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I  

Abstract 

The bacterial transcription factor Gre performs the highly conserved function of stimulating 

the endonucleolytic activity of RNA polymerase for efficient RNA cleavage, thereby 

promoting transcription elongation and assisting in transcript fidelity. This dynamic factor- 

mediated cleavage has been extensively studied, except for within the unusual Cyanobacteria 

where, notably, no Gre homologues have yet been identified. 

To investigate this apparent absence of Gre factor, the RNA polymerase of two cyanobacterial 

species, Synechococcus elongatus 7942 and Synechocystis sp 6803, were purified and tested 

for their in vitro transcription activity. Rates of intrinsic RNA cleavage were 20-90x greater 

for the cyanobacterial polymerases than rates found for Escherichia coli. Further study 

revealed differences in the bridge helix and trigger loop structural elements of the active site 

as the possible cause of this increased activity. Mutational analyses indicate a reduced 

flexibility of these elements which may fix the active site into a closed and more 

hydrolytically competent state. 

We propose that in cyanobacteria, the lack of Gre factor is compensated by the unique 

composition and endogenous ability of the polymerase itself to perform fast and efficient 

transcript cleavage thus eliminating the need for additional factors. In this work a Gre factor 

homologue, Gfh1, of Thermus aquaticus is also examined. Gfh1 is known to stimulate 

transcriptional pausing at a wide variety of pause signals and we present further evidence of 

preferential activity towards the inhibition of transcription from a pre-translocated state. 
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1.1 Thesis Scope 

Investigation into the regulation of gene expression is a continuing concern within the current 

climate of antibiotic resistance, environmental change, and need for production of high value 

products. Interest in cyanobacterial gene expression is therefore multiplied as the diverse 

cyanobacteria are capable of providing key information or possible solutions for each of these 

issues. 

Adaptation to variation in environmental conditions relies heavily on the ability of an 

organism to modify and regulate gene expression. The photosynthetic cyanobacteria are one 

of the most versatile groups and inhabit nearly all aquatic and terrestrial environments. They 

are responsible for much of the marine oxygen production and share similarities with their 

chloroplast descendants. Their wide distribution and diversity has resulted in the identification 

of a number of useful secondary metabolites, and the cyanobacteria are also very amenable for 

use in industrial production. A greater understanding of the mechanisms employed by 

cyanobacteria during gene expression would allow better manipulation of this production. 

Transcription, the first stage of gene expression, is carried out by RNA polymerase. There are 

a number of atypical features employed in cyanobacterial transcription. The RNA polymerase 

of this organism has an extra subunit, γ, caused by a split of the rpoC gene and also encodes a 

large lineage-specific insertion within the β’ subunit. Furthermore, cyanobacteria are unusual 

as the highly conserved GreA factor is absent. This proofreading RNA polymerase accessory 

factor greatly enhances hydrolysis of the RNA transcript in the event of a mis-incorporated 

nucleotide or stalled complex, allowing the mistake to be removed and the enzyme to be 

reset. The only other groups lacking GreA homologues are the small taxons of Aquificaceae, 

Dictyoglomaceae, and Fusobacteriaceae. It is currently unknown how this loss of GreA is 

compensated for. 

This thesis attempts to characterise the in vitro transcription of cyanobacterial RNAP with 

particular regard to the absence of the proof-reading GreA factor and the effects of this 

absence on the hydrolysis and fidelity of the nascent RNA transcript. 
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1.2 Cyanobacteria 

Cyanobacteria are one of the largest groups of gram-negative prokaryotes, with exceptional 

variation displayed among roughly 2700 described species (Nabout et al., 2013). Members of 

this taxon are capable of inhabiting nearly all aquatic and terrestrial environments and 

encompass both unicellular and filamentous morphology (Kulasooriya, 2011). Thought to 

have been the first group to develop oxygenic photosynthesis, cyanobacteria have played a 

central role in the history of our planet and its atmosphere. 

Between 3.8 and 2.8 billion years ago, the arrival of oxygenic photosynthesis in cyanobacteria 

led to the gradual increase in atmospheric O2 (Schopf, 1993). Initially, this oxygen was able to 

be neutralised by iron deposits and the methane-rich environment of Earth (Daines and 

Lenton, 2016). However, the competitive energy advantage provided by oxygenic 

photosynthesis, along with the toxic nature of oxygen to the anaerobes of the time, resulted in 

an overall gain of oxygen and ozone UV shield allowing conversion towards an aerobic 

atmosphere (Olsen, 2006; Blaustein, 2016). This transformation, termed the Great Oxidation 

Event, is believed to have occurred approximately 2.45 billion years ago. A thinner and less- 

insulating atmosphere ensued which launched Earth’s longest ice age, the Huronian glaciation 

(Kopp et al., 2005). In the time following, adapted aerobes became the predominant 

organisms leading to the emergence and subsequent evolution of protists and higher life forms 

(Och and Shields-Zhou, 2012; Van der Geizen and Lenton, 2012). 

Cyanobacteria were again of great importance roughly 1.5 billion years after this glaciation 

event in the formation of chloroplasts. Mereschkowsky (1905) was the first to hypothesise 

that chloroplasts were derived from cyanobacteria as a result of an endosymbiotic event. It is 

now thought that the primary endosymbiosis, where a eukaryotic ancestral cell engulfed and 

integrated a cyanobacterial-like prokaryote, gave rise to three major lineages: glaucophytes, 

rhodophytes (red algae), and the direct ancestors of all modern plants, chloroplastida (green 

algae) (Gould et al., 2008; Ball et al., 2011). Upon gradual progression to a true organelle, 

more than 90% of the cyanobacteria-derived genome of chloroplasts have either been lost or 

undergone endosymbiotic gene transfer to the nuclear genome of the host (Timmis et al., 

2004). Key proteins involved in oxygenic photosynthesis, translation, and the division of the 

symbiont make up the majority of retained genes (Daniell et al., 2016). Recent phylogenetic 

analyses of these nuclear and plastid-encoded genes by Ponce-Toledo et al. (2017) propose a 

freshwater cyanobacterium, Gloeomargarita lithophora, as being the closest living relative 

able to most accurately represent the primary chloroplast endosymbiont. 
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Modern day cyanobacteria continue to perform vital functions. Oceanic phytoplankton, which 

include members of cyanobacteria, lead production of total atmospheric oxygen at an 

estimated 50-70% (Sekerci and Petrovskii, 2015; Harris, 1986). Nitrogen-fixing cyanobacteria 

help in the maintenance of soil fertility and enhancement of agricultural production, especially 

important considering the predicted food requirements and limited land resources of our 

growing population (Singh et al., 2016). The wide distribution and diversity of cyanobacteria 

has resulted in a number of secondary metabolites of ecological, medicinal and industrial 

interest which are reviewed by Mazard et al. (2016). Cyanobacteria are also widely amenable 

for use in industrial chemical production, particularly in the production of sustainable biofuels 

and biodegradable plastics (Troschl et al., 2017; Nozzi et al., 2013). 

The regulation of gene expression in cyanobacteria is therefore of particular interest. A 

greater understanding of the mechanisms employed during transcription would allow better 

manipulation for industrial production. The transcription machinery of two major 

cyanobacterial model species are studied in this thesis, Synechococcus elongatus PCC 7942 

(S.el) and Synechocystis sp. PCC 6803 (S.sp). Both are freshwater, polyploid, unicellular 

cyanobacteria with fully sequenced genomes. The genome of S.sp was the first cyanobacterial 

genome to be fully sequenced and annotated, whereas S.el was the first cyanobacterium to 

show reliable transformation by exogenous DNA (Kaneko et al., 1996; Shestakov and Khyen, 

1970). The genome for S.el is roughly 2.7 Mb comprised of a single chromosome and one 

plasmid encoding 2,657 proteins in total. The genome of S.sp is slightly larger with a single 

chromosome and four endogenous plasmids at 3.57 Mb, and a total protein count of 3,507. 

Each carry a complete set of genes for oxygenic photosynthesis, and while some strains can 

use alternate carbon sources such as glucose for growth, others like S.el strictly require 

photosynthetically derived energy and are known as obligate photoautotrophs (McEwen et al., 

2013). Primarily due to interest in this photosynthetic machinery and natural competency, 

many methods have now been established for the study of their molecular biology. This is 

particularly true in the area of synthetic biology, where the ability of cyanobacteria to respond 

to environment signals such as light intensity or CO2 concentration make them attractive as 

engineered biosensors (Sun et al., 2018). 
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1.3 Transcription in Bacteria 

The first stage of gene expression is carried out by DNA-dependent RNA polymerase 

(RNAP) which produces messenger or non-coding RNA (m/ncRNA) from a DNA template 

in the cyclical process of transcription. This primary RNA transcript can then be used as a 

template for protein synthesis or perform regulatory roles in the case of most ncRNA. 

Transcription by RNAP is a repeated multi-stage process consisting of initiation, promoter 

escape, elongation, and termination. 

 

1.3.1 The Transcription Cycle 

Initiation of transcription begins with binding of RNAP holoenzyme to promoter regions 

upstream of the intended gene or operon to be transcribed. Holoenzyme is formed through 

binding of RNAP with a dissociable sigma factor which allows recognition and binding of 

consensus DNA elements such as -35 TTGACA and -10 TATAAT (Harley and Reynolds, 

1987; Gruber and Gross, 2003). 

Sigma factors are promoter-specific and the number of different sigma factors available varies 

greatly between species. They are organised into two evolutionarily distinct families, σ70 and 

σ54, based on structure and sequence homology (Merrick, 1993). The principal sigma factors, 

RpoD/σ70 in E. coli and SigA/RpoD1 in cyanobacteria, use variations of the motifs above to 

initiate transcription of the housekeeping genes essential for cell viability (Imamura and 

Asayama, 2009). These factors can tolerate considerable sequence divergence from the 

consensus whereas alternative sigma factors, which tend to promote transcription of very 

specific regulons, exhibit a very high stringency for precise promoter sequences (Feklistov 

and Darst, 2009). Cyanobacteria only encode σ70-type sigma factors, and these are further 

divided into four groups (Paget and Helmann, 2003). Group 1 comprises the essential primary 

sigma factor for transcribing exponential growth phase genes. Group 2 factors also use the 

above consensus promoters but are non-essential (Goto-Seki et al., 2002). E. coli possesses 

only one group 2 factor, σS, thought to be a master regulator of stress response while 

cyanobacteria typically have at least three and up to seven (Osanai et al., 2008). It is also 

common to have multiple alternative-type group 3 and group 4 factors which direct 

transcription of environmental-adaptation genes such as those for motility, sporulation, iron 

transport, and further stress responses (Paget, 2015; Huckauf et al., 2000). 

Cyanobacteria are the only known species able to perform oxygenic photosynthesis and to 

synchronise cell activities with the rotation of Earth in a circadian rhythm (Johnson, 2007). 

Light-induced gene expression is achieved through the circadian KaiABC clock proteins 

which transmit environmental light signals to response regulators through the
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transfer of phosphorylation status (Bell-Pedersen et al., 2005). Markson et al. (2013) found 

phosphorylation of the master response regulator RpaA results in the activation of some 

group 2 sigma factors and the KaiBC operon itself, creating a positive feedback loop. Altered 

expression of the group 2 sigma factors or RpaA can interfere with downstream circadian 

gene expression and dysregulate circadian timing (Nair et al., 2002; Puszynska and O’Shea, 

2017; Diamond et al., 2017). It is currently suggested that different members of the group 2 

cyanobacterial sigma factors have important roles in activating transcription at different 

points during the light cycle (Summerfield and Sherman, 2007). Access to the DNA is also 

affected by genomic compaction and DNA supercoiling which adds further layers of 

regulation to the transcription process of cyanobacteria (Vijayan et al., 2009; Smith and 

Williams, 2006). 

Once the holoenzyme (RNAP + σ) has bound the promoter region, the DNA duplex is melted 

from the A/T-rich -10 element to the transcription start site to form the transcription bubble. 

The separated DNA strands are held within the main channel of RNAP to position the 

+1 transcription start site of the template strand at the active center for transcription initiation. 

RNAP tends to be retained at the promoter region due to the strong binding of σ, resulting in 

cycles of abortive initiation (Samanta and Martin, 2013). Short RNA transcripts are 

transcribed before the productive elongation phase. A conformational strain known as DNA 

scrunching is produced by the accumulation of unwound DNA within the RNAP which 

cannot move forward (Revyakin et al., 2006). Escape of RNAP from the promoter requires 

energy generated by this stressed DNA and the synthesis of a nascent RNA of a significant 

size (Kapanidis et al., 2006; Dulin et al., 2018). Full dissociation of σ is common but not 

necessary for productive elongation, and either continued binding or re-attachment of σ may 

permit further regulatory activities such as promoter- proximal pausing (Mooney et al., 2005). 

During the elongation phase, the RNAP extends the RNA transcript using another repeated 

process known as the nucleotide addition cycle. RNAP is able to maintain strong contact with 

the DNA, moving the transcription bubble along the duplex while preserving DNA strand 

separation and a 9-10 bp RNA:DNA hybrid positioned at the active site, allowing highly 

efficient and processive elongation until a termination signal is encountered (Zuo and Steitz, 

2017). The main focus of this thesis revolves around the elongation phase of transcription, 

and so the specific activities of RNAP in NTP incorporation and the regulatory mechanisms at 

this stage are discussed in more detail in the following chapters. 
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Terminator signals cause the RNA transcript to be released from the RNAP. There are two 

major types of termination signal in bacteria; Rho-dependent and Rho-independent 

termination. Rho is an ATP-dependent helicase, essential in E. coli, which binds to a Rho- 

binding site on the nascent mRNA and dissociation of the elongating complex with full 

release of the RNA transcript (Ciampi, 2006). Although roughly half of all transcription 

terminators identified in E. coli are Rho-dependent, no full Rho homologue has yet been 

identified in cyanobacteria (de Hoon et al., 2005). Rho-independent or intrinsic termination 

depends on a palindromic sequence encoded at the terminator which results in a hairpin 

structure in the transcript with a strong G:C stem followed by a stretch of consecutive U 

bases (Rédei, 2008; Farnham and Platt, 1981). RNAP stalls due to the poly-U region which 

gives the hairpin time to form and block the RNA exit channel, subsequent displacement of 

the transcript from the DNA:RNA hybrid and weak Watson-Crick base pairing of the U 

stretch result in dissociation of the RNAP (Peters et al., 2011). Vijayan et al. (2011) found 

Rho-independent termination to be widespread in cyanobacteria, along with occasional 

incomplete termination events. Interestingly, inefficient termination is also a recognised 

feature of chloroplast gene expression. It was thought that in chloroplasts, the intrinsic 

termination signals are used mainly as structures to stabilise the transcript for further RNA 

processing by additional factors (Stern and Gruissem, 1987). In 2014, Chi et al. described 

Rho-like termination activity for the RNA-binding RHON1 chloroplast protein. RHON1 

relies on an ATPase domain with a completely distinct structure from that of Rho, and binds 

sites on the RNA transcript which are sparse in C residues in comparison to the binding sites 

for Rho which tend to be enriched with C (Chi et al., 2014). The mode of action is therefore 

distinctive and not identical to that of Rho. They also suggest RHON1 may only found in the 

dicot branch of flowering plants. A BLAST search for RHON1 in cyanobacteria returns only 

15 species. The proteins aligned are much shorter than RHON1, mostly described as 

hypothetical, and have roughly 50% identity aligning to the N-terminal domain of Rho. 

Termination is the least understood transcriptional stage, particularly in cyanobacteria, and 

further study into these potential Rho-like proteins may prove useful in future application to 

synthetic engineered systems. 
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1.3.2 The Transcription Machinery 

All cellular organisms use multi-subunit RNAPs to carry out the transcription cycle. Bacterial 

RNAP has a typical core subunit composition of α2ββ’ω encoded by the rpoA, rpoB, rpoC, 

and rpoZ genes, respectively (Minakhin et al., 2001). There is a great deal of both structural 

and sequence conservation between bacterial RNAPs and the RNAPs of archaea and 

eukaryotes, suggesting divergence from a common ancestor. This has been demonstrated in a 

variety of published RNAP crystal structures from all three domains (Zhang et al., 1999; 

Korkhin et al., 2009; Cramer, 2002). Bacterial RNAP represents the ‘core component’, or the 

simplest form required for the conserved mechanism of RNAP, with homologues for each of 

the bacterial subunits identified in archaea and eukaryotes (Sweetser et al., 1987; Ebright, 

2000; Lane and Darst, 2009). Transcription in archaea and bacteria also relies on just a single 

RNAP complex whereas eukaryotes can have multiple multi-subunit RNAPs, each specialised 

for the synthesis of a particular type of RNA transcript. The RNAPs of the archaea-eukaryote 

lineage manifest increased complexity through additional subunits, many of which have 

functions carried out by general transcription factors for other RNAPs (Carter and Drouin, 

2010). Structural features of RNAP are highlighted in Figure 1. 

Assembly of bacterial RNAP first involves formation of a homodimer by two α subunits via 

the N-terminal domains (NTD) which then recruit the β subunit to form α2β, the αNTD does 

not participate in catalysis and functions solely as an aid for assembly. However, the C- 

terminal domains (CTD) of the α dimer have important roles in regulating the interaction with 

σ factor and holoenzyme recruitment to the promoter region (Chen et al., 2003). The ω 

subunit forms a β’ω complex by simultaneously binding the NTD and CTD of the β’ which is 

thought to promote formation of RNAP by preventing aggregation of the separate parts 

(Ghosh et al., 2001). Although ω appears to be a non-essential subunit under normal 

conditions, deletion mutants have identified altered growth phenotypes and a potential non- 

structural role in the regulation of RNAP to the alarmone ppGpp (Vrentas et al., 2005; 

Mathew et al., 2006). Gunnelius et al. (2014a, b) found ω to be essential in cyanobacteria 

when under heat stress, and also for the efficient recruitment of σ factor to form holoenzyme. 

The β and β’ subunits form the bulk of the enzyme and make extensive interactions with each 

other to shape the RNAP active site. β and β’ are comprised of a number of distinct domains 

which provide the elements for catalytic activity. Full assembly is then achieved upon joining 

of the two sub-assemblies α2β + β’ω to give an approximate RNAP molecular mass of 400 

kDa (Ishihama, 1981; Minakhin et al., 2001). 
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Figure 1.  Structural Overview of Bacterial RNAP. (A) E. coli RNAP subunit composition and arrangement. 

(B) Schematic of RNAP with the major structural and catalytic elements labelled.  (C) Space fill of RNAP 

showing positioning and separation of the nucleic acids, and RNA:DNA hybrid with the 3’-OH of RNA at 

the active site ready to receive an incoming NTP. (D) Approximate division of the four mobile RNAP 

modules, with the active-site spanning bridge helix (BH) and catalytic trigger loop (TL) components. 

Adapted from Sekine et al., 2015 and Tagami et al., 2010. All structures are E. coli RNAP, made using data 

of an elongating complex from PDB 6ALH (Kang et al., 2017). 
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Bacterial RNAP has an overall ‘crab claw’-like structure split by a positively charged cleft for 

nucleic acid binding, with the largest subunits β and β’ each providing a ‘pincer’. The general 

architecture can be divided into four mobile modules formed from a combination of subunits; 

the core, the shelf, the clamp, and the jaw-lobe (Zhang et al., 1999; Cramer et al., 2001). The 

core and shelf modules connect to form the central part of the claw and shape the primary, 

secondary and RNA exit channels. These two modules are linked by a long α-helix, the bridge 

helix, which spans the RNAP cleft and is next to the deep catalytic site formed at the junction 

of the pincers. The core and shelf modules can shift relative to each other to open the active 

site and affect conformation of the nucleic acids in RNAP transcription bubble (Sekine et al., 

2015). The clamp and jaw-lobe modules extend from the core and shelf modules to form the 

claw pincers. These modules also complete the primary or main channel, through which the 

nucleic acids are positioned at the active site. The jaw-lobe helps guide the DNA through the 

RNAP whereas the clamp has three loops which extend into the active site. These loops, 

known as the rudder, lid, and zipper, help facilitate separation of DNA:RNA hybrid to direct 

the nascent RNA transcript through the RNA exit channel (Gnatt et al., 2001). The secondary 

channel provides access to the active site for incoming NTPs and is also relied on heavily 

during transcription as a site of regulation through the action of secondary channel binding 

factors (Nickels et al., 2004). 

The catalytic subunits of RNAP are β and β’ encoded by the rpoB and rpoC genes. These two 

genes tend to be part of an operon in many bacteria and are synthesised as a single 

transcription unit. They are thought to be the result of an ancient duplication event where 

each subunit subsequently diverged and developed specialised functions (Iyer et al., 2003). In 

cyanobacteria, however, rpoC has undergone a split into two parts, an N-terminal γ subunit 

(rpoC1) and a C-terminal β′ subunit (rpoC2) (Schneider et al., 1987; Xie et al., 1989). 

Although no published cyanobacterial RNAP structures are available, the high degree of 

conservation between multi-subunit RNAPs from all three domains suggests a similar ‘crab 

claw’-like structure is likely. Pollari et al. (2008) constructed models for the RNAP 

holoenzyme of S.sp using a Thermus thermophilus published structure as a template. In these 

models, the arrangement of RNAP is comparable to that of other bacterial RNAP, with two 

recognisable ‘pincers’ which in this instance, are formed from the β and γ+β’ subunits. This 

split of the rpoC gene must have occurred before the endosymbiotic event which gave rise to 

chloroplasts, as two subunits are also employed in chloroplast RNAP which correspond to the 

N and C-terminal domains of the usually singular bacterial rpoC gene. Chloroplasts rely on 

two RNAPs, a nuclear encoded polymerase (NEP) of the host genome and the cyanobacterial 

descended chloroplast/plastid-encoded polymerase (PEP) both of which are required (Smith 
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and Purton, 2002). The terminology used in PEP is different to that for cyanobacterial RNAP, 

however, as chloroplast rpoC1 is termed the β’ subunit and rpoC2 is β’’. It is interesting that 

PEP has been retained when so many other cyanobacterial-derived genes have been lost or 

transferred to the nuclear genome (Timmis et al., 2004). Both PEP and NEP are essential for 

chloroplast transcription and both appear able to transcribe the complete chloroplast genome. 

The only gene which undergoes NEP-exclusive transcription is PEP rpoB, which may be 

some form of quantity regulation since PEP is the predominating RNAP in green leaves 

(Börner et al., 2015). 

The sequences of the large β and β’ (or γ+β’) subunits are highly conserved among the multi- 

subunit RNAPs of all three domains of life and encode a number of distinct elements which 

assist in catalysis (Jokerst et al., 1989; Allison et al., 1985). The availability of sequence data 

from an increasing variety of species has allowed further refinement of these conserved 

element regions (Zhang et al., 1999; Lane and Darst, 2010a). Differences between the E. coli 

β’ and the cyanobacterial γ+β’ feature prominently in this thesis and these conserved regions 

are depicted in a linear map along with the structural domains they form in Figure 2. 

Using nomenclature from Lane and Darst (2010a), cyanobacterial γ maps to the N-terminal 

sections b1-b5 of single bacterial β’, leaving the cyanobacterial β’ subunit to align to the C- 

terminal b6-b11 regions of conservation. Regions b1 to b3 inclusive form the majority of the 

clamp module with the zipper encoded in b1, and both the lid and rudder in section b3. Part of 

the clamp is also encoded by section b11. An evolutionarily conserved Zn-ribbon (ZNR) is 

found in b1 which has an important role in maintaining the structural stability of RNAP 

(Chanfreau, 2013). β-β’ module, BBM, domains form a curved hairpin structure restricted by 

two α-helices, however, the function they provide is not currently understood. It has been 

suggested that they work in protein:protein interactions with transcriptional regulatory factors 

(Opalka et al., 2010). BBM1 is found after the ZNR and notably inserts itself into the 

conserved domain of the β subunit which forms part of the active site (Iyer et al. 2004). Two 

conserved AT-hook like modules are at the end of region b3 which are small positively 

charged flap structures used in recognition and binding of nucleic acids (Iyer et al., 2003). 

Regions b4 and b5 make up the precise site of catalysis in RNAP where NTPs are 

incorporated into the RNA transcript. These regions are further examined in the next section 

but encode a number of critical residues which contact the DNA, RNA, and NTP, and also 

chelate a Mg2+ ion required for catalysis. NTPs and accessory transcription factors access the 

active site of RNAP through the secondary channel. The secondary channel rim helices are 

the binding platform for these external transcription factors and are formed from the common 
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b6 region. The rpoC split in cyanobacteria is also in the vicinity of this region which may 

form part of the reason for the absence of secondary channel binding factors, i.e. GreA, in 

these organisms. Two integral active site components known as the bridge helix and the 

trigger loop are denoted by regions b7 and b8-9, respectively. These two mobile elements are 

recurrently discussed in later chapters. In between these lies the conserved BBM2. Again, the 

specific function is not understood, however, Iyer et al. (2004) has identified several BBM2 

variations in other proteins, including in cyanobacteria where a BBM2-type domain has fused 

to the C-terminal of Ferredoxin which also suggests protein:protein or regulatory interactions. 

After the trigger loop, are the final conserved sequences of b10 and b11 which provide further 

structural elements for the jaw and clamp modules (Lane and Darst, 2010b). 

Comparison of the RNAP sequences not only led to detailed recognition of conserved 

domains, but also identified several regions which had undergone non-conserved insertion 

events characteristic of different evolutionary lineages (Zhang et al., 1999; Iyer et al., 2003). 

These insertion sequences are found towards the surface of the enzyme, away from the highly 

conserved active site, and constitute the main differences between the RNAP of different 

bacterial species. The largest and most studied of these insertions occur in the β and β’ 

subunits of proteobacteria, known as sequence insertions 1, 2, and 3 (SI3). SI1 and SI2 are 

found within the β subunit whereas SI3 is inserted in the middle of the highly conserved 

trigger loop element of β’ (Artsimovitch et al., 2003) (also in Figure 2). 

Lane and Darst (2010a) have since been able to identify several smaller lineage-specific 

insertions in bacteria using alignment of a greater number of β and β’ sequences to give a 

current total of 12 β inserts and 7 β’ inserts (not shown). Inserts differ in size, sequence, and 

location but are all predicted to be surface-exposed which the authors suggest grant species- 

specific properties on core RNAP. Artsimovitch et al. (2003) likens the pattern of surface- 

exposed inserts to that of the additional surface subunits of eukaryotic RNAPs which while 

dispensable, modulate RNAP activity and response to regulatory factors. The SI1 and SI2 can 

tolerate large alterations and even deletion without affecting core function. In addition, SI1 

has been discovered to regulate activity through the action of termination factor Alc, through 

clamping of downstream duplex DNA, and by acting in concert with the β’ rim helices as the 

binding site for the transcription factor DksA (Parshin et al., 2015; Saecker et al., 2011; 

Severinov et al., 1994). The function of SI2 is still largely unknown but it appears to play a 

role in RNAP conformation changes during pausing (Kang et al., 2018). Alterations of the 

large β’SI3 of E. coli, however, are much more detrimental to RNAP activity, likely due to its 

position within the integral trigger loop (Zakharova et al., 1998). The SI3 of the 
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cyanobacterial lineage is unique in that it is much larger at >600 amino acids and harbours 

at least seven sandwich-barrel-hybrid-motifs (SBHM) as opposed to the two encoded in E. 

coli SI3 (Iyer et al., 2003). Several suggestions have been made for the function of these 

motifs and the role of the SI3 in general which are discussed in the next section. 

These SI regions also show only slightly more sequence variability between related bacteria 

than the remaining subunit regions, further suggesting a functional role. The SIs display 60- 

70% conservation between E. coli and other γ-proteobacteria whereas conservation of the 

remaining regions is >80% (Artsimovich et al., 2003). The total length of β’ or γ+β’ is 1407 

amino acids for E. coli and 1942/1943 for S.el and S.sp respectively. Sequence conservation 

(excluding SI3) between these organisms is ~42% for identical positions and ~70% if 

including positions with similar amino acids. Comparison of the subunit as a whole shows a 

small increase in negatively-charged residues to ~15.5% and a decrease in positively-charged 

residues to ~12% for cyanobacteria over the equivalent 13.5% and 13.2% for E. coli. These 

percentages also hold true when calculated without the SI3. This is reflected in the lower 

theoretical pI for the combined cyanobacterial subunits of 5-5.1 as opposed to 6.8 for E. coli 

β’. The β’ subunit is unstable and prone to aggregation, a lower pI further from the 

intracellular pH may assist in maintaining solubility (Ghosh et al., 2001). Additional 

differences in composition between cyanobacterial and E. coli subunits include increases of at 

least 1% in aspartic acid and glutamine, with decreases in alanine, lysine, and leucine. These 

composition differences were calculated excluding SI3 and so represent differences in the 

predominantly conserved regions of the subunits. Once a crystal structure has been 

established for cyanobacterial RNAP, it would be interesting to find out whether these 

composition differences in amino acids are grouped together, form surface exposed pockets, 

or are in functionally relevant areas of the polymerase. Sequence conservation analysis of just 

the SI3 domains of both cyanobacterial strains gave 60.1% identity, consistent with the 

percentages of SI conservation between other related bacteria but also indicating a potential 

variability in function or binding partners of this insert. 
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 Figure 2. Comparison of E. coli rpoC and Cyanobacterial rpoC1/2. (A) Linear map of conserved regions 
(b1-b11) and important elements of the large catalytic β’ subunit, or γ+β’ in the case of cyanobacteria. 
Approximate positioning of these regions was obtained using alignment of E. coli, S.el, and S.sp 
sequences. Adapted from (Lane and Darst, 2010a; Weilbaecher et al., 1994; Imashimizu et al., 2011). ZNR, 
zinc ribbon; BBM, β-β’ module; ATL, AT-hook-like motif; DPBB, double-Ψ β-barrel; BH, bridge helix; SBHM, 
sandwich-barrel-hybrid-motif. (B) Radar charts showing amino acid composition percentages of the stated 
E. coli and cyanobacterial subunits with and without the SI3 domain. Amino acids differing by >1% 
between E. coli and cyanobacteria are shown to the right. Calculated using ExPASy ProtParam tool. 
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1.3.3 Elements of the Active Site 

The active site of RNAP is positioned in the cleft formed between the β and β’ subunits and is 

buried in the structural center of the enzyme surrounded by a number of entry/exit channels to 

the polymerase surface. All enzymatic activities catalysed by RNAP occur in the same active 

site via a two-metal-ion mechanism to direct phosphoryl transfer. This mechanism is 

supported by two mobile elements of the β’ subunit, the trigger loop and the bridge helix, 

which play essential roles in catalysis and translocation. 

 

1.3.3.1 Metal Chelation Site and Two-Metal-Ion Catalysis 

The site of RNAP catalysis is formed not only at the interface of the β and β’ subunits but 

specifically between a six-stranded double-Ψ β-barrel (DPBB) motif in each (Iyer et al., 

2003). These motifs are encoded by the conserved b4 and b5 regions of β’, a similar 

conserved region from β, and involve several nearby residues to perform efficient catalysis. 

Depicted in Figure 3, the DPBB of the β’ subunit provides a universal heptapeptide motif of 

NADFDGD for metal coordination whereas the diverged DPBB of the β subunit contributes 

two lysine residues which are involved in substrate binding (Cramer, 2001). In cyanobacteria 

the “β’-DPBB” is located in the N-terminal region of the rpoC gene split and so is actually 

encoded by the γ subunit. These two DPBBs are oriented asymmetrically to form the 

positively-charged catalytic cleft for nucleic acid binding. 

The principal activity of RNAP is to synthesise an RNA transcript via nucleotidyl transfer 

between the α-phosphate of the NTP substrate and the 3’-OH of the growing RNA with 

release of pyrophosphate as a by-product. This reaction can also be reversed, where the 

pyrophosphate stimulates degradation of the RNA with release of 3’-terminal NTP, known as 

pyrophosphorolysis. The RNAP active site can additionally perform further exo- and endo- 

nuclease reactions important in maintaining fidelity of the transcript. All the reactions are 

catalysed via a two-metal-ion mechanism (Mg2+) which was first proposed for E. coli DNA 

polymerase by Freemont et al. (1988) and then as a universal mechanism for most 

nucleotidyl-transfer enzymes (Steitz and Steitz, 1993; Steitz, 1998). Sosunov et al. (2003, 

2005) later expanded the details of this mechanism with regard to the conserved architecture 

and many activities of the single multi-subunit RNAP active site. 

The universally conserved aspartate triad of the NADFDGD motif tightly chelates Mg2+I with 

a binding affinity of ~100 µM (Sosunov et al., 2003). Substitution of any of these aspartates 

dramatically reduces Mg2+ binding and all activities catalysed by RNAP (Zaychikov et al., 

1996). The second Mg2+ ion, Mg2+II, is only weakly bound with a Kd ~10 mM as it contacts 
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just one aspartate residue of the triad and instead relies on several water-mediated contacts 

with surrounding residues (Nudler, 2009; Sosunov et al., 2003). Mg2+I is permanently 

sequestered by RNAP and held the junction of the main and secondary channel, whereas 

Mg2+II is delivered to the active site via contact with three triphosphate oxygen atoms of the 

incoming NTP and is released upon completion of the reaction. 

The general mechanism of two-metal-ion dependent catalysis uses these ions to orientate 

proper alignment of the reaction substrates in order to form a nucleophile and then stabilise 

nucleophilic attack. The role of Mg2+I in phosphodiester bond formation is activation of the 

RNA 3’-OH and co-ordination of the incoming NTP α-phosphate. RNA 3′ O− attack on this 

α-phosphate results in the formation of a new phosphodiester bond and release of a protonated 

pyrophosphate leaving group (Castro et al., 2007). Mg2+II stabilises the pentacovalent 

transition state by co-ordinating the β and γ phosphates of the NTP substrate and may 

promote product formation by ligating the pyrophosphate leaving group (Yang et al., 2006). 

The roles of each ion are reversed in pyrophosphorolysis as Mg2+II instead activates 

nucleophilic attack of pyrophosphate on the phosphodiester bond of the 3’ terminal NMP, and 

Mg2+I stabilises the transition state (Sosunov et al., 2003). The two-metal-ion mechanism is 

based on common SN2-type nucleophilic attack reaction kinetics where bond formation and 

breakage occur simultaneously (Yee et al., 1979). This mechanism also allows both the 

formation and degradation of phosphodiester bonds with no specific requirement for a general 

base or acid. However, the existence of a general base for deprotonation of the RNA 3’ 

hydroxyl and general acid for protonation of the pyrophosphate have been suggested for 

RNAP, in addition to utilisation of water from the surrounding solution, and are proposed to 

reside in the trigger loop (Castro et al., 2007; Svetlov and Nudler, 2013; Yuzenkova et al., 

2010). 

The geometry of the two metal ions has also been proposed to promote catalysis and result in 

the energetically favourable protonated leaving group even in lieu of a general acid (Yang et 

al., 2006). The position and separation distance between the two metal ions may vary during 

the reaction according to the changes in the coordination environment. It has been suggested 

that the 4 Å separation of the two metal ions described by Steitz and Steitz (2003) represents a 

“resting” state and that shortening of metal–metal distance may be necessary for phosphoryl 

transfer reactions to occur. Both Nowonty et al. (2006) and Yang et al. (2006) used other two- 

metal-ion mechanism dependent enzymes to substitute the Mg ions for other divalent cations 

to show that while all could bind the active site, catalytic activity required the ability of ions 

to form closer transition interatomic distances of <3.5 Å adding evidence for this shortening. 
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Figure 3. The Metal Co-ordination Site. (A) E. coli RNAP PDB 6ALH (Kang et al., 2017) showing the DPBB 

motifs, Mg
2+

 co-ordinating residues of NADFDGD of β’, and lysine residues of β. (B) Schematic of the 
phosphodiester bond formation reaction. The two metal ions are chelated by the aspartate residues and 
also interact with the reacting groups. The RNA 3’-OH attacks the α- phosphate of the NTP substrate. 
Based on Zhu et al. (2009). 
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1.3.3.2  Trigger Loop 

 

The β’ trigger loop (TL) is a flexible domain of the active site which assists the two-metal-ion 

dependent mechanism described previously and is required for efficient catalysis. It lies at the 

end of the secondary channel, next to the bridge helix, and is encoded by the b8 and b9 

conserved regions of β’. While five distinct conformations of this element have been observed 

in crystal structures of eukaryotic RNAPs, only two functionally important conformations 

representing the beginning and end points of this spectrum will continue to be discussed. 

These are known as the ‘open/unfolded’ and ‘closed/folded’ TL states (Vassylyev et al., 2007; 

Wang et al., 2006). TL folding is one of the major conformational changes of RNAP during 

transcription and plays important roles in both nucleotide addition and RNA cleavage 

activities. 

The ‘folded’ conformation is adopted upon binding of the correct substrate NTP and results in 

an α-helical hairpin-like formation of two α-helices, known as the trigger helices (TH), 

separated by the SI3 insert (Vassylyev et al., 2007). The NTP is then enclosed in the active 

site via a TH and bridge helix three-helical bundle. Two residues, β’ H936 and R933 (E. coli 

numbering), of the TL contact the NTP triphosphate to ensure proper positioning of the 

electrophile and facilitate attack by the RNA 3'-OH leading to determination of the TL as a 

positional catalyst (Mishanina et al., 2017). The orthologous β’ H936 residue in Thermus 

aquaticus has also been shown to promote catalysis by acting as a general base (Yuzenkova 

et al., 2010). In this ‘folded’ conformation, the secondary channel is blocked therefore 

refusing additional NTP entry and transcript disengagement from the active site. The release 

of pyrophosphate is thought to destabilise the TH interactions and return the TL to an 

‘unfolded/inactive’ state (Da et al., 2012). This is coupled with conformations of the bridge 

helix which translocates or moves the RNAP along the template DNA to position the next 

base for synthesis. The ‘folded/unfolded’ TL states are illustrated in Figure 4E using 

Thermus thermophilus RNAP as it does not possess the flexible SI3 insert which usually 

hinders structural determination in this region. 

Substitutions or deletions of the TL significantly affect RNAP catalytic activity, but the 

presence of the TL is not absolutely required (Temiakov et al., 2005; Zhang et al., 2010). 

However, folding of the TL into the TH enhances catalysis rates roughly 104-fold (Vassylyev 

et al., 2007). Yuzenkova et al. (2010) found that the TL also has roles in transcript fidelity 

with the ‘folded’ conformation being sterically hindered by the base of a non-cognate NTP in 

the active site. The TL is suggested to therefore couple nucleotide recognition to catalysis in 
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an induced-fit mechanism which helps prevent incorporation of the wrong NTP (discussed in 

further detail in later chapters). 

 

1.3.3.3 SI3 

Sequence Insertion 3 (SI3) is the large non-conserved lineage-specific amino acid insertion of 

the β’ subunit which separates the two TH of the TL. SI3 is located on the surface of RNAP 

and rests next to the entrance of the secondary channel. In E. coli, it is a 188 amino acid insert 

consisting of two sandwich-barrel-hybrid motifs (SBHM) motifs whereas in cyanobacteria, it 

is much larger at ~640 amino acids which encode at least seven SBHMs (Chlenov et al., 

2005; Iyer et al., 2003). The flexible nature of this motif has impeded structural determination 

in this region, particularly at the N- and C-terminal linker ends of the SI3 which connect to 

the TH (Figure 4). This large cyanobacterial-like SI3 is also present in chloroplasts but 

completely absent in gram-positive bacteria and the Deinococcus-Thermus phylum 

(Artsimovich et al., 2003). 

The retention of SIs in related bacteria suggests a functional role such as the ability to adapt 

RNAP activity to different cellular environments through interaction with extrinsic regulatory 

factors (Severinov, 2000). The placement of SI3 within the integral TL may also influence 

catalytic activity and several mutational studies have implicated SI3 involvement in a number 

of RNAP functions across a variety of species. The SI3 has been proposed to play a role in 

stabilising interactions with downstream DNA, and with the secondary channel binding 

factors due to its structural location. Zhang et al. (2010) determined SI3 to be essential for the 

activity of transcription factor GreB, and Furman et al. (2013) suggests conformational 

changes of this flexible insert are responsible for the ability of another factor, DksA, to bind 

the secondary channel. Artsimovich et al. (2003) showed an SI3 deletion in E. coli to 

substantially decrease pause recognition and increase escape from paused RNAP states with 

Ray-Soni et al. (2017) adding that the presence of SI3 promotes termination by increasing 

pausing at terminator signals. The SI3 has also demonstrated modulation of TL folding into 

TH thereby affecting rates of nucleotide addition and transcript cleavage by Windgassen et al. 

(2014) who posit that insertions within active site elements like the TL could allow quicker 

accumulation of advantageous adaptive mutations to new environmental conditions. Deletion 

mutants of SI3 reduce cell viability and show defects in transcript cleavage and elongation, 

and partial ΔSI3 RNAP also inhibits correct enzyme assembly in E. coli (Zakharova et al., 

1998). 

In cyanobacteria, the large SI3 has been implicated in recognition of specific promoter 

nucleotides but this is yet to be proven (Imashimizu et al., 2003). Chlenov et al. (2005) also 
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note an interesting correlation between presence of the β’SI3 and another SI in the β subunit 

suggesting that effects of these domains are functionally co-ordinated, however, they also 

mark cyanobacterial RNAP to be the only exception as they do not encode an equivalent β 

SI (Iyer et al., 2003). The role of the repeated SBHMs within the SI3 is also yet to be 

determined. These motifs appear to be evolutionary accrued in other lineage-specific 

structural elements of RNAP (Iyer et al., 2004). Only a few have been characterised such as 

the SBHM of the β domain which assists in σ-factor and promoter binding and may 

function as the binding site for small RNAP-binding proteins, such as for mycobacterial 

RbpA whose role is also to stabilise the holoenzyme (Kuznedelov et al., 2002; Hu et al., 

2012). 

 

1.3.3.4 Bridge Helix 

The bridge helix (BH) is a long α-helix which spans the RNAP active site and separates the 

main nucleic acid-binding channel from the secondary channel. It is a roughly 35 amino acid 

mobile element which has a central role in catalysis and the nucleotide addition cycle, 

encoded by conserved region b7. The N-terminal sequence of b7 forms one wall of the 

secondary channel and part of the secondary channel rim helices before forming the central 

BH (Lane and Darst, 2010b). 

The BH is proposed to co-ordinate the movements of several domains during the catalytic 

cycle by transitioning between ‘straight’ and ‘kinked’ conformations. Weinzierl (2011) 

describes two glycine hinges within the BH as functionally important in these conformational 

changes and in RNAP activity. Amino acid substitutions just before each of these hinges, and 

at positions interacting with the TL or nucleic acid, can drastically affect rates of nucleotide 

incorporation (Weinzierl, 2010; Tan et al., 2008). The BH works in concert with the folded 

TH to enclose the substrate NTP in the active site and allow catalysis with the aspartate triad. 

β′ T790 and β′ G794 interact with the template DNA at the +1 position and with T928 of the 

TL, whereas β′ R798 interacts with the DNA at +2 (Tan et al., 2008). Epshtein et al. (2002) 

correlated BH conformation change with positioning of the RNA 3’ terminus suggesting an 

additional role of the BH in translocation. After NTP incorporation, the RNAP must move or 

translocate along the template DNA to position the next base for addition. This is currently 

thought to occur via a Brownian ratcheting mechanism including both the BH and TL and is 

described further in the next section. 
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 Figure 4. The Active Site Elements of RNAP. (A-D) E. coli RNAP PDB 6ALH (Kang et al., 2017) showing 
structural locations of the trigger loop (blue), SI3 (orange), bridge helix (green). The BH/TL is depicted in D, 
exhibiting the missing linker regions from the TL to SI3 domain. (E) Thermus thermophilus RNAP structure 
highlighting the ‘folded’ and ‘unfolded’ conformations of the TL/TH and distance of the NTP co-ordinating 
residues (yellow) to the BH and metal ions of the active site. Folded TL, PDB 205J (Vassylyev et al., 2007). 
Unfolded TL, PDB 4WQS (Murayama et al., 2015). 



22  

1.4 Regulation and Modulation of Activity 

RNAP is subject to a multitude of regulatory mechanisms at all stages of the transcription 

cycle including elongation. The cycle of RNA synthesis has four steps consisting of 

nucleotide addition, TL unfolding, pyrophosphate release, and translocation. Each step 

measurably limits the rate of transcription and provides a point of control (Malinen et al., 

2012). Regulation also occurs via the template DNA sequence which can encode intrinsic 

signals for the RNAP to pause or backtrack, allowing time for the binding of an assortment of 

accessory factors with various modifying activities (Bochkareva et al., 2012; Esyunina et al., 

2016). The ability to control the rate of elongation is an important step of gene expression and 

can be extremely beneficial for the cell in terms of ensuring transcript fidelity and co- 

ordination with other cell processes. 

 

1.4.1 Translocation and The Nucleotide Addition Cycle 

Synthesis of an RNA transcript requires dynamic conformational changes of the RNAP and 

involvement of all active site elements described previously in a repeating nucleotide addition 

cycle (NAC). Each round of the cycle, energy derived from triphosphate hydrolysis is used to 

add one nucleotide to the growing RNA chain and then translocate RNAP along the template 

DNA to align the next position. There are two important sites in the RNAP active center, the 

product site (i site) where the RNA 3′-OH group is activated for nucleophilic attack on 

substrate NTP, and the substrate site (i+1 site) where the new RNA 3′ terminal end is 

generated after phosphodiester bond formation (Malinen et al., 2012). 

Translocation is the one-base-pair (1 bp) movement of RNAP along the DNA template. Three 

main RNAP translocation states affect the alignment of the 3’-OH of RNA with these i sites 

which are; post-translocated, where the RNA 3’ end occupies the i site leaving the i+1 site 

free; pre-translocated, where the RNA 3’ occupies the i+1 site and therefore also blocks the i 

site; and backtracked, where the RNA 3’ end is disengaged from both sites and ejected into 

the secondary channel (Figure 5). Translocation involves conformational changes of the BH 

and TL, and also requires melting and reformation of 1 bp of upstream and downstream DNA 

in order to maintain the transcription bubble. 

The first step of NAC involves translocation into the post-translocated state in order to 

position the 3’-OH of the RNA in the i site, leaving the i+1 site vacant and ready to accept an 

incoming NTP. Binding of the correct substrate NTP in the i+1 site induces a conformational 

change of the TL into the ‘folded’ TH. The formation of a new phosphodiester bond is 

catalysed with pyrophosphate as a by-product. The RNA transcript 3’ terminus occupies the 

i+1 site and the RNAP is in the pre-translocated state. Pyrophosphate release destabilises the 
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TH interactions and returns the TL to an ‘unfolded/inactive’ state (Da et al., 2012). This 

conformation is coupled with translocation of the RNAP by 1bp to align the i+1 site at the 

next DNA-template position. This returns RNAP to a post-translocated state where the i+1 

site is again free to accept an incoming NTP. 

The specific mechanism of translocation is still inadequately understood. Malinen et al. 

(2012) have shown that translocation occurs shortly after or concurrently with pyrophosphate 

release, is independent of the rate of NTP incorporation, and is co-ordinated with melting of 

the RNA–DNA hybrid and the downstream DNA. The proposal with the most concurring data 

is a two-step Brownian ratchet model suggesting RNAP rapidly and reversibly transitions 

between the post-translocated and pre-translocated states prior to NTP binding (Martinez- 

Rucobo and Cramer, 2013) Step one involved conformational change of the BH and TL to 

move the terminal RNA 3’ to the i site, and the second step required relaxation of the BH to 

allow the next DNA template base to twist into the active site. Recent developments by 

Kireeva et al. (2018) and Nedialkov et al. (2018) instead propose a restrained thermal ratchet 

where slightly slower forward translocation occurs and is poorly reversible. This is potentially 

supported by the many crystal structures where RNAP is seen predominantly in the 

post/forward-translocated register (Sekine et al., 2015). Nedialkov et al. (2018) additionally 

suggest an alternate mechanism of conformation-generated force-based translocation using 

molecular simulations. In their model, breakage of downstream i+2 bases cause tightening of 

the TL against the i+1 site via a TL glycine hinge and compensation by the rest of the TL/BH 

generate a force resulting in forward translocation of the transcription bubble, with the clamp 

region and β’ ZNR strongly engaging with the exiting nucleic acids. 
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1.4.2 Mechanisms to Maintain Transcript Fidelity 

In order to ensure correct downstream function of mRNA or ncRNA, RNAPs must transcribe 

with high accuracy. This is accomplished using two main approaches, NTP substrate selection 

and transcript proofreading, which both take place in the same RNAP active site. 

 

1.4.2.1 Error Prevention 

Strong substrate selection acts as a method of error prevention by reducing the number of 

erroneous incorporations and therefore the need to perform additional error correction. 

RNAPs must be able to discriminate rNTPs from dNTPs, and also must ensure selection of 

the correct rNTP for complementary pairing to the DNA template. 

Initial selection is thought to begin with NTP diffusion through the secondary channel to bind 

an entry, or ‘E’ site, which overlaps the i+1 site (Westover et al., 2004). A cognate NTP 

would then be able to rotate around Mg2+II to the occupy the i+1 site and form correct pairing 

with the template DNA and surrounding active site residues. A non-cognate NTP would not 

form these interactions. The less stable binding and steric clashes with active site elements 

like the TL would result in transition back to the E site and likely expulsion through the 

secondary channel (Wang et al., 2017). 

Mishanina et al. (2017) established the TL as a positional catalyst of the active site which 

possess residues that when in the ‘folded’ conformation assist co-ordination of the substrate 

NTP. Yuzenkova et al. (2010) has shown that the TL is additionally involved in recognition 

of the correct NTP and couples this nucleotide recognition to catalysis in an induced-fit 

mechanism. Binding of the correct incoming NTP in the i+1 site induces folding of the TL 

into the TH which actively participates in phosphodiester bond formation. Substrate selection 

is achieved through steric collision of the ‘folded’ TH conformation with the occupancy of a 

non-cognate NTP in the i+1 site. This prevention of TL folding delays catalysis and slows 

progression of the reaction. The delay either allows time for the non-cognate NTP to vacate 

the active site or results in a slowly performed mis-incorporation event. In this way, the TL 

acts as a kinetic rather than affinity-based mechanism of maintaining fidelity by providing 

roughly 3 additional orders of magnitude of NTP discrimination (Yuzenkova et al., 2010; 

Kaplan et al., 2008; Wang et al., 2015). 

The steric hindrance is caused by the altered base pairing geometry to the template of either a 

non-Watson-Crick pairing for rNTPs, or with an incorrect sugar moiety such as in 2’- and 3’- 

deoxy NTPs. TL residues β’M932 and Q929 play key roles in discrimination by hydrophobic 

interactions requiring a precise distance for optimal positioning of the NTPs (Huang et al., 
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2010). Mutations of these residues or deletion of the TL lead to significantly compromised 

substrate discrimination (Yuzenkova et al., 2010; Zhang et al., 2010). 

 

1.4.2.2 Proof-reading and Error Correction 

Despite high discrimination at the stage of substrate selection, the mis-incorporation of an 

incorrect NTP occasionally occurs. This mis-incorporation event results in the upstream 

movement or ‘backtracking’ of the RNAP which forces the RNA 3’ end to disengage from the 

catalytic site and become ‘frayed’. Mis-incorporated RNAP complexes are 

thermodynamically more likely to adopt a 1 bp backtracked state (frayed 3’ end), however, 

backtracking can also continue for many bp depending on the surrounding sequence, and in 

this case the RNA 3’ end is projected into the secondary channel (Zenkin et al., 2006; Cheung 

and Cramer, 2011). In the backtracked state, the terminal RNA 3’ is away from the catalytic 

site. The NAC cannot proceed, and the transcript cannot be extended which results in paused 

RNAP complexes. 

These paused complexes provide time for transcription proof-reading mechanisms to resolve 

the mis-incorporation via endonucleolytic cleavage either with or without the help of an 

extrinsic factor (Komissarova and Kashlev, 1997). Hydrolysis of the transcript phosphodiester 

bonds excises the mis-incorporated nucleotides and generates a new RNA 3’ end in the 

catalytic site which can then be extended. Most RNAPs are intrinsically able to perform this 

hydrolysis using the two-metal-ion mechanism described earlier and folding of the TL 

(Orlova et al., 1995; Yuzenkova and Zenkin, 2010). In RNA hydrolysis, it is the Mg2+II ion 

which activates the attacking water molecule in order to cleave the phosphodiester bond. In 

this instance, the TL β’ H936 is thought to play a role in facilitating the backtracked state and 

in some species may also participate in the reaction as a general base during proton transfer 

(Mishanina et al., 2017; Yuzenkova and Zenkin, 2010). Additionally, Miropolskaya et al. 

(2017) found RNAPs from several species to notably differ in rates of intrinsic RNA 

cleavage, and determined these differences depended on the TL and disappeared when the TL 

was deleted, also confirming an essential role in the cleavage reaction. Zenkin et al. (2006) 

describe a supporting intrinsic mechanism of ‘transcript-assisted catalysis’ where the 3’ end 

of the RNA transcript participates in catalysis by greatly stimulating cleavage of the 

penultimate phosphodiester bond. In the 1 bp backtracked state, it is this penultimate bond of 

the transcript which is placed in the catalytic site. It is thought that the erroneous 3’ NMP 

directly interacts with Mg2+II, potentially from the E site, aiding co-ordination and activation 

of the attacking water molecule and resulting in the release of a 2 bp 3′-RNA fragment 

(Zenkin et al., 2006; Nielsen and Zenkin, 2013). This factor-independent mechanism 
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hydrolyses the transcript in a ribozyme-like manner and may represent an ancient mechanism 

of self-repair used by the RNAP last universal common ancestor before the evolution of 

diverged cleavage accessory factors (Poole and Logan, 2005; Zenkin et al., 2006). However, 

rates of intrinsic RNAP hydrolysis tend to be very weak and require stimulation by external 

factors in order to perform efficient cleavage and error correction (Roghanian et al., 2011; 

Thomas et al., 1998). These factors and their mode of action are further explained in later 

sections. Together these mechanisms act to maintain fidelity of the nascent transcript, 

ensuring mis-incorporation of an incorrect NTP only occurs approximately once every 104– 

105 nucleotides (Imashimizu et al., 2013; Blank et al., 1986). 

1.4.3 Paused and Stalled Polymerases 

Transcription in bacteria occurs on a dynamic nucleoid which undergoes dramatic changes in 

compaction and organisation during growth that largely correlate with the distribution of 

RNAP and other genomic machineries (Cagliero et al., 2014). These machineries must work 

in unison to carry out their important cellular functions on the same template DNA, thus a 

high degree of regulation is required. 

Transcription is a tightly regulated process where the activity of RNAP can be modulated 

through conformational changes of internal catalytic domains, intrinsic signals within the 

template DNA, and the binding of external accessory factors (Landick, 2006; Esyunina et al., 

2016). Intrinsic signals cause elongation to be a discontinuous process where RNAP dwells at 

certain sequence positions induced by properties of the DNA sequence itself (Bochkareva et 

al., 2012; Herbert et al., 2006). Entry into a paused state is thought to occur with formation of 

an initial elemental pause where the NAC is inhibited, which can then stabilise and become 

long-lived pauses through secondary structure hairpin formation or backtracking to disengage 

the RNA 3’ end (Toulokhonov et al., 2007; Weixlbaumer et al., 2013). Gabizon et al. (2018) 

recently describe this elemental pause formation as due to sequence-dependent inhibition of 

forward translocation which provides time for stabilisation to a long-lived pause or stalled 

complex by slowing transition to the post-translocated state required for NTP addition. 

Pausing plays critical roles in co-ordinating co-transcriptional processes such as RNA folding 

and processing (Wong et al., 2007). Additionally, frequently spaced pause signals are thought 

to help maintain the coupling between the transcription and translation machineries in bacteria 

by slowing the rate of RNAP (Landick, 2006). Pausing also allows time for the recruitment of 

specific interactors at key sites such as the association of Rho at Rho-dependent terminators 

(Ciampi, 2006). However, long-lived pauses can be highly consequential. The stabilisation of 

a pause into a backtracked state, or a mis-incorporation event leading to a backtracked state, 
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can result in pauses lasting for several minutes (Shaevitz et al., 2003). This can have major 

consequences in bacteria where DNA replication and transcription use the same template and 

occur simultaneously as the replication machinery can collide in either a head-on or a co- 

directional manner with stalled RNAPs. These collisions have been shown to severely impact 

cells by resulting in DNA double strand breaks, replication fork arrest, and genomic 

instability (Merrikh et al., 2011; Dutta et al., 2012; Mirkin and Mirkin, 2007). A further 

consequence of stalled RNAPs is that a queue or ‘traffic-jam’ of RNAPs may form behind 

and block transcription of that particular operon causing changes in gene expression 

(Yuzenkova et al., 2014). As these stalled RNAPs are in the backtracked state, they can be 

rescued through cleavage of the RNA to produce a new 3’-OH end at the active site as 

described above. This activity is greatly stimulated through the action of extrinsic 

transcription factors which bind the secondary channel of RNAP. 
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 Figure 5. The Nucleotide Addition Cycle and Activities of RNAP. (A) Incoming NTP (blue) binds the i+1 site 

to begin the NAC. The catalytic Mg
2+ 

ions are shown as purple circles. The TL (green) folds upon binding of 
the NTP in order to catalyse NTP incorporation. The scheme also shows the various translocation states of 
RNAP during the NAC, and the position of the 3’RNA within the active site for each translocation state. 
Adapted from Roghanian et al. (2011). (B) Schematic of the catalytic site of RNAP during transcript-assisted 
cleavage. The flipped out base is proposed to help co-ordinate the reactant groups to perform cleavage of 
the penultimate phosphodiester bond. 
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1.4.4 Secondary Channel Binding Factors 

The secondary channel serves as a binding site for several regulatory factors in addition to 

providing NTP entry to the active site and accommodating the transcript 3’ end during 

backtracking (Esyunina et al., 2016). Several small molecules also enter through this channel 

and affect RNAP activity, such as the alarmone ppGpp (Nickels et al., 2004; Perederina et al., 

2004). 

Bacterial secondary channel binding factors (SCBFs) share a similar structural fold of a 

globular C-terminal RNAP-binding domain and a coiled-coil N-terminal domain encoding 

important acidic residues at the tip, which is inserted into the secondary channel to contact the 

active site (Borukhov et al., 1993) (Figure 6). Five SCBFs have been identified in E. coli; 

GreA, GreB, DksA, RnK, and YacL (Borukhov et al., 1993; Nickels et al., 2004). These 

factors are not essential, however there is increased fitness-cost with increased SCBF deletion 

indicating that some physiological functions may be redundant (Orlova et al., 1995). E. coli 

appears to have the greatest number of identified SCBFs, with many species possessing only 

GreA (Yuzenkova et al., 2014; Glass et al., 2006). 

 

1.4.4.1 The Gre Factors 

RNA hydrolysis is the main mechanism of co-transcriptional proof-reading which corrects 

transcriptional errors during RNA synthesis (Sosunova et al., 2013). Following nucleotide 

mis-incorporation, the RNAP backtracks to position the internal phosphodiester bonds at the 

catalytic i+1 site to allow cleavage. The same two-metal-ion mechanism and mobile TL are 

used to co-ordinate the reactants. Mg2+II activates the attacking water molecule while the TL 

is thought to assist in positioning the frayed RNA 3’ end into the E site where the NMP would 

provide chemical groups for stabilising the Mg2+II and facilitating catalysis (Zenkin et al., 

2006; Yuzenkova and Zenkin, 2010). Gre factors are able to displace the TL in the active site 

and greatly stimulate this reaction by donating catalytic residues which better chelate Mg2+II 

and co-ordinate more efficient hydrolysis (Sosunova et al., 2003; Laptenko et al., 2003). 

These factors are universally conserved across the domains of life for the function of cleavage 

stimulation and have evolved independently to encompass the Gre factors in bacteria, and 

TFS/TFIIS factors in archaea and eukaryotes (Hausner et al., 2000; Fish and Kane, 2002). E. 

coli possesses two cleavage factors, GreA and GreB, which act on complexes backtracked by 1 

bp and several bp respectively (Borukhov et al., 1993). The Gre factors are formed from a long 

N-terminal coiled-coil domain and a C-terminal globular domain (Stebbins et al., 1995). The 

conserved acidic residues for metal ion co-ordination, D41 and E44, lie at the tip of this coil 

which is inserted into secondary channel of RNAP to contact the active site (Sosunova et al., 

2003). 
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Whereas, the globular domain binds at the entrance to this channel (Laptenko et al., 2003). 

The acidic residues of GreA simultaneously assist with Mg2+II co-ordination, stabilise the 

attacking water via hydrogen bonding with the water hydrogen atom, and to accelerate water 

ionisation by lowering the water pKa by acting as a general base. (Sosunova et al., 2013). 

The SI3 has been shown to be essential for the action of cleavage factor GreB in E. coli and 

flexibility in this domain is required to allow binding of SCBF DksA (Zhang et al. 

2010; Furman et al., 2013). The TL is thought to play an indirect role in Gre-dependent 

cleavage by assisting to position GreA for catalysis. The TL becomes trapped in an unfolded 

state by insertion of GreA, which enlarges the secondary channel and induces kinking of the 

BH (Sekine et al., 2015; Miropolskaya et al., 2017). 

The increased hydrolytic activity provided by these factors increases the efficiency of proof- 

reading and error correction in the synthesised transcripts. However, James et al. (2017) 

analysed actively transcribing elongation complexes in E. coli and found 7% of complexes 

had undergone a mis-incorporation in cells lacking GreA and GreB whereas wild-type cells 

with these proof-reading factors had 3% of complexes with mis-incorporations. They suggest 

that as mis-incorporation induces backtracking of the RNAP, and these pauses can be 

detrimental to cells, that the major role of cleavage factors may be in resolving stalled RNAPs 

with increased fidelity of the transcript as a by-product. Yuzenkova et al. (2014) has 

determined this to be the case for Streptococcus pneumoniae which only encodes one Gre 

factor, GreA. 

Cyanobacteria are one of the largest bacterial taxons, however no homologue to GreA has 

been identified. Other small groups in which GreA appears absent are the extremophiles 

Aquificaceae and Dictyoglomaceae, and anaerobic gram-negative Fusobacteriaceae. It is 

yet unidentified how these species cope with the absence of cleavage factors considering 

their important functions regarding the resolution of mis-incorporated and backtracked 

complexes. 

 

1.4.4.2 The Gfh factors 

Gre-factor-homologues are members of the Gre family of SCBFs and are lineage-specific 

factors of the Deinococcus/Thermus extremophile phylum (Hogan et al., 2002). Gfh1 of 

Thermus aquaticus (T.aq) shows a high degree of sequence similarity with T.aq GreA and 

also shares the N-terminal coiled-coil and C-terminal globular domain structure (Figure 6). 

Lamour et al. (2006) solved the crystal structure of T.aq Gfh1 to add specific characteristics to 

the Gfh1 protein. These included a straighter coiled domain with a more flexible tip, and 

significant structural flexibility with large interdomain rotation indicating the possible use of a 

conformational switch for activity (Lamour et al., 2006). 
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Laptenko et al. (2006) confirmed this switch by showing pH-induced conformational change 

of Gfh1 into an active state. At a pH above 7, Gfh1 is in an inactive conformation which 

prevents binding to RNAP whereas at a lower pH, the globular domain of Gfh1 is orientated 

much more comparably to that of GreA which enables Gfh1 to bind and modulate RNAP 

activity (Laptenko et al., 2006). The activity of Gfh1 is also in contrast to that of GreA. Gfh1 

of Thermus thermophilus has been shown to inhibit transcript cleavage and NTP addition 

(Hogan et al., 2002; Symersky et al., 2006). This difference in activity is thought to be due to 

four acidic residues on the tip of the Gfh1 coiled-coil, as opposed to the two for GreA. The 

flexible tip of Gfh1 encodes four aspartate residues in the formation of DDYDD (Symersky et 

al., 2006). Gfh1 is proposed to inhibit RNAP activity through competition with the NTP 

substrates for co-ordination of Mg2+II which results in mis-alignment of the ion and stabilises 

the active site of RNAP in a catalytically inactive conformation (Laptenko et al., 2006; 

Symersky et al., 2006). However, Esyunina et al. (2016) has demonstrated that the Gfh1 of 

Deinococcus radiodurans does not inhibit cleavage but does increase RNAP pausing and 

termination. They also showed that the TL is involved in Gfh1 binding and that use of Mn2+ 

as the second metal ion significantly increases Gfh1 activity. 
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 Figure 6. The Secondary Channel Binding Factors. (A) Structure comparison of the main SCBFs showing the 
N-terminal coiled coil and C-terminal globular domain. E. coli GreA PDB 1GRJ (Stebbins et al., 1995), T. aq 
Gfh1 PDB 2ETN (Lamour et al., 2006), E. coli DksA PDB ITJL (Perederina et al., 2004). (B) Space filled 
Thermus thermophilus RNAP showing binding of a GreA/Gfh1 chimeric protein, cyan, in the secondary 
channel PDB 4WQT (Murayama et al., 2015). (C) Close up of the flexible tip regions of the coiled-coil 
domains of GreA and Gfh1. Acidic metal- chelating residues are highlighted green. There are two for GreA 
and four on the tip of Gfh1. 
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1.5 Statement of Aims 

Transcription in cyanobacteria involves several interesting features. Cyanobacteria comprise 

one of the very few groups in which no proof-reading GreA factor has been identified. GreA 

increases efficiency of RNA cleavage, therefore helping to maintain the fidelity of the RNA 

transcript and assists in the resolution of stalled RNAPs to prevent genome damage. The vast 

majority of bacterial species encode at least one of these highly conserved factors and so their 

absence in cyanobacteria is intriguing. It was thought that as GreA is absent, a compensatory 

mechanism which carries out the important functions performed by this factor may exist. 

The aims of this thesis were to; 

 
1. Investigate this hypothesis, primarily through analysis of in vitro transcription activity 

of Escherichia coli RNAP, which is the best characterized RNAP, and the RNAPs of 

Synechocystis sp PCC 6803 and Synechococcus elongatus PCC 7942. 

2. If such a compensatory mechanism were found, to attempt determination of the details 

and efficiency of this mechanism as opposed to that of GreA in E. coli 

3. Characterise the in vitro transcription behaviours of cyanobacterial RNAPs and 

identify any species-specific transcriptional activity. 

 
4. Gfh1 of Thermus aquaticus was also investigated to determine the effect of 

translocation state on the inhibitory activity demonstrated by this factor. 
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2.1 Microbiology 

2.1.1 Strains 

Wild-type (WT) strains of Synechocystis sp PCC 6803 (S.sp) and Synechococcus elongatus 

PCC 7942 (S.el) were kindly donated by Professor Nigel Robinson of Durham University and 

Professor Conrad Mullineaux of Queen Mary University, respectively. Three E. coli strains 

were generously supplied by Dr. Pamela Gamba of Newcastle University of E. coli: rpoC- 

FLAG, a double detetion strain E. coli: ΔgreAΔgreB, and triple deletion strain E. coli: 

ΔgreAΔgreBΔdksA. Commercial strains used in the construction and purification of cloned 

proteins are identified in the appropriate forthcoming sections. A full list of all strains can be 

found in Appendix 5.1. 

 

 
2.1.2 Growth Media and Conditions 

Both cyanobacterial strains were subject to the same conditions. Cells were grown under a 12- 

hour light/dark cycle at 30oC with constant air flow in an Algaetron AG 130-ECO light box 

from Photon Systems Instruments. Light intensity was set at 100 µE m-2s-1 for plates and 

cultures. Spectrophotometry of cyanobacterial liquid cultures were performed at OD730 to 

account for light absorbance from chlorophyll and pigment proteins (BioChrom Libra S35 

spectrophotometer). Cyanobacterial cultures were grown in modified BG-11 media as 

described by (Stanier et al., 1971), or on BG-11 plates (BG-11, 1% agar). E. coli cells were 

grown in in Luria-Bertani (LB) media (10 gL-1 Tryptone, 10 gL-1 NaCl, 5 gL-1 yeast), or on 

LB plates (LB, 1.2% agar) and incubated at 37oC unless stated otherwise. Spectrophotometry 

of E. coli liquid cultures were performed at OD600. For long term storage, cells were grown to 

an OD of 0.5-0.7 and stored at -80°C with 20% glycerol. 

 

 
2.1.3 Extraction of Total RNA and RNASeq Analysis 

To extract total RNA, fresh cultures of E. coli and S.sp were grown to an OD of 0.5 before 

being harvested. The protocol of the FastRNA pro Blue Kit was followed initially. 10 ml of 

culture was frozen in liquid nitrogen and centrifuged at 2800 rpm for 15 min at 4oC. The 

supernatant was decanted and 1 ml of RNApro Solution was added and the cells were 

resuspended. 1 ml of these resuspended cells were transferred to the lysing matrix B powder 

tube provided with the kit. The tube was then placed in a FastPrep-24 homogeniser (MP 

biomedicals) on factory setting 3. After homogenisation, the tubes were centrifuged at 

12,000g for 5 min at 4oC and roughly 750 µl of supernatant was transferred to a fresh tube. 
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This was incubated at room temperature for 5 minutes after which 300 µl of chloroform were 

added (without isoamyl alcohol) and the tube was vortexed for 10 seconds, followed by 

another 5 minute room temperature incubation. After centrifugation at 12,000g 4oC for 5 min, 

the upper aqueous phase was transferred to a new tube. The Norgen Biotek Corp Total RNA 

purification plus kit was then followed, starting in section 2. This protocol was followed to 

completion, resulting in eluted RNA. After verifying the purity of the eluted RNA using the 

Bioanalyser from Agilent, the purified RNA samples were kept at -80 oC and aliquots were 

sent to vertis Biotechnologie AG for sequencing. Analysis of the RNAseq data was performed 

by Dr Katherine James of Newcastle University. In effect, total error rates were calculated as 

the percentage of total reads with a mismatched base at each read position in the alignment, 

and specific error rates were calculated as the percentage of total reads with a specific 

mismatch, for example an A incorporated instead of a G (G > A misincorporation), at each 

read position. In this work we present the calculated specific error rates. 

 

 
2.1.4 Transformation of Cyanobacterial Strains 

The dark transformation protocol, as described by Golden et al. (2004) was used to transform 

S.el to encode a C-terminal FLAG-tag on the rpoC2 gene via homologous recombination. 

Cells were grown to an OD730 of 0.6-0.7 and harvested by centrifugation for 10 minutes at 

6000 g. The cell pellet was resuspended in 10 ml of 10 mM NaCl and spun again for 10 

minutes at 6000 g. This pellet was resuspended in 0.3 ml of BG-11 medium. 50 ng-5 µg of 

plasmid DNA which encoded the C-terminal end of rpoC2 with an attached his-tag and 

homologous regions at either end, was added to the resuspension. To shield the cells from 

light, they were wrapped in aluminium foil and incubated overnight at 30oC with gentle 

agitation. The entire 0.3 ml suspension was then plated on BG-11 containing the appropriate 

antibiotic (10 µgml-1 Spectinomycin and 5 µgml-1 Streptomycin) and incubated under the 

standard 12-hour light/dark cycle at 30oC. Colonies needed to be picked and re-streaked 

several times for full segregation of the mutant. Fully segregated S.el rpoC2-FLAG was 

verified by sequencing (GATC Biotech). 

 

 
2.1.5 Molecular Cloning of Gfh1 and Gfh1-D4A 

Gfh1 was amplified from a previous lab construct in order to transfer it to pET28 to include a 

C-terminal his-tag. Plasmid and insert DNA were restricted using the appropriate restriction 

enzymes and purified using the protocol provided with the Qiagen Gel Extraction kit. 3 times 
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molar excess of insert DNA to plasmid DNA was mixed and ligated overnight at 4oC with T4 

DNA ligase (NEB). 5 μl of ligation mix were then transformed into 50 μl of DH5α competent 

E. coli cells (NEB) using the heat shock protocol provided. Cells were plated on LB with the 

30 μgml-1 kanamycin selective antibiotic. Positive clones were first identified through colony 

PCR. Plasmid DNA of potential clones was isolated using the Qiagen Mini Prep Kit and 

checked by subsequent restriction digest. Positive plasmids were then sent for sequencing 

(GATC Biotech). Once a verified plasmid of pET28 Gfh1 had been constructed, site-directed 

mutagenesis was used (as described for the EcRNAP mutants) to construct the inactive Gfh1- 

D4A. All four aspartates of the flexible tip were substituted with alanines (Laptenko et al., 

2006). 

 

 
2.1.6 Mutagenesis 

Site-directed mutagenesis was performed on his-tagged EcRNAP rpoC (β’) encoding pRL663 

plasmid to construct the mutant EcRNAPs with residue substitutions to match the 

corresponding residue position of SspRNAP (pRL663 was donated by Professor Irina 

Artsimovitch). The QuikChange II Site-Directed Mutagenesis kit from Agilent was used to 

construct these mutants with no deviation from the protocol provided with the kit. Mutated 

plasmids were transformed into Agilent Technologies XL10-Gold Ultracompetent cells 

following the provided protocol. Colonies were picked and grown overnight in LB supplemented 

with 80 µgml-1 ampicillin and plasmid DNA was extracted using the Qiagen Mini Prep Kit. 

Positive clones were identified through sequencing, using primers of the E. coli rpoC 

gene (GATC Biotech). 

 
2.1.7 Production of Competent Cells 

Plasmids encoding the correct substitution from the mutagenesis above were then transformed 

into the E. coli ΔgreAΔgreB strain using the Inoue method of competent cell production 

(Sambrook and Russell, 2006). A loop of cells were taken from a freshly streaked overnight 

plate of E. coli ΔgreAΔgreB and resuspended in 500 µl LB and incubated at 37oC for 1 hour. 

This liquid culture was then spun at 4oC 3000 g for 2 minutes. The pellet was resuspended in 

Inoue salts buffer (55 mM MnCl2, 15 mM CaCl2, 250 mM KCl, 10 mM PIPES, H2O to 1 L). 50 

µl of this mix was used per transformation. Roughly 50 µg plasmid were added and left to 

incubate on ice for 30 minutes. This mix was then heat shocked at 42oC for 20 seconds and 

again incubated on ice for 2 minutes. 800 µl of LB were added and the tubes were placed at 

37oC for 1 hour with shaking. The mix was then plated on LB with 80 µgml-1 ampicillin. 

Positive clones were verified by sequencing (GATC Biotech).
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2.2 Protein Purification and Analysis 

2.2.1 Purification of Native RNAP 

2.2.1.1 EcRNAP 

Native purification of RNAP was performed using two-step column chromatography. Native 

core and holoenzyme RNAP were purified from pelleted exponential cultures resuspended in 

lysis buffer (10 mM Tris-HCl pH 7.5, 150 mM NaCl, protease inhibitor cocktail tablet) and 

subjected to 6 minutes of 2 second on/off sonication at 40 % amplitude. The lysates 

underwent two centrifugation steps of 15 minutes at 15K rpm and 20 minutes at 18K rpm 

until a clear supernatant was obtained. This supernatant was passed through a 0.45 µM PVDF 

filter (Merck) before being put through a 5 ml HiTrap heparin column (GE Healthcare). The 

column was pre-equilibrated in buffer A (20 mM Tris pH 7.9, 5% glycerol) and protein was 

eluted with an increasing gradient of buffer B (20 mM Tris pH 7.9, 5% glycerol, 1 M NaCl) 

in fractions of 0, 100, 300, 600, and 1000 mM salt. The eluate determined to contain RNAP 

was then substantially diluted in buffer MA (10 mM Tris pH 7.9, 5% glycerol, 0.1 mM 

EDTA, 0.1 mM DTT) for further purification via gradient elution on an ion-exchange MonoQ 

5/50 GL using an increasing percentage of buffer MB (10 mM Tris pH 7.9, 5% glycerol, 0.1 

mM EDTA, 0.1 mM DTT, 1 M NaCl). SDS-PAGE was used to determine which fractions 

contained RNAP. These fractions were then concentrated using 100 kDa amicon centrifuge 

filters (Merck) and dialysed overnight in storage buffer (50% glycerol, 200 mM KCl, 40 mM 

Tris pH 7.9, 1 mM EDTA, 1 mM DTT). The samples were then continually stored at -20oC. 

Concentration of the purified protein was determined by Bradford assay, with each 

purification producing 1 mg of protein on average for EcRNAP. EcRNAP subunits should 

present around 155 kDa for β’, 150 kDa for β, 36 kDa for α, and 10 kDa for ω. 

 

 

 
2.2.1.2 Cyanobacterial RNAP 

Purification of both cyanobacterial RNAPs was carried out in a similar manner to the above 

but included a 4oC overnight 0.35 mgml-1 ammonium sulphate precipitation step. This 

precipitation was performed on the eluted RNAP fraction after heparin chromatography. After 

overnight incubation, the precipitate was spun down at 18K rpm for 20 minutes before 

resuspension in buffer MA and continued purification via MonoQ chromatography. The 

average amount of cyanobacterial RNAP obtained per purification was roughly 80 µg. 

Cyanobacterial RNAP subunits should present around 144 kDa for β’, 123 kDa for β, 71 kDa 

for γ, 34 kDa for α, and 8 kDa for ω.
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2.2.2 Purification of his-tagged RNAP 

This included WT EcRNAP with a his-tag and all mutant EcRNAPs. IPTG-induced T7 

express LB cultures were subjected to the same protocol as above up to the end of the heparin 

chromatography. The eluted RNAP fraction from the heparin column was passed through a 5 

ml nickel chromatography column (GE Healthcare) which had been pre-equilibrated with 

buffer NA (20 mM Tris-HCl pH 7.9, 600 mM NaCl, 5% glycerol). Protein was eluted with an 

increasing gradient of buffer NB (20 mM Tris-HCl pH 7.9, 600 mM NaCl, 5% glycerol, 200 

mM Imidazole). His-tagged RNAP yield and purity were then assessed via SDS-PAGE. 

Fractions of WT his-tagged EcRNAP were then subsequently subjected to further MonoQ 

purification, as described above. Clean fractions of mutant his-tagged EcRNAP were 

concentrated using 100 kDa amicon centrifuge filters (Merck) and dialysed overnight in storage 

buffer. 

 

 
2.2.2.1 TaqRNAP 

His-tagged TaqRNAP was purified from plasmid pTaqABC, which had been constructed 

previously by Mohammad Roghanian. Purification from this plasmid followed the protocols 

described in previous studies (Kuznedelov et al., 2003; Yuzenkova and Zenkin, 2010). 

pTaqABC was transformed into T7 express cells (NEB) using the manufacturer’s protocol 

and plated on LB with 30 µgml-1 Kanamycin. 2 L LB cultures of these cells were grown 

overnight at 37oC + 30 µgml-1 Kanamycin but did not require IPTG induction. These cultures 

were pelleted and resuspended in T-Lysis buffer (50 mM Tris-HCl pH7.9, 5% glycerol, 300 

mM NaCl, protease inhibitor cocktail tablet). Cells underwent sonication at 60% amplitude 

for 10 minutes before centrifugation at 15k rpm for 30 minutes. The supernatant was then 

incubated at 70oC for 1 hour before another centrifugation step of 15k rpm for 30 minutes. 

This supernatant was passed through a 0.45 µM PVDF filter (Merck) before undergoing 

Nickel chromatography as described above. Fractions determined to contain TaqRNAP were 

then further purified via MonoQ ion-exchange chromatography as described previously. 

Clean fractions of his-tagged TaqRNAP were concentrated using 100 kDa amicon 

centrifuge filters (Merck) and dialysed overnight in storage buffer. Purified fractions shown 

in Figure 7.
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2.2.3 Purification of FLAG-tagged RNAP 

A S.el rpoC2-FLAG was constructed during this project as described above. 500ml S.el- 

FLAG cultures were grown under a 12 hour Light/Dark cycle 100 µE m-2s-1 and 30oC until an 

OD of ~0.5 was reached. These cultures were spun down at different phases of the circadian 

cycle which correspond to differences in gene expression activity (Woelfle et al., 2006). 

These were relative dawn, dusk and midnight which are D11, L11, and D5 respectively. D/L 

represent dark/light and the number is the number of hours that have passed out of the 12- 

hour cycle. WT S.el was also subjected to growth under these conditions and was pelleted at 

the dusk phase as a control. Similar to the above, the pellets were sonicated for 6 minutes at 

40% amplitude for 2 seconds on/off periods in standard lysis buffer. The lysates then 

underwent a 30 minute 37oC incubation with 20 µl micrococcal nuclease (Promega) and 5mM 

Ca2+ before an initial centrifugation of 15 minutes at 15K rpm. The supernatant from this was 

then ultracentrifugated for 1 hour at 100K g and the supernatant was collected and 

concentrated to 5ml using a 100K amicon centrifugal filter unit (Merck). 1ml of this 

concentrated ultra-supernatant was incubated at 4oC for 20 hours in the presence of 20 µl 

FLAG resin beads (Sigma). After incubation, the beads were washed twice with (50 mM Tris- 

HCl pH 7.4, 150 mM NaCl) and RNAP was eluted by competition with 2 mgml-1 3X FLAG 

peptide. 

 

 
2.2.4 Purification of E. coli GreA 

pET21-GreA with a C-terminal his-tag was provided by Dr. Flint Stevenson-Jones. 

Purification of this protein followed the method described by Koulich et al. (1997). T7 

express cells transformed with pET21EcGreA were grown at 37˚C to an OD600 of 0.4 and 

then induced for 4 hrs using 0.4 mM IPTG. The cells were then spun down at 5000 rpm for 7 

minutes at 4˚C and resuspended in 40 ml of denaturing buffer (7 M Guanidine-HCl, 40mM 

Tris-HCl pH 7.5, 0.8 M NaCl, 1 mM EDTA, 1 mM DTT). The cells were then centrifuged at 

25K rpm for 20 minutes and the supernatant was added to Ni-NTA beads (GE Healthcare). 

The supernatant was incubated with the beads for 20 minutes at room temperature before 

being washed three times with 10 ml buffer A and then five times with a refolding buffer (40 

mM Tris-HCl pH 7.5, 0.8 M NaCl, 1 mM EDTA, 1 mM DTT). GreA could then be eluted 

with three rounds of 2 ml washes with elution buffer (40 mM Tris-HCl pH 7.5, 0.8 M NaCl, 

0.6 M imidazole, 1 mM EDTA, 1 mM DTT). Presence of GreA was determined by SDS- 

PAGE and pure fractions were dialysed overnight in high salt GreA storage buffer (40 mM 

Tris-HCl pH 7.5, 0.8 M NaCl, 1 mM EDTA, 1 mM DTT, 50% Glycerol). Purified 

fractions shown in Figure 7.
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2.2.5 Purification of T. aq Gfh1 and Gfh1-DA4 

pET28 plasmids encoding Gfh1 or Gfh1-DA4 were transformed into T7 express cells (NEB) 

using the manufacturer’s protocol. 2 L LB cultures of these cells were grown at 37oC until an 

OD600 of 0.4, at which point protein expression was induced with addition of 1 mM IPTG, 

and the cultures were moved to 30 oC to incubate overnight. Cells were pelleted and 

resuspended in lysis buffer (10 mM Tris-HCl pH 7.5, 150 mM NaCl, protease inhibitor 

cocktail tablet) and subjected to 6 minutes of 2 second on/off sonication at 40 % amplitude. 

The lysates were then centrifuged at 18k rpm for 20 minutes. The supernatant was passed 

through a 5 ml nickel chromatography column (GE Healthcare) which had been pre- 

equilibrated with buffer NA (20 mM Tris-HCl pH 7.9, 600 mM NaCl, 5% glycerol). Protein 

was eluted with an increasing gradient of buffer NB (20 mM Tris-HCl pH 7.9, 600 mM NaCl, 

5% glycerol, 200 mM Imidazole). Presence of the correct protein was determined by SDS- 

PAGE and pure fractions were concentrated by amicon centrifugal filters and dialysed 

overnight in storage buffer (50% glycerol, 200 mM KCl, 40 mM Tris pH 7.9, 1 mM EDTA, 1 

mM DTT). Purified fractions shown in Figure 7. 

 

 
2.2.6 SDS-PAGE 

Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) was used to 

separate proteins according to their molecular weight and determine purity of purified 

proteins. Proteins were suspended in Laemmli buffer (Stock of 2x, supplied by Sigma) and 

run on 4-20% Expedeon pre-cast run blue SDS gels. Gels were subsequently stained 

overnight with the coomassie blue-based Instant Blue stain (Expedeon). 

 

 
2.2.7 Silver Staining 

As described by Shevchenko et al. (1996). After having been resolved via SDS-PAGE, 

protein gels were incubated in fixation solution (ethanol 40%, acetic acid 10%, water 50%) 

for 30 minutes. This was followed with a 30 minute incubation in sensitising solution (75 ml 

ethanol, 10 ml sodium thiosulphate (5% W/V), 17g sodium acetate, water to 250 ml) and then 

three 5 minute wash steps with water. The gel was then incubated for 20 minutes in silver 

solution (25 ml silver nitrate solution (2.5% W/V), formaldehyde (37% W/V), water to 250 

ml) and a following single wash step. Developing solution (6.25 g sodium carbonate, 

formaldehyde (37% W/V), water to 250 ml) was used to visualise the protein to the required 

standard and then stopped with incubation in stopping buffer (3.65 g EDTA-Na2H2O, water to 
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250 ml). Silver staining was used to visualise the FLAG-tagged SelRNAP purifications due to 

low yield. 

 

 
2.2.8 Mass Spectrometry 

Purified native RNAP samples of EcRNAP, SelRNAP, and SspRNAP were sent for mass 

spectrometry. Additionally sent were FLAG-tagged SelRNAP samples which had been 

purified from different phases of the circadian cycle corresponding to differences in gene 

expression activity (Woelfle et al., 2006). This mass spectrometry analysis was carried out by 

Achim Treumann of Newcastle University. 

 

 

 

 

 

 

 

 

 

 

 

 Figure 7. Purified fractions of Additional proteins. Protein gel of purified TaqRNAP, TaqGfh1, TaqGfh1-
DA4, and EcGreA fractions used in in vitro transcription assays. 
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2.3 In vitro Transcription and Analysis 

2.3.1 5’ RNA [γ-32P]-ATP Labelling 

To 5’ radiolabel RNA oligonucleotides, a final concentration of 10 pmµl-1 RNA was incubated 

with 5 µl [γ-32P]-ATP (Hartmann Analytic) and 1.5 µl T4 Polynucleotide kinase (PNK) 

(Thermofisher scientific) in reaction buffer A at 37oC for 45 minutes. The radiolabelled RNA was 

then cleaned by gel filtration though BioRad Micro Bio-SpinTM 6 chromatography columns 

equilibrated in milli-Q H2O. 

 

 
2.3.2 Artificially Assembled Elongation Complexes 

Promoter-independent elongation complexes (EC) were assembled as described (Sidorenkov 

et al., 1998; Yuzenkova et al., 2010). In a final reaction volume of 10 µl; biotinylated 

template DNA (10 pmµl-1) and RNA oligonucleotide (20 pmµl-1) were first annealed at 

45oC for 10 minutes in Transcription Buffer (20 mM Tris pH 7.9, 40 mM NaCl, 0.1 mM 

EDTA) and then cooled at 4oC for a minimum of 20 minutes to form the DNA:RNA hybrid. 

The polymerase was then added at roughly 2 pmol per reaction and the mix incubated at 

room temperature for 10 minutes. Addition of excess non-template DNA (100 pmµl-1) and 

incubation at 37oC (40oC for TaqRNAP) completed formation of the EC. These complexes 

were immobilised on GE Healthcare Streptavidin SepharoseTM high performance beads pre- 

equilibrated in Transcription buffer. If not using 5’-radiolabelled RNA, then an [α-32P]-NTP 

(Hartmann Analytic) could be incorporated to the RNA 3’-end at this point by incubation 

with the NTP at 37oC for 1-2 minutes in the presence of 10 mM Mg2+. Additional NTPs 

were also added if formation of a particular EC further along the template DNA was required. 

Excess reagents were then removed by washing the complexes twice in transcription buffer 

containing high salt (1 M NaCl) and then twice in standard transcription buffer. All 

TaqRNAP assays were performed using a transcription buffer of pH 6.8. Transcription assays 

could then be performed with addition of the necessary NTP, factor, and metal ion as stated 

below and in the results. Assays were stopped after the time periods indicated in the figures 

through addition of Stop Buffer (8 M Urea, 20 mM EDTA, 100 µgml-1 Heparin, 1 x TBE 

buffer, diluted in Formamide) and loaded onto denaturing PAGE. All DNA and RNA 

oligonucleotides were purchased from IDT. A full list of the scaffolds generated by these 

oligonucleotides and used in this work can be found in Appendix 5.3.
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2.3.2.1 RNA Hydrolysis 

Experimental setup for all transcript cleavage assays. ECs were assembled on the appropriate 

scaffolds – EC(GA), MEC(A), MEC(U), MEC(modified base) - as described above. All RNA 

was 5’-radiolabelled. Cyanobacterial RNAP and EcRNAP cleavage was performed at 30oC, 

TaqRNAP cleavage was performed at 40oC unless stated otherwise. Reactions were initiated 

upon the addition of either 10 mM MgCl2 or 10 mM MnCl2 (A range of MgCl2 concentrations 

were used for determination of KM for Mg2+) and proceeded for the indicated time periods 

before addition of stop buffer. To determine cleavage over a pH range, the reactions were 

performed using a transcription buffer of the required pH. Cleavage activity was tested every 

0.5 pH change from pH 5.5 to 11.0. The buffering agents used were: MES (Sigma) for pH 

5.5-6.5; Hepes (Sigma) for pH 7-7.5; Tris (Sigma) for pH 7.9-9.0; Ches (Sigma) for pH 9.5; 

and Caps (Sigma) for pH 10.0-11.0. All buffers were set to the appropriate pH at 30oC. 

 
 

2.3.2.2 Transcript Elongation 

Experimental setup for all elongation assays on template 1 and template 2. ECs were 

assembled on the appropriate scaffolds – template 1 or template 2 – as described above. All 

RNA was 3’-radiolabelled. Cyanobacterial RNAP and EcRNAP elongation was performed at 

30oC, TaqRNAP elongation was performed at 40oC. If required, the ECs were incubated with 

the stated amounts of additional factor (e.g. Gfh1) for 5 minutes before the assays were 

initiated. All elongation was carried out with addition of 10 µM NTPs and either 10 mM 

MgCl2 or 10 mM MnCl2 and proceeded for the indicated time periods before addition of stop 

buffer. 
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2.3.2.3 Incorporation of a Single Nucleotide 

Experimental setup for all single nucleotide incorporation assays. ECs were assembled on the 

appropriate scaffolds as described above. All RNA was 3’-radiolabelled. Cyanobacterial 

RNAP, EcRNAP, and TaqRNAP cognate NTP incorporation was performed at 20oC. 

Cyanobacterial RNAP and EcRNAP non-cognate NTP incorporation was performed at 30oC. 

Titration assays for TaqRNAP were performed at 20oC when titrating NTP and 40oC when 

titrating Gfh1. Cognate NTP was added at a concentration of 1 µM and non-cognate at 1 mM. 

Titrated NTP concentrations ranged from 1, 5, 10, 20, or 100 µM and was always performed 

in the presence of 10 µM Gfh1. Titrated Gfh1 concentrations ranged from 10, 3, 1, 0.3, 0.1, 

and 0.03 µM in the presence of 0.5 µM NTP. If required, the ECs were incubated with the 

stated amounts of additional factor (e.g. Gfh1) for 5 minutes before the assays were initiated. 

Reactions were initiated upon the addition of NTP with either 10 mM MgCl2 or 10 mM 

MnCl2 and proceeded for the indicated time periods before addition of stop buffer. 

 

 
2.3.2.4 Pyrophosphorolysis 

Experimental setup for all pyrophosphorolysis assays. ECs were assembled on the appropriate 

scaffolds – template 1 EC(14/15/16) - as described above. All RNA was 5’-radiolabelled. 

Cyanobacterial RNAP and EcRNAP pyrophosphorolysis was performed at 20oC. Reactions 

were initiated upon the addition of 250 µM pyrophosphate (PPi) and 10 mM MgCl2 and 

proceeded for the indicated time periods before addition of stop buffer. 

 

 
2.3.3 Transcript Elongation from the T7A1 Promoter 

Experimental setup for all pIA349 elongation assays. Promoter-dependent ECs were 

assembled from a biotinylated DNA fragment encoding the strong bacteriophage T7A1 

promoter. This linear double stranded DNA template was prepared by amplification from 

pIA349 (plasmid donated by Professor Irina Artsimovitch) (Artsimovich and Landick, 2002). 

Equal concentrations of DNA and purified RNAP (+ σ factor) were incubated together at 

37oC for 10 minutes at pH 6.8 to form the elongation complex. A ‘hot mix’ was then added to 

allow labelled elongation to position EC(G37) by withholding UTP (5 mM MgCl2, 150 µM 

CAUC, 5 µM ATP, 5 µM CTP, p32-GTP, 1 µM cold GTP) and incubated for 3 minutes at 

37oC. These ECs were captured on GE Healthcare Streptavidin SepharoseTM high 

performance beads pre-equilibrated in Transcription buffer and washed twice in transcription 

buffer containing medium salt (200 mM NaCl) and then twice in standard transcription buffer. 

Reactions were initiated upon the addition of ‘start mix’ (10 mM MgCl2, 10 mM CTP, 10 mM 
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ATP, 10 mM UTP, 1 mM GTP) to progress the EC past G37 and proceeded for the indicated 

time periods before addition of stop buffer. All elongation assays using the pIA349 template 

were performed at 30oC. 

 
 

2.3.4 PAGE 

All transcription assays were resolved using polyacrylamide gel electrophoresis (PAGE). All 

assays except pIA349 elongation were resolved on 23% 8 M urea denaturing PAGE. pIA349 

elongation was resolved on 10% 8 M urea denaturing PAGE. The radioactive gels were 

revealed by phosphorimaging using the Typhoon imaging system of GE Healthcare. 

 

 
2.3.5 Statistical Analyses 

Subsequent quantification and analysis of these gels were carried out using ImageQuant 

software from GE Healthcare, SigmaPlot version 13.0, and visualised graphically using 

Microsoft Excel 2016. Kinetic data were fit to a single exponent equation using non-linear 

regression. KM data for Mg2+ affinity and for NTP titration assays were fit to the Michaelis- 

Menten equation. Gfh1 titration data were first fit to the Michaelis-Menten equation and then 

fit using exponential decay non-linear regression analysis. Calculation of activation energy 

required data to be fit to the Arrhenius equation: 

The Arrhenius plot is created by plotting the logarithm of the rate constant, k, versus the 

inverse temperature, 1/T (in Kelvin). R is the universal gas constant equal to 8.314 Jmol-K. 

Activation energy, or Ea, can be calculated from the negative slope of this plot using y = -Ea/R 
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3. Results and Discussions 
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3.1 Cyanobacterial RNAP Exhibits More Efficient Intrinsic Transcript Cleavage 

than EcRNAP Due to Potential Decreased Flexibility of the Active Site Elements 

3.1.1 Introduction and Aims 

The SCBF Gre, and therefore Gre-mediated transcript cleavage, appears to be absent in the 

Cyanobacterial lineage. It was hypothesised that an alternate mechanism may exist to carry 

out the important function performed by Gre. Investigation into this alternate mechanism was 

initiated by first purifying cyanobacterial RNAP and then testing activity of the polymerase 

using in vitro transcription assays. Two cyanobacterial strains and their purified RNAPs are 

used throughout this thesis – Synechococcus elongatus 7942 (S.el/SelRNAP) and 

Synechocystis sp. 6803 (S.sp/SspRNAP). These assays allow the artificial assembly of a 

catalytically active elongation complex (EC) from which the rates of each reaction catalysed 

by RNAP can then be measured (Sidorenkov et al., 1998). The rates obtained for each 

cyanobacterial RNAP were then compared against those for the Gre-encoding model 

organism E. coli RNAP (EcRNAP) to help highlight any major differences in activity. 

In this section, the aim was to compare each purified RNAP in relation to the function of Gre. 

The proficiency of each RNAP as an endonuclease was assessed by measuring rates of 

transcript cleavage in complementary and -1bp backtracked assembled complexes. The results 

of which then were investigated further using purified mutant EcRNAPs which carried 

specific mutations of the active site elements corresponding to the respective position in 

SspRNAP. 
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3.1.2 Successful Purification of Cyanobacterial RNAP 

Native RNAP was purified from both cyanobacterial strains by subjecting cell lysates first to 

heparin affinity chromatography and then MonoQ ion-exchange chromatography, combining 

published methods used for the purification of other species of RNAP (Hager et al., 1990; 

Svetlov and Artsimovitch, 2015). The purification of cyanobacterial RNAP included an 

additional step of overnight 0.35 mgml-1 ammonium sulphate precipitation of the intermediate 

RNAP fraction after the heparin chromatography. Tagged RNAPs underwent further or 

alternate affinity purification steps. Several types of successful purification were performed in 

total, leading to purified: native SelRNAP, native SspRNAP, native EcRNAP, his-tagged 

EcRNAP, his-tagged SspRNAP and FLAG-tagged SelRNAP. Native cyanobacterial RNAP 

was also able to be purified at different phases of the circadian cycle when gene expression is 

thought to be at the most active and least active levels. Fractions were sent for mass 

spectrometry to confirm clean and effective purification of cyanobacterial RNAP, and to 

identify potential light phase-specific RNAP-binding proteins using FLAG-tagged 

purifications (Appendix 5.4). 

RNAP subunits are clearly visible on representative SDS-PAGE and compared for each 

species in Figure 8B. There is little observable contaminating protein. RNAP purification by 

a two-step heparin and ion-exchange chromatography is a known method for the removal of 

any bound accessory factors, such as Gre, and can fractionate core enzyme from holo-enzyme 

(RNAP with σ factor). His-tagged EcRNAP was purified from a ΔGreAΔGreB strain to 

ensure no Gre factor would be present, and in all EcRNAP purification there was no evidence 

of SCBF contamination which would present around 20 kDa. Where possible, fractions were 

collected with the aim of separating out the primary sigma factor σ70, or SigA/RpoD1 in 

cyanobacteria, from the core enzyme. 
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 Figure 8. Purification of RNAP. (A) Overview of the methods used to purify native and tagged version of 
cyanobacterial and E. coli RNAP. (B) SDS-PAGE of EcRNAP-his and both native cyanobacterial RNAPs after 
MonoQ chromatography and dialysis into storage buffer to show a comparison of subunit molecular 
weights and cleanliness of the final product. (C) SDS-PAGE showing fractionation of SspRNAP-his during 
MonoQ chromatography. Once run, gels were stained in InstantBlue (Expedeon). (D) Silver stained SDS- 
PAGE showing successful elution, E, of SelRNAP-FLAG from FLAG resin beads. SelRNAP native lysates were 
also tested to determine any non-specific binding to the beads. L, load fraction; FT, Flow-through. 
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3.1.3 Intrinsic Hydrolytic Activity is much Faster for Cyanobacterial RNAP 

A major activity of RNAPs, and perhaps the activity most important regarding the aims of this 

study, is the ability of the enzyme to perform phosphodiester bond hydrolysis of the nascent 

RNA transcript. This reaction would usually be assisted through the recruitment of fidelity 

factor GreA but as the Gre SCBF is naturally absent in Cyanobacteria, assays were initially 

performed in the absence of any fidelity factor for EcRNAP to allow measurement and 

comparison of the intrinsic cleavage ability of the RNA polymerase itself. 

The first of these is described in Figure 9, where the hydrolysis rate of a cognate elongation 

complex, EC(GA), composed of fully complementary DNA and RNA is assessed. In this 

case, once the complex is assembled, a pause is simulated through a lack of nucleotides 

causing the RNAP to first backtrack and then subsequently cleave the 2 nucleotides of the 

RNA 3’ end. Cyanobacterial RNAP was able to accomplish this cleavage approximately 80 

times faster than EcRNAP which would suggest very efficient intrinsic hydrolytic activity. To 

account for the impact of backtracking speed on these rates, the ability of each enzyme to 

enter a backtracked state was assessed and determined to be similar (Performed by Dr 

Yuzenkova, data not shown). This was also combated by assaying hydrolysis rates from 

RNAP complexes assembled to be in a -1 bp backtracked state, thereby eliminating the 

requirement to move to a backtracked position. These complexes represent an RNAP which 

has undergone a mis-incorporation event which are major targets of GreA. 

Mis-incorporated complexes, MEC(A) and MEC(U), were assembled to give a mismatched 

and exposed RNA:DNA 3’ end. The RNA 3’ end of MEC(A) encodes AMP when the cognate 

would be UMP, and MEC(U) possesses a 3’ UMP instead of a cognate CMP. As expected, 

rates of RNA cleavage from MECs are much faster for all RNAPs (Figures 10 and 11). The 

cyanobacterial RNAP rates of hydrolysis were again greater than those of EcRNAP by 40- 

fold for MEC(U) and 30-fold for MEC(A). Notably, the rates for both species of 

cyanobacterial RNAP were comparable for each complex tested. All assays were performed at 

pH 7.9, 30oC and were initiated with addition of 10 mM MgCl2. 
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 Figure 9. Cyanobacterial RNAP Performs Intrinsic Hydrolysis of a Cognate Elongation Complex Faster 
than EcRNAP. (A) Representative 23% PAGE of each RNAP showing amount of RNA hydrolysis for the 
indicated time periods. Scheme of the cognate hydrolysis assay performed Right: RNA with 5’ radiolabel 
highlighted red and paired between DNA strands in black. (B) Kinetics of phosphodiester bond hydrolysis 
fit with single exponent regression. Average rate for each RNAP shown to the right. The values for each 
RNAP are the mean ± standard deviations of at least three independent experiments. Right: Comparison of 
rates via fold change relative to WT EcRNAP. 
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 Figure 10. Cyanobacterial RNAP Performs Intrinsic Hydrolysis of a MEC(U) Non-Cognate Elongation 
Complex Faster than EcRNAP. (A) Representative 23% PAGE of each RNAP showing amount of RNA 
hydrolysis for the indicated time periods. Scheme of the cognate hydrolysis assay performed Right: RNA 
with 5’ radiolabel highlighted red and paired between DNA strands in black, mis-incorporated 3’ nucleotide 
shown in blue. (B) Kinetics of phosphodiester bond hydrolysis fit with single exponent regression. Average 
rate for each RNAP shown to the right. The values for each RNAP are the mean ± standard deviations of at 
least three independent experiments. Right: Comparison of rates via fold change relative to WT EcRNAP. 
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 Figure 11. Cyanobacterial RNAP Performs Intrinsic Hydrolysis of a MEC(A) Non-Cognate Elongation 
Complex Faster than EcRNAP. (A) Representative 23% PAGE of each RNAP showing amount of RNA 
hydrolysis for the indicated time periods. Scheme of the cognate hydrolysis assay performed Right: RNA 
with 5’ radiolabel highlighted red and paired between DNA strands in black, mis-incorporated 3’ nucleotide 
shown in blue. (B) Kinetics of phosphodiester bond hydrolysis fit with single exponent regression. Average 
rate for each RNAP shown to the right. The values for each RNAP are the mean ± standard deviations of at 
least three independent experiments. Right: Comparison of rates via fold change relative to WT EcRNAP. 
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3.1.4 Mutations of the Trigger loop and Bridge Helix lead to Increased Intrinsic 

Hydrolytic Activity in EcRNAP 

Catalysis occurs in the single active site of RNAP which is composed of the metal ion co- 

ordinating NADFDGD site, the mobile TL, and the supporting BH. The faster cleavage rates 

exhibited by cyanobacterial RNAP were investigated further by comparing variation in these 

active site elements. The ClustalW T-Coffee multiple sequence alignment program was used 

to compare EcRNAP β’ and cyanobacterial RNAP γ and β’ protein sequences with particular 

interest in these regions. 24 single amino acid differences were observed across the three sites, 

highlighted in Figure 12. 

These differences were used to identify any residues directly involved in producing the 

cyanobacterial RNAP increased cleavage ability through the creation of potential gain-of- 

function mutant EcRNAPs. Site-directed mutagenesis was performed on his-tagged EcRNAP 

rpoC (β’) encoding pRL663 plasmid to substitute each of these amino acid differences with 

the respective cyanobacterial RNAP residue. In most cases both S.el and S.sp encoded the 

same amino acid, differing only at positions β’ 474, 1135, and 773 (EcRNAP numbering). 

Any mutations at these positions were generated using the corresponding SspRNAP amino 

acid. All single amino acid mutations depicted in Figure 12 were constructed and purified as 

described in methods. A mutation of β’ K789R the only exception as although a mutant 

construct of the correct sequence was made, all attempts at purification failed due to excessive 

production of inclusion bodies. 

The purified EcRNAP mutants were subjected to the same mis-incorporated MEC(A) and 

MEC(U) hydrolysis assays as described previously, with the results reported in Table 1. The 

table is shaded according to the fold change of cleavage activity of mutant EcRNAPs 

compared to WT EcRNAP, with darker shading indicating a greater increase in cleavage rate. 

Taking into account the increased activities of some single substitution mutants, particularly 

β’ F773V, G1136Q, and A940V, generation of EcRNAP mutants with multiple substitutions 

was attempted. Also in Table 1, a double mutant of β’ G1136Q F773V produced the greatest 

increase in hydrolytic activity, however, a mutant combining the top three single 

substitutions of β’ G1136Q F773V A940V was attempted but repeatedly failed 

transformation into the ΔGreAΔGreB E. coli strain and so could not be purified. The 

hydrolysis rates of these top mutant EcRNAPs near 30% of the rates for cyanobacterial 

RNAP as shown in Figure 13. Mutation structural locations are illustrated in Figure 13B, 

represented using EcRNAP PDB 6GH5 (Glyde et al., 2018). 
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 Figure 12. Sequence Alignment of the Active Site Elements. (Top) Aligned sequences for the E. coli and 

cyanobacterial Mg
2+

I metal chelation site of the β’ DPBB and conserved NADFDGD motif. (Mid) Aligned 
sequences of the β’ BH with glycine hinge regions highlighted. (Bot) Aligned sequences of the TL showing 
positioning of the SI3 insert, conserved substrate NTP co-ordinating residues R933 and H936, and 
conserved NTP recognition residues Q929 and M932. Amino acid differences between the species are in 
bold. Red dots indicate the production and testing of a mutant EcRNAP at this site. 
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 Table 1. Overview of Mutant EcRNAP Cleavage Rates. All mutant EcRNAPs of the trigger loop (TL), bridge 
helix (BH), and metal chelation site (MCS) arranged in approximate descending order of hydrolytic activity 
on mis-incorporated complexes MEC(A) and MEC(U). Activity is expressed in fold change relative to WT 
EcRNAP. Errors are indicative of the standard deviation of at least three repeats. * denotes only two 
repeats. 
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 Figure 13. Mutant EcRNAPs near a Third of the Hydrolysis Rate for Cyanobacterial RNAP. (A) Cleavage 
rate comparison for mutant EcRNAPs and Cyanobacterial RNAPs on assembled mis- incorporated 
complexes MEC(A) and MEC(U). The values for each RNAP are the mean ± standard deviations of at least 
three independent experiments (B) Sites within the bridge helix (green) and trigger loop (blue) with 
mutations giving the highest increase in cleavage rate (orange). Some structure of the trigger loop insert 
could not be determined due to excessive flexibility. PDB 6GH5 (Glyde et al., 2018) 
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3.1.5 The Trigger Loop SI3 affects GreA-Mediated Cleavage 

The SI3 is the lineage-specific insert which divides the trigger loop. It is a surface-exposed 

region of RNAP which lies close to the entrance of the secondary channel – the entry point for 

SCBFs like Gre to access the active site. The SI3 has been shown to modulate TL folding into 

the TH conformation thereby affecting the catalytic and pausing activities of RNAP 

(Windgassen et al., 2014; Artsimovich et al., 2003). 

EcRNAP mutants of the SI3 were purified and tested for differences in hydrolytic activity 

compared to WT EcRNAP. Two mutants were investigated; an EcRNAP lacking the SI3 

region β’ΔSI3(943–1130), and an EcRNAP with the SI3 replaced by the much larger SI3 

from SspRNAP, β’SspSI3 (Figure 14A). Plasmid pVS14, with his-tagged E. coli rpoCΔSI3, 

was used to transform and purify the β’ΔSI3 mutant from the ΔGreAΔGreB strain. β’SspSI3 

was constructed and purified by Dr Yuzenkova. These mutant EcRNAPs were first tested for 

hydrolytic activity on the mis-incorporated MEC(A) and MEC(U) complexes (Figure 14). 

This activity was significantly reduced in both complexes for β’SspSI3, whereas the β’ΔSI3 

mutant demonstrated slightly reduced cleavage on MEC(A) and a complete absence of 

cleavage activity on MEC(U). 

Considering the close location of the SI3 domain to that of the Gre factor binding site and 

entrance to the secondary channel, the SI3 EcRNAP mutants were then tested for hydrolytic 

activity in the presence of 5 µM EcGreA on cognate EC(GA) complexes (Figure 15B). Both 

the deletion and expansion of SI3 severely reduced GreA-mediated cleavage. The rate of 

RNA hydrolysis for WT EcRNAP increases roughly 320-fold upon addition of GreA whereas 

that of EcRNAP β’SspSI3 is only increased 13-fold, and worse still EcRNAP β’ΔSI3 by 0.3- 

fold. Similar intrinsic cleavage rates were found for WT EcRNAP and EcRNAP β’SspSI3 

however no rate could be determined for EcRNAP β’ΔSI3 in the absence of GreA, even with 

incubation times up to 3 hours. 

Addition of EcGreA on cleavage rates for cyanobacterial RNAP were also briefly assessed. A 

pilot investigation found GreA factor able to impose some stimulatory activity between 

species (data not shown) however, these were species known to encode and use GreA factor. 

EcGreA does not appear to affect the hydrolysis rates of cyanobacterial RNAP save for a 

small decrease (Figure 15A). This decrease may be explained by the high glycerol and salt 

content of the purified GreA storage buffer (SB) as addition of an equivalent volume of only 

SB also results in a decreased rate.  
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 Figure 14. Mutations of the SI3 affect Intrinsic Hydrolytic Activity (A) Schematic of the SI3 EcRNAP 
mutants. EcRNAP β’ΔSI3 is a deletion of the entire E. coli insert whereas in β’SspSI3, the larger SBHM-
encoding SI3 has replaced the shorter native E. coli SI3. (B) Space fill of EcRNAP showing positions of the 
SI3 (blue), Gre binding site (pink), and entrance to the secondary channel. PDB 6ALH (Kang et al., 2017). (C) 
Hydrolysis rates of SI3 mutants for mis-incorporated MEC(A) and MEC(U) complexes. The values for each 
RNAP are the mean ± standard deviations of at least three independent experiments. 
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 Figure 15A. GreA does not Stimulate Cyanobacterial RNAP Hydrolytic Activity. 15B. GreA- Mediated 
Hydrolysis is Impaired for SI3 EcRNAP Mutants (A) Comparison of hydrolysis rates on cognate complexes 
EC(GA) with and without addition of 5 µM EcGreA or an equivalent volume of storage buffer (SB). (B) 
Kinetics of phosphodiester bond hydrolysis fit with single exponent regression for hydrolysis rates of SI3 
EcRNAP mutants with and without addition of 5 µM EcGreA on cognate EC(GA) complexes. Average rate 
for each RNAP shown to the right. The values for each RNAP are the mean ± standard deviations of at least 
three independent experiments. (β’ΔSI3 + GreA only performed once, error bars indicate fit of data). 
Right: Comparison of rates via fold change relative to WT EcRNAP. 
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3.1.6 Discussion 

It was theorised that since GreA and other secondary channel binding factors (SCBFs) were 

absent in cyanobacteria, an alternate mechanism may exist to perform or compensate for the 

loss. To investigate this, the enzyme responsible for transcription, RNAP, was purified from 

two cyanobacterial strains and model γ-proteobacterium E. coli in order to compare in vitro 

transcription activity. In this section, the hydrolytic activity of each RNAP was assessed on 

both cognate complementary assembled complexes EC(GA) and non-cognate mis- 

incorporated complexes (MEC(A)/(U)) which simulate a paused or -1bp backtracked RNAP 

respectively. 

Both cyanobacterial RNAPs were able to perform RNA hydrolysis approximately 80 times 

faster than EcRNAP for cognate complexes and 30-40 times faster for backtracked complexes 

(Figures 9-11). This suggests that cyanobacterial RNAP is capable of much faster intrinsic 

cleavage than EcRNAP and is not just faster at entering the necessary backtracked state from 

which cleavage occurs. An RNAP able to carry out fast and efficient cleavage without the 

need for any accessory factor could constitute a viable alternate mechanism which 

compensates for the absence of Gre factors. However, a few considerations need to be taken 

into account. These include whether there is a minimum rate threshold for cleavage to be 

effective in the cell, and if the intrinsic cleavage ability of cyanobacterial RNAP meets this 

rate. Similarly, GreA acts as a fidelity factor to promote excision of the RNA 3’ end when a 

mis-incorporation event has occurred, this may not be necessary if cyanobacterial RNAP has 

more stringent error prevention mechanisms or if cyanobacteria can tolerate less accurate 

RNA. The Gre factors are also thought to act upon potentially harmful stalled RNAPs, most 

often caused by mis-incorporation events, and resolve conflicts with the replication 

machinery. This may not be required if the cleavage ability demonstrated by cyanobacterial 

RNAP is able to efficiently resolve stalled complexes, or if mis-incorporation-caused stalled 

RNAPs are rare in cyanobacteria due to initial competent cleavage of the transcript. Efforts to 

investigate and address these concerns while attempting to find the source of increased 

cleavage ability in cyanobacterial RNAP are described below and in following chapters. 

Differences in sequence homology of the active site elements between EcRNAP and 

cyanobacterial RNAP was initially considered as the cause for the increased hydrolysis 

observed. EcRNAP mutants were constructed with substitutions in the β’ subunit to match the 

relative sites in SspRNAP in the expectation that inserting a residue important for cleavage 

activity would then lead to an improved cleavage rate for the EcRNAP mutant. The SspRNAP 

sequence was chosen as SspRNAP gives a slight but consistently higher RNA cleavage rate in 
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all complexes tested. There was also little variation between the active site sequences of each 

cyanobacterial RNAP, with differences at three positions β’ L474, V1135, V773 for 

SspRNAP which all code for isoleucine in SelRNAP (EcRNAP numbering). All of these are 

branched-chain amino acids, highly hydrophobic and important in determining protein 

structure (Monirujjaman and Ferdouse, 2014). Although substitutions between these amino 

acids are generally considered to be conservative, there are examples where single 

substitutions have resulted in alterations of protein function. While a purpose may exist for 

these changes, perhaps in the greater reliance of Sel on circadian control with 

photoautotrophic growth, both cyanobacterial RNAPs react similarly in the in vitro 

experiments used in this thesis. 

In total, five of the constructed EcRNAP mutants demonstrated cleavage rates that were more 

than triple the WT EcRNAP rate for both MEC(A) and MEC(U). Three mutants, β’ A940V, 

F773V, and G1136Q F773V gave rates at least six times greater than WT EcRNAP (Table 1). 

The most improved EcRNAP mutants encoded substitutions in the mobile components of the 

active site, the bridge helix (BH) and the trigger loop (TL). Previous studies in different 

species of RNAP have found that mutations in these regions can significantly affect catalytic 

activity by altering the flexible nature of these elements. 

The active site-spanning BH undergoes conformational changes between ‘kinked’ and 

‘straight’ states during the nucleotide addition cycle. This is largely enabled by two glycine 

hinges within this long α-helix. Two EcRNAP mutants constructed during this project, 

β’F773V and β’N792D, increased the cleavage rate of WT EcRNAP at least 3-fold. β’F773V 

is located in a hydrophobic segment of the BH, termed the YFI motif, which is positioned just 

before the N-terminal glycine hinge. Nedialkov et al. (2013) has shown that amino acid 

substitutions of this motif considerably alter pausing, termination and fidelity of RNAP. 

β’F773V is a well-established EcRNAP mutant within the literature after first being identified 

as able to confer dependence on the antibiotic CBR703 (Artsimovich et al., 2003). This 

mutation is known to suppress RNAP pausing, have stiffer translocation ratchets, and show 

reduced fidelity (Nedialkov et al., 2013; Svetlov et al., 2007). In our assays, β’F773V 

demonstrates a much-improved intrinsic hydrolytic activity of 6.5-fold and 8.4-fold over the 

WT EcRNAP activity on respective MEC(A) and MEC(U) scaffolds. It is thought that the 

valine substitution of β’F773V results in a stiffer BH which reduces conformation dynamics. 

This gives the mutant a ‘restrained ratchet’, meaning it is less likely to oscillate between 

translocation states (Nedialkov et al., 2012). The YFI motif is suggested to form a brace 

against which the N-terminal BH hinge can bend, with further contacts between each amino 
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acid of this motif and other surrounding domains of the active site affecting catalytic activity. 

β’F773 interacts with the β fork loop, a highly conserved motif thought to maintain the 

downstream edge of the transcription bubble and assist with translocation following 

nucleotide addition (Jovanovic et al., 2011; Vassylyev et al., 2007). Malinen et al. (2014) has 

additionally showed that disrupting BH-β subunit contacts stabilises the folded TL and closed 

RNAP active site conformation leading to the increased catalysis, slower translocation, and 

pause-insensitivity seen in β’F773V. 

The other mutant of the BH showing significantly increased cleavage activity was β’N792D. 

This β’N792 has also been proposed to affect translocation as it has been observed in two 

conformations, within or flipped out of the BH (Temiakov et al., 2005). Crystal structures of 

Thermus thermophilus and Thermus aquaticus have placed the orthologous residue of 

β’D1090 in a flipped-out configuration where it assists in stabilising the kinked BH 

conformation through hydrogen bonding with nearby residue β’R1096 (Zhang et al., 1999; 

Vassylyev et al., 2002). Aspartate-arginine side-on interactions within side chains are able to 

strongly stabilise intramolecular interactions (Mitchell et al., 1992). Tan et al. (2008) 

conducted exhaustive mutagenesis of the BH of Methanocaldococcus jannaschii RNAP. In 

their paper, a mutant of mjA'Q823D (orthologous to β’N792) increased catalysis by 135% 

over WT Methanocaldococcus jannaschii RNAP, which they suggest is caused by mimicking 

the aspartate-arginine stabilisation responsible for the kinked BH conformation. The side 

chain of mjA'Q823 was shown to point away from the RNAP catalytic center leading Tan et 

al. (2008) to conclude that increased RNAP activity is caused by changes in BH 

conformations and subsequent interactions with the TL. It is possible that the EcRNAP 

β’N792D mutant we present here also forces kinked BH conformation by making these D-R 

hydrogen bonds and resulting in a stabilised catalytically active conformation, similar to 

β’F773V. Indeed, EcRNAP β’N792 is positioned close to the base helices of the TL and could 

affect TL folding stability (Figure 13B). 

The mobile TL is a positional catalyst of the active site required for efficient catalysis. It also 

undergoes conformational change by folding into a two α-helical hairpin-like formation, 

known as the trigger helices (TH) (Vassylyev et al., 2007). These TH represent the 

‘closed/active’ conformation of RNAP, where two residues in particular β’H936 and R933 

assist in co-ordinating nucleophilic attack and enhance rate of catalysis (Mishanina et al., 

2017; Yuzenkova et al., 2010). Several studies have shown that mutations in this region can 

greatly affect all aspects of RNAP activity, with changes in elongation rate often being 

accompanied with altered pause behaviour (Bar-Nahum et al., 2005; Toulokhonov et al., 
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2007). In this thesis, two single substitution mutants of the TL displayed increased intrinsic 

cleavage ability, β’G1136Q and β’A940V. These mutants showed, on average, a respective 4 

and 9-fold faster hydrolysis rates on MEC scaffolds than WT EcRNAP. β’A940V maps to the 

N-terminal region of the TL before the SI3 insert, whereas β’G1136Q is located after the SI3 

and just before hinge 2 of the TL. A double mutant of β’G1136Q F773V was also tested and 

demonstrated faster cleavage activity than either single mutant. This activity does not appear 

to be additive, however, as the rate is only slightly higher than that for β’F773V, suggesting 

that these substitutions may increase activity through the same mechanism or pathway which 

has reached maximal effect. β’G1136 is the site of a known ‘fast’ RNAP mutant, β’G1136S 

(Bar-Nahum et al., 2005). β’G1136S increases RNAP elongation rate with less discrimination 

of substrate NTP, decreases responses to pausing, and displays inefficient termination (Bar- 

Nahum et al., 2005). Similar to the BH mutants presented above, β’G1136S is thought to 

modulate TL-TH oscillation by stabilising the three-helix bundle (THB) formed from TH 

contacts with the BH to promote a closed and catalytically active RNAP conformation (Mejia 

et al., 2015; Zhang et al., 2010). There is currently no documentation in the literature for any 

substitutions at the site of β’A940V having an effect on RNAP activity. This site is in 

between the NTP-contacting reside of β’H936 and the large SI3 which bisects the TH, 

introduction of a bulky hydrophobic residue here may restrict flexibility in this region and 

affect TL-TH oscillation. 

The mode of action of these mutants in increasing catalysis by stabilising a closed active site 

conformation has also been shown in eukaryotic RNAP. A TL rpb1 subunit E1103G 

substitution in RNAP II of Saccharomyces cerevisiae, which increases rates of elongation and 

mis-incorporation, is thought to do so by promoting a closed active site conformation with a 

folded TL (Malagon et al., 2006; Kireeva et al., 2008). We propose that as the substitutions 

described (β’F773V, β’N792D, β’G1136Q, β’A940V) occur naturally in cyanobacterial 

RNAP that this enzyme exists in an inherently more closed and catalytically active 

conformation. Turtola et al. (2018) has recently shown that β’F773V and β’G1136S stabilise 

and decrease recovery from the backtracked state. As this is the necessary state from which 

RNA hydrolysis occurs, it complements our data showing increased hydrolytic activity for 

these mutants. 

In vivo, hydrolysis of paused and backtracked complexes would usually be stimulated by the 

SCBF GreA in E. coli. To assess this stimulation, the hydrolysis rates of EC(GA) were also 

measured in the presence of 5 µM E. coli GreA (Figure 15A). As expected, the rate of RNA 

hydrolysis increased greatly for EcRNAP at roughly 320-fold faster than the intrinsic 
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cleavage rate for EcRNAP. A small decrease in rate was observed if E. coli GreA was added 

to the cyanobacterial RNAP complexes. This decrease persisted when only storage buffer was 

added and so is thought to be due to the high glycerol (50%) and salt (0.8 M NaCl) 

concentration of the buffer. However, this assay showed that the intrinsic cleavage rates of 

cyanobacterial RNAPs only reach approximately 30% of the cleavage rate for EcRNAP when 

GreA is present. It is possible that this is an adequate level of cleavage activity in 

cyanobacteria considering the slower growth rate and much longer doubling times of 6-7 

hours for S.el and 12 hours for S.sp (Vermass et al., 1988; Mori et al., 1996). These species 

are also polyploid, which presents additional options for the organisation of replication and 

transcription. Chen et al. (2012) showed that chromosome replication in S.el is not only 

asynchronous but that there is only one actively replicating chromosome at a time in most 

cells. It is unknown whether this same chromosome is used for transcription. The ability to 

co-ordinate replication on one chromosome and transcription on another would remove the 

consequences of replication machinery collisions with any stalled RNAPs and would mean 

that cyanobacteria may only have to resolve stalled ‘traffic jams’ of RNAP. In this case, a 

slower intrinsic cleavage rate than that of factor-assisted in EcRNAP may be sufficient to 

carry out all necessary functions of cleavage, while allowing the enzyme factor-independence. 

SI3 is a surface-exposed domain situated close to the entrance of the secondary channel and 

divides the two TH of the folded TL. The integration within the TL allows SI3 to modulate 

TL folding and affect the catalytic and pausing activities of RNAP (Windgassen et al., 2014; 

Artsimovitch et al., 2003). Cyanobacterial RNAP is unusual in that the lineage-specific SI3 of 

the TL is much larger than that found in other species. In order to test if this larger SI3 

conferred altered activity behaviours, two mutants of EcRNAP were constructed and tested 

for hydrolytic activity (Figures 14 and 15B). The 188 amino acid SI3 of EcRNAP was 

removed for the β’ΔSI3 mutant whereas for β’SspSI3, the SI3 of EcRNAP was replaced with 

the larger 635 amino acid SI3 of SspRNAP. β’SspSI3 showed diminished cleavage activity on 

both MEC(A/U) scaffolds and on cognate complex EC(GA), while β’ΔSI3 demonstrated 

completely absent cleavage activity on MEC(U) and EC(GA) complexes. Hydrolytic activity 

on MEC(A) was only slightly reduced for β’ΔSI3 which was surprising and is thought to be 

due to the nature of the scaffold with perhaps a greater ability to co-ordinate transcript- 

assisted cleavage. Both mutants also showed drastically reduced activity to WT EcRNAP 

when in the presence of E. coli GreA. Activity for β’ΔSI3 + GreA was barely observable, 

whereas the addition of GreA to β’SspSI3 only increased the rate 12.7-fold when GreA is able 

to stimulate 320-fold activity for WT EcRNAP. These results indicate that the consequences 

of removing SI3 in EcRNAP are more deleterious for RNA cleavage than expansion of the 
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insert, suggesting that it may have some positional effect in allowing the TL to fold properly 

in intrinsic hydrolysis. Transcript cleavage has previously been shown to be reduced in partial 

β’SI3 deletions in EcRNAP in work which was particularly focussed on identifying mutants 

defective in interactions with transcript cleavage factors (Zakharova et al., 1998). Zhang et al. 

(2010) was later able to determine that SI3 is essential for the action of cleavage factor GreB 

in E. coli but was unable to conclude whether SI3 assisted in binding or function of GreB. 

Our data suggest that SI3 may carry out a similar role for the action of GreA. 

In this section, we have demonstrated that cyanobacterial RNAP has a fast intrinsic hydrolytic 

activity which may be caused by specific amino acids of the flexible BH and TL active site 

elements. The distinct amino acids identified are either known, or are at positions known, to 

reduce the flexibility of these elements in EcRNAP, resulting in a more closed and 

catalytically competent active site. This conformation of the active site leads to increased 

rates of nucleotide addition and elongation with an insensitivity to pause signals. Several 

studies have also identified β’SI3 mutants of EcRNAP to reduce pausing during elongation, 

and particularly to increase the rate of escape from hairpin-dependent pause signals 

(Artsimovich et al., 2003; Ray-Soni et al., 2017). Characterisation of cyanobacterial RNAP 

and the EcRNAP mutants in elongation is presented in future results sections. First, we 

investigated further differences in the active site which may alter catalysis, including the 

contribution of intrinsic transcript-assisted hydrolysis. 
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3.2 The CyanoRNAP Active Site may be Configured for Faster Catalysis 

 
3.2.1 Introduction and Aims 

Cyanobacterial RNAP demonstrated a much higher capacity for intrinsic RNA hydrolysis 

than EcRNAP, possibly due to specific residue changes in the active site elements which 

result in a more closed and catalytically competent enzyme. The active site mechanics and 

RNAP enzymology were then investigated further in this section to determine if there were 

any differences in the basic reaction mechanism of each RNAP. In further cleavage assays 

using MEC(A/U), the binding affinity for the transiently sequestered Mg2+II ion was tested 

for each RNAP and the activation energy barrier for cleavage was assessed. The possible 

involvement of a general base in activating the attacking water molecule and therefore 

increasing activity in cyanobacterial RNAP was examined. The contribution to the intrinsic 

cleavage rate of co-ordination via transcript-assisted cleavage was also measured. 

 

 
Binding Affinity for the Mg2+ ion is Similar for EcRNAP and SspRNAP  

RNAP requires two divalent metal ions, usually Mg2+, for catalysis via the two-metal-ion 

mechanism. Mg2+I is persistently bound in the active site by the aspartate triad of the β’ subunit, 

while Mg2+II is only transiently sequestered. During hydrolysis, Mg2+II is responsible for 

activating the attacking group. Metal binding affinity for the active site can impact catalytic 

activity and so was proposed to be a cause of the increased cleavage activity seen for 

cyanobacterial RNAP. 

The affinity of a metal ion for a protein is described by the dissociation constant, Kd. A 

smaller Kd would represent a more tightly bound metal ion. In this assay, we assume Kd to be 

approximately equal to Km and fit our data using Michaelis-Menten non-linear regression to 

determine the Vmax and Km for each enzyme. The rate of transcript hydrolysis was measured 

for both EcRNAP and SspRNAP on MEC(A) and MEC(U) complexes using a range of 

activating Mg2+ concentrations. 

Vmax for both MEC(A) and MEC(U) was much faster for SspRNAP as expected (Figure 16). 

However, the Km for each enzyme was very similar at roughly 21 mM for MEC(U) and 4 mM 

for MEC(A). This reflects the faster hydrolysis rates seen when using the MEC(A) assembled 

complexes from the previous results section. The data for MEC(A) were collected by Dr 

Yuzenkova and presented here with permission. The similar Km values obtained for EcRNAP 

and SspRNAP means that they are considered to have an equal affinity for the Mg2+ ion and 

that the increased cleavage rates of SspRNAP are from a different cause. 
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Figure 16. Binding Affinity for Mg

2+
II is Similar for EcRNAP and SspRNAP. (A) Rates of RNA hydrolysis on 

MEC(U) against buffer Mg
2+

 concentration fit using Michaelis-Menten non-linear regression to obtain Vmax 
and Km for EcRNAP and SspRNAP. † Vmax and Km for EcRNAP were calculated using data only up to 50 

mM Mg
2+

 to combat suspected substrate inhibition at 60 mM. (B) Rates of RNA hydrolysis on MEC(A) 

against buffer Mg
2+

 concentration fit using Michaelis- Menten non-linear regression to obtain Vmax and 
Km for EcRNAP and SspRNAP. The values for each RNAP are the mean ± standard deviations of at least 
three independent experiments. 
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3.2.2 Less Activation Energy is Required for Hydrolysis by Cyanobacterial 

RNAP 

The Activation Energy, Ea, is the minimum energy which must be overcome before a reaction 

can occur. In order to ascertain whether the Ea required for hydrolysis by EcRNAP and 

SspRNAP were similar, rates of transcript cleavage on MEC(U) were measured over a range 

of reaction temperatures. These data were fit to an Arrhenius plot as described in the methods. 

Ea can be calculated from the negative slope of this plot using y = -Ea/R, where R is the gas 

constant equal to 8.314 Jmol-K. Figure 17A shows the Arrhenius plots and Ea calculations for 

both RNAPs. The energy required for RNA hydrolysis was much lower for SspRNAP, at 

about half the amount (61.5 KJmol-1) required for EcRNAP (123.5 KJmol-1). This lower Ea 

requirement could contribute to the fast and efficient intrinsic hydrolysis demonstrated by 

cyanobacterial RNAP. 

 

 
3.2.3 Deprotonation may be Assisted by a General Base in Cyanobacterial 

RNAP 

The two-metal-ion mechanism of RNAP requires deprotonation during hydrolysis where 

Mg2+II activates the attacking water molecule. The existence of a general base for 

deprotonation has been identified as the TL β’H936 reside in some bacterial species but 

appears to differ greatly in contribution between species (Svetlov and Nudler, 2013; 

Yuzenkova et al., 2010). Elevation of buffer pH is expected to stimulate hydrolysis as water 

deprotonation would be increased, however, the reaction rate should plateau at a pH equal to 

the water pKa. pH has also been shown to affect Mg2+II retention, however as the Km for 

Mg2+II was determined to be similar in the previous section, all RNAPs are assumed to react 

comparably (Sosunov et al., 2003). Hydrolysis rates for MEC(A) were measured across a 

buffer pH range to determine deprotonation effects on activity for EcRNAP, SelRNAP, and 

EcRNAP + 0.2 µM GreA (Figure 17B). pH elevation from 6.5 to 7.5 causes a 30-fold 

increase in cleavage rate for SelRNAP and a 50-fold increase for EcRNAP. However, while 

the rate for EcRNAP continues to rise with pH, the SelRNAP hydrolysis rate plateaus shortly 

after. This would suggest the presence of a general base for SelRNAP as water is activated 

much more readily. This appears to be a similar but weaker deprotonation mechanism to that 

of Gre-dependent hydrolysis which reduces water pKa substantially. 
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 Figure 17. Cyanobacterial RNAP Requires Less Energy for Hydrolysis and May be Aided by a General 
Base. (A) Arrhenius plot showing rate of hydrolysis of MEC(U) by EcRNAP and SspRNAP against reaction 
temperature. Calculated value for Ea is placed next to the appropriate slope. (B) Rate of MEC(A) hydrolysis 
against reaction buffer pH titration for EcRNAP, SelRNAP, and EcRNAP+0.2 µM GreA (purple). The values 
for each RNAP are the mean ± standard deviations of at least three independent experiments. 
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3.2.4 Contribution of Transcript-assisted Cleavage is Greater for 

Cyanobacterial RNAP 

In addition to intrinsic hydrolytic activity mediated by either the TL or Gre, RNAPs also 

possess a ribozyme-like proof-reading activity where the 3’ end of the transcript assists in 

excision (Zenkin et al., 2006). Upon mis-incorporating an incorrect NTP, the RNAP enters a 

thermodynamically favourable 1 bp backtracked state with the penultimate phosphodiester 

bond of the transcript placed in the active site. The erroneous RNA 3’ end is flipped out and 

co-ordinates hydrolysis of this penultimate bond (Figure 18A). 

In the same paper, Zenkin et al. (2006) assembled mis-incorporated complexes using 

modified bases and tested the rates of hydrolysis in order to determine the strength of the 

ribozyme-like mechanism. It was thought that a greater reduction in rate would correlate to a 

stronger original mechanism, as the modified base would disrupt the bonds required to co- 

ordinate the reacting groups for catalysis. These experiments were reproduced in this thesis 

using the MEC(A) complex so as to determine the contribution of transcript-assisted cleavage 

in cyanobacterial RNAP. The RNA 3’ NMP of these complexes was either adenine or a 

modified base of purine, pyridine-2-one, 7-deaza-A, or 7-deaza-G, whereas the cognate base 

would be UMP. These complexes were therefore already in the 1 bp backtracked state when 

assembled. Hydrolysis rates for EcRNAP, SspRNAP, and SelRNAP on the modified 

complexes were measured against rates for MEC(A) and percentage residual hydrolytic 

activity is reported in Figure 18B. Rates were consistently lower for both cyanobacterial 

RNAPs, particularly with 7-deaza-A. This would indicate that flipped out 3’ end of the 

nascent RNA transcript may be held in a different configuration or may be better able to co- 

ordinate penultimate bond cleavage in a stronger ribozyme-like mechanism. A greater 

contribution of transcript-assisted cleavage could help account for the overall increased 

intrinsic cleavage demonstrated by cyanobacterial RNAPs. 

The mutant EcRNAPs showing the most increased cleavage ability were also tested (Figure 

18C). These mutants displayed a much greater reduction in hydrolytic rate, even more so than 

cyanobacterial RNAP for some bases. Transcript cleavage was consistently most reduced for 

β’ F773V, and could not even be determined for 7-deaza-G. The decreased flexibility of the 

active site proposed for these mutant RNAPs, and thus for cyanobacterial RNAP, appears to 

allow better co-ordination of the backtracked RNA 3’ in order to perform faster transcript 

catalysis.
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Figure 18. Contribution of Transcript-assisted Cleavage. A) The modified 3’-terminal nucleotides used in 
the assays. Right, schematic representation of the flipped-out RNA 3’ end which co- ordinated hydrolysis 

of the penultimate phosphodiester bond, P2. Mg
2+

 ions shown in purple. Adapted from Zenkin et al. 
(2006). B) Residual hydrolytic activity of the modified bases against the rates for hydrolysis of MEC(A) for 
EcRNAP, SspRNAP, and SelRNAP. C) Residual hydrolytic activity of the modified bases against the rates for 
hydrolysis of MEC(A) for mutant EcRNAPs. The values for each RNAP are the mean ± standard deviations 
of at least three independent experiments. * The rate for SspRNAP on 7-deaza-G was only calculated once. 
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3.2.5 Discussion 

Differences between cyanobacterial and EcRNAP in metal ion co-ordination and acid/base 

contributions to catalysis were assessed. In RNA hydrolysis, it is the Mg2+II ion which 

activates the attacking water molecule in order to cleave the phosphodiester bond. The 

binding affinity for this ion in the active site can therefore impact catalytic activity. Rates of 

RNA hydrolysis for EcRNAP and SspRNAP were measured for MEC(A) and MEC(U) in the 

presence of different buffer concentrations of Mg2+ in the form of MgCl2. These data were 

used to determine the Km for Mg2+II of both RNAPs (Figure 16). A similar Km was obtained 

for each RNAP on both scaffolds, approximately 21 mM for MEC(U) and 4 mM for 

MEC(A). The lower Km value for MEC(A) reflects the faster rates seen for this scaffold 

previously and indicates that this complex is better able to co-ordinate Mg2+II for hydrolysis. 

As the Km values were similar for cyanobacterial and EcRNAP, they are considered to have 

the a roughly equal binding affinity for Mg2+II and so the differences observed in cleavage 

rates are not due to metal ion binding. 

The MEC(U) scaffold was also used to determine the activation energy required for 

hydrolysis for each RNAP by measuring the hydrolysis rate over a range of reaction 

temperatures (Figure 17). The activation energy, Ea, is the energy barrier which must be 

overcome before the reaction can take place. Ea can be measured using the Arrhenius equation 

which observes that at higher temperatures, the probability that two molecules will collide is 

higher and results in a higher kinetic energy, therefore lowering the activation energy 

requirement. Enzymes like RNAP can catalyse reactions by lowering the activation energy 

required. One way this is done is by positioning and orientating the reactants close together to 

facilitate catalysis. The Ea required for RNA hydrolysis was much lower for SspRNAP than 

for EcRNAP, at 61.5 KJmol-1 and 123.5 KJmol-1 respectively. The lower Ea for SspRNAP 

could contribute to the faster cleavage activity demonstrated by this enzyme. It could also 

mean, in combination with the results from the previous section, that the possible more closed 

conformation of the active site is able to work as a better catalyst by positioning the reactants 

for increased catalysis through lowering the required reaction activation energy. 

Assisted deprotonation of the attacking water molecule in hydrolysis by a general base in the 

active site of RNAP would contribute to increased cleavage rate. Yuzenkova and Zenkin 

(2010) have suggested TL residue H1242 of Thermus aquaticus (orthologous to H936 of 

EcRNAP) to perform this role. The existence of a general base for cyanobacteria was assessed 

by measuring cleavage rate over a buffer pH range (Figure 17). High pH stimulates 

hydrolysis by increasing water ionisation, however this stimulation is expected to plateau as 
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the pH reaches the water pKa value (~14). The presence of a general base would activate 

water much more readily and this plateau would occur at a lower pH. Elevated pH has also 

been shown to enhance Mg2+II retention by breaking salt bridges between neighbouring β 

subunit residues and allowing these residues to assist in Mg2+II co-ordination (Sosunov et al., 

2003). As the Km for Mg2+II was determined above to be similar for cyanobacterial and 

EcRNAP on this same MEC(A) complex, we assume that this increased Mg2+II retention will 

affect all RNAPs equally and can be discounted when comparing hydrolysis at increased 

buffer pH. The rate curve observed for SelRNAP does indicate the action of a general base. 

Cleavage rate for SelRNAP plateaus at roughly pH 7.5 which is in the pKa range for histidine, 

and similar to the results of Yuzenkova and Zenkin (2010) implying that the conserved H1242 

(Thermus RNAP numbering) site may also participate as a general base in cyanobacteria. This 

appears to be in contrast to EcRNAP which does not show any deprotonation assistance by a 

general base, thus this acid/base mechanism of catalysis may differ in contribution between 

species. In Gre-dependent cleavage, reside E44 is thought to simultaneously assist with 

Mg2+II co-ordination and water activation thus facilitating fast catalysis (Sosunova et al., 

2013). Gre-dependent water activation is thought to be two-fold; the general base of Gre 

factors is thought to both stabilise the attacking water via hydrogen bonding with the water 

hydrogen atom, and to accelerate water ionisation by lowering the water pKa (Sosunova et al., 

2013). The substantial effect this mechanism has on cleavage rate can also be seen in Figure 

17. 

As part of the intrinsic cleavage mechanism, the frayed RNA 3’ end of backtracked 

complexes is able to support Mg2+II co-ordination and contribute to hydrolysis in a ribozyme- 

like fashion, known as transcript-assisted cleavage (Zenkin et al., 2006). This hydrolysis was 

tested in Figure 18, using the base MEC(A) complex with modified 3’ NMP bases. Rates of 

residual cleavage activity with these modified bases, as opposed to with MEC(A), was 

assessed for cyanobacterial, mutant EcRNAPs, and WT EcRNAP. Both species of 

cyanobacterial RNAP gave reduced residual cleavage, which was also mimicked by the fast 

cleaving mutant EcRNAPs. This is particularly true for rates with 3’7-deaza-A for the 

cyanobacterial enzymes, and the β’F773V EcRNAP mutant which consistently gave the 

lowest residual activity rates. It is thought that a greater reduction in rate correlates to a 

stronger original ribozyme-like mechanism, as the modified bases would disrupt orientation 

of the reacting groups for catalysis. Therefore, the contribution of transcript-assisted cleavage 

through co-ordination of these groups is greater for cyanobacterial RNAP and the EcRNAP 

mutants. This increased co-ordination could be due to the limited flexibility of the previously 

proposed stabilised closed active site conformation for cyanobacterial and mutant EcRNAPs. 
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3.3 Cyanobacterial RNAP may Respond to Pause signals Less Strongly and 

have a Similar Tolerance for RNA Mis-incorporation 

3.3.1 Introduction and Aims 

Changes in elongation rate for mutant RNAPs are often accompanied with altered pause 

behaviour (Bar-Nahum et al., 2005; Toulokhonov et al., 2007). This has been shown in the 

literature EcRNAP mutants of β’F773V, β’N792D, and β’G1136S described previously. 

These substitution mutants have demonstrated increases RNAP elongation rate with less 

discrimination of substrate NTP, slower translocation, pause-insensitivity, and inefficient 

termination (Bar-Nahum et al., 2005; Zhang et al., 2010; Malinen et al. 2014). As these 

substitutions are naturally occurring in cyanobacteria, it was thought that cyanobacterial 

RNAP may also display similar elongation traits. In this section, the elongation characteristics 

of cyanobacterial, EcRNAP and mutant EcRNAPs were analysed on several DNA templates 

encoding various types of pause signals in order to test pause-sensitivity. Termination 

efficiency and translocation response to specific DNA sequences were assessed. Amounts of 

mis-incorporation were tested in vitro by measuring the incorporation rates of non-cognate 

nucleotides and ratio of extension after a mis-incorporation event. Lastly, to examine any loss 

in proof-reading or transcript fidelity, RNAseq analysis was performed on extracted total 

RNA to determine nucleotide mis-incorporation rates in vivo. 

 
 

3.3.2 Cyanobacterial RNAP Exhibits Reduced Pausing Intensity and Frequency 

The elongation characteristics of all cyanobacterial and EcRNAPs were first tested on 

promoter-independent ‘template 1’ and ‘template 2’ linear DNA templates. These templates 

have been described by Yuzenkova et al. (2013) to affect elongation in a sequence-dependent 

manner by promoting the formation of particular RNAP translocation states at specific 

nucleotide positions. Comparison of the pausing profiles for cyanobacterial and EcRNAP are 

shown in Figure 19. On template 1, positions EC15 and EC20 are sites thought to induce 

pausing by encouraging the pre-translocated state, where the RNA 3’ end occupies the i+1 

site and blocks the incoming NTP, whereas position EC16 is thought to induce the -1 bp 

backtracked state (Yuzenkova et al. 2013). Both cyanobacterial RNAPs show slightly reduced 

pausing across the whole of this template when compared to EcRNAP, especially at position 

EC23 which is an incredibly strong pause site for EcRNAP. Exceptions are found at pre- 

translocated position EC15 at which SelRNAP pauses the most, and at position EC22 which 

induces a pause for SspRNAP. Unfortunately, the translocation states promoted at sites EC22 

and EC23 are unknown. Figure 19B shows comparisons on template 2 which encodes a 
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known pre-translocated inducing site at position EC16 and a post-translocated inducing site at 

position EC15 (Yuzenkova et al. 2013). From the band intensity profiles on the right, it can 

be seen that both cyanobacterial enzymes have considerably reduced pausing at all template 

positions. The translocation states induced by the sequences of these templates were 

determined using Thermus aquaticus RNAP but are assumed to be the same for 

cyanobacterial and EcRNAP. These assumptions are tested later in this section by measuring 

rates of single nucleotide addition at these sites. The cyanobacterial RNAPs also appear to 

reach the end of the template faster than EcRNAP which could be due to a faster 

incorporation rate or to reduced pausing and is also assessed in later sections. 

The elongation characteristics of all mutant EcRNAPs were then determined using template 1. 

Elongation of the most improved cleavage rate EcRNAP mutants of β’F773V, β’A940V, 

β’G1136Q, and β’G1136Q F773V are shown in Figure 20. The band profiles at 5 seconds are 

displayed beneath the gel images and are relative to the WT EcRNAP profile. Thus, data 

below this point indicate a decreased pause intensity for the mutants relative to WT at that 

position whereas data above indicates increased signal intensity at that position for the mutant 

EcRNAP. As can be seen by this graph, these mutant RNAPs also displayed reduced pausing 

in addition to increased cleavage. Signal intensity was reduced at all known translocation state 

positions – 15, 16, 20 – and also at the very strong position EC23 pause. The higher signal 

intensities demonstrated after position EC23 are thought to be because WT EcRNAP is 

usually paused significantly before this site and so not as much enzyme makes it to the end of 

the template as it does for the mutant EcRNAPs. β’F773V is the only mutant to show a 

stronger pause than WT EcRNAP, and this is at position EC22 which also causes a strong 

pause for SspRNAP (Figure 20). 

This is followed by several figures showing representative 23% PAGE elongation profiles of 

all other tested EcRNAP mutants. In Figure 21A, other mutant RNAPs which are considered 

pause-resistant are displayed. While in Figure 21B, mutants demonstrating increased pausing 

are shown. All EcRNAP mutants judged to be roughly similar to WT EcRNAP in elongation 

and pausing are shown in Figure 22. Elongation characteristics of the two mutants of the SI3, 

β’ΔSI3 and β’SspSI3, are depicted in Figure 22B. Deletion of the SI3 appears to reduce 

pausing whereas replacement of the EcRNAP SI3 with that of SspRNAP significantly 

increases pausing. 
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 Figure 19. Cyanobacterial RNAP Exhibits a Different Pausing profile and Reduced Pause Intensity. (A) 
Scheme of short linear ‘template 1’ DNA template with pause sites indicated. Representative 23% PAGE of 
each RNAP elongating this template for the indicated time periods. Comparison of normalised 60 second 
band profiles for each RNAP showing differences in pause intensity at each position (right). (B) Scheme of 
short linear ‘template 2’ DNA template with pause sites indicated. Representative 23% PAGE of each RNAP 
elongating this template for the indicated time periods. Comparison of normalised 60 second band profiles 
for each RNAP showing differences in pause intensity at each position (right). 
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 Figure 20. EcRNAP Mutants with Increased Cleavage Also Show Reduced Pausing. (A) Representative 
23% PAGE of each RNAP elongating template 1 for the indicated time periods. (B) Relative pause intensity 
across the template of each EcRNAP mutant at 5 seconds compared against pause intensity for WT 
EcRNAP. 
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 Figure 21. Elongation Profiles of EcRNAP Mutants 1. (A) Representative 23% PAGE of mutant EcRNAPs 
considered to have reduced pausing, elongating template 1 for the indicated time periods. (B) 
Representative 23% PAGE of mutant EcRNAPs considered to have increased pausing, elongating template 
1 for the indicated time periods. 
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 Figure 22. Elongation Profiles of EcRNAP Mutants 2. (A) Representative 23% PAGE of mutant EcRNAPs 
considered to have similar pausing to WT EcRNAP, elongating template 1 for the indicated time periods. 
(B) Representative 23% PAGE of mutant SI3 EcRNAPs elongating template 1 for the indicated time periods. 
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SspRNAP and EcRNAP were also tested on the much longer promoter-dependent pIA349 

linear DNA template (Artsimovich and Landick, 2002). This template requires RNAP to 

initiate at the T7A1 promoter and then elongate along a roughly 290 bp fragment in which a 

series of strong pause signals are encoded. This template allows the formation of a halted 

complex at position 37, before the pause sites, by withholding UTP from the reaction mixture. 

The pause signals encountered on this template include: the operon polarity suppressor (ops), 

sequence pause P1, and a hairpin-dependent his pause. The template ends with a Rho- 

independent hairpin forming his termination sequence. 

Elongation of this template is shown in Figure 23. The band intensities at 60 seconds were 

normalised and compared and are to the right of each 10% PAGE. SspRNAP is again much 

less prone to pausing and appears to almost completely ignore the P1 and his pause sites. It 

does, however, pause strongly at the ops site. EcRNAP mutants β’G1136Q and β’F773V were 

also tested and gave a similar reduced pausing profile to SspRNAP. This is particularly true 

for β’F773V which shows the reduced pausing and inefficient termination reported in the 

literature (Nedialkov et al., 2013). In Figure 23C, the sum total signal at the ops site, position 

or elongation complex (EC) 43-45, and the sum total signal for run-off at EC288 for both 

SspRNAP and EcRNAP are plotted over time. In contrast to the other pause sites, both 

RNAPs show a roughly equal escape from ops, with perhaps only a slight increase in rate for 

SspRNAP. Elongation profiles for each RNAP on this template can be seen from the total 

signal curves for run-off. SspRNAP reaches maximum run-off value after about 50 seconds 

indicating that this is the amount of time for most SspRNAP complexes to have transcribed to 

this point. This curve is much shallower for EcRNAP, demonstrating the increased time spent 

at each pause site and the increased terminator efficiency before the run-off position is 

reached. 
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 Figure 23. Elongation Profiles on the pIA349 Template (A) Scheme of long linear ‘pIA349’ DNA template 
with pause sites indicated. (B) Representative 10% PAGE of labelled RNAPs, elongating this template for 
the indicated time periods. 60 second band profiles are shown to the right. (C) Total signal at the ops and 
run-off sites for SspRNAP and EcRNAP over time. Scheme of the ops pause is shown to the right. The values 
for each RNAP are the mean ± standard deviations of at least two independent experiments. 
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3.3.3 Cyanobacterial and EcRNAP Demonstrate a Similar Translocation 

Equilibrium 

Translocation is thought to occur via a Brownian molecular ratchet mechanism where the 

RNAP oscillates between the pre-, post-, and backtracked translocation states. The 

equilibrium of these states is affected greatly by the sequence being transcribed. Yuzenkova et 

al. (2013) determined the sequence-dependent translocation states for template 1 and template 

2 DNA templates using Thermus aquaticus RNAP. Translocation state at a specific site is 

resolved by measuring the rates of nucleotide incorporation, pyrophosphorolysis, and 

phosphodiester bond hydrolysis to determine the relative stabilization of elongation complex 

in each particular translocation state (Bochkareva et al., 2012). Incorporation, 

pyrophosphorolysis, and hydrolysis occur from the post-, pre-, and backtracked states 

respectively, therefore the rates of these activities greatly reflect the stability of the elongation 

complex in a particular state. Due to time constraints, only the rates nucleotide incorporation 

and pyrophosphorolysis could be measured to give an indication of translocation state. 

Figure 24A displays the rates of single cognate nucleotide incorporation for both 

cyanobacterial RNAPs and EcRNAP for several ECs of known translocation state. These 

complexes include the known pause positions on template 1 and template 2 described earlier, 

and five other complexes known to stabilise a particular translocation state (Bochkareva et al., 

2012; Yuzenkova et al., 2013). These are -1-8 which induces a pre-translocated state, GA14, 

GC14, GU14, and the initial position EC14 on template 1 which all display the post- 

translocated state. Cyanobacterial and EcRNAP appear to behave similarly and give 

comparable incorporation rates from each translocation state. Importantly, the rates from the 

post-translocated state are highest, and are lowest for incorporation from the backtracked 

state. One anomaly is the rate for SelRNAP from template 1 EC15, as it is much lower than 

for the other two enzymes. However, this correlates with the elongation profile from Figure 

19, where SelRNAP demonstrates a pause at EC15 on template 1. 

To measure pyrophosphorolysis, 250 µM pyrophosphate (PPi) was added to the reaction 

mixture of complexes stabilised on template 1 at ECs 14, 15, or 16. The ratio of 

pyrophosphorolysis rate divided by incorporation rates gives an indication of translocation 

state (Figure 24C). If a RNAP is in the post-translocated state then incorporation is likely to 

greatly exceed pyrophosphorolysis and give a ration value <1, whereas if the RNAP is in a 

pre-translocated state where the i+1 site is blocked for incorporation then pyrophosphorolysis 

is much more likely and the ration value should be >1. The backtracked state is taken as being 

roughly equal for each reaction, although in actuality the pre-translocated state is reached 



85  

before the post- when an RNAP leaves the backtracked state so might give a rate advantage to 

pyrophosphorolysis. Only one of the ratios calculated is suspect, EcRNAP Long 16 with a 

value of 3.125 where a value of roughly 1 would be expected. The pyrophosphorolysis assays 

have only two repeats where an error sign is present so further repeats to exclude potential 

manual error would be beneficial, as would further analyses of these complexes by the third 

type of reaction, RNA hydrolysis. 

Overall these data indicate that cyanobacterial RNAP, Thermus aquaticus RNAP, and 

EcRNAP are stabilised in the same sequence-dependent translocation states, showing an equal 

translocation equilibrium. 
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 Figure 24. Cyanobacterial and EcRNAP are stabilised in the same sequence-dependent translocation 
states (A) Single cognate nucleotide incorporation rates for each RNAP from complexes known to stabilise 
particular translocation states. (B) Representative 23% PAGE of pyrophosphorolysis at three positions of 
template 1 for EcRNAP and SelRNAP. (C) Table of calculated rates for incorporation and 
pyrophosphorolysis at three positions of template 1 for all RNAPs. Ratio indicating translocation state is 
calculated from the pyrophosphorolysis rate divided by the incorporation rate. The values for each RNAP 
are the mean ± standard deviations of at least two independent experiments. 
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3.3.4 Cyanobacterial and EcRNAP React Similarly to Non-cognate NTP 

Elongation Complexes were assembled to challenge each RNAP to perform a specific type of 

mis-incorporation. These complexes were incubated with 1 mM non-cognate NTP and the 

rates of initial complex presence were measured over time (Figure 25A). This rate includes 

both addition and hydrolysis. Measurement of this aspect of the assay was chosen as it 

allowed comparison across all RNAPs tested because, particularly for the cyanobacterial 

RNAPs, cleavage was much too fast and incorporation could not be measured. Therefore, it is 

not a true test of mis-incorporation ability but rather measures reaction when presented with 

only non-cognate NTP. Overall, these reactions appear broadly similar for both species but a 

better experimental design is required to determine actual mis-incorporation rates. 

 

 
3.3.5 Cyanobacteria show largely similar RNA Mis-Incorporation in vivo 

To examine any loss in proof-reading or transcript fidelity, RNAseq analysis was performed 

on extracted total RNA from exponential cultures of E. coli and S.sp to determine nucleotide 

mis-incorporation rates in vivo. These RNA transcripts were compared to the appropriate 

reference genomes to identify any mis-matched nucleotides. Specific error rates for that type 

of mis-match were calculated as a percentage of total complexes encoding a mis-matched 

nucleotide. This analysis was carried out by Dr. Katherine James and the results are displayed 

in Figure 25B. Types of mis-incorporation are labelled in the way of C>G which denotes a 

GMP has been incorporated where a CMP should be. The transcripts of S.sp appear to have 

slightly higher rates than those of E. coli for the mis-incorporations of C>A, C>U, A>C, 

A>G, and A>U. This difference is quite minimal, and we would like to repeat the assay using 

the other cyanobacterial species as a control. As the rates of the other types of mis- 

incorporation seem to be similar for both species we believe that rates of mis-incorporation 

errors in vivo are generally similar. 
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Figure 25. A. Rates of Mis-incorporation in vitro are Similar B. Percentage of Mis-incorporated ECs from 
Extracted Total RNA (A) Rates of initial complex disappearance when exposed to an incorrect nucleotide. 
The values for each RNAP are the mean ± standard deviations of at least three independent experiments. 
(B) RNAseq analysis to show specific error rates for mis-matches were calculated as a percentage of 
transcripts encoding a mis-matched nucleotide. Types of mis- incorporation are labelled in the way of C>G 
which denotes a GMP has been incorporated where a CMP should be. * denotes a higher error rate for 
that type of mis-incorporation in S.sp. 
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3.3.6 Discussion 

Transcription elongation is a discontinuous process of repeating cycles of nucleotide addition, 

interspersed with sequence-induced entry into a paused state (Herbert et al., 2006). Pauses 

can be divided into three main classes: 1) Elemental pauses caused by the DNA:RNA 

sequence and involve RNA conformational changes of the BH, TL, and clamp to inhibit 

nucleotide addition without backtracking (Kireeva and Kashlev, 2009); 2) Backtracked-

stabilised pauses where the RNAP reverses on a template and disengages the RNA 3’-OH 

from the active site and into the secondary channel (Nudler, 2009); 3) Hairpin-stabilised 

pauses where the nascent RNA transcript forms a hairpin secondary structure which blocks 

the RNA exit channel (Artsimovitch and Landick, 2000). The last two types of pausing are 

stabilised into longer- lived pauses from the initial elemental pause. Pausing performs several 

regulatory roles in co- ordinating co-transcriptional processes including RNA folding, 

coupled translation, and allows the recruitment of regulatory factors (Zhang and Landick, 

2016). 

Altered pause behaviour has often been seen in RNAPs encoding mutations of the mobile TL 

and BH domains (Bar-Nahum et al., 2005; Toulokhonov et al., 2007). Previous studies of 

EcRNAP mutants β’F773V, β’N792D, and β’G1136S have demonstrated an increased 

elongation rate, resistance to pause signals, and inefficient termination (Bar-Nahum et al., 

2005; Zhang et al., 2010; Malinen et al. 2014). As these substitutions naturally occur in 

cyanobacteria, it was thought that cyanobacterial RNAP may also display similar elongation 

behaviour in addition to the increased cleavage rates determined earlier. This was assessed 

first on two templates (Figure 19) which encoded sequence-dependent pauses to induce the 

pre-, post-, or backtracked translocation state, and would have to be overcome by the 

polymerase in order to elongate the whole template. Both cyanobacterial RNAPs demonstrate 

reduced pausing on each template at sites causing strong pauses for EcRNAP. However, 

SelRNAP had a stronger pause at EC15, a pre-translocated site, on template 1 which was 

consistently seen in repeated elongation assays. These templates were originally described for 

Thermus aquaticus RNAP (Yuzenkova et al., 2013). To assess whether the same DNA 

sequences promote the formation of a particular translocation state in both cyanobacterial and 

EcRNAP, single nucleotide incorporations were performed at each of the proposed pause 

sites. These data are shown in Figure 24, where similar rates were obtained for each RNAP 

species indicating that they respond comparably to sequence-dependent pauses. The chart 

displays the high rates expected when incorporating from a post-translocated state, and the 

lower rates expected when incorporating a nucleotide from the pre- and backtracked states (as 

translocation to the post-translocated state would have to first occur before the addition could 

be performed). Again, SelRNAP was an exception with a lower rate for incorporating from 
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EC15 on template 1. These data suggest that this sequence position might denote either a very 

strong pre-translocated state or a backtracked state for SelRNAP. 

Elongation of the fastest cleaving EcRNAP mutants of β’F773V, β’A940V, β’G1136Q, and 

β’G1136Q F773V on template 1 are shown in Figure 20. The band profiles at 5 seconds were 

assessed to determine the effect of the substitution on the initial pauses at the beginning of the 

template and are relative to WT EcRNAP. Data below 0% indicate a decreased intensity for 

the mutants relative to WT at that position whereas data above indicates increased signal 

intensity at that position for the mutant EcRNAP. Signal intensity was reduced at all known 

translocation state positions. The higher signal intensities demonstrated after position 23 are 

thought to be because WT EcRNAP is usually paused significantly at this site and so not as 

much enzyme makes it to the end of the template as it does for the mutant EcRNAPs. Overall, 

the reduced pausing of the mutants agrees with previous studies. However, a stronger pause 

than WT EcRNAP occurs at position 22 for β’F773V which has an untested translocation 

state. As this position also causes a strong pause for SspRNAP, it may be specific for this 

β’F773V substitution as SelRNAP encodes isoleucine at this site and does not demonstrate 

this pause. Substitutions of β’N792D, I937T, and Y457F were subjectively determined to also 

show less pausing, seven mutants had increased pausing, and the rest were similar to WT 

EcRNAP. β’A941F, β’H777Y, and β’S942T were substantially more pause-sensitive. β’H777 

is a BH residue adjacent to the first glycine hinge and is proposed to contact another active 

site element, the F loop, which can affect catalytic activities by modulating TL conformations 

(Miropolskaya et al., 2014). This site may also be responsible for BH conformational changes 

as proline substitution of this specific residue has been described to increase BH kinking and 

result in enhanced catalytic activity (Weinzierl, 2010; Tan et al., 2008). The two SI3 mutants, 

β’ΔSI3 and β’SspSI3, were also tested on this template as β’SI3 mutants of EcRNAP have 

been shown to reduce pausing during elongation, and particularly to increase the rate of 

escape from hairpin-dependent pause signals (Artsimovitch et al., 2003; Ray-Soni et al., 

2017). β’ΔSI3 did demonstrate perhaps slightly reduced pausing whereas β’SspSI3, with the 

expanded SI3 of SspRNAP, increased pause sensitivity for EcRNAP (Figure 22B). The 

slower elongation and decreased cleavage seen in the previous results section would suggest 

that the larger SI3 reduces or inhibits TL folding, resulting in decreased activity. Although, it 

cannot be said that this would be the case in cyanobacteria where the large SI3 is naturally 

found. The corresponding mutations should be made in SspRNAP in order to fully investigate 

SI3 effects on pausing. 
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Elongation of cyanobacterial and EcRNAP was also tested on the longer pIA349 template, 

highlighted in Figure 23 (Artsimovitch and Landick, 2002). This template encodes an ops 

pause site which is a member of the class II family of pause signals described by 

(Artsimovitch and Landick, 2000). In E. coli, ops signals induce a pre-translocated state and 

mediate recruitment of elongation factor RfaH which is a pausing and termination suppressor 

(Artsimovitch and Landick, 2000). Escape from ops appeared to be similar between 

SspRNAP and EcRNAP which was somewhat unexpected, but as this pause is pre- 

translocated, the increased cleavage ability of SspRNAP would not be of any assistance in 

pause escape until the backtracked state is reached. Bacillus subtilis RNAP has also been 

shown to recognise the ops pause site, but with a lower half-life and efficiency which is 

thought to be due to having a different regulatory function as RfaH is absent in these species 

(Artsimovitch et al., 2000). RfaH also appears to be absent in S.el and S.sp, meaning that the 

pausing at this site seen in these species may also be for a different purpose. It has recently 

been added that the non-template DNA within the paused RNAP at these sites may form a 

hairpin structure for this RfaH recruitment (Zuber et al., 2018). Hairpin formation of the non- 

template DNA could be the reason for pausing demonstrated by the cyanobacterial RNAPs as 

escape from this would not be as dependent on cleavage ability. 

This was followed by a hairpin-dependent his pause site which causes an RNA hairpin to 

form from the nascent RNA transcript and stabilises the elongation complex in a paused state. 

EcRNAP strongly recognised these types of pauses whereas recognition by Bacillus subtilis 

RNAP and eukaryotic RNAPII is non-existent (Artsimovitch et al., 2000). These differences 

in response are thought to be due to the diverged regulatory needs of each species (Zhang and 

Landick, 2016). SspRNAP also ignores this his pause and displays reduced termination at the 

subsequent Rho-independent hairpin termination sequence. The increased effect of the 

terminator is likely due to destabilisation by the poly-U tract which follows the hairpin. The 

EcRNAP β’F773V and β’G1136Q, which show strong his pause-resistance, were also able to 

be tested on this template and agreed with previous literature by showing reduced pausing and 

termination (Toulokhonov et al., 2007). Elongation with the EcRNAP β’F773V β’G1136Q 

double substitution was attempted but failed to form the initial EC37, indicating that initiation 

from the promoter for this mutant may be deficient. 
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3.4 T.aq Gfh1 Preferentially Inhibits Activity from the Pre-translocated State 

3.4.1 Introduction and Aims 

An additional minor investigation was also carried out to analyse the inhibitory activity of 

T.aq Gfh1. Gfh1 is a member of the Gre family SCBFs but exhibits contrasting activities to 

GreA. Gfh1 of Thermus thermophilus has been shown to inhibit transcript cleavage and NTP 

addition whereas Gfh1 of Deinococcus radiodurans does not inhibit cleavage but does 

increase RNAP pausing and termination (Hogan et al., 2002; Symersky et al., 2006; Esyunina 

et al., 2016). Deinococcus radiodurans Gfh1 has been shown to act on elemental, hairpin- 

dependent, and backtracked pauses (Agapov et al., 2017). The difference in activity to that of 

GreA is thought to be due to four acidic residues on the tip of the Gfh1 coiled-coil which co- 

ordinate Mg2+II such that a resultant stabilised active site of RNAP is in a catalytically 

inactive conformation (Laptenko et al., 2006). In this section, the templates used previously 

for elongation of cyanobacterial and EcRNAP are used to determine if Gfh1 of T.aq exerts 

stronger inhibition on particular RNAP translocation states. These assays were performed at 

40oC, pH6.8, and predominantly in the presence of MnCl2 as described in the methods. An 

inactive Gfh1 mutant was created to be used as a control. This mutant, Gfh1-DA4, had all 

four aspartates of the coiled-coil tip substituted with alanines and has been observed to be 

severely compromised (Laptenko et al., 2006). 

 

 
3.4.2 Gfh1 Inhibits RNAP Elongation 

The elongation profiles of T.aqRNAP on Template 1 (Figure 26) and Template 2 (Figure 27) 

were determined when in the presence of 10 µM Gfh1, 10 µM Gfh1-DA4 (DA4), or an 

equivalent volume of storage buffer (SB). On both templates, Gfh1 induces strong pauses at 

multiple EC positions. The band profiles in sections C compare the signal intensities of each 

assay at the 60 second time point. The strongest inhibitory activity is seen at EC20 and EC22 

on template 1, with additional small pauses at EC14 and EC18. On template 2, pausing is 

strongest at EC16-18 and again at EC22-23. Of these, EC20 on template 1 and EC16 on 

template 2 are known sites where RNAP is in a pre-translocated state (Yuzenkova et al., 

2013). Profiles for TaqRNAP and TaqRNAP with DA4 or SB were mostly similar as 

expected, with only EC14 on template 1 producing a strong pause for DA4. 
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 Figure 26. Elongation of Template 1 with TaqRNAP and Gfh1. (A) Scheme of short linear Template 1 with 
pause sites indicated. (B) Representative 23% PAGE of each RNAP elongating this template for the 
indicated time periods. (C) Comparison of normalised 60 second band profiles for each RNAP showing 
differences in pause intensity at each position. 
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 Figure 27. Elongation of Template 2 with TaqRNAP and Gfh1. (A) Scheme of short linear Template 2 with 
pause sites indicated. (B) Representative 23% PAGE of each RNAP elongating this template for the 
indicated time periods. (C) Comparison of normalised 60 second band profiles for each RNAP showing 
differences in pause intensity at each position. 
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3.4.3 Gfh1 Inhibits the Overall Rate of RNA Hydrolysis but Stimulates 

Exonucleolytic Activity 

The inhibition of Gfh1 on transcript cleavage activity was measured using scaffolds EC(GA), 

MEC(A), and MEC(U) described previously (Figure 28). In the presence of Mg2+, not much 

inhibition is seen on any of the complexes. However, in the presence of Mn2+, Gfh1 

significantly reduces the cleavage ability of TaqRNAP to roughly 25% of the WT TaqRNAP 

rate. This is similar to what has been reported for the Gfh1 activity of Thermus thermophilus 

and differs with the lack of inhibition seen in Deinococcus radiodurans (Hogan et al., 2002; 

Esyunina et al., 2016). An interesting effect of Gfh1 was observed in cleavage of the EC(GA) 

cognate complex (Figure 29). Gfh1 induces cleavage by 1 nucleotide in apparent stimulation 

of the exonuclease activity of RNAP where the 3’ terminal RNA residue is cleaved. This is 

unusual as exonucleolytic activity is only performed when RNAP is in the pre-translocated 

state and these complexes would be assembled first in the post-translocated state, and then 

they would reverse to a backtracked state from a lack of nucleotides. The percentage of 

RNA14 product is also less than RNA13 in all time points, suggesting that this -1 nucleotide 

cleavage occurs either very quickly so as to produce both RNA14 and RNA13 cleavage 

products, or occurs at the same time as intrinsic endonucleolytic cleavage. 
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 Figure 28. Gfh1 inhibits Transcript Cleavage in the presence of Mn
2+

 (A) Rates of transcript cleavage on 

EC(GA), MEC(U), and MEC(A) incubated with Mg
2+

 (B) Rates of transcript cleavage on EC(GA), MEC(U), and 

MEC(A) incubated with Mn
2+

. The values for each RNAP are the mean ± standard deviations of three 

independent experiments. Assays performed at 40
o
C, pH 6.8. 
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 Figure 29. Gfh1 induces cleavage of one nucleotide. (A) Representative 23% PAGE of EC(GA) transcript 

cleavage in the presence of Mg
2+

 (B) Representative 23% PAGE of EC(GA) transcript cleavage in the 

presence of Mn
2+

. Assays performed at 40
o
C, pH 6.8. 
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3.4.4 Gfh1 Preferentially Inhibits NTP Incorporation from the Pre-translocated 

State 

From the elongation data, the addition of Gfh1 induced strong pauses for TaqRNAP at the 

known pre- and post-translocated sites, but not at the backtracked site. Thus, the pre- and 

post- states were investigated further by measuring the rate of NTP incorporation, with and 

without Gfh1, from these states. Figure 30A illustrates the assay performed, and the obtained 

data are shown below. Elongation complexes were assembled at the appropriate pre- or post- 

translocated site using template 2 and template -1-8 (Bochkareva et al., 2012). The complexes 

were then incubated with 1 µM of the following cognate NTP, +/- 10 µM Gfh1 at 20oC for the 

indicated time periods. and rates were fit using non-linear regression. The presence of Gfh1 

reduced the rates of NTP incorporation for both states, however, the pre-translocated state 

showed much stronger inhibition, particularly in the presence of manganese. These were 

followed by titration assays (Figure 31) where either the concentration of NTP or Gfh1 was 

varied, illustrated by Figure 31A for a Gfh1 titration. Rates were determined for 

incorporation under 1, 5, 10, 20, or 100 µM NTP in the presence of either SB or 10 µM Gfh1 

at 20oC (Figure 31B). In the pre-translocated state, Gfh1 increases the NTP Km dramatically, 

indicating competition with the NTP. In Figure 31C, Gfh1 is titrated at concentrations of 10, 

3, 1, 0.3, 0.1, and 0.03 µM in the presence of 0.5 µM NTP. These data were also fit to the 

Michaelis-Menten equation and were subsequently fit to an exponential decay, and the rates 

accompanying the graphs are for the rate of NTP incorporation. The inhibitory activity of 

Gfh1 is again much more pronounced for the pre-translocated EC states. The inhibition is 

present but less noticeable for the template 2 EC(15/16) states which matches the similar 

ratios of activity for these positions in Figure 30. 
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 Figure 30. Gfh1 inhibits Nucleotide Incorporation (A) Representative 23% PAGE showing the setup of the 

NTP incorporation assays. (B) Rates of NTP incorporation on the scaffolds indicated incubated with Mn
2+

/ 

Mg
2+

. The values for each RNAP are the mean ± standard deviations of two independent experiments. 

Assays performed at 20
o
C, pH 6.8. 
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 Figure 31. Gfh1 preferentially inhibits the RNAP pretranslocated state. A) Representative 23% PAGE 
showing the setup of the titration assays. (B) KM and Vmax values of NTP incorporation by TaqRNAP with 

SB or Gfh1 on the scaffold indicated, incubated with Mn
2+

. The values for each RNAP are the mean ± 
standard deviations of two independent experiments. (C) Michaelis-Menten data for Gfh1 inhibition were 
fit to exponential decay with an assumption of KM = binding affinity. 
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3.4.5 Discussion 

The Gfh1 SCBF had previously been shown to inhibit transcript cleavage and NTP addition in 

Thermus thermophilus and increase RNAP pausing and termination in Deinococcus 

radiodurans (Hogan et al., 2002; Symersky et al., 2006; Esyunina et al., 2016). Gfh1 has two 

states within the cell and undergoes a pH-induced conformational change into an active state 

at pH levels below 7 (Laptenko et al., 2006). At a pH above 7, Gfh1 is in an inactive 

conformation which prevents binding to RNAP and has led to the suggestion that Gfh1 may 

play a role as a pH sensor (Laptenko et al., 2006). Despite the high sequence similarity to 

GreA, the differences in activity are thought to be due to the four aspartate DDYDD motif of 

the flexible Gfh1 coiled-coil tip which stabilises the active site of RNAP is in a catalytically 

inactive conformation through co-ordination of the second metal ion (Symersky et al., 2006). 

Esyunina et al. (2016) showed that use of Mn2+ as the second metal ion significantly increases 

Gfh1 activity, which may be particularly significant in Deinococcus radiodurans as this 

organism accumulates intracellular manganese during the stress response. Using purified 

TaqRNAP, TaqGfh1, and an inactive TaqGfh1-DA4 mutant we present data that corroborates 

with previous studies and adds a preferential activity for TaqGfh1 on pre-translocated RNAP 

complexes. 

Deinococcus radiodurans Gfh1 has been shown to act on elemental, pre-translocated hairpin- 

dependent, and backtracked pauses (Agapov et al., 2017). We set out to determine if the 

activity of TaqGfh1 is specific to a particular translocation state of RNAP. TaqGfh1 

demonstrated widespread pausing on template 1 and template 2 (Figures 26-27), but of the 

sites with known translocated states, pre- and post EC demonstrated the most pausing. 

Scaffolds with known pre- or post-translocated ECs were used to then measure NTP 

incorporation rate from these sites when challenged with TaqGfh1. The presence of Gfh1 

reduced the rates for both states, however, the pre-translocated state showed much stronger 

inhibition. This was tested further with titration of NTP and Gfh1 which again exhibited 

increased inhibitory activity of Gfh1 for the pre-translocated EC states. Unfortunately only 

one pre-translocated state was tested in NTP titration, to get a better determination of activity 

more scaffolds will need to be tested. Gfh1 also displayed competition with the NTP 

substrates, agreeing with the findings of Laptenko et al. (2006). To try and determine if Gfh1 

was preferentially acting on pre-translocated states through increased binding affinity, the 

titration data were fit to exponential decay to show the amount of incorporation activity lost as 

the concentration of Gfh1 increases (Figure 31C). Incorporation rate is reduced faster when 

the pre-translocated state is acted upon however the effects of inhibition also vary depending 

on the scaffold used. 
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We propose that while Gfh1 can act on many types of pauses and ECs, it predominantly 

affects the pre-translocated state of RNAP independent of hairpin formation. Additionally, 

TaqGfh1 is shown to inhibit transcript cleavage, much like in Thermus thermophilus, but it is 

unknown why this is not the case for Deinococcus radiodurans (Esyunina et al., 2016). Also 

unknown is the induction of 1 nucleotide cleavage by TaqGfh1 in cognate EC(GA) 

complexes, it is possible that Gfh1 stabilises the pre-translocated state of these complexes 

which may promote phosphorolysis. 
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4. Summary 
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4.1 Concluding Discussion 

The work presented in this thesis has attempted to characterise the in vitro transcription 

behaviour of cyanobacterial RNAP with a focus on how cyanobacteria might compensate for 

the absence of proof-reading factor GreA. As GreA stimulates RNA hydrolysis, investigation 

into the RNA cleavage abilities of cyanobacterial RNAP and EcRNAP was initially 

performed. Cyanobacterial RNAP was shown to perform intrinsic RNA cleavage at a rate 80- 

fold faster than EcRNAP on assembled cognate complexes, and 30-40-fold faster on 

assembled mis-incorporated complexes. To identify the cause of this increased cleavage 

activity, a series of substitution mutations were constructed for EcRNAP to correspond with 

the residues of SspRNAP. These substitutions were localised to the NADFDGD chelation site 

and the TL and BH mobile domains, which comprise main elements of the active site. 

Several of these mutant EcRNAPs demonstrated increased cleavage activity. EcRNAP 

mutants β’G1136S (Q in this work), β’N792D, and β’F773V had been described in previously 

studies as possessing increased catalysis, reduced fidelity, and inefficient pausing and 

termination (Nedialkov et al., 2013; Bar-Nahum et al., 2005; Toulokhonov et al., 2007). 

These substitutions are thought to reduce BH and TL conformation dynamics to promote a 

catalytically active closed conformation with a kinked BH and a stabilised THB (Nedialkov et 

al., 2012; Zhang et al., 2010). This had led us to propose that as these substitutions occur 

naturally in cyanobacterial RNAP, this enzyme exists in an inherently more closed and 

catalytically active conformation. 

To see if the cyanobacterial RNAPs also exhibited increased elongation and pause-resistance, 

the enzymes were made to transcribe templates which encoded known pause signals. 

Cyanobacterial RNAPs did respond less strongly at these pause signals and were particularly 

inefficient at recognising the hairpin-forming his and termination sites. However, this pause- 

resistance may only be partially caused by a closed active site conformation. Artsimovitch et 

al. (2000) showed that Bacillus subtilis RNAP also ignores his pause signals and determined 

that this was due, in part, to altered contacts between the β and β’ subunits and downstream 

DNA. Bacillus subtilis RNAP is missing the β904-950 region of EcRNAP suggested to 

interact with the hairpin (Wang et al., 1997). However, Artsimovitch et al. (2000) has shown 

that replacement of this region in EcRNAP does not hinder his pause recognition but likely 

reduces hairpin stability, thus other elements must be contributing to his pause recognition. 

Interestingly, cyanobacterial RNAP is also lacking this region of the β subunit. As 

cyanobacteria also have no identified Rho factor, they seem to rely solely on Rho- 

independent intrinsic transcription which consist of a hairpin formation followed by a poly-U 
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tract for destabilisation of the complex. A key question is why this is the case when hairpin- 

dependent termination appears to be inefficient in these organisms, seen in this work and that 

of others, and whether these signals are used mainly as structures to stabilise the transcript for 

further RNA processing as has been suggested for chloroplasts (Vijayan et al. 2011; Stern and 

Gruissem, 1987). This is in contrast to the data of Imashimizu et al. (2011) who report 

increased pausing by cyanobacterial RNAP, although this could be due to the use of the 

cyanobacterial psbA2 gene as the template. In our assays we used templates with known 

pause signals for EcRNAP. In future work, we would like to test on DNA templates derived 

from cyanobacteria. 

The active site of cyanobacterial RNAP was also found to be more catalytically competent for 

hydrolysis than EcRNAP. Cyanobacterial RNAP demonstrates a stronger ribozyme-like 

mechanism of transcript-assisted cleavage where the RNA 3’ end of a backtracked complex 

assists in positioning the reactants. These RNAPs also benefit from the participation of a 

general base which aids proton transfer and activation of the attacking group during catalysis. 

Additionally, cyanobacterial RNAP requires a lower activation energy to accomplish RNA 

hydrolysis. Although Mg2+II binding was similar between the enzymes, cyanobacterial RNAP 

may be better able to co-ordinate this ion to promote more efficient catalysis through the 

proposed limited flexibility of the closed active site conformation, and the additional 

contributions to co-ordination and orientation outlined above. 

The mobile TL, supported by the BH, undergoes conformational changes during the NAC to 

stabilise and co-ordinate the reactants in the active site. The TL is additionally involved in 

recognition of the correct NTP and couples this substrate selection to catalysis in an induced- 

fit mechanism where binding of the correct incoming NTP in the i+1 site induces folding of 

the TL into the TH, while a steric collision is generated by the presence of a non-cognate NTP 

(Yuzenkova et al., 2010; Kaplan et al., 2008). The TL of cyanobacteria can therefore act as 

both a positional, via co-ordinating residues β’H936 and β’R933, and an acid/base, possibly 

also through β’H936, catalyst to support efficient catalysis. The β’F773V and β’G1136S 

EcRNAP mutants show reduced fidelity with less discrimination for the substrate NTP (Bar- 

Nahum et al., 2005; Nedialkov et al., 2013). This could be due to the more stabilised folded 

conformation of the TL suggested for these mutants. Steric hindrance by a non-cognate NTP 

delays catalysis and slows progression of the reaction by obstructing TL folding which allows 

time for the non-cognate NTP to vacate the active site or results in a slowly performed mis- 

incorporation event (Yuzenkova et al., 2010; Kaplan et al., 2008). If the TL had an increased 

probability via increased stabilisation to be in proximity to the i+1/E site, which hold the 
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incoming NTP, it could result in faster catalysis (Kaplan et al., 2008). RNAseq analysis did 

report a slightly increased percentage of C>A, C>U, A>C, A>G, and A>U mis-incorporation 

in cyanobacterial transcripts, indicating that cyanobacterial RNAP may have diminished 

discrimination for complementary binding with ATP. The rates of other types of mis- 

incorporation appeared mostly similar for both species. This was only shown for SspRNAP, it 

would be interesting to repeat the analysis using total RNA extracted for SelRNAP and see if 

the same slight differences are present. 

Esyunina et al. (2016) has performed a similar investigation into the specific activities of 

Deinococcus radiodurans RNAP, which do not encode an SI3 but have faster RNA cleavage 

than EcRNAP, to show that lineage-specific variations of the TL can account for the 

differences seen in RNAP activity. They identify a particular residue of β’G1136M (as 

opposed to Q/S) to be largely responsible for the highly efficient catalysis seen in this 

organism. TaqRNAP also demonstrates increased cleavage and has high sequence similarity 

to cyanobacterial RNAP, with only 5 residue differences in both the TL and BH compared to 

the respective 11 and 10 found in EcRNAP. However, the cleavage rates determined for 

cyanobacterial RNAP are still many times faster despite TaqRNAP naturally coding for many 

of the substitutions which increased cleavage in mutant EcRNAP. The only large difference is 

the presence of the SI3 within the TL, which is absent in TaqRNAP. 

In E. coli, the SI3 is known to be involved in pause recognition, pause escape and assists with 

termination (Artsimovitch et al., 2003; Ray-Soni et al., 2017). The SI3 has also demonstrated 

modulation of TL folding into TH and affecting rates of nucleotide addition and transcript 

cleavage (Windgassen et al., 2014). It is possible that the SI3 of cyanobacterial RNAP causes 

the fast cleavage ability through modulation of the cyanobacterial TL. Two EcRNAP mutants 

were constructed with either an SI3 deletion, β’ΔSI3, or an SI3 replacement, β’SspSI3. Both 

showed reduced intrinsic hydrolytic ability and impaired GreA-mediated hydrolysis. EcRNAP 

β’SspSI3 additionally displayed increased pausing. These mutants highlight the ability of the 

SI3 to modulate RNAP activity through the TL but are not an accurate representation of the 

actual species-specific function. The SI3 of cyanobacteria also encode multiple SBHMs, the 

purpose of which is yet to be identified. SBHM domains in general are thought to facilitate 

protein:protein or protein:nucleic acid interactions (Chlenov et al., 2005). Most evidence so 

far has shown interactions of this motif, within the β flap region, with σ or holoenzyme 

function and so the increased number of SBHMs may serve some role in regulating 

transcription initiation given the larger numbers of σ factors for cyanobacteria (Kuznedelov et 

al., 2002; Osanai et al., 2008). 
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The SI3 is also essential for the activity of transcription factor GreB, and responsible for the 

ability of another factor, DksA, to bind the secondary channel. (Zhang et al., 2010; Furman et 

al., 2013). In this regard, the large SI3 of cyanobacterial RNAP may occlude the entrance to 

the secondary channel, lending more evidence for a lack of regulation through this structural 

domain. Furthermore, the binding of GreA requires an unfolded TL in order to access the 

active site through the secondary channel (Sekine et al., 2015). This would also be in 

disagreement with the current proposal of a stabilised closed and catalytically competent 

conformation for cyanobacterial RNAP. 

Rates of GreA-dependent cleavage for EcRNAP and the intrinsic cleavage of cyanobacterial 

RNAP were compared to show that cyanobacterial RNAPs only reach approximately 30% of 

the cleavage rate for EcRNAP when GreA is present. However, considering the slower 

growth rate and polyploid nature of these organisms, this level of activity may be sufficient to 

carry out all necessary functions of cleavage. If cyanobacteria do co-ordinate replication on 

one chromosome and transcription on another, the risk of detrimental machinery collisions 

would be significantly reduced. Additionally, as cyanobacteria derive energy from 

photosynthesis they are particularly vulnerable to the damaging effects of excess light or UV 

irradiation. Sivaramakrishnan et al. (2017) have recently shown that the repair of double 

strand breaks is promoted by the backtracking of RNAPs upon encountering damage through 

assisting with the loading of repair protein RecA. They found that repair was repressed in the 

presence of GreA, which restarts backtracked complexes, suggesting a trade-off exists 

between the completion of transcription and the preservation of genome stability. This could 

be a reason for the absence of GreA in cyanobacteria where UV radiation-induced DNA 

damage may make up a large part of everyday life (Kumar et al., 2004; Vass et al., 2013). 

Insertions within active site elements, such as SI3 within the TL, have been proposed to allow 

quicker accumulation of advantageous adaptive mutations to new environmental conditions 

(Windgassen et al., 2014). It is possible that the large cyanobacterial SI3, in part, modulates 

faster intrinsic cleavage by the TL as a compromise between the rescue of stalled RNAPs and 

repair of DNA damage. 

Gfh1 of T.aq was also briefly investigated in this thesis. TaqGfh1 is shown to inhibit 

transcript cleavage and nucleotide addition activities. Although more data is required in order 

to determine the details of this inhibition, we suggest that Gfh1 acts predominantly on the pre- 

translocated state and may provide some stabilisation of this state. 
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4.1.1 Final Word 

The proof reading GreA factor is absent in cyanobacteria. In this work we describe a potential 

compensatory mechanism which offsets the need for GreA-dependent cleavage. We propose 

that a sufficient level of RNA cleavage may be provided by the intrinsic activity of 

cyanobacterial RNAP without the need for external factors. This activity is realised through a 

possibly more closed and catalytically competent conformation of the active site and is 

supported by the action of a general base. 
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5. Appendix 
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5.1 List of Strains 
 
 

 

Strain Description Resistance Source/Reference 

Synechococcus 

elongatus PCC 

7942 

WT Lab strain - Professor Conrad 

Mullineaux 

Synechocystis sp 

PCC 6803 

WT Lab strain - Professor Nigel 
Robinson 

E. coli ΔgreAΔgreB GreA and GreB deleted 
from 

genome 

- Dr Pamela Gamba 

E. coli 
ΔgreAΔgreBΔdksA 

GreA, GreB, and 
DksA deleted from 
genome 

- Dr Pamela Gamba 

E. coli rpoC-FLAG rpoC or β’ subunit has a 
C- 

terminal FLAG-tag 

- Dr Pamela Gamba 

E. coli DH5α fhuA2 Δ(argF-

lacZ)U169 phoA glnV44 

Φ80 Δ(lacZ)M15 

gyrA96 recA1 
relA1 endA1 thi-1 hsdR17 

- New 

England 

Biolabs 

E. coli XL10 gold TetrD(mcrA)183 D( 

mcrCB-hsdSMR-mrr) 

173 endA1 supE44 thi-1 

recA1 gyrA96 relA1 lac 

Hte [F ́ proAB 

lacIqZDM15 Tn10(Tetr) 
Amy Camr] 

tetracycline and 

chloramphenicol 

Agilent 

Technologies 

E. coli T7 Express fhuA2 lacZ::T7 gene1 

[lon] ompT gal sulA11 

R(mcr-73::miniTn10-- 

TetS)2 [dcm] 

R(zgb-210::Tn10--TetS) 

endA1 Δ(mcrC- 

mrr)114::IS10 

- New 

England 

Biolabs 

Synechococcus 

elongatus rpoC2-

FLAG 

rpoC or β’ subunit has a 

C- terminal FLAG-

tag 

Spec/strep Constructed in this 
project 

Synechocystis sp 

rpoC2- his 

rpoC or β’ subunit has a 

C- terminal his-tag 

Spec/Strep Dr Yulia 
Yuzenkova 
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5.2 List of Plasmids 
 
 

 

Plasmid Description Resistan
ce 

Source/Reference 

pIA349 Used to amplify the 
pIA349 

elongation 
template 

Amp Professor 
Irina 
Artsimovitch 

pVS10 Encodes rpoA, rpoB 
and rpoC-his of E. 

coli 
RNAP 

Amp Professor 
Irina 
Artsimovitch 

pVS14 Encodes the β’ΔSI3 
E. 

coli mutant 

Amp Professor Irina 
Artsimovitch 

pRL663 Encodes rpoA, rpoB 
and rpoC-his of E. 

coli 
RNAP 

Amp Professor 
Irina 
Artsimovitch 

pET21-GreA Encodes c-terminal 
his 

tagged GreA 

Amp Dr Flint 
Stevenson- 

Jones 
pTaqABC Encodes all need 

subunits of Taq 
with 

rpoc-his tag 

Kan Dr 
Mohammad 
Roghanian 

pTaqGfh1 Encodes Gfh1 of 
taq, 

not tagged 

Amp Dr Mohammad 
Roghanian 

pET28 Cloning plasmid Kan Dr Yulia Yuzenkova 
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5.3 List of Scaffolds 

RNA Hydrolysis: 
 

 

RNAs: 
 

 

Elongation templates 1 and 2: 
 

 

NTP Incorporation templates -1-8 and Nu: 
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5.4 Mass Spectrometry Data 

List of proteins eluted with purified SelRNAP from different circadian phases. Proteins with 

unknown function are highlighted red. These were briefly analysed and show no similarity to 

the SCBFs. They are currently being cloned in order to test whether they do act on RNAP and 

to try and determine function. Dx-Dx denotes proteins found in both phases. 

 

D5 (Night) D5-D11 D11 (Dawn) 

Q31L41 Fructose-bisphosphate aldolase Porphobilinogen synthase 

Phosphoribulokinase Transaldolase Phycocyanin linker protein 9K 

2-phospho-D-glycerate dehydratase 

(enolase) 
NusG 

CheA signal transduction histidine 

kinase 

dehydratase FabZ Bacterial nucleoid protein Hbs TPR repeat 

phycobilisome rod linker protein 
O-acetylhomoserine/O-acetylserine 

sulfhydrylase 

N-acetyl-gamma-glutamyl-phosphate 

reductase 

Glutamine synthetase, type I Iron deficiency-induced protein A  

S-adenosyl meth synthetase   

ATP synthase subunit beta   

GDP-mannose 4,6-dehydratase   

HAD superfamily hydrolase subfamily iA var 

3 
  

D-fructose-1,6-bisphosphate 1- 

phosphohydrolase class 2 
  

 

 

 
 

D11-L11 L11 (Dusk) L11-D11 

SigA1 Q31NE2 Q31NP0 

Phosphoglycerate kinase Q31NG3 Q31KJ2 

SSU ribosomal protein S1P Q31R92  

IMP dehydrogenase related 2 Q31KJ7  

Ribulose 1,5-bisphosphate carboxylase SigF  

Dihydrolipoyl dehydrogenase HAD superfamily hydrolase subfamily IIB  

Ketol-acid reductoisomerase tRNA ligase beta subunit  

NAD kinase 30 kD rod-rod linker  

 Transcriptional regulator, XRE  

 Ribonuclease  

 DNA gyrase  

 Cold shock protein  

 Nitrate transport protein NrtA  

 DNA topoisomerase 1  

 Glycerol-3-phosphate acyltransferase  

 30S ribosomal protein  

 50S ribosomal protein (various  

 ChlA  

 ATP-dependent Clp protease  

 Translation initiation factor (various  
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