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Abstract 

	

	

The advent of primary percutaneous coronary intervention (PPCI) for the treatment of 

ST-elevation myocardial infarction (STEMI) has significantly reduced mortality rates 

in this population. However, coronary artery disease remains a leading cause of 

morbidity and death worldwide. This may be a consequence of inadequate 

myocardial reperfusion despite reestablishment of coronary artery patency following 

PPCI. Failed myocardial reperfusion is associated with worse prognosis but usually 

passes undetected, as current diagnostic methods are not routinely available.  The 

aim of my PhD was to investigate the plasmatic kinetics of muscle-enriched micro 

ribonucleic acids (microRNAs) following PPCI as well as their association with 

cardiac damage, function and the phenomenon of failed myocardial reperfusion.  

 

Firstly, I retrospectively analysed the prognostic importance of cardiac troponins, 

which are established markers of myocardial injury, in a large cohort (n = 4,914) of 

STEMI patients treated with PPCI. Troponin levels routinely measured at 12 hours 

post-reperfusion were not associated with mortality, highlighting the need for 

identification of new prognostic markers in this population. To overcome 

methodological issues for microRNA quantification in plasma samples from STEMI 

patients, I validated an endogenous microRNA (miR-425-5p) as a control for real-

time polymerase chain reaction (RT-qPCR) data normalisation. Subsequent 

microRNA screening and kinetics analyses revealed that the muscle-enriched miR-1 

and miR-133b are rapidly released into the circulation following PPCI, reaching an 

initial peak at 30min and a second peak at 90min post-PCI. The presence of a 

second peak seemed to be associated with a higher index of microvascular 

resistance, a surrogate marker of failed myocardial reperfusion. In addition, miR-1 

and miR-133b levels at 30min and 90min post-PPCI were associated with 

microvascular obstruction measured by cardiac MRI, another parameter of 

unsuccessful myocardial reperfusion. Finally, miR-1 and miR-133b levels were 

significantly elevated in a subgroup of STEMI patients with larger infarcts and worse 

left ventricular function and remodelling 3 months after PPCI. These findings suggest 

a potential new role for muscle-enriched microRNAs as tools for early identification of 

failed myocardial reperfusion and prognostic stratification in STEMI patients. 
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1.1. Preamble 

	

	

Despite recent advances in cardiovascular research and development of modern 

therapeutic strategies for cardiovascular disease, coronary artery disease (CAD) 

remains the leading cause of mortality worldwide (Moran et al., 2014a, Moran et al., 

2014b, Moran et al., 2014c). Coronary artery disease encompasses a spectrum of 

clinical syndromes that share atherosclerosis-related myocardial ischaemia as a 

common pathophysiological mechanism. At the most serious end of this spectrum is 

ST-elevation myocardial infarction (STEMI), which is characterised by irreversible 

cardiomyocyte injury due to acute and sustained myocardial ischaemia. Current 

treatment for STEMI aims to urgently re-establish coronary blood flow by implantation 

of intra-vascular stents via percutaneous coronary intervention (PCI). Despite 

achievement of optimal coronary perfusion, a failure of myocardial reperfusion can 

occur in up to 50% of STEMI patients undergoing PCI and is associated with worse 

clinical outcome. Failed myocardial reperfusion is not routinely assessed as the 

available imaging and invasive techniques that can be used to detect it are not 

presently feasible for daily clinical practice. The focus of this thesis will be the 

investigation of a potential role for circulating microRNAs (miRNAs) as non-invasive, 

biochemical markers of failed myocardial reperfusion in STEMI patients.  

 

  

1.2. Acute Myocardial Infarction 

1.2.1. Socio-economic burden of coronary artery disease 

Coronary artery disease is an important public health problem worldwide. Mortality 

rates associated with CAD have increased in the last decades (>7 million in 2010 vs. 

4.5 million in 1980), despite a trend in reduction of deaths in high-income nations 

(Moran et al., 2014a). This is partially explained by increasing mortality numbers in 

medium to low-income regions, especially in Eastern Europe, central and south Asia 

and Middle Eastern countries. Also, with the population ageing phenomenon, the 

group in which CAD death rates increased the most was that comprised by 

individuals ≥ 80 years old (Moran et al., 2014a). In the United Kingdom, CAD was the 

leading cause of mortality in 2010 and the average number of years of life lost due to 

CAD was greater than the average of the original 15 European Union members, 

USA, Canada, Australia, and Norway combined (Murray et al., 2013). Nevertheless, 
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the burden of CAD is not only associated with mortality but also with morbidity. As an 

increasing number of individuals are living with the disease, CAD impact on morbidity 

and quality of life is very significant. Between 1990 and 2010, it has been reported a 

global increase of 29% in disability-adjusted life years, a measure of years of 

disability lived with 3 non-fatal CAD sequelae: non-fatal acute myocardial infarction, 

angina pectoris, and ischaemic heart failure (Moran et al., 2014a). In the UK, the 

prevalence of individuals living with some form of CAD was estimated to be 2.3 

million in 2013 (Townsend et al., 2014). Consequently, the costs associated with the 

management of the disease are very high. 

 

The economic burden of CAD on healthcare systems around the globe is enormous. 

In 2012/2013, the estimated expenditure of the NHS on the treatment of CAD, 

including all levels of care, was £1.597 billion (Townsend et al., 2014).  In developing 

countries, where the percentage of the gross domestic product (GDP) destined to 

healthcare is usually smaller than that of developed countries, the relative burden of 

CAD can be even worse. For instance, in South Korea the total cost of acute 

myocardial infarction management alone was estimated to be USD1.177 billion in 

2012 (Seo et al., 2015). Therefore, advances in the understanding of the disease 

pathophysiology and improved prognostic stratification strategies could not only help 

to decrease the mortality and morbidity figures but also to optimise the expenditure of 

public funds with CAD.  

 

1.2.2. Coronary artery disease pathophysiology  

Atherosclerosis is the cornerstone pathological mechanism of CAD. Atherosclerosis 

is defined as a chronic low-grade inflammatory process of the tunica intima of 

medium and large arteries (Libby, 2002). Atherogenesis initiates with the trafficking of 

circulating inflammatory cells, such as monocytes and T lymphocytes, into the arterial 

walls (Hansson and Libby, 2006). This process is triggered by various stimuli (e.g. 

dyslipidaemia, hyperglycaemia, pro-inflammatory cytokines released by the adipose 

tissue, bacterial products, and oscillatory shear stress), which ultimately induce the 

expression of leukocyte adhesion molecules on the luminal surface of endothelial 

cells. Once in the intima, these leukocytes orchestrate a series of pro-inflammatory 

signals with the adjacent cells in their microenvironment, i.e. endothelial cells and 

vascular smooth muscle cells (VSMC). Mediators of inflammation and immunity, such 
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as leukotrienes, prostanoids, cytokines, and histamine, regulate vascular tone, 

increase vascular permeability, promote more circulating leukocyte recruitment, and 

migration of VSMCs from the tunica media to the intima (Libby and Theroux, 2005).  

In the intima, VSMCs proliferate and generate a complex extracellular matrix (EM). 

Some components of the EM, for instance proteoglycans, bind to lipoproteins and 

prolong their permanence in the intima, increasing lipoprotein susceptibility to 

oxidative modifications (Williams and Tabas, 1998). Oxidized-lipoproteins are 

internalized by macrophages, generating lipid-enriched cells, the so-called foam 

cells. Foam cells apoptosis in atherosclerotic lesions results in release of tissue 

factor and lipids to the extracellular space, which can coalesce and form the lipid or 

“necrotic” core of atherosclerotic plaques (Bogdanov et al., 2003). Furthermore, with 

the lesion progress, calcification can occur by mechanisms similar to osteogenesis 

(Demer, 2002). 

 

Atherosclerotic lesions development can alternate periods of slow and fast growth. 

Plaques do not necessarily grow towards the arterial lumen. Actually, by most of their 

development time plaques grow outwards, due to a vascular remodelling mechanism 

(Clarkson et al., 1994). Therefore, a significant burden of disease may exist and be 

undetected by coronary angiography, as the technique can only evaluate the inner 

vascular wall. This observation has changed the concept of atherosclerosis as being 

a delimited, focal process to be understood as a systemic, diffuse process. In fact, it 

has been described that only when the plaque volume reaches 40% the arterial 

lumen begins to narrow (Ambrose et al., 1988). Intraluminal coronary narrowing 

caused by these large, stable atherosclerotic plaques results in transient 

inappropriate blood supply to the myocardium in times of increased oxygen demand, 

e.g. exercise, which is clinically manifested as stable angina pectoris. 

 

1.2.3. Acute coronary syndromes  

Some atherosclerotic lesions are characterized by a thin, fibrous cap and abundant 

lipid core with high number of inflammatory cells and lower number of VSMCs, the 

so-called vulnerable plaques or thin-capped fibroatheromas (Davies, 1996).  

Eventually, these vulnerable plaques can suffer rupture, erosion or haemorrhage, 

exposing their pro-thrombotic content to the blood stream, triggering the formation of 

an intracoronary thrombus (Davies and Thomas, 1985, Falk et al., 2013). Several 
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mechanisms contribute to thrombogenesis following plaque rupture: (i) platelet 

activation, followed by adhesion and aggregation, promoted by the contact with 

collagen present in the EM of disrupted plaques; (ii) coagulation cascade activation 

by macrophage and VSMC-released tissue factor; (iii) pro-coagulant conditions, such 

as obesity and diabetes, which increase circulating levels of plasminogen activator 

inhibitor-1 (PAI-1) (Libby and Theroux, 2005). The thrombus can suffer spontaneous 

lysis, or cause incomplete or complete coronary obstruction, in this case leading to 

severe acute ischemia distal to the site of blockage, clinically manifested as acute 

coronary syndromes (ACS). 

 

Depending on the duration, location, and extent of coronary blockage, ACS can 

present as three distinct clinical entities: (i) unstable angina (UA); (ii) non-ST 

elevation myocardial infarction (NSTEMI); and (iii) STEMI.  In UA, acute coronary 

occlusion provokes clinical symptoms of myocardial ischemia, such as chest pain, 

and ischemic changes on the electrocardiogram (ECG), e.g. T wave inversion, but it 

is usually associated with partial or transient coronary obstruction, which is not 

sufficient to cause the release of myocardial necrosis biomarkers, such as cardiac 

troponins (cTn). Acute myocardial infarction is characterised by the present of clinical 

symptoms of myocardial ischemia associated with detectable release of myocardial 

necrosis biomarkers (Ambrose and Singh, 2015).  Electrocardiographic changes 

distinguish between NSTMI and STEMI, as NSTEMI patients usually present ST 

segment depression (>2mm in at least two contiguous leads) and T wave changes 

whereas the ECG pattern of STEMI is ST elevation (in two or more contiguous leads 

≥ 0.2 mV in V1-V3 or > 0.1 mV in the other leads) or new onset left bundle branch 

block (Alpert et al., 2000).   

 

1.2.4. Diagnostic criteria and clinical classification of acute MI 

The European Society of Cardiology recently published the 4th Universal definition of 

myocardial infarction, which outlines the criteria for clinical diagnosis and 

classification of myocardial infarction (Thygesen et al., 2018). Myocardial infarction is 

defined by the presence of acute myocardial injury [as evidenced by rise and/or fall of 

cTn with at least one value > 99th percentile of the upper reference limit (URL)] in the 

setting of myocardial ischaemia (Thygesen et al., 2018). Acute myocardial ischaemia 

requires at least one of the following criteria: symptoms (e.g. chest pain, dyspnoea, 
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sweating, vomiting), new ischaemic ECG changes, development of pathological Q 

waves, imaging evidence of loss of viable myocardium or wall motion abnormalities, 

and/or identification of a coronary thrombus by angiography or post-mortem autopsy 

(Thygesen et al., 2018). Apart form the electrocardiographic criteria described in the 

previous section, MI can also be classified according to the underlying pathological 

mechanism or clinical scenario into 5 types (Thygesen et al., 2018):  

• Type 1: caused by atherothrombotic CAD, usually following atherosclerotic 

plaque rupture or erosion 

• Type 2: the underlying pathological mechanism is an imbalance between 

myocardial oxygen supply and demand. For example, stressors such as acute 

bleeding (with a drop in haemoglobin levels) or sustained tachyarrhythmia 

may precipitate MI type 2 due to reduced oxygen availability or increased 

demand in an already ischaemic myocardium 

• Type 3: defined by cardiac death in patients with ischaemic symptoms or ECG 

but who died before blood samples could be obtained or changes in cTn levels 

could be identified or when MI is diagnosed by autopsy 

• Type 4: percutaneous coronary intervention-related MI. Defined by elevation > 

5 times the 99th cTn percentile URL in patients with normal cTn prior to the 

procedure or > 20% rise in cTn if baseline levels were already > 5 times the 

99th cTn percentile URL  

• Type 5: coronary artery bypass graft (CABG)-associated MI. Diagnosis 

requires a cTn value > 10 times the 99th cTn percentile URL in the initial 48h 

following CABG in the presence of normal baseline cTn values   

 

1.2.5. Clinical complications and prognosis of MI 

In recent years, prognosis following MI, especially regarding mortality, has 

significantly improved with the development and wider employment of new 

therapeutic strategies (Menees et al., 2013, Pedersen et al., 2014). Nonetheless, 

whilst more patients are surviving MI the number of individuals living with its 

complications is also increasing (Moran et al., 2014a).  

 

In the acute phase following MI, left ventricular (LV) dysfunction represents one of 

the most common complications. The incidence of LV dysfunction varied between 

17% and 28% during hospitalisation due to MI or in the 90 days thereafter in large 
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population studies (Hung et al., 2013, Gjesing et al., 2014, Desta et al., 2015). Acute 

LV dysfunction can occur due to a combination of cardiomyocyte loss, myocardial 

stunning, acute mitral regurgitation secondary to papillary muscle dysfunction, and 

decompensation of pre-existing heart failure (Cahill and Kharbanda, 2017). It is a 

strong, independent predictor of clinical outcome, including major adverse 

cardiovascular events (re-infarction, congestive heart failure) and death, following MI 

(van Kranenburg et al., 2014, Desta et al., 2015).  

 

Myocardial infarction can also lead to the development of chronic heart failure. 

Chronic heart failure is a clinical syndrome characterised by progressive impairment 

in the ventricle ability to fill or eject blood due to any structural or functional cardiac 

disorder (Yancy et al., 2013). In the healing phase that follows MI, the interplay 

between several factors such as inflammation, fibrogenesis, and neurohormonal 

activation leads to an adaptive process of ventricular remodelling to restore cardiac 

function (Cahill and Kharbanda, 2017). This may, however, results in a pathological 

remodelling, with alterations in ventricular structure, wall thinning, and further 

cardiomyocyte loss, that will ultimately lead to a decline in cardiac function (Sun, 

2009).  

 

Another complication of MI is the occurrence of cardiac arrhythmias. Atrial fibrillation 

(AF), the most common arrhythmia detected in clinical practice, may occur in up to 

6% - 21% of patients with MI (Cappato, 2009). Development of AF during 

hospitalisation for STEMI has been shown to be associated with higher risk on in-

hospital (Crenshaw et al., 1997, Rathore et al., 2000, Lehto et al., 2005) as well as 

follow-up (Kinjo et al., 2003) mortality. In addition, the incidence of ventricular 

arrhythmias ranges from 5.2% to 11.6% in patients post-MI (Henkel et al., 2006, 

Mehta et al., 2012, Jabbari et al., 2015a) and it was associated with higher 30-day 

mortality in STEMI patients (Jabbari et al., 2015b).   

 

1.2.6. Therapeutic management of myocardial infarction 

The goal of the therapeutic management of MI is to maintain or restore myocardial 

perfusion whilst decreasing myocardial oxygen demand and increasing myocardial 

oxygen supply. General supportive measures involve administration of supplemental 
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oxygen to tackle hypoxia and opiates, such as morphine, for pain relief in patients 

with severe chest pain (Roffi et al., 2016, Ibanez et al., 2018).  

Considering the relevance of thrombus formation in the pathogenesis of MI, anti-

thrombotic therapy is one of the pillars of both STEMI and NSTEMI pharmacological 

management. Combined administration of anti-platelet medications such as 

acetylsalicylic acid and P2Y12 receptor inhibitors (e.g. ticagrelor, clopidogrel or 

prasugrel) is recommended for all patients by the most recent guidelines (Roffi et al., 

2016, Ibanez et al., 2018). Other anti-platelet agents such as glycoprotein (GP) 

IIb/IIIa inhibitors (e.g. tirofiban, abciximab) may be indicated in patients who need to 

undergo invasive procedures (Ibanez et al., 2018). In addition, anticoagulants, e.g. 

low-molecular weight heparins, may also be indicated, especially for NSTEMI 

patients (Roffi et al., 2016).  

 

In NSTEMI patients, early administration of beta-blockers is recommended to all 

patients without contra-indications as it reduces myocardial oxygen consumption by 

decreasing heart rate, blood pressure, and myocardial contractility (Roffi et al., 2016). 

In STEMI patients, early administration of beta-blockers should be considered in 

haemodynamically stable patients only (Ibanez et al., 2018).  

 

1.2.7. Reperfusion therapy 

The major difference in the management of NSTEMI and STEMI is the urgent need 

to restore blood flow in the culprit coronary artery in the latter (Ibanez et al., 2018). 

Total coronary artery occlusion is observed in most cases of STEMI and therefore re-

establishment of vessel patency is paramount to achieve myocardial reperfusion. The 

first modality of reperfusion therapy to be developed, namely thrombolysis, aims to 

dissolve the intracoronary thrombus by intravenous administration of 

pharmacological agents that promote fibrinolysis (e.g. tenecteplase, alteplase, or 

reteplase) (Ibanez et al., 2018). Thrombolysis significantly decreases mortality in 

STEMI patients (Group, 1994), especially in high-risk groups (e.g. elderly) and when 

it is administered within 2 hours of symptom onset (Boersma et al., 1996, White, 

2000). Nonetheless, thrombolysis efficacy decreases with time elapsed from 

symptom onset (Pinto et al., 2011) and it presents some absolute contra-indications, 

such as previous haemorrhagic stroke, trauma, surgery or gastrointestinal bleeding in 

the past month, or known bleeding disorders (Ibanez et al., 2018).   
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1.2.8. Primary percutaneous coronary intervention 

Reperfusion therapy for STEMI has evolved with the advent of and continuous 

improvements in primary percutaneous coronary intervention (PPCI) over the last 2 

decades. This procedure entails direct opening of the occluded coronary artery via a 

technique known as angioplasty, in which a wire is inserted via the radial or femoral 

artery and advanced into the coronary artery (Mann et al., 2015). Once the wire 

passes the site of occlusion, a balloon attached to the wire is inflated to open the 

vessel. In most cases, a small metallic scaffold, called stent, is placed at that site to 

prevent re-occlusion (Mann et al., 2015). Primary PCI is superior to thrombolysis in 

reducing re-infarction, stroke, and mortality (Zijlstra et al., 1999, Keeley et al., 2003, 

Andersen et al., 2003). Therefore, PPCI is the preferred modality of reperfusion 

therapy in STEMI patients with less than 12h of symptom onset, provided the 

procedure can be performed by an experienced team within 120 minutes of the 

diagnosis (Ibanez et al., 2018). Otherwise, patients should receive thrombolysis first 

and then be referred to a PCI centre (Ibanez et al., 2018).  
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1.3. Failed myocardial reperfusion 

	

1.3.1. Definition 

Primary PCI results in successful restoration of normal or near-normal coronary 

blood flow, as indicated by angiographic thrombolysis in myocardial infarction (TIMI) 

flow grades 2 and 3, in more than 90% of STEMI patients (Luman, 2014). Despite re-

establishment of epicardial coronary artery perfusion, myocardial function does not 

entirely recover in approximately 50% of reperfused STEMI patients due to an 

impairment in microvascular flow, which consequently results in inadequate 

myocardial reperfusion (Wu, 2012). This impairment in microvascular flow, termed 

‘no-reflow’ phenomenon, was firstly observed in animal models of myocardial 

ischaemia and reperfusion (Kloner et al., 1974) and, subsequently, in human patients 

treated with PCI (Rezkalla et al., 2010).  

 

The pathological bases of the no-reflow phenomenon are still poorly understood but it 

can effectively hinder the benefits of reperfusion therapy (Rezkalla et al., 2010). An 

initial hypothesis that it could be associated with blockage of the coronary 

microcirculation by distal embolization of microthrombi and atheroma fragments was 

strongly suggested by the findings from pathological, imaging, and interventional 

studies (Falk, 1985, Limbruno et al., 2005, Sakuma et al., 2003, Wu et al., 2011b, 

Haeck et al., 2009). Reinforcing this hypothesis, serial cardiac magnetic resonance 

imaging (MRI) studies using late gadolinium enhancement showed core areas of 

hypoencement within hyperenhanced infarct regions (Wu, 2012), which were referred 

to as microvascular obstruction (MVO) to reflect the hypothesis of microvascular 

blockage in the pathogenesis of the no-reflow phenomenon. Later advancements in 

cardiac MRI protocols allowed the in vivo identification of intramyocardial 

haemorrhage (IMH) due to paramagnetic effects evoked by haemoglobin metabolites 

(Amabile et al., 2012). This revealed that areas of MVO and IMH substantially 

overlap and collectively represent areas of myocardial tissue with vascular damage 

and erythrocyte extravasation, instead of microvascular occlusion (Robbers et al., 

2013). Therefore, the current understanding is that failed myocardial reperfusion 

initially manifests as MVO in the core infarct zone followed by severe microvascular 

injury and IMH in 40% of the cases (Figure 1.1) (Robbers et al., 2013).   
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1.3.2. Pathophysiological mechanisms of failed myocardial reperfusion 

A complex interaction between factors associated with ischaemia, reperfusion, and 

atherothrombotic microembolization has been implicated in the pathophysiology of 

failed myocardial reperfusion (Niccoli et al., 2016, Betgem et al., 2015).  

 

The seminal study by Kloner et al. (Kloner et al., 1974) demonstrated for the first time 

the histopathological alterations associated with failed myocardial reperfusion in a 

canine model of transient coronary occlusion (90 min) followed by reperfusion. Using 

the fluorescent stain for endothelium thioflavin S, they observed that some areas of 

the myocardium inside the infarct zone did not uptake the marker despite reperfusion 

	
	

	

	

Figure 1.1. Histopathological findings associated with coronary microvascular 
obstruction and intramyocardial haemorrhage in the infarct zone. A) obstructed 
coronary microvessel (left panel) and areas of contraction band necrosis (black areas) and 
coagulative necrosis (white arrows) distal to obstructed microvessels. B) myocardial 
sections stained with triphenyltetrazolium chloride (TTC) localising the infarct area (green 
areas) and corresponding histological sections stained with haematoxylin and eosin (H&E) 
for tissue damage, elastin masson trichome (EMT) for fibrosis, and Perl’s for iron. Note that 
presence of iron (haemorrhage) is more prominent in the larger infarct area compared to a 
smaller infarct.  Adapted from: (Schwartz et al., 2009, Wang et al., 2019) 
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of the corresponding coronary vessel (Kloner et al., 1974). In these regions, electron 

microscopy ultrastructural analysis showed endothelial cell protrusion, 

subsarcolemmal blebs and adherent inflammatory cells to the endothelium 

contributing to narrowing of the lumen (Kloner et al., 1974, Reffelmann and Kloner, 

2006). Presence of cardiomyocyte swelling and interstitial oedema seems to further 

aggravate capillary obstruction by external compression (Kloner et al., 1974, 

Schwartz and Kloner, 2012). Additionally, release of vasoconstrictor substances, 

such as endothelin-1, has also shown to be associated with microvascular 

obstruction in STEMI patients (Eitel et al., 2010). Hypoxic conditions also lead to loss 

of endothelial integrity, which may contribute to intramyocardial haemorrhage 

following microvascular injury. Indeed, reduction in endothelial cell density, disruption 

in the endothelial lining, increase in paracellular permeability, and extravasation of 

erythrocytes have been described as effects of ischaemia on the vasculature (Kloner 

et al., 1974, Maxwell and Gavin, 1991, Goddard and Iruela-Arispe, 2013).  

 

Although essential for myocardial salvage, coronary reperfusion also leads to 

microvascular damage. Reperfusion triggers a cascade of events culminating in 

plugging of neutrophils and platelets, erythrocyte aggregation, and further injury to 

the endothelial glycocalix (Bekkers et al., 2010, Maksimenko and Turashev, 2012). 

Together, these factors aggravate obstruction and damage of coronary microvessels 

by a mechanical effect or release of inflammatory mediators. In addition, neutrophil 

influx into vascular walls following reperfusion and subsequent release of reactive 

oxygen species and matrix-metaloproteinases provokes disintegration of the basal 

membrane, allowing erythrocytes to escape from the intravascular compartment into 

the interstitial space (Kloner et al., 1991). Finally, it has been suggested that 

activation of the inflammatory and coagulation cascades after reperfusion might lead 

to thrombosis in the microvessels and subsequent consumption of coagulation 

factors, worsening the haemorrhage. (Robbers et al., 2013)  

 

A wealth of evidence from experimental and clinical studies has linked coronary 

microembolization with microvascular obstruction. Microemboli originate from the 

erosion or rupture of atherosclerotic plaques, spontaneously or after manipulation 

during PCI (Virmani et al., 2006). Intracoronary infusion of microspheres in 

experimental models provokes an immediate decrease in coronary blood flow and 

regional contractile dysfunction (Skyschally et al., 2002, Dorge et al., 2000). In 
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addition, a post-mortem study of patients who died from ACS has shown distal 

microembolization of thrombus and atheromatous material (Falk, 1985). In the clinical 

scenario, angiographic and intracoronary imaging studies have demonstrated an 

association between the no-reflow phenomenon and the atherosclerotic burden in the 

culprit coronary artery (Wu et al., 2011b, Limbruno et al., 2005). Also, circulating 

microparticles from thrombotic material have been shown to be associated with 

surrogate electrocardiographic and angiographic markers of microvascular 

obstruction (Porto et al., 2012).   

 

1.3.3. Detection of failed myocardial reperfusion  

Microvascular obstruction can be detected by invasive and non-invasive methods, 

with varying degrees of sensitivity among them. Therefore, incidence of MVO in 

STEMI patients has been reported to range from as low as 10% using angiographic 

methods up to 60% in studies that employed cardiac MRI (Niccoli et al., 2013).  

 

Invasive methods of MVO determination include the index of microvascular 

resistance (IMR) and the TIMI flow grade. The IMR is determined by a pressure- and 

temperature-sensitive coronary wire in the culprit coronary artery at the end of PPCI 

(Carrick et al., 2016a). It is defined as the distal coronary pressure multiplied by the 

mean transit time of three consecutive bolus injections of room temperature saline (3 

mL) during maximal coronary adenosine-induced hyperaemia (Carrick et al., 2016a). 

Higher IMR values have been associated with microvascular pathology, including 

both MVO and IMH (Carrick et al., 2016a). The challenges with using this method are 

the need for special equipment, trained personnel, and use of additional 

pharmacological interventions (e.g. adenosine) (Niccoli et al., 2016). The TIMI flow 

grade is an angiographic description of the blood flow rate in epicardial vessels, 

ranging from no flow (grade 0) to normal flow (grade 3). TIMI flow < 3 following 

angioplasty has been associated with MVO (Morishima et al., 2000). However, as 

previously mentioned, the sensitivity of this method for MVO detection is very low. 

 

Microvascular obstruction can be non-invasively detected by the electrocardiogram, 

echocardiography, positon-emission tomography (PET), and by magnetic resonance 

imaging. In the ECG, maximum ST elevation at baseline (McLaughlin et al., 2004) 

and incomplete ST-segment resolution in relation to baseline (Infusino et al., 2014) 
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have been shown to be markers of MVO. However, there is no consensus regarding 

which leads to analyse, at which time point ECG analysis should be performed, and 

whether it should be serial (Niccoli et al., 2016). Myocardial contrast 

echocardiography employs ultrasound to detect contrast microbubbles whose flow 

through the coronary microcirculation resembles that of red blood cells and therefore 

infer about the occurrence of microvascular obstruction (Galiuto et al., 2008). 

Nonetheless, it presents several limitations including operator-dependency and only 

partial coverage of the left ventricle, providing only a semi-quantitative assessment of 

MVO (Niccoli et al., 2016). Cardiac PET scan can inform about infarct size, 

myocardial tissue perfusion state, as well as metabolic and inflammatory changes 

after reperfusion but requires further validation in human patients (Lautamaki et al., 

2009).  

 

Cardiac MRI is the current gold-standard technique for assessment of MVO. It 

provides reproducible, detailed tissue characterization and spatial resolution, allowing 

accurate MVO identification, quantification and localization relative to the entire left 

ventricle (Hundley et al., 2010). Detailed tissue assessment is possible due to the 

distinct ways in which the various tissues affect two MRI signal components (T1, T1 

relaxation time; and T2, T2 relaxation time) (Biglands et al., 2012). For tissue 

characterization in the context of myocardial infarction, a contrast agent known as 

gadolinium is intravenously injected prior to image acquisition (Hundley et al., 2010). 

Gadolinium has a short T1, meaning that an enhanced signal is observed on T1 

weighted images in tissues where it is concentrated. Gadolinium is an extracellular 

agent and has well-known clearance kinetics after administration: it passes through 

the coronary arteries into the myocardium in just a few seconds and then through the 

normal myocardium after approximately 10 to 15 minutes. In areas of myocardial 

necrosis, where the extracellular space is relatively expanded, gadolinium takes 

longer to be cleared (Hundley et al., 2010, Perazzolo Marra et al., 2011). Therefore, 

when T1-weighted images are acquired after 10-15 min of gadolinium administration 

an enhanced signal is still observed in infarct zones compared to the surrounding 

myocardium. This is a MRI imaging acquisition technique called late gadolinium 

enhancement (LGE), which is used to determine the infarct core (Hundley et al., 

2010). In areas of microvascular flow obstruction, gadolinium passage to the 

extracellular space is delayed as it occurs via passive diffusion instead of perfusion 

(Saeed et al., 2010). Using this principle, MVO can then be detected as: (i) a lack of 
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gadolinium enhancement during first pass (< 2 min), termed early MVO; and (ii) a 

hypoenhanced area within the hyperenhanced infarct core identified by LGE, called 

late MVO (Wu, 2012).  Thus, current cardiac MRI protocols allow both a qualitative 

as well as quantitative assessment of MVO, i.e. detection of presence of MVO as an 

area of hypoenhancement as well as estimation of the mass of myocardial tissue 

affected by MVO in relation to the total myocardial mass. Hypoenhanced areas 

(MVO) in the MRI correlate with histological characteristics of microvascular damage 

(Driesen et al., 2012). Cardiac MRI has also been validated for detection of IMH, 

especially in the first week after reperfusion (O'Regan et al., 2010, Pedersen et al., 

2012, Kumar et al., 2011, Payne et al., 2011). Although all T1 and T2 sequences can 

be used, T2 sequence has shown greater diagnostic performance for IMH (Payne et 

al., 2011).  
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Figure 1.2. Microvascular obstruction as detected by late-gadolinium 
enhancement cardiac magnetic resonance imaging. The upper panel depicts 
an area of hyperenhancement correspondent to a large myocardial infarction. The 
lower panel shows an area of hypoenhancement within an hyperenhanced core, 
correspondent to microvascular obstruction.   
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1.3.4. Prognostic implications  

Failed myocardial reperfusion is clinically relevant as the occurrence of MVO and 

IMH has been associated with adverse outcomes. Detection of MVO is associated 

with larger IS, lower LVEF, and adverse left ventricular remodelling (Lombardo et al., 

2012, Hombach et al., 2005).  In addition, it increased mortality in STEMI patients (de 

Waha et al., 2010, Eitel et al., 2014). In fact, MVO provided independent and 

incremental prognostic prediction value for a composite of all-cause death, re-

infarction, and heart failure after 1 year of PPCI in addition to clinical scores and 

LVEF in a large multicentre observational study including 738 STEMI patients (Eitel 

et al., 2014).  Furthermore, IMH has also been associated with larger IS, impaired LV 

function, LV remodelling, and increased risk of major adverse cardiac events and 

death (Ganame et al., 2009, Beek et al., 2010, Amabile et al., 2012). 

 

1.3.5. Therapeutic approaches for MVO 

Despite intensive pharmacological research aiming to target MVO, there is currently 

no therapeutic strategy that has been unequivocally shown to be efficient in either 

preventing or treating MVO (Niccoli et al., 2016). Several trials testing anti-

inflammatory agents (Armstrong et al., 2007), integrin receptor blockers (Faxon et al., 

2002), anti-oxidants (Chan et al., 2012), calcium-channel blockers (Bar et al., 2006), 

and cyclosporine (Cung et al., 2015), for example, have failed to show any clinical 

benefits. Some promising results were obtained with administration of high doses of 

statins prior to PCI (Kim et al., 2010) or prolonged infusion of gpIIb/IIIa after PCI 

(Petronio et al., 2005), however these need to be tested in larger trials with defined 

end-points. Henceforth, treatment of MVO remains an unmet clinical need. 
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1.4. Cardiac troponins and myocardial damage 

 

1.4.1. Molecular aspects and spatial distribution 

Troponin is a protein complex formed by 3 subunits (C, I, and T) that, along with actin 

and tropomyosin, constitute the thin filament of striated muscle (Filatov et al., 1999). 

Troponin regulates the calcium-mediated interaction between actin and myosin that 

results in muscle contraction in both skeletal and cardiac muscular tissues (Gomes et 

al., 2002). In this context, Troponin C binds to calcium, Troponin I inhibits the enzyme 

actin-activated myosin Mg2+ATPase, and Troponin T is the subunit that is bound to 

tropomyosin (Gomes et al., 2002). Cardiac troponins I and T occur in 3 distinct 

isoforms in slow and fast skeletal muscle and in cardiomyocytes. In contrast, the 

cardiac subunit C has the same aminoacid sequence as the skeletal muscle subunit 

(Barton et al., 1992). The cardiac isoforms of troponin I (cTnI) and troponin T (cTnT) 

can be detected by monoclonal antibodies targeting their myocardial-specific 

epitopes and used as markers of cardiac damage.  

 

In cardiomyocytes, most of the cTn is bound to the contractile complex whereas a 

small portion is found free in the cytoplasm (3 – 8% of cTnI; 6 – 7% cTnT) (Katus et 

al., 1991, Bleier et al., 1998). The spatial distribution of cTn in the heart varies 

(Swaanenburg et al., 2001). The concentration of cTn is higher in the left ventricle 

compared to the right ventricle and the atria (Swaanenburg et al., 2001). There 

seems to be no difference in cTn concentration between the right and left atria 

(Swaanenburg et al., 2001). In the left ventricle, cTn is uniformly distributed although 

presenting substantial inter-individual variability (Swaanenburg et al., 2001).  

 

1.4.2. Release kinetics after irreversible cardiac injury 

In the context of MI, prolonged ischaemia leads to irreversible myocardial necrosis. 

Disruption of the cellular membrane integrity results in release from intracellular 

contents (Wu, 2017). For macromolecules, such as proteins, size directly influences 

release kinetics, i.e. the smaller the protein the quicker it appears in the circulation 

(Wu, 2017). In terms of cardiac protein biomarkers, the first to be detected in the 

blood stream is myoglobin, followed by troponin, creatine kinase, and lactate 

dehydrogenase (Wu, 2017). Proteins that are only present in the cytoplasm display a 
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monophasic release pattern whereas those that are part of the structural cellular 

scaffold present a delayed release (Wu, 2017). Because cTn has both cytoplasmic 

and structural distribution, it has a biphasic release pattern, characterized by initial 

liberation of the cytosolic pool followed by a gradually declining plateau phase that 

represents the degradation of the structural cTn component (Katus et al., 1991, 

Bertinchant et al., 1996).  

 

Coronary reperfusion markedly affects cTn plasmatic kinetics. In non-reperfused 

patients, cTn release steadily increases in the circulation reaching a peak at day 3 or 

4 post-MI (Katus et al., 1991, Bertinchant et al., 1996). With reperfusion, an early 

peak occurs at around 8h to 12h post-reperfusion, reflecting a rapid washout of the 

cytosolic cTn pool (Katus et al., 1991, Bertinchant et al., 1996).  Kinetics of cTn after 

24h does not seem to be affected by coronary reperfusion as it reflects the slow 

degradation and release of the structural cTn pool (Katus et al., 1991, Bertinchant et 

al., 1996).          

 

1.4.3. Correlations with the extent of cardiac damage 

There is strong evidence demonstrating the correlation between cTn circulating 

levels post-MI and IS derived from multiple studies (Hallen, 2012). Although different 

studies used distinct methods for IS determination [e.g. single-photon emission 

computed tomography (SPECT) and cardiac MRI], they were unanimous in reporting 

positive relationships between cTn and IS, with coefficients of correlation ranging 

from 0.60 to 0.75 (Omura et al., 1993, Ohlmann et al., 2003, Giannitsis et al., 2008, 

Tzivoni et al., 2008, Vasile et al., 2008, Hallen et al., 2009). There seems to be no 

difference between cTnI and cTnT in their correlation with IS (Chia et al., 2008). 

Importantly, the timing of cTn measurement affects such correlations, as admission 

cTn levels had weak association with IS. Later time points, especially after 24h after 

symptom onset, seem to better estimate IS (Chia et al., 2008, Steen et al., 2006). In 

fact, measurement at a single time point after 24h, notably 72h, was as effective as 

peak levels or the area under the curve derived from serial cTn measurements (Chia 

et al., 2008, Bohmer et al., 2009).  
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1.4.4. Evidence for association with failed myocardial reperfusion 

Considering the established correlation between cTn and myocardial damage, a few 

studies assessed their association with MVO (Younger et al., 2007, Hallen et al., 

2011, Mayr et al., 2012, Pernet et al., 2014, Nguyen et al., 2015a). In a cohort of 93 

STEMI patients who received thrombolytic therapy, Younger et al. observed higher 

cTnI levels at 72h post-reperfusion in patients with late MVO (p < 0.005) however no 

association was found for 12h levels (p = 0.13) (Younger et al., 2007). In contrast, 

correlation between 12h cTnI and the extent of MVO (r = 0.67, p < 0.0001) was found 

to be superior than that for 72h (r = 0.42, p = 0.040) in a cohort of 51 consecutive 

STEMI patients treated with PCI (Pernet et al., 2014). Considering that cTn washout 

is quicker with PCI than with thrombolysis, the discrepant results between these 2 

studies might be explained by the effect of the different reperfusion therapy 

modalities on cTn kinetics. Levels of cTnI at 24h and 48h post-reperfusion have also 

been found to be independently associated with MVO in a cohort of 175 STEMI 

patients (Hallen et al., 2011). As for cTnT, strong correlations with late MVO were 

reported at 8h, 16h, 24h, 48h, 72h, and 96h post-reperfusion, with the strongest (r = 

0.738, p < 0.005) at the 96h time point in a cohort of 118 STEMI patients (Mayr et al., 

2012). In another study, moderate correlations were observed between 24h (r = 

0.420, p < 0.001) and 48h (r = 0.400, p < 0.001) cTn levels and late MVO (n = 201) 

(Nguyen et al., 2015a). Taken together, these findings point towards a relationship 

between cTn post-reperfusion levels and MVO, especially at time points of the 

plateau phase.  

 

1.4.5. Prognostic relevance 

Cardiac troponins correlate with surrogate markers of worse prognosis, such as 

larger IS, MVO, impaired LVEF, and adverse LV remodelling (Mayr et al., 2011, 

Hallen et al., 2010). Nevertheless, in the modern era of PPCI, there is little evidence 

of an independent association between cTn levels and clinical outcomes in STEMI 

patients. Conflicting results in terms of outcome prediction have been reported for 

cTn post-reperfusion levels (Boden et al., 2013, Buber et al., 2015, Hall et al., 2015, 

Cediel et al., 2017). As for admission cTn, small studies have suggested independent 

prognostic prediction for major adverse cardiac events and mortality (Giannitsis et al., 

2001, Wang et al., 2014a). Therefore, the prognostic role of cTn in PCI-reperfused 

STEMI patients is yet to be elucidated.  
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1.5. MicroRNAs: small molecules with a big potential as disease markers 

 

1.5.1. Non-coding RNAs 

In the past 15 years, with the development of array and RNA-sequencing 

technologies, it was possible to verify that approximately 85% of the human genome 

is transcribed into RNA and that most of the transcriptome does not code proteins 

(Hangauer et al., 2013, Djebali et al., 2012, Elliot and Ladomery, 2016). In humans, 

the proportion of non-coding to coding RNA transcripts is 47:1. Non-coding RNAs 

comprise a heterogeneous group of RNA species arbitrarily divided into short [<200 

nucleotides(nt)] and long (>200 nt) ncRNAs. These RNA species present distinct 

spatiotemporal expression and exert their functions at all gene regulatory levels 

(Cech and Steitz, 2014). 

 

MicroRNAs belong to a class of small non-coding RNAs (approximately 20 to 23 nt in 

length) that post-transcriptionally inhibit gene expression. The first miRNA, lin-4, was 

identified in Caenorhabditis elegans in 1993 (Lee et al., 1993). To date, over 1,500 

miRNAs have been identified in humans with evidence supporting their involvement 

in the regulation of all known cellular processes (Berezikov, 2011).  

 

1.5.2. MicroRNA biogenesis and function 

MicroRNA encoding-sequences can be found in intergenic or intragenic regions of 

the genome. Transcription of these sequences, regulated by RNA polymerase II, 

generates single or multiple hairpin structures, known as primary microRNA 

transcripts (pri-miRNAs). Transcription of intergenic miRNA genes is controlled by 

specific promoters whereas intragenic miRNA genes can be processed by their own 

promoters (if anti-sense oriented) or by their host-gene promoters (if sense-oriented). 

The hairpin region of pri-miRNAs is recognized by a microprocessor complex, a 

multi-protein complex comprised of Drosha and double-stranded RNA-binding protein 

DiGeorge syndrome critical region 8 (DGCR8) (Gregory et al., 2004). The pri-

miRNAs are cleaved by the microprocessor complex cleaves into smaller hairpin 

structures of approximately 70 – 100 nt, named precursor miRNAs (pre-miRNAs). 

Intragenic pri-miRNAs require other splicing enzymes (spliceosome) to complement 

the microprocessor complex mechanism. In contrast, an unconventional class of 
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intragenic miRNAs, known as mirtrons, entirely escape the Drosha-mediated process 

to be transformed into pre-miRNAs solely by the splicing machinery. The nuclear 

protein Exportin 5 transports pre-miRNAs to the cytoplasm, where they are 

processed by the RNase III enzyme Dicer into smaller (∼22-23 nt) double-stranded 

miRNAs (Chendrimada et al., 2005) (Figure 1).  

 

Double-stranded miRNAs contain a guide or mature strand and a passenger strand. 

The mature strand is incorporated into a miRNA-induced silencing complex (miRISC) 

whereas the passenger strand is degraded. This traditional concept has nonetheless 

been challenged by reports that show that the miRNA passenger strand can be 

biologically active and modulate the gene expression in thyroid and lung cancer, for 

instance (Misono et al., 2018, Jazdzewski et al., 2009) In humans, miRISC binds to 

the 3’ untranslated region (3’-UTR) of target mRNAs by imperfect base-pairing 

(Gregory et al., 2005). However, for the binding to be effective there must exist 

perfect complementarity between the target mRNA and miRNA nucleotides 2 to 8. 

This results in mRNA translational repression and/or degradation, and therefore post-

transcriptional gene silencing. The function of miRISC relies mainly on its proteins 

Argonaute 2 (AGO-2), which interacts directly with the mRNAs, and glycine-

tryptophan protein of 182 kDa (GW182), which mediates mRNA degradation by 

deadenylation (Eulalio et al., 2008). In addition, repression efficiency can be 

influenced by factors such as the number of target sites for the same or multiple 

miRNAs in the mRNA 3’-UTR and mRNA secondary structure (Pillai et al., 2007).      
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1.5.3. MicroRNA regulation of atherothrombosis  

MicroRNAs have been shown to regulate multiples mechanisms associated with 

atherothrombosis, including vascular inflammation, atherogenesis, plaque rupture, 

and platelet reactivity.  

 

Atherosclerosis preferentially develops at sites of disturbed blood flow (e.g. arterial 

curvatures and bifurcations), where the endothelium is exposed to oscillatory shear 

stress (OSS) (Caro, 2009). In such areas, LDL deposition and its subsequent 

Figure 1.3. MicroRNA biogenesis and function. Intragenic and intergenic miRNA-encoding 
sequences are transcribed by RNA Polymerase II (RNA Pol II) into primary miRNA (pri-miRNAs) 
transcripts, which are processed by the microprocessor complex and splicing enzymes (intragenic-
derived pri-miRNAs), into precursor miRNAs (pre-miRNAs). Pre-miRNAs are transported to the 
cytoplasm by Exportin 5, where are further processed by the enzyme Dicer to form the mature 
miRNA duplex. The mature strand of the duplex is incorporated by the RNA-induced silencing 
complex (RISC), which binds to the 3’UTR of target mRNAs, causing mRNA translational 
repression and/or degradation. From: (Lima et al., 2017) 
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oxidation (to oxidized LDL; oxLDL) triggers an inflammatory response that results in 

cellular trafficking into the arterial wall and plaque formation (Weber and Noels, 

2011). Expression of some miRNAs is affected by OSS, with functional 

consequences. For example, OSS led to miR-10 downregulation in the aortic arch 

and aorto-renal branches of pigs (Fang et al., 2010), which was associated with 

activation of the IκB/NF-κB-mediated inflammatory pathway in human aortic 

endothelial cells (HAECs). Furthermore, OSS promoted miR-21 overexpression in 

cultured human umbilical vein endothelial cells (HUVECs), inducing the expression of 

adhesion molecules such as vascular cell adhesion molecule 1 (VCAM-1) and 

monocyte chemotactic protein-1 (MCP-1), with augmented monocyte adhesion to 

endothelial cells (ECs) (Zhou et al., 2011). Furthermore, regulation of Krüppel-like 

factors (KLFs), a family of transcription factors induced by atheroprotective laminar 

flow which anti-inflammatory, anti-proliferative, and anti-thrombotic effects in ECs 

(Atkins and Jain, 2007), by miRNAs has been shown by many studies (Wu et al., 

2011a, Fang and Davies, 2012, Loyer et al., 2014a, Hergenreider et al., 2012). For 

example, miR-92 was shown to inhibit KLF2 (Wu et al., 2011a) and KLF4 (Fang and 

Davies, 2012) in vitro an in vivo. In addition, in vivo inhibition of miR-92a in LDL-

receptor knockout (LDL-R-/-) mice reduced endothelial inflammation and 

atherosclerotic plaque size (Loyer et al., 2014a).  

 

It has been demonstrated that oxLDL regulates the expression of miRNAs, such as 

miR-155 and miR-342-5p, in atherosclerotic plaque macrophages, which can 

modulate the inflammatory response and atherosclerosis progression by modulation 

of the NF-κB and interleukin-6 (IL-6) signalling, respectively (Nazari-Jahantigh et al., 

2012, Wei et al., 2013). MicroRNA regulation of adhesion molecules that facilitate the 

infiltration of inflammatory cells into the arterial walls has also been shown (Harris et 

al., 2008, Sun et al., 2012). Induced in vitro inhibition of the EC-expressed miR-126 

results in increased VCAM-1 expression and augmented leukocyte adhesion to ECs 

(Harris et al., 2008).  

 

Furthermore, miRNAs are also involved in atherosclerotic plaque destabilization. One 

of the cardinal features of a vulnerable plaque is a thin fibrous cap. Two miRNAs, 

miR-24 and miR-29, seem to regulate fibrous cap thinning by enhancing macrophage 

apoptosis-associated metalloproteinase 14 proteolytic activity and reducing the 

production of extracellular matrix (Di Gregoli et al., 2014, Boon et al., 2011). Also,  
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expansion of the necrotic core, which predisposes plaque rupture, was shown to be 

enhanced by miR-155 and miR-21, which promote increased intra-plaque 

macrophage apoptosis and impaired clearance of necrotic core contents (Ghorpade 

et al., 2012, Das et al., 2014). Finally, plaque erosion was shown to be promoted by 

miR-712 and miR-223 via fragmentation of the proteoglycan versican and EC 

apoptosis, respectively (Son et al., 2013, Pan et al., 2014).    

 

Platelet activation is fundamental for thrombus formation following plaque rupture. 

Platelets, although anucleate, possess the required biomachinery to convert pre-

miRNAs into mature miRNAs. Platelets have functioning Dicer and AGO-2 proteins, 

which allow platelet miRNAs to post-transcriptionally regulate gene expression e.g. 

AGO2-miR-223 complex can regulate the expression of P2Y12 receptors (Landry et 

al., 2009). This observation opened new avenues for the study of microRNAs as 

modulators of platelet function. Kondkar et al. (Kondkar et al., 2010) measured 

platelet reactivity in 288 healthy individuals and reported increased levels of the 

vesicle-associated membrane protein 8 (VAMP8), a protein involved with platelet 

granule secretion, in hyperactive platelets. VAMP8 was identified as a target of miR-

96, which overexpression decreased VAMP8 levels. Similarly, Nagalla et al. (Nagalla 

et al., 2011) confirmed inhibition of mRNAs (PRKAR2B, KLHL5, and CLOCK) by 

platelet miRNAs (miR-200b, miR-495 and miR-107) and showed that PRKAR2B-/- 

platelets presented reduced reactivity, suggesting that miRNA target genes regulate 

platelet function. 

 

1.5.4. MicroRNA release and transport in biological fluids 

The potential of miRNAs as disease biomarkers was unveiled by reports that 

circulating microRNAs are released in the body fluids within extracellular vesicles 

(Valadi et al., 2007), and, to a less extent, bound to HDL-cholesterol particles 

(Vickers et al., 2011) or AGO-2 protein (Turchinovich and Burwinkel, 2012), 

conferring high stability against circulating RNAses. Indeed, miRNAs display 

characteristics of ideal biomarkers as they can be reliably detected in biofluids even 

after years of sample storage and repeated freezing-thaw cycles (Moldovan et al., 

2014). Furthermore, miRNA content in extracellular vesicles differs from that of their 

maternal cells, suggesting the existence of a selective packing process during the 
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their formation (Diehl et al., 2012), which could be specifically associated to 

pathological states. 

Cells release membrane vesicles under basal or stress conditions. Extracellular 

vesicles differ in size, biogenesis and cellular release mechanism (Raposo and 

Stoorvogel, 2013). Although there is no consensus in the literature with regards to 

the classification and nomenclature of extracellular vesicles, the current most 

accepted terminology includes three different subtypes: (i) exosomes; (ii) 

microvesicles or microparticles; and (iii) apoptotic bodies (Witwer et al., 2013). 

Exosomes, the smallest, have a size range of 40 to 100nm; microparticles size 

ranges from 100 nm to 1000nm; and apoptotic bodies, the largest vesicles, hae a 

size of approximately 1- 5um. With regards to the biogenesis and cellular release 

mechanism, exosomes are formed in intracellular compartments, known as 

multivesicular bodies, which fuse to the cellular membrane to release exosomes to 

the extracellular space. In contrast, microvesicles are shed directly from the cellular 

membrane, especially under stress conditions (Vion et al., 2013). Finally, apoptotic 

bodies are formed during the last stages of apoptosis (Loyer et al., 2014b).     

  

Mostly due to their size, the contents of the different types of extracellular vesicles 

also differ. Apoptotic bodies, for example, contain intracellular organelles and 

cytoplasmic material, including proteins, DNA, and RNAs. Microvesicles contain 

parent cells’ surface proteins and some cytoplasmic content. Exosomes carry some 

proteins, lipids, DNA, and miRNAs, despite their small size (Loyer et al., 2014b). 

Interestingly, it has been demonstrated that the miRNA cargo within exosomes is an 

active, not random process. Specific motifs in miRNA sequences are recognized by 

the heterogeneous nuclear protein ribonucleoprotein A2B1 (hnRNPA2B1), which 

guides miRNA loading into exosomes (Villarroya-Beltri et al., 2013).  

 



	 27	

 

      Figure 1.4. – MicroRNA release from cells and transport in biological fluids.  

 

 

In addition, it has been shown that extracellular vesicles can deliver their genetic 

information to other cells. This newly described mechanism of intercellular 

communication suggests that circulating miRNAs could also have biological roles, as 

these miRNAs can be internalized by recipient cells and influence the expression of 

target genes. In the context of cardiovascular biology, some evidence already 

reinforces this hypothesis (Hergenreider et al., 2012, Loyer et al., 2014b, Wang et al., 

2014b, Bang et al., 2014). For instance, miR-143 and miR-145, found in 

microvesicles secreted by KLF2-stimulated HUVECs, were internalized by vascular 

smooth muscle cells (VSMCs), where they regulated target genes expression 

(Hergenreider et al., 2012). Administration of such microvesicles to apolipoprotein E 

knockout (ApoE-/-) mice reduced atherosclerotic plaque size (Hergenreider et al., 

2012). These findings suggest an important role of miRNA-containing extracellular 

vesicles in the mechanism of intercellular communication between the endothelium 

and VSMCs.   

 

In addition to platelet function regulation, it has been suggested that platelet miRNAs 

may also play a role in the cross-talk between circulating cells and the endothelium. 

Gidlof et al. (Gidlof et al., 2013b) reported downregulation of miRNA-22, -185, -320b, 

and -423-5p in platelets from STEMI patients. These miRNAs were upregulated in 

the supernatant of aggregated platelets and in thrombi obtained from these patients, 

suggesting miRNA transfer from platelets to the site of thrombus formation. Transfer 
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of such miRNAs between platelets and ECs and their biological functionality in the 

recipient cells were confirmed by the observation that miR-320b targeted intercellular 

adhesion molecule 1 (ICAM-1) in ECs, decreasing its cellular expression. Similarly, 

Laffont et al. (Laffont et al., 2013) observed that thrombin-activated human platelets 

released microvesicles containing miR-223. These vesicles were internalized by 

HUVECs and regulated the expression of target genes. These results point towards 

an interesting role for platelet-derived miRNAs in the interaction between circulating 

cells and the vasculature. 

	

1.5.5. Circulating miRNAs deregulated in STEMI 

Most studies that addressed the role of miRNAs in the diagnosis of ACS focused in 

their ability to discriminate myocardial infarction (Viereck and Thum, 2017). Cardiac 

muscle-specific circulating miRNAs, such as miR-208 (Wang et al., 2010), miR-1, 

miR-133a, miR-133b, and miR-499-5p(D'Alessandra et al., 2010), were shown to be 

upregulated whereas miR-122 and miR-375 were downregulated in STEMI patients 

(D'Alessandra et al., 2010). Wang et al. (Wang et al., 2010) demonstrated that miR-

208 levels were elevated after 4 hours of the symptoms onset in 100% of a subset of 

20 STEMI patients, in contrast to 85% detection of cardiac troponin I. ROC curve 

analysis revealed 90.9% sensitivity and 100% specificity of miR-208 to discriminate 

patients with acute MI, suggesting that it could be used as a biomarker for early 

diagnosis of MI. A meta-analysis on the use of circulating miRNAs in the diagnosis of 

MI demonstrated that when used as a single test the diagnostic performance of 

miRNAs compares to that of troponin (Lippi et al., 2013). Nevertheless, substantial 

variability in the settings and miRNAs measured among studies as well as broad 

heterogeneity were reported (Lippi et al., 2013). In addition, slightly elevated levels of 

muscle-enriched miRNAs (miR-133a, miR-208a) were detected in patients with 

stable CAD (Fichtlscherer et al., 2010), which raises questions about the specificity of 

such miRNAs in detecting ACS. In this context, Zeller et al. (Zeller et al., 2014) 

reported a high discriminatory power of miR-132, miR-150, and miR-186 for unstable 

angina (AUC: 0.910; CI: 84-0.98), which biomarker-guided diagnosis is still an 

important clinical challenge. Although the evidence points towards a promising role of 

miRNAs as markers of cardiac injury, little is known about their release kinetics 

following STEMI and there is very scarce evidence of their correlation with 
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myocardial damage assessed by imaging techniques (Eitel et al., 2012). 

Furthermore, there are  

 

The prognostic value of circulating miRNAs in predicting the risk of MI (Zampetaki et 

al., 2012) or major adverse cardiac events (MACE) (Jansen et al., 2014) has also 

been evaluated. In the cohort of the Bruneck study (n=820), which was followed up 

for 10 years (1995 to 2005), baseline levels of miR-126 were associated with 

increased risk of MI whereas miR-197 and miR-223 were associated with decreased 

risk. Platelets were identified as the major source of such circulating miRNAs 

(Zampetaki et al., 2012). In addition, extracellular vesicles levels of miR-126 and 

miR-199a were shown to predict MACE in patients with stable CAD followed up for 6 

years. This effect was not observed for freely circulating miRNAs. Moreover, platelets 

and endothelial cells were the main sources of miRNA-containing microvesicles 

(Jansen et al., 2014). 

 

Interestingly, circulating miRNA levels seem to be influenced by medications, such as 

antiplatelet therapy (de Boer et al., 2013, Willeit et al., 2013). Reduction of highly 

expressed platelet miRNAs, such as miR-223, miR-126, miR-191, and miR-150, was 

observed in healthy individuals receiving prasugrel and increasing doses of aspirin 

for 3 weeks and in patients with carotid atherosclerosis receiving antiplatelet therapy 

(Willeit et al., 2013). Also, miR-126 plasma levels were decreased by aspirin 

treatment in type 2 diabetes mellitus patients (de Boer et al., 2013). These findings 

generated a new concept that circulating miRNAs could potentially monitor 

antiplatelet therapy efficiency. However, these findings also highlight the need for 

studies to report data regarding the interaction between medications and miRNA 

levels, as this might introduce bias on data interpretation.  

 

In sum, there is a strong body of evidence linking circulating miRNA levels to 

cardiovascular pathology, including STEMI. However, current aspects limit the 

introduction of circulating miRNAs in clinical practice. First, miRNA quantification 

relies on real-time quantitative polymerase chain reaction (RT-qPCR) for which there 

is no standardised, unequivocally accepted normalization strategy, which is a critical 

issue when it comes reproducibility among studies (Santovito and Weber, 2017). In 

addition, most studies in STEMI patients have selected small sets of miRNAs based 

on previous literature or experience of the authors, therefore perhaps overlooking 
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potential new circulating miRNA markers of cardiac injury (Santovito and Weber, 

2017). 

 

1.6. Aims of this study 

	

The overall aim of this PhD project was to investigate a potential role of circulating 

microRNAs as markers of failed myocardial reperfusion and myocardial damage in 

STEMI patients.  

 

In addition, specific aims included:  

 

• To evaluate the prognostic relevance of routinely measured cardiac troponins 

prior to and 12 hours post-PCI for prediction of mortality in STEMI patients 

• To identify an endogenous circulating miRNA control for RT-qPCR data 

normalization in STEMI patients  

• To investigate the post-PCI plasmatic kinetics of candidate miRNA markers of 

failed myocardial reperfusion  

• To validate whether these candidates are deregulated in a second STEMI 

cohort  

• To evaluate the association between candidate miRNAs and cardiac MRI 

parameters of myocardial injury (infarct size and MVO)  

• To assess the association between candidate miRNAs and cardiac functional 

recovery after PPCI  
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Chapter 2. Methods
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2.1. Retrospective STEMI cohort 

	

2.1.1. STEMI cohort 1 database 

For retrospective analysis of the prognostic relevance of cTn in STEMI patients, a 

local coronary artery disease (CAD) database (Dendrite), which contains 

prospectively collected data from 5,288 consecutive STEMI patients treated with 

PPCI at the Freeman hospital (Newcastle upon Tyne, UK) between January 2008 

and December 2014, was used. Baseline demographics, clinical presentation, 

procedure details and procedural complications were recorded at the end of each 

PCI and hospital stay by the attending physician. Post-procedural complications, 

troponin and other laboratory measurements, clinical data and discharge medications 

were updated on discharge by Freeman hospital database managers. Data regarding 

variables of interest were extracted from this master database by two medical 

students, Syeda Adil and David Gaskin. Data quality control analysis and data coding 

for statistical analysis were performed by me.  

 

As previously published by our group, the diagnosis of STEMI was based on the 

presence of chest pain suggestive of myocardial ischaemia lasting longer than 30 

minutes accompanied by ST-segment elevation or new left bundle branch block on 

the ECG (Boag et al., 2015). Patients were considered for PPCI if they presented 

within 12h of symptom onset. STEMI patients were given 300 mg of aspirin and were 

transferred directly to the cardiac catheterization laboratory. On arrival, either 600 mg 

of clopidogrel, 60 mg of prasugrel or 180 mg ticagrelor loading dose were 

administered along with standard doses of heparin or bivalirudin according to 

international guidelines. Glycoprotein (GP) IIb/IIIa inhibitors were administered by 

discretion of the operator during PPCI. Patients who did not have cTn quantified prior 

to (n = 310, 5.8%) or after PPCI (n = 64, 1.2%), either because they were in 

cardiogenic shock, under cardiopulmonary resuscitation conditions, or cTn 

measurement was omitted by treating physician, were excluded from the analysis, 

resulting in a total of 4,914 patients for data analysis. When patients were admitted 

several times for PPCI, only data from their first presentation was included for 

analysis.  
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2.1.2. Cardiac troponin measurement  

Serum samples were obtained from arterial blood collected from radial or femoral 

sheath directly prior to the start of PPCI (pre-procedural) as well as from venous 

blood samples collected 12 hours post-PPCI as per routine clinical protocol by the 

attending physician. Cardiac troponin measurements were performed by pathology 

department staff at the Freeman Hospital. Cardiac troponin I (cTnI) was measured in 

1,809 (36.8%) patients with the Siemens cTnI assay on a point-of-care Stratus CS 

analyser (Siemens Healthcare Diagnostics, Germany) whereas cardiac troponin T 

(cTnT) was quantified in 3,105 (63.2%) individuals with the Roche Elecsys high-

sensitivity cTnT (hs-cTnT) assay on the Cobas e601 module (Roche Diagnostics, 

United Kingdom). According to manufacturer information, the Siemens Stratus CS 

cTnI assay has a limit of detection (LoD) of 30 ng/L and imprecision of 10% 

coefficient of variation (CV) at 60 ng/L. The hs-cTnT assay has a LoD reported at 

2.05 ng/L and CV <10% at the 99th percentile (14 ng/L). Considering the high 

correlation between these two assays in patients with acute chest pain (r=0.758) 

(Haaf et al., 2014), a linear transformation of cTnI values to the cTnT scale was 

performed to pool all measurements and group patients according to cTn quartiles.  

 

2.1.3. Follow-up and mortality data 

The median follow-up time was 62 months. Mortality data were provided by the Office 

of National Statistics, which records all deaths in the UK. This information was linked 

to the Dendrite database using the National Health Service (NHS) patient unique 

identification number (NHS number). The cut-off date for mortality assessment in 

every patient was the 20th of June 2017. The prognostic end-points were (i) all-cause 

mortality during hospitalisation and (ii) longer-term all-cause mortality, which included 

only deaths occurred after hospital discharge.  

 

2.1.4. Statistical analysis  

Patients were assigned to quartiles according to their pre-procedural cardiac troponin 

(Pre-cTn) levels. Data normality was assessed using the Shapiro-Wilk test. As data 

did not pass the normality test, comparisons between pre-procedural troponin 

quartile groups were performed with the Kruskal-Wallis test with Dunn’s correction for 
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multiple comparisons for continuous variables or with the Chi-square test for 

categorical variables. Following univariate Cox-regression analysis, variables that 

were associated with in-hospital or longer-term mortality (p < 0.01) were selected for 

identification of core models of independent predictors of mortality by Cox-regression 

analysis. Multivariate analysis was performed using backwards conditional stepwise 

Cox regression and a p value equal or lower than 0.01 was considered significant. 

The association of cTn with mortality was assessed by Kaplan Meier analysis and 

multivariate Cox regression over the core models. The percentage of missing values 

for the confounders included in the multivariate Cox regression analysis was all 

below 5%. 

 

The additive predictive value of pre-cTn as a dichotomous variable (upper versus 

lower quartiles) over baseline predictors for in-hospital and longer-term mortality was 

assessed by implementing Receiver Operating Characteristic (ROC) analysis and 

comparing corresponding Area(s) Under the Curve (AUCs) for nested multivariable 

logistic regression models (i.e. the core model with pre-cTn versus the core model 

alone). A significant increase in the AUC (p < 0.05) was considered a measure of 

discrimination ability between the prediction models. In addition, we calculated the 

Harrell’s C-index for censored time-to-event data (Harrell et al., 1996). Harrell’s c of 

inverse hazard ratio was used as a measure of the predictive power of survival 

regression models and statistics were derived with the STATA procedures “somers 

d” and “lincom” (Newson, 2010). 

 

The incremental reclassification value of pre-cTn over conventional predictors of in-

hospital and longer-term mortality was estimated by categorized NRI (catNRI) 

(Pencina et al., 2011, Pencina et al., 2012). Categorical NRI quantifies the 

correctness of upward and downward reclassification into correct pre-defined risk 

categories (4). For in-hospital mortality, catNRI was calculated across risk categories 

of <2%, 2% to 5%, and ≥5%, according to the estimated probability of death during 

acute coronary syndrome (ACS) hospitalization by the GRACE Score v2.0 available 

at https://www.outcomes-umassmed.org/grace/grace_risk_table.aspx (Fox et al., 

2014). For longer-term mortality, risk categories were <15%, 15-20% and ≥20%. On 

the basis of non-existing pre-defined risk categories of all-cause mortality in STEMI 

patients for the specific duration of the follow-up period, event rates were taken into 

account to derive the optimal cut-offs implemented in the catNRI analysis. For the 
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Cox-regression, ROC, and NRI analyses, only patients that had no missing values for 

any clinical variable were included, hence why the number of events displayed in 

these analyses is lower than the true total. The ROC and NRI analyses were 

performed by Prof Kimon Stamatelopoulos and Dr Giorgio Giorgiopoulos, from the 

National and Kapodistrian University of Athens. All tests were two-tailed. Statistical 

analysis was performed by SPSS software v22.0 (IBM, New York, USA) or STATA 

package, version 11.1 (StataCorp, College Station, Texas, USA). Graphs were 

produced using GraphPad Prism version 7 (GraphPad Software, San Diego, USA). 

Statistical significance was deemed at p < 0.05, unless stated otherwise. 

 

 

2.2. STEMI cohort 2 

2.2.1. Recruitment, inclusion and exclusion criteria 

A second STEMI patient cohort (n = 20) was prospectively recruited between 

January 2017 and June 2017 for the study of miRNA release kinetics post-PPCI by 

Dr Ashfaq Mohammed at the Freeman Hospital. The study was approved by the local 

ethics committee (REC reference: 16/NE/0405). As described above, patients 

presenting with chest pain suggestive of myocardial ischaemia with ST-segment 

elevation or new left bundle branch block on the ECG and indication of PPCI (<12h of 

symptom onset) were included. Exclusion criteria comprised clinically unstable 

patients (haemodynamically unstable, shocked, or unconscious patients) and 

previous myocardial infarction.  As per current clinical guidelines, patients received 

300 mg of aspirin and 600 mg of clopidogrel, 60 mg of prasugrel or 180 mg ticagrelor 

loading dose along with standard doses of heparin (70 units/kg) or bivalirudin 

(0.75mg/kg) at admission to the cardiac catheterization laboratory. Administration of 

GPIIb/IIIa inhibitors was at the discretion of the attending interventional cardiologist 

during PPCI. In addition, one patient undergoing transcoronary ablation for septal 

hypertrophy (TASH) was also recruited as part of this study as a positive control for 

optimal coronary artery perfusion. Finally, 6 healthy individuals were also included as 

negative controls.  
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2.2.2. Blood sampling  

At the start of the PCI procedure, a total of 10 mL of arterial blood was drawn into 3 x 

4mL ethylenediaminetetraacetic acid (EDTA)-coated tubes [Becton Dickinson (BD) 

Biosciences, USA, cat. no. 367844] when the arterial sheath was inserted. These 

samples represented the pre-reperfusion time point. The procedure was then carried 

out as usual and the exact time of reperfusion was recorded. Reperfusion was 

defined by restoration of TIMI 2 or 3 flow and/or occurrence of reperfusion 

arrhythmias. Blood samples were then collected in additional 12 different time points 

post-reperfusion (5, 10, 20, 30, 40, 50, 60, 75, 90, 120, 180 min and 24h; 10mL of 

blood was drawn per time point). Samples were taken from a central arterial source 

up to 90 min post-reperfusion using a 6F radial artery sheath left in since the PCI 

procedure. At 120 min, 180 min, and 24h post-reperfusion, samples were collected 

by venepuncture from a peripheral venous source (antecubital vein). At each interval 

of 60 min, samples collected up to that point were transported at room temperature to 

the laboratory for plasma isolation. Blood sampling in the TASH patient followed the 

same approach, except that the exact time of ethanol injection, rather than 

reperfusion, was recorded and used as the temporal reference for further blood 

sampling. Only one blood sample was collected from each healthy donor from the 

antecubital vein using a vacutainer b;ood collection set (BD, USA, cat. no. 368652).  

 

 

2.3. STEMI cohort 3 

2.3.1. Recruitment, inclusion and exclusion criteria  

Cryopreserved plasma samples from a third STEMI cohort were used to validate 

candidate miRNAs and to assess their correlation with MVO, cardiac damage and 

function parameters. This cohort included participants of the CAPRI trial (n = 50), 

which evaluated the effect of cyclosporine infusion at the start of PPCI on myocardial 

ischaemia and reperfusion injury. This clinical trial was approved by the local ethics 

committee and verbal consent was obtained once patients met inclusion criteria, 

followed by written consent post procedure (REC reference: NE/14/1070; EudraCT 

number: 2014-002628-29). The study included patients presenting within 6h of chest 

pain onset, ST-segment elevation, and with a major (at least 3mm) culprit coronary 

artery occluded (TIMI flow grade 0-1) at the time of admission coronary angiography. 
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Exclusion criteria comprised clinically unstable patients, presence of immunological, 

neoplastic, hepatic, or kidney disorders, patients with an open (TIMI flow > 1) culprit 

coronary artery at the time of angiography, previous MI, or contra-indications to 

cardiac MRI. Patients received standard pharmacological therapy as per current 

international guidelines and were randomized to have a bolus dose of cyclosporine or 

placebo at the start of PCI. In addition, demographic, clinical and laboratorial data 

were recoded. All patients underwent cardiac MRI assessment during hospitalisation 

and after discharge.  

 

2.3.2. Blood sampling  

Sample collection was performed exactly as described for STEMI cohort 2, except 

that blood was taken only at pre-reperfusion and at 5, 15, 30, and 90 min post-

reperfusion. Samples were kept upright, at room temperature, until the last one (90 

min) was collected and then were immediately taken to the laboratory for plasma 

isolation. Plasma was isolated using the same protocol as described for STEMI 

cohort 2 and was stored as 250µL aliquots in cryopreservation tubes at -80°C until 

analysis.  

 

 

2.4. Plasma isolation  

2.4.1. Standard plasma isolation 

Blood samples were centrifuged at 1,500 x g and room temperature for 15 min and 

the top two thirds of the supernatant obtained at the end of the centrifugation were 

collected without disturbing the red cell pellet, transferred in 250µL aliquots to 

cryopreservation tubes and stored at -80°C until analysis. Time of sample storage 

until analysis varied between 6 months and 1 year.  

 

2.4.2. Platelet-poor plasma isolation 

Platelet-poor plasma was isolated from STEMI cohort 2 patient (n = 10) blood 

samples collected prior to and at 30 min and 90 min post-reperfusion as well as 

controls (n = 3) for the purposes of circulating microparticle quantification, as 
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standard plasma contains residual platelets that might interfere with MP analysis 

(Dey-Hazra et al., 2010, Mitchell et al., 2016). Isolation of platelet-poor plasma 

comprised two centrifugation steps: (i) whole blood was centrifuged at 1,500 x g and 

room temperature for 15 min, after which the top two thirds of the supernatant 

(standard plasma) were collected and transferred to a new polypropylene tube; (ii) 

whole plasma was then centrifuged again at 1,500 x g and room temperature for 15 

min, the top two thirds (platelet-poor plasma) were transferred to a fresh 

polypropylene tube, and stored at -80°C until analysis.  

 

	

2.5. Circulating microparticle isolation  

	

Circulating microparticles were isolated from fresh platelet-poor plasma samples, as 

plasma cryopreservation has been shown to result in ex-vivo MP generation from 

residual platelets upon freezing and thawing (Dey-Hazra et al., 2010, Mitchell et al., 

2016). In brief, 250µL of platelet-poor plasma were transferred to a polypropylene 

tube and diluted (1:4) with 750µL of phosphate buffered saline (PBS) (Gibco, by life 

technologies, catalogue number. 1829993). Subsequently, samples were centrifuged 

at 20,000 x g and 4°C for 30 min. The supernatant was carefully aspirated leaving 

the MP pellet in 20µL of the solution. Samples were immediately processed for 

downstream RNA extraction or flow cytometry analysis (Figure 2.1).   



	 39	

 

 

 

2.6.  RNA extraction  

2.6.1. RNA extraction from plasma 

Plasma samples were quickly thawed at 37°C for 2 min and centrifuged at 1,900xg 

and room temperature for 10 min to avoid formation of cryoprecipitate and remove 

residual cells and debris (Cheng et al., 2013). Total RNA was isolated from 200µL of 

plasma using the miRNeasy serum/plasma kit (Qiagen, Germany, cat. no. 217184), 

according to the manufacturer’s protocol. In brief, 200µL of each plasma sample 

were mixed with 1000µL of the Qiazol lysis reagent in 2mL polypropylene tubes and 

incubated at room temperature for 5 min. During the incubation period, 3.5µL (1.6 x 

108 copies/μL) of synthetic cel-miR-39 (Qiagen, Germany, cat. no. 219610) were 

added to all samples. In samples used for miRNA screening, the cel-miR-39-3p RNA 

spike-in template (Exiqon, Denmark, cat. no. 203202) was added instead. Then, 

Figure 2.1.	Blood sampling and processing strategy in prospectively recruited STEMI cohorts. 
Blood samples were collected from 2 STEMI cohorts at different time points prior to and post-PCI. 
The ‘discovery’ cohort samples were used for microRNA screening, kinetics, and plasmatic transport 
analyses. The ‘validation’ cohort samples were used to validate results observed in the ‘discovery’ 
cohort and to assess microRNA levels correlations with cardiac MRI parameters.   
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200µL of chloroform were added to each tube, the mixture incubated for 3 minutes at 

room temperature, and centrifuged for 15 min at 12,000 x g and 4°C. The upper 

aqueous phase (500µL) was carefully collected without disturbing the interphase and 

transferred to a new 2mL polypropylene tube. Subsequently, 750µL of 100% ethanol 

were added to the aqueous phase, the mixture (750µL) was transferred to an 

RNeasy MinElute spin column, and centrifuged for 30 sec at 10,000 x g and room 

temperature. The flow-through was discarded and the procedure repeated with the 

remaining 500µL of the mixture. Serial washes of the column were then performed by 

quick centrifugation with buffer RWT (700µL), buffer RPE (500µL), and 80% ethanol 

(500µL) for 30 sec (buffers RWT and RPE) and 2 min (80% ethanol) at 10,000 x g 

and room temperature. After the serial washes, the column’s membrane was dried by 

centrifugation for 5 min at 10,000 x g and room temperature. Finally, 60µL of RNAse-

free water were added to the centre of the membrane to elute the RNA and this was 

collected in a fresh tube by centrifugation for 1 min at 10,000 x g and room 

temperature. 

 

Following RNA extraction, assessment of total RNA concentration and integrity was 

performed by a 2100 Bioanalyzer instrument using the RNA 6000 Pico Kit (Agilent 

technologies, Germany, cat. no. 5067-1513), according to the manufacturer’s 

protocol. RNA samples were then stored at -80°C until analysis.   

 

2.6.2. RNA isolation from microparticles 

Immediately after microparticle isolation, the 20µL MP pellet was resuspended  

in 180µL of PBS. The 200µL suspension was then subjected to the same RNA 

extraction process described in the previous section. RNA samples were stored at -

80°C until analysis. 

 

 

2.7. Enzyme-linked immunosorbent assay (ELISA)  

	

Heparin was measured in pre-reperfusion plasma and plasma-derived RNA samples 

from the same STEMI patients (n = 10) using a competitive enzyme-linked 

immunosorbent assay (ELISA) kit (BlueGene, China, cat. no. E07H0247). The ELISA 

plate wells were already pre-coated with monoclonal anti-porcine heparin antibody. 
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Plasma (100μL) and RNA (10μL; diluted in 90μL of PBS to a final volume of 100μL) 

samples were incubated with a heparin-horseradish peroxidase (HRP) conjugate in 

the pre-coated wells for 1 hour at 37°C. Phosphate buffered saline (PBS) only 

(100μL) was added to blank control wells. Standards (100μL) containing six serial 

concentrations of heparin (range: 0pg/mL – 2,500pg/mL) were added to wells in 

duplicates to generate a standard curve for heparin concentration calculation in 

STEMI samples. After the incubation period, the sample-conjugate solution was 

removed and wells were washed with 200μL of washing buffer 6 times. A substrate 

for HRP (100μL) was then added to each well, including the blank wells, and 

incubated for 15 minutes at 37°C. Finally, a stop solution was added to the wells and 

absorbance was immediately measured at 450nm wavelength by spectrophotometry 

(Varioskan lux, Thermo Fisher Scientific, USA). A standard curve (Figure 2.2) was 

generated using a four-parameter logistic (4-PL) curve-fit. Heparin concentration in 

the samples was calculated based on the standard curve and dilution factor (RNA 

samples) by the SkanIt software (Thermo Fisher Scientific, USA).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2. Heparin ELISA standard curve. A standard curve was generated 
using a four-parameter logistic (4-PL) curve-fit according to the readings obtained 
from standards with known heparin concentration (0; 50; 100; 500; 1000; and 
2500pg/mL). The equation that describes the curve [y = 1.73465 + ((0.135615 - 
1.73465) / (1 + (x/858.255)^-1.1809))], with R² = 0.967, was used by the SkanIt 
software to calculate heparin concentration in the tested RNA and plasma 
samples.  	
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2.8. RNA sample treatment with heparinase 

	

To test whether in vitro heparin inhibition with heparinase had any effect on miRNA 

detection by RT-qPCR, 5μL of heparin-contaminated RNA samples from STEMI 

patients (n = 3) were incubated with serial doses (0U, 0.1U, 0.25U, 0.5U, 1U) of 

heparinase I from Flavobacterium heparinum (Sigma-Aldrich, Germany, cat. no. 

H2519) for 1 hour prior to reverse transcription (RT) reaction set up. Along with 

heparinase, samples were also incubated with some of the components of the 

TaqMan® microRNA reverse transcription kit (Applied Biosystems, USA, cat. no. 

4366597), as previously described by Johnson ML et al. (Johnson et al., 2003) and Li 

S et al. (Li et al., 2017) and shown in Table 2.1. To validate this, all samples from 

STEMI cohorts 1 and 2 (n = 70) were treated with a single heparinase dose (0.3U) 

and miRNA expression was compared with heparin-contaminated samples from the 

same patients.   

 

 

Reagents Volume (μL/per reaction) 

RNA sample 5 

Heparinase 1 

10X RT buffer 1.5 

RNAse inhibitor 0.19 

Total reaction volume 7.69 

Table 2.1. RNA sample treatment with heparinase  

 

 

2.9. Reverse transcription  

2.9.1. Universal reverse transcription  

For miRNA screening experiments, 4μL of total RNA were reverse transcribed using 

the Universal cDNA synthesis kit II (Exiqon, Denmark, cat. no. 203301). RNA 

samples were mixed with the components of the kit in nuclease-free 0.2mL 

polypropylene tubes on ice, as indicated in Table 2.1. A spike-in miRNA (UniSp6) 

was also added across all samples to control for variations in complementary DNA 

(cDNA) synthesis (Table 2.2). Reverse transcription (RT) reactions were carried out 
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in a thermocycler with the settings: (i) incubation at 42°C for 60 min; (ii) inactivation at 

95°C for 5 min.   

 

RT reaction components Volume (μL/per reaction) 

RNA sample 4 

5X Reaction buffer 4 

Enzyme mix 2 

UniSp6 spike-in 1 

Nuclease free water 9 

Total reaction volume 20 

                 Table 2.2. Universal reverse transcription reaction components   
 

 

 

 

2.9.2. Taqman-based reverse transcription  

Reverse transcription for each target miRNA in cohorts 2 and 3 were performed 

using 5μL of RNA, TaqMan® microRNA reverse transcription kit (Applied Biosystems, 

USA, cat. no. 4366597) and stem-loop specific 5X TaqMan microRNA assays 

(Applied Biosystems, USA, cat. no. 4427975). Reverse transcription in all samples 

from cohorts 2 and 3 were performed without prior RNA treatment with heparinase 

and with heparinase treatment to test the effect of in vitro heparin inhibition on 

miRNA detection by RT-qPCR. In samples not treated with heparinase, 5μL of RNA 

were mixed with the components of the kit and the 5X microRNA assay in nuclease-

free 0.2mL polypropylene tubes on ice, as indicated in Table 2.3. In RNA samples 

that had been treated with heparinase, the remaining components of the RT kit were 

added as described in Table 2.4. No reverse transcriptase control reactions 

containing all reagents but reverse transcriptase were also included to control for 

genomic DNA contamination. Reverse transcription was carried out in a thermocycler 

with the settings: (i) incubation at 16°C for 30 min; (ii) incubation at 42°C for 30 min; 

(iii) inactivation at 85°C for 5 min.  
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RT reaction components Volume (μL/per reaction) 

RNA sample 5 

dNTPs 0.15 

Reverse transcriptase 1 

10X RT buffer 1.5 

RNAse inhibitor 0.19 

Nuclease-free water 4.16 

TaqMan 5X miRNA assay 3 

Total reaction volume 15 

Table 2.3. Reverse transcription reaction set up for heparin-contaminated 
RNA samples.   

 

 

 

 

RT reaction components Volume (μL/per reaction) 

RNA sample 5 

Heparinase 1 

dNTPs 0.15 

Reverse transcriptase 1 

10X RT buffer 1.5 

RNAse inhibitor 0.19 

Nuclease-free water 3.16 

TaqMan 5X miRNA assay 3 

Total reaction volume 15 

Table 2.4. Reverse transcription reaction set up for heparinase-treated RNA 
samples. Note that the final reaction volume is the same as for the RT reaction 
for heparin-contaminated RNA samples due to 1μL less of nuclease-free water to 
compensate for the addition of 1μL of heparinase.  

 
 

 
 

2.10. Effect of heparin and bivalirudin on miRNA detection 

2.10.1. Effect of in vitro heparin addition to RNA samples  

To assess the effect of in vitro heparin addition to RNA samples on miRNA detection 

by RT-qPCR, serial doses (0U, 0.005U, 0.05U, 0.1U, 0.25U, 0.5U, 1U, and 2U) of 

heparin sodium 1,000 IU/mL (Wockhardt, UK, cat. no. FP1079) were added to 5μL 
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heparin-free RNA samples from STEMI patients (n = 3) and the components of the 

TaqMan® microRNA reverse transcription kit, as shown in Table 2.5. Reverse 

transcription was performed using the same settings as mentioned in the previous 

section. The difference in quantification cycle (Cq) values (ΔCq) to the heparin-free 

samples from the same STEMI patients were calculated after RT-qPCR.   

 

 

 

RT reaction components Volume (μL/per reaction) 

RNA sample 5 

Heparin 1 

dNTPs 0.15 

Reverse transcriptase 1 

10X RT buffer 1.5 

RNAse inhibitor 0.19 

Nuclease-free water 3.16 

TaqMan 5X miRNA assay 3 

Total reaction volume 15 

Table 2.5. Reverse transcription reaction set up for experiments testing 
the effect of in vitro heparin addition to RNA samples on miRNA detection. 

 

 

2.10.2. Effect of in vitro bivalirudin addition to RNA samples  

To investigate whether in vitro addition of bivalirudin (Sigma-Aldrich, Germany, cat. 

no. SML1051) to RNA samples would have any effect on cel-miR-39 or the 

endogenous miRNA control expression, 0.1 and 1 m g/m L of bivalirudin were added to 

bivalirudin-free RNA samples from stable CAD patients (n = 3) just prior to reverse 

transcription (Table 2.6). Then, the ΔCq between bivalirudin-free and bivalirudin-

treated RNA samples from the same patients with stable CAD were determined after 

RT-qPCR.   
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RT reaction components Volume (μL/per reaction) 

RNA sample 5 

Heparin 1 

dNTPs 0.15 

Reverse transcriptase 1 

10X RT buffer 1.5 

RNAse inhibitor 0.19 

Nuclease-free water 3.16 

TaqMan 5X miRNA assay 3 

Total reaction volume 15 

Table 2.6. Reverse transcription reaction set up for experiments testing 
the effect of in vitro bivalirudin addition to RNA samples on miRNA 
detection. 
 
 
 
 

 

 
2.11. Real-time quantitative polymerase chain reaction 

2.11.1. SYBR-based qPCR 

Only fresh cDNA samples were used for PCR quantification. Screening of 179 

circulating miRNAs was performed using human serum/plasma focused miRNA PCR 

panels (Exiqon, Denmark, cat. no. 339325) and the Exilent SYBR Green master mix 

(Exiqon, Denmark, cat. no. 203421). Each miRNA PCR panel comprised 2x 96-well 

plates pre-coated with LNA miRNA primers for target miRNAs, for the spike-in 

miRNAs added cel-miR-39, UniSp6, and UniSp3 as well as blank wells. For each 

plate, 10μL of cDNA were mixed with 500μL of the Exilent SYBR Green master mix 

and 490μL of nuclease-free water in a 2mL polypropylene tube. Subsequently, 10μL 

the mixture was added to each well on ice. The plate was covered with an optical 

adhesive film (Applied Biosystems, USA, cat. no. 4311971), briefly centrifuged, and 

loaded into a 7500AB PCR instrument (Applied Biosystems, USA). The PCR reaction 

was carried out with the following settings: (i) polymerase activation at 95°C for 10 

min; (ii) denaturation (40 cycles) at 95°C for 10 sec; (iii) annealing/extension at 60°C 

for 60sec; (iv) melting curve analysis.  
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2.11.2. SYBR-based qPCR data quality control 

Data quality control assessment was based on the Cq values obtained for cel-miR-

39, UniSp6, and UniSp3 templates across all samples. These spike-in miRNAs had 

been added to samples prior to RNA extraction (cel-miR-39), cDNA synthesis 

(UniSp6), or were included in the PCR plate (UniSp3) to control for variations in each 

of these experimental steps.  

 

2.11.3. TaqMan-based qPCR 

Target microRNA quantification using hydrolysis probes was performed with freshly 

synthesised cDNA only. Each PCR reaction for individual miRNAs was prepared in 

nuclease-free 0.2mL polypropylene tubes on ice, by mixing 4.8μL of cDNA sample, 

3.6μL of 20X TaqMan small RNA assay, 36μL of the SensiFAST probe Hi-ROX 

master mix (Bioline, UK, cat. no. BIO-82005), and 27.6μL of nuclease-free water to a 

total volume of 72μL. Subsequently, 20μL of the mixture were transferred to a 96-well 

PCR plate in triplicates. No cDNA template control and no reverse transcription 

control reactions for each target miRNA were also added in triplicate. The plate was 

covered with an optical adhesive film, briefly centrifuged, and loaded into a 7500AB 

PCR instrument (Applied Biosystems, USA). The PCR reaction was carried out with 

the following settings: (i) polymerase activation at 95°C for 10 min; (ii) denaturation 

(40 cycles) at 95°C for 15 sec; (iii) annealing/extension at 60°C for 60sec.  

	

2.11.4. TaqMan assay efficiency  

Efficiency of TaqMan small RNA assays for each of the 7 miRNAs quantified by 

TaqMan-based RT-qPCR in this study was assessed. Reverse transcription was 

carried out using each assay as described in section 3.9.1 and a serial cDNA dilution 

in nuclease-free water (dilution factor = 4) was performed. Real-time qPCR was then 

carried out in triplicates using the different cDNA dilutions and a fixed 20X small RNA 

assay volume (3.6μL), as described in the previous section, to produce a calibration 

curve based on the Cq values obtained for each cDNA dilution for estimation of 

assay efficiency. Assay efficiency (E%) was calculated as a function of the calibration 

curves slopes: E = 10(-1/slope). All assays presented E% between 95% and 105% as 
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well as coefficient of determination (R2) > 0.98, indicating optimal qPCR amplification 

(Figure 2.3).  

 
 

2.11.5. Data analysis and normalisation  

In the miRNA screening experiments, inter-plate calibration was performed to 

minimize PCR inter-run variability. A calibration factor for each plate was determined 

as the difference between the average Cq of UniSp3 triplicates in that plate and the 

overall UniSp3 Cq average for all plates. Inter-plate calibration was performed by 

correcting the target miRNA Cq in each plate according to the calibration factor. The 

global miRNA mean expression was calculated as the geometric mean of Cq values 

obtained for all miRNAs, excluding miRNAs with Cq > 35. In both SYBR- and 

TaqMan-based PCR experiments, the comparative Cq (ΔΔCq) method was used to 

determine Cq values and real-time qPCR data was analyzed using the 7500 software 

v2.0.5 (Applied Biosystems, USA). Fold changes were calculated using the 2-ΔΔCq 

method.  
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Figure 2.3. TaqMan small RNA assay calibration curves. Serial cDNA template dilutions (dilution 
factor = 4) were performed and calibration curves were plotted. The coefficient of determination (R

2
) 

and slope for each curve are displayed. Primer efficiency (E%) was calculated as a function of the 
slope, E = 10

(-1/slope)
. Quantification cycle (Cq) values are displayed as the average of 3 technical 

replicates.  
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2.12. MicroRNA expression stability assessment 

In order to validate an endogenous miRNA control for RT-qPCR normalization, 

expression stability of each candidate microRNA across different samples was 

determined by calculation of the coefficient of variability (CV) and by the NormFinder 

v20 (Andersen et al., 2004), geNorm v3.5 (Vandesompele et al., 2002), and 

BestKeeper (Pfaffl et al., 2004) software. The CV was calculated as the ratio 

between the standard deviation and mean of the Cq values obtained for each miRNA 

across all samples and then multiplied by 100. The Cq values for candidate miRNAs 

obtained in each sample were simultaneously input in the software applications for 

determination of expression stability. Each software applications utilize a different 

statistical algorithm to determine the variation in expression of multiple candidate 

normalisation genes across different samples. Lower stability scores in NormFinder 

(S score), geNorm (M score), and BestKeeper [standard deviation - SD (±crossing 

point)] are expected for more stable miRNAs. Therefore, results from these different 

software were analysed in combination in order to find the most stably expressed 

endogenous miRNA in STEMI patients.  

	

 

2.13. Flow cytometry  

 

2.13.1. Microparticle staining with annexin-V  

Circulating microparticles obtained as described in section 2.5 were processed for 

quantification by flow cytometric analysis. The microparticle pellet was resuspended 

in 100μL of 1X annexin-V binding buffer (10nM HEPES, pH 7.4, 140nM NaCl, 2.5nM 

CaCl2,) (BD Biosciences, USA, cat. no. 51-66121E), which had been diluted in 1:10 

with distilled water. The MP suspension was then incubated with 5μL of FITC 

annexin-V or 5μL of a FITC isotype control (FITC mouse IgG2b k isotype control, 

Biolegend, cat. no. 401205) for 30 minutes, protected from light, at room 

temperature. At the end of the incubation period, MP samples were washed with 

500μL of PBS and centrifuged at 20,000 x g and 4°C for 20 minutes. The 

supernatant was carefully aspirated and the MP pellet was resuspended in 500μL of 

1X annexin-V buffer. The MP suspension was then transferred to TruCountÔ tubes 

(BD biosciences, USA, cat. no. 340334). The tubes were gently vortexed for 5 

seconds and incubated at room temperature in the dark for 20 minutes, as per the 
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manufacturer’s recommendation. Samples were then taken immediately for 

quantification by flow cytometry.  

   

2.13.2. Microparticle gating strategy   

Because of MP’s very small size, flow cytometric MP analysis requires working 

conditions very close to the lowest limit of detection of current flow cytometers. 

Therefore, adequate MP quantification relies on the optimal balance between MP 

detection and signal background exclusion. To achieve this, Megamix-Plus SSC 

(BioCytex, France, cat. no. 7803) were employed to calibrate the flow cytometer and 

establish a gate for MP sample analyses. Megamix-Plus SSC are fluorescent beads 

of varied diameters (0.16μm, 0.20μm, 0.24μm, and 0.5μm) that are equivalent to the 

size range of MP (0.3 to 1μm) when using side scatter (SSC) as a size-related 

parameter. Briefly, 500μL of the beads suspension were transferred to a cytometric 

tube, which was vortexed and positioned in a BD FACS Canto II cytometer for 

calibration using the FACSDiva software (BD Biosciences, San Jose, CA, USA). The 

cytometer settings were adjusted according to BioCytex’s recommendations and 

bead acquisition was performed in the lowest available speed. Gating strategy 

comprised 3 steps (Figure 2.4A): 

 

1. Adjustment of the FITC detector voltage so that the 0.5μm bead population is 

at the beginning of the 5th decade (Figure 2.4A left upper panel). 

2. Determination of MP region boundaries. On a SSC-H count histogram, the 

number of events and SSC-H median parameters were calculated for each of 

the 4 bead populaitons. The lowest MP gate boundary was determined by the 

formula: Low SSC-H lelvel = Md 0.16 + (0.3 x (Md 0.20 – Md 0.16)), where Md 

0.16 represented the median SSC-H for the 0.16μm bead population and Md 

0.20 represented the median SSC-H for the 0.20μm bead population. The 

highest boundary corresponded to the end of the 0.50μm SSC-H peak (Figure 

2.4A middle upper panel). Another boundary was also set at centre of the 

gap between the 0.20μm and 0.24μm peaks, which corresponds to 

differentiate small (< 0.50μm) and large (³ 0.50μm) MP. 

3. Setting the MP gate in dual scatter. Once the MP gate boundaries were 

defined on the SSC (log) scale, the corresponding regions were created on a 

dual scatter plot (SSC-H x FSC-H), which was used for later MP analysis 
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Figure 2.4A right upper panel). This calibration procedure was repeated 

regularly to minimise variability across different samples.  

 

To confirm whether the MP gate was indeed able to separate ‘true’ annexin-V events 

from the instrument background noise the following samples were analysed under 

the same settings (n = 3 for each): (i) filtered 1X annexin-V binding buffer only 

(Figure 2.4B); (ii) unstained MP (Figure 2.4C); (iii) MP sample with FITC isotype 

control (Figure 2.4D); (iv) annexin-V-stained MP (Figure 2.4E).    

 

 

 

 

 

 

Figure 2.4. Gating strategy for circulating microparticle quantification by flow cytometry. (A) 
Microparticle gate boundaries determination with Megamix-plus SSC fluorescent beads. (B) Filtered 
1X annexin-V binding buffer only; (C) unstained MP sample; (D) MP sample stained with FITC IgG 
isotype control; (D) Annexin-V-stained MP sample. 	
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2.13.3. FACS analysis and microparticle quantification 

TruCountÔ tubes contining microparticle samples stained with FITC annexin-V or 

FITC IgG isotype control were gently vortexed prior to analysis to mix contents well. 

All samples were analysed at low speed until 10,000 TruCountÔ beads were 

acquired using the BD FACS Canto II cytometer and the FACSDiva software. 

Microparticles were considered as annexin-V positive events detected within both the 

large and small MP gate. Considering that the number of TruCountÔ beads in each 

tube is accurately determined by the manufacturer and was known in each case, the 

absolute MP count (MP/μl) in each 250μL plasma sample could be determined by 

comparing the number of positive events in the MP gate, with the number of 

TruCountÔ bead events. This was calculated using the formula: 

 

MP	count	(MP/µl) =
#events	in	MP	gate

#TruCount	bead	events
×

#beads/tube

volume	plasma/test(µl)
 

 

 

 

 

2.14. Additional methods 

2.14.1. Cardiac magnetic resonance imaging 

Cardiac magnetic resonance imaging was performed in patients from cohort 3 at 1-7 

days post-MI (average of 3 days; ‘baseline MRI’) as well as at 3 months post-MI 

(‘follow-up’ MRI) with a Siemens Avanto 1.5 Telsa MRI scanner using a phased array 

body coil combined with a spine coil. In brief, according to the CAPRI trial protocol, 

cine images of the heart in 2, 3 and 4 chamber views were obtained using a steady 

state free precession pulse (SSFP) sequence (repetition time [TR]: set according to 

heart rate, image matrix 144x192, echo time (TE): 1.19ms, flip angle: 80°). T2 

weighted STIR (short inversion time [TI] inversion recovery) images were obtained in 

the same projections, using a black-blood segmented turbo spin echo technique (TR 

according to heart rate, TE 47ms, flip angle 180°, TI 140ms, image matrix 208x256). 

Gadobutrol, a contrast agent (Gadovist, Bayer Schering Pharma AG, Berlin, 

Germany), was administered intravenously at a dose of 0.1mmol/kg, and after 10 

minutes short axis end-diastolic LGE images (in corresponding locations to cine and 
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STIR images) were obtained using an inversion recovery (IR) segmented gradient 

echo sequence (TR: according to heart rate, TE: 3.41ms, flip angle: 25°, image 

matrix: 196x256). Imaging analysis was carried out using the cvi42 software (Circle 

Cardiovascular Imaging Inc., Calgary, Canada) by a trained research fellow involved 

in the CAPRI trial, Dr Ashfaq Mohammed. Epicardial and endocardial borders were 

traced automatically on each end-systolic and end-diastolic short axis cine frame with 

manual correction where necessary, allowing automated calculation of left ventricular 

mass, dimensions and ejection fraction (LVEF). For infarct size and MVO 

determination, LGE images taken at the end of diastole were used. Areas of 

enhancement with signal > 5 standard deviations above normal myocardial areas 

(infarction) were identified and quantified automatically. Regions of 

hypoenhancement within a hyperenhanced zone (MVO) were also identified and 

semi-automatically quantified. To prevent bias, miRNA measurements were 

performed in a blind fashion in relation to cardiac imaging data.    

  

2.14.2. Index of microvascular resistance 

The index of microvascular resistance (IMR) was invasively determined immediately 

after stent deployment in the infarct-related artery using a combined temperature and 

pressure coronary wire sensor (Certus, ST. Jude Medical). Hyperaemia was induced 

by intracoronary adenosine injection. IMR was determined as the distal coronary 

pressure multiplied by the mean transit time of three consecutive bolus injections of 

room temperature saline (3 mL) during maximal coronary adenosine-induced 

hyperaemia.  

 

 

2.15. Statistical analysis  

 

Statistical analysis was performed with the SPSS software v22.0 (IBM, New York, 

USA). Data normality was assessed using the Shapiro-Wilk test. Gaussian-

distributed data were analyzed using parametric tests (t test with Welch’s correction; 

paired t-test; or one-way ANOVA, where appropriate) and non-Gaussian data using 

non-parametric tests (Mann Whiteny U test; Wilcoxon matched-pairs signed rank 

test). Correlations between variables were analyzed with the Spearman’s correlation 

test. Data are presented as mean and standard error of the mean and standard 
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deviation (SD) or median and interquartile ranges (IQR) where appropriate and a p < 

0.05 was considered statistically significant, unless stated otherwise.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	 56	

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 3. Prognostic Value of Cardiac 

Troponin in STEMI patients 
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3.1. Introduction 
 

Cardiac troponins (cTn) are established markers of myocardial damage. In response 

to STEMI, a small pool of cytoplasmic troponins is quickly released from 

cardiomyocytes into the circulation followed by a sustained, myofibril degradation-

associated cTn release (Wu, 2017). In STEMI patients treated with reperfusion 

therapy, circulating cTn levels reach a peak between 8-12h post-reperfusion (Katus 

et al., 1991, Solecki et al., 2015, Laugaudin et al., 2016). This peak is higher in 

amplitude and occurs earlier when compared to non-reperfused patients (Katus et 

al., 1991, Solecki et al., 2015, Laugaudin et al., 2016). Some studies have shown an 

association between post-reperfusion cTn levels and failed myocardial reperfusion, 

as evidenced by the presence of microvascular obstruction on cardiac MRI (Younger 

et al., 2007, Hallen et al., 2011, Mayr et al., 2012, Pernet et al., 2014, Nguyen et al., 

2015a). This observation suggests that cTn may provide useful prognostic 

information in this population.  

 

Nonetheless, there is scarce and conflicting evidence regarding the prognostic 

relevance of current cTn assays for prediction of mortality in STEMI patients 

undergoing PPCI (Cediel et al., 2017, Boden et al., 2013, Buber et al., 2015, Hall et 

al., 2015, Nguyen et al., 2016). Considering that the reperfusion process significantly 

affects cTn release, I hypothesized that pre-procedural cTn (pre-cTn) may be a 

stronger predictor of mortality as compared to post-PCI, peak cTn. This chapter 

aimed to assess the prognostic power of pre-PCI as well as 12h post-PCI cTn levels 

for mortality prediction in a large cohort of consecutive STEMI patients treated with 

PPCI.   
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3.2. Results 

3.2.1. Patient baseline and peri-procedural characteristics 

Both pre-cTn and post-procedural cTn were available for 4,914 (92.9%) patients and 

were used for analysis. Cohort baseline characteristics are displayed in Table 3.1. In 

summary, patients with higher pre-cTn levels were more likely to be female and older 

but had lower prevalence of traditional cardiovascular risk factors (current smoking, 

family history of CAD, hypercholesterolaemia, and obesity) and prior history of CAD. 

Furthermore, patients in the highest pre-cTn quartile were more often admitted 

following inter-hospital transfer than directly from ambulance (p < 0.001) and 

presented with greater incidence of cardiogenic shock (Killip class IV; p < 0.001), 

higher heart rate (p < 0.001), longer symptom-onset-to-reperfusion time (p < 0.001) 

and door-to-balloon (dtob) time (p < 0.001), and greater frequency of anterior 

myocardial infarction (p < 0.001) (Table 3.1).  

 

In terms of periprocedural parameters (Table 3.2), patients in the highest pre-cTn 

quartile required more frequent femoral access (p < 0.001), received greater volumes 

of contrast media (p < 0.001), and received GPIIb/IIIa inhibitors more often (p < 

0.001). Furthermore, this group of patients displayed a higher incidence of 

angiographic coronary ‘slow flow’ phenomenon (p < 0.001) and were less likely to 

achieve TIMI flow 3 post-PPCI (p < 0.001) (Table 3.2).   
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Variable	 Entire	cohort	
1
st
	cTn	quartile*	

(	<	34	ng/L)	

2
nd
	cTn	quartile*	

(34	–	124.9	ng/L)	

3
rd
	cTn	quartile*	

(125	–	669.2	ng/L)	

4
th
	cTn	quartile*	

(	>	669.2	ng/L)	
p	value	

Sample	size,	n	(%)	 4,914	(100%)	 1,246	(25.4)	 1,217	(24.8)	 1,223	(24.9)	 1,228	(25)	 	

Gender	(male),	n	(%)	 3,485	(70.9)	 911	(73.1)	 871	(71.6)	 825	(67.5)	 878	(71.6)	 0.015	

Age	[years,	mean	(SD)]	 62	(13)	 60.6	(12.3)	 62.5	(12.7)	 64.6	(12.8)	 63.8	(13.7)	 <0.001	

Risk	factors,	n	(%)	 	 	 	 	 	 	

Smoking	status	 	 	 	 	 	 	

Never	smoked	 1,190	(25.9)	 285	(24.2)	 296	(25.8)	 327	(28.5)	 282	(25.1)	 0.104	

Ex-smoker	 1,296	(28.2)	 308	(26.2)	 354	(30.8)	 304	(26.5)	 330	(29.6)	 0.034	

Current	smoker	 2,109	(42,9)	 583	(49.6)	 498	(43.4)	 516	(45)	 512	(45.6)	 0.021	

Family	history	of	CAD	 2,097	(45.8)	 583	(49.1)	 526	(46)	 518	(44.9)	 470	(42.8)	 0.022	

Hypertension	 2,164	(44)	 553	(44.4)	 559	(45.9)	 544	(44.5)	 508	(41.4)	 0.140	

Diabetes	Mellitus	 587	(12.1)	 151	(12.3)	 144	(11.9)	 132	(10.9)	 160	(13.3)	 0.356	

Hypercholesterolemia	 1,774	(36.1)	 483	(38.8)	 461	(37.9)	 430	(35.2)	 400	(32.6)	 0.006	

Obesity	 1,202	(27.1)	 343	(29.6)	 318	(28.2)	 275	(25.2)	 266	(25)	 0.032	

Medical	history	of	CAD,	n	(%)	 	 	 	 	 	 	

Previous	angina	 890	(18.3)	 254	(20.6)	 259	(21.5)	 189	(15.6)	 188	(15.6)	 <0.001	

Previous	MI	 569	(11.7)	 179	(14.5)	 147	(12.2)	 119	(9.9)	 124	(10.4)	 0.001	

Previous	PCI	 311	(6.3)	 110	(8.8)	 73	(6)	 60	(4.9)	 68	(5.6)	 <0.001	

Previous	CABG	 89	(1.8)	 23	(1.8)	 28	(2.3)	 19	(1.6)	 19	(1.6)	 0.466	

Clinical	characteristics	on	admission	 	 	 	 	 	 	

Heart	rate,	bpm	[median	(IQR)]	 74	(62	–	87)	 70	(60	–	81)		 73	(62	–	87)	 77	(65	–	89)	 78	(65	–	92)	 <0.001	

Systolic	BP,	mmHg	[median	(IQR)]	 128	(110	–	148)	 126	(110	–	146)	 128	(110	–	148)	 130	(110	–	150)	 127	(108	–	148)	 0.310	

Cardiogenic	shock,	n	(%)	 198	(4.1)	 30	(2.4)	 35	(2.9)	 55	(4.5)	 78	(6.4)	 <0.001	

Admission	route,	n	(%)	 	 	 	 	 	 	

Emergency	services	 3,508	(71.4)	 1,018	(81.7)	 889	(73)	 802	(65.6)	 799	(65.1)	 <0.001	

Inter-hospital	transfer	 1,406	(28.6)	 228	(18.3)	 328	(27)	 421	(34.4)	 429	(34.9)	 <0.001	

Door	to	balloon,	min	[median	(IQR)]	 24	(18	–	34)	 	24	(18	–	33)		 24	(18	–	35)	 23	(18	–	32)	 26	(18	–	36)	 <0.001	
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Onset	to	reperfusion,	min		

[median	(IQR)]	
168	(117	–	269)	 134	(104	–	191)	 164	(117	–	241)	 190	(128	–	310)	 209	(133	–	422)	 <0.001	

Infarct	location,	n	(%)	 	 	 	 	 	 	

Anterior	 1,884	(38.9)	 359	(29.3)	 454	(37.8)	 496	(41.1)	 575	(47.4)	 <0.001	

Biochemical	tests	[median	(IQR)]	 	 	 	 	 	 	

	Pre-PCI	haemoglobin,	g/dL	 13.9	(12.6	–	15)	 14.2	(12.9	–	15.2)	 13.9	(12.7	–	15)	 13.6	(12.4	–	14.7)	 13.8	(12.4	–	14.8)	 <	0.001	

Pre-PCI	creatinine,	µmol/L	 86	(73	–	102)	 85	(72	–	101)	 85	(72	–	100)	 83.5	(70	–	99)	 91	(76	–	108)	 <	0.001	

Pre-PCI	cTnT,	ng/L	 126	

(34	–	672)	

18	

(12	–	24)	

66	

(48	–	88)	

291	

(184	–	452)	

2,199	

(1,162	–	6,074)	

<	0.001	

12h	cTnT,	ng/L	 2,798	

(786	–	8,092)	

1,720	

(356	–	5,756)	

1,784	

(440	–	5,576)	

2,676	

(639	–	6,339)	

6,282	

(2440	–	10,000)	

<	0.001	

Outcome	 	 	 	 	 	 	

In-hospital	mortality,	n	(%)	 167	(3.4)	 16	(1.3)	 25	(2.1)	 36	(2.9)	 90	(7.3)	 <0.001	

Longer-term	mortality,	n	(%)	 820	(17.3)	 162	(13.2)	 174	(14.6)	 216	(18.2)	 268	(23.6)	 <0.001	

Overall	mortality,	n	(%)	 987	(20.7)	 178	(14.3)	 199	(16.4)	 252	(20.6)	 358	(29.2)	 <0.001	

Table 3.1. Descriptive clinical characteristics of the study population. BP, blood pressure; CABG, coronary artery bypass graft; CAD, coronary artery 
disease; cTn, cardiac troponin; IQR, interquartile range; MI, myocardial infarction; PCI, percutaneous coronary intervention; TIMI, thrombolysis in myocardial 
infarction angiographic score. *Pre-procedural cardiac troponin quartiles 
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Variable	 Entire	cohort	
1
st
	cTn	quartile	

(	<	34	ng/L)	

2
nd
	cTn	quartile	

(34	–	124.9	ng/L)	

3
rd
	cTn	quartile	

(125	–	669.2	ng/L)	

4
th
	cTn	quartile	

(	>	669.2	ng/L)	
p	value	

Arterial	access,	n	(%)	 	 	 	 	 	 	

Radial	 3,823	(77.9)	 1,021	(82)	 974	(80.1)	 966	(79.1)	 862	(70.4)	 <	0.001	

Femoral	 1,077	(21.9)	 223	(17.9)	 241	(19.8)	 253	(20.7)	 360	(29.4)	 <	0.001	

Brachial	 8	(0.2)	 1	(0.1)	 1	(0.1)	 3	(0.3)	 3	(0.2)	 0.567	

GPIIb/IIIa	medication,	n	(%)	 3,502	(71.7)	 878	(71)	 850	(70.2)	 836	(68.8)	 938	(76.9)	 <	0.001	

Contrast	volume,	mL	 140	(100	–	170)	 130	(100	–	160)	 140	(100	–	170)	 140	(108	–	175)	 150	(110	-190)	 <	0.001	

TIMI	flow	pre-PCI,	n	(%)	 	 	 	 	 	 	

0	 3,427	(72.1)	 858	(71.5)	 828	(70.5)	 810	(68)	 931	(78.2)	 <	0.001	

1	 241	(5.1)	 56	(4.7)	 53	(4.5)	 68	(5.7)	 64	(5.4)	 0.494	

2	 455	(9.6)	 115	(9.6)	 116	(9.9)	 123	(10.3)	 101	(8.5)	 0.465	

3	 633	(13.3)	 171	(14.3)	 177	(15.1)	 190	(16)	 95	(8)	 <	0.001	

Thrombus	aspiration	 2,518	(51.4)	 667	(53.6)	 669	(55.1)	 628	(51.5)	 554	(45.2)	 <	0.001	

Number	of	stents	 	 	 	 	 	 	

0	 281	(5.7)	 55	(4.4)	 66	(5.4)	 61	(5)	 99	(8.1)	 <	0.001	

1	 2,654	(54)	 709	(56.9)	 697	(57.3)	 658	(53.8)	 590	(48)	 <	0.001	

2	 1,393	(28.3)	 340	(27.3)	 321	(26.4)	 353	(28.9)	 379	(30.9)	 0.072	

3	 427	(8.7)	 104	(8.3)	 98	(8.1)	 116	(9.5)	 109	(8.9)	 0.607	

>	3	 157	(3.2)	 37	(3)	 35	(2.9)	 35	(2.9)	 50	(4.1)	 0.251	

Intra-procedural	complications	 	 	 	 	 	 	

Coronary	slow	flow		 84	(1.7)	 5	(0.4)	 22	(1.8)	 20	(1.6)	 37	(3)	 <	0.001	

Coronary	dissection	 83	(1.7)	 26	(2.1)	 15	(1.2)	 20	(1.6)	 22	(1.8)	 0.421	

Coronary	perforation	 15	(0.3)	 5	(0.4)	 2	(0.2)	 4	(0.3)	 4	(0.3)	 0.751	

Aortic	dissection	 5	(0.1)	 0	(0)	 1	(0.1)	 2	(0.2)	 2	(0.2)	 0.527	

Side	branch	occlusion	 26	(0.5)	 7	(0.6)	 7	(0.6)	 7	(0.6)	 5	(0.4)	 0.927	

Heart	block	requiring	pacing	 7	(0.1)	 2	(0.2)	 1	(0.1)	 3	(0.2)	 1	(0.1)	 0.666	

Direct	current	cardioversion	 53	(1.1)	 18	(1.4)	 12	(1)	 13	(1.1)	 10	(0.8)	 0.481	

TIMI	flow	post-PCI,	n	(%)	 	 	 	 	 	 	

0	 107	(2.3)	 21	(1.8)	 30	(2.6)	 22	(1.9)	 34	(2.9)	 0.180	
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1	 47	(1)	 8	(0.7)	 7	(0.6)	 9	(0.8)	 23	(2)	 0.002	

2	 187	(4)	 22	(1.8)	 31	(2.6)	 48	(4.1)	 86	(7.4)	 <	0.001	

3	 4,349	(92.7)	 1,140	(95.7)	 1,103	(94.2)	 1,090	(93.2)	 1,016	(87.7)	 <	0.001	

Table 3.2. Periprocedural parameters. IQR, interquartile range; gpIIb/IIIa, glycoprotein IIb/IIIa inhibitors; PCI, percutaneous coronary intervention; TIMI, 
thrombolysis in myocardial infarction angiographic score
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3.2.2. Higher pre-cTn levels are associated with increased mortality 

In-hospital mortality rate was 3.4% and overall mortality was 20.7% (n=987 deaths) 

at a median follow-up period of 53 months (interquartile range 37 – 68 months) 

(Table 3.1). Patients in the highest quartile of pre-cTn had nearly a 6-fold higher in-

hospital mortality rate compared to patients in the lowest quartile (7.3% vs. 1.3%, p < 

0.001) (Table 3.1). Higher pre-cTn levels were also associated with an approximately 

2-fold greater mortality rate after hospital discharge (23.6% vs. 13.2%, p < 0.001) 

(Table 3.1). Both pre-cTn (log rank p < 0.001) and 12h post-PCI cTn (log rank p = 

0.003) were associated with overall mortality by univariate Kaplan-Meier analysis 

(Figures 3.1 and 3.2). Although, curves for each pre-cTn quartile did not intersect, 

with ascending number of events across quartiles (Figure 3.1), whereas there was 

an overlap in Kaplan Meier curves for the 3 lower quartiles of 12h cTn (Figure 3.2).  

 

Co-variables identified as determinants of high pre-cTn were (i) delay in PPCI for 

patients with inter-hospital transfer (p = 0.001), (ii) admission serum creatinine levels 

(p < 0.001), (iii) heart rate on admission (p = 0.036), (iv) cardiogenic shock on 

admission (p < 0.001), (v) previous history of myocardial infarction (0.023), (vi) 

presumed area at risk (anterior location, p < 0.001) and (vii) lack of spontaneous 

recanalization prior to PPCI (i.e. lack of TIMI 3 flow pre-PPCI, p < 0.001) (Table 3.3). 

In addition, age (p < 0.001), previous angina (p = 0.037), pre-PPCI haemoglobin (p < 

0.001), pre-PPCI creatinine (p < 0.001), anterior infarct (p < 0.001), TIMI flow 3 pre-

PPCI (p < 0.001), use of GPIIb/IIIa inhibitors (p < 0.001) were found to be 

independently associated to peak cTn levels (Table 3.3). 
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Figure 3.1. Kaplan-Meier curve displaying estimated probability of overall mortality 
according to pre-cTn quatiles.  
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Figure 3.2.  Kaplan-Meier curve displaying estimated probability of overall mortality 
according to post-cTn quatiles. 
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Variable 
 Pre-procedural cTn  Peak (12h post-PPCI) cTn 

 b 95% CI p-value  b 95% CI p-value 

Age    1.676 -3.753 – 7.106 0.545  21.086 11.611 – 30.562 < 0.001 

Previous angina  -91.642 -294.773 – 111.490 0.376  -308.969 -599.274 – -18.663 0.037 

Previous MI  -250.507 -466.715 – -34.299  0.023  -27.507 -446.704 – 391.690 0.898 

Previous PPCI  -58.207 -392.315 – 275.901  0.733  -339.710 -836.272 – 156.852 0.180 

Pre-PCI haemoglobin  -8.168 -50.051 – 33.716 0.702  148.037 81.774 – 214.301 < 0.001 

Pre-PCI creatinine  734.876 555.922 – 913.830 < 0.001  1287.806 1003.019 – 1572.594 < 0.001 

Heart rate at admission  3.605 0.676 – 6.534 0.036  2.070 -3.386 – 7.526 0.457 

Systolic BP at admission   0.570 -1.578 – 2.718 0.603  -0.180 -3.599 – 3.239 0.918 

Cardiogenic shock   667.415 297.789 – 1037.04 < 0.001  518.986 -62.652 – 1100.624 0.080 

Inter-hospital transfer  265.232 111.899 – 418.564 0.001  -84.166 -330.190 – 161.859 0.502 

Onset to reperfusion  0.360 -0.007 – 0.079 0.102  -0.016 -0.089 – 0.058 0.678 

Door to balloon        -0.002 -0.011 – 0.006 0.611  -0.006 -0.019 – 0.007 0.367 

Anterior MI  405.940 263.932 – 547.948 < 0.001  847.175 622.261 – 1072.090 < 0.001 

TIMI 3 Pre-PCI  -639.301 -846.756 – -431.846  < 0.001  -2023.167 -2357.173 – -1689.16 < 0.001 

GP IIb/IIIa medication  - - -  885.806 636.027 – 1135.584 < 0.001 

Thrombus aspiration  - - -  102.494 -123.181 – 328.168 0.373 

TIMI flow 3 post-PPCI  - - -  -313.869 -748.872 – 121.134 0.157 

Table 3.3. Predictors of pre-cTn and peak cTn levels. b, standardized regression coefficient; BP, blood pressure; CI, confidence interval; cTn, cardiac 
troponin; GPIIb/IIIa, glycoprotein IIb/IIIa; MI, acute myocardial infarction; PPCI, primary percutaneous coronary intervention; TIMI, thrombolysis in myocardial 
infarction angiographic score.
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3.2.3. Pre-cTn is an independent predictor of mortality in STEMI patients 

Multivariate Cox-regression analysis identified high pre-cTn (4th quartile) as an 

independent predictor of in-hospital mortality [Hazard ratio (HR) per highest to lowest 

quartile: 3.64; 95% Confidence Interval (CI): 1.86 – 7.10; p < 0.001] when adjusted 

for the variables in the core model of in-hospital mortality prediction (Figure 3.3).  In 

addition, pre-cTn levels were also independently associated with longer-term 

mortality (HR per highest to lowest quartile: 1.26; 95% CI: 1.01 – 1.57; p = 0.035) 

when adjusted for the core model of longer-term mortality prediction (Figure 4.4). In 

contrast, 12h post-PPCI cTn was not independently associated with either in-hospital 

or longer-term mortality in multivariate Cox-regression analysis (Figures 3.3 and 

3.4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

	

Figure 3.3. Pre-cTn is an independent predictor of in-hospital mortality.  



	 68	

 

 

 

 

 

3.2.4. Pre-cTn confers incremental prognostic value over core predictive models of 

in-hospital and longer-term mortality  

 

Pre-cTn in the highest quartile conferred significant but modest additive 

discrimination value over the core model of in-hospital mortality prediction 

(AUC:0.904; 95% CI: 0.876-0.932 vs. AUC:0.891; 95% CI: 0.861-0.922, respectively, 

p = 0.022) (Table 3.4). For longer-term mortality, the additive predictive value of pre-

cTn in the highest quartile over the core predictive model was significant but weaker 

than that observed for in-hospital mortality (AUC:0.833; 95% CI: 0.818-0.848 vs. 

AUC:0.829, 95% CI: 0.814-0.845, respectively, p = 0.008) (Table 3.4). Similar results 

on the discriminative value of pre-cTn for both outcomes were derived from Harrell's 

C analysis (Table 3.4).  

 

For reclassification performance, pre-cTn by ascending quartiles correctly 

reclassified 2,312 patients who were free of in-hospital death into lower risk 

categories while 20 patients who died were correctly reclassified into higher risk 

Figure 3.4. Pre-cTn is an independent predictor of longer-term mortality. 
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category (overall catNRI = 65.6%, p < 0.001) (Table 3.5). Similarly, regarding longer-

term mortality, the core model including pre-cTn by ascending quartiles correctly 

reclassified 1,499 subjects without the event into lower risk categories and 76 

patients who died into higher risk categories (overall catNRI = 50.2%, p < 0.001) 

(Table 3.6). 

 

 

 

 

 Discrimination 

 AUC 

(95% CI) 

p-value Harrell’s 

C index 

(95% CI) 

p-value 

 In-hospital death 

*Core model 0.891 

(0.861-0.922) 

 0.884 

(0.852-0.915) 

 

+Troponin 

(upper quartile) 

0.904 

(0.876-0.932) 

0.022 0.899 

(0.870-0.927) 

0.012 

 Long-term mortality 
**Core model 0.829 

(0.814-0.845) 

 0.801 

(0.786-0.816) 

 

+Troponin 

(upper quartile) 

0.833 

(0.818-0.848) 

0.008 0.804 

(0.790-0.819) 

0.004 

Table 3.4. Incremental discrimination value of pre-cTn to core models of in-hospital and longer-
term mortality prediction in STEMI patients.  
Core model for in-hospital mortality prediction includes age, pre-PCI haemoglobin, pre-PCI creatinine, 
cardiogenic shock on admission, admission heart rate, femoral access, coronary flow slow, TIMI 3 flow 
post-PCI.  
Core model for longer-term mortality prediction includes age, Hemoglobin, creatinine, admission heart 
rate, previous MI, anterior MI, GPIIb/IIIa inhibitors, TIMI 3 flow post-PCI. 
AUC, area under the curve; 95% CI, 95% confidence interval. 
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Core	model	only	 Core	model	+	Pre-cTn	

Risk	categories	

(in-hospital	death)	
<2%	risk	 2-5%	risk	 ≥5%	risk	 Total	

Subjects	free	of	in-hospital	

death	(n=4,398)	
	 	 	 	

<2%	risk	 1,110	 41	 11	 1,162	

2-5%	risk	 1,723	 311	 166	 2,200	

≥5%	risk	 533	 274	 229	 1,036	

Total	 3,366	 626	 406	 4,398	

Subjects	who	died	in-

hospital	(n=123)	
	 	 	 	

<2%	risk	 5	 6	 2	 13	

2-5%	risk	 5	 6	 33	 44	

≥5%	risk	 6	 10	 54	 70	

Total	 16	 18	 89	 123	

catNRI	 Estimate	 SE	 p-value	

	 0.656	 0.063	 <0.001	

Table 3.5. Pre-cTn in ascending quartiles format reclassifies the risk for in-hospital mortality 
after STEMI over a core clinical model. The shaded values reflect subjects who were reclassified 
into lower-risk categories (light green) or higher-risk categories (red). Core model for in-hospital 
mortality prediction includes age, pre-PCI haemoglobin, pre-PCI creatinine, cardiogenic shock on 
admission, admission heart rate, femoral access, coronary flow slow, TIMI 3 flow post-PCI. catNRI, 
categorical net reclassification index; cTn, cardiac troponin. 
 
 
 
 

	

Core	model	only	 Core	model	+	Pre-cTn	

Risk	categories	

(longer-term	death)	
<15%	risk	 15-20%	risk	 ≥20%	risk	 Total	

Subjects	alive	(3,631)	 	 	 	 	

<15%	risk	 817	 61	 124	 1,002	

15-20%	risk	 673	 86	 175	 934	

≥20%	risk	 1,013	 173	 509	 1,695	

Total	 2,503	 320	 808	 3,631	

Subjects	who	died	(n	=	

853)	
	 	

	 	

<15%	risk	 51	 14	 88	 153	

15-20%	risk	 38	 11	 123	 172	

≥20%	risk	 65	 46	 417	 528	

Total	 154	 71	 628	 853	

catNRI	 Estimate	 SE	 p-value	

	 0.502	 0.026	 <0.001	

Table 3.6. Pre-cTn in ascending quartiles format reclassifies the risk for longer-term mortality 
after STEMI over a core clinical model. The shaded values reflect subjects who were reclassified 
into lower-risk categories (light green) or higher-risk categories (red). Core model for longer-term 
mortality prediction includes age, Hemoglobin, Creatinine, admission heart rate, previous MI, anterior 
MI, GPIIb/IIIa inhibitors, TIMI 3 flow post-PCI. catNRI, categorical net reclassification index; cTn, 
cardiac troponin. 
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3.3. Discussion  

	

This is the first large study to demonstrate the prognostic importance of pre-cTn 

assays for mortality prediction over a median 5 years follow up in a cohort of 

unselected STEMI patients treated with PPCI. Pre-cTn was independently associated 

with both in-hospital and longer-term mortality. In addition, pre-cTn improved the 

prognostic power of core clinical models to discriminate in-hospital and longer-term 

mortality. Finally, addition of pre-cTn to core clinical models of in-hospital and longer-

term mortality prediction correctly reclassified patients into pre-established mortality 

risk categories based on the GRACE score.  

 

Previous smaller studies have investigated whether admission cTn measurements 

had any prognostic value. Giannitsis et al.(Giannitsis et al., 2001) evaluated whether 

detection of cTnT by a rapid bedside assay at admission could predict 30-day and 9-

month mortality in 140 consecutive patients. They reported higher rates of all-cause 

mortality in cTnT-positive in comparison to cTnT-negative patients both at 30 days 

(15.6% versus 3.9%, p = 0.02) and 9-months (18.8% versus 3.9%, p = 0.05) 

(Giannitsis et al., 2001). Similarly, Wang et al. (Wang et al., 2014a) observed that 

pre-catheterization hs-cTnT was an independent predictor of major adverse 

cardiovascular events (MACE), including death, myocardial infarction, and 

revascularisation, in a population of 173 consecutive patients at 30 days and 1 year 

of follow-up. In accordance with our findings, Giannitsis et al. demonstrated that 

cTnT-positive patients had more anterior infarcts (Giannitsis et al., 2001) and were 

less likely to achieve optimal coronary recanalization post-PPCI (TIMI flow < 3 post-

PPCI) (Giannitsis et al., 2001). In addition, our study also shows that pre-cTn levels 

were independently associated with a delay in reperfusion, as reflected by higher 

frequency of patients being admitted by inter-hospital transfer in the upper pre-cTn 

quartile groups. Taken together, these findings suggest that pre-cTn is a marker that 

may cumulatively inform about the duration of ischaemia and the anatomical 

myocardial area at risk up until the time of PPCI. Therefore, pre-cTn may provide an 

early prediction for the success of the reperfusion procedure and for the prognostic 

outcomes thereafter. Nonetheless, because of the small sample sizes in these 

previous studies, the prognostic power of pre-cTn over traditional predictors of 

mortality in STEMI patients remained to be elucidated.    
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In this study, pre-cTn provided significant discrimination and reclassification value 

over core multivariable models for prediction of in-hospital and longer-term mortality. 

Its incremental discrimination value was stronger for in-hospital mortalilty than longer-

term mortality. Considering that the markedly high discrimination accuracy of the core 

model may hinder C-statistics analysis from revealing the true clinical value of 

troponin in this population (Cook, 2007), reclassification statistics may estimate more 

accurately the clinical importance of pre-cTn. Indeed, pre-cTn conferred strong 

reclassification value for both in-hospital and longer-term mortality, especially for the 

prediction of in-hospital mortality (catNRI 65.5%). This is particularly valuable 

considering that cardiac mortality seems to be more prevalent within 30 days  post-

STEMI, with the majority of deaths within the 5 years following discharge being due 

to non-cardiac causes (<1.5% annual risk of cardiac death) (Pedersen et al., 2014). 

Interestingly, pre-cTn seemed to perform best in detecting truly low risk subjects both 

for in-hospital and longer-term mortality (correctly reclassified 2,312 and 1,499 

patients who survived into lower risk categories, respectively). In contrast, 

reclassification value into higher risk categories was rather modest, which is not 

unexpected given the strong predictive ability of the core model for mortality. Overall, 

these results indicate a clear advantage of pre-cTn over established predictors in 

STEMI patients to improve risk stratification for in-hospital and longer-term mortality.  

 

An important finding from this study was that peak (12h) cTn was not independently 

associated with in-hospital or longer-term mortality. A recent study by Cediel et al. 

(Cediel et al., 2017) also demonstrated that peak levels of both contemporary cTnI 

and hs-cTnT assays do not provide relevant prognostic information for the prediction 

of MACE at 30 days and 1 year of follow-up in consecutive STEMI patients 

undergoing PPCI (n = 1,260). In that study, pre-procedural hs-cTn levels were not 

included in the analysis (Cediel et al., 2017).  In contrast, some previous 

investigations have shown associations between peak cTn levels and prognostic 

outcomes in STEMI patients (Boden et al., 2013, Buber et al., 2015, Hall et al., 

2015). Boden et al. performed serial hs-cTnT measurements at fixed 6h intervals for 

48h after PPCI in 188 consecutive STEMI patients and found that all measurements 

correlated with adverse outcomes during 1 year of follow-up (Boden et al., 2013). In 

addition, Buber et al. (Buber et al., 2015) observed that peak (8h) levels of cTnI were 

independently associated to the occurrence of all-cause death, recurrent infarct, or 

heart failure during hospitalisation in 175 STEMI patients. Finally, Hall et al. (Hall et 
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al., 2015) observed that post-PCI levels of cTnI provided incremental prognostic 

power over other outcome predictors in 1,066 patients in the PROTECTION AMI trial. 

Collectively, these studies provide important hypothesis generating data on the 

significance of cTn in STEMI. However, small sample sizes and use of strict selection 

criteria, which invariably excluded patients with more comorbidities, limit the 

generalization of these findings to the wide STEMI population and call for validation 

in larger cohorts. To that end, our findings derived from this large cohort of 

unselected STEMI patients resembling populations in routine clinical practice imply 

that serial measurements of cardiac troponin post-PPCI in STEMI patients is 

questionable, given that peak cTn does not seem to provide relevant prognostic 

information and brings an additional economic burden to health systems. 

 

Although post-PCI cTn levels correlate with surrogate markers of worse prognosis, 

such as infarct size and left ventricular remodelling, better than pre-cTn in STEMI 

patients (Selvanayagam et al., 2005, Nguyen et al., 2015b, Reinstadler et al., 2016), 

it is possible to speculate why post-reperfusion cTn levels are not predictors of 

mortality in this population. First, the reperfusion process influences cTn kinetics, 

leading to an early cTn peak, resultant from rapid washout of cytosolic cTn (Katus et 

al., 1991, Bertinchant et al., 1996), which may potentially vary in amplitude and time 

of occurrence (8 – 12h post-PPCI) according to the quality of reperfusion therapy. In 

addition, the inter-personal variability of cTn concentration and distribution in cardiac 

tissue may contribute to absolute peak values that may not entirely reflect the extent 

of cardiac area at risk (Swaanenburg et al., 2001).  

 

Some limitations are recognized in this study. First, conversion of cTnI values to the 

cTnT scale might potentially have added some degree of inaccuracy in terms of 

patient assignment into cTn quartile groups. In addition, specific data about cardiac 

death was not provided. Finally, because mortality data was retrieved from statistical 

records, misclassifications cannot entirely be excluded.  
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3.4. Conclusion 
 

In conclusion, this chapter provides evidence to support an important role for pre-cTn 

levels in predicting prognosis in STEMI patients undergoing PPCI. We propose that 

pre-cTn could be used to better categorize risk in this population. Finally, we 

demonstrate that peak cTn levels do not seem to be useful for prognostic 

stratification of STEMI patients and therefore the cost-effectiveness of serial cTn 

measurements post-PPCI needs to be reconsidered.      
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Chapter 4. Overcoming Methodological Issues 

In Circulating miRNA Quantification In STEMI 

Patients  
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4.1. Introduction 

 
Although cardiac troponins (cTn) are established biochemical markers of STEMI, 

technical limitations in their quantification methods (van der Linden et al., 2017) and 

only moderate correlations with infarct size (Cobbaert et al., 2014) prompt the 

identification of new markers of myocardial injury. In addition, as shown in chapter 4, 

cTn routinely quantified at 12 hours post-PPCI is not a predictor of in-hospital and 

longer-term mortality in STEMI patients. Therefore, investigation for relevant 

prognostic circulating biomarkers in STEMI patients is also warranted.   

 

In the context of STEMI, circulating levels of several microRNAs (miRNA) have been 

shown to be deregulated by many studies (Viereck and Thum, 2017). Cardiac-

enriched miRNAs attract special interest, as they are more likely to inform about the 

nature and extent of myocardial injury (Viereck and Thum, 2017). Nonetheless, lack 

of standardization in circulating miRNA quantification methods contributes to 

substantial inconsistencies and conflicting results among studies (Navickas et al., 

2016). Notably, the lack of consensus regarding real time quantitative polymerase 

chain reaction (RT-qPCR) data normalization as well as the presence of RT-qPCR 

inhibitors, such as heparin, in STEMI patient samples represent critical limitations for 

the translation of miRNAs to daily clinical practice (Viereck and Thum, 2017, 

Santovito and Weber, 2017).  

 

Currently, RT-qPCR is the preferred method for miRNA quantification given its 

specificity and broad dynamic range (Marabita et al., 2016). Data normalization is a 

critical step to reduce the effects of systematic errors and obtain biologically 

meaningful miRNA expression in RT-qPCR studies (Marabita et al., 2016). The most 

widely employed normalization strategy is the use of a stably expressed endogenous 

control. Nonetheless, there are no circulating miRNAs that have been systematically 

validated as endogenous controls in STEMI patients to date. To overcome this 

limitation, synthetic exogenous miRNAs, especially Caenorhabditis elegans miR-39 

(cel-miR-39), have been used as alternatives for data normalization in most studies 

(Viereck and Thum, 2017). However, heparin, a medication that is routinely 

administered to STEMI patients during coronary intervention, has been shown to 

affect the detection of cel-miR-39 by RT-qPCR, which might compromise its use as a 

normalization control (Boeckel et al., 2013, Kaudewitz et al., 2013). Another 
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proposed normalization strategy is to use the mean expression of hundreds of 

quantified miRNAs in a sample (Kaudewitz et al., 2013).  Yet, this approach is not 

feasible for clinical routine or large clinical studies focusing on few target miRNAs.  In 

addition, the effect of RT-qPCR inhibitors on the global miRNA expression is 

unknown. Therefore, circulating miRNA quantification in STEMI patients undergoing 

PPCI remains an unmet challenge from a methodological perspective.  

 

This chapter aimed to (i) identify and validate an endogenous circulating miRNA 

control for RT-qPCR data normalization in STEMI patients, (ii) assess the in vitro and 

in vivo effects of anticoagulant drugs administration, such as heparin and bivalirudin, 

on currently used normalization strategies; (iii) evaluate whether in vitro heparin 

inhibition with the addition of heparinase to RNA samples affects circulating cardiac-

enriched miRNA detection by RT-qPCR. 
	

	

4.2. Specific methods 

4.2.1. Study design  

The study described in this chapter was carried out in 3 consecutive phases (Figure 

4.1). In phase 1, screening of 179 miRNAs using RT-qPCR panels was performed in 

STEMI patients across 6 time points prior to and post-PPCI as well as in stable CAD 

controls to identify candidate endogenous miRNA controls (Figure 4.1A). The 4 most 

stable miRNAs identified in phase 1 were subsequently quantified in 34 STEMI 

patients to assess expression stability for validation purposes (validation phase – 

Figure 4.1B). As part of the validation phase, the effects of heparin and bivalirudin 

administration on the three normalization approaches (global miRNA mean, cel-miR-

39, and validated endogenous control) were also analysed (Figure 4.1B). Finally, the 

effect of the in vitro treatment of heparin-contaminated samples with heparinase on 

cardiac-enriched miRNA (miR-1 and miR-133b) quantification was evaluated in 70 

STEMI patients (application phase - Figure 4.1C). 
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Figure 4.1. Study design. The study was carried out in three consecutive phases. In the 
screening phase (A), a total of 179 microRNAs were initially quantified in samples from 3 
STEMI patients and 4 control samples using real time quantitative reverse transcription (RT-
qPCR) panels to identify 8 candidate endogenous miRNA controls. In a second step of this 
phase, miRNA screening was performed in samples collected at 30min post-PCI from 6 
STEMI patients and subsequently treated in vitro with heparinase to select the 4 most stable 
candidate endogenous miRNAs and to assess the effect of heparin and heparinase 
administration on the global miRNA mean expression (B), the 4 candidate miRNAs 
previously identified were quantified by TaqMan RT-qPCR in 20 STEMI samples collected 
24h post-PCI (heparin-free) and miRNA stability was determined. In addition, cel-miR-39 and 
the validated endogenous miRNA control were quantified in a total of 35 STEMI samples 
(30min post-PCI) to evaluate the effect of in vivo administration of heparin on the miRNAs 
expression. To further assess the in vivo effect of bivalirudin on the exogenous spike-in and 
endogenous miRNA, these miRNAs were quantified in samples collected from STEMI 
patients (n = 3) at 13 time points prior to and following PCI. Finally, in the application phase 
(C), heparin-contaminated RNA samples from the same 35 STEMI patients (30min post-PCI) 
were then treated in vitro with heparinase and cardiac-enriched miRNAs (miR-1 and miR-
133b) were quantified to assess the impact of heparin contamination and heparinase 
treatment on the levels of such miRNAs. Furthermore, correlation of cardiac-enriched miRNA 
levels with 12h Troponin T was also analysed.  
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4.3. Results 

		

4.3.1. Patient baseline characteristics 

Plasma samples were obtained from a total of 73 STEMI patients treated with PCI. 

Clinical baseline characteristics of the study population are displayed in Table 4.1.  In 

summary, most patients were male (n = 61, 83%), with median age of 63 (55 – 71) 

years, and with a low to moderate prevalence of cardiovascular risk factors (<10% 

had diabetes or hypercholesterolaemia; 20 – 35% were current smokers, obese, or 

hypertensive). In terms of STEMI and procedural characteristics, most patients had 

non-anterior infarcts (69.4%), completely obstructed culprit coronary artery (TIMI flow 

0 or 1) prior to PCI (97.2%), and achieved complete coronary perfusion (TIMI flow 3) 

post-PCI (93.1%) (Table 4.1).   
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Variable 

Entire 
cohort 
(STEMI 1 + 
STEMI 2) 

Endogenous miR control Cq values* 
p-

value 1
st

 tertile 2
nd

 tertile 3
rd

 tertile 

Number (male) 73 (61)  24 (20) 25 (20) 24 (21) 0.898 

Age [years, median  
(IQR)] 

63  
(55 – 71) 

65 
(56 – 71) 

65 
(59 – 70) 

61 
(52 – 71) 

0.396 

Risk factors, n (%)      

Smoking status      

Never smoked 28 (38.9) 10 (41.7) 7 (29.2) 11 (45.8) 0.468 

Ex-smoker 24 (33.3) 9 (37.5) 11 (45.8) 4 (16.7) 0.087 

Current smoker 20 (27.8) 5 (20.8) 6 (25) 9 (37.5) 0.407 

Hypertension 17 (23.6) 4 (16.7) 7 (29.2) 6 (25) 0.583 

Diabetes mellitus 6 (8.3) 3 (12.5) 3 (12.5) 0 (0) 0.195 

Hypercholesterolaemia 7 (9.7) 3 (12.5) 2 (8.3) 2 (8.3) 0.854 

Obesity 25 (34.7) 8 (33.3) 12 (50) 5 (20.8) 0.104 

Malignancies 0 (0) 0 (0) 0 (0) 0 (0) - 

Laboratory tests  
[median (IQR)] 

     

Admission eGFR, mL/min 83 (73 – 97) 
 

82 (68 – 92) 83 (75 – 112) 83 (69 – 93) 0.441 

Admission Troponin T,  
ng/L 

49 
(27 – 98) 

33 
(27 – 72) 

61 
(28 – 184) 

46 
(25 – 141) 

0.346 

Peak Troponin T, ng/L 3255 
(1109 – 5658) 

3422 
(1712 – 6441) 

2262 
(745 – 6367) 

3119 
(1179 – 5152) 

0.533 

STEMI characteristics      

Onset to reperfusion (min) 157 
(110 – 245) 

144 
(102 – 216) 

225 
(124 – 295) 

147  
(112 – 248) 

0.156 

Culprit vessel, n (%)      

LAD 22 (30.6) 6 (25) 10 (41.7) 6 (25) 0.351 

LCx 13 (18) 5 (20.8) 3 (12.5) 5 (20.8) 0.687 

RCA 37 (51.4) 13 (54.2) 11 (45.8) 13 (54.2) 0.801 

Localization, n (%)       

Anterior 22 (30.6) 6 (25) 10 (41.7) 6 (25) 0.351 

Non-anterior 50 (69.4) 18 (75) 14 (58.3) 18 (75) 0.351 

TIMI flow pre PPCI, n (%)       

0 60 (83.3) 21 (87.5) 19 (79.2) 20 (83.3) 0.741 

1 10 (13.9) 3 (12.5) 4 (16.7) 3 (12.5) 0.890 

2  1 (1.4) 0 (0) 0 (0) 1 (4.2) 0.363 

3 1 (1.4) 0 (0) 1 (4.2) 0 (0) 0.363 

TIMI flow post PPCI, n (%)      

0 1 (1.4) 0 (0) 1 (4.2) 0 (0) 0.363 

1 3 (4.2) 0 (0) 1 (4.2) 2 (8.3) 0.352 

2 1 (1.4) 0 (0) 0 (0) 1 (4.2) 0.363 

3 67 (93.1) 24 (100) 22 (91.7) 21 (87.5) 0.222 

Medication during PPCI      

Heparin, n (%) 70 (95.8) 24 (100) 24 (96) 22 (91.7) 0.328 

Bivalirudin, n (%) 3 (4.2) 0 (0) 1 (4) 2 (8.3) 0.328 

Glycoprotein IIb/IIIa 
inhibitors, n (%) 

48 (66.7) 15 (62.5) 18 (75) 15 (62.5) 0.570 

Table 4.1. Clinical characteristics of the study population.eGFR, estimated glomerular filtration 
rate; LAD, left anterior descending; LCx, left circumflex; PPCI, primary percutaneous coronary 
intervention; RCA, right coronary artery; TIMI, thrombolysis in myocardial infarction; * endogenous 
miRNA control Cq values at 30 minutes post myocardial reperfusion (expression quantified in 
heparinase-treated RNA samples, except in samples from bivalirudin-treated patients) 
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4.3.2. Identification of candidate endogenous miRNA controls 

From 179 quantified miRNAs, 60 presented Cq values < 35 across all time points in 

STEMI patients (n = 3) and controls (n = 4) and were selected for expression stability 

analysis by NormFinder and BestKeeper software (Figure 4.2A and 4.2B). Because 

each software uses a different algorithm, the four most stably expressed miRNAs 

identified by NormFinder and BestKeeper were selected and an additional screening 

performed in 6 STEMI patient samples was used to identify the four most stable 

miRNAs among this subgroup of eight miRNAs (miR-425-5p, miR-877-5p, miR-181a-

5p, and miR-155-5p) for further validation (Figure 4.2C).  

 

4.3.3. miR-425-5p is a stably expressed endogenous miRNA in STEMI patients 

To validate the previously identified candidate endogenous miRNA controls, miRNA 

quantification was performed in samples from 34 STEMI patients collected at 24h 

post-PPCI, hence not contaminated with heparin. Amongst the 4 candidate miRNAs, 

miR-425-5p presented the best stability scores in NormFinder and BestKeeper and 

shared the best stability values in geNorm as well as the lowest CV with miR-181a-

5p (Table 4.2). In the entire STEMI cohort (n = 70), miR-425-5p expression was not 

influenced by age, sex, traditional cardiovascular risk factors, renal function, 

magnitude of myocardial damage (as reflected by cardiac troponin levels), or 

antiplatelet agents (glycoprotein IIb/IIIa inhibitors) administered during PPCI (Table 

4.1). In addition, miR-425-5p Cq values strongly and negatively correlated with total 

RNA concentration in patient samples (r = -0.744, p < 0.0001)  (Figure 4.3A) but did 

not correlate with platelet count (r = 0.033, p = 0.786) (Figure 4.3B) or 12h cardiac 

troponin levels (r = -0.096, p = 0.429) (Figure 4.3C). Therefore, miR-425-5p was 

selected as an endogenous control for RT-qPCR normalisation.   
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Figure 4.2. Selection of candidate endogenous miRNA controls following 
screening. After miRNA screening in 3 STEMI patients and 4 controls, 60 miRNAs 
presented Cq values < 35 across all time points and had their stability determined by 
NormFinder and BestKeeper. The four most stable miRNAs below the M score threshold 
of 0.5 identified by NormFinder (A) and the four most stable miRNAs with standard 
deviation < 1 in BestKeeper (B) were selected for further validation. Note that cel-miR-39 
is amongst the least stable miRNAs in both algorithms. (C) Following screening of 179 
circulating miRNAs in 6 samples collected from STEMI patients 30min post 
percutaneous coronary intervention (PCI), which were treated in vitro with 0.3U of 
heparinase, and 4 controls with stable coronary artery disease (CAD), the 4 most stably 
expressed endogenous miRNAs (miR-425-5p, miR-877-5p, miR-181a-5p, miR-155-5p - 
highlighted) were identified by NormFinder. The lower the stability (S) value in 
NormFinder the more stable the reference miRNA. These miRNAs were selected for 
further validation by TaqMan RT-qPCR assays in a larger cohort of STEMI patients.   
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microRNA	
geNorm	

M	score	

Normfinder	

S	score	

Bestkeeper	

Std	dev	(±CP)			
CV	(%)	

miR-425-5p	 1.13	 1.85	 1.47	 7	

miR-181a-5p	 1.13	 2.09	 1.51	 7	

miR-155-5p	 2.62	 2.04	 4.03	 14	

miR-877-5p	 2.72	 2.18	 3.97	 13	

Table 4.2.  Candidate endogenous miRNA controls expression stability. CV, coefficient of 
variability; Std dev (±CP), standard deviation (±crossing point).  

 

 

 

 

 

 

 
 
Figure 4.3. Correlation of miR-425-5p with sample RNA concentration and 
platelet count. (A) miR-425-5p expression strongly and negatively correlated with 
total RNA concentration in STEMI patient samples, n = 70. (B) miR-425-5p 
expression at 30min post-PPCI did not correlate with admission platelet count, n = 
70. (C) miR-425-5p expression at 30min post-PPCI did not correlate with peak 
cardiac troponin T, n = 70. 

	



	 84	

4.3.4. Heparin concentration in RNA samples can be reduced by in vitro treatment 

with heparinase 

Heparin was detected by ELISA in both plasma and plasma-derived RNA samples 

collected prior to myocardial reperfusion from the same STEMI patients (n = 10). 

Heparin concentration was similar between plasma [mean(±SEM) = 

1,387(±266)pg/mL] and RNA samples [1,113(±167.4)pg/mL], p = 0.247 (Figure 

4.4A), suggesting significant heparin resistance to the process of RNA extraction 

from plasma. Treatment of heparin-contaminated RNA samples with 0.25U, 0.5U, 

and 1U of heparinase resulted in approximate reduction of 7% (±0.2%, p = 0.337), 

30% (±0.1%, p = 0.001), and 42% (±0.1%, p < 0.001) in heparin concentration, 

respectively (Figure 4.4B), indicating a dose-dependent inhibitory effect of 

heparinase on heparin levels in RNA samples. 

 

 

 

	

Figure 4.4. In vitro treatment with heparinase decreases heparin concentration in 
RNA samples from STEMI patients. Heparin was quantified in plasma and plasma-
derived RNA samples collected prior to myocardial reperfusion from STEMI patients by 
ELISA. (A) Presence of heparin was confirmed in both plasma and RNA samples. Heparin 
concentration was similar between plasma [mean(±SEM) = 1,387(±266)pg/mL] and RNA 
samples [1,113(±167.4)pg/mL], p = 0.247; n = 10; ns, non-significant; paired t test. (B) 
Serial doses of heparinase I (0.25U, 0.5U, and 1U) were added to heparin contaminated 
samples from STEMI patients (n = 3), incubated for 1 hour at room temperature, and 
heparin concentration was subsequently assessed by ELISA. Addition of 0.5U and 1U were 
effective in reducing heparin concentration by approximately 30% and 42%, respectively, in 
relation to heparin-contaminated samples not treated with heparinase; **p=0.001 
***p<0.001 vs. control samples, one-way ANOVA and Dunnett’s multiple comparison test.	
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4.3.5. Heparin inhibits the global miRNA mean, cel-miR-39, and miR-425-5p 

expression  

In STEMI patients receiving heparin (n = 3), global miRNA mean Cq values remained 

significantly elevated by 4 cycles immediately after heparin administration until 30min 

post myocardial reperfusion in comparison to 24h post-reperfusion levels (Figure 

4.5A). In vitro treatment of the same RNA samples from these STEMI patients with 

heparinase I prior to reverse transcription reduced the global miRNA mean by 4 

cycles, bringing Cq values to similar levels of controls (Figure 4.5B). 

 

 Similarly, in vitro addition of heparin to RNA samples from non-heparinised STEMI 

patients resulted in significantly increased cel-miR-39 and miR-425-5p Cq values in a 

dose-dependent fashion (Figures 4.6A and 4.6B). In fact, a heparin dose of 2U 

completely inhibited the detection of such miRNAs by RT-qPCR. In contrast, in vitro 

treatment of heparin-contaminated RNA samples from STEMI patients with doses as 

low as 0.25U and 0.5U of heparinase I was effective in reducing Cq values of both 

cel-miR-39 (ΔCq = - 2.7, 95% CI: - 2.1 to - 3.3, p<0.0001) and miR-425-5p (ΔCq = - 

1.6, 95% CI: - 0.5 to - 2.7, p<0.01), respectively (Figures 4.6A and 4.6B). 

 

Furthermore, cel-miR-39 expression in heparin-contaminated RNA samples from 

STEMI patients (n = 35) was significantly inhibited by 1.5 cycles in comparison to 

non-heparinised samples from healthy and stable CAD controls (n = 12), which were 

spiked-in with the same number of cel-miR-39 copies (Figure 4.7A). Finally, in vivo 

administration of heparin to STEMI patients (n = 70) inhibited miR-425-5p expression 

by 2.4 cycles in comparison to heparinase-treated samples from the same patients 

(Figures 4.7B).	
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Figure 4.5. Heparin inhibitory effect on the global miRNA mean	 expression.	 (A) STEMI 

patients treated with heparin displayed significantly higher global miRNA mean Cq across the 
initial 30min following myocardial reperfusion in comparison to 24h values, when heparin was 
not present in the circulation; n = 3; ns, non-significant, ****p<0.0001 vs 24h; Repeated-
measures one-way ANOVA and Dunnett’s multiple comparison test; (B) To confirm in vitro 
whether heparin inhibits the global miRNA mean expression, heparin-contaminated RNA 
samples were treated with 0.3U of heparinase prior to reverse transcription and the difference 
in the global miRNA mean between these samples and non-heparinised, stable CAD controls 
(ΔCq) was calculated. Heparin-contaminated samples not treated with heparinase presented 
global miRNA mean 4 cycles higher than controls whereas samples from the same patients 
that were treated with heparinase had similar miRNA mean Cq to controls; n = 3; ns, non-
significant, ****p<0.0001 vs stable CAD controls; one-way ANOVA and Dunnett’s multiple 
comparison test	.		
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Figure 4.6. Effect of in vitro addition of serial doses of heparin or heparinase to RNA 
samples on cel-miR-39 and miR-425-5p expression. Seven different doses of heparin were 
added to RNA samples from STEMI patients not treated with heparin and changes on cel-
miR-39 (A) and miR-425-5p (B) Cq were compared to the control, heparin-free samples 
(ΔCq). Heparin significantly inhibited both cel-miR-39 and miR-425-5p expression, whereas 
2U completely inhibited miRNA detection by RT-qPCR. In contrast, treatment of heparin-
contaminated samples from STEMI patients with 5 different doses of heparinase reduced Cq 
values, n = 3; ns, non-significant, *p<0.05, **p<0.01, ****p<0.0001; one-way ANOVA and 
Dunnett’s multiple comparison test	
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4.3.6. Bivalirudin does not seem to affect cel-miR-39 or miR-425-5p expression 

Given heparin interference with all RT-qPCR normalisation approaches, the effect of 

bivalirudin, an anticoagulant that can be used alternatively during PPCI, on miR-425-

5p and cel-miR-39 expression was also investigated. In vitro addition of bivalirudin to 

RNA samples from control stable CAD patients (n = 3) did not affect miR-425-5p or 

cel-miR-39 detection by RT-qPCR (Figure 4.8A and 4.8B). The effect of in vivo 

bivalirudin administration on miRNA expression in STEMI patients was assessed by 

comparing miR-425-5p expression between patients who received bivalirudin prior to 

PPCI (n = 3) and heparinase-treated RNA samples from STEMI patients (n = 7) 

across 13 different time points prior to and after PPCI. No statistically significant 

difference in miR-425-5p expression was observed between these two groups at any 

time point (Figure 4.8C).	

 
 
Figure 4.7. In vivo effect of heparin administration on cel-miR-39 and miR-425-5p 
expression. (A) Cel-miR-39 expression was significantly inhibited in heparin-contaminated STEMI 
samples (n = 35) in comparison to non-heparinised samples from healthy and stable CAD controls 
(n = 12), which were spiked-in with the same number of cel-miR-39 copies ***p<0.001, Mann-
Whitney U test. (B) Similarly, miR-425-5p expression was inhibited by 2.4 cycles in heparin-
contaminated versus heparinase-treated RNA samples from the same patients, n = 70; 
****p<0.0001, Wilcoxon matched-pairs signed rank test.	
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Figure 4.8. Bivalirudin does not affect miR-425-5p or cel-miR-39 expression. 

(A) In vitro addition of bivalirudin to RNA samples from patients with stable 
coronary artery disease did not result in changes on miR-425-5p or cel-miR-39 Cq 

values, n = 3; ns, non-significant, one-way ANOVA and Dunnett’s multiple 

comparison test; (B) To evaluate the effect of bivalirudin on miR-425-5p in vivo, 

samples were obtained at 13 different time points from STEMI patients receiving 
either bivalirudin (n = 3) or heparin (n = 7). Aliquots from the heparin-contaminated 

RNA samples were treated with 0.3U of heparinase and miR-425-5p expression 

was compared between heparin-contaminated, heparinase-treated, and bivalirudin-
contaminated samples. Significantly reduced Cq values were observed in 

heparinase-treated samples in comparison to heparin-contaminated samples from 

the same patients up to 30min post-PCI; *p<0.05, Wilcoxon matched-pairs signed 
rank test. No statistically significant differences were observed in miR-425-5p 

expression between heparinase-treated and bivalirudin-contaminated samples; ns, 

non-significant, Mann-Whitney U test.  
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4.3.7. Effect of RNA treatment with heparinase on cardiac-enriched miRNA 

expression 

To test whether the inhibitory effect of heparin on RT-qPCR normalisation strategies 

had any impact on cardiac-enriched miRNA quantification, miR-1 and miR-133b were 

quantified in heparinase-treated (0.3U) and heparin-contaminated samples collected 

at 30min post-PPCI from the same patients (n = 70) and RT-qPCR data normalised 

to miR-425-5p. Median miR-1 and miR-133b levels were 3-fold and 1.5-fold higher in 

heparin-contaminated in comparison to heparinase-treated samples (p<0.0001), 

respectively (Figure 4.9A). This overestimation of cardiac-enriched miRNA levels in 

heparin-contaminated samples could partially be a result of the direct inhibition of 

heparin on the normalisation control (miR-425-5p) Cq values. Nonetheless, the 

different magnitudes of change in miR-1 and miR-133b expression after heparinase 

treatment suggested that heparin could also directly affect cardiac-enriched miRNA 

detection in distinct degrees. Indeed, miR-133b expression was significantly reduced 

by in vitro treatment with low doses of heparin whereas treatment of heparin-

contaminated RNA samples with heparinase was effective in improving miR-133b 

expression (Figure 4.9B). In contrast, higher, supra-physiological in vitro doses of 

heparin were required to significantly inhibit miR-1 expression and therefore 

heparinase treatment had no significant effect in restoring miR-1 Cq values in 

heparin-contaminated patient samples (Figure 4.9C).  
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Figure 4.9. Effect of RNA sample treatment with heparinase on cardiac-enriched miRNA 
expression. (A) To assess whether RNA treatment with heparinase could affect cardiac-
enriched miRNA quantification, miR-1 and miR-133b were quantified in heparinase-treated 
(0.3U) and heparin-contaminated samples collected at 30min post-PPCI from the same 
patients and data normalised to miR-425-5p. Expression of miR-1 and miR-133b in 
heparinase-treated sampled were 3-fold and 1.5-fold lower than that of heparin-contaminated 
samples; n = 70, ****p<0.0001; Wilcoxon matched-pairs signed rank test; (B, C) Effect of in 
vitro addition of serial doses of heparin or heparinase to RNA samples on miR-133b and miR-
1 expression. Expression of miR-133b was affected by almost all tested doses of heparin and 
heparinase. In contrast, miR-1 Cq values were only affected by higher, supra-physiological 
doses of heparin and not significantly affected by heparinase in heparin-contaminated patient 
samples, n = 3; ns, non-significant, *p<0.05, **p<0.01, ****p<0.0001 vs controls; one-way 
ANOVA and Dunnett’s multiple comparison test. 	
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4.4. Discussion 
 

This is the first study to (i) identify and systematically validate a circulating miRNA as 

an endogenous control for RT-qPCR normalisation in STEMI patients; (ii) 

demonstrate that heparin administration simultaneously affects all currently proposed 

RT-qPCR normalisation strategies; (iii) show that bivalirudin does not affect the 

expression of exogenous or endogenous miRNA normalisation controls; (iv) validate 

the treatment of heparin-contaminated RNA samples with heparinase combined with 

RT-qPCR normalisation to miR-425-5p as a suitable approach for circulating miRNA 

quantification in a cohort of STEMI patients.  

 

4.4.1. miR-425-5p as an endogenous miRNA control for RT-qPCR normalization in 

STEMI patients 

The paucity of standardized procedures for circulating miRNA quantification, 

especially regarding RT-qPCR data normalisation, might explain discrepancies or 

reproducibility issues amongst circulating miRNA studies (Lippi et al., 2013). Some 

studies in patients with acute myocardial infarction have used endogenous miRNAs, 

such as U6 snRNA (Ai et al., 2010, Wang et al., 2013, Zhang et al., 2015a, Zhang et 

al., 2015b), miR-16 (Peng et al., 2014), and miR-17 (D'Alessandra et al., 2010, 

Olivieri et al., 2013), as normalisation controls. However, these miRNAs are not 

stably detected in the blood (U6 snRNA) (Benz et al., 2013), are susceptible to 

haemolysis (miR-16) (McDonald et al., 2011), or were deemed stable based only on 

no statistical difference in expression between a small cohort of STEMI patients and 

controls (miR-17) (D'Alessandra et al., 2010). Selection of a reference miRNA solely 

on the basis of no statistically significant difference in expression between groups is 

not sufficient to establish that the miRNA is a stable reference and should involve 

more detailed in silico analysis (Marabita et al., 2016). Thus, an unequivocally stable 

circulating endogenous miRNA control remained to be validated.  

 

In this chapter, miR-425-5p was identified as a stably expressed miRNA using a 

robust statistical approach based on 3 established gene stability assessment 

software. In addition, miR-425-5p expression reflected RNA sample concentration, 

allowing this miRNA to correct for differences in the input RNA quantity amongst 

samples. This is highly valuable for circulating miRNA quantification considering that 
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current miRNA reverse transcription protocols are based on same RNA input volume 

across different samples rather than same RNA concentration and that exogenous 

spike-in controls, although reflecting RNA extraction efficiency, are not able to correct 

for sources of variability such as input RNA quantity (Marabita et al., 2016). 

Interestingly, miR-425-5p has also been validated as an endogenous control in 

patients with breast cancer (McDermott et al., 2013). Circulating levels of miR-425-5p 

have otherwise been shown to be elevated in patients with colorectal (Zhu et al., 

2017) and cervical cancer (Sun et al., 2017) as well as in patients with traumatic 

brain injury (Di Pietro et al., 2017), conditions that represented exclusion criteria for 

the present study. Data from miRNA tissue expression libraries (miRWalk 2.0, 

miRmine, miRGator 3.0) indicate high miR-425-5p expression in lymphoid cells, 

mammary glands, nasopharynx epithelium and mucosa, skin, brain, and testicular 

tissue (Min et al., 2013, Dweep and Gretz, 2015, Panwar et al., 2017). In the context 

of STEMI, the cellular or tissue sources of miR-425-5p remain to be elucidated in 

future studies. Our data suggest that miR-425-5p is not significantly expressed in or 

released from the myocardium in STEMI patients as there was no correlation 

between this miRNA plasmatic expression and circulating levels of cardiac troponin 

T. In contrast, strong correlations were observed between known cardiac-enriched 

miRNAs (miR-1 and miR-133b) and troponin T. In addition, data from validated 

miRNA tissue expression libraries showed irrelevant expression of miR-425-5p in the 

heart (Min et al., 2013, Dweep and Gretz, 2015, Panwar et al., 2017). Platelets have 

been previously shown to release their miRNA content, encapsulated in 

microparticles, following activation and aggregation in STEMI patients (Gidlof et al., 

2013b). In addition, it has been recently postulated that accurate miRNA 

quantification in stored plasma samples relies on efficient removal of residual 

platelets prior to cryopreservation, as freezing of plasma samples resulted in release 

of platelet-derived microparticles containing miRNAs, including miR-425-5p, which 

expression strongly correlated with platelet count (Mitchell et al., 2016). However, in 

our study there was no correlation between miR-425-5p expression and baseline 

platelet count. Furthermore, miR-425-5p expression was not influenced by 

administration of antiplatelet aggregation medications (glycoprotein IIb/IIIa inhibitors) 

during PPCI in our cohort. 
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4.4.2. The inhibitory effect of heparin on miRNA detection by RT-qPCR 

In STEMI patients undergoing PPCI, intravenous heparin administration represents a 

major obstacle for miRNA quantification, given its known interference with essential 

components of qPCR reactions, such as DNA polymerases and magnesium ions, 

resulting in qPCR inhibition (Satsangi et al., 1994, Yokota et al., 1999). Here, we 

demonstrate that heparin affects all currently proposed RT-qPCR normalisation 

strategies, including the global miRNA mean expression. This finding contradicts the 

study by Kaudewitz et al. (Kaudewitz et al., 2013), which reported that normalisation 

to the average Cq value of quantified miRNAs could overcome heparin-related cel-

miR-39 inhibition and consequent overestimation of circulating miRNA levels in 

patients with acute coronary syndrome (ACS). In that study, however, miRNA mean 

expression was calculated based on the Cq values of only 14 miRNAs, some of 

which are known to be deregulated in patients with ACS. In accordance with our 

findings, inhibition of cel-miR-39 detection within the initial hour of heparin 

administration has been previously reported in smaller cohorts of patients undergoing 

coronary angiography (Boeckel et al., 2013, Kaudewitz et al., 2013).  

 

A selective inhibitory effect of heparin on endogenous circulating cardiovascular-

related miRNAs detection by RT-qPCR has also been reported by Boeckel et al. 

(Boeckel et al., 2013). In that study, miR-1, miR-92a, miR-126, miR-17, and miR-145 

expression was not significantly altered after heparin administration to patients 

undergoing cardiac catheterisation (n = 11), whereas miR-133a, miR-34a, miR-378, 

and miR-499 detection was significantly reduced (Boeckel et al., 2013). Similarly, in 

our study, higher in vitro doses of heparin were required to inhibit miR-1 expression 

in non-heparinised STEMI samples when compared to miR-133b and miR-425-5p. 

This might explain why in vitro RNA treatment with heparinase was not effective in 

restoring miR-1 detection in heparin-contaminated samples from STEMI patients, in 

which heparin concentrations are lower than those necessary to inhibit miR-1 

expression in our in vitro experiments. Consequently, following heparinase treatment 

of heparin-contaminated RNA samples from STEMI patients and PCR data 

normalisation to miR-425-5p, we observed different magnitudes of change in miR-1 

and miR-133b expressions. A more pronounced reduction in miR-1 expression (3-

fold) probably reflects the isolated effect of heparinase treatment in improving the 

endogenous normalisation control detection whereas the discreet reduction in miR-
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133b expression (1.5 fold) might result from a synergistic effect of heparinase 

treatment on both the normaliser (miR-425-5p) and miR-133b detection. The 

mechanism behind this selective effect of heparin on miRNA detection is unknown. 

Future studies should investigate whether and how heparin interacts with the 

chemical structure of different miRNAs or plasmatic miRNA-binding proteins, such as 

Argonaute proteins (Turchinovich and Burwinkel, 2012).          

 

4.4.3. Overcoming heparin-associated RT-qPCR inhibition for miRNA quantification 

in STEMI  

Previous studies have also demonstrated that treatment of cellular and circulating 

RNA samples with heparinase could overcome heparin-induced RT-qPCR inhibition 

(Johnson et al., 2003, Plieskatt et al., 2014). Whilst this manuscript was under 

preparation, Li S et al. (Li et al., 2017) reported that heparinase treatment of RNA 

samples could abrogate heparin-induced impaired detection of cel-miR-39 in patients 

with CAD undergoing coronary intervention.  Our data not only corroborate these 

findings but also show that treatment of heparin-contaminated RNA samples with 

heparinase improves the global miRNA mean and endogenous miRNA control (miR-

425-5p) detection by RT-qPCR in STEMI patients post-PCI.  

 

This study also sought to explore whether bivalirudin had any effect on the 

expression of endogenous and exogenous miRNA normalisation controls. Bivalirudin 

is an anti-thrombotic medication that can be used for anticoagulation therapy during 

PCI in STEMI patients, especially in those with heparin-induced thrombocytopenia 

(Ibanez et al., 2017). In vitro and in vivo bivalirudin administration did not interfere 

with miR-425-5p or cel-miR-39 expression. This suggests that RNA samples 

obtained from patients treated with bivalirudin could be an alternative to circumvent 

heparin interference with RT-qPCR normalisation for clinical studies of circulating 

miRNAs in STEMI patients.  

 

This study presents some limitations. High throughput qPCR panels were used 

instead of microarray or RNA sequencing approaches for miRNA profiling and 

therefore could not identify novel miRNAs to be tested as stable endogenous 

controls. Furthermore, we did not evaluate whether miR-181a-5p, the second most 

stable endogenous miRNA, could produce similar results to miR-425-5p in terms of 
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cardiac-enriched miRNA normalization either separately or in association with miR-

425-5p. Finally, we could not demonstrate a significant reduction in heparin 

concentration in RNA samples treated with 0.25U of heparinase by ELISA, whilst this 

dose was effective in restoring miRNA detection by RT-qPCR. We hypothesise that, 

due to RT-qPCR very high sensitivity, miRNA detection by RT-qPCR can be 

influenced by even small variations in heparin concentration in RNA samples, which 

ELISA might not be sensitive enough to detect. 

 

 

4.5. Conclusion 
 

In conclusion, this chapter addressed important methodological hurdles to accurate 

quantification of circulating miRNAs in STEMI patients. The results here described 

have also implications for circulating miRNA studies in other cohorts to which 

anticoagulation therapy is administered, e.g. patients undergoing organ 

transplantation or heart surgery. In addition, this study reinforces the evidence that 

levels of cardiac-enriched miRNAs early after myocardial reperfusion reflect the 

severity of cardiac injury. Finally, this chapter’s results suggest that the use of 

samples from bivalirudin-treated patients or in vitro treatment of heparin-

contaminated samples with heparinase, associated with normalisation to miR-425-

5p, are suitable strategies for miRNA quantification in this STEMI patients, thus 

providing new tools to reduce variability and allow future detailed kinetics studies of 

circulating miRNAs in this population. 
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Chapter 5. Cardiac-enriched miRNA Release 

Following Myocardial Reperfusion 
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5.1. Introduction 

 
Circulating levels of several microRNAs have been shown to be deregulated in 

STEMI patients both in relation to healthy individuals as well as to patients with other 

acute coronary syndrome manifestations (i.e. unstable angina and non-ST elevation 

acute myocardial infarction) (Viereck and Thum, 2017). Because almost all 

circulating miRNA studies in STEMI patients have focused on miRNA early 

diagnostic ability, they were designed to include mainly a single time point 

measurement, usually at patient admission to the emergency department or just prior 

to percutaneous coronary intervention. Therefore, little is known about miRNA 

expression following myocardial reperfusion in STEMI patients and how this process 

affects circulating miRNA levels.  

 

The first insight into circulating miRNA kinetics following myocardial reperfusion in 

STEMI patients was provided by D’Alessandra et al. (D'Alessandra et al., 2010), who 

performed miRNA measurements at multiple time points after reperfusion (30 min, 

3h, 9h, 15h, 21h, 33h, 45h, 69h). Peak miRNA levels were reported at 30 minutes 

after PPCI, followed by a significant, accentuated drop at 3 hours, and sustained 

lower levels in the remaining time points. In another study, Vogel et al. (Vogel et al., 

2013) performed whole miRNome analysis in 6 STEMI patients at 5 different time 

points (pre-PPCI and 2h, 4h, 12h, and 24h post-PPCI). Interestingly, they observed 

that the most pronounced differences in miRNA expression in relation to controls 

happened at the first two initial time points (pre-PPCI and 2 hours post-PPCI) and 

that such differences were attenuated in the latter time points (Vogel et al., 2013). 

Combined, the findings from these two studies suggest that dynamic changes in 

circulating miRNA levels seem to happen predominantly within the initial 2 to 3 hours 

following reperfusion. Yet, no detailed serial miRNA measurement within the first 3 

hours after PPCI has been performed. 

 

As mentioned before, miRNAs can be carried in the circulation predominantly within 

extracellular vesicles or bound to argonaute proteins and HDL-cholesterol particles. 

Circulating microparticle (MP) levels have been shown to be increased in patients 

with ST-elevation acute myocardial infarction (Jung et al., 2012, Porto et al., 2012, 

Suades et al., 2016). However, the miRNA content of circulating MP and their 
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contribution to the total miRNA pool in plasma obtained from STEMI patients is 

unknown.  

 

The aims of this study were to (i) identify candidate miRNA markers of failed 

myocardial reperfusion in STEMI patients; (ii) investigate the plasmatic kinetics of 

these candidate miRNAs within the initial 3 hours post-PPCI; (iii) assess miRNA 

expression in circulating microparticles; (iv) validate whether the expression of the 

candidate miRNAs is deregulated in a second STEMI cohort.    
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5.2. Results 

	

5.2.1. Patient baseline characteristics  

A total of 18 STEMI patients were included for a detailed study of miRNA release 

kinetics following myocardial reperfusion (STEMI cohort 2). Most patients (n = 17; 

94.4%) presented completely obstructed culprit coronary arteries prior to PPCI, 

without angiographic evidence of coronary perfusion (TIMI flow 0 or 1) and achieved 

optimal coronary perfusion (TIMI flow 3) following PCI (n = 16; 94.4%). Baseline 

characteristics of this cohort are displayed in table 5.1. As for the second cohort of 

STEMI patients (STEMI cohort 3; n = 50), baseline characteristics are also displayed 

in table 6.1. In this cohort, all patients had TIMI flow 0 or 1 prior to PCI and 96% (n = 

48) had TIMI flow 3 post-PCI.    
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Variable 
STEMI cohort 2 

(n = 18) 

STEMI cohort 3 

(n = 50) 

Gender (male), n (%) 15 (83.3) 41 (82) 

Age [years, mean (SD)] 58.3 (10) 65.2 (10.4) 

Risk factors, n (%)   

Smoking status   

Never smoked 9 (50) 18 (36) 

Ex-smoker 1 (5.6) 20 (40) 

Current smoker 8 (44.4) 12 (24) 

Diabetes mellitus 1 (5.6) 4 (8) 

Hypertension 7 (38.9) 10 (20) 

Hypercholesterolaemia 2 (11.1) 5 (10) 

Obesity 4 (22.2) 19 (38.8) 

Laboratory tests [median (IQR)]   

eGFR (mL/min) 83 (65.2 – 112) 83 (74 – 93.7) 

Admission Troponin T (ng/L) 61.5 (14.5 – 156) 43 (27 – 80.7) 

Peak Troponin T (ng/L) 2,752 (1,039 – 5,047)  3,447 (1,184 – 6,619) 

STEMI clinical characteristics   

Onset to reperfusion (min) 131 (108 – 223) 173 (112 – 259) 

Infarct location, n (%)   

Anterior 6 (33.3) 16 (32) 

Non-anterior LCx 12 (66.7) 34 (68) 

TIMI flow pre PPCI, n (%)    

0 16 (88.8) 42 (84) 

1 1 (5.6) 8 (16) 

2  1 (5.6) 0 (0) 

3 0 (0)  0 (0) 

TIMI flow post PPCI, n (%)   

0 0 (0) 0 (0) 

1 1 (5.6) 2 (4) 

2 1 (5.6) 0 (0) 

3 16 (88.8) 48 (96) 

Medication during PPCI   

Heparin, n (%) 15 (85) 50 (100) 

Bivalirudin, n (%) 3 (15) 0 (0) 

gpIIb/IIIa inhibitor, n (%) 13 (72.2) 33 (66) 

 
Table 5.1. STEMI cohorts 2 and 3 baseline characteristics. eGFR, estimated glomerular filtration 
rate; gpIIb/IIIa, glycoprotein IIb/IIIa; IQR, interquartile range; PPCI, primary percutaneous coronary 
intervention; SD, standard deviation; TIMI, thrombolysis in myocardial infarction angiographic score. 
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5.2.2. Screening for selection of miRNA candidates of failed myocardial reperfusion  

To explore the effect of myocardial reperfusion on circulating miRNA levels early 

after PPCI, screening of 179 miRNAs was performed in samples collected prior to 

and at 5 time points following PPCI from 3 STEMI patients. In relation to pre-

reperfusion levels, a cluster of seven miRNAs (miR-1, miR-378a-3p, miR-30a-5p, 

miR-133b, miR-451a, miR-133a-3p, miR-125a-5p) presented increasing expression 

following reperfusion, with a peak at 90 min, followed by decrease at 24 hours, 

suggesting an association between these miRNAs and the reperfusion process 

(Figure 5.1A).   

 

Subsequently, a second screening was performed in samples collected at 30min 

post-PPCI from STEMI patients with microvascular obstruction (n = 5) and age-

matched stable CAD controls (n = 4) to identify the most highly expressed miRNAs in 

this subpopulation of STEMI patients. Except for miR-451a, all miRNAs identified in 

the initial screening were also amongst the 10 most up-regulated miRNAs in plasma 

from STEMI patients with microvascular obstruction (Figure 5.1B). Interestingly, the 

3 most highly expressed miRNAs in this sub cohort (miR-133b, miR-1, and miR-

133a-3p) are known to be enriched in muscular tissue, including the myocardium. 

Considering that failed myocardial reperfusion is strongly associated with myocardial 

damage, miR-133b and miR-1 were selected for a detailed release kinetics study and 

further validation in a larger cohort of STEMI patients.     
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Figure 5.1. MicroRNA screening for selection of candidate markers of 
failed myocardial reperfusion. (A) Screening of 179 miRNAs using a 
PCR-based platform revealed a cluster of 7 miRNAs with progressive 
increase in expression across the initial 90 min post-reperfusion in STEMI 
patients. (n = 3). (B) The 15 most highly expressed miRNAs after 
screening of 179 miRNAs in 30 min post-reperfusion samples from STEMI 
patients with microvascular obstruction (n = 5). Note that all 7 miRNAs 
identified in (A) were also the highest expressed miRNAs in (B), except for 
miR-451a. In both screenings, samples from age-matched patients with 
stable coronary artery disease were used as controls (n = 4). In (A) data is 
presented as median (bar) and upper range (error bar). In (B) the boxplots 
depict median (central line), interquartile range (limits of the box) and range 
(error bars). Dashed lines represent reference pre-reperfusion (A) or 
control (B) levels. * p < 0.05, Kruskal-Wallis test with Dunn’s correction for 
multiple comparisons (A) and Mann-Whitney U test (B).   
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5.2.3. Cardiac-enriched miRNA kinetics following myocardial reperfusion 

Median miR-1 pre-reperfusion levels were approximately 4-fold higher in STEMI 

patients (n = 18) in comparison to miR-1 expression in healthy controls (n = 6) (Table 

5.2). Gradually increasing median miR-1 levels were observed until a first peak was 

achieved at 30 min post-PPCI, when miR-1 levels were 49-fold higher than controls 

(Table 5.2). At 40 min post-PPCI, there was a slight drop in miR-1 expression 

followed by a steady increase until another peak was reached at 90 min (Table 5.2). 

After 90 min, circulating miR-1 expression decreased again until it returned to similar 

levels of pre-reperfusion at 24h post-PPCI (Table 5.2). Circulating miR-1 levels 

remained higher than those of controls across all measured time points and higher 

than pre-reperfusion levels from 20 min to 180 min post-reperfusion (Figure 5.2A). A 

very similar kinetics pattern was observed for miR-133b, except that miR-133b levels 

were lower than miR-1 and were not significantly higher than controls at pre-

reperfusion and at 5 min, 10 min, and 24h post-PCI (Table 5.2 and Figure 5.2B).   

 

	

Time points miR-1 miR-133b 

Pre-reperfusion 3.8 (1.8 – 6.3) 2 (1 – 4.3) 

5 min 8.7 (3.9 – 18) 3 (1 – 6.2) 

10 min 14.6 (4.6 – 26.1) 3.4 (0.5 – 7.4) 

20 min 31.8 (7 – 94.4) 11.5 (3.7 – 83.7) 

30 min 49 (9.8 – 169.3) 32.6 (10.3 – 125) 

40 min 33.5 (10.8 – 211.8) 16.3 (5.5 – 111.8) 

50 min 38.9 (5.5 – 111.4) 11.2 (2.5 – 123.3) 

60 min 47.8 (7.9 – 95.7) 12.2 (2.9 – 111.9) 

75 min 45.7 (8.2 – 87.2) 12.1 (3 – 77) 

90 min 53.1 (8.6 – 123.1) 28.8 (9.5 – 106) 

120 min 28.8 (7.2 – 107.8) 10.5 (2.6 – 54.4) 

180 min 33.7 (7 – 200.5) 21.8 (3.5 – 143.8) 

24 hours 2.9 (1.2 – 6.35) 3.4 (1 – 10.8) 

 

	

	

	

Table 5.2. miR-1 and miR-133b expression prior to and in the initial 
3 hours post-PPCI. Values expressed as median (interquartile range) 
miRNA fold change to healthy controls. Fold change calculated using the 
2-

∆∆Ct
.  
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Figure 5.2. miR-1 and miR-133b plasmatic kinetics following myocardial 
reperfusion in STEMI patients. (A) miR-1 expression was higher than in 
healthy controls at all time points and increased in relation to pre-reperfusion 
levels between 20 min and 180 min post-PCI. (B) Kinetics analysis revealed that 
20 min up to 180 min post-PCI miR-133b levels were elevated in relation to 
healthy controls. Also, 20 min up to 180 min post-reperfusion miR-133b 
expression was higher than pre-reperfusion levels. Data presented as median 
(central line in boxes), interquartile range (limits of the boxes), and range (error 
bars). Dashed lines represent reference control levels. n STEMI = 18; n controls 
= 6. Differences between STEMI patients and control miRNA levels were 
determined by Kruskal-Wallis test with Dunn’s correction for multiple 
comparisons. Differences in miRNA expression among time points in STEMI 
patients were determined by Friedman test with Bonferroni’s post hoc correction 
for multiple comparison. *p < 0.05 vs. healthy controls; **p < 0.01 vs. healthy 
controls; ***p < 0.001 vs. healthy controls; 

§§
p < 0.01 vs. pre-reperfusion; 

§§§
p < 

0.001 vs. pre-reperfusion.	
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5.2.4. miR-1 and miR-133b kinetics patterns post-PCI 

Considering the substantial variation in miRNA levels among patients at each time 

point, miRNA data for each patient was individually plotted to identify whether miRNA 

kinetics patterns were different at a single patient level. Indeed, it was possible to 

identify 2 distinct kinetics patterns for both miR-1 and miR-133b (data not shown). 

Such patterns became also evident after grouping these individuals accordingly: (i) 

monophasic, in which an early component of miRNA increase, peaking at 30 min 

post-PCI, was more prominent than miRNA levels in subsequent later time points 

(Figure 5.3A); (ii) biphasic, in which there seemed to be 2 components of miRNA 

increase – a first one with a peak at 30 min and a second one with a peak between 

75 to 90 min post-PCI, which was higher in amplitude and followed by sustainably 

high miRNA levels until 180 min post-PCI (Figure 5.3B).   

 

5.2.5. Impact of coronary perfusion status on miRNA release kinetics  

To test a potential effect of the coronary artery perfusion status on miRNA release 

kinetics, miR-1 and miR-133b were quantified in (i) a patient undergoing TASH, 

hence with optimal coronary perfusion at the time of cardiomyocyte injury induction; 

(ii) a STEMI patient with TIMI flow 3 prior to PCI; (iii) a STEMI patient with TIMI flow 0 

post-PCI.  

 

In the TASH patient, miR-1 and miR-133b expressions were 9.1-fold and 4.8-fold 

higher than controls as early as 10 min after cardiomyocyte injury induction, 

respectively. MicroRNA expression gradually increased to reach maximum values of 

231-fold (miR-1) and 195-fold (miR-133b) higher than controls at 180min (Figure 

5.4A). In the STEMI patient with spontaneous coronary recanalization prior to PCI 

(TIMI flow 3), miR-1 and miR-133b expression barely changed from pre-reperfusion 

levels across the initial 90 min post-PCI and decreased to control levels at 120 min, 

180 min and even below that at 24h post-PCI (Figure 5.4B). In contrast, miR-1 

expression in the STEMI patient with TIMI flow 0 post-PCI increased steadily until 

120 min post-PCI reaching maximum levels at 180 min post-PCI (171-fold) and 

remained elevated at 24h (Figure 5.4C). As for miR-133b expression, there was a 

discrete increase until 120 min followed by substantial elevation thereafter, reaching 

a peak at 24h post-PCI (45.9-fold) (Figure 5.4C).  
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Figure 5.3. Post-reperfusion miR-1 and miR-133b kinetics patterns in 
STEMI patients. Graphical representation of the concept of distinct kinetics 
patterns, monophasic (A) and biphasic (B), for miR-1 and miR-133b. Data 
presented as mean (dots) and standard error of the mean (error bars). n 
STEMI miR-1 (monophasic: 8 vs. biphasic: 9); n STEMI miR-133b 
(monophasic: 5 vs. biphasic: 12); n healthy controls = 4.  
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Figure 5.4. Proof of concept of the effect of coronary 
artery perfusion status on miRNA release kinetics. (A) 
miR-1 and miR-133b kinetics following ethanol-induced 
myocardial injury in a patient undergoing transcoronary 
ablation of septal hypertrophy. (B) miR-1 and miR-133b 
kinetics in a STEMI patient with spontaneous recanalization 
of the culprit coronary artery (TIMI flow 3) prior to PCI. (C) 
miR-1 and miR-133b kinetics in a STEMI patient with 
unsuccessful re-establishment of culprit coronary artery 
patency post-PCI (TIMI flow 0). Dots represent miRNA 
expression fold-change to healthy controls at each time point. 
Dashed lines represent reference control levels. 
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5.2.6. miRNA kinetics and the coronary microcirculatory function 

To explore whether miR-1 or miR-133b release kinetics could be affected by the 

coronary microvascular function, patients who had invasive measurement of the 

index of microvascular resistance (n = 14) were divided according to IMR tertiles. 

Interestingly, miR-1 kinetics seemed to differ amongst IMR tertile groups, especially 

regarding the magnitude and timing of peak miRNA expression (Figure 5.5A). All 

IMR tertile groups presented an initial miR-1 peak, which occurred at 30 min post-

PCI for the highest tertile group, at 40 min for the middle tertile, and at 60 min for the 

lowest tertile group (Figure 5.5A). As for a second peak, this was absent in the first 

tertile group, which presented a monophasic kinetics pattern (Figure 5.5A). A second 

miR-1 peak was observed at 90 min post-PCI in the middle tertile group, followed by 

sustained high levels until 180 min (Figure 5.5A). As for the highest tertile group, the 

second miR-1 peak was observed later at 180 min post-PCI (Figure 5.5A). 

Regarding miR-133b kinetics, all patient groups presented biphasic kinetics, however 

the association with IMR values was not so evident (Figure 5.5B). 
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Figure 5.5. miR-1 and miR-133b kinetics according to index of 
microvascular resistance (IMR) tertiles. (A) miR-1 kinetics for each IMR 
tertile patient group. (B) miR-133b kinetics for each IMR tertile patient group. 
Data presented as median (dots) fold change to healthy controls. n STEMI = 
14; n 1

st
 tertile = 4; n 2

nd
 tertile = 5; n 3

rd
 tertile = 5.  
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5.2.7. miR-1 and miR-133b are carried in circulating microparticles  

To gain an insight on miR-1 and miR-133b release mechanisms from the 

myocardium and transport in the blood stream following myocardial reperfusion, 

circulating microparticles were quantified in STEMI patients (n =10) as well as 

healthy controls (n = 3). In addition, miR-1 and miR-133b were measured in RNA 

samples isolated from microparticles. Circulating MP levels were significantly high at 

pre-reperfusion in the aorta (1,400 MP/µL, p < 0.008) and culprit coronary artery 

(1,385 MP/µL, p = 0.024) in STEMI patients compared to controls (526 MP/µL) 

(Figure 5.6A).  In contrast, MP concentration decreased as early as 5 min as well as 

at 180 min post-reperfusion to similar levels of controls (Figure 5.6A). 

 

Expression of miR-1 and miR-133b were 6-fold (p = 0.014) and 9.9-fold (p = 0.007) 

higher in MPs from STEMI patients at pre-reperfusion compared to controls, 

respectively (Figure 5.6B). Despite the decrease in circulating MP concentration 

post-PCI, both miR-1 and miR-133b expression in MP from STEMI patients remained 

elevated in relation to controls at 30 min (miR-1: 20-fold, p = 0.007; miR-133b: 29-

fold, p = 0.007) and 90 min post-reperfusion (miR-1: 27-fold, p = 0.007; miR-133b: 

69-fold, p = 0.007) (Figure 5.6B). No significant differences were observed between 

miR-1 and miR-133b expression in MP at pre-reperfusion or 30 min post-PCI, 

however miR-133b expression was 2.5-fold higher than miR-1 at 90 min post-

reperfusion (p = 0.019).   

 
Subsequently, miR-1 and miR-133b expression in plasma and MP from the same 

STEMI patients were compared to evaluate the contribution of circulating MPs to the 

total expression of these cardiac-enriched miRNAs in plasma. At pre-reperfusion, no 

difference in both miR-1 and miR-133b expression between plasma and MPs was 

observed (Figures 5.6C and 5.6D). Following myocardial reperfusion, miR-1 

expression in MPs was significantly lower compared to plasma, accounting for only 

16.2% of miR-1 total expression in plasma at 30 min (p = 0.027) and 34% at 90 min 

(p = 0.027). In contrast, miR-133b expression in MP remained similar to those 

observed in plasma at 30 min and 90 min post-reperfusion (Figures 5.6C and 5.6D).  
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Figure 5.6. miR-1 and miR-133b expression in circulating microparticles isolated from 
STEMI patients. (A) Microparticle concentration in STEMI patients prior to and after coronary 
reperfusion. Microparticle concentration is significantly raised in the aorta and culprit coronary 
artery of STEMI patients compared to healthy controls. *p < 0.05 vs. controls; **p < 0.01 vs. 
controls; ns, non-significant. Kruskal-Wallis test with Dunn’s correction for multiple 
comparisons. (B) miR-1 and miR-133b expression is increased in circulating microparticles 
isolated from STEMI patients at pre-reperfusion, 30 min and 90 min post-PCI. *p < 0.05 vs. 
healthy controls; **p < 0.01 vs. healthy controls, Mann-Whitney U test. (C) Comparative miR-
1 expression between plasma and microparticles isolated from the same STEMI patients 
prior to and at 30 min and 90 min post-reperfusion. *p < 0.05, Wilcoxon matched-pairs signed 
rank test. (D) Comparative miR-133b expression between plasma and microparticles isolated 
from the same STEMI patients prior to and at 30 min and 90 min post-reperfusion. Data 
presented as median (central line in boxes), interquartile range (limits of the boxes), and 
range (error bars).  *p < 0.05, Wilcoxon matched-pairs signed rank test. 
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5.2.8. Post-reperfusion miR-1 and miR-133b levels are elevated in another STEMI 

cohort 

To validate whether miR-1 and miR-133b levels were indeed elevated after PCI, they 

were quantified in 48 STEMI patients with TIMI flow 3 post-PCI from a second cohort 

(STEMI cohort 3). MiR-1 expression was significantly higher in these patients in 

relation to control at 30 min (18.5-fold, p < 0.0001) and 90 min post-reperfusion 

(25.2-fold, p < 0.0001) (Figure 5.7). Likewise, miR-133b levels were also increased 

in this cohort compared to controls at 30 min (12-fold, p < 0.0001) and 90 min post-

PCI (15-fold, p < 0.001) (Figure 5.7).    

 

	

	

	

	

	

Figure 5.7. Post-reperfusion miR-1 and miR-133b levels in a validation STEMI 
cohort. MiR-1 and miR-133b levels were confirmed to be elevated at 30 min and 90 min 
post-reperfusion in a validation STEMI cohort. Data presented as median (central line in 
boxes), interquartile range (limits of the boxes), and range (error bars). n = 48. ***p < 
0.001 vs. healthy controls; ****p < 0.0001 vs. healthy  controls. Mann-Whitney U test.  
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5.3. Discussion 

	

5.3.1. Biology of miR-1 and miR-133b 

In this chapter, circulating miR-1 and miR-133b were found to be elevated in STEMI 

patients. MicroRNA-1 is encoded by two loci (miR-1-1 and miR-1-2) in the intron 2 of 

an uncharacterised gene C20ORF166 on the chromosome 20 and in the intron 12 of 

the E3 ubiquitin-protein ligase MIB1 on the chromosome 18 (Heidersbach et al., 

2013), respectively. The miR-133b gene is located in the chromosome 6 (Ivey et al., 

2008). In normal human tissues, miR-1 and miR-133b are highly expressed in 

cardiac and skeletal muscle as well as the thyroid, with less significant expression in 

the breast, oesophagus, prostate, bladder, and testicles (Liang et al., 2007, Chen et 

al., 2006). Deletion of either the miR-1-1 or miR-1-2 locus leads to variable lethality 

and subtle cardiac dysfunction but double miR-1 knockout invariably resulted in pre-

natal death in mice demonstrating that miR-1 is fundamental for cardiac development 

and function (Heidersbach et al., 2013). MiR-1 has been shown to modulate the 

expression of genes involved in cardiovascular disease as well as different types of 

cancers. It has been shown that miR-1 overexpression leads to arrhythmogenic 

activity by inhibiting the expression of the protein phosphatase PP2A regulatory 

subunit B56α, resulting in increased calcium release (Terentyev et al., 2009), 

whereas miR-1 deletion results in overexpression of Irx5, a transcription factor that 

regulates cardiac repolarization (Zhao et al., 2007). In addition, miR-1 promotes 

cardiomyocyte anti-hypertrophic effects by targeting hypertrophy-associated genes 

such as ACTA1, calmodulin, MEF2a, Ras GTPase-activating protein (RasGAP) and 

cyclin-dependent kinase 9 (Cdk9) (Ikeda et al., 2009, Sayed et al., 2007). Finally, 

miR-1 expression was found to be reduced in rhabdomyosarcomas whilst the 

expression of its pro-oncogenic target, c-MET, was increased (Yan et al., 2009). The 

anti-oncogenic property of miR-1 has also been shown in bladder and prostate 

cancer in which down-regulation of miR-1 was associated with increased expression 

of TAGLN2 (Yoshino et al., 2011)and LASP1 as well as XPO6 (Ambs et al., 2008), 

respectively .   

 

Similarly, miR-133b is involved in many stages of myocyte development, cell fate 

determination, apoptosis as well as gene programme regulation in cardiomyopathies 

(Sucharov et al., 2008). For example, miR-113b regulates the expression of the Rho 

subfamily of small GTP-binding proteins thus modulating cardiomyocyte hypertrophy 
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(Sucharov et al., 2008). In addition, miR-133b has been shown to exert a tumour-

supressing role by targeting oncogenic genes involved in oesophageal (FSCN1), 

lung (MCL-1; BCL2L2), colorectal (MET), and gastric (FGFR1) cancers (Kano et al., 

2010, Crawford et al., 2009, Hu et al., 2010, Wen et al., 2013).   

 

5.3.2. Cardiac-enriched miRNA release in STEMI patients 

Several studies demonstrated deregulation of circulating miR-1 and miR-133b levels 

following cardiac injury in both animal models and patients with acute myocardial 

infarction (AMI). In mice, serum miR-1 levels increased rapidly after coronary artery 

ligation concomitantly with downregulation of this miRNA in myocardial tissue, 

suggesting miR-1 release into the circulation (D'Alessandra et al., 2010). In patients 

with MI, elevated miR-1 levels could be detected at patient admission, between 6 and 

12 hours after the onset of symptoms. Likewise, miR-133b levels were found to be 

significantly increased in plasma obtained from mice after 6 hours of AMI induction 

(D'Alessandra et al., 2010). Interestingly, hindlimb ischemia mouse models showed 

no deregulation in miR-1 or miR-133b circulating expression, suggesting a cardiac-

specific release (D'Alessandra et al., 2010). Release from cardiac-specific miRNAs 

(miR-133a, miR-499 and miR-208a) from the myocardium in patients with myocardial 

infarction was confirmed by transcoronary gradient studies, which found increasing 

levels of such miRNAs across the coronary circulation (De Rosa et al., 2011).  

 

In patients with STEMI, only few studies performed serial cardiac-enriched miRNA 

quantification. D’Alessandra et al. were the first to demonstrate peak levels of 

cardiac-enriched miRNAs (miR-1, miR-133a, and miR-133b) at 30 minutes after 

coronary intervention and accentuated drop in such levels after 3 hours in a cohort of 

8 STEMI patients (D'Alessandra et al., 2010). Accordingly, miR-1 and miR-133b 

expression were shown to be significantly elevated only in plasma samples collected 

within 12 hours of symptoms onset but not after 12 hours (even if in the first day of 

presentation), 2 days, 3 days, or 1 month following STEMI (n = 25) (Gidlof et al., 

2011). Furthermore, levels of miR-208a also peaked early after myocardial 

reperfusion (3h) and decreased at 6 and 12 hours later, reaching control levels at 24 

hours in a cohort of 19 STEMI patients (Bialek et al., 2015). These findings suggest 

that the most pronounced changes in cardiac-enriched miRNA levels in STEMI 
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patients occur early after myocardial reperfusion, but no study had investigated in 

detail the expression of these miRNAs during this time frame.  

 

In this study, a meticulous description of miR-1 and miR-133b release kinetics in the 

initial 3 hours following PPCI in STEMI patients, including 12 measurement time 

points, is displayed for the first time. In accordance with findings from the literature 

commented above, miR-1 levels were already elevated in STEMI patients prior to 

reperfusion. However, miR-133b expression was only significantly increased at 20 

min post-PCI. Following reperfusion, they rapidly increased to achieve median levels 

of approximately 50-fold (miR-1) and 32-fold (miR-133b) those of controls after only 

30 minutes following myocardial reperfusion.  

 

5.3.3. Effect of coronary perfusion on cardiac-enriched miRNA release 

Although there is evidence linking the release of cardiac-enriched miRNAs to cardiac 

injury due to MI, the effect of the degree of coronary artery perfusion on miRNA 

release kinetics in STEMI patients has not been studied. This chapter provided a 

proof of concept of how miR-1 and miR-133b kinetics might be affected by different 

coronary artery perfusion statuses. 

 

Liebetrau et al. (Liebetrau et al., 2013) provided the first insight into the exact release 

kinetics of muscle-enriched miRNAs following cardiac damage. The authors used 

transcoronary ablation of septal hypertrophy (TASH) in patients with hypertrophic 

cardiomyopathy as a model to mimic AMI and assess muscle-enriched miRNA 

release kinetics after cardiomyocyte injury (Liebetrau et al., 2013). In TASH, a 

catheter is inserted in a branch of a septal artery, and alcohol is injected distal to an 

occluding balloon to provoke instant cardiomyocyte death. To evaluate biomarker 

kinetics, TASH is an excellent model as it allows an accurate monitoring of miRNA 

release since the very onset of cardiac damage. The authors measured miR-1, miR-

133a, miR-208 and miR-21 levels in serum from 21 patients undergoing TASH at 

multiple time points (Liebetrau et al., 2013). They observed about 3-fold increased 

levels of miR-1 and miR-133a as early as 15 minutes after cardiomyocyte injury and 

maximum 65-fold increase for miR-1 at 75 minutes, followed by a plateau until 4 

hours after TASH (Liebetrau et al., 2013). This suggests that cardiac-enriched 

miRNAs are released almost immediately after cardiac injury under optimal coronary 
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perfusion. In this chapter, similar findings were observed for miR-1 and miR-133b, 

which expression in the TASH patient was above control levels as early as 5 minutes 

and 10 minutes, respectively. However, TASH does not entirely mimic what happens 

in STEMI as there is no prolonged coronary occlusion followed by reperfusion and no 

involvement of the coronary microcirculation. 

 

In animal models of MI, cardiac-enriched miRNA kinetics has been studied after 

permanent left anterior descending (LAD) artery ligation or after transient coronary 

occlusion (ischemia-reperfusion model). The kinetics differed significantly according 

to the model used. In rats submitted to LAD ligation, miR-1 levels started to increase 

1 hour after ligation and reached a peak at 6 hours (Cheng et al., 2010, Wang et al., 

2010). In mice also submitted to LAD ligation, cardiac-enriched miRNA levels only 

significantly increased in the circulation 6 hours post-ligation, with peak levels at 6 

hours (miR-133b) or 18 hours (miR-1) (D'Alessandra et al., 2010). In both rodent 

models, sustained elevated miRNA levels were observed until 24 hours post-AMI 

(Cheng et al., 2010, D'Alessandra et al., 2010, Wang et al., 2010). In contrast, in a 

porcine model submitted to closed chest, transient coronary occlusion by balloon 

inflation for 40 minutes followed by myocardial reperfusion, miR-1 and miR-133b 

kinetics demonstrated much quicker dynamics. None of the miRNAs were detected 

during the occlusion period but started to increase in the circulation in only 20 

minutes post myocardial reperfusion, peaking after 2 hours of ischaemia induction (or 

80 minutes post-reperfusion) (Gidlof et al., 2011). This suggests that coronary 

reperfusion accelerates cardiac-enriched miRNA release kinetics. 

 

Likewise, in this chapter, one STEMI patient with spontaneous coronary artery 

recanalization (TIMI flow 3) prior to PCI had slightly elevated miR-1 and miR-133b 

levels only until 90 min post-PCI followed by a drop below control levels afterwards. 

In contrast, in a STEMI patient with obstructed coronary artery post-PCI (TIMI flow 0) 

miRNA levels increased steadily until 120 min to achieve a late peak at 180 min 

(miR-1) or 24h (miR-133b). This suggests that the degree of coronary artery 

perfusion might influence miRNA kinetics and therefore future studies should take 

this into consideration.      

 

5.3.4. miRNA release kinetics and failed reperfusion-associated injury  
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Finally, this study demonstrated for the first time that STEMI patients seem to have 

distinct miR-1 and miR-133b release kinetics patterns, i.e. monophasic (single peak 

at 30 min post-PCI) and biphasic (‘early’ peak at 30 min and ‘late’ peak at 90 min). In 

addition, miR-1 release kinetics seemed to be affected by coronary microvascular 

function, as the ‘early’ miR-1 peak magnitude as well as the occurrence and 

amplitude of the ‘late’ peak seemed to be dependent on IMR values. In a cohort of 

281 STEMI patients, high IMR values (IMR > 34.9) were associated with increased 

MVO incidence and larger infarct size (Carrick et al., 2016a). Considering that (i) 

cardiac-enriched miRNAs are released almost immediately after cardiomyocyte injury 

under optimal coronary perfusion; (ii) all STEMI patients presented an ‘early’ peak; 

and (iii) the occurrence of the ‘late’ peak was associated with a surrogate marker of 

failed myocardial reperfusion, this study provides a hypothesis-generating concept 

that the ‘early’ miR-1 peak might reflect ischaemia-related myocardial injury whereas 

the ‘late’ miR-1 peak might be associated with cardiac injury due to failed myocardial 

reperfusion in STEMI patients who achieved TIMI 3 flow after PCI.    

 

5.3.5. Microparticles as plasmatic carriers of cardiac-enriched miRNAs in STEMI 

patients 

Corroborating data from previous studies, this work also observed increased levels of 

circulating microparticles prior to myocardial reperfusion followed by a rapid drop in 

MP levels immediately after PPCI (Morel et al., 2009, Min et al., 2013). In addition, 

circulating microparticles were found to express miR-1 and miR-133b, which levels 

were higher than controls prior to and at 30 min and 90 min after PCI.  Prior to 

myocardial reperfusion, microparticle-associated miR-1 and miR-133b levels were 

similar to these miRNAs plasmatic expression. After reperfusion, miR-1 expression in 

MP was significantly lower than in plasma. In contrast, miR-133b expression in MP 

remained similar to plasma expression after reperfusion, despite a reduction in the 

concentration of circulating MP. This suggests a miR-133b enrichment in MP after 

reperfusion. Interestingly, very similar results were described by Deddens et al. 

(Deddens et al., 2016) in a porcine model of myocardial ischaemia and reperfusion, 

in which miR-1 and miR-133b were raised in plasma and circulating MP at 60 min 

post-reperfusion but only miR-133b expression was enriched in MP in relation to 

plasma. Combined, these results suggest that miR-133b might be mainly released 

and carried within MP prior to and after myocardial reperfusion. Differently, miR-1 
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might be mainly released within MP during the ischaemic period but other carriers 

(e.g. argonaute proteins) might play a more important role in the release and 

transport of this miRNA after reperfusion. Understanding in detail how these miRNAs 

are released might provide an important insight about the mechanism of cardiac 

injury that their circulating levels reflect. In this study, it was not possible to perform 

characterisation and isolation of cardiomyocyte-derived MPs due to the lack of 

reliable, specific surface markers. Future studies should investigate the contribution 

of other known miRNA carriers, such as argonaute proteins or lipoprotein particles, to 

the cardiac-enriched miRNA expression following myocardial reperfusion in STEMI 

patients. 

 

 

5.4. Conclusion 

 

This chapter provides several important new insights about cardiac-enriched miRNA 

kinetics and mechanisms of release from the myocardium. First, miR-1 and miR-

133b were identified as the most highly expressed miRNAs in STEMI patients with 

failed myocardial reperfusion. In addition, a detailed miR-1 and miR-133b release 

kinetics analysis in the initial 3 hours post-PPCI revealed that levels of these miRNAs 

increased rapidly after myocardial reperfusion, following 2 different patters – 

monophasic and biphasic. Furthermore, cardiac-enriched miRNA kinetics seemed to 

be affected both by the status of epicardial coronary artery perfusion as well as by 

coronary microcirculatory function. Because of the association between high miR-1 

levels at ‘late’ post-reperfusion time points (90 – 180 min) and high IMR, this study 

generates the hypothesis that miR-1 levels at these time points might reflect failed 

myocardial reperfusion-associated damage. Finally, quantification of miR-1 and miR-

133b from circulating microparticles unveiled that these miRNAs are released in MP 

following STEMI. However, after reperfusion, whilst MP-related release seems to still 

be the predominant mechanism for miR-133b, other mechanisms seem to play a 

more important role for miR-1 release.  
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Chapter 6. Cardiac-enriched miRNAs and failed 

myocardial reperfusion 
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6.1. Introduction 

 

The establishment of primary percutaneous coronary intervention (PPCI) as the first-

line therapy for the management of ST-elevation myocardial infarction has 

significantly improved outcomes, with in-hospital mortality rates of under 7% in high-

volume tertiary centres (Menees et al., 2013, Pedersen et al., 2014).  However, while 

intra-hospital mortality post-PPCI has declined, 20% of patients who survive an 

anterior STEMI need to be readmitted due to heart failure in the first year, and 40% 

show adverse left ventricular (LV) remodelling (Cung et al., 2015). This may in part 

be a consequence of failed myocardial reperfusion, which manifests initially as 

microvascular obstruction (MVO) in cardiac MRI (Mangion et al., 2016). 

Microvascular obstruction is strongly associated with larger infarct size, LV 

remodelling, and worse clinical outcomes in STEMI patients (Hamirani et al., 2014). 

Although failed myocardial reperfusion occurs in up to 50% of PPCI patients (Wu, 

2012), it usually passes undetected as it is not routinely screened for due to 

limitations in or lack of access to current diagnostic methods. 	

 
In chapter 5, miRNA screening, kinetics, and validation experiments revealed that 

the cardiac-enriched miRNAs miR-1 and miR-133b were consistently elevated early 

after myocardial reperfusion, with peak levels at 30 min and 90 min post-PCI. 

Although it is intuitive to think that circulating levels of these miRNAs could inform 

about the extent of myocardial damage and failed myocardial reperfusion, there is 

only scarce data to support this notion thus far. The previous chapter also 

demonstrated that the presence and amplitude of miR-1 peak between 90 min and 

180 min post-PCI seemed to be related to a higher index of microvascular resistance, 

which has been shown to be associated with MVO (Carrick et al., 2016a). This lead 

to the hypothesis that miR-1 and miR-133b levels at 30min and 90min post-PCI could 

be associated with failed myocardial reperfusion.  

 

This chapter aims to (i) investigate whether miR-1 and miR-133b are differentially 

expressed in patients with MVO; and (ii) assess whether miR-1 and miR-133b levels 

correlate with the extent of myocardial damage and are associated with LV 

remodelling, assessed by cardiac MRI.   
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6.2. Results 

6.2.1. STEMI cohort 3 baseline characteristics  

Cardiac MRI was performed in a total of 50 STEMI patients after PPCI to assess the 

presence of late MVO. Late MVO was detected in 21 patients (42%) (Table 6.1). 

Patients were divided into 2 groups according to the occurrence of MVO. Baseline 

characteristics for this cohort are displayed on Table 6.1. In summary, patients with 

MVO had a higher incidence of anterior myocardial infarction (52.4 vs. 17.2%, p = 

0.009) and approximately 2.5-fold higher levels of peak cardiac troponin T levels (p < 

0.001) when compared to patients without MVO. No statistically significant 

differences between the groups were observed for the other variables analysed, 

including age, gender, cardiovascular risk factors, co-morbidities, medical history, 

medications, laboratory tests, and procedural parameters (Table 6.1).    

	

6.2.2. Association between MVO and other cardiac MRI parameters  

A ‘baseline’ MRI was performed at an average of 3.1 (±1.72) days post-PCI in all 

patients, with no difference in time of MRI acquisition between MVO groups (p = 

0.603) (Table 6.2). Out of 50 patients, 47 also had a ‘follow-up’ MRI performed at 3 

months post-PPCI. Patients with MVO had twice as large acute infarct size (p < 

0.001), a 11.9% reduced left ventricular ejection fraction (LVEF, p < 0.001), and 

higher end systolic volume (97mL vs 69.3mL, p < 0.001) in the baseline cardiac MRI 

compared to patients without MVO (Table 6.2). Similarly, occurrence of MVO in the 

baseline MRI remained associated with larger infarct size (10.6% vs 7.2%, p = 

0.005), reduced LVEF (48.7% vs 58.6%, p < 0.001), and increased ESV (92.5mL vs 

62.3mL, p < 0.001) at 3 months post-PPCI (Table 6.2). No differences in end 

diastolic volume (EDV) were observed between the groups on the baseline or ‘follow-

up’ MRI (Table 6.2).
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Variable 
Cohort  
(n = 50) 

MVO –  
(n = 29) 

MVO + 
(n = 21) 

p value 

Gender, male [n (%)] 41 (82) 22 (75.8) 19 (90.4) 0.184 

Age, years [mean, (SD)] 65.2 (10.4) 63.4 (10.2) 67.7 (10.3) 0.125 

Risk factors, n (%)     

Smoking status     

Never smoked 18 (36) 9 (31) 9 (42.9) 0.390 

Ex-smoker 20 (40) 7 (33.3) 13 (44.8) 0.413 

Current smoker 12 (24) 7 (24.1) 5 (23.8) 0.979 

Family history of IHD 17 (34) 11 (37.9) 6 (28.6) 0.490 

Obesity 19 (38.8) 14 (48.3) 5 (25) 0.100 

Co-morbidities, n (%)     

Diabetes Mellitus 4 (8) 4 (13.8) 0 (0) 0.076 

COPD 2 (4) 1 (3.4) 1 (4.8) 0.815 

Medical history, n (%)     

IHD 3 (6) 2 (6.9) 1 (4.8) 0.754 

Past MI 0 (0) 0 (0) 0 (0) - 

Past Angiogram 1 (2) 0 (0) 1 (4.8) 0.235 

CVA / TIA 0 (0) 0 (0) 0 (0) - 

Regular medication, n (%)      

Aspirin 3 (6) 2 (6.9) 1 (4.8) 0.754 

ACE inhibitor / ARB 5 (10) 3 (10.3) 2 (9.5) 0.924 

Beta-blocker 2 (4) 0 (0) 2 (9.5) 0.090 

Calcium channel blocker 4 (8) 2 (6.9) 2 (9.5) 0.735 

Diuretic 4 (8) 3 (10.3) 1 (4.8) 0.473 

Statins 10 (20) 5 (17.2) 5 (23.8) 0.567 

Laboratory tests [median  

(IQR)] 
 

   

eGFR  

(mL/min) 

83  

(74 – 93.7) 

85   

(74.5 – 101.5) 

82  

(72 – 90) 

0.409 

Pre-PPCI hs-cTnT  

(ng/L) 

43 

(27 – 80.7) 

43  

(26.5 – 80) 

44 

(27.5 – 96.5) 

0.595 

12h hs-cTnT  

(ng/L) 

3447  

(1184 – 6619) 

2108 

(844 – 3826) 

5765 

(3621 – 9946) 

<0.001 

STEMI and PCI parameters     

Onset to reperfusion, min 

[median (IQR)] 

173 

(112 – 259) 

195 

(126 – 273) 

146 

(102 – 237) 

0.340 

Door to balloon, min  

[median (IQR)] 
 

   

Infarct location, n (%)     

Anterior 16 (32) 5 (17.2) 11 (52.4) 0.009 

Non-anterior 34 (68) 24 (82.8) 10 (47.6) 0.009 

TIMI flow pre PPCI, n (%)      

0 42 (84) 23 (79.3) 19 (90.5) 0.288 

1 8 (16) 6 (20.7) 2 (9.5) 0.288 

Thrombus aspiration, n (%) 10 (20) 5 (17.2) 5 (23.8) 0.567 

TIMI flow post PPCI, n (%)     

1 2 (4) 0 (0) 2 (9.5) 0.090 

3 48 (96) 29 (100) 19 (90.5) 0.090 

GPIIa/IIIb inhibitors, n (%) 33 (66) 21 (72.4) 12 (57.1) 0.261 

Table 6.1. STEMI cohort 3 clinical characteristics. ACE, angiotensin-converting enzyme; MI, 
myocardial infarction; ARB, angiotensin receptor blocker; COPD, chronic obstructive pulmonary 
disease; CVA, cerebrovascular accident; eGFR, estimated glomerular filtration rate; hs-cTnT, high-
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sensitivity cardiac troponin T; IHD, ischemic heart disease; IQR, interquartile range; MI, myocardial 
infarction; LVEF, left ventricular ejection fraction; MRI, magnetic resonance imaging; MVO, 
microvascular obstruction; PPCI, primary percutaneous coronary intervention; PVD, peripheral vein 
disease; RCA, right coronary artery; STEMI, ST-elevation myocardial infarction; TIA, transient 
ischaemic attack; TIMI, thrombolysis in myocardial infarction angiographic score 

	

	

	

	

	

	
 
 

MRI parameters Entire cohort 
MVO – 
(n = 29) 

MVO + 
(n = 21) 

p value 

Baseline MRI (n = 50)     

Time to MRI, days [mean(±SD)] 3.1 (±1.72) 3.2 (±1.85) 2.9 (±1.56) 0.603 

Infarct size, % of LV 10.1  

(4.1 – 15.3)  

6.4  

(2.3 – 10.7) 

14.5  

(11.9 – 22.1) 

<0.001 

LV ejection fraction, % 51.5  

(40.5 – 56.9) 

55.9  

(51.3 – 58.1) 

44 

(42.4 – 35) 

<0.001 

End systolic volume, mL 76. 9  

(66.4 – 97.1)  

69.3  

(59.3 – 73) 

97  

(80.5 – 113.6) 

<0.001 

End diastolic volume, mL  157  

(138 – 173)    

151  

(137.9 – 169.8) 

166 

(147.9 – 182.5) 

0.058 

3-month MRI (n = 47)     

Infarct size, % of LV 9.3  

(4.5 – 12.1)  

7.2  

(1.9 – 9.8) 

10.6 

(6.8 – 19.2) 

0.005 

LV ejection fraction, % 

 

54.9  

(49 – 61.4) 

58.6  

(52.8 – 64.1) 

48.7 

(38.5 – 52.7) 

<0.001 

End systolic volume, mL 73.4 

(56.2 – 94.4) 

63.2  

(52.4 – 73.5) 

92.5 

(80.9 – 109.3) 

<0.001 

End diastolic volume, mL  168  

(141 – 188) 

150.9 

(135.2 – 185.9) 

174.3 

(151.1 – 188.3) 

0.132 

Table 6.2. Microvascular obstruction association with other cardiac MRI parameters. EDV, end-
diastolic volume; ESV, end-systolic volume; IS, infarct size; LV, left ventricle; LVEF, left ventricular 
ejection fraction; MRI, magnetic resonance imaging; MVO, microvascular obstruction. Data presented 
as median and interquartile range (IQR).  
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6.2.3. Circulating miR-1 and miR-133b levels are higher in patients with MVO   

Considering the effect of reperfusion on miRNA kinetics shown in chapter 5, miR-

1 and miR-133b measurements at 30min and 90min post-PPCI were compared 

between MVO groups including only patients who achieved TIMI flow 3 post-PCI 

(n = 48; n MVO+/ve = 19; n MVO-/ve = 29). At 30min post-PPCI, miR-1 and miR-

133b levels were approximately 4.3-fold (p = 0.006) and 2.3-fold (p = 0.048) higher 

in patients with MVO, respectively (Figure 6.1A). Likewise, these miRNAs were 

also elevated in patients with MVO at 90min post-reperfusion [miR-1: 3-fold higher 

in MVO +/ve vs. MVO -/ve, p = 0.001; miR-133b:  4.4 fold-higher in MVO +/ve vs. 

MVO -/ve, p = 0.008).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

	

Figure 6.1. Post-reperfusion miR-1 and miR-133b levels are elevated in 
patients with MVO. A) 30min post-reperfusion miR-1 and miR-133b levels in 
patients with and without MVO determined by the baseline MRI; B) 90min post-
reperfusion miR-1 and miR-133b levels in patients with and without MVO. Box plots 
depict median (central line), 25

th
 and 75

th
 percentiles (limits of the box), and range 

(error bars) fold change to healthy controls. Differences between MVO (n = 19) and 
no MVO (n = 29) patients were determined by Mann-Whitney U test. * p < 0.05; ** p 
< 0.01. MVO, microvascular obstruction.    
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6.2.4. miR-1 and miR-133b correlate with cardiac damage and function parameters  

Given miR-1 and miR-133b association with MVO and their high expression in the 

myocardium, possible correlations between post-reperfusion miR-1 and miR-133b 

levels and markers of cardiac damage and function were evaluated. Firstly, miR-1 

measurements at 30min and 90min post-reperfusion were found to be strongly 

correlated with 12h post-PPCI hs-cTnT levels (30min: r = 0.676, p < 0.001; 90min: 

r = 0.727, p < 0.001) (Figures 6.2A and 6.2B). Similarly, strong correlations 

between miR-133b and 12h post-PPCI hs-cTnT were observed (30min: r = 0.541, 

p < 0.001; 90min: r = 0.672, p < 0.001) (Figures 6.2C and 6.2D).  

 

In addition, miR-1 at 90min post-PPCI positively correlated with acute infarct size 

(r = 0.497, p < 0.001) and ESV (r = 0.293, p = 0.043) as well as negatively 

correlated with LVEF (r = - 0.343, p = 0.017), as determined by the baseline MRI. 

Furthermore, 30min post-PPCI miR-1 only correlated with baseline MRI infarct 

size (r = 0.420, p = 0.003; n = 48) (Table 6.3). Such correlations remained 

significant at 3 months post-PCI, with 30min miR-1 levels additionally correlating 

with ESV (r = 0.298, p = 0.046; n = 45) (Table 6.3).  A very similar pattern was 

observed for miR-133b. Positive correlations between 90min post-PCI levels, 

infarct size (r = 0.445, p = 0.002) and ESV (30min: r = 0.304, p = 0.036) whilst 

negative correlation with LVEF (r = - 0.342, p = 0.018) were observed at baseline 

(Table 6.4). Again, 30min miR-133b only correlated with infarct size (r = 0.304, p = 

0.036) amongst baseline MRI parameters (Table 6.4). In addition, the same 

correlations persisted at 3-months post-PCI (Table 6.4). There were no significant 

correlations between miR-1 or miR-133b levels and EDV either at baseline or 3 

months post-PCI (Tables 6.3 and 6.4). 
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Figure 6.2. Post-reperfusion miR-1 and miR-133b levels strongly correlate with 12h post-
PPCI hs-cTnT.  A) Correlation between 30min post-PCI miR-1 and 12h hs-cTnT; B) Correlation 
between 90min post-PCI miR-1 and 12h hs-cTnT; C) Correlation between 30min post-PCI miR-
133b and 12h hs-cTnT; D) Correlation between 90min post-PCI miR-133b and 12h hs-cTnT. 
Correlations calculated by Spearman’s coefficient of correlation (r). n = 48. hs-cTnT, high-
sensitivity troponin T.  
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MRI parameters miR-1 (30min) p value miR-1 (90min) p value 

Baseline MRI (n = 48)     

Infarct size, % of LV  0.420  0.003 0.497  <0.001 

LV ejection fraction, % - 0.268 0.066 - 0.343 0.017 

End systolic volume, mL  0.278 0.056 0.293 0.043 

End diastolic volume, mL  0.139 0.347 0.091 0.537 

3-month MRI (n = 45)     

Infarct size, % of LV 0.449 0.002 0.546 <0.001 

LV ejection fraction, % - 0.292 0.051 - 0.389 0.008 

End systolic volume, mL  0.298 0.046 0.390 0.008 

End diastolic volume, mL  0.147 0.335 0.182 0.232 

Table 6.3. Correlation between miR-1 post-PPCI levels and cardiac MRI parameters. EDV, end-
diastolic volume; ESV, end-systolic volume; IS, infarct size; LV, left ventricle; LVEF, left ventricular 
ejection fraction; MRI, magnetic resonance imaging. Spearman coefficient of correlation. n = 48 
(baseline MRI); n = 45 (3-month MRI).  

	

	

	

	

	

	

	
             

MRI parameters 
miR-133b 
(30min) 

p value miR-133b 
(90min) 

p value 

Baseline MRI (n = 48)     

Infarct size, % of LV  0.304  0.036 0.445  0.002 

LV ejection fraction, % - 0.274 0.060 - 0.342 0.018 

End systolic volume, mL  0.216 0.141 0.322 0.026 

End diastolic volume, mL 0.029 0.847 0.118 0.423 

3-month MRI (n = 45)     

Infarct size, % of LV 0.357 0.017 0.538 <0.001 

LV ejection fraction, % - 0.259 0.086 - 0.300 0.045 

End systolic volume, mL  0.272 0.071 0.332 0.026 

End diastolic volume, mL  0.132 0.388 0.167 0.273 

Table 6.4. Correlation between miR-133b post-PPCI levels and cardiac MRI parameters. EDV, 
end-diastolic volume; ESV, end-systolic volume; IS, infarct size; LV, left ventricle; LVEF, left 
ventricular ejection fraction; MRI, magnetic resonance imaging. Spearman coefficient of correlation. n 
= 48 (baseline MRI); n = 45 (3-month MRI).  
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6.2.5. Patients in the highest baseline IS tertile have worse left ventricular functional 

recovery   

Considering that the baseline infarct size is one of the most important 

determinants of cardiac function following myocardial infarction, patients were 

divided according to baseline IS tertiles (1st tertile: IS < 7%; 2nd tertile: IS 7% – 

13.3%; 3rd tertile: IS > 13.3%) to analyse differences in final infarct size and 

changes in LVEF, ESV, and EDV across the first 3 months post-PPCI (baseline 

vs. follow-up MRI).  

 

Acute infarct size was significantly different across baseline MRI IS tertiles (p < 

0.001) (Figure 6.3A). At 3 months after of PPCI, the highest baseline IS tertile 

group still had the largest infarcts in relation to the lowest tertile but not the middle 

tertile (Figure 6.3A). In terms of LVEF, patients in the 2 lower baseline IS tertiles 

had a significant improvement at 3 months [1st tertile (n=16): 55.7% (baseline) vs. 

57.9% (3-month), p = 0.036; 2nd tertile (n=16): 52.6% (baseline) vs. 58.4% (3-

month), p = 0.007] (Figure 6.3B). In contrast, no significant difference in terms of 

LVEF was observed in the highest tertile group [3rd tertile (n=13): 44% (baseline) 

vs. 45.2% (3-month), p = 0.249] (Figure 6.3B).  

 

This was accompanied by a trend towards ESV reduction at 3 months in relation 

to baseline for the first tertile group [68.6mL (baseline) vs. 57.2mL (3-month), p = 

0.056] and a significant decrease for the middle tertile [78.3mL (baseline) vs. 

68.8mL (3-month), p = 0.020] (Figure 6.3C). No difference in ESV was detected in 

the highest tertile group between baseline (91.8mL) and 3-month (92.5mL) 

measurements (p = 0.600) (Figure 6.3C). Finally, no differences in EDV were 

observed between the baseline and 3-month MRI for all tertile groups (Figure 

6.3D). These findings suggest a worse left ventricular functional recovery in the 3 

months following PPCI for the subgroup of patients with the largest baseline IS. 

Unsurprisingly, the incidence of MVO was greater in this patient subgroup [1st 

tertile: n = 2 (11.8%); 2nd tertile: n = 7 (41.2%); 3rd tertile: n = 12 (75%), p = 0.001].  
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Figure 6.3. Final infarct size and 3-month post-PCI left ventricular functional 
recovery according to baseline IS tertiles. A) When patients were divided according to 
baseline IS tertiles, those in the highest tertile remained with the largest IS in relation to 
the lowest tertile at 3-months posr-PPCI; B) Patients in the two lower 3-day IS tertiles had 
significant improvements in LVEF over the initial 3 months following PCI. No changes in 
LVEF were observed for the highest tertile group; C) Compared to baseline levels, a trend 
in ESV reduction at 3 months post-PCI was observed for the lowest IS tertile group and a 
significant decrease for the middle tertile. There was no significant difference in ESV 
between baseline and 3-month measurements in the highest IS tertile. Box plots display 
median (central line), 25

th
 and 75

th
 percentiles (limits of the box), and range (error bars). 

Differences between 3-day and 3-month LVEF and ESV measurements were determined 
by paired Wilcoxon signed rank test. * p < 0.05; ** p < 0.01; ns, non-significant. n (1

st
 

tertile) = 16; n (2
nd

 tertile) = 16; n (3
rd

 tertile) = 13.  IS, infarct size, ESV, end systolic 
volume; LVEF, left ventricular ejection fraction.	
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6.2.6. miR-1 is elevated in patients with worse left ventricular functional recovery    

Median levels of miR-1 at 90min post-PPCI were significantly elevated in the 

highest baseline IS tertile compared to the lowest (3.3-fold, p = 0.013) and middle 

(2.7-fold, p = 0.031) tertile groups (figure 6.4B). Although miR-1 levels at 30min 

and miR-133b at 90min were also significantly elevated in the highest IS tertile 

group in relation to the lowest tertile (miR-1: 4.5-fold, p = 0.024; miR-133b: 4.4-

fold, p = 0.013), they were not significantly raised compared to the middle tertile 

(miR-1: 2.7-fold, p = 0.103; miR-133b: 3.2-fold, p = 0.061) (figures 6.4B and D). 

In contrast, there was no difference in miR-133b levels at 30min post-PCI across 

baseline IS tertile groups (p = 0.063) (figure 6.4C).  

 

Interestingly, when the distribution of pre-PPCI hs-cTnT levels was analysed 

according to baseline IS tertiles, no difference between groups was observed (p = 

0.459) (figure 6.5A).  As for 12h post-PPCI hs-cTnT, levels in the highest IS tertile 

[4,601 (3,616 – 9,858) ng/L] were significantly increased only in relation to the 

lowest tertile group vs. [990 (674 – 4,275), p = 0.003] but not to the middle tertile 

group [3,620 (2,566 – 6,393), p = 0.859].  

 

Taken together, these findings suggest that miR-1 levels at 90min post-

reperfusion seem to be specifically elevated in STEMI patients with worse left 

ventricular functional recovery over the first 3 months following PPCI.  
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Figure 6.4. Post reperfusion miR-1 and miR-133b levels according to baseline IS 
tertiles. A) miR-1 levels at 30min post-PCI. Significantly higher miR-1 measurements 
were observed in the highest IS tertile in comparison to the lowest tertile; B) miR-1 
levels at 90min post-PCI were significantly elevated in the highest tertile compared to 
the two lower tertile groups; C) No differences in miR-133b levels at 30min post-PCI 
amongst baseline IS tertile groups were observed. D) miR-133b levels at 90min post-
PCI were significantly increased in the highest IS tertile in comparison to the lowest 
tertile. Box plots display median (central line), 25

th
 and 75

th
 percentiles (limits of the 

box), and range (error bars) fold change to healthy controls. Differences between 
groups were determined by Kruskall-Wallis test with Dunn’s corrections for multiple 
comparisons. * p < 0.05; ns, non-significant. n (1

st
 tertile) = 16; n (2

nd
 tertile) = 16; n (3

rd
 

tertile) = 13.  IS, infarct size.  
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Figure 6.5. Pre-procedural and 12h post-PCI hs-cTnT levels according to baseline IS tertiles. 
A) No differences in pre-procedural hs-cTnT were observed between baseline IS tertile groups; B) 
12h post-PCI hs-cTnT levels were significantly elevated in the highest IS tertile in relation to the 
lowest but not to the middle tertile. Box plots display median (central line), 25

th
 and 75

th
 percentiles 

(limits of the box), and range (error bars). Differences between groups were determined by 
Kruskall-Wallis test with Dunn’s corrections for multiple comparisons. ** p < 0.01; ns, non-
significant. n (1

st
 tertile) = 16; n (2

nd
 tertile) = 16; n (3

rd
 tertile) = 13.  hs-cTnT, high-sensitivity 

cardiac troponin T; IS, infarct size.	
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6.3. Discussion 

6.3.1. Relationship between MVO, infarct size, and left ventricular function 

In the cohort included in this study, the occurrence of late microvascular obstruction 

was associated with larger infarct size, reduced left ventricular ejection fraction, and 

increased left ventricular end systolic volume in the baseline (3-day) and follow-up (3-

month) cardiac MRI. In addition, the incidence of late MVO was greater in a subgroup 

of patients with larger infarct size and lack of left ventricular functional improvement 

after 3 months of PCI. These findings are in accordance with previously published 

data, as shown by a meta-analysis including 33 studies that investigated the impact 

of MVO on infarct size and left ventricular remodelling in STEMI patients (Hamirani et 

al., 2014). These studies employed different cardiac MRI protocols for detection of 

MVO, especially regarding the timing of image acquisition post-contrast injection, 

with some identifying early MVO, late MVO, or both (Hamirani et al., 2014).   

 

Early MVO has been shown to be associated with larger infarct size both in baseline 

(1st week) (de Waha et al., 2010, Klug et al., 2012, Bekkers et al., 2009) as well as 

follow-up (3 to 4-month) MRI (Bekkers et al., 2009). Although these studies reported 

a greater reduction in infarct size at follow-up in relation to baseline in patients with 

early MVO, both infarct extent and transmurality were increased in these patients 

(Weir et al., 2010). In addition, lower LVEF and increased left ventricular volumes 

have been reported in patients with early MVO (Orn et al., 2009, Bekkers et al., 2009, 

de Waha et al., 2010). Similarly, late MVO has been associated with larger infarct 

size in STEMI patients (Bogaert et al., 2007, de Waha et al., 2010). In fact, the study 

by Orn et al.(Orn et al., 2009), which performed serial MRIs at 2 days, 1 week, 2 

months, and 1 year following PCI, found that 2-day baseline IS and MVO at 1 week 

were independent predictors of 1-year IS when adjusted for transmurality and infarct-

related artery. Presence of late MVO has also been implicated with reduced LVEF, 

increased ESV (Bekkers et al., 2009, Nijveldt et al., 2009, Larose et al., 2010, 

Durante et al., 2017), and greater end diastolic volume even when correcting for 

infarct size (Nijveldt et al., 2008). In the studies that directly compared early and late 

MVO, late MVO seemed to be more specific to detect microvascular damage and 

presented a strongest relationship with left ventricular remodelling (Nijveldt et al., 

2008, de Waha et al., 2010, Weir et al., 2010). Therefore, the findings described in 
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this chapter corroborate previous evidence of late MVO association with cardiac 

damage and function post-PPCI in STEMI patients.   

  

6.3.2. Cardiac-enriched miRNA levels and MVO 

This chapter shows for the first time an association between increased post-PCI 

cardiac-enriched microRNA (miR-1 and miR-133b) levels and the occurrence of MVO 

in STEMI patients.  

 

To date, only the study by Eitel et al. (Eitel et al., 2012) investigated whether 

circulating levels of a miRNA (miR-133a) could be associated with MVO in STEMI 

patients undergoing PPCI. That study included 216 consecutive patients admitted to 

a single interventional cardiology centre who had a cardiac MRI performed at days 2 

to 4 after the event. The authors reported that occurrence of MVO was significantly 

higher in the group of patients with admission miR-133a concentration ³ median 

[miR-133a ³ median: n = 72 (76%); miR-133a < median: n = 61 (63%); p = 0.002] 

(Eitel et al., 2012). This miRNA was the third mostly expressed in the miRNA 

screening performed in patients with MVO shown in chapter 5 and is also a cardiac-

enriched miRNA, from the same cluster as miR-133b. However, because only the top 

two candidates were chosen for validation as part of this PhD thesis, miR-133a was 

not quantified in the entire cohort here described. Given that MVO is a strong 

determinant of cardiac damage following reperfusion, it is not surprising that cardiac-

enriched miRNAs are elevated in the presence of MVO. Nonetheless, considering 

that several miRNAs regulate mechanisms that have been implicated in the 

pathogenesis of MVO, such as oxidative stress (Gong et al., 2018), endothelial 

function (Caporali et al., 2011), leukocyte trafficking (Harris et al., 2008), and platelet 

reactivity (Sunderland et al., 2017), it is plausible to believe that future studies 

employing more comprehensive screening techniques might identify candidate 

circulating markers of MVO that are released from cell types other than 

cardiomyocytes and that may provide more specific information about pathological 

process affecting the coronary microcirculation.    

6.3.3. Correlation between cardiac-enriched miRNAs and myocardial damage 

This chapter also unveiled a previously unknown correlation between miR-1 and 

miR-133b 30min and 90min post-reperfusion levels and myocardial necrosis, as 
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assessed by 12h hs-cTnT levels and cardiac MRI. The correlation between 

circulating cardiac-enriched miRNA levels and cardiac troponins is still controversial 

in the literature. In the few studies that performed serial miRNA quantification post-

PPCI, peak levels early after reperfusion (30 min – 4h) correlated with markers of 

cardiomyocyte necrosis, such as cardiac troponins or creatine kinase myocardial 

band (CK-MB) (D'Alessandra et al., 2010, Bialek et al., 2015, Wang et al., 2013). 

However, such correlations were not observed for miRNA levels prior to or several 

hours post-PPCI (Ai et al., 2010, Gidlof et al., 2011, Bauters et al., 2013). 

Collectively, these data suggest that the time window spanning up to a few hours 

after reperfusion might be particularly relevant to understand miR-1 and miR-133b 

association with cardiac damage. 

 

Indeed, this study showed that higher miR-1 and miR-133b levels at 30min and 

90min post-PCI correlated with larger infarct size at an average of 3 days and 3 

months after the index event. Furthermore, in the study by Eitel et al. (Eitel et al., 

2012), admission miR-133a concentration ³ median was associated with larger area 

at risk and infarct size assessed by cardiac MRI. In that study, however, duration of 

ischaemia (symptom onset to reperfusion time) was significantly higher in the group 

of patients with pre-reperfusion miR-133b ³ median (p < 0.001) and an independent 

predictor of pre-reperfusion miR-133a levels (Eitel et al., 2012), which might explain 

why infarct size was greater in that group.  

 

Thus, the data here presented support the hypothesis that miR-1 and miR-133b early 

post-reperfusion levels may inform about the severity of cardiac damage both in the 

acute (3-day) and the convalescent (3-months) phases of STEMI.  

 

6.3.4. Association of miR-1 and miR-133b with LV function and remodelling post-PCI 

In the setting of STEMI, it seems logical that miRNAs that reflect myocardial injury 

may also serve as indicators of impaired cardiac function. Indeed, in this chapter, 

miR-1 and miR-133b levels at 90min post-PCI negatively correlated with LVEF as 

assessed by baseline and 3-month post-PCI cardiac MRI.  

 

These findings are corroborated by previous studies in which cardiac-enriched 

miRNAs were associated with reduced LVEF in patients with acute myocardial 
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infarction or were deregulated in patients with advanced heart failure (Gidlof et al., 

2013a, Eitel et al., 2012, Akat et al., 2014). In 424 patients with suspected acute 

coronary syndrome, increased levels of the cardiac-specific miR-208b and miR-499-

5p measured between 24h to 72h after admission were associated with reduced 

LVEF and higher 30-day risk of heart failure or mortality (Gidlof et al., 2013a). In 

addition, LVEF assessed by cardiac MRI in the first week following STEMI was found 

to be lower in patients with higher admission miR-133a levels (Eitel et al., 2012). 

Using RNA sequencing, Akat et al. observed decreased miR-1 expression in 

myocardial tissue samples obtained from patients with advanced heat failure 

undergoing left ventricle assist device implantation compared to controls without 

heart disease (Akat et al., 2014).  This was ‘mirrored’ by increased circulating levels 

of miR-1 and other cardiac-enriched miRNAs (miR-133b, miR-208a, miR-208b, miR-

499) in this patient group (Akat et al., 2014). In contrast, no association between 

miR-1 and miR-133a and left ventricular function were reported in patients with acute 

myocardial infarction by other studies (Bauters et al., 2013, Gidlof et al., 2013a). This 

discrepancy might be explained by substantial differences in the timing of sample 

collection, as miRNAs were measured at 24 – 72h post-admission (Gidlof et al., 

2013a) or at patient discharge (Bauters et al., 2013), which are late time points 

considering miR-1 and miR-133a kinetics described in this PhD thesis and previous 

exploratory studies. This highlights the importance of understanding the release 

kinetics of cardiac-enriched miRNAs following STEMI so that optimal time points for 

miRNA quantification and their correlation with clinical parameters can be identified.  

 

In response to STEMI, structural changes in the left ventricle architecture aiming to 

preserve cardiac output despite myocardial tissue loss occur in the first weeks and 

months following the event (Bogaert et al., 1999, Choi et al., 2001, Hassell et al., 

2017). The magnitude of this adaptive process, known as LV remodelling, is 

determined by infarct size and the presence of microvascular injury (MVO) at 

baseline (Solomon et al., 2001, Beek et al., 2003, Nijveldt et al., 2008). A recent 

study on cardiac MRI data from STEMI patients undergoing PCI proposed a 

classification for LV remodelling based on changes in ESV and EDV over time: (i) 

adverse remodelling, characterised by increase ³12% in both ESV and EDV; (ii) no 

remodelling, defined by no changes in ESV and EDV; and (iii) reverse remodelling, 

characterised by decrease ³12% in ESV and EDV or no EDV change (Bulluck et al., 

2017). Adverse remodelling has been associated with worse clinical outcome (Cheng 
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and Vasan, 2011) whereas reverse remodelling been independently associated with 

decreased risk of long-term heart failure and cardiovascular events (Carrabba et al., 

2012, Spinelli et al., 2013).    

 

In this chapter, miR-1 and miR-133b levels at 90min post-PCI positively correlated 

with baseline and 3-month ESV. In addition, patients in the 2 lowest baseline IS 

tertile groups presented reverse LV remodelling 3 months after PCI whereas no LV 

remodelling was observed for the highest tertile, suggesting the latter had a less 

favourable risk profile. Among miR-1, miR-133b, and 12h hs-cTnT, only miR-1 levels 

at 90min post-PCI were found to be specifically elevated in the group of patients with 

worse LV functional recovery compared to patient with reverse remodelling. Previous 

studies that assessed LV remodelling in STEMI patients using echocardiography 

identified some other miRNAs (miR-21, miR-34a, miR-208a, miR-208b, and miR-

150) associated with LV remodelling in this cohort (Zile et al., 2011, Devaux et al., 

2013, Lv et al., 2014).  Therefore, this is the first study to indicate that miR-1 levels at 

90min post-reperfusion could also inform about LV remodelling assessed by cardiac 

MRI in STEMI patients. Nonetheless, due to the small sample size, future studies 

should investigate miR-1 association with LV remodelling and its prognostic 

relevance in larger STEMI cohorts.   

 

	

6.4. Conclusion 

	

This chapter provides evidence to support a clinically relevant role for the cardiac-

enriched miRNAs miR-1 and miR-133b given their association with an early 

component of failed myocardial reperfusion (MVO) and the extent of cardiac damage 

following STEMI. Furthermore, miR-1 levels at 90min post-PPCI seem to be 

particularly informative regarding left ventricular remodelling and functional recovery 

in the first 3 months following PCI. 
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Chapter 7. General Discussion 
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7.1. Summary of the key findings  

	

7.1.1. Introduction 

The findings presented in this thesis significantly advance the current knowledge 

about the release of muscle-enriched miRNAs (miR-1 and miR-133b) from the 

myocardium as well as their clinical relevance in STEMI patients treated with PCI. 

Firstly, the prognostic importance of pre-PCI and peak cardiac troponins was 

retrospectively assessed in 4,914 consecutive STEMI patients treated with PPCI. 

Post-reperfusion troponin levels did not independently predict in-hospital or longer-

term mortality in this population. These findings prompted the identification of new 

markers that may better inform about the reperfusion process and prognosis in this 

population, such as miRNAs. To improve miRNA quantification in plasma samples 

from STEMI patients, in vitro RNA sample treatment with heparinase and an 

endogenous circulating miRNA (miR-425-5p) were validated as strategies to tackle 

current issues related to RT-qPCR inhibition and normalization in this cohort, 

respectively. Subsequent miRNA screening and kinetics analyses revealed that the 

muscle-enriched miR-1 and miR-133b are rapidly released into the circulation 

following PCI, reaching an initial peak at 30min and a second peak at 90min post-

PCI. The presence and amplitude of a second miRNA peak seemed to be associated 

with a higher index of microvascular resistance, a surrogate marker of coronary 

microcirculatory function. In addition, miR-1 and miR-133b levels at 30min and 90min 

post-PPCI were associated with microvascular obstruction measured by cardiac MRI. 

Finally, miR-1 and miR-133b levels were significantly elevated in a subgroup of 

STEMI patients with larger infarcts and worse left ventricular function and 

remodelling 3 months after PPCI.  

 

7.1.2. Pre-PCI cTn, but not peak cTn, is an independent predictor of mortality in 

STEMI  

In chapter 3, a retrospective analysis to determine the power of pre-PCI and 12h 

post-PCI cTn for mortality prediction in STEMI patients (n = 4,914) was displayed. 

This is the largest analysis of its kind reported to date. Univariate Kaplan-Meier 

survival analysis showed that both pre-cTn (log rank p < 0.001) and 12h cTn (log 

rank p = 0.003) were associated with mortality over a median follow-up period of 5 
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years. Multivariate Cox-regression analysis demonstrated that the highest pre-cTn 

quartile levels were independently associated with increased risk of both in-hospital 

(HR: 3.64; 95% CI: 1.86 – 7.10; p < 0.001) and longer-term (HR: 1.26; 95% CI: 1.01 

– 1.57; p = 0.035) mortality when adjusted for core clinical models of mortality 

prediction. In contrast, 12h cTn was not independently associated with either in-

hospital (HR: 0.61; 95% CI: 0.37 – 1.02; p < 0.001) or longer-term (HR: 1.11; 95% CI: 

0.89 – 1.38; p = 0.333) mortality. In addition, ROC curve analysis revealed that the 

highest pre-cTn quartile levels improved the ability of core clinical models to 

discriminate patients who died in-hospital (AUC model only: 0.891 vs. AUC model + 

pre-cTn: 0.904, p = 0.022) or during follow-up (AUC model only: 0.829 vs. AUC 

model + pre-cTn: 0.833, p = 0.008). Interestingly, pre-cTn quartile levels reclassified 

65% and 50% of the patients into correct risk categories for in-hospital and longer-

term mortality risk, respectively, over core prediction models by net reclassification 

index analysis (p < 0.001). These findings are in accordance with previous, small 

studies that showed that admission cTn was associated with outcome in STEMI 

patients (Giannitsis et al., 2001, Wang et al., 2014a) and a recent large study 

including unselected STEMI patients which demonstrated that routine post-PCI cTn 

measurements were not predictive of outcome (Cediel et al., 2017). The prognostic 

relevance of pre-cTn levels seems to derive, however, from their ability to reflect the 

area at risk (p < 0.001) and ischaemic time (p = 0.001) prior to PCI rather than their 

ability to inform about the reperfusion process. Therefore, these results reinforced the 

need for identification of post-reperfusion biomarkers that could inform about the 

success of myocardial reperfusion and prognosis in STEMI patients. 

	

7.1.3. In vitro heparin inhibition and RT-qPCR normalisation to miR-425-5p are 

suitable strategies to improve miRNA quantification in STEMI patients 

Chapter 4 sought to identify and validate methodological strategies to overcome 

current limitation to accurate miRNA quantification by RT-qPCR in STEMI patient 

samples, namely (i) the lack of an endogenous circulating miRNA control for RT-

qPCR normalization and (ii) heparin-induced RT-qPCR inhibition. Firstly, screening of 

179 miRNAs in pre- and post-reperfusion samples followed by miRNA stability 

assessment identified a group of 4 miRNAs as the most stably expressed in a cohort 

of 6 STEMI patients (miR-425-5p, miR-877-5p, miR-181-a5p and miR-155-5p). Out 

of these 4 candidates, miR-425-5p was validated as the most stable miRNA in 
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samples collected at 24h post-PCI from 34 STEMI patients. In addition, the presence 

of heparin in RNA samples extracted from STEMI patients’ plasma was confirmed by 

ELISA and in vitro treatment with heparinase significantly reduced heparin 

concentration in RNA samples. Heparin administration in vitro and in vivo was shown 

to affect all currently used RT-qPCR normalization strategies (global miRNA mean, 

cel-miR-39 and the endogenous control miR-425-5p) as well as the detection of 

muscle-enriched miRNAs (miR-1 and miR-133b). In contrast, heparinase addition to 

RNA samples restored miRNA detection by RT-qPCR. Finally, administration of 

bivalirudin instead of heparin as an alternative anticoagulant did not seem to affect 

miRNA detection. This is the first study to validate an endogenous miRNA control for 

RT-qPCR normalization in STEMI patients. Also, it provides original evidence that 

bivalirudin does not seem to interfere with miRNA quantification by RT-qPCR. This 

chapter corroborates previous literature about the use of heparinase to counteract 

heparin-induced RT-qPCR inhibition. Thus, this PhD thesis presents new tools to 

improve circulating miRNA quantification in STEMI patients, which may be helpful to 

achieve a higher level of standardisation and reproducibility among future studies.  

 

7.1.4. Circulating miR-1 and miR-133b rapidly raise after PCI and their kinetics seem 

to be influenced by coronary microcirculatory function    

In chapter 5, miRNA screening identified miR-1 and miR-133b as the top two 

candidate miRNAs to be most highly expressed after myocardial reperfusion in 

STEMI patients (n = 6) with microvascular obstruction. A detailed analysis of the 

plasmatic kinetics of these miRNAs in 18 STEMI patients prior to and in the initial 3 

hours post-PCI showed that miR-1 and miR-133b presented 2 peaks in this time 

frame, which coincided at 30 min (miR-1: 49-fold vs. controls, p < 0.001; miR-133b: 

32.6-fold, p < 0.001) and 90 min (miR-1: 53.1-fold, p < 0.001; miR-133b: 28.8-fold, p 

< 0.001) post-PCI. When miRNA kinetics were assessed separately for each patient, 

it was possible to group them into 2 kinetics patterns according to the presence of the 

second peak: (i) monophasic, with the presence of only the first peak at 30 min; and 

(ii) biphasic, with a first peak at 30 min and a second peak occurring at 75 – 90 min 

post-PCI. The release kinetics of miR-1 and miR-133b seemed to be influenced by 

the degree of epicardial coronary artery perfusion prior to and after PCI (TIMI 

angiographic flow grade), although are results are inconclusive as n = 2 only. In 

addition, the presence and amplitude of the second miRNA peak, especially for miR-
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1, seemed to be associated with higher IMR values, which is associated with 

microvascular obstruction. Confirming the findings observed in the kinetics study, 

miR-1 and miR-133b levels were found to be elevated at 30 min (miR-1: 18.5-fold, p 

< 0.0001; miR-133b: 12-fold, p < 0.0001) and at 90 min (miR-1: 25.2-fold, p < 0.0001; 

miR-133b: 15-fold, p < 0.001) post-PCI in a validation cohort of 48 STEMI patients. 

Finally, miR-1 and miR-133b expressions were increased in circulating microparticles 

isolated prior to and at 30 min and 90 min post-PCI (n = 10) in relation to controls (n 

= 3). Microparticles seemed to be the main carriers of miR-133b prior to and after 

reperfusion but only represented the main carriers of miR-1 prior to reperfusion.  

 

This chapter significantly contributed to the understanding of the kinetics and 

mechanisms of release of muscle-enriched miRNAs (miR-1 and miR-133b) in STEMI 

patients. In addition, it identified time points (30 min and 90 min) that may be useful 

for the investigation of the relationship between these miRNAs and clinical 

parameters. Furthermore, it generated the hypothesis that the presence of a second 

miRNA peak may reflect failed myocardial reperfusion-associated injury.     

	

7.1.5. Circulating miR-1 and miR-133b are associated with failed myocardial 

reperfusion, cardiac damage, and LV function in STEMI patients     

In chapter 6, the associations of miR-1 and miR-133b levels with microvascular 

obstruction as well as cardiac morphological and functional parameters assessed by 

a baseline (3-day post-PCI in average) and a follow-up (3-month post-PCI) cardiac 

MRI were investigated. Both miR-1 and miR-133b levels were significantly elevated 

in patients with microvascular obstruction at 30 min and 90 min post-PCI. In addition, 

miR-1 and miR-133b levels at both time points positively correlated with 12h cardiac 

troponin levels, acute (3-day) and final (3-month) infarct size, indicating that these 

miRNAs correlate with the extent of myocardial damage following STEMI. 

Furthermore, miR-1 and miR-133b at 90 min negatively correlated with baseline and 

3-month left ventricular ejection fraction and end systolic volume, which suggests that 

higher post-PCI miR-1 and miR-133b are associated with impaired left ventricular 

function. Indeed, miR-1 levels at 90 min post-PCI, but not miR-133b or 12h hs-cTnT, 

were specifically elevated in a subgroup of STEMI patients who presented worse left 

ventricular remodelling (no remodelling as opposed to reverse remodelling in the 

other subgroups) over the initial 3 months following PCI. This is the first study to 
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demonstrate such correlations between miR-1 and miR-133b and these important 

prognostic parameters using cardiac MRI in STEMI patients. 

 

	

7.2. Clinical Relevance  

	

This PhD thesis unveiled the prognostic role of pre-cTn in a large cohort of 

consecutive STEMI patients. Pre-cTn was an independent predictor of in-hospital 

and longer-term mortality and prominently reclassified patients into lower mortality 

risk categories, meaning that it is a particularly valuable marker to identify low-risk 

patients over core prediction models. This is clinically important given that low-risk 

patients early (2-day) discharge post-PCI has been shown to be safe and to 

decrease future complications as well as costs associated with healthcare (Jones et 

al., 2012, Noman et al., 2013).  As for 12h post-PCI cTn, the results from this thesis 

suggest that its application as a prognostic marker in STEMI patients is not 

justifiable. Therefore, this work questions the need for routine 12h cTn 

measurements in current clinical practice, which could save resources for healthcare 

systems. Although post-reperfusion cTn levels have been shown to be associated 

with late microvascular obstruction, correlations were stronger at later time points 

post-PCI, such as 72h (Younger et al., 2007) and 96h (Mayr et al., 2012), which 

might explain in part why 12h post-cTn lost association with mortality after 

adjustment to the core clinical models. Future studies could investigate whether post-

cTn at those later time points are prognostically relevant. However, even if it is, the 

clinical feasibility of waiting 72h or 96h after PCI to quantify cTn is questionable given 

that most patients will have already been discharged at those time points. 

 

Another clinically relevant finding from this thesis is the association between high 

miR-1 and miR-133b levels and microvascular obstruction, which suggests these 

miRNAs could potentially be used for the detection of MVO in clinical practice. 

Established methods to detect failed reperfusion such as electrocardiographic ST 

segment resolution and angiographic myocardial blush grade score lack sensitivity 

and reproducibility as routine tests (Nijveldt et al., 2008). Cardiac magnetic 

resonance imaging (MRI), the gold-standard technique for MVO detection, has 

prognostic importance (Eitel et al., 2014, Carrick et al., 2016b), however MRI is not 

feasible as a routine investigation, due to high costs, contraindications (Dill, 2008) 



	 146	

and lack of capacity. More recently, invasive assessment of coronary microcirculatory 

function with the IMR at the end of PCI has been shown to reliably inform about 

severe microvascular pathology, left ventricular remodelling (Carrick et al., 2016a), 

and mortality after STEMI (Fearon et al., 2013). Nevertheless, although in principle 

safe, IMR is a costly, invasive procedure that adds in the time of exposure to 

radiation, and is not available in all centres. Therefore, muscle-enriched miRNAs 

could represent novel non-invasive, affordable biochemical markers to detect MVO.  

 

Although miRNA levels would not be readily available during PCI as there is currently 

no point-of-care technology for fast miRNA quantification, they could still be useful to 

guide clinical decisions, as MVO management is not only restricted to the acute 

setting in the catheterization laboratory. It has been shown that continued infusion of 

drugs after PPCI in the coronary care unit (CCU), such as glycoprotein IIb/IIIa 

inhibitors (Petronio et al., 2005), human atrial natriuretic peptide (Kitakaze et al., 

2007), and exanatide (Lonborg et al., 2012), was beneficial and improved surrogate 

markers of reperfusion injury. Moreover, addition of cilostazol to dual antiplatelet 

therapy for 1 month post-PPCI improved 1-year outcome in patients with MVO (Lee 

et al., 2013). This suggests that a more aggressive pharmacological treatment 

following PPCI in patients with MVO, even if MVO is detected a few hours after the 

procedure, may still be important for the clinical management of the condition. In 

addition, miRNA smaller size and faster release kinetics following myocardial injury in 

comparison to other circulating biomarkers that have been associated with MVO, 

such as cardiac troponins and creatine-kinase muscle/brain (CK-MB), gives miRNAs 

an advantage in terms of time for detection of MVO. 

 

An additional potential clinical application of muscle-enriched miRNAs could be the 

monitoring of therapeutic approaches for MVO. Failed myocardial reperfusion is a 

novel field of research, including pharmacological research. So far, there are no 

interventions for MVO prevention or treatment that have been validated by large 

randomized clinical trials with defined clinical end-points (Niccoli et al., 2016).  Many 

of the studies that tested pharmacological interventions for MVO before, during, or 

after PCI have shown negative results in terms of MVO incidence or improvement in 

prognostic surrogate markers, such as infarct size and left ventricular remodelling 

(Niccoli et al., 2016). This highlights the need to better understand MVO 

pathophysiology so that precise therapeutic targets can be identified. Biomarkers of 
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failed reperfusion could provide valuable insight about the mechanisms underlying 

MVO and help monitoring the efficacy of novel therapeutic agents targeting MVO.  

 

Finally, the results described in chapter 6 suggest that miR-1 levels at 90 min post-

PCI could potentially be employed as a risk stratification tool in STEMI patients post-

PCI. This miRNA was specifically elevated in a subgroup of patients with larger 

infarcts, higher incidence of MVO, and worse 3-month left ventricular remodelling, 

thus a higher-risk patient group in terms of prognosis.  In this sense, miRNA levels 

could also guide clinical management post-MI. For example, low-risk patients would 

not require follow-up by cardiologists, whereas those at high risk could benefit from 

better follow-up, more aggressive secondary prevention measures, and rehabilitation 

strategies.  

	

	

7.3. Study Limitations 

	

This study presents several limitations that should be considered, many of which 

have been discussed in the respective chapters. First, in the retrospective analysis 

including 4,914 STEMI patients outlined in chapter 4, the conversion of cTnI values 

into the cTnT scale using a direct linear transformation might have introduced some 

degree of inaccuracy in patient assignment into cTn quatiles when cTnI values were 

close to the cut-off points for each quartile group. In addition, only data regarding all-

cause death was available and, therefore, no sub-analysis referring to cardiac death 

specifically could be performed. Furthermore, due to the retrospective nature of 

mortality data collection from statistical records, misclassification cannot be entirely 

excluded.  

 

Other important limitations of this study are the miRNA screening platform used and 

the small sample size. The RT-qPCR panels only allowed quantification of 179 

circulating miRNAs, which represent a small fraction of the total number of known 

miRNAs to date. In addition, unlike other screening approaches such as RNA 

sequencing, it does not allow the identification of new miRNA transcripts that could 

be deregulated in patients with MVO. The small sample size of STEMI cohorts 2 and 

3 did not confer this study with enough statistical power to draw more definitive 

conclusions regarding the association between miRNA kinetics patterns and the IMR 
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measurements and to test the predictive value of 30 min and 90 min miRNA levels 

for MVO detection. Also, the cohort 3 might not entirely reflect the demographic 

characteristics of a general STEMI population given the strict exclusion criteria used 

in the CAPRI trial. For example, large population trials of patients with acute coronary 

syndromes showed that the prevalence of diabetes ranged from 15.4% to 20% as 

opposed to only 8% in this study (Donahoe et al., 2007, Piccolo et al., 2016).   

 

Finally, because of the cardiac MRI equipment available the image acquisition 

protocol did not include determination of parameters such as intramyocardial 

haemorrhage, myocardial oedema and myocardial salvage index, which are 

important for a more comprehensive assessment of failed myocardial reperfusion.   

	

	

7.4. Future work 

 

Although this PhD thesis proposed tools for the improvement of miRNA quantification 

in STEMI patients, the translation of these markers to clinical practice requires further 

technological developments. For example, the use of heparinase here described 

might introduce substantial variability in miRNA quantification across clinical 

laboratories. An emerging technology, digital droplet PCR (ddPCR), might be a 

suitable alternative to circumvent technical issues associated with RT-qPCR. Digital 

droplet PCR provides absolute quantification of nucleic acids based on the 

partitioning of individual template molecules into thousands of nanoliter-sized, 

aqueous-oily droplets, containing zero or one molecule per reaction, followed by PCR 

and rapid microfluidic analysis of individual droplets. The original nucleic acid copy 

number in a sample is then determined by Poisson statistical analysis including the 

number of reactions containing the amplified target (positive reactions) and not 

containing the amplified target (negative reactions), without the need for 

normalisation or external references (Vogelstein and Kinzler, 1999, Hindson et al., 

2011). Partitioning of samples into droplets by digitization has been suggested to 

confer ddPCR with a higher tolerance to traditional PCR inhibitors, such as heparin 

and sodium dodecyl sulphate (SDS), in comparison to RT-qPCR for the detection of 

synthetic cytomegalovirus assays (Dingle et al., 2013). Digital droplet PCR has been 

validated for the absolute quantification of circulating miRNAs in cancer patients 

(Ferracin et al., 2015, Mangolini et al., 2015, Campomenosi et al., 2016, Beheshti et 



	 149	

al., 2017) and presented superior performance in terms of precision and 

reproducibility to RT-qPCR in this population (Hindson et al., 2013). A recent study 

that used ddPCR for miRNA (miR-21, miR-208, and miR-499) quantification in a 

small cohort of STEMI patients (n = 24) at 5h post-PCI reported superior limit of 

detection and coefficient of variation in relation to RT-qPCR but did not observe any 

correlation between these miRNAs and myocardial ischaemia and reperfusion injury, 

as assessed by ST-segment resolution in the ECG (Robinson et al., 2018). In 

addition, ddPCR tolerance to heparin inhibition for quantification of circulating 

miRNAs in heparin-contaminated patient samples has not yet been evaluated. To 

address this, my supervisor and I have been successful in securing a Heart 

Research UK Novel and Emerging Technologies grant (Grant reference number: 

RG2669/18/19) to investigate the effects of heparin and bivalirudin on ddPCR and 

how it compares to RT-qPCR in terms of miRNA kinetics quantification and 

correlation with MVO in a larger cohort of 75 STEMI patients. If validated, ddPCR 

could represent the next gold-standard technique for circulating miRNA quantification 

in this population and facilitate the insertion of miRNAs as markers of failed 

myocardial reperfusion in routine clinical practice.  

	

Furthermore, future studies using high-throughput miRNA screening approaches, 

e.g. microarrays or RNA-sequencing, are warranted to unveil potential new candidate 

markers of failed myocardial reperfusion.  It is possible that different miRNAs have 

distinct concentration and distribution in the heart and are differently expressed 

amongst patients, which is true for cardiac troponins and myoglobin, for example 

(Swaanenburg et al., 2001). By using several markers simultaneously, this could 

potentially provide more accurate information about underlying tissue injury 

mechanisms, myocardial area at risk and overcome inter-patient variability for single 

markers. Our group has just been awarded a research grant from the Newcastle 

upon Tyne hospitals NHS Trust to perform this work. 

 

Also, considering the results from this PhD thesis, future studies employing a 

multiparametric analysis combining cardiac-enriched miRNA quantification, IMR 

measurements and a more detailed cardiac MRI protocol (including MVO, 

intramyocardial haemorrhage, myocardial oedema, and myocardial salvage index) 

simultaneously in larger STEMI patient populations could provide a more 

comprehensive picture of circulating miRNA relationship with the pathological 
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alterations associated with microvascular dysfunction and failed myocardial 

reperfusion. Finally, the deeper understanding of miR-1 and miR-133b kinetics 

provided in this PhD thesis might be very useful for future studies in choosing 

appropriate time points for the assessment of the prognostic role of these miRNAs. 

 

 

7.5. Conclusions 

 

In conclusion, this PhD thesis established a clinically relevant prognostic role for pre-

cTn whilst demonstrating that routinely quantified 12h post-PCI cTn does not provide 

additional prognostic information over traditional clinical predictors in a large cohort of 

STEMI patients. Furthermore, it validated two methodological tools for circulating 

miRNA quantification in STEMI patients that may be useful for future studies: (i) miR-

425-5p as a circulating endogenous miRNA control for RT-qPCR normalization and 

(ii) the use of heparinase or bivalirudin to overcome heparin-induced RT-qPCR 

inhibition. In addition, this study presented the most detailed description of cardiac-

enriched miRNA (miR-1 and miR-133b) release kinetics in the initial 3h following PCI. 

This analysis revealed that miR-1 and miR-133b rapidly increase in the circulation 

after reperfusion following a monophasic or biphasic pattern, which seemed to be 

associated with the degree of coronary microcirculatory function. Finally, this PhD 

thesis provided evidence for the potential clinical usefulness of circulating miR-1 and 

miR-133b as early surrogate markers of failed myocardial reperfusion as well as 

cardiac remodelling and function after PCI in STEMI patients.       
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Following submission of this thesis, a more comprehensive miRNA screening was 

performed to identify possible new candidate miRNA markers of MVO. The HTG 

EdgeSeq miRNA Whole Transcriptome Assay (miRNA WTA; HTG Molecular, 

Tucson, AZ, USA) was used to quantify 2,083 human miRNA transcripts using next-

generation sequencing (NGS) in plasma collected prior to and at 90 min post-PPCI 

from STEMI patients with (n = 6) and without MVO (n = 6).  

 

The HTG EdgeSeq miRNA Whole Transcriptome Assay (miRNA WTA) measures the 

expression of 2,083 human miRNA transcripts using next-generation sequencing 

(NGS). For each sample, 15µl of plasma was lysed with 15µl of HTG plasma lysis 

buffer and 3ul proteinase K (both HTG Molecular, Tucson, AZ, USA), then incubated 

for 180 minutes at 50°C with orbital shaking. From each prepared sample, 25μL were 

added per well to a 96-well sample plate and run on an HTG EdgeSeq Processor 

using the HTG EdgeSeq miRNA WTA (HTG Molecular, Tucson, AZ, USA). Sample 

miRNAs are protected with proprietary protection probes, while all non-hybridized 

probes and non-targeted RNA are degraded by S1 nuclease, resulting in a 1:1 

stoichiometric ratio of probes to targeted RNA. Samples were subsequently 

individually barcoded by PCR with adapters and dual molecular barcodes via tailed 

primers. For PCR, 3ul sample was incubated with 6µl OneTaq PCR GC buffer, 2.4µl 

Hemo KlenTaq enzyme (both New England Biolabs), 0.2mM dNTPs, and 3µl F and R 

primers (HTG Molecular) in a 30µl reaction. Samples were heated at 95°C for 4 

minutes, followed by 16 cycles of: 95°C for 15 seconds, 56°C for 45 seconds and 

68°C for 45 seconds; then 68°C for 10 minutes. Barcoded samples were individually 

purified using AMPure XP beads (Beckman Coulter), quantitated using a KAPA 

Library Quantification kit (KAPA Biosystem, Wilmington, MA, USA) then pooled at a 

concentration of 4pM. The library was sequenced on an Illumina NextSeq (Illumina, 
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Inc., San Diego, CA) using a NextSeq 500/550 High Output Kit v2.5 (75 cycles) kit 

with two index reads and 5% PhiX spike-in as standard. Data were returned from the 

sequencer in the form of demultiplexed FASTQ files, with one file per original well of 

the assay. The HTG EdgeSeq Parser (HTG Molecular, Tucson, AZ, USA) was used 

to align the FASTQ files to the probe list to provide raw sequencing reads per 

miRNA.  

 

A group of 17 miRNAs were expressed at least 2-fold higher in patients with MVO 

compared to patients without MVO (Appendix Figure 1). Notably, miR-133b was the 

most highly expressed miRNA in patients with MVO. Interestingly, miR-1 was not 

amongst this group of miRNAs. This might suggest that miR-133b might be a more 

specific marker for microvascular damage than miR-1. This needs to be investigated 

in further studies.  

 

 

 

 

 

 

 

 

 

 

 

 

 



	 205	

 

 

 

 

 

 

	

Appendix	 Figure	 1.	MiR-133b	 is	 the	most	 highly	 expressed	

miRNA	 in	 patients	 with	 MVO.	 Group	 of	 17	 miRNAs	

presenting	 copy	 number	 at	 least	 two-fold	 higher	 in	 patient	

with	MVO	compared	to	patients	without	MVO	at	90	min	post-

reperfusion	(MVO	+/ve	n	=	6;	MVO	-/ve	n	=	6)	after	screening	

of	2,083	miRNAs.	


