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Abstract 

 

The spindle assembly checkpoint (SAC) monitors the chromosomes and kinetochore– 

microtubule attachment to prevent premature anaphase onset (Lara-Gonzalez et al., 2012), 

and this ensures the fidelity of cell division. The mitotic checkpoint complex (MCC), the core 

SAC effector, contains two sub-complexes, CDC20-MAD2 and BUBR1-BUB3 (Sudakin et 

al., 2001). However, the exact mechanism underlying the assembly of the MCC regarding 

when, where and how still is not fully addressed.  

 

It is believed that the formation of the CDC20-MAD2 sub-complex is an initial and essential 

step in MCC assembly (Sudakin et al., 2001), thus the assembly of the MCC can be depicted 

by the observation of the formation of the CDC20-MAD2 complex (Fraschini et al., 2001, 

Meraldi et al., 2004, Poddar et al., 2005). Using the Duolink based in situ proximity ligation 

assay (PLA), the lab has previously used individual cell analysis to show the temporal and 

spatial in vivo formation of the CDC20-MAD2 complex throughout the cell cycle in HeLa 

cells and existence of a specific prophase form of the CDC20-MAD2 complex (Li et al., 

2017). In this study, we provide evidences showing that the profile of the assembly of the 

CDC20-MAD2 complex revealed by using the PLA can genuinely reflect the dynamic in vivo 

interaction of these two proteins in individual cells. We also provide evidences to support the 

idea that the prophase specific CDC20-MAD2 complex is functional in preventing the 

premature degradation of cyclin B1 in prophase which ensures the proper G2/M transition.  

 

p31comet (MAD2L1BP), as an important SAC silencer (Habu et al., 2002, Yang et al., 2007), 

which, in conjunction with TRIP13 (Thyroid hormone receptor interacting protein 13, or 

PCH-2 in C. elegans) promotes the disassembly of the MCC and the conversion of the 
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C-MAD2 back to O-MAD2 for recycling (Xia et al., 2004). It has been suggested that 

expression of p31comet is cell cycle regulated, that there are two putative destruction motifs of 

D-box and KEN-box (Habu et al., 2002), and that it is an ubiquitin substrate (Udeshi et al., 

2013, Wagner et al., 2011)，which implying that it is a substrate of the APC/C. However, the 

potential turnover property of p31comet is yet to be characterized. In this study, we have 

examined the expression profile of p31comet throughout the cell cycle using a specific 

anti-p31comet antibody fluorescent staining and have confirmed that it is cell cycle regulated. It 

starts to accumulate from prophase and peaks at prometaphase and is sustained until telophase 

and then it declined. This is supported by the observation that the level of p31comet is reduced 

at three hours after cells released from a mitotic block caused by nocodazole treatment and 

re-enters the cell cycle. The accumulation of p31comet before the prometaphase and its 

accumulation in response to the activation of the SAC by nocodazole treatment are the results 

of protein synthesis. However, the potential accumulation of p31comet levels in cell samples 

after siRNA with the components of the APC/C, especially the APC3, examined by western 

blot produced ambiguous inconclusive results. The preliminary data produced by depletion of 

Cullin-1, another E3 ligase responsible for the degradation of cell cycle substrates in G1/S, 

using siRNA resulted in an increase in p31comet, which implies that Cullin-1 is potentially 

response to p31comet degradation though this would require further confirmation. 

 

The various kinds of cell death occurred during mitosis are collectively termed ‘Mitotic 

Catastrophe’(Vitale et al., 2011). Targeting the mitotic catastrophe signaling pathway in 

cancer offers a significant therapeutic advantage, and the anti-mitotic drugs such as taxanes, 

epothilones, and vinca alkaloids are widely used in the cancer clinic. M2I-1 (MAD2 

inhibitor-1), a small molecule, has been shown to disrupt the CDC20-MAD2 interaction in 

vitro and weaken the SAC in vivo(Kastl et al., 2015). We report here that M2I-1 can disrupt 

the in vivo interaction of CDC20 and MAD2, and significantly increases the sensitivity of 

several cancer cell lines to anti-mitotic drugs, with cell death occurring after a prolonged 

mitotic arrest, when cell death is triggered by the premature degradation of cyclin B1 and the 

perturbation of the microtubule network by nocodazole or Taxol. Interestingly, the level of 
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MCL-1, a pro-survival protein of the Bcl-2 family is significantly elevated, but higher levels 

of the pro-apoptotic proteins MCL-1s, a short form of the MCL-1, act antagonistically. Taken 

together, our results demonstrate that M2I-1 exhibits antitumor activity in the presence of 

current anti-mitotic drugs such as Taxol and nocodazole and has the potential to be developed 

as an anticancer agent. 
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Chapter One.  Introduction 

 

 

Cell division is a fundamental process in the growth and proliferation of all living organisms. 

It is an irreversible part of the cell cycle and is strictly regulated to ensure that the daughter 

cells inherit a complete set of chromosomes. There are several cell cycle checkpoints which 

have been shown to be involved in the regulation of cell division, one of these, the spindle 

assembly checkpoint (SAC), monitors and regulates the mitotic events in the cell cycle 

through a complicated biological network system, and allows cell division progression only if 

all chromosomes are properly “bi-oriented” on the spindle via kinetochores. Any malposition 

of chromosomes on kinetochores will activate the SAC to generate diffusible anaphase “wait” 

signals which delay the metaphase to anaphase transition. The abnormal activities involved in 

turning this checkpoint “on” and “off” can produce a severe impact on cell proliferation and 

has severe consequences for human health and disease (Kops et al., 2005, Noatynska et al., 

2012). 

 

1.1 The Cell Cycle and Cell Cycle Checkpoints 

 

1.1.1 Overview of the Eukaryotic Cell Division Cycle 

 

In eukaryotes, there are two types of cell division: mitosis, in which each daughter cell is 

genetically identical to their mother cell; and meiosis, in which the number of chromosomes 

in the daughter cells is reduced by half to produce haploid gametes, and where the genetic 

information might not be identical to their mother cell after recombination.  
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A mitotically dividing eukaryotic cell experiences a series of consecutive stages known 

collectively as the cell cycle. It comprises of interphase, two growing gap phases (G1 and G2), 

S phase, in which the genetic material is duplicated, and a mitotic phase (M phase), in which 

the cell partitions the duplicated genetic material (nuclear division) followed by cytokinesis to 

produce two identical daughter cells. The divided cells may enter a temporary quiescent stage, 

called the G0 phase (Vermeulen et al., 2003, Johnson and Walker, 1999), or exit the cell cycle 

permanently and eventually undergoes senescence (Kuilman et al., 2010, Stanulis-Praeger, 

1987).  

 

Conventionally, a mitotic phase can be further separated into five stages: prophase, 

prometaphase, metaphase, anaphase, and telophase. Prophase is the longest phase occupies 

more than half the duration of mitosis. The sister chromatids are formed by the condensation 

of the homologous chromosomes and held together by a cohesin ring complex at the 

centromere, where the kinetochore will later form and connect the sister chromatids with the 

microtubules (Lodish H, 2000). At the same time, the microtubule networks are reorganized 

by the duplicated centrosomes, which move apart toward the cell poles. The beginning of 

prometaphase is marked by the nuclear envelope breakdown (NEBD) with further 

condensation of the chromosomes. The matured unattached kinetochores are formed at the 

centromere regions on bio-oriented sister-chromatids and begin sensing and binding with the 

microtubules radiated from the spindle poles. In metaphase, the condensed chromosomes 

align along the equatorial plate of the cell, and the bi-oriented kinetochores are attached with 

kinetochore microtubules to form the bipolar spindle with appropriate tension. Anaphase is 

the shortest stage in mitosis, in which the cohesin ring complex is cleaved to release and 

separate the sister chromatids. The segregated sister-chromatids are then pulled apart to the 

opposite poles of the elongated cell by the forces generated from the bipolar spindle and the 

astral microtubules and the cleavage furrow begins to form (FitzHarris, 2012, Maiato and 

Lince-Faria, 2010). During telophase, the well separated and de-condensed chromosomes 

begin to be encompassed by a new nuclear envelope membrane, and the majority of the 

spindle fibres disappear from the microtubules on the midbodies. Details are shown in Figure 
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1.1. Cell cycle progression is accompanied by changes in the chromosomal structure between 

relaxation and condensation, the chromasomes start to condense after prophase and 

de-condense after anaphase. As it is one of the core protein components of chromatin, the 

phosphorylation of histone H3 at serine 10 is closely correlated with chromosome 

condensation during cell division. In the late G2 phase, the phosphorylation of S-10 occurs on 

pericentromeric chromatin only, and as mitosis proceeds, this spreads along the chromosomes 

and is complete at prophase, and then at the end of mitosis, histone 3 S-10 is 

dephosphorylated (Gurley et al., 1978, Van Hooser et al., 1998, Paulson and Taylor, 1982). 

Thus the state of the S-10 phosphorylation is often used as a maker for timing mitosis (Wei et 

al., 1998, Shandilya et al., 2016, Dilworth et al., 2018). 

 

 

 

Figure 1.1: Cell cycle stages. 

 

The cell in interphase undergoes growth and DNA replication, and then enters mitosis to 

complete cell division. The key phases are: G1, first gap stage in which the cell grows and 

prepares for DNA replication. S phase, in which most of protein synthesis and DNA is 
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replicated. G2 phase, the second gap stage in which the cell completes the preparation for cell 

division. In mitosis, cells undergo prophase, prometaphase, metaphase, anaphase and 

telophase and finally cytokinesis to complete the nuclear and cytoplasmic division. Int: 

interphase, M: Mitosis, P: prophase, PM: prometaphase, Meta: metaphase, A: anaphase, T: 

telophase, Source adapted from: (http://cellcycle.org.uk/). 

 

1.1.2 Cyclin dependent Cdks and cell cycle checkpoints 

 

The cell cycle is an ordered set of events, which ensures that the cell can only enter a new 

phase by successfully and correctly completing the previous step in the pathway, the different 

phases are coordinated and regulated by complex checkpoint mechanisms. The well 

characterised major checkpoints in mammalian cells include the G1/S (restriction/Start 

checkpoint), the G2/M checkpoint (DNA damage checkpoint), and the M phase checkpoint 

(spindle assembly checkpoint or mitotic checkpoint) (Murray, 1994).  

 

The G1/S checkpoint is the point at which the cell commits to either enter the cell cycle or to 

stay in a quiescent state known as G0 depending on internal and external conditions (Bruce 

Alberts, 2008). The decision to drive cells into a new division cycle stage (G0-to-G1 

transition) relies on the cyclin-dependent CDK kinase activity of cyclin D-CDK4 or cyclin 

D-CDK6 (Nurse, 2000, Sherr, 1994). Following the entry into S-phase, cyclin E-CDK2 

activity promotes and initiates DNA replication (Yin et al., 1999, Koff et al., 1992). The 

checkpoint can also detect DNA damage and arrest the cell in G1 until the damaged DNA has 

been repaired (Cooper, 2000, Bertoli et al., 2013). Once completion of the DNA duplication 

has occurred, the cell enters a growth phase (or gap phase) known as G2 and begins to be 

taken over by a primary cyclin-dependent CDK activity, cyclin B1-CDK1, to synthesise the 

necessary proteins for undergoing mitosis. The expression and activation of cyclin B1-CDK1 

is the consequence of the accumulation and coordination of a number of G2 enzyme activities 

such as cyclin A-CDK2, CDC25, and Wee1 (Guardavaccaro and Pagano, 2006).  

 

http://cellcycle.org.uk/
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The G2/M checkpoint senses any damaged DNA or incomplete DNA replication, and 

generates a signal that leads to a delayed or arrested cell cycle to prevent the initiation of 

mitosis until damaged DNA was repaired or replication is completed (Cooper, 2000). The 

cyclin B1-CDK1, also called mitotic maturation-promoting factor (MPF) (Masui, 2001, 

Lohka et al., 1988), is the primary kinase activity that drives cell into mitosis by remodeling 

the microtubule network and chromosome configuration, which includes the dynamic 

assembly of the bipolar spindle, chromosome condensation, and the interactions between 

kinetochores and kinetochore microtubules (Chen et al., 2008, Crasta et al., 2006, Hagting et 

al., 1999).  

 

The spindle assembly checkpoint (SAC) monitors the alignment of chromosomes on the 

spindles and the correct attachment of microtubules via kinetochores, thus ensuring that the 

identical chromosomes from parental cells are distributed into daughter cells (Cooper, 2000, 

Lara-Gonzalez et al., 2012). To achieve this, the SAC senses if there are any unattached 

kinetochores or kinetochores which are incorrectly attached to microtubules and produces 

inhibitory signals to prevent the activation of a mitotic-specific multi-subunit ubiquitin E3 

ligase, called anaphase-promoting complex or cyclosome (APC/C), which in turn prevents the 

degradation of securin, an essential protein holding together the sister-chromatids (Chang and 

Barford, 2014, Solomon and Burton, 2008). This also maintains a high activity of cyclin 

B1-CDK1 to delay the metaphase-to-anaphase transition for error corrections (Lindqvist et al., 

2007, Chang et al., 2003). Three checkpoints and their associated cell cycle stages are 

highlighted in Figure 1.2. 

 

 

 

 

 

 

 

https://www.ncbi.nlm.nih.gov/books/n/cooper/A2886/def-item/A3184/
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Figure 1.2: The cell cycle transitions associated with cyclin dependent Cdks activities 

and the cell cycle checkpoints. 

 

The cell cycle progression is driven by the activities of cyclin dependent CDKs. Cyclin 

D-CDK4 or CDK6 is responsible for the G0-G1 transition. The cyclin E-CDK2 complex 

promotes and initiates DNA duplication, while the completion of S phase depends on the 

complex of cyclinA-CDK2 or cyclinA-CDK1. The cyclinB1-CDK1 complex regulates the 

mitosis transition. The cell cycle checkpoints monitor cell cycle progression. DNA damage 

activates the G1 checkpoint to arrest the cell in G1. The G2 checkpoint responds to damaged 

or un-replicated DNA, and only allows the repaired and replicated DNA to enter mitosis. The 

spindle assembly checkpoint (M checkpoint) monitors the chromosome arrangement and 

kinetochore-microtubule attachments and can then delay mitosis to allow for error repair. 

Copied from (Harashima et al., 2013).  

 

1.2 The spindle assembly checkpoint 

 



7 

 

1.2.1 Overview of the spindle assembly checkpoint (SAC) 

 

Following DNA replication, the sister chromatids are held together by cohesin, a multimeric 

ring structure protein complex, that has been indicated to encircle the sister chromatids during 

S phase and into mitosis (Nasmyth and Haering, 2009, Nasmyth, 2005). At the 

metaphase/anaphase transition, the cohesin ring is opened following its cleavage by separase 

(Uhlmann et al., 1999, Uhlmann et al., 2000), an enzyme that remains inactivated in most of 

the time during the cell cycle by binding with its inhibitor securin (Waizenegger et al., 2002). 

The release of seperase by degradation of securin is timely and strictly controlled via 

APC/C-ubiquitin-mediated proteolysis (Yanagida, 2005). Meanwhile, the degradation of 

cyclin B1 to inactivate CDK1 which leads to the mitotic exit, is also conducted by the APC/C 

(Lara-Gonzalez et al., 2012).The coordinated degradation of securin and cyclin B1 in mitosis 

is essential to segregate the genetic information correctly into the daughter cells for 

maintaining genome integrity (Lara-Gonzalez et al., 2012, Kops et al., 2005). To achieve this, 

cells have evolved a complex mitotic checkpoint surveillance mechanism, the spindle 

assembly checkpoint (SAC), monitoring the proper chromosome and kinetochore-microtubule 

attachment to prevent premature anaphase onset (Lara-Gonzalez et al., 2012). The SAC will 

only be satisfied when all condensed chromosomes are correct aligned on the spindle and all 

sister kinetochores appropriately attached with microtubules (Jia et al., 2013). Otherwise the 

activated SAC will produce a diffusive anaphase “wait” inhibitory signal which inhibits the 

APC/C to prevent the premature degradation of securin and cyclin B1, thereby preventing 

anaphase onset and exit from mitosis (Musacchio, 2015, Lara-Gonzalez et al., 2012). The 

working model is depicted in Figure 1.3. 
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Figure 1.3: The SAC principle. 

 

In prometaphase, the SAC surveillance mechanism senses the unattached kinetochores and 

facilitates the formation of an inhibitory signal. The mitotic checkpoint complex (MCC), 

which is composed of CDC20, MAD2, BUBR1, and BUB3, this constrains the APC/C 

activity so delaying the degradation of cyclin B1 and securin. Once all the chromosomes are 

aligned with their kinetochores attached to the spindle in metaphase, the SAC condition is 

satisfied, the production of MCC then ceased and the existing MCC is disassociated to silence 

the SAC, this in turn allows the activation of the APC/C by CDC20, the ubiquitylation and 

degradation of securin and cyclin B1, the liberation of separase and inactivation of CDK1. As 

a result, the cohesin ring structure is cleaved to allow the separation of sister chromatids (at 

anaphase) and mitotic exit. Adapted from (Lara-Gonzalez et al., 2012). 
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1.2.2 The composition of spindle assembly checkpoint 

 

The SAC is also a feedback-regulating network that consists of a sensor structure (unattached 

kinetochores) to monitor the situations of chromosome attachments with microtubules, and to 

catalyse inhibitory signals, an effector system for targeting the mitotic machinery to delay cell 

cycle progression in mitosis or meiosis (Musacchio and Hardwick, 2002). This signal 

cascading pathway is shown in Figure 1.4.    

 

 

 

 

 

Figure 1.4: Sensing and cascading the SAC signals from unattached kinetochores. 

 

The SAC signalling pathway consists of the sensors, receptors, and effectors of the SAC 

network. The sensor (unattached kinetochores or inappropriately attached kinetochores) 

senses the status of the attachment of kinetochores and microtubules. The inappropriate 

attachment will emit a signal; this signal then is transmitted to inhibit the onset of anaphase 

and delay the cell cycle. Modified from (Musacchio and Hardwick, 2002). 

 

The SAC networks are composed of a few proteins, enzymes and complexes. The genes that 

code for the components have been identified as parts of the spindle assembly checkpoint 

include the MAD (mitotic arrest deficient) genes MAD1, MAD2 and MAD3 (BUBR1 in 
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humans) and BUB (budding uninhibited by benzimidazole) genes BUB1 and BUB3, these 

genes are conserved in eukaryotes (Li and Murray, 1991, Hoyt et al., 1991). Besides these 

core genes, SAC signalling system also involves the MPS1 (monopolar spindle-1) (Weiss and 

Winey, 1996, Abrieu et al., 2001, Hardwick et al., 1996), Aurora-B (Ipl1 in S. cerevisiae) 

(Morrow et al., 2005, Hauf et al., 2003), that are required to amplify the SAC signal or 

promote the mitotic checkpoint complex (MCC) formation. Additionally, kinetochore proteins, 

Ndc80/Hec1 (Zheng et al., 1999, Wigge and Kilmartin, 2001), CENP-E (centromere protein-E) 

(Mao et al., 2003, Yao et al., 2000, Abrieu et al., 2000), RZZ complex (comprising of proteins 

Rod, ZW10 and Zwilch) (Buffin et al., 2005) and kinetochores substrates KMN (Knl1-Mis12 

complex-Ndc80 complex) (Foley and Kapoor, 2013, Cheeseman et al., 2006) are also reported 

to be involved in checkpoint signalling. 

 

1.2.3 The source of spindle assembly checkpoint signaling 

 

To ensure that cell division does not occur before all of the chromosomes are properly 

attached to spindles, the SAC delays anaphase onset and prevents the premature segregation 

of sister chromatids with improper attachments to allow the cell to correct any defects (Lew 

and Burke, 2003). Existing research has indicated that either the unattached kinetochores or 

the defection of tension exerted by kinetochores microtubules are the source triggering the 

SAC signal pathway (Zhou et al., 2002).  

 

Bipolar kinetochore-microtubule attachment is essential for correct chromosome segregation. 

After nuclear envelope breakdown in prometaphase, the polymerizing microtubules attempt to 

attach with kinetochores through a “search and capture” mechanism (Tanaka et al., 2005b, 

Tanaka et al., 2005a). However, this kinetochore-microtubule attachment mechanism is 

somewhat random, and could present several kinetochore-microtubule arrangements that 

would cause chromosome missegregation (Pinsky and Biggins, 2005). Several terminologies 

embrace the possible situations of kinetochore-microtubule attachment (Pinsky and Biggins, 

2005): Amphitelic attachment, the kinetochores are attached with microtubules from its facing 
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poles (Figure 1.5a); Syntelic attachment, kinetochores are attached with microtubules 

emanating from the same pole (Figure 1.5b); Monotelic attachment, only one kinetochore is 

attached to the microtubules (Figure 1.5c); Merotelic attachment, a single kinetochore is 

attached to microtubules from both spindle poles (Figure 1.5d).   

 

 

 

Figure 1.5: The possible situation of the attachment between kinetochores and 

microtubules. 

 

a) Amphitelic: bipolar attachment. Sister kinetochores face opposite poles and bind one to one 

with microtubules from the facing pole. (b) Syntelic: sister kinetochores attach to 

microtubules from the same pole. (c) Monotelic: only one kinetochore binds to microtubules, 

leaving an unattached kinetochore. (d) Merotelic: besides the bipolar attachment of sister 

kinetochores with microtubules from facing poles, another one or both kinetochore(s) interact 

with microtubules from opposite poles. (Adapted from Benjamin et al., 2005). 

 

In 1994, Rieder et al. found that in Ptk1 cells anaphase was not initiated until the last 

mono-oriented chromosome had formed a bi-polar attachment to the spindle, and concluded 
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that anaphase onset and the duration of mitosis are controlled by a metaphase-anaphase 

checkpoint mechanism (Rieder et al., 1994). Subsequently, using video microscopy, they 

found that anaphase onset would not be delayed, if a laser destroyed the centromere of the 

unattached kinetochore on the last mono-oriented chromosome, thus revealing that the 

metaphase-anaphase checkpoint monitors the situation of the sister kinetochores attachment 

with the spindle, and that even a single unattached kinetochore could inhibit the 

metaphase-anaphase transition (Rieder et al., 1995). This conclusion was supported by the 

observation that the impaired kinetochores by mutation of the centromeric genes activated the 

SAC (Pangilinan and Spencer, 1996, Wang and Burke, 1995, Spencer and Hieter, 1992), and 

that the SAC proteins were shown to locate only transiently on unattached kinetochores in 

mitosis and were removed after the occurrence of bipolar attachment (Taylor and McKeon, 

1997, Taylor et al., 1998, Li and Benezra, 1996). 

 

The cohesion of two sister chromatids opposes the force arising from sister chromatids pulled 

by the kinetochore microtubules towards the opposite end of the cell, which creates tensions 

between the two bio-oriented kinetochores (Maiato et al., 2004, Maiato and Sunkel, 2004). 

The separation of the chromosomes and the completion of the transition from metaphase to 

anaphase must overcome this tension. Under micromanipulation, Li and Nicklas observed that 

the attached, tensionless and syntelic chromosome pair results in spindle checkpoint signals, 

and cells enter anaphase when the SAC is satisfied after tension is applied across kinetochores 

using a force-calibrated microneedle (Li and Nicklas, 1995). Analogous observations in 

Drosophila oocytes indicated that the tension signal induces the metaphase arrest (Jang et al., 

1995). Additionally, the kinetochore protein, shugoshin senses the spindle tension and 

participates in the activation of the SAC by a process called the “molecular spring” 

mechanism (Goulding and Earnshaw, 2005, Haase et al., 2012). 

 

Although an appropriate tension is required for satisfaction of the SAC, however, it has been 

suggested that the unattached kinetochores and the microtubule attached kinetochores but 

tensionless functioned differently in the SAC mechanism (Waters et al., 1998). In 



13 

 

Taxol-treated cells, Magidson et al. found that it was not the tension but the unattached 

kinetochore activates the SAC and arrests the cell in mitosis (Magidson et al., 2016). Thus, 

the unattached kinetochore is thought to be a more important factor in the SAC signalling 

(Waters et al., 1998, Rieder et al., 1995). However, it’s difficult to separate the attachment 

from the tension and discuss them independently (Pinsky and Biggins, 2005). Firstly, the 

generation of tension results from the attachment of the kinetochore-microtubules and the 

cohesion of the sister chromatids at the kinetochores (Zhou et al., 2002), abnormal 

attachments such as mono-oriented or merotelic connections could result in tensionless or 

defective tension. Secondly, tension affects microtubule attachments, the application of 

tension stabilizes and increases the number of kinetochore-microtubule attachments (Nicklas 

and Ward, 1994, King and Nicklas, 2000, Pinsky and Biggins, 2005). Meanwhile, the tension 

formation mechanism can sense the attachment of chromosome by microtubules (Zhou et al., 

2002). In the SAC mechanism, different components of SAC show different roles in sensing 

attachment and tension (Logarinho et al., 2004). MAD2 and BUB1 localize at unattached 

kinetochores to detect the attachment status (Waters et al., 1998, Logarinho et al., 2004), 

while BUBR1 and BUB3 sense the tension (Logarinho et al., 2004, Hoffman et al., 2001). In 

addition, it has been suggested recently that the SAC can be activated by the proper amount of 

tension generated by the intra-kinetochore rather than inter-kinetochore stretching, while this 

stretch is distinguished from the tension across the kinetochores (Maresca and Salmon, 2010). 

 

1.3 Spindle assembly checkpoint activation 

 

1.3.1 The kinetochore recruitment of the SAC proteins 

 

The unattached kinetochore or tensionless attachment is the condition that will trigger the 

SAC signaling. In responding to these conditions, the kinetochore recruitment of the SAC 

proteins is regarded as the first step in the pathways cascading signals (Liu and Zhang, 2016, 

Chen et al., 1996, Skoufias et al., 2001). It has been demonstrated that the Aurora B/INCENP 

complex involves the localization of MPS1, BUB1, BUB3, and centromere protein-E 
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(CENP-E) at the kinetochore (Vigneron et al., 2004). This localization, in turn, promotes the 

recruitment of the MAD1, MAD2, and CDC20 to the kinetochores (Vigneron et al., 2004). 

MPS1 (TKK in human) is a kinetochore-associated serine/threonine kinase and is activated 

through dimerization and auto-phosphorylation (Kang et al., 2007). It can directly regulate the 

localization of MAD1 and MAD2 at the kinetochores (Abrieu et al., 2001), also, it can partly 

be required for the CENP-E binding with kinetochores by phosphorylation. This 

kinetochore-bound CENP-E has been shown to contribute to the association of the 

MAD1/MAD2 complex on the unattached kinetochores (Abrieu et al., 2001). The 

kinetochore-bound BUB1, one of the SAC kinases, and the kinetochore-bound MAD1 are 

both stable (Howell et al., 2004), which initiate the recruitment of the SAC module to the 

outer kinetochore in early prophase (Howell et al., 2004, Johnson et al., 2004, Sharp-Baker 

and Chen, 2001, Taylor and McKeon, 1997). The genes rough deal (Tod), and zeste-white 10 

(zw10) were first identified in Drosophila and conserved in eukaryotes (Williams et al., 1992, 

Karess and Glover, 1989, Scaerou et al., 2001), and together with another gene called zwilch 

(Williams et al., 2003), they form a Rod-Zw10-Zwilch complex (RZZ complex). RZZ 

complex is responsible for kinetochore recruitment of MAD1 and MAD2 (Buffin et al., 2005, 

Karess, 2005), which is regulated by Aurora B kinase activity (Kasuboski et al., 2011).  

 

1.3.2 The mitotic checkpoint complex (MCC) 

 

Although a single SAC protein such as BUBR1 and MAD2 can inhibit APC/C activity 

independently (Fang et al., 1998, Tang et al., 2001a, Kulukian et al., 2009), the protein 

complexes of BUBR1-BUB3 and CDC20-MAD2 showed a higher competency in inhibiting 

the APC/C (Musacchio and Salmon, 2007, Sudakin et al., 2001). The mitotic checkpoint 

complex (MCC) is comprised of BUB3, Mad3/BUBR1, MAD2, and CDC20, was firstly 

purified from mitotic extracts of HeLa cells, and its inhibitory activity is 3,000-fold greater 

than that of recombinant MAD2 alone (Sudakin et al., 2001). The MCC has been widely 

regarded as the potent APC/C inhibitor responsible for SAC activity (Lara-Gonzalez et al., 
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2012), and the strength of the SAC depends on the amount of MCC formed (Collin et al., 

2013).  

 

1.3.3 The profile of MAD2 and the ‘MAD2 template’ model 

 

Mad2 was the first gene identified in S. cerevisiae (Li and Murray, 1991). Subsequently, its 

human orthologues of MAD2 (hsMAD2, MAD2L1 or MAD2L2) were cloned (Li and 

Benezra, 1996). It is characterized as the primary signal transducer that links the SAC 

signalling events on unattached kinetochores (Tipton et al., 2011a, Luo and Yu, 2008, Mapelli 

and Musacchio, 2007, Ciliberto and Shah, 2009) to participate or amplify the checkpoint 

signal (Ciliberto and Shah, 2009, Mapelli and Musacchio, 2007, Tipton et al., 2011a).  

 

MAD2 has two distinct native conformations, the open (O) and closed (C) forms of MAD2, 

O-MAD2 exists as a monomer or in the form of an O-C heterodimer, C-MAD2 can form both 

the O-C heterodimer and the C-C homodimer (Luo and Yu, 2008, Mapelli and Musacchio, 

2007, Luo et al., 2004, Fang et al., 1998). Only dimeric MAD2 can exert the inhibitory 

function of the APC/C (De Antoni et al., 2005, Luo and Yu, 2008). The C-MAD2 

conformation is adopted when an O-MAD2 is bound to its partners, MAD1, CDC20, BUBR1, 

or another MAD2 (Mapelli and Musacchio, 2007, Luo and Yu, 2008, Tipton et al., 2011b, 

Tipton et al., 2011a). MAD2 is expressed throughout the cell cycle. In interphase, most of the 

MAD2 exist as O-conformation in the cytosol and though a fraction adopts the 

C-conformation after binding to MAD1 and localizes on the nuclear envelope membrane (Luo 

et al., 2002, Campbell et al., 2001, Kitagawa, 2009). After nuclear envelope breakdown, the 

MAD1-C-MAD2 complex is enriched on the unattached kinetochores (Chen et al., 1996), and 

this kinetochore localized MAD1-C-MAD2 complex will then act as a template to recruit 

another O-MAD2 from the cytosol to form a MAD1-C-MAD2-O-MAD2 complex, and 

convert the confirmation of O-MAD2 into intermediate MAD2 (I- MAD2) (De Antoni et al., 

2005). The “MAD2 template” working model is shown in Figure 1.6. 
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CDC20 is the primary target of I-MAD2 (Musacchio and Salmon, 2007, Yang et al., 2008). 

The active I-MAD2 somehow binds to CDC20 and is converted to C-MAD2, and this 

CDC20-bound C-MAD2 could potentially further catalyze the conversion of O-MAD2 to 

C-MAD2 for signal self-amplification (De Antoni et al., 2005, Simonetta et al., 2009). MAD1 

is a resident of the unattached kinetochores that exchanges slowly with cytosolic pools 

(Howell et al., 2004), which recruits and catalyzes the activation of MAD2 as discussed above 

(De Antoni et al., 2005). One MAD1 molecule can bind to two molecules of MAD2: 

C-MAD2 and O-MAD2, only C-MAD2 is capable of being passed onto CDC20 (Luo and Yu, 

2008, De Antoni et al., 2005, Shah et al., 2004).  

 

 

 

Figure 1.6: The “MAD2 template” model. 

 

The kinetochore-bound ternary complex of MAD1-C-MAD2 binding an O-MAD2 starts the 

SAC. The unattached kinetochore recruits the MAD1-C-MAD2 core ternary complex, which 

recruits and binds to an O-MAD2 from the cytosolic pool to be converted to a C-MAD2 for 

binding to a CDC20. In the cytosol, the CDC20-C-MAD2 is a structural mimic of the 

MAD1-C-MAD2, which itself can act a template to bind and convert more O-MAD2 into 

CDC20-C-MAD2 for signal self-amplification. Adapted from (De Antoni et al., 2005). 
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1.3.4 The profile of CDC20 

 

CDC20, the cell division cycle protein 20, is an essential regulator of cell division in 

eukaryotic cells including human cells. Its level increases at late S phase and peaks in mitosis, 

followed by a sharp decline (Prinz et al., 1998). It has a double life: as the co-activator of the 

APC/C to trigger anaphase onset, and as the key subunit of the MCC to inhibit the APC/C 

(Liu and Zhang, 2016, Sudakin et al., 2001, Musacchio, 2015, Kimata et al., 2008). It changes 

its state at multiple points in cell cycle to regulate cell division (Tang et al., 2004, Yudkovsky 

et al., 2000). 

 

CDC20 is a protein related to the β subunit of trimeric G protein (Yu, 2007), which contains 

seven WD40 repeats, a bladed β propeller structure composed of 40 amino acids, contributing 

to proteins interaction (Yu, 2007, Sethi et al., 1991). Additionally, three motifs of CDC20 

have been identified that can bind to the APC/C: the C-box, the IR (C-terminal 

isoleucine-arginine tail), and the KILR (lysine-isoleucine-leucine-arginine tetrapeptide) 

(Izawa and Pines, 2011). The C-box and KILR motifs of CDC20 bind to APC8 while the IR 

motif binds to APC3, forming the APC/CCDC20 complex (Qiao et al., 2016, Zhang et al., 2016). 

CDC20 acts as a subunit of the MCC, it utilizes the same KILR motif to bind to MAD2 (Luo 

et al., 2002, Izawa and Pines, 2012). CDC20 also contains a KEN box that can contribute to 

its ubiquitination by APC/CCDH1, another co-activator of the APC/C after mitosis (Pfleger and 

Kirschner, 2000).  

 

It is important for SAC signalling that MAD2 interacts with CDC20 in responding to 

unattached kinetochores in cell division. The mechanism of the CDC20-MAD2 interaction is 

complicated and not fully understood. It is thought as the first step that MAD1 at an 

unattached kinetochore recruits MAD2 (De Antoni et al., 2005). As MAD1 and CDC20 bind 

to the same MAD2 pocket, it was predicted that MAD1 and CDC20 would compete to 

interact with MAD2. The CDC20 interaction with MAD2 may be followed by MAD2 
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dissociating from MAD1 (Mapelli and Musacchio, 2007). However, the evidence shows that 

MAD1 is necessary for loading MAD2 onto CDC20 in living cells (Hwang et al., 1998).  

 

1.3.5 The mechanism of the MCC formation 

 

The MCC includes two sub-complexes, CDC20-MAD2 and BUBR1-BUB3, but it is unclear 

how the two sub-complexes join together to form the MCC. One possibility is that firstly the 

kinetochores facilitate the formation of MAD2-CDC20 and BUBR1-BUB3 sub-complexes 

respectively, and then the two sub-complexes are somehow integrated to form the MCC (De 

Antoni et al., 2005, Luo et al., 2000, Sironi et al., 2001, Luo et al., 2002). It has been 

suggested that the BUBR1-BUB3 sub-complex exists throughout the cell cycle (Hardwick et 

al., 2000, Larsen and Harrison, 2004, Larsen et al., 2007), so the formation of CDC20-MAD2 

is an initial and essential step in the assembly of the MCC (Sudakin et al., 2001), and the 

mechanism of MCC assembly can be followed by the observing CDC20-MAD2 formation. 

Previously, researchers thought that the SAC signal works in an “on” or “off” manner, being 

activated after nuclear envelope breakdown in response to the unattached kinetochores, and 

then rapidly switched off at anaphase onset (Lara-Gonzalez et al., 2012, Musacchio and 

Salmon, 2007, De Antoni et al., 2005). However, this kinetochore dependent “on” or “off” 

mechanism has been challenged by the idea that SAC signalling acts as a “rheostat”, where its 

strength increases and decreases gradually determined by the amount of MAD2 recruited to 

kinetochores and the amount of MCC formed (Collin et al., 2013). Thus, it is still a 

controversial area of cell cycle regulation that how does the MCC assemble.   

 

1.3.6 The kinetochore-dependent MCC formation 

 

The kinetochore dependent formation of the MCC has been widely accepted as the exclusive 

SAC mechanism (Musacchio, 2015, Lara-Gonzalez et al., 2012). It has been reported that the 

expression of BUBR1-BUB3 and CDC20-MAD2 complexes were higher in mitotic cells than 

that in interphase cells (Braunstein et al., 2007). The MCC components CDC20, MAD2, 
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BUBR1, and BUB3 are sequentially recruited and enriched on unattached kinetochores in 

mitosis conserved from yeast, Drosophila to human cells (Howell et al., 2000, Kallio et al., 

2002, Shah et al., 2004, Raff et al., 2002, Li et al., 2010). The kinetochores provide the 

catalytic platform for the MCC assembly corresponding to the SAC signalling (Howell et al., 

2000, Vink et al., 2006, Musacchio and Hardwick, 2002). Targeting MAD2 and BUBR1 to 

kinetochores is sufficient to maintain checkpoint arrest regulated by Aurora and Mps1 kinases 

(Kruse et al., 2014, Maldonado and Kapoor, 2011). The activity of BUBR1 inhibits the 

APC/C by blocking its binding to CDC20 (Tang et al., 2001a), while its accumulation and 

phosphorylation at unattached kinetochores plays an important role in association with other 

SAC components for maintaining the SAC function (Chen, 2002). The MCC components are 

released from kinetochores upon microtubule attachment after mitosis (Musacchio and 

Salmon, 2007, Shah et al., 2004). It has been shown that the “stripping” of MAD2, MAD1 

and other SAC proteins from kinetochores is the key process of SAC inactivation (Howell et 

al., 2001). As a result, it has been widely accepted that the MCC is assembled in response to 

the unattached kinetochores (Yu, 2006, Lara-Gonzalez et al., 2012, Musacchio and Salmon, 

2007), and the “MAD2 template” model partly explained how this might be done. 

 

1.3.7 The kinetochore-independent MCC formation 

 

The unattached kinetochores appear to be the primary source of C-MAD2-CDC20 (Luo et al., 

2000, Sironi et al., 2001, Luo et al., 2002), and it is widely accepted that the inhibitory “on” 

signal of the SAC is generated exclusively by unattached kinetochores (Lara-Gonzalez et al., 

2012, Musacchio and Salmon, 2007, Yu, 2006). However, evidences suggested that the MCC 

can form independently of unattached kinetochores (Poddar et al., 2005, Meraldi et al., 2004, 

Fraschini et al., 2001). The MCC can be isolated from interphase cells extracts where the 

kinetochore has not yet formed (Sudakin et al., 2001). The CDC20-MAD2 sub-complex is 

still detectable when Ndc10, an essential protein for core kinetochore assembly has been 

mutated (Fraschini et al., 2001, Poddar et al., 2005). The MCC component BUB3 is required 

for MAD2, MAD1 and BUBR1 kinetochore localization (Millband and Hardwick, 2002, 
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Vanoosthuyse et al., 2009), but is redundant for SAC activation (Tange and Niwa, 2008, 

Vanoosthuyse et al., 2009), and its kinetochore localization is not essential for SAC function 

(Malureanu et al., 2009). An N-terminal CDC20 binding domain of BUBR1 which lacks the 

BUB3-binding domain for kinetochore localization or a soluble form of the full-length 

BUBR1 can inhibit the APC/C in interphase (Malureanu et al., 2009). These observations 

indicated that the assembly of a functional MCC can take place at a cell cycle stage without 

appropriate kinetochores, though it’s worth noting that the kinetochore independent pool of 

the MCC can only exert an incomplete inhibition of the APC/C (Meraldi et al., 2004, 

Lara-Gonzalez et al., 2011, Lara-Gonzalez et al., 2012).  

 

1.4 Events after the SAC activation 

 

1.4.1 The profile of the APC/C 

 

As the effector of the mitotic checkpoint signalling network, the target of the MCC is the 

APC/C, an E3 ubiquitin ligase complex composed of 19 subunits of 14 distinct proteins 

including its co-activators CDC20 and CDH1 (depending on the species)(Barford, 2011, 

Chang et al., 2014, Chang and Barford, 2014). The APC/C stably expresses throughout the 

cell cycle and contributes to the ubiquitin-mediated substrate degradation (Barford, 2011). 

The spatial-temporal regulation of the APC/C activity is partly achieved by selectively 

binding to CDC20 or CDH1. At the end of mitosis, the APC/CCDC20 ubiquitylates two 

essential mitotic regulators cyclin B1 and securin which contain a consensus motif, the 

destruction box (D-box) (Clute and Pines, 1999, Huang and Raff, 1999, Cohen-Fix et al., 

1996). The APC/CCDH1, on the other hand, targets substrates including CDC20 containing both 

a D-box and a degron called ‘KEN-box’ during late mitosis and G1 transition (Castro et al., 

2005, Pfleger and Kirschner, 2000). The APC/C adapts a triangular bi-lobed shape linked by a 

scaffold structure, organized by subunits APC1, APC4, APC5 (Eme et al., 2011, Liu and 

Zhang, 2016) between a ‘catalytic’ sub-complex with subunits of APC11, APC2, and APC10 

(Liu and Zhang, 2016, Thornton et al., 2006, Eme et al., 2011), and a ‘TPR’ (tetratricopeptide 

repeat) sub-complexes contains APC3, 6, 7 and 8 (Izawa and Pines, 2011). The catalytic core 
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of the APC/C is composed of APC2 and APC11, which are the analogues of the cullin and 

Rbx1 subunits of cullin-RING ligases (CRLs) of the SCF ligase superfamily (Tang et al., 

2001b, Brown et al., 2014, Brown et al., 2015, Zheng et al., 2002).  

 

Apart from the ‘scaffold’ structure and the ‘catalytic’ sub-complex, the different subunits of 

the ‘TPR’ arm of the APC/C showed different roles in its function. APC8 is responsible for 

the interaction with CDC20 when targeting NeK2A (Sedgwick et al., 2013, Boekhout and 

Wolthuis, 2015, Cohen-Fix et al., 1996), and for the degradation of cyclin A at prometaphase 

which is independent of the SAC (Fry and Yamano, 2006, van Zon and Wolthuis, 2010), 

whereas APC3 and APC8 are required for interacting with CDC20 when cyclin B1 is 

destroyed at the end of metaphase under SAC regulation (Izawa and Pines, 2011). Apc10 is 

required for the recognition and recruitment of mitotic substrates, cyclin B1 and securin, but 

not cyclin A, for destruction, (Izawa and Pines, 2011). This process requires that CDC20 or 

CDH1 interacts with APC10 and that the substrates, like cyclin B1 and securin contain 

degrons such as the ‘D-box’ and ‘KEN’ box (Buschhorn et al., 2011, da Fonseca et al., 2011, 

Chang and Barford, 2014). 

 

1.4.2 The inhibition of the APC/C by the MCC 

 

The key roles of the APC/C are controlling the fidelity of chromosome segregation in mitosis 

by targeting and coordinating the destruction of the mitotic regulators cyclin B1 and securin 

via the ubiquitin-mediated proteolysis pathway (Murray, 1994). The substrate specification 

and the activation of the APC/C are contributed by the binding of the APC/C to its 

co-activators CDC20 or CDH1 (Musacchio and Salmon, 2007, Lara-Gonzalez et al., 2012). 

Exactly how the SAC inhibits the active APC/C-CDC20 is not fully understood. As the main 

effector of the SAC, the MCC targets the APC/C, it used to be believed that by incorporated 

CDC20 into the MCC, it sequestered and prevented CDC20 from binding and activating the 

APC/C. It has been demonstrated in budding yeast that the MCC can itself act as a 

pseudo-substrate inhibitor of the APC/C (Burton and Solomon, 2007). The N-terminus of 
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Mad3p/BUBR1, the component of the MCC, contains a D-box and KEN-box, which can 

function together to mediate competitive binding of either CDC20 or substrate (Burton and 

Solomon, 2007, Sczaniecka et al., 2008). The MCC can directly bind to the APC/C and block 

the substrate recruitment by occupying the CDC20 binding site on the APC/C, which locks 

the APC/C into a “closed” state and prevents the binding and ubiquitylation of APC/C 

substrates (Herzog et al., 2009). This is because the MAD2-binding motif of CDC20 in the 

MCC mediates the interactions with the APC/C (Chang and Barford, 2014). The MCC can 

also directly modulate E2-ubiquitin binding to the APC/C subunits to inhibit the APC/C 

(Herzog et al., 2009). More recently, it has been shown that the MCC can recognize a second 

CDC20, which has already bound to the APC/C through two ABBA motifs in the N-terminal 

half of BUBR1 (Izawa and Pines, 2015). 

 

1.5 The spindle assembly checkpoint silencing 

 

Once all of the sister-kinetochores are bio-oriented and the tension applied to the bipolar 

spindle satisfies the SAC conditions, the APC/C is activated to trigger anaphase onset to allow 

chromatid segregation and mitotic exit (Liu and Zhang, 2016, Jia et al., 2011). Several 

mechanisms that contribute to this SAC silencing will be discussed.  

 

1.5.1 Dynein-mediated mechanism for striping kinetochore MAD1 and MAD2 

 

The binding of the SAC proteins, especially MAD1 and MAD2, the RZZ complex, MPS1, 

CENP-E and other protein components to the unattached kinetochore, is the important step of 

SAC signalling. So, to terminate the SAC signalling, it is equally important to remove these 

proteins from bio-oriented kinetochores as artificially tethering MAD1 to kinetochores delays 

anaphase onset (Maldonado and Kapoor, 2011, Maiato et al., 2004). This removal is mediated 

by a kinetochore localized minus-end-directed microtubule motor dynein mechanism (Howell 

et al., 2001), which can remove MAD1 and MAD2 from the kinetochore upon microtubule 

attachment, while the depletion of dynein blocks the removal of MAD1 and MAD2 from 
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attached kinetochores and arrests cell at metaphase (Howell et al., 2001, Mische et al., 2008). 

This is one of the important mechanisms contributing to SAC silencing (Musacchio and 

Salmon, 2007, Lara-Gonzalez et al., 2012). The coiled-coil domain containing protein, 

spindly can bind to the RZZ complex, which is required for the recruitment of cytoplasmic 

dynein to kinetochores in human cell (Barisic et al., 2010, Barisic and Geley, 2011). Depletion 

of spindly results in loss of kinetochore dynein functions, and impairs poleward chromosome 

movements and mitotic checkpoint inactivation (Barisic and Geley, 2011). A mutant of spindly 

which lacks the ‘Spindly-box’ persistently localized on the kinetochore but can no longer 

recruit dynein, and would result in a stripping defect (Barisic et al., 2010, Gassmann et al., 

2010). However, other researches showed that spindly is not necessary for the removal of the 

checkpoint proteins from kinetochore, although where the microtubule recruitment of dynein 

is impaired (Chan et al., 2009). Therefore, the stripping mechanism of dynein can reduce the 

local kinetochore concentration of the SAC proteins and perhaps prevent MCC formation, but 

the details of the stripping mechanism remain elusive.  

 

1.5.2 Protein phosphorylation or de-phosphorylation mechanism 

 

Protein kinases such as BUB1 and MPS1 can promote the kinetochore localization of SAC 

proteins (Yamagishi et al., 2012, Hewitt et al., 2010), which results in SAC activation or 

maintenance of the SAC activity (London et al., 2012, Shepperd et al., 2012, Vanoosthuyse 

and Hardwick, 2009). In contrast, the activation of phosphatases can counteract the SAC 

kinases to inactivate the SAC (London et al., 2012). For instance, in budding yeast, Mps1 can 

directly phosphorylate the kinetochore protein Spc105 to recruit Bub1 to the kinetochore for 

SAC activation, while protein phosphatase 1 (PP1) can counteract this Mps1 effect (London 

et al., 2012). MPS1 is also required for kinetochore recruitment of MAD1 and MAD2 (Abrieu 

et al., 2001). Aurora B kinase activity is required to promote binding of the MCC to the 

APC/C (Morrow et al., 2005), while protein phosphatases 1 and 2A (PP1 and PP2A) are 

recruited to kinetochores to oppose these kinases activities (Manic et al., 2017). The 

integration of CDC20 into the MCC triggers the SAC activation, while the phosphorylation of 
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CDC20 stimulates its dissociation from BUBR1, and results in SAC inactivation 

(Miniowitz-Shemtov et al., 2012). Fengzhi et al. found that the centromere-associated protein 

Shugoshin (sgo1), ploidy 1(Ipl1)/Aurora B kinase, Dam1 and Mps1 form the SAC silence 

networks (SSN) in budding yeast, the Ip11 phosphorylates Dam1 to prevent SAC silencing 

before tension has been generated, while the tension-induced Dam1 de-phosphorylation by 

PP1 results in SAC silencing (Jin and Wang, 2013). Thus, by regulating the phosphorylation 

and de-phosphorylation of SAC proteins, its activity can be turned on or off (Lara-Gonzalez et 

al., 2012, Vanoosthuyse and Hardwick, 2009, Manic et al., 2017). 

 

1.5.3 The mechanism of ubiquitination in SAC silencing 

 

In addition to protein phosphorylation, ubiquitylation of SAC components is also considered 

as a pathway of SAC silencing (Reddy et al., 2007), where the APC/C ubiquitylates the SAC 

components for proteolysis when a proper kinetochore-microtubule attachment has been 

achieved (Jia et al., 2011). CDC20 is both a component of the MCC and one of the 

co-activators of the APC/C, its ubiquitylation and degradation at the end of mitosis influences 

the homeostasis of the MAD2-CDC20 interaction, and maintains the SAC silence persistently 

(Jia et al., 2011, Varetti et al., 2011, Uzunova et al., 2012). Similarly, BUBR1, another 

component of the MCC is ubiquitylated by the APC/C in metaphase, which removes the SAC 

inhibition (Foster and Morgan, 2012). However, the ubiquitylation of CDC20 might not be 

sufficient for promoting the disassembly of the MCC as it has been found that preventing the 

ubiquitylation of CDC20 by mutating all its possible ubiquitylation motifs does not block 

MCC disassembly (Nilsson et al., 2008). Moreover, the ubiquitylation of CDC20 has been 

shown to occur both in the process of SAC silencing but also in the process of SAC activation 

(Nilsson et al., 2008, Pan and Chen, 2004, Varetti et al., 2011). Therefore, the exact role of 

ubiquitylation in controlling SAC silencing needs to be further investigated. 

 

1.5.4 Silencing of the SAC by p31comet 
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It is a crucial step in the MCC formation and the amplification of the SAC signalling that 

O-MAD2 is constitutively recruited to unattached kinetochores and its conformation is 

converted into C-MAD2 to facilitate the production of the MCC via MAD2 template model as 

discussed above. Once the SAC has been satisfied, stimulating the disassembly of the existing 

MCC and preventing the kinetochores from recruiting more O-MAD2 to make new MCC are 

essential for SAC silencing.  

 

In 2002, a screen of a cDNA library using the yeast two-hybrid system with human MAD2L1 

as bait, allowed Hubu et al. to identify a novel MAD2 binding protein termed CMT2 (Caught 

by MAD Two). Overexpression of the protein in HeLa cells can abrogate the spindle 

checkpoint activation while its depletion delays anaphase onset (Habu et al., 2002). 

Subsequently, Xia et al. renamed it as p31comet because of its comet tail-like cellular 

localization pattern in mitosis (Xia et al., 2004), and it is also commonly known as 

MAD2L1BP. 

 

The p31comet was found to localize to the nuclear envelope during interphase and prophase in 

RPE and HeLa cells (Westhorpe et al., 2011), It is unevenly distributed as speckles throughout 

the nucleoplasm in the early stage of mitosis (Yang et al., 2007); some of which localize near 

the kinetochore, and it then associates with the anaphase spindle and the microtubule midbody 

in telophase in HeLa cells (Habu et al., 2002). After co-staining the affinity-purified p31comet 

antibody and CREST antiserum (CREST staining the centromeres), images captured from 

time-lapse microscopy of p31comet-EYFP, confirmed that it is associated with unattached 

kinetochores in prometaphase and at significantly lower levels as part of the 

kinetochore-microtubule attachment in metaphase and presents in the cytosol at all cell cycle 

stages, the kinetochore recruitment of p31comet is MAD2 dependent (Hagan et al., 2011). In 

nocodazole treated HeLa cells, the amount of p31comet bound to BUBR1-CDC20 is more than 

that in cells treated with Taxol, which suggests that the interaction of p31comet with BUBR1 

and CDC20 depends on the number of unattached kinetochores (Westhorpe et al., 2011).  

The western blot results from highly synchronized HeLa cells released from double thymidine 
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block showed that the level of p31comet is low at 0 hours, increased and remained constant until 

late mitosis, and suddenly dropped at 14 hours after release at a stage equivalent to anaphase 

as indicated by phospho-H3 staining (Habu et al., 2002), which suggests that p31comet may be 

destroyed after late mitosis.  

 

The molecular weight of full-length of p31comet (CMT2) is about 31kDa. The initial sequence 

analysis indicated that p31comet contains two putative destruction boxes (Habu et al., 2002) 

(Figure 1.7, marked by the black boxes). By comparison with the consensus of the destruction 

motifs of the D-box (R-x-x-L-x-x-x-x-N/D/E) (Glotzer et al., 1991, Burton and Solomon, 

2001) and KEN box (K-E-N-x-x-x-D/N) (Pfleger and Kirschner, 2000, Burton and Solomon, 

2001), we found that there is one additional potential KEN-box in the protein sequence of the 

human p31comet (Figure 1.7, marked by the red box). The D-box and KEN-box are the 

signatures of mitotic proteins destroyed by the APC/C-mediated proteolysis pathway. 

Moreover, the results from mass spectrometry analysis indicated that p31comet contains 

multiple potential sites of ubiquitination (Udeshi et al., 2013, Wagner et al., 2011). Bringing 

all these results together, it suggests that p31comet could be a cell cycle regulated protein, 

however, the potential turnover property of p31comet targeted by the APC/C or other ubiquitin 

ligase and its physiological functions have yet to be characterized. 
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Figure 1.7: The sequence alignment of p31comet (CMT2). 

 

The sequence alignment of the human p31comet (HsCMT2), two mouse homologues 

(MmCMT2A) and (MmCMT2B) are shown. The asterisks indicate the amino acids conserved 

in human and mouse. The putative D-box motifs are marked with the black boxes, and the 

putative KEN box motif is marked with the red box. Modified from (Habu et al., 2002).  

 

As the MAD2 binding protein, the function of p31comet has been investigated tightly in 

association with the SAC. It was once speculated that the mechanism of dissociation of 

CDC20-MAD2 by p31comet, is due to p31comet competing with CDC20 for binding to MAD2 to 

disrupt the CDC20-MAD2 interaction, but this was soon rejected as the evidence showed that 

CDC20 and p31comet do not share the same binding site with MAD2, and binding of p31comet to 

MAD2 does not prevent CDC20 interacting with MAD2 in vitro (Xia et al., 2004). p31comet 

only binds to the close form of MAD2 (C-MAD2), and transiently interacts with MAD2 

(C-MAD2) to form a CDC20-C-MAD2-p31comet ternary complex in vivo during checkpoint 

inactivation (Xia et al., 2004). The structural analysis suggests that p31comet binds C-MAD2 at 

its dimerization interface, which is required for kinetochore recruitment of O-MAD2 (Mapelli 

et al., 2007, Mapelli et al., 2006, Yang et al., 2007). In vitro, the purified p31comet can restore 

the activity of APC/CCDC20 by forming the APC/C-CDC20-C-MAD2-p31comet transient 
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complex to reverse the inhibition of the APC/C by MAD2 (Xia et al., 2004). However, it is 

strange to observe that p31comet in fact can interact with MAD1-MAD2 throughout the cell 

cycle (Xia et al., 2004).  

 

Owing to MAD2-dependent kinetochore recruitment of p31comet (Hagan et al., 2011), 

overexpression of p31comet bypassed the SAC arrest and the depletion of p31comet delayed the 

anaphase onset (Habu et al., 2002); and the structural analysis suggests that p31comet binds 

C-MAD2 at its dimerization interface, which is required for kinetochore recruitment of 

O-MAD2 (Mapelli et al., 2006, Yang et al., 2007); moreover, p31comet counteracts the function 

of MAD2 and is required for SAC silencing (Xia et al., 2004); this led to the hypothesis that 

p31comet by competitively binding to MAD1 bound C-MAD2 on the kinetochore, blocks the 

recruitment of more O-MAD2 or the capping of MAD1-C-MAD2 at the kinetochores for 

C-MAD2-CDC20 production (Xia et al., 2004, Yang et al., 2007, Mapelli et al., 2006). 

However, some more recent results suggest that this might not be the case, as p31comet siRNA 

or overexpression does not affect the levels of kinetochore recruitment of O-MAD2 

(Westhorpe et al., 2011), and the prevention of the kinetochore localization of O-MAD2 by 

inhibiting MPS1 activity will not increase p31comet kinetochore localizations (Hewitt et al., 

2010, Westhorpe et al., 2011). 

 

p31comet  can promote the release of the MAD2-CDC20 complex from the MCC and disrupts 

the interaction of CDC20 with BUBR1, which encourages the dissociation of the MCC, a 

process requiring ATP hydrolysis (Teichner et al., 2011). p31comet can also extract MAD2 from 

the free form of the MCC and cause disruption of the MCC in vitro (Westhorpe et al., 2011). 

The MCC levels increased upon the depletion of p31comet by siRNA, which negatively 

regulates SAC activation (Westhorpe et al., 2011). These highlighted that p31comet acts in 

MCC disassembly. However, in vitro observations showed that p31comet is not directly 

involved in the disassembly of MAD2-CDC20 contained in the MCC complex but offsets the 

APC/C inhibition by MAD2 through forming the APC/CCDC20-MAD2-p31comet complex (Xia 

et al., 2004). The phosphorylation of SAC proteins contributes to SAC silencing, while 
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p31comet can stimulate CDK to catalyze the phosphorylation of CDC20 in the MCC, to 

promote CDC20 dissociation from BUBR1, by which responses to SAC silence 

(Miniowitz-Shemtov et al., 2012). Moreover, p31comet can promote MCC disassembly 

independent of CDC20 ubiquitylation (Jia et al., 2011). Interestingly, by altering its 

phosphorylation status, p31comet can also regulate the SAC by attenuating the binding with 

MAD2 (Date et al., 2014). 

 

Although exactly how p31comet is involved in SAC silencing needs to be elucidated, it has 

repeatedly been observed that mitosis exit is delayed after the depletion of p31comet (Habu et 

al., 2002, Xia et al., 2004, Chan et al., 2008). The overexpression of p31comet in cancer cell 

lines caused the premature destruction of securin and led to premature sister chromatid 

separation and increased the resistance to antimitotic drugs (Habu and Matsumoto, 2013), 

while its depletion promotes sensitivity to antimitotic drugs (Ma et al., 2012). Using a 

genome-wide siRNA screen, Diaz-Martinez, L. A., et al. found that p31comet promotes mitotic 

adaptation through cyclin B1 degradation and independently suppresses cancer cell death, and 

confirmed that its depletion in the presence of anti-cancer drugs could result in cell apoptosis. 

Therefore, targeting p31comet is an attractive strategy for uncoupling the cell apoptosis and 

mitotic adaption pathways (Diaz-Martinez et al., 2014). However, other observations have 

shown that the overexpression of p31comet can also induce cell apoptosis and senescence by 

interfering with MAD2 activity (Shin et al., 2015). In addition to its checkpoint functions, 

p31comet can also regulate insulin signalling by blocking the interaction of MAD2-BUBR1 

with the insulin receptor on the plasma membrane in hepatocytes, by which for the first time 

links chromosome stability to nutrient metabolism (Choi et al., 2016).  

 

1.5.5 The TRIP13 and the joint action of TRIP13 and p31cometin the SAC silencing 

 

In recent years, a novel kinetochore protein, TRIP13 (PCH-2 in C. elegans) (Thyroid 

hormone receptor interacting protein 13), a highly conserved AAA+ATPase, has been 

identified as the silencer of the SAC signalling, as its depletion can delay anaphase onset 
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(Wang et al., 2014). It exerts the SAC inhibitory function by binding to p31comet, and probably 

plays the predominant role in silencing the SAC (Wang et al., 2014, Eytan et al., 2014). In 

vitro, TRIP13 uses p31comet as an adaptor protein to convert the conformation of C-MAD2 

back to O-MAD2, which then blocks MCC formation and silences the SAC (Eytan et al., 

2014, Ye et al., 2015, Ma and Poon, 2016, Brulotte et al., 2017). At the same time TRIP13 can 

bind to p31comet to cause disassembly of the MCC, and resulting in SAC inactivation (Wang et 

al., 2014, Brulotte et al., 2017), this process requires ATP hydrolysis and energy input 

(Miniowitz-Shemtov et al., 2010). The joint action of TRIP13 and p31comet in silencing the 

SAC and dissociating the MCC is thought to involve the following steps (Eytan et al., 2014) 

(Figure 1.8). Firstly, p31comet releases CDC20-MAD2 from BUBR1, this process does not 

require TRIP13 and the conformation change of C-MAD2 but involves the CDK-dependent 

phosphorylation of CDC20 (Eytan et al., 2014, Miniowitz-Shemtov et al., 2012). The second 

step includes the release of MAD2 from the CDC20-MAD2 sub-complex or directly from the 

MCC, and the conversion of C-MAD2 to O-MAD2, this step requires the joint action of 

TRIP13 and p31comet and is ATP-dependent (Eytan et al., 2014). The extraction of MAD2 

from the MCC leaves a BUBR1-BUB3-CDC20 sub-complex (Westhorpe et al., 2011, Sudakin 

et al., 2001, Eytan et al., 2014), and exactly howCDC20 is released from 

BUBR1-BUB3-CDC20 sub-complex remains unknown. Very little is known about the 

interactions of TRIP13 with its substrates, p31comet and ATP (Eytan et al., 2014), though it is 

critical for both the activation and inactivation of the SAC (Ma and Poon, 2016). 
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Figure 1.8: The joint actions of TRIP13 and p31comet in silencing the SAC. 

 

Step1, p31comet promotes the dissociation of C-MAD2-CDC20 from BUBR1-BUB3, and CDK 

phosphorylates CDC20. Step 2 & 3, TRIP13 and p31comet jointly cause the disassembly of the 

CDC20-MAD2 complex or the direct release of MAD2 from the MCC. Exactly how CDC20 

is released from the BUBR1-BUB3-CDC20 complex is still unknown. Copied from (Eytan et 

al., 2014).  

 

1.6 The spindle assembly checkpoint and mitotic cell death 

 

To maintain genomic stability, the SAC produces a diffusive “wait” signal from unattached 

kinetochores that delays the metaphase to anaphase transition until the last of the 

sister-chromatids have been correctly attached to the mitotic spindle 

microtubules(Lara-Gonzalez et al., 2012). The activated SAC can block the APC/C to 

ubiquitinylate its substrates, cyclinB1 and securin for destruction, and arrest the cell in mitosis. 

The prolonged mitosis under sustained activation of the SAC can trigger cell death (Visconti 
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et al., 2016b, Janssen and Medema, 2011, Pedley and Gilmore, 2016). The exact mechanism 

of cell death in prolonged mitosis remains obscure, it possibly involves energy deprivation or 

the increased sensitivity to DNA damage during mitosis because the DNA is unprotected by 

the nuclear envelope (Janssen and Medema, 2011). Moreover, owing to the irreparability of 

damaged DNA of condensed chromosomes (Bakhoum et al., 2017, Stevens et al., 2007, 

Burgess et al., 2014), the silenced gene transcriptions (Gottesfeld and Forbes, 1997) and 

increased genome instability (Rieder and Maiato, 2004), mitosis is the most vulnerable period 

of the cell cycle,  during which cells are more easily killed when cells suffered from 

irradiation, heat shock or exposed to various chemicals (Rieder and Maiato, 2004). The 

process of cell death in mitosis is collectively termed ‘Mitotic Catastrophe’ (Vitale et al., 

2011). The mitotically arrested cells resulted from provoked SAC increases the incidence of 

being aneuploidy or genome instability in cells of offspring and often are fatal to embryos 

(Dobles and Sorger, 2000, Kalitsis et al., 2000). Therefore, blocking mitotic exit to induce cell 

death has been regarded as a promising therapeutic strategy for cancer treatment (Salmela and 

Kallio, 2013, Janssen et al., 2011, Visconti et al., 2016a, Gascoigne and Taylor, 2009). Indeed, 

some traditional anti-mitotic drugs such as taxanes, and vinca alkaloids are widely used in 

clinic (McGrogan et al., 2008, Jordan and Wilson, 2004). However, besides producing severe 

side effects, rapidly developed resistance to these anti-cancer drugs (Jordan and Wilson, 2004, 

Gascoigne and Taylor, 2009, McGrogan et al., 2008), most probably，the mitotic slippage 

undermines the efficacy of treatment (Visconti et al., 2016b). Thus we need to better 

understand the mechanisms underlying mitotic cell death in various circumstances (Visconti 

et al., 2016b).   

 

1.6.1 The determination of a cell to “die “or “not die” in prolonged mitosis 

 

As discussed above, prolonged mitosis can lead to cell death. However, the duration of 

mitotic arrest is not permanent under all versions of the activated SAC and can undergo 

mitotic exit without sister chromatid separation and then enter the next round of the cell cycle; 

a process that is referred to as “adaptation” or “mitotic slippage” (Rossio et al., 2010, Rieder 
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and Maiato, 2004). Thus, in response to a prolonged mitotic arrest a cell could either die in 

mitosis or survive by exiting mitosis without dividing (Topham and Taylor, 2013). The cells 

that slipped from prolonged mitosis would undergo different fates (Rossio et al., 2010, 

Gascoigne and Taylor, 2008, Weaver and Cleveland, 2005): they might die in the next cell 

cycle after, being stably arrested in the G1 stage or divide unequally to produce aneuploidy 

daughter cells; alternatively, cells could exit mitosis with no division.  

 

 

 

Figure 1.9: Cell fates in response to a prolonged mitotic arrest. 

Cells will be arrested in mitosis in response to anti-mitotic drug treatment, such as nocodazole 

or taxol causing the constitutively activated spindle assembly checkpoint (SAC). As a 

consequence of the prolonged arrest, the cells can either die in mitosis by undergoing 

apoptosis or slip out of mitosis. When cells slipped out of the prolonged arrest they might die 

in G1 of the next cell cycle or enter a new cell cycle without cell division. (Adapted from 

(Rossio et al., 2010). 

 



34 

 

1.6.2 The competing-network model 

 

Although prolonged mitosis can result in cell death, cell fate in prolonged mitosis does not 

correlate with duration of mitotic arrest (Gascoigne and Taylor, 2008, Janssen and Medema, 

2011), but is influenced by caspase activation or by delaying cyclin B1 degradation 

(Gascoigne and Taylor, 2008, Chibazakura et al., 2004). The chronic activation of the SAC 

cannot completely prevent cyclinB1 degradation, which eventually results in mitotic exit 

(slippage) (Gascoigne and Taylor, 2008, Brito and Rieder, 2006). The overexpression of 

cyclin B1 can block cell cycle progression and keep the cell for longer in mitosis (Gascoigne 

and Taylor, 2008). A ‘competing-network’ model has been proposed to explain the cell 

destination in prolonged mitosis (Gascoigne and Taylor, 2008). According to this model, the 

cell fate is determined by two competing but independent networks: the strength of a yet to be 

defined cell death signal and the rate of cyclin B1 degradation. These two pathways show 

their inverse relationship determined by the thresholds of the increased cell death signal (die) 

and the fall of cyclin B1 levels (not die). A cell will die in mitosis if the cell death signal 

threshold is breached first. In contrast, the cell will slip out of mitotic arrest if the fall in 

cyclin B1 levels first breached the threshold (Figure 1.9) (Gascoigne and Taylor, 2008, Shi et 

al., 2008). For instance, the cell lines HT29 and RKO tend to die in mitosis in response to 

prolonged mitotic arrest due to their cyclinB1 level falling slowly to reach the mitotic exit 

threshold, while the DLD-1 cell line exits mitosis as its cyclin B1 level declined faster when 

the SAC is activated (Gascoigne and Taylor, 2008).   
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Figure 1.10: The diagram showing the ‘competing-network’ model for determining the 

cell fate in prolonged mitosis. 

 

Under prolonged mitotic arrest, there are two competing, and independent pathways: one is a 

pathway giving rise to cell death signals and the other pathway controlling the degradation 

rate of cyclin B1. A cell will survive and undergo slippage if the fall in the cyclin B1 level 

breaches the ‘mitotic exit threshold’ first (A). Or the cell will die if the increase in the cell 

death signal breaches the ‘Death threshold’ first (B). Copied from (Gascoigne and Taylor, 

2009). 

 

1.6.3 The mitotic cell death pathway 
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Although the exact mechanism which determines the cell fate in prolonged mitosis remains 

unknown, a genome-wide siRNA screen revealed that no necrosis or autophagy network 

genes were identified as being involved in mitotic cell death and adaptation (Diaz-Martinez et 

al., 2014), thus the apoptotic pathway might be the only major cell death pathway determining 

the cell fate in response to prolonged mitotic arrest. This is supported by many observations 

that mitotic cell death involves the intrinsic apoptotic pathway (Diaz-Martinez et al., 2014, 

Topham and Taylor, 2013, Salmela and Kallio, 2013), either dependent (Allan and Clarke, 

2007, Gascoigne and Taylor, 2008, Diaz-Martinez et al., 2014) or independent on caspase 

activities (Niikura et al., 2007).   

 

1.6.4 The intrinsic apoptotic pathway 

 

Apoptosis is a process of programmed cell death characterized by multiple changes in cell 

morphology including blebbing, cell shrinkage, nuclear fragmentation and extreme chromatin 

condensation (Kerr et al., 1972, Taylor et al., 2008), and its molecular basis includes the 

intrinsic (mitochondria pathway) and extrinsic apoptotic pathway (Tait and Green, 2010, 

Alberts, 2015).  

 

The processes of the intrinsic apoptotic pathway include the activation or expression of 

pro-apoptotic proteins, the permeabilization of the mitochondrial outer membrane, to release 

cytochrome c and finally cell death by activation of caspase protein 3 or 7 (Slee et al., 2001). 

The mitochondria outer membrane permeabilization (MOMP) is the crucial process driving 

the cells to undergo apoptosis (Tait and Green, 2010). It is regulated by the pro-apoptotic 

signal mainly from the BH3 (BCL-2 homology domain) proteins including Bim, Bid, Puma, 

Noxa (Delannoy et al., 2018, Oda et al., 2000, Haschka et al., 2015, Yin, 2006) and the 

anti-apoptotic signal from the BCL-2 super-family of proteins such as BCL-xl, BCL-2 and 

MCL-1 (Tait and Green, 2010, Haschka et al., 2015, Pedley and Gilmore, 2016). Recently, a 

splicing variant of a shot-form of MCL-1 (MCL-1s) has been identified as a novel BH3 only 

protein, this is spliced out of the exon 2 of MCL-1 in mRNA transcription resulting in the loss 
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of BH1, BH2 and the transmembrane domains of MCL-1 (Bae et al., 2000). MCL-1s can 

dimerize with MCL-1 to antagonize the anti-apoptotic activity of MCL-1 (Bae et al., 2000, Hu 

et al., 2015, Lomonosova et al., 2009). In responding to a strong apoptotic stimulation signal, 

the increased pro-apoptotic proteins antagonize the activity of anti-apoptotic proteins to 

release the blocking of the homooligomerization of either BCL-2 associated X protein (BAX) 

or BCL-2 antagonist or killer protein (BAK) to form spanning pores on the outer membrane 

of mitochondria (Wei et al., 2001, Pedley and Gilmore, 2016). This allows the release of 

cytochrome c for binding with the apoptotic protease activating factor 1(APAF1), and then 

triggers the formation of the caspase activation platform-apoptosome, and subsequently the 

activation of caspase cascade signaling (Elmore, 2007). The active caspases (3/7) 

subsequently cause the cleavage of their substrate poly [ADP-ribose] polymerase-1 (PARP-1), 

a nuclear protein, to induce cell death. So the cleavage of PARP-1 by the active caspase is 

considered as the hallmark of apoptosis (Wen et al., 2012, Chaitanya et al., 2010, Fischer et al., 

2003, Kaufmann et al., 1993). In contrast, the increased activities or protein levels of 

anti-apoptotic proteins sequester the homo oligomerization of BAX and BAK, which stops 

them forming the spanning pores on the mitochondrial outer membrane and so blocks the 

release of cytochrome c and apoptosis (Wei et al., 2001). Thus up-regulating the activities of 

the pro-apoptotic proteins or blocking the activities of the anti-apoptotic protein can induce 

apoptosis.   

 

MCL-1 (myeloid cell leukaemia-1), a BCL-2 super-family protein has been shown to be 

degraded in response to prolonged mitotic arrest and this often resulted in cell death (Harley 

et al., 2010, Sakurikar et al., 2012, Chu et al., 2012, Kawabata et al., 2012). When MCL-1 is 

stabilized, it promotes the survival of mitotic cells (Topham and Taylor, 2013, Wertz et al., 

2011). Thus MCL-1 plays a critical role in the determination of cell fate in response to 

prolonged mitosis (Harley et al., 2010, Wertz et al., 2011). The exact mechanism for MCL-1 

degradation remains unclear, however, its degradation can be blocked by the proteasome 

inhibitor MG132 (Harley et al., 2010) suggesting that the ubiquitin-mediated E3 ligases such 

as the APC/C (Harley et al., 2010), SCFFBW7 (Inuzuka et al., 2011b), and MULE (Inuzuka et 
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al., 2011a, Zhong et al., 2005) are involved. As such, MCL-1 seems to possess a critical role 

in combination with the dynamic role of cyclin B1 in determining the cell fate in prolonged 

mitosis (Matson and Stukenberg, 2011). 

 

 

1.7 Aims 

 

1.7.1 The spatial-temporal formation mechanism and function of the CDC20-MAD2 

sub-complex of the MCC in the cell cycle 

 

The activation of the SAC is often referred to as the kinetochore-dependent assembly of the 

MCC. The formation of CDC20-MAD2 is an initial and essential step in assembly of the 

MCC (Sudakin et al., 2001). Therefore, the mechanism of MCC assembly and formation can 

be depicted by the observing the formation of the CDC20-MAD2 complex. However, 

evidence has also suggested that the MCC can form independently of unattached kinetochores 

(Poddar et al., 2005, Fraschini et al., 2001, Meraldi et al., 2004), and that the MCC can be 

isolated from interphase cell extracts where the kinetochore is not yet formed (Sudakin et al., 

2001). The CDC20-MAD2 sub-complex is still biochemically detectable when Ndc10, an 

essential protein for core kinetochore assembly has been mutated (Fraschini et al., 2001). 

Some SAC proteins can exert their inhibitory functions on the APC/C independent of 

kinetochores in the absence of kinetochores (Tang et al., 2001a, Fang, 2002, Meraldi et al., 

2004). The dynamic assembly of the CDC20-MAD2 complex has never been revealed in vivo. 

Therefore, examining the CDC20-MAD2 complex in individual cells to investigate when the 

MCC forms during the cell cycle will provide clues as to whether the process is 

kinetochore-dependent or not. 

 

Previous work in the lab, using the Duolink based in situ proximity ligation assay (PLA) with 

specific primary antibodies against endogenous CDC20 and MAD2 in single HeLa cells, has 

revealed that the formation of the CDC20-MAD2 complex was cell cycle regulated and has a 
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“Bell” shaped profile (Figure 1.11). It starts to accumulate after late G2, increases in prophase 

before NEBD when the SAC has not been activated, peaks at prometaphase, and then 

gradually declines (Figure 1.11). This suggests that the unattached kinetochores might not be 

the only source for facilitating the assembly of CDC20-MAD2. Duolink PLA technology 

makes use of two primary antibodies raised in different animal species to target two interest 

proteins in fixed individual single cells. Species-specific secondary antibodies (PLA probes), 

each conjugated with a unique short oligonucleotide tail, bind to the primary antibodies. 

When the PLA probes are in close proximity (<40nm), these oligonucleotide tails can then act 

as a template for rolling circle amplification, and this amplification will produce a dot of 

fluorescent signal when labeled by complementary oligonucleotide probes (Soderberg et al., 

2006). The advantage of using PLA is that it can avoid biochemical extraction or the creation 

of exogenous over-expressed fusion proteins and can assign signals to specific subcellular 

locations of the fixed individual cells under-examination. But, whether the CDC20-MAD2 

fluorescent signals revealed by the PLA could reflect the genuine physical interactions 

between the two proteins, CDC20 and MAD2, must be tested. In this study, 1. We would use 

two small chemical compounds, M2I-1 (MAD2 inhibitor-1) and reversine (MPS1 inhibitor), 

to test the genuine physical interaction of CDC20-MAD2 revealed by the PLA approach. 

M2I-1 is a small molecule that can disturb the in vitro interactions of CDC20 and MAD2 

(Kastl et al., 2015); and reversine is a potent MPS1 kinase inhibitor, MPS1 is required for the 

assembly of the MCC (Maciejowski et al., 2010, Santaguida et al., 2010). 2. After confirming 

the existence of a prophase CDC20-MAD2 complex formed independent of the kinetochores, 

we will then investigate its potential physiological function by examining if this prophase 

CDC20-MAD2 complex could prevent the premature degradation of cyclin B1 in early 

prophase.  
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Figure 1.11: The profile of CDC20-MAD2 complex in cell cycle. 
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The PLA and projected Z-stack sectional confocal images were used to detect CDC20-MAD2 

complex signals in fixed unperturbed HeLa cell, and image j software was used to analyse the 

level of CDC20-MAD2 complex in the different stages. White and yellow dash circle lines 

highlight the cytoplasmic and nuclear region respectively, the arrows and arrowheads 

highlight the fluorescent signals in the nucleus and cytoplasm respectively. DAPI (in blue) 

and microtubules (in green) morphologies were used to determine the cell cycle stages. (a) 

The interaction of CDC20-MAD2 is occurs during the cell cycle in a “bell” shaped manner, it 

starts to significantly increase from prophase, peak at prometaphase and decrease from 

metaphase, with a very low complex signal detectable in interphase. (b) & (c) The 

CDC20-MAD2 complex signal was not shown between pairs of MAD2-random IgG and 

CDC20-random IgG. (d) The staining of pericentrin antibody (in green) and DAPI (in blue) 

were used to further mark the cell cycle stages: interphase, late G2, early prophase and 

prophase, PLA detects the CDC20-MAD2 signal in these cell stages. (e) The quantitative 

profile in cell cycle of CDC20-MAD2 interaction illustrated by the average PLA signal from 

entire cellular regions (as shown with white dash line). Int: Interphase, L-G2: Late G2, Pro: 

Prophase, ProM: Prometaphase, Met: Metaphase, Ana: Anaphase, Telo: Telophase. Scale bar 

= 5µm. (f-k) showing the CDC20-MAD2 PLA signal in cells with or without the depletion of 

CDC20 or MAD2 using siRNA for 48 hours, the representative images were shown in (f) and 

(i). The quantitative results were shown in (g) and (j), the western blotting results indicated 

the reduction of endogenous protein of CDC20 in (h) and (k) respectively. DNA (DAPI 

staining) in grey and blue in merged images. Centrosomes (staining with percentrin) were 

shown in green. n: The number of cells used for quantification. ****P <0.0001. Standard 

deviation bars are in red.  

 

1.7.2 Characterization of the potential degradation mechanism of p31comet in HeLa cells 

 

As discussed above, it has been shown that p31comet may be destroyed in late mitosis. Initial 

sequence analysis indicated that p31comet contains three putative destruction boxes, which are 

the signature for destruction of the mitotic proteins by the APC/C-mediated proteolysis 

pathway (Habu et al., 2002). The mass spectrometry analysis also indicated that p31comet 

contains multiple potential ubiquitination sites (Udeshi et al., 2013, Wagner et al., 2011). 

However, the turnover of p31comet targeted by the APC/C or any other ubiquitin-mediated E3 

ligases and its relevant physiological functions have yet to be characterized. In this study, we 

would 1. Investigate and examine the expression profile of p31comet throughout the cell cycle. 

2. Try to dissect the degradation mechanism of p31comet by specific antibody 

immuno-chemical analysis as well as by conventional biochemical approaches.  
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1.7.3 The molecular basis of mitotic cell death in the case of down-regulating the SAC 

 

MAD2 inhibitor (M2I-1) is the first small molecule identified that disrupt the interactions 

between MAD2 and CDC20 or MAD2 and MAD1, which has been shown to weaken the 

SAC in HeLa cells (Kastl et al., 2015), and would theoretically promote cell slippage under a 

provoked SAC. Surprisingly, our preliminary observations show that M2I-1 can significantly 

increase cell death in several cancer cell lines when combined with anti-mitotic drugs such as 

nocodazole and Taxol. Therefore, we have systematically studied the potential mechanism 

that underlies the cell death induced by M2I-1 in the presence of nocodazole or Taxol. 
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Chapter Two. Materials and Methods 

 

2.1. Materials 

 

2.1.1 Cell lines 

 

HeLa cell line: HeLa-Kyoto cell line (HeLa cell hereafter), a human cervical cancer cells 

used in my project was kindly provided by Dr. Diana Papini from Prof. Jonathan Higgins’s 

Lab. 

 

HT 29 cell line（originated from human Caucasian colon adenocarcinoma); A549 cell line 

(originated from human lung cancer); MCF-7 cell line (originated from human Caucasian 

breast adenocarcinoma cancer cell); U2OS cell line (originated from human osteosarcoma 

cancer) were kindly provided by Dr. Yan Zhao from the Northern Institute for Cancer 

Research (NICR), Newcastle University (UK). 

 

Histone 2B-GFP HeLa cell line and a RPE1-MAD2-Venus cell line were kindly provided 

by Prof. Jonathan Pine’s lab (CRUK). 

 

p31comet CRISPR/Cas9-KO HeLa cell line was kindly provided by Prof. Cheeseman’s lab 

(MIT department of Biology, US). 

 

2.1.2 Solutions and chemicals 

Table 2.1 Solvents and detergents 

 

Name of solution Code Source 

Dimethyl sulfoxide 

(DMSO) 

Sc-358801 Santa Cruz  

((Dallas, Texas, USA)) 
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Glycerol  
 

G5516 Sigma-Aldrich 

(Dorset, UK) 

Tween-20 Sc-2913 Santa Cruz  

(Dallas, Texas, USA) 

Methanol  M/4000/17 Sigma-Aldrich 

(Dorset, UK) 

Ethanol  E/06500DF/17 Sigma-Aldrich 

(Dorset, UK) 

Triton-100 T8787 Sigma-Aldrich 

(Dorset, UK) 

 

Table 2.2 Chemicals 

 

Name of Chemicals Code   Stock 

concentration 

Source 

Solid sodium chloride 

  (NaCL) 

7647-14-5 Storeas 

powder 

Fisher-Scientific 

(Waltham,MA,USA) 

Tris (hydroxymethyl) 

aminomethane 

77-86-1 Store as 

powder 

Fisher-Scientific 

(Waltham, MA, USA) 

Nocodazole M1404 10g/ml in 

DMSO 

Sigma-Aldrich 

(Dorset, UK) 

Taxol  33069-62-4 10µM in 

DMSO 

Sigma-Aldrich 

(St. Louis, MO, USA) 

MAD2 inhibitor-1 

(M2I-1) 

GLXC-063

07 

10mM in 

DMSO 

Sigma-Aldrich 

(St. Louis, MO, USA) 

Reversine C656820-3

2-5 

1M in DMSO Sigma-Aldrich 

(St. Louis, MO, USA) 

Carbo-benzoxy-leucyl-leucyl-le

ucinal (MG132) 

133407-82-

6 

10mM in 

DMSO 

Sigma-Aldrich 

(St. Louis, MO, USA) 

Leupetin 103476-89-

7 

10M in 

DMSO 

Sigma-Aldrich, 

(St. Louis, MO, USA) 

Thymidine  358801 2M in   

DMSO 

Sigma-Aldrich, 

(St. Louis, MO, USA) 

4′,6-diamidino-2-phenylindole 

(DAPI) 

D9542 1:100 in water Sigma-Aldrich, 

(St. Louis, MO, USA) 

Doxycycline hyclate D9891 1mg/ml Sigma-Aldrich 

(St. Louis, MO, USA) 

Cycloheximide 66-81-9 500M in 

ethanol 

Sigma-Aldrich, 

(St. Louis, MO, USA) 

G418 disulfate salt A1720 100mg/ml Sigma-Aldrich 

(St. Louis, MO, USA) 

https://www.sigmaaldrich.com/catalog/search?term=33069-62-4&interface=CAS%20No.&lang=en&region=US&focus=product
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Etoposide 

(VP-16) 
E1383 

 

10M in  

DMSO 

Sigma-Aldrich, 

(St. Louis, MO, USA) 

Paraformaldehyde 30525-89-4 3.7% in 

sterilized water 

Sigma-Aldrich, 

(St. Louis, MO, USA) 

Poly-D-lysine hydrobromide P7405 0.1mg/ml in  

sterilized water 

Sigma-Aldrich 

(St. Louis, MO, USA) 

Ethylenediaminetetraacetic Acid 

(EDTA) 

60-00-4 0.25M in 

sterilized water 

Sigma-Aldrich 

(St. Louis, MO, USA) 

Bovine Serum Albumin 

(BSA) 

Sc-2323 5% (v/v) in 

sterilized water 

Santa Cruz  

(Dallas, Texas, USA) 

Anaphase Promoting Complex 

Inhibitor (APCin) 

1-444 5mM in 

DMSO 

Boston Biochem 

(Cambridge, MA,USA) 

Tosyl-L-arginine 

methylester(TAME) 

sc-207949 5mM in 

DMSO 

Santa Cruz  

(Dallas, Texas, USA) 

 

2.1.3 Buffers 

 

1x PBS (Phosphate Buffer Saline) buffer 

Prepared from 10 x PBS (Phosphate Buffer Saline，D1408, Sigma-Aldrich,UK) stock solution 

using steriliseddeionised water (H2O) in 1:9 dilution accordingly. 

 

1x PBST 

1x PBS containing 0.1% Tween-20 or 0.2% triton X-100 

 

Duolink in situ proximity ligation assay (PLA) washing Buffer A 

0.01 M Tris pH 7.4, 0.15 M NaCL, 0.05% Tween 20 

Filter the buffer through a 0.22 m filter and store at 4℃ oC for use. 

 

Duolink in situ PLA washing Buffer B 

0.2 M Tris pH 7.5, 0.1 M NaCL 

Filter the buffer through a 0.22 m filter and store at 4oC for use. 

 

http://chemocare.com/chemotherapy/drug-info/etoposide.aspx


47 

 

1x protein sample loading buffer 

2% SDS, 5% β-mercaptoethanol, 60 nM Tris (pH 6.8), 0.01% Bromophenol Blue, 10% 

glycerol 

 

1x MOPS protein gel running buffer 

50 mM MOPS, 50 mM Tris base, 0.1% SDS, 1 mM EDTA, pH 7.7 

 

1x Western blot transfer buffer: 

25 mM Tris base, 190 mM Glycine, 20% Methanol 

 

NETN cell lysis buffer 

50 mM Tris/HCL pH7.6, 150 mM NaCL, 1 mM EDTA, 0.5% NP40 

 

1x Protease inhibitor cocktail 

The original 10x Protease inhibitor cocktail was purchased from Sigma-Aldrich (p8340), and 

diluted in lysis buffer before prior the use.  

 

50x TAE (Tris-Acetate-EDTA) buffer 

2 M Tris base, 1 M Acetic acid, 50mM EDTA 

The pH was adjusted to 8.5 with an appropriate amount of NaOH solution, and the buffer 

autoclaved before use. 

 

6x DNA loading buffer 

10 mM Tris-HCL (pH 7.6), 0.03% Bromophenol Blue, 0.03% xylene cyanol FF, 60% glycerol, 

60 mM EDTA 

 

LB agar medium 

10g NaCL, 10g tryptone, 5g yeast extract, 20g agar 

Dissolved in de-ionised H2O and the volume adjusted to 1L. 
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The pH was adjusted to 7.0 with an appropriate amount NaOH solution, and the solution 

stored for use after being autoclaved  

 

1x Odyssey blocking solution 

Odyssey blocking solution (from LI-COR Biosciences UK) was diluted with 1xPBS in 1:1 

ratio prior of the use. 

2.1.4 Antibodies 

Table 2.3 The list of primary antibodies 

 

Antibody name Type  Code  Dilution Source  

Anti-MAD2 Mouse 

monoclonal  

Sc-47747  IF: 1:250 

WB:1:500 

Santa Cruz  

(Dallas, Texas, USA) 

Anti-MAD2 Rabbit, 

Polyclonal 

BL-1461 IF: 1:250 

WB:1:500 

Santa Cruz  

(Dallas, Texas, USA) 

Anti-MAD2 Rabbit, 

Polyclonal 

A310-082

A 

IF: 1:250 

WB:1:500 

Bethyl 

(Dallas, Texas, USA) 

Anti-full length 

MAD2 

Rabbit, 

Polyclonal 

PRB-452

C 

IF: 1:250 

WB:1:500 

Convance 

(London,UK) 

Anti-p55/CDC20 

(E-7) 

Mouse, 

monoclonal  

Sc-13162

L 

IF: 1:250 

WB:1:500 

Santa Cruz  

(Dallas, Texas, USA) 

Anti-CDC20 Rabbit, 

Polyclonal 

Ab26483 IF: 1:250 

WB:1:500 

Abcam  

(Cambridge, UK) 

Anti-phosphohisto

ne3  S-10 

Rabbit, 

Polyclonal 

 06-570 WB:1:1000 Millipore, UK 

Anti-pericentrin Rabbit, 

Polyclonal 

Ab 4448 IF: 1:500 Abcam  

(Cambridge, UK) 

Anti-cyclin B1 

(GNS1) 

Mouse, 

monoclonal 

SC-245 IF: 1:250 

WB:1:500 

Santa Cruz  

(Dallas, Texas, USA) 

Anti-cyclin B1 

(H-433) 

Rabbit, 

Polyclonal 

Sc-752 IF: 1:250 

WB:1:500 

Santa Cruz  

(Dallas, Texas, USA 

Anti-p31comet 

(Anti-MAD2L1BP

) 

Rabbit, 

Polyclonal 

Ab150363 IF: 1:250 

WB:1:2000 

Abcam  

(Cambridge, UK)  

Anti-β-Actin (C4) Mouse, 

monoclonal 

Sc-47778 WB:1:1000 Santa Cruz  

(Dallas, Texas, USA 

Anti-MCL-1  

 S-19 

Rabbit, 

Polyclonal 

Sc-819 

 

WB:1:500 

 

Santa Cruz  

(Dallas, Texas, USA 
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Anti-GAPDH   Rabbit, 

Polyclonal 

Ab9485 WB:1:2000 Abcam  

(Cambridge, UK) 

Anti-GAPDH   Mouse, 

monoclonal 

Ma5-1573

8 

WB:1:2000 ThermoFisher 

Scientific (Waltham, 

MA, USA) 

Anti- Caspase-3  

( E-87) 

Rabbit, 

Polyclonal 

Ab32351 WB:1:1000 Abcam  

(Cambridge, UK) 

Anti-GFP Rabbit, 

Polyclonal 

Sc-8334 WB:1:500 Santa Cruz  

(Dallas, Texas, USA 

Anti- H2AX 

S-139 

Rabbit, 

Polyclonal 

Ab-2839 IF: 1:250 

 

Abcam  

(Cambridge, UK) 

GFP-Trap A 

geta-20 

Rabbit, 

Polyclonal 

70112001

A 

WB:1:500 ChromoTek 

(NY, USA) 

Anti-BID 

FL-195 

Rabbit, 

Polyclonal 

Sc-11423 WB:1:500 Santa Cruz  

(Dallas, Texas, USA 

Anti-BIM 

H-5 

Rabbit, 

Polyclonal 

Sc-37435

8 

WB:1:500 Santa Cruz  

(Dallas, Texas, USA 

Anti-NOXA 

FL-54 

Rabbit, 

Polyclonal 

Sc-30209 WB:1:500 Santa Cruz  

(Dallas, Texas, USA 

Anti-PUMA 

G-3 

Rabbit, 

Polyclonal 

Sc-37422

3 

WB:1:500 Santa Cruz  

(Dallas, Texas, USA 

IF: Immunofluorescence staining, WB: Western blotting. 

Table 2.4 The list of secondary antibodies 

 

Antibody name Type  Code  Dilution Source  

IgG-H+L 

(DyLight 488) 

Goat polyclonal 

to rabbit 

ab96899 1:1000 Abcam  

(Cambridge, UK) 

IgG-H+L(FITC) Goat polyclonal 

to mouse 

ab6785 1:1000 Abcam  

(Cambridge, UK) 

IgG-H&L (Cy5) Goat polyclonal 

to rabbit 

ab6564 1:1000 Abcam  

(Cambridge, UK) 

IgG-H&L (Cy3) Goat polyclonal 

to mouse 

ab97035 1:1000 Abcam  

(Cambridge, UK) 

IRDye 680 donkey anti–

rabbit 

926–

322227 

1:2000 Li-COR Biosciences 

(Lincoln, Nebraska, 

USA) 

IRDye 800CW donkey anti–

mouse 

926–

32212 

1:2000 LI-COR Biosciences 

(Lincoln, Nebraska, 

USA) 
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2.1.5 PLA regents 

Duolink in situ PLA probe anti-rabbit PLUS (DUO92002), Duolink in situ PLA probe 

anti-mouse-MINUS (DUO92004), Duolink in situ Detection regents including the blocking 

solution, ligation solution (5x), amplification solution (5x), ligase (A42012), polymerase 

(A42013) were all purchased from and distributed by Sigma-Aldrich.  

 

2.1.6 Plasmid DNA transfection regents 

Plasmid DNA transfection was performed using the LipofectamineTM3000 kits 

(TheromoFisher Scientific, UK). This kit includes p3000TM regent and LipofectamineTM 3000 

regent. 

 

2.2 Methods 

2.2.1 Cell culture 

Normally, cells (besides the p31comet CRISPR/Cas9-KoHeLa cell line) were grown in 75cm2 

flasks with complete medium (Dulbecco’s modified Eagle’s medium-DMEM) containing 1% 

non-essential amino-acids (Sigma-Aldrich), 1% L-glutamine (Sigma-Aldrich), 10% fetal 

bovine serum (Sigma-Aldrich), 1% penicillin/streptomycin (Sigma-Aldrich) at 37ºC and 5% 

CO2 in a humidified incubator and maintained under standard processes. The complete 

DMEM medium was renewed and cells were split every 2-3 days, when the cell population 

reached 60-80% confluence, to maintain the appropriate cell density. The routine process 

includes removing the media first from the culture flask and washing the cells with 5ml 

pre-warmed 1xPBS briefly, then the cells were treated with 3-5ml pre-warmed trypsin (Sigma 

Aldrich) at 37℃, 5% CO2, for 3 minutes to detach the cells from adhering to the bottom of the 

flask. This is followed by the addition 6 ml complete DMEM media to terminate the trypsin 

activity. 5ml of this cell culture solution was then removed and replaced with 11ml fresh 

complete media and the cells were maintained at 37oC, 5% CO2 in an incubator for use. 
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For the culturing of the p31cometCRISPR/Cas9-KoHeLa cell line, the cells were either grown 

in doxycycline free complete medium (Dulbecco’s modified Eagle’s medium-DMEM) 

containing 1% non-essential amino-acids, 1% L-glutamine, 10% tetracycline free fetal bovine 

serum, 1% penicillin/streptomycin for routine maintenance, or treated with an appropriate 

amount of doxycycline in complete medium as indicated to induce the knockdown/depletion 

of the endogenous p31comet expression.  

 

2.2.2 Coverslips preparation 

 

10mm diameter round bioscillate glass coverslips (VWR. Leuven, Belgium) were sterilized 

by immersing in 100% ethanol for 5 minutes and left on a paper towel in a TC hood to dry, 

and were then Poly-lysine treated to enhance cell adherence, this was conducted by soaked 

these coverslips in 100µg/ml Poly-lysine (Sigma-Aldrich) for 5minutes before being allowed 

to dry for 2 hours on a paper towel. An individual coverslip was then placed into each well of 

a 24-well culture plate (Santa Cruz) before transfer of the designated cells for cell culture. 

 

2.2.3 Cell fixation 

 

For the PLA assay to detect in vivo protein-protein interactions in cells, the cells were grown 

on 10mm coverslips in wells of a culture plate as described above. The medium was gently 

aspirated using an appropriate pipette and the cells were washed twice with 1ml 1xPBS, and 

then fixed with 1ml pre-cold (-20℃) methanol fixation solution for 15minutes at room 

temperature before they were kept at -20℃ for use. 

 

For conventional immunofluorescence, the cells were placed on 10 mm coverslips in the wells 

of a 24 or 96 well plate with a clear glass bottom under appropriate culture condition as 

described before. At the end of the designated time intervals, the medium was aspirated gently 

using an appropriate pipette and the cells were washed twice with 1ml (for each well of the 
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24-wells plate) or 200µl (for each well of the 96-wells plate) of 1x PBS, then replaced with 

1ml (for 24-wells plate) or 200µl (for 96-wells plate) of 4% paraformaldehyde and left for 15 

minutes fixation at room temperature. After this, cells were washed three times with 1xPBS, 

and replaced with 1ml or 200µl pre-cold (-20℃) methanol respectively and kept at -20℃ for 

use. 

 

2.2.4 Using Duolink PLA to detect in vivo CDC20-MAD2 interaction 

 

The cold-methanol fixed cells on coverslips were transferred into wells of a 12-wells culture 

plate (one coverslip per well), the cells were rehydrated and permeabilized with 0.2% PBST 

for 6 minutes, and washed with 1xPBS for 5 minutes, followed by steps described below. 

 

Two steps blocking: Firstly, the cells were incubated with an appropriate amount of a 

blocking solution (5% BSA in 1xPBS) for anti-pericentrin antibody staining at room 

temperature for 15 minutes; and then the cells were treated with 20μl/per coverslip 

commercial PLA blocking solution (from Duolink kit) at room temperature for 10 minutes. 

 

Primary antibodies staining: After thorough removal of the PLA blocking solution using a 

clean strip of waterman paper (GE Life sciences, Little Chalfont, UK), 25μl of the 

anti-CDC20 mouse antibody (Santa Cruz, Sc-13162L) and the anti-MAD rabbit antibody 

(Santa Cruz, BL-1461) in PLA diluent in 1:250 dilution was applied onto each of coverslips, 

and the cells were incubated at 37oC for 120 minutes or overnight at 4oC.  

 

Secondary antibody staining: After incubation, the cells on the coverslips were washed with 

buffer A (3x5 minutes) with gentle agitation; and then the solution was removed and the 

coverslips dried using a strip of waterman paper before applying the secondary antibodies. 

The 15μl of the Duolink in situ PLA probe containing the anti-rabbit PLUS (DUO92002) 

(1:500 dilutions) and anti-mouse-MINUS (DUO92004) secondary antibodies (1:500 dilutions) 
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in PLA diluent were applied onto each of the coverslips to detect the primary antibodies. This 

was then incubated at 37oC for a further 60 minutes. 

 

Ligation and amplification process: After the above treatment, the cells on the coverslips 

were washed with buffer A (3x 5 minutes) with gentle agitation, and were then incubated with 

15μl per-coverslip of the ligation solution (this is available from the commercial kit) for 30 

minutes at 37oC. The cells were then washed with buffer A (2x2 minutes) with gentle agitation 

before 15μl amplification solution per-coverslip was applied and the coverslips were 

incubated at 37oC for 120 minutes. This was followed by washing the cells twice with buffer 

B (2 minutes each) with no agitation.   

 

To determine the cell stages, the cells were additionally stained with an anti-pericentrin 

antibody to highlight the centrosome morphologies and DAPI to highlight the DNA 

morphologies. Briefly, 20µl of the pericentrin antibody (Ab4448, Abcam) diluted 1:500 

dilution in PLA diluent was applied onto each coverslip. The coverslips were then incubated 

at 37oC for 120 minutes. After washing with 1xPBS(3x 5 minutes), 20µlsecondary antibody 

(goat anti-rabbit Dylight 488nm antibody, 1:500 dilution) containing DAPI (1:3000) in PLA 

diluent was applied onto each of the coverslips and incubated at 37oC for 60 minutes. The 

coverslips were washed with 1xPBS three times and then transferred onto a paper towel for 

air dry. This was followed by mounting with 50% glycerol PBS solution. 

 

2.2.5 Conventional immunofluorescence staining 

 

For testing a specific protein expression profile from individual cells, conventional 

immunofluorescence (IF) was used. Briefly, a sample of the permeabilized cells on a coverslip 

was washed with 1xPBS and blocked with 5% BSA (Bovine Serum Albumin) containing 0.2% 

triton X-100 for 30 minutes at room temperature. The cells were then incubated with 20µl 

primary antibody per coverslip (1:500 dilution in 5% BSA-PBS) at 37oC for 120 minutes. The 

cells were washed with 1xPBS three times (5 minutes for each) and this was followed by 
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incubation with secondary antibodies (Cy5 or Cy3) at 37oC for 60 minutes. After which the 

coverslips were washed with 1xPBS three times (5 minutes for each) and air-dried before 

mounted with 50% glycerol-PBS mounting solution and stored for use.  

 

2.2.6 Coverslips Mounting 

 

After the coverslip was air-dried on a piece of blue roll paper, it was mounted on a 

microscope slide (Academy Science, Beckenham, UK) with 5µl 50% glycerol-PBS mounting 

solution and sealed with nail polish. The sample in wells of a 96-wells plate was directly 

mounted by addition of 100µl 50% glycerol to cover the cells. 

 

2.2.7 Confocal microscopy 

 

The stained and mounted cell samples were scanned with Leica TCS SP2 confocal laser 

scanning microscope system using the HCX APO CS 40x 1.25 oil objective lens. Different 

lasers with specific wavelengths of 405nm UV laser, 488nm argon laser, 558nm laser, 594nm 

helium laser and 650nm laser were used to detect the DAPI, FITC (or GFP), Cy3, TexasRed 

(signal of the PLA complex) and Cy5 fluorescent signals respectively. Sequential scanning 

protocol was used to avoid bleed-through interference between channels; and a Z-stack 

scanning setting with the distance of 0.3μm between sections was used to cover and collect 

the data to represent the maximum fluorescent intensity of an entire cell volume for 

calculation and comparison. These Z-stack images were projected to produce a single image 

and used for assay. 

 

2.2.8 Quantification of the fluorescent signals 
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The fluorescence intensity either representing an entire cell volume from the projected images 

or a selected region of interest from a specific section of a Z-stack image was quantified.  

ImageJ and photoshop software were used to measure and edit the images respectively. In this 

project, the average fluorescent intensities are represented by the arbitrary unit of the average 

of intensities of the fluorescent signals in the areas of interest. 

 

2.2.9 Western blotting and immunodetection of protein levels 

 

Sample preparation: To harvest cells from different experimental conditions, the culture 

medium containing any cells that have already detached from the bottom of the flask/well and 

are floating in the solution were collected into a 15ml Falcon tube. Those cells attached to the 

bottom of flasks or wells from each group were then washed with 1xPBS, followed by 

incubation with 1ml trypsin at 37oC for 2 minutes to detach the cells. These newly suspended 

cells were collected and combined with the cells in the appropriate Falcon tube that had 

previously been collected. This suspension of cells was centrifuged at 1300 rpm and 4oC for 4 

minutes, and the supernatant carefully removed and discarded. The cell pellet was washed 

with cold 1xPBS twice and re-suspended in NETN lysis buffer on ice for 30 minutes to lyse 

the cells. The lysed sample was centrifuged at 15000 rpm at 4oC for 15 minutes and the 

supernatant was transferred into a fresh 1.5ml Eppendorf tube.  

 

The measurement of a protein concentration: The protein concentration was measured 

using the Bradford assay (Bio-Rad). The Bio-Rad reagent (Cat. #500-0006) was diluted in 

water in a ratio of 1:5. 1ml BSA protein standard solutions were prepared in the range of 0 to 

50µg/ml (I used 0 µg/ml, 5 µg/ml, 10 µg/ml, 15 µg/ml, 20 µg/ml, 25 µg/ml in my 

experiments) diluted in 1:5 Bio-Rad regent. 5µl of an unknown concentration protein sample 

was mixed with 995µl diluted Bio-Rad regent (dilution factor 1:200). All the solutions were 

incubated at room temperature for 5 minutes respectively before their individual absorbance 

at 595nm was read using a calibrated Spectra Max M3. The final protein concentration of the 

individual samples was then calculated.  
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Protein sample denaturing: For preparing samples for SDS-PAGE, an appropriate amount 

of 5xSDS sample loading buffer was mixed with the samples so as to reduce the 

concentrations to that of 1xSDS loading buffer and the samples were denatured by incubation 

at 95oC for 10 minutes. 

 

SDS-PAGE and western blotting: 30-60µg protein samples as described above were loaded 

and ran on a pre-cast RunBlue Bis-Tris gel (NBT 01012, Expedeon). A 12% gel was used to 

detect caspase-3 (for detecting the small molecular weight fragments of cleaved caspase-3), 

and a 10% gel was used to detect other proteins. Proteins were separated using constant 

voltage at 180-200v with 1x Tris-MOPS-SDS running buffer (NXB75500, Expedeon the 

composition of this is described in 2.1.2) for about 1 hour. Subsequently, proteins separated 

from this SDS-PAGE gel were transferred onto an appropriate piece of 0.2µm reinforced 

nitrocellulose membrane (Schleicher & Schuell) at 80mA in 1x transfer buffer (its 

composition described in 2.1.2) for about 2 hours. The nitrocellulose membrane was cut to 

contain the region of the protein of interest and blocked with the odyssey blocking solution at 

room temperature for 60 minutes to reduce the non-specific background. 

 

Immunoblotting and fluorescent detection of the protein bands: After blocking, the 

nitrocellulose membrane was incubated with specific primary antibodies in odyssey blocking 

solution (in 1:500-2000 dilutions depending on the individual quality of the antibody used) at 

4oC overnight or at room temperature for 120 minutes. Followed by washing for three times 5 

minutes in 0.1% PBST. The membrane was then incubated with corresponding secondary 

antibodies of donkey anti-rabbit IRDye 680 or donkey anti-mouse IRDye 800CW (Invitrogen, 

1:2000 dilutions in blocking solution) for 60 minutes at room temperature. After being probed 

with the secondary antibodies, the membrane was washed with 0.1% PBST three times again, 

and the fluorescent signals of protein bands of interest were detected by a CCD scanner 

(Odyssey, LI-COR Bioscience). ImageJ software was used to quantify the intensities of the 

bands. The average intensity of each band was normalized by the average intensity of the 
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corresponding loading controls either revealed by a β-Actin or a GAPDH band where 

appropriate. 

 

2.2.10 Co-immunoprecipitation for detecting the in vivo interaction between CDC20 and 

MAD2 

 

The RPE1-MAD2-Venus cells were grown in 60mm dishes to 80% confluence and were 

treated for 16 hours with either 60ng/ml nocodazole, or 60ng/ml nocodazole combined with 

50µM M2I-1 respectively. The cells were then collected after trypsin treatment and 

centrifuged at 1300rpm and 4℃ for 4 minutes. The cell pellets were washed with an 

appropriate amount of cold 1xPBS and were lysed in 300µl NETN lysis buffer (10mM 

Tris-HCL pH7.5, 150mM NaCl; 0.5mM EDTA; 0.5% NP-40 containing 1x Protease Inhibitor 

Cocktail) on ice for 30 minutes. The supernatants were transferred into fresh 1.5ml tubes after 

being centrifuged at 15000 rpm and 4oC for 15 minutes. The protein concentration of each 

sample was measured and adjusted to about 1µg/ml using the lysis buffer. 50µl of the 

supernatant was kept as the pre-IP sample after being mixed with an equal volume of a 2x 

sample-loading buffer. A slurry of GFP-Trap-A beads was washed and equilibrated with the 

dilution buffer (NETN buffer free of NP-40) three times. 25µl of these beads were then added 

to the remaining supernatant and incubated at 4oC for one hour with end-to-end gentle 

rotation. After the incubation, samples were centrifuged at 2500xg for 2 minutes at 4oC to 

pellet the GFP-Trap-A beads. 50µl of the supernatant was removed and mixed with an equal 

volume of 2x sample loading buffer and kept as the supernatant after IP (SN sample). The 

pellets of the GFP-Trap-A beads were washed three times with the cold dilution buffer, and 

then re-suspended in 100μl 2x SDS sample loading buffer used as the IP samples. All of the 

samples were heated at 95oC for 10 minutes to denature the proteins before being used for 

western blot analysis. 
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2.2.11 Nikon AIR fully automated high-speed confocal image system for live cell imaging 

 

The histone 2B-GFP HeLa cells were grown and treated with drugs either as described 

previously or in next section. Time-lapse images of the cells were recorded for 24 hours with 

a time interval of 5 minutes using a Nikon AIR fully automated high-speed confocal image 

system at 37oC provided with 5%CO2 and appropriate humidity. The GFP fluorescence at 

488nm and DIC images were acquired throughout the time course, and the images were 

processed, analysed and quantified using NIS elements, ImageJ and Adobe Photoshop 

software.  

 

2.3 Drug treatments 

 

For the in vivo comparison of PLA signals of the CDC20-MAD2 complex or cyclin B1 in 

individual cells: HeLa cells were grown on coverslips in wells of a 24-wells plate for 24 

hours to 60-80% confluence, and then each group of the cells were treated with either 0.5% 

(v/v) DMSO or 50µM M2I-1 in 0.5% DMSO for 16 hours. The treated cells were fixed with 

pre-cooled methanol for PLA analysis.  

 

For the western blot assays the expression profiles of CDC20 and MAD2: HeLa cells were 

grown in 6-wells plates for 24 hours to 60-80% confluence, and then each group were treated 

with either 0.5% (v/v) DMSO or 50µM M2I-1 in 0.5% DMSO for 16 hours. Cells were 

harvested and prepared for western blot analysis as described before. 

 

Double thymidine treatment for synchronization of cells in S phase: HeLa cells were treated 

with 2mM thymidine (Sigma) for 18 hours, and then released into an appropriate amount of 

fresh medium for 8 hours, followed by a second round of blocking with 2mM thymidine for 

another 16 hours. The cells were then released into an appropriate amount of fresh medium. It 

is generally thought that these synchronized cells would stay in S phase for 6-8 hours, and 

that subsequently they would enter mitosis.    
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For the evaluation of the PLAs of the CDC20-MAD2 complex after cell treated with MPS1 

inhibitor: HeLa cells were grown on coverslips in 24-wells plate for 24 hours to 30-40% 

confluence. After being synchronized in S phase by double thymidine (DT) block-release 

treatment, the cells were released for 7 hours from the second DT blocking and were then 

treated with either 0.5% DMSO (v/v) or 0.5µM Reversine in 0.5% DMSO for 1.5 hours, and 

then by either 0.5% DMSO with 10µM MG132, or 0.5µM Revesine with 10µM MG132 in 

0.5% DMSO for another 3 hours to prevent mitotic slippage. The cells were fixed by 

pre-colded methanol as described before for PLA analysis. 

 

For the co-immunoprecipitation assay of the in vivo interactions between CDC20 and 

MAD2: The RPE1-MAD2-venus cells were grown in 60mm2 dishes overnight to 60-80% 

confluence, and the cells were then treated with either nocodazole (60ng/ml) or nocodazole 

(60ng/ml) combined with M2I-1 (50µM) for 16 hours. The cells were harvested and lysed   

for the co-immunoprecipitation analysis as described before.  

 

For assessing the expression of p31comet in different cell lines after nocodazole treatment: 

HeLa, MCF-7, A549, HT29, and U2OS cells were placed 6-wells plate for 24 hours to 60-80% 

confluence, and then treated with either DMSO (0.5% in v/v) or nocodazole (60ng/ml) for 16 

hours . The cells were harvested and prepared for western blotting as describe before. 

 

For assessing the specificity of an anti-p31comet antibody: The p31comet CRISPR/Cas9-KO 

HeLa cells were grown in wells of a 6-wells plate and treated with two different 

concentrations of doxycycline (1µg/ml and 10µg/ml respectively) for 3 days, and a set of 

untreated cells was used as the control. The cells were harvested and lysed for western 

blotting as described before. 

 

For assessing the molecular mechanism that underlies the accumulation of p31comet in 

response to nocodazole treatment: HeLa cells were synchronized in S phase by double 
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thymidine block-release treatment. After incubation for 6-8 hours in fresh medium from the 

second block, the cells were treated with one of 60ng/ml nocodazole, 60ng/ml nocodazole 

combined with 10µM cycloheximide, or 60ng/ml nocodazole combined with 10µM MG132 

and 10µM cycloheximide for 6 hours. After the treatment, the cells were harvested and lysed 

for western blotting as described before. 

 

For assessing the dynamic expression profile of p31comet in cells after released from mitotic 

arrest: HeLa cells were grown in a 75cm2 flask and were treated with 60ng/ml nocodazole for 

16 hours, and the mitotically arrested cells were shaken off the flask and briefly washed with 

1xPBS and then were placed into fresh medium in 6-wells plates. The cells were harvested at 

0 and 3 hours respectively and the cell lysates were prepared for western blotting as described 

before. 

 

For assessing the involvement of the proteasome in the potential proteolysis of p31comet: The 

mitotically arrested cells resulting from nocodazole treatment as described above were either 

placed into fresh media containing 10µM MG132, or media containing 100mM leupeptin and 

incubated for 3 hours. The cells were then harvested, and the cell lysates prepared for blotting 

as described before. 

 

For assessing cell death in different cell lines: HeLa cells or cells from MCF-7, A549, HT29, 

U2OS cell lines were grown in wells of a 24-well plates for 24 hours to 60-80% confluence, 

and the cells treated with M2I-1 (50µM), nocodazole (60ng/ml), Taxol (30nM), nocodazole 

(60ng/ml) or Taxol (30nM) combined with M2I-1(50µM) in 0.5% DMSO, and 0.5% DMSO 

alone for 16 hours respectively. Images of the cells were taken after the treatments using a 

digital camera mounted on a tissue culture microscope (using a 20x objective lens) and used 

for analysis of cell death determined by typical apoptotic-like cell morphologies. At the same 

time, the cells were harvested, and cell lysates were prepared for western blot analysis to 

examine the expression levels of cyclinB1, MCL-1, MCL-1s, Bim, Bid, Puma, Noxa, 
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phosphorylated histone H3, Caspase-3 and PARP-1. Some of the cells were fixed for the 

analysis of the formation ofγ-H2AX foci by immunofluorescent staining. 

2.4 Knocking down genes by siRNA 

 

HeLa cells were seeded in the wells of a 6-wells plate and were grown in antibiotic free 

medium before they were transfected with a specific siRNAof interest using the 

DharmaFECT system (Dharmacon) according to the manufacture’s protocol. Briefly, 10µl 

siRNA (5µM stock) and 5µl DharmaFECT regent were separately mixed with 190µl 

Opti-MEM (serum and anti-biotic free medium) respectively and incubated at room 

temperature for five minutes. These solutions were then mixed together and kept at room 

temperature for 20 minutes. After this, the siRNA mixtures were individually transferred into 

and mixed with 2ml antibiotic free medium and used to replace the culture medium in the 

wells of the plate. The cells were incubated in the presence of the specific siRNA for 72 hours. 

If required, the cells would be re-transfected with the same amount of siRNA as described 

above and the culture left for an additional 24-48 hours where appropriate. The cells were 

harvested, and samples were prepared accordingly for analysis. 

 

Table 2.5 The oligo dimers used for siRNA transfections 

 

Name of 

the siRNA 

Company Product code Sequence or description  

APC3 ThermoFisher 

Scinetific 

s2759 CDC27hs validated 

Silencer®Select siRNA 

APC3 GE Healthcare UK M-003229-03- 

0005 

siGENOME Human CDC27 (996) 

siRNA- SMARTpool 

Cullin-1 ThermoFisher 

Scinetific 

s228373 CUL1hs Silencer®Select siRNA 

Cullin-1 GE Healthcare UK  L-004086-00- 

0005 

ON-TARGETplus Human CUL1 

(8454) siRNA -SMARTpool 
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CDC20 GE Healthcare UK M-003225-05- 

0005 

siGENOME Human CDC20 (991) 

siRNA- SMARTpool 

 

2.5 Constructing the pCMV-6-AN-mGFP-MCL-1 and pCMV-6-AN-mGFP-MCL-1s 

plasmid DNA 

 

The original pcDNA3-flag-MCL-1L and pcDNA3-flag-MCL-1s (human) were kindly 

provided by Professor Jeehyeon Bae’s lab at Chung-Ang university of South Korea. The 

plasmids details are shown in figure 2.1.  

 

 

 

Figure2.1:The schematic of the original pcDNA3-flag-MCL-1L and pcDNA3-flag- 

MCL-1splasmid. 
 

The cDNA sequence of MCL-1 or MCL-1s (highlighted in blue) is inserted into the 

mammalian expression vector of pcDNA3-FLAG between the BamH1 and EcoR1 restriction 

sites as indicated. The plasmid DNA of pcDNA3-FLAG-MCL-1(s) is ampicillin resistance. 

 

2.5.1 The plasmid DNA purification. 
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The original pcDNA3-flag-MCL-1L and pcDNA3-flag-MCL-1s plasmid DNA were 

transfected and amplified in NOVA Blue competent cells. Briefly, 1µl of the original plasmid 

DNA was transfected into 50µl NOVA blue competent cells in a round-bottom falcon tube and 

left on ice for 30 minutes. The cells were then heat-shocked by placing the tube at 42oC for 45 

seconds in a water bath. The tube with the competent cells were left on ice for 2 minutes then 

added to 950µl of LB culture medium and left to incubate at 37oC for 1 hour. The culture 

mixture was transferred into a 1.5ml Eppendorf tube and centrifuged for 1 minute at 5,000 

rpm to collect the cells. The NOVA blue cells were resuspended in 250µl LB culture medium, 

200µl of this cell mixture was spread onto a pre-warmed LB-agarose plate containing 100 

mg/ml ampicillin, and the plates were then left upside-down at 37oC overnight. The next day, 

single positive colonies were selected using sterilized tooth-picks and cultured overnight in 

5ml LB medium containing 100µg/ml ampicillin with vigorous shaking at 37oC.  

 

After being grown overnight, the plasmid DNA was purified using a PureYieldTM plasmid 

miniprep system (A1223, Promega). Briefly, 600µl of the bacterial mixture was transferred 

into a 1.5ml micro-centrifuge tube, and 100µl of cell lysis buffer (blue) was added and mixed 

by inverting the tube 6 times. 350ml of cold (4-8oC) neutralisation solution was added and 

mixed thoroughly by inverting. The lysis mixture was centrifuged at 15000 rpm for 3 minutes, 

and 900µl supernatant was transferred into a PureYieldTM minicolumn without disturbing the 

cell debris in the pellet. The column was centrifuged at 15000 rpm for 30 seconds. The 

flow-through was discarded and the minicolumn was placed into a fresh collection tube. 

400µl Column Wash Solution (CWC) was applied to the column and the column was 

centrifuged at 15000 rpm for 30 seconds. The minicolumn was then transferred into a clean 

1.5ml microcentrifuge tube, and 30µl of nuclease free water was added before the column was 

centrifuge at 2500xg for 30 seconds to collect the plasmid DNA. The concentration of the 

collected plasmid DNA was determined before it was stored for later use. 

 

2.5.2 The PCR amplification of MCL-1 and MCL-1s cDNA 
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The purified plasmid DNA of pcDNA3-FLG-MCL-1 and pcDNA3-FLG-MCL-1s was used as 

the DNA template for PCR of MCL-1 and MLC-1s cDNA fragments to incorporate an Sgf1 

restriction enzyme site at the 5’ end of the sequence and a Mul1 restriction enzyme site at the 

3’ end of thesequence and the PCR fragments of the Sgf1-MCL-1(s)-Mul1 were subsequently 

subcloned into a mammalian expression vector, pCMV6-AN-mGFP, at Sgf1 and Mul1 sites. 

The processes were conducted in collaboration with and the pCMV6-AN-mGFP vector was 

provided by Dr. Paul Jowsey from The Medical Toxicology Centre, Institute of Cellular 

Medicine, NIHR Health Protection Research Unit, Newcastle University. 

 

The primer pair used for MCL-1 PCR:  

5’-GAATTCGCGATCGCCATGTTTGGCCTCAAAAGAAACGC 

3’-GAATTCACGCGTTCATCTTATTAGATATGCCAAACC  

 

The primer pair used for MCL-1s PCR: 

5’-GAATTCGCGATCGCCATGTTTGGCCTCAAAAGAAACGC 

3’-GAATTCACGCGTTCACAGTAAGGCTATCTTATTAGATATGC 
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Figure 2.2: The schematic of the pCMV6-AN-mGFP expression vector and its multiple 

sub-cloning sites. 

 

The pCMV6-AN-mGFP vector expresses the GFP as a tagged protein flanked with the 

C-terminal of the inserted protein. mGFP is an improved variant of GFP. The mGFP possesses 

bright green fluorescence with excitation and emission maxima at 483nm and 506nm 

respectively. 

 

2.5.3 The verification of pCMV6-AN-MCL-1-mGFP and pCMV6-AN-MCL-1s-mGFP 

plasmid DNA by agarose gel electrophoresis after restriction enzyme digestion 

 

The pCMV6-AN-MCL-1-mGFP and pCMV6-AN-MCL-1s-mGFP plasmid DNA was 

digested with the restriction enzyme Not1 as it has a unique restriction site in the 

MCL-1/MCL-1s cDNA sequence and a unique site in the multi-sub-cloning site of the vector 
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as shown in Figure 2.2. Briefly, 0.5-1µg (about 5µl) of the purified plasmid DNA was 

digested in 20µl reaction mixture containing 1µl Not1, 2µl 10x digestion buffer, and mixed 

with 12µl sterilized water, and incubated at 37oC for 2 hours. The mixture was loaded into the 

wells of a 0.8% agarose gel after mixing with an appropriate amount of 5x DNA loading 

buffer. The digested DNA fragment was separated under a constant 200 volts along with a 1kb 

DNA ladder to determine the size of DNA fragments. The DNA bands were visualized using 

ethidium bromide under UV light and photographed with a gel documentation system 

(BioGene BV2040). The result is shown in Figure 2.3. 

 

 



67 

 

 

 

Figure 2.3: The schematic diagram of restriction enzyme sites of pCMV6-AN-Mcl-1- 

mGFP and pCMV6-AN-Mcl-1s-mGFP DNA, and the DNA fragments found after 

digestion by restriction enzyme Not1. 

 

a. The graphic maps of pCMV6-AN-MCL-1-mGFP and pCMV6-AN-MCL-1s-mGFP with 

the restriction enzyme sites of Kpan1, Sgf1 and Mul1 highlighted and with the nucleotide 

positions in the plasmid indicated (to scale).  Not1 restriction enzyme at 231bp from the 5’ 

end of MCL-1 and the existing Not1 in the multi-sub-cloning sites of the vector behind the 

Mul1 at the 3’ end of the MCL-1/1s were used to verify the DNA constructs. The positions of 

the primer of ‘pCEP-F’ (forward) and designed ‘SeqR’ (reverse, 5’ATCCCTGTGACCCCTCCCC3’) 

for sequencing are highlighted with semi-arrows. The expected DNA fragments after the 

digestion with Not1 of pCMV6-AN-MCL-1-mGFP are 0.8kb and 6.8kb and for 

pCMV6-AN-MCL-1s-mGFP are 6.8kb and 0.6kb respectively. b. After being digested by 

Not1, the samples were run on a 0.8% agarose gel with 1xTAE running buffer at 200 volts for 

25 minutes. There is a high molecular weight band of around 7 kb and a 0.8kb band above the 

0.5kb marker associated with the pCMV6-AN-MCL-1-mGFP (GFP-MCL-1) plasmid DNA 

digestion, and a band of around 6.8kb and another at roughly 0.6kb associated with the 

pCMV-AN-MCL-1s-GFP (GFP-MCL-1s) plasmid DNA digestion. These bands are consistent 

with the sizes of expected with the Not1 digestion as shown in a. 
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2.5.4 The plasmid DNA sequencing. 

 

To further verify and confirm that there are no additional point mutations introduced into the 

GFP-MCL-1or MCL-1s DNA sequence of pCMV6-AN-MCL-1-mGFP and pCMV6-AN- 

MCL-1s-mGFP plasmid DNA by the PCR process each of the plasmid DNA samples and a 

home designed primer ‘SeqR’ were sent to Source Bioscience for DNA sequencing. The 

plasmid DNA was sequenced using pCEP-F and SeqR which starts at 921bp and 2884bp 

(2647bp for GFP-MCL-1s)（as shown in Figure 2.3a）respectively of pCMV-AN-mGFP vector: 

GGG GAG GGG TCA CAG GGA TG).  

 

2.6 The transfections and expression of pCMV-AN-MCL-1s-GFP plasmid DNA in 

MCF-7 cells. 

 

The plasmid DNA transfections were performed using LipofectamineTM3000 (Thermo Fisher 

Scientific, UK) according to the commercial protocol. Briefly, MCF-7 cells were grown in 

wells of a 6-well plate in an antibiotic free DMEM medium to 60% confluence. 2µg of 

pCMV6-AN-MCL-1s-mGFP plasmid DNA was diluted in 125µl Opti-MEM medium 

(antibiotic free and serum free medium) containing 5µl P3000TM. At the same time, 5µl 

LipofectamineTM3000 regent was diluted in 125µl Opti-MEM medium. After 5 minutes 

incubation at room temperature, the two solutions were mixed together and kept at room 

temperature for 15 minutes. The solution containing the DNA lipid complex was then added 

to MCF-7 cells for incubation at 37℃ supplied with 5% CO2 for 24 hours before being 

replacing with fresh complete medium. The transfected cells were examined after 24 hours.  

 

2.7 The verification of the role of MCL-1s in inducing cell death in the presence of 

nocodazole combined with M2I-1. 
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To test the role of MCL-1s in cell death induced by M2I-1 in presence of nocodazole, MCF-7 

cells were transfected with pCMV6-AN-MCL-1s-mGFP plasmid DNA as described above. 

After 24 hours, the transfected MCF-7 cells were collected, split and placed into two wells of 

a 6-wells plate, and cultured at 37oC, 5% CO2 for another 24 hours. The cells in the two wells 

were treated either with 60ng/ml nocodazole or 60ng/ml nocodazole combined with 50µM 

M2I-1 for 16 hours. The treated cells were harvested, and cell lysates were prepared for 

western blotting as described before.   

 

2.8 Statistical analysis 

The data from this study were analyzed using Graph-Pad Prism 7 and reported as means ± s.d 

produced from for at least three independent experiments unless stated otherwise. Before the 

t-test, the data distributions were first determined by the Kolmogorov-Smirnov test using 

Graph-Pad Prism7, only data where the distribution gave a p＞0.10 to indicate a normal 

distribution would then be used for statistical analysis by t-testing; any non-normally 

distributed data was analysed by ANOVA. The statistical tests used are indicated in the 

corresponding text and figure legends respectively. In both cases a p-value of 0.05 was 

determined to be significant.  
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Chapter Three: The kinetochore-dependent and independent formation of 

the CDC20-MAD2 complex and its function in HeLa cells 

 

3.1 Introduction 

 

The SAC maintains genome stability by generating an anaphase “wait signal” prior to the 

metaphase/anaphase transition in mitosis, to ensure the accurate segregation of the 

sister-chromatids. It was thought that unattached kinetochores were the sole source for the 

SAC inhibitory signals, as a single unattached kinetochore can produce sufficient signals to 

delay anaphase for several hours (Rieder et al., 1995). Several proteins such as MAD2, 

BUBR1, BUB3, and MPS1 have been identified as the essential components of the SAC. The 

mitotic checkpoint complex (MCC) is the predominant APC/C inhibitory signal responsible 

for SAC activity and comprises MAD2, BUB3, BUBR1 and CDC20 (Sudakin et al., 2001, 

Lara-Gonzalez et al., 2012). The molecular basis of this kinetochore-dependent formation of 

the MCC is partly illustrated by the “MAD2 template model”, which suggested that 

kinetochores bound to MAD1 can recruit an open form of MAD2 (O-MAD2) and change its 

conformation to a closed form of MAD2 (C-MAD2). This C-MAD2 can then recruit another 

O-MAD2 and change its conformation to an intermediate form MAD2 (I-MAD2). As MAD1 

and CDC20 have the same binding site on C-MAD2, this intermediate form of MAD2 

somehow binds to CDC20 to create the CDC20-MAD2 sub-complex (Musacchio and Salmon, 

2007, De Antoni et al., 2005, Lens et al., 2003). According to this model the SAC works like 

an “on” and “off” switch. However, this kinetochore-dependent “on” and “off” working 

model has been challenged by some contradictory findings, since the MCC or its sub-complex 

CDC20-MAD2 can still be detected when the essential kinetochore genes have been mutated 

(Klebig et al., 2009, Poddar et al., 2005) or isolated from interphase cell extracts before the 

formation of kinetochores (Sudakin et al., 2001). Evidence also suggests that the SAC activity 

depends on the amount of the MCC formed and its strength is controlled like a rheostat, rather 

than in an “on” and “off” manner (Collin et al., 2013). It has also been shown that a nuclear 
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pore component, Tpr protein, can facilitate the formation of the CDC20-MAD2 complex 

using interphase cell extracts (Lee et al., 2008, Schweizer et al., 2013). Therefore, whether the 

kinetochore is the exclusive platform for cascading the SAC inhibitory signal is still 

questionable and when and where the MCC is formed remains elusive. 

 

To study the spatio-temporal assembly of the CDC20-MAD2 complex in vivo of cells, the lab 

has established previously the Duolink based proximity ligation assay (PLA) to detect the 

interaction of CDC20 and MAD2 in individual fixed HeLa cells using specific antibodies 

against CDC20 and MAD2 respectively (Please see material and methods for details). 

Duolink PLA can directly detect the protein-protein interaction in an individual cell when two 

proteins of interest either form a complex or are in close proximity less than 40nm (Soderberg 

et al., 2006, Jarvius et al., 2007, Gullberg et al., 2004). It avoids both biochemical extraction 

and overexpressing an exogenous fusion protein. The preliminary results show that the 

interaction between CDC20 and MAD2 is cell cycle regulated and displays a “Bell” shaped 

profile. The CDC20-MAD2 complex formation starts before nuclear envelope breakdown 

(NEBD) in prophase, peaks at prometaphase and begins to decline by metaphase (Figure 1.11 

a, d & e). The fluorescent signals detected by PLA are specific to the selected antibodies as 

there were no detectable signals when the anti-MAD2 antibody was paired with a relevant 

random IgG or when the anti-CDC20 antibody was paired with a relevant random IgG 

antibody (Figure 1.11 b & c), which also was confirmed by the results that the depletion of 

CDC20 or MAD2 reduced the CDC20-MAD2 PLA signal (Figure 1.11 f, g, h, I＆k). Based 

on the observations from the single cells, these results are surprising as：1. The assembly of 

the CDC20-MAD2 complex occurs not in an ‘on’ and ‘off’ manner but in a ‘bell’ shape; 2. 

The accumulation of the CDC20-MAD2 complex is not only detected in prometaphase and 

metaphase cells, but also in various stages of prophase cells when the SAC is not supposed to 

have been turned on; 3. There is very little detectable interaction between CDC20 and MAD2 

in interphase cells. 4. There are still detectable signals in anaphase cells though they are at a 

very low level.  
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This might provide new insight into the SAC mechanism in terms of MCC formation in 

mitosis. Duolink based in situ PLA uses two specific primary antibodies combined with the 

specific secondary antibodies (PLA probes) to target two proteins complex of interest, 

theoretically it can detect the complex signalling from two proteins of interest within a 

distance of 40nm close proximity without actual physical interaction. Therefore, if these PLA 

signals displayed in the Figure 1.11 would reflect the genuine interactions between CDC20 

and MAD2 remain to be tested.  

 

3.2 Objectives  

3.2.1. Using two small molecules, M2I-1 (MAD2 inhibitor-1) and reversine (MPS1 

inhibitor), to test the genuine physical interaction of CDC20-MAD2 revealed by the PLA 

approach shown in Figure 1.11. 

 

M2I-1 is a small molecule that can disturb the in vitro interactions of CDC20 and MAD2 

(Kastl et al., 2015); and reversine is a potent MPS1 kinase inhibitor, MPS1 is required for the 

assembly of the MCC (Maciejowski et al., 2010, Santaguida et al., 2010). Therefore, if the 

PLA signals displayed in Figure 1.11 reflect the genuine interactions between CDC20 and 

MAD2, we would anticipate that the fluorescent signals would disappear or be significantly 

reduced after treatment with either M2I-1 or reversine.  

 

3.2.2. To investigate the physiological function of the prophase specific CDC20-MAD2 

complex formed independent of the kinetochores. 

 

As we have shown previously the accumulation of the CDC20-MAD2 complex is not only 

detected in prometaphase and metaphase cells, but also in various stages of prophase cells 

where the kinetochore has not yet formed, and the SAC is not supposed to have been turned 

on (Sudakin et al., 2001). Therefore, we will investigate any potential physiological functions 

by examining if this prophase CDC20-MAD2 complex could prevent the premature 
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degradation of cyclin B1 in the early prophase of HeLa cells using PLA and conventional 

western blot analysis.   

 

 

3.3 Results 

3.3.1 M2I-1 can disrupt the in vivo interaction of CDC20 and MAD2 and significantly 

reduces the PLA signals of the CDC20-MAD2 complex in HeLa cells 

 

To test if the PLA signals shown in Figure 1.11 reflect a genuine interaction between CDC20 

and MAD2, we used the MAD2 inhibitor M2I-1, a small chemical that has been shown to 

disturb the in vitro interaction between a recombinant CDC20 and full length MAD2 (Kastl et 

al., 2015). We first checked if it could also disrupt the in vivo interaction between CDC20 and 

MAD2. Cell extracts were prepared from a MAD2-Venus RPE1 cell line after cells were 

treated with either 60ng/ml nocodazole or 60ng/ml nocodazole combined with 50μM M2I-1, 

and these extracts were used for co-immunoprecipitation conducted with an anti-GFP 

antibody. Nocodazole is a well-established anti-mitotic drug used in cell biology to activate 

the spindle assembly checkpoint (SAC) and arrest cells in mitosis. Nocodazole is known to 

bind with high affinity to tubulin dimers and interfere with the polymerization of microtubules 

(Mollinedo and Gajate, 2003, Jordan et al., 1992, Modriansky and Dvorak, 2005). The 

western blot results (Figure.3.1) show that the GFP antibody has precipitated almost all the 

MAD2-Venus fusion protein. A proportion of the CDC20 was co-precipitated with 

MAD2-Venus from the cell extract where the cells were only treated with nocodazole, but 

there was still a substantial amount of CDC20 remaining in the supernatant (sample SN) after 

depletion. In contrast, there was no detectable CDC20 co-precipitated with MAD2-Venus 

from the samples of the cells treated with nocodazole combined with M2I-1. This indicates 

that M2I-1 can disrupt the interaction between CDC20 and MAD2 in vivo.  
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Figure 3.1: M2I-1 disrupts the interaction between CDC20 and MAD2 in vivo. 

 

The MAD2-venus RPE1 cells were treated with nocodazole (60ng/ml) or nocodazole 

(60ng/ml) combined with M2I-1(50µM). A GFP-Trap kit was used to precipitate 

MAD2-venus from the cell extracts prepared from the treated cells. The specific anti-CDC20 

and MAD2 antibodies were used to detect CDC20 and MAD2 protein bands on a western blot. 

Pre-IP: cell extracts before addition of GFP antibody beads, SN: supernatant after antibody 

depletion, IP: Samples prepared from the pellets of the immunoprecipitation.  

 

As a result of this we anticipated that the PLA signals of the CDC20-MAD2 complex would 

decrease or disappear after treated with M2I-1 in HeLa cells if the PLA signals of the 

MAD2-CDC20 seen in Figure1.11 genuinely reflected the physical interaction of 

CDC20-MAD2. HeLa cells were treated with either 50µM M2I-1 or with 0.5% DMSO as a 

control for 16 hours (Kastl et al., 2015). The PLA was applied to detect CDC20-MAD2 

interaction. The representative images at different cell cycle stages are shown in Figure 3.2a. 

From these, we found that the CDC20-MAD2 PLA signal decreased after M2I-1 treatment at 

various stages between early prophase and metaphase (Fig.3.2a). Quantitative data (Figure 

3.2b) indicated that there was a 62.5% reduction in the average signal intensity of the 

CDC20-MAD2 complex in prophase cells, and collectively a 76.1% reduction in 

prometaphase and metaphase cells. This reduction in the signal seen with PLA is comparable 

to that shown in vitro by biochemical analysis where about an 86% reduction were seen using 
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recombinant proteins at the same concentration of M2I-1 (Kastl et al., 2015). Thus, the PLA 

signals are due to the interaction between CDC20 and MAD2 and the profile seen across the 

various stages of the cell cycle reflects its dynamic distribution. 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: M2I-1 can significantly reduce the interaction between CDC20 and MAD2 

revealed by PLA. 

 
HeLa cells were treated with M2I-1 (50µM) in DMSO and DMSO (0.5%, v/v) respectively. 

The interactions of CDC20 and MAD2 were revealed by PLA in fixed cells. The projected 

Z-stack confocal images are displayed as indicated and ImageJ was used to quantify the 

average fluorescent intensities from the areas of interest. (a) Representative confocal images 

showing cells at early prophase (Early Pro), prophase (Pro), prometaphase (ProM), metaphase 

(Met), anaphase (Ana) and telophase (Telo). The cell cycle stages were determined by DNA 

morphology (DAPI staining in the top panel in grey and blue in the bottom panel), and the 

separation of the centrosomes (staining with pericentrin antibody in green on the second panel 

from top). The PLA fluorescent signals representing the CDC20-MAD2 complexes are 

displayed in red in the third panel from the top. The bottom panel shows the merged images. 

The white circle dash lines highlight the cell boundaries and the yellow circle dash lines 

highlight the nucleus. The arrows highlight the cytoplasmic or nuclear regions in cells at early 

prophase or prophase. The scale bar=5µm. (b) The average fluorescent intensities were 

quantified from cells at the indicated stages. A two-tailed unpaired t-test was used to assess 

the significance between two groups as indicated. Statistical significance was assigned where 

p<0.05 (**** p< 0.0001). Standard deviation bars are in red. 

 

a b 
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3.3.2 The M2I-1 induced reduction of the PLA signals of the CDC20-MAD2 complex is 

not due to decreased levels of CDC20 or MAD2 protein 

 

Having established that M2I-1 can disrupt the interaction between CDC20 and MAD2 in vivo, 

and consequently reduce the PLA signals of CDC20-MAD2 complex in cells, we needed to 

determine whether the reduction in the PLA signal could result from decreased levels of either 

or both CDC20 and MAD2 by degradation or inhibition of the expression during M2I-1 

treatment in HeLa cells. To test this, we examined the CDC20 and MAD2 levels after cells 

were treated by M2I-1 as described before, and the results are shown in Figure 3.3. There are 

no clear visible differences in the levels of CDC20 and MAD2 between the control (DMSO 

treated) andM2I-1 treated samples. Therefore, the observed reduction of the PLA signal of the 

CDC20-MAD2 complex resulted from the proteins not associating rather than reduced levels 

of these proteins. 

 

 

 

 

 

 

 

 

 

Figure 3.3: The levels of CDC20 and MAD2 remained stable after treated with M2I-1 in 

HeLa cells. 

 

After HeLa cells were treated with DMSO (0.5%, v/v) and M2I-1 (50µM in 0.5% DMSO) 

under the same conditions as described before, the cell extracts were prepared for western 

blotting using a specific anti-CDC20 or MAD2 antibody, and an anti-GAPDH antibody. 

GAPDH bands were used as the loading control.  
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3.3.3 Inhibition of MPS1 kinase activity significantly reduced the PLA signals of 

CDC20-MAD2 complex 

 

To further test that the PLA signals generated from the paired specific antibodies against 

CDC20 and MAD2 reflected the dynamic assembly of the CDC20-MAD2 complex, we have 

performed the PLA after the cells were treated with Reversine, a potent MPS1 kinase inhibitor 

(Maciejowski et al., 2010, Santaguida et al., 2010). MPS1 is also a SAC component and its 

kinase activity is known to be required for MCC formation, and the functions of most of the 

checkpoint proteins are dependent, directly or in directly on its activity (Liu and Winey, 2012). 

The PLA was performed after HeLa cells were treated with 0.5μM reversine together with 

10Μm MG132 or MG132 alone in DMSO as the control. MG132 (carbobenzoxyl-L- 

leucyl-L-leucyl-L-leucinal), a known proteasome inhibitor will inhibit 20s proteasome 

activity to block protein degradation via ubiquitylation (Zhang et al., 2013, Kisselev and 

Goldberg, 2001, Genschik et al., 1998, Steinhilb et al., 2001). As a result this should prevent 

the degradation of CDC20 and the cell slippage, as the inhibition of MPS1 would sharply 

accelerate anaphase onset (Maciejowski et al., 2010, Santaguida et al., 2010). As shown in 

Figure 3.4a, the PLA signals of the CDC20-MAD2 complex deceased in cells treated with 

Reversine compared to the control cells. There was about a 50.4% reduction in the average 

intensity of the PLA signals (Figure 3.4b). The degree of the reduction is most likely linked to 

the level of the CDC20-MAD2 complex as it has been shown by co-immunoprecipitation that 

there was only approximately 50% reduction of MAD2 incorporated into the MCC after 

similar treatment in HeLa cells (Tipton et al., 2013). Thus, these results indicate that there is a 

direct correlation between MPS1 activity and the levels of the PLA signal, and it reflects the 

dynamic information about the CDC20 and MAD2 interaction in vivo. 
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Figure 3.4: The inhibition of MPS1 activity induced reduction of PLA signals of 

CDC20-MAD2 complex. 

 

After double thymidine block, cells were washed into fresh media for 7 hours before being 

treated with 0.1% DMSO or 0.5µM Reversine (in 0.1% DMSO) for 1.5h. This treatment was 

replaced by 10µM MG132 or 10µM MG132 combined with 0.5µM Reversine respectively 

for another 3 hours. Cells were fixed and the PLA signals of CDC20 and MAD2 complex 

detected using confocal system. The quantification of the average fluorescent intensities of the 

regions of interest was done using ImageJ software. (a) Representative confocal images 

showing the PLA signals under the two different experimental conditions. (b) The average 

PLA fluorescent intensities in arrested prometaphase and metaphase cells were quantified 

from the regions of interest encircled with the dash lines as shown in (a). Two-tailed uppaired 

t-test was used to assess the difference between the two groups as indicated, p value: ****p 

<0.0001. n: The total number of cells used for quantification. Scale bar = 5 µm. 

 

3.3.4 M2I-1 induces premature degradation of cyclin B1 

 

As these results have proved the PLA fluorescent signals detected using the specific 

antibodies against CDC20 and MAD2 reflect the actual dynamic assembly of the 

CDC20-MAD2 complex at different cell cycle stages (Figure1.11). When brought together 
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with other results from the lab that Tpr, one of the components of the nuclear pore complexes 

(NPCs), can specifically facilitate the formation of the CDC20-MAD2 complex in prophase 

cells independent of the SAC, and which has no effect on its formation in prometaphase and 

metaphase (Li et al., 2017), Our results suggested that there is a specific form of the 

CDC20-MAD2 complex which exists in the various stages of prophase as well as that seen in 

interphase cells (Sudakin et al., 2001). As it is generally believed that the SAC is activated at 

late prophase after nuclear envelope breakdown (NEBD) (Lara-Gonzalez et al., 2012), the 

assembly of this specific prophase CDC20-MAD2 complex might not be kinetochore 

dependent. However, whether these complexes are redundant or possess a function needs to 

be tested.  

 

One of the important mitotic substrates of the APC/C is cyclin B1 regulated by the SAC 

(Huang and Raff, 1999, Clute and Pines, 1999). Cyclin B1 begins to express and accumulate 

in the cytoplasm of late G2 and early prophase cells (Fung and Poon, 2005, Ito, 2000), and the 

CDK1-cyclin B1 kinase activity is required for remodeling the morphologies of the 

chromosomes and microtubules and triggers the nuclear envelope membrane breakdown as 

the cell enters mitosis (Lindqvist et al., 2007, Jackman et al., 2003). Thus, cyclin B1 

degradation must be prevented until late mitosis (Huang and Raff, 1999, Clute and Pines, 

1999). We therefore, speculated that this prophase specific CDC20-MAD2 might also be 

required for protecting cyclin B1 from premature degradation in prophase. 

 

As M2I-1 can disrupt the interaction between CDC20 and MAD2 in vivo (Figure.3.1& 3.2) 

and weakens the SAC in HeLa cells (Kastl et al., 2015), we anticipated that M2I-1 would 

cause the premature degradation of cyclin B1. To test this, HeLa cell were treated for 16 hours 

with either 0.5% DMSO, 50µM M2I-1, 60ng/ml nocodazole, and 60ng/ml nocodazole + 

50µM M2I-1 (all in 0.5% DMSO) and then analyzed by western blotting. Results showed that 

cyclin B1 levels were significantly reduced in the samples treated with M2I-1 or M2I-1+ 

nocodazole (Figure. 3.5a, Lane 2 & 4) compared to the control sample (DMSO) (Figure.3.5a, 

lane 1) and the sample treated with nocodazole alone (Figure. 3.5a, lane 3). Cells after the 
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treatments with DMSO and M2I-1 were fixed with 4% paraformaldehyde and PLA stained 

with a pair of specific anti-cyclin B1 antibodies. Figure 3.5b shows representative confocal 

images allowing comparison of the levels of cyclin B1 at selected cell cycle stages. These 

results show that cyclin B1 was significantly decreased in all cells after treatment with M2I-1 

compared to DMSO treated cells (Figure.3.5c). It can be clearly seen that the reduction in 

cyclin B1 not only occurred at prometaphase and metaphase but also in prophase cells (Figure. 

3.5b＆c). Quantitative results suggested that collectively there was a 76.5% reduction in the 

cyclinB1level in early prophase and prophase cells, and a 79.6% reduction from 

prometaphase and metaphase cells (Figure 3.5c). 
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Figure 3.5: The comparison of the stability of cyclin B1 in HeLa cells after treatment 

with M2I-1. 

 

(a). Cell extracts were prepared from HeLa cells after treatment with DMSO (0.5%), M2I-1 

(50µM), nocodazole (60ng/ml) and nocodazole (60ng/ml) combined M2I-1(50µM) (all in 0.5% 

DMSO) for 16hours. Western blotting was conducted with an anti-cyclin B1 antibody (1:500 

dilution). Actin bands were used as the loading control. (b). HeLa cells on coverslips were 

fixed after the treatment with 50μM M2I-1 or DMSO (0.5%, v/v) for 16 hours, and stained 

with a pair of cyclin B1 antibodies (anti-rabbit, H-433, Sc-752 and anti-mouse, GNS1, Sc-245) 

for PLA. The representative confocal images at different cell cycle stages are displayed. 

Cyclin B1 protein was detected in the cytoplasm of early prophase and prophase cells treated 

with DMSO (control, left panels), while none or very little cyclin B1 was detected in cells 

treated with M2I-1 at similar stages (right panels). Cell cycle stages were determined by DNA 

morphology (DAPI staining in grey in the top panel or in blue in the bottom panel) and 

centrosomes (staining with pericentrinin the second panel in green). The PLA cyclin B1 

fluorescent signals were detected by TexasRed in the third panel (in red), the bottom panel 

shows the merged images. The white circle dash lines highlight the cell boundaries and the 

yellow circle dash lines highlighted the nucleus. Arrows highlighted the centrosomes. 

Arrowheads highlighted the cytoplasmic regions of early prophase or prophase cells. Early 

prophase: EPro, prophase: Pro, pro-metaphase: ProM, metaphase: Met. (c). The average 

intensities of fluorescent signals were quantified from cells at the indicated stages. A 

two-tailed unpaired t-test was used to assess the significance between two groups as indicated.  
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3.4 Discussion 

 

As a surveillance control system, the spindle assembly checkpoint checks the status of 

chromosomal attachment at kinetochores by acting on the anaphase promoting complex/ 

cyclosome (APC/C). It prevents anaphase onset and premature chromosome segregation via 

its effector MCC (Musacchio, 2015). The MCC consists of two sub-complexes 

CDC20-MAD2 and BUBR1-BUB3; however, exactly how the MCC was formed is still not 

fully understood. The “MAD2 template” model has described the mechanism of the 

kinetochore-dependent dynamic recruitment of the SAC proteins and its facilitation on the 

formation of the CDC20-MAD2 complex. Somehow this CDC20-MAD2 subcomplex binds 

to the BUB3-BUBR1 complex to form the MCC (Lara-Gonzalez et al., 2012, Yu, 2006, De 

Antoni et al., 2005). This kinetochore-dependent MCC formation, however, might not be the 

only source of the MCC as it can be isolated from cell extracts of interphase HeLa cells 

(Sudakin and Yen, 2004, Chan et al., 1999). The CDC20-MAD2 and MCC complexes were 

still detectable in the absence of a functional kinetochore in the Ndc10 mutant of budding 

yeast (Poddar et al., 2005, Fraschini et al., 2001). However, it is equally questionable about 

the efficiency of the synchronization step applied for examining the interphase complex, 

based on the biochemical preparation (Dulla and Santamaria, 2011, Coquelle et al., 2006, 

Cooper, 2004, Urbani et al., 1995). Moreover, the existence of the CDC20-MAD2 or MCC 

complex in vivo has never been revealed in individual cell. Therefore, despite it playing a 

central role in SAC function, exactly how the MCC assembly is regulated in terms of the 

strength of the SAC in normal mitotic progression has yet to be determined. 

 

PLA is one of a few widely used and commercially available methods for analyzing 

protein-protein interactions in their native state (http://www.olink.com/products/duolink/ 

applications/protein-interactions). Duolink PLA technology makes use of two primary 

antibodies raised in different animal species to target two proteins of interest in fixed 

individual single cells. Species-specific secondary antibodies (PLA probes), each conjugated 

with a unique short oligonucleotide tail, bind to the primary antibodies. This fluorescent 

http://www.olink.com/products/duolink/%20applications/protein-interactions).%20Duolink
http://www.olink.com/products/duolink/%20applications/protein-interactions).%20Duolink
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signal can be detected and quantified based on microscopy images, for instance a laser 

scanning confocal system with appropriate excitation wavelengths. Therefore, the PLA can 

avoid biochemical extraction or the creation of exogenous over-expressed fusion proteins and 

can assign signals to specific subcellular locations. Using this technique the lab has previously 

demonstrated that the formation of CDC20-MAD2 complex is dynamically regulated in a 

bell-shaped manner in the unperturbed HeLa cell cycle. Only a basal level of the 

CDC20-MAD2 complex is detected in interphase and the complex accumulated from 

prophase onwards and peaked in prometaphase signals from the CDC20-MAD2 complex 

were still detectable in anaphase cells though the levels had declined significantly (Figure 

1.11). However, theoretically the PLA probes can also detect two proteins of interest within a 

distance of 40nm of one another without actual physical interaction. Therefore, if the PLA 

signals displayed in Figure1.11 do reflect a genuine interaction between CDC20 and MAD2 

needs to be tested.  

 

In this study, by treating cells with two small molecules, M2I-1 and reversine, that disrupt the 

CDC20-MAD2 interaction (refs), we have proved that the PLA signals reflect the genuine 

profiles of the dynamic assembly of CDC20-MAD2 complexes at different cell cycle stages in 

single HeLa cells.  
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Chapter Four. The molecular basis of the potential degradation of p31comet 

(MAD2L1BP) in HeLa cells 

 

4.1 Introduction  

 

As discussed in the introduction, p31comet can delay mitosis exit by binding with MAD2 

(Habu et al., 2002, Yang et al., 2007, Xia et al., 2004). Its overexpression increased the 

resistance to antimitotic drugs (Habu and Matsumoto, 2013) while depletion promotes 

sensitivity to antimitotic drugs (Ma et al., 2012). So studying it will improve our 

understanding of the molecular basis of mitotic cell death and adaption (Diaz-Martinez et al., 

2014). The existing publications about the profile of p31comet in the cell cycle contradict each 

other and are ambiguous, as some showed that expression of p31comet increases in mitosis and 

is cell cycle regulated (Habu et al., 2002), but others showed that its levels remain constant 

throughout the cell cycle (Xia et al., 2004). The sequence analysis of p31comet suggested that it 

contains several putative destruction motifs (Habu et al., 2002), which would be potentially 

targeted by the APC/C-dependent ubiquitin-mediated proteolysis. However, the turnover of 

p31comet and its relevant physiological functions have yet to be characterized. 

 

4.2 Objectives  

4.2.1 To investigate and examine the expression profile of p31comet throughout the cell 

cycle using a specific antibody and immuno-chemical analysis as well as by conventional 

biochemical approaches. 

 

To achieve this, we would use immunofluorescent staining using a specific anti-p31comet 

antibody to detect the dynamic expression and distribution patterns of p31comet throughout the 

cell cycle of HeLa cells based on single cell analysis; and we will also use western blotting to 

study the dynamic stability of p31comet at specific stages as well as being treated with various 

drugs.  
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4.2.2. To dissect the degradation mechanism of p31comet using small interfering RNA and 

chemical inhibitors approaches.  

 

It is well know that the ubiquitin-mediated degradation of the cell cycle regulators play 

essential roles in regulating the cell cycle transition at different stages(Choudhury et al., 2016). 

The Skp, Cullin, F-box containing (SCF) complex and the anaphase promoting complex or 

cyclosome (APC/C) are the two E3 ligases that are required for targeting specific substrates 

for degradation in the cell cycle with the SCF mainly targeting the substrates at G1/S and the 

APC/C mainly targeting the substrates in mitosis (Choudhury et al., 2016). As the sequence 

analysis of p31comet has suggested that it contains several putative destruction motifs (Habu et 

al., 2002), which would be potentially targeted by the APC/C-dependent ubiquitin-mediated 

proteolysis. We will first look to see if p31comet is a substrate of the proteasome by treating the 

cells with MG132, which is a potent, and cell-permeable proteasome inhibitor (Zhang et al., 

2013, Kisselev and Goldberg, 2001, Genschik et al., 1998, Steinhilb et al., 2001). This will be 

followed by a comparison of the expression levels of p31comet after transiently disrupting the 

functions of the APC/C or the SCF by using siRNA or chemical inhibitors. 

 

4.3 Results  

4.3.1 Testing the antibody specificity using a p31comet CRISPR/Cas9-KO HeLa cell line 

 

To verify the specificity of p31comet antibody (purchased from Abcam, Ab150363) before 

using it for fluorescent staining and western blotting, we have tested the level of expression of 

p31comet in a p31comet CRISPR/Cas9-KO HeLa cells (a gift from Prof. Iain Cheeseman’s lab), 

as the endogenous p31comet can be knocked down by treatment with doxycycline (McKinley 

and Cheeseman, 2017). Cells were treated with two different concentration of doxycycline for 

72 hours as indicated, and the cell extracts were prepared and subjected to western blot 

analysis with the antibody to p31comet. The level of p31comet is clearly reduced in all of the 

samples treated with doxycycline (Figure 4.1, lane 2 & 3) compared to the control (lane 1). 

The results also suggested that the effective depletion of p31comet is somewhat dose dependent, 
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as the higher concentration of doxycycline induced a greater depletion of p31comet (Figure 4.1, 

lane 2 & 3). Although, a complete knockdown of p31comet was not achieved even using 

10µg/ml of doxycycline, but the result is sufficient to prove that the Ab150363 p31comet 

antibody specifically recognizes p31comet though there is a strong non-specific band around 

25KD. Therefore, there is a need to be cautious when interpreting results derived from the 

immunofluorescent staining. 

 

 

 

 

Figure 4.1: Testing the specificity of anti-p31comet antibody (Ab150363) using p31comet 

CRISPR/Cas9-KO cell line. 

 

The p31cometCRISPR/Cas9-KO line is a gift from Prof. Cheeseman’s lab. Cells were treated 

with two concentrations of doxycycline, 1g/ml and 10g/ml for 72 hours, and a 

parallel-untreated cell sample was used as the control. Cell extracts were prepared for western 

blot analysis with the antibody to p31comet. GAPDH bands were used as the loading control. 

Lane 1 (control); lane 2 and 3 were treated with 1µg/ml and 10 µg/ml of DOX (doxycycline) 

respectively.  

 

4.3.2 The profile of p31comet expression and localization in cell cycle 
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To examine the profile of endogenous p31comet during the cell cycle, we used 

immunofluorescent staining to show the expression and distribution of endogenous p31comet in 

fixed HeLa cells using the anti-p31comet antibody from Abcam (Ab150363) although it also 

recognized a strong non-specific band at around 25KD (Figure 4.1). The results shown 

visually in Figure 4.2a and quantitatively in Figure 4.2b suggested that the p31comet 

immunofluorescent signal is very low in interphase, starts to increase during prophase and 

peaks at pro-metaphase and metaphase and remained constantly high until telophase (Figure 

4.2b). In prophase, the p31comet is unevenly distributed in the nucleus and is partly localized   

around the nuclear envelope and is then distributed across the entire cell cytosol after 

prometaphase. This results partly agreed with previous reports that p31comet increased as 

mitosis progressed (Habu et al., 2002). This preliminary result supports the idea that p31comet 

might indeed be a cell cycle regulated turnover protein.  
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Figure 4.2: The endogenous p31comet expression profile in unperturbed cell cycle of HeLa 

cells. 

 

(a) Representative confocal images are shown from cells at different cell cycle stages as 

indicated at interphase (Int), prophase (Pro), prometaphase (ProM), metaphase (Met), 

anaphase (Ana) and telophase (Telo). Cell cycle phases were determined by DNA morphology 

shown by DAPI (in blue, and grey in the left first column) staining and the position of the 

centrosomes stained by pericentrin antibody in green (grey in the left second column) 

respectively. The p31comet (Ab150363, Abcam) immunofluorescent signals are shown in red 

(grey in the third column), (b) The diagram showing the quantitative profile of p31comet at 

different cell cycle stages. The average fluorescence intensity was quantified from individual 

cells using ImageJ software. Standard deviation bars are in red. The numbers of cell 

quantified in each cell cycle stage shown as n.  

 

4.3.3 The accumulation of p31comet in response to nocodazole treatment is a common 

phenomenon of the cancer cell lines examined in this project 

 

p31comet has been thought to cause the disruption or dissociation of the MCC thus silencing the 

SAC activity (Yang et al., 2007, Habu et al., 2002), and the overexpression of p31comet can 

result in premature exit from mitosis (Habu et al., 2002). However, our preliminary results 

showed that p31comet increased from prophase and peaked at prometaphase and metaphase, 
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and this temporal profile of p31comet is inconsistent with its known functions. To confirm the 

increase of p31comet during mitosis, we examined the level of p31comet in nocodazole arrested 

HeLa cells, an anti-mitotic drug that can activate the SAC by depolymerising microtubules 

and arrest cell at prometaphase (Haraguchi et al., 1997, Rieder and Maiato, 2004). Results 

show that the level of p31comet clearly increased after nocodazole treatment compared to the 

control (Figure 4.3a). The quantitative data indicated that cells treated with nocodazole had a 

p31comet level of 108% compared to the control sample where the cells were only treated with 

DMSO (Figure 4.3b).    

 

 

 

Figure 4.3: The level of p31comet is elevated in HeLa cells after treatment with 

nocodazole. 

 

Cell extracts were prepared from HeLa cells after treatment with 0.5% DMSO (control) and 

60ng/ml nocodazole in 0.5% DMSO (v/v) for 16 hours respectively. (a) The samples of the 

cell extracts were run on a 10% precast Bis-Tris protein gel and the western blot membrane 

was probed with a specific anti-rabbit p31comet antibody (Ab150363, Abcam) and an 

anti-GADPH antibody respectively. The bands of GAPDH were used as the loading control; 

(b) Quantitative comparison of the levels of p31comet was produced from five independent 

experiments. Standard deviation bars are in red. The statistical analysis assigned the 

significance as: **p<0.005. +108.04% indicated that the increased level of p31comet in 

nocodazole treating cells comparing to DMSO treating cells. 
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To verify whether the accumulation of p31comet in response to nocodazole treatment is a 

common phenomenon of cancer cell lines, we then examined p31comet in MCF-7, A549, HT29 

and U2OS cancer lines using the same nocodazole treatment as described. Results indicated 

that the levels of p31comet significantly increased in all cell lines after treatment with 

nocodazole (Figure 4.4). Thus, indicating that the increase in p31comet in response to 

nocodazole treatment is a common phenomenon of cancer cell lines. Therefore, our 

immunofluorescent staining data showing high levels of p31comet in unperturbed mitosis 

agreed with the biochemical results that the level of p31comet will increase when the SAC is 

activated by nocodazole to arrest cells at prometaphase. 

 

 

 

 

 

Figure 4.4: The elevated level of p31comet in response to nocodazole treatment is a 

common phenomenon for different cancer cell lines under examination. 
 

The cell extracts prepared from different cancer cell lines as indicated after treatment with 0.5% 

DMSO (control) and 60ng/ml nocodazole in 0.5% DMSO (v/v) for 16 hours. Samples were 

subject to western blot analysis. The western blot membrane was probed with anti-p31comet 

antibody. GAPDH protein bands act as the loading control. 
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4.3.4 The accumulation of p31comet in response to nocodazole treatment mainly resulted 

from its protein synthesis 

 

Increasing protein synthesis or the blocking of protein degradation will both result in 

accumulation of protein at a particular stage in the cell cycle. To determine which of these 

causes the elevated p31comet after nocodazole treatment, HeLa cells were treated with 

nocodazole, MG132 and cycloheximide under the conditions indicated (Figure 4.5). 

Cycloheximide is a protein synthesis inhibitor (Baliga et al., 1969, Ennis and Lubin, 1964, 

Dai et al., 2013, Schneider-Poetsch et al., 2010). Results showed that the cycloheximide 

blocked the accumulations of p31comet in the presence of nocodazole (Figure 4.5, lane2), while 

the addition of MG132 could not restore p31comet in the presence of cycloheximide (Figure 4.5, 

lane 3). Therefore, this suggests that protein synthesis is the main contributor to the 

accumulation of p31comet in response to nocodazole treatment.  

 

 

 

 

Figure 4.5: Cycloheximide can prevent the accumulation of p31comet in mitotic arrested 

cells in the presence of nocodazole and MG132 respectively or both. 
 

HeLa cells were released for 6 hours from a second thymidine block and were then treated 

with nocodazole, MG132, and Cycloheximide for another 6 hours in the combinations 

indicated. The cell extracts were prepared and subject to western blot analysis using a 10% 
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bis-tris SDS-PAGE gel and the western blot membrane was probed with an anti-p31comet 

antibody. The actin bands acted as the loading control.  

 

4.3.5 The elevated p31comet in response to nocodazole caused arrest declined after cells 

exited from mitosis 

 

Previous publications indicated that p31comet was possibly destroyed after mitosis (Habu et al., 

2002). In agreement with this, our preliminary immunofluorescent staining results also 

indicated that the p31comet level in interphase is significantly lower than it is in other cell cycle 

stages (Figure 4.2). However, the interpretation of the immunofluorescent staining results was 

complicated by the antibody against p31comet (Ab150363, Abcam) also recognizing a 

non-specific band at around 25KD. To further investigate this, nocodazole arrested HeLa cells 

were prepared, washed twice in fresh media and then incubated in fresh culture media without 

nocodazole, samples were then collected, and cell extracts were prepared at the time intervals 

indicated (Figure 4.6a). The samples were analyzed by western blotting, with the 

phospho-histone H3 (S-10) being used as the mitotic status maker. The results showed that the 

majority of the cells exited from mitosis 3 hours after being released from 

nocodazole-arrested mitosis as confirmed by the reduction of the intensity of the 

phosphor-histone H3 S-10 band. The levels of p31comet were clearly reduced from the same 

sample (Figure 4.6a). The quantitative data showed that the level of p31comet reduced 66.1% 

after 3 hours released from nocodazole (Figure 4.6b). This confirmed that the level of p31comet 

will decline after exit from mitosis and remained low in interphase. 
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Figure 4.6: The dynamic profile of p31comet in HeLa cells after being released from 

nocodazole treatment. 

 

The nocodazole arrested mitotic HeLa cells were shaken off from flasks, washed briefly twice 

andthen incubated in fresh medium without nocodazole, and the cell extracts prepared from 

the samples collected at the time points indicated. (a) The samples were subject to western 

blot analysis using a 10% tri-bis SDS-PAGE gel, and the western blot membrane was probed 

with anti-p31comet, anti-phospho-histone 3 (S-10) and anti-GAPDH antibodies respectively. 

The phospho-H3 (S-10) bands were used to illustrate the mitotic status and GAPDH bands 

were used as the loading control. (b) The quantitative comparison of the average intensities of 

the p31comet western blot bands after being calibrated with the loading control. Three 

independent experimental results were used for quantifications. A two-tailed unpaired t-test 

was used to assess the significance between two groups as indicated. Statistical significance 

of **p<0.005. 
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4.3.6 The degradation of p31cometis proteasome-dependent 

 

Our results have supported the idea that p31comet is most likely to be degraded after cells have 

exited mitosis, perhaps in interphase. There are two major proteolytic systems, which 

contribute to the degradation of intracellular proteins: the lysosomal system and the 

ubiquitin-proteasome system (Ciechanover, 2005, Martinez-Vicente et al., 2005, Goldberg, 

2003). To determine which pathway is responsible for p31comet degradation during the cell 

cycle, we introduced two inhibitors: MG132 and leupeptin (N- Acetyl-L- leucyl-L- leucyl- L- 

argininal), a known lysosome inhibitor (Grinde and Seglen, 1980, Han et al., 2014), to 

observe the expression of p31comet after cells were released from nocodazole treatment. We 

expected that MG132 would block the p31comet degradation if it was degraded via the 

ubiquitylation proteasome pathway, and that leupeptin would prevent p31comet decline if it was 

degraded via the lysosomal pathway. Our results showed consistently that p31comet 

significantly decreased 3 hours after the cells were released from nocodazole treatment 

(Figure 4.7 lane 2 compared with lane 1); and that this decline was prevented by the addition 

of MG132 (Figure 4.7, lane 3), but not by the addition of leupeptin (Figure 4.7, lane 4). This 

behavior of p31comet was very similar to the decline of cyclin B1 under the same conditions 

(Figure 4.7). Which suggests that p31comet is most likely degraded via the ubiquitylation 

pathway.  
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Figure 4.7: The proteolytic pathway that contributes to the degradation of p31comet. 

 

HeLa cells were briefly washed twice prior to being incubated in fresh media containing 

10M MG132 or 100M leupeptin after treated with 60mg/ml nocodazole in 0.5% DMSO 

(v/v) for 18 hours. The cell extracts prepared from the cells were treated at the time intervals 

as indicated. The samples were subject to western blot analysis using a 10% tri-bis 

SDS-PAGE gel, and the western blot membrane was probed with anti-p31comet, anti-cyclin B1 

and anti-GAPDH antibodies respectively. The cyclin B1 bands were used to determine the 

mitotic status and GAPDH bands were used as the loading control. 

 

4.3.7 The APC/C possibly contributes to p31comet degradation 

 

The p31comet sequence contains three potential degron motifs (D-box and KEN-box) (Figure 

1.7) recognized by APC/C and also a number of putative ubiquitylation sites (Udeshi et al., 

2013, Wagner et al., 2011).  As MG132 can prevent its decline after release from nocodazole 

treatment (Figure 4.7), it would be targeted by the APC/C-dependent ubiquitin-mediated 

proteolysis. We have examined the level of p31comet after knockdown of the APC3 gene, one 

core subunit of the APC/C, using siRNA. We expected that p31comet would increase after 
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depletion of APC3 if APC/C contributed to its degradation. However, the results were 

inconsistent and contradicted each other from experiment to experiment as so we have seen 

increased, unchanged and decreased levels of p31comet after treatment with APC3 siRNA  

(Figure 4.8 a and b), Consequently it is difficult to reach a conclusion based on these 

preliminary results as to whether or not the APC/C contributes to the degradation of p31comet. 

 

 

 

 

 

Figure 4.8: The expression of p31comet after depletion of APC3. 

 

HeLa cells were incubated either alone as a control or with APC3 siRNA (25nM final 

concentration) for 72 hours, the cell extracts were prepared for western blot analysis. The 

level of APC3 and p31comet were examined by probing with relevant antibodies as indicated. 

GAPDH protein bands were used as the loading control. 

 

4.3.8 SCF E3 ubiquitin-mediated proteolysis possibly contributes to the degradation of 

p31comet 

 

We have shown above that the degradation of p31comet probably occurs by the 

proteasome-mediated proteolytic pathway so that the p31comet level remained low in 
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interphase, and that the APC/C might not be a direct contributor to this process. We therefore 

examined the potential involvement of the Skp1-Cul1-F-box-protein (SCF) E3 ligase in the 

degradation of p31comet. SCF ubiquitin ligase contains Skp-1, Cullins, F-Box and RBX/ROC 

RING finger proteins, and is mainly targets its substrates for degradation during G1 & S 

phases (Deshaies, 1999, Sun et al., 2001, Soucy et al., 2009). Cullin-1 is a scaffold protein 

and one of the core components of the SCF (Zheng et al., 2002, Goldenberg et al., 2004, Wu 

et al., 2000). The cullin-1 was depleted by siRNA and the level of p31comet was examined. As 

the preliminary results shown in Figure 4.9 indicate, there was a 50-60% reduction of Cullin-1 

protein after 72 hours siRNA treatment compared to that in the control and the level of 

p31comet seems to have increased (Figure 4.9). This preliminary result suggests that the SCF 

E3 ligase system might be involved in the degradation of p31comet; however, this has yet to be 

repeated and confirmed. 

 

 

 

Figure 4.9: The expression of p31comet after treatment with cullin-1 siRNA. 

 

After HeLa cells were incubated either alone as a control or with cullin-1 siRNA for 72 hours, 

the cell extracts were prepared subject to western blot analysis. The protein levels of p31comet 

and cullin-1 (cul-1) were probed with the relevant specific antibodies as indicated.  GAPDH 

bands were used as the loading control. 

 

4.4 Discussion  
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We have shown by immunofluorescent staining that the profile of p31comet remains low in 

interphase, starts to increase in prophase and peaks at prometaphase and metaphase, and that 

this high level of p31comet is sustained until telophase. Based on the antibody distribution 

(Abcam, Ab150363) p31comet is unevenly distributed in the nucleus and partly localized 

around of the nuclear envelope at prophase. After nuclear envelope breakdown during 

prometaphase, it is distributed across the entire cell. It has been suggested that expression of 

p31comet is cell cycle regulated (Habu et al., 2002), and we show that a high level of p31comet 

remained during anaphase and telophase, although at a slightly lower level compared with 

that seen in prometaphase and metaphase. However, the level of p31comet is very low in 

interphase, and the increase of p31comet in mitosis and decrease after release from mitosis were 

confirmed by western blot results (Figure 4.3＆4.6). This suggests that the levels of p31comet 

are cell cycle regulated, and it is down-regulated in interphase.  

 

Consistent with these results from the unperturbed cell cycle, a high level of p31comet was also 

detected when cells were arrested in a prometaphase-like stage by nocodazole treatment. The 

high level of accumulation of p31comet in response to nocodazole is a phenomenon common 

to all the cancer cell lines tested in this project. Accumulation of protein in some cell cycle 

stages could either be the result of protein synthesis or of the prevention of protein 

degradation. As the increased level of p31comet in response to nocodazole treatment could be 

prevented by treating the cells with cycloheximide, we have confirmed that the accumulation 

is caused by new protein synthesis.  

 

We have also shown that the level of p31comet declined after cells were released from 

nocodazole treatment, and that this reduction can be prevented by MG132 but not leupeptin. 

Thus p31comet degradation after mitosis is most likely to be mediated by the ubiquitin- 

proteasome pathway. The protein sequence of p31comet contains three potential degron motifs 

(D-box and KEN-box), which are signatures motifs that would normally be targeted by the 

APC/C E3 ligase dependent proteolysis pathway. This suggests that the APC/C might be 

involved in the degradation of p31comet and we anticipated that the level of p31comet would be 
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significantly increased if the function of the APC/C was disrupted. However, treatment of the 

cells with APC3 siRNA, a core subunit of the APC/C, gave inconclusive results with the level 

of p31comet elevated in some cases and lowered in others. This might be due to the number of 

cells arrested in mitosis by APC3 siRNA being different in each experiments, and the 

regulation of the level of p31comet not being directly relevant to the APC/C. Thus, more work 

needs to be done to see if and how the APC/C contributes to p31comet degradation as the 

decline in the level of p31comet after release from nocodazole treatment, suggests that this 

might occur in S/G1 phase, and preliminary results indicate that there is an increased level of 

p31comet after cullin-1 siRNA treatment, it is possible that SCF E3 ligase-ubiquitin-mediated 

proteolysis might contribute to the degradation of p31comet as Cullin-1 is the essential core 

protein of SCF E3 ligase. Thus, the molecular basis of p31comet degradation needs to be further 

investigated.     
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Chapter Five: Inducing apoptosis in cancer cell lines using a small-molecule 

M2I-1 that disrupts the interaction between CDC20 and MAD2 

 

5.1 Introduction  

 

To induce cell death after prolonged mitosis under a constitutively activated SAC is a 

promising strategy for developing an anti-cancer therapy (Visconti et al., 2016b). Many 

traditional anti-mitotic drugs such as taxanes and epothilones are widely used in the clinic 

(McGrogan et al., 2008, Schmidt and Bastians, 2007). It has been suggested that the delayed 

degradation of cyclin B1 and the dynamic activity of MCL-1 jointly decide the cell fate in 

response to prolonged mitosis (Sloss et al., 2016, Holland and Cleveland, 2008).  

 

As stated in the previous chapter, M2I-1 is a small molecule that can disrupt the interactions 

between CDC20 and MAD2 in vitro and causes a weakened SAC in vivo (Kastl et al., 2015). 

We have confirmed that M2I-1 can disrupt the interaction of CDC20 and MAD2 in vivo 

(Figure 3.1 ＆3.2); and shown that it also causes premature cyclin B1 degradation in HeLa 

cells (Figure 3.5). As a traditional microtubule poison, nocodazole causes depolymerisation of 

the microtubules to activate the SAC and arrests the cell at prometaphase (Rieder and Maiato, 

2004), and HeLa cells can tolerate nocodazole treatment with concentration ranges between 

40-400ng/ml for up to 24 hours with no significant DNA damage and cell death (Harper, 2005, 

Matsui et al., 2012), but interestingly, in data shown in the first chapter, we have found that 

significant cell death occurred when cells were treated with only 60ng/ml nocodazole 

combined with 50M M2I-1 compared to cells treated with nocodazole alone (Figure 5.1a). 

There was no visible difference in the cell morphology when cells were treated with DMSO 

and M2I-1 alone (Figure 5.1a), but in contrast, some cells displayed typical apoptotic 

morphologies such as blebbing, shrinking and fragmentation (Vermeulen et al., 2005, 

Zamzami and Kroemer, 1999), when treated with the nocodazole and M2I-1 combination 

(Figure 5.1a). Quantitative analysis showed that there is a significant increase in cell death in 

cells treated with nocodazole combined with M2I-1 compared to cells from the other 
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treatments (Figure 5.1b). Consistent with how M2I-1 functions, the mitotic index from the 

cells treated with nocodazole combined with M2I-1 is lower than from those that were treated 

with nocodazole alone but is significantly higher than from cells treated with DMSO or M2I-1 

alone (Figure 5.1c). Our explanation of this phenomenon contrasts with the previous theory 

that prolonged mitosis under a constitutively activated SAC and stabilized cyclinB1 result in 

cell death, whereas a weak SAC and normal cyclin B1 degradation results in cell survival 

(Sloss et al., 2016, Holland and Cleveland, 2008), and has lead us to study the mechanism 

which leads to cell death caused by M2I-1 combined with nocodazole.   

 

 

 

Figure 5.1: M2I-1 promotes the sensitivity of HeLa cells to nocodazole. 

 

HeLa cells were treated with M2I-1 (50µM), nocodazole (60ng/ml), nocodazole (60ng/ml) 

combined with M2I-1 (50µM), and DMSO (0.5% in v/v) respectively for 16 hours. (a) Digital 

images were taken using a digital camera mounted on a tissue culture microscope with a 20x 

objective lens, and the non-mitotic cells, normal mitotic cells, mitotically arrested cells and 

apoptotic cells were marked with the arrows, arrowheads, dash line arrows and asterisk 

respectively. (b) Apoptotic indices were quantified by counting the cells with typical apoptotic 

morphologies after the various treatments. The total numbers of cells counted were 1727, 

1775, 1395 and 1961 respectively (indicated as n) from eight independent experiments. The 
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statistical significance of the comparisons was assigned with a p value<0.0001(****). (c) The 

mitotic indices were quantified from mitotically arrested cells and the total cells counted in 

each group were 1727, 1775, 1395 and 1961 respectively (indicated as n). The statistical 

significance of the comparisons was assigned with p value: *p< 0.05, and ****p <0.0001 

respectively. 

 

5.2 Objectives 

 

5.2.1. To confirm that cell death is induced by M2I-1 in the presence of anti-mitotic 

drugs.  

 

As discussed above, an increased cell death has been observed when HeLa cells were treated 

by with M2I-1 in the presence of nocodazole but not by M2I-1 alone. To further verify and 

confirm this, we will quantitatively examine the mitotic index and cell apoptotic index of 

HeLa and other cancer cell lines under various drug treatments. 

 

5.2.2. To determine the stage of the cell cycle in which cell death is induced by M2I-1 in 

the presence of Nocodazole. 

 

As discussed in the introduction, the cell death induced by anti-mitotic drugs could occur 

either after prolonged arrest in the present mitosis or after the cell has escaped from mitosis 

and entered the next cell cycle. To verify this, we will use a GFP-Histone 2 B HeLa cell line 

treated as previously described, and record live images of the cells for 24 hours using a Nikon 

A1R fully automated high-speed confocal imaging system. The histone 2B-GFP signals 

revealing the chromosomal morphologies will be used to determine the cell cycle stages and 

chromosomal status. The DIC images will be used to reveal the morphological changes in the 

cytoplasmic membrane. The individual cells throughout the cell cycle will be tracked to 

determine whether cell death occurred after cell slippage from prolonged mitotic arrest or 

within the mitotic arrest itself.  

 

5.2.3. To investigate the molecular basis of the cell death which is induced by M2I-1 in 

the presence of Nocodazole.  
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It is well know that cells in prolonged mitosis can enter cell death under a provoked SAC 

induced by anti-mitotic drugs such as Nocodazole and Taxol, and this cell death undergo 

either through an intrinsic apoptotic pathway (Diaz-Martinez et al., 2014, Topham and Taylor, 

2013, Salmela and Kallio, 2013) (Allan and Clarke, 2007, Gascoigne and Taylor, 2008, 

Diaz-Martinez et al., 2014) or through independent caspase activity (Niikura et al., 2007). We 

will first examine the connection of this cell death induced by M2I-1 in the presence of 

nocodazole with the intrinsic caspase-3-dependent apoptotic pathway by western blot analysis 

of the levels of the caspase-3 cleavage products, and the expression profiles of a pro-survival 

protein MCL-1, and the pro-apoptotic proteins BIM, BID, PUMA, NOXA and MCL-1s (an 

alternative splicing variant of MCL-1). We will also determine whether the DNA damage 

pathway contributes to this cell death or not. 

 

 

5.3 Results   

5.3.1 M2I-1 promotes the sensitivity of the cancer cell lines to anti-mitotic drugs 

 

To verify that the cell death that occurred was specifically induced by the combination of 

nocodazole and M2I-1, we have also examined and compared the results of treating cells with 

Taxol combined with M2I-1. Taxol is another anti-mitotic drug that can stabilize the 

microtubules and activates the SAC (Lopes et al., 1993, Horwitz, 1994). As for nocodazole or 

nocodazole combined with M2I-1, there is an increased apoptotic index and a slightly 

decreased mitotic index was observed in cells treated with Taxol combined with M2I-1 as 

compared with those treated with Taxol alone (Figure 5.1.1b & c). As shown in Figure 5.2a, 

the apoptotic indices are 0.5%, 2.9%, 5.1% and 18.9% for DMSO, M2I-1, Taxol and Taxol 

combined with M2I-1 respectively; and the mitotic indices for each group are 5.7%, 5.5%, 

73.2% and 55.1% respectively. Thus, it appears that M2I-1 can potentiate the sensitivity of 

HeLa cells to anti-mitotic drugs like nocodazole and Taxol. 
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Figure 5.2: M2I-1 promotes the sensitivity of HeLa cells to Taxol. 

 

HeLa cells were treated with M2I-1 (50µM), Taxol (30nM), Taxol (30nM) combined with 

M2I-1 (50µM), and DMSO (0.5% in v/v) respectively for 16 hours. (a) Apoptotic indices 

were quantified by counting the cells with typical apoptotic morphologies for each treatment. 

The total number of cells counted was 1152, 1331, 622 and 759 respectively (indicated as n). 

The statistical significance of comparisons was assigned with a p value<0.0001 (****). (b) 

The mitotic indices were quantified with mitotically arrested cells and the total cells counted 

from each group was 1152, 1331, 622 and 759 respectively (indicated as n). The statistical 

significance of comparisons was assigned with p values: *p<0.05), ****p<0.0001 

respectively. 

 

To test whether the cell death induced by the treatment with the combined drugs (nocodazole 

+ M2I-1 or Taxol + M2I-1) is unique to HeLa cells, three other cancer cell lines were chosen 

and treated as described above (Figure 5.3a). The results confirmed that the observed cell 

deaths in the three cell lines are significant higher when they are treated with nocodazole 

combined with M2I-1 than when treated with nocodazole alone (Figure 5.3b). 
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Figure 5.3: M2I-1 promotes the sensitivity of A549, HT29 and U2OS cell lines to 

nocodazole. 

 

A549, HT29 and U2OS cells were treated with M2I-1 (50µM), nocodazole (60ng/ml), 

nocodazole (60ng/ml) combined with M2I-1 (50µM), and DMSO (0.5% in v/v) respectively 

for 16 hours. (a) Digital images were taken using a digital camera mounted on a tissue culture 

microscope using a 20x objective lens. The apoptotic cells were marked with arrowheads. (b) 

The statistical significance of comparisons was assigned with p values: **p< 0.01, ***p< 

0.001, and ****p <0.0001 respectively. 

 

5.3.2 Cell death mainly occurred after prolonged mitosis 

 

In response to a prolonged mitosis, a cell might either die in mitosis, slip out of mitosis or die 

in the next round of the cell cycle (Rieder and Maiato, 2004, Gascoigne and Taylor, 2008, 

Topham and Taylor, 2013). We have previous confirmed that in HeLa cells M2I-1 can disrupt 

the interaction of CDC20-MAD2 in vivo, preventing the CDC20-MAD2 complex formation, 

and the premature degradation of cyclin B1 (Figure 3.1, 3.2＆3.5). Taken together with the 
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reduced mitotic index (Figure 5.1c), we suspected that the cell death induced by the combined 

drug treatment might occur in the next cell cycle after slippage. This seemed to be supported 

by the reduction in the level of histone H3 S-10 phosphorylation (Figure. 5.4a), one biological 

marker of mitosis (Hans and Dimitrov, 2001, Wang et al., 2001, Hendzel et al., 1997, Van 

Hooser et al., 1998). The quantitative data showed that there is about 14.8% reduction of the 

level of histone H3 S-10 phosphorylation (Figure 5.4b). 

 

 

 

 

Figure 5.4: The level of the histone H3 S-10 phosphorylation in response to the different 

treatments. 

 

Cell extracts were prepared after HeLa cells were treated with M2I-1(50µM), nocodazole 

(60ng/ml), nocodazole (60ng/ml) combined with M2I-1(50µM), and DMSO (0.5% in v/v) 

respectively for 16 hours. (a) The samples were subjected to SDS-PAGE and western blot 

analysis. The membranes were probed with a rabbit polyclonal anti-phospho-histone H3 (S-10) 

antibody and a mouse anti-actin antibody respectively. The actin protein bands acted as the 

loading control. (b) The intensity of the phosphorylated histone H3 S-10 from the different 

treatments revealed by the western blot was analysed by ImageJ. The results were produced 

from three independent experiments. The statistical significance of comparisons was assigned 

with a p value< 0.05 (*). 

 

However, the reduced mitotic index could also be due to the cells dying in mitosis, because 

the increased cell death index is similar to the reduction in level of the mitotic index (Figure 

5.1c). To test this, a HeLa cell line which over-expressed a histone 2B-GFP fusion protein was 

treated as above. The live images of the cells were recorded for 24 hours using a Nikon A1R 
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fully automated high-speed confocal imaging system for single cell analysis. The histone 

2B-GFP signals revealing the chromosomal morphologies were used to determine the cell 

cycle stages and chromosomal status (Figure 5.5 a, b, c, d). The DIC images were used to 

reveal the morphological changes in the cytoplasmic membrane (Figure 5.5 a, b, c, d). The 

distribution, timing of the condensation, segregation and decondensation of chromosomes 

revealed by the histone 2B-GFP signals from the normal cells (DMSO treated cells) are 

consistent with previous reports(Rodrigue et al., 2013, Kanda et al., 1998) (Figure 5.5a). In 

responded to nocodazole treatment, the cell started to round up with condensed chromosomes 

and eventually arrested at a prometaphase-like stage as shown with arrowheads (Figure 5.5b). 

In cells treated with nocodazole combined with M2I-1. There are many cells that presented 

the typical apoptotic phenotypes: blebbing of the cytoplasmic membrane or shrinking of the 

cell body (Figure 5.5b, black arrowheads), accompanied by highly condensed chromosomes 

(Figure 5.5b, white dash line arrows), and broken chromosomes (Figure 5.5b, white solid 

arrows), and which eventually formed the typical apoptotic body (Figure 5.5b, white asterisk). 

There was very small proportion of cells that began the cell death program with a 

prophase-like morphology (Figure 5.5c). These cells seemed to begin the process of dying 

with chromosomal degeneration or fragmentation (Figure 5.5c, white dash line arrows) but 

the cytoplasmic membrane remains intact, and the typical apoptotic body was not formed 

until a very late stage (Figure 5.5c, white asterisk). In contrast, only a very small number of 

dying cells can be found from cells treated with nocodazole alone (Figure 5.5b). The 

quantitative results show that there was no big difference in the cell death and mitotic indices 

between the cells treated by DMSO and M2I-1 alone at different time points (Figure 5.5 e＆f), 

and cell death begins at 16 hours after treatment. The cell death index is significantly higher 

from the group of the cells treated with nocodazole combined with M2I-1 than that treated 

with nocodazole alone (Figure 5.5e), and was 6% and 13.2% higher at 16 and 24 hours 

respectively (Figure 5.5e). In contrast to the cell death index and consistent with previous 

observations, the mitotic index was significant higher from the group of the cells treated with 

nocodazole alone than that treated with nocodazole combined with M2I-1, these were 6.9% 

and 15.2% at 16 and 24 hours respectively (Figure 5.5f). The proportion of cells that died in a 
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prophase-like stage was only about 5% after cells were treated with nocodazole combined 

with M2I-1 (Figure 5.5h).  

 

To determine whether the cell death occurred after cell slippage from prolonged treatment 

with nocodazole or nocodazole combined M2I-1, we have tracked and examined the 

individual cells throughout their cell cycle (Figure 5.5d). We found that only a few cells 

underwent slippage after treatment with nocodazole or nocodazole combined M2I-1 (Figure 

5.5g). The quantitative data suggests that the proportion of cells that underwent slippage was 

less than 1% from cells treated with either nocodazole or nocodazole combined with M2I-1 

(Figure 5.5g). Thus, the live imaging also confirmed that nocodazole combined with M2I-1 

can induce cell death, and that this cell death occurred within the first cell cycle after the drug 

treatment rather than in the next cell cycle after escaping from mitotic arrest. Therefore, the 

reduced mitotic index or the level of phosphorylation of histone H3 S-10 from the cells 

treated with nocodazole combined with M2I-1 compared to the cells treated with nocodazole 

alone, was more likely to result from the increased cell death and the decreased number of 

cells arrested in mitosis. 

 

 



109 

 

 

 

 



110 

 

 

Figure 5.5: The majority of cell death occurred in the same cell cycle after the prolonged 

mitotic arrest under the drug treatment. 

 

HeLa cells which over-expressed a Histone 2B-GFP fusion protein were treated with 

M2I-1(50µm), nocodazole (60ng/ml), nocodazole (60ng/ml) combined with M2I-1(50µm), 

and DMSO (0.1% in v/v) respectively for 24 hours, and time-lapse images of the live cells 

were recorded using a Nikon A1R fully automated high-speed confocal imaging system at 

37oC and supplied with 5% CO2. The Histone 2B-GFP signals were used to reveal the 

chromosomal morphology and thus the cell cycle stage and chromosomal status; DIC images 

were used to reveal the morphological changes in the cytoplasmic membranes. (a) An 

example of a normal/unperturbed HeLa cell with Histone 2B-GFP (green) during the cell 

cycle. (b) An example of a HeLa cell with Histone 2B-GFP (green) undergoing apoptosis after 

prolonged mitotic arrest due to treatment with 60ng/ml nocodazole or 60ng/ml nocodazole 

combined with M2I-1. (c) An example of the cell death that occurred in prophase-like stages 

after treatment with nocodazole combined with M2I-1. (d) An example of the slippage that 

occurred when a cell escaped from prolonged mitotic arrest. (e) & (f) The quantitative cell 

death or mitotic indices at various time points after treatment.  (g) The comparison of the 

slippage indices between the groups of cells treated with nocodazole and nocodazole 

combined with M2I-1. (h) The ratio of the cells that died in a prophase-like stage and in 

mitosis induced by the treatment of nocodazole combined with M2I-1. The statistical 

significance of comparisons was assigned with p values: *p< 0.05, and **p<0.01 respectively. 
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5.3.3 The cell death induced by M2I-1 in the presence of nocodazole is associated with 

the caspase-3 dependent apoptotic pathway 

 

As the majority of the cells that died after prolonged mitotic arrest had the typical apoptotic 

morphology as described previously (Diaz-Martinez et al., 2014, Salmela and Kallio, 2013), 

we tested to see if caspase-3 activity was the contributory factorto the cell death observed 

above. Cell extracts were prepared from HeLa cells after treatment with DMSO, M2I-1, 

nocodazole, and nocodazole combined with M2I-1 under the same conditions described above. 

The samples were subjected to the western blot analysis using an anti-caspase-3 antibody to 

test the cleavage of caspase-3 (Figure 5.6a). The results showed that the cleavage of caspase-3 

was undetectable in samples from cells treated with DMSO and M2I-1 alone (Figure 5.6a, 

lane 1and 2). The sample prepared from cells treated with nocodazole alone had a low level of 

cleaved caspase-3 (Figure 5.6a, lane 3), but at a significantly lower level than the signal 

detected from the sample treated with nocodazole combined with M2I-1 (Figure 5.6a, lane 4). 

The quantitative data showing the intensities of the cleaved caspase-3 under the different 

conditions is shown in figure 5.6b. There were no significant differences between the groups 

treated with nocodazole, DMSO, and M2I-1 alone (Figure 5.6b). Therefore, the cell death 

induced by nocodazole combined with M2I-1 is caspase-3 activity dependent. This also 

suggests that M2I-1 can promote the sensitivities of cancer cell lines to anti-mitotic drugs. 
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Figure 5.6: The cleavages of caspase-3 under different treatment conditions. 

 

After cells were treated with M2I-1 (50µM), nocodazole (60ng/ml), nocodazole (60ng/ml) 

combined with M2I-1 (50µM), and DMSO (0.5% in v/v) respectively for 16 hours. Cell 

extracts were prepared for western blot analysis with an anti-caspase-3 antibody and an 

anti-GAPDH antibody. (a) The full-length caspase-3 (32KD) and the cleaved caspase-3 

(17KD) were highlighted. GAPDH was examined as the loading control. (b) The intensities of 

the protein bands were quantified using ImageJ software from four independent western 

blotting results. The two-tailed unpaired t-test was used to assess the quantitative comparison 

between two groups as indicated. The statistical significance of comparisons was assigned 

with a p value< 0.01 (**). 

 

5.3.4 The DNA damage checkpoint is not likely to contribute to this cell death 

 

To examine if the cell death could be caused by DNA damage, we analysed the formation of 

γ-H2AX foci (phosphorylated histone 2AX, a variant of histone 2A), a typical indicator of 

DNA double-strand break (Khanna and Jackson, 2001), and using VP16 (etoposide), a reagent 

known to induce DNA damage (Duca et al., 2006) as the positive control. The percentage of 

cells containing more than five γ-H2AX foci found in un-arrested cells at the cell cycle stage 

similar to cells treated with VP16, was used to represent the DNA damage level at each time 

point as indicated (Tu et al., 2013). As most of the cells started to enter mitosis 16 hours after 

treatment with nocodazole alone or nocodazole combined with M2I-1 (Figure 5.1c and 5.5f), 

there were insufficient numbers of un-arrested cells at 16 hours for quantification, we 
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therefore quantified the average fluorescent intensities of cells containing γ-H2AX foci from 

the mitotic arrested cells at 16 hours intervals. Results showed that VP16 treatment leads to 

DNA damage occurred in most of the cells in contrast to no DNA damages caused by the 

treatment with DMSO alone (Figure 5.7a). Both nocodazole alone and nocodazole combined 

with M2I-1 gradually caused slight increases in the numbers of γ-H2AX foci at time intervals 

before 16 hours compared to the control treated by DMSO, but there were no significant 

differences between these two groups. Similarly, there was no difference in the intensities of 

the γ-H2AX foci at 16 hours between the groups of cells treated with nocodazole and those 

treated with nocodazole combined with M2I-1 although the overall levels of the γ-H2AX foci 

increased (Figure 5.7 a and b). DNA-PKcs/CHK2 can increase the level of γ-H2AX foci in 

mitotically arrested cells independent of DNA damage (Tu et al., 2013), so the significantly 

increased overall intensities of the γ-H2AX foci observed at 16 hours interval was probably 

not caused by DNA damage. All of these results suggest that the DNA damage pathway does 

not contribute to the cell death induced by M2I-1 in the presence of nocodazole.  

 

 

 

Figure 5.7: A comparison of the formation of γ-H2AX foci induced by the different drug 

treatments. 

 

HeLa cells were treated with nocodazole (60ng/ml) and nocodazole (ng/ml) combined with 

M2I-1(50µm) for 2, 4, 8, 16 hours respectively. HeLa cells treated with DMSO (0.5%, v/v) 

and VP16 (10mM) for 2 hours were used as the negative and positive controls respectively. 

The cells were fixed with 4% formamide-PBS for immunofluorescent staining with a specific 
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anti-γ-H2AX antibody. DNA morphologies stained by DAPI were used to distinguish the 

mitotic cells. (a) Representative confocal images showed DNA staining (blue in merged 

images, and grey in the first row) and the immunofluorescent staining signal of γ-H2AX foci 

(red in merged images, and grey in the second row) at different cell cycle stages. Arrows 

highlight a metaphase cell treated with DMSO for 2 hours; a prometaphase-like cell from the 

cells treated with nocodazole (NOC) alone, and NOC + M2I-1 for 16 hours respectively. 

Asterisks highlight the un-arrested cells after DMSO, VP16 and NOC+M2I-1 treatments. The 

dash line arrows from the second row highlight the cells with positive signals of γ-H2AX foci. 

(b) The quantitative results comparing the DNA damage levels indicated by the percentage of 

cells having more than 5 γ-H2AX foci from the cell population under treatment at different 

time intervals as indicated. Under a 40x oil objective lens, the cells from four or five random 

areas of the confocal images were taken to give the quantitative results. Three independent 

experiments were conducted to produce the data. P value, ***<0.003. N.S.: No significant. 

 

5.3.5 The “competing-networks” model cannot be used to explain the cell death induced 

by M2I-1 in the presence of nocodazole 

 

According to the competing-networks model, the rate of cyclin B1 degradation and a yet 

undefined cell death signal coordinate to control the cell fate in response to the prolonged 

mitotic arrest (Gascoigne and Taylor, 2008). MCL-1, one of the anti-apoptotic proteins, is 

regarded as a critical player in prolonged mitosis as its degradation contributes to cause cell 

death (Harley et al., 2010, Wertz et al., 2011). While cyclin B1-dependent CDK1 kinase can 

phosphorylate the MCL-1 and is essential for facilitating MCL-1 degradation (Harley et al., 

2010, Miniowitz-Shemtov et al., 2012), the balance between the activity of cyclin 

B1-dependent CDK1 kinase and the level of MCL-1 has been suggested to determine the cell 

death or slippage in response to the prolonged mitosis (Mocciaro and Rape, 2012). Our 

previous results have indicated that cell death induced by M2I-1 combined with nocodazole 

occurred in the same cell cycle as the arrest in mitosis (Figure 5.5). To test if cyclin B1 and 

MCL-1 played any roles in this cell death, we examined their levels by western blot analysis 

using the same treatments as previously described. The Results indicated that cyclin B1 was 

stabilized in the sample of the cells treated with nocodazole alone but significantly decreased 

in the samples of the cells treated with M2I-1 or M2I-1 combined with nocodazole (Figure 

5.8). These results are consistent with the observations in chapter three (Figure 3.5), and 
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agreed with the property of M2I-1 weakening the SAC by disrupting the CDC20-MAD2 

interaction, leading to the premature degradation of cyclin B1 by the APC/C, we also found 

that the MCL-1 level was significantly reduced in cells treated with nocodazole compared to 

cells treated with DMSO alone (Figure 5.8, lane 1 and 3), which agrees with previous reports 

that MCL-1 was degraded after prolonged mitotic arrest (Sanchez-Perez et al., 2010, Sloss et 

al., 2016, Di Cesare et al., 2017). In contrast, the treatment by M2I-1 combined with 

nocodazole stabilized MCL-1, and it is significantly increased when compared to the levels 

seen in cells treated with nocodazole alone (Figure 5.8, lane 3 and 4). According to the 

competing-networks model, after the combined drug treatment, the deceased cyclin B1 and 

increased MCL-1 should lead to more cells slipping out of mitosis, but this contradicts our 

results shown above. Thus the competing-networking model cannot be applied to explain the 

cell death induced by M2I-1 in the presence of nocodazole, and some other unknown 

mechanism or factors must be involved in this process.  

 

Figure 5.8:The expression profiles of cyclin B1 and MCL-1 under different drug 

treatments 

 

After HeLa cells were treated by M2I-1(50µM), nocodazole (60ng/ml), nocodazole (60ng/ml) 

combined with M2I-1(50µM), and DMSO (0.5% in v/v) respectively for 16 hours, the cell 

extracts were prepared for western blot analysis using the anti-cyclin B1, anti-MCL-1, and 

anti-actin antibodies respectively.The profiles of cyclin B1 and MCL-1 under different drug 

conditions as indicated. The actin bands were used as the loading control.  
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5.3.6 MCL-1s is a potential culprit causing the cell death induced by M2I-1 combined 

with nocodazole 

 The MCL-1s level increased in cells treated with nocodazole combined with M2I-1 but not 

with nocodazole alone 

 

Our results have shown that the cell death induced by M2I-1 combined with nocodazole is 

accompanied by an increased cleavage of caspase-3 (Figure 5.6), this suggests that the cell 

death undergoes the intrinsic apoptotic pathway, and other evidences have been shown 

previously (Diaz-Martinez et al., 2014, Topham and Taylor, 2013, Salmela and Kallio, 2013). 

To further explore the potential mechanism of the cell death induced by M2I-1 combined with 

nocodazole, we compared the expression profiles of the pro-apoptotic proteins of Bim, Bid, 

Puma, Noxa and MCL-1s in HeLa cells after the treatments described before. Results showed 

that Bim, Bid, and Puma remained at similar levels or even slightly decreased in cells treated 

with M2I-1 combined with nocodazole compared to the samples of the cells treated with 

nocodazole alone (Figure 5.9 a, b, c), and the level of Noxa has increased marginally (Figure 

5.9d). However, we found that MCL-1s, a short form variant of the full length MCL-1, clearly 

increased in cells treated with the combined drugs compared to cells treated with nocodazole 

alone (Figure 5.9e). As a pro-apoptotic BH3 only protein, MCL-1s can act to sequester the 

anti-apoptotic function of the full-length MCL-1. Thus, the significant increase in MCL-1s 

could be the culprit causing the cell death while the slightly increased Noxa probably also 

exerted an auxiliary pro-apoptotic role.  
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Figure 5.9: The western blot results showing the profiles of Bim, Bid, Puma, Noxa and 

MCL-1s under different drug treatments. 

 

After HeLa cells were treated with nocodazole (60ng/ml), nocodazole (60ng/ml) combined 

with M2I-1 (50µM) respectively for 16 hours, the cell extracts were prepared for western blot 

analysis with the specific antibodies against Bim, Bid, Puma, Noxa and MCL-1s as well as 

actin.  

M2I-1 in the presence of nocodazole could not induce cell death in the MCF-7 cell line, 

which is lacking the expression of MCL-1s 

 

To verify if MCL-1s played an essential role in causing cell death induced by M2I-1 

combined with nocodazole, we originally intended to directly examine cell death after the 

depletion of MCL-1s from HeLa cells by siRNA. However, as MCL1-s is an alternative 

splicing variant of MCL-1, it is spliced out of the exon 2 of MCL-1 during mRNA processing, 

it is impossible to design a specific siRNA that targets MCL-1s alone. Consequentlywe 

decided to study the cell death using the MCF-7 cell line, a cell line lacking the MCL-1s 

expression (Gautrey and Tyson-Capper, 2012). We anticipated that cell death would not occur 

after treated with M2I-1 combined with nocodazole in MCF-7 cells if MCL-1s played the 

central role in causing this cell death.  

 

The Results showed that the changes in the morphology of MCF-7 cells are similar to those 

seen in HeLa cells in response to DMSO, M2I-1, and nocodazole treatment, and they have 

similar mitotic and apoptotic indices, but there was a significant difference of these from 
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MCF-7 cells treated with M2I-1 combined with nocodazole compared to HeLa cells, as for 

MCF-7 cells, M2I-1 failed to induce the cell death in the presence of nocodazole compared to 

the treatment with nocodazole alone. This result supports the idea that MCL-1s contributes to 

the cell death in HeLa cells induced by M2I-1 combined with nocodazole (Figure 5.10 a &b). 

 

 

 

Figure 5.10: M2I-1 cannot induce cell death of MCF-7 cells in the presence of 

nocodazole. 

 

MCF-7 cells were treated with 0.5% DMSO, 50µM M2I-1, 60ng/ml nocodazole, and 60ng/ml 

nocodazole+50µM M2I-1 respectively for 16 hours. (a) Digital images were taken using a 

digital camera mounted on a tissue culture microscope using a 20x objective lens, The mitotic 

indices were quantified from cells undergoing the different drug treatments as indicated. The 

number of cells counted for groups of DMSO, M2I-1, nocodazole and nocodazole combined 

M2I-1 are 837, 1091, 756 and 969 from 4 independent experiments respectively (indicated as 

n). The statistical significance of comparisons was assigned with a p value <0.05 (*), 

p<0.0001(****) respectively. (b) Apoptotic indices were quantified with the typical apoptotic 

phenotype as indicated from different groups. The number of cells counted for the groups of 

DMSO, M2I-1, nocodazole and nocodazole combined M2I-1 are 837, 1091, 756 and 969 

respectively (indicated as n). The statistical significance of comparisons was assigned with a p 

value< 0.05 (*), p <0.01(**).  

 

MCF-7 cells overexpressed with a GFP-MCL-1s fusion protein can be induced to undergo 

cell death by M2I-1 in the presence of nocodazole 
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To further confirm the role of MCL-1s in causing cell death, we have transfected 1g of an 

exogenous pCMV6-AN-mGFP-MCL-1s plasmid DNA into MCF-7 cells. The GFP 

fluorescent signals were used as the positive marker to estimate the ratio of transfection. The 

MCF-7 cells were split into two groups after 24 hours transfection and were treated with 

nocodazole alone or M2I-1 combined with nocodazole respectively as described for the HeLa 

cells. As caspase-3 is absent from the MCF-7 cell line (Janicke et al., 1998, Janicke, 2009, 

Turner et al., 2003), the polymerase-1 (PARP-1), a nuclear protein whose cleavage fragments 

are a unique biomarker in cell death (Wen et al., 2012, Chaitanya et al., 2010, Fischer et al., 

2003, Kaufmann et al., 1993), was used to evaluate the levels of cell death. The cell extracts 

from normal MCF-7 cells and pCMV6-AN-mGFP-MCL-1s transfected MCF-7 cells under 

the same treatment conditions were prepared after 16 hours for western blot analysis using a 

specific anti-PARP-1 antibody. There is no increased cleavage of PARP-1 after the normal 

MCF-7 cells were treated with M2I-1 combined with nocodazole compared to the sample of 

the cells that were treated with nocodazole alone (Figure 5.11a). However, there was a 

noticeable increase in the level of the cleaved PARP-1 after the transfected MCF-7 cells were 

treated with drugs under the same conditions (Figure 5.11b). We also noticed that the 

expression of this mGFP-MCL-1s fusion protein is slightly higher in cells treated with M2I-1 

combined with nocodazole than in cells treated with nocodazole alone, so more controlled 

experiments will be required to ensure the equal expression of the fusion protein of 

GFP-MCL-1s and to make this a definite conclusion. However, the preliminary results 

indicated that more cell death could be induced in MCF-7 cells transiently expressing a 

GFP-MCL-1s fusion protein after treated with M2I-1 combined with nocodazole compared to 

nocodazole alone.  
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Figure 5.11: The comparison of the cleavage of PARP in MCF-7 cells and 

pCMV6-AN-mGFP-MCL-1s transfected MCF-7 cells after treated by nocodazole and 

nocodazole+M2I-1 respectively. 

 

The normal MCF-7 cells and pCMV6-AN-mGFP-MCL-1s transfected MCF-7 cells were 

treated with nocodazole and nocodazole +M2I-1 for 16 hours respectively. The cell extracts 

were prepared and analyzed by western blotting. The PARP, MCL-1 and GFP-MCL-1s were 

examined with specific antibodies, and the GAPDH was tested as the loading control. 

 

5.4 Disussion 

 

Our results indicated that the small molecule, MAD2 inhibitor-1 (M2I-1) promotes the 

sensitivity of cancer cells to the anti-mitotic drugs nocodazole and Taxol. The cell death 

induced by M2I-1 in the presence of nocodazole cannot be explained using the 

‘competing-networks’ model for mitotic cell death. Accompanying the cell death induced by 

M2I-1 combined with nocodazole, the levels of cyclin B1 was reduced and MCL-1 elevated, 

which contradicts the conditions described by the “competing-networks” model as the 

decreased cyclin B1 and increased MCL-1 should support the cell to escape the mitotic arrest 

and survive. We verified that this death occurred in mitosis of the first cycle via the caspase-3 

pathway (accompanied with an increase in the cleavage of caspase-3). We have provided the 

evidence that the level of MCL-1s, the splicing variant of MCL-1, also significantly increased 
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in response to the same treatment. As a pro-apoptotic BH3 only protein, it is known that 

MCL-1s can antagonise MCL-1 to induce cell death; this suggests that MCL-1s potentially 

contributes to the cell death induced by M2I-1 combined with nocodazole. To support this, 

M2I-1 in the presence of nocodazole cannot induce cell death from MCF-7 cells, a cell line 

lacking the expression of MCL-1s. Furthermore, more cell death can be induced from MCF-7 

cells transiently expressing a GFP-MCL-1s fusion protein when treated with M2I-1 combined 

with nocodazole compared to nocodazole alone.  
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Chapter Six: General discussion 

 

 

The spindle assembly checkpoint (SAC) monitors the chromosomal alignment and 

microtubule attachment via the kinetochores. It prevents anaphase onset and premature 

chromosome segregation by inhibiting the APC/C via its effector MCC (Musacchio, 2015). 

The MCC consists of two sub-complexes CDC20-MAD2 and BUBR1-BUB3, however, 

exactly how the MCC forms is still controversial. The “MAD2 template” model describes the 

mechanism as the kinetochore-dependent dynamic recruitment of the SAC proteins and their 

facilitation on the formation of the CDC20-MAD2 complex. Somehow this CDC20-MAD2 

subcomplex binds to the BUB3-BUBR1 complex to form the MCC (Lara-Gonzalez et al., 

2012, Yu, 2006, De Antoni et al., 2005). Therefore, the kinetochores are the catalytic platform 

for the SAC signaling (Howell et al., 2000, Vink et al., 2006, Musacchio and Hardwick, 2002). 

Targeting of MAD2 and BUBR1 to the kinetochores is sufficient to maintain checkpoint 

arrest regulated by Aurora and Mps1 kinases (Kruse et al., 2014, Maldonado and Kapoor, 

2011). BUBR1 accumulation and phosphorylation at unattached kinetochores plays an 

important role in association with other SAC components to maintain the SAC function (Chen, 

2002). The MCC components are released from the kinetochores upon microtubule 

attachment after mitosis (Musacchio and Salmon, 2007, Shah et al., 2004). The “stripping” of 

MAD2, MAD1 and other SAC proteins from the kinetochores is the key process of SAC 

inactivation (Howell et al., 2001). Therefore, it has been widely accepted that the MCC is 

assembled in response to the unattached kinetochores (Yu, 2006, Lara-Gonzalez et al., 2012, 

Musacchio and Salmon, 2007). However, the mechanism of the kinetochore-dependent MCC 

formation has been challenged by many existing observations, for instance, the MCC can be 

isolated from cell extracts of interphase HeLa cells (Sudakin and Yen, 2004, Chan et al., 

1999), the CDC20-MAD2 and MCC complexes were still detectable in the absence of a 

functional kinetochore in the Ndc10 mutant of budding yeast (Poddar et al., 2005, Fraschini et 

al., 2001). Thus, exactly how and where the CDC20-MAD2 complex or the MCC was formed 

remains unknown. 
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Previous approaches that have been used to examine the CDC20 and MAD2 interaction or 

MCC complex were mainly based on the co-immunoprecipitation of the interacting proteins, 

with cell extracts biochemically prepared from the synchronized cells to determine the cell 

cycle phases. However, the biochemical preparation of interphase extracts would often still 

contain a substantial population of prophase cells. Additionally, the drugs used for 

synchronisation of the cell populations may have impacted on the cell cycle organization and 

the information seen from the cellular compartments in comparison with the non-perturbed 

cell. The Duolink based proximity ligation assay (PLA) can detect the protein-protein 

interaction in individual cells in their native state, thus avoiding biochemical extraction or the 

creation of exogenous over-expressed fusion proteins and can also be used to assign signals to 

specific subcellular locations such as the cytoplasm or the nucleus. By using PLA with 

specific CDC20 and MAD2 antibodies, the lab has previously demonstrated that the 

formation of CDC20-MAD2 complex is dynamically regulated in a bell-shaped manner 

during the unperturbed HeLa cell cycle. And this project has demonstrated that the PLA 

signals of CDC20-MAD2 reflect the genuine interaction profile of CDC20 and MAD2. As 

shown in Figure 1.11, the CDC20-MAD2 complex accumulates from prophase onwards and 

peaks at prometaphase. Another colleague in the lab has demonstrated that the CDC20-MAD2 

complex formed during prophase is not dependent on unattached kinetochores but its 

formation is facilitated by Tpr, one component of the nuclear pore complex (Li et al., 2017). 

This project has confirmed that this CDC20-MAD2 complex is functional and prevents the 

premature degradation of cyclin B1, which seems to indicate that this specific complex might 

be playing a part in the SAC signaling pathway. However, the traditional concept of the SAC 

is that its inhibitory cascading pathway is exclusively dependent on unattached kinetochores 

in late prophase and anaphase. To resolve this problem we should see if the MCC can be 

formed by binding this specific CDC20-MAD2 complex with the other subcomplex of 

BUBR1-BUB3 before prometaphase, and if the premature degradation of cyclinB1 was 

prevented by the sub-complex or requires the MCC after the integration of the 

CDC20-MAD2.  
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The SAC monitors the faithful segregation of the sister chromatids in mitosis by detecting 

kinetochore attachment. After all the kinetochores are correctly attached to microtubules and 

are generating tension, the SAC has to be inactivated to allow the APC/C activation to 

facilitate chromosome segregation and exit mitosis (Liu and Zhang, 2016, Jia et al., 2011). 

p31comet has been shown to be an important silencer that contributes to SAC inactivation either 

on its own (Miniowitz-Shemtov et al., 2012, Eytan et al., 2014) or jointly with a protein called 

Trip13 (Eytan et al., 2014). The expression profile of p31comet has been suggested to be cell 

cycle regulated and it is thought to be associated with the nuclear membrane (Habu et al., 

2002), and sequence analysis has suggested that it contains several putative destruction motifs 

(Habu et al., 2002), which would make it a target for APC/C-dependent ubiquitin-mediated 

proteolysis. However, it has also been contradictorily suggested that p31comet levels remain 

constant throughout the cell cycle (Xia et al., 2004). Thus, the molecular basis of the 

degradation of p31comet needs to be studied further.  

 

We have confirmed, by immunofluorescent staining with an antibody against p31comet (Abcam, 

Ab150363), that the expression profile of p31comet is indeed cell cycle regulated (Figure 4.2) 

though this antibody also recognizes a non-specific band at around 25KD (Figure4.1). The 

results showed that the level of p31comet is low in interphase, starts to increase from prophase 

and peaks at pro-metaphase or metaphase, the high level of p31cometremaining into telophase 

(Figure 4.2). In prophase, the localization of p31comet was found around the nuclear envelope 

and was unevenly distributed in the nucleus, which also agrees with previous publications 

(Westhorpe et al., 2011, Yang et al., 2007). After NEBD, it is distributed across the entire 

cytosol (Habu et al., 2002). These results indicated that p31comet is present at a high level even 

before the metaphase-anaphase transition in mitosis and only declined in G1/S or interphase. 

The 25KD non-specific band complicated the interpretation of the localization and expression 

of p31comet but the idea that there is a high level of p31comet in mitosis was partly supported by 

the observations that higher levels of p31comet accumulated in prometaphase arrested HeLa 

cells after nocodazole treatment (Figure4.3). This accumulation of p31comet in response to the 
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nocodazole treatment is a common phenomenon seen from several other cancer cell lines we 

tested (Figure 4.4).  

 

The increase in the level of p31comet starting in prophase and peaking at prometaphase, 

suggests that protein synthesis might be involved and this was confirmed by showing that 

cyclonheximide can prevent the accumulation of p31comet in the presence of nocodazole and 

even in the presence of MG132 (Figure 4.5). Thus, protein synthesis contributes to the 

accumulation of p31comet both in response to nocodazole treatment and in the normal 

progression of mitosis. 

 

The interpretation of whether p31comet is or is not degraded in the late stages of mitosis was 

complicated by the non-specific binding of the antibody (Figure 4.1) and the contradictory 

findings from previous publications (Xia et al., 2004, Habu et al., 2002). To further test this, 

HeLa cells were released from nocodazole-arrested mitosis, samples were collected at various 

time intervals and analysed by western blotting (Figure 4.6). The results showed that p31comet 

significantly decreased in the three hours after being released from nocodazole- arrested 

mitosis (Figure 4.6). This confirmed the findings that p31comet is a cell cycle regulated protein 

and is probably degraded during interphase. This has been further confirmed by Nanmao 

Dang, a colleague in the lab, using live images of a GFP-p31comet expressed in HeLa cells 

(data not shown). Furthermore, the decline of p31comet in cells released from nocodazole 

treatment can be restored by MG132, a known inhibitor of 20s proteasome activity which 

blocks protein degradation via the ubiquitylation pathway (Zhang et al., 2013, Kisselev and 

Goldberg, 2001, Genschik et al., 1998, Steinhilb et al., 2001). In contrast, the decline of 

p31comet cannot be prevented by leupeptin, a known lysosome inhibitor (Grinde and Seglen, 

1980, Han et al., 2014) (Figure 4.7). This suggests that the degradation of p31comet occurred 

through the ubiquitin-mediated proteolysis pathway. 

 

The protein sequence of p31comet contains 3 potential D-box or KEN-box degron motifs 

(Figure 1.7) and it has been speculated that it is a substrate of the APC/C (Habu et al., 2002). 
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To test this, we compared the levels of p31comet in normal HeLa cells and in HeLa cells after 

APC3 knockdown using siRNA, APC3 is a core protein of the APC/C complex (Izawa and 

Pines, 2011, Yamaguchi et al., 2015). Our results are equivocal as sometimes we have 

observed the level of p31comet increases after APC3 depletion (Figure 4.8b), but in other 

experiments this was not the case (Figure 4.8a). We speculate that the different changes in the 

p31comet level after siRNA APC3 could be caused by the different number of cells arrested in 

mitosis in different experiments. What is more, even in the situation where the level of 

p31comet increased in response to the depletion of APC3, it would still be difficult to say that 

the high level of p31comet resulted from the prevention of its proteolysis because of the 

increased number of mitotic cells naturally expressing a higher level of p31comet. Thus, based 

on the preliminary results obtained so far, it is difficult to draw a conclusion about whether the 

APC/C contributed to the degradation of p31comet or not. To further test this, would require the 

synchronization of the cells before depletion of APC3 or other components of the APC/C 

using siRNA. Alternatively, it might be better to inhibit the APC/C activity either by chemical 

means or using siRNA and quantify the levels of p31comet after the cells exit from mitosis.  

 

Our immunofluorescent staining results and the fact that the level of p31comet declined after 

the cells were released from mitotic arrest, all indicated that the degradation of p31comet might 

have occurred in late mitosis or in S phase. Therefore, we have also examined the potential 

involvement of the SCF, the other E3 ligase in controlling the degradation of p31comet in G1/S 

phase. This was done by examining the levels of p31comet after the depletion of Cullin-1 using 

siRNA. Cullin-1 is a core scaffold protein of the SCF complex (Zheng et al., 2002, 

Goldenberg et al., 2004, Wu et al., 2000). The preliminary data showed that the levels of 

p31comet increased after the depletion of cullin-1 (Figure 4.9). This preliminary result implies 

that the SCF might contribute to the degradation of p31comet; though more controlled 

experiments need to be done to confirm this.  

 

It has been shown in vivo that p31comet can regulate insulin signaling by blocking the 

interaction of MAD2-BUBR1 with the insulin receptor on the plasma membrane (Choi et al., 
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2016), and hence the regulation of blood glucose concentration. In the clinic, disorders in the 

regulation of blood glucose link up with the progression of critical illness (Hermanides et al., 

2010, Marik, 2016, Krinsley, 2008a, Ingels et al., 2018), particularly in sepsis patients 

(Preechasuk et al., 2017, Krinsley, 2008b). However, how the levels of p31comet could be used 

to predict the development of critical illness of patients is still unknown. 

 

M2I-1 (MAD2 inhibitor-1) is the first small molecule that has been identified which disrupts 

the CDC20-MAD2 interaction (Kastl et al., 2015). We have shown in the first result chapter 

that M2I-1 can prevent the CDC20-MAD2 complex formation both at prophase, before 

NEBD (nuclear envelope breakdown), and at prometaphase and metaphase (Figure 3.2). The 

disruption of the interaction between CDC20 and MAD2 induced by M2I-1 accompanied by 

the premature degradation of cyclin B1 at both stages (Figure 3.5).Intriguingly, we found that 

M2I-1 in the presence of nocodazole or Taxol can significantly increase cell death in several 

cancer cell lines (Figure 5.1, 5.2 ＆ 5.3). This cell death occurred in the same cell cycle 

(Figure 5.4 ＆5.5 ), and the terminal morphologies that these dying cells displayed were 

similar to those of typical apoptotic cells (Figure 5.1＆5.5 ).  

 

It has been believed that under prolonged mitotic arrest, a gradually decline in the level of 

cyclin B1 and a stabilized level of MCL-1 serve as a survival signal which competes with an 

as yet undefined death signal to determine whether the cell would die in mitosis or would exit 

from mitosis and enter the next cell cycle (Gascoigne and Taylor, 2008, Gascoigne and Taylor, 

2009, Mocciaro and Rape, 2012). This was summarized as a “competing-networks” model 

and explained how the cell fate was determined in prolonged mitosis (Gascoigne and Taylor, 

2008, Gascoigne and Taylor, 2009). Our results, however, show that in HeLa cells, M2I-1 in 

the presence of nocodazole or Taxol could induce cell death in cells with a low level of cyclin 

B1, a stabilized MCL-1 and a weakened SAC (Figure 5.8). The elevated MCL-1 and reduced 

cyclin B1 did not directly trigger the slippage within our 24 hours observation period, and this 

phenomenon cannot be explained by the “competing-networks” model (Gascoigne and Taylor, 

2009, Gascoigne and Taylor, 2008). It is likely that the premature degradation of cyclin B1 
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caused by M2I-1 combined with the disruption of the microtubule network caused by 

nocodazole or Taxol reduced the cells fitness and triggered cell death via mitotic catastrophe 

as the evidence shows that the DNA damage pathway was not involved in the cell death 

(Figure 5.7). The higher level of cleavage capspase-3 induced by M2I-1, in the presence of 

nocodazole confirmed the involvement of the caspase-3 dependent apoptotic pathway.  

 

To understand the molecular basis of how the apoptotic pathway causes cell death, we have 

examined the pro- and anti-apoptotic proteins from the Bcl-2 super family. Results showed 

that the levels of the pro-apoptotic proteins Bim, Bid, and Puma remained relatively 

unchanged or were even slightly reduced (Figure 5.9a, b & c), but Noxa (Figure 5.9d) 

increased marginally. However, the levels of an anti-survival protein, MCL-1s (a short form 

variant of the full-length MCL-1 which acts to sequester the function of MCL-1) clearly 

increased when the cells were treated with the combination of M2I-1 and nocodazole 

compared to nocodazole alone (Figure 5.9e). Therefore, the increased levels of the 

pro-apoptotic protein MCL-1s might play an important role in antagonizing the function of 

the increased level of MCL-1 in stopping the cells from entering apoptosis. This was 

supported by the observations that M2I-1 in the presence of nocodazole failed to induce cells 

death in MCF-7 cells, a cell line lacking the expression of MCL-1s (Gautrey and 

Tyson-Capper, 2012) (Figure 5.10).  

 

We would want to observe this cell death phenomenon connection with MCL-1s by directly 

depletion of MCL-1s using siRNA in HeLa cells. However, MCL-1s is the consequence of the 

alternative pre-mRNA splicing events of the full length of MCL-1 (Bae et al., 2000, Bingle et 

al., 2000). It is impossible to design siRNA experiments directly and specifically for targeting 

MCL-1s for depletion. To further confirm that MCL-1s is the cause of the cell death induced 

by M2I-1 in the presence of nocodazole in HeLa cells, we have observed the cell death in 

MCF-7 cells after transfection and expression of an exogenous GFP-MCL-1s fusion protein in 

the presence of M2I-1 and nocodazole. Due to caspase-3 also being absent from the MCF-7 

cell line (Janicke et al., 1998, Janicke, 2009, Turner et al., 2003), we examined the cleavage 
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levels of polymerase-1 (PARP-1) protein to evaluate the cell death. PARP-1 is a nuclear 

protein involved in the apoptotic pathway and its cleavage is a well-established biomarker of 

cell death via the apoptotic pathway (Wen et al., 2012, Chaitanya et al., 2010, Fischer et al., 

2003, Kaufmann et al., 1993). The preliminary results suggest that the MCF-7 cells 

transfected with a GFP-MCL-1s after treated with M2I-1 combined with nocodazole show an 

increased level of the cleaved PARP-1 (Figure 5.11) compared to the control samples where 

MCF-7 cells were not transfected with the GFP-MCL-1s. Although the experiment has yet to 

be repeated with more controlled conditions, the preliminary results, suggest that MCL-1s 

directly contributes to the cell death induced by M2I-1 in the presence of nocodazole. 

 

We have shown that as a single agent M2I-1 cannot cause cell death in several cancer cell 

lines, but it can significantly induce cell death within the same cell cycle in the presence of 

anti-mitotic drugs, such as nocodazole and Taxol. This might prove to be significant, as it 

would increase the clinical efficacies of current anti-mitotic drugs such as taxanes, 

epothilones, and vinca alkaloids in killing cancer cells and so potentially reduce the length of 

treatment as well as the dose used. It might also reduce the development of resistance and the 

potential relapse or new tumorigenesis after chemotherapy using current anti-mitotic drugs, 

though this has yet to be tested. 
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