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Abstract  1 

Abstract 
 

Precisely timed paired stimulation protocols can change cortical and subcortical 

excitability. 

In the first study, induction of plastic changes in the long-latency stretch reflex (LLSR) 

by pairing non-invasive stimuli was attempted, at timings predicted to cause spike-

timing dependent plasticity (STDP) in the brainstem. LLSR in human elbow muscles 

depends on multiple pathways; one possible contributor is the reticulospinal tract. The 

stimuli used are known to activate reticulospinal pathways. In healthy human subjects, 

reflex responses in flexor muscles were recorded following extension perturbations at 

the elbow. Subjects were then fitted with a portable device which delivered auditory 

click stimuli, and electrical stimuli to biceps muscle. The LLSR was significantly 

enhanced or suppressed in the biceps muscle depending on the intervention protocol. 

No changes were observed in the unstimulated brachioradialis muscle. Although 

contributions from the spinal or cortical pathways cannot be excluded, the results were 

consistent with STDP in reticulospinal circuits. 

In the second study, baseline TMS responses were recorded from two intrinsic hand 

muscles, flexor digitorum superficialis (FDS) and extensor digitorum communis (EDC). 

In the first phase, paired associative stimulation (PAS) was delivered by pairing motor 

point stimulation of FDS or EDC with TMS. Responses were then remeasured. 

Increases were greatest in the hand muscles, smaller in FDS, and non-significant in 

EDC. In the second phase, intermittent theta-burst rapid-rate TMS was applied instead 

of PAS. In this case, all muscles showed similar increases in TMS responses. This study 

showed that potential plasticity in motor cortical output has a gradient: hand muscles > 

flexors > extensors. However, this was only seen in a protocol which requires integration 

of sensory input (PAS), and not when plasticity was induced purely by cortical 

stimulation (rapid rate TMS). 

In the third study, motor imagery was paired with TMS in healthy human subjects. They 

were asked to imagine wrist flexion or extension movement, while TMS was delivered 

to the motor cortex. Six different protocols were tested, but only flexor imagination with 

TMS and extensor imagination with TMS showed significant facilitation following the 

test. Flexor imagination with TMS increased motor evoked potential (MEP) in all four 



Abstract  2 

muscles with maximum changes towards flexor, whereas extensor imagination with 

TMS increased MEP only in extensor. 

Above changes in the cortical or subcortical excitability evoked by non-invasive 

stimulation protocols were consistent with long term potentiation and long-term 

depression mediated plastic changes.  
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1 Chapter I 

BACKGROUND 

1.1 General Introduction and Plasticity 
 

The human motor system is an integral component of the extremely complex and 

dynamic central nervous system, which ultimately regulates movement and motor 

behaviour. It had been a widely believed misconception until the late 19th century, that 

once developed and matured, interconnected neuronal circuits in the brain and spinal 

cord leave very little to no scope for further modification in adults. It took centuries 

before researchers could finally establish the idea that the brain exhibits more plasticity 

than people have ever predicted. In neuroscience, plasticity can be generally defined as 

the adaptation or remodelling of the nervous system in dynamic response to 

physiological, environmental or pathological changes. 

The brain’s ability to adapt and reorganize itself following lesions was experimented as 

far back as the early 19th century by a French physiologist Pierre Flourens, who closely 

observed brain’s capability of regaining function after partial lobectomy in birds. He 

believed that the brain’s redundancy mostly accounted for the restitution of functions 

after such lesions (Levin and Grafman, 2000). Fluorens’s concept of brain redundancy 

was later supported by other researchers (Lashley, 1929, Franz, 1912). Some scattered 

case reports and scientific studies in the 19th century and early 20th century described 

the potential ability of the brain’s adaptation and plastic changes in adverse 

physiological or pathological conditions. Later on, it has been documented by 

neurosurgeons and other scientists that the brain can effectively recover some of its 

functionality largely mediated by reorganization and adaptation in the events of a 

severely damaged hemisphere or even after hemispherectomy (Nielsen, 1946, Hillier, 

1954, Crockett and Estridge, 1951, Zollinger, 1935). Kennard (1938), from a series of 

experiments in primates, found that both infant and adult monkey regained function after 

brain lesions, but recovery became less and less obvious with increasing age and 

spasticity developed more severely in adult monkeys than their newborn counterparts 

(Kennard, 1940). Kennard also suggested that reorganization in the brain could involve 

a shift of functionality to a neighbouring area in the cortex (Kennard, 1942). It was 
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eventually becoming clearer to researchers that successive partial damages over a 

prolonged period caused much less loss of function than a sudden complete lesion since 

each partial damage allowed the brain to have sufficient time recovering some of its 

functions through reorganization after each event (Travis and Woolsey, 1956). 

Similarly, a slowly grown tumour causes less functional impairment than the damage 

caused by a similarly sized lesion from acute stroke (Anderson et al., 1990). However, 

the idea of brain plasticity was largely viewed as changes in the early phases of life 

during development, or in certain cases, as a means of redundancy and adaptability to 

compensate the loss of function which occurs only after brain damage (Van der Loos 

and Woolsey, 1973). 

Brown and Sherrington (1912) were among the first believers in a mechanism that 

supports cortical plasticity in the adult brain. They observed interesting cortical effects 

after running a series of experiments with direct cortical stimulation and peripheral 

nerve stimulation. They found it was possible to inhibit or facilitate the response of the 

targeted muscles in primate forearm with specially designed protocols of stimulation 

and they described the short-lasting changes as a cortical reaction. 

Later, more evidence supporting reorganization in the sensory-motor area or motor 

cortex mediated by exposure to repeated natural stimulation, various types of invasive 

and non-invasive stimulation to peripheral nerves, motor point or cortex and by other 

methods of stimulation began to emerge. In an experiment, Pascual‐Leone et al. (1993) 

found a significantly enlarged cortical representation of the index finger in the reading 

hand while they mapped the cortical areas of proficient braille readers using 

Transcranial Magnetic Stimulation (TMS). Another related example of plastic changes 

triggered by afferent input from hand in congenitally blind patients was described by 

Sadato et al. (1996). To determine whether the visual cortex receives input from the 

somatosensory system, they used positron emission tomography (PET) to measure 

response in the primary and secondary visual cortex during a tactile reading task and 

found that blind subjects showed activation in those areas, while normal subjects 

showed deactivation. 

It is now evident that some natural, altered or artificial physiological conditions can 

initiate changes in the synaptic junctions (synaptic plasticity) or in the overall neuronal 

connections (metaplasticity). Examples of such conditioning include lesions (Donoghue 
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et al., 1990, Rauschecker, 1995, Calford and Tweedale, 1991, Kolarik et al., 1994, Silva 

et al., 1996, Merzenich et al., 1983b), amputation (Calford and Tweedale, 1988, 

Borsook et al., 1998, Chen et al., 1998), skill developing or learning (Grafton et al., 

1992, Recanzone et al., 1992, Pascual-Leone et al., 1994, Kami et al., 1995, Nudo et al., 

1996, Taubert et al., 2010) or deafferentation by ischaemia (Ziemann et al., 1998b, 

Brasil-Neto et al., 1992, Brasil-Neto et al., 1993, Ridding and Rothwell, 1995, Ridding 

and Rothwell, 1997, Ziemann et al., 1998a).  

The organization and projection of neuronal pools in the cortical and subcortical area 

have a major role to play when synaptic plasticity and remodelling is concerned. The 

topography of skeletal muscle and sensory organs in the somatosensory and motor 

cortex is extremely complex, and they tend to overlap with each other, opposing the 

famous and influential homunculus idea of having precisely ordered representation for 

each body part (Schott, 1993). Evidences from some recent studies using advanced 

imaging, intracortical electrical stimulation via microelectrodes inserted into focal 

cortical areas and other sophisticated methods suggested that the internal organization 

of brain areas representing sensory organs and muscles can rather be described as a 

dynamic network of neuronal pools arranged in their region and sub-regions in such a 

manner that allows reorganization. This modification in their synaptic  excitability or 

internal connectivity occurs to compensate functional changes following injury or in 

altered physiological conditions, promoting metaplasticity in general (Sanes and 

Donoghue, 1997, Sanes and Donoghue, 2000, Stoney Jr et al., 1968, Nudo et al., 1992, 

Penfield and Boldrey, 1937, Schieber and Poliakov, 1998). This dynamic nature of the 

central nervous system controlling motor output and expected behaviour provides 

substantial flexibility for plastic changes in animals, and to a greater extent in primates 

and humans. The motor cortex is highly capable of retaining its functional outcome 

through reorganization and plasticity, but for this, it has to receive translated feedback 

from sensory inputs reflecting behavioural or functional changes. Typically, a lesion, 

and theoretically an afferent input can produce such a feedforward loop to promote 

plasticity. In other words, to maintain homeostasis and to obtain plasticity motor cortex 

relies on sensory inputs to a great extent. Therefore, afferent pathways that convey 

upstream volleys towards sensory motor areas can be potentially exploited to relay 

abrupt functional changes, altered inputs or artificial stimulation. In that regard, 

peripheral afferent stimulation is already known to modulate cortical excitability, 
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thereby it can affect motor performance after a lesion in the brain and spinal cord 

(McDonnell et al., 2007a, Liao et al., 2014, Roy et al., 2010, Lala et al., 2016). Peripheral 

sensory deafferentation is also capable of reorganizing cortical and subcortical 

connections exhibiting plasticity (Merzenich et al., 1983a, Merzenich et al., 1983b, Kaas 

et al., 1983, Sanes et al., 1988, Sanes et al., 1990). This leaves a very good reason to 

study different interventional methods to test scopes of plasticity in the human motor 

system using non-invasive stimulation capable of changing cortical and subcortical 

excitability. 

1.2 Main Aims and Questions 
 

1.2.1 Aims 

The primary aim of this thesis is to explore the potential effect of specially designed 

non-invasive stimulation protocols in human motor system and to understand the basic 

mechanisms of plasticity at the cortical and subcortical level. 

I intended to observe the characteristics of plasticity induced by simultaneous sensory 

input and cortical stimulation in motor cortical output and how it may express changes 

in different groups of muscles (forearm flexor, extensor and hand muscles in this case). 

I was also very keen to see how it differs if the plasticity is induced purely by cortical 

stimulation in motor cortical output measuring from those muscles. 

Another objective was to introduce novel methods of delivering plasticity inducing 

protocols that may lead to the development of future translational therapies, which will 

help to facilitate functional recovery after certain brain or spinal cord lesion.   

It was also a target of this research to deliver realistic and practical methods of providing 

stimulation, monitoring, measuring and comparing observed changes among a 

considerable number of healthy human subjects within a short period. 

This approach to induce plasticity in the human motor system with non-invasive 

stimulation may arise a few questions, some of which are addressed below, and the rests 

will be discussed in the relevant part of this thesis. 
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1.2.2 Questions 

Which kind of techniques were used and why? 

For all the experiments in this research only non-invasive stimulation techniques such 

as superficial electrical stimulation, auditory stimulation and transcranial magnetic 

stimulation (TMS) were used. This served following benefits over any invasive 

procedure: 

• Suitable to study plasticity in humans in vivo 

• Purely non-surgical methods 

• Safe and painless techniques 

• No requirement of anaesthesia 

• Easily applicable, effective and less cumbersome 

• Ideal to use in patients as in therapy or rehabilitation programmes 

• Considerably less ethical issues 

• Highly cost effective 

• Saves preparation time 

All procedures described in this thesis were approved by the Local Research Ethics 

Committee before any experiment. Full written consent from each participant was 

obtained from each participant after explaining each procedure in detail. 

 

How to induce plasticity in the human motor system and where does this plasticity 

occur? 

In recent years, several stimulation protocols have been utilized in studies to map 

somatosensory and motor areas, to test cortical and subcortical excitability and to 

explore neural pathways under numerous experimental conditions. Generally, it has 

been possible to induce plasticity in the human brain and spinal cord using various forms 

of non-invasive stimulation. Applied stimulus to an afferent nerve fiber or sensory 

receptors usually generates a compound action potential sending an afferent volley 

upwards. This can be achieved by using a variety of stimulus alone or in combination 
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with others such as fine or crude touch, vibration, tactile, pain or electrical stimulation 

(Passmore et al., 2014). Via the dorsal root ganglion, the afferent volley then ascends to 

the medulla where those afferent nerve fibers synapse with ipsilateral dorsal column 

nuclei. After decussation in the medial lemniscus, second order nerve fibers reach to the 

contralateral ventral posterior lateral nucleus of the thalamus. From the thalamus, third 

order neurons take the afferent input towards somatosensory areas and then to the motor 

cortex where signals are processed to execute the desired movement (Leeman, 2007). 

However, interrelated parallel pathways connecting somatosensory, motor cortex, 

thalamus, brain stem and spinal cord motor neurons are incredibly complex in primates 

and human. In the past few decades, a substantial amount of research has been carried 

out to investigate the role of corticospinal and other descending pathways that control 

motor behaviour, balance, posture and reflexes. The structural organization of the motor 

system is highly hierarchical. The somatosensory-motor bridge connections, 

corticospinal and other pathways sending downward volley to spinal neurons also 

maintain some hierarchy. Major descending pathways and their anatomical organization 

were studied closely in Hans Kuyper’s seminal experiments investigating nerve tracts 

using tracing methods (Kuypers, 1981, Kuypers, 1964). In primates, the motor 

component of descending pathways can be divided into three groups: ventromedial 

brainstem pathways, dorsolateral brainstem pathways and corticospinal-corticobulbar 

pathways (Kuypers and Brinkman, 1970). Ventromedial pathways convey the 

vestibulospinal (both lateral and medial) tracts, the tectospinal tracts arising from the 

midbrain, and the reticulospinal and bulbospinal tracts arising from the pontine and 

medullary reticular formation (Matsuyama and Drew, 1997, Shinoda et al., 1992, 

Lemon, 2008). Dorsolateral pathways consist of the rubrospinal tract, arising from the 

red nucleus, and pontospinal tract, arriving from pontine tegmentum (Kennedy, 1990, 

Kuchler et al., 2002, Lemon, 2008). These descending motor pathways, arising from 

different regions of the brain, send downward volleys to finally reach topographically 

arranged alpha and gamma motor neurons and interneurons at multiple levels of the 

spinal cord. The schematic drawing in Figure 1.1 outlines the pathways of major 

descending tracts in human. 
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Figure 1.1. Schematic representation of the descending tracts, their origin and 

termination. 

Corticospinal (on the left) and other major descending motor pathways (on the right); 

Figure modified from (Lemon, 2008). 

 

While the largest proportion of the corticospinal tract arises from the primary motor 

cortex, it also gets contributions from supplementary motor area and somatosensory area 

(S1) (Murray and Coulter, 1981, Galea and Darian-Smith, 1994). Most of the 

corticospinal tract arising from the motor cortex (M1) and Supplementary Motor Area 

(SMA) send projections to the intermediate and ventral zone of the spinal cord. The 

corticospinal tract originating from S1 sends projections to the dorsal horn of the spinal 

cord and is known to control posture, gait, balance, spinal reflexes and hand functions. 

In an experiment, Lawrence and Kuypers (1968) observed that after surgical lesions of 

CST, rubrospinal tract took part in regaining locomotion and grasping function in 

macaques. However, a combined lesion of the corticospinal and rubrospinal tract in 
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these animals caused complete loss of grasp function, but some gripping function 

remained to allow them to climb. A possible explanation of this finding could be the 

surviving reticulospinal tract contributed substantially in performing the gripping 

function in the absence of corticospinal and rubrospinal tract. Current evidence suggests 

that the rubrospinal tract is absent in human (Nathan and Smith, 1955), which left the 

reticulospinal tract to play a major role in regaining hand function after recovery from 

the brain or corticospinal tract lesion in patients (Baker, 2011). 

To find and compare the relative association and function of the reticulospinal tract in 

controlling distal and hand muscles, Riddle et al. (2009) carried out an experiment where 

they measured reticulospinal inputs to antidromically identified cervical ventral horn 

motoneurons projecting towards distal and intrinsic hand muscles in anaesthetized 

macaque monkeys. They performed intracellular recordings and found that 

motoneuronal projections towards distal hand muscles generated both mono and 

disynaptic excitatory postsynaptic potentials following stimulation to medial 

longitudinal fasciculus (reticular cells) in the brainstem region (Fig. 1.2). These findings 

suggest that the reticulospinal tract in primates not only contributes to controlling axial 

and proximal muscles but also govern some of the functions in distal hand muscles. In 

other words, it is possible that a parallel pathway of reticulospinal connections runs 

along the corticospinal tract in the spinal cord. Since upper limb motoneuron with 

projections towards forearm flexor muscles received short latency monosynaptic input 

from the reticulospinal connections, Riddle et al. (2009) suggested a potential role of 

the reticulospinal tract in recovery after lesions affecting the corticospinal tract.      
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Figure 1.2. Reticular activation: forearm flexor receives reticulospinal input. 

Intracellular recordings from cervical motoneurons projecting to forearm flexor 

following stimulation to the reticular cells. A, Reticulospinal excitatory post synaptic 

potential (EPSP) following single medial longitudinal fasciculus (MLF) stimulus (300 

μA); B, Similar recordings following train of three stimuli; C, Similar recordings 

following train of four stimuli. Each panel shows averaged intracellular records (top) 

with simultaneously recorded epidural volleys below. Vertical dashed lines highlight 

the segmental latency of the response. Figure modified from (Riddle et al., 2009). 

 

There is also evidence that connections from the reticulospinal and the corticospinal 

axons can converge into the same interneuron in the spinal cord providing overlapping 

effects in the motor control and function of the distal hand muscles (Riddle and Baker, 

2010). 

A 

C 

B 
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Figure 1.3. Convergent and overlapping. 

Relative incidence of convergent corticospinal (PT, pyramidal tract) and brainstem 

inputs (MLF, medial longitudinal fasciculus) to spinal interneurons during reach and 

grasp task; based on cell numbers, the firing rate of which facilitated or suppressed 

during the reach or grasp phase. Figure from Riddle and Baker (2010) 

 

This convergent and overlapping of corticospinal and reticulospinal inputs in the spinal 

motoneurons also denotes a key role of reticulospinal projections during recovery after 

some brain lesions, for instance, stroke in primary motor cortex or damage to 

corticospinal tract after spinal cord injury. Therefore, it is possible that subcortical extra-

pyramidal connections, especially reticulospinal tract mediated projections affect 

reorganization and plasticity towards motor outputs at least to some extent if not 

extensively (Baker, 2011). 

 

What is the importance of nerve conduction speed in the plasticity inducing 

protocols? 

Specificity and success of a paired stimulation protocol modulating 

corticomotoneuronal excitability depend on the interstimulus interval. 

Based on Hebb’s initial postulate (Hebb, 1949), several studies demonstrated that long 

term potentiation (LTP) and long term depression (LTD) can be mediated by a 

mechanism called Spike-Timing Dependent Plasticity which relies on the temporal 

order and time-spacing of pre-synaptic and post-synaptic inputs (Song et al., 2000, Bi 

and Poo, 1998, Drew and Abbott, 2006). The connection can be potentiated if 

presynaptic spiking is preceded by postsynaptic spiking within a constrained window of 
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time (LTP), or it can be suppressed if the order of input is reversed (LTD) (Caporale 

and Dan, 2008, Levy and Steward, 1983, Markram et al., 1997, Ridding and Rothwell, 

2007, Wolters et al., 2003). Inducing plasticity in the motoneuronal output exploiting 

this STDP mechanism by a paired stimulation protocol was extensively tested by in a 

number or previous studies (Stefan et al., 2000, Baranyi and Szente, 1987, Hess et al., 

1996, Iriki et al., 1989) 

 

Latencies of cortical response following an afferent input also depend on modalities of 

somatosensory receptors, characteristics of their nerve fiber and diameter, for example, 

thick fibers are faster than thin ones. In mammals, conduction velocity varies to a good 

extent in different fibers carrying afferent volleys; where motor fibers conduct slower 

than cutaneous fiber and muscle afferent is the fastest, but in humans those differences 

in conduction velocity in afferent fibers are much smaller than in animals. In human, 

Shefner and Logigian (1994) have found a conduction velocity of 57.6m/s in muscle 

afferent, 55.1m/s in cutaneous afferent and 56.3m/s in mixed nerve. Table 1 illustrates 

a brief summary of the conduction speed for various nerve fibers. 

 

  



Chapter I  22 

Table 1. Modality, type, diameter and conduction speed of different nerve fibers and 

their somatosensory receptors that can be activated using peripheral stimuli. These 

stimuli include electrical stimulation at nerve/motor point/skin, pressure, vibration or 

stroke (Kandel et al., 2000). 

Receptor Fiber 

group 

Fiber 

name 

Modality Diameter 

(µm) 

Nerve 

conduction 

velocity (m/s) 

Muscle and skeletal 

Mechanoreceptors: 

 Muscle spindle primary 

 Muscle spindle secondary 

 Golgi tendon organ 

 Joint capsule receptors 

 Stretch-sensitive free endings 

 

 

 

Aα 

Aβ 

Aα 

Aβ 

Aδ 

 

 

Ia 

II 

Ib 

II 

III 

 

 

Muscle length and speed 

Muscle stretch 

Muscle contraction 

Joint angle 

Excess stretch or force 

 

 

1-20 

6-12 

12-20 

6-12 

1-6 

 

 

72–120 

36–72 

72–120 

36-72 

4–36 

Cutaneous and subcutaneous 

mechanoreceptors: 

 Meissner corpuscle 

 Merkel disk receptor 

 Pacinian corpuscle 

 Ruffini ending 

 

 

 

Aα,β 

Aα,β 

Aα,β 

Aα,β 

 

 

RA1 

SA1 

RA2 

SA2 

 

 

Stroking 

Pressure, texture 

Vibration 

Skin stretch 

 

 

6-12 

6-12 

6-12 

6-12 

 

 

30-70 

30-70 

30-70 

30-70 

 

 

Interestingly, the difference of latencies in somatosensory potentials evoked by 

stimulating the whole peripheral nerve, muscle or cutaneous nerve close to wrist area is 

negligible, and latencies in the mentioned three categories of afferent inputs stay in the 

19.0ms-20.3ms range (Gandevia et al., 1984). This observation supports the idea that 

afferent volley from muscle afferents reaches to the sensorimotor area via a similar route 

utilized by mixed afferent or whole nerve stimulation. 

 

Are there any limitations in the currently available plasticity protocols? 

There are many plasticity protocols that use non-invasive stimulation, but there are also 

limitations in the currently available approaches. 



Chapter I  23 

Most of the methods suffer from variability in test results, and even in healthy subjects, 

the evoked changes in brain’s response can fluctuate to the extent that can limit its 

therapeutic specificity and sensitivity. A wide range of factors can affect changes in 

corticospinal or subcortical excitability; for example, age (Muller-Dahlhaus et al., 2008, 

Todd et al., 2010), sex (Tecchio et al., 2008), genetics (Cheeran et al., 2008), priming 

with another stimulation (Iyer et al., 2003, Nitsche et al., 2007, Ragert et al., 2009), prior 

voluntary motor activity (Stefan et al., 2006, Ziemann et al., 2004, Iezzi et al., 2008), 

parallel motor activity (Huang et al., 2008), drug (Wolters et al., 2003, Kuo et al., 2008, 

McDonnell et al., 2007b, Ziemann et al., 2002), aerobic exercise (Cirillo et al., 2009), 

diurnal variation (Sale et al., 2008) or attention (Stefan et al., 2004, Conte et al., 2007).  

Almost all of the currently known stimulation protocols are applicable in the specialized 

laboratories, and in most of those procedures are not suitable to test a large number of 

healthy human subjects daily to design effective translational rehabilitative protocols. 

There is no standardized guideline of procedures or protocols to utilize plasticity 

inducing stimulation protocols in clinical settings to facilitate motor recovery. Number 

of studies with translational approach is also scarce. 

Neuronal plasticity and adaptation processes are vastly complex to the extent that 

available studies and data set are unable to determine the exact nature, scopes and 

boundaries of sensory stimulation when utilized to reorganize the nervous system. More 

detailed knowledge about the human motor control, cortical and subcortical 

connections, and the spinal pathways are mandatory to develop sophisticated plasticity 

protocols. Despite recent advancement into the neuroscience, current knowledge in 

human motor control and connections lacks major key components required to design 

effective translational methods and calls for further research in this field. 

 

Why is it necessary to compare the effects of different plasticity protocols in 

different muscles? 

In a previous experiment, while studying the properties of descending brainstem 

pathways and their possible contribution in reorganizing motor outputs, Zaaimi et al. 

(2012) found that reticulospinal tract strengthens selectively to flexors and intrinsic hand 

muscles and not to extensor muscles in the upper limb. This was observed during 

recovery following corticospinal tract lesion in macaque monkeys. After six months of 
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the surgical lesion in the corticospinal tract, they stimulated ipsilateral and contralateral 

medial longitudinal fasciculus (MLF) and recorded elicited potentials from intracellular 

electrodes placed in 167 spinal motoneurons that innervated forearm and hand muscles. 

Then they compared it with the data recorded from 207 motor neurons in control 

monkeys. Interestingly, in the lesioned monkeys they found significant facilitation in 

monosynaptic excitatory post synaptic potential (EPSP) recorded from motoneurons 

projecting towards the forearm flexor and intrinsic hand muscles following MLF input. 

For flexors, contralateral response showed bigger changes than the response from the 

ipsilateral or lesioned side. In contrast, there was no significant change in ipsilateral or 

contralateral monosynaptic EPSP evoked from motoneurons controlling forearm 

extensors. 
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Figure 1.4. Flexor-extensor bias. 

Facilitated connection towards flexor and intrinsic hand muscles as evidenced from 

quantitative measurement of input from MLF and recorded from respective 
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motoneurons. Measurements indicate the product of response amplitude and incidence. 

A, EPSP recorded from motoneurons innervated forearm flexor; B, EPSP recorded from 

motoneurons innervated forearm extensor and C, EPSP recorded from motoneurons 

innervated intrinsic hand muscles. Significant differences between control and lesioned 

animals (*P < 0.05; **P < 0.01) are marked with asterisks. Figure modified from Zaaimi 

et al. (2012). 

 

They concluded that reticulospinal tract plays a significant role during recovery after 

corticospinal tract lesions and strengthened connections mostly towards forearm flexor 

and intrinsic hand muscles, but not in extensor (Zaaimi et al., 2012). These findings 

mirror the condition seen in post stroke patients, where they develop flexor spasticity 

and extensor weakness. The observed bias in strengthening or weakening different 

muscle groups differently during recovery in lesioned monkeys necessitates further 

research into the modalities of motor system plasticity in human. 

 

1.3 Ways to influence plasticity in humans  

1.3.1 Sensory Stimulation 
  

Afferent or sensory stimuli are capable of changing excitation in the motor cortical 

output, which plays a critical role in the brain and spinal cord plasticity. The widely 

accepted Long Term Potentiation (LTP) and Long Term Depression mechanisms are 

regarded as the crucial element of the synaptic modification induced by sensory 

stimulation. Both LTP and LTD affect N-methyl-D-aspartate glutamate receptors to 

reinforce existing synapses, the formation of the new synapse or unmasking of 

excitatory amino acid receptors on motor neuron (RF?), triggered by repeated sensory 

afferent stimulation. Some afferent stimuli, e.g., electrical stimulation, sound, vibration 

and touch can thereby provide substrates for dynamic interactions between numerous 

cellular processing and synaptic modification resulting in altered excitability in the 

cortical sensorimotor area. Consequently, sensory stimulation enhances or suppresses 

corticomotoneuronal excitability to the downstream connections or body parts. Plenty 

of studies already suggested that sensory input is a crucial factor enhancing motor 

performance, learning new skills, recovery after brain or spinal cord lesion (Pearson, 
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2000, Pavlides et al., 1993, Hamdy and Rothwell, 1998). Some of the recent studies 

used peripheral nerve stimulation and motor point stimulation to explore the influence 

of sensory afferent input on the plasticity of motor cortical organization in healthy 

human (Ridding et al., 2000, McKay et al., 2002b).  Sensory input is known to be a 

factor capable of inducing changes in the motor output by modulating subcortical and 

spinal interneurons, reflecting the role of sensory input in the modulation of motor reflex 

and behaviour (Perez et al., 2003).  

Previously, a fair number of studies recorded evoked cerebral potentials by stimulating 

selective motor points (Macefield et al., 1989, Burke and Gandevia, 1988, Abbruzzese 

et al., 1985). Afferent stimulation, e.g., stimulating a muscle on motor point can send 

volley towards thalamus (Morioka et al., 1989, Celesia, 1979, Fukushima et al., 1976, 

Katayama and Tsubokawa, 1987, Suzuki and Mayanagi, 1984). Fast conducting group 

Ia afferent fibers play a role in relaying afferent volley from motor point stimulation 

towards thalamus (Fukuda et al., 2000). It is already evident from previous studies that 

thalamus works as a central relay station with multiple and parallel projections towards 

sensorimotor and motor cortex. Primary somatosensory cortex sends direct inputs 

primarily to upper layers of pyramidal neurons of M1 (Kaneko et al., 2000, Hoffer et 

al., 2003), and also via sensory thalamus (medial subdivision of posterior nucleus, 

ventrolateral nucleus) (Deschenes et al., 1998, Ohno et al., 2012) and motor thalamus 

(anteromedial, ventral anterior and ventrolateral nucleus) (Asanuma et al., 1979, 

Asanuma et al., 1980, Hooks et al., 2013). The ventral intermediate nucleus of thalamus 

sits between the sensory posterior thalamus and the motor ventrolateral nucleus of the 

thalamus, possibly receiving and sending fibers to both somatosensory and motor 

cortex. Projections from sensory thalamus reach mostly to superficial layers in M1 (Mao 

et al., 2011), whereas inputs from motor thalamus target both superficial layers and L5 

in M1 (Herkenham, 1980, Hooks et al., 2013). Overall, thalamus has a considerable 

contribution in relaying sensory afferent inputs to primary motor areas which also 

receives inputs from frontal cortex, parietal cortex and primary somatosensory cortex 

(S1) (Hoffer et al., 2003, Hooks et al., 2013). Additionally, motor point stimulation can 

send afferent volley to sensory motor area in a similar way that a direct stimulation to a 

peripheral nerve can achieve. 

Sensory input from auditory stimulation is known to increase motor cortical excitability 

when paired with TMS (Sowman et al., 2014). This describes the existing functional 
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association between auditory pathways and plasticity in sensorimotor representations. 

Interestingly, sound can also change excitability in the reticular area. This accidental 

finding was discovered in a previous study when Fisher et al. (2012) was recording 

discharge from single units in the pontomedullary reticular formation (PMRF) while 

stimulating motor cortex (M1) with TMS in anaesthetized macaque. PMRF is known to 

give rise to axons that later form the reticulospinal tract in the spinal cord (Sakai et al., 

2009). In their experiment, it was observed that TMS discharge over M1 elicited short 

latency response in PMRF cells. This reflected simultaneous activation of cortico-

reticular connections since PMRF receives diverse projections from 

corticomotoneuronal pools including non-primary motor area, supplementary motor 

area and region F5 (Fisher et al., 2012, Keizer and Kuypers, 1989, Borra et al., 2010). 

They reported that a long latency response, recorded from the same units, was activated 

by brief low-intensity sound stimuli; and argued that cochlear and vestibular receptors 

might contribute to generating action potentials in the reticular cells mediated via 

relatively unexplored connections. This may include oligospinal and other projections 

towards the reticular area from higher or surrounding neuronal circuits related to 

subconscious awareness, or even startle reflex (Davis et al., 1982). Figure 1.5 shows the 

recorded response from PMRF reticular cells activated by sound of various intensity. 

This observation of reticular activation by auditory stimulation was utilized to design 

spike-timing dependent stimulation protocols for intervention in one of my studies, 

where the auditory stimulation was paired with the electrical stimulation delivered over 

the motor point of biceps brachii muscle. 

 

Figure 1.5.  Response evoked from PMRF reticular cell with click stimulation. 
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A, sweep responses from single cell. B, responses at different click intensity. eTMS% 

is the intensity of TMS that produced comparable sound used in this test. Figure from 

(Fisher et al., 2012) 

 

1.3.2 Paired Associative Stimulation (PAS) 

PAS is known to induce plasticity in the human motor cortex projections and this 

process primarily relies on the basic principles of Hebbian’s model of neural plasticity. 

In the original study of PAS, Stefan et al. (2000) utilized a single pulse electrical 

stimulus to stimulate a peripheral nerve followed by a magnetic stimulation delivered 

to the contralateral primary motor cortex. In this case, the forearm median nerve near 

the wrist joint was stimulated to send a presynaptic input arising from the afferent 

stimulation to the primary motor cortex prior activation of sensory motor cortex with 

direct magnetic stimulation. Repeated application of the paired stimuli with an 

interstimulus interval of 25ms and generated from two sources, i.e., electrical 

stimulation to nerve and magnetic stimulation to motor cortex, over an extended period 

increased the excitability in the corticomotoneuronal projections. The interstimulus 

interval between the paired stimuli was adjusted such that the afferent volley arising 

from the peripheral nerve reaches the motor cortex to be merged with the magnetic 

stimulation.  

In the original description of PAS by Stefan et al. (2000) a paired stimulation of the 

median nerve at the wrist with Transcranial Magnetic Stimulation (TMS) was delivered 

to the contralateral motor cortex. In my study, I instead stimulated the motor point of 

forearm flexor or extensor muscle with superficial electrodes. When working with the 

intrinsic hand muscles, direct nerve stimulation has several advantages, which were 

described in Stefan et al. (2000). The nerve at the wrist is in a convenient location for 

stimulation; for the median nerve, only muscles of the thenar eminence are supplied, so 

that activation will be focussed to an anatomically-defined muscle group. By contrast, 

for the forearm flexors or extensors, the relevant nerves (median or radial at the arm) 

can be relatively deep, such that small movements of the stimulating electrode can 

generate large changes in efficacy over the extended duration of a plasticity protocol. 

Additionally, each nerve innervates multiple muscles (for the median nerve, this 

includes muscles in both forearm and hand), together with important cutaneous fields. 

On the other hand, applying stimulation to the motor point of a muscle can be more 
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consistent and less cumbersome than stimulating a nerve. It is known that motor point 

stimulation activates large diameter afferent fibers (Bergquist et al., 2011a), and hence 

should produce a well synchronized afferent volley. Previous studies have used paired 

motor point stimulation of two muscles to induce a different form of associative 

plasticity (Ridding and Uy, 2003). In one of my studies, I tested the effect of pairing 

motor point stimulation with TMS with a view to induce plasticity based on the PAS 

principals, but more conveniently and effectively. 

TMS is a neuro-stimulation and neuro-modulation technique that has a long history of 

being used as a method of non-invasive stimulation in neuroscience research (Horvath 

et al., 2011). TMS is also widely used in clinical areas. The basic principles of magnetic 

stimulation were first discovered by the English physicist Michael Faraday back in 

1881. Generally, the TMS device consists of a central unit which stores and discharges 

energy in terms of electric pulses and a stimulating coil connected to the central unit. 

The stimulating coil is held over the subject’s head and a pulse of current flowing 

through the coiled wires creates a strong and focal magnetic field (Rossini et al., 1994). 

As the skull provides very little resistance, this electromagnetic field can reach the brain 

tissue without major attenuation. By creating a sudden change in the magnitude of the 

magnetic field, this coil placed overhead is capable of generating electric current in a 

nearby conductive field, in this case, in brain tissues to effectively depolarise neurons. 

TMS can be applied as a single pulse (lasting about 100 µs) or as a series of pulses 

depending on therapeutic or research protocols (Nahas, 2003). Single pulse TMS is 

regarded as very safe when applied to healthy individuals, whereas series pulse or 

repetitive TMS with a frequency up to 50 Hz is regarded as safe for healthy humans, 

although higher frequency at very high intensity poises potential risks of inducing 

seizures (Pascual-Leone et al., 2000). 

Depending on the orientation of the coil and focal electromagnetic field, TMS is 

believed to be capable of activating the corticospinal tract that receives input from the 

motor cortex, somatosensory and premotor areas in the brain (Barker et al., 1985, Edgley 

et al., 1990). 
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1.3.3  Repetitive Transcranial Magnetic Stimulation (rTMS)  
 

It is known that high-frequency rTMS can affect cortical excitability and induces 

plasticity in the motor output, which can be measured and quantified by recording motor 

evoked potential (MEP) from the activated muscle (Ridding and Ziemann, 2010). 

Previously, several studies showed a modulatory effect of rTMS application on the 

cortical output, but in most cases, the effects were short lasting or inconsistent (Maeda 

et al., 2000, Hadland et al., 2001, Evers et al., 2001). In a more refined approach, Huang 

et al. (2005) tested an intermittent theta burst protocol (iTBS) which was delivered over 

a period of only 190s. This iTBS produced a consistent and lasting effect on cortical 

plasticity and resulted in significantly larger MEPs after the intervention and the effect 

lasted for at least 60 minutes after iTBS (Fig. 1.6). They also measured short interval 

intracortical inhibition and intracortical facilitation and both were affected after the 

application of rTMS (iTBS). Conversely, spinal H-reflexes were unaffected. From this 

observation, they concluded that the modulation took place in the motor cortex. 

 

Figure 1.6. rTMS increases MEP. 

Observed changes in MEP amplitude over time after conditioning with continuous TBS 

(cTBS), intermittent TBS (iTBS), and intermediate TBS (imTBS). MEP size increased 

significantly following iTBS which lasted for about 15 minutes, while cTBS caused a 

significant reduction in MEP amplitude (Huang et al., 2005); TBS, theta burst 

stimulation. iTBS is a modified protocol of rTMS. 
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In one of my studies, I used a slightly modified version of the similar protocol to 

measure and compare changes in cortical excitability for forearm flexor vs. extensor 

muscles and distal hand muscles. 

 

1.3.4  Motor Imagery (MI) 
 

Motor Imagery (MI), or motor imagination, can affect cortico-motoneuronal excitability 

considerably. MI activates the motor cortex, the premotor cortex and the supplementary 

motor area as evidenced by fMRI studies (Lotze et al., 1999) (Figure 1.7). 

 

Figure 1.7. Motor imagery activates primary motor cortex. 

fMRI showing activation of anatomically selected brain regions that include the motor 

cortex, the premotor cortex and the supplementary motor areas during motor imagery; 

from Lotze et al. (1999). 

 

Subthreshold activation of motor and sensory-motorneuron pools by MI was also 

evidenced by many other previous studies (Beyer et al., 1990, Reynolds et al., 2015, 

Lotze and Halsband, 2006, Jeannerod, 2010). The origin of MI does not evoke enough 

downward volley towards spinal motor neurons to perform an actual movement, but it 

instead initiates a central processing mechanism that prepares some neuronal pools in 

the somatosensory, premotor and motor cortex for the planned action. Therefore, it is 

theoretically and practically possible to change motor cortical excitability using MI 

paired or synchronized with other sensory inputs (Villiger et al., 2013, Helm et al., 

2015), specialized training protocols (Kaiser et al., 2014), TMS or transcranial Direct 

Current Stimulation (tDCS) (Lebon et al., 2012, Abbruzzese et al., 1996). 
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An important observation from Fadiga et al. (1998) should be mentioned here. They 

found considerably higher MEP amplitude than control in the electromyography (EMG) 

responses recorded from the flexor muscle during flexion imagination, but MEP 

amplitudes in the same muscle during extension imagination did not change much (Fig. 

1.8) (Fadiga et al., 1998). 

 

 

Figure 1.8. Motor imagery increases MEP. 

TMS evoked MEP recorded from the flexor muscle (biceps brachialis) while subjects 

were instructed to imagine flexion-extension movement with their right arm and TMS 

was applied to the left motor cortex. (a,b) Control experiment, where TMS was applied 

during visual imagery of expanding and shrinking bar respectively. (c) Flexor MEPs 

recorded following TMS applied during the extension phase of the motor imagery. (d) 

MEPs recorded following TMS during the flexion phase. Figure from (Fadiga et al., 

1998)  

 

There is also evidence showing that precisely timed afferent input generated by 

peripheral nerve stimulation and concomitant MI can induce plasticity in motor cortex 

(Mrachacz-Kersting et al., 2012). TMS during MI can increase cortical or subcortical 

excitability. Evidence of increased MEP amplitude during MI (Jeannerod and Frak, 

1999) also suggests that input from an artificial stimulation, e.g., TMS, can be merged 

with the natural substrates generated by MI to modify corticomotor excitability. My 
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hypothesis to induce plasticity in the motor system using simultaneous MI and TMS 

relies on this ground to some extent. 

1.4 Ways to Record Influence of Change in Plasticity 

1.4.1 Long Latency Stretch Reflex 

Stretch reflex, also called the myotatic reflex, is a response of the spinal motoneuron 

when a sudden stretch is applied to related muscle spindle. Based on the latency of onset, 

a typical stretch reflex of the upper arm can be further divided into short latency stretch 

reflex (SLSR) and long latency stretch reflex (LLSR) (Figure 1.9). The short latency 

reflex starts within 20ms of an applied stretch; it is monosynaptic in nature and 

connected with spinal motoneuron through Ia fiber (Matthews, 1991a, Pruszynski et al., 

2011b). On the other hand, LLSR appears approximately 50ms after triggering the 

stretch. 

Raw tracing from rectified EMG recorded from the biceps muscle following a 

mechanical perturbation. SLSR, corresponds the short latency response with a latency 

of ~20ms. LLSR, corresponds the long latency response with a latency of ~50ms. The 

spikes after 100ms show voluntary muscle activity. The onset of stretch is at 0ms. 

 

LLSR is believed to involve transcortical pathways for distal muscles, but its 

contributions are still controversial for proximal muscles (Matthews, 1991). However, 

a few studies have established that LLSR is affected by multiple connections including 

transcortical and subcortical pathways (Petersen et al., 1998, Pruszynski et al., 2011b). 

SLSR LLSR 

Figure 1.9. The components of a stretch reflex. 
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EMG activity with a latency greater than 100ms is usually considered as voluntary 

response. 

In a previous study, Soteropoulos et al. (2012) showed that stretch reflex, which 

activates hand muscles after a triggering stimulus, can also activate reticular formation 

cells in the macaques (Fig. 1.10). In their study, after application of stretch to index 

finger comparable responses with latencies consistent with SLSR and LLSR could be 

recorded from the pontomedullary reticular formation which gives rise to reticulospinal 

tract (Soteropoulos et al., 2012) (figure 26). Reticulospinal Tract (RT) originating from 

pontomedullary reticular formation controls the axial and proximal muscles to maintain 

balance and gait. The reticulospinal tract has monosynaptic and disynaptic projections 

to distal muscles of the upper limb, and it plays an important role during recovery from 

the motor cortex and corticospinal tract lesion (Davidson and Buford, 2006, Riddle et 

al., 2009, Lemon, 1993). These observations from previous studies suggest that stretch 

reflex, particularly the LLSR component, can be utilized to measure outputs 

corticomotoneuronal and reticulospinal tract output. Any changes in the LLSR 

following the delivery of appropriate plasticity-inducing interventions should reflect the 

influence of plasticity on the motor cortex, subcortical or reticulospinal pathways. 
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Figure 1.10. Activation of reticular cells in macaque. 

A, averaged displacement of lever. B, overlain traces of lever displacement of single 

trials. C, computed velocity. D, mean rectified EMG responses from several forearm 

and hand muscles with activity aligned to the onset of stretch (dotted vertical line). The 

responses in the muscles correspond to SLSR and LLSR responses. Grey triangles 

indicate minimal onset latency, white and grey bars indicate early and late responses 

respectively. E, peri-stimulus time histogram and raster of pontomedullary reticular 

formation cell, showing a reticular response to stretch. Plots (B-E) are on the same time 

scale. Figure modified from Soteropoulos et al. (2012). 
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1.4.2  Motor Evoked Potentials (MEPs) 
 

In most of the non-invasive brain stimulation techniques that use Transcranial Magnetic 

Stimulation (TMS), action potentials (generated from activated skeletal muscle after 

stimulation) are measured by placing surface electrodes directly over the skin. These 

responses are known as motor evoked potential (MEP), which arrive through fast 

conducting cortico-motoneuronal connections via alpha motoneurons in the 

contralateral spinal cord (Abbruzzese and Trompetto, 2017). TMS mostly activates 

axons that stay parallel to this electric field. Activation of motor cortex occurs when 

axonal potential changes at some point across its length, that runs parallel with the 

induced electric field. Changes in the electric field in the extracellular substances due to 

variation in their conductivity can also produce activation of an axon or can induce 

differences at nerve membranes near synapses (Rothwell, 1997). These responses of 

motor cortex evoked by a magnetic field can be readily and non-invasively recorded 

from corresponding muscles by placing surface electrodes directly over the skin. The 

evoked EMG responses can be recorded, rectified and quantified by measuring peak to 

peak amplitudes, which can be useful to compare effects of various plasticity protocols. 

Interestingly, the application of single pulse TMS or repetitive TMS (rTMS) in the 

primary motor cortex (M1) elicits several volleys in the cortico-motoneuron pools. 

Looking at the characteristic features of latency in a typical MEP, an early D-wave and 

later I-waves can easily be differentiated. Early D-waves are mostly generated from 

axonal activation of corticospinal neurons, whereas late I-waves originates from 

activation of mono and polysynaptic inputs (Ridding and Ziemann, 2010). Changes in 

the MEP amplitude are regarded as a measurable marker or index of changes in cortico-

motoneuronal excitability. Interestingly, although the short latency of EMG responses 

and short central motor conduction time from M1 to spinal motorneurons generally 

indicates a mono-synaptic downward volley through fast conducting corticospinal tract, 

disynaptic or oligosynaptic contribution mediated by cortical or subcortical projections 

to propriospinal connections or interneurons in the spinal cord cannot be excluded 

(Rothwell, 1997, Mazevet et al., 1996, Burke et al., 1992, Gracies et al., 1994).        
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The orientation of the TMS coil can influence the pattern and latency of responses by 

preferentially stimulating cortico-motoneuronal pools. Therefore, MEP outputs from 

differently oriented coil can be different. It has been found that latero-medially oriented 

coil evokes short latency D-waves, posterior-anteriorly placed coil recruits long latency 

I-waves and anterior-posterior orientation is likely to elicit later I-waves with the longest 

latency (Volz et al., 2015). In all my experiments, the coil was positioned tangentially 

over the skull while the handle was pointing backward and laterally producing a 45o 

angle to the sagittal plane, consistent with original PAS studies (Rossini et al., 1994, 

Stefan et al., 2000). This standard orientation evoked largest potentials and recruited D- 

and I-waves (Rothwell, 1997). 

Di Lazzaro et al. (2001) studied the effect of TMS on human motor cortex by recordings 

descending volleys with bipolar electrodes placed directly into the cervical epidural 

space. Simultaneously, they recorded surface EMG from the first dorsal interosseous 

muscle (FDI) while stimulating primary motor cortex (M1) with TMS. They compared 

the MEPs induced by TMS during resting and active voluntary contraction phases of the 

muscle and found that TMS increased the output of motor neurons in the spinal cord 

during voluntary contraction. They concluded with the notion that prior activation of 

motoneurons by voluntary effort before cortical stimulation could change subcortical 

excitability, resulting in increased MEP amplitude (Di Lazzaro et al., 2001, Di Lazzaro 

et al., 1998). Their study is indicative of a possible scenario where TMS not only 

activates the M1 but also sends downward volleys via other subcortical projections and 

pathways that run in parallel with the corticospinal tract and thereby excites spinal 

motoneurons. 

 

1.5 How these approaches may ultimately lead to patient 

benefit 
 

1.5.1 Stroke, Spinal cord injury and disability 

It has been estimated that the total number of stroke events in the European Union will 

rise from 613,148 in 2015 to 819,771 in 2035 (Stevens et al., 2017). According to a 

report by the World Health Organization, every year between 250,000 and 500,000 
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people suffer a spinal cord injury worldwide (Organization and Society, 2013). The 

increasing number of stroke and spinal cord injury patients has already left the world 

with a massive burden including expense. The current total cost of post stroke care and 

rehabilitation for patients in the United Kingdom only is calculated as £18 billion over 

the first five years following stroke (Xu et al., 2017). The condition is even worse and 

complicated in the underdeveloped and developing country because of lack of clinical 

therapy, social care, and proper rehabilitation programmes. However, regardless of the 

region, with currently available measures and therapies, it is nearly impossible to 

recover full functionality after certain types of brain or spinal cord lesions. This has 

motivated me to study plasticity in the human motor system, which has been an 

emerging field in the neuroscience. My goal was to test and implement advanced and 

novel approaches to influence plasticity in the motor system and to utilize the acquired 

knowledge for the development of translational therapies. If successful, many patients 

with stroke and spinal cord injury can be benefited with the recovery of the hand 

function.   

 

1.5.2 The possibility of utilizing plasticity to treat disability in the 

post-stroke and spinal cord injury patients 

Under normal physiological circumstances, a prolonged recovery process typically 

kicks in after a brain lesion or spinal cord injury. This process is believed to rely on the 

reorganization of the spared pathways and surrounding neuronal networks. Synaptic 

plasticity is an integrated and vital component of this reorganization as it strengthens or 

weakens components of existing pathways, changes excitability of the neuronal circuits 

and can re-route action potentials by collateral sprouting of the nerve fibers. In the 

course of recovery, axonal changes and plastic remodelling can occur above and below 

the lesion, i.e., in cortical and subcortical components within the brain, within the 

brainstem or within the spinal cord pathways and interneurons. Certain brain and spinal 

cord lesions leave a large motor and sensory deficits that usually persists throughout 

life. This disruption of nerve fiber and pathways can result in paraplegia, hemiplegia or 

quadriplegia and often causes pronounced sensorimotor dysfunction ultimately leading 

to the development of spasticity (Raineteau and Schwab, 2001). Muscle spasticity, 

usually accompanied by the weakness of its antagonist muscle, can severely restrict the 
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range of motion, can cause uncontrolled movement and development of contractures in 

joints, leading to major disability.   

Over the decades, the debilitating factors of brain and spinal cord lesion have prompted 

many researchers attempting to facilitate functional recovery by enhancing plasticity 

mediated reorganization. Mainly, plasticity protocols relying on external non-invasive 

stimulation can be extremely beneficial and suitable since they not only allow extensive 

control over experimental conditions but also make it possible to test numerous 

paradigms on a large number of healthy individuals. Human models of brain and spinal 

cord plasticity from my studies may contribute further information to understand the 

basic principles of cortical and subcortical remodelling and reorganization following 

artificial stimulation. This knowledge can be useful to develop new treatment strategies 

and rehabilitation therapies using non-invasive stimulation protocols capable of 

inducing plasticity to reorganize neuronal circuits in cortical or subcortical level after a 

lesion. In my research, I emphasized on testing a variety of plasticity inducing protocols 

that can be easily delivered via non-invasive, currently available and cost effective yet 

safe techniques. For instances, one of my studies looked into delivering a specially 

designed stimulation protocol via a wearable electronic device non-invasively, which a 

participant can easily wear for a prolonged duration continuing daily activities. 

Acquired results from this study can provide further knowledge and information to 

develop more effective ways of delivering such stimulation protocols capable of 

modifying functional outcome during recovery. In another study, I approached to 

evaluate the basic mechanism of plasticity in different groups of forearm and hand 

muscles, where I prompted to test modified methods of providing paired stimuli 

protocols, which can be easily applicable to subjects on a daily basis. Analysis and 

results from this basic study can provide important aspects of central nervous system 

plasticity to assess the feasibility of using such techniques as translational therapy in 

clinical settings. I also introduced a novel method of utilizing motor imagery as an input 

and its effect in modulating cortical or subcortical plasticity was observed. The outcome 

from this research can lead to develop practical strategies of delivering effective 

plasticity inducing protocols through patients’ ability to think a movement where actual 

motion is compromised after brain or spinal cord lesion.  
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2 Chapter II 

 

SPIKE-TIMING DEPENDENT PLASTICITY IN 

THE LONG LATENCY STRETCH REFLEX 

FOLLOWING PAIRED STIMULATION FROM A 

WEARABLE ELECTRONIC DEVICE 

2.1 Introduction 
 

The reticulospinal tract is a major descending motor pathway, which is typically 

considered to convey commands for gross motor function such as maintaining posture, 

locomotion and reaching movements (Matsuyama and Drew, 2000, Prentice and Drew, 

2001, Dyson et al., 2014, Buford and Davidson, 2004, Davidson and Buford, 2006). 

Recent work in primates has shown that the reticulospinal tract may also contribute to 

hand function, in parallel to the more prominent corticospinal tract (Riddle et al., 2009, 

Soteropoulos et al., 2012, Baker, 2011, Riddle and Baker, 2010). Following 

corticospinal damage, connections from the reticulospinal tract to motoneurons 

controlling the upper limb strengthen selectively to flexors (Zaaimi et al., 2012). This 

probably underlies the selective recovery of function seen after stroke or spinal cord 

injury, when extensors remain weak, but flexors regain strength, sometimes even to the 

extent of unhelpful spasticity. 

These observations motivate the search for principled interventions to modify 

reticulospinal connections, which could enhance functional recovery after lesion. 

Previous work has induced plastic changes in the cortex by consistently pairing stimuli 

which act on a common circuit. By the principles of spike-timing dependent plasticity, 

if a post-synaptic neuron is activated consistently after a pre-synaptic input, that input 

is strengthened; reversing this timing weakens the input (Markram et al., 1997). 

Plasticity protocols can use pairs of stimuli delivered using microelectrodes (Bi and Poo, 

2001), or time one stimulus at a fixed delay after spontaneous neural spikes (Jackson et 

al., 2006). It is also possible to induce plasticity using non-invasive stimuli. Example 

paradigms targeting the cortex pair transcranial magnetic brain stimulation with 

peripheral nerve stimulation (Stefan et al., 2000), or stimulation of the motor points of 
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two hand muscles (Ridding and Uy, 2003). To date, no reports have attempted to induce 

plasticity in reticulospinal pathways. 

An essential pre-requisite to induce spike-timing dependent plasticity is to find two 

stimuli which converge on a common target circuit. It is well known that the brainstem 

nuclei which give rise to the reticulospinal tract receive extensive afferent input (Leiras 

et al., 2010); electrical stimulation in the periphery will thus generate robust synaptic 

input. It has been recently demonstrated that primate reticular neurons fire bursts of 

action potentials after loud auditory clicks (Fisher et al., 2012). I therefore hypothesised 

that precisely-timed pairing of peripheral shocks with clicks may lead to plasticity in 

reticulospinal circuits. 

Experimental study of plasticity finally requires a way to measure any changes. For the 

corticospinal system, motor evoked potentials following transcranial magnetic brain 

stimulation are typically used to assay connectivity. Similarly, unambiguous non-

invasive measures of reticulospinal function are not available. One option may to be 

assess the long-latency stretch reflex (LLSR). For distal muscles acting on the digits or 

wrist, the LLSR appears to have a substantial component passing via the primary motor 

cortex and the corticospinal tract (Matthews et al., 1990, Cheney and Fetz, 1984), 

although even the LLSR in finger muscles has a reticulospinal contribution 

(Soteropoulos et al., 2012). For muscles acting on the elbow and shoulder, although 

there is undoubtedly a corticospinal contribution (Pruszynski et al., 2011a, Evarts and 

Tanji, 1976), there is evidence that this is reduced compared to more distal muscles 

(Fellows et al., 1996) and that there may also be a sub-cortical component (Kimura et 

al., 2006). I therefore hypothesised that LLSR in a more proximal muscle might partially 

measure reticulospinal output (Kurtzer, 2014), and that paired stimuli targeted to induce 

plasticity in reticulospinal pathways might modify the LLSR. 

To date, most experiments on synaptic plasticity have paired stimuli for only short 

periods, working within the confines of a laboratory setting. Whilst changes may be 

induced, they typically fade after around an hour. I wished instead to develop protocols 

which could be applied for many hours while the subject went about their normal daily 

activities. To this end, I utilized a wearable electronic device, capable of delivering the 

required stimuli in a portable system. In this study, I describe successful induction of 



Chapter II  43 

plasticity using this device measured as a change in LLSR, which may partially reflect 

spike timing dependent processes within the brainstem. 

 

2.2 Materials and Methods 
 

Results were obtained from 74 healthy volunteers (22 male) aged 19-84 years over 89 

experiments. All procedures were approved by the local ethical committee of Newcastle 

University Medical School, and full written consent was obtained from each participant.  

2.2.1 Measurement of Stretch Reflex  
 

Subjects were seated in a rigid chair, fitted with a five-point harness to prevent trunk 

and shoulder movements. Electromyogram (EMG) was recorded from the biceps and 

brachioradialis muscles of the right arm, using adhesive surface electrodes (Kendall 

H59P for brachioradialis and Kendall H91SSG for biceps) placed over the muscle belly 

with an interelectrode spacing of 2 cm for brachioradialis and 3-5 cm for biceps.  

Electrodes were connected to a Digitimer D360 amplifier (gain 1000, bandpass 30 Hz – 

2 kHz). The arm was fitted into a robotic device which measured elbow flexion angle, 

and could generate torques around the elbow using a powerful motor (Maxon part 

number 353301, with 25:1 planetary gearhead and a further 1.6:1 reduction ratio 

generated by the gear wheels and belt drive linking motor to drive shaft). The forearm 

was partially pronated, and the shoulder was flexed at 45⁰ and abducted at 90⁰ (Fig. 

2.1A). Subjects were instructed to maintain a 90⁰ flexion against a background torque, 

by moving a cursor related to elbow angle into a target displayed on a computer screen. 

With a delay of 1.5-2 s after the target was acquired (chosen at random from a uniform 

distribution) the motor torque increased to a high level (66 Nm) for 150-200 ms, 

generating an elbow extension movement with a near-constant velocity of 150-300⁰/s. 

This was a little lower than the expected velocity obtained by taking the motor’s 

specified free-running speed, and correcting for the gearing (404 ⁰/s). It is likely 

therefore that the motor rapidly accelerated the arm to a terminal velocity, in which 

friction in the gears and bearings was equal and opposite to the motor torque. These 

perturbations evoked consistent short and long latency reflexes (Trumbower et al., 2013, 

Thilmann et al., 1991b) in the recorded muscles. Subjects were told to return the arm to 
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the central target after each perturbation, but were not required to do this within any 

time constraints. A total of sixty trials were recorded for each session, comprising 20 

trials at each of three levels of background torque.  Levels of background torque were 

determined individually for the subject to allow comfortable task performance, and 

ranged from 0 to 4.5 Nm; the same levels were used for that subject in both recording 

sessions. 

EMG, elbow displacement and motor torque signals together with markers indicating 

task events were captured to a personal computer (5 kHz sampling rate) using a 1401 

interface (Cambridge Electronic Design). Subsequent analysis involved constructing 

averages of rectified EMG, using custom scripts written in the MATLAB environment. 

 

2.2.2  Experimental Protocol 
 

All experiments followed the same general pattern (Fig. 2.1B). Subjects came to the 

laboratory before 9:30am, and a set of stretch reflex recordings were made. They were 

then fitted with a wearable electronic device, designed to deliver electrical and auditory 

stimuli. The wearable device generated constant-current electrical stimuli to the biceps 

muscle (surface electrodes and placement as above; 220V compliance; 150 µs pulse 

width; more proximal electrode negative). The intensity was adjusted to be just below 

motor threshold (defined as a visible muscle twitch); subjects reported a weak 

paraesthesia produced by the stimulus. Auditory stimuli were generated by delivering a 

0.1ms wide, 12V square excitation pulse into a miniature earpiece; this produced a brief 

click with intensity 110 dB SPL. 
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Figure 2.1. Schematic diagram showing experimental setup and wearable device 

stimulus conditions. 
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A, subjects were strapped into a chair, with their right arm attached to a robotic device 

capable of delivering extension perturbations at the elbow joint. A computer screen 

provided visual feedback of elbow angle. B, the general experiment protocol. C-F, the 

four different stimulus conditions implemented by the wearable device, and their 

hypothesised effects on a reticulospinal neuron. C, biceps stimulation 10 ms before 

click; the EPSP elicited by the afferent input arrives just before the click-induced 

discharge, which should potentiate synapses conveying the EPSP. D, click 25 ms before 

biceps stimulation; the afferent EPSP arrives after the click-induced discharge, which 

should lead to depression of the EPSP. E, biceps stimulation alone, F, click stimulation 

alone. With no stimulus pairing, I expect no change in EPSP amplitude. 

 

Based on calculations provided by Rosengren et al. (2010), this intensity delivered at 

0.66 Hz for 8 hours corresponds to an A-weighted intensity of 68 dB LAeq, which is well 

below the recommended safe limit for hearing of 85 dB LAeq given by the UK’s Control 

of Noise at Work Regulations (The Stationery Office, 2005). The earpiece was placed 

in either the left or right ear. I found no consistent differences dependent on which ear 

was stimulated; recordings from monkey reticular formation also showed that cells 

could be activated by clicks delivered to a wide area of the scalp by a bone vibrator 

(K.M. Fisher, B. Zaaimi & S.N. Baker, personal communication). Stimuli were 

delivered with an inter-stimulus interval of 1.25-1.75 s (chosen at random from a 

uniform distribution). Subjects then left the laboratory and continued their usual daily 

activities. As most subjects were staff or students in the university, this typically 

involved office or laboratory tasks such as typing and soldering. After 5pm, they 

returned, the wearable device was removed, and a further set of stretch reflex recordings 

was made. Because the electrodes over biceps were used for both recording reflex 

responses and for stimulation, they were kept in place for the whole day, ensuring 

consistency between the morning and evening recordings. For the brachioradialis, either 

electrodes were also left in place all day, or their location was marked after the morning 

session with a UV fluorescent marker pen; this ensured that electrodes could be replaced 

in exactly the same location for the evening reflex recording. 

Four different stimulus combinations were tested in different experiments; these are 

illustrated in Fig. 2.1C-F, together with a schematic which indicates the effects in the 

brainstem which I hypothesised each would generate given previous work. The first 

paradigm placed the electrical stimulus 10 ms before the click. I expect the biceps 

stimulus to generate an EPSP within the reticular formation in a human subject with a 
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latency of around 10 ms (see Discussion). The click should generate an action potential 

burst after around 7 ms (Fisher et al., 2012). I predicted therefore that this timing would 

lead to the EPSP consistently arriving just before the spike burst, and should lead to 

long term potentiation. By contrast, when the click preceded the electrical stimulus by 

25 ms (Fig. 2.2D), this should place the EPSP after the spike burst, and generate long 

term depression. Two control conditions (Fig. 2.2EF) tested the effect of giving 

electrical or auditory stimuli alone. Some subjects participated in more than one of these 

paradigms; at least one week separated different experiments in the same subject. 

 

2.2.3  Analysis  
 

Figure 2.2A illustrates ten sweeps of raw EMG from a single subject following the 

perturbation. An average of the elbow displacement trace revealed a nearly linear ramp 

perturbation (Fig. 2.2B). One problem which I encountered was considerable variation 

in the level of background EMG prior to the perturbation onset. Since it is known that 

the stretch reflex scales with background activation  (Matthews, 1986), an inconsistent 

background would render comparisons of the morning and evening reflex recordings 

invalid. 
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Figure 2.2. Example result in a single subject. 

A, raw biceps EMG recording after ten perturbations. Dotted line indicates the 

perturbation onset. B, overlain single sweeps (thin lines) and average (thick line) of 

elbow angle during the perturbation for the same experiment as (A). C, distribution 

histograms of mean background EMG in the biceps muscle in one subject, for 

recordings before and after the wearable device stimulation. Orange shading marks the 

minimum value of each bin. D, average rectified EMG in the biceps muscle following 

perturbation onset (dotted line), for recordings before and after wearable device 

stimulation (protocol Bi-10ms-C, Fig. 2.1C). Average has been compiled using the 

sweep selection procedure described in the text and illustrated in (C), such that baseline 

EMG is matched. Short latency (R1), long latency (R2) and voluntary response epochs 

are marked. E, average elbow angle for the same experiment as (C); traces for 

measurements before and after wearable device stimulation are overlain, but are barely 

distinguishable. F, measurements of area under the curve as a percentage of baseline 

EMG for the experiment shown in (D). The R2 response was significantly facilitated 

(P<0.05).  For all panels, black traces refer to measurements before wearable device 

stimulation, and red after. 
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Figure 2.2C illustrates the approach taken to this problem. I first measured the 

background EMG in each of the 60 available sweeps over the 50 ms prior to perturbation 

onset, for both morning and evening recordings. The interval from the largest to the 

smallest background measured was divided into 20 equally-spaced bins, and each sweep 

was allocated to one of these bins. This led to a distribution histogram, as shown in Fig. 

2.2C. For each bin, I took the minimum count between the morning and evening 

recordings. For the session which had this minimum, all sweeps falling in that bin were 

used. For the other session, a number of sweeps equal to the minimum count were 

chosen at random. Following this procedure for all bins led to selection of a subset of 

sweeps, with equal numbers of in both morning and evening sessions, and with a very 

similar mean background EMG level. These sweeps were averaged together, generating 

traces as in Fig. 2.2D.  

Following previous work (Mortimer et al., 1981, Pruszynski et al., 2011b), responses 

were categorised by their latency (Fig. 2.2D) as short latency stretch reflex (R1; 20-

50 ms), long-latency stretch reflex (R2; 50-100 ms) and voluntary (>100 ms). Within 

the R1 and R2 windows, the percentage increase of the area under the curve relative to 

the background was used as a measure of reflex amplitude. The significance of changes 

in reflex amplitude were assessed using t-tests on the single sweep measures of area 

under the curve above background, with a threshold of P<0.05. 

 

2.3 Results 
 

Figure 2.2D illustrates an example result from one subject, in which the wearable device 

was programmed to deliver electrical stimuli to the biceps muscle 10 ms before a click 

(protocol of Fig. 2.1C). The background level of EMG was very similar for recordings 

made before and after the wearable device intervention (red vs black traces in Fig. 2.2D), 

confirming the efficiency of the method of sweep selection described in Methods (Fig. 

2.2C). Although very similar for the R1 component, the long-latency stretch reflex (R2) 

was noticeably enhanced in the later recording. Figure 2.2F presents measures of area 
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under the curve for each response window; there was a significant increase in the R2 

response. 

 

Figure 2.3. Group results in the biceps muscle. 
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A&C, comparison of mean reflex size (expressed as a percentage of baseline EMG 

activity) before (circles) and after (squares) wearable device stimulation, for the four 

stimulation protocols illustrated in Fig. 2.1C-F. *, P<0.05; **, P<0.005. B&D, stacked 

bar plots showing the number of subjects with significant (P<0.05) reflex facilitation 

(black), suppression (grey) or no change (white). A&B relate to the short latency (R1) 

reflex component, C&D to the long latency (R2) component. 

 

Figure 2.3 presents group results for recordings from the biceps muscle. These have 

been separated into R1 (Fig. 2.3AB) and R2 (Fig. 2.3CD) components. Figure 2.3AC 

shows mean reflex amplitudes, calculated across all subjects participating in a given 

wearable device protocol (as defined in Fig. 2.1C-F). The R2 component showed a 

significant increase (P<0.0002, paired t-test), on average from 176% to 263% of 

baseline (an increase of 49%) for the condition where the electrical stimulus preceded 

the click by 10 ms. There was a significant decrease (P<0.005, paired t-test), on average 

from 239% to 165% of baseline (a decrease of 31%) when the click preceded the 

electrical stimulus by 25 ms (Fig. 2.3C). The direction of these effects was as predicted 

on the basis of spike-timing dependent plasticity (Fig. 2.1CD). There was no significant 

difference in the size of the control reflex (before wearable device stimulation) between 

these two experiments. A small but significant decrease (by 17%; P<0.02, paired t-test) 

was also seen in the R1 reflex for the second protocol. The control protocols, where 

either electrical or auditory stimuli were given alone, produced no significant changes 

(P>0.05, paired t-test). 

It is now well recognized that plasticity protocols often lead to substantial heterogeneity 

in response across subjects (Wiethoff et al., 2014); some of this may be determined by 

genetic factors (Cheeran et al., 2008). Accordingly, Fig. 2.3BD examines at the single 

subject level how many showed significant changes. Each bar shows the number of 

subjects with significant increases, significant decreases or no significant change for a 

given protocol and response window. For protocols with no significant change in 

average response, the pattern across subjects tended to be inconsistent, with some 

increases and decreases seen. However, for R2 reflex following paired stimulation, a 

clear pattern emerged which supported the group-averaged data. When the electrical 

stimuli preceded the click 15/25 subjects showed a significant rise in R2, compared with 

only 2/25 a decrease. By contrast, when the click preceded the electrical stimulus, 24/33 

showed a drop in R2 amplitude but only 5/33 a rise. To see counts as extreme as 15/25 
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and 24/33 is highly unlikely by chance (P<10-17, based on the binomial distribution, with 

n=25 and 33 respectively and P(hit)=0.025). Similar results were obtained if I 

considered simply whether reflexes increased or decreased, irrespective of whether 

these changes were significant for an individual subject (electrical stimulus before click, 

23/25 subjects R2 increased; click before electrical stimulus, 26/33 subjects R2 

decreased; both P<0.002 based on binomial distribution with P(hit)=0.5).  

The wearable device protocols examined involved electrical stimulation of the biceps 

muscle; however, stretch reflex recordings were made from both biceps and 

brachioradialis, which are both elbow flexors in the arm posture tested. This allowed me 

to examine the extent to which changes in reflex amplitude were specific to the 

stimulated muscle, or might spread to anatomical agonists.  
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Figure 2.4. Group results in the brachioradialis muscle. 

A&C, comparison of mean reflex size (expressed as a percentage of baseline EMG 

activity) before (circles) and after (squares) wearable device stimulation, for the four 

stimulation protocols illustrated in Fig. 2.1C-F. There were no significant differences 



Chapter II  54 

(P>0.05). B&D, stacked bar plots showing the number of subjects with significant 

(P<0.05) reflex facilitation (black), suppression (grey) or no change (white). A&B relate 

to the short latency (R1) reflex component, C&D to the long latency (R2) component. 

 

Figure 2.4 presents the results for the brachioradialis muscle, in a similar format to those 

of Fig. 2.3. No significant changes were seen in any of the group averages (Fig. 2.4AC). 

At the single subject level, similar numbers of subjects in a given protocol showed 

significant increases or decreases (Fig. 2.4BD), suggesting that this reflected noise 

fluctuations in amplitude measurement rather than consistent plastic changes. 

 

2.4 Discussion 
 

2.4.1  Pathways Contributing to the Long Latency Stretch Reflex 
 

Following the discovery of the LLSR (Hammond, 1954), considerable research 

focussed on the pathways responsible. This reached a consensus by the early 1990s that 

the LLSR in muscles acting on the digits or wrist was mediated largely by Group Ia 

muscle afferents traversing a transcortical pathway (Matthews, 1991b). However, this 

did not exclude other contributions. For example, some continued to argue that 

cutaneous afferents play a dominant role (Corden et al., 2000); earlier studies suggested 

that the LLSR was a spinal reflex mediated by slower conducting Group II afferents 

(Matthews, 1984), although subsequent results did not support this (Matthews, 1989). 

For muscles acting around the elbow or shoulder, motor cortical recordings in monkey 

do reveal evidence for some transcortical contribution (Pruszynski et al., 2011a, Evarts 

and Tanji, 1976). Transcranial magnetic brain stimuli delivered over motor cortex and 

timed to coincide with the LLSR are facilitated, also suggesting a transcortical 

contribution (Pruszynski et al., 2011a). However, evidence from patients with motor 

disorders suggests that the transcortical route for the LLSR may be less important in 

elbow muscles compared to the hand (Fellows et al., 1996, Thilmann et al., 1991b). The 

tonic vibration reflex, which may relate to the LLSR, relies on the brainstem reticular 

formation (Gillies et al., 1971). Even for finger perturbations, it has been recently shown 

that the reticular formation probably contributes to the LLSR (Soteropoulos et al., 2012). 

It therefore seems probable that the reticular formation contributes to LLSR in more 
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proximal muscles as well (Kurtzer, 2014), and could even be the dominant pathway. 

Such evidence caused me to measure changes in the LLSR following elbow 

perturbations after a paired stimulus protocol designed to target reticulospinal output. 

The finding that the LLSR exhibits plastic changes, in a manner consistent with the 

predictions of how paired stimuli should modify the reticulospinal output, is consistent 

with a reticulospinal role in elbow muscle LLSR. For instance, my results show that 

facilitation occurred in the LLSR in biceps after a time-adjusted paired stimuli paradigm 

designed to affect the reticular formation within the calculated (discussed below) STDP 

window. Considering the afferent nerve conduction speed, the onset of the stretch reflex 

and timing of the sensory input, it is likely that these paradigms are capable of changing 

excitability in the reticular formation, further reflecting its contribution to the LLSR. 

 

2.4.2  Spike Timing Dependent Plasticity 
 

Several features of my results suggest that it was possible to induce spike-timing 

dependent plastic changes. Firstly, the control conditions which delivered either 

electrical stimulation of biceps alone or clicks alone failed to generate consistent 

changes in the reflex measures. This not only controls for the effects of the unpaired 

stimuli, but also provides confidence that there were no consistent changes in the 

reflexes between the morning and evening assessments, caused for example by diurnal 

rhythms or fatigue. Secondly, it is striking that shifting the relative timing of the two 

stimuli by only 35 ms should have had such a profound effect, reversing an average 

facilitation in biceps R2 reflex to a suppression. Finally, plastic changes were only seen 

in the biceps muscle which was stimulated, and not in the closely related agonist 

brachioradialis. This seems to fulfil the ‘specificity’ criterion of long-term potentiation 

whereby effects are limited to the stimulated site, although I cannot rule out the 

alternative possibility that only pathways targeting the biceps are capable of showing 

these changes. 

The stimulus timings were chosen based on the expected delays to generate activity 

within the reticular formation. In monkey, it is  known that reticular responses to clicks 

have onset latency around 7 ms (Fisher et al., 2012). Although the human head is larger, 

most of this delay relates to central processing rather than axonal conduction, so that it 

is likely to be only slightly longer in man. Electrical stimulation of the human median 
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nerve at the wrist produces EEG responses attributed to the medial lemniscus with 

latency around 14 ms (Taylor and Black, 1984); effects should reach the reticular 

formation shortly afterwards. I estimate the distance between the biceps motor point and 

the wrist as 350-400 mm; using a fast afferent conduction velocity of 85 m/s, this would 

imply a reduction of 4-5 ms in latencies to account for the more proximal stimulus site. 

Synaptic potentials in the reticular formation should thus start around 10 ms after the 

biceps electrical stimulus. Stimulating the biceps motor point 10 ms before the click 

should therefore place the earliest synaptic potentials from afferent input around 7 ms 

before the action potential burst generated by the click. This timing is therefore 

appropriate to generate potentiation of the synaptic inputs. 

When reversing the timings, the duration of the action potential burst must be 

considered; neural firing can continue for up to 25 ms after the click (Fisher et al., 2012). 

Placing the biceps stimulus 25 ms after the click therefore should position the synaptic 

potentials from afferent input around 10 ms after the end of the action potential burst; 

this should be appropriate to depress the synaptic inputs. 

It is impossible to be certain of the site of the plastic changes which was measured in 

the LLSR, but the success of the chosen timings argues that some modification of 

synapses may have occurred within the brainstem itself. Other possibilities are within 

spinal cord interneurons, or within the cortex, but the anatomy of the conduction delays 

conspires to make these less likely. If a spinal cord interneuron discharged following a 

click-elicited reticulospinal burst, this would be at least 3-4 ms later than the burst onset 

in the brainstem. This estimate is based on the fact that central motor conduction time 

from M1 to cervical enlargement in human is around 7 ms (Jaiser et al., 2015). The 

brainstem is approximately halfway along this path, and fast reticulospinal and 

corticospinal fibres have similar conduction velocity (Riddle et al., 2009). By contrast, 

an afferent volley following the biceps stimulus would arrive at the cervical enlargement 

3-4 ms earlier than at the brainstem. The interval between the responses then increases 

from the estimate of 7 ms at the brainstem estimated above, to around 14 ms at the spinal 

cord; this is less likely to drive plastic changes. For the cortex, the responses to biceps 

stimulation will be delayed by around 6 ms relative to the brainstem, but those following 

the auditory click by substantially more: the earliest cortical auditory evoked potential 

occurs with 50 ms latency (Farrell et al., 1980). The responses in the brainstem appear 
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best timed to generate spike-timing dependent changes, although it is impossible to rule 

out a contribution from other centres. 

A small suppression was seen in the R1 reflex when the biceps stimulus followed the 

click (Fig. 2.3A), indicating that changes within spinal circuits may also have played a 

role in my results. Human subjects, monkeys and rats can all learn to increase or 

decrease the size of an H reflex (the electrical analogue of the R1 reflex) if appropriately 

rewarded (Thompson and Wolpaw, 2014). In monkeys subjected to repeated reflex 

testing, but with no attempt at up- or down-conditioning, there is a progressive reduction 

of the R1 reflex (Meyer-Lohmann et al., 1986). In rat, reflex conditioning depends on 

the corticospinal tract and sensorimotor cortex, but not other descending pathways 

(Chen et al., 2006b, Chen et al., 2006a, Chen and Wolpaw, 1997, Chen and Wolpaw, 

2002). Down-conditioning leads to increases in identifiable GABAergic terminals in the 

spinal cord (Wang et al., 2006), but is dependent on an intact cerebellum (Chen and 

Wolpaw, 2005); spinal plasticity therefore seems to be guided and maintained by supra-

spinal pathways. It is likely that conceptually similar processes are occurring here, 

although whether the same central structures and descending pathways which contribute 

to reflex conditioning in rat are responsible in this case remains to be determined. 

The LLSR is known to change depending on the behavioural context; this appears 

flexibly to integrate the known biomechanics of the limb (Kurtzer et al., 2008). It is 

unclear how the plastic changes which I have seen would interact with these task 

dependent changes. It is also unclear for how long plastic changes would last, and 

whether they could be prolonged by applying the stimulus pairing for longer than the 

~7 hours which was tested in this report. All of these questions remain to be addressed 

in future studies. However, this report marks the first demonstration of plasticity in the 

LLSR induced with paired stimulus paradigms, and may indicate that brainstem as well 

as corticospinal descending systems can undergo plastic changes. Previous work has 

shown that rehabilitation after spinal cord injury can be enhanced by up- or down-

conditioning of spinal reflexes (Chen et al., 2006c, Thompson et al., 2013). I hope that 

the novel protocol introduced here may open up new possibilities for enhancing 

rehabilitation during recovery from stroke or spinal cord injury, in which I have shown 

that brainstem pathways play an important role. 
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3 Chapter III 

 

A HIERARCHY OF PLASTICITY IN HUMAN 

HAND AND FOREARM MUSCLES 

3.1 Introduction 
 

Reorganization of neural connections or structures in the central nervous system, also 

known as plasticity, generally shapes the outcome of learning, behaviour and motor 

reflex in healthy individuals (Classen et al., 1998, Cohen et al., 1997) and plays a critical 

role during recovery after brain lesions (Thulborn et al., 1999, Lemon, 1981, Murray 

and Coulter, 1981, Ridding and Rothwell, 1995, Di Lazzaro et al., 2009, Baker et al., 

2015, Benecke et al., 1991). To investigate the underlying physiological mechanisms 

and potential therapeutic role of neurological adaptations, artificial induction of plastic 

changes in the motor cortex or subcortical level utilizing Transcranial Magnetic 

Stimulation (TMS) alone (Huang et al., 2005) or in conjunction with other interventions 

(Stefan et al., 2000) have been studied previously. Stefan et al. (2000), in their seminal 

study, successfully manipulated motor cortical plasticity with paired associative 

stimulation (PAS) using synchronous TMS and median nerve stimulation, resulting in 

an increased Motor Evoked Potential (MEP) at rest. A number of other PAS protocols 

are known to affect cortical and subcortical excitability leading to rapid reorganization 

in the corticomotor neural pathways; for example electrical stimulation of peripheral 

nerves (Ridding et al., 2001, Conforto et al., 2002, McKay et al., 2002a) or motor point 

stimulation of muscle (Ridding and Uy, 2003, McKay et al., 2002b) can initiate 

development of transient or persistent plasticity in the motor cortical output. While the 

capability of specifically designed afferent input or cortical stimulation in reorganizing 

cortical or subcortical neural pool has been documented in many previous studies, there 

is still a lack of data whether and how this kind of modulation affects different groups 

of muscles differently. Especially, how this modulatory mechanism affects the 

functional outcome in agonist-antagonist muscles was largely overlooked. 

The scopes for synaptic reorganization and remodelling for different groups of upper 

limb muscles may inherently differ from each other. Characteristic facilitation in flexor 

was evidenced by Vallence et al. (2012) in their study where MEP in the forearm flexor 
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muscle increased after ischaemic blocking of afferent inputs but not in the extensor. 

They suggested that the forearm flexors have a greater potential for plasticity than the 

forearm extensors. Task-dependent and muscle-specific variation in the motor cortical 

excitability for flexor vs. extensor muscle in the upper limb was noticeable when 

Godfrey et al. (2013) found that a repetitive flexion task increased cortical excitability 

in the finger flexors but with no such effect for finger extensors. However, it is yet to 

establish whether these changes in the cortical excitability for different muscles are 

influenced by afferent inputs or mostly depend on reorganization in the motor cortex 

irrespective of sensory feedback. Ridding and Rothwell (1995) showed that 

reorganization in corticospinal projections took place in the absence of sensory 

awareness or feedback. In another experiment, Ziemann et al. (1998a) found that 

ischaemic nerve block could induce a deafferentation-mediated reorganization in the 

motor cortex which resulted in further plastic changes mediated by subthreshold 

stimulation of motor cortex using repetitive Transcranial Magnetic Stimulation (rTMS). 

As evidenced by some of those previous studies, flexor and extensor muscles in the 

forearm differ in terms of modulating cortical excitability, but up to my current 

knowledge, no previous study showed any direct comparison modulating flexor vs. 

extensor motor outputs by non-invasive protocols that either stimulate motor cortex 

alone or in conjunction with another afferent input. To test and compare any potential 

variations in the induced plasticity in distal hand and flexor-extensor group of muscles, 

here I took a modified approach. Instead of stimulating any peripheral nerve, a common 

wrist flexor or extensor muscle, close to its motor point, was directly stimulated via 

transcutaneous stimulation to send an afferent volley. It has been documented that 

muscle belly or motor point stimulation can recruit multiple types of afferent nerves 

including Ia, Ib and cutaneous afferents (Bergquist et al., 2012, Dideriksen et al., 2015). 

Muir and Lemon (1983) also showed that electrical stimulation of the muscle belly can 

effectively excite a substantial proportion of alpha-motoneurons of the targeted muscle. 

In line with previous evidence (Bergquist et al., 2011a), my understanding was by 

stimulating the muscle belly close to the motor point it could be possible to pass enough 

afferent drive towards higher cortical motor neuron pool controlling excitability and 

motor output. When paired with a time adjusted TMS, this afferent input from motor 

point could induce plasticity in a manner consistent with spike-timing dependent 

plasticity protocols. Similar techniques to stimulate motor point directly with 



Chapter III  61 

subcutaneous electrical stimulation were utilized previously in PAS protocols by other 

researchers successfully, where they were able to change the MEP in the targeted 

muscles (McKay et al., 2002b, Ridding and Uy, 2003). 

In a separate set of experiments, I tested rTMS in the form of intermittent theta burst 

stimulation (tTMS) (Huang et al., 2005) and measured the output in the same muscles 

tested before with my PAS protocol to compare any changes in cortical excitability. In 

recent years, rTMS has increasingly been utilized as a treatment option for a variety of 

neurological disorders including Parkinson’s disease and other psychiatric conditions 

like depression with some success (Hausmann et al., 2004, George et al., 2009, 

Schlaepfer et al., 2010, Wagle Shukla et al., 2016, Martin et al., 2003, George et al., 

1995).  While high frequency rTMS has a known effect in producing synaptic plasticity 

in animals (Shang et al., 2016, Yoon et al., 2011, Lenz et al., 2016), relatively moderate 

to low frequency rTMS, within its safety limit (Huang and Rothwell, 2004), can also 

change motor cortical excitability in human (Avenanti et al., 2012, Chou et al., 2015, 

Todd et al., 2010). 

I, therefore, set three aims for this study: i. utilizing the PAS protocols as a convenient 

and translational method by stimulating muscle directly to investigate brain plasticity in 

human, ii. To compare relative changes in flexor vs extensor and distal hand muscle 

outputs after interventions for a better understanding of the complex cortical and spinal 

circuitry controlling hand muscles differently, and iii. To compare and test the 

contribution of afferent input in changing relative plasticity in flexor vs. extensor. The 

acquired knowledge might be useful in implementing a successful therapeutic and 

rehabilitation strategy to reduce flexor spasticity and to recover extensor weakness 

following stroke or spinal cord injury. 

 

3.2 Materials and Methods 

3.2.1  Subjects 
 

Results were obtained from 23 healthy volunteers (8 male; age range 19 – 50 years) in 

30 sessions of the PAS experiment. 9 healthy volunteers (4 male; age range 19 – 32 

years) were tested for the rTMS experiments in 16 sessions. All procedures were 

approved by the local ethical committee of Newcastle University Medical School. Prior 
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to each experiment, full written consent was obtained from each participant after 

explaining each procedure in detail. 

 

 

3.2.2  Electromyographic (EMG) recording 
 

In all experiments, Electromyogram (EMG) was recorded unilaterally from three 

different groups of muscles- Flexor Digitorum Superficialis (FDS), Extensor Digitorum 

Communis (EDC) and two distal hand muscles Abductor Pollicis Brevis (APB) and 

First Dorsal Interosseous (1DI). Adhesive surface electrodes (model H59P, Kendall) 

were placed directly over the muscle belly approximated to the motor point with an 

interelectrode spacing of 2 cm for FDS and EDC muscles. Another pair of similar 

electrodes were placed over the muscle belly of the left APB and 1DI, 1 cm apart from 

each other. Electrodes were connected to a Digitimer D360 amplifier (gain, 1000; 

bandpass filter, 30 Hz to 2 kHz) and EMG signals were stored in a laboratory computer 

system for analysis after those were digitized using an analogue-digital converter (model 

1401, Cambridge Electronics Design, Cambridge, UK). 

 

3.2.3  Transcranial Magnetic Stimulation (TMS) 

For PAS experiments, a figure of eight shaped magnetic coil (model D702) fitted with a 

tracker and connected with a Magstim (BiStim2, Magstim Ltd UK) stimulator was used 

to provide focal TMS stimulation to the contralateral hemisphere. Following earlier 

studies (Stefan et al., 2000, Ridding and Uy, 2003), the coil was positioned tangentially 

over the skull with the handle pointing backward and laterally producing 45o angle to 

the sagittal plane for all subjects. A second tracker, delivering input to an overhead 

camera, was fitted to a headband and was positioned on the subject’s forehead. A 

Brainsight navigation system (Rogue Resolutions Ltd, Cardiff) was used to track and 

monitor the relative coil position in all the experiments. 

A separate figure of eight shaped magnetic coil connected with a Magstim Rapid was 

used for the rTMS experiments. It also contained a tracker for the Brainsight navigation. 

Similar techniques as previously were used for positioning of the coil, tracking, defining 

and targeting the optimal site for stimulating the motor cortex during the rTMS study. 
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3.2.4  Electrical Stimulation at motor point: 
 

Electrical stimulation was delivered from the same bipolar surface electrodes (Silver-

Silver Chloride) that were already placed directly on the skin overlying the stimulated 

muscle belly. About 15-25 mm distance between the active and passive node was 

maintained. Two different protocols were used where either the FDS or EDC muscle’s 

motor point was stimulated 18ms prior to TMS. A single square pulse electrical 

stimulation with a width of 500µs was delivered to the targeted muscle belly close to 

the motor point from a Digitimer constant current stimulator (DS7A). The perceptual 

threshold was measured by visual feedback individually. To ensure a clearly visible 

twitch at the targeted muscle, 2x to 3x of the perceptual threshold was used as the 

intensity of the electrical stimulation that was delivered during the final test. Either the 

FDS or the EDC alone was stimulated during each session of the experiment. 

 

3.3 Experimental procedures: 
 

Subjects were seated in a comfortable and slightly reclined height adjusted chair and 

placed their right forearm on the adjacent table. They were instructed to stay completely 

relaxed during the entire experiment and complete muscle relaxation was ensured by 

EMG signal live monitoring and visual feedback. Motor Evoked Potentials (MEP) was 

elicited with suprathreshold stimulator intensity by placing the coil over the left 

hemisphere. MEPs from the FDS and EDC muscles were assessed to locate the optimal 

site which showed the maximum response from both muscles. It was then marked as the 

hotspot in the Brainsight navigation system. Like many other previous studies (Rossini 

et al., 1994, Stefan et al., 2000) , the minimum stimulator intensity required to evoke at 

least 50µV response in both relaxed muscles in at least 5 out of 10 repeated trials was 

obtained and determined as the Resting Motor Threshold (RMT). Throughout the 

experiment, 1.2xRMT was used to record MEP amplitude from all four muscles. For 

the rTMS protocol, active motor threshold (AMT) was measured using a second coil. 

AMT was determined as the minimum intensity required to evoke a MEP amplitude 

measuring 0.1mv peak to peak, which occurred at least 5 times in a total number the 10 

trials, during a sustained voluntary contraction of the targeted muscle active with 20% 
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of maximal contraction (Rossini et al., 2015, Rossini et al., 1994). A steady contraction 

level was achieved and maintained by real-time visual feedback from a display. 

 

3.3.1  PAS Protocol 
 

To record the resting MEPs from all four muscles, a set of 20 TMS at a rate of 0.1Hz 

was delivered at the optimum location on the scalp before the intervention (Fig. 3.1A). 

In most cases, another set of 20 TMS was delivered to get consistent baseline MEPs 

from the averaged data. For the PAS protocol (intervention), either the FDS or EDC 

muscle received a square pulse electrical stimulation 18ms before delivering single 

pulse TMS stimulation at an intensity of 1.2x RMT. A total number of 90 such paired 

stimuli was delivered over 30 minutes at a fixed rate of 0.05 Hz (pairing duration 30 

minutes). Immediately after paired stimulation protocol, two sets of 20 resting MEPs 

were recorded again delivering TMS at same intensity and rate that was used for 

recording the baseline MEPs. In all cases, only one muscle was stimulated each time in 

each session of experiment, i.e., muscle stimulation for intervention was given to either 

FDS or EDC muscle. 
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Figure 3.1. Schematic diagram showing experimental setup and protocols. 

In all protocols, TMS was delivered to motor cortex before and after the test and MEPs 

were recorded from four muscles – FDS, EDC, APB and 1DI. A, PAS protocols, where 

electrical stimulation was applied to muscle motor point 18ms before the TMS. Either 

FDS or EDC muscle was stimulated in each session of the experiment. Total N=90 

paired stimulation was delivered. B, Intermittent rTMS protocol, where 2 pulses of TMS 

were delivered at 50Hz frequency as a block and each block was delivered at 0.1Hz 

frequency for 190s.   

 

3.3.2  rTMS protocol 
 

A Magstim Rapid stimulator was used to measure the active motor threshold (AMT), 

defined as the minimum intensity required to evoke a MEP with 100 µV peak-to-peak 

amplitude in at least 5 trials out of 10 during a steady voluntary contraction (20% of 
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maximal contraction) of 1DI. A Magstim 2002 stimulator was used to determine the 

RMT, as described previously. Before delivering the rTMS protocol, baseline MEPs 

were recorded from each subject with 30 single pulse TMS applied at a rate of 0.2Hz 

with an intensity of 1.2xRMT (Fig. 3.1B). For the intervention, a modified intermittent 

Theta Burst Stimulation (iTBS) paradigm (Huang et al., 2005) was used. Pairs of stimuli 

(intensity 0.9xAMT) with 20 ms spacing were delivered every 200ms for 2s; such 

stimulus trains were given at a frequency of 0.1 Hz for 190s, amounting to a total of 400 

pulses during a single intervention session. Occasionally, there has been a brief pause 

during rTMS intervention, allowing the coil to cool off. MEP measurements (n=40) 

were taken again immediately following iTBS using the same stimulation parameters as 

at baseline. 

 

3.3.3  Data analysis 
 

Evoked MEP amplitudes for all four muscles were rectified and averaged separately. In 

all experiments, the MEP window under curve was measured manually from the onset 

of the response to the point where it returned to the background level usually 40~60ms 

after the onset of TMS. The mean value from MEP area was calculated from a maximum 

number of 40 responses before and after the intervention for each subject for both PAS 

and rTMS protocols. The mean values from before and after data set were compared for 

each subject in all four muscles. T-test, paired t-test or ANOVA were employed, and 

results were considered significant only if p < 0.05. 

Any change in the MEP amplitude after the intervention was calculated as a percentage 

of increase or decrease considering the mean response from before as a baseline. Any 

significant changes (p<0.05) in the response area after the intervention protocols was 

calculated and tested using t tests. 

 

3.4 Results 
 

Figure 3.2A shows an example of the rectified averaged responses from all four muscles 

before and after the PAS intervention from single subject who received motor point 



Chapter III  67 

stimulation at FDS. Post intervention MEP was increased significantly for flexor and 

more distal finger abductors but not for the extensor. 1DI showed maximum facilitation 

and MEP amplitude increased 129% (P<0.0001) for 1DI, 125% for APB (P<0.0001) 

and 85% for FDS (P<0.0001). EDC showed an opposite behaviour and the MEP 

decreased by 20% compared to the baseline measurements, which was a significant 

suppression (P<0.04).  
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Figure 3.2. Example result in single subject after testing with PAS and intermittent 

rTMS protocols. 

Dotted line indicates the TMS onset. Black trace=MEP before, red trace=MEP after. *, 

P<0.05. A, Average rectified MEP traces recorded from 1DI, APB, FDS and EDC 

muscles before and after running PAS protocol where Flexor (FDS) received 

stimulation. MEP increased significantly in all muscles except for EDC. B, Similar 

traces as in (A), but Extensor (EDC) received stimulation during the intervention. MEP 

increased significantly for all muscles except for EDC. C, Average rectified MEP traces 
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recorded from similar muscles before and after running the intermittent rTMS 

intervention protocol. Here, MEP increased significantly in all muscles except for 1DI. 

 

A similar result was observed when the extensor muscle was stimulated and paired with 

the TMS, shown in the example traces in Figure 3.2B. Again, the responses in 1DI, APB 

and FDS were significantly (P<0.005) greater after paired stimulation, but there was no 

change in the EDC measurements. The noticeable characteristics of much bigger 

facilitation in the distal muscles than the FDS persisted, where increases in 1DI, APB 

and FDS were 97%, 254% and 49% respectively.  

Figure 3.2C shows similar example of averaged sweeps of rectified MEP from a single 

subject before and after testing rTMS protocol. In contrast to PAS, rTMS appeared able 

to induce plastic changes also in the EDC muscle (Fig. 3.2C). In this subject, the MEPs 

in the APB, FDS and EDC muscles were all significantly increased (increases relative 

to baseline of 223%, 131% and 121% respectively, all P<0.05). Here, the MEP in the 

1DI muscle was not significantly changed (P>0.05). 

All the differences in after responses as a percentage of before measured from individual 

subjects were compiled, analyzed, plotted and compared against each muscle. Figure 

3.3 illustrates the group results from both the PAS and rTMS protocols for all four 

muscles. All the differences in after responses as a percentage of before measured from 

individual subjects were plotted and compared against each muscle. The PAS results 

have been further separated into flexor (Fig. 3.3A) and extensor stimulation protocols 

(Fig. 3.3C). For the flexor stimulation protocol, the mean response from 1DI for all 

subject showed the maximum change, with an increase of 182% in the MEP amplitude 

(P<0.001). The second highest change was seen in APB, MEP of which increased 154% 

(P<0.003) from before measurements. After responses in FDS also increased 

significantly (133%, P<0.03) in the group result. MEP amplitudes in the extensor muscle 

(EDC) failed to manifest any changes in the accumulated result after PAS intervention 

with flexor stimulation. 

Results gathered for extensor stimulation protocol from all subjects almost mirrored the 

result found from earlier protocol. Both distal finger muscles showed maximum increase 

in MEP after the test, where the % increase for 1DI and APB were 169% (P<0.006) and 
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216% respectively (P<0.001). Relatively smaller but significant increase was observed 

in FDS (129% P<0.04) and after measurements in EDC remained unchanged. 

Figure 3.3E shows mean percentage changes in the MEPs after testing rTMS protocol 

from all subjects. Significant increase in MEP in all four muscles were observed and the 

changes were almost similar in 1DI (141%, P<0.01), APB (141%, P<0.02), FDS (130%, 

P<0.01) and EDC (130%, P<0.02). 
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Figure 3.3. Individual and group results in four muscles. 

A-F, Plots showing mean changes (expressed as percentage of baseline MEP) in MEP 

after running a protocol for all subjects. Bar plots are showing number of subjects with 

observed effects. Black=significant facilitation, grey=significant suppression, white=no 

change. *, P<0.05; **, P<0.005. A,B, Results after running PAS protocol where flexor 



Chapter III  72 

stimulation was paired with TMS. Consistent significant facilitation occurred in all 

muscles except EDC. C,D, Results after running PAS protocol where extensor 

stimulation was paired with TMS. Consistent significant facilitation occurred in all 

muscles except EDC. E,F, Results after running intermittent rTMS protocol. Significant 

facilitation was observed in all four muscles in this group data.    

 

Figure 3.3 (B, D) examines the number of individual subjects who showed significant 

facilitation, significant suppression or no change for the PAS flexor and extensor 

stimulation protocols. Almost 2/3rd of the subjects showed a facilitatory effect in the 

after MEPs in flexor and distal hand muscles. In contrast, less than half of the subjects 

showed facilitation in the extensor muscle. Interestingly, 4 subjects ended up with 

suppression in EDC output (Fig. 3.3B). Stimulating extensor showed a similar trend and 

over 50% of the subjects showed increased MEP response in distal hand muscles, almost 

50% subjects showed increased MEP in flexor, whereas less than 50% subjects showed 

increased MEP in extensor muscle (Fig. 3.3D). 

For the rTMS protocol, as illustrated in Figure 3.3F, almost 50% subjects presented with 

an increase in the after-MEP response in all four muscles and did not show any trend 

for any single or group of muscles. 

Plotted data in Figure 3.4 illustrates the overall comparison of changes for each muscle 

and protocol. Figure 3.4 (A-C) represents the scatterplot for PAS results. FDS vs EDC 

plot shows a trend where more changes were found in FDS, making it more susceptible 

to changes with PAS protocols. Also, both 1DI and APB received more facilitation than 

EDC or FDS. A three factor ANOVA analysis showed that the ‘after responses’ in 1DI, 

APB and FDS were significantly different than that of the EDC (p<0.05) in this case. 
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Figure 3.4. Scatter plots illustrating changes in muscles with relation to each other. 

Results are expressed as percentage of baseline MEP, data from all subjects after tested 

with protocols. A-C, Relation and trend of changes in each muscle against others after 

running the PAS protocols; Red circle, when flexor stimulation was paired with TMS; 

black circle, when extensor stimulation was paired with TMS. Following hierarchy was 

observed: 1DI>APB>FDS>EDC. D-F, Similar scatter plots from changes in MEP after 

intermittent rTMS protocol. No consistent trend was noticed.    

 

Figure 3.4 (D-F) shows similar scatterplots representing all after changes as percentage 

of before in all four muscles for the rTMS protocol. In contrast with the PAS, no 
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consistent change was observed, and ANOVA test did not reveal any significant changes 

in any pair. 

Summing up the results finds that more distal hand muscles showed most pronounced 

facilitatory effect after paired cortical and motor point stimulation irrespective of the 

muscle stimulated. The flexor muscle also showed significant facilitation after paired 

stimulation, which was greater than the extensor muscle. In the contrary, a generalized 

facilitation was observed in all muscles after rTMS. 

 

3.5 Discussion 
 

3.5.1  Cortical stimulation paired with time adjusted motor point 

stimulation induces plasticity 
 

Widely accepted protocols of PAS involve precisely time adjusted stimulation of a 

peripheral nerve, most often electrical stimulation of median, ulnar or radial nerve, and 

a cortical stimulation capable of activating the targeted muscles. The peripheral nerve 

stimulation sends mixed afferent input through the muscle spindle or mechanoreceptors 

via Ia or II afferent fibres which carries an orthodromic volley to the supraspinal or 

cortical level. The functional nature and areas of activation in the primary motor cortex 

after cutaneous or deep stimulation in primates was known from some early seminal 

works (Strick and Preston, 1978, Lemon, 1981). Before reaching the primary motor 

cortex, this mixed afferent input along with a direct thalamic-M1 input (Hooks et al., 

2013), activates regions in the primary or secondary somatosensory areas, which were 

previously reported by several studies (Pons and Kaas, 1986, Allison et al., 1989, Forss 

et al., 1994). Advancement in functional and magnetic brain imaging techniques has 

allowed researches to find more complex areas which are activated by this input in both 

ipsilateral and contralateral cortex with an activation pattern relying on temporal 

distribution and onset latencies. These bilateral areas of activation roughly include: 

primary sensorimotor cortex, secondary somatosensory cortex, posterior parietal 

(Brodmann's Areas) and anterior operculum, supplementary motor area, few areas in the 

frontal cortex (Boakye et al., 2000, Korvenoja et al., 1999). Overall, the contralateral 

areas seem to be activated before the ipsilateral sites (Korvenoja et al., 1999). A 
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cutaneous afferent input, for example, tactile stimulation to digit, showed a similar 

tendency in activating the brain areas (Boakye et al., 2000). The presence of  cerebello-

thalamo-cortical (Asanuma and Hunsperger, 1975, Hamada et al., 2012) or thalamo-

cortical projections (Home and Tracey, 1979), which may act as a relay station for the 

afferent input before reaching to somatosensory or motor cortex is also undeniable 

(Stefan et al., 2000, Carson and Kennedy, 2013).   

My modified PAS protocol implementing a direct stimulation of muscle at 3x perceptual 

threshold close to motor point, instead of a median nerve stimulation, was able to 

modulate the MEP amplitudes. This result is not unsurprising because the central 

contribution of motor point stimulation achieved via stimulation over muscle belly is 

comparable with the central contribution evoked by direct stimulation of a peripheral 

nerve (Bergquist et al., 2011b, Bergquist et al., 2012). Besides, it has been shown earlier 

that peripheral electrical stimulation sufficient to evoke contraction can co-modulate the 

excitability of primary sensory and motor cortical areas (Schabrun et al., 2012, Koželj 

and Baker, 2014, Ridding et al., 2000). Therefore, the motor point stimulation over 

motor threshold instead of a median nerve stimulation was able to send the required 

afferent volley upward for to generate a pre-synaptic potential in the motor cortex, the 

first component of PAS. The effect of this modified PAS protocol was mostly 

facilitatory. This observation supports spike-timing dependent plasticity like 

mechanism since an EPSP evoked by TMS at motor cortex was preceded by the afferent 

input within 25ms window. Multiple pathways and structures in the cortical connectivity 

might be involved inducing STDP (Caporale and Dan, 2008) mediated activation of 

LTP (Baranyi et al., 1991, Hess and Donoghue, 1994, Stefan et al., 2000). 

 

3.5.2  The bias in plasticity mirrors changes during recovery after 

corticospinal lesions 
 

One of the most debilitating residual impairments of stroke or spinal cord lesion is 

reduced hand function caused by the development of spasticity. Often, asymmetrical 

extensor weakness in the hemiplegic upper limb becomes prominent during recovery 

after such lesions. This produces a stereotypical flexor-extensor bias in the form of 

asymmetrical weakness affecting functionality. My results from PAS protocol showed 
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striking similarity with the outcome of some of those changes where flexor muscle 

strengthens specifically during recovery. Several secondary changes are believed to be 

the cause of this phenomenon which includes reduced stretch reflex threshold (Powers 

et al., 1989), increased reflex gain (Thilmann et al., 1991a), reduced reciprocal 

inhibition (Artieda et al., 1991, Baykousheva-Mateva and Mandaliev, 1993) and 

uncoordinated coactivation of muscles (Baykousheva-Mateva and Mandaliev, 1993, 

Beer et al., 2000, Dewald et al., 1995). Asymmetric or reduced cortical drive triggering 

imbalanced reciprocal inhibition from flexor to extensor and vice versa may also be a 

factor for the development of flexor spasticity and hypertonia (Lackmy-Vallee et al., 

2014). However, studies in primate implicates that strengthening of reticulospinal tract 

during recovery after stroke or corticospinal tract lesion can produce significant bias in 

flexor extensor remodelling, where connections towards flexor becomes stronger 

(Zaaimi et al., 2012). This pronounced bias in different agonist and antagonist muscle 

groups reflects their functional and organizational differences substantially. Numerous 

evidences suggest that the flexor and extensor muscles of upper limb are differently 

controlled at various levels of the nervous system. Higher cortical drive is required for 

the activation and precision of extensor muscles in the upper limb, which suggests the 

presence of differently organized pathways for flexor-extensor muscles (Divekar and 

John, 2013, Yue et al., 2000, Martin et al., 2006). A stimulus triggered averaging study 

by Belhaj-Saif et al. (1998) showed that flexor muscles are more likely to be inhibited 

from the connections derived from magnocellular red nucleus and primary motor cortex 

(Park et al., 2004). They also found a biased strengthening of the distal forelimb muscles 

than the proximal ones, mediated by the red nucleus and cortical connections.  

 

The imbalanced strengthening of different muscle connections during recovery in the 

corticospinal tract lesioned macaque was previously reported by Zaaimi et al. (2012). 

Of course, the role of reticulospinal tract during recovery after unilateral pyramidal tract 

lesion was evident from this experiment, yet another striking feature of this 

reticulospinal tract mediated recovery was also prominent- the motor input connections 

towards the flexor and intrinsic hand muscle was significantly strengthened, whereas 

the input towards extensor showed no change. These findings were quite similar with 

the biased flexor facilitation and extensor weakness after corticospinal tract lesion in 

monkey reported by Belhaj-Saïf and Cheney (2000). In this case, however, the plasticity 
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was observed in the rubrospinal tract mediated output, which is mostly absent in human. 

Since my observed effect of biased plasticity after paired cortical and afferent input is 

most likely to be originated from cortex, it would be unlikely to have any indirect and 

passive reticulospinal tract mediated changes but not impossible. There might be several 

explanations that can speculate biased changes in flexor vs. extensor. Some of the 

previous studies emphasized the differences and distinct pattern in the cortical 

projection or input towards distal, flexor and extensor muscle groups in the upper limb 

in human and primate (Palmer and Ashby, 1992, Phillips and Porter, 1964, Clough et 

al., 1968, Lemon et al., 1986). While testing short latency facilitation with TMS, Palmer 

and Ashby (1992) found a hierarchical monosynaptic facilitation which is greater to 

motoneurons of distal hand muscles and flexors than more proximal and extensors 

muscle groups and argued that there are more cortical projections present towards distal 

hand and flexor muscles than extensors. 

A striking feature of my findings was the hierarchy in the plasticity towards distal hand 

muscle, flexor and extensor, which was evident in the PAS protocol where motor cortex 

was stimulated synchronously paired with an afferent stimulation, but not in rTMS 

protocol, where only the motor cortex received stimuli. It is possible that the functional 

organization in cortical and subcortical level of sensorimotor system inherently possess 

a subtle but highly characteristic blueprint that favours adaptations towards distal and 

flexor muscles during task specific learning, acquiring new skills or regaining functions, 

which all requires active or functional afferent input. Contribution of afferent and 

sensory input in changing cortical or subcortical plasticity is undeniable as evidenced 

by many researchers (Vallence et al., 2012, Hamdy et al., 1998, Martin et al., 2006). 

Afferent inputs might also be responsible modulating motor plasticity during practice 

(Godfrey et al., 2013, Divekar and John, 2013), learning (Krutky and Perreault, 2007), 

active or passive movements (Chye et al., 2010, Lemon et al., 1986). 

The Possibility of structural differences at cellular or molecular level in the flexor-

extensor motoneuron system cannot be excluded from the factors affecting 

reorganization of neural network (Massey et al., 2006, Kwok et al., 2011). Particularly, 

emerging evidence suggests a role of Perineuronal Nets (PNN) in acquisition of 

plasticity in the central nervous system during learning or recovery, where PNN restricts 

plasticity (Carulli et al., 2010, Happel et al., 2014, Cabungcal et al., 2013). It has been 

found that removal of PNN can decrease inhibition and increase gamma activity which 
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potentially upregulates plasticity (Lensjo et al., 2017) in neural network. Collateral 

sprouting of axon after damage in sensory afferents is known to affect cortical and 

subcortical plasticity in human aided by depletion of PNN in the cuneate nucleus (Kaas 

et al., 2008). The possibility of differential PNN reorganization in cortical or subcortical 

pathways controlling flexor-extensor bias during motor learning, recovery after lesion 

or during artificial induction of plasticity with PAS protocols cannot be excluded. 

In this study, my results showed that it is possible to induce plasticity in cortical and, 

arguably in the subcortical level, with simplified PAS techniques where afferent input 

arrives directly from muscle stimulation. My result also mirrors the biased plasticity in 

the distal hand muscle and flexor, which strengthens flexor and extensor remains weak 

during recovery in patients with stroke or spinal cord injury. Direct cortical repetitive 

stimulation with rTMS could also modulate cortical plasticity with a generalized 

facilitatory effect without any preference towards any muscle group. This result 

suggests that presence of an afferent input might be in effect or necessary for the 

induction of biased plasticity towards functional distal hand muscle and flexor. This 

interpretation leaves a ground for further investigations into plastic changes in different 

hand muscle groups in health and disease and will help to design effective and non-

invasive translational methods to improve motor performance in upper limb after brain 

or spinal cord lesions. 
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4 Chapter IV 
 

INDUCTION OF PLASTICITY IN THE MOTOR 

OUTPUT WITH PAIRED MOTOR IMAGERY 

AND TRANSCRANIAL MAGNETIC 

STIMULATION 

4.1 Introduction 
 

Performing a mentally simulated movement or Motor Imagery (MI) initiates complex neural 

mechanisms involving activation of interconnected areas in the central nervous system. The 

impact of mentally simulated action in large areas of the brain has been studied extensively 

over the last few decades, including motor cortex. Those related areas in the brain influenced 

by MI share some of the common functionality of actual movement (Jeannerod, 1995). MI 

activates cortical and subcortical areas and mirrors some neurophysiological properties seen in 

actual movement (Ingvar and Philipson, 1977, Roland et al., 1980, Rao et al., 1993). Activation 

of brain regions during MI is generally considered to represent cognitive motor preparation and 

programming (Yue and Cole, 1992, Decety et al., 1994). Inconspicuous activation of the motor 

cortex or specific pools of motoneurons during MI was highly anticipated but debatable until a 

number of studies conducted with electrophysiological techniques such as Transcranial 

Magnetic Stimulation (TMS), EEG or ERPs have been able to show direct involvement of the 

motor cortex with MI (Rossini et al., 1999, Beisteiner et al., 1995, Romero et al., 2000). Direct 

or indirect activation of motor cortex during mental simulation of movement was also observed 

in studies that used high-resolution fMRI or PET techniques (Lotze et al., 1999, Dechent et al., 

2004). The striking feature of congruent activation of motor cortex during MI continued to 

influence many researchers to attempt measuring motor cortical output and plastic changes non-

invasively. Although the available resources are still limited, Motor Evoked Potential (MEP) 

by TMS (Rothwell, 1991) has been considered one of the most convenient and non-invasive 

methods to measure motor cortical output to date. Later, a number of TMS studies concluded 

with the evidence that MI exerts a direct or indirect effect on motor cortex and modulates 

corticospinal excitability, which may also have influenced by co-activated supplementary 

motor area (Abbruzzese et al., 1996, Facchini et al., 2002, Pascual-Leone et al., 1995, Lacourse 

et al., 2005). This characteristic of MI to induce motor cortical activation led to researchers 
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utilizing it in conjunction with physical therapy (Warner and McNeill, 1988) or to improve 

motor learning skills (Yágüez et al., 1998). It has since been regarded as a ‘backdoor’ to activate 

the cortico-motoneural components to improve recovery after brain lesions, especially after 

stroke or spinal cord injury (Page et al., 2005, Liu et al., 2004, Crosbie et al., 2004, Dijkerman 

et al., 2004, Jackson et al., 2001, Sharma et al., 2006, Grangeon et al., 2010). The summarized 

outcome of these studies shows lack of efficacy, sensitivity or translational benefit, which 

necessitates further research to utilize the potential of MI. Previously, during a TMS study, 

Kasai et al. (1997) found that MI of wrist flexion could activate motor cortex and increased 

MEP of forearm muscles, but there is still lack of evidence whether MI can be utilized to change 

the motor cortical excitability for a sustained period to induce plasticity.  

In this study, I tested whether MI in combination with TMS can generate a long term 

potentiation (LTP) and long term depression (LTD) mediated changes in the 

corticomotoneuronal output to forearm flexor, extensor and hand muscles. Some paired and 

repetitive stimulation protocols of TMS are already known to change plasticity in the 

corticospinal connections (Ziemann et al., 1998a, Stefan et al., 2000, Godfrey et al., 2013), but 

there is still lack of knowledge about how these changes affect different group of muscles in 

the upper limb, especially with MI. 

The working hypothesis of my experiment was to utilize the modulatory effect of MI in 

conjunction with TMS to induce robust plasticity in the motor output using a novel technique. 

It was also an intention to observe any hierarchy or flexor-extensor difference in the potential 

of MI to induce plasticity in corticomotoneuronal projections to different muscles controlling 

the hand. I previously demonstrated a gradient like plasticity facilitating motor outputs towards 

intrinsic hand muscles and forearm flexor more than the forearm extensor after delivery of a 

PAS protocol that relies on integration of sensory and motor input (Chapter III). 

In healthy humans, I recorded and compared cortical responses from the forearm and hand 

muscles before and after delivering paired TMS and MI paradigms. This approach of 

influencing plasticity may play a role in further understanding corticomotoneuronal 

connections, designing rehabilitation therapy and finding new ways of learning motor skills. 
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4.2 Materials and Methods 

4.2.1  Subjects 
 

A total number of 10 healthy volunteers (8 female; age range 19 – 45 years) with no 

contraindication for TMS, were tested in 60 different sessions of the experiment. All 

procedures were approved by the local ethical committee of Newcastle University 

Medical School (ethical approval number 000023/2008) and were in accordance with 

the Declaration of Helsinki. Prior to each experiment, full written consent was obtained 

from each participant after a brief explanation of the intent and procedure of the 

experiments. 

4.2.2  Electromyographic (EMG) recording 
 

In all experiments, Electromyogram (EMG) was recorded from four contralateral 

muscles- Flexor Digitorum Superficialis (FDS), Extensor Digitorum Communis (EDC), 

Abductor Pollicis Brevis (APB) and First Dorsal Interosseous (1DI). A pair of adhesive 

surface electrodes (model H59P, Kendall) were placed directly over individual muscle 

belly with an inter-electrode spacing of 2-3 cm for FDS/EDC, and around 1cm for 

APB/1DI. Electrodes were connected to a Digitimer D360 amplifier (gain, 1000; 

bandpass filter, 30 Hz to 2 kHz) and EMG signals were stored in a laboratory computer 

system for analysis after digitized using an analogue-digital converter (micro1401, 

Cambridge Electronics Design, Cambridge, UK). 

 

4.2.3  Transcranial Magnetic Stimulation (TMS) 

A figure of eight shaped magnetic coil (model D702) fitted with an optical position 

tracker and connected to a Magstim (BiStim2, Magstim Ltd UK) stimulator was used to 

provide focal TMS stimulation to the contralateral hemisphere. Following earlier studies 

(Rossini et al., 1994, Stefan et al., 2000), the coil was positioned tangentially over the 

skull with the handle pointing backward and laterally producing 45o angle to the sagittal 

plane for all experiments. A second position tracker attached to a headband was placed 

over the subject’s forehead. A Brainsight TMS Navigation system (Rogue Resolutions 

Ltd, Cardiff) was used to track and monitor the relative coil position in real time during 

each session to provide TMS precisely on the defined spot. 
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4.2.4  Experimental procedures 
 

Subjects were seated in a comfortable and slightly reclined height adjusted chair and 

placed their right forearm on an adjacent table. They were instructed to stay completely 

relaxed all times unless instructed. Complete muscle relaxation was ensured by live 

monitoring of the EMG signal on a monitor. MEPs from the FDS and EDC muscles 

were assessed with suprathreshold TMS to locate the optimal site that generated best 

responses from the both muscles. This site was then marked as the ‘hotspot’ in the 

Brainsight TMS Navigation to use throughout the experiment. Like many other previous 

studies (Rossini et al., 1994, Stefan et al., 2000), resting motor threshold (RMT) was 

obtained and recorded. It is the minimum stimulator intensity required to evoke at least 

50µV response in both relaxed muscles in at least 5 out of 10 repeated. 

Prior to intervention, each participant was trained to perform MI where they were 

instructed to imagine a specific wrist movement, either flexion or extension. During 

each training session, a few cortical stimuli were applied while the participant practiced 

MI. Peak to peak increase in the MEP amplitude during MI without any noticeable 

background EMG activity was regarded as a successful outcome of such training. For 

example, while the subject was imagining wrist flexion, a test TMS (intensity 1.2xRMT) 

would be delivered to the contralateral motor cortex. An increase in the MEP amplitude 

of the FDS muscle would be observed if the subject could have imagined the wrist 

flexion successfully (Fadiga et al., 1998). Most of the time it was difficult and 

challenging for the subjects to stay concentrated and imagine a task repeatedly for a 

while, but the aim was to achieve a good level of MI to be paired with TMS. I found 

that if the participants were asked to perform the actual movement, wrist flexion for 

instance, prior to MI, it improved their concentration, efficacy, and timing of 

imagination. Therefore, I adopted an approach where subjects were asked to repeat 

actual movement three times at the start of each MI cycle. The actual wrist flexion or 

extension had to be finished at least 4-5s before the delivery of TMS. This was 

confirmed by careful monitoring of the resting baseline EMG throughout the 

experiment. Since I delivered TMS at a rate of 0.1Hz during intervention, a subject 

would get a 5s window to repeat 3 actual flexion or extension, depending on the 

protocol, before starting MI during each cycle. 
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To start the experiment, baseline MEPs were recorded from all four muscles (FDS, 

EDC, ABP and 1DI), while TMS was given at a rate of 0.1Hz and with an intensity of 

1.2xRMT (Fig. 4.1A). Two different intervention protocol were used in separate 

sessions of experiment. As mentioned earlier, an intensity of 0.9xRTM and a rate of 

0.1Hz was used the intervention. In the first protocol (TMS+Flexion Imagination, Fig. 

4.1Ai), TMS at a rate of 0.1Hz (0.9xRMT) was delivered to the contralateral motor 

cortex while participants actively imagined the wrist flexion. In total, 90 TMS were 

delivered simultaneously with flexion MI over a duration of 15 minutes. As discussed 

earlier, during each TMS+MI cycle and before starting flexion MI, subjects were doing 

3 consequtive wrist flexion physically before coming to a complete rest prior to the 

MI+TMS event. Subjects were receiving direct visual feedback from the monitor placed 

in front of them showing live feed of the EMG recording. Occasionally, there was a 

brief break (1-2 minutes) during the event if the subjects were losing concentration 

required for the MI. Immediately after the intervention, MEP measurements were 

recorded again using the same TMS parameters (1.2xRTM, 0.1Hz) and experimental 

conditions as in baseline (Fig. 4.1C). For consistency, a total number of 60 MEPs was 

recorded after the tests, which were averaged later to compare with the baseline MEPs. 

For the second protocol (TMS+Extension imagination, Fig. 4.1Aii), all the condition 

remained same, except for the imagination part. Base line MEPs were recorded as before 

from all four muscles. During intervention, subjects were asked to perform extension 

imagination of the wrist. After completion of 90 TMS+MI, after-MEPs (N=60) were 

recorded using same conditions as before. 

All ten subjects were also tested with the four control protocols. Baseline MEPs and 

after-MEPs were recorded for each experiment like before. In the third (Flexion 

Imagination) and fourth (Extension Imagination) protocols, either flexion (Fig. 4.1Aiii) 

or extension (Fig. 4.1Aiv) MI was performed respectively by the subjects in a similar 

manner described above, but without any TMS. Subjects could still hear the click sound 

coming from the TMS coil placed at a distance so that they get the cue to start the next 

cycle of MI. 

In the fifth (TMS-following-Flexion, Fig. 4.1Av) and the sixth (TMS-following-

Extension, Fig. 4.1Avi) protocols, no MI was performed. Subjects were only receiving 
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TMS, and all other conditions remained same. For each subject, experiments (6 sessions 

in total) were performed in separate visits in a random order at least one week apart.     
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Figure 4.1. Schematic illustration of Motor Imagery (MI) protocols. 

A, Recording and measurement of MEP from four muscles- 1DI, APB, FDS and EDC 

before any intervention or control protocols, B, Two intervention protocols and four 
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control protocols. C, Recording and measurement of MEP from those muscle after each 

protocol. i, Intervention protocol where Flexion imagination was paired with TMS 

following three successive flexion movement of the wrist ii, Intervention protocol where 

extension imagination was paired with TMS following three successive wrist flexion. 

iii, Control protocol where only Flexion imagination was performed after three 

successive wrist extension. iv, Control protocol where only Extension imagination was 

performed after three successive wrist extension. v, Control protocol where only TMS 

was delivered after three successive wrist flexion. vi, Control protocol where only TMS 

was delivered after three successive wrist extension.      

 

 

4.2.5  Data analysis 
 

Evoked EMGs for all four muscles were rectified and averaged separately. The area 

under curve was measured by determining the MEP onset and offset latencies for 

individual sweeps. MEP amplitudes were measured from averaged area under the curve 

for each muscle. Significant differences in MEP were assessed by performing t-tests 

from the mean area under the curve above baseline for individual sweeps. An ANOVA 

with factors recorded muscle and protocols was performed to assess changes at the 

population level, with subsequent pairwise testing as required (t-tests). Changes after 

the intervention were expressed as a percentage of the measurement before and the 

averaged response from all subjects were plotted and compared for all six protocols (two 

intervention and four control). The number of subjects showing significant facilitation, 

suppression or no change were also plotted. Changes were considered significant with 

a threshold of P<0.05. All analyses were performed using custom scripts in the 

MATLAB environment (Mathworks Inc, Natick, USA). 

 

4.3 Results 
 

4.3.1  Flexion imagination with simultaneous TMS increased MEP 

amplitude 
 

Figure 4.2(A-B) shows examples of rectified averaged responses before and after each 

protocol in a single subject for four muscles that I recorded; FDS, EDC, APB and 1DI. 
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The black traces represent the average response of 20 basline MEP traces recorded 

before and red traces represents the average response of 60 after-MEP traces recorded 

after each test. 

The MEP in FDS increased significantly after paired flexion imagination and TMS in 

the first protocol (Fig. 4.2A). Example of averaged data from before and after recordings 

in a single subject showed a significant increase in the MEP area (151%, P<0.01, Fig. 

4.2A, TMS+Flexion imagination) in FDS when the subject was asked to imagine wrist 

flexion and received TMS simultaneously. For the same test, similar facilitatory effect 

was found in APB and 1DI with an increase of 104% (P<0.03) and 129% (P<0.03) 

respectively, both of which were less than the increase found in FDS (151%). The 

facilitation was smaller in EDC than all other muscles and accounted for only 37.01% 

(P<0.02) increase. 
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Figure 4.2. Example result in single subject after testing six separate protocols.  

The dotted line indicates the TMS onset. Black trace=MEP before, red trace=MEP after. 

*, P<0.05. A, Average rectified MEP traces recorded from FDS muscle. MEP increased 

significantly after testing TMS+Flexion Imagination protocol. Significant suppression 

was noticed in this subject after TMS following extension protocol.  B, Similar traces 

as in (A), but for EDC muscle. MEP increased significantly after testing both 

TMS+Flexion and TMS+Extension Imagination protocols. C, Similar traces for APB 

muscle. MEP increased significantly after TMS+Flexion Imagination protocol, and 

decreased significantly after Flexion imagination protocol. D, Similar traces for 1DI. 

MEP increased significantly after TMS+Flexion Imagination protocol. 
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The accumulated result from all subjects for the protocol showed that 90 paired TMS 

with flexion MI (TMS+flexion MI) sufficient to increase the MEPs in the FDS muscle 

significantly (P<0.002) with an average 189% rise (Fig. 4.3A). For this protocol, a 

significant facilitatory effect was seen in eight out of ten participants. 
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Figure 4.3. Group results for all muscles after delivery of each protocol.  
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A-D, Mean changes (expressed as percentage of baseline MEP) in the MEP were plotted 

in the top bars. Bottom staked bar plots show number of subjects with observed effects. 

Black=significant facilitation, grey=significant suppression, white=no change. *, 

P<0.05; A, Results for FDS after running all six protocols.  Significant facilitation 

occurred in the TMS+Flexion imagination protocol. B, Results for EDC after running 

all six protocols. Significant facilitation occurred in the TMS+Extension imagination 

protocol. C,D, Results for APB and 1DI respectively; significant facilitation occurred 

only in the TMS+Flexion imagination protocol in both of the muscles. 

 

Averaged data from all ten subjects for the other three muscles reflected the over picture 

seen in the example tracings (Figure 4.2). I found significant increase in MEP area both 

in the APB (P<0.01) and 1DI (P<0.01) muscles, with an overall increase of 165.49% 

and 144.40% respectively, producing facilitation smaller than that was observed in FDS. 

For APB, nine subjects out of ten showed some degree of facilitation, in which five 

subjects accounted for significant increase in MEPs. Eight subjects out of ten exhibited 

a tendency of facilitation in 1DI using the same paradigm, three of them were with 

significant changes. 

A mixed pattern of changes was observed in the antagonist muscle EDC after 

simultaneous flexion imagination and activation of motor cortex with TMS. Although 

six subjects showed facilitation, five of which were significant, the other four subjects 

showed a decrease in the MEP, two of which were significant. In this case, when all the 

data from 10 subjects were pulled, the overall change in MEP was not significant 

(P>0.1) in EDC. 

 

 

4.3.2  Extension Imagination with simultaneous TMS increased 

MEP amplitude in the extensor muscle 
 

For the second sets of experiments (TMS+ Extension Imagination), averaged example 

tracings from a single subject showed a significant 26% increase in MEP in EDC when 

TMS was paired with MI (P<0.02, Fig 4.2B). Contrary to the first intervention protocol 

(TMS+Flexion Imagination), the other muscles here did not follow the similar pattern 

of facilitation in this case, rather MEP in FDS went down to 44.62% in the after the 
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intervention which was a significant (P<0.02) decrease. ABP and 1D1 did not show any 

significant changes in this case. 

In the accumulated data for TMS+Extension Imagination, all ten participants showed 

significant facilitation in the EDC muscle both individually and combinedly, with an 

average160% increase (P<0.002, Fig. 4.3B). Averaged data showed that there was no 

significant change in any of the other three muscles. A few indivuals showed significant 

facilitation or suppression in FDS, APB or 1DI randomly, which was unremarkable.  

 

4.3.3  Motor Imagery or TMS alone caused no consistent changes 
 

In my third (Flexion Imagination) and fourth (Extension Imagination) protocols, 

subjects performed only MI of wrist flexion and extension without TMS. The before 

and after MEP responses for all four muscles were compared as shown in the example 

recording from a single subject in Figure 4.2 (A-D).  

In the example subject, the first trace (Fig. 4.2A) for Flexion Imagination shows a 

significant decrease in the MEP amplitude in FDS (P<0.0001), which was a 72.22% 

reduction, but this subject was one of the two subjects who showed a reduced response 

after Flexion Imagination only. Recordings from EDC and 1DI showed no changes. 

APB tracing of MEP showed a significant decrease (P<.002) of 125.19%. Again, this 

subject was among the two subjects who showed suppression in APB muscle response 

in this test. 

Example traces from the same subject after extension imagination protocol did not show 

changes in MEP amplitude in any muscle. 

The overall result for all ten subjects are plotted in Figure 4.3 (A-D) for Flexion 

Imagination and Extension Imagination; both which were control protocols. For Flexion 

Imagination, there was no significant increase in MEP in any of the ten subjects. No 

consisted changes were found for Extension Imagination protocol either.  

I tested the effect of TMS alone in the TMS-following-Flexion and TMS-following-

Extension protocols. For TMS-following-Flexion, example recordings from a single 

subject (Fig. 4.2 A-D) tracings showed no changes in any of the four muscles. The same 
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subject showed 77.23% decrease (P<0.01) in averaged MEP amplitude in FDS after 90 

TMS-following-extension input and was the only subject showing such changes. 

Figure 4.3 (A-D) shows the overall result of ten subjects for TMS-following-flexion and 

TMS-following-extension control protocols. No consistent changes were found in those 

two control protocols, except for 1DI, where two subjects showed significant 

facilitation. I assume this is spurious due to multiple comparisons.  

 

4.4 Discussion 
 

4.4.1  Motor imagery with synchronized TMS induced plasticity 
 

The present data demonstrate that MI significantly influences excitability in the motor 

cortex, which is consistent with many previous observations (Fadiga et al., 1998, Kasai 

et al., 1997, Rossini et al., 1999). It is possible that movement specific MI activates 

related areas in the premotor and motor cortex and the increases overall cortical drive 

resulting in a ‘subthreshold’ state. This can increase the overall corticospinal excitability 

without necessarily firing the alpha motor neuron and the related muscle does not 

become functional until a motor command is executed (Yahagi and Kasai, 1998). Pre-

activation of areas in the motor and premotor cortex in the presence of mental 

representation of action was found from works in monkey and human. The premotor 

cortex (F5) is known for imagery representation (Murata et al., 1997) and the mirror 

neurons can be triggered by visual action recognition (Gallese et al., 1996). Automatic 

retrieval of motor action by observation was previously seen in human where the 

excitability of the motor system was increased simply by observing a similar action 

performed by another person (Fadiga et al., 1995, Rizzolatti et al., 1996). An altered 

state of excitability or subliminal activation of the motor cortex induced by mental 

simulation or MI has been also documented by measuring MEP in many previous and 

recent studies (Rozand et al., 2014, Braun et al., 2003, Li et al., 2009). This natural 

phenomenon of covert activation of the cortical and subcortical network at a 

subthreshold state by MI was utilized in this study as a key concept to induce a lasting 

effect in the corticospinal output in conjunction with another non-invasive stimulation. 
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It is now well established that Paired Associative Stimulation (PAS) and several 

Repetitive Transcranial Stimulations protocols can effectively induce plasticity at 

cortical, and arguably at subcortical level, which affects final motor output once EPSP 

is generated at pyramidal cells in the motor cortex. In standard PAS protocol, an afferent 

input is delivered before the TMS at motor cortex within a favourable window of time 

to modulate of LTP or LTD in a manner consistent with STDP mechanism (Stefan et 

al., 2000). Conversely, in an ideal rTMS protocol, intermittent theta burst stimulation is 

utilized to modulate cortical excitability (Huang et al., 2005). Intermittent rTMS is also 

known to induce LTP/LTD mediated plasticity in the motor cortex. As per recent 

evidence, both PAS and rTMS modulations are regulated by NMDA receptors/Ca2+ 

influx at synaptic level and can cause persistent changes in synaptic excitability in the 

pyramidal cells, especially in the dendritic projections (Huang et al., 2017, Sjöström et 

al., 2008). Since MI is capable of activating several interconnected areas in the premotor 

and motor cortex, it is possible that onset of MI induced sub-threshold activation of 

motor cortex allows convergence of stimulus input at the cortex once paired with TMS. 

This can induce synaptic changes consistent with LTP mechanism. In this case, instead 

of an afferent input, MI served functionally comparable purpose (presynaptic input for 

LTP) and the readiness of the motor cortex for the burst of action potentials for an 

anticipated movement was synchronized with TMS input. These results showing 

modulation of cortical excitability after paired MI and TMS might share a comparable 

mechanism of inducing plasticity explained in the PAS techniques. 

Some might argue that the repetition of wrist flexion or extension prior to the 

intervention (MI+TMS) might have induced some plasticity in the motor cortex as 

evidenced by (Classen et al., 1998). If this was the case, similar changes would be 

observed in the MEP after delivery of the control protocols which either used MI or 

TMS only following similar repetitive flexion or extension. On the other hand it was 

quite important to achieve a consistent level of MI performance among subjects to 

quantify any changes after paired MI+TMS paradigms (Lebon et al., 2012, Helm et al., 

2015). 

 

4.4.2  Task specificity and biased plasticity in the flexor and 

intrinsic hand muscles vs extensor 
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TMS during flexion imagination was able to increase the drive in the motor-cortical 

output observed as an increase in the MEP amplitudes of all three flexor muscles. 

Interestingly, TMS with extension imagination increased responses specifically towards 

the extensor muscle, but not in the flexor muscles I tested. The flexion MI of wrist 

increased MEP in the FDS muscle the most and to some extent in other muscles and 

caused facilitation in the EDC muscle only in few subjects with no significance in the 

accumulated result. Conversely, wrist extension imagination significantly facilitated the 

response specifically towards the EDC muscle in all subjects, but not in the other 

muscles. Task-related variability in corticospinal excitability was known from previous 

works in monkeys (Baker et al., 1995, Lemon et al., 1986). In a recent study, Zaaimi et 

al. (2018) found that with task-specific direct cortical stimulation most sites in the motor 

cortex activate either elbow flexors or extensors, not both. Therefore, task-specific MI 

would be expected to recruit non-overlapping sets of corticospinal cells. During TMS, 

the activation of movement specific subpopulation is higher than the diffused 

recruitment. MI induced enhancement is also known to show specific representation at 

least in the contralateral motor cortex (Li, 2007, Facchini et al., 2002). My findings are 

in agreement with the previous findings where MI modulated corticospinal excitability 

was more noticeable in the target muscle than non-targeted muscles (Li, 2007). 

However, it cannot be rejected that wrist MI can also produce a diffuse effect and co-

activates other projection areas representing distal hand muscles (Porter and Lemon, 

1993). The somatotopic gradient of the motor cortex and the subliminal co-activation of 

other muscles during a specific task related imagination (flexion MI in FDS) can explain 

the diffused facilitation found in other muscles (APB, 1DI and EDC) in this case. 

Although the ‘enslaving effect’ (Danion et al., 2000) can explain the occurrence of low 

to moderate plastic changes in the other muscles during the flexion imagination task, it 

was not quite the observed effect seen in the extension imagination protocol. Only 

significant enhancement was noticed in the muscle of target, EDC in this case. I argue 

that the hierarchy of plasticity in human forearm and hand muscles play a role here. In 

another study (Ref: Chapter Two), I have found that LTP and LTD mediated plasticity 

is more prominent in APB, 1DI, and FDS than in EDC in certain conditions; which is 

consistent with the results observed from this study. The biased tendency of plasticity 

in the forearm flexor and hand muscle outputs is also seen in post-stroke patients where 

spasticity develops specifically in the flexor and hand muscles accompanied by extensor 

weakness.     
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This result emphasizes that there is a substrate for lasting plastic changes somewhere in 

the cortical, subcortical or spinal level which shows a tendency to favour the forearm 

flexor and hand muscle more than the extensor. 

 

 

4.4.3  The site of Plastic changes 
 

My results show that change in the excitability in the motor cortex or corticospinal tract 

output can be initiated by MI. The observed changes in the MEP reflect synaptic 

reorganization or changes in excitability at the cortical or subcortical level after repeated 

application of paired MI and TMS at motor cortex. This finding is consistent with 

several previous TMS and fMRI studies that found that the motor cortex can be activated 

by MI (Lotze et al., 1999, Kraus et al., 2018). However, controversy exists regarding 

the relative contribution of  TMS and MI in the various levels of cortical and subcortical 

excitability. MEP responses evoked by TMS only do not provide a clear view about the 

relative contributions of the motor cortex, brainstem, spinal pools of motor and 

interneurons in inducing plasticity. Li et al. (2004) observed that MI has a role in 

modulating spinal stretch reflex pathways. They found that MI increased the EMG 

response during the event of muscle stretch reflex and suggested that short latency 

response in these muscles were greatly facilitated by MI (Li et al., 2004). It is possible 

that MI that activates motor cortex also sends descending inputs to spinal reflex 

pathways (Pierrot-Deseilligny and Lacert, 1973, Gandevia et al., 1997). Augmentation 

of H-reflex by mental rehearsal without any change in the fusimotor drive supports the 

idea that facilitation of excitability at subcortical or spinal level could be an outcome of 

MI (Gandevia et al., 1997, Bonnet et al., 1997). 

On the contrary, (Hashimoto and Rothwell, 1999) suggested a dynamic effect of MI in 

the motor cortex similar to those found during actual movement as no MI-related 

changes in the H-reflex were found in their study. Others reported a reduction in the 

spinal excitability evidenced by reduced H-reflex during mental movement simulation 

found in human (Oishi et al., 1994, Yahagi et al., 1996). During MI, the presence of an 

inhibitory influence operating in the spinal level preventing depolarization of motor 

neurons cannot be excluded. A dual mechanism might co-exist affecting the spinal 
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excitability: a subthreshold drive to move in the presence of increased corticospinal tract 

output and a subsequent inhibitory influence preventing an actual motor discharge  

(Jeannerod, 2001). It can be argued that if plastic changes occur in the corticospinal 

connection or motor cortex, the drive towards the spinal level can also be stronger to 

eventually overcome any inhibitory effect. This also explains the reduction of motor 

threshold and increased the amplitude of MEP during MI in TMS. It is not impossible 

that the activation of the motor cortex, altered corticospinal excitability, the inhibitory 

effect of spinal interneurons and subliminal activation of spinal motoneurons 

contributed together and resulted in metaplastic changes after combined MI and TMS. 

 

4.4.4  LTP/LDP mediated plasticity change: 
 

My proposed hypothesis to induce plastic changes utilizing MI and combined TMS is 

based on the classic phenomenon seen in Paired Associative Stimulation protocols, 

where TMS is paired with an afferent electrical stimulation to modify plasticity in a 

manner consistent with LTP and LTD (Stefan et al., 2000). I speculate that the plasticity 

induced by simultaneous TMS and MI may have observed a similar effect. In this case 

though, instead of an afferent input, MI served functionaly comparable purpose 

(presynaptic input for LTP), where some of the motoneuron pools in the motor cortex 

or SMA were pre-activated by the mental simulation of movement. In this case, the 

functional readiness of the motor cortex for the imminent burst of action potentials for 

an anticipated movement was synchronized with TMS input and resulted in a 

corticospinal drive sufficient to activate the spinal motor neurons or sufficient to 

overcome the spinal inhibition (which normally prevents any overt movement during 

MI). My results show a lasting effect of changes in the corticospinal tract excitability 

after the paired intervention and those changes were mostly task-specific.  

 

4.4.5  Motor imagery and rehabilitation: 
 

The ability successfully to imagine a movement relies on the internal action 

representation of the brain. In the past, the question emerged of whether patients with 
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significant brain damage preserve this internal representation for successful MI, or if the 

brain loses the ability to imagine a specified task to a significant extent. Since intact 

parietal cortex is important for generating MI representations, it was found that patients 

with lesioned parietal cortex struggled to predict the time properly for differentiated 

finger movement tasks (Sirigu et al., 1996). Later on, it was found that acute or chronic 

hemiplegic patients were able to use motor imagery to activate partially damaged motor 

networks (Johnson, 2000, Johnson et al., 2002), suggesting the ability of the brain to 

retain the motor representations in the event of loss of function. In recent years, with the 

notion that central processing of imagined movement involves interconnected regions 

of the brain including the motor cortex, SMA or frontal cortices, MI alone or in 

conjunction with other measures has increasingly been used to help motor recovery in 

patients with neurologic disorders. Particularly, the feasibility of using MI as a tool to 

recover limb functions after brain lesion has been studied extensively. A number of pilot 

studies and patient trials reported a positive outcomes of MI implementations (Page et 

al., 2005, Liu et al., 2004, Crosbie et al., 2004, Page et al., 2001, Dijkerman et al., 2004, 

Jackson et al., Mulder, 2007, Sharma et al., 2006). More recently, MI has been reported 

to improved motor performance in spinal cord injury patients with quadriplegia 

(Grangeon et al., 2010, Mateo et al., 2015). One crucial aspect of rehabilitation is to 

reorganize the motor system network (Jones, 2000) by inducing activity dependent 

plasticity in the motor cortex (Jones, 1993, Florence et al., 1998), brainstem (Fisher et 

al., 2012, Foysal et al., 2016) or spinal cord (Wolpaw and Tennissen, 2001, Dunlop, 

2008). Until now, MI has only been used as a passive way to activate motor connections 

in the absence of an actual movement or in conjunction with other physical training, 

physiotherapy or behavioural therapy. My result suggests that robust plastic changes in 

corticospinal tract excitability could be induced using specially designed protocols of 

MI in conjunction with TMS to aid in motor recovery. The most interesting and crucial 

finding of my study was the occurrence of task-dependent plastic changes, where 

extension imagination task significantly increased plasticity specifically towards the 

extensor muscle. Although I have seen a diffuse pattern of change during the flexion 

imagination task, where significant plasticity changes were also observed in other 

muscles, a flexor-extensor bias might be an inherent nature of plasticity development. 

Since most post-stroke patients develop spasticity in the upper limb flexor muscles and 

weakness in the extensors, a targeted synchronized TMS+MI protocol designed to 

strengthen the weak muscles might prove useful in regaining hand functions.  
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5 Chapter V 

CONCLUSION 

It is now well established that the adaptability and plasticity at various levels of motor 

control contribute to shaping motor behaviour, skill acquisition and recovery after 

neurological lesions. The idea of changing plasticity by strengthening of existing 

connections through cascades of metabolic process or growth was first introduced by 

Ramón y Cajal (1935)  and later theoretically proposed by Donald Hebb (Hebb, 1949) 

in his postulate. His basic concept about plasticity was "cells that fire together wire 

together", which has been later supported by a vast amount of scientific experiments. 

The adaptability of motor nervous system in humans is not confined to motor cortex but 

also extends to the brainstem, subcortical projections, interneuron connections and 

extracellular space. 

There are multiple factors affecting motor plasticity, and it relies on feedforward inputs 

from central cortex or periphery. Example of such factors includes sensory input 

deprivation, functional deprivation, usage and correlation, motor learning and practice, 

compensatory mechanism after a lesion and even artificial stimulations triggering STDP 

type response. 

STDP mechanism has Hebbian-like (Kempter et al., 1999, Turrigiano and Nelson, 2000) 

computational properties that allow predicting direction and level of synaptic plasticity 

induced by stimulation protocols. Evidence from a number of experiments indicate that 

repeated pairing of precisely timed pre- and postsynaptic action potentials can lead to 

lasting changes in synaptic remodelling, the efficacy of which depends on magnitude, 

frequency and timing of the pre-synaptic potential and EPSP (Debanne et al., 1998, Bi 

and Poo, 1998, Feldman, 2000, Egger et al., 1999, Zhang et al., 1998). 

The outcome of remapping and reorganization in synaptic space by exploiting STDP 

like protocols is also influenced by its temporal symmetry/asymmetry that governs the 

strengthening or weakening of the connections (Levy and Steward, 1983, Sjöström et 

al., 2008, Kempter et al., 1999). Strengthening can occur by LTP in a paired stimulation 

protocol when repeatedly occurring presynaptic spikes precedes EPSP within 25ms 

(symmetric STDP) or 50ms (asymmetric STDP) each time. On the other hand, repeated 
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EPSP preceding presynaptic spikes within a window relatively longer than the LTP 

window or similar, causes LTD mediated weakening of the connection (Song and 

Abbott, 2001). This mechanism is consistent with the results from my study where 

precisely timed paired stimulation was delivered using a wearable electronic device. 

When an afferent input by stimulating biceps muscle motor point was delivered 10ms 

prior click stimulation, it induced a presynaptic potential before click stimulation could 

evoke an EPSP within the specified window of time. Repeated delivery of this paired 

stimulation strengthened the output towards biceps muscle significantly as indexed by 

an increase in the amplitude of the stretch reflex output. Conversely, when EPSP evoked 

by click preceded the afferent input repeatedly, it resulted in the weakening of the 

connection towards biceps muscle, which was reflected by a reduction of amplitude in 

the stretch reflex output. Since the facilitation or suppression was observed mostly in 

the long latency part of the stretch reflex, and click stimulation is known to activate 

reticular cells, it is likely that induction of plasticity took place in the reticular area, but 

excitability changes in the motor cortex cannot be excluded. 

The STDP model synaptic plasticity by modulating LTP-LDP supports most aspects of 

the results observed in my other studies. A number of previous studies used various 

paired protocols using PAS techniques, where presynaptic potential in motor cortex or 

in the subcortical space, was generated before a direct cortical stimulation that evoked 

EPSP (Stefan et al., 2000, Ridding et al., 2000). In a comparable setup, I tested 30 

subjects with a motor point stimulation to either flexor or extensor to induce presynaptic 

action potential prior eliciting EPSP with the application of TMS and this was repeated 

90 times, resulting in a strengthening of the motor outputs towards flexor and distal hand 

muscles. 

It remained a question that exactly how this kind of reorganization was achieved. 

Underlying mechanisms of cortical and subcortical plasticity are widely diversified. 

Cellular plasticity can be a physiological mechanism where existing neurons and 

synapses are reorganized to such extent that alters the functional outcome, or it can be 

a structural mechanism where modification occurs by morphological changes, deletion 

or formation of new synapses, the formation of dendritic projections or even 

reorganization in extra-cellular components can occur for rewiring a connection. Well 

accepted models calls for a cellular mechanism which largely depends of NMDA (N-

methyl-d-aspartate) receptor or Ca2+ channel dependent LTP and LTD, where rapid 
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influx of Ca2+ occurs through NMDA receptors and rises concentration of Ca2+ in 

dendritic spine triggering a cascade of intracellular mechanism (Malenka and Bear, 

2004, Malenka et al., 1992, Yasuda et al., 2003). A number of modulators are already 

known to trigger such intracellular cascades favouring NMDAR-dependent LTP like 

mechanism, for example calcium/calmodulin-dependent protein kinase II (CaMKII) 

(Lisman et al., 2002), protein kinase M zeta (PKMξ) (Hrabetova and Sacktor, 1996), 

mitogen-activated protein kinase (MAPK) (Sweatt, 2004), phosphatidylinositol 3-

kinase (PI3 kinase), tyrosine kinase Src and some others (Malenka and Bear, 2004). 

While comparing distinctive features of LTP induced by STDP, theta-burst and spike 

pairing techniques in the barrel cortex of calcium/calmodulin-dependent protein kinase 

II (αCaMKII)T286A mutant mice, Hardingham et al. (2003) found that none of those three 

protocols could trigger LTP in the knocked out mice, whereas all those protocols 

successfully induced plasticity in wild mice. Their result suggested that STDP or other 

stimuli-triggered plasticity protocols depend on αCaMKII autophosphorylation for 

inducing synaptic reorganization at the cellular level. Also, Lu et al. (2007) suggested 

that activation of mGluR1a receptor and inositol 1,4,5-triphosphate (IP3) receptor-

mediated Ca2+ elevation are also required for inducing LTP like plasticity in fast 

spiking pyramidal cells, where the critical window of time is more supportive of a 

symmetric model of SPTD than the temporal asymmetry. Neurotrophins, such as 

BDNF, are also regarded as modulatory factors that can influence synaptic plasticity 

(Poo, 2001). 

 

On the other hand, the cellular mechanism of LTD is known to be regulated mainly by 

the presence, quantity, and trafficking of another ligand-gated ion channels AMPA 

(alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptors in the plasma 

membrane (Bredt and Nicoll, 2003, Soderling and Derkach, 2000). NMDA-receptor 

dependent LTD is triggered when Ca2+/CaMKII activates dephosphorization of GluR1 

subunit on AMPA receptors and initiates delivery of tagged AMPA receptors into 

synapses (Feldman et al., 1998, Hayashi et al., 2000). 

I used a modified PAS technique in my second study. The hypothesis of inducing 

plasticity by changing cortical excitability using PAS protocols was extensively tested 

by Stefane et al (2000). In their study, conducted in human, they applied TMS 

https://www.ncbi.nlm.nih.gov/books/n/neurosci/A2251/def-item/A2586/
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stimulation to the primary motor cortex (M1) at rest and during sustained voluntary 

contraction (active state), which was paired with low frequency median nerve 

stimulation. They recorded MEP generated from abductor pollicis brevis (APB) muscle 

(Stefan et al., 2000) before and after the test. Evidenced by a number or previous studies 

(Baranyi and Szente, 1987, Baranyi et al., 1991, Iriki et al., 1989, Hess et al., 1996), 

they tested the possibility of inducing long term potentiation (LTP) in the cortical 

horizontal or vertical fibres by delivering low frequency peripheral stimulation eliciting 

somatosensory afferent volley which was paired with action potential generated by TMS 

at motor cortex. They delivered 90 pairs of TMS and median nerve stimulation near the 

wrist joint at a rate of 0.05Hz with a condition where peripheral input preceded TMS by 

25ms. To measure and compare any effect of paired stimulation protocol applied at 

resting state, they delivered 20 TMS stimulation to motor cortex before and after the 

intervention at a rate of 0.01Hz and simultaneously recorded surface EMG from APB 

during complete resting condition. Their protocol significantly increased the resting 

MEP amplitude after the intervention (Stefan et al., 2000). Induced plasticity lasted for 

about 30 to 60 minutes which proved it was not merely a short term or post tetanic 

potentiation. This plasticity, which could be generated even with a few paired 

stimulations, persisted for about 24 hours in a few subjects, which makes it more likely 

to be LTP mediated. Rapid changes in membrane excitability could also be responsible 

for the observed effect  (Aou et al., 1992, Stefan et al., 2000). 

However, they proposed that the induced plasticity using associative long-term 

potentiation, or any closely related neuronal mechanism reflected changes in the cortical 

synapses. Their speculation was those changes could occur at cortical level through 

TMS activation of vertical or horizontal intracortical fibers (Rothwell, 1997) and 

generation of a subsequent EPSP. In short, the driving part of the Stefan’s (2000) PAS 

technique was to induce LTP or LTD by means STDP mechanism (Song et al., 2000). 

Synaptic modification by STDP can be stated as a neuronal process where two separate 

inputs are paired in a way that both arrives at a neuronal circuit within a short space of 

time in a specific sequence. By this way synaptic connectivity in that circuit can be 

changed and this modification can sustain for a considerable duration, and this also 

allows strengthening or weakening the related connections (Wolters et al., 2003, 

Ridding and Rothwell, 2007, Markram et al., 1997). Depending on protocols, the 

connection can be potentiated if the second input comes within a few milliseconds after 
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the first stimulation (excitatory post synaptic potential) or synchronously with the first 

stimuli. Or, the connection can be weakened if the excitatory post synaptic potential 

fails to reach within the specific window of times. In Stefan’s PAS experiment, the most 

effective inter-stimulus interval (25ms) was selected in such a manner that the afferent 

volley from the median nerve stimulation (near wrist joint) would arrive at motor cortex 

at least a few milliseconds before TMS evoked EPSP (Stefan et al., 2000). Later, some 

researchers carried out the successful implementation of PAS protocols, but the debate 

still exists whether it induces plasticity in cortical or subcortical space. 

 

In one of my studies, application of intermittent high frequency rTMS (within safety 

limit) induced significant changes in cortical excitability and MEP amplitude increased 

in all four muscles tested. As initially suggested by Huang et al. (2005), and like many 

other plasticity inducing synaptic remodelling, NMDA receptor/Ca2+ dependent LTP-

like mechanism explains this facilitatory effect. To confirm this, (Huang et al., 2007) 

performed a double blind, placebo controlled study where they used NMDA receptor 

antagonist memantine. After blocking the NMDA receptors, a similar protocol of 

intermittent rTMS failed to induce changes in MEP amplitudes. This further supports 

the notion that relatively high frequency intermittent rTMS can modulate cortical 

excitability in a manner consistent with the LTP-like mechanism. One important 

difference between PAS and intermittent rTMS induced cortical excitability was that, 

the former required a precisely timed pre and post synaptic events and followed the 

principles of STDP, whereas the later delivered only a series of intermittent cortical 

input at a certain frequency. Recently, it has been found that PAS induced LTP can be 

blocked by L-type voltage gated Ca2+ channels (VGCC) blocker nimodipine and can 

be reverted into LTD using T-type VGCC blocker ethosuximide (Weise et al., 2017).  

Contrary to this, nimodipine (L-type blocker) turned the facilitation induced by rTMS 

into depression but ethosuximide (T-type blocker) only blocked the facilitatory effect 

of rTMS (Wankerl et al., 2010). T-type VGCC are abundant in apical dendrites and 

spines, whereas L-type VGCC are mostly found near the soma of cortical neurons. 

Activation of L-type VGCC are known to amplify STDP by enabling backpropagating 

action potentials in dendrites (Williams and Stuart, 2000), a key condition required for 

STDP like LTP. It has been further evidenced by Magee and Johnston (1997), that 
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pairing of subthreshold EPSP with backpropagating action potentials induced strong 

dendritic action potentials and increased Ca2+ influx, a condition specifically favouring 

STDP. Therefore, blocking L-type receptors can also block the effect of PAS and other 

similarly paired stimulation protocols. On the other hand, apical dendrites of cortical 

pyramidal cells are likely to play a crucial role in rTMS mediated LTP, since the 

blockade of T-type VGCC resulted in lack of facilitation (Weise et al., 2017). A 

reduction in Ca2+ dependent GABAergic synaptic strength and remodelling of 

postsynaptic gephyrin scaffolds were observed after application of 10Hz repetitive 

magnetic stimulation in pyramidal neurons during an in vitro study by Lenz et al. (2016). 

They also noticed a similar reduction of clustered gephyrin in rTMS treated mice. It was 

suggested that rTMS possibly modulates GABAergic synaptic strengths at dendritic 

synapses (Lenz and Vlachos, 2016) and repetitive magnetic stimulation strengthens 

glutamatergic synaptic strength along with the structural reorganization of dendritic tree 

(Vlachos et al., 2012). 

STDP mediated LTP and LTD are also dependent on other factors, including target cell 

type (Lu et al., 2007), synaptic competition (Song et al., 2000), co-operativity (Sjostrom 

et al., 2001), coincidence of presynaptic and postsynaptic activity resulting in opposite 

effect (Holmgren and Zilberter, 2001), activity dependent refinement (Butts et al., 2007) 

and spike pattern (Markram et al., 1997). Dendritic structure, location and excitability 

also play a key role in LTP/LTD modulation; and the non-linearity and variable nature 

of STDP mechanism is also known to be influenced by dendritic projections (Froemke 

et al., 2005, Kampa et al., 2007, Letzkus et al., 2006, Sjöström et al., 2008).  In 

conclusion, multifactorial properties of STDP mediated LTP/LTD, differences in 

NMDA receptors affecting cortical excitability induced by stimulation protocols, 

reliance on feedforward afferent input and non-overlapped activation of selective areas 

controlling selective muscle groups in the motor cortex might explain, at cellular 

context, the underlying mechanism of biased facilitation towards flexor and distal hand 

muscle observed in my experiments. The requirement of the backpropagating dendritic 

potential for STDP like LTP could also be an alternate explanation of why flexor-

extensor differences were seen only in PAS or motor imagery protocols but not in rTMS 

protocol.  

It is worth mentioning that the site of induced plasticity or excitability is also crucial in 

the observed results in my experiments, which was explained in relevant chapters. 
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According to my results, the STDP protocols used to provide paired stimulation from a 

wearable electronic device affected cortical excitability along with subcortical 

structures, including the reticulospinal connections, whereas the PAS protocols utilizing 

motor point stimulation as afferent input and TMS as cortical input possibly affected 

cortical excitability primarily, but a subcortical effect cannot be excluded. As evidenced 

by (Fisher et al., 2012), TMS at motor cortex is capable of sending a volley towards 

reticular formation. Hence it can be argued that paired TMS protocols with an afferent 

input might influence reticular or other subcortical connections parallelly. Since motor 

imagery cannot be regarded as a direct afferent input, it can be rather explained as a pre-

conditioning stimulation where motor cortex awaits in subthreshold level to trigger an 

EPSP upon complete activation. I also observed a similarly biased facilitation in motor 

cortical excitability in the forearm flexor and hand muscles using simultaneous motor 

imagery and TMS. All these observations support the idea that somewhere lies an 

inherent difference between agonist vs. antagonist muscle groups which also affects the 

reorganization at cortical and subcortical level. A subtle but crucial influence of 

reticulospinal connections might amplify those differences to some extent in healthy 

person but to a great extent during recovery or artificial induction of plasticity. 

Finally, much of the above explanations relied on previous evidence but most 

speculations made in this thesis were based on the observed effects from the studies I 

conducted. To learn the exact cellular and synaptic mechanism of induced plasticity or 

change in excitability, or to know the specific cortical and subcortical connections 

mediating to those changes at the cellular level, further research and exploration are 

required.       

 

Most of my experiments and protocols were designed to emphasize the translational 

aspects of neuroscience. My first experiment utilized a wearable electronic device to 

provide paired pulse stimulation and to test the possibility of strengthening or 

weakening motor connections to upper limb muscles, especially after corticospinal 

lesion. It was the first demonstration that the long-latency stretch reflex can be modified 

by repeated, the precisely-timed pairing of stimuli known to activate brainstem 

pathways. Furthermore, the pairing was achieved with a portable electronic device 

capable of delivering many more stimulus repetitions than conventional laboratory 
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studies. These findings open up new possibilities for basic research into under-

investigated pathways, which are important for motor control in healthy individuals. 

This study can also lead to paradigms capable of enhancing rehabilitation in patients 

recovering from damage, such as after stroke or spinal cord injury. A similar device and 

technique were later utilized to deliver a paired stimulation paradigm in a double bind 

placebo-controlled study at the Institute of Neuroscience Kolkata. A total of 96 stroke 

patients with corticospinal lesion were divided into three separate groups. The first 

group received paired stimulation protocol (stimulation to forearm extensor-interval-

click) for a prolonged period, the second group received random stimulation for the 

same duration, and the third group did not receive any stimulation. Only the group 

receiving paired stimulation showed significant improvement in the Action Research 

Arm Test (ARAT). 

The modified PAS protocol using motor point stimulation and TMS can also be useful 

in translational, clinical and rehabilitation programmes as delivering stimulation over 

muscle was proven to be less complicated and practical than providing stimulation at a 

specific nerve. The motor imagery and TMS protocol also have translation aspect and it 

was the first demonstration that paired motor imagery and TMS is capable of inducing 

lasting plasticity at cortical or subcortical level.  Overall, these results give insights into 

the nature of plastic reorganization in the motor system which might help to design 

appropriate protocols to be utilized in rehabilitation, motor learning, skill training or 

psychotherapy. 
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