times the computed magnitude using 143 MPa and 0.55 times the computed 

magnitude using 87 MPa on average. All four stress distributions have compressive 

stresses at the surfaces and tensile stresses in the core of the sample. The calculated 

stress distributions shown in Fig 7.2.1 were in qualitative agreement with the 

experimental results. However, the compressive stresses near the surfaces were under 

predicted. 
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L002 L003 Experiment 
Maximum stress (MPa) 0.5 0.7 1.0 
Minimum stress (MPa) -3.1 -4.8 -2.0 

Table 7.2.1 

Zoetelief, Douven and Ingen Housz(" calculated that considerable tensile stress 

develops at the surface of injection moulded products during the holding and packing 

stage. They reported that the tensile stress is caused by the high mould pressure that 

occurs during the process. However, they did not compare the effect of different 

packing pressures on residual stress magnitude. Bushko and Stokes(69'72 computed 

residual stresses accounting for the additional material that is forced into the volume 

created by cooling and by the time-dependent packing pressure compressing the molten 

material and the solidified layers, which are pushed against the mould walls. They 

indicated that for low packing pressures for which the cavity pressure drops to zero 

before the complete thickness undergoes the glass transition, the residual stresses do 

change with pressure. For high pressures, for which cavity-pressure histories differ only 

by a constant until the complete thickness has undergone the glass transition, increases 

in packing pressure have no effect on the residual stresses, therefore showing that the 

magnitude of packing pressure affects shrinkage and the residual stresses are affected by 

the packing-pressure changes before complete transition to the glassy state. 

In the studies described in this thesis, when barrel temperatures were adjusted to 

maintain production of visually satisfactory mouldings from polystyrene, the residual 

stress distributions were not very sensitive to changes in injection pressure in the range 

37 - 143 biPa"SS). This result seems to indicate that there might be a compensating 

effect. 
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7 .3 Friction constraint effect 

Fig. 7.3.1 (p. 162) and Table 7.3.1 show the measured stress and the computed residual 

stress distributions using method B. These computations and comparison between the 

computed results and the experimental have been attempted for the first time in the 

research described in this thesis. The labels in Fig 7.3.1 refer to the computed stress 

obtained without friction constraint (L004), the computed stress obtained with friction 

constraint (L005), the observed stress obtained without mould release agent and using 

the straight bars (a) and the observed stress obtained using mould release agent and the 

straight bars (b). The observed residual stress magnitude for the bars produced without 

mould release agent was everywhere 0.5 times the value produced using mould release 

agent. The computed residual stress magnitude without friction constraint was 0.66 to 

0.94 times that when using friction constraint. The observed residual stress magnitude 

for the bars produced without mould release agent was 0.38 to 0.17 times the computed 

magnitude without friction constraint. The observed residual stress magnitude for the 

bars produced using mould release agent was 0.5 to 0.32 times the computed magnitude 

without friction constraint. All four stress distributions have compressive stresses at the 

surfaces and tensile stresses in the core of the sample. The calculated stress distributions 

shown in Fig 7.3.1 were in qualitative agreement with the experimental results. 

However, the compressive stresses near the surfaces were under predicted. 

L004 b L005 a 
Maximum stress (MPa) 4.2 1.6 6.4 3.2 
Minimum stress (MPa) -19.0 -3.2 -20.2 -6.4 

Table 7.3.1 

Fig. 7.3.2 (p. 162) and Table 73.2 show the measured stress and the computed residual 
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stress distributions using the method A. The labels in Fig 7.3.2 refer to the computed 

stress obtained without friction constraint (K013), the computed stress obtained with 

friction constraint (K0171), the observed stress obtained without mould release agent 

and using the straight bars (a) and the observed stress obtained using mould release 

agent and the straight bars (b). The computed residual stress magnitude without friction 

constraint was 0.33 to 0.42 times that when using friction constraint. The observed 

residual stress magnitude for the bars produced without mould release agent was 0.64 to 

0.43 times the computed magnitude without friction constraint. The observed residual 

stress magnitude for the bars produced using mould release agent was 0.46 to 0.36 times 

the computed magnitude without friction constraint. The calculated stress distributions 

shown in Fig 7.3.2 (p. 162) were in qualitative agreement with the experimental results. 

However, the compressive stresses near the surfaces were under predicted. As can be 

seen from Figs. 7.3.1 and 7.3.2, the predictions of residual stress distributions using 

method B show slightly better qualitative agreement with the experimental result than 

those obtained using method A. 

K013 b K0171 a 
Maximum stress (MPa) 2.5 1.6 7.0 3.2 

Minimum stress MPa -7.4 -3.2 -17.8 -6.4 
Table 7.3.2 

The residual stress distributions were not very sensitive to the pressure or change of 

mould release agent if tensile bars with end tabs were used. This is because the 

shoulders of the samples are still kinematically constrained by the mould, even when 

using the mould release agent. The calculated stress distributions were in qualitative 

agreement with the experimental results however they were not in quantitative 

agreement. The reasons for this could be that, the calculations use a two stage model 
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(constrained boundary conditions before the pressure drops to zero and unconstrained 

boundary conditions after the pressure becomes zero) while in the experiment, there 

should exist three stages ((i) constrained boundary conditions before the pressure drops 

towards a certain pressure; (ii) friction constraints once the pressure has dropped below 

this, continuously until the pressure becomes zero; (iii) unconstrained boundary 

conditions after the pressure becomes zero) which remove the intimate contact of the 

moulding with the mould cavity walls. 

7.4 Stress relaxation effect 

Fig. 7.4.1 (p. 163) shows the measured and the calculated stresses as functions of time 

and compares them with values obtained by fitting Eq. 4.5.1 in Chapter 4. The labels in 

Fig 7.4.1 refer to the calculated stress obtained using 21 MPa of initial stress (W 1 Calc), 

the observed stress obtained using 21 MPa of initial stress (W1), the calculated stress 

obtained using 17 MPa of initial stress (W2 Calc) and the stress obtained using 17 MPa 

of initial stress (W2). The fits of the calculated stress relaxation curves were in 

quantitatively good agreement with the experimental results. All residual stress 

calculations from Sections 7.1 to 7.4 were made using Eq. 4.5.1 for different elapsed 

times after mouldings have been made. The introduction of stress relaxation in this 

thesis reduced disagreements between the experimental results and the computed 

residual stresses. 

7. Gate system effect 

Fig 7.5.1 (p. 163) and Table 7.5.1 show the measured residual stress distributions. The 

labels in Fig 7.1.3 refer to the stress obtained without mould release agent and using the 

shallow gate system (a), the stress obtained using mould release agent and the shallow 
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gate system (b), the stress obtained using mould release agent and the deep gate system 

(c), and the stress obtained without mould release agent and the deep gate system (d). 

The observed residual stress magnitude for the bars produced without mould release 

agent and using the shallow gate was everywhere 0.5 times the value produced using 

mould release agent. The observed residual stress magnitude for the bars produced 

without mould release agent and using the shallow gate was virtually the same as the 

value produced using mould release agent and the deep gate system. The reason for this 

result is that, as the melt solidifies in the mould, at some stage the through thickness 

stress at the mould surfaces drop to zero. After this stage, the sample surfaces are no 

longer in intimate contact with the mould surfaces. When the deep gate system is used, 

as the gate freeze time is longer than for the shallow gate system, the sample surfaces 

remain in intimate contact with the mould cavity walls for much longer even when 

mould release agent was used. 

a b d c 
Maximum stress (MPa) 3.2 1.6 2.3 1.65 
Minimum stress (MPa) -6.4 -3.2 -4.6 -3.3 

Table 7.5.1 

7.6 General discussion 

All the calculated results except L007("0`e 7.6) over predicted on the residual stress 

magnitudes. The results of the other researches (69-74,80,89) show the same tendencies. Also 

Bushko and Stokes (7') described that the WLF equation is known to be a poor 

approximation for the shift function below Tg. The use of a better model for the shift 

function below Tg would result in a better prediction of residual stresses. However, a 

better approximation than the WLF and the KWW equations has not appeared in the 
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literature. 

Note 7.6: If the stress relaxation effect (Section 7.4) is not applied to L007, The residual 

stress magnitude was over predicted. 
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Fig. 7.1.2 Comparison of the different cooling temperatures, using the WLFequations 
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CHAPTER 8 

CONCLUSIONS 

A unified theoretical model to calculate the residual stresses in moulding and post- 

moulding stages of the entire injection-moulding process is presented in this thesis. 

The predicted residual stress distributions over the entire moulding and post-moulding 

history have been found to be in generally good agreement with the corresponding 

experimental results under various processing conditions and post-moulding changes. In 

particular, kinematic boundary conditions for the moulding conditions and the post- 

moulding conditions, due to different temperatures and relaxation times of the polymer, 

have been found to be critical ingredients in the calculation of the residual stress 

distributions. 

The improved method of computation has predicted correctly the dependence of 

residual stress distribution on cooling conditions after de-moulding and on the pressure 

or absence of constraints on movement of the moulding within the mould prior to 

ejection. Although quantitative agreement is not exact, the agreement over a range of 

conditions are superior to that given in other publications in the literature. 

8.1 Cooling temperature effect 

Large residual stress distributions can be generated in samples if they are cooled rapidly 

in liquid nitrogen after injection moulding. Calculations predict very large residual 

stress magnitudes when samples are cooled in liquid nitrogen. This residual stress is 

caused by the high cooling rate after demoulding. The predicted residual stress 

distributions are found to be in good agreement with the corresponding experimental 
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results. Using method B (taking account of the pressure profile; see Section 4.4 (p. 90)) 

show slightly better agreement with the experimental results than method A (based on 

Struik's method; see Section 4.3 (p. 81) ). 

8 .2 Friction constraint effect 

The residual stress magnitude can be reduced in samples if they are not constrained by 

mould surfaces, as when using straight bars and mould release agent. Calculations 

predict lower residual stress magnitudes when samples are not constrained by the mould 

surfaces. The residual stress distributions are not very sensitive to the pressure or 

change of mould release agent if tensile bars with end tabs are used. This is because the 

shoulders of the samples are still kinematically constrained by the mould, even when 

using the mould release agent. The predicted residual stress distributions are found to be 

in quantitatively good agreement with the corresponding experimental results. Using 

method B equations show slightly better agreement with the experimental results than 

method A. 

8.3 Packing pressure effect 

When barrel temperatures were adjusted to maintain production of visually satisfactory 

mouldings from polystyrene, the residual stress distributions were not very sensitive to 

changes in injection pressure in the range 37 - 143 MPa('S'). This result seems to indicate 

that there might be a compensating effect. Calculations confirmed that residual stress 

distributions are not very sensitive to changes in injection pressure in the range 37 - 143 

MPa, when using the temperatures corresponding to the experimental moulding 

conditions in the earlier study. Comparison of the residual stress magnitudes obtained in 

experiments and in the calculations did not show good agreement. This may be affected 
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by high melt temperature. 

8 .4 Stress relaxation effect 

In most thermoplastics creep and stress relaxation proceed at fairly significant rates at 

room temperature. Therefore, it is expected that residual stress relaxes during ageing at 

room temperature. Calculations have to be made for different elapsed times after 

demoulding because residual stress measurements are not usually made just after 

mouldings have been made. All the computed results given in this thesis take into 

account the residual stress relaxation. This method reduces the disagreements between 

experimental results and computed results. 
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