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ABSTRACT 

Partial Least Squares (PLS) has been shown to be a versatile regression technique with an 

increasing number of applications in the areas of process control, process monitoring and 

process analysis. This Thesis considers the area of nonlinear PLS; a nonlinear projection based 

regression technique. The nonlinearity is introduced as a univariate nonlinear function between 

projections, or to be more specific, linear combinations of the predictor and the response 

variables. As for the linear case, the method should handle multicollinearity, underdetermined 

and noisy systems. Although linear PLS is accepted as an empirical regression method, none of 

the published nonlinear PLS algorithms have achieved widespread acceptance. This is 

confirmed from a literature survey where few real applications of the methodology were found. 

This Thesis investigates two nonlinear PLS methodologies, in particular focusing on their 

limitations. Based on these studies, two nonlinear PLS algorithms are proposed. 

In the first of the two existing approaches investigated, the projections are updated by applying 

an optimization method to reduce the error of the nonlinear inner mapping. This ensures that the 

error introduced by the nonlinear inner mapping is minimized. However, the procedure is 

limited as a consequence of problems with the nonlinear optimisation. A new algorithm, Nested 

PLS (NPLS), is developed to address these issues. In particular, a separate inner PLS is used to 

update the projections. The NPLS algorithm is shown to outperform existing algorithms for a 

wide range of regression problems and has the potential to become a more widely accepted 

nonlinear PLS algorithm than those currently reported in the literature. 

In the second of the existing approaches, the projections are identified by examining each 

variable independently, as opposed to minimizing the error of the nonlinear inner mapping 

directly. Although the approach does not necessary identify the underlying functional 

relationship, the problems of overfitting and other problems associated with optimization are 

reduced. Since the underlying functional relationship may not be established accurately, the 

reliability of the nonlinear inner mapping will be reduced. To address this problem a new 

algorithm, the Reciprocal Variance PLS (RVPLS), is proposed. Compared with established 

methodology, RVPLS focus more on finding the underlying structure, thus reducing the 

difficulty of finding an appropriate inner mapping. RVPLS is shown to perform well for a 

number of applications, but does not have the wide-ranging performance of Nested PLS. 
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Francis Bacon (1561-1616) 

If we begin with certainties, we shall end in doubts; 

but if we begin with doubts, and are patient in them, 

we shall end in certainties. 
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NOTATION 

Conventions 

Y Response variables or quality variables 
X Predictor variables 
W (V) Weight matrix, W= [w1 ""WA], (V weights for inner PLS) 

Q (G) Y loading matrix, Q= [q 1 ... qA (G loadings for inner PLS) 

P (H) X loading matrix, P= [pl """ pA ], (H loadings for inner PLS) 

T (S) X score matrix, T= [t1 ... to ], where t=X jw j, (S for inner PLS) 
U (R) Y score matrix, U= [u1 """ uA] where u= Yjq j (R for inner PLS) 
ü Nonlinear function ü =At), where 11 u-ü II is minimized 
ß (ß) Regression vector (estimate) 

B (B) Regression matrix (estimate) 

A Matrix of eigenvalues A= diag(Aj ) 

rr= T/norm(T) the normalized score vectors 

E Matrix of singular values E= diag(. 1 ) 

0 Weight matrix SZ = ['u1 """v] in weighted least squares 
CT Intermediate regression coefficient for the score matrix T 

E Error matrix, E= [el """ eA ] 

J Jacobian, matrix of partial derivatives from a l'` order Taylor series expansion 
i Index, for the number of observation (row) 
k Index, for the number of variable (column) 
j( Q) Index, for the number of latent variables (P applied for the inner PLS) 

I Index, for the number of iterations 

A Total number of latent variables retained in the model. 

r Rank of the matrix 
fit, y, A Lagrange multipliers 

Eigenvalue 

Singular value or the standard deviation 

yi Ridge constant in Ridge Regression 

v Scaling constant in RVPLS 

s Sign (-1 or 1). 

p Polynomial degree. 
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Abbreviations 
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CART 
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CV 
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NN 

NP 
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NW 
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PRESS 
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RMSE 
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RMSECV 

Akaike's Information Criterion 

Alternating Conditional Expectation 
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Bi-Linear Modelling (PCR, PLS etc) 

Classification and Regression Trees 

Canonical Correlation Analysis 

Constrained Least Squares 

Cross Validation 

Error Based Partial Least Squares 

Error Based Weight Updating 

Feed Forward Network 

Generalized Additive Methods 

Generalized Least Squares 

Gauss-Newton 
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Multivariate Adaptive Regression Splines 

Multiple Linear Regression 

Multiple Signal Correction 
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Nonlinear Iterative Partial Least Squares 

Neural Network 

Nonparametric 

Nested Partial Least Squares 
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Principal Component Analysis 
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Radial Basis Function Network 
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Root Mean Square Error of Calibration 

Root Mean Square Error of Cross Validation 



RMSEP Root Mean Square Error of Prediction 

RR Ridge Regression 

RVPLS Reciprocal Variance Partial Least Squares 

SD Steepest Descent 

SDPLS Steepest Descent Partial Least Squares 

SMART Smooth Multiple Additive Regression Technique (same as PPR) 

SMLR Stepwise Multiple Linear Regression 

SIMPLS Simple Partial Least Squares 

SPLS Spline Partial Least Squares 

SVD Singular Value Decomposition (X =tE pT) 

TLS Total Least Squares 
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CHAPTER I 

INTRODUCTION 

1.1 Background 

Although phenomenological models have significant advantages over empirical models in that 

they provide deeper process understanding, there is increasing demand for the empirical 

modelling of industrial processes in the areas of process control, process monitoring and process 

analysis. In pursuit of competitiveness, the need to control the process has resulted in the 

introduction of new instrumentation, increased use of historical data, and the need for 

continuous improvement of the process. Simultaneously, the products being manufactured are 

under constant development and new products are regularly being introduced to ensure market 

retention. In some areas of industry, due to the demanding and time-consuming task of 

constructing mechanistic models, there is a trend towards supplementing existing mechanistic 

models or replacing them by empirical models. In particular, for some complex processes 

where the development of rigorous theoretical models may not be practical, empirical data 

based modelling is a widely used alternative, since data based models can capture the 

underlying fundamental model without detailed process knowledge. However, a basic 

understanding of the process is still essential both to construct and validate the empirical 

models. Finally, the introduction of data intensive methods in the area of process analysis, e. g. 

on-line spectroscopy, has increased the need for multivariate statistical modelling. 

Multivariate statistical regression techniques provide one family of tools for the empirical 

modelling of manufacturing processes. The key to the success of empirical modelling is to 

obtain a model that describes the underlying behaviour of the process sufficiently well to be fit 

for purpose. Recent developments in process instrumentation has resulted in situations where 

models based on least squares methodologies can lead to singular solutions and imprecise 

parameter estimation, due to there being more variables than observations or the presence of 

multicollinearity between the variables. These limitations can be overcome by applying 

multivariate statistical projection based techniques such as Principal Component Regression 

(PCR) or Partial Least Squares Regression (PLSR). These two techniques can handle both 

underdetermined (fewer observations than variables) data sets and collinearity amongst the 

variables, by capturing the underlying structure in the data in terms of a limited number of 

principal components or latent variables, which are linear combinations of the original variables. 



The models are then constructed from the orthogonal latent variables using ordinary least 

squares, since both the dimensionality and multicollinearity problems have been addressed. 

In PCR the latent variable model is developed based on Principal Component Analysis (PCA), 

such that each set of latent variables captures the maximum amount of predictor variance. In 

PLSR, the latent variables are calculated as a compromise between the variance explained by 

the predictor and the response variables. In doing so, each pair of latent variables 

simultaneously models the predictor and response variable space, thereby a common latent 

variable space is found that is less affected by noise. 

The industrial necessity for empirical modelling requires new methodologies to be developed 

that are capable of being applied across a wide range of process plants and products. Although 

most industrial applications can be solved using linear regression models, the presence Of 

nonlinearity in chemical processes has resulted in the development of nonlinear regression 

methods. In particular, there is a need for a universal method that can handle both the 

dimensionality and the multicollinearity problem and that is capable of fitting any nonlinear 

structure that may occur in practice. For example, there has been an increase in the use of 

spectroscopic measurements in industry. The resulting spectral data typically comprises a large 

number of variables that are collinear. Furthermore, it can exhibit nonlinear behaviour as a 

result of. 

(i) Violations of the Beer-Lambert law. 

(ii) Detector nonlinearities. 

(iii) Stray light. 

(iv) Nonlinearities in diffuse reflectance/transmittance. 

(v) Chemically based nonlinearities. 

(vi) Nonlinearities in the property/concentration relationship. 

One nonlinear method that has been used with some success in industry, is the combination of 

PCA and Neural Networks (NN) (Kurtanjek (1995), De Vena et al. (1995), Turner et al. (1996) 

and Lennox et al. (2001)). However, if the response variance does not correspond to the major 

latent variables found using PCA, then the method will not be satisfactory. An alternative 

approach is the extension of the linear Partial Least Squares algorithm to nonlinear PLS. 

The first general nonlinear PLS algorithm, reported by Wold et al. (1989), used Steepest 

Descent (SD) optimisation to update the projection parameters of the PLS model. Although a 
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quadratic polynomial expansion defined the nonlinear function that was introduced between 

each pair of latent variables, the updating procedure was independent of the choice of the 

nonlinear mapping. The algorithm, renamed Steepest Descent PLS (SDPLS) was investigated 

by Baffi et al. (1999a) and the steepest descent optimisation was replaced by Gauss-Newton 

(GN). This Error Based Weight Updating (EBWU) procedure was first reported using a 

quadratic polynomial expansion (Baffi et al., 1999a) and later using a Radial Basis Function 

Network (RBFN) or a sigmoid function as the inner nonlinear mapping (Baffi et al., 1999b). 

Once more, the method was not constrained in terms of the form of the nonlinear mapping. This 

algorithm is denoted Error Based PLS (EBPLS). 

A limitation of the SDPLS algorithm is that it does not use any covariance information in 

constructing the weight updating vector. Thus, SDPLS is subjected to convergence problems 

associated with local minima, but is less likely to result in overfitting. For the EBPLS algorithm, 

that uses the covariance information, the problem is the opposite. Consequently, overfitting is 

likely for underdetermined, multicollinear or noisy data sets but convergence is generally 

achieved. 

In this Thesis a new development is proposed, which combines these two methods, Nested PLS 

(NPLS). The NPLS algorithm resolves the same optimization problem as defined in SDPLS 

and EBPLS, by incorporating a separate inner PLS algorithm where the number of latent 

variables is determined using cross validation. The advantage of this approach is that the 

multicollinear problem of the EBWU procedure is removed, whilst the convergence problem of 

the steepest descent method is addressed. The multicollinear problems arise as a consequence of 

the matrix inverse being used in the EBWU procedure, whilst the convergence problem is 

associated with local minima. In particular, the steepest decent method is a local minimization 

algorithm, with no mechanism that allows it to escape the influence of a local minimum 

(Morris, 1993). SDPLS, EBPLS and NPLS are subject to the typical problems associated with 

nonlinear optimisation and the difference in performance between the procedures is associated 

with how the different optimisation challenges are handled, in particular the multicollinear 

problem, the termination criteria and the problem of local minima. 

The second general nonlinear PLS algorithm was described by Wold et al. (1992). In this 

algorithm, the covariance criterion of linear Partial Least Squares was generalized to include the 

nonlinear case. The algorithm was termed Spline PLS (SPLS), since a spline function is used to 

capture the process nonlinearity. Again, the updating procedure is independent of the choice of 

the nonlinear mapping. This method is similar in concept to linear PLS and is not directly an 
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optimisation method. Based on the framework of Spline PLS, but focusing on the problem of 

identifying the nonlinear function between each pair of latent variables, a new criterion is 

proposed. It is termed the reciprocal error variance criterion and originates from the idea of the 

weighted average. As for the covariance criterion, it estimates each weight by independently 

assessing the capability of the actual predictor variable, thus eliminating the problem of 

dimensionality and collinearity. It gives greater weight to the more important variables. Since 

the Reciprocal Variance PLS (RVPLS) approach focuses on explaining the response variance 

only, it identifies the inner mapping better than when the covariance criterion is used, thereby 

reducing the error of the nonlinear mapping. The improvement in the performance of RVPLS 

over SPLS depends on the data set, however generally the performance increases with increased 

levels of multicollinearity of the predictor matrix. 

Fitting a nonlinear function increases the risk of overfitting, and in particular the final model 

will be less parsimonious than any linear model if it involves several latent variables. Whereas 

the linear model of one response variable can always be represented by a single linear 

combination, the regression coefficient vector, this may not be the case for the nonlinear 

extension of PLS if the number of latent variables is larger than unity. The aim of any nonlinear 

PLS algorithm is therefore to minimize the number of latent variables, thus decreasing the 

number of nonlinear functions fitted. Consider a pair of latent variables, the latent variables in 

the pair being linear combinations of the predictor and response variables, respectively. The 

more closely the pair of latent variables capture the true underlying nonlinearity in the data, the 

less the estimated inner mapping will be subject to a fitting error. Since this error will be present 

in the residual responses, it will influence the models of subsequent pairs of latent variables. 

In the optimisation approach that defines the first nonlinear PLS framework (Wold et al., 1989), 

the error from fitting a nonlinear function is reduced by selecting this error as the objective 
function to be minimized. An iterative procedure is used to minimize the objective function and 

the aim is to obtain a pair of latent variables that describe the underlying structure with as small 

an error as possible, through the nonlinear function fitted between the pair of latent variables. 

In the second approach that includes SPLS and RVPLS, the focus is not on minimizing the error 

of the inner mapping as in the optimization approach, but is based on estimating the linear 

combinations by assigning each variable a weight by independently calculating the capability of 

the actual predictor variable. For SPLS, this capability is estimated from the covariance between 

the response and the given predictor variable, whilst for RVPLS the capability is defined from 

the inverse of the variance of the residual of a model between the given predictor variable and 
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the response. Thus this approach does not use the covariance structure when constructing the 

weights and generally requires a larger number of latent variables. Consequently, the underlying 

structure may not be accurately identified when the covariance structure between the predictor 

variables is complex, resulting in greater difficulties in terms of estimating the inner mapping. 
Whilst SPLS gives the same significance to both the response and predictor variables when 

constructing each pair of latent variable, RVPLS models the response variance only. As a result 

the RVPLS algorithm identifies the underlying structure more accurately than the SPLS method 

and the nonlinear function becomes easier to identify due to a higher signal to noise ratio. 

1.2 Objectives of the Thesis 

The main objective of this Thesis was to address issues concerning the existing nonlinear PLS 

methodologies and to propose enhancements. The two central issues were the estimation of the 

weights in nonlinear PLS and the use of nonlinear functions to model the inner relationship of 

the latent variable space. The methodology for constructing the weight vectors of the latent 

variables will strongly influence the final model. Methods for estimating univariate nonlinear 

mapping are well known and will not influence the performance of the nonlinear PLS methods 

as much as methods for identifying an appropriate weight vector. Thus, the main focus of the 

Thesis is on the estimation of the weight vectors. In particular the weight updating approaches 

of Wold et al. (1989) and Baffi et al. (1999a, b) and the weighting methodology reported by 

Wold (1992) are studied, and two new algorithms are proposed. 

1.3 Contributions of the Thesis 

The main contributions of the Thesis are in the area of nonlinear PLS. In particular, the 

motivation comes from how to find the best projection of the predictor variables, as defined by 

the weight vector. Based on the issues identified from the existing methods, two new procedures 

for estimating the weight vector in nonlinear PLS are proposed. In addition, the effect of 

introducing a nonlinear function in the latent variable space was investigated. Different methods 

for selecting the nonlinear mapping of the inner space are investigated. These were both 

parametric methods including polynomial least squares, and nonparametric methods such as 

smoothing spline and kernel regression. Finally, a comparison between different nonlinear PLS 

approaches is presented where the issues concerning the different methodologies are discussed. 
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1.3.1 Chapter 2 

This chapter describes the theoretical background to the Thesis, and is based on what has 

previously been published in the literature. One exception is the calculation of the analytical 
derivative for local linear kernel regression, since this is required for the optimisation updating 

procedure used in the first nonlinear PLS framework (SDPLS, EBPLS and NPLS). A second 

contribution is the comparison of different nonlinear univariate mapping functions. Although 

the literature survey is predominately undertaken in this chapter, subsequent chapters provide 

their own introductions along with appropriate references. 

1.3.2 Chapter 3 

Chapter 3 contains the main contributions of the Thesis, in particular the introduction of two 

new methods for determining the weight vector in nonlinear PLS. 

The first contribution, Nested Partial Least Squares, was developed based on the work of Wold 

et al. (1989) and Baffi et al. (1999a, b). The Nested PLS method captures the best features of 

the two methods with both being special cases. It is believed that the Nested PLS algorithm 

represents an important contribution in the area of nonlinear PLS since it demonstrates good 

performance when applied to a wide range of regression problems, Chapters 4 and 5. It 

addresses the multicollinearity problem of the Error Based PLS algorithm of Baffi et al. (1999a) 

and reduces the problem of local minima experienced when using Steepest Descent PLS (Wold 

et al. 1989). Furthermore, the following issues are investigated; the starting vector, the 

termination criterion, and the effect of introducing an error as a result of the nonlinear function 

fitted in the inner relationship. 

The second contribution, Reciprocal Variance Partial Least Squares (RVPLS) was developed 

from Spline PLS (SPLS) (Wold, 1992). This algorithm focuses on finding an inner mapping 

whereby the number of latent variables required for constructing the model is reduced, 

compared to SPLS. This methodology does not have the performance potential of Nested PLS 

as the covariance information is not used in the construction of the latent variables, but could be 

an appropriate choice when modelling multicollinear data sets where a simple relationship exists 

with the predictor matrix. The idea of using the reciprocal variance within a PLS framework, 

including both the linear and nonlinear case, is novel and may find specific industrial 

applications. Moreover, RVPLS has the potential to be used for acquiring an improved starting 

vector for Nested PLS. 
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1.3.3 Chapter 4 

The contribution of Chapter 4 is a comparison between the different methods. Three data sets 
from different industrial applications form the basis of the study. These are two 

underdetermined data sets based on spectroscopy measurements and one overdetermined data 

set formed from process variables. The algorithms are compared in detail for these data sets. In 

particular, the effect of different starting and stopping criteria are investigated for the 

optimization based approaches. Finally, the impact of group size in cross validation when 

applied in the inner PLS loop of the NPLS algorithm is examined. In addition, the prediction 

results from seven additional data sets, included in Appendix Al, are discussed 

1.3.4 Chapter 5 

The contribution of Chapter 5 arises from the summary of the performance of ten independent 

data sets including the three data sets investigated in Chapter 4. The performance is primarily 

quantified in terms of as the Root Mean Squared Error of Prediction (RMSEP). The various data 

sets demonstrate different issues regarding the performance of the algorithms. From these data 

sets it is possible to draw a number of conclusions about the general performance of the 

methods. 

1.4 Layout of the Thesis 

A general introduction has been presented in Chapter 1. In Chapter 2, the scientific areas of 

interest are presented, and a general overview of a number of regression methods is provided. 
The Chapter is divided into two parts, linear modelling and nonlinear modelling. 

(i) For the linear modelling section, multiple linear regression, principal component 

regression and partial least squares (PLS) are described 

(ii) For the nonlinear modelling section, a number of the more commonly applied nonlinear 

methods are described. In particular, three nonlinear PLS algorithms are fully described. 

These are Steepest Descent PLS (Wold et al., 1989), Error Based PLS (Baffi et al., 

1999a, b) and Spline PLS (Wold, 1992). 

In addition, different univariate nonlinear regression methods are briefly discussed. Finally, the 

impact on the algorithm resulting from deviations between the inner mapping and the true 

underlying function is considered. 
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In Chapter 3, the two main contributions of this thesis are presented, i. e. Nested PLS and 

Reciprocal Variance PLS. They are compared theoretically with the algorithms on which they 

are formulated, and a number of important issues are discussed. 

The different nonlinear PLS approaches are then compared in detail in Chapter 4, using three 

different data sets. The data sets comprised both underdetermined and overdetermined data sets, 

with varying levels of correlation, collinearity and noise. A less detailed comparison of seven 

supplementary data sets is included in Appendix Al. The ten data sets are mainly drawn from 

industrial applications, but two simulations are also included to highlight different properties of 

the algorithms. 

In Chapter 5 the different methods are discussed and based on the discussion and the results 

from Chapter 4, conclusions about the performance of the different algorithms are drawn. 

Furthermore, suggestions for further work are made based on the ideas and work undertaken 

during the course of the Thesis. 



CHAPTER 2 

THEORETICAL BACKGROUND 

2.1 Introduction 

This chapter is divided into three parts. First, the fundamental basis of regression is discussed, 

focusing specifically on the linear regression techniques of multiple linear regression (MLR), 

ridge regression (RR), principal component regression (PCR) and partial least squares (PLS). 

The latter three methods handle the problem of highly correlated or collinear data. These 

methods are then extended to their nonlinear counterparts, nonlinear least squares, nonlinear 

PCR and nonlinear PLS. Finally, the modelling of univariate nonlinear relationships is briefly 

summarised. 

2.2 Multivariate Multiple Linear Modelling 

Multivariate multiple linear modelling is a statistical methodology for the prediction of values 

of one or more response variables from a number of predictor variables. It may also be used for 

assessing the effect of the predictor variables on the responses. In this chapter, multiple linear 

modelling of a single response is first discussed. This model is then generalized to handle the 

prediction of several dependent variables. A vast literature exists on the subject, for example 

Mardia et al. (1997) and Johnson and Wichem (1998). Attention in this chapter focuses on the 

underlying assumptions and their implications in the context of multicollinear problems, in 

addition to presenting an alternative reduced rank formulation of multivariate linear models, and 

its applicability in a number of situations. These scenarios include the impact of different ratios 

between the number of variables and observations (dimensionality), the amount of 

multicollinearity, the level of measurement noise, and the presence of unknown variables and 

noise distributions. 

Initially, attention is restricted to the standard multiple regression case, where m observations 

are recorded for a response variable y and n predictor variables, X. The aim is to model the 

dependence of y on X= [x1, %2, """, x�] . The objective for developing a model is varied. 

Reasons include the need to learn more about the process that determines y, to assess the 

relative contribution of each of the predictors in explaining y, or to infer future values of y using 

a new, previously unseen set of predictor variables. 
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2.2.1 Least Squares Regression Estimation 

In this section, the modelling of the relationship between a single response variable y and a 

single set of n predictor variables X= [x1, x2, """, x�] is considered. Assuming that a linear 

relationship exists between the response variable y (m x 1) and the predictor variables X (m x n), 
interest is in deriving a vector ß (n x 1) through least squares estimation: 

y=Xß + e, (2.1) 

where e is a (m x 1) vector of deviations (errors) of the observations from the model, measured 
in the direction of the y-axis. The objective of least squares regression is to determine ß such 

that some norm of the residual vector, e, is minimized. The use of the Euclidean norm to 

calculate ß is called ordinary least squares (OLS). Alternatively, the use of ß, obtained 

through the minimisation of the distances of the observed values of y from Xß , is termed Total 

Least Squares (TLS) (Van Huffel and Vandervalle, 1991). 

Consider the situation where the data matrix, X, is nonsingular, i. e. of full rank: 

(i) If m=n, then a general unique solution exists where ß= X-'y . 
(ii) If m <n, i. e. there are fewer equations than unknowns, the problem is underdetermined 

and hence more than one solution exists that satisfies y= XP. 

(iii) If m>n, i. e. there are more equations than unknowns, the problem is overdetermined 

and generally no exact solution to y= Xß exists. 

When using noise contaminated data to fit a linear model it is assumed in least squares 

regression that the system is overdetermined. Consequently, OLS minimizes the Euclidean 

norm of each regression model for an overdetermined system. The estimator becomes the 

regression vector ß that minimizes the inner product: 

(y-Xß)T(y-Xß)=m(y; 
_xTß)2 

ý_ý (2.2) 

By differentiating with respect to ß, the minimum of the square of this norm occurs at values of 

that satisfy the square system (the normal equations): 

XTXß = XTY 

whose solution is 

ýXTX)-1 XTY 

(2.3) 

(2.4) 



From Equation (2.2) that is visualized in Figure 2.1, the response y is projected onto range(X), 

the space defined by all possible linear combinations of the X variables. The (n x n) system of 

equations, known as the normal equations, is nonsingular if and only if X has full rank. 

Consequently the solution, ß, is unique if and only if X has full rank, i. e. the variables in X are 

linearly independent. From the normal equation it is observed that the residual vector e=y-y 

is orthogonal to each column in X, i. e. X1 (y -X ß) = 0, thus e lies in the space orthogonal to 

the range of X, denoted byrange(X)'. 

Figure 2.1. Formulation of the least squares problem in terms of orthogonal projections. 

Furthermore, if X is not of full rank, that is, if X has rank r<n, the least squares solution is not 

unique. Bearing in mind that OLS assumes that the rank r<m, where m is the number of 

observations, a general inverse may be found using the Moore-Penrose inverse. This is normally 

achieved through Gram-Schmidt orthogonalization or singular value decomposition (SVD), and 

results in X being reduced to a matrix of full rank. The resulting full rank matrix is an 

orthogonal basis for X, i. e. it is a matrix of latent variables that explain the variance in X. 

It is interesting to note that all linear latent variable orthogonalization methods discussed 

subsequently results in X being reduced to a matrix of full rank, but use different criteria. The 

fact that a matrix is not of full rank confirm that correlation exists between the X variables and 

thus the data set is said to be multicollinear. A low rank is often an indication of high level of 

collinearity (( IIXII /IIXIIF )2 > 0.5), but high level of collinearity can exist in a full rank matrix 

due to noise in the X matrix. 



2.2.1.1 Weighted Least Squares 

In deriving the model y= Xß it may be desirable to weight the observations, i. e. instead of 

minimizing Equation (2.2), minimize: 

Y- ýt(yi -gTYý2ý 
1=1 

(2.5) 

where o, represents a nonnegative weight that is applied to the it' observation. The objective 

of the weighting function is to control the impact of a given observation on the overall fit. 

Given a model of the form of Equation (2.1), where e is a random variable, such that e, has 

variance o, an appropriate value of w, is 1/a?. It is generally assumed that e, is an 

independent random variable, however a more general interpretation is given that enables wider 

interpretation of the model, i. e. it is not necessary to assume independence. The normal 

equations can be written as: 

(XT. qX)Y = XTS2y (2.6) 

where SL = diag(w, ... co. ). The weight matrix, fl, can be generalized to the case where the 

weight matrix is not diagonal. Use of a nondiagonal fl is sometimes referred to as generalized 

least squares (GLS), with the weight matrix being symmetric and positive definite, i. e. it does 

not assume independence. The weighted least squares estimator is thus given by: 

=(X T fIx)-l XTflY (2.7) 

In a model Y= Xß +E where E is a dependent random variable with variance-covariance 

matrix S, the choice of fl as S-1 yield estimators with certain desirable statistical properties, 

i. e. the observations are given weights according to the covariance structure, thereby taking into 

account the dependency in the data. 

Selection of the weight matrix should not be undertaken without understanding the assumptions 

for the choice. For example, for GLS it is assumed that the errors are normally distributed. 



2.2.1.2 Ridge Regression 

Ridge Regression (Hoerl, 1962) is a modelling technique for dealing with ill-conditioned data, 

i. e. small changes in the input data result in significant changes in the parameters estimated 

(Noble, Chapter 8,1969). Ill-conditioned data is often a consequence of high level of 

collinearity. Other sources of ill-conditioning may be more subtle, e. g. large variations in the 

leverage of observations. This may materialise either naturally due to the nature of the data or 

by outliers caused by faults when sampling the data. Another issue is, if an important variable 

is not measured the estimators will be biased. To address ill-conditioning and possible bias, 

Ridge Regression (RR) was introduced. The ridge parameter is defined in terms of a diagonal 

constant matrix, yr I, which is added to the covariance matrix: 

M, =(XTX+yiI)-IXTy (2.8) 

Adding the constant diagonal matrix, iv I, has the effect of stabilizing and shrinking the 

coefficient 
ß, (Hoerl and Kennard, 1970). Hoerl and Kennard (1970) showed that inclusion of 

the ridge parameter leads to a reduction in the prediction error at the cost of biasing the 

coefficients. The relationship between the ridge regression estimate ß, and the OLS estimate, 
ß, is: 

Yr ((XTX)-' yi+I)"'ß (2.9) 

Draper and Smith (1998) showed that the regression vector calculated from ridge regression is 

the least squares solution subject to the constraint that the vector is confined to a sphere centred 

around the origin. Thus, one way of looking at ridge regression is that it assumes that the 

regression coefficients are more likely to be small, i. e. close to zero. The key issue in ridge 

regression is to determine the optimum value of yr. One approach was described by Hoerl et al. 

(1975). They argued that yr* = os2 /(ßTß) is a reasonable choice, where o is the number of 

parameters in the model (not includingßa), s2, is the residual mean square of the analysis of 

variance from OLS, and ß is the OLS estimate. Other possibilities are to plot the regression 

coefficient against yr and select the value of yr to be where the parameters have stabilized 

(Hoerl and Kennard 1970), or to use cross-validation (Section 3.2.5.1). 

2.2.2 Multivariate Multiple Least Squares 

The problem of modelling the relationship between p responses Y=[yI, y2, """, yp] and a 

single set of n predictor variables X= [xi, x2, """, x� ] is now considered. Again, a linear 

relationship between the response variables Y (m x p) and the predictor variables X (m x n) is 
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assumed. In least squares, each response is assumed to have its own regression model. Thus, 

interest is in a matrix Y Az XB, where B= [ß1, ß2, """, PP]. The regression model may be written 

as: 

Y=XB+E, (2.10) 

where E is a matrix of deviations (errors) of the observations from the functional model. 
Analogous to Equation (2.4) the solution becomes: 

B= (XTX)-1XTY (2.11) 

It should be noted that each response variable y; , where j =1,2, """, p is defined as for multiple 

linear regression, Equation (2.1), thus the regression vectors in the regression matrix, B, are 

mutually independent. 

2.2.3 Principal Component Regression (PCR) 

In this section, the concept of Principal Component Regression (PCR) is described. PCR is 

widely used and is described in textbooks such as Mardia et al. (1979), Bishop (1995), and Naes, 

et al. (2002). Examples of the use of PCR in industry can be found in Mejdel and Skogstad 

(1991) and Wise et al. (1995). 

PCR is the application of ordinary least squares regression of Y on selected orthogonal latent 

variables of X. In PCR the latent variables are called principal components and they describe 

the underlying variance of X. If all principal components are selected (full rank), the Moore- 

Penrose inverse is employed, and the least squares solution is obtained. The idea of PCR is to 

use reduced rank regression, i. e. select the first A principal components that contain the most 

information relating to Y, excluding the remaining principal components that are primarily 

associated with noise. The principal components to be included in the regression model can be 

selected based on variable selection (Martens and Naes, 1989). Frequently those components 

with the largest variance best describe the response variables, if not the method may produce 

inadequate models due to a low signal to noise ratio associated with lower order principal 

components. 

The orthogonal principal components or score vectors T={tl, """, tA) are found by applying 

Principal Component Analysis (PCA) to the original data matrix X. Hotelling (1933) developed 

this technique, after the original derivation was proposed by Karl Pearson (1901). PCA is a 



method for reducing the dimensionality of a multivariate system. The aim is to summarise the 

information in terms of a few latent variables, which are standardized linear combinations of the 

original variables. The objective is to find the latent variables of X, which are defined in 

decreasing order of variance explained. Thus the method has been described as a "parsimonious 

summarisation" (Mardia et al., 1979). PCR has a number of similarities to ridge regression, but 

while PCR normally deletes the influence of the smaller eigenvectors, ridge regression only 

decreases the influence of them. In PCA, the jt' orthonormal loading vectors pj are selected 

such that the inner products: 

t. Ttj = (XpJ)T (Xpj) (2.12) 

are maximised. This is an eigenvalue problem. Rearranging Equation (2.12) gives: 

p, TXTXpj =tý t, or XTXpj =Aýpj whereAj =tý tj (2.13) 

Likewise, the score vectors tj represent they; '' eigenvector of XXT, scaled to length Aý . If 

all r eigenvectors are extracted, i. e. the rank of X is r, T becomes an orthogonal basis for X, and 

X can be written as X= TPT : 

X=TPT =tIPi +... +trPº (2.14) 

Equation (2.14), represents the decomposition of X into rank-one matrices such that each outer 

product (tj pT) captures as much of the underlying variance of X as possible. This statement 

holds both where the variance is defined either as the Euclidean or the Frobenius matrix norm. 

This is in fact the singular value decomposition of X: 

X=F PT, where E= diag( 1) and jE {1,2, " " ", r} (2.15) 

where T= T/norm(T) is the left singular matrix of X or the eigenvectors of XXT. If only the 

first few principal components are retained, i. e. A<r, the data matrix X is approximated by 

TPT : 
X=TPT+E=I 'E PT+E 

For any A where 0: 5 A: 5 r, the matrix, E, of Equation (2.16) also satisfies: 

IIX-TPT II2=IIEII2= AA+1 

for the Euclidean norm, or for the Frobenius norm: 

IIX-TPTIIF-IIEIIF=AA+1+... +Ar 

(2.16) 

(2.17) 

(2.18) 



2-25 

2.2.3.1 Geometric Interpretation of PCA 

Consider the data points defined by a hyperellipsoid, an ellipsoid in multidimensional space. A 

hyperellipsoid can be approximated in terms of a line segment by the longest axis, Figure 2.2. 

A two-dimensional ellipsoid can be approximated in terms of the longest and the second-longest 

axes. Continuing in this fashion, at each step the approximation is improved by adding to the 

approximation, the largest axis of the hyperellipsoid not yet included. After r steps, all the 

variance of X is captured. The axes of the hyperellipsoid represent the principal components. 

The first principal component, ti, is obtained from the projection of the data onto the first (and 

largest) principal axis. The second principal component, t2, is obtained from the projection of 

the data onto the second largest principal axis, which is orthogonal to the first. Continuing in 

this manner, the jth principal component, tj, is obtained from the projection of the data onto the 

1th largest principal axis, which is orthogonal to the first j -1 axes. 

fi, 

Figure 2.2. The first principal component of an elliptical distribution in the plane. 

An example of the geometric interpretation of PCA for a multicollinear (100 x 3) data matrix, 

X, is shown in Figure 2.3. 
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Figure 2.3. Principal components one and two for a three-way data matrix. 



The three-dimensional data is shown on the left in Figure 2.3, with the first principal axis (PC I) 

sketched. On the right, the score plot for the first and second principal component is given. This 

score plot reduces the dimensionality from three to two, thereby simplifying the interpretation of 

the underlying structure in the data, using the maximum variance of the original data. From the 

score plot it is possible to detect outliers, nonlinearities, clusters, and it has been used for 

example in process monitoring by including limits (Wise et al. 1990, MacGregor et al. 1991). 

Other plots associated with PCA include the Scree plot (Cattell, 1966) where the relative 

eigenvalue is plotted versus the corresponding principal component number. The Scree plot 

displays the importance of each principal component, based on the relative variance explained. 

For this example (Figure 2.3) the three individual principal components capture 64.1%, 19.2%, 

and 16.7% of the variance of the X matrix. 

Another important plot is the loading plot. From the loading plot, the relative influence of each 

individual variable has on a given principal component and the relationship between the 

variables can be identified, see Martens and Naes (1989) for further details on the interpretation 

of the results from PCA. 

2.2.3.2 PCA as an Optimization Problem 

PCA can be thought of as a constrained optimisation problem where the aim is to maximise the 

length of the score vector from Equation (2.12), under the constraint pTp = 1. Using the 

Lagrange multiplier, A, the optimisation equation can be written as: 

.f 
(P, A) = (tTt) - A(pTp -1) = pTXTXp - A(pTp -1) (2.19) 

Taking the partial derivative of Equation (2.19) with respect to p and A, and setting them equal 

to zero gives: 

af 
= 2xTxP - 2AP =o P 

ä 
-pTp-1=0 

The resulting function obtained following the algebraic manipulation of Equation (2.20) is: 

(2.20) 

XTXp - Ap =0 <-i XTXp =. lp, where pTp =1 (2.21) 
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This is no different to the eigenvalue problem defined in Equation (2.13), thus PCA can be 

defined as an optimisation problem. 

In PCA, the latent variables are found based on a linear criterion. However it is possible to 

extend PCA to include nonlinearity, i. e. nonlinear PCA, and solve it as a constrained 

optimisation problem using various objective functions (Oja, 1989). Dong and McAvoy (1996), 

Jia et al., (1998) and Shao et al. (1999), give recent examples of nonlinear PCA using neural 

networks. 

2.2.3.3 The Principal Component Regression Equations 

Principal component regression is obtained by regressing the response matrix, Y on the score 

matrix T obtained from the application of PCA to the data matrix X, where TPT is typically a 

low rank approximation (A < r) of X as in Equation (2.16). The regression coefficients B are 

defined as: 

B=P A-1 PTXTY (2.22) 

where A= diag([. li, """, AA ]). The regression coefficients, B, are obtained by first regressing Y 

on the scores T: 

CT = 
(TTTrI TTY =A-' PTXTY (2.23) 

where T comprises A columns given by T= XP. The matrix CT is then transformed to a 

matrix of regression coefficients as follows: 

B=PCT =Pdiag(1/[. Z, 1, """, 
A. 

A])PTXTY (2.24) 

where the eigenvalues A= diag([A1, """, AA]) = TTT = EZ are the singular values squared and P 

is the loading matrix. Since the columns of Tare orthogonal, the least squares estimators, cj , 
are unaltered if some of the columns (;, - j) of T are deleted from the regression analysis. 

Furthermore, their distribution is also unaltered. Altering the model by selecting those 

components that are significant, e. g. Hill et al. (1977), is straightforward. This can be achieved 
by giving the other regression coefficients a value of zero. In practise any variable selection 

method may be used to select the most appropriate modelling space (Martens and Naes, 1989). 
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As for the X matrix, in Equation (2.14), Y can be written as a decomposition of rank-one 

matrices: 
X=TPT +E=t1P1 +"""+tAPä +E 
Y=TCT +F=tlci +"""+tACÄ +F 

(2.25) 

such that the model is built from the reduced low-rank approximations of the X matrix that 

capture the information that explain the majority of the underlying variability and excludes 
those that capture the noise. 

2.2.3.4 The Nonlinear Iterative Partial Least Squares Algorithm 

In this Section the Nonlinear Iterative Partial Least Squares (NIPALS) algorithm is discussed as 

an approach to solving the eigenvalue problem in PCA. It was originally proposed by Wold 

(1966). The approach belongs to the class of power iteration methodologies, and takes 

advantage of the fact that the sequence 

(XTX)p (XTX)Z p (XTX)3 p 
' 11P I1,11p il ' 11P Il ' 11P Il (2.26) 

converges, under certain assumptions, to an eigenvector corresponding to the largest eigenvalue 

of XTX . Although the power iteration method is well known, it can be slow to converge 

except where there are large differences between the largest and the second largest eigenvalues. 

If only the first few eigenvectors are to be retained, the algorithm is often fast, since the power 

iteration extracts the largest factor and since the differences between the first few eigenvalues 

tend in practise to be large (A1 » 22 » A3 »"""1 2p_2 % 2p_1 ý AP ). 

One interpretation of this observation is that the first few latent variables extracted explain a 

large amount of the variation of the X matrix, whilst the lower order latent variables contain 

mostly noise. Thus it is more likely that the first eigenvalues differ more in value than the latter 

eigenvalues. However, one should be aware of the possibility of two subsequent eigenvalues 

having similar values since it may prevent convergence. 

Convergence problems can easily be confirmed by applying an enhanced method for solving the 

eigenvalue problem. Furthermore, if convergence is not achieved within a limited number of 
iterations, e. g. 100 iterations, it is an indication that two subsequent eigenvalues lies the same 

region. 
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Instead of calculating the covariance matrix and using the power method as above in Equation 

(2.26) pj+1 = (XTX)pl, the NIPALS algorithm can be applied. A similar approach to the power 
iteration is followed, but in two steps: 

(1) Calculate successive estimates of the score vector: t, = Xp, 

(ii) Calculate an improved estimate of the loading vector: Pi+1 = XTtr 

Consequently, the NIPALS algorithm avoids the construction of the covariance matrix, but 

every iteration costs more in terms of computer time. Each factor is obtained through the 

repeated regression of X on the p vector to obtain an enhanced score vector t, and then the 

regression of X on the score vector t to obtain an enhanced loading vector p. Enhanced is 

defined as a vector that is closer to the first principal component (eigenvector) given by 

Equation (2.26). 

Explicitly, p converges to the largest eigenvector of XTX. At the same time, t converges to the 

largest eigenvector of XXT . Following convergence, the variance of the first eigenvector is 

subtracted as a rank one updating of the X matrix, Xj+I = XI -tip,, and the next principal 

component 0+1) is obtained in the same manner using the residual matrix X,,,. The basic 

algorithm is described in Algorithm 2.1. 

function [T, P] = NIPALS(X, lv, limit) 

forj=I: lv, 

t= X(:, 1); 

conv = limit + 1; 

while cony > limit, 

told = t; 

p=X'*t; 

p= p/norm(p); 

t= X*p; 

cony = norm(t-told)/norm(t); 

end 

X=X-t*p; 

T(:, j) - t; 

P(:, J) - P; 

end 

% NIPALS algorithm 

% Repeat until Iv latent variables are calculated 

% The first variable (or the one with highest variance) 

% Initializing 

% Repeat until convergence 

% Retain the old score vector to regulate the convergence 

% Covariance between t and the X variables 

% Normalize to unit length 

% Update t using the linear combination p 

% Convergence if cony < limit (and no. of iterations > max iter. ) 

% Inner loop of iterations 

% Rank one reduction of the X matrix 

% Retain the scores 

% Retain the loadings 

% Outer loop of iterations 

Algorithm 2.1. The NIPALS algorithm for PCA (MATLAB code). 
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The NIPALS algorithm is an iterative algorithm that requires a termination criterion to 

determine when a satisfactory solution (eigenvector) has been obtained. It is normal to use the 

relative difference between the current and the previous estimated eigenvector (or score vector) 

per iteration as a termination criterion. If the relative change is lower than a selected value (limit 

typically 10"8) the inner ̀ while' loop in Algorithm 2.1 terminates and the estimated eigenvector 

(t of XXT or p of XTX) is used for the rank one reduction of the X matrix. The next pair of 

eigenvectors are then calculated using the rank one reduced X matrix. Furthermore, it is usual 

to include a maximum number of iterations as a second termination criterion (typically 100) and 

include a warning if this number is reached. 

2.2.4 Partial Least Squares 

2.2.4.1 The History of Linear Partial Least Squares 

Partial Least Squares or Projection to Latent Structures (PLS) originated from the work of Wold 

(1966a, b), and was further developed by Wold et al. (1983) in the early eighties. Since then, 

many developments and applications have been proposed, mainly in the fields of chemistry, 

biology, medicine and the food and process industries. Two comprehensive reviews of the 

development of PLS are given by Geladi (1988) and Geladi and Esbensen (1990). 

During the late eighties, a number of papers were published concerning the theoretical basis of 

PLS. For example Manne (1987) showed that there was no need to reduce X (or Y) to 

undertake the PLS computations. This was an important contribution to the development of the 

PLS algorithm and relates PLS to the numerical eigenvalue decomposition algorithms of 

Lanczos (1952), Hestnes (1952) and others. The following year, Höskuldsson (1988) published 

a paper on the properties of the PLS algorithm, in particular showing that PLS could be defined 

as a Singular Value Decomposition (SVD) problem or as an eigenvalue problem. The work of 

Manne (1987) and Höskuldsson (1988) formed the basis of the Simple Partial Least Squares 

(SIMPLS) algorithm of De Jong (1993a) and De Jong (1993b) where it was shown that one 

response variable is explained better by PLS than PCR for the same number of components. 

In 1987, Lorber et al. showed how the solution of the regression stage in PLS can be formulated 

as a pseudo inverse of the covariance matrix. Another important article was that of Helland 

(1988), where he related PLS regression to theoretical statistical terms and also identified 

directions for further research and modifications to the PLS algorithm. Moreover, Helland 

(1988) proposed an alternative basis for the PLS regression space (one y-variable), i. e. the space 
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spanned by the loading weights. Later, a comparison of PLS with the statistical techniques of 

Multiple Linear Regression (MLR) and Ridge Regression (RR) was undertaken by Frank and 

Friedman (1993). From the perspective of model building the interpretation of PLS was 
investigated by Kvalheim and Karstang (1989), and later the geometry of PLS was illustrated by 

Phatak et al. (1992) and developed further by Phatack and De Jong (1997). 

From the work of Frank (1987), it follows that each PLS factor is a compromise between the 

maximum correlation explained in terms of y and the maximum explained variance of X, and 

that an infinite number of alternative compromises exist. The concept of considering PLS 

regression as a member of a wider class of methods was also described in Höskuldsson (1988) 

and Lorber et al. (1987). This resulted in the development of Continuum Regression (Stone and 

Brooks, 1990). In Continuum Regression, MLR, PLSR and PCR are considered as a single 

modelling class, where a constant a is used as a measure to define a model relationship. For 

MLR, PLS and PCR, a is 0, '/2,1. Continuum Regression was demonstrated to perform well for 

some examples (Stone and Brooks, 1990 and De Jong et al., 2001), but a limitation was that 

cross validation was required to determine both a and the number of latent variables. Since 

cross validation is an issue in iterative procedures such as PLS regression, the problem is 

perceived as a limitation in continuum regression, i. e. the result is dependent on which method 

of cross validation is applied (Section 3.2.5.1). 

2.2.4.2 The Theory of Partial Least Squares. 

Partial Least Squares (PLS) uses the same idea as PCR, i. e. Y is regressed on a reduced 

orthogonal representation of the original variables, T. The difference is that the scores are 

calculated using a different criterion to that of PCR. In PLS, X and Y are represented by the 

linear combinations t= Xw and u= Yq, using the weight vector w and the loading vector q, 

respectively. The objective is not to maximize t Tt 
, 

i. e. not to find the dominant direction (the 

largest eigenvector) in the X matrix as in PCA, but to maximise uTt, the covariance between 

each pair of score vectors: 

uTt=(Yq)T(Xw), for IIwII=IIgIl=1 (2.27) 

that is to find the dominant direction common to both the X and Y matrices. Thus, PLS can be 

thought of as a constrained optimisation problem where the aim is to maximise the expression in 

Equation (2.27), under the constraint wTw = qTq =1. 



As a result, PLS is a compromise between the approximation of the prediction variables and the 

prediction of the response variables. Using the Lagrange multipliers, p and v, the optimisation 

equation can be written as (Höskuldsson, 1996): 

f(w, q,, u, v)=(uTt)+p(1-wTw)+v(1-qTq) (2.28) 

Taking the partial derivatives of Equation (2.28) with respect to w, q, p and v, and setting the 

partial derivatives equal to zero and observing that (uTt) = (tTU) gives: 

ý 
=2XTYg-2pw=0 

=2YTXw-2u1=0 
9 

af 
=1-wTw=O ap 

ä 
=1-qTq=O 

From Equations (2.29a) and (2.29b): 

gTYTXW =V Or wTXTYq =p 

(2.29a) 

(2.29b) 

(2.29c) 

(2.29d) 

(2.30) 

By transposing the first expression and comparing with the second, it can be shown that the 

Langrange multipliers are equal, i. e. v=p. Equation (2.30) is a SVD problem, i. e. w and q can 

be found through the application of SVD to either of the two expressions in Equation (2.30). 

Thus, the weight matrix W=[wj, """, wA] and the loading matrix Q=[gl, """, gA] can be found 

using a reduced SVD of XTY: 

XTY 

=WE 
QT (2.31) 

where E= diag(o 1, """, o), i. e. the singular values. Combining the two expressions in 

Equation (2.30) and factoring out q, the following eigenvalue problem is obtained: 

XTYYTXw = Q2 w= Aw (2.32) 

The eigenvectors W=[wl, """, wA] and their corresponding eigenvalues A=diag([. Ii "". A, ]), 

are ordered such that A, >_ >_ ... A, 
, and they can be extracted from Equation (2.32) by any 

algorithm that solves the symmetric eigenvalue problem. As customary for Principal 

Component Regression (PCR) only the first A eigenvectors are retained (A< r). Solving 

Equation (2.29a) with respect to w and inserting it into Equation (2.29b), the resulting 

eigenvalue problem is obtained: 
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YTXXTYg =. i, q (2.33) 

Furthermore, multiplying by X and Y in Equations (2.32) and (2.33) respectively, the following 

alternative expressions for the score vectors can be found (Höskuldsson, 1996): 

XXTYYTt=At 

YYTXXTU=, Iu 

(2.34) 

(2.35) 

Thus the PLS model can be obtained by solving one of the four eigenvalue problems given in 

Equations (2.32) - (2.35). The regression coefficient can be found by first regressing Y on the 

selected score matrix T as in PCR, but since the loading matrix P is not the eigenvectors of X, 

i. e. T# XP, the matrix T is calculated as T= XW(PTWY1, see Helland (1988) or Ter Braak 

and De Jong (1998): 

CT =(TTTY1TTI' 

TCT =TPTW(PTWY1CT (2.36) 

i-XB-XW(PTW)-1CT 

Note that the prediction of Y usually is computed as Y= XB = (X+E)B where E= X-TPT . 
However, EB will be insignificant since W is orthogonal basis for B. Again, the same 

expression as for PCR, Equation (2.25), is obtained: 

X=TPT +E=t1Pi +"""+tkpk +E 
Y=TCT +F=tjci +"""+tkck +F 

(2.37) 

where PLS simultaneously reduces the dimensionality of the X and Y matrices by seeking those 

latent variables that maximise Equation (2.27). 

2.2.4.3 The PLS Algorithm, Derived from the NIPALS PCA Algorithm. 

PLS can be formulated as an eigenvalue problem, Equations (2.32) to (2.35), consequently all 

eigenvalue decomposition algorithms can be applied. In this section, the NIPALS version of the 

algorithm is discussed. The NIPALS based PLS algorithm extracts one factor at a time, with 

each factor being obtained through the repeated regression of X on u to obtain an updated w 

vector, and then X is regressed on the weight vector w to obtain an updated score vector t. The 

algorithm continues with the regression of Y on t to obtain an updated q vector and finally the 

regression of Y on q provides an enhanced vector u, where the improvement is measured in 

terms of the covariance between the scores (u Tt ). This sequence is repeated in an iterative 

manner until convergence is reached. 



2-34 

These four steps can be combined as follows (Höskuldsson, 1988): 

w=XTu 

w=wl norm(w) 
t=Xw 

g= YTt 

q=ql norm(q) 

u=Yq 

---ý 

w=XTu 

c= norm(w) 

t= X(XTU /c) 

q= YT(XXTU/C) 
d= norm(q) 

U= Y(YTXXTU/cd) 

(2.38) 

After convergence, Equation (2.35) results with A= cd. As the NIPALS PCA algorithm is the 

same as solving the eigenvalue problem XXT and using the fact that the sequence in Equation 

(2.26) converges, the NIPALS based PLS algorithm can be considered to be equivalent to the 

power method applied to the eigenvalue problem of YYTXXT in Equation (2.35). Again, the 

method belongs to the class of power iteration and takes advantage of the fact that the sequence: 

U (YYTXXT)U (YYTXXT)2U (YYTXXT)3U 

llull' Ilull ' Hull 9 Hull (2.39) 

converges, under certain assumptions, to an eigenvector corresponding to the largest eigenvalue 

of YYTXXT . The assumptions are that the eigenvalues are significantly different, and that the 

starting vector is not identical to an eigenvector that corresponds to one of the smaller 

eigenvalues. Using Equations (2.32) - (2.34) as different starting points, the vectors w, q, and t, 

can be calculated using any algorithm that solves the symmetric eigenvalue problem. 

Note that if Y consists of only one response variable the algorithm becomes non-iterative, since 

the w vector is found directly from w= XTy/ 11 XTy 11 where q=1. In this case the PLS 

algorithm becomes very fast and does not have the convergence problems of the power method 

that is non-iterative. If Y consists of more than one response variable, the algorithm is 

associated with all the normal issues related to the power method. After convergence, the first 

latent variable is subtracted as a rank one reduction of the X and Y matrices, XXtT J+1 =I-j Pr 

and Yj+i =YJ -bjtjqý, respectively. The algorithm is given in Algorithm 2.2, and describes 

the standard PLS algorithm based on the NIPALS or the power method (Wold et al., 1983). 

Another difference between PLS and PCR, is that in PLS, Y (m x p) is modelled separately for 

each pair of latent variables extracted, whilst in PCR all the latent variables are extracted before 

regressing Y on the latent variable matrix T. However, there is no difference between linearly 

regressing Y on the individual latent pairs or on the final T matrix, since the latent variables in 

T are mutually orthogonal, as discussed in Section 2.2.3.2. Thus, both approaches could be 

applied for PCR and PLS as they collapse to the same solution for the linear case. 
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function [Yp, T, P, W, U, Q]= PLS(X, Y, lv, lim) 

Yp = zeros(size(Y)); 

forj=l: ly, 

u= Y(:, 1); 

w=X'*u; 

w= w/norm(w); 

conv = limit + 1; 

while cony > limit, 

uold = u; 

t= X*w; 

q= Y'*t 

q= q/norm(q); 

u=Y*q; 

w=X'*u; 

w= w/norm(w); 

cony = norm(u-uold)/norm(u); 

end 

p= X'*t; /t'*t; 

b= u'*t; /t'*t; 

X=X-t*p'; 

Y=Y-b. *t*g; 

Yp=Yp+b. *t*g; 

T(:, j) = t; 

P(:, D=P; 

W(:, j) = w; 

U(:, j) = u; 

Q(:, j) = q; 

end 

% Standard PLS algorithm using the power method 

% Initializing 

% Repeat until lv latent variables are calculated 

% The first variable (or the one with highest variance) 

% Estimate the weight vector 

% Normalize to unit length 

% Initializing 

% Repeat power iterations until convergence 

% Retain the old V score vector to regulate the convergence 

% Calculate the X score vector 

% Estimate the loading vector for V 

% Normalize to unit length 

% Update u using the linear combination q 

% Estimate the weight vector 

% Normalize to unit length 

% Convergence if cony < limit (and no. of iter. > max iter. ) 

% Inner loop of iterations (while loop) 

% Calculate the loading vector for X 

% Calculate the regression constant for u on t 

% Rank one reduction of the X matrix 

% Rank one reduction of the V matrix 

% Calculate the V predicted 

% Store the X scores 

% Store the X loadings 

% Store the X weights 

% Store the V scores 

% Store the V loadings 

% Outer loop of iterations (for loop) 

Algorithm 2.2. The PLS algorithm (MATLAB code). 

2.2.4.4 The Weight Vector in PLS 

Consider the case of one response variable y, where the X matrix has been mean centred. As 

mentioned in the previous section, with only one response variable the PLS algorithm is non- 

iterative, and the scores and loadings can be calculated directly. The most important step is the 

calculation of the weight vector, w= XTU, in Algorithm 2.2. With only one response variable, 
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q=1, and u=y. From W= XTy, it can be seen that the kU' weight is estimated independently as 
the inner product or covariance between the response variable, y, and its corresponding 

predictor variable, xk , thus wk = xk y, where kE {1, """, n}, and n is the number of X variables. 
This can be expanded further (since X being mean centred): 

Wk = gkY x cor(zk, Y)std(%k) (2.40) 

w is then normalized to unit length. Thus, in principle y is not required to be mean centred for 

the calculation of the weights, but it is recommended because of the regression of t on y. 
Generally, this is due to the regression of u on t in PLS is performed without applying any 

constant term (ü = bt). However, if X is centred (i. e. t is centred) and Y is not centred (i. e. u is 

not centred), a constant term is needed to model u efficiently (ii =a+ ht ). From Equation 

(2.40), the construction of the weight vector can be understood. The score vector t is a linear 

combination (or a weighted sum) of the X variables: 

(i) where the weight of the k`h variable, wk, has the same sign as the correlation between 

%k and y. 

and 

(ii) the magnitude of the kth weight, wk, is a product of the correlation coefficient and the 

standard deviation of the given variable, Xk . 

Hence, the magnitude of the weights comprise two parts, the correlation and the variance. If the 

variance of the variables is not related to the importance of the variables, as through Beers law, 

the X variables are often scaled to a standard deviation of unity. Equation (2.40) then reduces to 

wk = cor(%k, y), with the weights calculated from the correlation between Xk and y. It should 

be noted that, if X is orthonormal, w will be identical to the regression coefficients from least 

squares. 

2.2.5 Comparison 

There are three main benefits of using PCR and PLS regression compared to OLS. 

(i) The regression variables, T, are linearly independent (orthogonal) so that the problem of 

multicollinearity is addressed. 

(ii) The reduction in the number of parameters through regression on T instead of X can 

often make an underdetermined system overdetermined. 

(iii) Generally, only the most important latent variables, T, are included thus that the risk of 

modelling noise in the data is reduced. 



Alternatively, one can use ridge regression (Frank and Friedman, 1993). The advantage of PCR 

and PLS over ridge regression (Section 2.2.1.2), is that the final model is more easily 

interpreted, since the weights are found independently of each other (Sections 2.2.4.4). 

Consequently, the regression coefficient from ridge regression is often lacking the structure 

found in the regression coefficient from PCR and PLS, making it more difficult to relate the 

importance of each variable with the underlying physical process. This is often verified by 

looking at the difference in the structure of the regression coefficients when applied to typical 

spectral data. However, the prediction ability of the three methods is often found to be similar 

for large data sets (Frank and Friedman, 1993). 

The difference between PCR and PLS is the way in which the score matrix T is estimated: 

" PCR maximizes the variability in the X matrix only, by maximizing the length of each 

score vector t, subject to the constraint IIpII=1 

" PLS maximizes simultaneously the variability in both the X and Y matrices, by 

maximizing the covariance between t and u, subject to the constraint II w II = II q II =1 

" As mentioned earlier, there is often a tendency for those components with the largest 

variances to best explain the response variables. If this is not the case, PLS is more 

appropriate, Almr y (1996). However, if the major sources of variance in X are unrelated 

to Y, both techniques will fail to produce satisfactory models. Variable selection methods 

should then be applied. 

2.3 Multivariate Multiple Nonlinear Modelling 

As long as the model depends linearly on the adjustable parameters, the solution will lead to a 

set of linear equations in the parameters, which can be cast in the form of matrix equations. 

Thus any linear regression procedure can be used to obtain a solution. However, if the 

underlying model is nonlinear in the parameters, alternative approaches are required. The 

progression from linear to nonlinear modelling is challenging, with many of the linear 

algorithms not being easily extended to the nonlinear case. This is the case in PLS. The first 

approach adopted is to linearize the problem, for example by applying a suitable transformation 

or expanding the X matrix with functions of X, as in polynomial least squares fitting. Another 

method is to expand the T matrix with functions of T, to reduce the size of the resultant matrix, 

Martens and Noes (1989); Blanco et al. (2000). However, there exist situations where finding a 

suitable transformation is not possible and hence more sophisticated methods are required. This 

section describes the theory behind such methods. 



Consider a data set consisting of m observations on two sets of variables, X and Y, where the 

response variables Y (m x p) are to be predicted by a set of predictor variables X (m x n), and 

the underlying relationship is assumed to be nonlinear. Many different approaches have been 

proposed in the fields of chemometrics, statistics and neural networks. By restricting the neural 

network to a two-layer network with a linear output, the general regression model takes the 

form: 
A 

Y= E f, (Xjwj)qý +E (2.41) 

where w, and q; are the X and Y weighting vectors, fj is a nonlinear function, and E is the error 

matrix. A is the number of latent variables, ridge functions, or nodes, depending on the 

methodology. The methods encapsulated by Equation (2.41) are termed projection-based 

regression methods and are the focus of the nonlinear regression methods discussed in the 

Thesis. 

An alternative projection based interpretation of Equation (2.41) is now given. The X variables 

are projected onto a one dimensional score vector tj by the linear combination, tj=X jw j, 

whilst the Y variables are projected onto the Y score vector uj by the linear combination, 

uj= Yjq j. The inner relationship between the pair of latent variables uj and tj is then fitted 

through the nonlinear regression function, f., using a univariate regression method, 

uj= fj(tj)+ej. 

The regression model in Equation (2.41) is general and includes nonlinear PLS, Smooth 

Multiple Additive Regression Technique (SMART), and the Radial Basis Function Network 

(RBFN). Parametric models such as quadratic partial least squares (QPLS), multiple linear 

regression (MLR) and feed forward network (FFN), are special forms of Equation (2.41), where 

the function, f, can be quadratic, linear or logistic (Sekulic et al. 1993). Additive models, such 

as general additive models (Hastie and Tibshirani, 1990) or Multivariate Adaptive Regression 

Splines (MARS) by Friedman (1991), do not follow the projection based approach, Equation 

(2.41), and are therefore not discussed further. 

The main difference between the projection based modelling procedures are that for neural 

networks the nodes are optimised simultaneously, whilst for nonlinear PLS and SMART, each 

latent variable (or ridge function) is optimised separately. In particular for nonlinear PLS, the 

matrices X and Y are decomposed for each latent variable using a rank one reduction: 

Xß_1 =Xi -tip 
j and Yj_1 =Yj -ü jqj; where p1 =XJTtj/(týtj) and üj = f1(tf). Thus, 

the only difference from the linear case is the construction of üj 
. 
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2.3.1 Nonlinear Least Squares 

To optimize the fit using least squares when the model is nonlinear, an objective function is 

defined, and an optimization method is used to find the parameters that minimize the objective 

or error function. Although a wide spectrum of methods exists for optimisation, the methods 

can be broadly categorized in terms of whether the derivative information is used. The 

objective function may include constraints, for example each parameter should lie within a 

given range. Search methods that use function evaluations include the simplex search method, 

Neider and Mead (1965). This approach is most suitable for problems that are highly noisy or 

have discontinuities. Gradient methods are generally more appropriate when the function to be 

minimized is continuous in its first derivative. Higher order gradient methods such as Newton's 

method, are only suitable when the second order information can be calculated. Here the simpler 

Gauss-Newton method is explained, as it is the optimization methodology used in the Thesis. 

This method belongs to the family of gradient methods and only the first derivative information 

is required. 

Let X (m x n) and Y (m x 1) be matrices comprising n predictors and one response variable, 

respectively. The aim is to minimise the error of the objective function using least squares. 

Equation (2.41) can be simplified when there is only one response variable: 

y= f(Xß)+e (2.42) 

where ß represents the weight vector or the regression coefficients. Thus, the objective 

function Fßß is given by: 

Fß) -IIY-. f(Xß)IIZ =11ellZ =eTe (2.43) 

The optimisation method may be Gauss-Newton or Levenberg-Marquardt. In this approach, the 

search direction äß is found from a Taylor series expansion of Fßß about the current 

values of j,, retaining only the first-order terms. Consider Newton's method where 

VF ß) and VZFß) are the first and second derivatives of Fßß with respect to ß, respectively. The 

search direction aJ = ß, +, - ß, (n x 1) can be written as: 

äß - _[02F(a) ]-1 pF(e) (2.44) 

The gradient can be defined as VFß) = 2Jý) e(, ) where Jýß) =V e(m x n) is known as the 

Jacobian matrix, estimated from J(; k) =[ äe; 1. a/k ]. The Hessian matrix, H =V2 F(P) (n x n) is 

then given by H= 2J(ß)J(ß) + 2Sýßý, where Sýßý = e(ßß VZecß> . For Gauss-Newton, H is 
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approximated linearly by setting the second order term Sýßý = 0, i. e. H(, 
) z 2J(j)J4) . This gives 

the Gauss-Newton search direction as: 

Oß =-[2JTJ]-' 2JTe=-[JTJ]-'JTe (2.45) 

which is the least squares solution of e=-J öß . If the covariance matrix [JTJ] is singular, it 

can be made invertible by letting ft = [JTJ] + y/I where yr is a constant, thus 8ß becomes 

öß = -[H]-' JT e (2.46) 

This is the Levenberg-Marquardt approach, and corresponds to the ridge regression expression 

given in Equation (2.8). As v -+ 0, the Levenberg-Marquardt approach tends to Gauss- 

Newton and as yr --* oo, the Levenberg-Marquardt method tends to the Steepest Descent (SD) 

method, 0ß = -JTe . The similarity between the steepest descent expression and the estimation 

of the weight vector in PLS (w =XTy ), Equation (2.40) should be observed with the two 

approaches being compared in detail in Chapter 3. The constant V/, from Equation (2.8), can 

either be selected such that H becomes non-singular, or through a convergence scheme (Baylis 

and Pradhan, 1984). That is, as yr increases, Fe) will eventually decrease, since a small step 

in the steepest descent direction is taken. 

From the Taylor series expansion used to establish Newton's method, it is assumed that the 

function f (Xß) and its first derivative are continuous. Newton's method is a fast optimisation 

method when the function is continuous, but it has a number of limitations: 

(i) The method does not necessarily find the global solution if multiple local solutions exist, 

but this is a characteristic of all methods that use gradient information to define the 

search direction. 

(ii) The method involves matrix inversion. 

(iii) The method requires the analytical first partial derivatives, which may not be practical to 

obtain. However, it is possible to use the numerical first partial derivative (Quasi Gauss- 

Newton). 

A common feature of all estimation procedures is that they require the user to specify start 

values, initial step sizes, and a criterion or limit for convergence. All methods begin with a 

particular set of initial estimates (starting values) that will be updated at each iteration; the step 

direction determines the direction, the step size determines how much the parameters will be 

updated, and the convergence criterion determines when the iteration process will stop. 
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The greatest problem in unconstrained function minimisation is local minima. Local minima can 

be thought of as local "valleys" in the objective function. For example, a particular objective 

function may increase, regardless of the step size applied. However, if the parameters are 

changed randomly, the objective function may decrease further. The problem can be overcome 

by selecting a different parameter space, i. e. by trying a number of different starting values. 

2.3.2 Neural Networks 

Only a brief review of neural networks is given, as a vast literature exists on the subject, 

(Bishop (1995), Lippmann (1987)). The review focuses on the basic two-layer network. The 

area of training or learning algorithm is not considered but the methods are similar to these 

described in the nonlinear least squares section, Section 2.3.1. Two-layer networks were widely 

studied in the 1970's, and the history of such networks from this period have been reviewed by 

Widrow and Lehr (1990). Considering only one response variable, the objective function FNN 

is given by: 

FNN = 
Aý 

y-Ef; (Xß; ) , =1 

2 

(2.47) 

The key aspect of a neural network is that the hidden functions are themselves adapted to the 

data as part of the training process, consequently the number of functions increases as the 

complexity of the problem increases. 

Furthermore, the training, i. e. the optimization of Equation (2.47), and the number of nodes in 

the network, A, are often controlled by using a second data set, a test set. Validation should be 

performed on a separate third data set, the validation set, which has not been used in any aspect 

of the training of the network. 

Alternatively the optimal number of nodes, A, can be found by the backward pruning method of 

Friedman (1985), where nodes of least importance are eliminated from an over-fitted model 

using cross validation. The problem of selecting the appropriate number of nodes is addressed 

by Murata et al. (1994), who utilize Akaike's Information Criterion (AIC). 
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2.3.3 Nonlinear PCR 

The first step in nonlinear principal component regression is the same as for the linear case, i. e. 

a principal component analysis is performed on the X matrix. A nonlinear regression method is 

then applied to the retained principal components. As discussed in Section 2.2.4.5, the latent 

variables are orthogonal and the major latent variables will contain less noise than the individual 

variables. Thus, the issue of multicollinearity is removed and the possibility of fitting noise is 

normally reduced. Furthermore, the reduction in the number of variables modelled often ensures 

that the system is overdetermined. 

Restricting the nonlinear model to the projection based family of methods, nonlinear PCR for 

one response variable is defined as: 

y= f(Tß)+e (2.48) 

where f is a nonlinear function, T is the matrix of latent variables and ß is a vector of 

coefficients. 

Nonlinear PCR approaches range from the Optimal Minimal Neural Interpretation of Spectra 

(OMNIS) (Borgaard and Thodberg, 1992), where the emphasis is on finding the most 

parsimonious model possible consistent with the data, to the use of polynomial PCR as 

described by Vogt (1989). A recent discussion involving nonlinear PCR is given by Gemperline 

(1992). Finally, in the work of Na; s and Isaksson (1995), PCR was adjusted for the presence of 

nonlinearities, and Nays et al. (1993) discussed the relationship between neural networks and 

principal component regression. 

2.3.4 Nonlinear PLS 

A number of nonlinear extensions to PLS have also been developed. Most follow the expression 

given in Equation (2.41): 

A 
Y=E fj(Xjwj)qý +E (2.41) 

Given a linear combination of the response variables, u= Yq, the modelling task in PLS can be 

defined as finding the best projection w, for each sequential projection. A nonlinear function, 

f, is then fitted between the pair of scores t and u, such that u=f (t) +e=ü+e. 
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For the linear case, the weight wL is defined as the largest normalised eigenvector of the product 

XTYYTX , 
i. e. XTYYTXwL =2 WL . For nonlinear PLS, using the weight matrix WL directly 

is reasonable if the nonlinearity is weak. However, if the nonlinearity is strong, an iterative 

updating procedure is required. In this case WL can be chosen as a starting vector for an 

updating procedure. Both these approaches have been utilized in nonlinear PLS. A selection of 

the main published nonlinear PLS algorithms are listed in Table 1. 

Method Author Comments 

Wold et al., (1989) 

Frank, (1990) 

Qin & McAvoy, (1992) 

Wold et al., (1992) 

Holcomb & Morari, (1992) 

Walcak & Massart, (1996) 

Malthouse et al., (1997) 

Wilson et al., (1997) 

Minimizing of {ui - 11(t1)) using steepest descent method. 

Using linear wL and nonparametric inner fit of {ui - fl (t i )) . 
Using wL and 2-layer feed forward NN for f: {u i- fi (tl )). 

Updating w, = cor [u ,f (X, (ot /� xi ))]axi, (§ 2.3.4.3). 

PLS algorithm integrated in a neural network. 

Radial basis function as transformation prior to linear PLS. 

NN deflating X and Y, maximizing II X- tp T II + II Y- f(t )q T II 

Using linear wL and RBF network on inner relationship 

Quadratic-PLS 

NL-PLS 

NN-PLS 

Spline-PLS 

NN-PLS 

RBF-PLS 

NN-PLS 

RBF-PLS 

NN-PLS 

NT-PLS 

Quadratic-PLS 

RBF-PLS 

BTPLS 

Durand & Sabatier, (1997) Spline transformation before applying linear PLS 

Hbskuldsson , 
(1998) Polynomial PLS, includes previous modelled score terms. 

Baffi et al., (1999a) Minimizing {u! - f1(t! )} using Gauss-Newton method. 

Baffi et al., (1 999b) Gauss-Newton updating of weights as above, RBF inner fit. 

Li et al., (2000) Gauss-Newton updating of weights, Box-Tidwell inner fit. 

Table I. Brief summary of a selection of nonlinear PLS algorithms. 

The various nonlinear PLS can be divided into two groups: 

(I) Weight vector, w L, from linear PLS is used. 

Frank (1990) proposed a nonlinear PLS algorithm (NL-PLS) where a local linear smoothing 

procedure was used to fit the relationship between each pair of scores with the bandwidth being 

estimated using cross validation, Frank (1995). Qin and McAvoy (1992) used a feed forward 

neural network to fit the inner relationship whilst Wilson et al. (1997) used a radial basis 

functions network (RBFN). An alternative RBFN approach was proposed by Walczak and 

Massart (1996), where radial basis functions were used as a nonlinear transformation to 

linearize the X variables prior to applying PLS. Spline transformations have also been used to 

linearize the predictor variables before the application of PLS (Durand and Sabatier, 1997). 

(II) The weight vector, w, is updated through an updating procedure. 
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In 1989, Wold proposed polynomial (quadratic) PLS. Here the weight vector w was updated 

using a form of steepest descent optimisation. Later, Wold (1992) developed a Spline PLS 

algorithm where spline functions (quadratic or cubic) were used as the smoothing functions. 

The updating procedure differed to that of polynomial PLS in that the weight vector w is 

derived from the covariance criterion used in linear PLS and is modified to include the 

nonlinear mapping in the calculation of the covariance function. 

Based on the quadratic PLS paper of Wold et al. (1989), an error based updating procedure was 
developed by Baffi et al. (1999a, b). It differs from that of Wold et al. (1989) since it directly 

optimises the error function using Gauss-Newton (GN) optimisation. Another nonlinear PLS 

method is the quadratic PLS method of Höskuldsson (1992,1998). Here, both polynomial and 

cross terms of the current and the previous modelled latent variables are considered. Since the 

numbers of terms increases considerably for only a few latent variables, only a subset of terms 

were included. These were selected using statistical significance testing. 

Neural network based PLS algorithms have been published using different objective functions. 

Holcomb and Morari (1992), included a linear PLS model into the first layer of a neural 

network, with the second layer being used to model the underlying nonlinearity. The objective 

of the neural network PLS approach of Malthouse et al. (1997) was to minimise the sum of the 

variance of X and Y sequentially, i. e. for each latent variable. This is one interpretation of the 

PLS criterion (Höskuldsson, 1996). Later, Bakshi and Utojo (1998) developed a nonlinear 

continuous regression algorithm based on the continuum regression ideas of Stone and Brooks 

(1990). The result, Nonlinear Continuum Regression (NLCR), was claimed to embrace the 

methods of OLS, PCR, PLS, Projection Pursuit Regression (PPR) and nonlinear PLS. 

The next three sections describe in detail the nonlinear PLS algorithms proposed by Wold 

(1989,1992) and Baffi et al. (1999a, b). These approaches form the basis of the subsequent work. 

2.3.4.1 The Steepest Descent PLS Algorithm 

In 1989, Wold et al. proposed a polynomial (quadratic) PLS algorithm where the inner mapping 

was modelled by a quadratic function. However, the authors stated that any nonlinear function 

that is continuous and differentiable could be used. The algorithm retains the form of the linear 

PLS algorithm, including the orthogonality of the latent variables, [tI, t2, """, tA] with two 

modifications to the NIPALS based PLS algorithm being proposed: 
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(i) For each pair of latent variables, a nonlinear (quadratic) function was used in the inner 

relationship. 
(ii) A weight updating scheme was introduced whereby the weight vector w was updated 

using an optimisation routine. 

For each pair of latent variables (t, u), the objective function from Equation (2.43) becomes: 

Fcw, -Ilu-. f(Xw)112=II u-uýý2 (2.49) 

The objective of the optimization procedure defined in Equation (2.49) is to determine a weight 

vector w that identifies a score vector such that it minimises the error function, thereby 

identifying the underlying nonlinear function. 

Wold et al. (1989) proposed updating the weight vector w by means of a first order Taylor 

series expansion of f(Xw) about the current weight vector w1, and solving it with respect to 

the weight increments äw, i. e. w1,1 = w! +äw. From the Taylor series expansion, the 

mismatch, e, between u= Yq and ü=f (Xw) 
, can be approximated by: 

e=u-ü z-JÖw (2.50) 

where ü is a continuous function, differentiable with respect to w, and J is defined as 

J (; k) _[ ae; / cwk 1. Furthermore, [&j / ciwk ]= -[3ü / 'k ] since e=u-ü and u is assumed 

constant with respect to w. Using the partial derivative form öü / öw = (au / at)(at / öw) , the 

Jacobian becomes: 

(2. s 1) J= -xaiag(aü /at) 

since at /ow is given by ö(Xw) / öw = X. The term öü / Ot is the derivative of the nonlinear 

inner function ü=f (t) fitted between u and t. Wold et al. (1989) applied a steepest descent 

method to solve Equation (2.50), thus the approach is termed Steepest Descent PLS (SDPLS). 

Equation (2.50) can be solved as follows öw = -JTe , i. e. öw = (X Oü / öt)T (u - 6). 

Closer examination reveals that the solution to solve Equation (2.50) is similar to that of PLS 

with one latent variable, since öw =-JTe is the same as the covariance criterion used in linear 

PLS (w =XT u ), where -J represents the X matrix and e represents the residual of the latent 

response, u. The difference is that in PLS, the weight vector is normalised, and the regression 

vector provides the solution to the problem. The regression vector, ß, is proportional to the 

weight vector when only one latent variable is included, (ß =bw, where b= t' u /(t't) from 
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Algorithm 2.2). The relationship between the steepest descent and PLS will be further discussed 

in Chapter 3. 

Nhile conv> limit. °o Repeat until convergence 

uold = u. Retain the old Y score vector to reculate the eon's crecncc 

t= X*w; ° Calculate the X score vector 

lit 16 düdt I I(t U). "o Calculate the nonlinear tit. and the 1st deris atk e 

(ii tq= Y'*ü; °o Regress V on ü (not on t as in linear I'I S) 

q= q/norm(q); Normalize to unit length 

u= Y*q; t Ipdate u using the linear combination q 

(iii) euü. °o Calculate the error vector e 

(is) J=X. *Idüidt(:. ones(I. xcol))]: % Calculate the positive Jacobian (Kronecker product) 

(\ dw = J'*e; % Calculate the N eight update sector using least squares 

t 1) N Ný dN. "o Improved Height vector 

w= w/norm(w); Normalize to unit length 

conv = norm(u-uold)/norm(u); 0 Convergence ifs ' limit (and no. of iter. may itcr. ) 

end "o Inner loop ol'itcratiom (aahile loop) 

Algorithm 2.3. The Steepest Descent PLS (SDPLS) algorithm (MATLAB code). 

The difference between linear PLS and the SDPLS algorithm is highlighted in Algorithm 2.3, by 

the numbered points. The difference between SDPLS and linear PLS can be summarized as: 

(i) A nonlinear function ü is fitted between the pair of scores, t and u, and the first 

derivative of ü, (öü /at), is estimated. 

(ii) Instead of regressing Y on t as in the linear case, Y is regressed on ü. 

(iii) The error u-ü, is calculated. 

(iv) The Kronecker product j= (öü/at)(ot/o1w) is calculated, where J= 
-J. 

(v) The search direction ow is identified using the method of steepest descent. 

(vi) An updated weight is calculated, and the procedure is repeated until convergence. 

In the original SDPLS algorithm of Wold et al. (1989), the weight vector is also optimized with 

respect to the parameters of the nonlinear (quadratic) function. Furthermore, calculation of the 

increment of the weight vector, öw = w1+I - w1, is based on u as opposed to e=u-ü. Wold et 

al. (1989) stated that the approach was rather complicated and that it may converge slowly when 

the data lacks structure. The rank updating procedure is given by: 
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X=tiPi +... +tkPk+E 
Y=ül9i +... +ük9k +F 

(2.52) 

The method of steepest descent is the simplest of the gradient methods discussed in Section 

2.3.1. The choice of direction is that where ü decreases most quickly with respect to w, that is 

the direction of the gradient öw = -JTe . 

The method is not guaranteed to attain the global minimum after an infinite number of iterations 

due to the issue of local minima, since the direction of the gradient is only controlled by local 

gradient information. Furthermore, the method generally has slow convergence, especially when 

approaching the minimum. The method hardly ever converges for badly scaled systems, i. e. if 

the eigenvalues of the Hessian matrix, H, differ by several orders of magnitude. In this case it is 

highly dependent on a good choice of starting point as it only uses the first derivative 

information. 

However, when the initial values are far from the global minimum, the first derivative generally 

describes the direction towards the global minimum. Thus, the steepest descent method is 

sometimes used for the first few iterations prior to reverting to Gauss-Newton (Hoyle, 1995). 

Finally, since there is no inversion of a covariance matrix involved, the method does not suffer 

any singularity or multicollinearity problems. Baffi et al., (1999a) provide a comprehensive 

discussion of the methodology. 

2.3.4.2 The Error Based Weight Updating Procedure 

Due to the limitations of Steepest Descent PLS, the error based weight updating procedure was 

introduced (Baffi et al., 1999a, b). It applies the unconstrained multivariable optimization 

method of Gauss-Newton, described in Section 2.3.1, to solve the same objective function as 

defined in Equation (2.45): 

8w = _[JTJ]-tJT e (2.53) 

Thus, Equation (2.50) is solved by least squares. The difference between linear PLS and 

nonlinear PLS using the error based updating procedure is summarized in Algorithm 2.4. The 

primary difference with Algorithm 2.3 is the method by which öw, in Algorithm 2.4, line (v), is 

calculated. 



The method of Gauss-Newton involves the matrix inversion of the covariance matrix of the 

Jacobian, i. e. the covariance information is used in the construction of öw. Thus convergence 

will generally be improved over the steepest descent approach, but the procedure may suffer 

from both singularity and multicollinearity. 

while cony > limit, 0 Repeat until convergence 

uold = u; " Retain the old I score v ector to rcLulate the runv erzcncc 

t= X*w; " Calculate the X score vector 

li) 16. düdtI 1(t. U). °o ('alculate the nonlinear lit, and the Ist dens ails e 

(ii) q= Y'* ü; Regress V on ü (not on u as in linear I'l S) 

q= b/norm(q); Normalize to unit length 

u= Y*q; 0t ipdate u using the linear combination q 

(iii) cu fi Calculate the error vector e 

(i\) J=X. *Idüdt(:. ones( I. xcol))I: %Calculate the Jacobian (sign cancels in (5 II 

1s I dw = pinv(J'*J) * J'*e; % Calculate the weight update vector using least squares 

(\ 1) ws, dv<. °° Improved v%eight vector 

w= w/norm(w); Normalize to unit length 

cony = norm(u-uold)/norm(u); 0 Convergence ifs < limit land no. A iterations nw\ itcr 

end Inner loop of iterations IssInIc loop 

Algorithm 2.4. The Error Based PLS (EBPLS) algorithm (MATLAB code). 

2.3.4.3 The Spline PLS Updating Procedure 

Wold (1992), proposed a methodology for the calculation of the weight vector for the nonlinear 

case, based on the covariance criterion defined in Equation (2.40). An initial estimate of t, u 

and the nonlinear function, f, between t and u is first obtained. Then each variable Xk is 

scaled to have the same variance as t, i. e. by using the scaling constant Vk = std( t)/ std(xk ), 

where std(t) and std(xk) are the standard deviations of t and the k`h variable of X, 

respectively. Then each variable is regressed on u, using the nonlinear function, f, already 

identified between u and t using nonlinear least squares, as f (vk xk) . 
Each weight wk is then 

calculated as: 

Wk =SkCOR(f(Sk Vk Xk), u)std(xk ) (2.54) 

where the sign, Sk , can be found from the sign of (tTxk ), or as Wold (1992) showed, fitting 

both f (xkvk) and f (-xkvk) , and then selecting the one with the highest absolute correlation 
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with u. After all weights are calculated, the obtained weight vector is normalized, i. e. 

w= w/ 11 w 11. The algorithm is given in Algorithm 2.5. 

%Nhilc conv> limit, 

uold = u: 

t=X*w; 

(11 ü /( t. u): 

qY'*ü: 

q= q/norm(q): 

u=Y*g: 

fork= l: m, 

)iii) x X(:, k): 

(i%) s=sign(f*x): 

)ýI sx = std(x): 

Iýi) k= std(t)/sx: 

wi) \%(k) s*cor(u. /(ti*\ *x))*sx: 

end 

Repeat until cunvcrgencC 

Retain the % score vector to regulate the cumereence 

Calculate the X score vector 

"o Calculate the nonlinear fit 

°o Regress F on ü (not on u a. in linear I'I tit 

"o Normalize to unit length 

"o Update u using the linear cunihination q 

"o For each ofthe k VAeiehl, Aoriahle, 

"o Select the i"' variable 

% Identilj il 'x is negative or positive correlated to t 

% Calculate the standard deviation of the i"' variable 

Calculate the scaling constant 

0o Calculate each \ýeight according, to criterion 

0 Weight loon 

w= w/norm(w); Normalize to unit length 

cony = norm(u-uold)/norm(u); ('on ergence if, limit (and no. of iteration. may iter 

end Inner loop of iterations (%vhilc loop) 

Algorithm 2.5. The Spline PLS (SPLS) algorithm (MATLAB code). 

The method is consistent with the principles of PLS, i. e. it explains both the variance in X and 

Y. Moreover, it does not have any problems when applied to underdetermined systems or 

multicollinearity. However, the focus on simultaneously explaining the variance in the X and Y 

matrices may result in an increase in the error when constructing the inner nonlinear mapping, 

as the "true" underlying structure may not be identified. The error introduced by the nonlinear 

function between t and u will be retained in the model. 

2.3.5 Alternative Methods 

Since the 1980's a number of nonlinear regression methods have been developed including 

Projection Pursuit Regression (PPR), (Friedman and Stuetzle, 1981 and Friedman, 1985), 

Classification and Regression Trees (CART), (Breiman et al,. 1984), Alternating Conditional 

Expectation (ACE), (Breiman and Friedman, 1985), Additivity and Variance Stabilization 
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(AVAS), (Tibshirani, 1987) and Generalized Additive Methods (GAM), (Hastie and Tibshirani, 

1990). A tutorial on some of the methods was written by Frank (1995). Of these methods, only 

projection pursuit regression (PPR) can handle a multivariate response using the inter- 

relationship between the response variables. As a consequence of its close relationship to the 

methods of SDPLS, EBPLS and SPLS, it is discussed in more detail. 

2.3.5.1 Projection Pursuit Regression. 

Projection pursuit regression (PPR), also called SMART (Smooth Multiple Additive Regression 

Technique), was developed by Friedman and Stuetzle (1981) based on work of Friedman and 

Tukey (1974). The projection pursuit regression mapping can be written as: 

A 
Y= fý(Xjwj)qý +E 

j= (2.41) 

Determination of the model parameters is carried out by sequentially minimizing a sum-of- 

squares error function, as in the error based weight updating procedure of Baffi et al. (1999a). 

The main difference being that in PPR, rank-one updating of the matrix X is not performed 
between each optimisation sequence. In addition, the weight updating scheme was based on the 

direct search method of Rosenbrock (1960), modified to search on a unit sphere and using 

restarting, i. e. applying a new starting vector to reduce the problem of local minima. Thus the 

method has good convergence properties and can handle local minima, but should only be 

applied on overdetermined systems. Furthermore, it may suffer problems when modelling 

multicollinear systems. This is due to the increased possibility of modelling noise when having 

collinear variables in the predictor matrix, e. g. when two highly positively correlated variables 
is allowed be given weights of different sign, the noise will be augmented. 

The nonlinear function used is a smoother, i. e. a local model is fitted to the data, either using a 

window or a kernel. In particular, Friedman and Stuetzle (1981) proposed using a local linear 

kernel regression with a variable bandwidth determined using cross validation, after applying a 

running median of three as a first pass in the smoother to protect against isolated outliers. 

Although applying a running median of three makes the inner mapping more robust against 

outliers, some structural information about underlying function may be lost. 
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2.3.6 Comparison of the Nonlinear Projection Methods 

The weight updating schemes of Wold et al. (1999) and Baffi et al. (1999a, b) use the methods 

of Gauss-Newton and steepest descent, respectively, for the sequential minimisation of the sum- 

of-squares error function, Equation (2.49). An alternative approach is the non-gradient method 

of Rosenbrock (1960) used in projection pursuit regression. These are typical nonlinear least 

squares methods, and have a number of issues associated with their application: 

(i) If the system is underdetermined, an infinite number of solutions will exist and severe 

overfitting may occur. 

(ii) The lower the signal to noise ratio, the greater the risk of fitting the noise. 

(iii) The effect of correlation between the errors (collinearity) is similar to a reduction in the 

number of observations, since the covariance matrix of the errors will have a higher 

condition number. This will be similar to an error matrix with a smaller number of 

observations. A well-conditioned problem is when small perturbations of the regression 

vector lead to only small changes in f (Xß), i. e. a small condition number for inversion. 

(iv) When the degree of nonlinearity is low, linear methods can outperform due to their 

simplicity. 

Spline PLS sequentially fits a nonlinear function between a "sub-optimal" pair of latent 

variables, in the sense that the criterion used does not focus on minimizing the error of the 

nonlinear mapping, but focuses on explaining the variance in both X an Y. Consequently, the 

error introduced by sequentially fitting nonlinear functions to these inner mappings can be large. 

Furthermore, since X and Y are rank-one updated using the score vector t and the nonlinear fit 

6, respectively (Equation, 2.50), the fitting error propagates to subsequent pairs of latent 

variables. Consequently, the rank one reduction of X and Y is not orthogonal 

(t is not orthogonal to ü ), thus the error introduced by the nonlinear mapping cannot be 

modelled by the residual variance in X. 

Nonlinear PCR addresses the above issues by eliminating the correlation between the errors 

whilst at the same time increasing the ratio between the number of observations and variables. 

Issues with nonlinear PCR can occur when the response variables are not explained by the 

major direction in the predictor matrix, X. The models can therefore be less parsimonious than 

PLS since the information in the response variables is not used in the extraction of the latent 

variables. 



The nonlinear projection methods allow flexibility in the modelling of the relationship between 

the response and predictor variables, but compared to linear methods there is a greater risk of 

overfitting. Consequently, in situations where there are only a few observations and/or noisy 
data, linear methods may outperform nonlinear techniques, even when there is a nonlinear 

relationship in the data, particularly if the nonlinearities are small, moderate or when an 

adequate transformation exists. That is, if the nonlinear relationship is known to be exponential, 

a logarithmic transformation of the response variable results in a linear model to be fitted. 

However, a logarithmic transformation will also result in a greater emphasis on the lower values 

that might or might not be of interest, since the variance of the higher values will be decreased 

relatively more compared to the variance of lower values. 

2.4 Nonlinear Mapping of the Inner Relationship 

Several measures have been proposed to quantify the level of nonlinearity in nonlinear 

problems. For a discussion of the various approaches, see Bates and Watts (1980). There are 

many ways to model a nonlinear relationship. The focus in this Thesis is on the projection 
based modelling approach defined in Equation (2.41), where the nonlinear mapping is restricted 

to univariate problems. Nonlinear functions can be divided into two categories: parametric and 

nonparametric. 

2.4.1 Parametric Nonlinear Mapping 

The simplest class of parametric functions, and those most frequently used are polynomial 
functions: 

u=at+a2t+a3tZ+"""+a, +It' = 
ja, 

+, t' 
(2.55) 

r=0 

The key issue is to select the degree of the polynomial, p. Selecting too high an order can result 

in the data being overrated, whilst too low a degree will result in the data being underfitted. An 

alternative nonlinear curve fitting method is the power function: 

. 
f(t)=EQ, t' 

ý_ý 
(2.56) 

The power function is reasonable for some problems, but is not the general choice since the 

coefficient estimates will be correlated and may therefore have a high condition number. A 



nonlinear PLS approach that used the error based weight updating procedure and the Box- 

Tidwell transformation equation, f (t) = Q0 + 81ta' , was developed by Li et al. (2000). 

A third possibility is to fit a curve using a linear combination of known functions. Here any 

known function, including polynomial and power functions may be used: 

R 
f(t) =Ea; f,. (t), e. g. f(t) = al+ aZt + a3 sin(t) + a4 exp(t) 

; =l 
(2.57) 

If the underlying structure of the function is known (or is symmetric), the parametric approach 
is the normal choice, since it generally will give the lowest model error. The nonparametric 

mapping, does not depend on these conditions and thus is more universal. 

2.4.2 Nonparametric Nonlinear Mapping 

In parametric regression, it is assumed that the form of the regression function is known (f., 

Equation, 2.41). A more general regression model is obtained by assuming the regression 
function is unknown. Estimating the nonparametric function may be viewed as applying a 
"smoother" to the data. Two of the more common forms of nonparametric regression are 
discussed, kernel regression and smoothing splines. 

2.4.2.1 Kernel Regression 

A kernel smoother, Bowman and Azzalini (1997) or Simonoff (1996), uses a set of local 

weights that are defined by a kernel, to generate an estimate of the target value. Typically a 
kernel smoother uses weights that decrease in a smooth fashion as one moves away from the 

target point and is typically assumed to be Gaussian. The method calculates the target value 

using a locally weighted polynomial least squares that is based on the kernel weights. The 

bandwidth, h, is the smoothing parameter, and it controls the width of the kernel function. The 

selection of global or local bandwidths is crucial for kernel regression. Too small a bandwidth 

will lead to overfitting, whilst too large a bandwidth will result in over-smoothing. 

Consider a nonparametric regression model between the u and t scores for the K'h observation: 

u,, = f, (t, 
r)+e, r, 1SK5m (2.58) 

The regression functionft) =E (u I t) can be estimated by a linear form: 



f [mý K(tk, t)=Ltor, u, 

, _ý 

where w,, is the weight for the ith observation, used to estimate the function value for the 

rh observation as a weighted average of the u scores. For a given general kernel function K, 

and the relationship for the scaling constants: s(`), 0: 5 r: 5 p (from the minimization): 

SK'ý =E tj (tic - t, )' K((t, 
r -)ý h) 

r=1 

the simple Nadaraya-Watson (NW) kernel regression estimator can be defined as: 

fivw(tx)= 
so ýEK((tx 

-tt)/ h)ur =ýEýb u, " 
x 

The NW estimator is the solution of a weighted least squares problem: 

min E E(u, -ßo)2K((tx -t, )lh) 
Pb K=i i=i 

(2.59) 

(2.60) 

(2.61) 

(2.62) 

and corresponds to a local mean fit. It is possible to extend this approach to a general 

polynomial regression estimator: 

in E EIuý ßo ßiýtK -, 8p(tK -tr)p]ZK((t, r -t) 
/ h) 

,p x=L=1 
(2.63) 

where p is the degree of the polynomial and f3 = [/30, ßi...... 3P ] is a vector of coefficients. The 

solution is found by least squares. The local linear estimator (p = 1) can be written as: 

s(1) s(') ýEýSKZ) 
-SK', 

(tK 
-I, 

), K[(tK -ti)lhl u, . 
f(IK) = 

S(Z) S(o) 

I 

xxKK 

For the general solution, let X, be the design matrix: 

x1= 

and let, 

(2.64) 

tK -tl ... (tK -t1) 
pi rl 

Ii tK 
-t2 ... OK -t2/p (2.65) 

1 tK -r, � ... (tK -im)pJ 

fl, = dia8[K(tK - ti), ... , K(tK - tm )l (2.66) 



be the weight matrix, then, if (X; S2, X, ) is invertible, the weighted least squares can be 

calculated (see also Section 2.2.1.2): 

ß- ýXe ýr Xt >-1 Xi S2', u (2.67) 

The estimator f (tk) is then the first element in the ß vector, i. e. ß(1). More generally, ß(I + 1) 

is an estimate of the I'' derivative of f (t, 
r 
). 

Although the general polynomial kernel estimator could be used, the local linear estimator is the 

most commonly applied, Wand and Jones (1995). The local linear kernel estimator (Equation 

(2.63), p= 1) exhibits better properties at the edges of the fitted function compared with the NW 

kernel (Equation (2.63), p= 0), since the NW kernel does not provide boundary bias correction 

and tends to "flatten out" at the edges (Simonoff, 1996). The local linear kernel estimator is still 

sufficiently simple to derive the analytical derivative, Section 2.4.2.1.2. The asymptotic 

property, i. e. as h becomes large, the fitted curve approaches the linear least squares solution 

(Bowman and Azzalini, 1997) adds to its applicability. 

Total least squares (TLS) can be applied since the method assumes that both the latent variables 

(t and u) contain noise. In particular, this assumption can improve the solution for the edges or 

the endpoints, since these are typically the most problematic areas for kernel regression, but are 

often more difficult to fit due to ill-conditioning of the matrix inversion involved (Section 

2.3.4). 

The kernel function used is the Gaussian kernel K((tr -t, )/h) = exp(-((tr -t, )/h)2 /2). Other 

kernel functions are possible but the differences in prediction error in the final models are small, 
Wand and Jones (1995). It should be noted that nonparametric regression, as for other methods, 
is sensitive to outliers, especially at the boundaries, thus any outliers should be removed prior to 

the analysis. However, nonparametric regression is not as sensitive to outliers as other methods 

such as parametric methods or splines where the model parameters are equally weighted 

(Simonoff, 1996). A MATLAB function for local linear kernel regression is given in Appendix 

A2.1. 

2.4.2.1.1 The Bandwidth Selector 

A number of kernel regression bandwidth approaches have been proposed. The bandwidth 

approach of Bowmann and Azzalini (1997), termed hoP,, minimises the integrated square error 



theoretically through a compromise between the bias and the variance of the data, Appendix 

A2.2. This method results in general lower prediction error for the bandwidth, h,,, than the 

cross validation method, h,, (Section 3.2.5.1, leave-one-out), see Cao et al. (1994). In the cross 

validation method, an optimization algorithm is applied that minimizes the cross validation error 

with respect of the bandwidth. 

The same smoothing parameter, hop,, is used for all observations. A locally varying bandwidth, 

h; can alternatively be used. It varies directly with the local variance and inversely with the local 

curvature and local density. Each observation is given a different weight depending on the 

density of the observations, through a nearest neighbour approach (Simonoff, 1996). In this 

case, the bandwidth is defined by hi = hop, (dk(i)/mean(dk)), where dk(i) denotes the distance to 

the 1th nearest neighbour of observation i. Local linear and quadratic estimators with 

bandwidths based on nearest neighbours are often called loess (or older term lowess) estimators. 

A MATLAB function is given in Appendix A2.2. 

2.4.2.1.2 The Analytical Derivative 

As mentioned in Section 2.3.1, the Gauss-Newton method requires the analytical derivative. 

The Jacobian can be written: 

d= aiag(af (t)lat) X (2.68) 

Consequently, it is necessary to find the derivative of if(t)la t where f (t) is given by Equation 

(2.64) and by the Gaussian kernel K((tr - t, ) / h) = exp(-((tr - t) / h)2 / 2) : 

m 

((f l 

YWsiUi 

f\ýKl 'm 

Y-Wb 

1=1 

where tK is the IC Ih element oft and given the intermediate calculations 

where 

w= 
(s, (r2) 

-Sýr')xkI)eXP(-'/2(x, N lh, ý)2) 
a (2) (O) (1))2 SK sir -(s x 

X, r; = ti - t, 

sK'ý exp(-(x�d /h, 
r)Z 

/2)x, r 

(2.69) 

(2.70) 

The first derivative Of(t)/ö t can be calculated as: 
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ý "K) 
__Lr`g# +SllI +Oxi/ul + f(tK)\y- 

Sp +y- OKf +Z $K! 
/ 

at 1=1 I=] i=1 1=1 

where 

- 
(SK3) / hK2 -sKl) -(SýK) / hKZ -SxO) )xý; )exp(-''/z(xý; ý%1K)2) 

gni - 
S(2) S(0) -S(1) S(l) KKKK 

XiW. 

2 5ý= 
h2 

) (SK3) / /! K2 -2SK1 ) s(0) 'FSKZ)SKý) IhK2 
-(2s(1) 

/SZ) / hK2 
-SKO, 

ýý 
\ 

Wm SKI 
s(2) s(0) _ s(1) s(1) 

KKKK 

(2.71) 

(2.72) 

An algorithm that combines the construction of the local kernel function and its first analytical 

derivative is given by the MATLAB function, Appendix A2.3. 

2.4.2.2 Smoothing Splines 

Smoothing splines is a nonparametric method that has similarities to the kernel regression 

method. Two criteria are used to select a nonparametric smoothing spline function: 

(i) Goodness of fit 

(ii) Smoothness of fit 

A standard measure for the goodness of fit is the mean residual sum of squares: 

1 
Y-(U, -f (o), 

m r=I 
(2.73) 

where m is the number of observation. A common measure of the smoothness of fit is the 

integrated squared second derivative: 

00 f (oZf(t))Z at 
_W 

(2.74) 

where V 2f(t) at is the second derivative of f (t) with respect to t and f belongs to the set 

of all continuously differentiable functions with square intergrable derivatives. A single 

criterion that combines the two criteria is given by: 



cc 
Y iu-J(t))T(u-. f(t))+(1-Y) f (oZ. f(t))Z at 

-m 

(2.75) 

where ye (0,1) is the smoothing parameter. The most common class of estimators uses a cubic 

polynomial for f (Simonoff, 1996), and is discussed in more detail in the subsequent section. 

2.4.2.2.1 Cubic Smoothing Splines 

This smoother is based on the solution to an optimization problem. Consider the following 

problem. Amongst all functions f (t) with q continuous derivatives a solution that minimizes 

the penalized residual sum of squares exist: 

yE {u, - f(t, )}2 + (1- y) jö {vn f(t)}z dt 
ý_ý 

(2.76) 

where y is a fixed constant and a: 51,: 5 ... <- tm < b. The integral boundary defined by a and b 

in Equation (2.76) is defined to capture the data. The most common form of q, is where ?I=2 

so that it becomes square integrable. It can be shown that Equation (2.76) has an unique 

minimizer that is a natural cubic spline with knots at unique values of t,. The first term 

measures "closeness to the data", whilst the second term penalizes curvature in the function. It 

may appear that the spline is overparameterized since there are as many as (m-2) interior 

knots. However, since the coefficients are estimated in a constrained manner by the second 

term, the effective dimension can be reduced considerably. 

The parameter y plays the same role as the bandwidth in kernel regression. Small values of y 

produces smoother curves, whilst larger values are liable to result in overfitting. At one extreme 

as y -4 0, the penalty term dominates, forcing V2f (t) =0 everywhere, and thus the solution 

tends towards least squares (linear). At the other extreme, as y -+ 1 the penalty term becomes 

unimportant and the solution tends to an' interpolating natural cubic spline, since it is 

constructed to have zero second and third derivatives at the boundaries (the natural boundary 

conditions). 

2.4.2.2.2 Computational Aspects 

Using the fact that the solution to Equation (2.76) is a natural cubic spline with (m - 2) interior 

knots, it can be represented in terms of a basis for this space. For computational convenience, 

the unconstrained B-spline basis is used. The m equations required to determine 

f (ti ), ""-, f (t, 
�) are obtained by minimizing Equation (2.76). Let R be the ((m-2) x (m-2)) 
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symmetric tridiagonal matrix with diagonal elements R,,, = 2(t, +l - t, _1) and off-diagonal 

elements R,,, 
_1= 

R,,, +, = (t, +l - t, ). Furthermore, let Q be the ((m - 2) x m) upper tridiagonal 
matrix with Q, 

'j 
= Q, 

_l, i+l =I /(t,,, 
- ti), Q,,; 

+1 = -(1 /(t, 
+1 - 

t, ) +1 /(t, 
+2 - t, 

+1)) , with 0 elsewhere. 

It is shown (de Boor, Chapter XIV. 6,1978) that the m additional equations can be estimated as: 

[6(1- Y)QQT + yR]v = öu /et 

where the estimate f (t) of u is given by 

(2.77) 

f (t) =u- 6(1 - y)a[o; a[o; v; o]/at; o] (2.78) 

The cubic smoothing spline, because of the implicit way it is defined, does not use local 

weighted averaging as for kernel regression. However, it possesses local behaviour similar to 

that of kernels. It has been shown, Simonoff (1996), that the smoothing spline can be written as 

a kernel smoother. The cubic smoothing splines were fitted using the MATLAB program defined 

in Appendix A2.4. 

2.4.3 Comparison 

The effectiveness of a number of the function estimation approaches discussed in the previous 

section is demonstrated on 6 simulated examples, see also Cao et al., (1994). The comparison 

was conducted for three noise levels and for three sample sizes. A selection of methods for 

function evaluation were compared. These methods were (Table 2): 

Methods 

1. Smoothing spline, smoothing parameter estimated using cross validation (CV). 

2. Local linear kernel regression using optimal bandwidth and loess. 

3. Local linear kernel regression, the smoothing parameter, h, estimated using CV. 

4. Local linear kernel regression, using total least squares, h, estimated using CV. 

5. Local cubic kernel regression, the smoothing parameter, h, estimated using CV. 

6. Parametric regression, using the known function (reference). 

Table 2. Methods for function evaluation. 

Figure 2.4 shows six simulated functions with the true underlying function superimposed (red). 

The underlying functions were: (i) u=a, sin(t) + a2t, (ii) u=a, t2, (iii) u =a, exp(t), (iv) 

u=a, tanh(t), (v) u=a, abs(t) + a2t and (vi) u=a, t. The univariate data consists of m= 25, 

50 or 100 observations that were generated from these functions, for three signal to noise ratios 
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(SNR), i. e. low: SNR = 100, medium: SNR = 10 and high: SNR = 2. Additive Gaussian noise 

was added to both variables (t and u). 
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Figure 2.4. Six simulated examples, based on 50 samples and exploiting medium noise. 

The underlying functions were then applied to the noisy data using the six different methods. 

For each case, the distribution of 500 repetitions was examined to avoid random instances when 

interpreting the outcome of the simulation. The results are presented in Figure 2.5. Since the 

true underlying functions were known from the simulation, the error was measured as the root 

mean squared error (RMSE) between the estimated function and the true function. Furthermore, 

by applying parametric regression derived from the reference function, the lower limit of RMSE 

is indicated. 

There was a high level of agreement between the results for the six different functions 

illustrated, in Figure 2.4. Thus, only the results from the first curve (i) in Figure 2.4 are 

discussed, with the distribution results given in Figure 2.5. Based on the estimated Root Mean 

Squared Error (RMSE) values of 500 repetitions, the median, the first and fourth quartile, and 

the points not encapsulated by the first and fourth quartile were plotted in a box plot represented 

for each of the six function estimation methods. 
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Figure 2.5. RMSE for the six nonlinear mapping methods for function (i). 

From Figure 2.5, the features of the different methods are. 

1 

1 

m=100 

2 3 4 6 5 

2345 

12345 

(i) If the function is known, parametric regression (6, Table 2) is the best method. 

(ii) The difference between the performance of the nonparametric methods was not 

generally large, especially as the number of observations increased. 

(iii) For low noise, cross validation was better than the optimal bandwidth approach. 

(iv) For low noise, the smoothing spline (1, Table 2) performed the best of the 

nonparametric methods, and for large data sets was independent of noise level. 

(v) For high noise and small and medium sized data sets, local linear kernel regression 

using the optimal bandwidth (2, Table 2) exhibited best performance for the 

nonparametric methods. 

(vi) Local cubic kernel regression (5, Table 2) showed improved performance for an 

increasing number of observations, but local linear kernel regression generally 

performed better. 

6 

6 
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For nonlinear PLS, where the inner mapping is estimated for each iteration, a robust method for 

function evaluation is normally desired. That is, a method that always performs well is preferred 

over a method with a high performance that sometimes performs dramatically worse. Consider 

an iterative projection based optimization approach where a nonlinear function is fitted for each 

iteration between two projections of the predictor and the response variables. Typically, the 

iterative process starts with a projection (a starting vector) that does not identify the underlying 

structure well. As the solution approaches the underlying function, the predictive error of the 

inner mapping will decrease. Due to the underlying relationship not being appropriately 

identified at the beginning of the optimisation procedure, the construction of the inner mapping 

is subjected to a high level of noise. Consequently, the local linear kernel regression that utilizes 

an optimal bandwidth with loess (2, Table 2) seems to be preferred choice, since it combines 

robust performance for noisy data with increased speed compared to using cross validation to 

estimate the bandwidth. A robust choice will decrease the possibility of the optimisation 

residing in a local minimum. This is because the possibility of overfitting the inner mapping will 

reduce the structure in the residuals used in the estimation of the weight vector (Section 3.2.5.2). 

In the later stages of the iterative process when the nonlinear function is well identified, the 

smoothing spline using cross validation seems to be the preferred choice. Consequently, when 

the parametric function is not known, the recommendation would be either to use local linear 

kernel regression or to start with local linear kernel regression and then switch to smoothing 

splines at the later stages of the optimization. Alternatively, if the parametric function is known, 

the recommendation would be to use that function for the inner mapping. 

The difference between a smoother and a spline function is that although the final function 

appears continuous, there is no continuity restriction in fitting the local polynomials in kernel 

regression. In the smoothing spline, the first and second derivatives are assumed to be equal. 

However, kernel regression is easier to interpret, since it generalises the most commonly used 

statistical method, least squares, to allow local nonlinearity (Simonoff, 1996). Spline estimators 

place the smoothing problem in the framework of optimizing a penalized version of the 

likelihood. Historically, a strong argument for this roughness penalty approach over kernel 

estimators was the simplicity with which they could generalize from the least squares criterion 

to likelihood functions, Simonoff (1996). Ultimately, the choice between the two nonparametric 

methods comes down to the ease by which the smoothing parameter is found. This favours the 

plug-in method related to the local linear kernel regression since no cross validation is 

necessary, Bowmann and Azzalini (1997). 
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2.5 Discussion 

A general overview has been given of the concepts and the tools of some of the more common 
linear and nonlinear regression techniques. Three nonlinear PLS methods were discussed in 

detail, Error Based PLS (Baffi et al., 1999a), Steepest Descent PLS (Wold et al., 1989), and 
Spline PLS (Wold, 1992). An important aspect of the nonlinear PLS methods discussed in this 

chapter is that they are based on the classical PLS algorithm, Algorithm 2.2. Of importance is 

that the weight estimation and the nonlinear mapping are constructed independently of each 

other, thus the same nonlinear mapping can be used for all the three algorithms. Based on the 

limitations described, the nonlinear PLS approaches are investigated further and improvements 

are proposed in the following chapter. 
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CHAPTER 3 

DETERMINING THE WEIGHTS IN NONLINEAR 

PARTIAL LEAST SQUARES 

3.1 Introduction 

No particular nonlinear PLS method has dominated the field of chemometrics. Although shown 

to work for certain applications, they all have limitations. Furthermore, the issues associated 

with the different methods have not been explored in detail. Fitting a univariate nonlinear 

function, (t) between the scores t and u is not difficult when the underlying structure is properly 

identified, thus the most important requirement in nonlinear PLS is to determine the weight 

vector w that identifies the underlying structure in an appropriate manner. The underlying 

structure may or may not be known. If it is not known the inner mapping can be verified using a 

separate validation set. It should be noted that the Y-score vector, u= Yq, is identified 

separately from the X-score vector, t= Xw, and is calculated equally for all the NIPALS based 

PLS methods discussed in the Thesis. 

The aim of the work presented in this Chapter is to establish a general nonlinear PLS algorithm. 

In addition, theoretical and practical issues concerning nonlinear PLS algorithms are discussed. 

Specifically, two fundamentally different ideas as to how to implement nonlinear PLS are 

investigated, Framework 1 and 2. Both frameworks are independent of the type of nonlinear 

function that is used to model the inner relationship (between t and u), and differ only in terms 

of how the weight vector w is obtained. 

3.1.1 Framework 1 

In 1989, Wold et al. introduced the concept of nonlinear PLS whereby an objective function is 

minimized through an updating scheme, Steepest Descent PLS (SDPLS). This scheme 

minimises Equation (2.49) using the method of Steepest Descent (SD) that was discussed in 

Section 2.3.4.1. In 1999, Baffi et al. modified this algorithm by replacing the SD method by 

that of Gauss-Newton (Section 2.3.4.2), Error Based PLS (EBPLS). Based on these ideas, a 

new weight updating scheme is proposed, Nested PLS (NPLS). In NPLS, the weight updating 

is implemented by means of linear PLS with cross validation being used to minimize the 

expression in Equation (2.50), i. e. solving öw from the linear Taylor expansion ez -JÖw, 



Ow = PLScv(-J, e) (3.1) 

where öw represents the regression coefficients obtained from the inner PLS model. 

Fundamentally, steepest descent (SDPLS) can be seen as applying Equation (3.1) using only 

one latent variable whilst Gauss-Newton (EBPLS) can be seen as applying Equation (3.1) using 

all the latent variables, i. e. least squares. Nested PLS lies between these two extreme cases, with 

the number of latent variables selected using cross validation. 

3.1.2 Framework 2 

In 1992, Wold proposed a different approach based on the covariance criterion, Spline PLS 

(SPLS). The covariance criterion was adapted for use in the nonlinear case, by linearizing each 

variable through a nonlinear function fitted prior to calculating the covariance as described in 

Section 2.3.4.3. Although the method is appealing since it is closely related to the concept of 
linear PLS, it has a major limitation. This criterion does not focus on minimizing the error 
between u andAt), but on explaining both the variance in X and Y. Consequently, the risk of 
introducing error when fitting the nonlinear function is larger than for Framework 1. 

Based on the SPLS framework a new criterion is proposed, the reciprocal error variance 

criterion that results in Reciprocal Variance PLS (RVPLS). RVPLS calculates each weight 

independently as for the covariance criterion, but focuses on explaining the variance of the 

response variables only. 

The advantage of linear PLS, i. e. the removal of information on a step-by-step basis until only 

noise is contained in the residuals, is not directly applicable in nonlinear PLS. It is essential that 

the underlying structure is identified, i. e. the selection of appropriate w and q vectors, that 

minimizes the error when fitting a nonlinear function between the t and u scores. By fitting a 

nonlinear function for each latent variable on a step-by-step basis, each nonlinear function will 

introduce an error that propagates to the next latent variable. It will then not be possible to 

model the resulting error using the predictor matrix X, and this will influence the subsequent 

latent variable as the error caused by the inner mapping will be included in the residuals. Thus, 

it is desirable to minimize the number of latent variables used in the model by identifying the 

underlying nonlinear relationship in the best possible manner. Specifically, identifying the first 

latent variable is the most important, as this often determines the overall performance of the 

algorithm. 



3.2 The Nested PLS Algorithm 

The Nested PLS method is based on the Error Based Weight Updating (EBWU) procedure of 

Baffi et al. (1999a, b). The method minimizes the number of latent variables as discussed in the 

earlier section, but as it is a nonlinear least squares method, there will be issues when 

multicollinearity is present between the variables or when the system is underdetermined. One 

proposed solution to overcoming these problems is to use EBPLS as a nonlinear PCR method. 

That is, apply regression to the orthogonal score matrix T. However, this approach may not give 

a satisfactory model as discussed previously. 

To overcome the collinearity limitation of the EBWU procedure, a new methodology is 

proposed, Nested PLS (NPLS), which comprises an inner and outer PLS algorithm (Li et al., 

2001). The objective of the outer algorithm is to extract those building blocks, such as latent 

variables and loadings, t, u, p, and q that will form the basis of the final application. The role of 

the inner algorithm is to overcome the multicollinearity problem of the EBWU procedure and to 

derive the weight vector w for the outer PLS algorithm. The concept of Nested PLS is illustrated 

in Figure 3.6. 
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w=w+Sw 
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q= YTf(t) 

q= qfjjqjj 
u=Yq 

Figure 3.6. Simplified illustration of the Nested nonlinear PLS algorithm 

X- Yiý, 

u=, f(t)+e 

Considering the Taylor series approximation defined in Equation (2.50) (e= -JÖw ), the inner 

PLS algorithm is used to identify the regression coefficients, äw, for the linear regression 

problem where J are the predictor variables and e is the response variable using linear PLS. The 



number of latent variables is determined using cross validation. Step (1) in Figure 3.6, results in 

the calculation of the score vectors t= Xw and s= Jv, for the outer and inner PLS algorithms, 

respectively. Step (2) identifies the nonlinear function, f(t), and the linear function, bs, 

between the score spaces, for the outer (t, u) and inner (s, r) score spaces respectively. Step (3) 

defines the loading vectors q and g for the responses Y and e, for the outer and inner PLS 

algorithms respectively. Since the error vector e represents an univariate response, i. e. g=1, the 

score vector r becomes e, consequently the inner PLS algorithm is non-iterative. The algorithm 
is described in more detail in the subsequent sections. 

3.2.1 The Multicollinearity Problem 

As discussed in Section 2.3.1, Gauss-Newton optimization is based on the Taylor series 

expansion of f(Xw) about the current weight vector w. Consequently the mismatch, e, 

between u= Yq and ü= f(Xw) can be defined as: 

e=u-ü z-JÖw (3.2) 

From Equation (3.2) it can be seen that e -- -J 8w can be solved by least squares: 

öw = _(JTJ)-I Jre (3.3) 

and the EBWU procedure results. The Jacobean is given by J(;, J) _ [0e; /öwj ]. In general, for a 

data matrix of predictor variables, X, the Jacobian matrix in the EBWU procedure can be re- 

written as J =-[öf(Xw)/Ow]w =-diag{ f'(t)}X =-D1/2X, where D"2 = diag{ f'(t)} and 

f'(t) = Of(t) / ät , since (f'(t)1) X can be calculated as diag{ f'(t)}X = D"2X , where 1 is an 

unity vector of order (1 x n). The increment relating to the weight vector can thus be rewritten 

in terms of a weighted least squares solution where only X is weighted: 

öw = -(JT J)-1 JTe = [XTDX]-1 XTDti2e (3.4) 

It can be observed that the negative sign of Equation (3.3) cancels out the negative sign 

originating from the Jacobian itself (J = [ae; /äwk ]= --{ä'i /&k ]), thus an updated Jacobean 

can be defined, (J = -J = D' /2X) to simplify the following discussions. 

The condition number is typically used to characterise the severity of the multicollinearity 

problem. From Equation (3.4), the condition number of the EBWU procedure is closely related 

to the condition number of X. Therefore, the EBWU procedure can be affected by 



multicollinearity just as ordinary least squares. In particular, for the linear inner mapping, 
f (s) = bs where b is a scalar, the condition number for problem (3.4) is equal to the condition 

number of X. 

If the matrix, J is rank deficient, the pseudo inverse (JTJ)+ of the matrix (JTJ) is required in 

Equation (3.4). It should be noted that replacing the inverse of matrix (JTJ) by a generalized 
inverse, for example, the Moore-Penrose inverse, (JTJ), will not work if X is ill-conditioned. 

It only works if X is of full column-rank since in this case, (JTJ)- = (JTJ)"1 for any 

generalized inverse of (JTJ) . When X is not of column rank, the Moore-Penrose inverse can 
handle the problem of zero singular values of X, but not those singular values that are very 

small but not strictly zero. 

3.2.2 The Inner PLS Algorithm 

Consider the following linear regression problem from Equation (3.2): 

e=. w+, r (3.5) 

where T is the inner error vector, öw is the unknown regression parameter vector, e and J, are 

the observation vectors for the response variable and design matrix respectively. This is a linear 

regression problem that can be solved using PLS, and denotes the inner PLS algorithm. In the 

inner PLS algorithm, standard PLS replaces the least squares solution in Equation (3.5), where 
j is treated as the X-block and e the Y-block in linear PLS. Specifically, weight vectors 

v1 (k =1, """, A) are sought for the inner PLS algorithm (Wold, 1966) such that the data 

matrices, j and e, can be decomposed into the following sum of outer products: 

J= Escbi +J. a+i e= Ebcsc +ea+i 
c=t c=ý 

(3.6) 

JA+1 and eA+l are the residuals, A is determined by cross-validation and s1 = Jrvi are the 

latent variables of the inner PLS algorithm. The data matrices, j and e, are then updated as 

follows: 

it,, =it - slhi with J1 = -J 
e, 1 =e1-l st with e, =e 

(3.7) 
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where hi =J st /(sl sl) are the loading of the X-block and be 
= eT sI /(sl s1) is the estimate of 

the regression coefficient of the inner mapping between the X-block and the Y-block. The Y- 

block is a single column, resulting in the loading vector, gl and latent variable vector, rl , of the 

Y-block being unity and et respectively. Thus the computation of extracting each of the latent 

variables, v1 , 
is not iterative and thus is fast: 

vi =Jýel/(eýJrJýei)li2 (3.8) 

The output of the inner PLS algorithm is a PLS based estimate (the regression coefficient) of the 

unknown parameter vector, äw, 
, given by 8w = V(HT V )-lb, 

, where V= [v1,..., VA], 

H= [hI,..., hA ], and b= [bl,..., bA]T 
, similar to that given in Equation (2.36). 

3.2.3 The Outer PLS Algorithm 

The basic building blocks of the outer PLS algorithm are calculated based on the weight vectors 

w calculated from the inner PLS algorithm, where X is treated as the X-block and Y the Y- 

block. More specifically, based on the updated weight vector, w1+1 =w1 +ow and 

w=w/ 11 w it ,X and Y can be decomposed into the following sums of outer products: 

AA 

X=ýt jpý +XA+1 and Y= YJ(t j)gj +YA 
J=1 J=1 

(3.9) 

where A may be determined by cross validation, the latent variables t1 and u, are given by 

t1 =X1w,, u1 =Y1g1 and p1 =XTt1/(tjt1). 

For each latent variable of the outer PLS algorithm, the error between the predicted and 

calculated latent variable, ej =uý -üj, and the Jacobian matrix, Jj =äf(Xjw j)/oow j, is 

obtained for each iteration of the outer PLS algorithm. This is then used in the inner PLS 

algorithm. 

After convergence, rank one updating is undertaken according to Equation (3.9), and if required 

the subsequent latent variable is estimated. The only difference compared to EBPLS is that 

ordinary least squares in line (v) of Algorithm 2.4 is replaced by öw = PLScv(J , e), i. e. the 

updating vector, ow, is calculated from the regression vector calculated from linear PLS where 

the number of latent variable is selected using cross validation (CV). Algorithm 3.1 gives the 

key algorithmic steps in the Nested PLS algorithm. 
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%%hile cony > limit, 

fII 

uold = u; 

t= X*w; 

16 düdtl /iI ui 

Ill q=Y'*ü: 

I III I 

q= q/norm(q): 

u= Y*q: 

eu-ü. 

(i\ )J=X. *ldüdt(:, ones( I. xcol))I: 

Iý1 dw = PI. ScNJ. e): 

(\II NN (lN 

w= W/norm(W); 

cony = norm(u-uold)/nonn(u); 

end 

°o Repeat until convergence 

Retain the old V score sector to restrain the comergcncc 

Calculate the X score vector 

" Calculate the nonlinear tit. and the kt dcrkati\c 

0 Regress Y on 6 (not on u as in linear PI S) 

Normalize to unit length 

0o Update u using the linear combination q 

Oo Calculate the error vector e 

% Calculate the Jacohian (sign cancels in (' )) 

%('alculate the weight update vector wine PI ti ith ('A 

% Improved weight %ector 

0 Normalize to unit IenatIi 

Convergence ifs limit (and no. ohitcr may iter 

Inner loop of iterations (\vhile loop) 

Algorithm 3.1. The Nested PLS algorithm (NPLS) (MATLAB code). 

3.2.4 Special Cases 

3.2.4.1 The Error Based PLS Algorithm 

When the number of latent variables is equal to the number of columns of the X matrix, the PLS 

algorithm gives the same solution as that of least squares. Thus, if the number of latent variables 

in the inner PLS model is equal to the number of columns in the Jacobian matrix, J, the inner 

PLS algorithm reduces to a least squares problem, Equation (3.3), and the Nested PLS approach 

collapses to the Error Based Weight Updating (EBWU) approach based on the nonlinear PLS 

algorithm of Baffi et al. (I999a). Hence, the Gauss-Newton approach in EBWU is a special case 

of the inner PLS algorithm in the Nested PLS algorithm. In general, if a data matrix X is not ill- 

conditioned, both algorithms will give the same performance. 

3.2.4.2 The Steepest Descent PLS Algorithm 

For the case where the number of latent variables retained in the inner PLS algorithm of the 

Nested PLS algorithm is unity, the algorithm is closely related to that developed by Wold et al. 

(1989). For the inner mapping: 
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u= f(t)+e= f(Xw)+e 

Expanding ü= f(Xw) using the Taylor's series expansion as in Equation (2.50): 

u'&ü-JÖw 

(3.10) 

(3.11) 

The increment of the weight vector, äw = wr+1 - w� is calculated using linear PLS with one 
latent variable retained. This is the same as the Steepest Descent (SD) approach discussed in 

Section 2.3.1. Furthermore, the method of SD starts with rather rapid convergence but then 

slows down, whilst Gauss-Newton has just the opposite effect, i. e. it starts out slowly and ends 

up with rapid convergence. Applying a method such as Nested PLS, that is a balance between 

the two approaches, may result in more effective convergence. 

3.2.4.3 Linear PLS 

Consider the situation where there is a single response variable. When the inner mapping is a 

linear function, Nested PLS reduces to linear PLS. Consider the first iteration of the outer PLS 

algorithm. Theoretically, when the inner mapping in the outer PLS algorithm is a linear 

function, f (t) =bt, where b is a scalar, the Jacobian matrix in the inner PLS algorithm, 

J1 =öf(X1w1)I w1, reduces to J1 =b1 X=b1 X, and the error, e1 =u1 - ül, reduces to Y if 

the initial vector, wo, is taken as 0 (note that ül is a constant in this case). Then for the inner 

PLS model, the increment of the weight vector is given by, öw1 = w1 - wo = wl . Since no 

further useful information remains after extracting the necessary latent variables, sk 

(k =1, """, A), in the inner PLS algorithm, the outer PLS algorithm will be terminated after the 

extraction of the first latent variable, t1. In this case, the weight vector, w1, is equal to the 

normalized regression coefficients of linear PLS, whilst the weight vectors, V1 = [v1,..., VA ], of 

the inner PLS model are the same as the weight vectors of linear PLS. 

3.2.5 Practicalities Regarding the Nested PLS Algorithm 

This Section discusses some practical issues that influence the resulting model using the Nested 

PLS (NPLS) algorithm. As these practical aspects of the algorithm are important for the 

performance of the algorithm, the effects are examined in the next chapter, Chapter 4. Similar to 

the Steepest Descent PLS (SDPLS) algorithm of Wold et al. (1989) and the Error Based PLS 

(EBPLS) algorithm of Baffi et al. (1999a, b), the NPLS algorithm is based on an optimisation 

algorithm. All issues regarding nonlinear optimisation will therefore affect these algorithms. 
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As discussed in Section 2.3.1 in nonlinear least squares, the optimisation methods can be 

affected by local minima, noise, multicollinearity and the ratio between the number of 

observations to the number of variables in the data set. In particular, overfitting is likely to occur 

for underdetermined data sets. 

3.2.5.1 Cross Validation 

Cross validation (CV) is a method that enables the evaluation of a given model in terms of its 

predictive ability, and the determination of the appropriate number of latent variables to include 

in the model. Cross validation was originally developed by Mosteller and Wallace (1963). A 

number of key references related to the application of cross validation in PLS include Stone 

(1974,1977) and Allen (1974), who pioneered systematic resampling within the calibration set. 

Wold (1978), Krzanowski (1987) and Jackson (1987) examined the use of cross validation in 

PLS. More recent references on the estimation of the numbers of latent variables include Ferre 

(1993), Dey et al. (1996), Runger and Alt (1996), and Henry et al. (1999). Finally, of special 

note is the investigation of Jonathan et al. (2000) into a number of variants of cross validation 

for the assessment of the performance of predictive models, in particular the two-deep fashion. 

In the two-deep fashion the samples used to calculate the cross validation error are separated 

from the selection of the calibration samples. 

One approach to cross validation is to divide the data set into L subsets, where L lies between 

one and the total number of observations. The groups can be selected without replacement, so 

that no observation is present in more than one group. If the number of groups L is the same as 

the number of observations, i. e. leave-one-out cross validation, overfitting and an under- 

estimation of the true predictive error can occur (Martens and Dardenne, 1998). Simulations 

have shown that the optimal number of groups lies between 4 and 11(Wold, 1978). 

Alternatively, data groups may be selected with replacement, i. e. where an observation is 

included in more than one group. This is called Monte Carlo Cross Validation MCCV (or 

bootstrapping), initially considered by Picard and Cook (1984). 

Selection of the more appropriate method depends on the type of data and the objective of the 

analysis. It has been argued that cross validation tends to overestimate the number of latent 

variables in PCA and PLS. A number of stopping iules have been proposed, see Wold (1978) 

or Krzanowski (1987), that penalise the addition of more latent variables. 
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3.2.5.2 Dependence on the Nonlinear Function Fitted 

Since the error vector e=u-ü is used directly in the optimization procedure, any underfitting 

or overfitting of the inner mapping ü=f (t) between t and u will affect the updating procedure 

of the weights. Thus an appropriate choice of smoothing parameter is important (Section 

2.4.3.1.1). This is best explained from Figure 3.7. 
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Figure 3.7. Systematic error introduced by underfitting the nonlinear function. 

In the top subplot of Figure 3.7, a t-u plot is shown as blue stars with the known nonlinear 

relationship shown as a solid black line. The underlying function is known since the data is 

simulated, and the deviation from the underlying relationship comes primarily from the sub- 

optimal choice of weight vector, w. Consequently, there is little noise in X and Y in this 

illustrative simulation example. A function, f, is then fitted using local linear kernel regression 

to the data points and is shown as a dashed red line. This function uses a smoothing parameter 

that is too large, thus underfitting results compared to the known function. The discrepancy, 

shown in the middle plot, is greatest on the right of the curve. If this had been the situation in an 

iteration step for the Nested PLS, the question is what would the effect of such underfitting of 

the underlying relationship be? 

The function, f, is underfitted compared to the known structure of the data. Thus the error 

vector (e =u-6) can be regarded as originating from two sources: 
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1. Error in f (Systematic error) 

The difference between the known function and the fitted function, f, is shown in the middle 

subplot of Figure 3.7. This error originates mainly from the underfitting caused by the incorrect 

selection of the smoothing parameter. Secondly, it may originate from any casual structural 

deviation between the data points and the known function that affects the construction of the 

function, f. However, the probability of having large causal effects decrease with an 

increasing number of observations, and will normally have greatest impact on the upper and 

lower borders of the data cluster in the t-u plot. 

2. Error in w (model error) 

The deviation from the true relationship that is to be minimized is depicted in the bottom 

subplot. This comes from the weight vector being sub-optimal, i. e. the weight vector is 

significantly different from the known optimal weight vector applied in the simulation. Thus 

this part of the error can be minimized through the Gauss-Newton type optimization. 

In addition, both the systematic error and the model error are influenced by the noise in the 

system. However, by intention the noise is kept low to not be significant in the interpretation of 

the result from the simulation. Thus, the calculation of the search direction, öw, in the iteration 

step will primarily be affected by the sum of these two errors; systematic and model error. If the 

total error is dominated by the error in f, rather than the error in w, the error will not reflect 

what is to be minimized and the algorithm may terminate prematurely as a result of an 

inappropriate search direction being estimated. This is due to increased noise in the error vector, 

(e =u-ü), which is used as the predictor in the calculation of the search direction, aw, e. g. for 

NPLS the error vector is used as the predictor variable in the inner PLS, Equation (3.1). 

If a higher noise level is present, both the systematic error and the model error will be affected. 

However, essentially the same observations can be drawn, i. e. the systematic error from the 

underfitting of the inner mapping may be of the order of the model error that results, originating 

from an inappropriate choice of weight vector. 

Alternatively, if the function f is overfitted, the errors will tend towards zero (II u-ü II2 -+0), 

and the risk of terminating in a local minimum is increased. This is because the model error 

caused by an inappropriate weight vector is reduced compared to the error due to noise in the 

system. The minimum value for the error vector occurs when the norm of the error vector 

becomes zero, i. e. when the function f goes through all the data points. 
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3.2.5.3 The Starting Criterion 

As for all optimisation algorithms, the final model is dependent on the starting vector, i. e. the 

initial parameters used for the first function approximation. Ideally, a starting vector that is close 

to the final solution is sought. A natural choice is to use the same starting vector as derived from 

linear PLS, i. e. W= XTU (Figure 3.8a). This will normally give acceptable results, but can be a 

problem when the majority of the variables suffer from a low correlation with the response. 

Consequently, to focus on the more important variables, an alternative starting criterion can be 

initiated, w= cor(X, u) F', where p= 1], 3,5,7,9, } (Figure 3.8b). Here low correlation values 

are down weighted with increasing values of p, thus enabling the focus to be on the more 

important variables. Consequently, the higher the value of p the greater the focus on the more 

important variables. An alternative method is to give weights with an absolute correlation lower 

than a limit (c), e. g. 0.3, a value of zero as suggested by Martens and Nws, (1989). This will 

eliminate those variables that are weakly correlated with the response variable. When the data is 

slightly nonlinear, the regression vector from linear PLS, where the number of latent variables is 

identified using cross validation, can be applied (Figure 3.8d). This vector often will be closer to 

the desired solution than if only the first latent variable (w = XTU) is used. If the underlying 

structure is strongly nonlinear, the linear methods presented will not necessarily give the best 

starting vector. In this case, it is possible to use the Spline PLS method of Wold (1992) or 

related methods such as RVPLS discussed in Section 3.3 to find a suitable starting vector 

(Figure 3.8e). 
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Figure 3.8 shows the effect of applying different starting vectors. The starting vectors shown are 

constructed by the four methods a, b, d and e, and are located on the right hand side with the 

corresponding t-u plot is shown on the left. Generally, the better the underlying structure 
identified by the starting vector, the better is the performance of the starting vector and thus the 

final model obtained. A good starting vector will reduce the chance of identifying a local 

minimum that is far from the global minimum, and since the magnitude of the error vector (Ilell) 

will be smaller, the risk of overfitting is reduced. However, it should be kept in mind that the 

method of constructing the starting vector could cause overfitting. 

Consequently, for noisy data or when uncertain about the degree of nonlinearity in the data, it is 

recommended to try different starting vectors to ensure that good convergence is obtained. 

Furthermore, by comparing the results when applying a number of different starting vectors, it is 

possible to check whether or not convergence is achieved. 

3.2.5.4 The Stopping Criterion 

Since EBPLS, SDPLS and NPLS are minimising a least squares expression, it is important to 

define a realistic stopping criterion. In addition to the normal PLS stopping criteria based on the 

maximum number of iterations (i) and the relative change in the score vector t (ii), a further 

criterion is proposed. If the error does not decrease during two consecutive iterations, the 

algorithm terminates (iii). The idea being that if two successive iterations do not improve the 

model, the chances of overfitting increases. These three criteria were selected as the standard 

termination criteria, and are used throughout the subsequent comparison unless otherwise stated. 

In particular, the maximum number of iterations is 25, or a relative change in the score vector of 

less than 10"8 also causes the iterations to cease. An alternative termination technique is to use a 

test set or cross validation. 

3.2.5.5 Damped Optimisation 

A limitation of the methods encapsulated within Framework 1 is that they are not necessarily 

globally convergent, i. e. they may not converge from some starting vectors. Furthermore, if 

convergence is achieved, it is not unusual that significant computational effort is expended in 

getting close to the global minimum. One possible solution to this problem is to adjust the step 

size, aE {O... 1), of the updating vector (0'w), i. e. w=w+a öw , thereby ensuring the 

objective function value decreases. This is termed damped Gauss-Newton (Bock, 1981). 



Since w is normalised after the increment is added, an alternative generalization is to include 

step sizes larger than unity, i. e. a>0. Then the weight updating, w=w+a öw 
, can 

alternatively be written as w= (1- ß) w+ß äw, where ßE {0,1) denotes the step length and 

öw the step direction. For both cases, w is normalised to attain a norm of unity. Using a 

variable step size is common practise when applying most optimisation algorithms. Strictly, this 

is not dampening but the term is used even when a exceeds unity. The step length can be 

found using a separate optimization method, e. g. the golden search method (Lewis et al. 2000). 

Dampening can be applied for the methods encapsulated within Framework 1. 

3.2.6 Summary of Nested PLS 

The theoretical background of Nested PLS has been presented and related to the existing 

methods of SDPLS and EBPLS. The main contribution of NPLS is the use of linear PLS within 

the optimization framework that is common to these three nonlinear PLS methods. The 

strengths of NPLS, are its ability to handle underdetermined and multcollinear data. The 

weakness of NPLS relates to overfitting, but can be reduced as discussed in Section 3.2.5. 

3.3 The Reciprocal Error Variance Criterion 

An alternative criterion for the derivation of the weight vector is proposed, the Reciprocal 

Variance criterion. The resulting nonlinear PLS algorithm, Reciprocal Variance PLS (RVPLS), 

builds on the Spline PLS algorithm, (Wold, 1992). The proposed concept is motivated by the 

need to reduce the number of latent variables, by focusing more on the response variance 

compared to the Spline PLS approach. This is because a reduced number of latent variables 

reduces the risk of overfitting. The concept is based on the weighted average (Taylor, 1997). It 

is first developed theoretically for a simple multicollinear data set where there is a single 

underlying phenomenon in X related to the response y, and the resulting error is distributed as a 

multivariate normal distribution. An example of an underlying phenomenon could be the peak 

in a spectrum (typically FT-IR) that is correlated with the response variable through Beers law 

(A oc c ), i. e. the Absorbance (A) is proportional to the concentration (c) and thus the signal 

itself. In practice the model is shown to also work when there are only a limited number of 

underlying phenomena, particularly for low rank spectral data. The approach is not dependent 

on the 'dimensionality of the data set and generally works well when there are fewer 

observations than variables. However, the uncertainty of the estimation of the weights and the 

inner mapping increases with a decreasing number of observations. 
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3.3.1 The Weighted Average 

Consider an unknown quantity, y, being measured by a system comprising two sensors, each 

recording a single measurement, zk (k = 1,2), in the presence of random, independent 

unbiased measurement error, a (i =1,2) : 

Y= z, + cl and y= z2 + E2 

In the absence of other information, an optimal estimate of y, that is a linear combination of the 

measurements, is sought: 

wlzl + w2z2 

It is assumed that the weights wl and w2 are independent of y and hence the expression (y - y) 

is unbiased: 

E[y-Y]=E[w1(Y-s, )+wz(Y-E2)-Yl =0 

Now letting E[e1 ]= E[e2] =0 and E[y] =y and w2 =1- wl, the mean squared error is given 

by: 

E[(y - J')2]= w12Q12 +(1_ wl )2 or22 

where a, 2 and 1722 denote the variance of e, and s2, respectively. Differentiating Equation 

(3.15) with respect to wl and setting the result equal to zero gives: 

2w1 a12 - 2(1- w1)Q2 2= 0 (3.16) 

resulting in the weight: 

0722 1/ 012 wl 
012 +022 1/0l 2 +1/U22 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

(3.17) 

The general case can be written as (Taylor, 1997), 

Wk =n 
1ý Qkz 1 1Uk 

=n (3.18) 

i=1 i=1 
E(1/C, 2) E(1/Q, Z) 
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and the corresponding minimum mean square error is as follows, 

n E[(Y - )')Z ]=E1 
! _ý Q! 

-I 

that is, the optimal relative weighting is the inverse of the error variance. 

3.3.2 The Reciprocal Variance Criterion 

(3.19) 

The mathematical concept of the weighted average is extended to the case of regression, where 

a trend is to be modelled by n variables as opposed to a constant. Assuming y (m x 1) can be 

modelled by two variables al and 12 , and that the noise is independent: 

y=%1 +E1 y=%2 +EZ 

el-N(O, aE, ) es-N(O, aE=) 
(3.20) 

Then in a similar manner to the PLS covariance criterion, the model is defined by the weights 

wl and w2 where w is normalised to unit length. The linear PLS model for the first latent 

variable is given by: 

y=d(xw) =dw, x, +dW2x2 (3.21) 

where d is a scaling constant that includes the ratio between jjwjj and Ewe. If the noise is 

Gaussian and independent, then: 

E[(Y-Y)2]=d2 w12Q12 +dZ (1-Wl)2or22 

Minimising Equation (3.22) gives: 

2d2 w1Q1Z -2d2 (1-w1)U22 =0 

II 
w1 Q12 - (1 - wi )622 =0 

(3.22) 

(3.23) 

This is the same result as in Equation (3.18) with the weight vector being given by 

ji =1/rig and w2 =1/0'2 
2. The weight vector, w, is then normalised using the Euclidean norm 

and not the sum as was used for normalising the weighted average, However, the difference 



between these two scaling methods is included in the regression coefficient of u on t, thus the 

difference in normalisation factor does not affect the final model. 

Consider now the calculation of the regression coefficient between u and 1k 
. The error vector 

Ek, is given by Ek =u- 
Ük =U- Xk (uTxk )/(xkTxk)" Letting w represent the weight before 

normalisation, the relative weight then becomes 

2 
Wk = SlgYl(UT %01Qs, 

t 
(3.24) 

where the sign of the weight is found from the sign of the covariance between u and %k . 
This 

weight criterion has the effect of giving all weights a `minimum' value as seen from the 

calculation of Ek. That is, if %k cannot model u, i. e. if ük =0 the zero vector, the weight of 

that variable approaches C. -2 since Ck =u- uk = u, Equation (3.24). This value will be the 

"threshold value" and those variables attaining this value are given zero weight. Thus: 

Wk =Slö(uTgk)llý6Ek -1, Q 
2 ý 

3.3.3 Nonlinear Partial Least Squares 

(3.25) 

Extending the weight vector based on the reciprocal error variance to the nonlinear case is not 

straightforward. Given the nonlinear model: 

u= f(t)+e= f(wixl +w2x2 +"""+w�x�)+e (3.26) 

Wk has to be determined independently by fitting each xk to the scores vector to u through the 

function, f. Thus the basic theory of the weighted average cannot be applied directly. From 

the work of Wold (1992), a methodology was proposed for the extension of the weight vector 

from the linear to the nonlinear case. Here Xk is first scaled to have the same variance as t, i. e. 

Vk = sign (o / crXk) , where a, is the standard deviation of the score vector and t7Xk is the 

standard deviation of variable k. The sign sk = {-1,1} is found from the sign of (tTxk) . The 

model of u (ük) was then estimated as f (xkvk) and thus the linear criterion from Equation 

(2.54) was extended to the nonlinear case: 

wk = COR(f (xkvk ), u) Q=t (3.27) 

where vk and wk are given the appropriate sign and the function, f, is given by the fit between 

t and u. 
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The same framework is used when estimating the weight, w8, by the reciprocal variance 

criteria. First, the error between the fit of the given variable and u must be calculated: 

Ek =°-. t(gkvk) 

and then 

(3.28) 

Wk = SlgYl(tT %k )(I / 07 U 
l2 - 1/ Q2) (3.29) 

The first step in the calculation of the weight vector is to obtain the sign of vk . One approach 

for calculating the sign was proposed by Wold (1992). The sign for 

both f (xkvk ) and f (-xkvk) are calculated and the one that gives the best fit of u, calculated in 

terms of the squared error is selected. 

The next stage is to estimate the variance. This stage can be enhanced by using a robust 

estimate (Hoaglin et al., 1983) of the standard deviation. For example the mean absolute 

deviation, the median absolute deviation, the fourth-spread or the estimator based on the bi- 

weight estimator of location. For the bi-weight estimator, the observations are given different 

weights according to their distance from the median using the bi-weight function, i. e. the greater 

the distance from the median, the smaller the weight. The bi-weight estimator is efficient under 

a number of distributional assumptions. 

Criterion Weight Criteria Explanation 

SPLS Sk = sign(xkTt) Obtain the sign of the covariance 

Vk = Sk [ ctk /crX 
k] Find the correct scaling of Xk 

Wk =Sk[ CoR(u, ,f 
(Vk xk )) crlk ] Calculate the weight for the given variable 

RVPLS Sk = sign(zkTt) Obtain the sign of the covariance 

Vk =Sk [°tk /crXk] Find the correct scaling of xk 

Ek =u-f (Vk 1k) Calculate the 0 error vector, Ek 

Wk = Sk 111 vAR(Ek) 11 VAR(U) Calculate the weight for the given variable 

Table 3. Calculation of the relative weight using the different weight criteria. 

Table 3 describes the difference between the calculation of the weight vector between SPLS and 

RVPLS, elsewhere the algorithms are identical. The MATLAB algorithm describing the RVPLS 

is given in Algorithm 3.2: 
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while conv> limit, 

uold = u; 

t= X*w: 

lil ü ! (t ui 

liil gY'* ü: 

q= q/norm(q); 

u= Y*q; 

Ibri=l: n, 

(iii) ik X( 
. 
6: 

ON) s= sign(t'*x): 

W sx = std( x ): 

(\ i) v= std(t)/sx: 

(vii) e=u -J(s*v*x)): 

Mii) wlil s/lstdlel. 2)- s(std(u) 2): 

cnd 

w= w/norm(w): 

conv = norm(u-uold)/norm(u): 

end 

"o Repeat until convergence 

Retain the old Y score Hector to control the conscrccncc 

Calculate the X score N ector 

Calculate the nonlinear lit 

Regress Y on ü (not on u as in linear I'I SI 

Normalize to unit length 

0 Improve u using the linear combination q 

"o For each of the weights'\ ariable, 

o Select the i`h variable 

% Find il 'x is negative or positive correlated to I 

Calculate the standard de% iation of the ith ý ariablc 

Calculate the scaling constant 

%Calculate each weieht accordinc to criterion 

"o Weight loop 

°o Normalize to unit Iength 

Convergence if, limit and no of let niaV IM. ) 

Inner vNhile loop 

Algorithm 3.2. The reciprocal error variance PLS algorithm (MATLAB code). 

For the work presented in this Thesis, the median absolute deviation estimator was selected as it 

performs well and is a simple metric. Table 3 summarises the different weight criteria whilst 

Algorithm 3.2 gives the key algorithmic steps in the nonlinear algorithm. 

3.3.4 A Simple Example 

The purpose of this example is to illustrate the fundamental differences between the covariance 

criterion used in Spline PLS and the reciprocal variance criterion used in RVPLS. Assume y 

(m x 1) can be modelled by two variables x, and x2, and that the noise vectors c, and E2 are 

independent. From Equation (3.20): 

Y =f(Xi )+£ý Y =. f(XZ)+£z (3.30) 

A simulation model is constructed based on Equation 3.30, where x and y are autoscaled to 

mean zero and a variance of unity. The results obtained using Wold's weight criterion are 
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shown in the upper three plots of Figure 3.9(a-c), whilst the results obtained using the reciprocal 

variance criterion are shown in the lower three plots, Figure 3.9(d-f). The model is identical to 

the model in Equation (3.26), i. e. u=f (t) +e=f (w, xi + w2 x2) + e, where the weights, w, and 

w2, are calculated based on the methods of SPLS and RVPLS. 
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Figure 3.9. Comparison of the covariance and the reciprocal variance criterion 

Only the first latent variable is discussed since including more latent variables did not improve 

the predictive ability of either method. In the Spline PLS algorithm, for autoscaled data, both 

weights are constructed using the correlation between y and the corresponding fit 

ük = f(XkVk), where k= (1,2). Thus the construction of the two weights w, and w2 can be 

observed directly from Figure 3.9(a and b). The correlation in plot (a) is greater than in plot (b) 

reflecting the difference in the value for the weights (w, > w2) calculated from Equation (3.27). 

The reciprocal variance criterion is calculated from the error distributions, Equation (3.29), 

shown in Figure 3.9(d and e). It can be observed that the reciprocal variance criterion gives 

greater weight to the first variable (w, =0.997, Figure 3.9d) than that obtained using the 

covariance criterion (w, =0.805, Figure 3.9a). The reason is that the reciprocal variance 

criterion is constructed using the inverse of the variance for the error, I/ VAR(u -ü k) . 
Consequently, the weight of the k`h variable will tend towards infinity as the error tends towards 

zero, as seen from Equation (3.24). After normalization, the 0 weight will then tend towards 



the value of unity whilst the other weights will tend towards the value of zero. This is the 

desired behaviour and is commensurate with the idea behind the weighted average. 

For the covariance criterion of Wold, if a single variable explains 100% of the variance of the 

response, a correlation (weight) of unity is obtained. But after normalisation, the weights of the 

other variables present will reduce this weight to a value less than unity depending on the 

magnitude of the other weights, i. e. w= w/IIw(I = 1. This is the main difference between the 

methods, with the weight vector obtained applying the covariance criterion being more affected 

by the variables of less interest (lower correlation) compared with applying the reciprocal 

variance criterion. 
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Figure 3.10. Relationship between the covariance and the reciprocal variance criterion 

Figure 3.10 illustrates the relationship between the individual weight values calculated, Wk, by 

the two criteria, covariance and reciprocal variance, before normalization of the weight vector. 

Thus, the deviation between the two approaches increases with increasing correlation, thus after 

normalization, the reciprocal variance gives significantly higher weights to those variables of 

greater importance compared to the covariance criterion. 
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3.4 Conclusions 

In this Chapter, the issues that arise from two existing weight updating schemes for nonlinear 

PLS were described. The two frameworks were the error based weight updating scheme of Baffi 

et al., (1999a) based on the work of Wold et at., (1989) and the covariance criterion adapted for 

process nonlinearity (Wold, 1992). 

A new procedure was proposed for calculating the weight vector, Nested PLS, which avoids the 

multicollinear problem of the EBWU procedure, by applying PLS, with cross validation, to 

estimate the linear Taylor approximation in the Gauss-Newton updating scheme. The Nested 

PLS approach also decreases the possibility of the global minimum not being attained compared 

with the steepest descent method in SDPLS. Nested PLS is shown to be a general approach, 

capable of solving most nonlinear PLS problems. However, it is dependent on a good starting 

vector and a reasonable termination criterion to handle the more difficult cases, i. e. noisy 

underdetermined systems. 

A second procedure for finding the weight vector in nonlinear PLS, the reciprocal error variance 

procedure, was proposed. This method uses the same framework as SPLS (Wold, 1992). 

RVPLS finds the weights individually as for SPLS, but focuses more on the response values 

than SPLS. This criterion is not as general as Nested PLS, since it is theoretically based on the 

case of only one underlying factor in the predictor variables that is related to the response 

variables. Even so, it has been shown to be acceptable when the variability in the response 

variables can be captured by a few underlying phenomena in the predictor variables. The 

reciprocal error variance criterion generally results in fewer latent variables than the covariance 

criterion of Wold (1992), thus normally giving a lower error from the fitting of the nonlinear 

functions between t and u, since the identification of the underlying structure is improved. 

The main objective of this Chapter was to present the two different criteria, both based on 

previously published ideas. The two concepts are very different and are not easy to compare. 

The NPLS approach and the methods of SDPLS and EBPLS which it is based on, attempt to 

minimize the error between the scores t and u, through a nonlinear function At). This is 

achieved through three different optimisation methods. Since the methods focus on minimising 

the error between the fitted nonlinear function ü and the Y-score u, the error of the inner 

mapping will generally be reduced. Thus the main problems are those associated with local 

minima and that caused by overfitting either as a result of having an underdetermined system of 
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equations or due to the presence of multicollinearity. NPLS uses an inner partial least squares 

algorithm in the optimisation stage that counters both problems. 

RVPLS and SPLS are more true to the concept of the ordinary PLS algorithm. The weights are 

calculated independently as a function relating the corresponding X variable to the Y-score u. 

In particular the framework aims to find each weight independently of the other weights. 

Furthermore, the model is constrained since the weight, wk, is required have the same sign as 

the correlation between Xk and t. As a result, this framework will generally reduce the potential 

for overfitting, but will be affected by the error introduced when fitting the inner mapping 

between t and u. Because these methods are not focusing on minimizing the error between u 

and At), the outcome may be that the underlying structure is not properly identified, thereby 

introducing a large error when the function, At), is fitted. The error introduced will be 

propagated to the next latent variable and will affect the accuracy of the resulting model, as any 

smoothing defect can not generally be captured by subsequent latent variables. 

In linear PLS the same result materializes when the orthogonal latent variables are regressed one 

by one or if Y is regressed on the whole of the T matrix. This is not the case when a nonlinear 

mapping exists between the scores. For the linear case, the intermediate regression vector is 

found from b= (TTT)- TTY . 

Due to the orthogonality of the T matrix, TTT is a diagonal matrix, and the inverse can be 

found directly as 1/diag([t, Tt1, 
""", tATtA]). Thus, the independent regression coefficient 

becomes bJ =(t1TY)/(tjTtj), and the regression analysis may be done sequentially. For the 

nonlinear case Ü= [ül, ü2, """, ük ]= 1f(t1)1f(t2)1 """, f (tk )] is the matrix of sequential 

approximations to Y. Even if tj Tt, = 0,6 JTiI, # 0, carrying out the regression either 

sequentially or simultaneously will produce different results. Consequently, even if the 

objective of SPLS and RVPLS are closer to that of linear PLS, going from the linear to the 

nonlinear case is not straight forward. A modified objective further away from the linear PLS 

algorithm, such as including a weight updating scheme, could be beneficial if the general 

performance is improved. In the next chapter, the performance of SDPLS, EBPLS, NPLS, SPLS 

and RVPLS are compared. 
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CHAPTER 4 

APPLICATION STUDIES OF NONLINEAR PARTIAL LEAST 

SQUARES 

4.1 Introduction 

In this Chapter the two new nonlinear PLS algorithms of Reciprocal Variance PLS and Nested 

PLS are compared with the nonlinear PLS methods from which they were developed, i. e. Spline 

PLS, Steepest Descent PLS and Error Based PLS. In addition to the nonlinear PLS methods, 

two reference methods are discussed. In those studies where the underlying data is known to be 

approximately linear through process understanding, ordinary linear PLS is included in the 

comparison. Secondly, for a single response, local linear kernel regression was applied between 

the predicted response obtained from the linear PLS model and the measured response to model 

any underlying nonlinear behaviour (Martens and Naas, 1989). That is, the regression vector (b) 

obtained from linear PLS is used directly as the first and only weight vector in the nonlinear 

PLS framework. This method is denoted BPLS. The different methods compared are 

summarized in Table 4. 

Methods Framework Denoted 

A. Reciprocal Variance PLS 2 RVPLS 

B. Spline-PLS 2 SPLS 

C. Error Based PLS procedure 1 EBPLS 

D. Nested PLS procedure 1 NPLS 

E. Steepest Descent PLS procedure 1 SDPLS 

F. Ordinary Linear PLS 3 PLS 

G. Linear PLS + nonlinear mapping 3 BPLS 

Table 4. PLS algorithms included in the comparison. 

The performance of the different nonlinear PLS algorithms is influenced by a number of 

parameters, including the starting and stopping criteria. To address these issues the models were 

first compared using standard parameter settings. prior to examining the effect of the parameters 

separately. The modelling results from the reference methods (F-G) were included in the study 

to help identify whether the nonlinear model is better than the linear reference models. The 

standard settings used for all the nonlinear PLS methods were as follows: 
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1. Local linear kernel regression using the plug-in bandwidth of Bowmann and Azzalini 

(1997) was used as the nonlinear function between t and u. In addition, a variable plug-in 
bandwidth was included (Section 2.5.2.1). This method was chosen as it is universal, 

generally exhibits good performance and is faster than cross validation to estimate the 

smoothing parameter (Appendix A2.2). 

2. The starting Y-score vector u was selected to be the first column of the Y matrix. 
3. The standard starting vector was selected as w= cor(X, u)9. Applying the power of 9 gives 

greater emphasis to the most important variables, compared with a power of unity. Nine was 

chosen from experience as it gave good overall performance, but any power from the series 

n= {3 ,5 ,7 ,9,... } may be applied. The power, p, could also be found using a separate 

optimization algorithm. 

4. The termination criteria were based on; (1) a relative change in the score vector of less than 
10-8, (2) maximum number of iterations of 25, or (3) if two subsequent iterations did not 

result in a decrease in the calibration error. 

5. For NPLS, the number of groups when applying cross validation to the inner PLS was taken 

to be two, due to the ease of calculation. 

6. For EBPLS, NPLS and SDPLS (Framework 1), no form of dampening (or variable step 
length) was used in the optimisation. 

Thus the only difference between the various nonlinear PLS algorithms was how the weight 

vector was calculated. The benefit of this is that for the comparison, only the estimation of the 

weights differs between the approaches. The drawback of this is that a particular setting may 

bias the result in favour of one of the methods, e. g. the steepest descent method tends to 

converge more slowly than Gauss-Newton. Therefore, the effects of items 3-6 on the nonlinear 

PLS algorithms were investigated separately. Ten data sets were investigated to reduce the risk 

of drawing incorrect conclusions. The general nonlinear PLS algorithm, common to all the 

approaches, is shown as MATLAB code in Appendix A2.5. 

4.1.1 The Data Sets 

The nonlinear PLS algorithms were compared by investigating their prediction performance on 

ten data sets. Of the ten, three data sets were thoroughly examined and are reported in the main 

body of the Thesis, Table 5 (1-3). The first two data sets are underdetermined and contain 

highly multicollinear data, whilst the third data set is overdetermined with a low level of 

collinearity existing between the variables. These three data sets were selected to enable a 

comparison between the different aspects of the algorithms to be undertaken. In particular, the 
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effect of the start vector, the termination criterion, the number of subsets used in the application 

of cross validation in the inner PLS algorithm, and the use of damped optimisation were 

examined (Section 3.2.5.5). The modelling results from the additional seven data sets described 

in Table 5 (4-10) are included in Appendix Al, and discussed in Section 4.5. 

Identification 

1 Polymer Density 

2 Alkylation Product 

3 Melt Index I 

4 Melt Index 11 

5 Melt Index III 

6 Xylene products 

7 Moisture in fibre 

8 Rise Time 

9 Simulation I 

10 Simulation II 

Comments Matrix size (X) 

In-line near infrared spectroscopy data recorded on a (87 x 301) 

high-density polyethylene process, modelling density 

At-line near infrared spectroscopy data recorded for a (45 x 401) 

pharmaceutical alkylation process, modelling both 

product and by-product concentrations 

Process data recorded for a high-density polyethylene (300 x 87) 

process, modelling Melt Index. 

Nuclear magnetic resonance spectroscopy data recorded 

on a polypropylene plant, modelling Melt Index 

Process data recorded from a polyethylene pilot reactor 

study, modelling four melt indices. 

Three Xylene concentrations (metha, ortho, para) 

measured by ultra violet (W) spectroscopy 

Near infrared data set (Blanco el al., 2000), modelling 

the moisture in acrylonitrile-vinyl acetate polymer 

Rise time of a servo motor (Ulrich, 1986), modelled by 

two gain settings and five categorical variables 

Simulation of a pH process (Henson and Seborg, 1994), 

used in Baffi et al. (1999b), modelling pH. 

Simulation used to investigate the impact of noise level 

and the data set size, one response. 

Table 5. Summary of data sets included in the comparison. 

4.1.2 Comparison of the Nonlinear PLS Methods 

(454 x 28) 

(50 x 15) 

(196 x 30) 

(60 x 700) 

(99 x 12) 

(700 x 4) 

various 

Each data set is divided into a calibration and a validation data set. Performance of the nonlinear 

PLS methods was compared, by first developing models using the calibration data set, and then 

independently checking the models on a validation data set. The performance of the models is 

reported in terms of the Root Mean Squared Error of Calibration (RMSEC) and Root Mean 
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Squared Error of Prediction (RMSEP). Furthermore, the variance explained by the X and Y 

matrices and the number of latent variables included in the models are summarized. The impact 

of the different starting vectors, the effect of dampened optimization, and the influence of the 

termination criteria for the methods in Framework 1 (Table 4, C-E) are also investigated. 

Finally, the effect of the number of groups used in cross validation in the inner PLS loop of the 

Nested PLS algorithm is examined. 

The plots used in the comparison are those of the inner score space for each pair of latent 

variables (i. e. t-u plots), and the corresponding weight vectors. The t-u plot is included as it is 

important to examine the relationship between the scores t and u, especially for the first latent 

variable. A good fit will reduce the likelihood of an error being introduced when fitting the 

nonlinear function between the scores. The `goodness of fit' in terms of the underlying structure 

is observed in the t-u plots, and the configuration of the weight vectors provide an indication as 

to whether the methodology is prone to overfitting. For spectral data, a noisy weight vector 

indicates overfitting in contrast to a smooth trajectory. Thus it is possible to discuss and 

compare the performance of the methods from these representations. The calibration data set is 

plotted as green circles (o) and the validation data is denoted by crosses (+). A solid line (-) 

denotes the nonlinear function fitted. 

4.2 Density of Polymer using Near Infrared Spectroscopy. 

The first data set analysed is based on a near infrared data set collected on a high-density 

polyethylene (HDPE) plant between 1999 and 2001. The density is regulated to control a 

number of physical properties by varying the quantity of comonomer in the reactor. The 

nonlinear behaviour is a consequence of the density/concentration relationship that is related to 

the crystallinity of the product. A small amount of comonomer reduces the crystallinity of the 

product dramatically as a result of the comonomer side-chains inability to be arranged in a 

crystal structure. This effect decreases as the level of comonomer increases, approaching the 

density of amorphous polyethylene, hence the presence of nonlinear behaviour. In addition the 

comonomer can be distributed either in a homogeneous or heterogeneous manner in the 

polymer. 

The near infrared spectra were recorded on the polymer melt using an in-line probe attached to 

an extruder, Figure 4.11. The polymer density was measured using a density column. The data 

set consists of 301 predictor variables, representing different wavelengths in the near infrared 
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spectrum. The calibration data set comprises 87 observations and the validation data set 

comprises 91 observations. The single response variable is density. 

Figure 4.1 1. Plot of the original spectra for the density data (labels omitted due to confidentiality). 

Method No. of latent % Variance % Variance 

applied variables captured of X captured of Y RMSEC RMSEP 

A: RVPLS 4 60.33 99.90 0.00096 0.00152 

B: SPLS 4 88.84 99.80 0.00192 0.00292 

C: EBPLS 3 16.42 100.00 9.86e-6 0.00437 

D: NPLS 1 14.90 99.91 0.00084 0.00132 

E: SDPLS 6 61.03 99.91 0.00085 0.00151 

I I>I 1., V ýýtl ýýýýý. 8 0U (II) I'U (I ()() IU 

s (,. Isl'I. ' 'ý') \" li liný, ii'1 [ý ýýliý ýA 

Table 6. Comparison between the methods for the density data. 

The main results from applying the different methods to this data set are presented in Table 6, 

including percentage variability explained for the calibration set, the root mean squared error of 

calibration (RMSEC) and prediction error (RMSEP). For simplicity, the number of latent 

variables included is defined from that model with the lowest RMSEP. 
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This multicollinear data set, comprising more variables than observations, is a problem for the 

EBPLS algorithm, due to the need to calculate the pseudo-inverse in Equation (2.53). This 

results in overfitting, i. e. a low RMSEC value and a high RMSEP, Table 6. The difference 

between the behaviour of the calibration data set and the prediction data set for the first latent 

variable t-u plot and the structure of the corresponding weight vector confirm this behaviour, 

Figure 4.12(C). The observations are more widely spread for the validation data set. 

Since the data is weakly nonlinear (Figure 4.12A-E), the reference method of linear PLS has 

only slightly lower prediction ability than the two best approaches, NPLS and RVPLS. 

Furthermore, by fitting a nonlinear function between the predicted and measured density from 

linear PLS (BPLS), the prediction error is reduced even further, only surpassed in performance 

by Nested PLS. The satisfactory nonlinear PLS methods for this data set were RVPLS, NLPS 

and SDPLS. 

It should be noted that Framework 2 (RVPLS and SPLS) generally explains more of the X 

variance than Framework 1 (EBPLS, NPLS). The explained variance of the predictor matrix is 

not directly comparable for the two frameworks, since in Framework 2, each weight is estimated 

independently between each corresponding variable and u, i. e. the covariance information is not 

used. In Framework 1, the resulting weight vector can be seen more as a regression vector since 

it represents the least squares minimization results of the objective function, Equation (2.49), for 

each of the three methods is applied. For the same reasons, the number of latent variables 

utilized is not directly comparable between the two frameworks. However, within the individual 

frameworks the results are comparable, i. e. RVPLS explains less variance of the X matrix than 

SPLS, as it focuses more on explaining the response than SPLS. Furthermore, for this 

framework, the number of latent variables and the variance captured of X can be compared with 

linear PLS. For Framework 1, the X variance explained can be compared with that by BPLS, 

where the regression coefficient is used to estimate the variance of X described. The variance 

-explained for BPLS (14%) is comparable to EBPLS (16%) and NPLS (15%), whilst SDPLS 

(61 %) has a much higher value due to convergence issues. 

The final SDPLS model includes six latent variables and has the highest amount of X variance 

of Framework 2, but the RMSEP value is satisfactory compared with the reference methods. 

Although the Nested PLS algorithm describes the smallest amount of the X variance and only 

uses one latent variable, it has the best prediction ability. The RVPLS algorithm demonstrates 

similar prediction performance to the reference method of BPLS, and improved performance 

over SPLS which utilizes the same framework and the same number of latent variables. SPLS 
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explains higher variance of the predictor matrix, but as the prediction results show it gives an 
inferior model. Thus, for the nonlinear case, the variance captured by X is not correlated with 

the prediction results. 
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Figure 4.12. Plot of ti-u1 scores and the corresponding weight vector for the density data 

In Figure 4.12, the first pair of latent variables are plotted for the various nonlinear PLS 

methods. The corresponding weight vectors are plotted to the right of the t-u plots. A high level 

of correspondence between the prediction ability of the first latent variable and the final model 

was established. That is, the method that identified the underlying structure best using the first 

latent variable (t-u plot) generally had the best prediction ability for the final model, regardless 

of the number of latent variables included in the model. Therefore, it can be concluded that the 

first latent variable can provide information about the performance of the methods. 

Consequently, for the satisfactory methods, RVPLS, NPLS and SDPLS the underlying structure 

is acceptable modelled, Figure 4.12. In particular, the complexity of the first weight vector 

calculated using the Nested PLS approach is a balance between the weights for the Error Based 

PLS and the Steepest Descent PLS approaches, Figure 4.12. The weight vector obtained 

applying EBPLS is clearly overfitting as observed from the noisy structure, resulting in a large 

difference between the fit of the calibration and the validation set. The weight vector created by 

the Reciprocal Variance PLS method exhibits some similarity to the weight vector obtained 

using SDPLS. 
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The different methods describe different levels of nonlinearity in the t-u plot for the first latent 

variable. This difference in nonlinearity originates mainly from possible underfitting of the 

nonlinear mapping, , 
fit), briefly discussed in Section 3.2.5.2. In Framework 1, the inner 

relationship for EBPLS is apparently linear in contrast to SDPLS that exhibits clear nonlinear 

behaviour, whilst the NPLS results lies between these two extremes. For Framework 2, the 

RVPLS method indicates distinct nonlinear behaviour in the first t-u plot, whilst SPLS does not 

clearly identify the underlying structure, and the error introduced by the nonlinear mapping is 

larger for SPLS than for the other methods. This is due to the structure of SPLS whereby the 

predictor variance as well as the variance in the response are explained. The different models 

are investigated further in the subsequent sections. 

4.2.1 Reference Methods 

A linear Partial Least Squares model using eight latent variables was developed for the Density 

data set, the first five latent variables are shown in Figure 4.13. The weight vectors are all 

uniformly shaped as a consequence of the regularity in the spectral data, included as a line (-) 

in Figure 4.11. The regression vector, constructed by the given number of latent variables is 

included as a normalized dashed curve (--) in Figure 4.13. The t-u plots for latent variable one 

and two indicates nonlinearity, for the subsequent it is not so apparent. 

LV's % Variance % Variance 
captured of X captured of Y RMSEC RMSEP 

1 40.59 78.68 0.00423 0.00428 
2 92.15 89.91 0.00291 0.00313 
3 97.87 93.31 0.00237 0.00265 
4 98.83 97.28 0.00177 0.00215 
5 99.13 98.51 0.00145 0.00177 
6 99.36 98.81 0.00136 0.00175 
7 99.48 99.00 0.00130 0.00170 
8 99.55 99.86 0.00120 0.00162 
9 99.61 99.91 0.00117 0.00167 

Table 7. Results of PLS applied to density data 

Due to the relatively weak nonlinearity present in this data set, it is believed that PLS would 

perform well, confirmed from the consistency between the calibration and the validation data 

points in the t-u plot. An RMSEC = 0.00 12 and a RMSEP = 0.00 16 from Table 7 confirms this 

belief. The RMSEC values are lower than the RMSEP values, with the difference for the final 
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model being 26%, i. e. the level of overfitting does not appear significant. The high number of 8 

latent variables is needed to create the best model. It has been observed that when the data is 

nonlinear, PLS need a high number of latent variables to be included (Martens and Naes, 1989). 
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Figure 4.13. The t-u, weights and regression vectors for PLS for the first five latent variables. 

If nonlinear behaviour is present in the data, this can often be observed by plotting the measured 

response versus the predicted response from PLS, that is the measured density is plotted agains 

predicted density. BPLS uses the regression vector obtained from linear PLS model developed 

from eight latent variables, Figure 4.14. This regression vector is then used as the first and only 

weight vector in the general nonlinear PLS algorithm, Appendix A2.5. Thus the nonlinear 

mapping between u and t= Xb, is constructed using standard local linear kernel regression, 

included as a line () in Figure 4.14, upper plot). The regression vector developed from eight 

latent variables is shown in the lower plot, Figure 4.14. 

By including a nonlinear model between the predicted and the measured response (BPLS), the 

model error decreases by 15% compared to linear PLS, resulting in a RMSEC = 0.0011 and a 

RMSEP = 0.0014, Table 6(G). In particular, the prediction ability at the extremes of the t-u plot 

was improved, compared with applying a linear relation in the t-u plot (PLS), Figure 4.14, upper 

plot. 
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Figure 4.14. The final t-u plot, the regression vector (-) from PLS and w, from NPLS ( ). 

Of particular note, the shape of the regression vector resembles the weight vector for the first 

latent variable of Nested PLS, Figure 4.14. 

4.2.2 Reciprocal Variance PLS 

This method identifies the nonlinear relationship primarily through the first pair of latent 

variables, consequently subsequent pairs of latent variables exhibit an approximately linear 

relationship, Figure 4.15. However, there is still structure present as observed from the latent 

variables two and three and the reduction in the Root Mean Square Error of Prediction 

(RMSEP) values. The weight vectors are relatively smooth and exploit different parts of the 

spectrum. The variances captured and the prediction performance captured by the first six latent 

variables is summarized in Table 8. 

LV's 
% Variance % Variance 

captured of X captured of Y 
RMSEC RMSEP 

1 18.19 99.77 0.00220 0.00241 
2 28.52 99.86 0.00136 0.00192 
3 33.84 99.89 0.00102 0.00158 
4 60.33 99.90 0.00096 0.00152 
5 63.21 99.90 0.00093 0.00153 
6 63.45 99.91 0.00089 0.00153 

Table 8. Results of RVPLS applied to density data. 
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The RMSEC values are lower than the RMSEP values, and the difference for the final model is 

37%, i. e. slightly higher than for the reference method (26%). 
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Figure 4.15. The t-u and the weight vectors for RVPLS for the first five latent variables. 

4.2.3 Spline PLS 

ý 

This method does not identify the underlying nonlinear relationship from the first pair of latent 

variables as for RVPLS, due to the badly chosen weight vector. Furthermore, the nonlinear 

relationship between subsequent pairs of latent variables are difficult to model due to the error 

introduced from the rank one model of Y, introduced by the first nonlinear mapping function. 

LV's 
% Variance % Variance 

captured of X captured of Y 
RMSEC RMSEP 

1 33.54 99.39 0.00572 0.00565 
2 71.38 99.69 0.00293 0.00386 
3 85.61 99.76 0.00228 0.00320 
4 88.84 99.80 0.00192 0.00292 
5 90.36 99.84 0.00155 0.00303 
6 91.13 99.85 0.00143 0.00295 

201 

201 

301 

301 

301 

301 

Table 9. Result of SPLS applied to density data 
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Figure 4.16. The t-u and the weight vectors for SPLS for the first five latent variables. 
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Figure 4.16, the error introduced from fitting the nonlinear function is considerable and is 

propagated through to subsequent latent variables, thus impacting on the potential of the 

method. In particular, the second pair of latent variables (t2-u2) does not identify the underlying 

structure. However, the difference between the RMSEC and RMSEP values is 35% for the 4 

latent variable model, Table 9, and the weight vectors are smooth. The main limitation of the 

method is the impact of the error originating from the inner mapping on the overall model, due 

to the focus of simultaneously modelling both the variance in X and Y when constructing the 

weight vector. Consequently, the first latent variable captures almost double the X-variance, 

34%, compared with that of RVPLS, 18%. 

4.2.4 Error Based PLS 

The method of EBPLS clearly overfits this underdetermined data set. Although the calibration 

data set is modelled well, the validation data set is not. The difference between the RMSEC and 

the RMSEP values is high, 99%, for a three latent variable model. This is also observed from 

the t-u plot for the first latent variable, Figure 4.17. Even though the third latent variable has the 

smallest RMSEP value, very little is gained compared to the case where only one latent variable 

is used in the development of the method. The reason for the overfitting is due to the 
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underdetermined data set, as infinitely many solutions exist to the least squares problem. 

Consequently, EBPLS is recommended to be used primarily on overdetermined data sets, or on 

a reduced latent variable matrix, e. g. from PCA. 

LV's 

1 
2 
3 
4 
5 
6 

14.28 
15.93 
16.42 
16.83 
17.06 
17.23 

100.00 
100.00 
100.00 
100.00 
100.00 
100.00 

RMSEC RMSEP 

0.000017 0.00436783 
0.000005 0.00436714 
0.000003 0.00436708 
0.000002 0.00436711 
0.000002 0.00436716 
0.000001 0.00436721 

Table 10. Results of EBPLS applied to density data 

% Variance % Variance 
captured of X captured of Y 

The overfitting characteristics of the optimization method cause the weight vectors to be 

"extremely noisy", particularly for the second half of the spectrum, Figure 4.17. 
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Figure 4.17. The t-u and the weight vectors for EBPLS for the first five latent variables. 
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4.2.5 Nested PLS 

Nested PLS generates a weight vector that identifies an acceptable underlying structure between 

the first pair of latent variables, that bears a strong resemblance with the regression vector from 

PLS, Figure 4.14. For the methods included in Framework 1, this is desirable when the 

underlying structure is close to being linear as for this data set. It indicates that the nonlinear 

extension of PLS performs similar to linear PLS. The difference between the RMSEC and the 

RMSEP values is similar to that for RVPLS and SPLS (36% lower RMSEC) but higher than for 

the reference method of PLS (26%), i. e. thus some overfitting is indicated. 

LV's 

0.9605 

u1 

0.9326 

3.2 

Y1 

-5.1 

3.1 

Y, 

-8.9 

% Variance % Variance 
captured of X captured of Y 

RMSEC RMSEP 

1 14.90 99.91 0.00084 0.00132 
2 18.99 99.92 0.00071 0.00174 
3 22.02 99.93 0.00066 0.00176 
4 29.59 99.94 0.00059 0.00175 
5 37.88 99.94 0.00054 0.00171 
6 44.10 99.95 0.00046 0.00171 

Table 1 1. Results for NPLS for the density data 
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Figure 4.18. The t-u and the weight vectors for NPLS for the first five latent variables. 
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From Figure 4.18, the second latent variable displays no real structure with the calibration error 

being only slightly smaller when included in the model. For this two latent variable model, the 
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prediction error is strongly affected by 4 observations as observed in the second t-u plot (t2-u2) 

for latent variable two. Examining the plots of the weight vectors on the right hand side of 
Figure 4.18, the weight vectors are generally smooth and do not appear to be notably affected by 

the noise in the data set. The noise observed in the weight vectors is of the same order as for the 

RVPLS method that models each weight vector independently. Thus it can be concluded that 

the NPLS method produces weight vectors with reasonable smoothness, signifying that the 

approach is not subjected to significant overfitting for this data set. 

4.2.6 Steepest Descent PLS 

For this data set SDPLS appears to overfit compared with NPLS as quantified by the deviation 

between the RMSEC and the RMSEP (44% lower for RMSEC), due to the greater number of 

latent variables required to explain the underlying structure. The weight vectors are smooth and 

have a more simple structure than for NPLS, due to premature termination since no covariance 

information is used in the construction of the step direction. Even though the underlying 

structure is determined by the first pair of latent variables, prediction ability is poorer than for 

the second reference method, BPLS. This can be understood by examining the subsequent pair 

of latent variables in Figure 4.19, where the issue of finding an appropriate nonlinear mapping 

increases with increasing numbers of latent variables, and thus errors are introduced that 

propagate through the subsequent latent variables. In particular, at the high and low boundaries 

in the t-u plot considerable errors are introduced, due to greater uncertainty of the nonlinear 

mapping at the edges of the data cluster. As a consequence of the increasing difficulty of 

constructing a nonlinear inner mapping, it is desirable to restrict the number of latent variables 

included in the model. SDPLS requires six latent variables in the final model. This is the highest 

number of latent variables for the different approaches. Furthermore, the second and fourth 

weights are close to the starting vector, i. e. SDPLS suffers from poorer convergence than the 

other approaches belonging to Framework I (Section 4.2.7). 

LV's % Variance % Variance 
captured of X captured of Y RMSEC RMSEP 

1 15.73 99.83 0.00156 0.00212 
2 39.15 99.85 0.00140 0.00195 
3 42.03 99.88 0.00110 0.00160 
4 49.23 99.90 0.00099 0.00158 
5 56.89 99.90 0.00092 0.00158 
6 61.03 99.91 0.00085 0.00151 
7 64.97 99.91 0.00082 0.00154 

Table 12. SDPLS on density data 
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Figure 4.19. The t-u and the weight vectors for SDPLS for the first five latent variables. 

4.2.7 Influence of the Starting Vector 

The influence of the starting vector was investigated for the methods included in Framework 1, 

since the different starting vectors were found to have little influence on Framework 2, i. e. the 

methods of SPLS and RVPLS. This is due to the methodology of Framework 2, in particular 

the individual calculations of the estimates of the weights not using an updating vector. 

The prediction ability of the methods and the spread of the first weight vector were investigated, 

by applying five different starting vectors. The spread is evaluated by comparing the deviation 

between the five weight vectors obtained from applying the five different starting vectors, for 

each of the nonlinear PLS method investigated. In particular, the weight vector, w, is that 

calculated, from the given starting vector, to give the first score vector t, such that t= Xw. 

Large deviations between the weight vectors for the five starting vectors will indicate a 

tendency for the method to terminate in local minima far away from the global minimum, whilst 

a small deviation between the final models will indicate robustness towards early termination in 

a local minimum. 

In Table 13, the first starting vector is the standard starting vector used in linear PLS and is 

identical to the first weight vector when there is only one response variable for linear PLS. The 

second is the standard choice used in the comparison. It is a variation of the first starting vector 
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that focuses more on the weights with the highest correlation with u. Using the correlation for 

the 9d' power is selected from a small study not shown. The optimal power, p, depends on the 

data set, but p=9 performs generally well. The third approach uses the regression vector from 

linear PLS where the number of latent variables is found using cross validation. The fourth and 

fifth use the starting vectors estimated from the first latent variable using the RVPLS and the 

SPLS algorithm, respectively. 

Starting Vectors 

1. w F- cov(X, u) 

2. w E- cor(X, u)9 
3. w E- PLScv(X, u) 

4. w F- RVPLS(X, u) 

5. w F- SPLS(X, u) 

EBPLS 
RMSEC / RMSEP (lv) 

3.62e-7 / 0.00452 (4) 

9.86e-6 / 0.0043 7 (3) 

1.42e-6 / 0.00280 (1) 

1.91e-8 / 0.00305 (1) 

6.22e-7 / 0.00402 (1) 

NPLS 
RMSEC / RMSEP (Iv) 

0.00107 / 0.00144 (5) 

0.00084 / 0.00132 (1) 

0.00063 / 0.00152 (7) 

0.00091 / 0.00139 (4) 

0.00108 / 0.00141(1) 

SDPLS 
RMSEC / RMSEP (lv) 

0.00084 / 0.00135 (5) 

0.00085 / 0.00151 (6) 

0.00107 / 0.00161 (1) 

0.00089 / 0.00139 (6) 

0.00092 / 0.00143 (5) 

Table 13. Prediction results per method using five different starting vectors. 

The different starting vectors and the prediction results are presented in Table 13. The overall 

ranking of the prediction ability for the three methods using the five different starting vectors 

are independent of the choice of starting vector. However, SDPLS performed best for the first 

staring vector. Furthermore, the number of latent variables varies considerably, although the 

first latent variable explains the largest amount of response variance. 

SDPLS appears to have greatest dependency on the starting vector, whilst EBPLS is least reliant 

on the starting vector, calculated from the average correlation, i. e. Ecor(wk, w, )/10 where 

k#ie (1,2, """, 5), between the five weight vectors. In particular, the average correlation 

between the five obtained weight vectors in Figure 4.20 are 0.97 ± 0.03 for the EBPLS method, 

0.92 ± 0.06 for the NPLS method, and 0.64 ± 0.24 for the SDPLS method. The performance of 

the starting vector estimated by w= PLScv(X, u) differs from the other starting vectors. It gives 

the lowest average correlation with the other vector methods for all three PLS methods (EBPLS: 

0.94 ± 0.02, NPLS: 0.87 ± 0.04, SDPLS: 0.40 ± 0.03). One interpretation could be that by using 

this starting vector the possibility to terminate in a local minimum is increased, as this starting 

vector represents a linear solution (the regression vector) to a nonlinear situation. 
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Figure 4.20. The starting vector (black) and the final weights (green) for the first latent variable. 

To summarise, starting vector 5 (SPLS) is similar to starting vector I (cov(X, u)), whilst the 

first weight vector from Nested PLS is similar to the starting vector 3 (PLScv(X, u)), Figure 

4.20. Furthermore, the solution obtained using NPLS is situated between that of EBPLS and 

SDPLS. Overfitting occur when applying EBPLS, whilst termination in local minima often 

occur when applying SDPLS. 

NPLS obtains a weight vector, independent of the starting vector, that is similar to the starting 

vector obtained using linear PLS with cross validation, Figure 4.20. It is desirable to achieve a 

model using nonlinear PLS that does not diverge severely from the linear PLS model, when the 

underlying structure is approximately linear. Finally, it should be noted that the first and fifth 

starting vector in Figure 4.20, are similar with a correlation of 0.97 between them due to the 

relatively weak nonlinearity in the data. 

It is difficult to draw any conclusions about which starting vectors performs better than the 

others. The starting vector obtained using linear PLS with cross validation is similar to the first 

weight vector using Nested PLS, but using it as a starting vector gave the worst prediction 

performance for both NPLS and SDPLS. Applying starting vector I gives the best model for 
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SDPLS, but is not the best alternative for EBPLS and NPLS. Generally, using RVPLS to find a 

starting vector seems to work well for all three approaches. 

4.2.7.1 The Effect of Dampened Optimisation 

Dampening is often used in optimisation to ensure convergence. A variable step length, 8, is 

optimized separately once the step direction, ow, has been found. In this case 

w= (1- ß) w +, 13 Ow, is minimised with respect to /3 using a golden search optimisation 

algorithm based on cross validation. One benefit of applying cross validation is that if including 

the search direction, öw, 
, 

does not improve the model, ýß -4 0, the algorithm will be terminated 

by the criterion of relative change in the score vector t, since the weight will not be changed in 

the next subsequent iteration. Dampening was applied to the three optimisation-based 

algorithms in Framework 1, for all five starting vectors. The results are presented in Table 14, 

and Figure 4.21. 

Starting Vectors 
EBPLS NPLS SDPLS 

RMSEC / RMSEP (lv) RMSEC / RMSEP (lv) RMSEC / RMSEP (lv) 

1. w E- cov(X, u) 0.00195 / 0.00241 (2) 0.00077 / 0.00133 (5) 0.00078 / 0.00131 (7) 

2. w <- cor(X, u)9 0.00002 / 0.00383 (7) 0.00077 / 0.00124 (3) 0.00061 / 0.00148 (9) 

3. w E- PLScv(X, u) 0.00000 / 0.00216 (5) 0.00097 / 0.00141 (1) 0.00102 / 0.00147 (1) 

4. w RVPLS(X, u) 0.00343 / 0.00337 (1) 0.00069 / 0.00127 (5) 0.00071 / 0.00138 (9) 

5. w F- SPLS(X, u) 0.00175 / 0.00251 (3) 0.00060 / 0.00130 (6) 0.00103 / 0.00144 (3) 

Table 14. Prediction results using different starting vectors when utilizing dampening. 

For this data set using damped optimization basically improved all the models, but not 

significantly. Closer investigation showed that dampening resulted in the more rapid termination 

of the algorithms. In particular, the EBPLS algorithm terminated after a few iterations (2-3 

compared to 25), resulting in a weight vector that retained the basic structure of the starting 

vector, Figure 4.21. This comes from the use of cross validation in the golden search method 

used to calculate the step size. If the lowest cross validation error is achieved for 83 = 0, when 

adding the step direction, 60w, the algorithm will terminate since the weight vector and 

thereby the score vector, t, is not changed. This is a consequence of that one of the termination 

criteria is given by a relative change in the score vector of less than 10, Section 4.1 
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Figure 4.21. The starting vector (black) and the final weights (green) for the first latent variable. 

The first weight vector obtained for the five starting vectors shows slightly smother and simpler 

behaviour compared with when damped optimisation was not used, but the spread between the 

five weight vectors is larger. The average correlation between the obtained five weight vectors 

in Figure 4.21 are 0.45 ± 0.35 for EBPLS, 0.87 ± 0.08 for NPLS, and 0.63 ± 0.21 for SDPLS. 

For the density data set, dampening ensured earlier termination and decreased the tendency of 

overfitting. However, applying dampened optimisation does not alter the ranking of the 

algorithms when it comes to prediction performance. 

4.2.8 Impact of the Termination Criteria 

To investigate the influence of the termination criteria for those methods belonging to 

Framework 1, the RMSEC and RMSEP values were examined by recording the values for each 

iteration, for the first latent variable. Except for varying the number of iterations and not using 

any termination criteria, the standard preferences were retained. The Root Mean Squared Error 

(RMSE) values are presented in Figure 4.22, with the difference between the RMSEC and the 

RMSEP values plotted as an area to highlight any tendency to overfit. The darkest area plotted 

represents the difference in RMSE between the calibration set (RMSEC) and the validation set 

(RMSEP) for SDPLS, the medium grey area represents the RMSEC and RMSEP values for 
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NPLS, and the light grey area represent the RMSEC and RMSEP values for EBPLS. 

Consequently, the larger the area the greater the tendency to overfit. The number of iteration 

where the three different methods gives the best RMSEP value and the associated RMSEP value 

is included in Figure 4.22. 

10 

10, 

W 
fi 

io 

i 
iöB 

ý 

F; BI'I, S ( I. 0.1N)12 ). 

ý___... --ý--- - -- 

1010ý 
ý! 

------ -- -- 0 1Ö 10 10 
Number of iterations 

10 

Figure 4.22. Difference between RMSEC and RMSEP for EBPLS(, ), NPLS( ) and SDPLS("). 

10 

All three methods tend to overfit, but this occurs at different stages of the optimisation and with 

varying consequences. Figure 4.22. For this data set, EBPLS tends to overfit from the first 

iteration and the difference between the values of RMSEC and RMSEP increases rapidly with 

the number of iterations. For Nested PLS, overfitting starts after approximately ten iterations, 

whilst for SDPLS overfitting happens after approximately one thousand iterations. But for 

NPLS and SDPLS the overfitting is less pronounced, as observed from the small area between 

the RMSEC and the RMSEP values. 

For NPLS, generally a higher number of latent variables is selected in the inner PLS at the 

beginning of the iterations than later on. For this data set, after ten iterations only one latent 

variable was selected in the inner ITS. Thus, from that point on NPLS and SDPLS would have 

performed equally. 
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NPLS has the overall lowest prediction error of all the methods independent of the number of 
iterations, but only slightly better than SDPLS. In particular, SDPLS is most affected using the 

standard termination criteria, defined as the basis of the study (Section 4.1). However, the 

standard termination criteria seems to prevent overfitting for NPLS, in particular the rule if the 

error does not decrease during two consecutive iterations, the algorithm terminates. 

4.2.8.1 Effect of Cross Validation Group Sizes for Nested PLS 

Looking at Nested PLS only, the effect of using a different number of subgroups for cross 

validation in the inner PLS loop was investigated. Again the standard termination criteria were 

applied. The results are shown in Figure 4.23, where the RMSEP value is plotted as a function 

of the number of cross validation groups in the inner PLS loop. The lowest possible number of 

groups is two, whilst the maximum number of subgroups is equal to the number of observations 

(87), i. e. leave-one-out cross validation. 
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Figure 4.23. RMSEP for NPLS for different cross validation groups sizes. 

The lowest average RMSEP value was obtained using 7 subsets. In general the results suggest 

that using a small number of subsets is beneficial. This is in agreement with Wold (1978) who 

reported that the optimal number of subsets lies between 4 and 11. In a separate test applying 

dampening within the NPLS algorithm, not shown here, the lowest RMSEP (0.0012) was 

obtained using 4 subsets in the cross validation. 
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4.3 Pharmaceutical Process Data using Near Infrared Spectroscopy. 

Process data from a pharmaceutical batch synthesis is investigated in this Section. The main 

reactant reacts with the alkylating agent, R3, to form the product. Furthermore, a by-product can 

be formed by further reaction with the alkylating agent, Figure 4.24. 

Figure 4.24. The Alkylation Process. 

The nonlinearity materializes from the relationship between the concentration of the product and 

the by-product with the concentration of the alkylating agent, R3. The by-product defined as the 

second response variable showed the highest nonlinearity of the two response variables, 

Stordrange et al. (2003). The two response variables are modelled simultaneously since they are 

strongly negatively related with a correlation coefficient of -0.9024, although the relationship is 

not linear, Figure 4.25. However, by adopting this approach investigation of the performance of 

the algorithms where there are two response variables is possible (PLS 2). In addition, the 

concentration of the product has a higher variance, Figure 4.25. The response variables are not 

scaled to enable the analysis to focus on the more important product variable. 
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Figure 4.25. Scatter plot of product versus by-product. 
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The near infrared spectra were recorded using a transreflectance probe, whilst the concentration 

of the product and the by-product were determined using High Pressure Liquid Chromatography 

(HPLC), Figure 4.26. The near infrared spectra were pre-processed using Multiplicative Scatter 

Correction (MSC) as this pre-processing technique generally performs well (Martens and Nws, 

1989). The data set is underdetermined and is highly collinear. The calibration data set 

comprises 45 observations and the validation data set, 43 samples. The number of variables is 

401. 
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Figure 4.26. Plot of the original alkylation spectra. 

The main results are presented in Table 15, where the first row is the result obtained for the 

product variable and the second row (grey) is the result obtained for the by-product. Since the 

final model for the product and the by-product is allowed to have different number of latent 

variables, the value of the captured variance may also differ. 

The NPLS model was the only nonlinear algorithm that achieved a lower prediction error for the 

product than the reference method of linear PLS, Table 15 (F). The result for EBPLS was 

comparable to that of linear PLS. The other methods failed in the sense that they demonstrated 

poorer performance than the reference method of PLS (F). Linear PLS is expected to perform 

acceptably as it is known to handle weak nonlinearities, but at a cost of needing more latent 

variables compared with the linear case (Martens and Nws, 1989). The data set was noteworthy 

as the spectra contained regions that exhibited different degrees of nonlinear behaviour with 

respect to the responses, Stordrange et al. (2003). 
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Method No. of latent % Variance % Variance 
applied variables captured of X captured of Y RMSEC RMSEP 

A: RVPLS 8 99.97 97.14 0.3006 0.8781 
6 99.91 95.89 0.0880 0.0949 

B: SPLS 10 99.99 93.38 0.6785 1.5366 
11 99.99 94.57 0.2483 0.2440 

C: EBPLS 1 97.26 97.25 0.0063 0.4077 
5 99.44 100.00 0.0002 0.0338 

D: NPLS 5 99.55 96.08 0.0938 0.3187 
3 99.54 98.62 0.0391 0.0359 

E: SDPLS 9 99.70 93.70 0.6746 1.0545 
9 99.70 93.70 0.1359 0.1676 

F: PLS 14 99.99 98.80 0.1429 0.3758 
14 99.99 98.80 0.0383 0.0395 

Table 15. Comparison of methods using Alkylation data 

From Table 15, comparing the RMSEC values with the RMSEP values for these five models it 

can be concluded that EBPLS model overfits the calibration data. However, for the by-product 

variable, the EBPLS approach gives the best model as measured by the RMSEP. The reason is 

not evident, but it is possibly due to the fact that both response variables were modelled 

simultaneously or it may be a coincidence. The results obtained using SDPLS show that the 

method does not work particularly well for this data set, only SPLS gives higher RMSEP values 

compared with SDPLS. For NPLS, the deviation between RMSEC and RMSEP is similar to that 

of linear PLS. It appears that the NPLS procedure finds a balance between the tendency to 

overfit associated with EBPLS and the inability to avoid local minimum synonymous with 

SDPLS. 

RVPLS performs better than SPLS. However, both methods are less efficient than the reference 

method of linear PLS. An explanation of this behaviour can be deduced based on the first t-u 

plot, Figure 4.27 (A-B). As a result of poorly chosen weight vectors, the construction of the 

nonlinear function will introduce an error that is propagated through to the subsequent latent 

variables. Even if the first weight vector of the RVPLS model appears to be similar to the 

weight vector of NPLS, the complexity of the data prevents the identification of the appropriate 

t-u relationship. That is, the model needs information about the covariance of the data matrix to 

appropriately identify the inner relationship. Since, for each iteration, SDPLS does not use the 

covariance information, this argument may also be used to explain the poor results for SDPLS. 

However, it must be seen together with the problem of local minima as this method uses an 

iterative optimisation technique to minimize the error of the inner mapping. Explicitly, for this 
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data set, the covariance information must be used to get a good step direction, öw, to avoid the 

problem of local minima. 

Examining the weights for the first latent variable (Figure 4.27) for RVPLS (A), EBPLS (C) and 

NPLS (D), they appears to give a similar shape, with EBPLS being the noisiest. For SPLS (B) 

the weight vector appears to focus on the same areas, but the structure differ to the other 3 

approaches, RVPLS, EBPLS and NPLS. The first weight vector obtained by applying SDPLS 

(E) is again different to the others, but is closely related to the starting vector, indicating 

convergence difficulties. 
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Figure 4.27. Plot of ti-u, and corresponding weight vector for the alkylating data 

The nonlinearity in the data is not easily observed from the t, -u1 plots, Figure 4.27. This is 

because the dominant nonlinear behaviour is mainly present in the second response variable, 

whereas the Y-loading (q, ) implies that the first latent variable primarily explains the first 

response value, i. e. the product. This issue is discussed further in the next sections. 

(A) ý 

4116ý 
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4.3.1 PLS Reference Method 

Linear Partial Least Squares using fourteen latent variables was applied to the data set, as it 

gave the model with the lowest RMSEP value. The first five latent variables did not capture 

sufficiently the underlying structure (Figure 4.28) and more latent variables must be included to 

obtain a satisfactory model (Table 16). Due to the orthogonality between the modelled X and Y 

variance in linear PLS, applying a large number of latent variables is of less concern compared 

with this situation in the nonlinear case. Furthermore, it is known that PLS handles weak 

nonlinearity by including additional latent variables (Martens and Naes, 1989). Table 16 

summarizes the result from applying PLS on the alkylating process data. Since the responses are 

not scaled, the total Y variance is mainly associated with the first response variable (the 

product). This is because the residual predictor variance of the product is higher than for the by- 

product for all subsequent latent variables presented in Table 16. Note that this observation 

relates only to the calibration set. 

LV's 
Q% Variance % Variance RMSEC RMSEP 

q, q2 captured of X captured of Y 

1 1.0000 -0.0035 99.22 61.83 

2 0.9999 -0.0171 99.32 81.47 

3 0.9998 -0.0213 99.44 90.28 

4 1.0000 0.0073 99.64 94.36 

5 0.9998 -0.0174 99.80 98.48 

6 0.9994 -0.0352 99.84 99.07 

7 0.9999 0.0107 99.86 99.17 

8 1.0000 0.0003 99.91 99.68 

9 1.0000 0.0031 99.96 99.80 

10 0.9999 -0.0104 99.98 99.91 

11 1.0000 0.0050 99.99 99.93 

12 0.9999 -0.0159 99.99 

13 0.9999 - 0.0163 99.99 

14 0.9820 -0.1891 99.99 

15 1.0000 0.0000 99.99 

99.96 

99.98 

99.98 

99.99 

6.7452 6.6183 
0.1252 0.1225 
4.6993 4.3147 
0.0907 0.0824 
3.4044 2.9441 
0.0637 0.0601 
2.5935 2.5994 
0.0578 0.0553 
1.3456 1.0865 
0.0364 0.0441 
1.0539 1.0355 
0.0463 0.0439 
0.9955 1.0364 
0.0457 0.0432 
0.6191 0.6115 
0.0456 0.0428 
0.4877 0.4535 
0.0452 0.0436 
0.3219 0.4436 
0.0435 0.0443 
0.2819 0.3958 
0.0433 0.0445 
0.2243 0.3934 
0.0424 0.0437 
0.1621 0.3777 
0.0414 0.0401 

0.1429 0.3758 
0.0383 0.0395 

0.0985 0.3935 
0.0383 0.0396 

Table 16. Results of PLS applied to alkylation data 
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The Y loading, Q, gives a higher weight to the product than to the by-product for all the latent 

variables shown. The first latent variable explains almost all the variance in the X matrix, whilst 

only 62% of the Y variance is explained. Including subsequent latent variables explains a 

decreasing amount of variance, until almost all the variance in Y is captured. From latent 

variable nine, the difference between the residual error of the calibration and the validation set 

increases, thus increasing overfitting occurs. Even though the RMSEP value decreases after 

latent variable nine, the values flatten out and a threshold value is attained whereby 99.98 % of 

the variance in the response matrix is explained. 

In Figure 4.28, the plots of the weight vectors (- -) are supplemented by the regression vector of 

the product (--), constructed from the referenced latent variables. Thus the regression vector 

plotted together with weight vector three, is the resulting regression vector, b; (normalized), 

obtained after regressing variable one (the product) on the three first score vectors, such that Y, 

=Xbi+E, and so on. Thus, the first weight vector and the first regression vector are identical. 

In PLS, the task is to explain the highest combined X and Y variance per latent variable, thus 

the t-u plot shows different degrees of structure, Figure 4.28. 

25 

ý 
5 

o ýýa: ar O 

15 

-5 

03 

10 

P4 

5 

-5 

5 

aS 

-5 

Ap 

ý9 

0o0 
° ö 

0 

ti 
0 

OU ý) OO 
t: 00 00 

-0.15 

-0.1 

Y1O 
0 Cý 

-0.075 

-0.0267 

110 

13 0.2 

C ýa; - , rl fl 

4 

o 

oO 
U 

P 

0.15 

O 

14 0.075 

0.0267 

u. c 

-0.21 

0.2 

ý_ 

101 301 401 

ý 1` 

ý. rýr ý 

-0.2' ! 
1 101 301 401 

0.2 

I 

-02` 1 101 301 401 
0.2 

/' 
ýyr 

ý 
, , �, 

_ 
J, ý -ý 

-0.2' ' 
1 101 w4 301 401 

0.2 

-0.2 1 101 

ýý. / _ 

-- 
ýý ii 

:1_ 
-' 

301 401 

Figure 4.28. The t-u plots, weights and regression vectors for PLS, first five latent variables. 



4-115 

30 0.8 

0.2 0.4 0.6 0.8 
t=Xb 

0 100 200 300 
b 

J 
400 

0.2, - 

o. 1 

o ýJ 

-0.1I 

h ' ýII 

,ý ýý Yý 
V 

i, 
ýý ýI ý ýi 

-0.2 L- -, -- --i 0 100 200 300 400 
b 

Figure 4.29. The final t-u plot and the regression vector applying fourteen latent variables. 

From Figure 4.29, for the model of product there is little noise in the t-u plot and it exhibits a 

linear behaviour, whilst the model for the by-product contains more noise in the t-u plot and a 

deviation from linearity is observed. The two regression coefficients are similar. 

Of key interest are: 

" mainly the product is modelled as seen from the Y loading, q,, Table 16. 

" fourteen latent variables are needed to obtain the best PLS model. 

" the two regression vectors for the product and by-product (Figure 4.29) are noisy but 

capture the same overall structure as the methods of RVPLS, EBPLS and NPLS, Figure 

4.27 

4.3.2 Reciprocal Variance PLS 

Table 17 reports the modelling results per latent variable for the application of RVPLS to the 

alkylation data. The Y-loading matrix, Q, is included to enable the significance of the response 

variables per latent variable to be assessed. Since the variance of the response matrix Y is 

dominated by the first response variable, the product, it was expected that the first latent 

variable would have a high loading for the product variable. For RVPLS, the impact of the 

second response value is not observed until the fourth and the sixth latent variable, observed 
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from the Q values, Table 17. Consequently, the RMSEC value of the by-product decreases 

primarily for the fourth and sixth variables. 

LV's Q% Variance % Variance RMSEC RMSEP 
q, q2 captured of X captured of Y 

1 0.9998 0.0205 99.51 

2 0.9985 -0.0540 99.56 

3 0.9996 -0.0284 99.59 

4 0.9463 0.3233 99.72 

5 0.9997 0.0241 99.75 

6 0.8404 0.5419 99.91 

7 0.9997 -0.0230 99.93 

8 0.9960 -0.0895 99.97 

9 0.9939 0.1106 99.98 

10 0.9998 -0.0178 99.98 

73.10 

83.70 

91.64 

94.13 

99.56 

95.89 

96.58 

97.14 

97.77 

98.51 

Table 17. Application of RVPLS to alkylating data. 

2.9242 2.8692 
0.2808 0.2734 
1.7618 2.1133 
0.2538 0.2485 
0.8776 1.3816 
0.2498 0.2442 
0.6267 1.0143 
0.1315 0.1058 
0.4665 0.8940 
0.1311 0.1054 
0.4468 0.9570 
0.0880 0.0949 
0.3628 0.9019 
0.0874 0.0955 
0.3006 0.8781 
0.0848 0.0985 
0.2291 0.8875 
0.0821 0.0984 
0.1406 0.9165 
0.0820 0.0984 

Since the method does not use the covariance information, the underlying structure is not 

accurately identified and the inner mapping introduces a relatively large error, which is 

incorporated into the subsequent sub-models. In particular, the RMSEC and RMSEP values 

obtained for the first latent variable are similar, but including more latent variables increases the 

deviation between the two measures, i. e. 17%, 37%, 38% and 48% for the second, third, fourth 

and the fifth latent variable. The overfitting increases to 66% for the final model, that was 

developed from eight latent variables. 

Compared with linear PLS, that required 14 latent variables, a poorer prediction error is 

observed. Since the relationship is approximately linear, the error introduced by allowing the 

inner mapping to be nonlinear will be small for each latent variable added. Nevertheless, the 

error introduced per latent variable is cumulative, and will therefore increase as the number of 

latent variables increases. Thus after 8 latent variables, this error was significant compared with 

the residual left to be modelled. 
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Figure 4.30. The t-u plots and the weight vectors for RVPLS for the first five latent variables. 

From Figure 4.30, the issue of fitting the nonlinear function is evident from the first t-u plot. 

The inner mapping function does not capture the nonlinear behaviour, due to the plug-in 

bandwidth being estimated too high. The reason is that the loess bandwidth is estimated as a 

single average value for the whole data set (t, u) and then varied locally by the distance between 

the k-nearest neighbours of the t vector, Appendix A2.2. Thus, for the lower t-values, where the 

error variance is less than the average, the bandwidth will be too high and underfitting by the 

nonlinear function will occur. The error introduced by this mismatch for the lower area of the 

data cluster (small t-values) is comparable to the variation of the residuals (u2, Figure 4.30). The 

RMSEP for the first latent variable could be lowered to a value of 1.8, if the structure of the 

lower part in the first t-u plot had been modelled better. That is, by manually adjusting the 

bandwidth for the lower area, Figure 4.31. In particular, the first thirteen smallest t-values were 

given a bandwidth of 0.0075, compared with the average value of these points of 0.0187 from 

loess bandwidth. 

From Figure 4.30, the weight vectors become gradually more noisy with increasing number of 

latent variables. For the third latent variable, only a few X variables are used, and the region 

corresponds with the area of interest for the previous modelled latent variable (around variable 

310). 
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Figure 4.31. The first t-u plot, locally altering the bandwidth of the lowest t-values. 

In a study into the effect of the nonlinear function fitted, the inner mapping was forced to be 

linear by applying a large bandwidth for the local linear kernel regression, i. e. the bandwidth 

was given a value of 108. The best model for the product was achieved when II latent variables 

were included in the model, resulting in a RMSEC of 0.33 and a RMSEP of 0.36. The best 

model for the by-product was achieved when applying 14 variables, resulting in a RMSEC of 

0.039 and a RMSEP of 0.037. Thus, the performance of the methods was comparable to that of 

linear PLS. Furthermore, the overfitting, measured by the ratio between the RMSEC and 

RMSEP values, was eliminated. Consequently, the cause of the overfitting mainly resulted from 

the construction of the inner mapping. 

4.3.3 Spline PLS 

Spline PLS has the same set of issues as RVPLS. In particular, the method locates inappropriate 

nonlinear latent spaces as a consequence of focusing on explaining a high level of variance for 

both the predictor and the response matrices. The inaccuracy of the inner mapping affects the 

modelling of the subsequent latent variables, Figure 4.32. In particular, the problem is more 

complicated than with RVPLS since additional latent variables are required to construct the best 

model. 
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LV's 
Q% Variance % Variance RMSEC RMSEP 

q, q2 captured of X captured of Y 

1 0.9998 0.0218 

2 1.0000 -0.0018 

3 0.9997 -0.0261 

4 0.9998 -0.0219 

5 0.9999 -0.0159 

6 0.9998 -0.0221 

7 0.9765 0.2156 

8 0.9996 -0.0265 

9 0.9996 -0.0276 

10 0.9997 -0.0249 

11 0.9965 -0.0839 

99.46 67.19 

99.63 73.24 

99.81 77.77 

99.85 81.45 

99.87 85.66 

99.92 87.73 

99.98 88.31 

99.99 90.60 

99.99 92.14 

99.99 93.38 

99.99 94.57 

Table 18. Application of SPLS to alkylating data 

3.5716 3.2060 
0.2774 0.2663 
2.9082 2.8964 
0.2772 0.2658 
2.4117 2.8638 
0.2744 0.2635 
2.0078 2.4981 
0.2720 0.2611 
1.5421 2.0420 
0.2706 0.2599 
1.3124 1.8307 
0.2696 0.2595 
1.2517 1.8353 
0.2507 0.2455 
0.9955 1.7655 
0.2499 0.2464 
0.8213 1.6175 
0.2491 0.2453 
0.6785 1.5366 
0.2486 0.2440 
0.4374 1.6421 
0.2483 0.2440 

From Figure 4.32, the structure of the first latent variable and the weight vector is similar to that 

for RVPLS, but the RMSEC and RMSEP are significantly higher. Again, the variance in the t-u 

plot for the first latent variable is not uniformly distributed along the t-axis, and the average 

smoothing parameter constructed using the plug-in bandwidth estimates too high a value for the 

lower part of the t-u plot (lowest t values). Thus, the mismatch between the structure observed 

in the t-u plot and the estimated inner mapping is even greater than for RVPLS. As a result this 

error that is included in the subsequent latent variables will be higher and further reduce the 

capability of the method. 

The largest value of the Y-loading for the by-product is obtained for the seventh latent variable, 

i. e. 0.2156. Consequently the potential to model the behaviour of the by-product is low. For this 

data set, SPLS tends to describe more of the variance in the predictor variables compared with 

the variance in the response variables as seen from the variance described, Table 18. This 

method works in a similar manner to that of linear PLS in that it tries to explain the variance in 

both the X and Y matrices, and as a result the underlying structure is not necessarily identified 

as observed from the t-u plots in Figure 4.32. However, the focus of the method results in low 

noise for the weight vectors compared to the other methods. The structure of the t-u plots 

reveals different levels of nonlinearity depending on which region of the spectrum is primarily 

defined by the weight vector. Only the first five latent variables are plotted, since including 
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more plots does not contribute further to the discussion. In general, the higher the latent variable 

the less structure in the t-u plot. 
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Figure 4.32. The t-u plots and the weight vectors for SPLS for the first five latent variables. 

4.3.4 Error Based PLS 

The EBPLS method captures the underlying structure, with the behaviour associated with the 

concentration of the product captured by the first latent variable and the concentration of the by- 

product captured by the second latent variable, Table 19 (Q values). 
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Q% Variance % Variance 
RMSEC RMSEP 

q, Qz captured of X captured of Y 

1 0.9998 0.0177 97.26 97.25 

2 0.0208 -0.9998 99.36 99.99 

3 0.9000 -0.4358 99.39 99.99 

4 0.5059 0.8626 99.42 100.00 

5 0.8841 -0.4674 99.44 100.00 

6 0.9164 -0.4003 99.48 100.00 

0.0063 0.4077 

0.0010 0.4089 
iI Ill ill 

0.0005 0.4089 
0I 11 11 1I (I I, 

0.0004 0.4089 
ni1i, u; iiii;, ý 
0.0002 0.4089 
(1.1111112 0.0338 
0.0002 0.4089 
ii (11111 , ii li.: A 

Table 19. Application of EBPLS to alkylating data 
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The second inner mapping exhibited nonlinear behaviour compared with the first nonlinear 

function, which was close to linear. The method appears to overfit as there is large differences 

between the RMSEC and the RMSEP. Even so, the method performs reasonably well in terms 

of modelling the product and by-product. Furthermore, from Figure 4.33, the third and fourth 

latent variables are clearly overfitting the data. However, the prediction error continues to 

decrease for the by-product until the fifth latent variable. For these two t-u plots the calibration 

set is fitted with a much lower error than the reference method of PLS, i. e. the noise in the data 

is fitted. Consequently, the validation set is not modelled well for latent variable three and 

onwards. 
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Figure 4.33. The t-u plots and the weight vectors for EBPLS for the first five latent variables. 

Modelling two response variables that are correlated generally decreases the tendency for 

overfitting, as the latent variable u is a linear combination of the responses. This linear 

combination can be considered a weighted average (scaled), and thus will have lower noise than 

the responses. Decreasing the noise improves the possibility of overfitting. However, if the two 

responses are modelled separately, the RMSEP values decrease to 0.38 for the product and 

0.026 for the by-product applying one latent variable in the model, possibly due to the nonlinear 

relation between the two responses, Figure 4.25. The weight vectors are relatively noisy, but 

certain structural information is observed - particularly for the first two latent variables. In 

particular, the variables between 150 to 200 possess a similar structure to what is observed for 

the RVPLS method, Figure 4.30. 
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4.3.5 Nested PLS 

The main results after applying NPLS are summarized in Table 20, the best results are identified 

in bold. 

LV's 
Q% Variance % Variance RMSEC RMSEP 

q, q2 captured of X captured of Y 

1 0.9998 0.0176 

2 0.2023 0.9793 

3 0.9981 -0.0609 

4 0.9934 -0.1147 

5 0.9920 -0.1263 

6 0.9945 -0.1051 

0.3124 0.4453 
i,,. "t, 1 

0.3061 0.4404 

0.1459 0.3384 
11.11ýk11 11 10c() 

0.0991 

0.0938 

0.0533 

0.3230 
1i f, , 

0.3187 

0.3288 

, ý. 

Nested PLS is similar to EBPLS in that the structure associated with the product is captured by 

the first latent variable, whilst the behaviour of the by-product is captured by the second. From 

Figure 4.34, the second latent variable exhibits clear nonlinear behaviour. However, the second 

t-u plots contain more variation compared to that for the EBPLS model. 
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Table 20. Application of NPLS to alkylating data 
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Figure 4.34. The t-u plots and the weight vectors for NPLS for the first five latent variables. 
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Furthermore, the influence of the product on the second latent variable is greater than for 

EBPLS. The effect of overfitting is less obvious with the deviation between the prediction error 

and the calibration error being smaller. In particular, the third latent variable captures the 

residual structure common to both the calibration and the validation set. From Figure 4.34, the 

weight vectors are less noisy and contain more structure compared with those obtained using 

EBPLS. For the fifth latent variable there is little structure observed in the t5-u5 plot, with the 

weight vector being noisier than the previous latent variables. 

The curvature in the t2-u2 plot, Figure 4.34, is the opposite of that seen in the t2-u2 plot, Figure 

4.33. This is due the sign of the Y-loading, i. e. -0.9998 in Table 19 and 0.9793 in Table 20. As 

the two responses are negatively correlated (-0.90), the choice of sign for EBPLS is more 

natural since the Y-loading values for latent variable two have opposite signs. It may be caused 

by significant residual variance, originating from the product variable, remaining after the first 

latent variable model being built. Consequently, it will dominate the second latent variable. If 

the two responses are modelled separately, the RMSEP value is unchanged at 0.31 for the 

product and decreases to 0.028 for the by-product applying two latent variables in the model 

4.3.6 Steepest Descent PLS 

From Table 21 and Figure 4.35, it is clear that the method fails to identify the underlying 

structure. This is due to convergence problems, and is discussed further in the next section. The 

smooth weight vectors in Figure 4.25 are similar to those for the starting vector, i. e. the steepest 

descent algorithm converges rapidly to a local minimum in the area of the starting vector. 

Again, when the underlying structure is not identified by the first latent variable, including more 

latent variables will not necessarily result in a satisfactory model, due to the error introduced by 

fitting each nonlinear mapping being cumulated for increasing number of latent variables. This 

is especially the case since nine latent variables are included. 

From the t2-u2 plot it is possible to understand the increased difficulty of constructing a 

satisfactory nonlinear mapping, and hence introduction of error into the model. From the plot, it 

is difficult to identify whether a reasonable structure for the inner mapping is obtained, hence 

the resulting residual vector becomes increasingly uncertain. This uncertainty increases as one 

approaches the left or right extremes of the data points. The first latent variable explains over 

90% of the variance in X, whilst 80% of the variance in Y is explained. This is the lowest level 

of explained X variance for the five methods, whilst the explained Y variance is comparable to 

that of RVPLS. Even so, the best predictive model is poorer than that for RVPLS. This is 

possibly due to the issue of convergence resulting in a higher level of nonlinearity for the inner 
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mapping between the pair of scores - due to greater uncertainty in the high and low extremes of 

the data (Figure 4.35, second t-u plot and onwards). 
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Table 21. Application of SDPLS to alkylating data 
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Figure 4.35. The t-u plots and the weight vectors for SDPLS for the first five latent variables. 
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The weight vectors are spiky due to the starting vector used, cor(X, u)9, combined with 

premature convergence close to the starting vector, since the covariance information is not used 

to construct the weight updating vector. These issues will be discussed in the next section. 

4.3.7 Influence of the Starting Vector 

The influence of the starting vector was investigated for Framework 1, i. e. EBPLS, NPLS and 

SDPLS. In particular, the deviation between the weight vectors for the first latent variable and 

the prediction ability of the resulting models were investigated for five starting vectors. The 

results from the different starting vectors including the prediction results are presented in Table 

22 and Table 23, for the product and the by-product, respectively. 

Starting Vector 
EBPLS NPLS SDPLS 

RMSEC / RMSEP (]v) RMSEC / RMSEP (]v) RMSEC / RMSEP (lv) 

w E- cov(X, u) 0.3000 / 0.4039 (1) 0.1558 / 0.3758 (7) 0.4663 / 0.7036 (7) 

w E- cor(X, u)9 0.0063 / 0.4077 (1) 0.0938 / 0.3187 (5) 0.6746 / 1.0545 (9) 

w F- PLScv(X, u) 0.000010.4028 (1) 0.0177 / 0.3185 (9) 0.0582 / 0.3237 (5) 

w F- RVPLS(X, u) 0.0000 / 0.4033 (1) 0.2102 / 0.2969 (3) 0.4548 / 1.0121 (2) 

w E- SPLS(X, u) 0.0000 / 0.4040 (1) 0.2101 / 0.3071 (4) 0.2441 / 0.9169 (5) 

Table 22. Prediction results for the product using 5 different starting vectors. 

Starting Vector 
EBPLS NPLS SDPLS 

RMSEC / RMSEP (]v) RMSEC / RMSEP (Iv) RMSEC / RMSEP (Iv) 

w t- cov(X, u) 0.0053 / 0.0357 (2) 0.0992 / 0.0689 (7) 0.1241 / 0.1212 (5) 

w E-- cor(X, u)9 0.0002 / 0.0338 (5) 0.0391 / 0.0359 (3) 0.1359 / 0.1676 (9) 

w E- PLScv(X, u) 0.0000 / 0.0357 (9) 0.0326 / 0.0345 (9) 0.0286 / 0.0641 (5) 

w RVPLS(X, u) 0.0000 / 0.0357 (3) 0.0342 / 0.0369 (3) 0.0475 / 0.0856 (9) 

w E- SPLS(X, u) 0.0000 / 0.0355 (6) 0.0338 / 0.0359 (4) 0.2432 / 0.2298 (4) 

Table 23. Prediction results for the by-product using 5 different starting vectors. 

Using starting vector 1, usually associated with linear PLS, all three algorithms terminate in the 

vicinity of the starting vector, Figure 4.36, where the starting vector (black) is superimposed on 

the final weight vector (green). For this data set, the recommendation is not to use this starting 

vector, as the resulting predictive performance is poor. Using the RVPLS method to calculate 

the starting vector gave the best method in conjunction with Nested PLS, whilst starting vector 3 

(PLScv) gave the best result for SDPLS. 
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Figure 4.36. The starting vector (black) and the final weights (green) for the first latent variable. 

400 

Nested PLS gave the best result for the product response, whilst the by-product is modelled best 

using the EBPLS approach. This is due to EBPLS modelling the two responses individually 

with the product being modelled by the first latent variable while the by-product was modelled 

from the second latent variable. For NPLS, the two responses are modelled in a similar way, but 

the influence from the residual variance of the product is larger for the second latent variable. 

The SDPLS result is generally poor, except for the product model that is obtained when the 

regression vector from PLS with cross validations is used as the starting vector. The RMSEP is 

then lower than that of linear PLS, i. e. 0.32 compared with 0.38. 

Again, SDPLS appeared to be the most affected by the choice of starting vector. This was also 

reflected in the diversity in the prediction ability of the five SDPLS models. However, by using 

the regression vector from linear PLS with cross validation (starting vector 3), an acceptable 

model was obtained. This was the only case where the weight vector significantly was different 

from that of the starting vector, Figure 4.36. For this model, the first weight vector exhibits 

similar behaviour to that of the first weight vector obtained using Nested PLS, using starting 

vectors two to five. 
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One approach to measure the method's ability to converge is to look at the spread between the 

different weight vectors obtained by applying a number of different starting vectors, thus the 

more similar the final weights are the higher convergence is demonstrated. An average 

correlation value is calculated from the correlation values between all pair of weight vectors, 

and subsequently taking the average of these correlation values. The average correlation 

between the five obtained weight vectors are for EBPLS: 0.63 ± 0.47 (0.99 ± 0.01), for NPLS 

0.44 ± 0.32 (0.66 ± 0.19) and for SDPLS 0.26 ± 0.22 (0.32 ± 0.23). The values in parenthesis 

are the average correlation between final weight vectors using the starting vectors 2 to 5, since 

using starting vector 1 none of the algorithms converged. The weight vector obtained using 

starting vector 2 to 5 is almost identical for EBPLS with an average correlation of 0.99. For 

NPLS the fifth starting vector results in a first weight vector that exhibits smoother behaviour 

than when applying the previous starting vectors, Figure 4.36. 

4.3.7.1 Effect of Dampened Optimisation 

The algorithms of Framework 1 use the regression vector from least squares for EBPLS, from 

PLS with the number of latent variables found from cross validation for NPLS, or from PLS 

with one latent variable for SDPLS, to define the increment vector or search direction, 

öw. Since in PLS the step length and the step direction are found by regressing u on t (termed 

r on s for the inner PLS) using least squares, all methods find a step length that minimizes the 

squared residual error. Thus, applying dampening does not necessarily improve the prediction 

ability of the method, but will influence the convergence as cross validation is included in the 

search algorithm since it is used to find the step length. However, dampening may improve 

termination by applying a sufficiently large step length that forces the solution out of a local 

minimum, or by improving the termination of the algorithm. That is, when the chosen step 

length is found to be zero, the algorithm will terminate since no change in the score vector 

between iterations is observed. 

Starting Vector 
EBPLS NPLS SDPLS 

RMSEC / RMSEP (Iv) RMSEC / RMSEP (lv) RMSEC / RMSEP (Iv) 

w cov(X, u) 0.0040 / 0.4022 (1) 0.0898 / 0.4543 (8) 0.0714 / 0.5750 (10) 

w E-- cor(X, u)9 0.0054 / 0.4052 (1) 0.1005 / 0.4626 (8) 1.1284 / 1.0631 (2) 

w PLScv(X, u) 0.0169 / 0.3750 (3) 0.0453 / 0.3195 (4) 0.1136 / 0.3071 (3) 

w E-- RVPLS(X, u) 0.0198 / 0.3668 (3) 0.0655 / 0.3142 (6) 0.0449 / 0.3334 (8) 

w E- SPLS(X, u) 0.0053 / 0.4045 (1) 0.2045 / 0.2891 (3) 0.4297 / 1.2326 (2) 

Table 24. Prediction results for the product using 5 different starting vectors (dampening). 
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Starting Vector 
EBPLS NPLS SDPLS 

RMSEC / RMSEP (Iv) RMSEC / RMSEP (Iv) RMSEC / RMSEP (Iv) 

w F- cov(X, u) 0.0000 / 0.0368 (2) 0.0426 / 0.0625 (10) 0.1624 / 0.1877 (8) 

w <- cor(X, u)9 0.0003 / 0.0336 (3) 0.0196 / 0.0533 (10) 0.2042 / 0.2379 (4) 

w <- PLScv(X, u) 0.0092 / 0.0333 (9) 0.0397 / 0.0354 (2) 0.0455 / 0.0569 (8) 

w <- RVPLS(X, u) 0.0010 / 0.0371 (5) 0.0473 / 0.0453 (6) 0.0330 / 0.0644 (10) 

w <- SPLS(X, u) 0.0000 / 0.0334 (6) 0.0350 / 0.0406 (3) 0.0537 / 0.0889 (10) 

Table 25. Prediction results for the by-product using 5 different starting vectors (dampening). 

The effect of dampening is investigated for the five different starting vectors discussed in the 

previous section by comparing Table 24 with Table 22. The greatest effect of dampening is 

observed for Steepest Descent PLS (SDPLS), with the algorithm terminating further away from 

the starting vector than when dampening is not applied, Figure 4.37. However, applying 

dampening produces both better and poorer models for SDPLS. For Nested PLS, by applying 

starting vector one and two, considerably poorer models are obtained, whilst slightly better 

models are obtained using starting vector five, Table 24. In particular, dampening causes Nested 

PLS not to converge properly when applying starting vector 2, in contrast to when not applying 

dampening, Figure 4.37. For EBPLS, the effect of dampening is small. Thus, it is not possible to 

conclude whether damped optimisation generally improves the algorithms. 
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Figure 4.37. The starting vector (black) and the final weights (green) for the first latent variable. 



The average correlation between the obtained weight vectors for the different starting vectors 

are for EBPLS: 0.56 ± 0.42 (0.88 + 0.10), for NPLS 0.42 ± 0.31 (0.63 ± 0.21) and finally for 

SDPLS 0.13 ± 0.78 (0.02 f 0.76). Again, the values in parenthesis are the average correlation 

between the four last staring vectors. As the average correlation between the weight vectors by 

applying dampening are generally less compared with not applying dampening, it could be used 

as an argument not to apply dampening for this data set. SDPLS is the method that is most 

affected by local minima, due to the low average correlation among the weight vector obtained 

for the first latent variable applying the different starting vectors. 

4.3.8 Impact of the Termination Criteria 

The difference between the prediction error and the calibration error is investigated in terms of 

the number of iterations performed. The difference between the RMSEC and RMSEP values are 

plotted as an area for the three optimisation based approaches, EBPLS, NPLS and SDPLS, 

using the standard parameter settings, and hence starting vector 3, Figure 4.38. In particular, the 

lowest border-line of each area represents the RMSEC value, whilst the highest border-line of 

each area represent the RMSEP value. 
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Figure 4.38. Difference between RMSEC and RMSEP for EBPI. S( ), NPLS(") and SDPL, S( ). 
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The area represents the difference between RMSEC and RMSEP per number of iterations 

applied, thus a large area indicates overfitting. The point at which the lowest RMSEP value for 

the three methods is attained are added to the plot, including the number of iterations where the 

minimum RMSEP value occurs. Since there are two response variables the errors used to 

calculate the RMSEC and RMSEP values are calculated based on the difference between the 

actual and predicted Y-score, i. e. e= (u - ü) 
, and will be closely related to RMSEC and 

RMSEP values of the product variable due to the greater variance of the product. 

Investigating the EBPLS approach, the difference between the RMSEC and RMSEP values 

increases with the number of iterations as observed previously for the density data, but here the 

RMSEP value increases slowly as the RMSEC value decreases. The NPLS approach results in 

closer agreement between the prediction and calibration errors, and the best model is obtained 

after 16 iterations since further iterations result in overfitting (increasing RMSEP and 

decreasing RMSEC values). The SDPLS approach converges extremely slowly into a local 

minimum close to the starting vector, thus the area between the RMSEC and the RMSEP value 

is small. However, overfitting eventually occurs, i. e. a test using 10000 iterations gives a 

RMSEP of 2.2780, this is larger than for 1001 iterations. Nested PLS gave the best overall 

model (RMSEP = 0.29 at 16 iterations). 

For this data set, the standard choice of termination criteria is not ideal for any of the three 

methods, but a different choice would not change the final result significantly nor the ranking 

between the algorithms. For, EBPLS and NPLS fewer iterations would have been beneficial. 

For SDPLS additional iterations would improve the final model, but only slightly. 

4.3.8.1 Effect of Cross Validation Group Size for Nested PLS 

The effect of the number of subsets used in the inner PLS model for Nested PLS was 

investigated in terms of model performance. The number of subsets can vary between 2 and 45, 

with a group size of 45 being equivalent to leave-one-out cross validation. The RMSEP per 

group size for the product and the by-product is plotted in Figure 4.39. Except for varying the 

size of the groups in cross validation, the standard settings previously defined were used in the 

study. 

For the product, a clear minimum occurs for a group size of seven or eight, whilst for the by- 

product there is no such clear outcome from the study, Figure 4.39. For the product, the effect of 

choosing the optimal number of subgroups in the cross validation is significant, as a 
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significantly improved model is achieved using eight subsets as opposed to the two groups used 

in the standard parameter settings. The reason for this not occurring for the by-product is not 

fully understand, nor is the reason for the peak observed using six cross validation groups. 

However, the result may be influenced by the difference in variation between the two response 

variables. 
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Figure 4.39. RMSEP for NPLS for different group sizes in cross validation. 

Generally, when using a higher number of subgroups in cross validation, the calibration sets will 

be larger while the validation set will be smaller. Thus, the quality of the calibration will be 

better but the estimation of the validation error may increase, e. g. applying the highest number 

of subgroups (leave-one-out cross validation) often gives optimistic Root Mean Squared Error 

of Cross Validation (RMSECV), Martens and Naes (1989). The result for this data set indicates 

that it can be beneficial to try different group sizes for cross validation when applying Nested 

PLS, and that the optimal number lies between 4 and 11 as reported by Wold (1978). 
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4.4 Melt Index of Polymer. 

The third data set comprehensively investigated was based on data recorded from a high-density 

polyethylene (HDPE) plant between 1999 and 2000. The predictor variables include pressures, 

temperatures and concentrations. Thus the predictor variables are not as strongly correlated as 

for the previous two data sets. The calibration data set contains 300 observations and the 

validation data set, 126 observations. The number of variables was 87, i. e. an overdetermined 

data set. The single response variable represents Melt Index that is sampled every 8 hours. The 

nonlinearity is known to follow an exponential relationship (from the kinetic equations). The 

modelling results are presented in Table 26. 

Method No. of latent % Variance % Variance 
applied variables captured of X captured of Y RMSEC RMSEP 

A: RVPLS 3 56.61 60.06 34.04 44.50 

B: SPLS 4 91.80 47.30 44.91 61.73 

C: EBPLS 6 3.45 89.92 8.59 15.14 

D: NPLS 1 1.27 87.39 10.75 12.84 

E: SDPLS 6 11.37 76.03 20.43 31.92 

F: PLS 35 99.99 82.56 14.86 15.60 

G: BPLS 35 1.05 84.78 12.97 14.11 

Table 26. Comparison between the methods for Melt Index data 

Process data often exhibits complex relationships between the predictor variables and the 

response variables of interest and this data set was no exception. As a consequence, it is more 

challenging to build a high-quality model as the start vector is assumed to be relatively far away 

from the resulting weight vector. In linear PLS, the complexity may be expressed in terms of a 

large number of latent variables in the final model. Finally, the resulting weights are more 

challenging to validate, since they normally lack any structure compared with spectral data. 

The RVPLS and SPLS methods (Framework 2) are unable to identify a good inner mapping for 

this data set. This result in the error from the fitting the nonlinear function in the first t-u plot, 

becoming large. In particular for SPLS (Figure 4.40, B), the variation in the predictor matrix 

(92%) is much higher than for the response variance (47%), thus the underlying structure was 

not properly modelled. As a consequence of the starting vector being far from the desired 

minimum and the fact that data is affected by process noise, SDPLS fails to approach the global 

minimum resulting in a prediction error that is far larger than for linear PLS. Only NPLS and 

EBPLS perform better than the reference method of linear PLS when considering the RMSEP, 
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and the underlying nonlinear structure is more clearly defined, Figure 4.40. The large number of 

latent variables included in liner PLS confirms the complexity of the model. The BPLS model, 

obtained by adding a nonlinear mapping between the predicted response from the linear PLS 

model and the measured Melt Index, increases the prediction performance and is only 

outperformed by Nested PLS. Finally, applying linear PLS, after linearization of the response 

variable by a logarithmic transformation, resulted in a RMSEP of 13.5 using l8 latent variables. 
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Figure 4.40. Plot of t, -u1 scores and corresponding weight vector for the Melt Index data 

The weight vectors for the first latent variable are quite different for the five models, with each 

focusing on different predictor variables. However, the weight vectors for NPLS and EBPLS 

exhibit similar behaviour for variables in excess of 80, with RVPLS and SDPLS demonstrating 

structural similarity. EBPLS appears to materialize in a smoother nonlinear mapping than 

NPLS, but three observations result in a deviation from the model thus making the prediction 

error larger, Figure 4.40 (C). The major variance in the predictor variables is not associated with 

the response variable, observed by the low explained variance of X for NPLS and EBPLS, 

Table 26. To confirming this hypothesis, the variance explained by the regression vector from 

linear PLS, applied in the BPLS approach, is also low. This fact explains the difficulty of 

constructing a good model for the SPLS algorithm, as it tries to model both the X and Y 

variance. Nested PLS seems to give higher significance to additional variables in construction of 

the weight vector, compared with RVPLS, SPLS, EBPLS and SDPLS, Figure 4.40. A more 

detailed analysis of the different models follows in the next sections. 
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4.4.1 PLS Reference Method 

A linear Partial Least Squares model using 35 latent variables was applied to the process data. 

The high number of latent variables indicates the complexity of the model. The resulting 

regression vector and the observed versus the predicted Melt Index are presented in Figure 4.41. 

In the upper t-u plot, the linear and the nonlinear mappings are for PLS (black) and BPLS (red), 

respectively. The corresponding regression vector is included in the lower plot. 
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Figure 4.41. Plot of predicted and observed Melt Index and the regression vector. 
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The shape of the regression vector is similar to that constructed by means of NPLS, for the 

region from variable number 20 to 70, but is highly different for variable numbers over 80 

where it resembles the weights obtained by EBPLS (Figure 4.41 compared to Figure 4.40). 

Thus, NPLS demonstrates resemblance to PLS, through the use of the inner PLS, but 

demonstrates also resemblance to EBPLS due to the utilisation of the weight updating procedure 

(Baffi et al., 1999a, b). From the t-u plot in Figure 4.41, the response is clustered into groups and 

besides the uncertainty is larger for the prediction than for the measured value. Thus, it can 

either be due to PLS not being able to describe the complexity of the data set, or the variation 

not being included in the predictor matrix. 
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4.4.2 Reciprocal Variance PLS 

The RVPLS approach is not identifying the complex data structure required to produce a good 

model. The methodology was developed for where there exists one underlying relationship 

between the data and the response as is typical for some spectral data sets. In particular, the 

explained variance of the response is low. The first latent variable is capable of extracting some 

of the underlying structure, but for the second latent variable, the nonlinear mapping cannot be 

modelled accurately, Figure 4.42. The fourth and fifth latent variables tend not to reflect any of 

the underlying structure, with some observations having high leverage. 
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The RMSEP values decrease until latent variable 3 is included. Apart from latent variable 3, the 

weight vectors generally focus on a few specific variables. However, the five first weight 

vectors include some of the same variables as those obtained for the first weight vector when 

applying Nested PLS. 

4.4.3 Spline PLS 

The issues with SPLS are apparent from the t-u plots, Figure 4.43. Since the underlying 

structure cannot be properly identified, it is not possible to fit a nonlinear function between the 

scores. Furthermore, the structure of the underlying mapping does not demonstrate a smooth 

behaviour. Consequently, an error is introduced by the nonlinear mapping that cannot be 

recovered through the inclusion of more latent variables. The final model therefore gives a poor 

representation of the response variable. 

LV's % Variance % Variance 
captured of X captured of Y RMSEC RMSEP 

1 56.21 14.46 72.90 83.48 

2 82.20 24.33 64.49 80.60 

3 87.57 42.83 48.72 63.92 

4 91.80 47.30 44.91 61.73 

5 92.86 51.91 40.99 165.54 

Table 28. Application of SPLS to the Melt Index data 

The large increase in RMSEP for the fifth latent variable is a result of one observation that is 

outside the range of the calibration set, Figure 4.43. This observation will significantly influence 

the modelling of subsequent latent variables, since no robust measurement that takes care of the 

influence of outliers is included in the calculation of the covariance. For all the latent variables 

investigated, the weight vectors focus on a few predictor variables. Furthermore, the weight 

vectors that are selected by SPLS are generally not similar to the weight vectors variables 

selected by the other methods, RVPLS, EBPLS, NPLS or SDPLS. 
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Figure 4.43. The t-u plots and the weight vectors for SPLS for the first five latent variables. 

4.4.4 Error Based PLS 

The EBPLS approach is expected to perform well since the data set is overdetermined and 

exhibits a low level of collinearity. The underlying structure is clearly identified and 

approximated well by the first latent variable, Figure 4.44. Including additional latent variables 

only improves the model slightly. 

LV's 
% Variance % Variance 

captured of X captured of Y RMSEC RMSEP 

1 1.12 87.39 10.75 15.80 

2 1.33 88.55 9.76 15.73 

3 1.45 88.92 9.44 15.87 

4 1.80 89.20 9.20 15.31 

5 3.43 89.52 8.93 15.27 

6 3.45 89.92 8.59 15.14 

7 3.50 90.44 8.14 15.55 

-6181 

-2063 

-603 

Table 29. Application of EBPLS to Melt Index data 
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The RMSEC is 43% lower than the RMSEP for the final model based on six latent variables, 

thus some overfitting is indicated, Table 29. Furthermore, the underlying variance captured for 

the X matrix is small, indicating that only a small amount of the variance of the predictor 

variables is related to the variance of the response variable. However, EBPLS identifies a 

weight vector for the first latent variable that estimates the underlying structure well. After, the 

first latent variable is extracted, the level of variance modelled for both X and Y is comparable, 

hence by including six latent variables, 2% additional variance is explained for both the 

predictor and the response matrix, Table 29. 
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Figure 4.44. The t-u plots and the weight vectors for EBPLS for the first five latent variables. 

It appears that the EBPLS algorithm terminates in a local minimum when constructing the first 

latent variable, since six latent variables are needed. This is reflected in the first weight vector 

that focuses on fewer variables compared with NPLS, thus there is still some variance to be 

modelled after the inclusion of the first latent variable. In particular, applying EBPLS results in 

higher RMSEP than applying NPLS, due to the high number of latent variables needed to be 

included in the model. Furthermore, for the second to the fifth latent variables, the focus is on 

the same predictor variables which are included for the first latent variable of NPLS. For further 

discussions, see the section on the influence of the starting vector, Section 4.4.7. 
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4.4.5 Nested PLS 

The Nested PLS approach should provide a compromise between the updating vector of the full 

Gauss-Newton approach used in EBPLS and the steepest descent approach used in SDPLS. As 

this data set is overdetermined and has a low level of collinearity it was conjectured that the 

results from the Nested PLS algorithm would be closest to the Gauss-Newton approach of 

EBPLS, i. e. a large number of latent variables would be included in the inner PLS. Investigating 

the number of latent variables in the inner PLS loop showed that, for the first 10 iterations, 

between 4 and 7 latent variables were included. After 10 iterations, the number of latent 

variables decreases quickly and the weight updating was mainly achieved by incorporating one 

or two latent variables in the inner PLS model, i. e. closer to the Steepest Descent PLS method. 

However, the first weight vector obtained has similarities to both linear PLS and the first weight 

vector obtained applying EBPLS. 

LV's % Variance % Variance 
captured of X captured of Y RMSEC RMSEP 

1 1.27 87.39 10.75 12.84 

2 14.14 88.98 9.39 13.81 

3 15.03 90.14 8.40 14.28 

4 15.24 90.78 7.86 14.61 

5 16.76 91.06 7.61 14.24 

Table 30. NPLS on density data 

Even if only a few latent variables were included in the inner PLS loop, the Nested PLS 

algorithm performs well in terms of identifying the underlying nonlinear structure, thus a low 

RMSEP value is attained, Table 30. Including additional latent variables did not improve the 

performance, with little structure being observed in the second t-u plot, Figure 4.45. The NPLS 

approach exhibits a smaller difference between the RMSEC and the RMSEP values than for the 

EBPLS method (RMSEC is 16% lower than RMSEP), indicating limited tendency to overfit the 

data. The first score vector is influenced by more variables than the other methods as observed 

from the weight vector, and the variance explained by the first latent variable is slightly higher 

than for EBPLS, Figure 4.45. Of particular note is the similarity between the two first weight 

vectors for NPLS, indicating that there is still some structure left in the data after application of 

the first latent variable. More specifically, different termination criteria or more subgroups in 

the cross validation of the inner PLS loop, could improve the model as some structure remains. 



4-140 

This will be investigated in subsequent sections, particular when examining the termination 

criteria, Section 4.4.8. 
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Figure 4.45. The t-u plots and the weight vectors for NPLS for the first five latent variables. 

4.4.6 Steepest Descent PLS 

The difference between using a single latent variable in the inner PLS loop as in SDPLS and 

allowing more latent variables as in NPLS, makes a considerable improvement in terms of the 

prediction performance for this data set. The final model is almost three times poorer in terms of 

the RMSEP compared with NPLS, Table 31. In particular, the first latent variable does not 

identify the underlying structure as well as Nested PLS, as observed from the first t-u plot, 

Figure 4.46. Again the issue is related to the problem of convergence. This is a consequence of 

low level of the predictor variance associated with the response value, combined with high noise 

levels from the process. In particular, the Melt Index value is determined by the longest 

molecules in the molecular weight distribution. Thus, the process variables do not directly 

describe the amount of the longest molecules, since they only constitute a small fraction of the 

total molecular weight distribution that is produced in the process. Furthermore, it may also be 

influenced by batch-to-batch deviations of the catalyst and that the data set consists of five 

different products. This information is not included in the model. SDPLS is strongly affected by 

local minima related to the above phenomena since no covariance information is used to obtain 
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the gradient information in calculating the step direction (äw ). The final model is achieved by 

including six latent variables. 

LV's 
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1 1.49 
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3 4.82 

4 5.94 

5 7.05 

6 

7 

156 

-101 

155 

u= 

-125 

144 

u3 

-135 

107 

-130 

127 

Y! 

-124 

249 

0.63 { 

Table 3 1. Application of SDPLS to the Melt Index data 
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Figure 4.46. The t-u plots and the weight vectors for SDPLS for the first five latent variables. 

The weight vectors gives strong emphasis to a few predictor variables, compared to EBPLS and 

NPLS. The first t-u plot indicates difficulties with the segregation of the different products (five 

clusters), that is handled better using Nested PLS and EBPLS. 
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4.4.7 Influence of the Starting Vector 

The influence of the starting vector was again investigated for models belonging to Framework 

1. Five different starting vectors were examined. Again, the spread of the final weight vector 
for the first latent variable and the prediction abilities of the final models formed the basis of the 

study. The results for the different starting vector are presented in Table 32. 

Starting Vector 
EBPLS NPLS SDPLS 

RMSEC / RMSEP (Iv) RMSEC / RMSEP (lv) RMSEC / RMSEP (lv) 

w E-- cov(X, u) 12.73 / 22.52 (4) 12.03 /14.26 (2) 28.74 / 45.08 (10) 

w E- cor(X, u)9 8.59 / 15.14 (6) 10.75 /12.84 (1) 20.43 / 31.92 (6) 

w PLScv(X, u) 11.49 /14.79 (5) 11.79 / 14.91 (2) 21.34 / 25.89 (8) 

w E- RVPLS(X, u) 11.63 / 14.82 (8) 12.50 /14.05 (1) 16.24 / 30.28 (12) 

w E- SPLS(X, u) 11.77 / 14.84 (5) 12.65 / 14.58 (1) 20.08 /43.41 (9) 

Table 32. Best models using 5 different starting vectors. 

Assume that a global minimum exists. Since all the starting vectors are quite far off this global 

minimum, SDPLS performs poorly for all approaches due to convergence issues. For SDPLS 

the best starting vector is linear PLS that uses internal cross validation to select the number of 

latent variables, PLScv(X, u), resulting in 15 latent variables model. Even so this starting vector 

is sufficiently far away from the global minimum for the performance of linear PLS to be better. 

However, if the regression vector from linear PLS with 35 latent variables was used as a starting 

vector, as in the reference method (Table 26, F), a good model is achieved. The modelling 

results for SDPLS then become RMSEC = 11.60 and RMSEP = 13.35, by including two latent 

variables in the model. Using this starting vector for the other two methods, i. e. applying 

PLScv(X, u) with 35 latent variables as the starting vector, the best result for EBPLS are 

RMSEC = 8.77 and RMSEP = 15.23 when one latent variable is considered, while NPLS gave 

RMSEC = 7.52 and RMSEP = 13.53 for a four latent variables model. Thus, if the starting 

vector is close to the global minimum, SDPLS seems to overfit less than EBPLS and NPLS. 

Generally, NPLS gives the narrowest range between the RMSEP values for the different starting 

vectors. EBPLS performs well, except when using the covariance criterion as the starting vector. 

The average correlation between the final weight vector for the first latent variable using 5 

different starting vectors are for EBPLS: 0.97 ± 0.04, for NPLS 0.89 f 0.14 and finally for 

SDPLS: 0.38 ± 0.26, confirming the lack of consistency for the SDPLS approach relating to the 

convergence issue. 
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Figure 4.47. The starting vector (black) and the final weights (green) for the first latent variable. 

Of particular note is the low number of latent variables used in Nested PLS, compared with 

EBPLS and SDPLS. The reason why NPLS uses fewer latent variables than EBPLS is not fully 

understood, but may have to do with the singularity problem in calculating the pseudoinverse of 

Equation (2.53). Of greater significance, is that the weight vector for the best NPLS model, i. e. 

applying starting vector two, gives emphasis to the area over variable number 80, in contrast to 

when using the other starting vectors, Figure 4.47. A possible explanation is that a higher 

number of latent variables is selected for the inner PLS when applying starting vector two. In 

particular, the highest number of latent variables achieved for the inner PLS, when applying 

starting vector two, was seven latent variables for the third iteration. The highest numbers of 

latent variables achieved for the inner PLS when applying the other starting vectors were 

located between 3 and 5. 

From Figure 4.47, a first weight vector for SDPLS is obtained which it is only just possible to 

distinguish from the starting vectors, except when applying the regression coefficient from 

linear PLS with cross validation as the starting vector (start vector 3). The effect of dampened 

optimisation gave worse predictions for all methods and all start vectors and is not 

recommended for any of the methods; RVPLS, SPLS, EBPLS, NPLS and SDPLS. The reason is 

possibly the high level of noise in this data set. 
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4.4.8 Impact of the Termination Criteria 

To investigate the effectiveness of the termination criteria and to understand the convergence 

behaviour for the different approaches, the difference between the RMSEC and the RMSEP 

values for the first latent variable was plotted as an area per iteration in Figure 4.48, for the 

methods of Framework 1. 

From Figure 4.48, EBPLS converges fastest as it minimizes the error by applying ordinary least 

squares to solve the linear Taylor expansion for each iteration, Chapter 2.3.4.2. The Nested PLS 

approach solves the problem using linear PLS, where the number of latent variables is estimated 

using cross validation. Thus it converges more slowly but gives the same calibration error 

(RMSEC) as EBPLS, but nonetheless the prediction error is lower. As seen in Figure 4.48, the 

RMSEC and the RMSEP values deviate more for the EBPLS method than for SDPLS and 

NPLS, indicating a higher level of overfitting for EBPLS. SDPLS converges very slowly, and 

does not converge after 10000 iterations where a RMSEP value of 46.83 is obtained (RMSEC = 

33.28). 

Dampening did not improve any of the models. The choice of standard termination criteria does 

not influence the ranking of the methods. However. increasing the maximum number of 

iterations would improve the results of SDPLS, i. e. it is possible to reduce the RMSEP from 

49.6 to 46.1 for the first latent variable by increasing the number of iterations. 

Number of iterations 

Figure 4.48. The difference of RMSEC and RMSEP for EBPLS( ), NPLS( ) and SDPI, S( ). 

loo 
' 10 10` , o' 
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4.4.8.1 Effect of Cross Validation Group Size for Nested PLS 

The prediction error is plotted as a function of group size for the application of cross validation 

in the inner PLS loop of Nested PLS. Once more an acceptable choice is around 6 to 8 

subgroups, Figure 4.49. The best model occurred for 6 subsets, resulting in a RMSEP of 12.67. 

Moreover, independent of the different number of subgroups the NPLS model performed well 

since even the worst model comprising 179 subgroups (RMSEP = 13.87) was better than for 

EBPLS, the only other method that gave satisfactory results in terms of modelling this data set. 

That is, the number of subgroups has no consequence in terms of the ranking of the nonlinear 

PLS approaches. From the results obtained for the three data sets examined this chapter, it is 

difficult to propose a universal optimum number of subgroups. The recommendation would be 

to test the range 5 to 9. This is consistent with the optimal number of subgroups reported by 

Wold (1978), i. e. to use between 4 and II subgroups in the cross validation for PLS. 
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Figure 4.49. The RMSEP for NPLS per group size in cross validation. 

The noise in Figure 4.49 indicates that the data itself contains a relatively high level of noise, 

affecting the convergence properties of the nonlinear PLS algorithms. It should be noted that 

the number of subgroups applied in the cross validation for the inner PLS is plotted on a 

logarithmic scale in Figure 4.49. 
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4.5 Discussion 

The results obtained from modelling the ten data sets by applying the standard criteria are 

summarised in Table 33. The details of the analysis for the remaining seven data sets are 

presented in Appendix Al. In Table 33, the results are evaluated by assigning prediction 

performance into three categories; BEST, SATISFACTORY and FAIL. The RMSEP value that gives 

the best or equal best RMSEP value is denoted BEST. If the RMSEP is better than the reference 

method of linear PLS, and within 20% of the best model, the method is denoted SATISFACTORY, 

otherwise it is denoted FAIL. 

Data sets RVPLS SPLS EBPLS NPLS SDPLS 

1 Polymer Density (87 x 301) SATISFACTORY FAIL FAIL BEST SATISFACTORY 

2 Alkylation Product (45 x 401) FAIL FAIL SATISFACTORY BEST FAIL 

3 Melt Index I (300 x 87) FAIL FAIL SATISFACTORY BEST FAIL 

4 Melt Index II (454 x 28) FAIL FAIL BEST BEST SATISFACTORY 

5 Melt Index III (50 x 15) FAIL FAIL FAIL BEST FAIL 

6 Xylene Products (196 x 30) FAIL FAIL SATISFACTORY BEST SATISFACTORY 

7 Moisture in Fibre (60 x 700) BEST FAIL FAIL SATISFACTORY SATISFACTORY 

8 Rise Time (99 x 12) SATISFACTORY FAIL BEST BEST SATISFACTORY 

9 Simulation I (700 x 4) SATISFACTORY FAIL SATISFACTORY BEST SATISFACTORY 

10 Simulation II (various) SATISFACTORY FAIL FAIL SATISFACTORY SATISFACTORY 

Total best: 10280 

Total satisfactory: 40427 

Total fail: 5 10 403 

Table 33. Summary of the prediction performance per method. 

As can be seen from Table 33, Nested PLS never fails, and is the best method for 8 of the 10 

data sets. As the study represents a comprehensive range of different data sets with diverse 

characteristics, it is believed that these results demonstrate that Nested PLS can be applied as a 

universal nonlinear empirical regression technique. However, as the investigation of the effect 

of the termination criteria shows, Nested PLS has a tendency to overfit for underdetermined 

data sets. Of particular note, for data sets that exhibit weak nonlinearity, the first weight vector 

obtained using Nested PLS resembles the regression vector of linear PLS. 
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For Framework 1, Nested PLS is a balance between EBPLS and SDPLS. EBPLS is the most 

powerful method when it comes to convergence, but has a tendency to overfit the data due to 

either underdetermined data sets or multicollinearity. SDPLS, on the other hand, shows the 

weakest convergence properties as no covariance information is used to construct the updating 

vector, but has the least tendency to overfit. In Nested PLS, these two issues, convergence and 

overfitting, are addressed by the inner PLS loop whereby cross validation is applied to select the 

number of latent variables. If only one latent variable is selected the solution will be as for 

SDPLS. If all latent variables are applied the solution will be that of EBPLS. For any other 

number of latent variables selected, the solution will be between SDPLS and EBPLS. 

After Nested PLS, the second best overall method was SDPLS. It failed for three of the data 

sets, due to convergence problems. Convergence may be improved through a better choice of 

the starting vector, but an appropriate choice is not easily identified. 

The method of EBPLS is generally a good choice when there are more observations than 

variables and low correlation exits between the variables. However, the method failed to 

appropriately converge for one of the overdetermined data sets (Table 33: 5. Melt Index III). 

Furthermore, an increased ratio between the number of observations and number of variables 

decreases the effect of high level of collinearity, due to an improved condition number for the 

pseudoinverse (Almoy, 1996). For undetermined data sets, the EBPLS method generally failed, 

one exception was the second data set, the Alkylation Product data. The reason why it worked 

satisfactory on this data set is not clear, but it could be due to the low noise associated with the 

data set. For overdetermined data sets, EBPLS will work well depending on the ratio of 

observations to variables, the degree of collinearity and the level of noise in the data set. High 

dimensionality (m » n), low level of collinearity and low signal to noise level improves the 

probability of achieving good models when applying EBPLS. 

The RVPLS and SPLS methods of Framework 2 are often unsuccessful. In particular, the 

reference method of PLS performed better than SPLS for all ten data sets. For highly 

multicollinear data sets, RVPLS can perform satisfactorily, and even achieve the best result, e. g. 

data set 7 Table 33. RVPLS is not a universal method, but can generally be used to estimate a 

good starting vector for Nested PLS, especially for highly multicollinear data, such as spectral 

data. 
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Of the five methods Nested PLS has the greatest potential to become a universal nonlinear 

modelling technique. Detailed examination of the three data sets in Chapter 4, demonstrated that 

some caution must be exercised when applying Nested PLS as a universal nonlinear modelling 

technique: 

" From the study it was observed that the results are dependent on the starting vector. 

However generally good convergence was obtained for Nested PLS. If necessary a 

restarting procedure could be applied, i. e. when the solution is believed to be poor 

another starting vector can be applied to check if a better result is obtained. 

" The termination criteria may influence prediction performance. However, the standard 

termination criteria generally performed well, observed from the examination of the 

impact of the termination criteria. However, to use the lowest cross validation or test set 

error, for the selection of the number of iterations, may improve the convergence. 

Generally, a small number of iterations is recommended for Nested PLS. Dampening is 

not universally recommended, as convergence may be poorer. Instead internal cross 

validation can be used to control convergence. However, this increases the computation 

costs. An alternative to cross validation is to use a test set to terminate the algorithm and 

to determine the optimal number of cross validations in the inner PLS. 

" The evaluation of the number of subgroups in cross validation of the inner PLS indicated 

that 5 to 9 subgroups is desirable. This is consistent with the number (4 to 11) suggested 

by Wold (1978) for linear PLS. 
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CHAPTER 5 

CONCLUSIONS AND FUTURE WORK 

5.1 Summary 

The aim of the Thesis was to contribute to the field of nonlinear PLS which is not a well- 

established area. In particular, a nonlinear PLS algorithm that provides good universal 

performance was sought. Furthermore, the algorithm should be related to linear PLS, in 

structure and performance. Consequently, the issue of multicollinearity, underdetermined or 

overdetermined data sets, variables not measured, various signal to noise levels and all types of 

nonlinearities should all be appropriately handled by the resulting algorithm. Although several 

nonlinear PLS algorithms have been proposed, no particular algorithm has been shown to be 

generally applicable for a wide range of data sets. The literature survey confirmed this statement 

with very few applications having been published where nonlinear PLS algorithms have been 

applied. 

The work presented comprises two new methods for the determination of the weight vector for 

nonlinear PLS. Both were developed from existing frameworks. Identifying an appropriate 

weight vector is a key issue in nonlinear PLS. Also of importance is the need to define an 

appropriate nonlinear mapping that reflects the underlying nonlinear structure inherent within 

the data. The nonlinear mapping is strongly influenced by the choice of weight vector. 

However, the method for determining the weight vector is independent of the choice of 

nonlinear mapping, hence any nonlinear function can be used. Thus, the focus was on the 

calculation of the weight vector. The nonlinear mapping selected for the comparison of the 

performance of these methods was a local linear kernel regression, which combines satisfactory 

performance with ease of calculation. Nevertheless, local linear kernel regression may give an 

inappropriate mapping at the extremes of the data cluster, increasingly so if the underlying 

function is not properly identified. 

The first method proposed, Nested PLS (Li et al., 2001), belongs to the same framework as the 

error based weight updating procedure (EBPLS) of Baffi et al. (1999a, b), and Steepest Descent 

PLS (SDPLS) of Wold et al. (1989). These methods are all variations of nonlinear least 

squares, where the weight vector is optimised in a weight updating scheme. This is achieved by 

minimising the sum-of-squared errors, i. e. minimising the expression: 
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eTe=(u-ü)T(u-ü), (5.1) 

where u= Yq and ü=f (Xw). These nonlinear PLS algorithms minimize the sum-of-squared 

errors sequentially, with the Y-loading vector, q, being updated in each iteration through least 

squares regression on ü. The major benefit of this approach is that it directly minimizes the error 

associated with the inner mapping (u - ü). Consequently, the error originating from fitting the 

nonlinear function, ü=f (t), for the inner mapping is decreased. The main drawback with these 

methods are those relating to nonlinear least squares, i. e. the problems of convergence versus 

local minima, singularity in the matrix inversion and potential overfitting. 

Equation (5.1) is minimised differently for each of the methodologies in terms of solving the 

first order Taylor series estimation, thus the issues associated with nonlinear least squares are 

handled differently. In particular, SDPLS uses PLS applied to one latent variable, EBPLS uses 

PLS applied to all the latent variables, whilst NPLS uses PLS where the number of latent 

variables is selected from internal cross validation. Consequently, the difference in performance 

is from the different methodology used to solve Equation (5.1). PLS has shown its value for a 

range of applications, including multicollinear and underdetermined data sets, consequently the 

inner PLS loop of Nested PLS expands the capability to the nonlinear case. 

The second method introduced, Reciprocal Variance PLS (RVPLS), belongs to the second 

framework that includes Spline PLS (SPLS) (Wold, 1992). In this paper, Wold extended the 

linear covariance criterion to the nonlinear situation (Section 2.3.4.3). This criterion does not 

focus on minimizing the error between u and ü (Equation, 5.1), but on simultaneously 

explaining the variance in X and Y. Consequently, the risk of introducing error when fitting the 

nonlinear function is greater than for the approach described in the optimisation framework 

common to SDPLS, EBPLS and NPLS. 

In the proposed RVPLS approach (Hassel et al., 2002), each weight vector is independently 

calculated in a similar manner to the covariance criterion. Thus, multicollinearity and 

underdetermined data set is of no concern, due to the individual calculation of the weight vector. 

However, as the reciprocal variance criterion focuses on explaining the response variance, the 

fitting error associated with the nonlinear mapping is reduced compared with SPLS. In 

particular, the approach will be successful for data sets that exhibit a relationship between the 

predictor and the response variables without interference from other constituents, as for some 

spectral data sets without overlapping bands or data sets exhibiting a high degree of 
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multicollinearity. Consequently, RVPLS is more applicable to FT-IR data sets than to complex 

NIR data sets that have overlapping bands. 

To assess the effectiveness of the nonlinear PLS algorithms, ten data sets were selected to 

address the specific issues concerned with the two frameworks. In general, the Error Based PLS 

algorithm failed for underdetermined or multicollinear data sets, whilst the Steepest Descent 

PLS algorithm had convergence problems. The approach of Nested PLS enhances these two 

methods by finding a solution that lies between these two extremes. The problem of 

multicollinearity is prevented, and the problems of overfitting and convergence in local minima 

are significantly reduced. 

As Nested PLS never completely failed for any of the ten data sets and gave either the best 

RMSEP value or a RMSEP value close to the best model, the method could be considered a 

universal nonlinear PLS algorithm. Still, caution must be shown to ensure global convergence 

by selecting an appropriate starting vector and to prevent overfitting by controlling the 

termination 

For the second framework, RVPLS performs better than SPLS, but performance is highly 

dependent on the type of data modelled. The RVPLS method is only applicable when a simple 

relationship exists between the predictor and the response variables. For example, the RVPLS 

gives the best model for data set number seven, Table 33, where the response variables 

represent the moisture content in acrylonitrile-vinyl acetate polymer (Blanco, et al. 2000). This 

is a consequence of little interference between the water band (approx. wavelength 1940 nm) 

and other constituents in the NIR spectrum. Explicitly, the band at 1940 nm is an O-H stretching 

and bending combination band (Osborne and Fearn, 1988). Finally, wider application of the 

reciprocal variance approach could be to initiate the Nested PLS algorithm, by estimating an 

appropriate starting vector. 

To conclude, Nested PLS outperformed the other algorithms examined in terms of prediction 

error (RMSEP), with the resulting weight vector resembling the regression vector obtained 

using linear PLS, when the underlying nonlinearity was weak. Thus, the aim of a universal 

nonlinear PLS algorithm appears to have been achieved. 
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5.2 Future Work 

The Thesis focuses on two frameworks aligned with the original PLS algorithm of Wold et al. 

(1983), thus examination of alternative schemes has not been included. In particular, the Nested 

PLS algorithm proposed has been shown to be a wide-ranging nonlinear regression approach 

that enhances the performance of the methods on which it was based. However, a number of 

issues associated with the NPLS and the RVPLS approach give reason for further investigation. 

" Applying the RVPLS method to construct a good starting vector showed promise for 

NPLS and would be a specific approach for multicollinear data. Other methods for 

finding an appropriate starting vector could be investigated, such as nonlinear PCR, e. g. 

using EBPLS or NPLS on a reduced rank matrix T= XW. The resulting regression 

coefficient, b, could then be used to construct a starting vector, i. e. wo = Wb. 

" The stopping criterion in NPLS could be improved, e. g. internal cross validation to 

supervise the convergence or the use of a test set. Furthermore, the effect of applying 

different types of cross validation for the inner PLS could be investigated. 

" For NPLS, the multicollinearity problem relating to the first order Taylor series 

approximation was addressed by applying linear PLS in the inner loop, and where the 

number of latent variables was chosen using cross validation. This solution seems 

intuitive due to the association between the NPLS approach and ordinary linear PLS. 

However, a competitive linear regression method that deals with the problem of 

multicollinearity is Ridge Regression (Levenberg-Marquardt), or simply using linear 

PCR to solve the Taylor series expansion. Finally, the unified approach of Continuum 

Regression (Stone and Brooks, 1990) should be examined. 

" The method of Reciprocal Variance Partial Least Squares did not have the universal 

appeal of NPLS, but could be applicable for spectral data set where the predictor variable 

is not influenced by overlapping bands. However, modifying the algorithm to 

simultaneously model a number of latent variables, by including it in a neural network 

algorithm is possible. The method is similar to a neural network as several "nodes" or 

latent variables are modelled simultaneously, but the RVPLS algorithm does not optimize 

the error directly hence the level of overfitting would be reduced. 
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" If the residuals are correlated when applying RVPLS, the performance of the algorithm is 

reduced. One idea is to include orthogonal signal correction (Wold et al., 1998 and Fearn, 

2000) in the algorithm to remove unwanted variance that could influence the method of 

determining the weight vector. 

" This Thesis has been restricted to the current forms of the Nonlinear PLS algorithms, 

where the residuals of the response variables are modelled sequentially for each latent 

variable. Alternative approaches exist, e. g. to compress the original X matrix to its most 

relevant orthogonal factors, T, based on the response variables and use these compressed 

variables, T, as regressors for the responses, Y. This approach is aligned with linear PLS, 

since linear regression on the final orthogonal score matrix T (m x A) give identical 

results to sequential regression per score vector, i. e. t f, jE {1 " --. 41 as in Algorithm 2.2. 

A central ambition ought to be that any alternative nonlinear PLS algorithm proposed 

should not deviate considerably from the idea defined in the original PLS algorithm. 
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APPENDICES 

Al. Modelling Results from Data Sets 4 to 10 

In this section, the results from the supplementary data set are presented. The data sets are 

modelled using the standard criteria described in Section 4.1. Examination of these data sets is 

less comprehensive than for the three first data sets, discussed in Chapter 4. The reference 

methods are linear PLS and BPLS. 

ALL Data Set 4, Melt Index II (NMR data) 

This section examines Nuclear Magnetic Resonance (NMR) data collected on a polypropylene 

plant situated in Belgium. The data set consists of 772 observations and 7 variables, where six 

variables are fitted parameters from the NMR curve, and the seventh is a categorical variable 

representing catalyst type. The cross-terms of the fitted parameters were added so that the total 

number of variables was 28. From discussions with the owner of this data set, 14 observations 

or 1.8 % of the observations were removed as outliers. The calibration data set consists of 454 

observations and the validation set comprises 304 observations, thus the data set is 

overdetermined. The response variable is Melt Index. The modelling results are presented in 

Table 34, while the t-u plot for the first latent variable and the corresponding weight vector is 

plotted in Figure Al. 

Method No. of latent % Variance % Variance 
applied variables captured of X captured of Y RMSEC RMSEP 

A: RVPLS 5 51.63 79.84 9.56 10.05 

B: SPLS 5 52.74 81.66 8.70 9.84 

C: EBPLS 1 11.34 90.92 4.30 5.13 

D: NPLS 2 15.34 90.73 4.40 5.10 

E: SDPLS 3 21.38 88.70 5.36 6.08 

F: PLS 10 90.41 98.65 5.50 7.06 

G: BPLS 9 11.58 89.64 4.92 6.08 

Table 34. Comparison of the methods for the NMR data set. 

The number of observations is much larger than the number of variables, i. e. EBPLS is expected 

to perform well. EBPLS is the best model together with NPLS. The result from SDPLS, that 

uses the same optimization framework, is somewhat poorer. Examining the weights WNPLS 

obtained from NPLS shown in Figure Al, it appears that the structure is a compromise between 



the weight vectors, WE-. HP, S and WSDPLS obtained from applying EBPLS and SDPLS, 

respectively. Since the structure of the weight vectors for EBPLS, NPLS and SDPLS is similar 

the resulting t-u plots are comparable, where the structure for the t-u plot of the first latent 

variable obtained for NPLS is a compromise between the two t-u plots from applying EBPLS 

and SDPLS. 

The second framework that includes SPLS and RVPLS, does not produce satisfactory results 

and the performance from applying the two methods is similar. The reason why these two 

methods do not perform well is observed from the first t-u plot in Figure Al. For both RVPLS 

and SPLS, the nonlinear relationship is not properly identified, hence fitting a nonlinear curve to 

the data introduces an error that is not recovered by including more latent variables. 
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Figure Al. t1-u1 plot and plot of corresponding weight vector for the NMR data 

A1.2. Data Set 5, Melt Index III (Pilot data). 

The data set is generated from a polyolefin pilot plant. The predictor variables are different 

process variables relating to pressures, temperatures and concentrations. The data set contains 4 

response variables, Y (67 x 4), and 15 predictor variables, X (67 x 15). Since it had only 67 

observations, the calibration set was chosen to include 50 observations and the validation set 17 

observations. Both the X and Y variables were autoscaled prior to the analysis. The response 

variables represent different Melt Index values. The fact that the responses are correlated makes 

it reasonable to form a multivariate model and not to model the responses separately. 
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Method No. of latent % Variance % Variance 
applied variables captured of X captured of Y 

(A) 

A: RVPLS 7 64.17 72.21 0.3177 0.5027 

5 47.62 69.56 0.4702 0.4428 

B: SPLS 5 48.97 69.28 

ti 
(B) 

1 11.93 40.56 0.5205 0.4422 

C: EBPIS 1 8.86 70.61 

2 

.; 4 t 

11 1 

II 

D: NPLS 2 20.29 72.28 0.3338 0.4346 

2 20.29 72.28 0.3669 0.3412 

E: SDPLS 1 10.03 59.55 0.4802 0.6244 

I 10.03 59.55 0.4404 0.4621 
Ii. Ii: II.. 

F: PLS 5 68.93 83.36 0.4486 0.4630 
, zs n 

5 68.93 83.36 0.4806 0.4296 
ý, ý 

Table 35. Comparison between the methods for the pilot data 
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In terms of increasing RMSEP value, the order of the methods is, NPLS, PLS, EBPLS, RVPLS, 

SPLS, SDPLS. Of particular note, SDPLS gives the worst model, due to termination in a local 

minimum. In Figure A2 (D) it can be observed why NPLS gives the best model, i. e. it identifies 

the underlying nonlinearity of the data better than the other methods. The nonlinear function 

shows a smooth curve, whilst the other methods have non-regular shapes. As a result, only 

NPLS performs better than the reference method of PLS. The methods are not capable of 

modelling the error introduced by the nonlinear function as a result of including more latent 

variables to the models. Thus, it is vital that the underlying structure is approximated in the best 

possible way. Figure A2. The weight vectors of the first latent variable show some degree of 

similarity, with weights obtained from EBPLS, NPLS and SDPLS being most similar. 

1 

0 

. 1L 
0 

(b = PLS(XY, 10)) 

\1 
10 15 

Figure A3. The regression vector from PLS including 10 latent variables. 

The regression vector obtained from liner PLS when applying ten latent variables, Figure A3, is 

compared with the weight vectors obtained for the first latent variables, Figure A2. The 

regression vector from PLS is similar to the weight vectors obtained for the first latent variables 

when applying EBPLS and NPLS. Figure A2. 

AI. 3. Data Set 6, Xylene Products 

The data set is a design study where Ultraviolet (UV) spectroscopy data was collected for three 

different isomers of xylene (ortho, meta, and para xylene). These three responses were modelled 

together. The calibration data set contained 196 observations and the validation data set 

included 147 observations. The number of variables was 30, i. e. an overdetermined system. The 

results are shown in Table 36, where the results for the three isomers of xylene are separated. 

The number of observations is again much higher than the number of variables. Here it is 

interesting to note that NPLS, the best model measured by RMSEP, shows a nonlinear t-u 

relationship in plot (D), while for EBPLS, the second best model, the relationship appears linear 

in plot (C), Figure A4. Again, the inner mapping in the first t-u plot reflects the models 

prediction ability, with NPLS and EBPLS giving the two best models. Furthermore, the weight 

vector Ws�P, s is close to Wsp, s and they are again close to the starting vector. This indicates 

that the SDPLS has again terminated in a local minimum, in the vicinity of the starting vector. 
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Method No. of latent % Variance % Variance 
applied variables captured of X captured of Y 

A: RVPLS 

B: SPLS 

C: EBPLS 

D: NPLS 

E: SDPLS 

F: PLS 

10 99.68 92.79 
86 

99.29 91.80 

10 99.76 91.31 

4 98.88 

8 87.63 
11 

8 87.63 

4 92.45 

3 

S 

8 

19 

17 

84.77 

98.27 

99.46 

99.99 

99.99 

RMSEC RMSEP 

0.0010 
II(II! II; ) 

0.0010 

0.0012 

o. oo lo 
I 1I 01: 

0.0009 

0.0009 

90.23 0.0006 0.0009 

94.80 0.0008 0.0008 

94.80 0.0002 0.0004 

94.56 0.0008 0.0007 
,i; ,n ii uiin Il llilUti 
94.09 0.0002 0.0003 

94.15 0.0008 0.0009 

94.67 

99.65 

99.65 

Table 36. Comparison between the methods for the xylene data 
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The difference in the weight vector of WNPLs and WESPLS is notable, with focus on different 

variables. Consequently, the inner mappings of the t-u plots (C and D) Figure A4, are different. 
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A1.4. Data Set 7, Moisture in Fibre 

A diffuse reflectance near infrared data set generated by Blanco et al. (2000) was studied. The 

calibration set contained 60 observations and the validation data set, 17 samples. The number 

of variables was 700. Thus, the data set was underdetermined, i. e. the number of observation 

was less than the number of variables. The response variables represent the moisture content in 

acrylonitrile-vinyl acetate polymer. 

Method No. of latent % Variance % Variance 

applied variables captured of X captured of Y 

1N 
.#f' 

' 

RMSEP 

A: RVPI. S 8 99.12 95.19 0.0690 0.0779 

B: SPI_S I 17.02 90.478 0.1368 0.0966 

C: EBPI. S 3 98.08 99.99 0.000007 0.2949 

D: NPI, S 3 50.74 94.68 0.0773 0.0807 

E: SDPLS 4 98.73 94.11 0.0845 0.0791 

F: PIS 5 99.99 99.48 0.1034 0.0829 

G: BPLS 3 89.29 94.31 0.1262 0.0816 

Table 37. Comparison between the methods for the pH data 
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In general, the nonlinear PLS methods investigated resulted in a large difference between the 

structure of the obtained weight vectors for this particular data set, Figure A5. The level of 

nonlinearity was either small or insignificant for the different methods for the first pair of latent 

variables as seen from the t-u plots in Figure A5 (A - E). The best REMSEP value is obtained 

by applying RVPLS, Table 37. The reason why RVPLS method gives a better model for this 

data set is due to the strong water band at wavelength 1940 (variable 440) in the NIR spectrum. 

More specifically, since the water molecules are occurring freely in the polymer, the main 

interactions between the water molecules will be hydrogen bonding which makes a fairly simple 

spectral signature with an uncomplicated relationship with the concentration, due to minor 

influence from overlapping bands of other constituents. This makes the data set closer to the 

starting point in terms of the theoretical assumptions used to develop the RVPLS method, i. e. 

independent measurement error. The simple weight vector WRVPLS in Figure A5 confirms this, 

as the focus is on the known band generated by water. 

The prediction results using SDPLS and NPLS follow closely, and are better than the reference 

method of linear PLS. SPLS displays the greatest nonlinear behaviour in the t-u plot, but the 

prediction result is considerable less than that of linear PLS. The EBPLS fails. This is confirmed 

by the noisy weight vector WEBPLS in Figure A5, and by the large difference between the 

RMSEC and RMSEP values. This was a result of the data set being both multicollinear and 

underdetermined. 

A1.5. Data Set 8, Rise Time of Servo Motor 

This is a data set generated by Karl Ulrich, Massachusetts Institute of Technology (1986). It is 

chosen because of its high nonlinearity. It has been used to model the rise time of a servomotor 

in terms of two (continuous) gain settings and two (discrete) choices of mechanical linkages. 

The discrete variables both have 5 categories, consequently the data set consists of 12 predictor 

variables (10 category variables and two gains). The data set consisted of 165 observations, 

which were divided randomly into 99 observations for the calibration set and 66 observations 

for the validation data set. 

Again, the number of observations is much larger than the number of variables, consequently 

NPLS and EBPLS give the best prediction error, in terms of RMSEP, followed by SDPLS and 

then RVPLS which has higher RMSEP values. These four methods produce satisfactory models 

that are similar in structure. The SPLS model has a RMSEP value twice as high as the RMSEP 

value obtained by the RVPLS model. This is reflected in the t-u plot in Figure A6(B). The 

structures of the weight vectors for the first latent variable are similar, with the weight vector 
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WSPLS being the most different, Figure A6. Consequently, the t-u plots display similar nonlinear 

structure, with the t-u plot in Figure A6(B) being the most different. This is due to the SPLS 

method focus on explaining both the X and V variance, as observed from the high X variance 
included in the SPLS model. Due to the high nonlinearity, linear PLS gives the worst model. 

Method No. of latent % Variance % Variance 
applied variables captured of X captured of Y 

RMSEC RMSEP 

A: RVPLS I 6.87 70.35 0.4295 0.4455 

B: SPLS 5 30.42 71.62 0.4110 0.9034 

C: EBPLS 2 10.99 87.55 0.1803 0.3575 

D: NPLS 2 12.12 86.28 0.1987 0.3516 

E: SDPLS 2 12.70 89.27 0.1554 0.4193 

i il "I 
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Table 38. Comparison between the methods for the servo data 
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A1.6. Data Set 9, Simulation I (pH). 

This data set was used in the paper by Baffi et al. (1999b. The data is from a dynamic 

simulation of a pH process described by Henson and Seborg (1994). A strong acid (HNO3) is 

neutralised by a strong base (NaOH) in the presence of a buffer (NaHCO3). The data set is 

described in more detail by Baffi et al. (1999b). It consists of 4 predictor variables, representing 

different flows, having 999 observations. The calibration data set has 700 observations and the 

validation data set, 299 observations. The single response variable is pH. 

Method No. of latent % Variance % Variance 
applied variables captured of X captured of Y RMSEC RMSEP 

A: RVPLS 4 100.00 95.78 0.0421 0.0429 

B: SPLS 4 100.00 93.16 0.0683 0.0808 

C: EBPLS 1 35.23 97.33 0.0267 0.0306 

D: NPLS 1 35.24 97.53 0.0247 0.0277 

E: SDPLS 1 35.25 97.32 0.0268 0.0312 

F: PLS 1 59.21 83.48 0.2552 0.2581 

G: BPLS 2 31.12 87.86 0.1213 0.1256 

Table 39. Comparison between methods on pH data 

For this data set, where the ratio between the number of observations and the number of 

variables is large, the methods of Framework 1, EBPLS, NPLS and SDPLS exhibit similar 

performance. In addition, signal to noise is relatively high, decreasing the risk of falling into a 

local minimum. It is interesting to look at the weight vector for these three methods. The weight 

vector of NPLS lies between the weight vector of EBPLS and SDPLS, which are both extremes 

of the NPLS method as described in Section 3.2.4. 

SPLS performs poorest of the nonlinear PLS methods, Table 39. SPLS does not focus on 

maximizing the variance explained in Y as the other approaches, but tries simultaneously to 

maximize the variance explained in both X and Y. The RVPLS method focuses on explaining 

the variance in Y, and identifies the nonlinear relationship better than SPLS that uses the same 

framework, Figure A7. 
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A1.7. Data Set 10, Simulation II 

In this section, the five nonlinear PLS approaches described in Table 4 were compared using 

simulated spectral data. This simulation favours the reciprocal variance criterion, since only one 

peak in the spectrum is related to the response values, Chapter 3.3. Thus the method is expected 

to perform well on this simulated data. The spectral data set is constructed from four peaks, 

where the second peak, positioned at variable number 100, is related to the single response 

through a nonlinear function, Figure A8. 

Every spectrum of the simulation data set was constructed as a sum of the four peaks shown in 

Figure A8. To make the simulated data set more realistic, different types of noise and effects 

were added. The noise included both multiplicative and additive forms, and the effects 

examined included bandwidth position, bandwidth shift and nonlinear baseline effects. In Figure 

A9, a selection of 16 spectra having medium noise is plotted to illustrate the level of noise 

added. The response was only given additive noise. 

- (B) 

fý 
ý 
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Figure A8. The four peaks used in the simulation 
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Figure A9. Typical simulation data after medium noise was applied. 

400 

The effect of the ratio of the number of observations to the number of variables and the impact 

of the noise level was investigated for the five approaches, RVPLS, SPLS, EBPLS, NPLS and 

SDPLS, in terms of the estimation of the weight vector. The results from the nine simulations 

are reported in Table 40 in terms of the Root Mean Squared Error of Prediction (RMSI: P) 

calculated from an average of ten simulated models. The best RMSEP value for each simulation 

is identified in bold. 
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Method 
applied 

100 observations 
Noise 400 variable 

400 observations 800 observations 
400 variable 400 variable 

A: RVPLS 0.2303 ± 0.0368 0.2210 ± 0.0102 0.2264 ± 0.0122 

B: SPLS high 0.3769 ± 0.0623 0.3155 ± 0.0278 0.3272: d-- 0.0725 

C: EBPLS noise 1.0119 ± 0.9351 3.2237 ± 4.4650 0.5544 ± 0.0790 

D: NPLS 0.2553 ± 0.0736 0.2837 ± 0.0902 0.3085 ± 0.0687 

E: SDPLS 0.2519 f 0.0424 0.2734 ± 0.0761 0.2902 ± 0.0704 

A: RVPLS 0.0991 ± 0.0128 0.0941 ± 0.0065 0.0944: E 0.0040 

B: SPLS medium 0.3040 f 0.1432 0.3176 f 0.1622 0.1915 f 0.0097 

C: EBPLS noise 0.9102 ± 0.7506 2.2416 ± 2.4421 0.4772 ± 0.0377 

D: NPLS 0.0821 ± 0.0182 0.0766 ± 0.0071 0.1524 ± 0.1192 

E: SDPLS 0.0972 ± 0.0178 0.0858 ± 0.0103 0.1173 ± 0.0791 

A: RVPLS 0.0449 ± 0.0059 0.0484: b 0.0033 0.0474 ± 0.0028 

B: SPLS low 0.2939 f 0.1643 0.2507 f 0.1796 0.2009 f 0.1560 

C: EBPLS noise 0.7221 ± 0.2864 20.7395 ± 60.5734 0.2372 ± 0.2212 

D: NPLS 0.0320 ± 0.0057 0.0336 f 0.0016 0.0596 f 0.0826 

E: SDPLS 0.0636: h 0.0164 0.0522 t 0.0029 0.0812 ± 0.0752 
Table 40. Result from the simple spectroscopy simulation 

The Reciprocal Variance PLS (RVPLS), is best when the noise level is high, and is always 

better than Spline PLS (Wold, 1992) that uses the same framework. Nested PLS shows the best 

results for lower levels of noise, and is better than Steepest Descent PLS (Wold et al., 1989) and 

the Error Based PLS (Baffi et al., 1999a, b). EBPLS is unsuccessful for this simulation due to 

the high level of multicollinearity, even when there are twice as many observations compared 

with the number of variables, Table 40. 

The first latent variable is of particular interest. This is the most important of the latent variables 

and says much about the performance of the given method. Generally, the algorithm explaining 

most of the response variance for the first latent variable will give the best model. Therefore it is 

the first t-u plot that is shown for the five criteria, with the corresponding weight vector plotted 

on the right hand side. The discussion is mostly based on Figure AlO, where the simulation is 

conducted by applying the same number of observations as variables and applying medium 

noise. Recalling that the calibration data is plotted as circles (o), while the validation data is 

plotted as crosses H. 

From Figure AIO, it is clear that RVPLS (A), NPLS (D) and SDPLS (E) identify the nonlinear 

relationship better than the two other methods. In particular, EBPLS fails due to the 
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multicollinearity in the data set. The three methods, RVPLS (A), NPLS (D) and SDPLS (E) 

identify weight vectors that are similar. These are also the best models in terms of RMSEP. 

SDPLS is slightly worse than NPLS but shows less noisy characteristics. It is believed to be 

caused by the algorithm being more easily terminated at a local minimum closer to the starting 

vector. Increasing the maximum number of iterations does not improve the prediction ability of 

SDPLS. 
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Figure A10. Ti-U, plot and plot of corresponding the weight vector for simulation data. 

For low signal to noise, RVPLS appears to be the best choice for this particular simulation. In 

this case, SDPLS does better than NPLS. RVPLS shows increased performance with increasing 

number of observations. EBPLS does worst when the number of observations matches the 

number of variables, probably due to the construction of the pseudoinverse (using the standard 

MATLAB function pinv). For low or medium noise, NPLS appears to be the best choice. 
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A2. MATLAB functions 

A2.1. Local Linear Kernel Regression I 
function f= KernRegl(z, x, y, h) 

siz = length(z): 

h2 = mean(h). ^2: 

lbr j=I: siz, 

inner = Ix-z(j)I: 

expr = Iexp(-((inner. /h). ̂ 2)/2)]: 

s0 = sum(expr): 

temp = linner. *exprJ: 

sl = sum(temp): 

s2 = sum(inner. *temp): 

denom =( s2. *s0-s I 
. 
^2 ): 

nom = I(s2-s I . 
*inner). *exprl: 

f(j) = Inom. /denomJ. 

cnd 

Algorithm Al. The function, KernReg 1: Local linear kernel regression. 
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A2.2. Local Linear Kernel Regression Bandwidth (loess) 
function h= hvariable(x, y): 

x=x- mean(x): y=y- mean(y): n= length(x): 

sgmh = (median(abs(x-median(x)))/0.6745): 

h =((4/(3*n))^0.2)*sgmh: 

sgmreg = sigmaK(x. y): 

[temp l, mderl J= Kreg(x. I x. yj, h): 

mder2 = gradient(mderl, x): 

a= find(isnan(mder2)=I ): 

mder2(a) = 0: mder2(a) = mean(mder2): temp2 = mean(mder2. ̂ 2): 

hopt = (sgmreg^2/(2*sgrt(pi)*n*temp2)]^0.2: 

1) 111L. op linr. il t0 r hlup- in) ha I'd ý% id Ih ot Iiu\ý mann and Aiialim 1997) 

kth = minQ tloor(n/10) 5J): 

tbr hloop =I : n. 

if hloop-kth >0 

ts I =abs( x( h loop. I )-x( hloop-kth, 1)). 

else 

tsl=le+10: 

end 

it' hloop + kth <= n 

ts2 = abs(x(hloop. I )-x(hloop+kth. 1)): 

else 

ts2 = Ie+10: 

end 

hdistance(hloop, I)= min(tsl, ts2): 

end 

hdistance = hdistance/nortn(hdistance): 

temp3 = exp(mean(Iog(hdistance))): 

h= hopt*hdistance/temp3: 

Algorithm A2. The function, hvariable: The loess bandwidth. 

function sig = sigmaK(x, y) 

x= x(: )': y= y(: )': n= length(x): 

[xx xxs] = sort(x); yy = y(xxs): 

xxi = abs(xx(2: length(xx))-xx(l: (Iength(xx)-1))); 

xx2 = abs(xx(3: length(xx))-xx( I: (Iength(xx)-2))); 

a =xxl(2: length(xxl)). /xx2; 

b= xx l( I: (Iength(xx l)-I )). /xx2: 

a(xx2=0)=0.5: 
b(xx2 = 0) = 0.5: 

cc = sgrt(a. ̂ 2 + b. ̂ 2 + 1); 

eps = yy( I: (n-2)). * a. /cc + yy(3: n). * b. /cc - yy(2: (n-I )). /cc; 

sig = sgrt(sum(eps. ̂2)/(n-2)); 

Algorithm A3. The function, sigmaK: Used in the hvariable function, Algorithm A2. 
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A2.3. Local Linear Kernel Regression II 

function [f; dfdt] = KemReg(z, x, y, h) 

siz = length(z); 

h2 = mean(h). ̂2; 

for i=l: siz, 

inner = [x-zG)l; 

expr = [exp(-((inner. /h). ̂ 2)/2)]; 

s0 = sum(expr); 

temp = [inner. *expr]; 

s1= sum(temp); 

s2 = sum(inner. *temp); 

s3 = sum(inner. ̂2. *temp); 

denom = (s2. *s0-s 1. ̂2); 

nom = [(s2-sl. *inner). *expr]; 

f(j) = [nom. /denom]; 

r2 = rl'*y; 

temp = s2/h2 - s0; 

temp2 = s3/h2 - sl; 

el = [((temp2 - temp. *inner). *expr)/denom]; 

e2 = [(inner/h2). *rl]; 

e3 = [(((temp2 - s1)*s0 + s2*sl/h2 - 2*sl *temp)/(denom^2)). *(nom)]; 

dfdt(j) _ ([el+e2-e3j'*[y]) - r2*(sum(e1)+sum(e2}sum(e3)); 

end 

Algorithm A4. The function, KernReg2: Local linear kernel regression and la` derivative. 
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A2.4. Cubic Smoothing Splines 

function [pp, y] = CSplines(x, y, p) 

x= x(: ); y= y(: ); m= length(x); 

[x, ind] = sort(x); y= y(ind); 
dx = difl(x); dydx = diff(y). /dx= 

R= spdiags([dx(2: m- 1), 2*(dx(2: m-1)+dx(1: m-2)), dx(l: m-2)], [-1 0 1], m-2, m-2); 

odx = ones(m- 1,1). /dx; 

Qt = spdiags([odx(1: m-2), -(odx(2: m-1)+odx(1: m-2)), odx(2: m-1)], [0 12], m-2, m); 

u= (6*(1-p)*Qt*Qt'+p*R)\difi(dydx); 

y=y- (6*(1-p))*difl([0 ; diM[O; u; O]). /dx ; 0]); 

c3 = [0; p*u; 0]; 

c2 = diff(y). /dx-dx. *(2*c3(1: m-1,: )+c3(2: m,: )); 

coefs = reshape([(diff(c3 ). /dx)', 3 *c3 (1: m-1,: )', c2', y(1: m-1,: )'], (m-1), 4); 

[1, k] = size(coefs); 
breaks = reshape(x', 1,1+1); 

pp. form =pp'; 

pp. breaks = x'; 

pp. coefs = coefs; 

pp. pieces = 1; 

pp. order = k; 

pp. dim = 1; 

Algorithm A5. The function, CSplines: Cubic smoothing spline. 



A2.5. The General Nonlinear PLS Algorithm 
function [W. Q, T, U, P. U] =NLPLS(X, Y, Iv) 

forj=l: Iv. 

uY(:, I). 

w= cor(X. u). ̂ 9: 

w= w/norm(w): 
t=X*w: 
term = 0: best =Ie 10; count = O; stop = 0: 

while term==0, 

(I) 

(II) 

Gill 

count = count + I; 

16 (11011 HI 11 '11). 
q= Y'* u; 

q= q/norm(q): 
u= Y*q; 

error = u'*r; 
if best > error: 

best = error: 
wb=b: qb=q: üb=ü: 

stop = 0; 

else 
stop =stop +I: 

end 

ý% I\k(\ 

told = t; 

t= X*w: 

1yI lüi(il niiIluull: %k 

con = norm(t-told)/norm(t); 
if (count > 25 1 stop =21 con <l e-8), 

term = I; 

end 
end 
t=X*wb; 

u= Y*gb; 

p= X'*t; /t'*t; 

X=X-t*p'; 
Y=Y-üb*qb'; 
T(:, j) ° t; 
P(:. j)P; 

W(:, j) = wb; 
U(:, j) - u; 
Q(:, j) = qb; 
U(:, j) = Ob; 

end 

I he gcncral nonlinear PIS algorithm 
°0 Repeat until Iv latent variables are found 
00 I he Y-score u is selected to he the first variable 
00 First estimate the weight sector (starting sector) 
00 Normalize w to unit length 
0o The corresponding X-score vector t 
00 Initializing termination criteria 
"0 Repeat until con%ergence. i. e. term :0 
0,0 Count the no. of iterations per latent v ariable (tier termination t 
00 Fit a nonlinear function between t and u. estimate the derivative 
00 Estimate the loading sector q applying u 
0o Normalize q to unit length 
00 Estimate the next u vector using the linear conihination q 
°0 Calculate the squared error 
00 ('heck if the error is the smallest \et 
0° Retain the smallest error value 
00 Retain the best model 
0o Initialize the third termination criterion counter 
00 If not an improscd model is obtained 
°0 Increase the stop b% one 
°o I tso sequential worse models terminates the inner loop 
°o Estimate the weight sector bý the different methods. 
"o Keep the old score vector t to control the convergence 
00 Calculate the next X score vector 
110 Convergence if the successive relative score is less than Ic-H 
00 . or if the number of iteration is over 25 
00 . or il -2 successive iterations do not improv e the model 
00 hid if (convergence criteria) 
0o End while loop (convergence) 
"o Calculate the score vector t fin 
11 ° Calculate the score vector u I. or 1 

Calculate the loading \ector p for X 
Rank one reduction of the X matrix 
Rank one reduction ofthe l matrix 
Store the X scores t 
Store the X loadings p 

ý 
. ýý 

O 

�o 
° ý, 
"o Store the X %%eights w 
"0 Store the l scores u 
"O 

Store the Y loadings q 
°o Store the nonlinear mratihine ü 

"o Ind Otitii loop (Luen1 VariahlL 1 

Algorithm A6. The function, NLPLS: The general nonlinear PLS algorithm. 

function w= fw(X, w, t, u, ü, düdt, method), 

[xoow xcol]=size(X); 

it' method=l, Its l'I ti 

level = 1/(Imedian(abs(u-median(u)))]. ^2); 

fbr k=I : xcol, 

s= sign(t'*X(:, k)); 

temp = s. *X(:, k); 
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temp=[temp]. *[std(t(: ))/std(temp)] -mean(temp)+mean(t): 

G= f(temp, t, u): 

e= u-ü: 

w(k) = s/([median(abs(e-median(e)))]. ^2). 

end 

[a b] = find(abs(w)<Ievel); 

w(a) = 0; 

[a b] = find(abs(w)>=0); 

w(a) = sign(w(a)). *(abs(w(a))-level); 

w=w. /norm(w); 

clscit method ==2, ". til'I ti 

tor k=I: xcol. 

s= sign(t'*X(:, k)); 

temp = s. *X(:, k); 

temp=[templ. * [std(t( : ))/std(temp)]-mean(temp)+mean(t); 

ü= f(temp, t, u); 

w(k) = s. *cor(u, ü). *std(X(:, k)); 

end 

w=w. /norm(w); 

clseif method = 3, Itl'I ý 

error =u-ü; 

Z= düdt (:, ones( I, xcol)). *X; 

dw = pinv(Z'*Z) *Z'* error; 

w=w+ dw; 

w=w. /norm(w); 

"ýý'vl'I s elseif method= =4, 

error =u-ü; 

Z= düdt (:, ones( I, xcol)). *X; 

dw = PLScv(Z, error, rank(Z)); 

w=w+ dw; 

w=w. /norm(w); 

clscit method== 5, "o SUI'I S 

error=u - ü; 

Z= düdt (:, ones( I, xcol)). *X; 

dw = PLS(Z, error, I)-, 

w=w+dw; 



5-173 

w=w. /norm(w); 

else 

error( I Ili nlilhut) dOCI ilnl CvIýI); 

end 

Algorithm AT The function, fw: Calculation of the weight vector per method. 

function [ü, düdt] = f(temp, t, u); 

[x, tn] = sort(t); 

y= u(tn); 

It = hVariable(x, y); 

[ü düdt] = Kreg(temp, [x y], h); 

end 

Algorithm A8. The function, f: The nonlinear function and its derivative 
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