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For all knowledge and wonder (which is the seed of

knowledge) is an impression of pleasure in itself.

Francis Bacon



PREFACE

This thesis describes original work which has not been submitted for a degree at any

university.

The investigations were carried out in the Materials Division of the Department of
Mechanical, Materials and Manufacturing Engineering of the University of Newcastle

upon Tyne, United Kingdom under the supervision of Professor J. R. White.

This thesis describes an investigation into the computations of residual stress

distributions in injection Mouldings.



ACKNOWLEDGEMENTS

I am heartily grateful to Professor J. R. White for his supervision, continued support and

kind help during the research.

I wish to express my gratitude to the technical staff of the Divisional workshop for
constant help and useful advice. I also thank A. A. Da Silva, Dr T. J. Turton and other

fellow research students for their help and kindness.

I would also like to record my appreciation of Dr Li Tong, Professor Ichiro Muramatsu,

Professor Susumu Furuichi and the friends in England for their support.

Lastly, but not least, I am grateful to my parents Setsuzo, Fumiko and my fiancée Shinju

Takeyasu for their continued support and patience during the research.

11



Abstract

Residual stress distributions in injection moulded polystyrene plaques have been
computed using various calculation methods based on procedures from the literature.
Some of the mathematical procedures have been extended to provide improved analysis
of the process. The results have been compared with measured distributions obtained
using the layer removal technique. The purpose of this work was to resolve some of the
disagreements between the measured residual stress distributions in injection moulded
parts and those predicted by computations made in the literature.

The calculations are made using the general purpose software “Mathcad”. Various
temperature, time and pressure dependent material models have been used to calculate
the residual stress and they are compared. Special attention has been paid to choosing
boundary conditions that match the moulding parameters used in the manufacture of the
injection mouldings on which the measurements were made. Similarly, care has been
taken to choose boundary conditions that correspond with the different actual storage
times before analysis for the samples and also boundary conditions that correspond with
the post-moulding conditioning.

Measurements of residual stresses distributions were made on mouldings produced
under conditions chosen to simplify the modelling requirements. The sensitivity of the
calculations to the materials property data and to the boundary conditions used have

been examined. The experimental venfication includes examination of the post-
moulding changes.

The predicted residual stress distributions over the entire moulding and post-moulding

history have been found to be in generally good agreement with the corresponding
experimental results under various processing conditions and post-moulding changes. In
particular, kinematic boundary conditions for the moulding conditions and the post-
moulding conditions, due to different temperatures and relaxation times of the polymer,

have been found to be critical ingredients in the calculation of the residual stress
distributions.
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Glossary

Latin symbols

a(T,T,) 1s the shift factor between the temperature T and the glass transition temperature

/4

g

a xXE

g E

1—-v‘g

A 1s a mechanical parameter defined as

B is the quantity between 0.08 and 1 defined as follows when T is below the glass

30-Ing
T

transition temperature: B =

C represents constants

e 1s the thickness of sample

E(1) 1s the time-dependent Young’s modulus

fz1) is the dimensionless function defined in a way similar to the temperature
difference ratio in the Fourier heat transfer analysis

G(?) 1s the time-dependent shear modulus

h(z) 1s a periodic step function

H(?) 1s the position of the solidification or glass transition plane
k represents Boltzmann’s constant

K(¥) 1s the time-dependent bulk modulus

L 1s the length of sample bars used in the experimental part

m 1s the exponent parameter in the KWW equation

P 1s the pressure

g is the local cooling rate q=T(z,t)

1v



R 1s a mechanical parameter defined as follows R = TE_
-V

f1s time

T is the temperature

T(z,t) is the cooling rate

T stands for the differentiation of temperature with respect to time
V 1s the volume

W 1s the width of sample bars

x is the coordinate measured along the length of samples

y is the coordinate measured in the width direction of samples

z 1s the coordinate measured in the normal direction to the plane faces of the bars
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a, b, a,and b are Fourier sum coefficients

a,., a,,, 4., d,., b, b are the constants in the Tait equations

: : a,xE,
A, 1s a mechanical parameter defined as ——==a, - R,

r
1-—1{g

C, and C, are universal constants that appear in the WLF equation

C, is the specific heat at constant pressure

E, is the unrelaxed Young’s modulus (Sections 2.3.1, 2.3.2 and 3.5.1)
E, is the reference Young’s modulus ( Section 3.5.2)

E_is the Young’s modulus in the rubbery core

g (z,t)=u, (z) v.(t) where v, (1) is an exponential decay function and . (z) is a cosine

function
J is the relaxed compliance as expressed in the single relaxation time model

J, is the unrelaxed compliance as expressed in the single relaxation time model
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K, (z, t,) 1s a bulk modulus

P, is the packing pressure

P, 1s the atmospheric pressure

t(7) is the relaxation time at the temperature T that appears in the KWW equation

t,(2) is the time at which the solidification plane reaches the position z

t,.. 1s the cooling time after demoulding

t, is defined as the time at which solidification of the whole moulding is just complete,
that is the time at which the material which cools most slowly just reaches T,

T, is the initial temperature of the molten polymer within the mould cavity walls

T is the temperature at the cold cavity walls

T . (z,1) is the temperature distribution after demoulding

T, is the glass transition temperature

T,/(t;) 1s the glass transition temperature when 1 = ¢,

T is the melt temperature

T,(z,t,) 1s the melt temperature when ¢ is ¢,

T ., 1s the melt temperature

T, 1s the reference temperature

T, 1s the room temperature

Vil



z, 1s the half thickness of samples
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Greek symbols

a(T) 1s the temperature-dependent thermal expansion coefficient

[1s a variable

AH is the activation energy of a secondary relaxation process

Azt y)=Kz,1)-¢z, y)

¢ and ¢£'are respectively the strains in the glassy shell and in the rubbery core

¢ is the heat flux vector

@(z,t) 1s the reduced time

k' 1s the thermal diffusivity of the polymer

A 1s the coefficient of heat conduction

f1s an integration variable or an angle used

p1s the density

z 1s the relaxation time in the single relaxation time model

£ 1s a space integration variable

(1) and ¢(z,1) are unknown functions

1X
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a, is the thermal expansion coefficient in the glassy shell
a is the thermal expansion coefficient in the rubbery region
a, volumetric thermal expansion
AP, is the average pressure drop
AV, is the volumetric change in an element of material at z
AT, is the temperature defined as 7,(z,1,)-1(z.1,)
£.(?) is the strain in the x-direction
¢_(t) is the strain rate in the x-direction
v is the Poisson’s ratio in the glassy shell
v . is the Poisson’s ratio in the rubbery core
V. is the measured specific volume at temperature T
V, is the occupied volume
p,(t,,P=0,z) is the density when the pressure 1s atmospheric
p,(t,,P=0,z) is the density when the pressure 1s atmospheric
Poei(tn-1yy Prns Z) is the density when the temperature has fallen to below T, at all
locations
p, and p, are the components of curvature in the x and y directions
o, is the true stress for a simple extension
o.(z1), c,(z1), 0.(z1), represent the equi-biaxial stress distribution
&(z,t) is the normal stress rate according to the x-direction

& (t) is the stress rate in the x-direction

& ..., (t) is the stress rate in the x-direction
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V 1s the 3-dimensional delta operator
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CHAPTER 1

INTRODUCTION

1R h obiect

Polymers are one of the most important families of materials and widely used in
engineering structures. Residual stresses are known to occur in injection moulded
polymers. They can influence the mechanical properties and also cause warping and

other changes in dimensions of mouldings.

The surface regions of the moulding cool and solidify before the interior cools
significantly. The subsequent thermal shrinkage of the material in the interior causes the
formation of tensile stresses there and of compressive stresses near to the surface. In the

case of parts made by moulding operations that involve flow in the melt state, there may

be an additional contribution to the residual stresses related to the thermo-mechanical
history prior to solidification. Changes in residual stresses can occur after the moulding
is made. In some polymers, the magnitude of the residual stresses may even change
significantly on ageing at room temperature. Larger and more rapid changes occur as
the result of ageing at elevated temperature or application of a temperature gradient. The

reasons for the changes in stress distribution are many and will be discussed in this

thesis.

Mathematical models have been proposed and widely developed by various research

groups for the residual stress computations. The purpose of this study is to resolve some




of the disagreements between the measured residual stress distributions in injection

moulded parts and those predicted by computations made in the literature.

2 The research programme

The samples used in this study were injection moulded bars made of polystyrene (PS).
Polystyrene was moulded into ASTM D638 type I tensile test bars and straight test bars

(190x12.7x3.2mm) with a deep gate system (2.5mm) and a shallow gate system
(0.5mm). The test methods applied and the properties measured include (i) The layer
removal procedure to determine the residual stress distribution; (ii) stress relaxation

tests at constant strain at a constant temperature.

Residual stress distributions in injection moulded polystyrene plaques were computed
using various calculation methods from the literature. The calculations were made using

the general purpose software “Mathcad”. Various temperature, time and pressure
dependent material models were used in the calculation of the residual stress and the

results obtained from the different methods are compared.
1.3 Qutl; f this thesi

The literature survey in chapter 2 deals with mechanical, thermal properties and

analytical descriptions of polymer behaviour which form the basis of the calculations

presented in Chapter 3. Reviews of computer-aided calculations are covered here.

Chapter 3 deals with modelling of residual stress distributions. Calculations are divided
into two procedures: firstly, using the procedure based on Struik’s method (Method A),

and secondly, using the new procedure (Method B) developed during this research, 1n




which the pressure profile was calculated and used to estimate density distributions

through the depth and the stress distribution.

Chapter 4 deals with residual stress calculations performed using both Method A and
Method B. Various temperature, time and pressure dependent material models were
used. Special attention was paid to choosing boundary conditions that match the
moulding parameters used in the manufacture of the injection mouldings on which the
measurements were made. Similarly, care was taken to choose boundary conditions that
correspond with the different actual storage times before analysis for the samples and

also boundary conditions that correspond with the post-moulding conditioning.

The layer removal procedure and the stress relaxation tests are discussed in Chapter 5.

Chapter 6 covers the experimental results. The results include residual stress

distributions and stress relaxation.

Chapter 7 contains general discussion covering comparisons between the experiments
and the calculations. Some of the disagreements between the measured residual stress
distributions in injection moulded parts and those predicted by computations are

discussed. The main conclusions are given in Chapter 8.



CHAPTER 2

LITERATURE SURVEY

This chapter is divided into eleven sections. Sections 2.1 and 2.2 begin with very
general introductions to injection moulding and the properties of polystyrene.

Sections 2.3 and 2.4 review the literature about the time and temperature dependence of
Young’s modulus of polymers, in particular near the glass transition temperature.
Section 2.5 deals with temperature and pressure dependence of specific volume.

Section 2.6 describes rate of heat transport in polymers. Section 2.7 deals with thermal
residual stress. Section 2.8 describes effect of moulding conditions on residual stress.
The analytical description of polymer behaviour developed in the literature in Sections
2.3 to 2.8 form the basis of the calculations presented in Chapter 3. Section 2.9 shows
post moulding changes in residual stress. Section 2.10 outlines computer-aided

calculations. Section 2.11 deals with residual stress measurement.

A simplified sketch of an injection moulding machine is given in Fig. 2.1.1 The material
is inserted into the hopper and fed into the extruder where it is mixed and heated with
the intention to obtain a melt which is as homogeneous as possible, with respect to
temperature and mixture, and to transport it towards the nozzle. The screw is allowed to
travel backwards (away from the mould) and a charge accumulates in front of it. When
there 1s sufficient charge to fill the mould cavity the screw is propelled forward and the
material is injected into the mould at a very high speed at very high pressures (up to 250

MPa). After the product has cooled down sufficiently in the mould, it is ejected.”
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A typical pressure profile at a certain position in the cavity is shown in Fig. 2.1.2. From
a conceptual point of view, three stages are defined. First, the injection stage, with
moderate pressures. Thereafter follows the compression stage in which the material is
compressed to conform to the mould cavity. After compression the post-filling stage
begins, the high pressure at the entrance of the cavity allows material to flow into the
cavity as the polymer cools down, again with the purpose to compensate for the thermal

shrinkage. Eventually, the gate freezes off and no more material flows into the cavity.

This stage is also referred to as the cooling stage.!”

Compression Post-filling

Pressure __,

Filling
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2 Properties of Polvstyvrence

Many polymers show regions of high order and should be considered as semi-

crystalline™®. The major factor which is determining whether a polymer can crystallise
depends on the occurrence of successive units in the chain in a configuration of high
structural regularity. If the chain elements are small as in linear polyethylene (see Fig.
2.2.a), crystallinity is highly developed. If the chain elements are complex, containing
bulky side groups (see Fig. 2.2.b), as in polystyrene (PS), the matenial can crystallise
only if these substitute groups are arranged in an ordered or tactic configuration.*

In linear thermoplastic semi-crystalline polymers, 1t is possible to identify a melting
temperature (7,). Above this melting temperature, the polymer may be liquid,
viscoelastic or rubbery according to its molecular mass. However, below it, in the high
molecular mass range, 1t will tend to act like a viscoelastic solid down to the glass

transition temperature.¥

~—CH,— CH —

— CH,— CH— @

The semi-crystalline melting point (7,,) is theoretically the highest temperature at which
polymer crystallites can exist. Normally, polymer crystallises in a certain temperature
range. Secondary semi-crystalline transitions (below 7T,) occur if the material
transforms from one type of crystal to another. These transitions, like the melting point,

are thermodynamic first-order transitions. In crystalline polymers, T, rather than T,




determines the upper service temperature of plastics and the lower service temperature
of rubbers, T, is still very important. The reason is that between T, and T, the polymer is
likely to be tough; the best use region of the polymer may therefore be expected at the
lower end of the leathery range (Fig. 2.2.1). Below the glass transition temperature,

many polymers tend to be brittle, especially if the molecular weight 1s not very high.

Secondary transitions may be responsible if a rigid material is tough rather than brittle'®.

Diffuse transition zone

——p

Viscous Liquid .
Rubbery |

<4— Meclting Point (7))

Leathery

Temperature

<+—  (lass transition (7,)

Rigid Crystalline

Molecular Mass —»

-M Diagram for semi crystalline polyme (13)

Temperature-Molecular Diagram for semi crystalline polymers. Leathery range is
shown in between two curves (melting point and glass transition)

Polystyrene is regarded as an amorphous glassy thermoplastic. Because of its atacticity,
Polystyrene is unlikely to crystallise even if it is drawn to give molecular alignment, as
happens in the soft blocks in copolymers of polyurethane. The mechanical properties
and integrity are due to entanglements among the main chains. The density of
entanglements is high below the glass transition temperature and decreases as the

temperature rises. The drop in the Young’s modulus when the temperature increases 1s

connected to this decrease of the density of entanglements below 7,. As polystyrene




does not have cross-links, which are permanent covalent bonds connecting adjacent
main chains, at high temperatures, it may not display an elastic behaviour when being

stretched, for the density of entanglements is too low. Consequently, it can be assumed

that the Young’s modulus of PS will totally vanish when the polymer flow is liquid-like
(above T,). There is no residual mechanical integrity due to cross-links. Such an

assumption is a premise for Lodge’s constitutive model of a rubber-like liquid‘.

T1C AU (CINDCTAIU I C UK
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The Young’s modulus of polystyrene and other thermoplastics is time-dependent and
changes continuously as temperature changes and it is required to chose a suitable
expression to represent it that can be inserted into computations™*>!%!),

Materials have non-elastic properties under certain circumstances. This is especially the
nature of polymers. They may show non-elastic deformation under conditions in which
other materials may be regarded as purely elastic.” It can be said that viscoelastic
deformations cover for all deformations that are not purely elastic. This means that
viscoelasticity deals with a number of quite different phenomena. Viscoelasticity is the

combination of viscous and elastic properties'*).

2.3.1 Stress relaxation

Stress relaxation is the time-dependent change in stress at a constant deformation and
temperature. It is common use to call the momentary ratio of tensile stress to strain the
“relaxation modulus” (E,)) and to present the results of the experiments in the form of
E,, as a function of time. The stress-relaxation behaviour of polymers is extremely

temperature-dependent, especially in the region of the glass transition temperature.
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The single relaxation time model due to Nowick (1953)"? is introduced which permits

derivation of an expression for the time-dependent compliance:

T

JO)=J, +(J, ~J,)- (1 - exp(-—- -’-D (2.3.1)

where

J,, J. are the unrelaxed and the relaxed compliance respectively and 7 is the

characteristic relaxation time.

When t<<rt, J(f)=J, and when ~>7, J(f)=J;. In the same way, the Young’s modulus can

be written: E, -exp[—_—t-] where E, stands for the unrelaxed modulus. Here the relaxed
T

modulus (f—)equals zero. Such relationships include the decay of the Young’s
modulus controlled by a single relaxation time present 1n an exponential function and
approximate the behaviour of thermoplastics shown by experimental data (Fig. 2.3.1%%).
Great care has to be taken to describe theoretically the true shape (sigmoid curve) of the
time-dependence of the Young’s modulus. A model taking into an account a distribution

of relaxation times has also been developed to better match the experimental data.**?

J(t) —>

log t(T)

ompliance of PS showing the ¢gla ansition®?



In the transition region a plot of the logarithm of the tensile relaxation function (o(t)/&,,)
against the logarithm of time is nearly a straight line with a negative slope; at both

higher and lower temperatures the slope becomes less steep'™.

This behaviour can be approximated by the Maxwell model:

a(t)

&

=E,(=E, exp((;—’) (232)

rl

where

O, is the relaxation time, i.e. the time necessary to reduce ¢ to a fraction 1/e of its
original value and g, is the applied strain.

Eq. 2.3.1 1s valid only in a rather limited time interval. If the behaviour over a longer
time period must be described, a number of equations of this type can be superposed,
each with a different relaxation time. Ultimately, a whole relaxation spectrum is
developed'?.

The formulae for stress relaxation which give best agreement with measured time

dependent behaviour were proposed by Struik (1978)".

{

M) _E ()=E, -exp(— —) (2.3.3)

€

s

and for long-term tests

Cf(t) _ Eﬂ (t) — EO . eXp [__ .{L] . [ln(l + L}i' (2.34)

€0 Ly

where

f, 1s a characteristic constant for the material, dependent on T. ¢, is an ageing time of

10



polymer, elapsed after quenching of melt and m is a constant with a value about 1/3

The single relaxation time model can be modified by an empirical formula of general

applicability®, the Kohlrausch-Williams-Watts (KWW)!'"" equation, as follows:

E(T,t)=E(T,,at)=E, -exp| - [r ‘é’, )] (2.3.5)

g

where

E(T.?) is the time-dependent Young’s modulus at temperature I

a is the shift factor describing displacement along the time axis and is a function of
temperature

t (T) is the associated relaxation time at the same temperature and has the same
significance as 7 in Eq. 2.3.1. and m is a parameter different from unity

Consequently, the KWW equation introduces a departure from the single relaxation
time model. This equation has come closer to agreement with the experimental
measurements. Actually, m is considerably smaller than unity (e.g. 1/3-1/2)""® and many
materials show very similar m-values. For all these materials the shape of the time-
dependent stress-relaxation curve is roughly the same"'®. This can be readily understood,

for the shape of the curve is determined by the development of the main chain-diffusion

process at a long range scale; which main chains actually diffuse 1s obviously of less
importance.
t(T) is temperature-dependent and does not follow an Arrhenius law with constant

activation energy, #,(7) is expected instead to obey the WLF equation (see later). The

definition of the glass transition temperature may be ambiguous because it is reported’®

11



to be the temperature at which the associated relaxation time in the KWW equation 1s

within the interval 1s-100s"®. The latter interval has a length of two orders of
magnitude, which 1s the upper tolerance as regards the intervals of values for 1(7)). In
these calculations, the latter relaxation time 1s assumed to equal to either 1s or 100s. In
the article written by Gortemaker et al (1974)""”, when the shear rate is less than 107 s™,
the time for the adjustment of a steady flow is controlled by a relaxation time equal to
100s. When the shear rate is about 1 s, this relaxation time becomes very small (1s or
less than 1s). It seems that an accurate value for #,(7,) will depend on the nature of the

problem (e.g. thermal stress calculations or relaxation of the first normal stress

difference after steady shear flow) and the previous applied shear rate 1 s™.

Struik (1990)"® developed the time-temperature superposability of polymers which
considers both the KWW and the WLF equations. The plots representing the Young’s
modulus at various temperatures versus logarithmic time can be superimposed by
shifting according to a horizontal shift factor. If the mastercurve is taken at the reference

temperature equal to the glass transition temperature, it can be seen that:
E(T,t)= E(T,,alT,T, )-t) (2.3.6)

where

a(T, Tg) 1s the shift factor between T and T, which will be given by Eq. 2.3.10.

When 5T, a(T,T,)>1. When T<T,, a(T, T,)<l. Finally when T=T,, a(T, T,)=1

(Fig. 2.3.1).

12
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o]axation and the effect of temperature®

The two curves (the mastercurve at T, and the curve at temperature T) are superimposed
when a translation, for which the translation vector is In(a(7,T))), is performed. Such a
behaviour is said to be thermorheologically simple and was first observed in the

1940s and 1950s%**7, Its interpretation is that temperature only affects the position of

the relaxation curve, the shape of this curve being independent of temperature.

The KWW equation at T, gives:

E(T_,t)= E, -exp {—{t (IT )J } (2.3.7)

By applying the T.T.S principle, it follows from Eq. 2.3.5

— a(T’Tg)'t ) _ t Y
E(T,t)—E(I;,a(T,I:g)-t)=Eoex{—( n(T) ] =FE,-ex _(10(7)] (2.3.8)

This yields

13



t(T) |
_ ln{ : (Tg)] =In{a(T, T, )) (2.3.9)

Now the WLF expression for time-temperature superposition can be applied

~C,(T-T
In(a(T,T, ))=exp[-é-2-i-((T-—_i§-)3] (2.3.10)

where T represents a modified temperature field, for the latter equation is only valid for
a limited temperature range around the glass transition temperature. For the purpose of
moulding solidification in moulding operations, this modified temperature field can be
allowed to take all values above T, for the shift factors between the mastercurve and the
curve of the time dependence of Young’s modulus (this is the method adopted in
Section 4.4.2). In the case of polystyrene, Struik allowed the temperature to drop until it
reached 350K (23 degrees below T,). According to the authors™ the WLF equation 1s

only valid for a limited temperature range below T, and this is why a limited drop of

amplitude 23 degrees has been chosen'®, A new temperature field S(f) was then defined

as follows:

if 7(H)>350K then 7(1)=S(¢)

if 7(H)<350K, then S(£)=350K

If such a limit is not imposed, the viscosity as predicted by the WLF equation becomes
Infinite, which is contrary to observation even with a polymer in its glassy state.
Combination of Eq. 2.3.8, Eq. 2.3.9 and Eq. 2.3.10 gives

C,-(T-T,) 'Tﬂ
C,+(T-T)))

to(T,)

exp[
E(T,T,,t)=E, -exp | - (2.3.11)

14



Long term dimensional stability under force is one of the most important properties of

solid materials, but few materials are perfect in this respect. Creep is the time-dependent
(also temperature dependent) relative deformation under a constant force (tension, shear
or compression). In contradistinction to stress relaxation, creep 1s in general a
combination of relaxation and viscous deformation phenomena. For small deformations

(i.e. under the influence of small forces) relaxation phenomena predominate. It is under
these conditions that stress relaxation and creep can be quantitatively correlated. As the
amount of deformation increases, viscous phenomena become increasingly important.
At a given moment, the specimen may show yielding, i.e. rapid viscous deformation.

The results of creep experiments are usually expressed as the quantity creep compliance,
the time-dependent quotient of strain/stress. Creep properties are very much dependent
upon temperature. Well below the glass-transition point, very little creep will take place,
even after long periods of time. As the temperature is raised, the rate of creep increases.
In the glass-transition region the creep properties become extremely temperature-
dependent. In many polymers, the creep rate goes through a maximum near the glass-

transition point""?.

A well-known simplified equation for the tensile creep function is the Voigt model.

£ _ n(t)-'—'So[l-—exp[(;tH (2.3.12)

Oy "

where

@, is the retardation time.

In addition, 1n this case, several retardation phenomena with different retardation times
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may be superposed’?.

Struik (1978)" modified the expression for creep strain in manner similar to that used

to describe Young’s modulus, giving a form similar to the KWW function, ie.

20 _s¢y=s, .exp[l_] (2.3.13)
Oy l

and for long term experiments

Q) =S(t) =S, -exp (.IL) : I:ln(l +LH (2.3.14)

Oy [y

where
t, 1s a characteristic constant for the material, dependent on T.
t.is an ageing time of polymer, elapsed after quenching of melt and m is a constant with

a value about 1/3

The properties of polymers change very significantly as the material cools through the

glass transition. This 1s a critical regime in the injection moulding process.

There are many theories that try to explain the glass transition process. They all
emphasise a diffusion mechanism of main chains according to a long-range scale. These

theories can be divided into three main groups.
2.4.1 Normal mode theories

The first group deals with normal mode theories based on the Gaussian sub-molecular

model. A chain 1s arbitrarily divided into a number of segments or “submolecules” each
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of which is sufficiently long (e.g. more than 50 monomer units) that its end-to-end
distance may also be approximated by the Gaussian distribution®”. The motion of this

chain is then described as the superposition of a number of normal modes. Local
motions of chain segments which are shorter than the hypothetical submolecule are
excluded. The treatment of the normal mode theory as done by Rouse (1953)*" gives

the following time relaxation distribution:

-1
— "12' 124k -T - si 2 pr 2.4.1
T,=2Z ¢ I: sin [2(‘/,_}_1)” ( )
where
z' = f;: the number of links in each submolecule, n 1s the number of links in the overall
V

macromolecule and v'represents the number of sub-molecules.

[ is the length of one link, 7 is a constant and p 1s the discrete index that defines the

distribution.

The p™ mode corresponds to motions in p+l submolecules, a mode existing between
each submolecule. ¢ is the frictional coefficient that appears in the definition of the
frictional force f=-¢v where v stands for the velocity of the submolecule. Other normal
mode theories have been formulated®”. They differ from each other because some take
account of the effects of hydrodynamic interactions more completely than others. These
interactions may be illustrated as follows: when a polymer chain segment moves
relative to its liquid environment it will exert frictional forces on the surrounding liquid
medium. These forces will modify the velocity distribution of the liquid medium in the
vicinity of the polymer chain. This effect will, in turn, influence the motions of other

segments of the same polymer coil. The treatment of Rouse does not include these

hydrodynamic interactions.
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The second group is composed of theories that try to treat the local motions neglected

by the normal mode theories because these motions are shorter than the dimensions of
the corresponding submolecules. Kirkwood and Fuoss (1941)'*? considered the motions

of a polymer chain in a viscous medium, neglecting the effects of hydrodynamic

interaction. Their procedure involved a solution of the diffusion equation in which the
time-dependent probability distribution function was expressed in a general way.
Yamafuji and Ishida (1962)%" proposed a theory for the dielectric relaxation of a linear
polymer chain which also takes into account local chain motions. In order to avoid the
complications of the Kirkwood and Fuoss formulation (1941)*, they neglected
translational motions of the chain dipoles on the grounds that these do not alter potential
energy with regard to an external electric field. Bueche (1961)*% suggested that the
major portion of the prime dielectric dispersion might be explained by ignoring co-

operative motions of a chain, considering only the motions of a single chain bond.
2.4.3 Free volume theories

The last group deals with free-volume theories. A definition of free volume often used

in polymer studies is that employed by Doolittle (1951)%%*";
V.=V, -V, (2.4.2)

where V. is the “free volume” per unit volume, F represents the measured “specific

volume” of the polymer at temperature 7 and FV, stands for the “occupied volume”.

Because the temperature is above absolute zero, the links of a given main chain have

oscillatory motions, whose extension above the dimensions of the links at rest defines

V..
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Doolittle found that the flow viscosity of low molecular weight hydrocarbon liquids

could be represented by an empirical equation as follows: n=a- exp[-{)—] where a and

b are constants, f = %—- is the fractional free volume and 7 is the viscosity of the liquid.
S

It follows that f(T)=f (Tg)+ a, -(T ~T ) where f(T,) represents the fractional free

g

volume at the glass transition temperature and ¢, stands for the difference of thermal

expansion coefficients above T, and below T,. The glass transition temperature has been

chosen as the reference temperature. From this starting point, one can derive the

Williams-Landel-Ferry equation™.

1{%%]:%% (2.4.3)

where

C, and C, are universal constants that can be calculated from the universal values of a;

and f{T,), which are respectively equal to 4.8-10*K " and to 0.025. Therefore C, =40 and

C, =52. Such a formula has been experimentally verified for numerous polymers when
T varies within a limited temperature range around 7, Because the viscosity is
proportional to the time between two diffusional molecular group jumps and because
this time is nearly equal to the average relaxation time, the WLF equation can be

rewritten by quoting the average relaxation times at temperatures T and T,:

lnl: tn(T):’_ _CI(T_TS)

= — (2.4.4)
t(1,) | C,+(T-T,)

It has been found by Kovacs (1964)“® that the relaxation time, which appears in the

KWW equation, does not follow an Arrhenius law but obeys the WLF equation.
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2.5 Specific volume
The specific volume as a function of temperature and pressure is usually givenina PVT
diagram®. Fig. 2.5.1 gives an example for amorphous polymers and Fig. 2.5.2 for

(30)

semi-crystalline polymers The volume increases by thermal expansion as

temperature increases and the volume reduces as the pressure increases.
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The Spencer-Gilmore equatior

Spencer and Gilmore (1949)%' showed that the PVT behaviour of polymer melts can

be represented reasonably well by the following modified Van der Waals equation of

state®:

v RT
(P +ﬂ(ﬂ—w) = (2.5.1)

where
P is the applied pressure
V 1s the specific volume of the polymer

M is the molecular weight of an interacting unit

mand o are constants which must be determined experimentally, just as the interaction
unit M. x in this equation is the internal pressure, which is independent of specific
volume and, therefore, of temperature and pressure. It is obvious that the internal
pressure will be related to the cohesive energy density measured in (N/m?).

Spencer and Gilmore evaluated the constants 7 and M, from a series of PVT
measurements at fixed temperatures. In synthetic linear polymers, M could be identified
with the molecular weight of the structural unit, In this case (Mo =V(0)) the equation of

state becomes:
(P+ 72XV -V(0)=RT (2.5.2)

At atmospheric conditions the internal pressure z is much greater than the external

pressure P, so that for the liquid polymer®”:

RT R

T = m = -Er—l— (2.5.3)
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where «, 1s molar thermal expansivity of a liquid

The same result 1s obtained by differentiation of the equation of state:

(?._V.) 2 (2.5.4)
ol ), Mr

From the equation of state, equations for the linear thermal expansion coefficient (a)

and for the compressibility (x) can he obtained. Rearrangement of Eq. 2.5.2 gives

V =V(0)+ izl (2.5.5)
P+rx
from which the following partial derivatives are obtained
oV R
or 1l _ 2.5.6
( oT } p P+rm ( )
and
oV RT
— | == 2.5.7
%), (P+7 (&0
Substitution gives®:
1 [6V) 1
A=—|——=| =7 (2.5.8)
A2 RAOTEI
R
| (GV) 1
K==——|—| =777 (2.5.9)
Y\ OP (P+7r)+a(;),) (P+7)

The compressibility x is the reciprocal of the compression modulus or bulk modulus of

the material.
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2.5.2 The Tait equation

One of the most useful expressions to represent the V(P,T)-behaviour of liquids,

including polymeric liquids, is the Tait-relation®;

w=c.1n( 7 ] (2.5.10)

7(0.T) 7 B0)

where

C is a dimensionless constant

B(T) 1s a temperature dependent constant with the same dimension as pressure

For practical calculations ¥(0,7) may be approximated by V(7, P = 1 bar). This purely

empirical relation was suggested by Tait.

Simha et al (1973)“°® have shown that C is almost constant (best average value

(C=0.0894) and that the temperature dependent factor B(T) can be expressed by
B(T) = b, exp(-b,T") (2.5.11)

where

b,and b, are empirical constants

T’ 1s the temperature in °K

Substituting (2.5.11) into (2.5.10) gives

V(L) -V (P)

P
=(0.0894-In| 1 + — b,T'
V) n[ > exp( 2T)] (2.5.12)

Simha et al (1973)" showed that the Tait relation is also valid for polymers in the

glassy state. In this case, the value of b, is about the same as for polymer melts, but b ,18

smaller.
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There are several semi-empirical equations that have been proposed. Two of them are

discussed here.
.l' 1A ULITIALLIII=1 140U CLUILL d ll

Hartmann and Haque (1985)°%™”® combined the zero-pressure isobar of Simha and
Somzynsky (1969)"*” with the theoretically derived dependence of the thermal pressure

by Pastime and Warfield (1981)"”. This led to an equation of state of a simple form

PP =T% _InV (2.5.13)

where

> P
P is the reduced pressure =—

0

% V
V . is the reduced specific volume = o
0

T : is the reduced temperature -;:——

0
This equation was verified by application of the PVT data of the melts of 23 polymers
of very different structure, adapting the reducing parameters B, ,V), and T, to the closest
fit with the experiments. The average deviation between calculated and experimental

V(P,T) data is the same as that obtained with the Tait relation. The advantage of

Hartmann’s equation is that it contains only 3 constants, whereas the Tait equation

involves 4.

Hartmann and Haque applied their equation also to solid polymers, and with some

success®”. The reducing parameters appeared to be of the same order as for polymeric

melts, but different, as would be expected. Their values are given in
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Table 2.5.1.

Hartmann already pointed out that the reducing parameter B, is equal to the

compression or bulk modulus K, extrapolated to zero temperature and pressure and that

T, 1s related to the glass transition temperature. Analysing the data of Hartmann and

Haque found the results shown in Table 2.5.2.

Parameters

Polymer

Polyethylene
Polypropylene
Poly(1-butene)

Poly(4-methyl pentene-1)
poly(vinylfluoride)
poly(vinylidene fluoride)
Poly(trifluoro-chloro-ethene)
Poly(tetrafluoro-ethene)
Poly(vinyl alcohol)
Poly(ethylene terephthalate)
Poly(vinyl acetate)
Poly(methyl methacrylate)
Poly(butyl methacrylate)
Poly(cyclohexyl methacrylate)
Polystyrene
Poly(o-methyl styrene)
Poly(dimethyl phenylene ether)
Polyarylate (Ardel)
Phenoxy resin
Polycarbonate
polysulfone
poly(dimethyl siloxane)

2.05

3.64 359
4.14 677
3.82 | 738
3.84 757
3.10 854
3.14 816
2.97 873
3.11 887
3.10 784
3.71 738
4.27 776
3.63 744
3.97 720
1.85 878

Table2.5.1
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B, (GPa) 2/3 K (298) (dynamic) K (298) (dynamic)

150 Vy/M for glasses
3 -1 W
Vo (m-kg"™) 1425 Vw /M 140 V,/M for semi-crystalline

T, (K) 2.0T,+700 5.0 T+500
Table 2.5.2

Hartmann and Haque also gave some useful equations for estimations:

R-T,
B, -V,

=C (2.5.14)

where
C: 5.4 £ 0.65 (g/mol) for amorphous solid polymers
C:4.2+1 25 (g/mol) for semi-crystalline solid polymers

From the Hartmann-Haque equation the following expressions for a and x can be

derived":
iz
3
a=-:/-(%] __ L) (2.5.15)
’ l+5£-(£)
By, \ Vs
1{oV 1
K=——I}_[—a—-};) =—B-——-——— (2.5.16)
r 0 __4+5P

The rate of heat transport in polymers is important in order to obtain an accurate
temperature distribution. For good thermal insulation, the thermal conductivity has to be

low. On the other hand, polymer processing requires that the polymer can be heated to

the processing temperature and cooled to ambient temperature in a reasonable time.
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6.1 T) | Conductivi

No adequate theory exists which may be used to predict accurately the thermal

conductivity of polymeric melts or solids"**". Most of the theoretical or semi-
theoretical expressions proposed are based on Debye’s treatment of heat conductivity?,

which give rise to the equation:
A=AC, puL (2.6.1)

where

Cy 1s specific heat capacity, p is density, L is average free path length between the

molecules, u is velocity of elastic waves, A is a constant in the order of magnitude of

unity

Kardos (1934)"* and, later, Sakiadis and Coates (1955)***® proposed an analogous

equation but redefining L as the distance between the molecules in adjacent isothermal

layers.

The general shape of the A-T curve of amorphous polymers is given in Fig. 2.6.1.a. The
curve passes through a rather flat maximum at 7, and shows a gradual but slow decline

in the liquid state. Also the slopes of the Cp-T (Fig. 2.6.1b), p-T (Fig. 2.6.1.c) and

u-T (Fig. 2.6.1d) curves are shown, being the components of the A-T curve according to

Eq. 2.6.1. Multiplication of C,, p and u gives the expected behaviour of A1,
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5.1.d Elastic wave velocity as a function of temperature!**4"

The specific heat capacity of the crystalline component of a polymer follows the curve
in Fig. 2.6.2 for the solid state to the melting point“***®, The value of C, at T,
increases to that of the liquid polymer. The molar heat capacity of the amorphous
component of the polymer follows the same curve for the solid up to the glass transition

temperature, where the value increases to that of the rubbery (liquid) material.

C, Amorphous\ -
..--"‘"*-—.‘

Hl'.-l‘"*- .

Crystalline

12.2.6.2 Heat capacity as a function of temperature™”
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Cooling stresses arise when a sample is cooled inhomogeneously and when the cooling

causes it to stiffen. The explanation of their origin lies in the fact that no appreciable
stresses are built up during the first cooling phase, when the contraction of the outside
solidified layers occurs but the counteracting resistance of the core (molten) 1s so small
that hardly any stresses are actually built up. Thermal stresses only arise when both the
skin and the core are solidified (e.g. during the second phase). These stresses will now
persist when cooling is completed, the skin being under compression and the core in a
state of tension*” *?, The assessment of both transient thermal stresses (e.g. stresses that
build up during the solidification) and residual thermal stresses (when ¢ tends towards
) is worthwhile and forms the main subject of chapter 3. Key contributions have been
made by:

Dimensional changes and residual stresses in parts which were made by solidifying
molten material (not polymer) have been calculated at least since 1920. Adams and

Williamson (1920)®" calculated tempering stresses in a glass plate. The proposed

parabolic, through-thickness residual stress distribution was later verified to be a good
approximation for an unconstrained, rapidly solidified glass plate.
Leaderman (1958)“? progressed in predicting residual stresses and dimensional changes

caused by solidification. The prediction was closely related to the development of

thermoviscoelasticity theory and to 1its application to inorganic glasses and

thermoplastics.

Moreland and Lee (1960)*” extended linear viscoelasticity to account for time-
dependent temperature variations by introducing the concept of pseudotime or matenal

time. The model was applied to a cylinder of incompressible linear thermorheologically
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simple material. Subsequently, Lee and Rogers (1963)®” showed that Laplace
transforms can be effectively used for viscoelastic stress analysis only for a restricted
class of problems. This method is utilised for a symmetrically cooled glass plate.
Following Lee and Rogers, Lee et al. (1965)® accounted for glass relaxation effects®™.
Measured temperature-dependent relaxation characteristics of glass were used in the
form of a thermorheologically simple material model. The transient stresses calculated
by using a thermorheologically simple model for a glass plate quenched from above the
glass temperature differed from the experimental data significantly.

The simplest basic thermo-elastic analysis can be traced back to Timoshenko and
predicts the parabolic distribution given in Eq. 2.7.1 ¢™*),

, = 0'0[ -Eﬁ-] 2.7.1)

2
Zy

where o is the residual stresses in the x-y plane at a distance z, from the mid-plane of a
parallel-sided moulding of total thickness 2z, and g 1s the stress at the midplane.

Struik (1978)®” classified internal stresses in injection moulded thermoplastic parts into
molecular orientation, physical aging and thermal stresses during part moulding. The
stresses caused by molecular orientation depend not only on the level of deformation
but also on the degree of intermolecular interaction for amorphous thermoplastics.
Struik attributes physical aging to internal hydrostatic stresses that induce a gradual
material contraction by a process of bulk creep. Finally, the stresses resulting from rapid,
nonhomogeneous cooling (thermal stresses) are accounted for in an “instant freeze”
theory developed by Aggarwala and Saibel (see later in this section) that neglects

viscoelastic and volume relaxation effects at all temperatures. Struik applied this theory

to solidifying parts of arbitrary shape to account for the temperature dependence of the
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glassy state. The glassy state elastic modulus and the thermal expansion coefficient
were assumed to be temperature-dependent. The solidification of semi-crystalline

thermoplastics is assumed to be identical to amorphous thermoplastics. Struik did not
consider latent heat effects and significant density changes**”,

Isayev and Crouthamel and Eduljee et al (1984)” consider that the strain during
cooling has three components: an elastic component, a plastic component and a thermal
component. The material is assumed to be perfectly plastic when the temperature is
above T,and perfectly elastic below T, and the thermal stress is proportional to the
difference between the local temperature and the original temperature of the melt. It is
observed that the average elastic strain through the part of the moulding that is below 7,
must be zero (if the Young’s modulus is uniform through the depth of this region) and it
is then relatively straightforward to derive the stress distribution when the part has
finally cooled to a uniform temperature®*?. This predicts stress distributions that are
fairly close to parabolic®”.

Early attempts to take account of the relaxation effects used viscoelastic models
developed originally for inorganic glasses and are reviewed by Isayev and

Crouthamel (1984)“”. More recent treatments are given elsewhere and use a range of
methods to describe and account for the viscoelastic behaviour of the
polymer7HDOMED T iy (1996)® calculated that the stresses should be compressive at
the surface, in agreement with the results from earlier, simpler treatments, but some
calculations predict that the stress very close to the surface of the moulding will be
tensile (not compressive), changing to compressive a short distance from the surface
OMMED Zoetlief et al (1996) calculated that the stress very close to the surface should

be tensile on ejection from the mould but that the stress there will reverse, becoming

compressive, when the moulding reaches a uniform temperature®.
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Wimberger-Friedl (1994)®® compared the layer removal technique and the
birefringence method for measuring flow induced stresses (see Section 2.7.3). He
showed an important deficiency of the birefringence method to determine the residual

stress because the birefringence from thermally induced stress was found to be of
comparable magnitude to that from flow induced orientation.

Williams (1981)“? described three major sources of residual stress. They are
nonhomogeneity caused by differences in crystallinity levels between the skin and core
layers, anisotropy caused by molecular orientation and thermal stresses resulting from
the nonhomogeneous temperature history during solidification. Williams neglected
packing-pressure effects. Lee et al. (1990)¢” also outlined the effects of the elastic
properties, specimen size, and thickness on the shrinkage and warpage of injection-
moulded bars of nylon 6 and poly (ethylene terephthalate). Shrinkage was found to
increase with the bar thickness, both in the flow and cross-flow directions. The elastic

properties of the materials, the bar thickness, and the distance from the gate had a large

effect on the through-thickness shrinkage.

Santhanam (1992)“ used a thermoviscoelastic model to assess residual stresses and
post moulding deformations in injection-moulded parts. Packing-pressure effects were
taken into account to specity the initial strains in the thermoplastic at the end of filling.
Consequently, initial strain for a given material only depends on the melt pressure.
Bushko and Stokes (1995)®7*"1™ took into account a processing history that includes
packing pressure and a fixed set of boundary conditions (temperature, pressure and in-
plane boundary conditions i.e. fully constrained in-plane direction) for the known
dependence (specific volume and relaxation effect) of residual stress and dimensional
changes. The result was not compared with an experimental result.

Zocetelief, Douven and Ingen Housz (1996)®” took into account the influence of the
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holding stage with a linear viscoelastic constitutive law. The results were compared
with experimental results obtained with the layer removal method. The magnitude of

calculated stress was 1.0 to 3.5 times higher than the experimental results.

Jansen and Titomanlio (1994, 1996)"*™ accounted for shrinkage anisotropy between
in-plane and thickness direction, which was caused by different constraints in
deformation. They used local values for temperature, pressure and crystallisation. The

magnitude of their calculated stress was 2.8 to 3.6 times higher than the experimental

results.
2.7.1 The thermo-elastic model

This model was first derived by Aggarwala and Saibel (1961)". It neglects not only
viscoelasticity (time effects in the elastic behaviour of mechanical properties) but also
volume relaxation. This model assumes that mechanical parameters are constant and
independent of temperature below as well as above T, and that the changes occur only at
a certain temperature 7, and are discontinuous. Moreover, the non-discrete nature of the
glass transition is disregarded. For a simple geometry like an infinitely large flat sheet
with a thickness e in the z direction and the coordinates x and y in directions parallel to
planes of the sheet, the equi-biaxial stress distribution o,(z,f) = 7,,(z,¢) can be calculated

by using the following equation”>’*"?: (z is measured from the mid-plane located in the

core)

o _(z,1) B 1 >
R T, —T(z,t)+ _E(Z)m' ];(w)T(&V/)dﬁd v (2.7.2)
2

where

H(1) 1s the position z=H(f) of the solidification plane (defined by T=T,) moving inwards
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t,(2)1s the time at which this solidification plane reaches the depth z

a E

A=—2—% (subscript g stands for glassy).q,, E, and v, are respectively the thermal

l—ug

expansion coefficient, the unrelaxed Young’s modulus, and the Poisson’s ratio in the
glassy state
& and y are respectively time and space integration variables;

T is the derivative of the temperature field with respect to y. This solution neglects the

contribution due to thermal stresses that build up in the rubbery core, for the stiffness of
this core is negligible with respect to that of the solidifying glassy skin. Both transient

thermal stresses and residual stresses can be assessed in this way:.
) 7.2 The viscoelast] le]

Struik considered a fully restrained material cooled at constant length, from initial

temperature 7, to final temperature T, The tensile bar is rigidly supported and is stresses
free at T,. Tensile stresses are built up during cooling because the free thermal

contraction 1is restrained. The thermal stresses built up at the final temperature are

obtained by summing the contributions of all temperature intervals ST

Struik’s approach!® began by calculating the incremental stress, 6o, when the

temperature changes between T and 7-0T.

60(T) = a(T)- E(T, --1—)51‘ (2.7.3)
Bq

where

a(T) 1s the linear thermal expansivity at T

B 1s a quantity between 0.08 and 1, as follows:
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30-Ing
T

when T is below the glass transition temperature B = (19 (see note 2.7.1),

] .. C,C C
when T is above the glass transition temperature B = —————2 (9 i which C,

(C, +(T -T,))°

and C, are the constants in the WLF equation. (see earlier discussion in Section 2.5)

q 1s the local cooling rate: iT

dt

Note 2.7.19%'®); The relaxation time 7,(7) is determined by the activation energy H, of

the process:

7. (T)=r, exp[ JI:T] (2.7.1.1)

where R is the gas constant, and 7, is a universal constant (10™**s)

For relaxation times of 1/q at temperature 7, activation energies are given by:

H, 1
——=x|Inl—1{=30~-I1n 71.
°T (qro) q (2.7.1.2)

Finally, the following equations were obtained"® that permit the calculation of thermal

strains and stresses:

J“:(”R[T J—] a(T) T(&,0)dE

(1) = ”___1&.__;______ (2.7.4)
;“)R[T,Eq—]dc,‘
6 _ (1) =R(T, ——){s (t)-a(T)-T)- T} (2.7.5)
where

H(1) 1s the position of the solidification or glass transition plane:

R 1s a mechanical parameter defined as R = =

-0
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£ 1s a space integration variable on the z (coordinate) scale
2.7.3 Flow-related stresses

When the polymer melt is injected into the mould under pressure, fountain flow occurs
and the melt that is deposited at the mould cavity wall is rolled into place with
orientation produced by elongational flow at the (almost semi-circular) flow front'™.
The bending moment produced by the shear stresses in the half of the moulding on one
side of the central plane is balanced by that in the other half. Discussion of the
calculation of the flow stresses has been provided by Hieber (1987)"°" and extended by
Baaijens and Douven (1991), who improved the analysis by employing the
compressive Leonov model to describe the behaviour of the polymer''®. Calculations
indicate that this stress is one or two orders of magnitude smaller than the thermoplastic

stress™” and it is quite common to neglect it when calculating stress magnitudes®®.

of moulding condition on resic

& »

The injection moulding process parameters that are expected to have the most important
influence over the residual stresses are the melt temperature, the mould temperature and
the pressure, in particular the hold pressure. The effect of all of these on mouldings
made from a commercial blend of poly (phenylene oxide) with polystyrene has been
investigated by Siegmann et al (1982) ¥ They give results separately for the effect of
melt temperature and mould temperature whereas it would have been more valuable to
consider them together. The residual stresses were always compressive near to the
surface and changed rapidly with distance from the surface whereas they were tensile
and slowly varying over a large proportion of the interior. The magnitude of the stresses

fell with increasing melt temperature and with increasing mould temperature (with
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slight variations on this trend near to the gate). Hindle ef al found that the residual stress
magnitudes in polypropylene mouldings were slightly higher when the mould
temperature was 80°C that when it was 30°C®". This may be because the stresses

largely formed during cooling after ejection from the mould rather than during the
period of residence in the mould. El-Rafey (1994) e al® found that the effect of melt
temperature on residual stresses in polystyrene was different to that observed by
Siegmann (1982) et al®®. Liou and Suh (1989)® investigated the use of low-thermal-
inertia mould with a passive insulation layer on the cavity surface to permit greater
control over temperature during moulding and claimed that this is a promising route to
the production of mouldings with low levels of residual stress.

Siegmann et al found that the dependence of the residual stress distribution on injection
and hold pressure was fairly marked®”. It was possible to produce tensile stresses at the
surface by using high pressures though the actual values quoted by the authors for the
pressures required to cause this seem to be approximately an order of magnitude too
low (presumably due to their omission of an amplification factor in the injection system
in their reported pressure data). The effect was not very large compared to differences
observed by Kwok et al (1996)®® when using different coolants. Sandilands and White
(1980)®% characterised the distribution of residual stress and the relaxation of
polystyrene tensile bar specimens (190x12.5x 3 mm) using the layer removal technique.
The specimens were moulded at different packing pressures ranging from a nozzle
pressure of 37 MPa to 143 MPa. The residual stresses were well approximated by a
parabolic distribution having characteristic tensile stresses in the core and compressive
stresses in the surface layers. Moulding pressure was found to have an insignificant
effect on the stress distribution. Mouldings from the same batches were tested in stress

relaxation. The time variation of the average stresses which were measured at a constant
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temperature of 40°C, was approximated by a power law. The exponent of the time was
found to be very sensitive to the moulding pressure. It was probably significant that
Sandilands and White cooled their mouldings in ice-water and stored them in liquid-
nitrogen after ejection. In another set of experiments, the magnitude of stress in bars
cooled in liquid nitrogen was 4.2 times higher than the value in bars cooled in ice
water'®. They gave a closely parabolic residual stress distribution, a feature that seems
to be associated with this type of cooling procedure as opposed to air cooling®*", The
residual stresses change with distance from the gate® and this is probably largely due to
the pressure history of the material. Pham et al found that the residual stress distribution
reversed near to the gate in their polycarbonate mouldings®”. The effect of oscillating
packing pressures on residual stresses in very thick (40 mm) mouldings of polyethylene
has been studied by Allan and Mortazavi (1985)®. Reversal of the sense of the usual
stress distribution was possible under long packing times®®.

Siegmann et al (1982) also found that the residual stresses were influenced by the

injection rate®?

. They used a quite wide range of injection rates and obtained
compressive stresses near the surface for all but the very slowest rate, for which tensile

stresses were observed there. The slowest rate (4 gs™) was much less than conventional

moulding rates and does not demand close scrutiny. They noted that the injection rate

influenced the Young’s modulus distribution but did not attempt to allow for this when

performing the residual stress analysis: this might account for some of the apparent

changes in measured residual stress distribution profiles.

2.8.1 Effect of the pressure

Melt pressure has an important effect on residual stresses. Titomanlio et al. (1987)®”

were the first who recognised the importance in injection moulded products. They
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solved the equations numerically using the same elastic model and the thermal model.

There are four ways of dealing with pressure history. The most accurate method is to
use a recorded pressure curve of an injection moulding experiment®. This is only
possible if these experimental data are available and reliable®**), Secondly, the

pressure curve is predicted by numerical simulations®*"

. Thirdly, the pressure
history in the cavity is calculated from the equilibrium (PVT) equation of state for the
material. And, finally, the pressure curve is approximated by dividing it into two
separate periods corresponding to the filling, holding and cooling stages of the injection

moulding process®”®

t<t,

PP
P={(PP -P,)exp[——Ap(t—tgf)]+R, t>1t, (28.1)

where

P, is the peak pressure, P, is the residual pressure, 4, and ¢, (the gate freeze off time)

are empirically adjusted parameters (Fig. 2.8.1)
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A typical injection-moulding process cycle
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Based on McKinney, Simha (1977)®” and the various phenomenological studies on
pressure induced densification®”'®, Greener (1986) ""? calculated densities at

positions z (the positions within the cavity).

po(2) = Po[l +K'Pf(z)] (2.8.2)

where

0, is the density of the undensified sample (the density when the pressure is zero)

1Y) oV
x' is the pseudo compressibility determined by «' = —(——)[——]
V )\ op; r ot

P,is the formation pressure

The magnitudes of the stresses depend on the moulding conditions, in particular on the
surface temperature of the mouldings during solidification®”™*), Many of the
calculations appear to give overestimates of the stress magnitudes when compared with
experimental measurements. This is probably because of relaxation effects®. Another
effect that is often not taken into account when modelling the residual stresses in
injection moulding is shrinkage within the mould (before ejection). It is usually
assumed that the material in contact with the mould cavity at the surface does not slip®?.
The effect of this has been considered by Bushko and Stokes (1995)™. Agreement is
better when the calculated predictions are compared with residual stress distributions
measured in quenched slabs. This 1s because the boundary conditions during cooling
match those used in the calculations much more closely than occurs in the injection

moulding process. The same applies to residual stress distributions measured on

injection mouldings ejected into a quenching medium®®. They also show reasonable
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agreement with those calculated using procedures which do not allow for the
temperature rise in the mould or for the thermal resistance of the air gap when shrinkage

away from the mould occurs because these effects are less important in this case.

2.9 Post mouldij

Residual stresses may change considerably after the moulding operation is complete and
the part has established thermal equilibrium with the surroundings. If the residual
stresses have an influence on properties, it is necessary to consider the effect of the
service environment on their magnitude and distribution as well as their state in the as-

moulded condition.
2.9.1 Aging and annealing

In most thermoplastics creep and stress relaxation proceed at fairly significant rates at
room temperature. Therefore, it can be expected that residual stress will relax during
ageing at room temperature®**"'***3_1t is not expected that the residual stress will relax
away completely!*>!*!),

On the other hand, El-Rafey et al found that the stress distribution in polystyrene
injection mouldings reversed after an extended period of room temperature ageing!!®.
Their mouldings had an approximately parabolic residual stress distribution with
compressive stresses near to the surface one day after moulding but after periods of 30,
60 and 300 days ageing at room temperature the stress reversed becoming progressively
more tensile as the ageing period increased.

Relaxation can be accelerated by annealing at an elevated temperature and this method

is sometimes used to reduce the residual stresses®!10615107

The detailed consideration has been given to these processes in Section 2.3.
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Jient conditionine

If the stresses relax non-uniformly there will be a change in the residual stress

distribution when the moulding is returned to uniform temperature. This has been
discussed elsewhere by White and co-workers who conducted laboratory experiments to
investigate the effect®™!®1%®) They showed that, after returning the moulding to a
uniform temperature, tensile stresses could develop at the surface that had been held at
the higher temperature, reminiscent of observations made in polymer mouldings after a
period of weathering in a hot climate!"""'?, Surface tensile stresses are especially
unwelcome because they may assist cracking and the imbalance 1n the stress change

causes warping.
| l[[lt"!'i ‘ 1lation

Mathematical models have been proposed and widely developed by various research

groups for the cavity-filling analysis. Many researchers''"!'*!13114115)

analysed simple
one-dimensional flow behaviour in rectangular and centre-gated disk-shaped thin
cavities in the 1960s and 1970s. During the 1970s and early 1980s, many

papers!! 1617110 were published concerning flow in thin cavities of arbitrary planar

geometry based on a Hele-Shaw type of flow("*",

The Finite Element Method (FEM) 1s a computational technique that started early in the
1950s"%%1%) a5 a tool for the structural and stress analysis of complex shapes. Later, in
the 1960s and 1970, its connections with the fundamental principles of mechanics were
established!"**'*)), As a result, FEM has become a versatile computational tool in several

branches of engineering. In the 1980s, the era of engineering work stations (DEC, SUN,
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HP and so on) started. This increased the commercial ability for applications of use of
FEM in Computer Aided Engineering (CAE) *°. In the mid-cighties, Wang et al
combined the FEM and Finite Difference Method (FDM) formulation for generalised

Hele-Shaw flow!"*",

Calculation of residual stress distributions requires that the temperature distribution and
the changes in pressure are followed throughout the solidification process and that the
relaxation at all locations is taken into account while simultaneously satisfying the

*et b W : 14 . 96: 81 ’ » ’
boundary conditions and the conditions for force equilibrium®*#*?»B06BLED Eyvamples

of how the different components of the computations can be coupled together are given
by Wang and co-workers (1991, 1992, 1993 )(133134139),

Akay et al found that some of the measured values of warpage in ABS and
polycarbonate mouldings made with quite large temperature gradients in the mould
agreed reasonably well with values predicted by a commercial software package
whereas in other parts the predicted warpage was actually in the opposite sense to that

observed™®®. Ni and Wang (1993)"*" claim better success with their comparison, using a

different software package. Gennari similarly provides an optimistic view, though his
paper deals mainly with the related but less sensitive property of shrinkage!*®.
In the case of fibre-reinforced mouldings the calculations must also include prediction

of the fibre orientation distribution!P*1#0HLILI3ILU5) \1otable contributions to this area

have been made by Tucker and co-workers (1992)(143:144,146147)

There are several experimental methods that can be employed to measure residual
stress > **'*), The layer removal technique is one of the most useful methods. It was

introduced by Treuting and Read (1951)"*” for metals. The detail of the removal
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process for determining residual stress distribution for polymers can be found in
White’s review (1984)"*%, The method essentially is to remove uniform thin layers from
mouldings in the shape of rectangular parallelepipeds"***. After each layer removal,

the curvature of the unloaded moulding is measured. The curvature-depth plots can be
converted to calculate the stress-depth profile. The curvature measurement is an
important procedure in layer removal method.

Akay and Ozden (1994)™" have compared the advantages and disadvantages of

different methods of curvature measurement that cover the dial gauge method, optical

lever method, curvature measurement with a coordinate machine, laser beam scan
method, then recommended that the bending moment measurement 1s a more accurate
method to estimate of residual stress in plastics moulding because the layer removal
method is time consuming, fiddly and so on. The bending moment method presents
experimental difficulties and in this research work, an optical method was used to
measure the curvature.

White (1996)"” highlighted the disadvantage of the bending moment method because
simple loading arrangements may result in the bar taking up an “S” shape, making it
difficult to determine the position at which the internal bending moment due to the

imbalanced residual stresses 1s exactly matched by the externally applied moment.

This technique is the method most frequently employed to measure the residual stresses
in polymeric bars or sheets through their thickness. The analysis was introduced by

Treuting and Read™*” for measurement of residual stresses in metal plates and improved

for different plastics by White and co workers!*>P**13%159)_ Quccessive uniform layers are

machined from one side of the sample in the form of a rectangular trapezoid and the
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measurement of the resulting curvature arising from the force imbalance thus created
allows the determination of the residual stresses. Treuting and Read derived the general

equation:

___ & 2] dp,(z)) M
A (e i[(z"”'){ i d }

+4(z, + 2){0,(2) + v, (2} - 2 [ {p.(2) + o, ()} ]

2.11.1)

where

0.(z,) is the residual stress in the x direction at the plane z = z,

z,1s the half-thickness of the bar or plate. (=e/2 in other parts of this thesis; z, is used
here for consistency with the literature: it is the symbol used by the majority of authors
in this subject area).

E and v are assumed uniform throughout the sample.

p. and p, are the components of curvature in the x and y directions respectively
The Treuting and Read treatment is for biaxial in-plane stresses. Sometimes it is

possible to make simplifying assumptions that permit an approximate solution to be

obtained using measurements of curvature in one direction only.
Consideration of the injection direction (x-axis) and the contribution to the residual

stresses of randomisation of flow-oriented molecules*” leads to the expectation that the

transverse stress, g, , and p, will be less, possibly much less, than p, in some cases. If

Eq. 2.10.1 is modified with the condition p, =0, it follows that:

0 n(2)=- 2 2 [(Zo +Z:)22'Z'“+4(Zo +21)P—2fnﬂdz] (2.11.2)

For this equation to be valid, it 1s necessary for the specimen to be in a state of pure

bending 1.e. to form the arc of a circle after the removal of each layer. Moreover, the

46



machining process should not introduce new stresses into the specimen.

The Curvature p versus the sample depth (z,-z,, Fig. 2.11.1) can be converted to a stress

versus (z,-z,) profile using Eq. 2.11.1 and Eq. 2.11.2.
When the stresses are caused by isotropic thermal shrinkage only, giving an equi-biaxial

stress distribution™>*"*>, Therefore,

E , d 3
O'H(zl)=—6(l_v)[(zo+zl) Ez+4(zo+z,)p-2_[lﬂiz] (2.11.3)
,////// ,
Gz D 0

&
A [ - . i . -~ -
' «30019 Al ) . e 1
. F - o - ol e
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CHAPTER 3

MODELLING OF RESIDUAL STRESS CALCULATIONS

This chapter deals with modelling of residual stress distributions. Section 3.1 gives the
geometry used for the calculations. Section 3.2 deals with the principles of
development of thermal residual stresses. Section 3.3 gives the basic assumptions in
order to make the problem solvable. Section 3.4 gives the solution for the temperature
distributions that arise in a sample of material, initially at constant temperature,
sandwiched between two infinitely large, parallel plates constrained at a different
constant temperature. This solution follows a Fourier treatment. Section 3.5 deals with
representation of Young’s modulus for amorphous polymers, in particular near the glass
transition temperature. Section 3.6 gives the temperature and the pressure dependent
thermal expansion. Section 3.7 discuss the T ,-plane position during cooling. Section 3.8
to 3.10 deal with the calculations of the residual stress using the procedure based on
Struik’s method (Method A). Section 3.11 gives the new procedure (Method B)
developed during this research, in which the pressure profile was calculated and used to

estimate density distributions through the depth and the stress distribution.

3.1 Geometry

The geometry, as shown in Fig. 3.1, 1s analysed in order to predict the residual stress of

a simple 1njection-moulded plastic part. The cavity geometry consists of an ASTM

D638 type I tensile test bar.
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3.2

190.0

(The dimensions are 1n mm)

4 » &
o L . 4 . U O 111 L1IC C© X DC .

2 Development of the

The principles of the development of thermal residual stresses are illustrated in

Fig. 3.2. Cooling is idealised in five steps in which the pressure varies as a function of
time. As the cooling front moves inwards, the temperature drops from T, through T, to
T . It is assumed that the material behaves as an ideal fluid when

T > T,. Therefore, o=-P, in the region where T> T, and P, is the packing pressure.

At time t=t, the mould 1s completely filled. For # >¢,, the residual thermal stress develop
as follows:

1) t=t,: The temperature 1s homogeneous and equal to T,, The pressure is zero and the

material i1s free of stresses.

2) t=t,: The outer layers are constrained by the non slip condition at the mould walls. A
small tensile stress o, is introduced in the solidified outer shells. If the stresses are due
to thermal contraction alone, they will be equi-biaxial in the xy plane, i.e. o,=0,,

3) t=t,: An injection pressure P acts on the melt resulting in a compressive stresses

o=-P,, compressing the rigid shell. If all displacements in the x-direction in the shell
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1-v

are suppressed, the stress in the layers is decreased by Ao =

4) t=t,: The pressure remains constant during the holding stage, while the matenal
solidifies layer by layer during the time interval ¢, to ¢;. Contraction of the newly cooled
material decreases the compressive stresses in the surface layers.

5) t=t,: The pressure is set to zero and the stresses in the melt disappear. The stresses in
the rigid shell falls as moulding continue to cool.

6) t=t, Finally, the product is released from the mould. Further cooling is similar to a

free quench. This results in tensile stresses in the core that are in equilibrium with the

stresses 1n the outer shells.

centre surface centre surface

(b) Temperature (¢) Residual stresses distributions
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3.3 Basic assumptions

In order to make the problem solvable, some assumptions have to be made

1) The heat conduction problem can be solved independently of the thermal stress
problem.

2) It assumed that no gap will develop between the product surface and the mould wall.
3) Calculations for a flat sheet will be made because the only important dimension will
be thickness of the sample bar.

4) The solid polymer is assumed to be elastic.

5) Flow induced stresses will be neglected.

4 Tempe

We consider a heat conduction problem of the geometry shown in Fig. 3.4.1 in a slab of
thickness e, initially at the uniform temperature 7,, and exchanging heat by conduction

at z=-e¢/2 and z=e/2 and a final equilibrium constant temperature, T,

The fundamental equation for this case is the Fourier conduction equation.

ol
— =—kV°T 34.1
p (3.4.1)
Where
692 52 0‘,2
V2 =a?+-‘5;3-+52— (342)

The geometry is shown in Fig. 3.4.1. The polymer is bounded by mould surfaces at

z=1e/2. The imtial temperature of the melt is T, and final equilibrium temperature of

the moulding is T, Thus for one-dimensional flow, we have
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2
% ) (-e/2<z<e/2) (3.4.3)

=ké‘z2

e/2

. N gcometry o1 tne me

Following the procedure used by Carslaw'**”, a dimension-less function f{z,¢) is defined

in a similar way to 4T in the Fourier heat transfer analysis,

_ T(z,t)-T.
ie. f(z,t)=———=AT 3.4.4
fan=—pr (3.4.4)
with boundary conditions

(1) For all z within -e/2 <z <e/2, at time =0, T(z,t=00)=T,

T,-T
,t—-)cx) = = m=0 R £
f(z ) T (3.4.5)

a0

(2) For all z within -e/2 <z <e/2, at time =0: T(z,t=0)=T,

T,-T
ah =1
T (3.4.6)

ab

f(z,t) =

(3) At z = i-;—, for all times ¢ > 0: T(& (e/2),0)=T.,

therefore
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T -T
f(£ (e/2))=—===0 3.4.7
& (2)0=7 =7 (3.4.7)

aD

The solution to the heat equation can be described as a linear superposition of

fundamental and harmonic sine modes corresponding to standing waves. f{z,f) is then

represented by:

f(z,0)=) 8,(z1) (3.4.8)

where i goes over the whole ensemble of integers (1.. i=0 — + o). Furthermore, the

spatial and time parts can be dealt with independently so that each g, function is equal to

u,(z)- v, (t) where the functions u,(z) and v(f) are not known.

The next task is to work out the g; functions to ensure that the first boundary condition
((1), above) is obeyed; it is assumed that, for all 1 values, v(¥) is not divergent,

v()—>0 when i—>+co. To fulfil the third boundary condition, u,(z) is represented by a

cosine function, i.e.

u (z2) = cos(-(ME] (3.4.9)

e

will obey this condition, as the heat conduction equation is linear.

Now, we consider the function f{z,f) defined by the series
f(z,t) = Zazm . co{(2i +1) ——Jf) . exp(— k2,+lt) (3.4.10)

This series owes its convergence to the factor exp(-k,,t) which is uniformly

convergent. The coefficients 4,,,, are determined by using the second boundary

condition and standard Fourier analysis.
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2i+ Dz
e

£ (z,1) = COS( ) i eXp(—kzmt)

ax, 2i+ Dz
7 = CO{'——e“—) - exp(—kzmt) ) (" k?-HI)

Be g (- 21208 @120

€ €

Jg, . : -
? = exp(—k,,,,1)- [-—- ((21 + 1) —z—) . cos((Zz + 1)7—2-2)]

1f g, 1s a solution of the heat equation, then

R 2i+ 1)z’
Sor i b (22

For 1=0, f(z,0) = Za2,+, co{(Zi + 1) -Z—Z) 1s a Fourier sum

A periodic function 4(z) is defined

z——h(z) (the period is 2e (Fig. 3.4.2))

z
{
o
; N
i
~ z={,
h(z)
o9
—lm \?\
-1 1
g, 2.4.2 Detinition of th NCT101 /;

>4

(3.4.11)

(3.4.12)

(3.4.13)

(3.4.14)

(3.4.15)



so that

h(z) can be written as a Fourier sum.

h(z)=a; + i[a; cos(-’zf-z-) +b sin(f—ﬂz)] (3.4.16)

€ €

where a, =0 and for all positive integers, (n): b, =0 because h(z) is symmetrical.

The Fourier sum simply converges towards the function A(z) for all z except at the

discontinuities at z = i[£+ ne) (n = positive integer) Actually this sum will converge

2

towards %(h(z*) + h(z™)) which is half of the sum of limits just to the left and just to the

: . . . : e e
right of any given discontinuous point, e.g. at z=—— or z=—.

2
Since h(—e) = +1, h(:—_f-) = -1 and h(+e =-1], h(j—_i) = +1
2" 2 2* 2

e : :
the sum will converge to 0 at z = i—z-. The function A(z) at these points was defined as

zero and was chosen so that there may be complete equality in the associated Fourier
sum. Because this 4(z) function is written in terms of a Fourier sum that obeys both the
second and the third boundary conditions for =0 (h(2)=f(z,¢)), the coefficients of the
latter sum are the same as those of f(z,0).

For all positive integer values

i:a,,, = }2;- Lcos((Zi + 1)%] .h(z)dz = é f:cos((2i+ 1)-’e‘-z-Jh(z)dz

| ; _ z 1 £ N\ | N2
elecos(z+)e z+e|§cos(z+)e 4 e-ECOS(H-)e 4
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4 (A2i+])
= 7:(2i+1)81r( ; J (3.4.17)

where

; . r 4-CD)'
sin ( ”(2;- 1)} =(-1),, (a2i+l ) = (a21+1 ), Qs = 7;(; +)1)

Then, the temperature field is finally, for the region -e/2 <z<e/2 and 0 <¢

f(z,t )_—z('l) cos( 2z+1)£z]exp(-k[(2i “)”) r] (3.4.18)
e e

2i +1

The Young’s modulus of polystyrene and other thermoplastics 1s time dependent and
changes continuously as temperature changes and it i1s required to chose a suitable

expression to represent it that can be 1nserted into the computations.

mng’s modulus using K.W.W and W equatior

e
]
—
L
poi
L
L

Strutk (1978) found that the formula that best represented the short term stress

relaxation of a range of polymers was the Kohlrausch-Williams-Watt formulation¥:

E(T,n=E, -exp{—[r ET)J } (3.5.1.1)

where E, is the initial value of the Young’s modulus, #,(7) is a characteristic constant for

the material which depends on 7, and m is a constant with a value about 1/3), When

T=T,, this takes this value
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E(T,,t)=E,-exp _(t (IT )} (3.5.1.2)

The general shapes of the curves E(7,¢) and E(7,f) versus Int are shown in Fig. 3.5.1

It is normally found that the relaxation curves superimpose when shifted parallel to the

In ¢ axis. Thus, we can put

t,(T) =aty(T) (3.5.1.3)
It follows that
at i
E(T,0)=E(T, ,at)=E, exp| — (3.5.1.4)
g 0 F{ {to (T, )]

The shift function, a, i1s a function of T and T, and can be represented by the WLF

expression. Also T is a function of z and ¢, so the shift factor can be written as
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C.(T(z,t)-T
Ina(z,t) =In fﬂ_(z{f_f_)_)_ =_;(_(f_l__gl_ (3.5.1.5)
t,(T,) C,+(T(z,1)-T,)
where C, and C, are universal constants
therefore
C.(T\z,t)-T
a(z,t) =exp ——1-(——(——)—i)— (3.5.1.6)
C, +(T(z,t)-T,)
Now, Eq. 3.5.1.6 is substituted into Eq. 3.5.1.4 and then finally
| c, (S )-7)))
_F . Y RARASASIIP Y 25 (3.5.1.7
(2= B e [ro(a) exp(cz +(S(z,r)-Tg)D ] )

'+.'.‘.~ MO U1 ' e CTILCCL U € A1 revelen-Hoftyzer equatior (13)

An alternative way of representing the time-temperature variation of Young’s modulus
has been described by Van Krevelen and Hoftyzer.
We see from Fig. 3.5.2 that at the glass transition temperature the rigidity of amorphous

polymers falls rapidly. In the glassy polymers, the rigidity is obviously highly

dependent on the temperature, especially near to the glass transition temperature. The

empirical expressions (Eq. 3.5.2.1, Eq. 3.5.2.2) of Van Krevelen and Hoftyzer can be

extended to describe the polymer rigidity as a function of temperature®™°¢ 353,

E(z,t) =—————"E, (I'<T) (3.5.2.1)
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E
E(z,t) = 0 (T>T) (3.5.2.2)
(%, I
exp2.65 LT
"ty
(7

where T, 1s the reference temperature.
Note 3.5.2: As the temperature increases through the glass transition temperature, the

rigidity of amorphous polymers falls rapidly.

logE —»

g Temperature —»

] » [ L -
" .-. . . . $ -
. (] . , 1 a lvplCal dil1OIDIOUS DOLIVILD
-

1e thermal expansiorn

The specific volume as a function of temperature and pressure is usually given on a

PVT diagram®*® (Fig. 3.6.1). The volume increases by thermal expansion as

temperature increases and the volume reduces as the pressure increased. Both effects

must be dealt with by the computation.
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One of the most useful representations of the V( P, T)-behaviour of polymeric liquids 1s

by the Tait-equations®:

—
:
=
P
V(P,T)=(ay, +a, (T -Tg ))(1 ~-C- ln[l + ZD (T<T) (3.6.1)
P
V(P,T)=(ay,, +ay, (T-Tg ))(1 - C-ln[l +5;:D (T>T,) (3.6.2)

where

— =b,T(z2,1)
b, = b,,e ™

— - b wl(2,0)
b, =b, e

m

ag, ('/Kg), 4y, (M/kg), a,, (m’/kgK), a;,, (m/kg-K), by, (Pa), by,(Pa), b, (K, b, (K)

are constants.

Simha et al. (1973)° have shown that C is indeed almost constant and gave the best
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average value as: C=0.0894

The fundamental equation for volumetric thermal expansion 1s
a, =——— (3.6.3)

Now, Eq. 3.6.1 and Eq. 3.6.2 are applied to Eq. 3.6.3 to give the linear expansion

coetficients below and above 1, as

al s

xz0)= 3-(a,, +a,(T(z,1)-T,)

(T ST) (3.6.4)

G\m
a(z,t) =m (T 2Tg) (3.65)

Note that the linear expansion coefficients are functions of the temperature, 7. They are

given in the form ofzt) because the temperature 1s uniquely defined by z and ¢, and

because z and ¢ are the valuables of interest in the following calculations.

An initial change occurs in the material within the moulding when the temperature falls
below T,. Calculations must normally be split into two parts dealing separately with
changes occurring respectively at 7> T,and at T < T,. Thus, it is necessary to know the
time at which the temperature is at T, for all locations. For the one dimensional heat

flow case examined, this amounts to following the plane of 7=T, as it travels through

the moulding.
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Starting with the result given already as Eq. 3.4.18

f(z,t) = ii D cosl:(Zi +1)£ z] exp[-— k[ (2i+ l)ﬁJ t:| (3.4.18)
V1 e

o 21 +1 e

The first term of this series is given when i=0,

fa(z,0)= i cos(f- z) exp{- k[—’i) t} (3.7.1)
T e e

: 2
The factor expl:— k[ (21 i l)ﬂJ t:| falls rapidly as i increases
e

A relaxation time 7 can be defined for all i values:

| | |
Ty = = - (3.7.2)
" k2:+l (£]2 k (21+1)2
e
when i=0
: 3.7.3
Lin=40 = (3.7.3)

Therefore, all z,,,, can be expressed interms of 7, as 7,,,, = (2_7' 1)2
1+
Thus, when i=1 7, = -E‘- and when i=2 r, = % etc.
There is a further factor 2_1 1 in the summation in Eq. 3.4.18 which also falls with
i+

increasing i. Thus successive terms in Eq. 3.4.18 fall rapidly as i increases. Next the

effect of terminating the sum after a small number of terms is examined.

Approximations have been calculated for the sum evaluated using one, two and three
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terms respectively and they are compared in Fig. 3.7.1

T
I 7,0 1% term
L z,: sum of 1% and 2™ terms
0 7;; sum of 1%, 2" and 3"
Ts ferms
7=0 -

The graphs are virtually indistinguishable and therefore to a good approximation the

series can be represented by the first term only,

.e. f(z,0)= (T—(;-’—-%-&] — -z-cos(% z] exp[— k(-g-) t} (3.7.4)

hence the position of the solidification front, 1.e. of the glass transition plane is

H(t) = %- arccos {%(;ﬂ—%} + €XP [k(%—] t}} (3.7.5)

J ]

* &
L
r—-
o
i
L
b

'.

o
'-
—
o
il
L
L
9
L
L

By following Lee’s viscoelastic treatment®™, Struik"® has considered a fully restrained

material cooled at constant length (e.g. a bar kept at constant length), with stress-

relaxation modulus E(7,7) and linear thermal expansibility (7). He introduces the local
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cooling rate g = _or in the time-dependent Young’s moduli and states that the cooling

Ot

over the interval between 7T and 7-96 produces an incremental stress given by:

5o (T) =a(T)-E[T,—1—)éT (3.8.1)
Bq

where

a(7): linear thermal expansivity at T’

B: quantity between 0.08 and 1, as follows:

(16)
when T 1s below the glass transition temperature B= il }ln 1 ]

: - C.C
when T is above the glass transition temperature B = (_T_)Fl : e

where C, and C, are the constants in the WLF equation.

q(z,1?) 1s the local cooling rate: —Cz-T

dt

Finally, the following equations were obtained that permit the calculation of thermal

strains and stresses rate:

[ R(T,-}-—)-a(T)-T'(é,t)dé

2 Rl T, —— |ae
b (1) Bq
. 1. :
6 ()= R(T,—B—q][(gxx (t)-a(@)-T) 7] (3.83)

where

H(t) 1s the position of the solidification or glass transition plane

R i1s a mechanical parameter defined as R = Ti-E——
- U

£ is a space integration variable on the z (co-ordinate) scale
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We consider the formation of cooling stresses for the geometry shown in Fig. 3.8.1 in a
slab of thickness e, cooled symmetrically from the both surfaces, e/2 and —e/2. The

temperature 7(z,f) depends on ¢t and z only.

e/2 £

+H T
NS SURIS——— R |

-H
-e/2

| he ceometrv of the D3

Since the temperature depends on only z and ¢, the stress and strain components do not

depend on either x or y.

From the equations of equilibrium”*" ™* then the shear stresses 7, 7, and the normal

stress o, must be independent of z, x or . Since there are no forces normal to the

surfaces at z=-e¢/2 and z=e/2,
r. =7 _=0, =0 (3.8.4)

In the thermo-elastic range, strain y_(z,t) depends on only 7_or 7_(z,t) for r<t¢.

From similar considerations, Eq. 3.8.4 implies that
Ve =V, =0 (3.8.5)

Since the bar remains flat, the displacement w in the z direction cannot depend on x or y.

Therefore, together with Eq. 3.8.5, and the definition of the strain tensor™""®, it is

evident that £, and &,, do not depend on z. Thus, ¢, and¢,, depend only on time and,
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by the symmetry of this problem, ¢, isequalto £, and y,, is zero. Consequently, 7,

will be zero too. The only non-vanishing stress components are therefore o,, and o ;

for symmetry reasons they must be equal and they do not depend on x and y. We obtain

£ =€, = flz1) (3.8.6)
O =0, = ¢(Z!t) (3.8.7)
TIJ’:T-?y:Tﬂ:JH:yxy:yzy:yzr:O (3_88)

Let us now apply this result to the inhomogeneously cooled bar. The incremental

temperature changes 07T (z,t) occurring between ¢ and ¢ + 0t , according to Hooke’s law,

produces a stress change oo, (z,t) = oo, (z,t) given by

oo, (z,t) = R[agn (z, t) - a(z, t)aT (z, t)]; H< lz‘ < -;—- (3.8.9)
oo, (z, t) =R [58;1 (z, t) -, (z, t)aT(z, t)] ;0 < lzl <H (3.8.10)
where

¢ 1s the strain in the glassy shell and ¢, is the strain in the rubbery core

P (z,t) _ E(z,t) . Blz,t)= w =a(z,t)R(z,t)

l-v 6
(3.8.11)
R(z.0), = fi’r_(z‘;’) ; A,(z,t)=-a—’fi’-t:—€—"-£—zlt—-)-=a,(z,t)}2,(z,t)

where

a, 18 the linear thermal expansion coefficient in the rubbery core
E, 1s the Young’s modulus in the rubbery core

v, 1s the Poisson ratio in the rubbery core
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At the boundary between the zones, the displacements in the x-direction must be

continuous, and therefore:

oc_(z,t)=0¢ (z,1) (3.8.12)

The value of d¢_(z,t) can be found when we remember that no forces are acting on the

(158)

end faces of the bar. According to Saint-Venant’s principle *~, it is therefore required

that:
[0, (z,1)dz =0 (3.8.13)
2

Substituting Eq. 3.8.9, Eq. 3.8.10 and Eq. 3.8.12 into Eq. 3.8.13 and using the fact that

O¢,. is independent of z, we find:

4, [Vor(e.)ag+ B[ or(en)ag

oc, (z,t)= R Hlz.0)+ R[.g_-H (z,t)]

(3.8.14)

The treatment of the cooling over the interval between T(z,f)and T(z,0)-&z )"

produces an incremental stress given by:

6o (z,t)=alz,t) E(z,t)oT (3.8.15)

Recall that this is for the fully restrained core: the element of material at position z is not
allowed to change dimension in the x-y plane.
Note that the stress-relaxation modulus E(7}¢) is a function of the temperature 7.

It is given 1n the form E(z,t) because the temperature is uniquely defined by z and ¢, and

because z and ¢ are the values of interest in the following calculations.
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We consider a tensile bar cooled at constant length, from initial temperature 7, to final

temperature T, The tensile bar is rigidly supported and is stress free at T,. Tensile

stresses are built up during cooling because the free thermal contraction is restrained.

The thermal stresses built up at the final temperature are obtained by summing the

contributions of all temperature intervals o7
I'o
o (T.)= ja (z,¢)-E (2,0 )dT (3.8.16)
o

where
E(z,t): stress-relaxation modulus at temperature T

a(z,t): linear thermal expansivity at temperature 7

These results on the constrained bar open up a new way of calculating the cooling

stresses in general. We may consider the material as an elastic solid of which the elastic

E ..
constants E, K, v R=-—— and thermal expansivity depend on temperature. The

-V

proper valuesof £, K, v, R = -i-E— are found from E(z,7).
e %

To illustrate the method, we reconsider the rapidly cooled plate with the stress state

described in Eq. 3.8.4 to Eq. 3.8.8. Because R(zs)= _i_lj% 1s now dependent on the
-v(z,

temperature and the relaxation time, as presented in Section 3.5.1 (Eq. 3.5.1.7), we no

longer need the two stress-strain relations of Eq. 3.8.9 and Eq. 3.8.10. These are

replaced by the single equation given by:
oo _(z,t)=R (z.,,,,t){c'ﬂ.'s'M (z,t)-alz, t)aT } (3.8.17)

Eq. 3.8.12 and Eq. 3.8.13 remain valid, but Eq. 3.8.14 is replaced by
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[ Rz, e, )T (€. 1)
Lg R(z, t)d§

oc _(z,t)= (3.8.18)

where & 1s a space integration variable

These equations can be used to assess the importance of the viscoelastic effects above
as well as below T,. It immediately follows that the viscoelasticity of the material above
T, will slightly affect the cooling stresses. In the rubbery core R will be 100 to 1000
times smaller than in the glassy shell. Consequently, for H-values not too close to e/2,
the contributions of the soft layers to the integrals of Eq. 3.8.18 can be neglected, and

we obtain:

[ Rza(en)oT(E e

oc, (z,1) =20 (3.8.19)
E(I)R(Z’ t)dg

Now, R in Eq. 3.8.19 only refers to the glassy shell. The rubbery shell can be neglected

above T, . It directly leads to the approximated solution taking into account

viscoelasticity, which can be formulated as:

[ Rl i
E(I)R(z,t)dé‘

¢ (z,t)= (3.8.20)
where

H(1) 1s the position of the solidification or glass transition plane:

H(t) =e/2 whent =0

H(t,) = 0 when ¢ = ¢,: defined as the time at which the centre of the moulding reaches

the temperature 7, as appears in the KWW equation.
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O<H(t)<e/2 when 0 <t <{,

whilst Eq. 3.8.19 leads to the formula for the stress-production rate:

6, (z,0)=R(z, ). (z.1)-alz. )T (z,1)] (3.8.21)

We find o(z,t) by integration

o(z,1) = j; 6(z,t)dt (3.8.22)

To determine the strain state in a pressurised melt, the change 1n the specific volume of

the melt from v (p,,7) to v (P, T)1is calculated as ég- This leads to a corresponding

linear strain of

o _1 VR.D-V(R.T)

— 3.9.1
melt 3 V(PB,T) ( )

where

P, is the packing pressure

P, is the atmospheric pressure

with respect to the specific volume at P, Eq. 3.9.1 is valid for infinitesimal changes in
the specific volume. An analysis of pressure-volume-temperature (PVT) data for typical

thermoplastics suggests that the packing pressure may change the specific volume by as

much as 15%"®. Therefore, a better definition for strain of this application is

1 (VT
Emelr = 3 ln[ V(PO ’ T)J (3 .9.2)
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where

( P
V(P,,T) = (ag, +ay,(T -Tg))|1-0.0894 -1n(1+—-(l- J (T<T,) (3.9.3)
S

P
V(Py,T)=(ay,, +a;,(T -Tg )){1 -0.0894 - ln(l + —i—D (I'>1y) (3.94)
m

V(P,T)=(agy, +a,;, (T -Tg )){1-—0.0394 -ln(1+ ! D (I'sTy) (3.9.5)

P
]

The stress-production rate after de-moulding is calculated in the same way as in

Eq. 3.8.22. Therefore,

d-xrmeh (Z, t) = R(Z, t)[gxx (Z,t) + ‘éxxmeh = a(z, I)T(Z, t)] (3'9'7)

We find o(z,t) by integration.

o o @N=[ o . (20 (3.9.8)

xxmelt .

The temperature distribution after de-moulding can be calculated using Eq. 3.7.4

Therefore,
T, (z,0-T. Y4 (= Y’
T )= | dmr? Z _reom |__ — —-kl—11t 3.10.1
w50 ( TG0 T, }:rc"s[ez}exp [ (e) } N
where
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T, . 1s the room temperature.

The strain-production rate can be calculated as for Eq. 3.8.20. Therefore,

[ RGO (1)

.. (z,t)= : (3.10.2)
PR(z,1)a¢
And the stress-production rate is
6 e dom (251) = R0 iem (2. 1) - a2, )T, (2,1} (3.10.3)
Finally,
O vetom (2:8)= [ G e (2. )t (3.10.4)

where ¢, 1s the cooling time after de-moulding.

on_of the residual stre ing method B (taking accour

of the pressure profile)

This section deals with residual stresses calculations performed taking account of the
pressure profile. Section 3.11.1 gives the pressure history within half of the bar for

different cooling times. Section 3.11.2 provides residual stresses calculations at 7=T,

using the pressure history. Section 3.11.3 gives residual stresses for 7<T..
ations of the pressure prc

The specific volume as a function of temperature and pressure are usually given by the

Tait equations. The volume decreases as the temperature decreases and the volume
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increases as the pressure decreases. The pressure drop is calculated as functions of

temperature and volume in this section.

dlumetri AdOCS WIICT JIOPS JTOI] le

As discussed in Section 3.6, the volumetric change in an element of material at z when

1(z,1) drops from T, (z,¢)) to T,(z2,t,) is

fa,-AT(z,1,,t,) (T <T)
AV,(z,t,,tz)_{am AT(tt) (T>T,) (3.11.1.1)

where

AT (z,t,,t,) = T1(ZJ;)"T2 (z,tz)

Deeudce .“.‘_a 1CIL =2£Z-12)

From the differentiation of the Tait equation by pressure, we obtain the pseudo

compressibility when the temperature is 7,(z,¢,)

i 2(2h)
—(%m +alm'(];(zat2)-7;l (tl))'0'0894' ] I'sly®)

B, +R-& "

eﬁ;'Tz(sz)
Was] T>T,@)

K(z,t,) = (3.11.1.2)

-{q)s +a,-(T@H)-T,))-00894-

where the pressure-dependence of the glass transition temperature must be accounted

for, as given by Menges®.

Tgl(tl)=Tg +s-H()

» & L -
JI1 O ¢ DS vl § ) e
-~ . i a i '

The volumetric changes throughout the bar are added in a short time interval and the

result used to calculate the corresponding drop in pressure.

Using Eq. 3.11.1.1 and Eq. 3.11.1.2, the average pressure drop from ¢, to ¢, within the
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half of the bar is given by:

AP(z1) = = [ 2on20eh),
e K'(z,t,)

dz (3.11.1.3)

This is used to calculate the new average pressure at the end of the time interval, i.e. at
t=t,, 1.¢. the new pressure is P,(t,)=P,(t,)+4P,(z,1).

Note 3.11.1: The new value of pressure, P,, 1s inserted into Eq. 3.11.1.1 and 3.11.1.2
and the calculations are repeated for the next time interval (¢, to ;). The calculation is
repeated until the bar reaches the required state, e.g. when the pressure has dropped to
zero. At this condition the moulding shrinks away from the mould cavity walls and a

new calculation procedure 1s required.

jons of the pressure induced stress ¢ =1.(0)

The stress present at z when the temperature falls to T(r) is assumed to remain
unchanged. There will, of course, be changes due to differential thermal contraction
because of the changing temperature distribution. The material at different locations (z2)
solidifies at different pressures and may show different properties (e.g. density, heat

content and so on) as a consequence of this.

e
ol

> of change of spe¢; plume 3 =E([_)

From the differentiation of the Tait equation for 7<T, by pressure, we obtain the rate of
change of specific volume at 7=T (f) at all locations z.

eBlll'T(I)

W (31121)

v
(El; = -0.0894-(a,,, +a,,(T()~T,(t))

where
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T,(t)=T, +s-P(f)

Note: The pressure dependent glass transition temperature 7,(P(f) is a function of the
pressure, P. It is given in the form T(¢) because the glass transition temperature is

uniquely defined by ¢ for a given location, z.

From the Tait equation, the density at 7=T,(¢) at different cooling times is given by:

B, -e

.
5

-1
p(z,T, (1) = I:(ao, ra, (T -T,)) [1 ~0.0894- ln[l + -—P%)—ﬁ-)-njl (3.11.2.2)

Using Eq. 4.11.2.1 and Eq. 4.11.2.2, the pressure induced strain is given by:

§(2,1,(1)) = %[[%) - p(2,T, (1)) P(!)J (3.11.2.3)

and the pressure induced stress is

o,(z,1)=¢,(z,T, (1)) E(2,1) (3.11.2.4)

where

E(z,1): time and temperature dependent Young’s modulus (Eq. 3.5.1.7 in

Section 3.5).

When the temperature has fallen to below T, at all locations, a new calculation
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procedure is required.

en distnbutions for /</,

From the Tait equations, density for 7<T, is

-1
p(z,1) = {[am +a,-(T@)-T, (:))].[1 -0.0394-11—1(1 +%ﬂﬂ} (3.11.3.1)

olumetric shrinkage at 7<1,

P=0,2)-p,..@.1,P,2
| I(Pn( )—-p 1(( 1) )} (3.11.3.2)

£,(z,)=—AV =—
2 3 3 Pt norys DnsZ)

where

p. (t ,P =0,z)is the density when the pressure 1s atmospheric

Pt tnry» Py»2)is the density when the temperature has fallen to below T, at all

locations.

And the pressure induced stresses for 7<7, can be written

o,(z,t) = &(z,t)- E(z,1) (3.11.3.3)
mperature induced

L
‘ Y s - - - - - s - - - ™ -
AIDCI Ly G U ‘ adii=i@sg 0101w FaR0 «19 E_a.t_thig_cnm

Temperature induced stresses when the temperature has fallen to below T, at all

locations are given by:
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o3(2,1) = (T =T (T, (1)))-a(2,0) E(z,1) (3.11.4.1)

where

T,

m

., 1S the melt temperature.

T(T,(1))is the temperature distribution when the temperature has fallen to below T, at

all locations.

a(z,t) 1s calculated by Eq. 3.6.4 and Eq. 3.6.5.

-
- cmperature 1INducec S SEeS IC <

Temperature induced stresses when the temperature has fallen to below T, at all

locations is written by:
o, (z,0) = (T(T, (1) - T, (z.1,))-a(z,t)- E(z,t) (3.11.4.2)

where

T (z,t) is the temperature distribution when the pressure is atmospheric(see

Fig. 3.11.4)

Tl'
I(T(1) I
/ P
T
centre surface {f — b1 s
(a) (b)
Fig.3.114

,.; 1S the time when the temperature distribution is T ()
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The final result of the stress distributions is obtained using Eqgs. 3.11.2.4, 3.11.3.3,
3.11.4.1 and 3.11.4.2. As the moulding shrinks away from the mould cavity walls when
the pressure has dropped to zero, the integration of tensile stress and compressive stress

over z 1S Zero.

o(z,t)=0,,(z,t) - é fcrm, (z,1) (3.11.4.3)

where

O, (2,8)=0,(2,t)+0,(z,t) + 05(z,t) + 0,(2,1) (3.11.4.4)
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CHAPTER4

RESULTS OF CALCULATIONS

This chapter deals with residual stresses calculations performed using Mathcad
(mathematical software for general purpose). Section 4.1 gives the geometry used for
the calculations. Sections 4.2 provide the materials data and the parameters for the
calculations. Section 4.3 gives the calculations of the residual stress using method A
(procedure based on Struik’s method). Section 4.4 describes the new procedure

method B (taking account of the pressure profile) developed during this research, in
which the pressure profile was calculated and used to estimate density distributions
through the depth and finally, the stress distribution. Section 4.5 gives the result of the
calculations of stress relaxation after demoulding. Sections 4.6 deals with computed

residual stress distributions for different boundary conditions using both method A and

method B.

4.1 Geometry

The geometry is shown in Fig. 4.1 The polymer is bounded by mould surfaces at z=+1.6

min.
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4.2 Matenal data

Table 4.2.1 shows the material propert