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Abstract 

The mechanisms by which metformin (dimethylbiguanide) inhibits hepatic gluconeogenesis at 

concentrations relevant for type 2 diabetes therapy remain debated.  Two proposed mechanisms 

are: inhibition of mitochondrial Complex 1 with consequent compromised ATP and AMP 

homeostasis; or inhibition of mitochondrial glycerophosphate dehydrogenase (mGPDH) and 

thereby attenuated transfer of reducing equivalents from the cytoplasm to mitochondria 

resulting in a raised lactate/pyruvate ratio and redox-dependent inhibition of gluconeogenesis 

from reduced but not oxidised substrates.   

This thesis used primary hepatocytes to investigate the mechanism(s) by which low metformin 

concentrations relevant to the therapeutic dose inhibit gluconeogenesis. It tested the hypotheses 

of involvement of inhibition of Complex 1 and / or inhibition of mGPDH.    

The results from this study show that metformin has a biphasic effect on the mitochondrial 

NADH/NAD redox state in hepatocytes.  A low cell dose of metformin (therapeutic equivalent: 

 2nmol/mg) caused a more oxidised mitochondrial NADH/NAD state and an increase in the 

lactate/pyruvate ratio, whereas a higher metformin dose (5nmol/mg) caused a more reduced 

mitochondrial NADH/NAD state similar to Complex 1 inhibition by rotenone. The low 

metformin dose inhibited gluconeogenesis from both oxidised (dihydroxyacetone) and reduced 

(xylitol) substrates by preferential partitioning of substrate towards glycolysis by a redox-

independent mechanism that is best explained by allosteric regulation at phosphor-

fructokinase-1 (PFK1) and/or fructose bisphosphatase-1 (FBP-1) in association with a decrease 

in cell glycerol 3-P, an inhibitor of PFK1 rather than by inhibition of transfer of reducing 

equivalents.  

This study supports the conclusion that at a low pharmacological load, the metformin effects 

on the lactate/pyruvate ratio are explained by attenuation of transmitochondrial electrogenic 

transport mechanisms with consequent compromised malate-aspartate shuttle and the 

inhibition of gluconeogenesis is best explained by changes in allosteric effectors of PFK1 and 

FBP1 independently of inhibition of both Complex 1 and mGPDH.  
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Chapter. 1 Introduction  

1.1 Diabetes Mellitus  

   Diabetes mellitus has been defined by the World Health Organization as a metabolic dis-

function of multiple causes featured by chronic hyperglycaemia with changes in glucose, 

protein and fat metabolism due to a defect in insulin secretion, insulin action, or both (Bolen et 

al., 2007). The number people with diabetes is expected to reach 366 million in 2030 (World 

Health, 2006). 

1.2  Types of diabetes mellitus 

     The two commonest forms of diabetes (Type 1 and Type 2) are linked to several genetic 

associations and environmental predisposing factors. In addition diabetes can also be linked to 

single gene disorders, for example as a result of gene defects in glucokinase or various 

transcription factors involved in insulin production (Thorsby et al., 1998) (Krupanidhi et al., 

2009) (Froguel, 2000) 

1.2.1 Type 1 diabetes mellitus  

     Type-1 diabetes was previously called Insulin-dependent diabetes mellitus (IDDM) or 

Juvenile-onset diabetes. It accounts for about 5% of diabetes. It is due to insufficient insulin 

secretion from pancreatic β-cells because of autoimmune destruction of the β-cells (Novotna et 

al., 2015) 

1.2.2 Type 2 diabetes mellitus: - 

Type-2 diabetes previously known as Non-Insulin Dependent Diabetes Mellitus (NIDDM), is 

the most common type of diabetes accounting for ~ 90% of diabetes. This disease is caused by 

insufficient insulin secretion or resistance to insulin action resulting in increased blood glucose 

(World Health, 2006, Crook, 2006). Type 2 diabetes results from both genetic and 

environmental factors.  The large increase in prevalence of type 2 around the world is attributed 

to the increase in obesity, and changes in diet and decrease in physical activity T2D (Olokoba 

et al., 2012) 

Insulin produced by the pancreatic β-cells plays a vital role in maintaining blood glucose 

homeostasis by increasing the cellular uptake of glucose from blood to insulin sensitive tissues 

(muscle, fat tissues) and inhibiting hepatic glucose production by glycogenolysis and 

gluconeogenesis. Insufficient insulin secretion from the β-cells leads to elevated blood glucose 

and increased hepatic glucose production. Current evidence shows that lack of treatment or 

failure to restore blood glucose within the normal range in T2D increases the risk of 
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development and progression of microvascular complications (retinopathy, nephropathy, and 

neuropathy) and macrovascular disease (Myocardial infarction) (Gardner et al., 2007, Group, 

1998) .  

Diagnosis of diabetes was previously based on the level of either fasting blood glucose (FBG) 

or the glucose excursion during an oral glucose tolerance test (OGTT). In 2009 the criteria for 

diagnosis of diabetes were changed by an International Expert Committee that included 

representatives of the American Diabetes Association (ADA), the International Diabetes 

Federation (IDF), and the European Association for the Study of Diabetes (EASD) to the 

measurement of glycated haemoglobin (HbA1c ≥6.5%) (2013). HbA1c is a form of 

haemoglobin that is bound to glucose as a result of a raised blood glucose.  The lifespan of red 

blood cells which carry haemoglobin is around 120 days and accordingly the level of HbA1c is 

an approximate measure of the average blood glucose level during the previous 120 days. (Kahn 

and Fonseca, 2008, Kojic Damjanov et al., 2014)  

1.3 Treatments for Type 2 Diabetes 

1.3.1 Sulphonylureas 

  Sulphonylureas are one of the oldest class of anti-diabetic drugs. These drugs were previously 

used as antibiotics, in patients with typhoid fever, and were found to cause hypoglycaemia. 

These drugs were developed in 1956 as first-generation sulphonylureas for treatment of T2D in 

the United State (Selizer, 1980). The second generation of sulphonylureas included 

glibenclamide and glipizide (Thulé and Umpierrez, 2014). The main mechanism of action of 

sulphonylureas is to stimulate insulin secretion from pancreatic β-cells. The molecular 

mechanism involves binding to the sulphonylureas receptor (SUR1), and this binding inhibits 

the potassium flux via closure of the KATP channels depolarizing the pancreatic β-cells 

membrane. An extrapancreatic effect, of sulphonylureas was also reported in the rat perfused 

liver by reducing insulin clearance in liver and this was also confirmed in man (Barzilai et al., 

1995, Thulé and Umpierrez, 2014). Hypoglycaemia and weight gain are the most common side 

effect associated with sulphonylureas (Kunte et al., 2007). In comparison with metformin, 

treatment with sulphonylureas was associated with incidence of cardiovascular events 

(Jorgensen et al., 2010) 
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1.3.2 Thiazolidinediones  

Elevation of blood glucose leads to many complications such as increased the risk of 

cardiovascular disease (CVD) which accounts for about 80% of deaths in T2D patients (Abdul-

Ghani et al., 2017). Thiazolidinediones are one of the anti-diabetic drugs which are associated 

with improved the risk of CVD through lowering insulin resistance (Della-Morte et al., 2014). 

Thiazolidinediones exert their effect through activation of peroxisome proliferator activated 

receptors-γ (PPAR-γ), a nuclear receptor, resulting in heterodimeric complex formation with 

retinoid X receptor (RXR).  Binding of this transcription factor complex with target gene 

promoters, results in increased or decreased transcription of many genes involved in fat storage 

in adipose tissue. This facilities fat storage in adipose tissue resulting in lower accumulation of 

lipids in other tissues and in the circulation (Della-Morte et al., 2014, Inzucchi et al., 2015, 

Ferrannini and DeFronzo, 2015)      

1.3.3 Sodium glucose co-transporter 2 inhibitors (SGLT2) 

Inhibition of glucose reabsorption in the proximal renal tubules through inhibition of sodium-

glucose co-transport type 2 has a beneficial role in glucose homeostasis. SGLT2 inhibitors 

(canagliflozin, dapagliflozin, and empagliflozin) are anti-hyperglycaemic agents by targeting 

the kidney to increase the excretion of glucose in urine and decrease the level of glucose in 

circulation by lowering the renal threshold (Nauck, 2014). SGLT2 inhibitors did not associate 

with hypoglycaemia, but they have many side effects such as increased uric acid, weight loss, 

lowering blood pressure, dehydration and urinary tract infections (Inzucchi et al., 2015, 

Vasilakou et al., 2013) 
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1.3.4 Metformin  

Metformin (dimethylbiguanide) is a member of the biguanide family, which include 

(phenformin, metformin, and bufromin) (Figure 1-1). Biguanides have been used as anti-

hyperglycaemic agents in the last century, phenformin and bufromin were withdrawn due to 

their toxicity and metformin was used because it is least toxic (Bailey, 1992). Metformin 

derived from Galega officinalis, a traditional herbal medicine, is the first line treatment 

prescribed for T2D because it is the safest effective anti-hyperglycaemic agent with lowest risk 

for CVD and other side effects including weight gain. Studies showed that the incidence of side 

effects resulting from metformin treatment is very rare (Viollet and Foretz, 2013, Inzucchi et 

al., 2014). The main effects of metformin are inhibition of hepatic glucose production 

(gluconeogenesis) (Hundal et al., 2000), increase uptake of glucose by muscle, and lower 

glucose absorption from the gut (Natali and Ferrannini, 2006). An exciting point of metformin 

is that studies have shown that besides its role in the lowering of blood glucose in T2D, 

metformin can be used to treat many other diseases. Recent studies reported that metformin can 

be used to treat a common endocrine disorder, polycystic ovary syndrome (PCOS) which is 

associated with obesity and insulin resistance (Naderpoor et al., 2015, Grigoryan et al., 2014, 

Glintborg et al., 2014). Metformin also lowered the risk of CVD in T2D patients (Hong et al., 

2013, Malin et al., 2013, Skov et al., 2014, Holman et al., 2008) .  

Furthermore, several studies reported that metformin has a beneficial effect in decreasing the 

incidence of malignancy such as inhibition of endometrial cancer in vivo (Mitsuhashi et al., 

2014), breast cancer (Niraula et al., 2012), prostatic cancer (Preston et al., 2014), and pancreatic 

cancer in T2D patients (Zhou et al., 2017) and in animal models (Chen et al., 2017). However, 

other studies suggested that more investigations are necessary to allow the final conclusion 

about the effect of metformin on improving cancer treatment (Wei et al., 2019). Several studies 

reported that there was no effect of metformin on cancer progression (Feng et al., 2015, Kowall 

et al., 2015).  
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Figure 1-1: Chemical structure of Biguanides and related compounds  

(Bailey, 2017) 
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1.4 Pharmaceutical dose and cellular uptake of Metformin 

Metformin is taken orally by patients either once or twice a day to a maximum daily dose of 

3g. The plasma peak of metformin concentrations reached three hours after an oral dose of 500 

mg is 1.0-1.6mg/L, while 1.5g/day increases the level to 3mg/L. The plasma level rapidly 

declines after a single dose and the level of metformin in urine rises. Studies in man reported 

that fecal concentration was about 30% of oral metformin dose, while nothing presented after 

intravenous injection of metformin (Tucker et al., 1981, Graham et al., 2011). It has been shown 

that metformin absorption takes place in the small intestinal by solute carrier organic 

transporters. Transport of metformin from the lumen into the enterocytes is by the plasma 

membrane monoamine transporter (PMAT) expressed on the luminal membrane (Zhou et al., 

2007) and the organic cation transporter-3 (OCT-3) expressed on the brush border (He and 

Wondisford, 2015) . Transport of metformin from the enterocytes into the interstitial fluid is by 

organic cation transporter-1 (OCT-1) which is expressed on the basolateral membrane of the 

enterocyte (Muller et al., 2005). Metformin is transported to the liver, via the portal vein.  The 

metformin concentration in the portal vein after a therapeutic load reaches 40-70µM. 

Hepatocytes take up about 25-50% of the metformin in the portal vein through OCT1 and OCT3 

transporters which are located on the basolateral membrane of hepatocytes. Metformin is also 

a substrate for the multidrug and toxin extrusion 1 transporter (MATE1), which is expressed at 

high levels in the liver. However, the role of MATE1 in hepatic secretion of metformin is 

controversial because in man there is negligible biliary excretion. Metformin is chemically 

stable and not-metabolized and about 90% of the absorbed dose is excreted by the kidneys 

(Gong et al., 2012). Metformin is transported into the renal epithelial cells by OCT2 which is 

expressed on the basolateral membrane of renal tubules and it is then transported from the 

epithelial cell into the lumen by MATE1/2K located on the apical membrane (He and 

Wondisford, 2015) .  

The tissue metformin content has been determined in mice after an oral load of metformin 

(50mg/kg) using 14C-metformin, this concentration is equivalent to the therapeutic dose in man 

(3 g per 60 kg). The highest accumulation of metformin was found in jejunum and ileum 

(gastrointestinal), kidney and liver, and the lowest metformin concentration was found in brain 

and white adipose tissue (Wilcock and Bailey, 1994)   
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1.5 Molecular mechanisms of metformin 

   Metformin has been approved for treatment of T2D in Europe from 1950s and in the United 

State since 1995, however, its molecular mechanism is still a controversial issue (Viollet et al., 

2012, Rena et al., 2017, Rena et al., 2013).  

1.5.1 Inhibition of Mitochondrial respiratory chain-complex-I by metformin   

      The electron transport chain is a series of chemical reactions catalyzed by multi-enzyme 

complexes that couple the oxidation of NADH to NAD+ and FADH to FAD+ to the reduction 

of molecular oxygen to water by transferring electrons from NADH and FADH through a series 

of intermediates. The first enzyme complex designated complex 1 is NADH-ubiquinone 

oxidoreductase. This multiprotein complex has three functions: to oxidise NADH to NAD+; to 

transfer the electron to ubiquinone and to pump protons from the matrix to outside the 

mitochondria. This process serves to harness the energy from the oxidation of NADH to the 

generation of the mitochondrial proton gradient. This proton gradient serves to drive ATP-

synthase, nicotinamide nucleotide transhydrogenase and other energy-dependent processes in 

mitochondria. Compounds that inhibit any component of the respiratory chain including 

complex 1 are expected to affect the generation of the proton gradient, the function of ATP-

synthase and other energy-dependent reactions in mitochondria as well as gluconeogenesis 

(Hirst, 2013). Complex 1comprises 45 proteins of which 14 are conserved subunits and the 

other 31 are designated supernumerary. The conserved proteins comprise 7 hydrophilic 

proteins, that catalyze the redox reactions and extend into the mitochondrial matrix and 7 

hydrophobic proteins (ND units) that are embedded in the membrane. The hydrophobic proteins 

are encoded by the mitochondrial genome and the hydrophilic and supernumerary proteins by 

the nuclear genome. The hydrophilic domain composed on 7 proteins has a Y-shape with the 

lower part linked to the hydrophobic ND domains and the upper part composed of 2 subdomains 

which form the NADH active site and flavin mononucleotide cofactor site and a chain of iron-

sulfur (Fe-S) clusters that link the flavin molecule with the ubiquinone site. Transfer of 

electrons from the flavin through the Fe-S clusters is thought to transfer the energy through 

conformational changes in the hydrophobic ND subunits which are involved in the proton 

transport mechanism (Hirst, 2013, Zickermann et al., 2015, Ohnishi, 1998)       

Halestrap and colleagues proposed that stimulation of NADH oxidation in hepatocytes by 

glucagon or phenylephrine has an important role in increasing hepatic glucose production. They 

also reported that inhibition of the respiratory chain using mild respiratory chain inhibitors 3-

(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) or amytal in hepatocytes from starved rats 
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reversed the effect of gluconeogenic hormones (glucagon and phenylephrine) to stimulate 

glucose production (Pryor et al., 1987, Quinlan and Halestrap, 1986).  

In a later study Owen and colleagues (1993) determined the effects of the mild respiratory 

inhibitor DCMU on metabolites and gluconeogenesis and demonstrated raised concentrations 

of 3-phosphoglycerate, 2-phosphoglycerates and phosphoenolpyruvate but lower 

concentrations of dihydroxyacetone phosphate, glyceraldehyde-3-P, fructose-1,6 bisphosphate, 

fructose 6-phosphate and glucose 6-phosphate. They proposed that the inhibition of the 

respiratory chain by DCMU causes inhibition of gluconeogenesis at the level of 3-

phosphoglycerate kinase and proposed that this can be explained by a decrease in ATP/ADP. 

They concluded that the changes in metabolites of glycolysis and gluconeogenesis caused by 

DCMU are very similar to those caused by phenformin in a previous study by Cook and 

colleagues (1973) (Owen and Halestrap, 1993). In this earlier work on phenformin Cook and 

colleagues (1973) reported that phenformin inhibited gluconeogenesis in the perfused liver 

from both lactate and dihydroxyacetone but not from xylitol and the effects of phenformin were 

associated with a more reduced cytoplasmic and mitochondrial NADH/NAD redox state and 

with a decrease in the ATP/ADP ratio and also with a decrease in the concentration of citrate. 

They concluded that an effect of phenformin on mitochondrial function and / or the decrease in 

ATP/ADP ratio may be involved in the inhibition of gluconeogenesis (Cook et al., 1973).    

A study by Argaud et al (1993) reported inhibition by metformin of gluconeogenesis in isolated 

hepatocytes from several substrates including lactate/pyruvate, DHA, fructose, glutamine and 

alanine.  This study determined the cell concentrations of various metabolites including ATP 

and ADP and proposed that metformin causes activation of pyruvate kinase through the 

decrease in ATP/ADP ratio (Argaud et al., 1993). 

 Later work from Halestrap’s group and El Mir and colleagues reported that the inhibitory effect 

of biguanides (phenformin and metformin) on the respiratory chain can be explained by 

inhibition of complex 1 (NADH ubiquinone oxidoreductase) either directly or indirectly (El-

Mir et al., 2000, Owen et al., 2000) . 

El-Mir et al reported an indirect effect of metformin on complex 1. Intact isolated hepatocytes, 

permeabilized hepatocytes, and isolated liver mitochondrial were used to investigate the 

inhibitory effect of metformin (0.1-1mM on the respiratory chain and complex 1 (El-Mir et al., 

2000). Oxygen uptake was inhibited by 10mM metformin in the presence of the complex 1 

substrates, glutamate plus malate, but not with the complex II substrate, succinate. By using an 
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artificial electron acceptor of complex 1 (decylubiquinone) NADH oxidation was inhibited in 

mitochondria isolated from liver previously perfused with 10mM metformin, while there was 

no effect on oxygen consumption when they used decylubiquinol as complex III electron donor. 

The inhibitory effect of metformin on oxygen consumption was seen when metformin was 

added to intact hepatocytes but not with permeabilized hepatocytes or isolated liver 

mitochondria.  The authors concluded that the effect of metformin can only be induced in the 

whole cell and that the effect of metformin causing inhibition of complex 1 is therefore indirect 

through a signalling pathway. The cytoplasmic and mitochondrial NADH/NAD+ ratios were 

increased in hepatocytes treated with 10mM metformin. The conclusions from this study were 

(i) that metformin indirectly inhibits complex 1 because the effect was not seen when metformin 

was added to isolated mitochondria (ii) the inhibition by metformin of oxygen uptake was 

temperature dependent (iii) The effect of metformin on oxygen uptake persisted after metformin 

was removed (iv) the mechanism of metformin to inhibit the respiratory chain reaction was 

independent of insulin and calcium signaling pathways (El-Mir et al., 2000).  

Halestrap’s group (Owen et al., 2000) in contrast with the previous study was able to 

demonstrate a direct inhibitory effect of metformin (2-5mM) on respiration when metformin 

was added to either rat hepatocytes, isolated heart mitochondria or submitochondrial particles 

(SMPs) from heart and liver.  They also observed the effects of lower metformin concentrations 

in studies on the rat hepatoma cell line (H4IIE) incubated with 0.05-0.1mM metformin for 24-

60h. By determining oxygen uptake in isolated mitochondria or permeabilized cells incubated 

with substrates of complex 1 (glutamate plus malate) or Complex II (succinate), they concluded 

that metformin was targeting Complex 1 and not Complex II or downstream sites in the 

respiratory chain. From experiments testing the inhibition of respiration at various times after 

addition of metformin to cells or isolated mitochondria they concluded that the effect of 

metformin on respiration at the level of complex 1 is both time-dependent and concentration-

dependent and that these effects are best explained by the slow uptake of metformin into cells 

and into mitochondria. This conclusion was supported by experiments on small mitochondrial 

particles in which complex 1 is present on the outer surface and can therefore oxidise NADH 

in the medium.  In this experimental system the effects of both metformin and phenformin were 

not time-dependent but required high concentrations of these biguanides. This supported the 

conclusion that the time-dependency of metformin in isolated mitochondria or intact cells is the 

result of the slow uptake of the biguanides and the time required for the drug to reach the 

required intramitochondrial concentration to inhibit complex 1. Metformin (2mM) inhibited 

gluconeogenesis in rat hepatocytes concurrently with changes in cellular metabolites involving 
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a decrease in G6P and F6P levels, and an increase in 2- and 3-phosphoglycerate and 

phosphoenolpyruvate and increases in both the cytosolic and mitochondrial free NADH/NAD 

ratios. Similar results were obtained in the liver in vivo after treating rats with a metformin dose 

of 200-600 mg/kg body weight. This dose is > 4 fold higher than was used by Wilcock and 

colleagues (50mg/kg) (Wilcock and Bailey, 1994). The conclusions from this study were that 

(i) Metformin inhibited respiration at the level of complex 1 after direct addition of metformin 

to isolated mitochondria or hepatocytes or hepatoma cells (ii) metformin permeability across 

the mitochondrial membrane is slow (iii) Due to the positive charge of metformin, it 

accumulated in the mitochondria in accordance with the mitochondrial membrane potential 

(∆Ψ) (Owen et al., 2000). 

A recent study by Bridges and colleagues (2014) investigated at the enzyme level the molecular 

mechanism by which biguanides alter the kinetic activity of complex 1. They used the purified 

enzyme from bovine heart, yeast and E. coli and reported that complex 1 isolated from bovine 

heart mitochondria (Bos taurus) was inhibited by five biguanides and metformin was the 

weakest inhibitor compared with phenformin and butformin, and proguanyl and cycloguanyl 

that are used in therapy for malaria. By investigating the effects of metformin on three steps of 

the complex 1 mechanism, they concluded that (i) metformin stimulated the first step 

representing NADH oxidation; (ii) metformin had no effect on the second step representing the 

intramolecular electron transfer; (iii) metformin caused non-competitive reversible inhibition 

of the reduction of ubiquinone (third step). This effect of metformin on the reduction of 

ubiquinone differs from the mechanism of canonical inhibitors (rotenone and piercidin) which 

bind irreversibly and competitively to the ubiquinone binding site. Their conclusion was that 

metformin works on two sites of complex 1, one site is the reactivity of flavoprotein and the 

other the ubiquinone to ubiquinol reduction. The first reaction was investigated by use of 

artificial electron acceptors and the rate of NADH oxidation or hydrogen peroxide production 

and their finding was the effect of metformin on the flavin site is related to presence or absence 

of nucleotide binding to the flavin site. Presence or absence of nucleotide has a critical role in 

stabilizing the active or deactive conformations of the enzyme transition of complex 1 (Galkin 

et al., 2008, Roberts and Hirst, 2012). They found that the effect of metformin on NADH 

oxidation or H2O2 production was slower if metformin was added during the catalytic phase 

and it needs prolonged time to achieve the effect. Therefore they concluded that metformin 

stabilizes the deactive conformation (Bridges et al., 2014).      
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1.5.2 Role of AMPK in the metformin mechanism  

Adenosine monophosphate-activated protein kinase (AMPK), is often described as a cellular 

energy sensor, because it is activated in conditions of compromised adenine nucleotide 

phosphorylation potential and its activation is linked to inhibition of anabolic pathways such as 

de novo lipogenesis and stimulation of energy production pathways such as fatty acid oxidation 

(Kurumbail and Calabrese, 2016). AMPK is a heterotrimeric serine/threonine kinase complex, 

which consist of three subunits (one catalytic α-subunit and two regulatory subunits β and γ). 

Changes in adenine nucleotide concentration AMP: ATP and/or ADP: ATP ratio have been 

shown to increase the activation of AMPK in cells (Kurumbail and Calabrese, 2016, Grahame 

Hardie, 2016, Hardie, 2015). AMPK has very low activity in its basal un-phosphorylated state. 

However when phosphorylated on Thr-174 α-1 or Thr-172 α-2 the activity of AMPK increases 

more than 500-fold. There are two kinases that catalyze the phosphorylation of AMPK, tumour 

suppressor Liver kinase B-1 (LKB-1) and Ca2+-calmodulin-activated protein kinase kinase beta 

(CamKKβ) (Hawley et al., 2005, Woods et al., 2005, Grahame Hardie, 2014, Hardie, 2015). 

LKB-1 is constitutively active, however, binding of AMP to the γ subunit of AMPK stimulates 

its activation by LKB-1.  In addition the β-subunit of AMPK also has a role in the activation of 

AMPK by LKB-1 in conditions of raised cellular levels of AMP.  The activation of AMPK by 

CamKKβ is regulated by changes in cell calcium ion and not by changes in AMP. The 

phosphorylated form of AMPK is inactivated by dephosphorylation by protein phosphatases 

including PP2A and PP2C. Both AMP and ADP inhibit the dephosphorylation of AMPK by 

protein phosphatase but AMP is 10-fold more effective than ADP at inhibiting 

dephosphorylation (Steinberg and Carling, 2019). An increase in cell AMP causes activation of 

AMPK by inhibiting dephosphorylation by the phosphatases, by promoting activation by LKB-

1 and also by direct allosteric activation of AMPK independently of phosphorylation (Sanders 

et al., 2007b). This allosteric activation of AMPK only occurs with AMP and not with ADP 

and a physiological concentration of AMP can increase AMPK activity allosterically up to 10-

fold independently of its effects on phosphorylation (Xiao et al., 2011, Ross et al., 2016). In 

whole cells the activity of AMPK can be monitored either from the phosphorylation state of the 

substrates of AMPK (e.g. acetyl CoA carboxylase) or from the phosphorylation of AMPK itself 

on the threonine residue in the α-subunit. Because of the allosteric activation of AMPK by AMP 

the former substrate (ACC) is a better indication of the activation of AMPK (Ross et al., 2016). 

It has been shown that inducing AMPK activation has a beneficial effect in lipid metabolism 

by increasing the phosphorylation of acetyl-CoA carboxylase (ACC) which results in inhibition 

of enzyme activity and also inhibition of lipogenesis and a decrease in cell malonyl-CoA, the 
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product of ACC, which is an inhibitor of transport of long-chain fatty acids into mitochondria. 

Accordingly, AMPK activation results in stimulation of β-oxidation of long chain fatty acids 

(Munday and Hemingway, 1999, Serviddio et al., 2013, Liu et al., 2011). The importance of 

AMPK activation in metformin’s mechanism has been proposed in many studies (Rena et al., 

2017, Zhang et al., 2016, Chen et al., 2013) 

Soon after the discovery of the inhibition of complex-I by metformin in 2000,  Zhou and 

colleagues (Zhou et al., 2001) proposed that many of the effects of metformin on hepatocytes 

can be explained by activation of AMPK. They compared the effects of the AMPK activator, 

AICAR (5-amino-imidazole carboxamide riboside) with different concentrations of metformin 

(0.02-2mM) for short and long (1, 7, and 39 hours) incubation times on various metabolic 

functions. High metformin concentrations (0.5-2mM) caused activation of AMPK and 

inhibition of ACC activity within 1h but lower concentrations of metformin required longer 

incubation (7h for 50µM and 39h for 10-20µM metformin). The effects of metformin that were 

attributed to activation of AMPK included: (i) inhibition of ACC activity; (ii) stimulation of 

fatty acid oxidation; (iii) inhibition of gluconeogenesis; (iv) inhibition of SREBP-1 activity and 

mRNA expression; (iv) repression of FAS and S14 mRNA levels: (v) stimulation of glucose 

transport in muscle. This study proposed that the effects of metformin can be explained by 

activation of AMPK based on: (i) evidence that metformin activates AMPK; (ii) evidence that 

AICAR similarly to metformin causes both activation of AMPK and inhibition of 

gluconeogenesis; (iii) evidence that compound C inhibits both the activation of AMPK by 

metformin and the inhibition of gluconeogenesis (Zhou et al., 2001).  

Later work provided further support for the role of AMPK activation in the metformin 

mechanism through studies on mice that lack LKB-1 (Shaw et al., 2005).  In this mouse model 

metformin at a dose up to 250mg.kg-1 did not cause either activation of AMPK or lowering of 

blood glucose. These findings further reinforced the conclusion that the lowering of blood 

glucose by metformin is mediated by activation of AMPK. In this study Shaw and colleagues 

(2005) reported that metformin induced AMPK-phosphorylation via activation of its upstream 

tumour suppressor gene LKB-1. Liver-selective LKB1 -/- mice (deficient in LKB-1) were 

generated to investigate the role of LKB-1 in the metformin effect on AMPK-phosphorylation. 

Inhibition of AMPK-phosphorylation on Thr172 was confirmed in liver tissue from LKB-1 -/- 

mice. In these mice the level of plasma glucose was higher, and lipogenic and gluconeogenic 

gene expression was increased. High metformin treatment 250mg.kg-1 to wild-type and LKB-1 

knockdown mice for three days showed that the effect of metformin to phosphorylate AMPK 
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was abolished in the liver of LKB-1 -/- mice, and metformin had no effect on blood glucose 

compared to wild-type. The authors reported that the upstream kinase (LKB-1) of AMPK has 

a pivotal role in metformin’s mechanism to lower glucose through regulation of gluconeogenic 

gene expression. This study provided further support for the role of AMPK in the metformin 

mechanism (Shaw et al., 2005).  

1.5.3 Metformin suppresses gluconeogenic gene expression by an AMPK linked 

mechanism    

Several studies reported that the repression of enzymes of gluconeogenesis by metformin occurs 

via an AMPK linked mechanism. Some groups proposed that gene suppression by low 

metformin is independent of complex 1 inhibition through an unknown mechanism for 

activation of AMPK (He and Wondisford, 2015) . Glucagon which is elevated during fasting 

and also in Type 2 diabetes (Finan et al., 2019, Dunning and Gerich, 2007) stimulates 

gluconeogenesis by binding to the glucagon receptor (GR) on hepatocytes, a G-protein coupled 

receptor which activates adenylyl cyclase causing elevation in cAMP which binds to the 

regulatory subunits of protein kinase A (PKA) causes dissociation and activation of the catalytic 

units from inactive to active form (Figure 1-2) (Yang and Yang, 2016). Activation of cAMP-

PKA pathway by glucagon phosphorylates the transcriptional factor cAMP-response element 

binding protein (CREB) at Ser133 and dephosphorylates CREB-regulated transcriptional co-

activator 2 (CRTC2) which results in the formation of the transcriptional complex CREB-CBP-

CRTC2. The latter complex induces the expression of the gluconeogenic transcriptional factor 

peroxisome proliferator-activated receptor-γ coactivator-1 α (PGC-1α) and its downstream 

genes glucose 6-phosphatase (G6pc) and phosphoenolpyruvate carboxykinase (PEPCK) 

(Hanson and Reshef, 1997, Kim et al., 2012, Oh et al., 2013).  

Studies by Wondisford’s laboratory proposed that metformin inhibits gluconeogenic gene 

expression by activation of AMPK which phosphorylates CRTC2 and CBP which leads to 

disassembly of the CREB-CBP-CRTC2 complex and causes inhibition of gluconeogenic gene 

expression (He et al., 2009, Cao et al., 2014, He et al., 2016a, Meng et al., 2015). He and 

colleagues (2009) proposed that metformin like AICAR phosphorylated CBP Ser436 resulting 

in dissociation of the CREB-CBP-CRTC2 and inhibited gluconeogenesis by a mechanism 

mediated by AMPK activation. This effect was also mimicked by AMPK overexpression and 

the anti-hyperglycaemic effect of metformin was abolished in mice lacking the CBP 

phosphorylation site (He et al., 2009). Moreover, evidence from the same laboratory has shown 

that metformin (≤80µM) suppresses glucose production in the presence of exogenous cAMP 
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and glucagon-stimulated glucose production via AMPK-activation, which regulates the effect 

of cAMP-PKA pathway in mouse hepatocytes. In this study they reported that low metformin 

concentration (≤80µM) has the ability to phosphorylate AMPK and inhibit gluconeogenic gene 

expression in mouse liver (Cao et al., 2014).  

SHP is a member of the nuclear receptor family lacking a typical DNA-binding domain and is 

expressed in liver (Zhang et al., 2011). In liver it represses the binding of CREB-CBP-CRTC2 

complex and suppresses the downstream target gluconeogenic genes (PEPCK and G6Pc) (Lee 

et al., 2007, Chanda et al., 2008). Work from Choi’s laboratory (2008 and 2010) proposed that 

metformin induces SHP expression and suppresses hepatic gluconeogenic gene expression 

through activation of AMPK that activation of AMPK by metformin causes induction of SHP 

which inhibits induction of gluconeogenic gene expression by the CREB-CRTC2 complex 

(Kim et al., 2008). Inhibition of glucose production by metformin persisted with constitutively 

active CRTC2 but was abolished by SHP knockdown. Additionally, AMPK-mediated 

suppression of the promoter activity of G6Pc and PEPCK was also abolished by SHP 

knockdown (Lee et al., 2010).  

Fullerton and colleagues (2013) reported that acute metformin treatment to knock-in mice with 

ACC mutation of the AMPK phosphorylation site (AccKDI) did improve insulin sensitivity and 

lowered de novo lipogenesis. Metformin increased the phosphorylation of ACC in wild-type 

mice but not in AccKDI, however, metformin increased the phosphorylation of AMPK in both 

mouse genotypes. This effect was mimicked by A-769662. Inhibition of gluconeogenic genes 

(G6Pc and PEPCK) by metformin was abolished in AccKDI compared to wild-type mice 

(Fullerton et al., 2013).     

 

 

 

 

 

 

 

 



      Introduction                                                                                   Chapter One  
---------------------------------------------------------------------------------------------------------------- 

17 
 

 

 Figure 1-2:- Schematic diagram for the proposed interaction of metformin with glucagon 
signaling and suppression of gluconeogenic gene expression. 

Glucagon binds to its receptor on the cell membrane promoting activation of AC and 
generation of cAMP. cAMP binds to the R-subunits of the inactive form of PKA 
resulting in conformational changes in the R-subunit and release of the active C-
subunits (Yang and Yang, 2016). The latter subunits phosphorylates the transcription 
factor CREB and promotes dephosphorylate CRTC2 resulting in the formation of the 
CREB-CEP-CRTC2 complex. This complex induces the expression of gluconeogenic 
genes (Hanson and Reshef, 1997, Kim et al., 2012, Oh et al., 2013). Metformin through 
activation of AMPK counteracts the dephosphorylation of CRTC2 causing the 
dissociation of CREB-CEB-CRTC2 complex and suppresses the expression of 
gluconeogenic genes (He et al., 2016b, He et al., 2009).  
 
AC, Adenylyl cyclase; AK, Adenylyl kinase; C, catalytic subunit; CREB, cAMP-
response element binding protein; CRTC2, CREB-regulated transcriptional co-
activator 2; GR, glucagon receptor; PDEs, phosphodiesterases; R, regulatory subunit.    
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1.5.4 AICAR is an activator of AMPK and an inhibitor of FBP-1 

AICAR is an adenosine analogue that enters the cell through the adenosine transport system 

and is phosphorylated to 5-aminoimidazole-4-carboxamide-1-β-D-ribonucleotide (ZMP) by 

adenosine kinase. The intracellular concentration of ZMP increases to millimolar levels after 

uptake of AICAR and this functions as an AMP mimetic without affecting the intracellular level 

of ATP, AMP and ADP (Corton et al., 1995, Merrill et al., 1997, Sabina et al., 1985, Vincent 

et al., 1991). Vincent and colleagues (1991) reported that gluconeogenesis was inhibited by 

100-500µM AICAR in rat hepatocytes incubated with different gluconeogenic precursors 

(lactate plus pyruvate, fructose, and dihydroxyacetone). The inhibition of gluconeogenesis from 

lactate plus pyruvate as substrate by 500µM AICAR was associated with changes in 

gluconeogenic metabolites which involved a decrease in F6P, and G6P and an increase in 

fructose 1,6 bisphosphate. The increase in F1,6-P2 and the decrease in F6P and G6P were also 

observed in hepatocytes incubated with fructose or DHA as substrates. This identified a 

mechanism linked to inhibition of fructose 1,6-bisphosphatase-1 (FBP-1) by ZMP similarly to 

AMP. Therefore they concluded that the mechanism of inhibition of gluconeogenesis by 

AICAR is due to inhibition of fructose 1,6-bisphosphatase-1 (FBP-1) (Vincent et al., 1991). A 

later study by Vincent and colleagues (1992) reported the biphasic effects of AICAR on glucose 

metabolism in hepatocytes. They showed that lactate production from 15mM glucose was 

inhibited by 10-100µM AICAR and addition of higher AICAR concentrations (200-500µM) 

increased the production of lactate. They also showed an inhibitory effect of AICAR on 

glucokinase and lowering of cell G6P and F6P. In addition fructose 2,6-P2 a potent activator of 

PFK-1 was also decreased by AICAR. They concluded that AICAR inhibited glycolysis by 

inhibition PFK-1 and by inhibition of glucokinase (Vincent et al., 1992).  

Activation of AMPK by AICAR was shown in many studies. Sullivan and colleagues (1994) 

reported that AICAR activates AMPK in a concentration and time-dependent manner in 

adipocytes (Sullivan et al., 1994). AICAR also activated AMPK in rodent muscle in vivo and 

in vitro (Jorgensen et al., 2004, Kjobsted et al., 2015, Musi et al., 2001). Corton et al (1995) 

reported that AICAR mimics the effect of AMP on AMPK and increases AMPK-

phosphorylation in hepatocytes resulting in increased phosphorylation and inactivation of, the 

downstream target of AMPK, 3-hydroxy-3-methylglutaryl-CoA reductase without affecting the 

nucleotides (ATP, AMP, and ADP) (Corton et al., 1995). The mechanism by which AICAR 

activates AMPK was linked to activation on the regulatory γ-subunit on AMPK as proposed by 

Day and colleagues (Day et al., 2007). This subunit has four tandem repeats called cystathionine 

β-synthase domain (CBS) which makes up the binding site to the adenosine nucleotides on γ-
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subunit. Binding of AMP or ZMP to the γ-subunit allosterically activates AMPK on the α-

subunit favouring phosphorylation (Oakhill et al., 2012). Lochhead and colleagues (2000) 

reported that the effect of AICAR on gluconeogenic gene expression from different cell lines 

and thereby inhibition of gluconeogenesis is mediated by AMPK activation (Lochhead et al., 

2000). On the other hand, the study by Hasenour and colleagues (2014) reported an inhibitory 

effect of AICAR on gluconeogenesis that is not mediated by activation of AMPK. This study 

investigated the effect of AICAR in the liver of mice with AMPK α1 and 2 deficiency compared 

with wild-type mice. Inhibition of hepatic glucose production by AICAR was observed in both 

genotypes (Hasenour et al., 2014). 

 

1.5.5 A-769662 and salicylate are direct activators of AMPK          

 A-769662 a member of the thienopyridone family has been identified as a direct activator of 

AMPK (Cool et al., 2006, Sanders et al., 2007a). Cool and colleagues (2006) proposed that 

activation of AMPK by A-769662 had many beneficial effects in hepatocytes and liver from 

Sprague Dawley rats. A-769662 increased the phosphorylation of the AMPK substrate (ACC), 

and inhibited fatty acid synthesis as a result of inhibition of ACC activity and decreased malonyl 

CoA levels in rat liver.  They reported that treating mice with 30mg/kg A-769662 lowered 

plasma glucose, decreased plasma and liver triglycerides and suppressed the expression of 

gluconeogenic genes (Pck1, G6Pc). They showed that A-769662 increased AMPK activation 

by a mechanism independent of an increase in AMP but by direct AMPK activation. They 

reported that metformin (450mg/kg) like A-769662, lowered plasma glucose, liver 

triglycerides, and liver malonyl CoA in mice (Cool et al., 2006). The mechanism by which A-

769662 activates AMPK was described by Sanders and colleagues (2007) by binding to the 

glycogen binding domain on the β-subunit. A-769662 activates AMPK in purified recombinant 

AMPK complexes (α1β1γ1 and α2β1γ1) and inhibits the dephosphorylation on Thr172. The 

inhibition of dephosphorylation on Thr172 by A-769662 was also observed in rat liver (Sanders 

et al., 2007a). A-769662 synergistically with other AMPK activators such as metformin, 

phenformin, and oligomycin improved AMPK phosphorylation in rat cardiomyocytes more 

effectively than A-769662 alone (Timmermans et al., 2014).  

Salicylates, formed from break down of aspirin and salsalate in vivo, similar to A-769662 cause 

allosteric activation and inhibition of dephosphorylation on the AMPK Thr172 by binding to the 

glycogen binding domain of the β-subunit (Hawley et al., 2012). Metformin is an indirect 

AMPK activator through changes in adenosine nucleotides (AMP and ATP). Ford and 
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colleagues (2015) reported that metformin and salicylate in combination caused concentration-

dependent phosphorylation of ACC and inhibition of lipogenesis in mouse hepatocytes and 

liver. These effects were also observed in primary human hepatocytes and insulin resistance 

was markedly improved in patients treated with metformin and salicylate in combination 

compared with either drug alone (Ford et al., 2015b).  

 

1.5.6 Metformin activates AMPK through inhibition of complex 1 resulting in increased 

cellular AMP  

Increasing the cellular AMP concentration stimulates the activity of AMPK through binding to 

the γ-subunit and enhancing LKB-1 to phosphorylate Thr172 (Gowans et al., 2013). Zhou and 

colleagues (2001) reported that metformin activates AMPK in hepatocytes but that it does not 

directly activate purified AMPK (Zhou et al., 2001). This cannot be explained by direct effect 

on AMPK or the upstream LKB-1 and CaMKK-β but is best explained by indirect effect 

through increasing the cellular AMP concentration by inhibition of mitochondrial respiration 

complex 1 (Hardie, 2006, Hawley et al., 2005, Fogarty et al., 2010). The inhibition of complex 

1 by metformin resulted in changes in adenine nucleotides, ATP and AMP, homeostasis. This 

observation suggested that metformin activated AMPK due to an increase in AMP to ATP ratio 

secondary to inhibition of complex 1 (Bridges et al., 2014, El-Mir et al., 2000, Owen et al., 

2000). Hawley and colleagues (2010) reported that metformin activates AMPK through 

inhibition of mitochondrial respiration at complex 1. In a human cell line they generated an 

AMPK-insensitive AMPK-γ2 (R531G) mutant and because the expression of a single subunit 

is unstable in cells therefore they expressed all the three α, β, and γ complexes (wild type) and 

investigated the effects of AMPK activators. A-769662 but not AMP increased AMPK activity 

in both WT and mutant cells indicating that A-769662 activates AMPK on a different site from 

AMP. All activators increased the phosphorylation and the activity of AMPK in the wild-type 

cell line and the effects of mitochondrial inhibitors (metformin, phenformin, oligomycin, and 

DNP) and the AMP mimetic (AICAR) on AMPK activation and phosphorylation, were 

abolished in cells with mutation in AMP-insensitive site (RG), while A-769662, a direct 

activator of AMPK, did activate and phosphorylate AMPK in wild-type and mutant RG cells. 

Mitochondrial inhibitors, except metformin, increased the ADP to ATP ratio in wild-type and 

in mutant RG cells. Metformin inhibited oxygen uptake in both wild-type and RG mutant cells 

(Hawley et al., 2010). These results suggest that activation and phosphorylation of AMPK by 

metformin is due to inhibition of mitochondrial respiration (Hawley et al., 2010, Hardie, 2014)    



      Introduction                                                                                   Chapter One  
---------------------------------------------------------------------------------------------------------------- 

21 
 

1.5.7 Inhibition of AMP-deaminase  

Activation of AMPK by metformin by inhibiting AMP-deaminase (AMPD) was proposed by 

Ouyang and colleagues (2011), AMPD catalyses AMP deamination to inosine monophosphate 

(IMP). In this study both metformin (10mM) and the AMPD inhibitor erytho-9-(2-hydroxy-3-

nonyl)-adenine (EHNA) increased glucose uptake and palmitate oxidation in L6 cell. These 

effects were associated with increased AMPK phosphorylation. They also reported that 

metformin (10mM) inhibited the activity of purified AMPD from rabbit muscle. The effect of 

metformin on glucose uptake was abolished by AMPD1 knockdown but not with LKB-1 

knockdown in L6 cell. The inhibitor of complex 1, rotenone, like metformin stimulated glucose 

uptake in L6 cell but without increased fatty acid oxidation (Ouyang et al., 2011). In the later 

study they reported that both metformin (15mM) and the inhibitor of AMPD (EHNA) increased 

the cellular concentration of AMP without effecting ATP concentration. They suggested that 

metformin stimulates glucose uptake by inhibition of AMPD by a mechanism independent of 

inhibition of complex 1 (Vytla and Ochs, 2013).  

1.5.8 Metformin activates AMPK through a lysosomal signalling pathway  

It has been reported that activation of AMPK by glucose starvation or by AICAR treatment 

occurs on the surface of the lysosome. AXIN is a scaffold protein and negative regulator in the 

Wnt signalling pathway (Song et al., 2016). An increase in AMP concentration drives AXIN to 

directly tether LKB1 and form the AXIN-AMPK-LKB1 complex. AXIN-knockdown in mice 

abolished the phosphorylation of AMPK by raised AMP. This established an essential role of 

AXIN in mediating AMPK activation by LKB1 (Zhang et al., 2013). The lysosomal v-ATPase-

Ragulator complex plays a pivotal role in the AMPK activation mechanism by docking the 

AXIN-AMPK-LKB1 complex on the surface of the lysosome (Zhang et al., 2018). Recently, 

Zhang and colleagues (2016) reported that metformin activates AMPK via the lysosomal 

pathway. This study reported that phosphorylation of AMPK by metformin was abolished in 

mouse liver and hepatocytes lacking AXIN. Moreover, phosphorylation of AMPK by 

metformin was completely abolished in the liver of mice with specific knockout of LAMTOR1, 

a protein that is anchored to the lysosomal membrane (Lin and Hardie, 2018), and the effect of 

metformin on AMPK phosphorylation was also abolished in hepatocytes lacking LAMTOR1. 

Furthermore, phosphorylation of AMPK by metformin was also abolished in a cell line with 

knockdown in 6v0c subunit of v-ATPase. These results demonstrated the role of AXIN-LKB1 

complex and the lysosomal pathway in mediating the metformin mechanism to activate AMPK 

(Zhang et al., 2016). Additionally, metformin abolished complex formation of mTORC1 in 

MEF cells indicating that metformin inactivates mTORC1. Mechanistic Target Of Rapamycin 
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Complex 1 (mTORC1) is a complex formed from the protein kinase mTOR and the non-

catalytic polypeptide RAPTOR. It has an important role to regulate catabolic and anabolic 

process (Chao and Avruch, 2019). Together metformin activates AMPK phosphorylation by a 

mechanism involving activation of ANIX-LKB1-v-ATPase-Ragulator pathway and 

dissociation the mTORC1 resulting in switch off of anabolic metabolism (Zhang et al., 2016).          

1.5.9 AMPK-independent mechanisms 

The generation of an AMPK deficient mouse provided an animal model to test for AMPK-

independent mechanisms. (Foretz et al., 2010, Guigas et al., 2006). Guigas and colleagues 

(2006) reported that metformin inhibited glucose phosphorylation by abolishing the 

translocation of glucokinase from the nucleus to cytoplasm through a mechanism independent 

on AMPK activation and in association with lowering of cellular ATP. In this study the effect 

of metformin was compared with the AMP mimetic 5-aminoimidazol-4-carboxamide-1-β-D-

ribofuranoside (AICAR) and oligomycin (an ATP-synthase inhibitor) in rat and mouse 

hepatocytes. Metformin like AICAR inhibited glucose phosphorylation in rat hepatocytes. This 

effect cannot be explained by AMPK activation because both AICAR and metformin inhibited 

glucose phosphorylation in AMPK-deficient mouse hepatocytes. The inhibition of glucose 

phosphorylation was associated with depletion in ATP with AICAR, metformin, and 

oligomycin. The inhibition by AICAR was stronger than could be explained by ATP depletion 

in rat hepatocytes and in hepatocytes from WT mice (Guigas et al., 2006) 

Furthermore, Foretz and colleagues (2010) investigated the effect of metformin in mice lacking 

either hepatic AMPK or LKB1. The rate of gluconeogenesis was increased in LKB1-deficient 

mice, but not in AMPK-deficient mice, compared with wild type. They reported that the 

inhibition of glucose production by metformin (0.25-2mM) was increased in LKB1-deficient 

and AMPK-deficient hepatocytes compared with hepatocytes from wild type mice. In addition, 

metformin suppressed the expression of G6pc mRNA in hepatocytes from all mouse genotypes. 

They reported that metformin lowered the ATP level in vivo and in vitro. Therefore, they 

concluded that the inhibition of glucose production by metformin in hepatocytes is not mediated 

by AMPK activation, but is due to lowering in ATP (Foretz et al., 2010). 
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1.5.10- Indirect inhibition of adenylate cyclase  

Although a major complication of type 2 diabetes is insulin resistance, in recent years there has 

also been focus on the role of raised blood glucagon in type 2 diabetes. This has led to therapies 

that target glucagon signalling such as glucagon-like peptide-1 (GLP-1) (D'Alessio, 2011). A 

role of metformin on glucagon signalling has been proposed by Miller and colleagues (2013). 

Glucagon binds to its receptor in the plasma membrane of hepatocytes and causes activation of 

adenylyl cyclase which results in phosphorylation of protein kinase A (PKA) by the second-

messenger cyclic AMP (cAMP) which leads to an increase in hepatic glucose production  (Jiang 

and Zhang, 2003). Miller and colleagues reported that metformin exerts its anti-hyperglycaemic 

effect through inhibition of glucagon signalling. Mouse hepatocytes were used to investigate 

the effect of biguanides (metformin and phenformin) on glucagon signalling. Phenformin 

attenuated the increase in PKA caused by glucagon in hepatocytes. Moreover, the levels of 

AMP and ADP were increased in hepatocytes untreated and treated with glucagon in the 

presence of 250-500µM metformin and >125µM metformin abolished the effect of glucagon 

but not the effect of a membrane-permeable cAMP analogue (SP-8Br-cAMPS-AM) to 

stimulate gluconeogenesis. The inhibition of glucose production by metformin was abolished 

in hepatocytes with overexpression of a dominant-negative PKA regulatory subunit which 

prevents cAMP binding. This indicated that the effect of biguanides is at a signalling step 

upstream of PKA activation. Metformin 250mg/kg increased the accumulation of AMP in the 

liver of fasted mice after 60 minutes. Phenformin (250-500µM) also increased the accumulation 

of AMP in hepatocytes. They suggested that metformin inhibited gluconeogenesis by 

increasing AMP accumulation and inhibition of the glucagon stimulation of adenylyl cyclase 

activation. This mechanism was confirmed to be AMPK-independent from experiments on 

hepatocytes from AMPK-deficient mice (Miller et al., 2013)  

1.5.11 Indirect inhibition of fructose 1,6-bisphosphatase (FBP-1) 

A recent study by Hunter and colleagues (2018) reported that the effect of metformin on 

inhibition of gluconeogenesis is through inhibition of fructose 1,6-bisphosphatase as a 

secondary effect of increased AMP concentration causing allosteric inhibition of FBP-1. In this 

study, the effect of metformin was investigated in the liver of mice with a mutation (Knock-in) 

in FBP-1 that makes it insensitive to AMP. Metformin up to 10mM had no direct inhibitory 

effect on FBP-1, and also it had no effect on AMP-deaminase 1 (AMPD1). They observed that 

FBP1-KI mice had no differences in plasma glucose, gluconeogenesis rate, and the activities of 

gluconeogenic and glycolytic enzymes were similar in both mouse genotypes with significant 

changes in G6Pc and GK at mRNA level but not at protein level. The effects of MB05032 (an 
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AMP mimetic FBP1 inhibitor) and AICAR (an AMP-mimetic ZMP) on blood glucose and 

blood lactate formation were more pronounced in wild-type mice than in FBP1-KI mice, and 

plasma glucagon increased with AICAR in wild-type but not in FBP1-KI mice. AICAR 

increased the phosphorylation of AMPK and ACC in both mouse genotypes. In both wild-type 

mice and in FBP1-KI mice 250 mg per kg metformin concentration raised hepatic AMP to ATP 

ratio and decreased ATP, resulting in AMPK activation and ACC phosphorylation. In this study 

they created metformin-euglycaemic clamp study by infusion of two different metformin 

concentrations (1.875mg/kg per min, and 3.75mg/kg per min.) and variable glucose infusion 

for 2h to reach euglycaemia in both mouse genotypes. The low (1.875mg/kg per min) 

metformin dose did not increase the rate of glucose disposal in either mouse genotype, while 

high metformin (3.75mg/kg per min) increased the glucose disposal rate in  wild type mice but 

not in FBP1-KI mice. The anti-hyperglycaemic effect of 250mg/kg metformin in wild type mice 

fed with high-fat diet was abolished in FBP1-KI mice fed with high-fat diet. They showed that 

the level of fructose 6-phosphate was decreased, and the level of fructose 1,6-bisphosphate was 

increased in the liver of wild type mice, but not in FBP1-KI mice, treated with metformin. This 

study concluded that metformin lowered hepatic glucose production by inhibiting FBP1 as a 

secondary effect to the increase in hepatic AMP. Although, the authors did not completely 

exclude FBP-1 independent mechanisms because they noticed a small but significant lowering 

of plasma glucose by metformin in FBP1-KI mice (Hunter et al., 2018) 

1.5.12 Inhibition of mitochondrial glycerol-3-phosphate dehydrogenase 

A recent study by Madiraju and colleagues (2014) reported that the metformin inhibitory effect 

on gluconeogenesis and lowering of plasma glucose appeared 30 minutes after treating rats with 

either 20mg/kg or 50mg/kg metformin (intravenous IV administration). This study criticized 

previous studies that used metformin concentrations higher than the relevant therapeutic 

metformin dose (Wilcock and Bailey, 1994). They reported that the decrease in plasma glucose 

and rapid increase in plasma lactate were observed in rats infused with a monoguanide for 20 

minutes without any change in hepatic gluconeogenic gene expression but with increased 

AMPK activity. However, an AMPK activator (A-769662) did not lower plasma glucose and 

endogenous glucose production in rats. This suggested that inhibition of glucose production by 

metformin is not mediated by AMPK activation. Due to a massive increase in plasma lactate 

that cannot be explained by differences in activity of enzymes which regulate pyruvate 

metabolism they proposed that the increase in plasma lactate by metformin might be due to an 

increase in cytosolic redox state (increase the lactate to pyruvate ratio). Treating rats with 

20mg/kg and 50mg/kg metformin rapidly lowered plasma glucose and inhibited endogenous 
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glucose production with concomitant increase in the lactate to pyruvate ratio in plasma and 

liver. The more reduced cytoplasmic redox state by metformin was associated with a decrease 

in the 3-hydroxybuytyrate to acetoacetate ratio suggesting a more oxidised mitochondrial redox 

state in liver. This study proposed that inhibition of gluconeogenesis occurs in the absence of 

inhibition of complex 1. Moreover, Metformin had no effect on either the protein expression of 

gluconeogenic enzymes (PEPCK and pyruvate carboxylase; PC), cAMP response element 

binding protein (CREB) or on phosphorylation of AMPK and its downstream target ACC. 

Acute and chronic metformin treatment caused increased plasma glycerol level indicating either 

inhibition of conversion of glycerol to glucose or increased glycerol production. They proposed 

that metformin inhibited glucose production from glycerol by a mechanism linked to alteration 

in the redox state and that the more reduced cytoplasmic and more oxidised mitochondrial redox 

states by metformin can be explained by inhibition of the transfer of NADH equivalents from 

the cytoplasm to mitochondria (Madiraju et al., 2014). 

The malate-aspartate (MAS) and the glycerophosphate (GPS) shuttles have been identified as 

the main shuttles that transfer NADH reducing equivalents (Bremer and Davis, 1975, Garrib 

and McMurray, 1986). The MAS is a reversible shuttle involving two enzymes (malate 

dehydrogenase and aspartate aminotransferase), present in both the cytoplasm and 

mitochondria together with the carrier proteins (aspartate-glutamate carrier and malate- α-

ketoglutarate carrier). This shuttle works to transfer NADH reducing equivalent formed in 

cytoplasm to mitochondria via reducing oxaloacetate to malate in the cytoplasm catalyzed by 

cytoplasmic malate dehydrogenase. Malate enters the mitochondrial matrix through the 

antiporter transport system (malate- α-ketoglutarate carrier) and exchanges with oxo-

ketoglutarate to cytoplasm. Mitochondrial malate dehydrogenase oxidises malate to 

oxaloacetate in mitochondria and reduces NAD+ to NADH. The inner mitochondrial membrane 

is impermeable to oxaloacetate, which is transaminated by mitochondrial aspartate 

aminotransferase with glutamate as co-substrate to aspartate and α-ketoglutarate. Aspartate is 

exported from the mitochondria on an electrogenic transporter (aspartate-glutamate carrier) in 

exchange for glutamate. The transport mechanism is dependent on mitochondrial membrane 

potential and is very sensitive to depolarization of the mitochondria. In the cytoplasm 

oxaloacetate is regenerated from aspartate by cytoplasmic aspartate aminotransferase to 

complete the malate-aspartate shuttle (McKenna et al., 2006, Minarik et al., 2002). The GPS is 

the other shuttle, it couples the conversion of dihydroxyacetone phosphate (DHAP) to glycerol 

3-phosphate (G3P) generating NAD+ in cytoplasm through cytoplasmic glycerophosphate 

dehydrogenase (cGPDH) with the metabolism of G3P by mitochondrial glycerophosphate 
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dehydrogenase (mGPDH). The latter enzyme is embedded in the outer surface of inner 

mitochondrial membrane to generate DHAP. mGPDH is a Flavin-linked mitochondrial 

dehydrogenase which transfers the reducing equivalent via FAD+ to form FADH and transfers 

electrons to ubiquinone which is reduced to ubiquinol bypassing the first step in complex 1 

(McKenna et al., 2006, Mracek et al., 2013, Chowdhury et al., 2005). These two enzymes 

together form the GPS. However, cGPDH is not rate-limiting for glycerophosphate shuttle 

(Mracek et al., 2013, Iossa et al., 1995).  

The role of the MAS was excluded because metformin had no effect on the activity of either 

malate dehydrogenase or aspartate aminotransferase. Madiraju and colleagues (2014) reported 

that metformin did not affect the activity of purified cytoplasmic glycerophosphate 

dehydrogenase but inhibited the activity of purified mitochondrial glycerophosphate 

dehydrogenase by 50%. Moreover, they reported that 50µM metformin inhibited oxygen uptake 

in isolated mitochondria from 10mM glycerol 3-phosphate. Furthermore, they reported that 

glucose production was inhibited by either 100µM metformin or short interfering RNA 

(siRNA) for knockdown of mGPDH in rat hepatocytes incubated with 10mM lactate plus 1mM 

pyruvate but not with 1mM lactate plus 10mM pyruvate as substrates. The authors suggested 

that the inhibition of gluconeogenesis by both metformin and mGPDH knockdown involves a 

redox-dependent mechanism. They proposed that inhibition of mGPDH abolished the 

conversion of glycerol to glucose and caused an increase in cytoplasmic NADH which leads to 

inhibition of the conversion of lactate to pyruvate by lactate dehydrogenase and glucose 

production from reduced substrates (lactate and pyruvate) but not from oxidised substrates 

(dihydroxyacetone, alanine, and pyruvate) which was inhibited by both 100µM metformin and 

siRNA for mGPDH knockdown. This inhibition of glucose production by 100µM metformin 

and siRNA for mGPDH knockdown was associated with an increase in cell G3P in hepatocytes. 

The increase in cell G3P was also confirmed in liver of rats treated with 50mg/kg. They reported 

that knockdown of mGPDH but not cGPDH like metformin also caused inhibition of glucose 

production and a more reduced cytoplasmic redox state and a more oxidised mitochondrial 

redox state and mGPDH knockdown abolished the effects of metformin on glucose production 

and redox states. These results suggested that the metformin inhibition of glucose production 

from reduced gluconeogenic precursors is by inhibition of mGPDH.  (Madiraju et al., 2014).  

Recently, Madiraju and colleagues (2018) further confirmed that the metformin inhibitory 

effect is through a redox-dependent mechanism because metformin inhibited gluconeogenesis 

from lactate but not from alanine in vivo. Accordingly, they concluded that metformin disrupted 
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the glycerophosphate shuttle either directly or indirectly and inhibited glucose production from 

glycerol and lactate as a result in a more reduced cytoplasmic redox state (increase NADH to 

NAD+) (Madiraju et al., 2014, Madiraju et al., 2018). The caveats to this mechanism are: first, 

it predicts that inhibition of gluconeogenesis by metformin is a redox-dependent, whereas other 

mechanisms predict inhibition of gluconeogenesis by a redox-independent mechanisms (Miller 

et al., 2013, Hunter et al., 2018). Second, it predicts a more oxidised mitochondrial redox state 

(decrease NADH to NAD+ ratio) as opposed to a more reduced mitochondrial redox state 

(increase NADH to NAD+ ratio) through inhibition of complex 1 (El-Mir et al., 2000, Fulgencio 

et al., 2001, Owen and Halestrap, 1993, Hunter et al., 2018) and a more reduced cytoplasmic 

redox state. However, this mechanism has been challenged by others based on three 

considerations: first, the MAS is thought to have a more prominent role in the liver than the 

GPS on both man and mouse (Saheki et al., 2007). Second, GAPDH consumes NADH 

generated in cytoplasm during gluconeogenesis (Baur and Birnbaum, 2014). Third, a recent 

study reported that the effect of metformin to inhibit glucose production from 5mM lactate in 

the perfused rat liver required a minimum concentration of metformin of 400µM rather than 

100 µM (Calza et al., 2018).  

 

1.6 Substrate and inhibitors used in this thesis  

The present thesis explored the different mechanisms that have been proposed to explain the 

inhibition of gluconeogenesis by metformin, with particular emphasis of the mitochondrial 

redox state and the role of the NADH shuttles (Figure 1-3). Octanoate was used as a source of 

mitochondrial acetyl-CoA. Octanoate enters the mitochondria as the free acid and is then 

converted to octanoyl-CoA and metabolized by β-oxidation to generate acetyl-CoA, which is 

then further metabolized by ketogenesis to form acetoacetate, which is reduced by 

hydroxybutyrate dehydrogenase to 3-hydroxybutyrate. The activity of hydroxybutyrate 

dehydrogenase in the mitochondrial matrix is high and near-equilibrium. The ratio of 3-

hydroxybutyrate to acetoacetate therefore reflects the NADH/NAD in the mitochondrial matrix. 

The rate of production of acetoacetate and 3-hydroxybutyrate was determined as a measure of 

octanoate β-oxidation (Ferre et al., 1983) and the ratio of 3-hydroxybutyrate to acetoacetate as 

a measure of changes in the mitochondrial redox state (Williamson et al., 1967) (Table 1-1)   
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To test the role of inhibition of Complex 1, the first reaction of the respiratory chain that 

catalyses the NADH oxidation, rotenone was used as an irreversible inhibitor of complex I. 

Rotenone inhibits the reduction of ubiquinone by binding irreversibly and competitively to the 

ubiquinone binding site (Heinz et al., 2017). To investigate mechanisms linked to a more 

oxidized mitochondrial NADH/NAD redox state, 2,4-dinitrophenol (DNP) was used to 

dissipate the proton gradient. The decrease in proton motive force by DNP results in a more 

rapid rate of electron transport and thereby in a decrease in the mitochondrial NADH/ NAD 

redox state.  The transmitochondrial proton gradient that is generated by the electron transport 

chain at the level of Complex I, III and 1V drives electrogenic transport mechanisms across the 

mitochondrial inner membrane e.g. the ATP/ADP transporter and transport of inorganic 

phosphate (Pi) and also ATP synthase (Complex V) and the Nicotinamide nucleotide 

transhydrogenase (NNT). High concentrations of DNP cause total dissipation of the proton 

gradient and rapid ATP depletion. Measurement of cell ATP in experiments with inhibitors of 

the respiratory chain or uncoupler enables use of the low concentrations of mitochondrial 

inhibitors that have small to minimal effects on the proton gradient. This is particularly 

important in the use of rotenone and DNP which cause ATP depletion at elevated concentration 

(Lou et al., 2007). 

To study gluconeogenesis we used either dihydroxyacetone which is phosphorylated by 

triokinase to DHAP an intermediate of the glycolytic and gluconeogenic pathways and 

represents an oxidised precursor or glycerol and xylitol which are reduced substrates that enter 

the pathway after NAD linked oxidation (Eggleston and Krebs, 1969, Flynn and McKay, 1972). 

Xylitol is converted to xylulose catalysed by the NAD-dependent xylitol dehydrogenase (Cook 

et al., 1973) and glycerol is phopshorylated by glycerokinase to glycero 3-phosphate and then 

further converted to DHAP either by the NAD-dependent cytoplasmic glycerophosphate 

dehydrogenase or by the mitochondrial glycerophosphate dehydrogenase (Mracek et al., 2013) 

To investigate the role of inhibition of the GPS and MAS in metformin mechanism two shuttle 

inhibitors were used Figure 1-3. Gpi, the GPS inhibitor, inhibits mGPDH activity by binding at 

a single, allosteric binding site (Orr et al., 2014). AOA, the MAS inhibitor, is an inhibitor of 

pyridoxal phosphate dependent enzymes (Rognstad and Clark, 1974). AOA has been used in a 

very large number of studies and with a very wide range of concentrations.  But some studies 

from the lab of Veech showed that in liver AOA is metabolized to various toxic products 

(glycolate and glyoxalte) if used at high concentrations.  Therefore, in this study AOA was used 
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at the lowest concentration that causes an increase in the lactate to pyruvate ratio (Harris et al., 

1982).  

 

Table 1-1: Schematic table of medium metabolites assayed as measures of metabolic pathway 

or redox state. 

Substrate  Medium 
metabolites  

Composite metabolite equation   Pathway or 
redox state  

Ref 

Octanoate  Acetoacetate, 
3‐Hydroxybutyrate 

Acetoacetate + 3‐
Hydroxybutyrate 

Octanoate 
β‐oxidation 

(Ferre et 
al., 1983) 

  Hydroxybutyrate/acetoacetate  Mitochondrial 
NADH/NAD 
redox state 

(Williamso
n et al., 
1967) 

DHA, 
xylitol, 
glycerol 

Lactate, pyruvate  Lactate + Pyruvate  Glycolysis   

  Lactate / Pyruvate  Cytoplasmic 
NADH/NAD 
redox state 

(Williamso
n et al., 
1967) 

Glucose  Glucose  Gluconeogene
sis 

 

  Glucose + Lactate + Pyruvate  Total 
substrate 
metabolism 

(Taleux et 
al., 2009) 

  Glucose / (2G + L +P)  Fractional 
partitioning of 
substrate to 
glucose vs 
glycolysis 

 

 

Two strains of C57BL/6J were used in this study that have either an intact Nnt gene 

(C57BL/6JolaHsd) or deletion of the Nnt gene (C57BL/6J). The inbred mouse strain C57BL/6J 

commonly known as Black 6 was developed at the Jackson Laboratory, Bar Harbor, Maine, 

1946. The C57BL/6J strain that is currently available from the Jackson Laboratory and from 

Charles River carries a homozygous spontaneous deletion in the Nnt gene (Freeman et al., 2006, 

Toye et al., 2005). Nnt encodes the nicotinamide nucleotide transhydrogenase (Table 1-2) 

which is an integral protein of the inner mitochondrial membrane and couples hydride transfer 

from NADH to NADP+ to proton translocation across the inner mitochondrial membrane. The 

Black Six strain was transferred from the Jackson Laboratory to the UK in 1974 and to Olac, 

UK in 1984 and to Harlan Laboratories (Envigo) in 1985. The strain now designated 

C57BL/6JOlaHsd strain available from Envigo, UK and derived from the original Black 6 strain 

does not carry the Nnt gene deletion but carries a deletion in the Scna (Alpha synuclein).  These 

mice do not show increased expression of either beta-synuclein or gamma-synuclein and spatial 



      Introduction                                                                                   Chapter One  
---------------------------------------------------------------------------------------------------------------- 

30 
 

learning in these mice is not affected (Specht and Schoepfer, 2001). These mice also carry a 

deletion in the Mnrn1 gene. Mulitmerin 1 is a platelet and endothelial cell adhesive protein that 

binds to collagen.  These mice and have impaired platelet adhesion and impaired thrombus 

formation (Reheman et al., 2010). Genetic concordance between the two strains in 98.5%.   

Unless otherwise indicated mice of the C57BLJOlaHsd strain were used.   

 

Table 1-2: Genetic differences between two strains of C57BL/6J mice used in this thesis.  

Mouse strains Supplier Gene deletion 

  Nnt Scna Mnrn1 Rd8 

C57BL/6J Charles River Yes No No No 

C57BL/6JOlaHsd Harlan/Envigo No Yes  yes N0 
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Figure 1-3: Schematic diagram for the electron transport chain and NADH shuttles and 
proposed action of inhibitors of mitochondrial function used in this thesis. Rotenone inhibitor 
of complex 1, Gpi inhibitor of mGPDH, DNP and salicylate uncouplers of the mitochondrial 
proton gradient, and AOA inhibitor of aspartate aminotransferase.  

Modified form (Wong et al., 2017) 
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Figure 1-4: Schematic diagram of the proposed mechanisms for inhibition of gluconeogenesis 
by metformin. 

Metformin accumulates in mitochondria in accordance with mitochondrial trasmembrane potential 
because of its positive charge. The proposed mechanisms include: (1) Inhibition of complex 1, the first 
complex of the respiratory chain resulting in an increase in NADH/NAD ratio and a decrease in the 
transmitochondrial proton gradient and a decrease in ATP/ADP ratio and raised AMP; (2) raised AMP 
causes activation of AMPK which has been reported to inhibit gluconeogenesis and expression of 
gluconeogenic genes; (3) activation of AMPK has also been reported to occur independently of inhibition of 
complex 1 through either inhibition of AMP-deaminase or through a lysosomal pathway; (4) raised AMP 
can inhibit gluconeogenesis independently of activation of AMPK by at least two pathways involving either 
inhibition of adenylate cyclase or inhibition of FBP-1 (5) metformin may inhibit gluconeogenesis from 
lactate and glycerol by inhibition of mGPDH resulting in a more oxidised mitochondrial redox state and a 
more reduced cytoplasmic redox state.  
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1.7 Hypothesis and Aims of the study 

Previous studies on the mechanism by which metformin inhibits gluconeogenesis through a 

rapid acute effect that is independent of changes in gene expression have focused on each of 

four mechanisms (Figure 1-4). (1)  Inhibition of gluconeogenesis through inhibition of Complex 

1 resulting in a decrease in ATP/ADP ratio (Owen et al., 2000). (2) Activation of AMPK leading 

to acute inhibition of gluconeogenesis. This was supported by inhibition by AICAR and 

counteraction of the metformin effect by compound C (Zhou et al., 2001). (3) Inhibition of 

gluconeogenesis by an AMPK independent mechanism (Foretz et al., 2010, Hunter et al., 2018, 

Miller et al., 2013). This is supported by an inhibitory effect of metformin in hepatocytes from 

AMPK deficient mice. (4) A redox-dependent mechanism for inhibition of gluconeogenesis 

that occurs only with reduced but not oxidised substrates and that occurs in conditions of a more 

oxidised mitochondrial redox state. This mechanism is explained by direct inhibition by 

metformin of mGPDH (Madiraju et al., 2014). This mechanism was supported by 

demonstrating a more oxidised mitochondrial redox state by metformin in vivo but not in vitro 

and by demonstration of inhibition of gluconeogenesis from reduced substrates in vitro and in 

vivo (Madiraju et al., 2014, Madiraju et al., 2018). 

Each of the earlier studies focused on testing one of the above mechanisms. It is recognized that 

metformin may exert its effects over a wide range of concentrations and by different 

mechanisms at low and high metformin, but that only mechanisms that occur at concentrations 

of metformin that are within the therapeutic range (portal vein concentration of 20-80 µM, or 

cellular dose of 1-2 nmol metformin / mg) are relevant for understanding the therapeutic 

mechanisms (He and Wondisford, 2015, Wilcock and Bailey, 1994). 

This thesis tested three hypotheses for the mechanism(s) by which metformin causes acute 

inhibition of gluconeogenesis: (1) involvement of Complex 1 inhibition; (2) involvement of 

AMPK activation or AMPK-independent mechanisms; (3) direct inhibition of mGPDH. The 

focus of this thesis was to test the lowest effective metformin concentrations that are relevant 

to the therapeutic range. 

A further aim of this thesis was to test whether inhibition of the malate-aspartate shuttle and / 

or the glycerophosphate shuttle mimics the mechanism of action of metformin.  
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 Materials and Methods 

2.1 Materials  

2.1.1 Biochemical reagents  

Chemicals and reagents used in this study were purchased from manufacturers listed in Table 

2-1 

Table 2-1: Chemicals and reagents  

Chemicals/Reagents  Suppliers  Cat. No.  

A-769662  Tocris Biosciences 3336 

Acetoacetate  Sigma  A-8509 

Adenosine 5-Triphosphate  Sigma A-3377 

ATA Sigma  A1895 

AOA  Sigma C13408 

Bradford protein assay dye reagent   Bio-rad  500-00006 

Bovine serum albumin   Sigma A2153 

 Chlorogenic acid derivative (1-[2-(4-chloro-

phenyl)-cyclopropylmethoxy]-3,4-

dihydroxy-5-(3-imidazo[4,5-b]pyrudin-1-

y1-3-phenyl-acryloyloxy)-

cyclohexanecarboxlic acid S4048 

Gift from Dr. D. 

Schmoll, Aventis, 

Pharma GnbH, 

Frankfurt, Germany   

 

Developer and replenisher  Sigma  P7042-5GA 

Dihydroxyacetone  Sigma  PHR1430 

DL- Dithiothereitol (DTT) Sigma D-6052 

DL-Glycerol 3-phosphate  Sigma  G6126 

Eagles’ Minimum Essential Medium (1X) Gibco, Invitrogen  21430 
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ECL detection Kit  Thermo scientific  32106 

Fixer and replenisher  Sigma  P7167-5GA 

Folin-Ciocalteau’s Phenol Reagent  Sigma F9252 

Glucose-free media  Gibco, Invitrogen A-14430 

Glutamine  Sigma  G3126 

Glucose  BDH 28450 

Glycerol  Sigma G-7893 

Glucose 6 phosphate  Sigma  G7879 

Glycerol 3-phosphate  Sigma  G7886 

HEPES Lonza 17-737F 

Lactate  Sigma  L7022 

LightCycler Master SYBR  Promega  A600A 

Metformin Sigma  D5035 

mGPDH inhibitor (Gpi) Vitas-M Laboratory  STK017597 

NAD CalBiochem 481911 

NADH CalBiochem 481913 

NADP CalBiochem 481972 

Non-essential amino acid (100X) Gibco, Invitrogen 11140-035 

Phenylmethanesufonyl Fluoride (PMSF)  Sigma  P7626 

Protein inhibitor  Sigma P8340 

Primer random  Roche  11034731001 

Pyruvate  Sigma  P2256 
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Rotenone  Sigma  R8875 

Resazurin Sodium Salt  Sigma  R7017 

Salicylate  Sigma  S2679 

Sodium Octanoate  Sigma  C5038 

Trizol  Ambion 15596018 

Xylitol Sigma  X3375 

3-hydroxybutyrate  Sigma  19F-0596 

5-chloro-2-[N-(2,5dichlorobenzene 

sulfonamide)]-benzoxazole (FBPi)  

Calbiochem/Santa 

cruz 

344267 

[2-3H] glucose  Perkin Elmer  NET238C005MC 

[5-3H] glucose  Perkin Elmer  NET531005MC 

 

Enzymes used in this study were purchased from manufacturers listed in Table 2-2 

Table 2-2: Enzymes  

Enzymes  Suppliers  Cat. No  

Diaphorase, cloned from Clostridium Kluveri  Sigma  D-2197 

DNase I recombinant, RNase-free Roche 04716728001 

Glucose 6-phosphate dehydrogenase (G6PDH) Roche  11452221 

Glycerol 3-phosphate dehydrogenase  Roche  21866325 

Hexokinase  Roche  11819023 

Lactate dehydrogenase  Roche  19938121 

M-MLV reverse transcriptase  Promega M1708 

3-hydroxybutyrate dehydrogenase    Roche  10113620 
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2.1.2 Adenoviral vectors 

Adenoviral vectors were purchased from manufacturers listed in Table 2-3  

Table 2-3: Adenoviral vectors  

Adenoviral vectors  Suppliers  RefSeq  

Ad-m-GPD2 (overexpression) 

ADV-279685 

Vector BIOLABS  BC021359 

Ad-m-GPD2-shRNA (Knockdown) 

shADV-279685 

Vector BIOLABS NM-010274 

PFK-KD  S32SD, T55V  (Arden et al., 2012, Wu et al., 

2004) 

  

2.1.3 Antibodies   

Commercial antibodies were purchased from manufacturers listed in Table 2-4 

Table 2-4: Antibodies  

Antibodies  HOST  Suppliers Cat. No.  

ACC-ser-79 (phosph.) Rabbit  Cell signalling  11818 

GPD2 Ab  Rabbit polyclonal  Proteintech  17219-1-AP 

GAPDH  Mouse  Hytest ABIN153387 
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2.1.4 Primers for Real time RT-PCR  

Primers were designed using the online (https://lifescience.roche.com/en_gb/brands/universal-

probe-library.html#assay-design-center) Roche Universal ProbeLibrary Assay.  

Primers were synthesized by Sigma (Table 2-5) 

Table 2-5: Primers for Real-time RT-PCR 

 Primers 

ChREBP-β For: TCTGCAGATCGCGTGGAG 

Rev: CTTGTCCCGGCATAGCAAC 

FGF21 A For: AGATGGAGCTCTCTATGGATCG 

Rev: GGGCTTCAGACTGGTACACAT 

G6Pc For: TGGTAGCCCTGTCTTTCTTT  

Rev:  TCAGTTTCCAGCATTCACAC 

Gpd2 For: ACTACCTGAGTTCTGACGTTGAAG 

Rev: TAACAAGGGGACGGATACCA 

Gapdh For: GAC AAT GAA TACGGCTACAGCA 

Rev: GGC CTC TCTTGCTCAGTGTC 

Txnip For: AACATCCCAGATACCCCAGA 

Rev: GTGGGGCTCTCTAGTCTGTGA 
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2.2 Animals 

Adult male Wistar rats (body wt. 180-250 g body wt.) and adult male C57BL/6JOlaHsd mice 

(20-30 g, body wt.) were purchased from Envigo Bicester UK.  Adult male C57BL6/JCrl mice 

were purchased from Charles River UK. The C57BL6/JCrl stain has a deletion in the Nnt gene 

(Kraev, 2014). Rats and mice were housed in the Comparative Biology Centre. They were 

allowed free access to standard rodent chow and water ad libitum on a 12 h light / 12 h dark 

cycle at 20 ± 2oC and at a controlled relative humidity of 50 ± 10%.   All procedures for housing 

of animals and for isolation of hepatocytes conformed to Home Office Regulations and were 

approved by the University Ethics Committee and by appropriate Home Office Licenses. 

2.3 Rat hepatocyte isolation.   

The liver isolation was by a modification the two-step collagenase perfusion technique 

described by Seglen (1976) (Seglen, 1976). The perfusion apparatus consisted of 2 separate 

peristaltic pumps (set at a flow rate of 25-30 ml/min) with a tubing system containing a bubble 

trap, for the first and second perfusion buffers. The perfusion buffers were maintained at 370C 

in a water bath. The first perfusion buffer contained 148 mM NaCl, 10mM Hepes, 6.7mM KCl, 

6mM glucose, 0.2mM EGTA, 10µg/ml phenol red, pH 7.4.  The second buffer contained 

144mM NaCl, 20mM Hepes, 6.7mM KCl, 6mM glucose, 1mM CaCl2, 10µg/ml phenol red, 

30mg / 100ml collagenase (Sigma Collagenase Type IV, Clostiridium histolyticum C5138). 

For isolation of rat hepatocytes, the rat was euthanized by isoflurane overdose. After 

laparotomy, the portal vein was exposed and two loose sutures were placed round the portal 

vein.  This was then cannulated with a 14Ga plastic cannula. The thoracic cage was opened 

and a 14Ga cannula was inserted through the right atrium into the inferion vena cava and 

secured tightly to allow outflow of perfusate from the liver.  The first perfusion system was 

connected to the portal cannula and the liver was perfusion with the first calcium free buffer 

for 15 min.  This was followed by the second perfusion buffer which was recirculated by 

connection of a tube to the outflow cannula from the heart. The liver was perfused for 15-20 

min, until digested was evident from the characteristic swelling of the liver.  The liver was then 

dissociated in MEM and filtered through a 200 micron mesh and the cell suspension was 

sedimented 3 times at 50 g (90-120 sec).   The supernatant containing non-viable hepatocytes 

and non-parenchymal cells was discarded and the pellet was suspended in MEM to a cell 

density of ~ 0.5 million cells/ml and the cells were seeded in multi-well plates at a density of 

approximately 105 cells /cm2. The cell culture plates (Greiner), were coated with 0.1%w/v 

gelatin and allowed to dry before seeding with hepatocytes.  
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2.4 Mouse hepatocyte isolation 

The mouse was anaesthetized in a 2-litre chamber containing 8 ml of isoflurane (IsoFlo 100%, 

Zoetis UK Ltd). After 2 min the mouse was weighed, injected intraperitoneally with 300 µl 

heparin (Sigma H9399; 3mg (9000U) / ml sterile 150 mM NaCl) and then returned to the 

isoflurane chamber. After 4 min from first exposure to isoflurane the mouse was removed from 

the chamber attached to the dissection tray, wiped in 70% ethanol and dissected to expose the 

heart and liver. A suture was placed below the heart under the vena cava. The heart was then 

gripped with fine forceps from the right atrium and stretched upwards and a 20Gauge x 32 mm 

i.v. catheter (Versatus, SR+DU2032PX) was inserted into the inferior vena cava. The needle 

insert was then removed and when the cannula filled with blood, the suture was tied securely, 

and the portal vein was cut approximately 1 cm distal to the liver. The cannula was then 

connected to a first peristaltic pump linked to calcium-free perfusate (containing per liter:  

8000mg NaCl, 400mg KCl, 130mg KH2PO4, 76mg EGTA, 20mg phenol red, 10 mM HEPES, 

pH 7.4). The liver was perfused at 5 ml / min for 6 min.  The cannula was then connected to a 

calcium plus collagenase Hanks medium buffered with 5mM NaHCO3, 20mM HEPES and 

containing 10 mg/100 ml collagenase (Sigma Collagenase Type IV, Clostiridium histolyticum 

C5138) and it was perfused for between 15 and 20 min. On termination of the perfusion the 

liver was transferred to a petri dish and gently dissociated in ~ 40 ml Minimum Essential 

Medium. The medium used for washing and cell culture was MEM with Earle’s salts (Gibco 

21430-020), supplemented with Non-Essential Amino acids (Gibco #11140-035); 2mM 

glutamine; penicillin (75mg/l) and streptomycin sulphate (50mg/l) (designated MEM).  The 

cell suspension was filtered through a 200-micron mesh, sedimented at 50g (2 min) and the 

pellet was washed at 50 g 2 min. The pellet was suspended in Minimum Essential Medium (as 

above) but supplemented with 5% vol/vol newborn calf serum (Gibco, Heat inactivated 

#26010-074), 10 nM dexamethasone and 10 nM insulin. Cell viability was checked with 

Trypan Blue (Lonza 19-942E) by mixing equal volumes of cell suspension and Trypan Blue 

and checking for dye exclusion. The final cell suspension was diluted to ~ 0.5 million cells/ml.  
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2.5 Hepatocyte culture  

The multi-well plates used for monolayer culture of both rat and mouse hepatocytes were 

coated with 0.1% gelatin. A 2% solution of gelatin was heated filter sterilized and aliquoted.  

Aliquots were diluted 20 times to 0.1%w/w and multi-well plates were filled with 0.5-1ml of 

the diluted gelatin. After 20 min this was aspirated and the plates were allowed to dry. Rat or 

mouse hepatocytes were seeded at a density of approximately 105 cells /cm2 in MEM 

containing 2mM glutamine, penicillin (75mg/l) and streptomycin sulphate (50mg/l), and 4% 

vol/vol newborn calf serum. The plates were placed in an incubator at 37oC equilibrated with 

5%CO2 / air and the cells were left to attach for between 2h and 4h. After cell attachment the 

medium was aspirated and replaced by serum-free medium containing 10nM dexamethasone 

and 1nM insulin and the cells were cultured overnight. 

2.6 Treatment of hepatocytes with adenoviral vectors 

Treatment of hepatocytes with adenoviral vectors was started at approximately 1.5-2 hours 

after plating and was for 4-4.5 hours. Adenoviral vectors were diluted in MEM containing 

glutamine, penicillin and streptomycin but without serum or added hormones. For expression 

of Gpd2, the stock concentration of Ad-m-Gpd2 (ADV-279685) was 2.4 x 1010 PFU/ml (Plaque 

forming units per ml). This was diluted in MEM at 1:500 and 1:1500 to 5 and 1.6 x 107 PFU. 

For knock-down of mGpd2 the vector Ad-m-GPD2-shRNA (shADV-279685) was diluted at 

1:100. For expression of a kinase deficient variant of PFK2/FBP2, an adenoviral vector 

encoding the liver isoform with two mutations (S32D, T55V) was used (Wu et al., 2004, Arden 

et al., 2012). Within approximately 2h of seeding of hepatocytes, the medium was gently 

aspirated and MEM containing the adenoviral vector was added at a volume of 0.38 ml for 12-

well plates and 0.18 ml for 24-well plates. The hepatocytes were incubated with the adenoviral 

vector for between 4 and 4.5 h and the medium was then changed to serum-free MEM 

containing 10nM dexamethasone and 1nM insulin. 
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2.7 Incubation with metformin for metabolic studies 

For all experiments with metformin, the hepatocyte monolayers were cultured overnight in 

MEM containing 10nM dexamethasone and 1nM insulin.  Incubations for metabolic studies 

were performed either in MEM (Gibco 21430) which contains 5mM glucose or in glucose-free 

DMEM (Gibco A-14430). The overnight medium was aspirated and replaced by either MEM 

or DMEM containing the metformin concentrations (0.1-0.5mM) indicated and the cells were 

incubated for 2h to allow cell accumulation of the metformin. The medium was then replaced 

with fresh medium with substrates and the same metformin concentrations as were present in 

the 2h pre-incubation. For experiments with the AMPK activator A-769662 (Cool et al., 2006) 

and Gpi an inhibitor of mGPDH (Orr et al., 2014), these were also added during the 2h pre-

incubation and the final incubation. 

2.8 Incubations for determination of the mitochondrial redox state  

The mitochondrial NADH/NAD redox state can be determined from the ratio of 3-

hydroxybutyrate / acetoacetate which is in equilibrium with the mitochondrial NADH / NAD 

ratio through the 3-hydroxybutyrate dehydrogenase equilibrium (Williamson et al., 1967) 

Table 1-2.  In this study hepatocytes were incubated in medium containing sodium octanoate 

which is metabolised to 3-hydroxybutyrate and acetoacetate, and the medium was collected at 

the end of the incubation for enzymatic assay of 3-hydroxybutyrate and acetoacetate. After pre-

incubation of hepatocytes in either MEM or glucose-free media (DMEM) containing the 

metformin concentrations indicated, the medium was then replaced with fresh medium 

containing octanoate, substrates, and other additions for 1 hour. The incubations were 

terminated after 60 min. The medium was collected into a 96-well plate and acidified with 0.2 

volumes of 0.6M perchloric acid. The samples were kept on ice for analysis of acetoacetate 

and 3-hydroxybutyrate within 2 h. The hepatocytes were snap frozen in liquid nitrogen and 

stored at -800C, for later analysis of cell protein and metabolites.   

2.8.1 Enzymatic assays for acetoacetate and 3-hydroxybutyrate.  

Acetoacetate and 3-hydroxybutyrate were assayed using 3-hydroxybutyrate dehydrogenase by 

monitoring fluorometrically the decrease or increase in NADH, respectively (Agius et al., 

1986) (Ex 340 nm, Em 460 nm, cutoff filter 420 nm) using  a Spectramax M5e plate reader 

(Molecular Devices).  

                                                       3-hydroxybutyrate dehydrogenase    
Acetoacetate+ NADH + H+           3-hydroxybutyrate +  
                                                                  NAD 
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                                            3-hydroxybutyrate dehydrogenase    
3-hydroxybutyrate + NAD                                                                          acetoacetate + NADH+ H+    
 
Standards for acetoacetate and 3-hydroxybutyrate were prepared in either MEM or DMEM at 

concentrations of 20, 50, 100, 200 and 500 µM from a freshly prepared aqueous stock of 

10mM. These standards were acidified with 0.6M prechloric acid in parallel with the samples.   

For the acetoacetate assay, the assay reagent contained 0.4M potassium phosphate buffer 

(prepared from equimolar KH2PO4 and K2HPO4), 0.1mM NADH, and 3-hydroxybutyrate 

dehydrogenase (7.5µg/ml). Sample or standard (in duplicate) was added at 30µl to a white plate 

followed by 150µl of main reagent and the fluorescence was determined after 30-60 min.  For 

the 3-hydroxybutyrate assay, the assay reagent contained 0.1M Tris, pH 9.3, 200µM NAD, and 

3-hydroxybutyrate dehydrogenase 7.5µg/ml. Sample or standard (in duplicate) was added at 

30µl to a white plate followed by 150µl of main reagent and the fluorescence was determined 

after 20-40 min. Sample concentrations were determined from the standard curve (5 

concentrations) which was generally linear or quadratic using Softmax Pro Software. For 

inhibitors with potential interference in the assay, additional blank incubations with inhibitors 

were run in parallel. The formation of ketone bodies (acetoacetate + 3-hydroxybutyrate) was 

calculated from the total volume of incubation medium (0.3ml / well) and was expressed as 

nmol of ketone bodies formed per mg of cell protein, based on the cell protein per well which 

was determined by the Lowry assay.  

2.9 Incubations for determination of glucose production 

After overnight culture in MEM, the hepatocytes were incubated for 4h in glucose-free DMEM.  

The overnight medium was aspirated the cells were washed with 150mM NaCl and incubated 

for 2h in glucose-free DMEM containing the metformin concentrations indicated. After the 2h 

pre-incubation, media were aspirated and replaced by fresh glucose- free DMEM containing 

substrates and other additions for 2h. The incubations were terminated after 120 min. The 

medium was collected into two separate 96-well plates, one used for determination glucose 

production and lactate assays and the second one for pyruvate assay after heated in hot plate at 

700C for 5min to destroy lactate dehydrogenase. Samples were kept on ice for analysis of 

glucose production within 1h. The remaining samples were stored at 40C for less than 16h 

before lactate and pyruvate assay done.  
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Total metabolism of DHA, xylitol or glycerol was calculated from the production of glucose 

plus pyruvate plus lactate expressed as C3 units. Glucose production was expressed either as 

nmol/ mg of cell protein or as a fraction of total metabolism to glucose, pyruvate and lactate.  

2.9.1 Enzymatic assays for glucose, lactate and pyruvate 

2.9.1.1 Glucose 

Glucose was determined enzymatically by the hexokinase, glucose 6-phosphate dehydrogenase 

assay (Stappenbeck et al., 1990). From the increase in the absorption of NADPH produced by 

glucose 6-phosphate dehydrogenase at 340nm using a Spectramax M5e  

                                   Hexokinase  
     Glucose + ATP                                        Glucose 6-P + ADP  
 
                                           G6PDH 
     Glucose 6-P + NADP                              6-phosphogluconate + H+ +NADPH  
 
 
 
Standards for glucose were prepared in glucose-free DMEM at concentrations of 25, 50, 100, 

200, and 400µM from freshly prepared aqueous stock 10mM. The assay was done on untreated 

medium. The assay reagent contained 50mM Tris/acetate pH 7.5, 20mM MgCl2, 400µM 

NADP, 400µM ATP, hexokinase 0.375 µg/ml, and G6PDH 0.5µg/ml. Sample or standard (in 

duplicate) was added at 20µl to a transparent plate followed by 180µl of main reagent and the 

absorption was determined after 5-15 min. Sample concentrations were determined from the 

standard curve (5 concentrations) which was generally linear using Softmax Pro Software.  

 

2.9.1.2 Lactate and pyruvate assay  

Lactate and pyruvate were assayed using lactate dehydrogenase by monitoring fluorometrically 

the increase or decrease in NADH, respectively (Agius et al., 1986) (Ex 340 nm, Em 460 nm, 

cutoff filter 420 nm) using  a Spectramax M5e plate reader (Molecular Devices). 

 

                                 LDH  
Lactate + NAD+                               Pyruvate + NADH + H+ 

                                                 LDH  
Pyruvate + NADH + H+                                Lactate + NAD+   
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Standards for lactate and pyruvate assays were prepared in either MEM or glucose-free DMEM 

at concentrations of 50, 100, 200, 500, and 1000µM (lactate) and 20, 50, 100, 200, and 500µM 

(pyruvate) from freshly prepared aqueous stock of 10mM. For the lactate assay, untreated 

medium was used. The main reagent contained 0.1M Tris/HCl /1% hydrazine, 200µM NAD, 

10µg/ml LDH. Sample or standard (in duplicate) was added at 30µl to a white plate followed 

by 150µl of main reagent and the fluorescence was determined after 30-60 min. For pyruvate 

assay, samples and standard were heated at 700C for 5 min. The assay main reagent contained 

(0.4M K-Phosphate (KH2PO4 plus K2HPO4), 100µM NADH, 0.0015µg/ml. Sample or 

standard (in duplicate) was added at 30µl to a white plate followed by 150µl of main reagent 

and the fluorescence was determined after 5-30 min. Sample concentrations were determined 

from the standard curve (5 concentrations) which was generally linear or quadratic using 

Softmax Pro Software. For inhibitors with potential interference in the assay, additional blank 

incubations with inhibitors were run in parallel. The formation of pyruvate plus lactate was 

calculated from the total volume of incubation medium (0.3ml / well) and was expressed as 

nmol of pyruvate plus lactate formed per mg of cell protein, based on the cell protein per well 

which was determined by the Lowry assay. 

 

2.10 Glucose phosphorylation and glycolysis 

Glucose phosphorylation was measured from detritiation of [2-3H] glucose and glycolysis was 

measured from detritiation of [5-3H] glucose (Hue, 1981). [2-3H] glucose or [5-3H] glucose 

1.5µCi/ml were reconstituted in MEM and incubated with hepatocytes for 3h. Then media were 

collected and acidified with 0.1 volume of 1M HCl. Acidified sample (100µl) were transferred 

into 500µl Eppendorf tube, and placed inside a 5ml scintillation tube containing 0.75ml water 

and stoppered. For blank correction 100µl MEM containing 1.5µCi/ml [2-3H] glucose or [5-
3H] glucose had not been incubated with the cells was treated similar to samples. The samples 

were incubated at room temperature for 3 days to allow the 3H2O to equilibrate with the water 

in the outer tube. Determination of the amount of 3H2O in 0.75ml was measured by on a liquid 

scintillation analyzer after addition of 3ml of scintillation cocktail (Gold star scintillation 

cocktail GS1, Meridian Biotechnologies). Results are expressed as nmol of glucose 

metabolised to 3H2O per 3h per mg of protein.  
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Calculation  

                                  (dpm/µl) 
Specific activity =                                 = dpm/nmol  
 (SA)                        nmol glucose/µl 
 
 
 
     dpm samples – dpm (blank)        Total volume / well                       1                                1 
=                                                     X                                         X                                X                                   
              SA (dpm/nmol)                      volume taken for assay        Recovery                  Protein (mg well)     
                
                                                            
 
= nmol of glucose detritiated per 3h per mg cell protein  
 
 
                                   3H2O in Eppendorf 

Recovery factor =  
                                3H2O + 0.75ml H2O (total recovery)      
 
 
 
2.11 Mitochondrial glycerophosphate dehydrogenase activity 

Mitochondrial GPDH activity was determined by the exogenous electron acceptor 2,6-

dichlorophenol-indophenol (DCIP) on hepatocyte monolayers that were snap-frozen in liquid 

nitrogen and stored at -80oC until analysis. This assay is based on oxidation of G3P by DCIP. 

The decrease in DCIP absorbance per minute at 600nm reflects the activity mGPDH. The main 

reagent of the assay contained  200mM sucrose, 50mM KPi pH7.6, 200µM DCIP, and 25mM 

DL-G3P (Dawson and Thorne, 1969).  

2.12 Cell metabolites:  ATP, G6P and G3P 

After collection of the medium on termination of the incubations, the cells were snap frozen in 

liquid nitrogen and stored at -800C until analysis. They were extracted in 2.5% (w/v) 5-

sulphosalicylic acid. Samples were transferred to microcentrifuge tube and centrifuged for 10 

min 13,000g at 4OC. The supernatants (150µl) were neutralized with 30µl KOH/KPi (3M KOH 

+ 1M K2HPO4) in a 96 well plate and neutralized samples were used to measure cell 

metabolites.  
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2.12.1 Adenosine 5-tri-phosphate  

ATP was determined using an endpoint chemiluminescence assay. This assay is based on 

measuring of emitted light produced from the oxidation of luciferin to oxyluciferin catalyzed 

by luciferase (see principle of reaction below). 

                                          Luciferase 

ATP + D-Luciferin + O2                              Oxyluciferin + AMP + PPi + CO2 + Light    

 

ATP standards were prepared in 2.5% SSA at final concentrations of 2, 5, 10, 20, 40µM from 

a freshly prepared stock of 1mM ATP. They were neutralized similarly to the cell extracts.  

Sample or standard in duplicate (20µl) was added to a white 96-well plate followed by 100µl 

of main reagent. This contained the Luciferin/Lucifease (Sigma FL-AAB) made up according 

manufacturer’s instructions and aliquoted in 50µl aliquots. The main reagent contained an 

aliquot reconstituted in buffer containing 0.1M Tris acetate, pH7.5, 10mM magnesium acetate, 

1.8mM EDTA. Luminescence was measured within 5 minutes using the Spectramax and ATP 

was determined from the standard curve which was linear.  

  

2.12.2 Glucose 6-phosphate   

Glucose 6-P was determined using fluorimetric enzyme assay (Zhu et al., 2009). This method 

is based on the oxidation of glucose 6-P by glucose 6-P dehydrogenase (G6PDH) to yield 

NADPH, which is coupled to reduction of resazurin in the presence of diaphorase to produce 

resorufin (see principle of reaction below). Resorufin is highly fluorescent and can be detected 

by excitation at 530 nm and emission 590 nm with a cut off of 570 nm using a Spectramax 

M5e fluorimeter.  

                                           G6PDH 
     Glucose 6-P + NADP                              6-phosphogluconate +NADPH + H+  
 
                                             Diaphorase  
     NADPH + Resazurin                                NADP + Resorufin   

 

G6P standards were prepared in 2.5% SSA at final concentrations of 2, 5, 10, 20, 50µM from 

a freshly prepared stock of 1mM G6P. They were neutralized similarly to the cell extracts.  
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Sample or standard in duplicate (40µl) was added to a white 96-well plate followed by 160µl 

of main reagent. The main reagent contained 50mM Tris/acetate pH 8.0, 2mM MgCl2, 0.2mM 

NADP, 0.02mM resazurin, 0.275µg/ml glucose 6-phosphate dehydrogenase, 0.45µg/ml 

diaphorase.  Fluorescence was measured within 30 minutes using the Spectramax and G6P was 

determined from the standard curve which was quadratic.  

2.12.3 Glycerol 3-phosphate  

Glucose 3-P was determined using an endpoint fluorimetric enzyme assay (Zhu et al., 2009). 

This method is based on the oxidation of glycerol 3-P by glycerol 3-P dehydrogenase (G3PDH) 

to yield NADH, which is coupled to reduction of resazurin in the presence of diaphorase to 

produce resorufin (see principle of reaction below). Resorufin is highly fluorescent and can be 

detected by excitation at 530nm and emission 590nm with a cut off of 570nm using a 

Spectramax M5e fluorimeter.  

                                        
                                           G3PDH 
     Glycerol 3-P + NAD+                               DHAP + NADH + H+  
 
                                           
                                            Diaphorase  
     NADH + Resazurin                                NAD + Resorufin  

 

G3P standards were prepared in 2.5% SSA at final concentrations of 2, 5, 10, 20, 50µM from 

a freshly prepared stock of 1mM G3P. They were neutralized similarly to the cell extracts.  

Sample or standard in duplicate (40µl) was added to a white 96-well plate followed by 160µl 

of main reagent. The main reagent contained 0.1M Tris/HCl; pH 9.3, 0.4mM NAD, 0.02mM 

resazurin, 9µg/ml glycerophosphate dehydrogenase, and 0.5µg/ml diaphorase. Fluorescence 

was measured within 60 minutes using the Spectramax and G3P was determined from the 

standard curve which was quadratic.  
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2.13 Cellular protein determination  

2.13.1 Lowry assay  

Cellular protein was determined spectrometrically by the Lowry assay. Cells were extracted 

with 0.1M NaOH. The principle of this reaction is that an active constituent of Folin-phenol 

reagent, phosphomolybdic-tungstic acid, is reduced by protein to form a coloured complex 

which can be measured at 750nm. A combination of start and main reagents are used in the 

assay. The assay main reagent containing (10% (w/v) Na2CO3 in 0.5M NaOH, water, 2% (w/v) 

Na+/K+ tartrate, and 1% (w/v) CuSO4.5H2O in a ratio 10:40:1:1) is activated with Folin and 

Ciocalteu’s phenol diluted with distilled water in a 1:1 (v/v) ratio. BSA standards (0.2, 0.4, 0.6, 

1.0, 1.5, and 2.0mg/ml) were prepared in 0.1M NaOH and used as standard curve.     

2.13.2 Bradford assay   

Protein for western blot was determined spectrometrically by Bradford assay. This assay 

involves the binding of the dye Coomassie blue to peptide residues that form a coloured 

complex and measured at 595nm. Samples were diluted 1:20 with 0.05% Triton X-100. The 

main reagent (Bio-rad protein assay dye reagent, 500-00006) was diluted 1:5 (v/v). BSA 

standard (25, 50, 100, 150, 200, 300, and 500g/ml) were prepared in 0.05% Triton X-100 and 

used for the standard curve.    

2.14 Protein and mRNA expressions  

2.14.1 Western blotting  

Monolayer hepatocytes were snap frozen in liquid nitrogen and stored at -80oC. Hepatocytes 

were extracted in extraction buffer containing (100mM KCl, 10mM EDTA, 20mM Kpi, 

0.5mM PMSF, 0.5 benzamidine, 1mM DTT, 5µl Caliculin A, 5µl protease inhibitor, and 4.1ml 

water). Extracted samples were transferred into Eppendorf tubes, sonicated for 5 seconds and 

then centrifuged for 10 min. at 12,000g. The Bradford assay was used to determine sample 

protein in supernatant (see 2.13.2) and samples were diluted (4 vol:1 vol) with 4x SDS loading 

buffer containing (0.5M Tris; pH 6.8, 10% SDS (w/v), 3% glycerol (v/v), 1% bromophenol 

blue (w/v), mercaptoethanol 400µl, and 2ml water). Samples were denatured at 95oC for 5 min. 

20-40µg protein was loaded onto gel (4% stacking, and either 8% running SDS-polyacrylamide 

for ACC-p, or 12% running SDS-polyacrylamide for mGPDH). Electrophoresis was performed 

for 15min at 90 volts, and then for 45 min at 180 volts (PowerPac basic power supply, 164-

5050, Bio-rad). Protein was transferred to PVDF membrane (Thermo-scientific 0.2µm, 88520, 

Germany) by transfer equipment for 4h (Power PAC 200, Bio-rad). Membrane was blocked by 
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blocking buffer to avoid non-specific protein binding membrane for 1h at room temperature. 

Blocking buffer was either 5% BSA for ACC-P or 5% dried milk (Marvel) in TBST. After 

blocking the membrane was incubated with primary antibody (1:1000) in blocking buffer and 

incubated overnight. The membrane was washed with TBST (5x 5 min) and then incubated 

with 1:5000 diluted secondary antibody (horseradish peroxidise-linked anti-IgG, Rabbit) for 

1h at room temperature, followed by further washing with TBST (5x 5 min). Bands were 

visualized using the enzyme chemiluminescence (ECL) detection system (Pierce TM ECL 

Thermo-scientific, USA) according to the manufacturer’s instructions and then membrane was 

exposed to ECL X-ray film (CLX PosureTM Film Thermo-scientific, Belgium) in a dark room 

for few seconds, followed by developing the X-ray film with developer and replenisher 

(Carestream, USA) and fixer and replenisher (Carestream, USA).          

2.14.2 Semi-quantitative real-time RT-PCR 

In this study determination of mRNA level was performed by semi-quantitative real-time PCR 

(RT-PCR). By using Trizol reagent to extract RNA from mouse hepatocyte monolayers (24-

well plates). After incubation monolayer hepatocytes were washed once with 1X saline 

(150mM NaCl) and 250µl Trizol reagent was added per well and vigorously scraped. Then the 

trizol reagent was transferred into Eppendorf tubes and incubated for 5 min at room 

temperature, 50µl of chloroform then added and samples shaken vigorously for 15 seconds. 

After 2 min room temperature incubation samples were centrifuged for 15 min at 12,000g, 4oC 

and the aqueous upper phase transferred into new Eppendorf tubes. Isopropanol (100µl) was 

added to each tube and mixed thoroughly and incubated for 10 min. at room temperature. After 

incubation samples were centrifuged at 12,000g, 4oC for 10 min. The supernatant was removed 

and pellets were washed with 75% ethanol (diluted with pure H2O, Sigma-Aldrich, UK), and 

centrifuged for 5 min at 7,500g, 4oC. Ethanol was aspirated and samples left in fume hood to 

dry for 10 min. Pellets were re-suspended in 10l H2O and incubated for 10 min at 55oC. 

Samples were incubated for 10 min at 37oC with RNase free DNase I to remove the genomic 

DNA, and then samples incubated at 75oC for 10 min for denaturation of the enzyme. The RNA 

was quantified by NanoDrop 2000 (Scientific).  
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cDNA preparation  

Primer random hexamer (0.5g/ml) was added to 1g RNA and samples were incubated for 

10 min at 70oC, followed by 50 min incubation with reverse transcriptase mixture (RT-mix) 

containing (1X MMLV buffer, dNTP, M-MLV reverse transcriptase, H2O) at 37oC, followed 

by incubation at 70oC for 15 min. The final concentration of cDNA was 25ng/µl. RT-PCR 

carried out with 50ng of cDNA, in a final volume of 10l PCR reaction mixture containing 

(1X lightCycler FastStart DNA Master SYBR, 0.5M of forward and reverse primer, and 

H2O). RT-PCR was programmed with the following parameters: i) initial incubation at 50oC 

for 2 min; ii) denaturation at 95oC for 15 seconds and 60oC for one minute. The expression 

level were quantified using the ∆∆Ct method.  

 
2.15 Statistical analysis  

Results are expressed as meansSEM. Statistical analysis was performed with the student’s 

paired t-test or ANOVA (one-way and two-way, Post hoc test Bonferroni). A P value <0.05 

was considered to be statistically significant.  

 

                
 



       Results 1                                                                                                 Chapter Three  
---------------------------------------------------------------------------------------------------------------- 

54 
 

 

 

 

 

 

 

 

 

CHAPTER 3: RESULTS 1  

ROLE OF THE MITOCHONDRIAL REDOX STATE 

AND AMPK ACTIVATION IN MEDIATING THE 

EFFECT OF METFORMIN ON 

GLUCONEOGENESIS IN HEPATOCYTES  
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 Role of the mitochondrial redox state and AMPK activation in 

mediating the effect of metformin on gluconeogenesis in hepatocytes  

3.1 Aims and rationale  

Metformin has been prescribed for T2D patients in Europe since the 1950s and in the US since 

1994. The beneficial effects of metformin include lowering of glucose output by the liver, 

increased insulin sensitivity of peripheral tissues, and reduced absorption of glucose by the gut 

(Tran et al., 2015). In spite of that the molecular mechanism of metformin remains 

incompletely understood (Pernicova and Korbonits, 2014). The first mechanism of metformin 

that was identified as a possible explanation for the inhibition of hepatic glucose production 

was the inhibition of complex 1 of the respiratory chain. Complex 1 (NADH-ubiquinone 

oxidoreductase) is the first of five complexes in the respiratory chain. It catalyses the oxidation 

of NADH to NAD with transfer of two electrons to ubiquinone which is reduced to ubiquinol. 

This is coupled to the pumping of four protons from the inside of mitochondria to mitochondrial 

intermembrane space (Hirst, 2013, Das, 2006, Vinogradov and Grivennikova, 2016). Inhibition 

of complex 1 results in an increase in the mitochondrial NADH/NAD redox state which can be 

measured from the ratio of 3-hydroxybutyrate /acetoacetate (HOB / Acac ratio) through the 

hydroxybutyrate dehydrogenase equilibrium. Early studies on metformin reported that 

metformin treatment in vivo and also in isolated hepatocytes results in an increase in the HOB 

/ Acac ratio (a more reduced mitochondrial NADH/NAD redox state). Inhibition of complex 1 

was confirmed from studies on isolated mitochondria incubated with substrates that are 

metabolised by complex 1 (Owen et al., 2000, El-Mir et al., 2000). More recent work by 

Bridges et al. (2014) showed a direct inhibition of complex 1 by reversible binding of 

metformin to the ubiquinone site (Bridges et al., 2014). Furthermore, metformin caused a more 

reduced mitochondrial redox state (increase NADH / NAD ratio) in other tissues such as 

skeletal muscle homogenate (Brunmair et al., 2004), neurons (El-Mir et al., 2008), human 

endothelial cells (Detaille et al., 2005), pancreatic β-cells (Hinke et al., 2007), kidney (von 

Morze et al., 2018).  

It has been reported that inhibition of complex 1 by biguanides is associated with cellular 

energy stress (increase in AMP:ATP and ADP:ATP ratios) (Cook et al., 1973, Evans et al., 

1983). Alteration in the cellular AMP:ATP ratio results in activation (increase in Thr172 

phosphorylation) of the energy sensor AMPK.  AMPK-activation can occur by many molecules 

such as: the 5-aminoimidazole-4-carboxamide ribonucleoside metabolite ZMP, A-769662, and 

991 activator or drugs such as salicylate. AICAR is converted by phosphorylation to the purine 
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precursor (ZMP), ZMP mimics the effect of AMP and binds to γ-subunit, while A-769662 and 

991 bind to the β-subunit. Similar to A-769662, salicylate also activates AMPK by binding to 

the β-subunit (Hardie et al., 2016, Jacquel et al., 2018, Ducommun et al., 2014). Biguanides 

have been shown to activate AMPK by an indirect mechanism through inhibition of ATP 

production (Hawley et al., 2010, Hawley et al., 2012). Early studies reported that metformin 

inhibited de novo lipogenesis in rat hepatocytes through the phosphorylation of acetyl-CoA 

carboxylase (ACC) and also that metformin inhibits glucose production (Zhou et al., 2001, 

Zang et al., 2004). ACC is one of the downstream targets of AMPK (Kristensen et al., 2015, 

Winder et al., 1997). The activation of AMPK by metformin occurred with (0.5-2mM) 

metformin concentrations (Zang et al., 2004, Sajan et al., 2013). However, a recent study by 

Cao et al (2014) reported that a lower metformin concentration (~80µM) increased the 

phosphorylation of AMPK on the α-subunit and inhibited hepatic glucose production (Cao et 

al., 2014). Moreover, activation of the cAMP/PKA pathway antagonized the effect of 

metformin on lowering hepatic glucose production. PKA signalling increased the 

phosphorylation of AMPK-α at Ser485 and abolished the phosphorylation of the AMPK-α 

subunit at Thr172. The latter effect was reversed by salicylate by blocking the phosphorylation 

of AMPK at Ser485 and activation of the phosphorylation on Thr172 (He et al., 2016a). It has 

been reported that metformin and salicylate synergistically improve lipid metabolism in insulin 

resistant mice through activation of AMPK. The effect of salicylate on AMPK is not on α-

subunit but on β-subunit similar to A769662, whereas the effect of metformin is by raised AMP 

which binds the α-subunit (Ford et al., 2015b, Hayward et al., 2016, O'Brien et al., 2015). 

On the other hand, evidence for AMPK-independent mechanisms was reported by Guigas et 

al. (Guigas et al., 2006) and Fortez et al. using hepatocytes from AMPK deficient mice (Foretz 

et al., 2010). The study by Guigas et al 2006 reported that metformin lowered glucose 

phosphorylation in rat and mouse hepatocytes. Glucose phosphorylation was inhibited by 2-

3mM metformin in mouse hepatocytes from wild-type and AMPK deficient mice lacking α1 

and α2 subunits. The inhibition of glucose-phosphorylation by metformin was associated with 

decreased in cell ATP. They concluded that metformin inhibited glucose phosphorylation, 

independently of AMPK, by lowering cellular ATP (Guigas et al., 2006). Furthermore, Fortez 

et al. (2010) reported that the cellular ATP level was depleted in mice hepatocyte treated with 

metformin (0.25-1mM) and the ratio of AMP/ATP was significantly increased with metformin 

concentrations of 0.25-1mM. The decrease in gluconeogenesis from lactate, pyruvate, and 
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DHA by metformin was explained by the decrease in ATP by an AMPK-independent 

mechanism (Foretz et al., 2010).        

A recent study reported a more oxidised mitochondrial redox state in the liver by (20-50mg/kg) 

metformin treatment. They also reported that 20mg/kg metformin lowered endogenous glucose 

production. Moreover, they reported that 100µM metformin lowered glucose production in 

isolated hepatocytes incubated with reduced substrates (Lactate and glycerol) but not with 

oxidised substrates (DHA, pyruvate, and alanine) as gluconeogenic precursors. However, the 

effect of 100µM metformin in isolated hepatocytes on the mitochondrial redox state was not 

tested (Madiraju et al., 2014). In the kidney, metformin showed a more reduced (increase in 

NADH / NAD ratio) mitochondrial redox state with 125mg/kg metformin (von Morze et al., 

2018) and more oxidised (decrease in NADH / NAD ratio) mitochondrial redox state with 

50mg/kg metformin (Qi et al., 2018). The more oxidised mitochondrial redox state by 

metformin in isolated hepatocytes has not been reported.  

The aims of this chapter were: 

(i) To test the hypothesis that metformin has a biphasic effect on the mitochondrial redox 

state. 

(ii) To test whether metformin inhibits gluconeogenesis from oxidised and reduced 

substrates in conditions associated with a more oxidised mitochondrial redox state.  

(iii) To test whether AMPK activation can explained the metformin mechanism.  

(iv) To test the effect of metformin on G6P and glucose phosphorylation in conditions 

with no change in cell ATP.   
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3.2 Results 

3.2.1 Biphasic effect of metformin on the mitochondrial redox state: more oxidised at low 

metformin.   

The effect of metformin (100-500µM) on the mitochondrial redox state was measured in mouse 

and rat hepatocytes using octanoate (0.125-0.25mM) as the substrate for β-oxidation. 

Octanoate enters the mitochondria as the free acid and is converted into octanoyl-CoA inside 

mitochondria. Unlike long-chain fatty acids mitochondrial oxidation of octanoate is not 

regulated by malonyl-CoA and AMPK. The final products of octanoate β-oxidation are 

acetoacetate and 3-hydroxybutyrate (McGarry and Foster, 1980). The sum of acetoacetate plus 

3-hydroxybutyrate production is a measure of octanoate β-oxidation and the ratio of 3-

hydroxybutyrate / acetoacetate (HOB/Acac) is a measure of the mitochondrial NADH/NAD+ 

state (Eaton, 2002, McGarry and Foster, 1980). Throughout this study a protocol was used 

involving pre-incubation with metformin for 2h before incubating in medium with substrate 

for either 1 h or 2h. Using this protocol when the concentration of metformin in the pre-

incubation was between 100 and 500 µM, the cell content of metformin was between 1 nmol 

/mg cell protein (100 µM) and > 5 nmol/mg protein (500µM) (Al-Oanzi et al., 2017). Previous 

studies in mice given an oral load of metformin corresponding to 50mg/kg  body weight 

showed a peak metformin content in the liver corresponding to 1-2 nmol/mg protein (Wilcock 

and Bailey, 1994).  Using our protocol, a concentration of 100 µM metformin gives a cell 

metformin content after 2 hours pre-incubation corresponding to the peak level in liver (1-2 

nmol/mg protein). 

In this study the ratio of 3-hydroxybutyrate / acetoacetate was significantly increased by high 

metformin (500µM) in both mouse hepatocytes (Figure 3-1A) and rat hepatocytes (Figure 3-

1C) and also by the complex 1 inhibitor (rotenone), as expected. However at 100µM metformin 

the 3-hydroxybutyrate / acetoacetate ratio was significantly decreased indicating a more 

oxidised mitochondrial NADH/NAD redox state in both mouse and rat hepatocytes. The effect 

of low metformin (100µM) was mimicked by dinitrophenol (DNP) in both rat (Figure 3-1C) 

and mouse (Figure 3-3 B) hepatocytes. The similar effects of the  complex 1 inhibitor and high 

metformin (500µM) on the mitochondrial redox state are consistent with inhibition of complex 

1 by high metformin (corresponding to a cell load of  > 5 nmol/mg metformin content) (Al-

Oanzi et al., 2017). On the other hand, the effect of low metformin (100µM) cannot be 

explained by inhibition of complex 1 due to the opposite effects of 100µM metformin and 

rotenone on the NADH/NAD+ (3-hydroxybutyrate / acetoacetate ratio). Possible explanations 
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for the decrease in ratio by 100 µM metformin are either a decrease NADH production or other 

mechanisms such as stimulatory effects of metformin on respiratory chain (increase the NADH 

oxidation). Both high metformin (500µM) and rotenone decreased the rate of 3-

hydroxybutyrate plus acetoacetate production in mouse hepatocytes (Figure 3-1B) with a small 

not significant decrease in rat hepatocytes (Figure 3-1D). The rate of 3-hydroxybutyrate plus 

acetoacetate production was increased by low metformin (100µM) in both mouse (Figure 3-

1B) and rat hepatocytes and also by the uncoupler (DNP) (Figure 3-1D). This implicates an 

effect of metformin on the respiratory chain mimicking the uncoupler which causes a more 

oxidised NADH/NAD ratio as a result of the decrease in proton gradient which leads to an 

increase in fatty acid oxidation. When the effects of low metformin and DNP were tested in 

the presence of rotenone (shaded bars) (Figure 3-3 A and B), only DNP lowered the 3-

hydroxybutyrate / acetoacetate ratio (figure 3-3 B), suggesting that the metformin effect is 

either upstream of the rotenone site or alternatively abolished by rotenone through other 

mechanisms.   Cell ATP was maintained in cells treated with all metformin concentrations 

tested in this study (Figure 3-2 A and B). This does not exclude small localized changes in free 

ATP/ADP ratio in the cytoplasm as was reported by Owen & Halestrap (2000) in conditions 

of maintained total cell ATP.  
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Figure 3-1: Low metformin and DNP cause a more oxidised mitochondrial redox state.  

Mouse (A-B) and rat (C-D) hepatocytes were pre�incubated for 2h in MEM with the metformin 
concentrations (100-500μM) indicated. The medium was then replaced with fresh MEM containing 25mM 
glucose, 0.25mM octanoate and the other conditions indicated for 1h to achieve cell content of metformin 
between 1nmol/mg protein (100µM) and > 5nmol/mg protein (500µM). The medium was collected for 
analysis of acetoacetate (Acac) and 3-hydroxybutyrate (Gardner et al.). A and C ratio of 3�
hydroxybutyrate / acetoacetate; B and D total production of 3�hydroxybutyrate + acetoacetate. Results 
are Means ± SEM for n= 8-14.  

*P < 0.05 relative to control.  
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Figure 3-2: Cell ATP for conditions in figure 3-1.  

Cells were snap-frozen for ATP analysis after the medium was collected for 3-hydroxybutyrate 

and acetoacetate assays in figure 3-1. Means ± SEM for n= 8-14.   
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Figure 3-3: DNP causes a more oxidised mitochondrial redox state in the presence of rotenone 

Mouse hepatocytes cultured for 3h after cell plating and then incubated for 2h without (white 

bars) or with (shaded bars) either 100µM metformin (A) or 20 µM DNP (B), and then for 

further 1h in fresh MEM containing 25mM glucose plus 0.125mM octanoate and the conditions 

indicated. The medium was collected for analysis of 3-hydroxybutryate and acetoacetate. Mean 

±SEM for n=5-7.  

* P<0.05 relative to respective control. 

$ P<0.05 effect of metformin or DNP.   
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3.2.2 High but not low metformin activates AMPK  

Previous studies have proposed that activation of AMPK by metformin may occur through 

either inhibition of complex 1 resulting in raised AMP/ATP ratio or also through other 

mechanisms (Gouaref et al., Cao et al., 2014, He et al., 2016a, Zhang et al., 2016, He and 

Wondisford, 2015). We next determined the effect of low (100µM) and high (500µM) 

metformin on AMPK activation from the phosphorylation of the AMPK downstream target 

(acetyl-CoA carboxylase ACC-P) and used the AMPK activators, A-769662 (10-20µM) and 

salicylate (500 µM) as reference controls. As discussed in the introduction salicylate similar to 

A769662 binds to the glycogen binding domain of the β-subunit and causes activation and 

phosphorylation on the AMPK Thr172 (Hawley et al., 2012). Salicylate was also shown to 

activate AMPK synergistically with metformin (Ford et al., 2015a). in this study the effect of 

salicylate was tested both alone and in combination with low metformin in mouse hepatocytes 

incubated with 25mM glucose. There was no effect on ACC-P by low 100µM metformin 

concentration. While the high (500µM) metformin and A-769662 (10-20µM) caused increased 

in ACC-phosphorylation. Salicylate (500µM) known as AMPK activator similar to A-769662 

(Hawley et al., 2012) did not have a statistically significant effect on ACC-phosphorylation 

when present alone, but it caused a significant increase in ACC-P in combination of 100µM 

metformin (Figure 3-4). The significant increase in ACC phosphorylation by the combined 

effects of low metformin and salicylate could be due to the different mechanisms of AMPK 

activation because salicylate binds to the β-subunit whereas metformin may cause a small 

elevation in AMP which binds to the catalytic α-subunit.  Synergism between metformin and 

salicylate in causing activation of AMPK has been reported previously (Ford et al., 2015b).  
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Figure 3-4: High but not low metformin concentration mimics the effect of the AMPK-
activator, A-769662, on ACC-phosphorylation.  

After overnight culture hepatocytes monolayers were incubated for 2h with metformin (100, 
200 or 500µM), 500µM SA, 100µM metformin plus 500µM salicylate, and A-769662 in MEM. 
The medium was then replaced with fresh MEM containing 25mM glucose and the additions 
indicated for 1h. Results are expressed as ratio to GAPDH and the value are Means ± SEM.  

*P<0.05 relative to control.     
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3.2.3 Inhibition of gluconeogenesis from oxidised and reduced substrates by low 

metformin is not mimicked by the AMPK activator A-769662   

The above studies show opposite effects of low and high metformin on the mitochondrial redox 

state and activation of AMPK only by the high metformin concentration which caused 

inhibition of complex 1.  We next tested whether the low metformin dose that causes a more 

oxidised redox state but not phosphorylation of ACC (Figure 3-4), inhibits gluconeogenesis 

from oxidised (dihydroxyacetone, DHA) and reduced (xylitol and glycerol) substrates. The rate 

of glucose production was significantly higher from the oxidised substrate DHA than from the 

reduced substrate glycerol (Figure 3-5A). Metformin significantly lowered the rate of hepatic 

glucose production from oxidised (DHA) and from reduced (xylitol and 0.25mM glycerol) 

substrates (Figure 3-5 A) and increased glycolysis (increased the rate of pyruvate plus lactate 

production) (Figure 3-5 B) without affecting total metabolism of DHA and xylitol (Figure 3-5 

D). While there was no effect of metformin on glycolysis from glycerol. The effect of 

metformin with 0.25mM glycerol was associated with a decrease in total glycerol metabolism 

which might explain the effect of metformin on inhibition of gluconeogenesis from 0.25mM 

glycerol (Figure 3-5 D). Accordingly, metformin lowered the fractional partitioning of oxidised 

(DHA) and reduced (xylitol) substrates to glucose relative to glycolysis (Figure 3-5 C).  

Having confirmed that low metformin (100µM) inhibits the production of glucose from DHA 

and the fractional partitioning of DHA to glucose relative to glycolysis without increased the 

phosphorylation of the AMPK substrate (ACC) we next tested the effect of the AMPK-

activator on hepatic glucose production in mouse hepatocytes incubated with either oxidised 

(DHA) or reduced (xylitol) substrates. With DHA as substrate, metformin (100-200µM) 

inhibited glucose production by (22 and 27%, respectively) (291±13.7, and 274±20.7 vs 

373±15.8, respectively) (Figure 3-6 A) and increased the production of pyruvate plus lactate 

(980±34.9 and 1147±84.7 vs 862±25.3, respectively) (Figure 3-6 B) without effecting total 

DHA metabolism (1583±52 and 1722±96.95 vs 1642±51.25, respectively) (Figure 3-6 D). 

Metformin decreased the fractional partitioning of DHA to glucose relative to glycolysis (38± 

1.32 and 32.43± 2.31 vs 44.94± 1.1) (Figure 3-6 C). The AMPK activator, A-769662 had the 

opposite effect to metformin (Figure 3-6 A-D). It favored gluconeogenesis rather than 

glycolysis and increased the fractional partitioning to glucose relative to glycolysis  
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Figure 3-5: Effects of metformin on glucose production from oxidised and reduced substrates.  

After overnight culture, mouse hepatocytes were pre-incubated for 2h in glucose-free DMEM without or with 100μM 
metformin. The medium was then replaced by fresh glucose-free DMEM containing either 5mM DHA, 2mM xylitol 
(Xyl) or glycerol at 0.25mM or 2mM. After 2h the medium was collected for determination of glucose (A), pyruvate and 
lactate (B) glucose production percentage (C), and total metabolism (D). Results are representing as mean±SEM for 
triplicate plates from one hepatocytes preparation.  

* P<0.05 relative to DHA;  

$ P<0.05 effect of metformin.     
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(51±2.6 vs 45±1.1), and lowered glycolysis (765±60 vs 862±25.3) without effecting total DHA 

metabolism (1571±80 vs 1642±51.3).   

Although salicylate is known to activate AMPK by binding the same subunit as A-769662 

(Hawley et al., 2012), in this study 500µM salicylate did not mimic the effect of A-769662 on 

glycolysis or the fractional partitioning to glucose relative to glycolysis. The studies on 

phosphorylation of ACC had shown that salicylate is a weaker activator of AMPK than A-

769662 (Figure 3-4). The combination of metformin and salicylate had no extra effect on 

glucose production (335±22 vs 373± 16). However, the combination of metformin and 

salicylate inhibited the fractional partitioning of DHA to glucose relative to glycolysis 

(37.2±1.7 vs 45±1.1) and increased glycolysis (1251±68 vs 862±25.3) with concomitant 

increase in total DHA metabolism (1983±83 vs 1642±51.2) (Figure 3-6 A-D). Salicylate is also 

an uncoupler and causes lowering of cell ATP (Smith et al., 2016). In this study salicylate was 

used at highest concentrations that do not cause ATP depletion (0.5mM). At this concentration, 

salicylate did not cause significant activation of AMPK, therefore salicylate was not further 

used in the rest of this study. The cellular ATP level was monitored in parallel and was 

unchanged (Figure 3-6 E). With xylitol as substrate, the effect of 100M metformin on hepatic 

glucose production was less pronounced (27842.4 vs 32532; 14%) (Figure 3-7 A) compared 

with DHA (22%) (Figure 3-6 A). Inhibition of the rate of glucose production by metformin 

was associated with an increase in glycolysis (61388.2 vs 52436.6) (Figure 3-7 B) and 

decrease in the fractional partitioning of xylitol to glucose relative to glycolysis (559 vs 676) 

(Figure 3-7 C) without changing total xylitol metabolism (104663 vs 98832) (Figure 3-7 D). 

The AMPK activator A-769662 had no effect on gluconeogenesis, glycolysis, and the 

fractional partitioning of xylitol to glucose relative to glycolysis (Figure 3-7 A-D). There was 

no change in ATP with the various treatments (Figure 3-7 E). Cumulatively, the above results 

indicated that the low metformin dose that causes a more oxidised mitochondrial redox state 

lowers the rate of glucose production from both oxidised (DHA) and reduced (xylitol) 

gluconeogenic precursors. The metformin effect is not mimicked by activation of AMPK 

because the AMPK-activator A-769662 which causes similar phosphorylation of ACC-P as 

high metformin did not inhibit glucose production from the oxidised substrate DHA.    
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Figure 3-6: Metformin lowers gluconeogenesis from dihydroxyacetone DHA: the effect of 
metformin is not mimicked by either the AMPK activator, A-769662, or by salicylate (SA). 

After overnight culture mouse hepatocyte monolayers were incubated with metformin, 500µM SA, 100µM 
metformin plus 500µM salicylate, and 10µM A-769662 in glucose-free DMEM for 2h.  The medium was 
then replaced by glucose-free DMEM containing 5mM DHA and other additions as indicated (µM) and 
incubated for 2h. (A) Glucose production, (B) pyruvate plus lactate (C) glucose production percentage (D) 
total DHA metabolism. Results are Means ±SEM, n=11.  

*P <0.05 (One-way ANOVA) relative to control with no addition.  
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Figure 3-7: Metformin lowers gluconeogenesis from xylitol and the fractional partitioning of xylitol to glucose relative to 

glycolysis.  

After overnight culture mouse hepatocyte monolayers were incubated with 100µM metformin, and 10µM A-769662 in 
glucose-free DMEM for 2h. The medium was then replaced by glucose-free DMEM containing 2mM xylitol and other 
additions as indicated (µM) and incubated for 2h. (A) Glucose production, (B) pyruvate plus lactate (C) glucose 
production percentage (D) total DHA metabolism (E) cell ATP level. Results are Means ±SEM, n=5.  

*P <0.05 relative to control with no addition.  
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3.2.4 Metformin lowers G6P with both DHA and high glucose as substrates- an effect 

mimicked by rotenone and DNP   

Previous studies reported an AMPK-independent mechanism for the effects of metformin on 

both gluconeogenesis and lowering of cell G6P in conditions associated with lowering of ATP 

(Foretz et al., 2010, Guigas et al., 2006). A proposed mechanism for the lowering of G6P was 

inhibition of glucose phosphorylation (Guigas et al., 2006). In this study metformin inhibited 

gluconeogenesis in conditions of maintained ATP, we therefore next tested the effects of 

metformin on cell G6P with either DHA (mouse hepatocytes) or with high glucose (25mM) in 

mouse and rat hepatocytes in comparison with the AMPK activator (A-769662), salicylate, 

rotenone, and the uncoupler (DNP).  

Because cell G6P is very low in a glucose-free medium we used the chlorogenic acid derivative, 

S4048 an inhibitor of G6P translocase (G6PT) to block hydrolysis of G6P to glucose (van Dijk 

et al., 2001, Hemmerle et al., 1997). With DHA as substrate, low metformin lowered the 

cellular G6P level (1.6±0.3 vs 2.4±0.2), while activation of AMPK by A-769662 had no effect 

on G6P (2.3±0.2 vs 2.4±0.2). Cell ATP was unchanged with both conditions (Figure 3-8 A-B). 

With high glucose (25mM), metformin (100-500µM) caused a concentration-dependent 

lowering in the cellular G6P level in mouse (Figure 3-8 C) and rat (Figure 3-8 E) hepatocytes. 

This effect was mimicked by the complex 1 inhibitor (rotenone), salicylate plus metformin, 

and the uncoupler (DNP) (Figure 3-8 C,E), while there was no effect on G6P level by A-769662 

or salicylate alone. Cell ATP was unchanged with all conditions (Figure 3-8 F). Collectively, 

(1) metformin lowered the cellular G6P level with both DHA and glucose, without lowering 

cell ATP. (2) The effect of metformin on cell G6P was mimicked by the complex 1 inhibitor 

(rotenone) and the uncoupler (DNP) but not by the AMPK activator. This suggests a 

mechanism linked to mitochondrial function but not AMPK activation that results in lowering 

of G6P in conditions of maintained ATP. 
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Figure 3-8: Metformin lowers cell G6P in a concentration-dependent manner.  

After overnight culture hepatocytes monolayers (A-D mouse, E-F rat) were incubated with either glucose-
free DMEM for (A and B) or MEM (C-F) and (100-500µM) metformin, 500µM SA, 100µM metformin plus 
500µM salicylate, and (10µM) A-769662 for 2h. The medium was changed with either glucose-free DMEM 
containing (5mM DHA and 0.2µM S4048; A and B) or MEM (25mM glucose and 0.2µM S4048 and 0.25mM 
octanoate; C-F) with the conditions indicated for either 1h (MEM) or 2h (GFM). (A, C and E) G6P level 
and (B, D and F) ATP. Results are Means ±SEM, for 5-6 individual experiments. 

 *P <0.05 relative to control with no addition. 
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3.2.5 Metformin lowers G6P at high glucose without inhibition of glucose 

phosphorylation 

Previous studies on hepatocytes from AMPK deficient mice showed that the lowering of G6P 

by high metformin (3mM) could be explained by inhibition of glucose phosphorylation (Guigas 

et al., 2006). The effects of metformin (200-1000µM), 20µM DNP and 10µM A-769662 on 

glucose phosphorylation and glycolysis were determined in rat hepatocytes incubated with 

25mM glucose containing 1.5µCi/ml of [2-3H] glucose for glucose phosphorylation or [5-3H] 

glucose for glycolysis. The results showed that activation of AMPK by A-769662 significantly 

inhibited both glucose phosphorylation (19±2.4 vs 31±3) (Figure 3-9 A) and glycolysis (18±1.8 

vs 26±4) (Figure 3-9 B). However there was no effect on glucose phosphorylation by 

metformin up to 1000µM or the uncoupler (20µM DNP) (33±3, 32±3, 27±1.6 and 30.5±2.0 vs 

31±3), also they did not affect glycolysis (27±4.0, 24.4±2.8, 22.2±2.7 and 30.7±3.6 vs 25.8±4) 

(Figure 3-9 A and B) and cell ATP was unchanged (Figure 3-9 C).    
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Figure 3-9: The AMPK activator A769662, but not metformin inhibits glucose phosphorylation 
and glycolysis in hepatocytes.  

After overnight culture rat hepatocyte monolayers were incubated in MEM with metformin and A-769662 
for 2h. the medium was changed with fresh MEM containing 25mM glucose, and either [2-3H] glucose (A) 
or [5-3H] glucose (B) and the hepatocytes were incubated for 3h for determination of glucose 
phosphorylation and glycolysis, respectively from the formation of 3H2O. Rates of glucose phosphorylation 
and glycolysis are expressed as nmol/h/well (A and B). Cell ATP (C) is expressed as nmol/well. Results are 
Means ± SEM for n=4 individual hepatocytes preparation (A and C); n=3 individual hepatocytes 
preparation (B).  

* P< 0.05 relative to control with no addition 
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3.2.6 Hepatocytes from NNT-deficient mice have higher G6P but similar redox state 

changes with metformin  

The above results showed that metformin lowered the cellular G6P level in mouse and rat 

hepatocytes and this effect was mimicked by the complex 1 inhibitor (rotenone) and the 

uncoupler (DNP). One of the mechanisms linked to complex 1 inhibitor and uncoupling is a 

decrease in the mitochondrial proton gradient. Two mechanisms that are driven by the proton 

gradient are generation of ATP by ATP synthase (Complex V) and the activity of nicotinamide 

nucleotide transhydrogenase (NNT) which catalyzes the synthesis of NADPH from NADH and 

NADP+ coupled to the transfer of protons across the mitochondrial membrane into the 

mitochondria.  

NNT is one of two major mechanisms that generate NADPH in mitochondria, the other being 

isocitrate dehydrogenase (ICDH) (Ronchi et al., 2013, Rydstrom, 2006).  Malic and the pentose 

phosphate pathway generate NADPH in the cytoplasm and various shuttles can transfer 

NADPH between the mitochondria and cytoplasm (Guay et al., 2013). A possible mechanism 

for the decrease in G6P by metformin, rotenone and DNP is by inhibition of NNT and increase 

the metabolism of G6P by the pentose phosphate pathway. To test this hypothesis we used 

hepatocytes from two mouse genotypes (wild-type, NNT+/+) and (NNT-deletion, NNT-/-). The 

hepatocytes were incubated with high glucose (25mM) in the presence of G6P transport 

inhibitor (S4048). Hepatocytes from the NNT-deletion mouse (C57Bl6J) showed higher G6P 

level comparing to wild-type mice (Figure 3-10 A). The concentration dependent lowering of 

G6P by metformin was similar in hepatocytes from both genotypes (Figure 3-10 A). The 

cellular ATP level was unchanged in all conditions (Figure 3-10 B). To further investigate the 

role of NNT in the metformin mechanism, hepatocytes from wild-type and NNT-deletion 

mouse were incubated with high glucose (25mM) in the presence of 0.25mM octanoate to 

measure the 3-hydroxybutryate / acetoacetate ratio and ketone body formation. Both genotypes 

had the same 3-hydroxybutryate / acetoacetate ratio (Figure 3-10 C) and rate of formation of 

ketone bodies (Figure 3-10 D). The biphasic effect of metformin was shown in both wild-type 

and NNT-deletion hepatocytes a more oxidised with 100µM metformin and a more reduced 

with 500µM metformin. With the complex 1 inhibitor and 500µM metformin the mitochondrial 

redox state was more reduced in hepatocytes from both genotypes (Figure 3-10 C). The 

formation of ketone bodies was increased by low 100µM metformin in both wild-type and 
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NNT-deleted hepatocytes, while high 500µM metformin and rotenone decreased the 

production of ketone body (Figure 3-10 D)   
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Figure 3-10:  Cell G6P is higher in hepatocytes from NNT-deficient mice than in hepatocytes 
from wild-type mice.  

After overnight culture mouse hepatocyte monolayers were incubated with metformin in MEM for 2h. The 
medium was replaced by MEM with 25mM glucose, 0.25mM octanoate in the presence (A-B) or absence 
(C-D) of 0.2µM S4048 with other conditions as indicated for 1h. (A) Cell G6P level, (B) Cell ATP level, (C) 
3-hydroxybutyrate / acetoacetate ratio (D) 3-hydroxybutyrate plus acetoacetate. Results are Means ± SEM 
for n=3 individual hepatocytes preparation (A and B); n=6 individual hepatocytes preparation (C and D). 
* P< 0.05 relative to control with no addition   

$ P<0.05 effect of NNT-deletion.  
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3.2.7 NNT-deficiency does not affect the metformin inhibition of gluconeogenesis from 

DHA and xylitol   

Hepatocytes from NNT-/- mice and NNT+/+ (Wild-type) mice were used to test the effect of 

metformin on gluconeogenesis from oxidised (DHA) or reduced (xylitol) substrates.  

With both DHA and xylitol as substrate, hepatocytes from NNT-/- mice had lower rates of 

production of pyruvate plus lactate (Figure 3-11 B and Figure 3-12 B) but similar rates of 

glucose production (Figure 3-11 A and Figure 3-12 A) to hepatocytes from wild-type mice. 

Metformin (100µM) caused similar inhibition of glucose production in hepatocytes form NNT-

/- mice as in wild-type hepatocytes (Figure 3-11 A and Figure 3-12 A).  The activator of AMPK 

(A-769662) unlike metformin did not inhibit glucose production and in incubations (Figure 3-

11 A and Figure 3-12 A), with xylitol it increased the fractional partitioning of xylitol to 

glucose (Figure 3-12 C). Total glucose plus pyruvate plus lactate production was significantly 

lower in hepatocytes from NNT-/- mice with a concomitant decrease in pyruvate plus lactate 

(Figure 3-11 B,D and Figure 3-12 B,D). Metformin lowered gluconeogenesis and the fractional 

partitioning of DHA in hepatocytes from both wild-type and NNT-/- mice (Figure 3-11 A and 

C), with negligible increase in glycolysis (Figure 3-11 B) without affecting total glucose plus 

pyruvate plus lactate formation (Figure 3-11 D). The activator of AMPK A-769662 (10µM) 

did not affect glucose production from wild-type hepatocytes and NNT-/-  hepatocytes, but there 

was a trend to increase the fractional partitioning of DHA to gluconeogenesis relative to 

glycolysis in both mouse genotypes (Figure 3-11 A-D). The ATP level was unchanged with all 

conditions (Figure 3-11 E). 

With xylitol as substrate, NNT-/- hepatocytes favoured gluconeogenesis rather than glycolysis 

and the fractional partitioning to glucose was slightly increased compared with hepatocytes 

from wild-type mouse concomitant with a trend to lower total glucose plus pyruvate plus 

lactate. The effect of 100µM metformin on hepatic glucose production was similar in both 

wild-type and NNT-/- hepatocytes (Figure 3-12 A) and metformin favoured glycolysis relative 

to gluconeogenesis, however, in NNT-/- hepatocytes metformin did not significantly increase 

pyruvate plus lactate formation (Figure 3-12 B). A-769662 (AMPK activator) unlike 

metformin favoured gluconeogenesis (Figure 3-12 A) rather than glycolysis by increased 

partitioning to glucose relative to glycolysis (Figure 3-12 C) and lowered pyruvate plus lactate 

production (Figure 3-12 B) with negligible effect on total glucose plus pyruvate plus lactate in 

hepatocytes from both wild-type and in NNT-/- mice (Figure 3-12 D). These effects were not 

associated with ATP depletion in both mice genotypes (Figure 3-12 E). These results suggested 
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that NNT might have a role in gluconeogenesis, but it does not mediate the mechanism of 

lowering glucose production by metformin.  
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Figure 3-11: Metformin inhibits gluconeogenesis in hepatocytes from oxidised (DHA) 
substrate in both mouse genotypes. 

After overnight culture mouse hepatocyte monolayers were pre-incubated with 100µM metformin and 
10µM A-769662 in glucose-free DMEM for 2h. The medium was then replaced by glucose-free DMEM 
containing 5mM DHA and other additions as indicated for 2h. (A) Glucose production; (B) pyruvate plus 
lactate formation; (C) glucose production percentage; (D) total metabolism; (E) cell ATP level. Results are 
Means ±SEM, n=6.  

*P <0.05 relative to control.   

$ P<0.05 effect of NNT-deletion.  
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Figure 3-12: Metformin inhibits gluconeogenesis in hepatocytes from reduced (xylitol) 
substrate in both mouse genotypes.  

Monolayer hepatocytes pre-incubated similar to figure 3-11, and then incubated with 2mM xylitol for 
further 2h in free-glucose DMEM with indicated conditions. (A) glucose production; (B) pyruvate plus 
lactate formation; (C) glucose production percentage, (D) total metabolism; (E) cell ATP level. Results are 
Mean±SEM, n=4.  

*P<0.05 relative to control.  

$ P<0.05 effect of NNT-deletion.  
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3.3 Discussion  

There remains little consensus on the mechanism by which metformin inhibits hepatic glucose 

production. The major mechanisms that have been proposed include: (1) Inhibition of complex 

1 and thereby the mitochondrial respiratory chain which has a high control strength on 

gluconeogenesis through compromised energy status (El-Mir et al., 2000, Owen et al., 2000, 

Miller et al., 2013). (2) Activation of AMPK through either inhibition of complex 1 which 

results in a raised  AMP / ATP or through other mechanisms  (Zhou et al., 2001). However this 

mechanism has been challenged because metformin inhibited gluconeogenesis in mice lacking 

AMPK and its upstream LKB (Foretz et al., 2010). (3) Various mechanisms have been 

proposed to explain the AMPK independent inhibition of gluconeogenesis. These include a 

raised cell AMP which inhibits glucagon signalling (Miller et al., 2013) and also FBP-1 (Hunter 

et al., 2018) and also a redox dependent mechanism linked to inhibition of mGPDH.  This 

mechanism proposes a more reduced cytoplasmic redox state and a more oxidised 

mitochondrial redox state. A key caveat of this mechanism is that it proposes inhibition of 

gluconeogenesis from reduced but not from oxidised substrates.   

A key problem with the above diverse mechanisms is that some of these mechanisms are 

observed only at a high dose of metformin that may not be of therapeutic relevance.  A recent 

study showed that 20-50mg/kg metformin causes a more oxidised redox state in rat liver and 

inhibits hepatic glucose production. In vitro study on hepatocytes reported that 100µM 

metformin lowered gluconeogenesis from reduced (lactate and glycerol) but not from oxidised 

(DHA and pyruvate). However, this study did not show whether 100µM metformin makes the 

mitochondrial redox state more oxidised or more reduced in isolated hepatocytes (Madiraju et 

al., 2014). In the present study the metformin concentration and exposure time used in 

hepatocytes resulted in cellular metformin levels (1-2nmol/mg) that are relevant to the 

therapeutic  dose after metformin (50mg/kg or 3gm/60kg) treatment (Wilcock and Bailey, 

1994, Al-Oanzi et al., 2017). The main findings of this chapter are  

1- Metformin has a biphasic effect on the redox state:  a more oxidised at low (100µM) 

metformin concentration and a more reduced at high (500µM) metformin.   

2- Metformin (100µM) inhibits gluconeogenesis from the oxidised and reduced substrates. 

This effect is not associated with a decrease in ATP and was not mimicked by AMPK 

activation.    
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3- Metformin (100µM) lowers G6P without inhibition of glucose phosphorylation or 

lowering ATP.  

4- The metformin effect on G6P is mimicked by rotenone and DNP but is not due to NNT 

inhibition.      

These effects are discussed below. Previous studies on the effects of metformin (1-10mM) on 

the mitochondrial redox state in isolated hepatocytes have reported either an increase in the 

ratio of 3-HOB/Acac or no effect (Owen et al., 2000, Gouaref et al., 2017).  The more reduced 

NADH/NAD ratio was  explained by inhibition of complex 1 as shown in studies on isolated 

mitochondria (El-Mir et al., 2000, Owen et al., 2000) or the purified enzyme (Bridges et al., 

2014). In the present study we found a more reduced NADH/NAD redox state with rotenone 

(as expected) and at 500µM metformin but not at lower metformin concentrations. The cellular 

metformin content at 500µM metformin is about 5 nmol/mg cell protein (Al-Oanzi et al., 2017).  

This is higher than the maximum metformin level in the liver after a therapeutic dose (50mg/kg 

metformin). This supports the conclusion by Madiraju et al. (2014) that inhibition of complex 

1 does not occur at a therapeutic dose of metformin but only at higher doses. Madiraju et al. 

(2014, 2018) reported from studies in vivo that a therapeutic dose of metformin causes a more 

oxidised mitochondrial redox state. However, studies in vivo cannot rule out an indirect 

mechanism for example that is caused by changes in hormones or circulating levels of fatty 

acids. The present study demonstrates for the first time that treatment of hepatocytes with a 

low concentration of metformin (100µM) causes a more oxidised redox state. This 

concentration of metformin results in cellular accumulation of the drug to the same level (1-2 

nmol/mg) as occurs in vivo after a 50mg/kg dose (Al-Oanzi et al., 2017). This supports the 

conclusion of Madiraju and colleagues (2014) that at a therapeutic level the effect of metformin 

on hepatocytes is a more oxidised mitochondrial redox state. At least 4 mechanisms can be 

considered for the more oxidised mitochondrial NADH/NAD redox state by 100µM 

metformin. First, this could be due to inhibition of production of NADH within mitochondria. 

Second, it could be due to an increase in activity of the respiratory chain which oxidies NADH 

by complex 1 with the transfer of electrons to ubiquinone and then down the electron transport 

chain. Two other possibilities are the inhibition of the transfer of reducing equivalents from the 

cytoplasm to mitochondria by either the malate-aspartate or the glycerophosphate shuttles 

(Madiraju et al., 2014, Bridges et al., 2014). The present experiments allow us to exclude the 

first mechanism that metformin inhibits the production of NADH in mitochondria. The rate of 

ketone body production was measured from 3-hydroxybutyrate plus acetoacetate. The use of 
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medium chain fatty acid, octanoate, as ketogenic precursor was made up depending on (i) that 

the mitochondrial uptake of octanoate is independent of carnitine palmitoyltransferase I 

(McGarry and Foster, 1980, Pegorier et al., 1989) (ii) its ability to form ketone body is high 

(Barrena et al., 2009). Octanoate is metabolized in the mitochondria by β-oxidation to acetyl-

CoA, resulting in the production of NADH and FADH2. The acetyl-CoA formed from 

octanoate is then converted to acetoacetate and 3-hydroxybutyrate (Ferre et al., 1981). Low 

metformin caused an increase in the sum of acetoacetate plus 3-hydroxybutyrate production. 

This indicates an increase in total β-oxidation of octanoate and therefore in the production rate 

of NADH. The more oxidised state (lower NADH/NAD) at 100µM metformin is therefore 

associated with increased rather than decreased production of NADH. The opposite situation 

occurred at high metformin which caused an increase in the mitochondrial NADH/NAD ratio 

(increase in HOB/Acac) but a decrease in production of HOB plus Acac and therefore in the 

production rate of NADH. These opposite changes in the production rate of NADH and in the 

ratio of NADH/NAD suggest that the effect of metformin on the mitochondrial redox state may 

be the primary mechanism and that the stimulation (low metformin) or inhibition (high 

metformin) on β-oxidation of octanoate is secondary to the change in the redox state.  

The second aim of this chapter was to test whether the metformin effect on gluconeogenesis is 

dependent on whether the substrate is oxidised (DHA) or reduced (xylitol or glycerol). Previous 

studies using high metformin concentrations reported inhibition of gluconeogenesis that was 

independent of the redox state of the substrate (Fulgencio et al., 2001, Gouaref et al., 2017)  

However, more recent work using 100µM metformin reported inhibition of gluconeogenesis 

from reduced substrates (glycerol and lactate) but not from oxidised substrates (pyruvate and 

DHA) (Madiraju et al., 2014). The present study showed that the low metformin dose that 

caused a more oxidised mitochondrial NADH/NAD redox state inhibited gluconeogenesis 

from both oxidised (DHA) and reduced (xylitol) substrates. This inhibition cannot be explained 

by inhibition of complex 1 because of the more oxidised mitochondrial redox state. It also 

cannot be explained by AMPK activation, because the small molecule activator of AMPK that 

caused strong phosphorylation of ACC did not mimic the effect of metformin on 

gluconeogenesis. In addition the low dose of metformin unlike A-769662 or 500µM metformin 

did not cause phosphorylation of acetyl-CoA carboxylase. This finding agrees with the recent 

studies that reported significant AMPK activation after a metformin dose of 250mg/kg (Hunter 

et al., 2018) but not after a dose of 50 mg/kg (Madiraju et al., 2014, Madiraju et al., 2018). 

Based on the cellular accumulation studies showing that with 500µM metformin cellular 
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accumulation occurs to  >5 nmol/mg whereas with 100µM cellular accumulation occurs to < 

1-2 nmol/mg which is similar to the peak level in the liver after 50mg/kg (Wilcock and Bailey, 

1994, Al-Oanzi et al., 2017), the present findings support the following conclusions.  First, that 

there is negligible activation of AMPK at a therapeutic dose of metformin (100µM) but 

significant activation at a 5-fold higher dose. Second, that activation of AMPK by A-769662 

to a comparable level as occurs at high metformin (500µM or 5 nmol/mg) does not mimic the 

metformin inhibition of gluconeogenesis or the lowering of G6P. Third that the inhibition of 

gluconeogenesis by the low dose of metformin that causes a more oxidised mitochondrial redox 

state is independent of whether the gluconeogenic precursors are reduced (xylitol) or oxidised 

(DHA). 

Previous studies reported lowering of G6P by metformin both in vivo (Owen et al., 2000) and 

also in isolated hepatocytes (Fulgencio et al., 2001, Guigas et al., 2006, Owen et al., 2000) 

incubated with high metformin concentrations (2-10mM). The hepatocyte studies were 

performed with either gluconeogenic precursors (Fulgencio et al., 2001, Owen et al., 2000) or 

with high glucose (Guigas et al., 2006) and in the latter study an AMPK-independent 

mechanism involving inhibition of glucose phosphorylation was proposed (Guigas et al., 

2006). The aims of the present study were to determine whether the lowering of G6P occurs at 

a therapeutic dose of metformin (1-2 nmol/mg) and whether this effect involves interactions of 

metformin with multiple metabolic pathways. G6P is generated by glucose phosphorylation, 

gluconeogenesis and glycogenolysis and it is metabolised by several pathways including 

glycogen synthesis, glycolysis and the pentose pathway.  Lowering of G6P by metformin could 

involve inhibition of G6P production by glucose phosphorylation and / or gluconeogenesis and 

/ or stimulation of G6P metabolism by one or more pathways. In this study we show that the 

low dose of metformin lowers G6P with both DHA and high glucose as substrate and that the 

latter cannot be explained by inhibition of glucose phosphorylation. This suggests either that a 

single G6P consuming pathway (for example the pentose pathway or glycolysis) could explain 

the G6P lowering effect of metformin with both DHA and high glucose or alternatively that 

effects of metformin on two or more pathways could explain the effect with DHA and high 

glucose. Because the lowering of G6P by metformin was mimicked by rotenone which 

decreases the mitochondrial proton gradient by inhibiting the electron transport and proton 

pumping and also by DNP which dissipates the proton gradient, we tested the hypothesis that 

the metformin effect on G6P could be explained by inhibition of NNT activity which is 

dependent on the proton gradient. Although hepatocytes from NNT deficient mice had a raised 
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G6P, metformin caused a similar lowering of G6P as in wild-type hepatocytes. Although we 

cannot rule out inhibition of NNT by metformin, we can conclude that metformin causes 

substantial lowering of G6P by a mechanism that is independent of inhibition of NNT and also 

independent of activation of AMPK and inhibition of complex 1. A possible mechanism that 

could explain the lowering of G6P by DNP and rotenone but not by AMPK activators is the 

depolarization of the mitochondria which is expected to occur with rotenone by inhibition of 

the respiratory chain and by DNP by dissipation of the proton gradient and by metformin 

through accumulation inside the mitochondria, or binding to the mitochondrial membranes or 

other mechanisms (Won et al., 2015, Khailova et al., 2017). Depolarization of mitochondria 

might be expected to affect various mechanisms that are dependent on the mitochondrial 

potential. Candidate mechanisms include the malate aspartate shuttle which is dependent on 

the mitochondrial potential and inhibited by the mitochondrial depolarization (Berry et al., 

1992, Davis et al., 1980, LaNoue et al., 1974, Sibille et al., 1995) also the adenine nucleotide 

translocator which exchanges cytoplasmic ADP3- for mitochondrial ATP4- (Maldonado et al., 

2016, Zorova et al., 2018). Inhibition of this transporter by mitochondrial depolarization would 

be expected to cause an increase in the cytoplasmic ADP/ATP ratio as shown by Owen et al. 

(Owen et al., 2000).  Although metformin did not decrease the total cell ATP content, we cannot 

exclude small changes in cytoplasmic ADP/ATP ratio through inhibition of the adenine 

nucleotide translocator by mitochondrial depolarization. 

This study shows that metformin lowered the cell G6P level in a concentration-dependent 

manner in mouse and rat hepatocytes. G6P is an intermediate of glycolysis and 

gluconeogenesis and several other pathways. Glucose is phosphorylated by glucokinase to 

G6P, this reaction involves consumption of ATP. The lowering effect of metformin on G6P 

can be explained by either (i) a decrease in the rate of glucose phosphorylation or (ii) increase 

in the downstream metabolism of G6P either toward glycolysis or the pentose phosphate 

pathway. In this study we show that the decrease in G6P by metformin is not associated with 

either depletion in ATP or inhibition of the rate of glucose phosphorylation. Accordingly, 

lowering of G6P by metformin cannot be explained by inhibition of glucose phosphorylation 

or by changing energy state of hepatocytes. Interestingly, G6P level was lowered by the 

complex 1 inhibitor (rotenone) and the uncoupler (DNP) similar to metformin, indicating that 

the lowering effect might be due to mitochondrial depolarization. One possible mechanism 

linked to mitochondrial depolarization and affecting the proton gradient is the mitochondrial 

nicotinamide nucleotide transhydrogenase (NNT) which catalyses the formation of NADPH 
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from NADH and NADP+. The hypothesis of inhibition of NNT by metformin to lower G6P 

and gluconeogenesis was tested in mouse hepatocytes from NNT-/- and wild-type mice. We 

concluded that the effect of metformin in both genotypes was similar, and metformin has 

biphasic effect on the mitochondrial redox state in wild-type and NNT-/- hepatocytes. 

Metformin inhibits the rate of gluconeogenesis in both genotypes from DHA (oxidised) and 

xylitol (reduced) as substrates. Therefore, we excluded the hypothesis of inhibition of NNT by 

metformin.   
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3.4 Summary: 

 

This study has shown that: 

1- Metformin has a biphasic effect on the mitochondrial NADH/NAD redox state: a more 

oxidised at low metformin and a more reduced at high metformin concentration. These 

effects of metformin are not explained by inhibition and stimulation respectively of 

mitochondrial production of NADH and suggest either a direct effect of metformin on 

the respiratory chain or an effect on the transfer of reducing equivalents into 

mitochondria.  

2- Low metformin causes inhibition of glucose production from both oxidised and reduced 

substrates and lowers G6P with both DHA and high glucose  

3- High (500µM or > 5nmol/mg) but not low (100µM or < 2 nmol/mg) metformin causes 

AMPK activation. 

4- AMPK activation with an allosteric activator of the beta-subunit does not mimic the 

metformin inhibition of glucose production or the lowering of G6P.  

5- Rotenone and DNP mimic the metformin effect on G6P but deletion of NNT does not 

abolish the metformin effect. This implicates a role for the mitochondrial proton 

gradient or electrochemical potential on the flux through metabolic pathways linked to 

G6P.  
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CHAPTER 4: RESULTS 2 

ROLE OF THE MALATE-ASPARTATE SHUTTLE (MAS) 

AND THE GLYCEROPHOSPHATE SHUTTLE (GPS) IN 

GLUCONEOGENESIS  
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 Role of the malate-aspartate shuttle (MAS) and the 

glycerophosphate shuttle (GPS) in gluconeogenesis  

4.1 Aims and rationale  

The work in the previous chapter provided evidence that inhibition of gluconeogenesis by low 

concentrations of metformin occurs in association with a more oxidised mitochondrial redox 

state and therefore cannot be explained by inhibition of Complex 1.  It also shows that it cannot 

be explained by activation of AMPK. Two mechanisms have been proposed to explain 

inhibition of gluconeogenesis by AMPK independent mechanisms. A recent study reported that 

metformin indirectly inhibits FBP-1 via increases in the concentration of AMP. This study 

showed that FBP-1 is not a direct target for metformin however, the lowering of blood glucose 

is attenuated in a mouse model of a knock-in mutation in FBP-1 which makes the enzyme 

insensitive to inhibition by AMP. This study suggests that the effect of metformin is at least in 

part due to raised levels of AMP and independently of AMPK (Hunter et al., 2018). The other 

mechanism for inhibition of gluconeogenesis by metformin proposes that is linked to direct 

inhibition of mGPDH and to transfer of reducing equivalents from the cytoplasm to 

mitochondria.  This hypothesis proposes that the inhibition of gluconeogenesis by metformin 

is linked to a more oxidised mitochondrial redox state and a more reduced cytoplasmic redox 

state (Madiraju et al., 2014) 

Two shuttles control the transfer of the NADH reducing equivalents form the cytoplasm to 

mitochondria, the malate-aspartate shuttle (MAS) and the glycerophosphate shuttle (GPS) as 

described in chapter one. Early studies reported that inhibition of the MAS by 0.2-2mM AOA 

lowered gluconeogenesis from reduced substrates (lactate, glycerol, and xylitol) but not from 

oxidised (pyruvate, and DHA) substrates in hepatocytes (Arinze et al., 1973, Rognstad and 

Clark, 1974). However, genetic deletion of citrin, a carrier of aspartate-glutamate in 

mitochondria, that is expressed in liver, kidney, heart and small intestinal and is an essential 

component of  the MAS to transfer aspartate out of mitochondria (Kobayashi et al., 1999, Iijima 

et al., 2001, Begum et al., 2002) had little effect on lowering of blood glucose. In contrast 

genetic knock-out of both the GPS by deletion of mGPDH and of citrin, in the double knock-

out citrin/mGPDH model resulted in greater lowering of blood glucose compared with the citrin 

knock-out model. In addition knock-out of mGPDH alone in mice showed either no effect on 

plasma glucose compared to wild-type mice (Saheki et al., 2007) or a small decrease in fasting 

plasma glucose compared with control littermates (Brown et al., 2002). These genetic studies 

together indicate that in mouse models both shuttles can compensate when either shuttle is 
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genetically deleted. On the other hand Madiraju and colleagues (2014) reported that treatment 

of rat hepatocytes with siRNA to knock-down mGPDH abolished hepatic glucose production 

from reduced (lactate and glycerol) but not oxidised (pyruvate DHA and alanine) substrates 

and that metformin similarly inhibited gluconeogenesis from reduced substrates (lactate and 

glycerol) but not oxidised substrates. This effect of metformin was explained by non-

competitive inhibition of mitochondrial glycerophosphate dehydrogenase. From studies in vivo 

the authors proposed that the metformin effect is associated with a more oxidised mitochondrial 

redox state (decrease NADH / NAD+ ratio) and a more reduced cytoplasmic redox state 

(increase NADH / NAD+ ratio). This effect was explained by inhibition of transfer of NADH 

from the cytoplasm to mitochondria by inhibition of the GPS. Madiraju and colleagues (2014 

and 2018) claimed that the more reduced cytosolic redox state prevented the conversion of 

lactate to pyruvate and glycerol 3-phosphate (G3P) to dihydroxyacetone phosphate (DHAP) 

lowering glucose production from these substrates. Inhibition of the MAS was excluded 

because metformin had no effect on malate dehydrogenase activity (Madiraju et al., 2014, 

Madiraju et al., 2018). However this mechanism of inhibition of the GPS by metformin for 

explaining the inhibition of gluconeogenesis has been challenged because the malate-aspartate 

shuttle is thought to have a more prominent role in the liver than the glycerophosphate shuttle 

in man (Baur and Birnbaum, 2014) and also in the mouse as shown by the genetic models of 

mGPDH and citrin knock-out (Saheki et al., 2007).  

Regulation of mGPDH in liver is controlled acutely by calcium and chronically by altered 

thyroid states (Scholz et al., 2000, Gellerich et al., 2010, Hunt et al., 1970). Several studies 

showed that up- and down-regulation of mGPDH is linked to levels of thyroid hormones (L-

3,3'-5 triiodothyronine T3 and thyroid-stimulation hormone) (Hunt et al., 1970, Sellinger and 

Lee, 1964, Hamatani et al., 1991, Costante et al., 1990). Comte and colleagues (1990) reported 

that raised thyroid hormone level causes an increase in mitochondrial glycerophosphate 

dehydrogenase and an increase in the rate of gluconeogenesis in rat hepatocytes from 2mM 

glycerol, 10mM lactate, and 10mM pyruvate. This increment was associated with lowering of 

cell G3P level. While hypothyroidism caused an increase in cell G3P level and inhibited hepatic 

glucose production (Comte et al., 1990). Furthermore, the rate of hepatic glucose production 

was measured in hepatocytes from thyroidectomized rats that were untreated or treated with 

T3. Hepatocytes from hypothyroid rats had low mGPDH activity and rates of glucose 

production treatment with T3 hormone to hypothyroid rats reversed the effect on glucose 

production and mGPDH activity (Kneer and Lardy, 2000). Evidence for a link between glucose 
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production from glycerol and the activity of mGPDH, was provided by studies on hepatocytes 

from the Lou/C rat which has high levels of expression of the thyroid hormone receptor and of 

activity of mGPDH and of raised gluconeogenesis compared with Wistar rats. This model is 

also characterized by high rates of octanoate oxidation to 3-hydroxybutyrate plus acetoacetate 

and a more oxidised mitochondrial redox state (Taleux et al., 2009).  

Although several studies have reported an association between raised mGPDH and 

gluconeogenesis in hepatocytes from hyperthyroid animals no study has investigated the effect 

of direct stimulation of mGPDH in hepatocytes on gluconeogenesis. 

 

The aims of this chapter were: 

(i) To test whether inhibition of the GPS or the MAS mimics the effect of metformin 

on the mitochondrial redox state. 

(ii) To test whether the inhibition of gluconeogenesis by metformin can be explained 

by inhibition of either the GPS or the MAS shuttles.  

(iii) To test the role of mGPDH in gluconeogenesis.  

(iv) To test the hypothesis that the effect of metformin on gluconeogenesis can be 

explained by altered regulation at PFK-1 and/or FBP1.   
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4.2 Results  

4.2.1 Inhibition of the GPS, but not the MAS, makes the mitochondrial redox state more 

oxidised similar to low metformin 

The first aim of this chapter was to test whether inhibition of the MAS with AOA or the GPS 

with the Gpi mimics the metformin effect on the mitochondrial redox state. Mouse hepatocytes 

were incubated with (100-500µM) metformin, 200µM aminooxyacetate (AOA) (an inhibitor 

of malate-aspartate; MAS), (20-40µM) Gpi (STK017597; an inhibitor of mitochondrial 

glycerophosphate dehydrogenase; mGPDH), and 0.25µM rotenone (complex 1 inhibitor). 

Octanoate was used as the substrate as in the previous experiments to measure both the 

mitochondrial redox state and the rate of fatty acid β-oxidation. The results from these 

experiments showed that Gpi, the inhibitor of the GPS, similar to low metformin (100µM) 

caused a more oxidised mitochondrial (NADH / NAD ratio) redox state, while inhibition of the 

MAS by AOA had no effect on the mitochondrial redox state (Figure 4-1 A). This indicates 

that a more oxidised redox state can arise as a result of inhibition of the GPS but not by 

inhibition of the MAS. Although the Gpi caused a more oxidised redox state, unlike metformin 

it did not stimulate β-oxidation as determined from the 3-hydroxybutyrate / acetoacetate ratio 

(Figure 4-1 B).   

The more oxidised (decrease in NADH / NAD ratio) mitochondrial redox state causes by 

100µM metformin was associated with a more reduced cytoplasmic (increase NADH / NAD 

ratio) redox state based on an increase in the lactate to pyruvate ratio. The uncoupler DNP had 

a negligible effect on the cytoplasmic redox state, while inhibition of the malate-aspartate 

shuttle by AOA and inhibition of complex 1 by rotenone like metformin made the cytoplasmic 

redox state more reduced (increase NADH / NAD ratio) (Figure 4-1 C). These results show (i) 

the biphasic effect of low and high metformin on the mitochondrial NADH / NAD ratio (ii) a 

more oxidised mitochondrial redox state with Gpi similar to low metformin (iii) lack of effect 

of the MAS inhibitor on the mitochondrial redox state. Collectively, like low metformin, the 

inhibition of the GPS caused a more oxidised mitochondrial redox state but without increasing 

the rate of 3-hydroxybutyrate plus acetoacetate production.       
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Figure 4-1:- Inhibition of the Glycerophosphate shuttle mimics the effect of low metformin on 
the mitochondrial redox state.  

After overnight culture mouse hepatocyte monolayers were incubated for 2h with metformin and GPi in 
MEM. The medium was then replaced with fresh MEM containing 25mM glucose and 0.25mM octanoate 
and the additions indicated (µM) for 60 min. (A) HOB/Acac ratio. (B) HOB + Acac production. (C) 
lactate/pyruvate ratio. Results are mean±SEM. (A and B n=9, C=5 individual experiments).  

* P<0.05 relative to control. 
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4.2.2 Inhibition of the MAS or the GPS does not mimic the metformin effect on 

gluconeogenesis  

The above results suggest that inhibition of mitochondrial glycerophosphate dehydrogenase is 

a possible explanation for a more oxidised mitochondrial redox state, as occurs with low 

metformin. Therefore, the next aim was to test whether the inhibition of gluconeogenesis by 

low metformin can be mimicked by inhibition of the GPS or the MAS. The effect of mGPDH 

inhibitor (Gpi) and the malate-aspartate shuttle inhibitor (AOA) on gluconeogenesis were 

compared with the effect of low 100µM metformin in hepatocytes incubated with DHA 

(oxidised) and xylitol (reduced) as gluconeogenic substrates.  The effect of AOA as an inhibitor 

of the MAS is well documented (Berry et al., 1994). However, Gpi has been shown to be 

effective on isolated mitochondria but has not been tested previously in hepatocytes (Orr et al., 

2014). 

With the oxidised substrate DHA, metformin inhibited gluconeogenesis by 22% (291±14 vs 

373±16) (Figure 4-2 A). The inhibition of the rate of glucose production by (100µM) 

metformin was associated with increased production of pyruvate plus lactate formation 

(980±35 vs 862±25) (Figure 4-2 B), without affecting total DHA metabolism to glucose plus 

lactate plus pyruvate (Figure 4-2 D) and with a decrease in the fractional partitioning to glucose 

and an increase in the lactate to pyruvate ratio (5.0±0.4 vs 4.0±0.3) (Figure 4-2 C) and 

decreased the cellular G3P level (4.2±0.8 vs 6.5±0.8) (Figure 4-3 B). The level of ATP was 

unchanged by metformin (Figure 4-3 C). AOA had no effect on gluconeogenesis from DHA 

(344±26 vs 373±16), and similarly Gpi also had no effect (363±20 vs 373±16) (Figure 4-2 A). 

Unlike metformin, AOA and Gpi did not increase pyruvate plus lactate formation and did not 

decrease the fractional partitioning of DHA to glucose (Figure 4-2B, C). They also did not 

affect total DHA metabolism (Figure 4-2 D). AOA caused a large increase in the lactate to 

pyruvate ratio and Gpi had smaller affect than AOA (Figure 4-3 A). An increase in the lactate 

to pyruvate ratio by AOA was shown previously (Berry et al., 1994). This is consistent with 

inhibition of the transfer of reducing equivalents from the cytoplasm to mitochondria. Cellular 

G3P was increased by AOA but not by 20µM Gpi (Figure 4-2 B).  

With xylitol as substrate, similar to the results of oxidised substrate, metformin lowered glucose 

production (359±37 vs 421± 53) (Figure 4-4 A), and increased the production of lactate plus 

pyruvate (1363±137 vs 1200±106) (Figure 4-4 B) and favoured glycolysis rather than 

gluconeogenesis by lowering the fractional partitioning of xylitol to glucose (37.8±1.1 vs 
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47.0±1.1) (Figure 4-4 C) without changing total xylitol metabolism (2299±204 vs 2300±221) 

(Figure 4-4 D). As expected, both the lactate to pyruvate ratio and cell G3P were higher with 

xylitol (Figure 4-5 A and B) than with DHA (Figure 4-3 A and B) (Vincent et al., 1989). Low 

metformin increased the lactate to pyruvate ratio and decreased the cell G3P (Figure 4-5 A and 

B). Inhibition of gluconeogenesis by low metformin was mimicked by 200µM AOA (370±54 

vs 421±53) but not by Gpi (418±44 vs 421±53) (Figure 4-4 A). Inhibition of gluconeogenesis 

by AOA was associated with inhibition of total xylitol metabolism and with a decrease in the 

fractional partitioning of xylitol to glucose (Figure 4-5 A and B). Gpi like AOA, inhibited total 

xylitol metabolism (Figure 4-4 D). Both AOA and Gpi increased the ratio of lactate to pyruvate 

by more than metformin did (Figure 4-5 A). Unlike metformin, AOA increased the cell G3P 

level in hepatocytes incubated with xylitol as substrate (Figure 4-5 B). Cell ATP was 

unchanged in most conditions except with Gpi where there was a trend to lower cell ATP 

(Figure 4-5 C). Collectively, the above results suggested that (i) metformin lowers 

gluconeogenesis and the fractional partitioning to glucose relative to glycolysis from both 

oxidised and reduced substrates with a concomitant increase in the lactate to pyruvate ratio and 

decrease in cell G3P. (ii) AOA caused a more reduced cytoplasmic redox state by increase the 

lactate to pyruvate ratio more than metformin.  However, AOA did not mimic the effect of 

metformin on lowering gluconeogenesis from oxidised substrate (DHA), but it decreased total 

xylitol metabolism and increased cell G3P. (iii) Gpi caused a more oxidised mitochondrial 

redox state like low metformin but did not mimic the effect of the low metformin on glucose 

production (iv) the lowering effect of Gpi on ATP level from reduced substrate might explain 

the inhibition of total xylitol metabolism by Gpi. (v) Gpi did not increase cell G3P, but it raised 

the lactate to pyruvate ratio to a less extent than AOA. The greater effect of AOA compared 

with the Gpi on the lactate to pyruvate ratio with both DHA and xylitol as substrates might be 

because of a greater contribution of the MAS compared to the GPS in transfer of NADH 

reducing equivalent from cytoplasm to mitochondria in hepatocytes or because the Gpi causes 

only partial inhibition of mGPDH in hepatocytes. This inhibitor has been extensively 

characterized and validated in isolated mitochondria (Orr et al., 2014) but uptake by 

hepatocytes has not been demonstrated. 
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Figure 4-2: Inhibition of the malate-aspartate and the glycerophosphate shuttles did not mimic the effect of metformin on 

gluconeogenesis from DHA. 

After overnight culture mouse hepatocyte monolayers were pre-incubated with 100µM metformin and 20µM Gpi in 
glucose-free DMEM for 2h. The medium was then replaced by glucose-free DMEM containing 5mM DHA and other 
additions (metformin, Gpi and 200µM AOA) and incubated for 120 min. (A) glucose production, (B) lactate plus 
pyruvate production, (C) glucose production percentage, (D) total glucose plus pyruvate plus lactate production. 
Results are Mean±SEM for n=11 individual experiments.  

* P<0.05 relative to control.   
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Figure 4-3: Metformin opposite from the MAS inhibitor lowers G3P level in hepatocytes in 
incubation with DHA.  

   

After overnight culture mouse hepatocyte monolayers were pre-incubated with metformin (100µM) and Gpi (20µM) in 
glucose-free DMEM for 2h. The medium was then replaced by glucose-free DMEM containing 5mM DHA and other 
additions (metformin, Gpi and 200µM AOA) and incubated for extra 2h then the medium was collected to analysis lactate 
and pyruvate. The cells were snap-frozen to analysis G3P and ATP (A) lactate to pyruvate ratio; (B) cell G3P; (C) ATP 
level. Results are Mean±SEM for n=11 individual experiments.  

* P<0.05 relative to control.   
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Figure 4-4: AOA inhibits total xylitol metabolism and partitioning of substrate towards 
gluconeogenesis.  

After overnight culture mouse hepatocyte monolayers were pre-incubated with metformin (100µM) and Gpi 
(20µM)  in glucose-free DMEM for 2h. The medium was then replaced by glucose-free DMEM containing 
2mM xylitol and other additions (metformin, Gpi and 200µM AOA) and incubated for 120 min. (A) glucose 
production, (B) lactate plus pyruvate production, (C) glucose production percentage, (D) total glucose plus pyruvate 
plus lactate production. Results are Mean±SEM for n =7 individual experiments.  

* P<0.05 relative to control 
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Figure 4-5: AOA raises G3P level opposite from low metformin in hepatocytes in incubation 
with xylitol.  

   

After overnight culture mouse hepatocyte monolayers were pre-incubated with 100µM metformin and 20µM Gpi in 
glucose-free DMEM for 2h. The medium was then replaced by glucose-free DMEM containing 2mM xylitol and other 
additions (metformin, Gpi and 200µM AOA) and incubated for extra 2h then the medium was collected to analysis lactate 
and pyruvate. The cells were snap-frozen to analysis G3P and ATP (A) lactate to pyruvate ratio; (B) cell G3P; (C) ATP 
level. Results are Mean±SEM for n=7 individual experiments.  

* P<0.05 relative to control.   
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4.2.3 DNP like metformin favours glycolysis rather than gluconeogenesis  

The above results showed that the inhibitor of the MAS caused a more reduced cytoplasmic 

NADH / NAD redox state but had no effect on the mitochondrial redox state, whereas the 

inhibitor of the GPS caused a more reduced cytoplasmic and a more oxidised mitochondrial 

redox states similarly to 100µM metformin. Neither of these inhibitors mimicked the inhibition 

of gluconeogenesis from DHA by metformin. Therefore, the effect of 100µM metformin on 

gluconeogenesis cannot be explained by inhibition of the MAS or GPS. Previous results 

showed that uncoupling the mitochondrial membrane with 2,4-dinitrophenol (DNP) like 

100µM metformin causes a more oxidised mitochondrial (decrease NADH / NAD ratio) redox 

state. We next investigated the effect of the uncoupler (20µM DNP) on glucose production 

from DHA in hepatocytes and compared this with 100µM metformin. DNP like 100µM 

metformin inhibited the rate of gluconeogenesis (Figure 4-6 A) and favoured glycolysis (Figure 

4-6 B) by decreasing the fractional partitioning of DHA to glucose relative to glycolysis (Figure 

4-6 C) without inhibition total DHA metabolism (Figure 4-6 D). Inhibition of gluconeogenesis 

by DNP was associated with lowered cell G3P and mimicked the effect of metformin (Figure 

4-7 B), however, the lactate to pyruvate ratio was unchanged by DNP (Figure 4-7 A). ATP 

level was unchanged with all conditions (Figure 4-7 C). Collectively, the above results 

suggested that (i) DNP like metformin lowers gluconeogenesis and the fractional partitioning 

to glucose relative to glycolysis from DHA. (ii) However DNP did not mimic the effect of 

metformin on the lactate to pyruvate ratio but decreased cell G3P.  
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Figure 4-6: The mitochondrial uncoupler DNP, mimics the effect of metformin on 
gluconeogenesis.  

After overnight culture mouse hepatocyte monolayers were pre-incubated with 100 µM metformin in 
glucose-free DMEM for 2h. The medium was then replaced by glucose-free DMEM containing 5mM DHA 
and either 100 µM metformin or 20 µM DNP for extra 120 min. (A) glucose production, (B) pyruvate plus 
lactate production, (C) glucose production percentage, (D) total glucose plus pyruvate plus lactate 
production. Results are Mean±SEM. n=2 individual experiments.  

* P<0.05 relative to control 
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Figure 4-7: DNP similar to low metformin (100µM) lowers G3P.   

After overnight culture mouse hepatocyte monolayers were pre-incubated with metformin (100µM) in glucose-free 
DMEM for 2h. The medium was then replaced by glucose-free DMEM containing 5mM DHA and either 100µM 
metformin or 20µM DNP and incubated for extra 2h then the medium was collected to analysis lactate and pyruvate. 
The cells were snap-frozen to analysis G3P and ATP. (A) lactate to pyruvate ratio; (B) cell G3P; (C) ATP level. Results 
are Mean±SEM for n=2 individual experiments.  

* P<0.05 relative to control.   
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4.2.4 Gpi but not metformin inhibits the activity of mitochondrial glycerophosphate 

dehydrogenase (mGPDH) 

The inhibition of gluconeogenesis by low metformin has been proposed to be due to inhibition 

of mitochondrial glycerophosphate dehydrogenase (mGPDH) (Madiraju et al., 2014). Because 

the Gpi reported by Orr et al. (2014) is currently the best characterized inhibitor of mGPDH 

activity in mitochondria from skeletal muscle by using dichlorophenol indophenol (DCIP) as 

electron acceptor (Orr et al., 2014), the next aim was to compare the inhibition of mGPDH 

enzyme activity in permeabilized hepatocytes by Gpi (10-80µM) and metformin using DCIP 

as electron acceptor. Inhibition of mGPDH activity by Gpi (10-80µM) was confirmed in 

hepatocytes (Figure 4-8 A) as previously reported (Orr et al., 2014). While metformin 0.1-

5mM did not inhibit the activity of mGPDH in permeabilized hepatocytes (Figure 4-8 B).  

To further test the role of the GPS in gluconeogenesis and glycolysis adenoviral vectors for 

shRNA mGPDH knock-down (SH) and mGPDH overexpression in mouse hepatocytes were 

used. Measuring the mRNA expression by qPCR confirmed knock-down and overexpression 

by the two vectors respectively (Figure 4-9 A). Measurement of mGPDH protein by Western 

blotting confirmed protein overexpression but not protein knock-down (Figure 4-9 B). The 

enzyme activity measurements (Figure 4-9 C) also confirmed an increase in enzyme activity 

by overexpression but not a decrease by the shRNA. The lack of protein knock-down by the 

shRNA vector is best explained by the long half-life of mGPDH protein (Mracek et al., 2013). 

In the rest of this study the overexpression vector was used (at 2 titers) to study the effect of an 

increase in mGPDH activity of glucose production and glycolysis. Increased mGPDH activity 

was associated with a decrease in cell G3P level confirming that the overexpressed mGPDH 

was functionally active in hepatocytes (Figure 4-9  D).       
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Figure 4-8: Inhibition of mGPDH activity by Gpi but not by metformin.  

Activity of endogenous mGPDH assayed in permeabilised hepatocytes with the concentrations of GPi (A) 
or metformin (B) indicated.  

* P < 0.05 relative to control. 
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Figure 4-9: Adv-SH-mGpd2 suppresses mGPDH mRNA but not protein expression and 
enzyme activity 

Monolayer hepatocytes were cultured for 2h for cell attached. Then cells either untreated (Con) or treated 

with 8 x 108 PFU/ml Adv-SH-mGpd2 (SH) for Gpd2 knock-down or with Adv-mGpd2 at 1.6 (L) or 4.8 (H) 

x 107 PFU/ml for mGPDH overexpression for 4-5h. The medium was replaced with new fresh MEM and 

incubated for 24h. (A) Gpd2/Gapdh mRNA expressed relative to untreated control. (B) Immunoactivity of 

mGPDH/GAPDH. (C) mGPDH enzyme activity. D G3P level vs mGPDH activity. Means ± SEM for n= 4 

and for (D) n=7 experiments. 

*P<0.05 relative to control with expressed endogenous mGPDH only.   
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4.2.5 Overexpression of mGPDH lowers cell G3P level with a wide range of substrates  

We investigated the effect of mGPDH overexpression using two titers of adenovirus vector 

(Low; L and High; H) for increasing mGPDH by around 2-fold and 3-fold relative to the 

endogenous activity (Figure 4-9 C). This increase in mGPDH activity was first compared on 

cell G3P in hepatocytes incubated with glycerol, high glucose, DHA and xylitol as substrates.  

Cell G3P levels were highest with glycerol, followed by glucose and xylitol and DHA (Figure 

4-10 A-D; white bars). Overexpression of mGPDH by 2-fold and 3-fold caused a large decrease 

in G3P with all substrates tested (Figure 4-10 A-D; shaded bars). The decrease in the 

concentration of G3P, the substrate of mGPDH, confirms that the overexpressed mGPDH is 

functionally active in hepatocytes.  

The highest G3P level was noticed in hepatocytes incubated with glycerol. High dose mGPDH 

overexpression lowered cellular G3P level from 0.25mM and 2mM glycerol by 91% and 88%, 

respectively. The effect with low dose was concomitant with less inhibition in cell G3P level 

compared with the high dose (54% and 69%, respectively) (Figure 4-10 A). 

With high glucose (25mM) as substrate, the high titre of adenovirus for mGPDH 

overexpression caused a marked (90%) lowering of in cell G3P level and the low titer 

associated with 62% lowering of the cell G3P level (Figure 4-10 B). With xylitol as substrate, 

both low and high titers of adenovirus showed about similar lowering effect on cell G3P level 

in hepatocytes (83 and 91%, respectively) (Figure 4-10 C). With oxidised (DHA) substrate, the 

level of cell G3P was the lowest compared with other substrates. But the effect of mGPDH 

overexpression was also clear with high dose virus (67%) with less inhibition at the low dose 

virus (35%) (Figure 4-10 D).  
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Figure 4-10: mGPDH overexpression lowers cell G3P with glucose and gluconeogenic 
precursors. 

Hepatocytes were either untreated (Con) or treated with Adv-Gpd2 for mGPDH overexpression at 1.6 x 
107 (L) or 4.8 x107 (H) PFU/ml.  After overnight culture, they were incubated with either MEM containing 
25mM glucose (HG), for 1h  (B) or with glucose-free DMEM containing either glycerol (A), 2mM xylitol 
(C) or 5mM DHA (D) for 120 min. Results are Mean±SEM. (A) Glycerol (0.25-2mM); n=4, (B) 25mM 
glucose; n=11 (C) 2mM xylitol; n= 4 (D) 5mM DHA; n=13 individual experiments.  

* P<0.05 relative to no treatment (control).  
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4.2.6 Overexpression of mGPDH associates with a more reduced mitochondrial NADH / 

NAD redox state  

 

mGPDH couples the oxidation of cytoplasmic G3P to DHAP with the transfer of electrons via 

reduction of FAD to FADH to the respiratory chain (Mracek et al., 2013). The previous results 

(Figure 4-1) showed that the mGPDH inhibitor caused a more oxidised mitochondrial 

NADH/NAD redox state. We next determined the effect of mGPDH overexpression on the 

mitochondrial redox state in incubations with 0.125mM octanoate and either high glucose 

(25mM), or DHA or glycerol. The mitochondrial redox state was highest with 25mM glucose 

compared with DHA and glycerol (2.5±0.2 HG (Figure 4-11), 1.6±0.43 DHA (Figure 4-13), 

0.7±0.14 0.5mM glycerol, and 0.8±0.15 2mM glycerol (Figure 4-14)).  

With 25mM glucose as substrate, the effects of either Gpi (Figure 4-11A and B) or AOA 

(Figure 4-11 C-D) on the 3-hydroxybutyrate to acetoacetate ratio were tested in combination 

with mGPDH overexpression. Total production of ketone bodies was unchanged in all 

experimental conditions tested (Figure 4-11 B and D). However, the mitochondrial NADH / 

NAD redox state as determined from the ratio of 3-hydroxybutyate to acetoacetate was more 

reduced with mGPDH overexpression and more oxidized in the presence of the mGPDH 

inhibitor ( Figure 4-11 A) but was not affected by inhibition of the MAS with AOA (Figure 4-

11 C). This concurs with previous results that changes in GPS but not MAS affect the 

mitochondrial redox state (Figure 4-1). The cytoplasmic redox state as determined from the 

lactate / pyruvate ratio was increased by both the mGPDH inhibitor and also by the MAS 

inhibitor in cells expressing only endogenous mGPDH (Figure 4-12 A and C). However, in 

cells overexpressing mGPDH there was no effect of the MAS shuttle inhibitor on the lactate / 

pyruvate ratio (Figure 4-12 B). These results suggest that during overexpression of mGPDH, 

the GPS can compensate for the inhibition of the MAS by AOA. The lack of effect of the Gpi 

(20µM) on the lactate / pyruvate ratio in cells overexpressing mGPDH may be because this 

compound is a weak inhibitor in cellular assays as shown in other experiments where an 

increase in G3P was observed at 80µM Gpi (Figure 4-20 B and Figure 4-22 B) but not at 20µM 

(Figure 4-3 B and Figure 4-5 B). Cell ATP was measured in parallel and there was no 

significant change in cell ATP (figure 4-12 B and D). Overexpression of mGPDH also caused 

an increase in the 3-hydroxybutryate to acetoacetate in incubations with DHA and octanoate 

(Figure 4-13 A) and glycerol and octanoate (Figure 4-14 A) similar to the results with high 

glucose and octanoate. 
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Cumulatively, these results show that the mitochondrial redox state is dependent on flux 

through the GPS but not through the MAS. In principle therefore the more oxidised 

mitochondrial redox state caused by low metformin can be due to inhibition of the GPS but not 

to inhibition of the MAS. 
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Figure 4-11: Opposite effects of Gpi and mGPDH overexpression on the mitochondrial redox 
state. 

Hepatocytes were treated similar with Adv-Gpd2 to overexpress mGPDH as in figure 4-9. (A-B) After 
overnight culture, they were pre-incubated for 2h with the Gpi in MEM as indicated and then the medium 
was changed to fresh MEM containing 25mM glucose and 0.125mM octanoate for 1h with either 20µM Gpi 
(A and B) or 200µM AOA (C and D). The medium was collected to determine 3-hydroxybutyrate and 
acetoacetate. Cells were snap-frozen for ATP analysis. (A and C) 3-hydroxybutyrate to acetoacetate ratio; 
(B and D) 3-hydroxybutyrate plus acetoacetate production. Results are Mean±SEM for n= 11.  

* P<0.05 relative to respective control.  

$ P<0.05 effect mGPDH overexpression.   
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Figure 4-12: mGPDH overexpression can compensate for the inhibition of the MAS   

Hepatocytes were treated similar with Adv-Gpd2 to overexpress mGPDH as in figure 4-9. (A-B) After 
overnight culture, they were pre-incubated for 2h with the Gpi in MEM as indicated and then the medium 
was changed to fresh MEM containing 25mM glucose and 0.125mM octanoate for 1h with either 20µM Gpi 
(A and B) or 200µM AOA (C and D). The medium was collected to determine lactate and pyruvate. Cells 
were snap-frozen for ATP analysis. (A and C) lactate to pyruvate ratio; (B and D) cell ATP. Results are 
Mean±SEM for n= 11.  

* P<0.05 effect of Gpi or AOA relative to respective control.  

$ P<0.05 effect of mGPDH overexpression (relative to corresponding value without overexpression).   
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Figure 4-13: mGPDH overexpression causes a more reduced mitochondrial redox state form 
DHA as substrate 

Hepatocytes were treated similar with Adv-Gpd2 to overexpress mGPDH as in figure 4-9. After overnight 
culture, they were incubated for 1h with glucose-free DMEM containing 5mM DHA and 0.125mM 
octanoate. The medium was collected to determine 3-hydroxybutyrate and acetoacetate. Cells were snap-
frozen for ATP analysis. (A) 3-hydroxybutyrate to acetoacetate ratio; (B) 3-hydroxybutyrate plus 
acetoacetate production; (C) cell ATP. Results are Mean±SEM for n= 5.  

$ P<0.05 effect of mGPDH overexpression (relative to corresponding value without overexpression).   
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Figure 4-14: mGPDH overexpression causes a more reduced mitochondrial redox state form 
glycerol as substrate 

Hepatocytes were treated similar with Adv-Gpd2 to overexpress mGPDH as in figure 4-9. After overnight 
culture, they were incubated for 1h with glucose-free DMEM containing glycerol as indicated and 0.125mM 
octanoate. The medium was collected to determine 3-hydroxybutyrate and acetoacetate. Cells were snap-
frozen for ATP analysis. (A) 3-hydroxybutyrate to acetoacetate ratio; (B) 3-hydroxybutyrate plus 
acetoacetate production; (C) cell ATP. Results are Mean±SEM for n= 5.  

$ P<0.05 effect of mGPDH overexpression (relative to corresponding value without overexpression).   
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4.2.7 Stimulation of the GPS by overexpression of mGPDH favours glycolysis from 

oxidised and reduced substrates  

If the inhibition of gluconeogenesis by metformin were due to inhibition of the GPS, then one 

would expect overexpression of mGPDH to have an opposite effect from metformin on glucose 

production. Therefore, the aim of this experiment was to test the effects of mGPDH 

overexpression on metabolism of oxidised (DHA) and reduced (xylitol and glycerol) 

substrates. With DHA,  mGPDH overexpression did not affect total DHA metabolism but 

favoured DHA partitioning to glycolysis by increasing pyruvate plus lactate formation 

(1372±87 vs 1089±57) and decreased partitioning to glucose by 15-24%  (28±0.7 HD and 

32±0.6 :LD vs 37±1.1, 24%). The lactate to pyruvate ratio was raised by mGPDH 

overexpression (Figure 4-15 A-F). In the additional presence of octanoate rates of glucose 

production were higher by 48% (311±14 vs 459±46) (Figure 4-15 A and Figure 4-16 A) but 

the effects of mGPDH overexpression were otherwise similar (Figure 4-16 B, C and E). 

With xylitol as substrate (Figure 4-17 A-F) the effects of mGPDH overexpression were tested 

in the absence (white bars) or presence of 200µM AOA (shaded bars). As shown previously 

(Figure 4-4 D), AOA inhibits total xylitol metabolism and causes a very large increase in the 

lactate to pyruvate ratio indicating a major role of the MAS in transfer of reducing equivalents 

to mitochondria with the reduced substrate. Overexpression of mGPDH had no effect on total 

xylitol metabolism (Figure 4-17 D) or on glucose production (339 ± 23 and 355 ± 36 vs 322 

±40, respectively) (Figure 4-17 A) and glycolysis (1134±78 and 1281±109 vs 1115±76, 

respectively) (Figure 4-17 B). However, it partially reversed the large increase in the lactate / 

pyruvate ratio caused by AOA (Figure 4-17 E) but not the inhibition of total xylitol metabolism. 

With glycerol (0.5mM and 2mM), unlike with xylitol, overexpression of mGPDH increased 

total glycerol metabolism (Figure 18 D) and this effect was associated with increased glycolysis 

( Figure 4-18 B) and decreased partitioning to glucose (Figure 4-18 C). Cumulatively mGPDH 

overexpression: (i) increased total metabolism of glycerol but not DHA or xylitol; (ii) it had 

only a modest effect in reversing the increase in the lactate / pyruvate ratio caused by inhibition 

of the MAS with xylitol and did not decrease the lactate / pyruvate ratio in other substrate 

conditions; (iii) it favoured partitioning of DHA and glycerol to glycolysis rather than glucose 

production and thereby mimicked the effects of metformin.   

 

 



       Results 2                                                                                                 Chapter Four  
---------------------------------------------------------------------------------------------------------------- 

117 
 

 

Figure 4-15: mGPDH overexpression favours glycolysis with DHA as substrate.  

Hepatocytes were treated with Adv-Gpd2 to overexpress mGPDH as in figure 4-9. After overnight culture, 
they were incubated in glucose-free DMEM with 5mM DHA for 2h. the medium was collected to measure 
(A) glucose production; (B) pyruvate plus lactate formation; (C) glucose percentage from total metabolism; 
(D) total metabolism; ( E) lactate to pyruvate ratio. Cells were snap-frozen for ATP analysis (F). Results 
are Mean±SEM for n=11.  

* P<0.05 relative to control. (ONE-WAY ANOVA)  
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Figure 4-16: mGPDH overexpression favours glycolysis with DHA and octanoate as substrate. 

Hepatocytes were treated with Adv-Gpd2 to overexpress mGPDH as in figure 4-9. After overnight culture, 
they were incubated in glucose-free DMEM with 5mM DHA and 0.125mM octanoate for 2h. the medium 
was collected to measure (A) glucose production; (B) pyruvate plus lactate formation; (C) glucose 
percentage from total metabolism; (D) total metabolism; ( E) lactate to pyruvate ratio. Cells were snap-
frozen for ATP analysis (F). Results are Mean±SEM for n=11.  

* P<0.05 relative to control. (ONE-WAY ANOVA)  
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Figure 4-17: Overexpression of mGPDH inhibits glucose production from xylitol as substrate. 

Hepatocytes were treated with Adv-Gpd2 to overexpress mGPDH as in (figure 4-9). After overnight 
culture, they were incubated in glucose-free DMEM with 2mM Xylitol in the absence (white bars) or 
presence (shaded bars) of 200µM AOA for 2h the medium was collected to measure (A) glucose production; 
(B) pyruvate plus lactate formation; (C) glucose percentage from total metabolism; (D) total metabolism; ( 
E) lactate to pyruvate ratio. Cells were snap-frozen for ATP analysis (F). Results are Mean±SEM for n=4.  

$ P<0.05 effect of AOA.    
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 Figure 4-18: Overexpression of mGPDH increases total glycerol metabolism.  

 Hepatocytes were treated with Adv-Gpd2 to overexpress mGPDH as in (figure 4-9). After overnight 
culture, they were incubated in glucose-free DMEM with glycerol as indicated for 2h the medium was 
collected to measure (A) glucose production; (B) pyruvate plus lactate formation; (C) glucose percentage 
from total metabolism; (D) total metabolism; ( E) lactate to pyruvate ratio. Cells were snap-frozen for ATP 
analysis (F). Results are Mean±SEM for n=5.  

* P<0.05 relative to respective control.    
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4.2.8 Overexpression of mGPDH attenuates the effect of metformin on gluconeogenesis 

from oxidised substrate 

Having confirmed that mGPDH like metformin favoured partitioning of DHA to glycolysis 

rather than glucose, we next tested whether mGPDH overexpression attenuated the effect of 

metformin on gluconeogenesis from DHA and glycerol. The effect of 50-100µM metformin, 

80µM Gpi, and 200µM AOA were tested in hepatocytes expressing endogenous mGPDH only 

and in hepatocytes with mGPDH overexpression incubated with DHA and glycerol as 

gluconeogenic substrate. With DHA as substrate, the effects of low metformin on 

gluconeogenesis and glycolysis were attenuated in cells overexpressing mGPDH (Figure 4-19 

A and B shaded bars), Gpi and AOA had no effect on gluconeogenesis and glycolysis (Figure 

4-19 A and B; shaded bars). The effects of the Gpi and AOA but not low metformin on the 

lactate / pyruvate ratio were not attenuated in cells overexpressing mGPDH (Figure 4-20 A). 

With glycerol as substrate, Gpi inhibited total glycerol metabolism (Figure 4-21 D; white bars). 

Overexpression of mGPDH reversed the inhibition of glycerol metabolism by the Gpi (Figure 

4-21 D; shaded bars) and reversed the raised in cell G3P (Figure 4-22 B)  

Collectively, these results show that overexpression of mGPDH abolishes or attenuates the 

effects of metformin in causing: (i) lowering of cell G3P (ii) metabolism of DHA and glycerol 

towards glycolysis rather than glucose production; (iii) an increase in the lactate/pyruvate ratio.  

This suggests a possible link between the metformin mechanism and flux through the GPS. 
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Figure 4-19: mGPDH overexpression attenuates the effect of metformin on glycolysis from 
DHA.  

Hepatocytes were either untreated (Con) or treated with Adv-Gpd2 4.8 x107 PFU/ml for mGPDH 
overexpression (High dose; H). After overnight culture, they were pri-incubated in glucose-free DMEM 

with 100µM metformin and 80M Gpi for 2h. the medium was then replaced by glucose-free DMEM 

containing 5mM DHA and metformin, Gpi, 200M AOA for 2h the medium was collected to measure (A) 
glucose production, (B) pyruvate + lactate formation, (C) glucose production percentage, (D) total 
metabolism. Cells snap-frozen for ATP analysis. Results are Mean ± SEM. n=3 individual experiments.  

* P<0.05 relative to respective control.  

$ P<0.05 effect of mGPDH overexpression   
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Figure 4-20: mGPDH overexpression reverses the increased in G3P by Gpi and AOA in 
incubation with DHA  

Hepatocytes treated as in figure 4-19. Cells snap-frozen for G3P and ATP assays. (A) Lactate 

to pyruvate ratio; (B) cell G3P; (C) cell ATP. Results are Mean ±SEM for n=3 individual 

experiments. 

* P<0.05 relative to respective control.  

$ P<0.05 effect of mGPDH overexpression   
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Figure 4-21: Inhibition of mGPDH by Gpi decreases total glycerol metabolism: effect corrected 
by mGPDH overexpression.  

Hepatocytes were treated with Adv-Gpd2 to overexpress mGPDH as in figure 4-19. After overnight culture, 

they were pre-incubated in glucose-free DMEM with 100µM metformin and 80M Gpi for 2h. The medium 

was then replaced by glucose-free DMEM containing 2mM glycerol and metformin, Gpi, 200M AOA for 
2h the medium was collected to measure (A) glucose production, (B) pyruvate + lactate formation, (C) 
glucose production percentage, (D) total metabolism. Cells snap-frozen for ATP analysis. Results are Mean 
± SEM. n=3 individual experiments.  

* P<0.05 relative to respective control.  

$ P<0.05 effect of mGPDH overexpression   
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Figure 4-22: mGPDH overexpression attenuates lowering cell G3P by low metformin in 
incubation with glycerol   

Hepatocytes treated as in figure 4-21. Cells snap-frozen for G3P and ATP assays. (A) Lactate 

to pyruvate ratio; (B) cell G3P; (C) cell ATP. Results are Mean ±SEM for n=3 individual 

experiments. 

* P<0.05 relative to respective control.  

$ P<0.05 effect of mGPDH overexpression.  
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4.2.9 Overexpression of mGPDH lowers cell G6P and mimics metformin  

The above studies show that metformin increases the production of pyruvate and lactate and 

lowers G3P in cells expressing endogenous mGPDH but not in cells with mGPDH 

overexpression. G3P has been identified as an allosteric inhibitor of PFK1 (Claus et al., 1982). 

The stimulation of glycolysis by metformin and also by overexpression of mGPDH could be 

due to either an effect of the GPS on the cytoplasmic (NADH/NAD) redox state or to activation 

of PFK1 by the lower cell G3P.  We found little or no evidence for a more reduced cytoplasmic 

redox state as determined from the lactate/pyruvate ratio with mGPDH overexpression because 

the lactate / pyruvate ratio was either unchanged (Figure 4-11 A) or increased (Figure 4-15 E).   

If the stimulation of glycolysis by mGPDH overexpression is due to activation of PFK1 then 

overexpression of mGPDH would be expected to lower cell G6P. We next tested the effects of 

mGPDH overexpression on cell G6P in hepatocytes incubated with high glucose, glycerol or 

DHA and compared this with the effect of 100µM metformin. Cell G6P level was highest with 

25mM glucose (Figure 4-23 A) and lowest with 2mM glycerol (Figure 4-23 B). Overexpressing 

of mGPDH lower cell G6P with all substrate conditions (Figure 4-23 A-C). This shows that 

the activity of mGPDH has a major effect not only on lowering cell G3P but also G6P, and is 

consistent with the hypothesis that the stimulation of glycolysis by both metformin and 

mGPDH could be explained by the lowering of G3P which is an inhibitor of PFK1. 
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Figure 4-23: mGPDH overexpression mimics the metformin effect on cellular G6P.  

Hepatocytes were treated with Adv-Gpd2 to overexpress mGPDH as in figure 4-9. After overnight culture 
they were pre-incubated in MEM with 100µM metformin as indicated for 2h. The medium was then 
replaced by fresh MEM containing 0.2µM S4048 and either (HG) 25mM glucose (A) for 1h, or 2mM 
glycerol (B), 5mM DHA (C) for 2h and 100µM metformin. Results are Mean±SEM. n=3 individual 
experiments. 

* P<0.05 relative to control with no virus (One-way ANOVA).   
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4.2.10 Overexpression of mGPDH but not inhibition of the MAS mimics metformin on 

G6Pc gene expression  

Metformin affects gene expression through either AMPK-dependent or AMPK-independent 

(Foretz et al., 2010) and counteracts the effects of high glucose on gene regulation by lowering 

G6P and other metabolites (Al-Oanzi et al., 2017). Because overexpression of mGPDH lowers 

both cell G6P and G3P similarly to metformin we next compared the effects of low metformin 

on mRNA levels of 4 genes that have previously been shown to be regulated by metformin 

with overexpression of mGPDH which lowers both G6P and G3P and with AOA which causes 

a large increase in G3P and also in the cytoplasmic redox state. High glucose caused a 2-fold 

increase in mRNA levels of G6pc, TXNIP, ChREBP-β and FGF21 (Figure 4-24 A-D) as 

expected from previous studies (Ma et al., 2006) and xylitol which causes a larger increase in 

G3P than glucose caused a 3-5 fold increase in expression of these genes (Figure 4-25 A-D). 

AOA markedly enhanced the gene induction by xylitol (Figure 4-25 A-D), whereas 

overexpression of mGPDH mimicked the counter regulatory effect of metformin on G6pc and 

TXNIP (Figure 4-24 A and B) but not on ChREBP-β and FGF21 (Figure 4-24 C and D). These 

results suggest that changes in metabolites that are influenced by the GPS and MAS are 

involved in gene regulation by high glucose and xylitol.   
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Figure 4-24: Overexpression of mGPDH like metformin suppresses G6Pc gene expression.  

Mouse hepatocytes were either untreated or treated with Ad-m-Gpd2 4.8 x107 PFU/ml for overexpression 
of mGPDH (High dose; H). After overnight culture they were pre-incubated in MEM with 100µM 
metformin as indicated for 2h.  The medium was then replaced by fresh MEM and incubated with 25mM 
glucose and metformin for further 4h. Total RNA was extracted in Trizol for mRNA analysis. n=4 
individual experiments.  

$ P<0.05 relative to low 5mM glucose (LG).  

* P<0.05 relative to high glucose (HG).   
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Figure 4-25: metformin opposite from AOA suppresses gluconeogenic genes 

Mouse hepatocytes were either untreated or treated with Ad-m-Gpd2 4.8 x107 PFU/ml for overexpression 
of mGPDH (High dose; H). After overnight culture they were pre-incubated in MEM with 100µM 
metformin as indicated for 2h.  The medium was then replaced by fresh MEM containing 2mM xylitol and 
metformin and 200µM AOA for further 4h. Total RNA was extracted in Trizol for mRNA analysis. n=4 
individual experiments.  

# P<0.05 relative to low 5mM glucose (LG).  

* P<0.05 relative to xylitol with no treatment.   
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4.2.11 Octanoate favours gluconeogenesis rather than glycolysis from oxidised and 

reduced substrates 

The previous results showed that inhibition of the MAS and GPS does not mimic the inhibition 

of gluconeogenesis by 100µM metformin. Moreover, overexpression of mGPDH mimicked 

the stimulation of glycolysis by metformin. In this study we compared the effect of metformin 

on gluconeogenesis in the absence and presence of octanoate which has been shown previously 

to stimulate gluconeogenesis and inhibit glycolysis either by increasing citrate which is an 

inhibitor of PFK1 (Hers and Hue, 1983) or by direct inhibition of PFK-1 by octanoyl-CoA 

(Jenkins et al., 2011). Our first aim was to investigate whether octanoate abolished the effect 

of metformin on gluconeogenesis. Hepatocytes were incubated with either (0.125mM) or 

(0.25mM) octanoate in the presence of the oxidised substrate DHA, and with 0.125mM 

octanoate in the presence of reduced substrate xylitol as gluconeogenic precursor. Octanoate 

increased the rate of gluconeogenesis from both DHA (Figure 4-26 A) and xylitol (Figure 4-28 

A) and increased the fractional partitioning of DHA (Figure 4-26 C) and xylitol (Figure 4-28 

C) to glucose rather than glycolysis. The increase in gluconeogenesis by octanoate was 

associated with inhibition in pyruvate plus lactate formation (Figure 4-26 B and Figure 4-28 

B) without significant effect on total metabolism (Figure 4-26 D and 4-28 D). Octanoate 

increased the lactate to pyruvate ratio (Figure 4-27 A and Figure 4-29 A) as expected (Sibille 

et al., 1995) and lowered the cell G3P level from oxidised (DHA) (Figure 4-27 B) but not from 

reduced (xylitol) substrate (Figure 4-29 B). With DHA as substrate, low octanoate (0.125mM) 

did not affect the inhibitory effects of metformin on gluconeogenesis but high octanoate 

(0.25mM) attenuated the inhibition of glucose production (Figure 4-26 A) but did not abolish 

the effect of metformin on the pyruvate plus lactate formation (Figure 4-26 B) and fractional 

partitioning of DHA to glucose (Figure 4-26 C). Metformin increased the lactate to pyruvate 

ratio (Figure 4-28 A) and lowered cell G3P with 0.125mM but not with 0.25mM octanoate 

(Figure 4-28 B), while the effects of metformin were abolished by octanoate (0.12mM) in 

incubation with 2mM xylitol (Figure 4-28 A-D). Interestingly, inhibition of the MAS by AOA 

in the presence of octanoate favored gluconeogenesis rather than glycolysis by increasing the 

fractional partitioning of both DHA and xylitol to glucose relative to glycolysis and inhibited 

pyruvate plus lactate formation with concomitant inhibition in total metabolism (Figure 4-26 

and Figure 4-28 A-D). AOA and octanoate had additive effects on the lactate / pyruvate ratio 

(Figure 4-27 A and Figure 4-29 A), and the increase in G3P by AOA was attenuated in the 

presence of octanoate (Figure 4-27 B).  
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Collectively, (i) octanoate had opposite effects from metformin on gluconeogenesis from DHA 

and xylitol, which are suggestive of inhibition of PFK1 or activation of FBP1. (ii) Addition of 

octanoate did not abolish the effects of low (100µM) metformin on gluconeogenesis.   
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Figure 4-26: High octanoate concentration attenuates the effect of metformin on 
gluconeogenesis from the oxidised substrate, DHA.  

After overnight culture mouse hepatocyte monolayers were pre-incubated with 100µM metformin, 20µM 
Gpi in glucose-free DMEM for 2h. The medium was then replaced by glucose-free DMEM containing 5mM 
DHA plus either 0.125mM or 0.25mM octanoate and other additions (100µM metformin, 20µM Gpi, and 
200µM AOA) and incubated for further 2h and medium was collected to measure (A) glucose production, 
(B) lactate plus pyruvate formation, (C) glucose production percentage, (D) total DHA metabolism. Results 
are Mean±SEM for n=7 individual experiments.  

* P<0.05 relative to respective control.  

$P<0.05 effect of octanoate.   
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Figure 4-27: Octanoate lowers cell G3P in incubation with oxidised substrate, DHA.  

Hepatocytes were incubated as in figure 4-26, medium was collected and cells were snap-frozen for G3P 
and ATP analysis (A) lactate to pyruvate ratio; (B) cell G3P; (C) cell ATP. Results are Mean±SEM for n=7 
individual experiments.  

* P<0.05 relative to respective control.  

$P<0.05 effect of octanoate.   
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Figure 4-28: Octanoate increases gluconeogenesis and abolishes the metformin inhibitory 
effect on gluconeogenesis from the reduced substrate, xylitol.  

After overnight culture mouse hepatocyte monolayers were pre-incubated with 100µM metformin, 20µM 
Gpi in glucose-free DMEM for 2h. The medium was then replaced by glucose-free DMEM containing 2mM 
xylitol plus 0.125mM octanoate and other additions (100µM metformin, 20µM Gpi, and 200µM AOA) and 
incubated for further 2h and medium was collected to measure (A) glucose production, (B) lactate plus 
pyruvate formation, (C) glucose production percentage, (D) total DHA metabolism. Results are 
Mean±SEM. n=4 individual experiments.  

* P<0.05 relative to respective control.  

$P<0.05 effect of octanoate.   
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Figure 4-29: Octanoate abolishes the effect of metformin on the lactate to pyruvate ratio from 
the reduced substrate, xylitol.   

Hepatocytes were incubated as in figure 4-28, medium was collected and cells were snap-frozen for G3P 
and ATP analysis (A) lactate to pyruvate ratio; (B) cell G3P; (C) cell ATP. Results are Mean±SEM for n=4 
individual experiments.  

* P<0.05 relative to respective control.  

$P<0.05 effect of octanoate.  
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4.2.12 Activation of AMPK by octanoate but not by low metformin  

The above results showed that octanoate stimulates gluconeogenesis. Next, we investigated the 

effect of octanoate on ACC-phosphorylation, the AMPK substrate, to test whether the increase 

in gluconeogenesis by octanoate can be explain by a decrease in AMP (which is a potent 

inhibitor of FBP1 and activator of PFK1). Addition of octanoate increased ACC-

phosphorylation, indicating AMPK activation. This suggests increased AMP with octanoate 

most likely through acyl-CoA synthase which produces acyl CoA plus AMP, as reported 

previously (Kawaguchi et al., 2002). There was lower phosphorylation of ACC by 100µM 

metformin in combination with octanoate relative to octanoate alone (Figure 4-30). This may 

be due to accelerated clearance of octanoate by 100µM metformin. Cumulatively, octanoate 

increased the activation of AMPK suggesting an increase in AMP, which is expected to 

stimulate glycolysis by PFK-1 activation and inhibit gluconeogenesis by FBP-1 inhibition. 

Therefore other mechanisms must be involved in the stimulation of gluconeogenesis, such as 

an increase in citrate or direct inhibition of PFK-1 by octanoyl-CoA (Jenkins et al., 2011). 
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Figure 4-30: Octanoate but not low metformin increases ACC-phosphorylation.  

After overnight culture mouse hepatocyte monolayers were incubated with MEM for 2h. The 
medium was then replaced with MEM containing 25mM glucose without (white bars) or with 
(shaded bars) 0.125mM octanoate 1hr. (100 and 500µM metformin, 10µM A-769662 were 
presented in both incubation). Results are representative immunoblotting and densitometry for 
n=4 individual experiments.  

*P<0.05 relative to respective control.  

$P<0.05 octanoate effect.  
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4.2.13 Inhibition of PFK-1 attenuates the metformin effect on gluconeogenesis  

The above result shows opposite effects of metformin and octanoate on gluconeogenesis which 

may be due to regulation at the level of PFK1 and / or FBP1.  We next tested whether inhibition 

of PFK and activation of FBP1 is a candidate mechanism for the effect of low metformin on 

glycolysis and gluconeogenesis. We depleted fructose 2,6-P2 a potent activator of PFK-1 and 

inhibitor of FBP1 (Hers and Hue, 1983) by expressing a kinase-deficient variant (PFK-KD) of 

the bifunctional enzyme PFK2/FBP2 (Arden et al., 2012) and compared 100µM metformin 

with AMPK activator A-769662 (10µM) in hepatocytes that were untreated or treated with 

Adv-PFK-KD. Cells treated with PFK-KD to deplete the PFK1 activator showed inhibition of 

glycolysis as expected (Figure 4-31 B) and increased glucose production and partitioning of 

DHA to glucose (Figure 4-31 A and C), without a change in total DHA metabolism (Figure 4-

31 D) and with lowering of cell G3P (Figure 4-32B). The effects of low metformin (100M) 

on the increased partitioning of substrate towards glycolysis and on lowering of G3P were 

abolished in the presence of PFK-KD (Figure 4-31 C and Figure 4-32 B). Similar results were 

obtained on gluconeogenesis and glycolysis when hepatocytes were incubated with db-cAMP, 

which is expected to inhibit the kinase activity as occurs with glucose (Payne et al., 2005) and 

deplete fructose 2,6-P2. It is noteworthy that db-cAMP causes via activation of PKA 

phosphorylation of the liver isoform of PFK2/FBP2 resulting in inhibition of the kinase 

activation of the bisphosphatase but PKA also phosphorylates several other enzymes such as 

phosphorylase kinase and glycogen synthase and therefore regulates several metabolic 

pathways including glycogen synthesis and degradation. The liver isoform of PFK2/FBP2 

(PFKFB1) when phosphorylated by PKA on a serine residue at the N-terminus functions as a 

bisphosphatase (Rider et al., 2004) causing depletion of F2,6-P2 as occurs during 

overexpression of the kinase-deficient variant of PFKFB1. The similar effect of db-cAMP 

compared with PFK-KD are consistent with the major role of the liver isoform PFK2/FPBP2 

in mediating the acute stimulation of gluconeogenesis by glucagon. db-cAMP increased the 

partitioning of substrate to gluconeogenesis and abolished the effect of metformin (Figure 4-33 

C; shaded bars). The AMPK activator (A-769662) inhibited pyruvate plus lactate formation 

and had no effect on gluconeogenesis (Figure 4-31 A and B; white bars) in untreated 

hepatocytes, or in cells treated with PFK-KD or db-cAMP (Figure 4-31 and Figure 4-33 ; 

shaded bars). A-769662 increased the lactate to pyruvate ratio in untreated hepatocytes (Figure 

4-32 A; white bars). In hepatocytes treated with PFK-KD or db-cAMP the effect of A-769662 

on the lactate / pyruvate ratio was attenuated (Figure 4-32 A and Figure 4-34 A; shaded bars).     
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Figure 4-31: PFK-KD abolishes the effect of metformin on gluconeogenesis from DHA.  

Hepatocytes were either untreated (open bars) or treated (shaded bars) with an adenovirus vector for 
expression of PFK-KD to deplete cell fructose 2,6-P2. After overnight culture mouse hepatocyte monolayers 
were incubated with in glucose-free DMEM for 2h. The medium was then replaced by glucose-free DMEM 
containing 5mM DHA and incubated for further 2h (100µM metformin and 10µM A-769662 present in 
both incubation) medium was collected to analysis (A) glucose production, (B) pyruvate plus lactate 
formation (C) glucose production percentage, (D) Total metabolism. Results are Means ±SEM for n= 8.  

*P <0.05 relative to respective control.  

$ P<0.05 effect of PFK-KD.   
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 Figure 4-32: PFK-KD attenuates the effects of metformin on the lactate to pyruvate ratio and 
G3P.  

Hepatocytes were treated similar to (Figure 4-31), medium was collected and cells were snap-frozen for 
G3P and ATP analysis  (A) lactate to pyruvate ratio; (B) cell G3P; (C) cell ATP. Results are Means ±SEM 
for n= 8.  

*P <0.05 relative to respective control.  

$ P<0.05 effect of PFK-KD.   
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Figure 4-33: db-cAMP abolishes the effect of metformin on DHA metabolism.  

After overnight culture mouse hepatocyte monolayers were incubated in glucose-free DMEM for 2h. The medium was 

then replaced by glucose-free DMEM containing 5mM DHA plus 10M db-cAMP and incubated for further 2h (100µM 
metformin or 10µM A-769662 present in both incubation) medium was collected to measure  (A) glucose production, (B) 
pyruvate plus lactate formation (C) glucose production percentage, (D) Total metabolism. Results are Means ±SEM for 
n= 8. 

*P <0.05 relative to respective control.  

$ P<0.05 relative effect of db-cAMP.  
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Figure 4-34: db-cAMP abolishes metformin inhibitroy effect on G3P. 

Hepatocytes were treated as in figure 4-33, medium was collected and cells were snap-frozen for G3P and 
ATP analysis (A) lactate to pyruvate ratio; (B) cell G3P; (C) cell ATP. Results are Means ±SEM for n= 8.  

*P <0.05 relative to respective control.  

$ P<0.05 effect of db-cAMP.  
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4.2.14 Inhibition of fructose-1,6-bisphosphatase-1 (FBP1) mimics low metformin on 

gluconeogenesis  

Fructose 1,6-bisphosphatase-1 (FBP1) was recently proposed as the target for metformin 

(Hunter et al., 2018). To selectively target FBP1 or PFK1, we next used an FBP1 inhibitor that 

binds to the AMP site (Dang et al., 2009) and a citrate analogue PFK1 inhibitor 

(aurintricaboxylic acid, ATA), which antagonizes activation of PFK1 by AMP and fructose 

2,6-P2 (McCune et al., 1989). Hepatocytes were incubated with DHA and 0.2M S4048 to raise 

cell G6P, which is otherwise below detection limits in hepatocytes incubated in glucose-free 

medium. The chlorogenic acid derivative S4048 is a very potent inhibitor of the G6P 

transporter. This inhibitor has no effect on cell G6P in hepatocytes incubated at basal glucose 

but it raises G6P with high glucose or gluconeogenic precursors (Al-Oanzi et al., 2017, 

Harndahl et al., 2006), and it suppresses but does not abolish glucose production. The FBP1 

inhibitor (FBPi) like metformin inhibited gluconeogenesis, but unlike metformin it did not 

stimulate glycolysis (Figure 4-35 A-B). Cell G6P was lowered by FBPi and increased with the 

PFK1 inhibitor (ATA) (Figure 4-36 B), which also increased glucose production and the 

fractional partitioning of DHA to glucose relative glycolysis with concomitant inhibition of 

pyruvate plus lactate formation, (Figure 4-35, white bars). The inhibition of glucose production 

and lowering of cell G6P by low (100M) metformin were abolished by both FBP1 and PFK1 

inhibitors (Figure 4-35 and Figure 4-36; shaded bars). Cumulatively, this points to a significant 

contribution of allosteric control of PFK1 and FBP1 in the partitioning of DHA metabolism 

between gluconeogenesis and glycolysis. The attenuation of the metformin effect in the 

presence of these inhibitors suggests an effect of metformin at PFK1 or FBP1.   
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Figure 4-35: Inhibition of PFK-1 or FBP-1 abolishes the effects of metformin on 
gluconeogenesis from DHA.  

Mouse hepatocytes were incubated for 2h in glucose-free media DMEM without (white bars) or with 

(shaded bars) 100M metformin and then for further 2h in fresh medium containing 5mM DHA plus 0.2M 

S4048 and other additions as indicated ATA at 25 or 50M and FBPi at 5M, medium was collected for 
analysis (A) glucose production, (B) pyruvate plus lactate formation (C) glucose production percentage 
from total DHA metabolism, (D) total DHA metabolite. Results are Means ±SEM for n=6.  

*P <0.05 relative to respective control. 

$ P<0.05 effect of metformin.   
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Figure 4-36: Inhibition of PFK opposite from low metformin raises G6P.  

Hepatocytes were treated as in figure 4-35, medium was collected and cells were snap-frozen for G6P and 
ATP analysis (A) lactate to pyruvate ratio; (B) cell G6P; (C) cell ATP. Results are Means ±SEM for n= 6.  

*P <0.05 relative to respective control.  

$ P<0.05 effect of metformin.  

 

 



       Results 2                                                                                                 Chapter Four  
---------------------------------------------------------------------------------------------------------------- 

147 
 

4.3   Discussion   

Two recent reports by Madiraju et al. (2014, 2018) on the metformin mechanism concluded 

that metformin lowered gluconeogenesis by a redox-dependent mechanism. Metformin 

lowered glucose production from hepatocytes incubated with reduced (lactate and glycerol) but 

not with oxidised (DHA, pyruvate, and alanine) substrates. It was proposed that the metformin 

effect on gluconeogenesis in hepatocytes linked to the GPS through inhibition of mGPDH 

activity (Madiraju et al., 2014). In the second study Madiraju and colleagues (2018) proposed 

that inhibition of gluconeogenesis in vivo by low metformin (20-50 mg/kg) is a redox 

dependent based on the inhibition of incorporation of [3-13C] lactate but not [3-13C] alanine 

into glucose in normal and diabetic rats (Madiraju et al., 2018, Madiraju et al., 2014). The role 

of mGPDH in the metformin mechanism has been challenged because in liver the MAS has 

more important role than the GPS due to the low activity of GPS (Baur and Birnbaum, 2014).  

It is well documented that metformin increases the cytosolic redox state (NADH / NAD+ ratio; 

more reduced) in vitro (El-Mir et al., 2000, Argaud et al., 1993) and in vivo (Madiraju et al., 

2018, Madiraju et al., 2014, Qi et al., 2018). NAD+ is required to maintain glycolysis in 

cytoplasm of hepatocytes. The MAS and GPS beside the reduction of pyruvate to lactate by 

lactate dehydrogenase are the major sources in liver to regenerate NAD+. An early study by 

Rognstad and Clark (1974) reported that inhibition of gluconeogenesis by low AOA (200µM) 

was more efficient with reduced (lactate) than oxidised (pyruvate) gluconeogenic substrates 

(Rognstad and Clark, 1974). The more reduced cytoplasmic redox state caused by low 

metformin was proposed by Madiraju and colleagues (2014) as the mechanism for the 

inhibition of gluconeogenesis and supported by studies on hepatocytes showing inhibition of 

gluconeogenesis from lactate and glycerol but not pyruvate and DHA and by studies in vivo 

showing inhibition of label incorporation from lactate but not alanine (Madiraju et al., 2018). 

Interestingly a recent study on the perfused liver argues that at low doses of metformin used 

by Madiraju and colleagues there is no inhibition of gluconeogenesis from lactate in the 

perfused liver (Calza et al., 2018).  

The present study shows that the inhibitory effect of the lowest effect dose of metformin on 

hepatic glucose production (0.1mM or 1-2nmol/ mg protein) from DHA was associated with a 

more oxidised mitochondrial redox state (decrease in the 3-hydroxybutyrate / acetoacetate 

ratio). This effect cannot be explained by inhibition of complex 1 or activation of AMPK (see 

chapter three), but it might be explained by direct effect on mitochondrial membrane or 

inhibition of NADH reducing equivalents shuttles (the MAS or GPS). To investigate the role 
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of the MAS and GPS in the regulation of the cytoplasmic and mitochondrial redox state and 

gluconeogenesis from oxidised and reduced substrates, two inhibitors of the shuttle were used 

AOA an inhibitor of the MAS and STK017597 (Gpi) an inhibitor of the GPS. To explore the 

role of the GPS we also studied the effect of overexpression of mGPDH.  The use of AOA 

especially at a concentration of 200µM to study flux through the MAS is widely documented 

(Rognstad and Clark, 1974, Berry et al., 1994). Non-specific effects of AOA, such as 

metabolism to glycolate which is a potential source of H2O2 occur at concentrations higher than 

500µM. The identification of Gpi as an inhibitor of the mGPDH and accordingly the GPS was 

reported recently by Orr and colleagues (2014). This inhibitor has not previously been used in 

hepatocytes.   

The main findings of this chapter are; 

1- Low metformin (100µM) caused a more reduced cytoplasmic redox state (increase 

NADH / NAD+ ratio) similar to inhibition of the GPS by Gpi or the MAS by AOA and 

it caused a more oxidised mitochondrial redox state (decrease NADH / NAD+ ratio) 

similar to the inhibition of the GPS by Gpi or depolarisation of mitochondria by DNP.  

 

2- Low metformin 100µM inhibited the production of glucose in hepatocytes from both 

oxidised (DHA) and reduced (xylitol and glycerol) substrates by preferential 

partitioning to glycolysis with concomitant lowering of G3P level. This effect of 

metformin on gluconeogenesis indicates a redox independent inhibition of 

gluconeogenesis that cannot be explained by inhibition of the GPS as proposed by 

(Madiraju et al., 2018, Madiraju et al., 2014) because Gpi did not mimic the inhibitory 

effect of metformin on gluconeogenesis.  

 

3- DNP caused a more oxidised mitochondrial (decrease NADH / NAD ratio) redox state 

and mimicked the effect of low metformin on inhibition of gluconeogenesis and on 

lowering of cell G3P level.  

 

4- Overexpression of mGPDH caused a more reduced mitochondrial redox state (increase 

in 3-hydroxybutyrate / acetoacetate ratio), but mimicked the effect of metformin on 

increasing the fractional partitioning of reduced and oxidised substrates to glycolysis 

relative to gluconeogenesis (increased pyruvate plus lactate formation) with marked 

lowering of cell G3P.  
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5- Octanoate, oppositely to metformin, increased the rate of gluconeogenesis form 

reduced and oxidised substrates and a similar effect was observed by depletion of 

fructose 2,6-P2 and by the PFK-1 inhibitor (ATA). The inhibition of PFK-1 antagonized 

the inhibition of gluconeogenesis by metformin arguing for this highly regulated 

allosteric enzyme as a likely site for the mechanism of action of metformin.     

These effects are discussed below. The more reduced cytoplasmic redox state, as determined 

by the increase in the lactate to pyruvate ratio in liver and also in plasma by metformin has 

been widely reported in vivo (Madiraju et al., 2014, Madiraju et al., 2018) and in vitro (El-Mir 

et al., 2000, Owen et al., 2000). The more reduced cytoplasmic redox state at high metformin 

was explained by inhibition of complex 1 as shown in the study by (El-Mir et al., 2000) and at 

low metformin was proposed to be due inhibition of mGPDH (Madiraju et al., 2014). In the 

present study we found that low metformin (100µM) caused a more reduced cytoplasmic redox 

state concomitant with a more oxidised mitochondrial redox state in isolated hepatocytes. This 

effect of low metformin (100µM) on the cytoplasmic redox state cannot be explained by 

inhibition of complex 1 and the respiratory chain. The present study demonstrates for the first 

time that treating isolated hepatocytes with concentrations of metformin that result in cellular 

accumulation of the drug to the same level (1-2 nmol/mg) as occurs in vivo after a 20-50 mg/kg 

dose make the cytoplasmic redox state more reduced and the mitochondrial redox state more 

oxidised. This supports the conclusion by Madiraju et al. (2014) that with low therapeutic doses 

in vivo metformin caused a more reduced cytoplasmic redox state but with a more oxidised 

mitochondrial redox state (Madiraju et al., 2014). Two possible explanations for the more 

reduced cytoplasmic redox state by 100µM metformin are either inhibition of mGPDH activity 

(Madiraju et al., 2014), or dissipation of mitochondrial membrane potential with consequent 

inhibition of the MAS which is strongly dependent on mitochondrial membrane potential (Qiu 

et al., 2010, Davis et al., 1980). Metformin inhibits the production of glucose from both 

oxidised and reduced substrates in conditions of a more oxidised mitochondrial redox state and 

in the absence of activation of AMPK. This supports a complex 1independent and AMPK 

independent mechanism we therefore compared the metformin effect with inhibition of two 

shuttles, the GPS and the MAS.  

Gpi (an inhibitor of GPS) mimicked the effect of low metformin on the ratio of lactate to  

pyruvate in hepatocytes, and Gpi like metformin caused a more oxidised mitochondrial redox 

state, cell G3P level was raised by high (80µM) Gpi . This indicates that inhibition of the GPS 
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causes a more reduced cytoplasmic redox state and a more oxidised mitochondrial redox state 

with increase in cell G3P. In this study we found no evidence for inhibition of mGPDH by 

metformin at concentrations up to 5mM, unlike Gpi (10-80µM), in permeabilized hepatocytes 

(Figure 4-4 A,B) (Pecinova et al., 2017). In addition studies with the Gpi did not mimic the 

metformin inhibition of gluconeogenesis. To further explore the functional role of the GPS in 

the control of gluconeogenesis and glycolysis we overexpressed mGPDH with an adenoviral 

vector in hepatocytes. This enabled studies into the effect of increased activity of the GPS on 

the redox state (cytoplasmic and mitochondrial) and gluconeogenesis. Overexpression of 

mGPDH caused a more reduced mitochondrial redox state (increase in 3-hydroxybutyrate / 

acetoacetate ratio) concomitant with variable effects on cytoplasmic redox state depending on 

the substrates, importantly it caused a large decrease in cell G3P with all substrates tested. 

Collectively, these results indicated that the increased activity of mGPDH was associated with 

increased activity of the GPS. Overexpression of mGPDH favoured glycolysis by increasing 

the fractional partitioning of substrates toward glycolysis rather than gluconeogenesis. This 

effect mimicked the effect of low dose metformin on gluconeogenesis and supports the 

conclusion that the inhibitory effect of low metformin on glucose production cannot be due to 

inhibition of the GPS. This effect did not support the conclusion of inhibition of mGPDH by 

metformin as proposed by Madiraju and colleagues (Madiraju et al., 2014). Furthermore, 

overexpression of mGPDH abolished the effect of low dose of metformin on gluconeogenesis 

and the fractional partitioning to glucose. The lowering of G3P by metformin and the uncoupler 

could be explained by activation of the GPS possibly as a result of a decrease in mitochondrial 

membrane potential.  

The other possible explanation for the more oxidised mitochondrial redox state is that 

metformin accumulates in the mitochondria or through interaction with the mitochondrial 

membrane promotes depolarization and secondary to depolarization causes inhibition of the 

MAS (Davis et al., 1980, Qiu et al., 2010). DNP causes a more oxidised (decrease NADH / 

NAD ratio) mitochondrial redox state and like metformin also inhibited the rate of 

gluconeogenesis and the fractional partitioning to glucose. The effects of DNP on 

gluconeogenesis and glycolysis were in good agreement with previous studies and suggested 

that inhibition of gluconeogenesis by metformin can be explained by uncoupling of 

mitochondrial membrane (Sibille et al., 1995, Sibille et al., 1998). AOA inhibited 

gluconeogenesis and the fractional partitioning of xylitol to glucose relative to glycolysis but 

this effect was concomitant with inhibition of total xylitol metabolism and partial lowering of 
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ATP. Because the effect of AOA on cell G3P is opposite to the metformin effect which lowered 

cellular G3P, other explanation are required for this effect of metformin. One possibility is that 

the mitochondrial depolarization by metformin may account for the decrease in G3P, because 

this effect was also seen with DNP.  

Previous studies reported that metformin treatment suppressed the gluconeogenic gene 

expression in liver and hepatocytes (Heishi et al., 2006, Cao et al., 2014). The study by Heishi 

and colleagues (2006) reported that the anti-hyperglycaemic effect of metformin is positively 

correlated to suppression of hepatic G6pc mRNA. In this study, the authors did not give a clear 

explanation for the mechanism of suppressing G6pc mRNA by metformin (Heishi et al., 2006). 

The conclusion by Cao et al (2014) was that low metformin suppresses gene expression (G6pc) 

by a mechanism linked to AMPK activation (Cao et al., 2014). In the present study we showed 

that gluconeogenic genes expression were induced by high 25mM glucose and xylitol whereas 

low metformin (100µM) and mGPDH overexpression suppressed the gluconeogenic gene 

expression, while AOA did not suppress gluconeogenic gene expression. Suppression of G6pc 

mRNA by metformin cannot be explained by a mechanism linked to an AMPK activation as 

proposed by (Cao et al., 2014) because A-769662 an AMPK activator did not inhibit glucose 

production (Figure 3-4) and lower cell G6P (Figure 3-6 A and B) and cell G3P (Figure 4-18 F; 

white bar) but it might be through indirect effect of metformin due to inhibition of 

gluconeogenesis. Collectively, these results supported that the explanation of metformin 

mechanism is due to mitochondrial depolarisation through accumulation of metformin in 

mitochondrial matrix rather than direct effect on malate-aspartate shuttle (Davis et al., 1980, 

Qi et al., 2018, Schafer, 1976) 

Octanoate was used as a precursor of ketone bodies (acetoacetate and 3-hydroxybutyrate), 

(Pegorier et al., 1989, Schonfeld and Wojtczak, 2016, Sanaka et al., 2008) to enable 

measurement of the mitochondrial redox from the HOB/Acac ratio accumulated in the medium. 

An advantage of octanoate compared with long-chain fatty acids is that it enters the 

mitochondria as octanoate rather than octanoyl-CoA by a mechanism independent on carnitine 

palmitoyltransferase I, and therefore independent of AMPK, which indirectly regulates CPT1 

by changes in malonyl-CoA. Stimulation of gluconeogenesis by octanoate is widely 

documented (González-Manchón et al., 1989), proposed  mechanisms include an increase in 

citrate which inhibits PFK1 and also a direct inhibition of PFK1 by octanoate-CoA (Jenkins et 

al., 2011). A raised cell G6P level in rat islets is also consistent with inhibition of PFK1 

(Montague and Taylor, 1969). As expected, octanoate increased glucose production in 
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hepatocytes (González-Manchón et al., 1989), this can be explained by inhibition of 

phosphofructokinase-1 (PFK-1) and / or activation of fructose 1,6-bisphosphatase-1 (FBP-1). 

PFK-1 is positively regulated by AMP, fructose 2,6-P2, fructose 1,6-P2, and Pi and it is 

negatively by ATP, citrate, and G3P. FBP1 is a rate-limiting enzyme in gluconeogenesis, 

conversely to PFK-1 it is negatively regulated by AMP, fructose 2,6-P2, and Pi (Hers and Hue, 

1983). In this study we found that octanoate increased ACC phosphorylation which indicates 

an increase in AMP concentration. The most plausible explanation for the octanoate effect is 

through inhibition of PFK-1 by increasing the concentration of citrate (Hers and Hue, 1983, 

Montague and Taylor, 1969, Jenkins et al., 2011). We showed in this study that the increase in 

gluconeogenesis by 0.125mM octanoate was antagonized by 100µM metformin. This could be 

explained by increased glycolysis by metformin through changes in allosteric effectors of PFK-

1, for example by a decrease in citrate, which was reported to be decreased by metformin  

(Pelantova et al., 2016) or by the decrease in cell G3P, because both citrate and G3P are 

considered as potent inhibitors for PFK-1 (Hers and Hue, 1983). In this study cell G3P was 

decreased by low metformin in conditions of raised glycolysis and decreased gluconeogenesis 

and likewise G3P was decreased in cells overexpressing mGPDH which showed similar 

partitioning of DHA towards glycolysis as metformin.     

Recent studies have proposed that the mechanism of metformin in lowering glucose production 

might be linked to increase AMP by AMPK independent mechanisms. Miller and colleagues 

(2013) proposed a link between raised AMP and inhibition of glucagon signalling through 

AMP inhibition of adenylyl cyclase (Miller et al., 2013) and Hunter et al (2018) proposed AMP 

inhibition of FBP1, this was demonstrated in mouse model expressing an AMP-insensitive 

variant of FBP1 (Hunter et al., 2018). In this study we tested the role of the PFK1/FBP1 site in 

regulating the direction of DHA flux between gluconeogenesis and glycolysis by using an 

adenovirus vector to express a bisphosphatase-active kinase-deficient variant of 

phosphofructokinase 2/fructosebisphosphatase 2 (PFK2/FBP2) (Arden et al., 2012). The 

increased in gluconeogenesis and decreased in glycolysis in hepatocytes treated with 

PFK2/FBP2-KD support a major role for the PFK1/FBP1 site in regulation of glycolysis and 

gluconeogenesis. This was further supported by db-cAMP which is also known to cause acute 

depletion of fructose 2,6-bisphosphate by phosphorylation of  PFK2/FBP2 (Van Schaftingen 

and Hers, 1981). These results implicate that the molecular target of metformin to lower 

glucose production might be due to activation of PFK-1 and / or inhibition of FBP-1and this 

effect could be due to an increase in AMP as proposed by Hunter and colleagues (Hunter et al., 
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2018)  or lowering the cell G3P as shown in this study or changes in other allosteric effectors 

such as ATP, ADP, citrate and Pi.    

4.4 Summary 

This study has shown that: 

1. In isolated hepatocytes a low dose of metformin that is within the therapeutic range 

causes a more oxidised mitochondrial (NADH/NAD) redox state and a more reduced 

cytoplasmic redox state as has been reported in recent studies in vivo with a low dose 

of metformin. This low metformin dose inhibits gluconeogenesis by a redox-

independent mechanism that cannot be explained by inhibition of either the MAS or 

the GPS but is best explained by allosteric activation of PFK1 resulting in increased 

partitioning of substrate to glycolysis as opposed to gluconeogenesis. This same 

mechanism also accounts for the lowering of G6P by metformin with either high 

glucose or gluconeogenic precursors. This does not exclude an additional role for FBP1 

through inhibition by AMP as proposed by Hunter and colleagues (Hunter et al., 2018).     

 

2. Overexpression of mGPDH had three effects a more reduced mitochondrial redox state 

and markedly lowered cell G3P and also G6P, and preferential partitioning of DHA to 

glycolysis as opposed to gluconeogenesis. The lowering of G3P is expected to be a 

contributing factor to the increased glycolysis because G3P is an allosteric inhibitor of 

PFK1.  The recently identified inhibitor of mGPDH (SKT017597) had converse effects 

from mGPDH overexpression. Inhibition of the MAS had no effect on the 

mitochondrial redox state despite causing a more reduced cytoplasmic redox state and 

it did not mimic the metformin effect on partitioning of DHA metabolism between 

glycolysis and gluconeogenesis.   

 

3. The more oxidised mitochondrial redox state caused by metformin cannot be explained 

by inhibition of the GPS because it is associated with lowering of G3P. It is best 

explained by a primary effect of metformin on mitochondrial membrane potential.  

Depolarisation of mitochondria by metformin as proposed in other studies could 

explain the more oxidised mitochondrial redox state, the increase in octanoate oxidation 

and the more reduced cytoplasmic redox state, through inhibition of the MAS which is 

dependent on mitochondrial membrane potential.  
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4. The lowering of G3P by metformin and by the uncoupler is tentatively explained by 

increased flux through the GPS as a result of mitochondrial depolarization.  The effects 

of metformin and of mGPDH overexpression on both cell G3P and partitioning of DHA 

between glycolysis and gluconeogenesis are not additive.  This supports the conclusions 

that the lowering of G3P by metformin is best explained by increased flux through the 

GPS as a result of mitochondrial depolarization and that the decrease in G3P by 

metformin contributes to the allosteric regulation of PFK1.  

 

5. Metformin and likewise overexpression of mGPDH counteract the induction of G6pc 

and Txnip genes by high glucose. This effect is best explained by the lowering of G3P 

and G6P and supports the conclusion that the effects of metformin on gene expression 

as on gluconeogenesis are in part consequent to the decrease in G6P by activation of 

PFK-1 and a decrease in G3P through increased flux through mGPDH.        
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 General discussion  

5.1 General discussion  

Metformin is the most commonly prescribed drug to treat type 2 diabetes (Bailey, 2017, 

Maruthur et al., 2016). The clinical benefits of metformin are: to decrease glucose production 

from the liver, increase glucose uptake by muscle, and lower the absorption of glucose from 

the gut. Although the liver is considered to be a major target of metformin, the molecular 

mechanism of metformin to lower hepatic glucose production remains debated (Foretz et al., 

2014, Rena et al., 2013, Rena et al., 2017, He and Wondisford, 2015). The first mechanism that 

was identified for the acute inhibition of hepatic glucose production was the inhibition of 

complex 1 of the respiratory chain (NADH:ubiquinone oxidoreductase) with a consequent 

decrease in the cell ATP/ADP ratio in conjunction with a more reduced mitochondrial and 

cytoplasmic NADH/NAD redox state as determined from the raised ratios of 3-

hydroxybutyrate / acetoacetate and lactate / pyruvate, respectively (Bridges et al., 2014, El-Mir 

et al., 2000, Owen et al., 2000). This inhibition in gluconeogenesis was explained by inhibition 

of complex 1 resulting in lowering the ATP / ADP ratio (El-Mir et al., 2000, Owen et al., 2000) 

and activation of AMP-activated protein kinase (AMPK) (Zhou et al., 2001). A functional role 

for activation of AMPK by metformin in the lowering of glucose production has been 

challenged by Foretz and colleagues (2010) when they showed that metformin lowered plasma 

glucose and inhibited gluconeogenesis in  a mouse model lacking liver AMPK (Foretz et al., 

2010). Metformin concentrations ~10-100 fold of the therapeutic dose were used in these 

studies and the effects could be explained by lowering of cell ATP (Gouaref et al., 2017).  

Recently, two new metformin mechanisms were proposed by two independent laboratories. 

Madiraju and colleagues (2014 and 2018) reported that metformin concentrations relevant to 

therapeutic dose inhibited hepatic glucose production through non-competitive inhibition of 

mitochondrial glycerophosphate dehydrogenase (mGPDH) in a redox-dependent manner 

(Madiraju et al., 2014, Madiraju et al., 2018). This mechanism has been challenged because (i) 

the contribution of the glycerophosphate shuttle to control the cytoplasmic redox state is 

considered to be low relative to the malate-aspartate shuttle in liver compared with other tissues 

(Baur and Birnbaum, 2014, Mracek et al., 2013) and (ii) metformin had no effect on 

gluconeogenesis in the liver perfused with lactate at low therapeutic doses (Calza et al., 2018). 

The second mechanism by Hunter and colleagues (2018) reported that metformin lowered 

gluconeogenesis by inhibition of the rate-limiting gluconeogenic enzyme fructose 1,6-

bisphosphatase-1 (FBP-1) as a result of increasing liver AMP concentration (Hunter et al., 
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2018). Evidence for this was provided from studies in vivo using a knock-in mouse model for 

a variant of FBP-1 that is insensitive to AMP. This thesis aimed to identify the mechanisms 

involved in the inhibition of gluconeogenesis at the lowest effective concentrations of 

metformin that result in cellular accumulation in hepatocytes to levels of 1-2nmol/ mg 

hepatocytes protein (Al-Oanzi et al., 2017), this corresponds to hepatic accumulation in mice 

treated with a dose of 50 mg/kg, which is considered the equivalent of the therapeutic range.  

 

 

5.1.1 Inhibition of gluconeogenesis by low metformin cannot be explained by inhibition 

of complex 1  

The first molecular mechanism proposed for the acute inhibition of gluconeogenesis by 

metformin was by inhibition of complex 1 (El-Mir et al., 2000, Owen et al., 2000), the first 

complex in the respiratory chain (NADH:ubiquinone oxidoreductase). This was based on 

evidence for a more reduced mitochondrial NADH / NAD ratio redox state from the increase 

in 3-hydroxybutyrate to acetoacetate ratio in vivo and in vitro  and studies on intact 

mitochondria (Bridges et al., 2014, El-Mir et al., 2000, Owen et al., 2000) and also from studies 

on purified complex 1, demonstrating a direct inhibitory effect of metformin at the ubiquinone 

site (Bridges et al., 2014). The more reduced mitochondrial redox state caused by metformin 

was associated with increase in the lactate to pyruvate ratio indicating a more reduced 

cytoplasmic redox state (increase NADH / NAD ratio) (El-Mir et al., 2000). The above studies 

that showed a more reduced mitochondrial redox state had used higher metformin 

concentrations (> 100 mg/kg) than are considered equivalent to the therapeutic dose (50 mg 

per kg) (Al-Oanzi et al., 2017, Wilcock and Bailey, 1994). Madiraju and colleagues were the 

first to report that metformin concentrations relevant to the therapeutic dose are associated with 

a more reduced cytoplasmic redox state as reported previously but also with a more oxidised 

mitochondrial redox state (Madiraju et al., 2014). On this basis they proposed that metformin 

inhibits the transfer of reducing equivalents from the cytoplasm to mitochondria.   

In agreement with the previous studies, the current study showed that with high metformin 

concentration 500µM (> 5 nmol/ mg protein) like rotenone, an inhibitor of complex 1, cause a 

more reduced mitochondrial (increase NADH / NAD+ ratio) redox state in hepatocytes (El-Mir 

et al., 2000, Gouaref et al., 2017, Owen et al., 2000). This can be explained by inhibition of 

complex 1 by metformin at cell loads (> 5 nmol/ mg protein). The rate of total 3-

hydroxybutyrate plus acetoacetate production was decreased with 500µM metformin and by 
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rotenone. This is explained by inhibition of β-oxidation by the increase in mitochondrial 

NADH/NAD ratio as supported by the stimulation with the uncoupler which causes a more 

oxidised mitochondrial NADH/NAD.  

This thesis is the first to show  that metformin tested over a range of concentrations in isolated 

hepatocytes has a biphasic effect on the mitochondrial redox state, causing a more oxidised 

redox state at an extracellular concentration of 100µM for 4h which results in cellular 

accumulation to relevant therapeutic concentrations (1-2nmol/ mg protein) (Al-Oanzi et al., 

2017, Wilcock and Bailey, 1994) but a more reduced NADH/NAD state at concentrations  ≥ 

500uM  which result in cellular loads ≥ 5nmol/mg. This suggests that the association of low 

metformin with a more oxidised redox state reported  in recent studies  in vivo in liver and 

kidney with 50mg/kg metformin (Madiraju et al., 2014, Madiraju et al., 2018, Qi et al., 2018) 

can be explained by a direct effect of metformin on the hepatocyte. A recent study in intact 

mitochondria showed that metformin unlike other diguanides caused NADH oxidation and 

proposed that metformin uncouples redox and proton transfer domains by complex 1 (Cameron 

et al., 2018). Other studies have reported that metformin causes mitochondrial depolarization 

(Dykens et al., 2008). Various mechanisms can therefore be proposed for the effect of low 

metformin on the decrease in NADH/NAD ratio.  

 The more oxidised mitochondrial (decrease in NADH / NAD+ ratio) redox state by metformin 

(100µM) was associated with an increase in ketone body (3-hydroxybutyrate plus acetoacetate) 

production. These results implicate that inhibition of complex 1 cannot be the plausible 

explanation of inhibition for gluconeogenesis by low metformin (100µM) as proposed by 

Owen and colleagues (Owen et al., 2000) because inhibition of complex 1 associated with a 

more reduced mitochondrial (NADH / NAD) redox state. Bridges and colleagues (2014) 

reported that metformin interacts with at least two sites on complex 1, the flavin site and the 

ubiquinone site. The NADH oxidation, the first reaction of complex 1, was increased by 

metformin in the presence of an artificial electron acceptor FeCN, while metformin inhibits the 

ubiquinone reduction in a mechanism similar (but reversible) to the canonical complex 1 

inhibitors (rotenone) (Bridges et al., 2014), similar results were also reported by Cameron and 

colleagues (Cameron et al., 2018). The explanation of accelerating of NADH oxidation by low 

metformin binding at the flavin site to cause a more oxidised (decrease NADH to NAD ratio) 

mitochondrial redox state is unlikely because the rate of NADH oxidation is far higher at the 

flavin site than for ubiquinone reduction (Hirst, 2013). Moreover, the more oxidised 

mitochondrial redox state by low metformin 100µM concentration was associated with a more 
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reduced cytosolic (increase NADH / NAD+ ratio) redox state based on increased in the lactate 

to pyruvate ratio. The increase in the lactate to pyruvate ratio is probably the most widely 

documented effect of metformin in vivo (Madiraju et al., 2014, Madiraju et al., 2018, Qi et al., 

2018, Owen et al., 2000) and in vitro (Argaud et al., 1993, El-Mir et al., 2000, Gouaref et al., 

2017, Owen et al., 2000). The effect of high metformin causing a more reduced cytoplasmic 

(increase NADH / NAD ratio) redox state was attributed to inhibition of complex 1 and thereby 

the respiratory chain as proposed by El-Mir et al. (El-Mir et al., 2000). However, the more 

reduced cytoplasmic (increase NADH / NAD+ ratio) redox state by low 100µM metformin 

cannot be explained by inhibition of complex 1 (because of the more oxidised mitochondrial 

redox state causes by low 100µM metformin). Some possible explanations for the more 

oxidised mitochondrial NADH / NAD+ redox state and the more reduced cytoplasmic NADH 

/ NAD redox state by 100µM metformin: are (i) A direct effect of metformin on the 

mitochondrial membrane or metformin accumulation in mitochondria causing mitochondrial 

depolarisation (ii) Inhibition of the malate-aspartate shuttle by attenuation of the electrogenic 

transport of the malate-aspartate shuttle (MAS) (Schafer, 1976, Owen et al., 2000, Davis et al., 

1980, LaNoue et al., 1974) (Berry et al., 1992, Sibille et al., 1995). (iii) Inhibition of the 

glycerophosphate shuttle as proposed by Madiraju and colleagues (Madiraju et al., 2014, 

Madiraju et al., 2018).  

 

5.1.2 The AMPK activator A-769662 does not mimic the effect of metformin on 

gluconeogenesis  

As discussed in the introduction several studies provided evidence for AMPK activation 

causing suppression of gluconeogenic gene expression (G6Pc and PEPCK). In some of these 

studies inhibition of gluconeogenesis by short-term (2-4 hours) metformin treatment was also 

suggested to occur through an AMPK dependent mechanism (Cao et al., 2014, Kim et al., 2008, 

Lee et al., 2010). The mechanism by which metformin inhibited glucose production through 

activation the cellular energy sensor AMP-activated protein kinase (AMPK) as proposed 

previously by Zhou and colleagues (Zhou et al., 2001) has been challenged by Foretz and 

colleagues using hepatocytes from mice lacking AMPK or its upstream LKB-1and the 

inhibitory effect of metformin was explained by the decrease in hepatic energy state (ATP to 

AMP and ATP to ADP ratios) independent on AMPK. In the study by Foretz and colleagues 

they reported that metformin inhibited glucose production and also suppressed the G6Pc 

mRNA in wild-type and AMPK deficient mice (Foretz et al., 2010).  
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In the present study significant activation of AMPK, based on increased phosphorylation of 

ACC-P, the AMPK substrate, was only observed at high concentrations of metformin (≥ 500 

µM) that caused inhibition of Complex 1 as shown by the increase in the ratio of 3-

hydroxybutyrate to acetoacetate and not at low concentrations of metformin (100µM) that had 

the opposite effect on the mitochondrial redox state. In incubations with octanoate which itself 

causes activation of AMPK, a decrease in ACC-P was observed with the low concentration of 

metformin. The present findings concur with the proposal of Madiraju et al, that at the lowest 

doses of metformin that have been used in vivo (20-50 mg/ kg body wt) activation of AMPK 

is not observed. Although the failure of the present studies to identify activation of AMPK by 

100 µM with the present substrate conditions cannot firmly exclude the possibility that low 

concentrations of metformin may activate AMPK in other substrate conditions, the experiments 

with A-769662 which activates AMPK but does not inhibit gluconeogenesis or lower G6P, is 

supporting evidence against a role for AMPK in causing inhibition of gluconeogenesis. 

Furthermore, it can be proposed that also at high metformin (500 µM) which causes activation 

of AMPK, the inhibition of gluconeogenesis cannot be explained by activation of AMPK, 

because of the failure of a direct AMPK activator to inhibit gluconeogenesis.    

Although studies with AMPK deficient hepatocytes are generally required to demonstrate 

unequivocally that a mechanism is AMPK independent (Foretz et al., 2010), the present finding 

that low concentrations of metformin (100 µM) that inhibit gluconeogenesis and lower G6P 

also cause lowering of G6Pc suggests that the same metformin mechanism that lowers G6P 

and is not mimicked by an AMPK activator may also be involved in the repression of G6pc, 

because this gene is known to be strongly induced by intermediates of glucose metabolism 

through the transcription factor ChREBP (Arden et al., 2011) (Arden et al., 2012). 

 

5.1.3 Inhibition of mGPDH does not mimic the effect of low metformin  

Madiraju and colleagues proposed that the more oxidised mitochondrial NADH/NAD redox 

state and more reduced cytoplasmic NADH/NAD redox state caused by low metformin 

(100µM) can be explained by inhibition of mGPDH and thereby the GPS which transfers 

NADH from the cytoplasm to mitochondria (Madiraju et al., 2014, Madiraju et al., 2018).  

In this study we showed that inhibition of mGPDH by Gpi mimics the effect of low metformin 

(100µM) on the mitochondrial redox state and cytoplasmic redox state. This concurs with the 

suggestion by Madiraju and colleagues (2014) that inhibition of the GPS could explain the 
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effects of metformin on the redox state in both mitochondria and cytoplasm. However, in this 

study the Gpi unlike metformin did not inhibit glucose production from the gluconeogenic 

substrates and it caused an increase in G3P which contrasts with the decrease caused by low 

metformin in the presence of gluconeogenic substrates. Moreover, overexpression of mGPDH 

had opposite effect on the mitochondrial redox state (a more reduced; increase NADH to NAD 

ratio), and it markedly lowered cell G3P and also G6P. In addition overexpression of mGPDH 

also favoured glycolysis rather than gluconeogenesis from oxidised and reduced substrates with 

variable effect on the lactate to pyruvate ratio depending on the substrates. These results 

indicated that inhibition of gluconeogenesis by metformin is mimicked by overexpression 

rather than inhibition of mGPDH.  

5.1.4 Mitochondrial depolarization may explain the effect of metformin on 

gluconeogenesis     

The other shuttle responsible for transfer of NADH is the MAS. Like 100µM metformin, 

inhibition of the MAS by aminooxyacetate (200µM AOA) increased the lactate to pyruvate 

ratio, as expected (Berry et al., 1994). This increase in the lactate to pyruvate ratio was 

associated with an increase in cell G3P without affecting the mitochondrial redox state. 

Inhibition of the MAS by AOA was associated with inhibition of total metabolism of reduced 

substrates (xylitol and glycerol). Although metformin caused a small increase in the lactate to 

pyruvate ratio it did not cause inhibition of total xylitol metabolism and it lowered rather than 

raised G3P. Flux through the MAS involves an electrogenic transporter for aspartate and is 

highly dependent on mitochondrial membrane potential (Wang et al., 2015). A possible 

explanation for the small increase in the lactate to pyruvate ratio caused by metformin is that it 

results from mitochondrial depolarisation as reported by others (Dykens et al., 2008) resulting 

in modest inhibition of the MAS through attenuation of the electrogenic aspartate transport 

(Berry et al., 1992, Davis et al., 1980, LaNoue et al., 1974, Sibille et al., 1995). As discussed 

above the most plausible explanation for a more oxidised mitochondrial redox state would be 

either depolarizing the mitochondrial membrane due to metformin accumulation in 

mitochondria, or to uncoupling of proton transport as suggested by Cameron and colleagues 

(Cameron et al., 2018). Uncoupling the mitochondrial membrane by DNP (20µM) like 

metformin (100µM) caused a more oxidised mitochondrial redox state and lowered the rate of 

glucose production and also cell G6P and G3P. These findings support the role of 

depolarisation of mitochondrial membrane by metformin as a possible explanation for the 

inhibition of the MAS, which is dependent on electrogenic transport (Sibille et al., 1995, Sibille 
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et al., 1998). The lowering of G3P suggests that mitochondrial depolarization may favour 

increased flux through the GPS and inhibition of gluconeogenesis by preferential  partitioning 

towards glycolysis which is favoured by increased flux through GPS possibly through the 

decrease in G3P which is a potent inhibitor of PFK-1 (Hers and Hue, 1983).  

5.1.5 The metformin effect on glycolysis and gluconeogenesis is at least in part by selective 

targeting of PFK-1 by lowering of G3P   

Fructose 2,6-bisphosphate was discovered through a search for the mechanism by which 

glucagon regulates glycolysis and gluconeogenesis in liver. It is one of several allosteric 

regulators of PFK-1 and FBP-1 and has a major role in metabolic conditions linked to changes 

in cAMP because phosphorylation of PFK-2/FBP-2 by c-AMP dependent protein kinase 

inhibits the kinase but not the bisphosphatase activity of PFK-2/FBP-2 causing acute depletion 

of fructose 2,6-bisphosphate (Van Schaftingen and Hers, 1981, Yamada et al., 2008). However 

it does not have a role in the stimulation of glycolysis by anoxia, indicating that the other 

allosteric effectors of PFK-1 and FBP-2 can also have a major physiological role (Hue, 1982). 

The inhibition of gluconeogenesis by AICAR has been shown to be due to inhibition of FBP1 

by an AMP-mimetic mechanism (Vincent et al., 1991). Recent work by Hunter et al (2018) 

also provided evidence for a role of inhibition of FBP1 by metformin through an AMP-mimetic 

mechanism. This was supported by evidence that the metformin effect on blood glucose is 

attenuated in a knock-in mouse model expressing a variant form of FBP1 that is insensitive to 

AMP (Hunter et al., 2018). We show in this study that selective targeting of the PFK-1/FBP-1 

site by depletion of fructose 2,6-bisphosphate had large effects on metabolism of DHA by 

glycolysis and gluconeogenesis. This is consistent with earlier studies that showed that 

regulation of both glycolysis and gluconeogenesis resides predominantly at the PFK-1/FBP-1 

site. We also found large effects on glycolysis and gluconeogenesis with a selective inhibitor 

of PFK-1 that mimics citrate inhibition. This inhibitor blocked the metformin effect on glucose 

production and on cell G6P. Targeting the PFK-1/FBP-1 site seems the most likely site of 

action of low metformin on the partitioning of flux between glycolysis and gluconeogenesis. 

G3P was identified as an inhibitor of PFK-1 by Claus and colleagues (Claus et al., 1984). In 

this study we identify, G3P as one candidate allosteric effector of PFK-1 that can be involved 

in the increased partitioning of DHA towards glycolysis as opposed to gluconeogenesis. The 

present study demonstrates probably for the first time the major role of mGPDH in regulating 

the hepatocyte content of G3P. We propose that the stimulation of glycolysis and inhibition of 
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gluconeogenesis by overexpression of mGPDH is consistent with the hypothesis that G3P has 

a potential major role in regulating PFK1.   
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5.2 Summary 

To summarise, this thesis reports for the first time that metformin has a direct biphasic effect 

on the mitochondrial redox state. A low cell dose of metformin (therapeutic equivalent:  

2nmol / mg) caused a more oxidised mitochondrial NADH / NAD state and an increase in the 

lactate / pyruvate ratio in isolated hepatocytes, whereas a higher metformin dose (5nmol / mg) 

caused a more reduced mitochondrial NADH / NAD state similar to Complex 1 inhibition by 

rotenone. The low metformin dose inhibited gluconeogenesis from both oxidised 

(dihydroxyacetone) and reduced (xylitol) substrates by preferential partitioning of substrate 

towards glycolysis by a redox-independent mechanism that is best explained by allosteric 

regulation at phospho-fructokinase-1 (PFK1) and/or fructose bisphosphatase-1 (FBP-1) in 

association with a decrease in cell glycerol 3-P, an inhibitor of PFK1 and other potential 

allosteric effectors for example raised AMP rather than by inhibition of transfer of reducing 

equivalents. At a low pharmacological load, the metformin effects on the lactate / pyruvate 

ratio and glucose production are explained by attenuation of transmitochondrial electrogenic 

transport mechanisms with consequent compromised the malate-aspartate shuttle and changes 

in allosteric effectors of PFK1 and FBP1. 

This study also demonstrates that low concentrations of metformin and also overexpression of 

mGPDH attenuates expression of G6Pc. The effects of metformin on gene expression and 

lowering of cell G3P in conditions of raised the lactate to pyruvate ratio may result from 

increased flux through the GPS in conditions of impaired the MAS flux because of 

mitochondrial depolarisation. This thesis demonstrates also for the first time that increased flux 

through the GPS mimics the effects of low metformin on both metabolic flux and on control 

of G6pc gene expression, which is one of the gluconeogenic genes that is regulated by 

metformin through an AMPK independent mechanism (Foretz et al., 2010). 
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