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Abstract 

 

Reactive oxygen species (ROS) are produced as by-products of cellular 

processes. In eukaryotes high levels of ROS cause oxidative stress, leading to 

intracellular damage and age-related diseases, whereas low levels of ROS are 

vital for many cellular functions including signal transduction and cell proliferation. 

It is therefore essential that cells can sense the different types and levels of ROS 

to ensure that they respond in an appropriate manner. Ubiquitination is a post-

translational modification which plays vital roles in fundamental cellular 

processes, including protein degradation and many signalling pathways. 

Ubiquitination of substrates occurs in a cycle involving the coordinated activity of 

conjugation and deconjugation enzymes and, interestingly, most ubiquitin 

pathway enzymes utilise catalytic cysteines for function. Recent work from our 

lab and others has begun to reveal that the relative sensitivity of these cysteines 

to oxidation is important for sensing the different types and levels of ROS. In the 

present study we hypothesised that deubiquitinases (dUbs), which remove 

ubiquitin from substrates through the activity of an active site catalytic cysteine, 

may also be regulated by ROS. Hence to test this hypothesis, the tractability and 

powerful genetic tools available in the model eukaryote Saccharomyces 

cerevisiae were utilised to investigate the potential regulation and function of all 

dUbs in this organism in response to different oxidising agents. Excitingly, an 

initial screen of available S. cerevisiae dUb gene deletion mutants and strains 

expressing epitope-tagged dUbs identified wide and varied responses of dUbs to 

different oxidising agents. For example, several dUbs were found to be important 

for cell survival under different oxidative stress conditions. Furthermore, specific 

dUbs were also found to be modified in response to specific oxidising agents. In 

particular, further investigations into specific dUbs observed that Ubp12 was 

reversibly oxidised into a HMW intramolecular disulphide complex in response to 

H2O2 but no other oxidising agents tested. Significantly, the catalytic cysteine of 

Ubp12 was shown to be essential for this complex, suggesting that oxidation 

regulates Ubp12 activity. Another dUb, Ubp2, was also found to be oxidised in 

response to H2O2. Other work has shown that Ubp2 and Ubp12 regulate 

mitochondrial dynamics, and therefore the present study led to a model 
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suggesting that the regulation of Ubp12 and Ubp2 by H2O2 may regulate 

mitochondrial dynamics in response to different levels of H2O2. In contrast to 

Ubp2 and Ubp12, further investigations into another dUb, Ubp15, was found to 

be oxidised into HMW complexes in response to both H2O2 and diamide. 

Interestingly, these Ubp15 HMW complexes have different mobilities suggesting 

differences in the way Ubp15 responds to different oxidising agents. Significantly, 

similar to Ubp12, the catalytic cysteine of Ubp15 was essential for the formation 

of the H2O2-induced HMW complex. Ubp15 has previously been implicated in the 

regulation of cell cycle progression, and consistent with this link the present 

results suggest that Ubp15 may be important for regulating G1 phase 

arrest/delay, and for regulating the release into S phase, following H2O2 

treatment. Collectively, the work described here has begun to provide insight into 

how cells sense and respond to different types and levels of ROS by regulating 

specific dUbs. Furthermore, the yeast dUbs are conserved in higher eukaryotes 

and hence these studies have potential implications for the regulation of 

fundamental processes such as the cell cycle and mitochondrial dynamics. 

  



 

[v] 
 

Acknowledgements 

 

Firstly, I would like to thank my supervisor Brian Morgan, for his constant support, 

advice, enthusiasm, and total confidence in me throughout this PhD. I would also 

like to acknowledge the BBSRC for funding my research, and David Stead at 

Aberdeen University for completing the mass spectrometry and computational 

analysis.  

Secondly, I would like to thank everyone in the Morgan, Quinn, Whitehall, and 

Veal labs, past and present, for helping with ideas and insight in this project. But 

more importantly for providing cake, chocolate and for making the four years fun! 

I would especially like to thank Callum- for keeping me sane (ish!), and Zoe-for 

the much needed coffee breaks, wine nights and random chat. 

Thirdly, I would like to thank my family, Mam and Dad, and even you Scall, for the 

encouragement and support over all the years and for providing endless love 

(and gin) to get me to here. 

Finally, I would like to thank Luke. You have been there to celebrate the good 

days and to cheer me up after the bad days. You have made everything better, 

and I definitely couldn’t have done it without you.  

 

  



 

[vi] 
 

  



 

[vii] 
 

Table of Contents 

Declaration  ......................................................................................................... i 

Abstract  ........................................................................................................ iii 

Acknowledgements ............................................................................................... v 

Table of Contents ................................................................................................. vii 

Abbreviations ...................................................................................................... xiii 

List of Figures ...................................................................................................... xv 

List of Tables  ...................................................................................................... xix 

Chapter One: Introduction ..................................................................................... 1 

1.1. Ubiquitin and ubiquitin-like modifications…………………….... ………......1 

1.1.1. Ubiquitin and ubiquitin-like conjugation .................................... …...……..3 

1.1.1.1. Ubiquitin conjugation ....................................................................... 3 

1.1.1.2. Types of ubiquitin conjugation ....................................................... 10 

1.1.1.2.1. Mono- and multi-ubiquitination ....................................................... 10 

1.1.1.2.2. Poly-ubiquitination ......................................................................... 13 

1.1.1.3. Targets and functions of ubiquitination .......................................... 15 

1.1.1.3.1. Ubiquitination and cell cycle regulation .......................................... 15 

1.1.1.3.2. Ubiquitination and DNA repair ....................................................... 16 

1.1.1.3.3. Ubiquitination and protein localisation ........................................... 17 

1.1.1.3.4. Ubiquitination and mitochondrial regulation ................................... 17 

1.1.1.4. Ubiquitin-like modifications ............................................................ 18 

1.1.2. Deubiquitination ..................................................................................... 20 

1.1.2.1. JAMM family .................................................................................. 23 

1.1.2.2. USP family ..................................................................................... 24 

1.1.2.3. UCH family ..................................................................................... 27 

1.1.2.4. OTU family ..................................................................................... 27 

1.1.2.5. DUb specificity ............................................................................... 28 

1.1.2.5.1. Ubiquitin vs ubiquitin-like specificity ............................................... 28 

1.1.2.5.2. Substrate specificity ....................................................................... 29 

1.1.2.5.3. Type of chain linkage ..................................................................... 29 

1.1.2.5.4. Protein partners ............................................................................. 31 

1.1.2.5.5. Outstanding questions about dUb specificity ................................. 32 

1.1.2.6. DUbs in disease ............................................................................. 32 

1.1.3. Regulation of ubiquitin/ubiquitin-like pathway enzymes ......................... 33 

1.2. Reactive oxygen species ....................................................................... 35 



 

[viii] 
 

1.2.1. Types and sources of ROS..................................................................... 35 

1.2.1.1. The mitochondrial electron transport chain .................................... 36 

1.2.1.2. Transition metals ............................................................................ 37 

1.2.1.3. The immune response ................................................................... 37 

1.2.1.4. Xenobiotics..................................................................................... 39 

1.2.1.5. UV and ionising radiation ............................................................... 40 

1.2.2. Effects of ROS ........................................................................................ 40 

1.2.2.1. DNA ............................................................................................... 40 

1.2.2.2. Proteins .......................................................................................... 41 

1.2.2.3. Lipids .............................................................................................. 45 

1.2.3. ROS in ageing and disease .................................................................... 45 

1.2.4. Defences against ROS ........................................................................... 48 

1.2.4.1. Enzymatic defences against ROS .................................................. 48 

1.2.4.1.1. Superoxide dismutase .................................................................... 48 

1.2.4.1.2. Catalase ......................................................................................... 49 

1.2.4.1.3. Peroxidases ................................................................................... 49 

1.2.4.2. Non-enzymatic defences against ROS .......................................... 52 

1.2.4.2.1. Glutathione ..................................................................................... 52 

1.2.4.2.2. Glutaredoxins ................................................................................. 53 

1.2.4.2.3. Thioredoxins................................................................................... 56 

1.2.4.3. Transcriptional regulation in response to ROS ............................... 56 

1.2.5. ROS sensing and signalling.................................................................... 59 

1.3. Regulation of ubiquitin and ubiquitin-like modifications by ROS............. 63 

1.3.1. SUMO ..................................................................................................... 64 

1.3.2. NEDD/ Rub1 ........................................................................................... 66 

1.3.3. Ubiquitination .......................................................................................... 67 

1.3.3.1. Deubiquitination ............................................................................. 67 

1.4. Aims and objectives ............................................................................... 70 

Chapter Two: Materials and Methods.................................................................. 71 

2.1. Yeast strains ........................................................................................... 71 

2.2. Yeast techniques .................................................................................... 71 

2.1.1 Growth conditions .......................................................................... 71 

2.1.2 Transformation ............................................................................... 71 

2.1.3 Strain construction ......................................................................... 76 

2.1.4 Plasmid manipulations ................................................................... 86 



 

[ix] 
 

2.1.5 Stress sensitivity testing ................................................................ 89 

2.1.6 Genomic DNA extraction ............................................................... 89 

2.1.7 Protein extraction ........................................................................... 90 

2.1.8 Western blotting ............................................................................. 91 

2.1.9 TAP purification ............................................................................. 93 

2.1.10 DNA content analysis .................................................................... 94 

2.2 Molecular biology and bacterial techniques............................................ 94 

2.2.1 PCR ............................................................................................... 94 

2.2.2 Restriction enzyme digests ............................................................ 96 

2.2.3 Agarose gel electrophoresis, DNA purification and DNA 
sequencing………………………………………………………….96 

2.2.4 Escherichia coli transformation and plasmid isolation .................... 96 

Chapter Three: Analyses of the relative contribution of yeast dUbs to ROS 
responses ...................................................................................... 97 

3.1. Introduction ............................................................................................ 97 

3.2. Results ................................................................................................... 98 

3.2.1.  Confirmation of dUb deletion strains and strains expressing epitope 
tagged dUbs. ........................................................................................ 98 

3.2.2. Different dUbs have specific responses to oxidative stress .................. 107 

3.2.2.1. H2O2 sensitivity ............................................................................ 107 

3.2.2.2. Diamide sensitivity ....................................................................... 109 

3.2.2.3. Menadione sensitivity .................................................................. 109 

3.2.3. Specific dUbs are modified in response to oxidative stress .................. 113 

3.2.3.1. Analyses of dUb modification in response to H2O2 ...................... 113 

3.2.3.2. Analyses of dUb modification in response to diamide .................. 116 

3.2.3.3. Analyses of dUb modification in response to menadione ............ 118 

3.2.4.  Oxidative stress induced HMW modification of Ubp12 and Ubp15 are 
conserved in different strain backgrounds and with different epitope 
tags. ................................................................................................... 121 

3.2.4.1. Analysis of Ubp12 in different strain backgrounds and with different 
epitope tagging ............................................................................ 121 

3.2.4.2. Analysis of Ubp15 in different strain backgrounds and with different 
epitope tagging ............................................................................ 128 

3.3. Discussion ........................................................................................... 134 

Chapter Four: Analyses of the roles and regulation of the dUb Ubp12 in stress 
responses. ................................................................................... 141 

4.1. Introduction .......................................................................................... 141 



 

[x] 
 

4.2. Results ................................................................................................. 142 

4.2.1. Analysis into the H2O2-induced HMW form of Ubp12 ........................... 142 

4.2.1.1. The oxidation of Ubp12 responds to different concentrations of 
H2O2……………………………………...…………………………...144 

4.2.1.2. Analysis of the regulation of Ubp12 oxidation .............................. 149 

4.2.2. Analyses of the Ubp12 HMW complex ................................................. 154 

4.2.2.1. Analysis of Ubp12 HMW complex by mass spectrometry ............ 155 

4.2.2.2. Analysis of Ubp12 disulphide complex ......................................... 164 

4.2.3. Characterisation of the role of Ubp12 catalytic cysteine ....................... 167 

4.2.4. Ubp12 functions in responses to oxidative stress ................................. 171 

4.2.4.1. Overexpression of UBP12 affects cell responses to oxidative stress
  ..................................................................................................... 171 

4.2.4.2. Analyses of the effects of overexpression of Ubp12C373S on 
responses to oxidative stress ....................................................... 172 

4.2.4.3. Analyses of global ubiquitin levels after oxidative stress .............. 176 

4.2.4.4. Analysis of known interacting partners of Ubp12 ......................... 179 

4.3. Discussion ............................................................................................ 184 

Chapter 5: Analyses of the roles and regulation of the dUb Ubp15 in stress 
responses and cell cycle regulation ............................................. 195 

5.1. Introduction .......................................................................................... 195 

5.2. Results ................................................................................................. 196 

5.2.1. Analyses of the H2O2- and diamide-induced HMW forms of Ubp15. .... 196 

5.2.1.1. Analyses of the oxidation of Ubp15 by different concentrations of 
H2O2 and diamide......................................................................... 198 

5.2.1.2. Analyses into the regulation of Ubp15 oxidation .......................... 205 

5.2.2. Comparison of the Ubp15 and Cdc34 HMW complexes ...................... 209 

5.2.3. Characterisation of the potential role of the Ubp15 catalytic cysteine in 
the HMW complex formation .............................................................. 215 

5.2.4. Ubp15 functions in responses to oxidative stress ................................. 216 

5.2.4.1. Global phenotypic analyses of Ubp15 .......................................... 218 

5.2.4.2. Investigation of the potential role of Ubp15 in the regulation of global 
ubiquitin levels .............................................................................. 221 

5.2.4.3. Investigation of the relationship between Ubp15 and the cell cycle ... 
  ..................................................................................................... 223 

5.3. Discussion ............................................................................................ 236 

Chapter 6: Final discussion ............................................................................... 243 

6.1. Summary and discussion of key findings from this study ..................... 243 



 

[xi] 
 

6.2. Implications for mammalian cells ......................................................... 246 

6.2.1. USP15 .................................................................................................. 247 

6.2.2. USP7 .................................................................................................... 248 

6.3. Potential implications for drug therapies .............................................. 249 

6.4. Outstanding questions based on this study ......................................... 250 

6.5. Concluding remarks ............................................................................. 251 

Appendix A  .................................................................................................... 253 

Appendix B  .................................................................................................... 254 

References  .................................................................................................... 257 

 

  



 

[xii] 
 

  



 

[xiii] 
 

Abbreviations 

 

8-oxoG   8-oxoguanine 

·OH    Hydroxyl radical 

AGE    Advanced glycation end product 

APC/C   anaphase-promoting complex/cyclosome 

ATP    Adenosine triphosphate 

BCA    Bicinchoninic acid 

bp    Base pair 

BSA    Bovine serum albumin 

BSO    Buthionine sulfoximine 

CDK    Cyclin dependent kinase 

CRL    Cullin-RING ligases 

dH2O    Deionised H2O 

DIC    Differential interference contrast 

DNA    Deoxyribonucleic acid 

dUb    De-ubiquitinases 

E. coli    Escherichia coli 

EDTA    Ethylenediaminetetraacetic acid 

ER    Endoplasmic Reticulum 

Gpx    Glutathione peroxidases 

Grx    Glutaredoxins 

GSH    Glutathione 

H2O2    Hydrogen Peroxide  

HEPES   4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

HRP    Horseradish Peroxidase 

HU    Hydroxy Urea 

JAMM    JAB1/MPN/Mov34 metalloenzyme 

kDa    kilodalton 

MW    Molecular weight    

NEM    N-Ethylmaleimide 

nH2O    Nano H2O 

O2·-    Superoxide 



 

[xiv] 
 

OTU    Ovarian tumour-related 

PBS    Phosphate-buffered saline 

PCNA    Proliferating cell nuclear antigen 

PCR    Polymerase chain reaction 

PEG    Polyethylene glycol 

PMSF    phenylmethylsulfonyl fluoride 

Prx    Peroxiredoxins 

PTM    Post translational modification 

RBR    Ring-in-between-RING 

RNA    Ribonucleic acid 

ROS    Reactive oxygen species 

Rpm    Revolutions per minute 

SCF    Skp, Cullin, F-box containing complex 

S. cerevisiae   Saccharomyces cerevisiae 

SD    Synthetic dextrose 

SDS    Sodium dodecyl sulphate  

SUMO   Small Ubiquitin-like modifier  

TAP    Tandem affinity purification   

TBS    Tris-buffered saline 

TBST    Tris-buffered saline tween 

TCA    Tricholoracetic acid 

TE    Tris EDTA 

Tpx    Thioredoxin peroxidases 

Trx    Thioredoxins 

Ub    Ubiquitin 

Ubl    Ubiquitin-like 

UCH    ubiquitin carboxy-terminal hydrolases 

USP    ubiquitin specific protease 

UV    Ultra violet 

WT    Wild Type 

YPD    Yeast extract peptone dextrose 

  



 

[xv] 
 

List of Figures 

 

Figure 1.1: Ubiquitin/ ubiquitin-like modification conjugation cycle ....................... 5 

Figure 1.2: Schematic of poly-ubiquitin chain conjugation and known cellular roles

 ............................................................................................................................ 12 

Figure 1.3: Alignment of the active sites of S. cerevisiae USP dUbs .................. 26 

Figure 1.4: The Haber-Weiss and Fenton reaction ............................................. 38 

Figure 1.5: The oxidation states of reactive protein thiols ................................... 44 

Figure 1.6: Glutathione production is a two-step process ................................... 54 

Figure 1.7: The redox cycling of the Glutaredoxin and Thioredoxin systems ...... 55 

Figure 1.8: The concentration-dependent effects of different levels of ROS ....... 60 

Figure 1.9: ROS sensing by SUMO pathway enzymes in mammalian cells ....... 65 

Figure 1.10: Schematic for the regulation of cell cycle progression by oxidation of 

Cdc34-Uba1 in S. cerevisiae .............................................................................. 68 

Figure 2.1: Schematic diagram of gene deletion in S. cerevisiae ....................... 78 

Figure 2.2: Schematic diagram for epitope tagging genes at their normal 

chromosomal locus ............................................................................................. 85 

Figure 2.3: Schematic diagram for plasmid construction in the pRS426 plasmid 88 

Figure 3.1: PCR analyses of the dUb gene deletion mutants ........................... 100 

Figure 3.2: PCR analyses of the TAP epitope-tagged dUb strains ................... 103 

Figure 3.3: Epitope tagged dUbs can be visualised by western blot analysis ... 106 

Figure 3.4: dUbs have specific responses to H2O2 stress ................................. 108 

Figure 3.5: dUbs have specific responses to diamide stress ............................ 110 

Figure 3.6: dUbs have specific responses to menadione stress ....................... 111 

Figure 3.7: Specific dUbs are modified in response to H2O2 ............................. 115 

Figure 3.8: Specific dUbs are modified in response to diamide ........................ 117 

Figure 3.9: Specific dUbs are modified in response to menadione ................... 119 



 

[xvi] 
 

Figure 3.10: Different epitope tagged versions of Ubp12 form a HMW 

modification after H2O2 treatment ...................................................................... 124 

Figure 3.11: Ubp12 forms a HMW complex after H2O2 treatment in cells from 

different strain backgrounds .............................................................................. 126 

Figure 3.12: Analyses of the effects of epitope tagging Ubp12 ......................... 127 

Figure 3.13: Different epitope tagged versions of Ubp15 form a HMW complex 

after H2O2 and diamide treatment in cells from different strain backgrounds ..... 130 

Figure 3.14: Analysis of the effects of epitope tagging Ubp15 .......................... 133 

Figure 4.1: Ubp12 HMW complex is reduced by β-mercaptoethanol ................ 143 

Figure 4.2: Ubp12 is oxidised by a range of H2O2 conditions ............................ 145 

Figure 4.3: The kinetics of the formation of the HMW form of Ubp12 is H2O2 

concentration-dependent ................................................................................... 148 

Figure 4.4: Ubp12 oxidation is potentially regulated by the thioredoxin system 153 

Figure 4.5: Sample preparation for mass spectrometry analyses of oxidised 

Ubp12 ................................................................................................................ 157 

Figure 4.6: The potential hits from mass spectrometry analysis do not form the 

same HMW complex as Ubp12-TAP ................................................................. 163 

Figure 4.7: Ubp12 does not form a homodimer in response to H2O2 ................ 166 

Figure 4.8: Ubp12 does not form a H2O2-induced HMW complex in the absence 

of the catalytic cysteine ..................................................................................... 170 

Figure 4.9: Overexpression of UBP12 affects responses to oxidative stress .... 173 

Figure 4.10: Phenotypes associated with overexpression of wild type UBP12 

require the catalytic cysteine ............................................................................. 175 

Figure 4.11: H2O2, but not diamide, affects global ubiquitination ....................... 177 

Figure 4.12: Loss of Ubp12 does not appear to affect global ubiquitination ...... 180 

Figure 4.13: The relative abundance of known interacting partners of Ubp12 are 

affected by H2O2 ................................................................................................ 183 

Figure 4.14: Regulation of mitochondrial morphology by Ubp2 and Ubp12 ...... 190 



 

[xvii] 
 

Figure 4.15: Ubp2 oxidised in response to H2O2 ............................................... 192 

Figure 5.1: Ubp15 HMW modification is reduced by β-mercaptoethanol .......... 197 

Figure 5.2: Ubp15 is oxidised by a range of oxidising conditions. ..................... 200 

Figure 5.3: The kinetics of Ubp15 HMW complex formation is H2O2 concentration-

dependent ......................................................................................................... 204 

Figure 5.4: Ubp15 oxidation is not regulated by the thioredoxin system ........... 207 

Figure 5.5: HMW modifications of Ubp15 in the TRR1 and trr1Δ strains are due to 

oxidation ........................................................................................................... 210 

Figure 5.6: Ubp15 and Cdc34 HMW complexes have different mobilities ........ 212 

Figure 5.7: Ubp15 is not oxidised into the same HMW complex as Cdc34 ....... 214 

Figure 5.8: The catalytic cysteine of Ubp15 is required for H2O2-induced HMW 

complex formation ............................................................................................. 217 

Figure 5.9: Over expression of UBP15 affects responses to oxidative stresses 219 

Figure 5.10: Ubp15 regulates global ubiquitination ........................................... 222 

Figure 5.11: DNA content analyses of wild type and ubp15Δ cells in response to 

2 mM H2O2 treatment ........................................................................................ 226 

Figure 5.12: Regulation of the cell cycle after 0.5 mM H2O2 treatment in wild type 

and ubp15Δ strains ........................................................................................... 230 

Figure 5.13: Analyses of DNA content after exposure of cells to 0.5 mM H2O2. 234 

 

  



 

[xviii] 
 

  



 

[xix] 
 

List of Tables 

 

Table 1.1: The conjugation pathways of Ub/Ubl modifications .............................. 2 

Table 1.2: S. cerevisiae E2 enzymes and their cellular roles ................................ 8 

Table 1.3: S. cerevisiae dUbs and their biological functions ............................... 22 

Table 2.1: Yeast strains used in this study .......................................................... 75 

Table 2.2: DNA sequence of oligonucleotide primers used in this study ............. 81 

Table 2.3: Plasmids used in this study. ............................................................... 82 

Table 2.3: Antibodies used in this study .............................................................. 92 

Table 3.1: Summary of the differential dUb sensitivities in response to ROS ... 112 

Table 3.2: Summary of the differential dUb sensitivities and modifications in 

response to ROS .............................................................................................. 120 

Table 4.1: Potential proteins in the H2O2-induced HMW complex identified by 

mass spectrometry ............................................................................................ 159 

Table 5.1: Growth and cell cycle analyses of wild type and ubp15Δ cells ......... 232 

 

 

 

  



 

[xx] 
 

 

  



 

[1] 
 

Chapter One: Introduction 

 

1.1. Ubiquitin and ubiquitin-like modifications 

Post translational modifications (PTMs) regulate proteins by altering their physical 

properties, including regulating protein localisation, abundance and activity.  

There are many examples of PTM including methylation, phosphorylation, 

glycosylation, acetylation, ubiquitin and ubiquitin-like modifications (Walsh 

Christopher et al., 2005; Paula and Uwe, 2012). Ubiquitination is a classic 

example of a PTM which, upon addition onto target protein substrates, regulates 

protein function in several different ways. Ubiquitin is a 76 amino acid peptide, 

with a mass of approximately 8.5 kDa (Hochstrasser, 2009; Jadhav and Wooten, 

2009), which is conjugated onto substrates via an isopeptide bond, historically to 

target the substrate for degradation. Since ubiquitination was discovered 

(Goldknopf et al., 1977; Ciehanover et al., 1978; Swatek and Komander, 2016) 

other proteins similar to ubiquitin, ubiquitin-like modifications, with a similar 3D 

structure including the characteristic β-grasp fold and a conserved di-glycine 

motif (Hochstrasser, 2009) have been identified. These ubiquitin-like 

modifications include proteins such as SUMO and Rub1/NEDD8 among others 

(Table 1.1).  Ubiquitin and ubiquitin-like modifications are highly conserved 

across all eukaryotes (for example the yeast and mammalian ubiquitin protein 

differs in only three amino acids) and are essential in many cases. Although 

ubiquitin and ubiquitin-like modifications were thought not to be present in 

prokaryotes, more recently ubiquitin-like modifications have been identified, 

including Pupylation, Sampylation and Ttub, which share a similar β-grasp fold 

and that are linked to target proteins by isopeptide bonds (Maupin-Furlow, 2014).  

Ubiquitin and ubiquitin-like modifications have been linked to the regulation of 

cellular processes. Furthermore, in human cells the dysregulation of 

ubiquitination has been implicated in several diseases, including cancers and 

neurodegenerative disorders. Thus it is important to understand the mechanisms 

underlying the regulation of ubiquitination. 



 

[2] 
 

Ubiquitin-like 
modifier 

Encoding genes E1 E2 E3 Targets 

Ubiquitin 
UBI1-UBI4 
(UBA52, UBA80, 
UBB, UBC) 

Uba1 
(UBA1, UBA6) 
(Jin et al., 2007) 

Ubc1-13 
(~40 E2s (Stewart 
et al., 2016) 

~60 – 100 
(>600 in mammalian 
cells) 
(Bassermann et al., 
2014) 

Many 

SUMO 
SMT3 
(SUMO1-4 ) 

Aos1/Uba2 
(SAE1/UBA2) 

Ubc9 

Siz1, Siz2, Mms21, 
and Zip3  
(15 in mammalian 
cells) 
(Watts, 2013) 

Many 

Rub1 (NEDD8) 
RUB1 
(NEDD8) 

Ula1/Uba3 
(Uba3/APPB1) 
(Ehrentraut et al., 
2016) 

Ubc12 
(UBE2M) 

Many Cullin family in SCF E3s 

Urm1 URM1 Uba4 (MOCS3) - - Many 

Atg8 (LC3) 
ATG8  
(7 in mammalian) 

Atg7 Atg3 
Atg12/Atg5  
(Otomo et al., 2013)  

Phosphatidylethanolamine  
(Otomo et al., 2013) 

Atg12 ATG12 Atg7 Atg10 - 
Atg5  
(Otomo et al., 2013) 

 

Table 1.1: The conjugation pathways of Ub/Ubl modifications . The encoding genes and conjugation pathway enzymes 

of ubiquitin and the ubiquitin-like modifiers SUMO, Rub1, Urm1, Atg8, and Atg12 in S. cerevisiae; mammalian homologs are included 

in brackets. Adapted from (Jentsch and Pyrowolakis, 2000; Hochstrasser, 2009; Veen and Ploegh, 2012). 
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1.1.1. Ubiquitin and ubiquitin-like conjugation 

Ubiquitin and ubiquitin-like modifiers are generally conjugated onto target 

proteins by the coordinated activity of three enzymes which function in a 

cascade; termed E1, E2 and E3 (Figure 1.1). E1 activating enzymes initiate the 

cycle by forming a high energy ubiquitin/ubiquitin-like adenylate intermediate 

which is donated to the catalytic cysteine of the E1 within the active site. The 

activated ubiquitin/ubiquitin-like modifier forms a thioester bond between the 

carboxyl group of the terminal glycine residue of the ubiquitin/ubiquitin-like 

modifier, and a cysteine residue in the E1 in an ATP-dependent manner (Finley 

et al., 2012). The ubiquitin/ubiquitin-like modifier is then transferred to the active 

site cysteine of E2 conjugating enzymes through transesterification (Bedford et 

al., 2010). E2s are characterised by the presence of a catalytic fold (UBC 

domain) which are highly conserved regions of ~200 amino acids (van Wijk and 

Timmers, 2010) that allow binding of both E1s and E3s along with the activated 

ubiquitin/ubiquitin-like modifier. In the final step of the conjugation cycle, 

ubiquitin/ubiquitin-like modifiers are conjugated to lysine residues on target 

proteins with the aid of E3 ligase enzymes (Hershko and Ciechanover, 1998; 

Nguyen et al., 2015). An isopeptide bond between a lysine receptor residue on 

the substrate binds to the previously activated carboxyl group of the 

ubiquitin/ubiquitin-like molecule. The specific enzymes involved in ubiquitin and 

ubiquitin-like conjugation in S. cerevisiae, including mammalian homologs where 

known, are listed in Table 1.1.  

1.1.1.1. Ubiquitin conjugation 

In mammalian and S. cerevisiae cells four genes encode ubiquitin; UBA52, 

UBA80, UBB, and UBC (Kobayashi et al., 2016) and UBI1, UBI2, UBI3, and UBI4 

(Finley et al., 2012) respectively. UBI1, UBI2 and UBI3 produce transcripts 

encoding ubiquitin attached to an unrelated tail protein, which must be removed 

to produce mature ubiquitin (Ozkaynak et al., 1987). In the case of UBI1 and 

UBI2, this tail protein is an identical ribosomal protein precursor (Finley et al., 

1989). The poly-ubiquitin UBI4 gene transcript encodes five ubiquitin repeats 

arranged head to tail (Ozkaynak et al., 1987). In order to produce mature 
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Figure 1.1: Ubiquitin/ ubiquitin-like modification conjugation cycle. (a) 

Immature ubiquitin/ ubiquitin-like modifiers are processed by isopeptidases 

(dUbs) before they are (b) activated by E1 enzymes in an ATP-dependent 

manner and joined to the E1 by a thioester bond. (c) Transesterification transfers 

the activated ubiquitin/ ubiquitin-like modifier to an E2 enzyme which (d) 

conjugates the ubiquitin/ ubiquitin-like modifier to a substrate with the help of an 

E3 ligase enzyme. (e) Ubiquitin/ ubiquitin-like modifiers can be conjugated to 

substrates in multiple ways after repetitive rounds of conjugation (e); (i) mono-, 

(ii) poly-, and (iii) multi-. (f) Ubiquitin/ ubiquitin-like modifiers are removed from 

substrates by dUbs which cleave the isopeptide bond between either the 

ubiquitin/ ubiquitin-like modifier and substrate, or between two ubiquitin/ ubiquitin-

like modifiers. The cleaved ubiquitin is then able to be reused in another cycle. 
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ubiquitin to allow conjugation to substrates the precursors must undergo 

proteolytic processing (see section 1.1.2) whereby the tail regions are removed. 

In the case of Ubi1-3 proteins this exposes the C-terminal glycine carboxylate 

which is essential for activation. In the case of Ubi4, the five ubiquitin chain 

repeats are cleaved to produce mature ubiquitin moieties (Finley et al., 1987; 

Gemayel et al., 2017). Interestingly UBI4 is not essential under unstressed 

conditions, but is specifically required for heat stress, nutrient starvation, and 

oxidative stress responses (Finley et al., 1987). 

Mature ubiquitin is covalently attached to target proteins via a pathway containing 

three enzymes; E1, E2, and E3 (see Figure 1.1). S. cerevisiae contains one 

ubiquitin-specific, monomeric E1 named Uba1 (Table 1.1), which is essential for 

viability (McGrath et al., 1991). This is in contrast to mammalian cells which 

express two ubiquitin E1s, UBA1 and UBA6 (Schulman and Harper, 2009). Uba1 

can bind two ubiquitin molecules at the same time; one in the adenyl-intermediate 

form, and one as activated ubiquitin bound by a thioester bond to the catalytic 

cysteine of Uba1  (Haas et al., 1982; Groen and Gillingwater, 2015). The ability to 

bind two ubiquitin molecules not only allows rapid activation of ubiquitin 

molecules, but the conformation of the E1 associated with two ubiquitin 

molecules allows favourable transfer of the activated ubiquitin to E2 enzymes 

(Schulman and Harper, 2009). Uba1 is essential for viability in S. cerevisiae and 

interestingly there have been many diseases associated with mutations in the 

mammalian Uba1 (Balak et al., 2017). Mutations in Uba1 have been linked to 

many neurodegenerative disorders and spinal muscular atrophy. As such Uba1 

has been proposed as a therapeutic target for these diseases (Groen and 

Gillingwater, 2015). 

S. cerevisiae expresses 11 ubiquitin-specific E2 enzymes, Ubc1-8, 10, 11, and 

13 (Finley et al., 2012), whereas mammalian cells contain ~40 known ubiquitin 

E2 enzymes (Stewart et al., 2016). E2 enzymes interact with Uba1 and E3s, but 

in addition must be able to transfer ubiquitin to substrates. Hence E2 enzymes 

have different binding domains for each specific interaction. Interestingly, the 

binding site for Uba1 and E3 enzymes overlap, thus preventing E2 enzymes 

becoming loaded with ubiquitin again before conjugation of the previous ubiquitin 
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molecule has been completed (Eletr et al., 2005). Importantly, it is E2 enzymes 

that are critical for ensuring unidirectional ubiquitin cycling. This directionality is 

determined by the different binding affinity of Uba1 and the E3 enzymes to E2 

enzymes. In particular, Uba1 has a higher binding affinity to unloaded E2 

enzymes, rather than E2-ubiquitin conjugates. Conversely, E3 enzymes have a 

higher binding affinity to E2-ubiquitin conjugates so will preferentially bind to E2s 

which are loaded with ubiquitin resulting in conjugation of ubiquitin to the 

substrate (Finley et al., 2012). Of the 11 S. cerevisiae E2 enzymes only one, 

Cdc34, is essential for viability. For example, a Cdc34ts mutant was found to 

arrest at the G1-S phase boundary at the non-permissive temperature (Schwob 

et al., 1994). Cdc34 has many substrates which are mostly targeted by the SCF 

ubiquitin ligase complex of which Cdc34 is the associating E2 (described in more 

detail below). Examples of Cdc34 ubiquitination substrates are histone 

ubiquitination, and regulating the protein quality control pathway (Finley et al., 

2012). More details on Cdc34 substrates and the remaining S. cerevisiae E2s 

can be found in Table 1.2. 

In the final step of the cycle, ubiquitin is conjugated to lysine residues in target 

substrates with the aid of E3 enzymes. E3 ligases catalyse the formation of an 

isopeptide bond between the ε-amino groups of lysine residues in the substrate, 

and the carboxyl group of ubiquitin and hence must be able to bind to E2 

enzymes and substrates. E3’s are the largest group of enzymes in the ubiquitin 

conjugation cascade; in S. cerevisiae ~100 E3 enzymes have been identified (for 

a comprehensive list see (Finley et al., 2012)), and more than 600 are present in 

mammalian cells (Bassermann et al., 2014). E3 enzymes are divided into 2 major 

groups depending on domain architecture and functional mechanism; RING 

domain E3s (which also include U-box domain E3s) and HECT domain E3s 

(Finley et al., 2012). Only five HECT domain E3 enzymes are present in S. 

cerevisiae, all of which have a catalytic cysteine within their HECT domain 

(Rodriguez et al., 2003). This cysteine forms a thioester with ubiquitin donated 

from the E2 enzyme, which is then attached to the substrate (Rotin and Kumar, 

2009). The five HECT domain E3s currently identified in S. cerevisiae are Rsp5, 

Ufd4, Hul4, Hul5, and Tom1 (Finley et al., 2012). Interestingly, only Rsp5 is 

essential for viability. Rsp5 has many substrates in a wild range of pathways,  
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E2 Function 

Ubc1 
Vesicle biogenesis, ER-associated degradation, nuclear 

protein quality control, E2 for APC 

Ubc2/Rad6 DNA repair, H2B mono-ubiquitination, regulator of K63 

Cdc34 

Cell cycle regulation, E2 for SCF E3s, nuclear protein quality 

control pathway, histone regulation, methionine expression 

regulation 

Ubc4 
E2 for APC, cytoplasmic protein quality control, promotes 

efficient DNA replication 

Ubc5 Paralog of Ubc4 

Ubc6 ER-associated degradation, K11 synthesis 

Ubc7 
ER-associated degradation, inner nuclear membrane-

associated degradation 

Ubc8 Gluconeogenesis regulation, histone ubiquitination 

Ubc9 E2 for SUMO conjugation 

Ubc10/Pex4 Peroxisome biogenesis 

Ubc11 Function unknown 

Ubc12 E2 for Rub1 conjugation 

Ubc13 
DNA repair, synthesises K63 when in a dimer with a non-

catalytic partner protein, Mms2 

 

Table 1.2: S. cerevisiae E2 enzymes and their cellular roles. Table 

adapted from (Finley et al., 2012).  
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including lipid biosynthesis, regulation of unsaturated fatty acids and regulation of 

specific transcription factors (Kaliszewski and Zoladek, 2008; Finley et al., 2012). 

In contrast to HECT domain E3 enzymes, RING domain E3s do not form a direct 

thioester with ubiquitin, but instead mediate ubiquitin transfer from the E2 enzyme 

to the substrate by activating the E2, and facilitating ubiquitination by positioning 

E2-ubiquitin in proximity to the target lysine in the substrate (Deshaies and 

Joazeiro, 2009). RING domain E3 enzymes constitute the majority of S. 

cerevisiae E3s, including the distinct subgroup RING-in-between-RING (RBR) E3 

enzymes. RBRs function as hybrids of RING and HECT E3 enzymes. In this case 

one RING domain binds to the E2 enzyme and allows transfer of ubiquitin onto a 

cysteine residue in the other RING domain forming an E3-ubiquitin thioester 

before the ubiquitin molecule is conjugated onto a target lysine (Wenzel and 

Klevit, 2012). There are currently 44 S. cerevisiae proteins identified which 

encode RING domain E3s, however the most prominent members of the RING 

domain E3s are the APC/C RING E3, and the cullin-RING ligases (CRLs) (Finley 

et al., 2012). The APC/C E3 comprises 13 subunits in S. cerevisiae (Finley et al., 

2012), and includes a RING domain which binds to the associating E2s Ubc1 and 

Ubc4 (Rodrigo-Brenni and Morgan, 2007). The APC/C core includes three 

activators which bind to substrates and are critical for targeting specific 

substrates. These activators are Cdh1, Cdc20 and Ama1, and interaction with the 

APC/C with the activators directs specific substrate targeting (Finley et al., 2012). 

CRLs comprise the largest group of ubiquitin ligases in all eukaryotes. CRLs 

consist of four subunits, a RING protein, a linker and a substrate receptor. The 

specific cullin aspect of CRLs (S. cerevisiae has three cullins, Cdc53, Cul3, and 

Rtt101 (Finley et al., 2012)) depends on the type of CRL, for example the cullin 

Cdc53 assembles SCF ligases, which have F-box proteins as the substrate 

receptor (Yen et al., 2012). The RING domain subunit interacts with, and 

activates, the SCF associating E2, Cdc34 (Petroski and Deshaies, 2005).  

Specificity of ubiquitin conjugation to substrates is achieved through the particular 

combination of E2 and E3 enzymes used. This specificity is often achieved by the 

E3 enzyme, which has recognition domains distinct from catalytic domains which 

can direct the E2-ubiquitin conjugate (Jackson et al., 2000). The large number of 

E3 enzymes and their interaction with specific E2s allows for greater specificity of 
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ubiquitination. Interestingly, this specificity can be influenced further by the 

requirement for certain chaperones to direct certain substrates to the specific E3 

enzyme (Rosser et al., 2007). Specificity can also be directed to substrates by 

recognising previously modified or marked lysines of the target protein. E4 

enzymes are a small subclass of E3 ligases that are responsible for ubiquitinating 

substrates which have previously been ubiquitinated, thus adding to substrate-

specific ubiquitination (Koegl et al., 1999; Hoppe, 2005).  

1.1.1.2. Types of ubiquitin conjugation 

Ubiquitin can be conjugated to substrates in several different ways; mono-

ubiquitination, multi-ubiquitination and poly-ubiquitination. Significantly, each 

individual type of ubiquitination initiates different fates for the substrate (Figure 

1.2). Investigations of the effects of different types of ubiquitination revealed that 

ubiquitination is much more complex than initially proposed, and can in fact have 

many more consequences than simply targeting proteins for degradation. E2 

enzymes often have a preference for promoting ubiquitin initiation on substrates 

rather than elongation which is regulated by the interaction between the E2s and 

E3s (Ye and Rape, 2009). This is thought to be achieved by the turnover rates of 

the substrate and E2-E3 binding. Mono-ubiquitination is achieved by E3s which 

quickly release the product, but that have a slow E2 turnover. However for poly-

ubiquitination, E3s which turn over E2s rapidly but release the substrate more 

slowly seem to be preferable (Eletr et al., 2005) 

1.1.1.2.1. Mono- and multi-ubiquitination 

Mono-ubiquitination is the addition of one ubiquitin moiety onto target lysine 

residues. Mono-ubiquitination is not often linked to protein degradation, which is 

proposed to be due to one ubiquitin molecule not presenting enough of a signal 

to target substrates for protein degradation (Hicke, 2001). Instead mono-

ubiquitination has been linked to other non-proteolytic pathways including 

regulating endocytosis, protein localisation, retrovirus budding, and histone 

ubiquitination (Hicke, 2001; Sadowski et al., 2011) (Figure 1.2). Interestingly, S. 

cerevisiae cells that are unable to mono-ubiquitinate the specific histone H2B are 

unable to undergo meiosis (Robzyk et al., 2000).  
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Figure 1.2: Schematic of poly-ubiquitin chain conjugation and known 

cellular roles. Ubiquitin can be conjugated to substrates in different ways. 

Mono- and multi-ubiquitination occurs when ubiquitin is conjugated to lysine 

residues in the substrate. Poly-ubiquitin chains can be formed in 8 mechanisms 

including linear Met1 linkages and through conjugation onto the 7 lysine residues 

in ubiquitin; K6, K11, K27, K29, K33, K48, and K63. Heterotypic ubiquitination 

can occur when different types of ubiquitination are present on one substrate, 

e.g. branched or forked chains of different linkages. Adapted from (Komander, 

2009; Klein et al., 2016; Lafont et al., 2018; Kulathu and Komander, 2012) 
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Multi-ubiquitination is the attachment of multiple, single ubiquitin molecules to a 

number of lysine acceptors of the substrate protein. Multi-ubiquitination is not well 

characterised, however multi-ubiquitination signals have been shown to trigger 

internalisation of cell-surface receptors. This internalisation results in degradation 

or recycling to the cell membrane for example, the regulation of receptor tyrosine 

kinase endocytosis (Haglund et al., 2003) (Figure 1.2). The multi-ubiquitin signal 

is recognised by the conserved endosomal sorting complex required for transport 

(ESCRT) complexes, which recognises multi-ubiquitinated substrates and 

facilitates their transport from endosomes to lysosomes (Williams and Urbé, 

2007).  

1.1.1.2.2. Poly-ubiquitination  

Poly-ubiquitination occurs when the ubiquitin molecule itself is ubiquitinated. 

There are 7 lysine residues present in the ubiquitin molecule; K6, K11, K27, K29, 

K33, K48 and K63, all of which can act as isopeptide bond acceptors to be 

ubiquitinated, primarily in a chain. The location of each specific lysine in ubiquitin 

is important. The shape the chain takes when attached is thought to initiate 

specific pathways. Proteins which bind ubiquitin molecules have ubiquitin binding 

domains which recognise hydrophobic parts of ubiquitin. However these 

interactions are weak and often need other associating proteins to strengthen the 

bonds (Chen and Sun, 2009). The different shapes of the ubiquitin chains may be 

a mechanism by which specific proteins are able to bind. For example, the 

globular nature of K48 may bind preferentially to proteasomal subunits which 

initiate proteasomal degradation. However, other non-proteolytic proteins may 

preferentially bind to the linear shape of K63 chains (Chen and Sun, 2009). For 

example, the yeast E2 enzyme Ubc13 forms K63 poly-ubiquitin chains when in a 

heterodimer with a non-catalytic subunit Mms2.  Binding of Mms2 to the acceptor 

ubiquitin allows only the K63 residue to be in proximity to the active site of Ubc13 

and thus be ubiquitinated (Eddins et al., 2006).  

An 8th type of chain linkage occurs when ubiquitin is attached to the N-terminus of 

another ubiquitin molecule (Kirisako et al., 2006; Iwai et al., 2014). This type of 

linkage, termed Met1 or linear ubiquitination, has been linked to many signalling 

cascades including ERK and NF-κB activation in mammalian cells (Sasaki et al., 
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2013). Interestingly, when lysine and Met1 sites are unavailable, ubiquitination 

can occur on serine, threonine and cysteine residues (McDowell and Philpott, 

2013). These alternative ubiquitination signals on non-lysines may have different 

outcomes for substrates, for example ubiquitination of cysteine residues may play 

an important role in mitosis (Vosper et al., 2009). Interestingly, it has also been 

identified that some E2 enzymes are able to conjugate poly-ubiquitin chains en 

bloc onto substrate lysines. An example here is the yeast Ubc7 and its 

mammalian homolog Ube2g2 (Finley et al., 2012). While non-lysine types of poly-

ubiquitination can occur in vivo, lysine residues remain the most common targets. 

Interestingly, each of type of lysine chain can initiate a different response in 

substrates (Figure 1.2). Additionally, poly-ubiquitination is not limited to one type 

of chain linkage on a substrate (homotypic ubiquitination). Heterotypic poly-

ubiquitination can occur where multiple types of poly-ubiquitin chains are present 

on substrates, often in a branched or forked shape whereby a single ubiquitin 

moiety is ubiquitinated at two or more sites (Figure 1.2) (Kulathu and Komander, 

2012). 

K48 linkages are the only type of poly-ubiquitination which are essential for 

viability (Spence et al., 1995). K48 ubiquitination is the characteristic degradation 

signal, where four ubiquitin moieties form a globular chain that targets substrates 

to the proteasome (Spence et al., 1995). K48 poly-ubiquitination accounts for the 

majority of poly-ubiquitination; however this is still only approximately 30% of all 

ubiquitin linkages (Bremm and Komander, 2011). The remaining ubiquitin lysine 

residues can be mutated to understand the specific function for each linkage 

(Spence et al., 1995). This genetic manipulation and the improving mass 

spectrometric techniques have allowed understanding of the many emerging 

roles of poly-ubiquitination.  

One of the more recently emerging roles of poly-ubiquitination is a non-proteolytic 

signalling role. Here, substrates are not targeted to the proteasome, but can have 

other roles, such as in signalling cascades or protein localisation. One of the 

main poly-ubiquitin linkages associated with non-proteolytic roles is K63, which 

has recently been observed to be important in many signalling pathways (Spence 

et al., 1995). Further research into yeast K63 function has highlighted links with 
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autophagy signalling (Ferreira et al., 2015), multi-vesicular body protein sorting 

(Erpapazoglou et al., 2012), and stress response signalling (Silva et al., 2015b). 

Interestingly, recent work in mammalian cells identified that a serine/threonine 

protein kinase involved in transcriptional regulation of cell death pathways, 

HIPK2, was stabilised by K63 ubiquitination. After slight heat shock HIPK2 was 

stabilised by K63 and translocated to the cytoplasm, inhibiting its association with 

the cell death response and therefore allowing the cell to recover from this stress 

(Upadhyay et al., 2016). At high lethal temperatures, HIPK2 was not ubiquitinated 

by K63 and was able to re-enter the nucleus and initiate a cell death response 

(Upadhyay et al., 2016), indicating that K63 ubiquitination of this protein is vital to 

determine when cell death occurs. 

1.1.1.3. Targets and functions of ubiquitination 

Ubiquitination has been linked with almost all cellular pathways and indeed it is 

thought that most proteins will, at some point, be ubiquitinated (Swatek and 

Komander, 2016). Although ubiquitination of substrates often results in 

degradation through 26S proteasome activity, more and more non-proteolytic 

roles are emerging, often depending on the type of ubiquitin signal on substrates 

(see Section 1.1.1.2). Details of all ubiquitin substrates are not feasible in this 

introduction (for further reviews see (Finley et al., 2012; Ciechanover, 2015; 

Mansour, 2018)). However it has been identified previously that ubiquitination is 

vital for cell cycle progression, DNA repair and replication, protein localisation, 

and mitochondrial regulation and examples of these are discussed below.  

1.1.1.3.1. Ubiquitination and cell cycle regulation 

Ubiquitination regulates many important cell cycle proteins. For example use of a 

temperature sensitive Cdc34 mutant identified that Cdc34 is critical for cell cycle 

progression as cdc34-ts strains arrest at the G1-S phase boundary at the non-

permissible temperature (Schwob et al., 1994). Cdc34 regulates the cell division 

cycle by ubiquitinating the cyclin dependent kinase (CDK) inhibitor Sic1 (Schwob 

et al., 1994), subsequently marking it for degradation and thus allowing cell cycle 

progression. The timing of the degradation of many cell cycle regulating proteins 

is important.  For example, Sic1 is only ubiquitinated and thus targeted for 

degradation when it has six independent phosphorylation signals (Cross et al., 
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2007). Ubiquitin is also critical in regulating the cell cycle in many other ways. For 

example K48 poly-ubiquitination is crucial for G1-S transition by marking key 

CDK’s for degradation by the proteasome to allow progression through the 

checkpoint (Mocciaro and Rape, 2012), Interestingly, non-proteolytic K63 poly-

ubiquitination is also important for activating certain cell cycle check points. K63 

chains are often assembled at sites of DNA damage and inhibit G2-M transition 

when this damage is present (Mocciaro and Rape, 2012). The APC/C and SCF 

protein ligase complexes are also important to regulate the cell cycle. The 

importance for the SCF complex to ubiquitinate substrates and regulate the cell 

cycle is demonstrated by investigating temperature sensitive mutants of each 

component of the complex, and Cdc34. All of these mutants display cell cycle 

arrest at non-permissive temperatures, and cells are unable to undergo DNA 

replication due to their inability to degrade Sic1 (Schwob et al., 1994; Seol et al., 

1999). Regulation of the cell cycle by the APC/C complex is dependent on the 

specific activator subunit bound to the ligase (Krek, 1998). For example 

APC/CCdc20 is activated in early mitosis and regulates mitotic progression, and 

also degrades B-type cyclins Clb2 and Clb5 (Wäsch and Cross, 2002). In 

contrast APC/CCdh1 is only active in G1 phase and maintains cells in a stable G1 

phase by downregulating many target proteins including the F-box protein Skp2 

(Skaar and Pagano, 2009).  

1.1.1.3.2. Ubiquitination and DNA repair 

Identification that the S. cerevisiae Rad6 enzyme (a key enzyme for post 

replication DNA repair) was a ubiquitin E2 enzyme initiated the link between DNA 

damage repair and ubiquitination (Jentsch et al., 1987; Jackson and Durocher, 

2013). Post replication repair allows the replication of DNA after stress, and is 

therefore a mechanism by which DNA damage can be tolerated (Jackson and 

Durocher, 2013). PCNA, an important protein for DNA post replication repair, is a 

nuclear complex made up of 3 monomers of identical proteins, in S. cerevisiae 

these are Pol30 (Fan and Xiao, 2016). The sub-units of PCNA form a ring, which 

is large enough for the double helix of DNA to pass through the centre. 

Ubiquitination of PCNA, by the E2 and E3 Rad6 and Rad18 respectively at the 

K164 residue (Fan and Xiao, 2016), is upregulated after exposure to DNA 
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damaging agents and UV radiation. Mono-ubiquitination causes PCNA to initiate 

translesion synthesis (TLS) through recruitment of specialised polymerases, 

which allows areas of DNA damage to be bypassed and subsequently allows 

DNA replication to continue (Xu et al., 2015).  

1.1.1.3.3. Ubiquitination and protein localisation 

Protein localisation can also be regulated by ubiquitination. The mammalian 

transcription factor p53 is known to be important for control of many pathways 

including cell cycle arrest and apoptosis, and is known to be an important tumour 

suppressor in many cancers (Muller and Vousden, 2013; Meek, 2015). p53 can 

be poly-ubiquitinated by the E3 ligase Msl2 which promotes nuclear export but 

does not initiate degradation of p53 (Kruse and Gu, 2009). Subsequent mono-

ubiquitination of p53 removes p53 from the cytoplasm into the mitochondria, 

effectively stopping p53 from entering the nucleus where it would act as a 

transcription factor for many downstream genes, and also initiating apoptosis 

(Marchenko et al., 2007). This mono-ubiquitination also inhibits any further poly-

ubiquitination of p53 which may cause p53 degradation. A further example 

whereby protein localisation is regulated by ubiquitination is the ubiquitination 

state of PLK1. PLK1 regulates many factors of mitosis, including mitotic entry, 

chromosome alignment and sister chromatid segregation (Sumara et al., 2004). 

When PLK1 is not ubiquitinated it localises to the kinetochore, where it promotes 

chromosomal alignment. Ubiquitination of PLK1 at Lys492 by the E3 ligase CUL3 

results in disassociation from the kinetochores (Beck et al., 2013). Therefore, the 

balance of ubiquitinated PLK1 is critical for the chromosomal alignment and 

timely sister chromatid segregation during metaphase (Lui and Zhang, 2017).  

1.1.1.3.4. Ubiquitination and mitochondrial regulation 

Mitochondria are organelles with many important roles within the cell. For 

example, they are important in iron sulphur cluster formation (Rouault and Tong, 

2005), ATP production via the electron transport chain (García-Ruiz et al., 1995), 

and are intrinsically linked to multiple cell signalling pathways (Duchen, 2000; 

Hancock et al., 2001; Fleury et al., 2002). Mitochondria are very dynamic 

organelles, constantly changing shape and size to create a homeostatic balance 

between fission and fusion depending on cellular environment. This constant 
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change in shape is known as mitochondrial dynamics. In mammalian cells 

ubiquitination of key mitochondrial proteins has been shown regulate 

mitochondrial dynamics. The mammalian E3 ubiquitin ligase MITOL was found to 

ubiquitinate outer membrane fission proteins FIS1 and DRP1 (Yonashiro et al., 

2006). This modification is important in Drp1-dependent mitochondrial fission as 

inactivation of MITOL inhibits mitochondrial fission (Heo and Rutter, 2011). 

Another E3 ligase, Parkin has also been associated with mitochondria quality 

control. Depolarised mitochondria enable stabilised PINK1, a serine-threonine 

protein kinase, to recruit Parkin which poly-ubiquitinates PINK1 with either K63 or 

K27 linkages in a proteasome-independent manner. This signal mediates the 

transport of the mitochondria to the autophagosome where mitochondria are 

degraded. Mutations or loss of function in either PINK1 or Parkin result in 

Parkinson’s disease, which highlights the importance of removing damaged 

organelles for cell survival. Parkin has also been associated with K48 linked poly-

ubiquitination of MFN1 and MFN2 (key mitofusins) for targeting to the 

proteasome, resulting in MFN1 and MFN2 loss and subsequent mitochondrial 

fragmentation. Investigations into the roles of ubiquitin in the regulation of 

mitochondrial dynamics in S. cerevisiae found that in S. cerevisiae Mdm30 is a 

vital E3 ligase that maintains fusion (Fritz et al., 2003). For example, in mdm30Δ 

cells, mitochondria were found to be very aggregated and unable to form 

networks. However, mitochondria were restored to wild type morphology in a 

dnm1Δ mdm30Δ double mutant (Fritz et al., 2003). Further studies found that 

Mdm30, similar to Parkin in mammalian cells, controls the degradation of Fzo1 (a 

mitofusin which is the homolog to MFN1/MFN2) by ubiquitinating it and targeting 

it for destruction through the proteasome pathway (Fritz et al., 2003). 

1.1.1.4. Ubiquitin-like modifications 

There are many ubiquitin-like modifiers in eukaryotes and the discussion of these 

is beyond the scope of this introduction. However, for reviews see (Kerscher et 

al., 2006; Hochstrasser, 2009; van der Veen and Ploegh, 2012; Wang et al., 

2017). This section will focus on two ubiquitin-like modifiers SUMO and Rub1. 

Rub1 (NEDD8 in mammalian cells) is an example of a ubiquitin-like modifier 

which is attached to substrates in similar cycle to that described for ubiquitin 
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(Liakopoulos et al., 1998; Boase and Kumar, 2015). Of all the ubiquitin-like 

modifiers, Rub1 has the highest sequence similarity to ubiquitin (van der Veen 

and Ploegh, 2012). However, while ubiquitin is essential for viability in S. 

cerevisiae, rub1Δ strains are viable (Liakopoulos et al., 1998). Similar to ubiquitin, 

Rub1 is initially expressed as an inactive precursor which must be processed and 

in S. cerevisiae, this is performed by Yuh1 (Linghu et al., 2002b). Once 

processed Rub1 is then activated by an E1 heterodimer consisting of Ula1 and 

Uba3 (in humans Uba3 and APPB1 (Ehrentraut et al., 2016)). Activated Rub1 is 

transferred to the E2 Ubc12 in S. cerevisiae, and subsequently conjugated onto 

lysine residues in target substrates with the aid of several E3 enzymes (Linghu et 

al., 2002b). Interestingly, although Rub1 is similar in sequence to ubiquitin, it 

differs in the target substrates. In contrast to ubiquitin, only a few substrates have 

been identified as Rub1 targets. Furthermore, Rub1 modifications are targeted to 

the cullin family (van der Veen and Ploegh, 2012), and indeed the first Rub1 

target identified in S. cerevisiae was Cdc53. In mammalian cells NEDD8 is 

required for maximum functionality of the cullin subunit in the SCF group of E3’s. 

Rub1 is removed from substrates by the conserved multi-subunit COP9 

signalosome (CSN) (Deshaies et al., 2010), for a review of COP9 see (Wei and 

Deng, 2003).  

The Small Ubiquitin-like Modifier (SUMO) is involved in many cellular processes 

including DNA repair, replication, and transcription. SUMO is attached to 

substrates via a similar cycle to that described for ubiquitin and Rub1 (Hay, 2005; 

Kroetz, 2005). S. cerevisiae contains a single SUMO encoding gene, SMT3, 

however mammalian cells contain four; SUMO1-4 (van der Veen and Ploegh, 

2012). Similar to Rub1, SUMO is transcribed as an immature precursor which is 

processed by SUMO-specific proteases before being activated by a heterodimer 

E1 consisting of Aos1 and Uba2 (Melchior, 2000). Activated SUMO is then 

transferred to a single E2; Ubc9 (Johnson and Blobel, 1997). Although, in 

contrast to ubiquitin and Rub1, SUMO can be conjugated directly to substrates 

from Ubc9, E3 enzymes also confer specificity. In S. cerevisiae SUMO specific 

E3 enzymes identified are Siz1, Siz2, Mms21, and Zip3 (Jalal et al., 2017). 

SUMO is removed from substrates by the SUMO-specific proteases. In S. 

cerevisiae there are two SUMO specific proteases, Ulp1, which is essential for 
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viability, and Ulp2 (Jalal et al., 2017), whereas mammalian cells express nine 

SUMO-specific proteases (Nayak and Müller, 2014).  

1.1.2. Deubiquitination 

Deubiquitination enzymes (dUbs) are responsible for removing ubiquitin 

molecules from substrate proteins by catalysing the breakdown of the isopeptide 

bond between the target substrate lysine and the ubiquitin molecule. This 

recycles ubiquitin to reuse in subsequent ubiquitin conjugation, and adds an extra 

level of control in protein regulation. dUbs are highly conserved from yeast to 

humans, however, while mammalian cells express approximately 100 known 

dUbs (Turcu et al., 2009), S. cerevisiae encodes only 20 (Finley et al., 2012). 

dUbs are functionally diverse in their substrate specificity and subcellular 

localisation, as the small number of S. cerevisiae dUbs need to be able to 

deubiquitinate the large number of ubiquitinated substrates (Table 1.3). dUbs are 

linked to almost all cellular processes, and have the potential to regulate the 

stability, activity, and localisation of target proteins through ubiquitin removal. 

Interestingly, certain pathogens have acquired dUb encoding genes, suggesting 

that they may trigger the dysregulation of the ubiquitin pathway as a mechanism 

of attacking a host (Rytkonen and Holden, 2007; Edelmann and Kessler, 2008).  

DUbs main function is to remove ubiquitin from substrates, but their mechanism 

of action can vary between dUbs; some have preferences for removing mono-

ubiquitin, some prefer to remove chains en bloc, and some have preferences for 

editing chain lengths. As described previously ubiquitin is expressed initially as 

an immature precursor attached to unrelated tail proteins (section 1.1.1.1). 

Hence, one role of dUbs is to process immature ubiquitin into mature ubiquitin 

that can be activated by E1s and used in the ubiquitin cycle (Grou et al., 2015). 

Early mammalian studies identified that UCHL3 and UCHL1 were involved in 

processing ubiquitin attached to ribosomal precursors, and USP5 was implicated 

in poly-ubiquitin processing (Grou et al., 2015). However mouse models lacking 

both UCHL3 and UCHL1 were viable suggesting that other dUbs may be 

involved. It has also been suggested that ubiquitin may be processed co- 
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Group dUb 
Mammalian 

homolog 
Biological role 

USP 

Ubp1 USP19* Endocytosis (Schmitz et al., 2005) 

Ubp2 USP28* 

Cargo sorting of membrane proteins and 

multi-vesicular biogenesis (Lam et al., 

2009), mitochondrial morphology 

regulation (Anton et al., 2013) 

Ubp3 USP10 

Osmotic response (Baker et al., 1992), 

ribophagy and autophagy (Kraft et al., 

2008), inhibitor of gene silencing 

(Moazed and Johnson, 1996) 

Ubp4 

(Doa4) 
USP4/USP8 

Paralog of Ubp5. Recycles ubiquitin 

from proteasome-bound proteins and 

vacuolar degradation (Swaminathan et 

al., 1999), maintains monomeric 

ubiquitin levels (Nikko and Andre, 2007) 

Ubp5 USP4/USP8 Paralog of Ubp4 

Ubp6 USP14 
Degrades ubiquitin chains at the 

proteasome (Hanna et al., 2006) 

Ubp7 USP21 Paralog of Ubp11 

Ubp8 USP22 
Deubiquitination of histone H2B (Henry 

et al., 2003) 

Ubp9 
USP12/ 

USP1 

Paralog of Ubp13. Mitochondrial 

biogenesis (Kanga et al., 2012) 

Ubp10 
USP20/ 

USP36 

Ribosome biogenesis (Richardson et al., 

2012), PCNA deubiquitination (Gallego-

Sanchez et al., 2012), histone H2BK123 

deubiquitination (Schulze et al., 2011) 

Ubp11 USP21 Paralog of Ubp7 

Ubp12 USP15 
Mitochondrial morphology regulation 

(Anton et al., 2013) 

Ubp13 USP46 

Paralog of Ubp9. Suppresses cold 

sensitivity (Hernandez-Lopez et al., 

2011), mitochondrial biogenesis (Kanga 

et al., 2012) 



 

[22] 
 

USP 

Ubp14 USP5 

Specifically deubiquitinates unanchored 

ubiquitin chains (Amerik et al., 1997; Hu 

et al., 2005) 

Ubp15 USP7 

Peroxisome biogenesis (Debelyy et al., 

2011), methionine synthesis (Benschop 

et al., 2010) 

Ubp16 USP16 

Anchored to mitochondrial membrane, 

function unknown (Kinner and Kolling, 

2003) 

OTU 

Otu1 OTU1 
ER-associated degradation (Stein et al., 

2014) 

Otu2 OTUD6B 
Unknown function, may interact with 

ribosomes 

UCH Yuh1 UCHL3 
Cleaves Rub1 preferentially, but will 

cleave ubiquitin (Linghu et al., 2002a) 

JAMM Rpn11 POH1 

Essential for S. cerevisiae viability. 

Bound to 26S proteasome lid, cleaves 

ubiquitin en bloc (Mevissen and 

Komander, 2017) 

 

Table 1.3: S. cerevisiae dUbs and their biological functions. 

Mammalian homologs listed are suggested by protein sequence similarity using 

NCBI BLASTp, * denotes low sequence homology. Adapted from (Huseinovic et 

al., 2018). 
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translationally due to the fast nature of the processing in vivo. It has been 

observed that USP9 and USP7 are also linked to processing ubiquitin bound to 

ribosomal precursors, and Otulin has been shown to be involved with processing 

poly-ubiquitin precursors (Grou et al., 2015). However, despite these studies the 

roles of the respective homologs in S. cerevisiae remain unknown. dUbs are 

separated into two distinct categories based on sequence, structure and catalytic 

activity; zinc metalloproteases and cysteine proteases (Finley et al., 2012). In S. 

cerevisiae the cysteine proteases are broken down into three further subgroups, 

USP, OTU, UCH, whereas there is only one member of the JAMM type zinc 

metalloprotease (Table 1.3). 

1.1.2.1. JAMM family 

The JAMM family are the only known group of dUb enzymes that are zinc 

metalloproteinases. These enzymes have active site Zn2+ ions which function in 

coordination with a water molecule and two specific conserved histidines, and 

one specific conserved glutamate residues (Shrestha et al., 2014). One Zn2+ ion, 

in conjunction with the glutamate residue, activates the water molecule to attack 

the isopeptide bond between the substrate lysine and the ubiquitin molecule 

(Komander et al., 2009; Fuchs et al., 2018), whilst another Zn2+ ion aids 

stabilisation of the motif that recognises the distal ubiquitin (Maytal-Kivity et al., 

2002).  

In mammalian cells there are 14 members of the JAMM family, whereas S. 

cerevisiae has only one, Rpn11 (Table 1.3). Rpn11 is situated within the 26S 

proteasome lid, directly adjacent to the entry channel of the proteasome core and 

targets proximal ubiquitin on substrates to remove ubiquitin chains en bloc 

(Mevissen and Komander, 2017). Rpn11 is the only essential dUb in S. 

cerevisiae (Finley et al., 2012) and knockdown of the human homolog, POH1, 

inhibits cellular growth, and causes ineffective substrate degradation and 

proteasomal activity, and an increase in poly-ubiquitinated substrates (Gallery et 

al., 2007). Interestingly, non-lethal rpn11 mutations in S. cerevisiae result in over-

replication of DNA and severe growth impairment, and cause an increase of 

ubiquitinated proteins (Gallery et al., 2007). Interestingly, an active site mutant 

version of Rpn11 disrupts protein degradation but cells remain viable, suggesting 
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that the role Rpn11 plays in maintaining proteasome stability is more important 

than its deubiquitinase activity (Guterman and Glickman, 2004).   

1.1.2.2. USP family 

The remaining groups of dUbs are thiol proteases, however can be further 

classified into subgroups depending on protease domain and structure (Nijman et 

al., 2005). The main group of thiol proteases in both mammalian cells and S. 

cerevisiae are the ubiquitin specific proteases (USP). All USP dUbs have two 

highly conserved catalytic regions, the Cys and His boxes, which reside in the 

USP domain of the proteins. Crucially it is these boxes that allow deprotonation of 

the catalytic cysteine found within the conserved active site (Amerik and 

Hochstrasser, 2004). Importantly, the catalytic cysteine is situated in a cleft 

located close to conserved histidine and aspartic acid residues found in the His 

box and it is the activity of this triad which deprotonates the catalytic cysteine in 

order to allow deubiquitination (Figure1.3). Although the USP domain in each 

dUbs contains two highly conserved active site Cys and His motifs, the size of 

each USP domain can vary due to unrelated sequences located between the two 

conserved motifs (Nijman et al., 2005). Although these unrelated sequences have 

been suggested to have a regulatory function, no evidence exists to support this 

hypothesis.  The crystal structures of many dUbs have been solved, and 

generally all USP domains have a very similar structure consisting of a palm, a 

thumb, and finger-like regions, with the catalytic cysteine positioned between the 

palm and thumb domains (Hu et al., 2002). Interestingly, in many dUbs, the USP 

domain is not catalytically active when not bound to substrates. In these cases 

when substrates bind to the dUb, either conformational changes bring the 

catalytic triad together to allow catalytic activity (Komander et al., 2009), or 

substrate binding removes inhibiting structures which normally block catalytic 

activity (Amerik and Hochstrasser, 2004). 

In mammalian cells 56 USP members have been described (Guo et al., 2018), 

whilst S. cerevisiae expresses 16, Ubp1-Ubp16 (Table1.3). Although the active 

site Cys and His residues of all S. cerevisiae USP dUbs are highly conserved 

(Figure 1.3), the specific cellular roles of each dUb are highly divergent. Indeed, 

defining the roles of each dUb is a large ongoing are of research. Specific  
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Figure 1.3: Alignment of the active sites of S. cerevisiae USP dUbs. (A) 

Alignment of the conserved cys box active site which contains the active site 

catalytic cysteine (denoted by *). (B) Alignment of the conserved His box, 

containing the histidine and aspartic acid residues (denoted by *) which form the 

catalytic triad along with the active site cysteine. The histidine deprotonates the 

cysteine to allow breakage of the isopeptide bond in ubiquitinated proteins. Dub 

sequences were obtained from the Saccharomyces cerevisiae genome database, 

and the alignments were conducted using Clustal Omega, and annotated by 

Boxshade. The shadings represent the similarity between amino acid residues. 

(C) Structure of an active USP dub (USP7) from the Protein Data Bank (identifier 

1nbf (Hu et al, 2002)) edited to show the catalytic core in relation to the palm, 

thumb, and fingers in USP dub active sites. The catalytic core (containing amino 

acids denoted by * in A and B) is identified by the arrow. 
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functions of the S. cerevisiae dUbs that have been identified to date are shown in 

Table 1.3 (for reviews of mammalian dUbs and their cellular roles see (Nijman et 

al., 2005; Ventii and Wilkinson, 2008). 

1.1.2.3. UCH family 

Another group of dUbs which are cysteine proteases is termed the ubiquitin 

carboxy-terminal hydrolases (UCH). Generally, UCH dUbs contain a 230 amino 

acid catalytic core which consists of a catalytic triad and has a 3D structure 

similar to USP dUbs, with which they share catalytic activity (Turcu et al., 

2009).Interestingly, the catalytic cysteine of UCH dUbs is located in a narrow 

groove in the protein (Amerik and Hochstrasser, 2004). UCH dUbs were initially 

found to have catalytic activity towards small amide groups and esters located at 

the C-terminus of ubiquitin (hence their name). Indeed, their affinity for small 

substrates is suggested by their structure which contains a crossover loop close 

that covers the active site. Substrates must pass through this loop to reach the 

catalytic core, effectively preventing binding of larger substrates (Nijman et al., 

2005; Komander et al., 2009).   

In mammalian cells there are 4 members of the UCH family, whist S. cerevisiae 

expresses only 1, Yuh1 (Finley et al., 2012) (Table 1.3). Mammalian UCH dUbs 

are thought to be involved in ubiquitin processing due to their affinity for smaller 

substrates, and also their ability to act on peptide conjugates as well as 

isopeptide bonds. In S. cerevisiae although Yuh1 is thought to primarily act on 

Rub1 modifications (Linghu et al., 2002b), it can also cleave ubiquitin chains 

(Finley et al., 2012).  

1.1.2.4. OTU family 

Ovarian tumour-related (OTU) proteases are the final group of cysteine protease 

dUbs in S. cerevisiae. Although the OTU catalytic core resembles those of the 

USP and UCH dUbs, the catalytic core in the OTU dUbs resides in a 130 amino 

acid domain conserved between OTU family members (Messick et al., 2008) 

consisting of a 5-stranded β-sheet surrounded by helical domains (Nanao et al., 

2004). The catalytic core deubiquitinates substrates in a similar manner to the 

USP and UCH groups whereby the His residue within the catalytic triad 
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deprotonates the catalytic cysteine to enable cleavage of the isopeptide bond 

(Messick et al., 2008).  The OTU protease family has members which contain an 

OTU domain residing in a USP family domain, which initially suggested the OTU 

deubiquitinating activity.  

In mammalian cells there are 18 known OTU dUbs, although only 14 have had 

their dUb activity confirmed (Komander et al., 2009). S. cerevisiae expresses two 

OTU dUbs; Otu1 and Otu2 (Table 1.3). The targets of Otu1 have only recently 

begun to emerge, and although specific roles of Otu2 remain unknown, they are 

hypothesised to be ribosome-related (Huseinovic et al., 2018). The recent studies 

of Otu1 revealed it to have preferences for K48 linkages, and to have links to ER-

associated degradation (Stein et al., 2014).  

1.1.2.5. DUb specificity 

Although dUbs, especially those in the USP group, have a similar active site and 

mode of cleavage, many dUbs have specific substrates and regulate specific 

pathways and chain linkages. The specificity of dUbs can be achieved in multiple 

ways; recognition of ubiquitin or ubiquitin-like moieties, the type of ubiquitin 

modification (for example lysine mono-ubiquitination or the type of poly-

ubiquitination), the target protein onto which the ubiquitin moiety is attached, and 

the necessity for partner proteins. It must also be noted that a combinatorial 

effect of multiple mechanisms may aid in dUb specificity.  

1.1.2.5.1. Ubiquitin vs ubiquitin-like specificity 

Most dUbs primarily catalyse ubiquitin specific linkages only, but to do this they 

must be able to differentiate between ubiquitination and other ubiquitin-like 

modifications such as SUMO and Rub1 (NEDD8) (Nijman et al., 2005). This is 

achieved by the interaction between the distal ubiquitin moiety and the dUb. For 

catalysis the distal ubiquitin extends towards the catalytic centre of the dUb, 

where it interacts with approximately 40% of the dUb surface (Komander et al., 

2009). DUbs can recognise the amino acids that cover the surface as the C-

terminal amino acids of ubiquitin (L71, R72, L73, R74, G75, G76) differ to other 

ubiquitin-like modifiers (Komander et al., 2009), with R74 and G75 residues 

critical for dUb recognition. However, while the majority of dUbs cleave only 
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ubiquitin, some do cleave other ubiquitin-like modifiers from substrates. For 

example, although Yuh1 primarily cleaves Rub1 linkages, it also has catalytic 

activity towards ubiquitin (Finley et al., 2012). In mammalian cells the dUb 

USP21 also cleaves the Rub1 homolog NEDD8 (Gong et al., 2000), and the 

dUb USP7 can remove SUMO chains (Lecona et al., 2016). Furthermore, 

similar to ubiquitin, many ubiquitin-like modifications have their own 

deconjugating enzymes, for example SENPs specifically recognise and remove 

SUMO (Drag and Salvesen, 2008).   

1.1.2.5.2. Substrate specificity 

As described previously (see Section 1.1.1.2), ubiquitin can be conjugated to 

substrates in multiple different forms to elicit different outcomes. Mono-

ubiquitination is the attachment on one ubiquitin moiety onto a substrate lysine 

residue. Hence, to cleave this type of ubiquitination dUbs must be able to bind to 

the specific substrate directly. This type of substrate specificity is potentially 

regulated by domain(s) outside of the catalytic core of the dUb (Nijman et al., 

2005), directing binding of the dUb and the substrate, leaving the catalytic triad 

within the dUb free to hydrolyse the isopeptide bond. Detailed investigations of 

substrate specificity are scarce due to the difficulty to identify mono-ubiquitinated 

substrates. However, it has been suggested that dUbs may recognise the actual 

ubiquitination sites on the substrate. Interestingly, one investigation using S. 

cerevisiae revealed that Ubp8 can directly recognise mono-ubiquitinated histone 

H2B in the SAGA complex (Morgan et al., 2016), however further studies into the 

exact mechanism of this are needed. Additionally some dUbs may potentially 

bind to the substrate and remove poly-ubiquitin chains en bloc in a single-step 

chain removal (Heride et al., 2014). In these cases dUbs may remove the whole 

chain leaving the substrate free from ubiquitin, or may actually leave the 

substrate mono-ubiquitinated (Komander et al., 2009) which would then need the 

activity of a different dUb to remove the final ubiquitin moiety.  

1.1.2.5.3. Type of chain linkage 

In addition to distinguishing substrates that are mono-ubiquitinated, dUbs must 

also have specificity for the different types of poly-ubiquitination linkage. In this 
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category, dUbs can be termed endo-dUbs, which can cleave ubiquitin within a 

chain, or exo-dUbs, which cleave ubiquitin from the end of the chain (Heride et 

al., 2014). Endo- cleavage is very efficient at removing an entire ubiquitin chain 

from the substrate resulting in the release of an unanchored chain which requires 

further processing. However, endo-dUbs are also able to bind to ubiquitin 

moieties in the middle of specific chains. In contrast, exo-dUbs cleave single 

ubiquitin molecules from the distal end of ubiquitin chains, producing mono-

ubiquitin (He et al., 2016). The action of exo-dUbs can thus trim the lengths of the 

chain to, for example, regulate the ubiquitin signal, or alternatively they can act 

repeatedly to remove whole poly-ubiquitin chains. The specificity of dUbs to 

cleave at certain points in the poly-ubiquitin chain is often dependent on the 

conformation of the chain itself. For example, K48 linkages form a globular 

shaped chain (Ronau et al., 2016) which can be recognised by dUbs such as 

Rpn11 and Ubp6. In contrast, K63-linked ubiquitin chains have a much more 

linear structure (Ronau et al., 2016) thus requiring different recognition. 

Interestingly, some dUbs can also act in an endo- and an exo- manner depending 

on the chain linkages. For example, the mammalian dUb USP21 is able to cleave 

K63 chains at any linkage, whereas it is only able to cleave the terminal ubiquitin 

moiety from K6-linked chains (Mevissen and Komander, 2017). When dUbs 

remove chains of poly-ubiquitin from substrates, these chains then need to be 

further processed into single mono-ubiquitin moieties which can ultimately be 

reused in the conjugation cycle. In mammalian cells this further processing is 

performed by USP5 and USP13, which recognise the C-terminal di-glycine motif 

in unanchored poly-ubiquitin chains (Reyes-Turcu et al., 2006; Komander et al., 

2009) In S. cerevisiae, Ubp14 processes these unanchored chains, and ubp14Δ 

mutants show an increase in free poly-ubiquitin chains (Amerik et al., 1997). 

However, ubp14Δ mutant cells are still viable; suggesting that either the build-up 

of poly-ubiquitin chains is not detrimental to cell survival under normal conditions, 

or that another dUb is also able to contribute to the degradation of these chains. 

Although dUbs demonstrate specificities in their substrate recognition, they also 

show redundancy and overlapping roles with other dUbs. This significantly adds 

to the number of substrates for each dUb, and also inhibits attempts to elucidate 

substrates. In S. cerevisiae only one dUb, Rpn11, is essential for viability (Finley 
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et al., 2012), and moreover, when the other dUbs are individually removed 

surprisingly few growth defects are observed under normal conditions (Amerik et 

al., 2000), suggesting that many dUbs can fulfil overlapping cellular roles. Indeed, 

a mutant strain with 5 dUbs deleted (ubp1Δ, ubp2Δ, ubp3Δ, ubp7Δ, ubp8Δ) 

displayed the same growth phenotype as a single ubp8Δ deletion strain 

suggesting a large redundancy of dUb functions (Amerik et al., 2000). 

1.1.2.5.4. Protein partners 

While many dUbs can bind directly to the substrate, it has been found that some 

dUbs may need the activity of a binding or interaction partner (Ventii and 

Wilkinson, 2008). Furthermore, many dUbs have a low affinity for binding 

ubiquitin, suggesting that binding partners may also be a mechanism for 

regulating dUb specificity. For example, in mammalian cells TRAF2 (an E3 ligase 

important for cell survival and apoptosis) can bind to USP2, an interaction that 

stops USP2 from deubiquitinating K48 chains, but does not interfere with K63 

deubiquitination (McClurg and Robson, 2015). Additionally, the mammalian dUb 

USP1, a key dUb involved in the DNA damage response, requires interaction 

with the WD40 interacting partner UAF1 to activate its enzymatic activity 

(McClurg and Robson, 2015). In S. cerevisiae, Ubp3 (mammalian homolog 

USP10) forms a complex with Bre5 to enable deubiquitination of subunits in 

COPII and COPI complexes (Cohen et al., 2003) and for vacuole trafficking (Li et 

al., 2007). Bre5 is an essential positive regulator of Ubp3 catalytic function. 

Interestingly, Bre5 does not complement a catalytically inactive mutant of Ubp3 

and is not involved in substrate recognition (Cohen et al., 2003), suggesting that 

Bre5 is necessary for Ubp3 substrate targeting or regulating catalytic activity (Li 

et al., 2007). It has also been suggested that Ubp16 requires a binding partner, 

unknown at present, to enable deubiquitination of H2A (Turcu et al., 2009).  

The necessity for certain dUbs to utilise binding partners or cofactors suggests a 

potential mechanism for targeting and inhibiting specific dUb activity, without 

inhibiting the role of the dUb in other cellular roles independent of the binding 

partner (McClurg and Robson, 2015).  
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1.1.2.5.5. Outstanding questions about dUb specificity 

New forms of ubiquitination are constantly emerging, bringing with them the 

possibility that new roles of dUbs (and maybe new dUbs) are yet to be identified. 

For example it has been found that multi-ubiquitination can occur at different 

lysine residues on ubiquitin, forming complex branched chains. Such branches 

may interfere with dUb cleavage, as they could interrupt endo-dUbs from 

recognising chain links. At this stage it is unclear whether any dUbs recognise 

specifically branched ubiquitin chains, or even whether these are processed by 

the same dUbs, but at a slower rate (Mevissen and Komander, 2017). Models 

have identified phosphorylation sites on ubiquitin (at Ser65 (Wauer et al., 2015), 

or di-ubiquitin phosphorylated at Ser20 or Ser57 (Huguenin-Dezot et al., 2016)) 

which could inhibit dUb binding. However no specific dUbs have been currently 

identified to recognise phosphorylated ubiquitin (Mevissen and Komander, 2017).  

1.1.2.6. DUbs in disease   

The dysregulation of mammalian dUbs has been linked to many diseases (for 

reviews see (Hanpude et al., 2015; Heideker and Wertz, 2015; Magraoui et al., 

2015; Wei et al., 2015)). Indeed, many dUbs were originally identified due to their 

links with disease progression. dUbs have been linked to the progression of 

many cancers, for example CYLD is a mammalian USP dUb which has been 

linked to the NF-κB and JNK pathways. Mutations in CYLD are highly prevalent in 

familial cylindromatosis, patients of which are prone to developing skin tumours 

(Bignell et al., 2000). USP6 has been identified as an oncogene in Ewing’s 

sarcoma that causes aneurismal bone cysts (Oliveira et al., 2005).  dUbs are also 

important in regulating tumour suppressors and oncogenes, disruption of which 

can also lead to cancer progression. One of the most studied dUb which 

regulates tumour suppressor and oncogenes genes is USP7. USP7 has been 

found to regulate the tumour suppressors PTEN (Song et al., 2008) and p53, and 

also the oncogene Mdm2 (Sheng et al., 2006). Initially USP7 was identified as a 

tumour suppressor as it was shown to be a dUb acting on p53 (Zhou et al., 

2018), allowing the stabilisation of p53 and inducing cell growth depression 

apoptosis in a p53-dependent mechanism. However more recent work revealed 

USP7 can also deubiquitinate Mdm2, an E3 which ubiquitinates p53. USP7 
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stabilises Mdm2 which the subsequently ubiquitinates p53 to maintain low cellular 

p53 levels (Hu et al., 2006). Hence, removal of USP7 can result in activated P53 

which can lead to cell cycle arrest and apoptosis (Zhou et al., 2018). Interestingly, 

upregulation of USP7 has been identified in many cancers; such as prostate 

cancer (Song et al., 2008), gliomas (Bhattacharya and Ghosh, 2014), and 

neuroblastoma (Fan et al., 2013). The connection between USP7 function and 

cancer is further emphasised by the observations that high expression levels of 

USP7 in these tumours is linked to tumour aggressiveness and poor prognosis 

(Zhou et al., 2018). Hence, there is much interest in investigating targeting USP7 

for many cancer therapies. Another dUb noted for its link to cancers is USP15. 

USP15 removes ubiquitin and subsequently stabilises the oncogene TGF-β. 

Similar to USP7, high expression levels of USP15 have been found in certain 

cancers such as glioblastomas, and breast and ovarian cancers. Furthermore, 

loss of USP15 has been linked to reducing the oncogenic capacity of certain 

gliomas in mouse models, due to the downregulation of TGF-β (Eichhorn et al., 

2012). Interestingly, dUb dysregulation is linked to other aspects of human 

health. For example, USP16 has been linked with Down’s syndrome phenotypes. 

Down’s syndrome occurs upon trisomy of chromosome 21 and it has been 

proposed that the severe phenotypes are partly due to the upregulation of USP16 

(Adorno et al., 2013) which is expressed from this chromosome. Given the 

linkage of dysregulation of dUbs to many diseases, it is vital that dUbs (and other 

ubiquitin and ubiquitin-like modification pathway enzymes) are tightly controlled. It 

is therefore essential to understand the regulation and functions of specific dUbs 

in eukaryotes.  

1.1.3. Regulation of ubiquitin/ubiquitin-like pathway enzymes 

Due to the large presence of ubiquitin and ubiquitin-like modifications in the cell, 

and the potential for dysregulation of the modifications to lead to disease, the 

modifications must be tightly regulated. In addition to conjugation and 

deconjugation of the moiety onto substrates, there are many layers of regulation 

which work together to control these modifications. For example, ubiquitin itself 

can be SUMOylated (Guzzo and Matunis, 2013) which can inhibit further 

ubiquitination of the substrate and also inhibit dUb recognition of the chain. 
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Indeed ubiquitin can be SUMOylated at 5 different lysine residues; K6, K11, K27, 

K48, and K63 (Swatek and Komander, 2016). The specific nature of 

SUMOylation of ubiquitin remains unknown. However, it has been identified that 

K6 and K27 SUMOylation is upregulated after heat shock (Hendriks et al., 2014). 

Ubiquitin can also be modified by other PTMs such as phosphorylation and 

acetylation. Indeed, all lysine residues except for K29 in ubiquitin have been 

shown to be acetylated, and 11 different residues have been observed to be 

phosphorylated (Swatek and Komander, 2016). Both acetylation and 

phosphorylation change the surface properties of ubiquitin. Although most of the 

phosphorylation of ubiquitin has unknown physiological functions, it is interesting 

to note that phosphorylation at S65 (S65-phosphoUb) has been linked to 

Parkinson’s disease and mitophagy (Okatsu et al., 2015; Ordureau et al., 2015). 

Thus, it is likely that PTM of ubiquitin has important functions in cells.  

DUbs are a key regulator of ubiquitination as they remove the ubiquitin chains 

from substrates. It is therefore necessary to regulate dUb activity as without 

regulation dUbs could potentially indiscriminately remove ubiquitin thus 

dysregulating cellular ubiquitination (Sahtoe and Sixma, 2015). The regulation of 

dUbs can be broken into two main categories: the regulation of abundance and 

localisation of dUbs, and regulation of dUb catalytic activity (Mevissen and 

Komander, 2017). DUb localisation can be regulated by certain PTM’s in the 

dUbs themselves, for example when the normally cytoplasmic mammalian dUb 

USP10 is phosphorylated it induces translocation to the nucleus, whereby USP10 

deubiquitinates p53 (Yuan et al., 2010). For further reviews covering regulatory 

mechanisms of dUbs and other ubiquitin and ubiquitin-like modifier pathway 

enzymes see (Petroski and Deshaies, 2005; Hickey et al., 2012; Sahtoe and 

Sixma, 2015; Swatek and Komander, 2016; Mevissen and Komander, 2017). 

Interestingly, due to the presence of catalytic cysteines in many ubiquitin and 

ubiquitin-like modifier pathway enzymes, including dUbs, an important 

mechanism by which the catalytic activity of ubiquitin and ubiquitin-like 

modifications can be regulated is through the oxidation of these conserved 

cysteines by reactive oxygen species (ROS). Hence ROS, and the regulation by 

ROS, will be the focus of the remainder of this introduction.  
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1.2. Reactive oxygen species 

Reactive oxygen species (ROS) are highly reactive molecules that contain one or 

more unpaired electrons in their outer orbit. Cells can be exposed to ROS from 

the environment, or from by-products of intracellular biological processes. Due to 

the damaging nature of ROS, high levels of oxidative stress are associated with 

the ageing process and many diseases and consequently cells have mechanisms 

that respond to the presence of these stress conditions to repair damage and 

restore homeostasis. These defences include enzymatic and non-enzymatic 

mechanisms. In contrast low levels of ROS are important components of many 

signalling pathways. Hence ROS levels must be tightly regulated to maintain 

equilibrium between the damaging high concentrations, and the important low 

concentrations of ROS, and cells must be able to distinguish both levels and 

types of ROS to respond in an appropriate manner. 

1.2.1. Types and sources of ROS 

ROS encompass many different types of oxygen containing molecules, most of 

which have an unpaired electron in their outer shell producing highly reactive 

radicals (eg superoxide radicals: O2·- and hydroxyl radicals: ·OH), however other 

non-radical forms have also been identified (eg hydrogen peroxide: H2O2) (Ray et 

al., 2012; Phaniendra et al., 2015). Superoxide is produced intracellularly through 

leakage in the electron transport chain (1.2.1.1). While O2·- is able to cause 

damage itself, it is comparatively stable when compared to other radicals. 

However O2·- is readily converted to H2O2 either spontaneously or through the 

action of superoxide dismutase enzymes (SODs) after O2·- interaction with H+ 

(Fridovich, 1986). Although H2O2 has only weak oxidising abilities, it is classed as 

a cause of ROS due to high permeability across hydrophobic membranes (Kohen 

and Nyska, 2002), and ability to produce ·OH after interaction with metal ions 

(1.2.1.2). ·OH is the most highly reactive type of ROS (Valko et al., 2006) and 

causes the majority of damage to cells, including DNA damage. ·OH has a short 

half-life (less than 1 ns) and as such tends to attack other molecules close to its 

site of formation (Valko et al., 2006).  
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ROS are produced from many sources, including the production of different types 

of ROS from other radicals as described above. Other intracellular sources 

include electron leakage from the electron transport chain in normal respiration in 

the mitochondria, ROS production from transition metals, ROS production from 

the immune response. Extracellular sources include UV radiation and 

xenobiotics. Examples of intracellular and extracellular sources are described 

below. 

1.2.1.1. The mitochondrial electron transport chain 

Cellular energy is produced by respiration and the final step in this process is 

oxidative phosphorylation at the electron transport chain which occurs on the 

inner membrane of mitochondria (Nickel et al., 2014). Although mitochondria are 

very efficient (human mitochondria reduce ~95% of total O2  (Halliwell, 2006)) 0.1-

2% electrons can escape from complexes, primarily complexes I and III in the 

electron transport chain (Bertaux et al., 2018). Furthermore, electron leakage 

from complex III (in S. cerevisiae cytochrome bcl complex (Lemesle-Meunier et 

al., 1993)) can result in electrons passing directly to O2 producing O2·- . 

Significantly, this specific production of O2·- is classed as one of the major 

intracellular sources of O2 radicals (Jastroch et al., 2010). S. cerevisiae does not 

have complex I, but instead has three rotenone insensitive NADH 

dehydrogenases (Bakker et al., 2001; Herrero et al., 2008). Two of these 

enzymes have active sites which face the intermembrane space rather than the 

matrix. The rotenone insensitive NADH dehydrogenases oxidise NADH and 

transfer electrons to ubiquinone, and in doing so can transfer electrons directly to 

O2 producing O2·-  (Fang and Beattie, 2003). O2·- is converted to H2O2 via the 

action of mitochondrial superoxide dismutase (mtSOD) (Ansenberger-Fricano et 

al., 2013), which in turn can be detoxified by enzymes such as catalase and 

glutathione peroxidase. If not detoxified, H2O2 can be converted into ˙OH, for 

example after interaction with iron (1.2.1.2) through the Haber Weiss and Fenton 

reactions. 
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1.2.1.2. Transition metals 

Eukaryotes use several different transition metals such as iron (Fe), copper (Cu), 

zinc (Zn), manganese (Mn), nickel (Ni), and cobalt (Co) for many biological 

processes (Rodrigo-Moreno et al., 2013). For example Fe, one of the most 

abundant metals on earth, is crucial for iron-sulphur clusters (Fe-S) which are 

important for several key cellular processes including electron transfer (Lill, 

2009). Transition metals are also important for protein folding (Palm-Espling et 

al., 2012), and are critical for function in the electron transport chain via 

association with complexes I-III. Hence, it is not surprising that transition metals 

are essential for cellular viability and highly abundant within cells. Indeed, ~30-

40% proteins in the Protein Data Bank (PBD) contain a metal ion associated with 

the protein (Andreini et al., 2013). Moreover, many of these proteins are catalytic 

enzymes where the metal ion is essential for function. For example, manganese 

mitochondrial SOD (MnSOD) carries one Mn ion per protein which is located in 

the active site, and donates an electron to the positively charged O2 which is 

attracted to the SOD (Murphy, 2009). The ability of transition metals to recycle 

their redox state which is important for their catalytic role also means that they 

can reduce oxygen species to ROS. Hence, it is important that metal pools within 

cells are tightly regulated to reduce the production of ˙OH through the Fenton 

reaction. In the Fenton reaction Fe2+ interacts with H2O2 to produce ˙OH and OH- 

(Figure 1.4). The resulting ferric ion Fe3+ is also able to react with O2·- in the 

Haber Weiss reaction to produce O2, in a redox cycle (reviewed in (Kehrer, 

2000)). Thus, due to their ability to produce ROS in this manner, metal 

homeostasis is tightly regulated prevent aberrant ROS production.  

1.2.1.3. The immune response 

The immune response is an important defence mechanism against infection. One 

aspect of such responses is phagocytosis where cells in the immune system 

engulf invading pathogens and produce ROS to kill the trapped organism. In the 

initial stages of phagocytosis a large uptake of O2, known as the respiratory burst 

occurs (Forman and Torres, 2002). NADPH oxidase (NOX2) then reduces the O2 

to O2·- which can be catalysed to H2O2 by dismutases (Dupré-Crochet et al., 

2013). NOX2 acts at a critical step in pathogen removal, suggesting that the  
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Figure 1.4: The Haber-Weiss and Fenton reaction. The Haber-Weiss 

reaction consists of a series of redox cycling reactions of iron (Fe) during O2·- 

oxidation to O2, and H2O2 reduction to OH- + ·OH (Fenton reaction). The net 

Haber-Weiss reaction produces OH-, ·OH and O2 from O2·- and H2O2. Adapted 

from (Kehrer, 2000). 
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production of the O2·- radical and subsequent H2O2 production are important for 

this process (Dupré-Crochet et al., 2013). The ROS produced from NOX2 have 

been shown to be important for pathogen resistance as patients with mutations in 

NOX2 can acquire chronic granulomatous disease (CGD). These patients have 

neutrophils which cannot create ROS and as such suffer recurrent bacterial and 

fungal infections (Klebanoff, 2005), highlighting the importance of ROS 

production in the immune response. The ROS produced by neutrophil NOX2 can 

attack and oxidise DNA, proteins, and lipids of the pathogen. NOX2 produced 

ROS are also secreted specifically into the phagolysosome creating a charge 

gradient and influx of K+, which initiates protease release that degrade ingested 

pathogens allowing a dual attack by ROS (Murphy and DeCoursey, 2006).  

1.2.1.4. Xenobiotics 

Xenobiotics are chemicals found within an organism that originate from the 

external environment. There are many examples of xenobiotics, for example 

environmental toxins, drugs, and metal ions, which can cause oxidative stress 

either by increasing the production of ROS within the cell (Klotz and 

Steinbrenner, 2017), or by attacking the intracellular antioxidant mechanisms. 

Quinones are a general term for a group of compounds produced from various 

xenobiotics which produce ROS and can remove cellular antioxidants. Quinones 

are potent redox-active compounds which can undergo enzymatic or non-

enzymatic redox cycling, both of which can produce hydroxyl radicals (Bolton et 

al., 2000). There are many types of cellular quinones, and one example is 

ubiquinone. Ubiquinone is present in all eukaryotic cells, where it is an essential 

component of the electron transport chain. Ubiquinone can exist in three redox 

states: fully oxidised, partially reduced (ubisemiquinone), and fully reduced. 

Importantly, it is this redox cycling that enables ubiquinone to shuttle electrons 

from complexes I and II to complex III (Hirst, 2013). However, the partially 

reduced ubisemiquinone can also interact with O2 to produce superoxide radicals 

(Turrens et al., 1985; Samoilova et al., 2011). Another essential nutrient 

associated with quinones is vitamin K. Vitamin K is catalysed by 

NAD(P)H:quinone oxidoreductase 1 and NRH:quinone oxidoreductase 2 into 

vitamin K hydroquinone (Gong et al., 2008) which is an important component of 
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blood clotting and bone metabolism. Vitamin K can be redox-cycled through one 

electron reduction to semiquinone, which after reacting with O2 can be oxidised 

back to vitamin K (Gong et al., 2008). However, this cycling of vitamin K produces 

superoxide. Interestingly, this ROS production can have certain beneficial roles in 

human health. For example, vitamin K can be used as a cancer therapy whereby 

the ROS produced by this redox cycling can be used to attack cancerous cells. 

Menadione is an exogenous polycyclic aromatic ketone which can act as a 

precursor for vitamin K production (Loor et al., 2010), and hence can be classed 

as a superoxide producer (Fukui et al., 2012). Low concentrations of menadione 

initiates redox-dependent gene expression (Chuang et al., 2002), however high 

concentrations of menadione has been shown to cause mitochondrial DNA 

damage and tissue injury, and subsequently activate programmed cell death 

(Loor et al., 2010).  

1.2.1.5. UV and ionising radiation 

UV light can cause cellular damage either directly, for example DNA damage, or 

indirectly by ROS production. The DNA damage induced by UVB rays of UV light 

is primarily the stimulation of pyrimidine dimers in adjacent bases on the DNA 

strand and such damage has been linked with skin cancer (Marrot and Meunier, 

2008). UVB also can produce H2O2 in cells, which can in turn form hydroxyl 

radicals (Halliwell, 2006). However, although UV light is known to cause damage 

to cells, the oxidising potential is relatively low. In contrast, the oxidising potential 

of ionising radiation is high, for example, X-rays can directly ionise H2O to H· and 

OH· (Halliwell, 2006). 

1.2.2. Effects of ROS 

Due to the reactive nature of ROS described above, intracellular ROS can cause 

damage to DNA, proteins, and lipids. The nature and consequences of such 

oxidative damage will be discussed below. 

1.2.2.1. DNA 

ROS damage to DNA is a common event in humans. Indeed the human genome 

is continually exposed to ROS and it is thought that 105 lesions/cell/day occur 
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due to ROS (Bridge et al., 2014). These lesions include single- and double-

stranded breaks, inter- and intra-crosslinking of DNA and/or DNA-associated 

proteins, attack of the deoxyribose backbone, and base attacks (Jena, 2012). 

Over 100 different DNA lesions have already been identified in mammalian DNA 

(Cadet and Wagner, 2013). However, one of the most characterised type of DNA 

damage caused by ROS is the introduction of 8-oxoG in the place of guanine 

bases (David et al., 2007). Guanine bases have the least oxidative potential, and 

hence they are easily modified by ROS (Aguiar et al., 2013). When guanine 

residues undergo one-electron oxidation to 8-oxoG, base miss-matches can 

occur whereby 8-oxoG pairs with adenine causing a transversion mutation in the 

template strand on DNA during DNA replication (Bridge et al., 2014). Mutations 

such as these happen throughout the genome and are usually kept under control 

by base excision repair mechanisms (David et al., 2007). Significantly, 8-oxoG 

has been found to be the most abundant mutation in certain melanomas. 

Furthermore, due to the common occurrence of this type of mutation, 8-oxoG is 

often used as a biomarker of DNA damage due to oxidative stress (David et al., 

2007). However, it is important to note that due to the lack of specificity of 8-oxoG 

mutation, it can only be used a measure of global oxidative DNA damage. 

Interestingly, using 8-oxoG as a marker it has been shown that mitochondrial 

DNA accumulates much more oxidative damage than nuclear DNA. It has been 

observed that there is approximately 16 times more 8-oxoG in mitochondrial DNA 

that nuclear DNA (Richter et al., 1988). However, it has been argued that the 

higher accumulation of DNA damage in mitochondrial DNA is expected due to the 

rate of ROS production from the electron transport chain (it is known that ·OH 

have a very short half-life and tend to attack molecules close to the production of 

the radical). Also, mitochondrial DNA has no histones to aid in DNA protection 

(Richter et al., 1988). It is also known that mitochondria have a high mutation and 

subsequent evolutionary rate, possibly due to the lack of DNA repair mechanisms 

within the organelle.  

1.2.2.2. Proteins 

Proteins are also damaged by ROS, which can attack them either at the peptide 

backbone, or at amino acid side chains (Berlett and Stadtman, 1997). Hydroxyl 
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radicals can attack hydrogen atoms on the polypeptide chain which, after a series 

of redox reactions results in an alkoxyl derivative and subsequent peptide 

fragmentation at that site (Stadtman, 2006). Peptide cleavage can also occur 

when hydroxyl radicals directly attack proline or glutamic acid side chains (Uchida 

et al., 1990; Stadtman, 2006).The amino acid side chains on proteins can also be 

oxidised, either reversibly or irreversibly. An example of irreversible protein 

oxidation is protein carbonylation. This type of protein oxidation occurs much 

more readily than other forms of protein oxidation, and is often used as a 

biomarker of ROS-induced protein damage (Dalle-Donne et al., 2003). Protein 

carbonylation occurs at proline, arginine, lysine, and threonine residues, whereby 

they become oxidised to aldehyde or ketone groups (Berlett and Stadtman, 

1997). Carbonylation occurs by three mechanisms. In the first mechanism, the 

amino acid side chains of proline, arginine, lysine and threonine can be directly 

oxidised resulting in carbonyl derivatives (Stadtman and Levine, 2006). Secondly, 

α,β-unsaturated aldehydes from lipid peroxidation (see Section 1.2.2.3) can react 

with proteins through the ‘Michael addition’ reaction (Refsgaard et al., 2000). 

Thirdly, the reaction of reducing sugars or oxidation products with lysine residues 

can result in advanced glycation end products (AGEs) (Cho et al., 2007), which 

are large branched molecules that can block proteasome activity (Chondrogianni 

et al., 2014). A large portion of proteasomal function is to remove proteins which 

have been damaged by oxidative stress. Hence, when the proteasome is blocked 

by AGEs damaged proteins, which would usually undergo degradation, 

accumulate resulting in larger amounts of ROS damaged proteins than normal 

within cells.  Lysine carbonylation can also play a role in the regulation of post 

translational modifications. For example, lysine residues are sites for acetylation, 

methylation, and ubiquitin and ubiquitin-like modifications (Santos and Lindner, 

2017), however lysine carbonylation prevents these modifications. 

Proteins can also undergo reversible oxidation. For example, methionine 

residues can be oxidised by ROS into methionine sulphoxide which prevents 

methionine acting as a methyl donor (Kim et al., 2014). However, methionine 

oxidation is reversible via the action of reductases, which reduce methionine 

sulphoxide back to methionine (Drazic and Winter, 2014). Cysteine residues can 

also be reversibly oxidised by ROS. Cysteines are sulphur containing residues 



 

[43] 
 

which play important roles in protein structure and function. For example, 

cysteine residues can form disulphide bonds, either intra- or inter-molecular, 

which can change the shape of proteins, and form covalent protein interactions. 

Cysteine residues can be oxidised in multiple ways, both reversibly and, after 

further oxidation, irreversibly (Figure 1.5). Upon initial oxidation, cysteine residues 

are oxidised into a sulphenic form. The sulphenic acid is reversible and can be 

reduced back to its initial state. This form is often classed as a cysteine oxidation 

gateway form, as from here the cysteine residue can undergo further oxidation or 

modifications (Finkel, 2011). For example, the sulphenic acid can form a 

reversible disulphide with another cysteine residue, which can be reduced back 

to a reduced thiol state. Sulphenic forms can also undergo reversible 

glutathiolation after reaction with glutathione, is a protective mechanism, which 

can also be reduced to its original state (Finkel, 2011). However, further oxidation 

of the sulphenic form produces a sulphinic and sulphonic acid sequentially which 

are generally irreversible. However, in specific proteins, 2-cys peroxiredoxins, 

sulphinic acids can be reduced by the sulphiredoxin (Srx) back to a sulphenic 

form (Biteau et al., 2003). However, in all cases to date, sulphonic acids are 

irreversible and thus initiate degradation of the oxidised protein. This redox 

cycling of cysteine residues and the multiple redox states (reversible or 

irreversible) lends cysteine thiols to be important in ROS sensing and redox 

pathways (see Section 1.2.5). Furthermore, only cysteine thiols with a low pKa 

value (lower than the usual 8-8.5 pKa (Hoffman et al., 2015; Poole, 2015)) are 

susceptible to oxidation. Thus, only certain cysteine residues are able to act as 

ROS sensors. Moreover, it also enables mechanisms that lower the pKa values 

of cysteine residues, such as de-protonation, to regulate when cysteines could be 

oxidised, thus resulting in regulation of oxidative stress response pathways 

(Finkel, 2011). Also many defences against ROS such as ROS scavengers of 

other enzymes use redox sensitive cysteine thiols for function (see Section 

1.2.4).  
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Figure 1.5: The oxidation states of reactive protein thiols. A reduced thiol can be reversibly oxidised into a sulphenic 

acid. Redox cycling reduces the sulphenic acid to its original state, and also enables disulphides to form with other reactive 

thiols. S-glutathiolation protects sulphenic acids from being oxidised further and can also be reduced to the original protein 

state. Sulphenic acids can be further oxidised into sulphinic acids and sulphonic acids. Sulphinic acids in 2-cys peroxiredoxins 

can be reduced by sulphiredoxin, however in most cases sulphinic and sulphonic acids are irreversible oxidation states and can 

initiate protein degradation.   
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1.2.2.3. Lipids 

Lipids are large molecules consisting of a phosphate or sugar head-group and a 

hydrophobic fatty acid chain that make up the bilayer that forms cellular and 

intracellular membranes. In addition to acting as a physical barrier for organelles 

and cells due to their hydrophobic chain, lipids can be used as a source of energy 

by utilising the phosphate/ sugar head-group. The head-group of lipids can link 

together neighbouring lipids to form large structures which enable them to encase 

organelles. Due to their hydrophobic lipid nature, ROS including ·OH, but not O2·- 

and H2O2 (Catalá, 2010), are able to oxidise lipids. Moreover, polyunsaturated 

lipids are the most vulnerable to attack by ROS due to the presence of a C=C 

double bond, absent from saturated hydrocarbon chains. ROS can attack the 

hydrogen atoms in the methylene group leaving an unpaired radical on the 

carbon. This radical then stimulates a chain reaction of lipid peroxidation through 

abstracting further hydrogen atoms from neighbouring hydrocarbon chains 

(Buettner, 1993). Importantly, the high propensity of polyunsaturated fatty acids 

to stabilise radicals means that they can produce a wide range of oxidised 

intermediates and end products. Lipid oxidation can have disastrous 

consequences for membranes as it can perturb membrane assembly and 

potentially damage membrane-bound proteins (Catalá, 2010).  

1.2.3. ROS in ageing and disease 

As described above, oxidative stress can damage DNA, proteins, and lipids and 

as a consequence has been linked with many disease states and the aging 

process. Indeed, ROS have been linked to lifespan in multiple ways and there are 

many theories of ageing surrounding ROS. The first theory, the ‘Free radical 

theory of ageing,’ was proposed  in 1956  (Harman, 1956). The basis of this 

hypothesis was that the causes of ageing were similar in all living things, and 

could be explained by the presence of ROS (Harman, 1956).  Indeed, the link 

between ROS and ageing has been identified in many instances. For example, in 

S. cerevisiae, aged mother cells, but not younger daughter cells, were found to 

have increased levels of oxidative stress in the absence of external stress, 

suggesting that the mother cells contained oxidising molecules originating from 

the mitochondria (Laun et al., 2001). A similar link between increased levels of 
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ROS and ageing has been observed in more complex models. For example, 

when supplemented with synthetic defences against ROS, the lifespan of wild 

type C. elegans increased dramatically, suggesting that pharmacological 

supplements to reduce ROS levels may increase lifespan (Melov et al., 2000). 

Consistent with these findings, other studies of the relationship between ROS 

defences and lifespan found that mutations in antioxidant pathways shortened 

lifespan. For example, deletion of a primary defence against ROS, the 

mitochondrial superoxide dismutase MnSOD, leads to the build-up of ROS 

produced from the mitochondria in S. cerevisiae (Longo et al., 1999). This causes 

inactivation of iron sulphur cluster containing enzymes which results in a 

reduction of mitochondrial function and can cause an increase in DNA mutation 

rates, leading to a loss of cell viability (Longo et al., 1999).  In higher eukaryotes 

the presence of ROS has also been linked to shortened telomeres. Telomeres 

are often referred to as a biological clock, and shortened telomeres results in 

cellular senescence or apoptosis (Titen and Golic, 2008). Furthermore, telomeres 

are particularly susceptible to oxidative stress, which has been shown to cause 

telomere shortening in mammalian cell cultures (von Zglinicki, 2000). Indeed, a 

recent study in cancer cell lines suggested this shortening is due to the inhibition 

of telomerase function by ROS (Ahmed and Lingner, 2018).  However, while 

studies linking ROS to lifespan are extensive, more recent work has contradicted 

established theories surrounding ROS and ageing. For example, mitochondrial 

mutations in C. elegans which lead to an increased production of superoxide 

have actually been shown to be necessary for longevity (Yang and Hekimi, 

2010). Furthermore, mitohormesis (Tapia, 2006) is the theory that ROS produced 

by the mitochondria are required for an increased lifespan, due the activation of 

antioxidant protective mechanisms. It has also been proposed that ROS from 

different cellular compartments may play varied roles in the ageing process 

(Ristow and Schmeisser, 2014). For example, mitochondrial ROS have been 

linked to increased lifespan in C. elegans, while the same study found that 

increased levels of cytoplasmic ROS actually led to a decreased lifespan (Schaar 

et al., 2015). Hence, while the links between ROS and lifespan remain unclear, it 

is possible that the type and source of ROS, and potentially a culmination of 

many cellular processes in response to ROS, influence the ageing response. 
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While the links between ROS and lifespan are not fully understood, ROS have 

also been linked to many diseases, including cancers (Liou and Storz, 2010a), 

neurodegenerative disorders (Kim et al., 2015) and other age-related diseases. 

For example, neurodegenerative diseases are connected given the propensity of 

the brain to be targeted by oxidative stress due to the necessity for high levels of 

oxygen and iron for normal functions (Kim et al., 2015). Indeed, 

neurodegenerative disorders such as Alzheimer’s disease are often associated 

with increased levels of ROS (Huang et al., 2016). Alzheimer's disease is usually 

diagnosed by the presence of amyloid plaques or tau tangles in a post mortem 

biopsy (Melov et al., 2007). Interestingly, mitochondrial specific oxidative stress 

has been found to be linked to tau phosphorylation, suggesting that oxidative 

stress is a causative factor to Alzheimer's disease (Melov et al., 2007). 

Furthermore, protein carbonyls and 8-oxoG, both of which are used as 

biomarkers for oxidative stress, have been observed to occur at higher levels 

than normal in Alzheimer's brains (Sliwinska et al., 2016). However, whether 

ROS are a cause and/or a consequence of Alzheimer's progression remains 

unknown. Indeed it has also been demonstrated that β-amyloid can increase 

ROS production by reducing electron transport chain efficiency (Luque-Contreras 

et al., 2014), thereby creating a potential positive feedback loop to further induce 

the disease. This complex relationship between ROS and a potential cause 

and/or consequence in disease progression is also observed in cancers. ROS 

have been linked with almost all cancers studied (Liou and Storz, 2010a) and 

indeed one hallmark of cancer is the ‘oxidative switch’, where cancerous cells 

have an increased intracellular level of ROS (Liou and Storz, 2010a). Using the 

biomarker 8-oxoG, it has also been found that cancerous cells have an increased 

level of ROS induced DNA damage. However ROS levels are also manipulated in 

clinical treatments of cancers. Indeed, many chemotherapy and radiation 

strategies increase intracellular ROS to attempt to initiate tumour cell apoptosis 

(Liou and Storz, 2010a). Due to the links between ROS and ageing and disease, 

it is highly important to understand the mechanisms behind sensing ROS levels, 

and signal transduction in response to ROS, in both prevention and treatment of 

diseases. 
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1.2.4. Defences against ROS 

Cells utilise many mechanisms to maintain the balance of ROS levels in order to 

prevent cellular damage. These defences include enzymatic defences, such as 

SODs, catalases, and peroxidases, and non-enzymatic defences, such as 

glutathione, glutaredoxins, thioredoxins, and Vitamins C and E. Another 

component of cellular defences involves transcriptional regulation of antioxidants. 

For example in S. cerevisiae the transcription factors Yap1, Skn7 and Sod1 play 

important roles (Herrero et al., 2008). Lower levels of antioxidants function to 

maintain redox homeostasis under normal conditions. However, in response to 

increased ROS levels these defences are increased to remove ROS before 

damage occurs and also to participate in repair mechanisms. The antioxidant 

defences of S. cerevisiae will be discussed below. 

1.2.4.1. Enzymatic defences against ROS 

Examples of S. cerevisiae enzymatic defences against oxidative stress, which 

function by directly detoxifying ROS, are discussed below. 

1.2.4.1.1. Superoxide dismutase 

Superoxide dismutases (SODs) detoxify superoxide by catalysing O2·- to H2O2 

and O2 with the aid of metal ions (Fukai and Ushio-Fukai, 2011). In S. cerevisiae 

there are two SODs, Cu/ZnSOD (Sod1) and MnSOD (Sod2) (Rattanawong et al., 

2015). These enzymes differ in their localisation and the metal ion they require 

for function. The predominantly cytoplasmic Sod1 requires a zinc ion and a 

catalytic copper ion, the latter of which is donated by the copper chaperone Ccs1. 

Ccs1 also facilitates the formation of a disulphide bond between two cysteines in 

Sod1 which is critical for Sod1 activity (Furukawa et al., 2004). A proportion of 

Sod1 localises to the nucleus (Rona et al., 2015) and Sod1, along with Ccs1, is 

also localised to the mitochondrial intermembrane space where it can scavenge 

mitochondrial ROS (Sturtz et al., 2001). In contrast to Sod1, Sod2 localises to the 

mitochondrial matrix (Muid et al., 2014) as a tetramer, and requires one 

manganese ion per subunit for function which is donated by the manganese 

chaperone Mtm1 (Luk et al., 2005). Both sod1Δ and sod2Δ null mutants display 

increased sensitivity to external sources of superoxide, and also have slow 
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growth phenotypes and decreased lifespan (Chung, 2017). Furthermore, Sod2 

has been suggested to be essential for defences against mitochondrial ROS 

generated from the electron transport chain (Herrero et al., 2008). Indeed, 

consistent with this suggestion, sod2Δ mutants are unable to grow under 

respiratory conditions, and are also hyper sensitive to hyperoxia (Herrero et al., 

2008).  

1.2.4.1.2. Catalase 

Catalases are heme-containing tetrameric enzymes that detoxify H2O2 into O2 

and H2O (Kirkman and Gaetani, 1984). S. cerevisiae expresses two catalases, 

Cta1 and Ctt1 (Martins and English, 2014). Similar to SODs these proteins differ 

in their localisation; Cta1 localises to mitochondria, and also the peroxisome, 

where it detoxifies H2O2 produced during fatty acid oxidation (Martins and 

English, 2014), whereas Ctt1 is cytoplasmic and is important for protecting 

against oxidative stress however the precise role is unclear (Herrero et al., 2008). 

In unstressed conditions, the cta1Δ and ctt1Δ single mutants, and the ctt1Δ cta1Δ 

double mutant, grow similarly to wild type cells, suggesting these catalases are 

not essential to maintain normal redox balance (Martins and English, 2014). 

However when cells are exposed to H2O2, Ctt1, but not Cta1, activity is 

stimulated, which subsequently increases cell survival (Martins and English, 

2014). Taken together, these data suggest that Ctt1 is essential for protection 

against exogenous H2O2. However, the observation that catalase does not 

appear to be required raises the possibility that catalases may have overlapping 

roles with other intracellular antioxidants (Martins and English, 2014).  

1.2.4.1.3. Peroxidases 

In contrast to SODs and catalases, peroxidases do not use metal groups to 

reduce substrates (Herrero et al., 2008). Instead peroxidases use electron donors 

to reduce H2O2 to H2O by the activity of cysteine thiol residues. Depending on the 

electron donor, peroxidases are divided into two classes: glutathione peroxidases 

(Gpx) which utilise glutathione, and thioredoxin peroxidases (peroxiredoxins 

(Prx)) which utilise thioredoxins as a reductant. 



 

[50] 
 

There are two types of Prx enzyme, 1-Cys or 2-Cys classified by their catalytic 

activity (Zhu et al., 2012). The 2-Cys enzymes are subdivided into two further 

groups, typical and atypical. Typical 2-Cys Prxs have two cysteine residues at the 

active site, the peroxidatic cysteine and the resolving cysteine. The activity of 

typical 2-Cys Prxs first requires oxidation of the peroxidatic cysteine into a 

sulphenic group. This oxidised cysteine then forms a disulphide with a resolving 

cysteine from another Prx, which protects the enzyme from further oxidation (Zhu 

et al., 2012; Angelucci et al., 2013). Atypical 2-Cys Prxs initially function in a 

similar manner to typical 2-Cys Prxs, where the peroxidatic cysteine is first 

oxidised to a sulphenic group. However, in the case of atypical Prxs, the 

peroxidatic cysteine then forms an intramolecular disulphide with a resolving 

cysteine within the same Prx (Seo et al., 2000; Zhu et al., 2012). 1-Cys Prxs only 

have one cysteine at their active site, and subsequently cannot form an 

intramolecular disulphide (Wood et al., 2003). Here, it is thought that the 

sulphenic form of the cysteine is then reduced by a thiol containing electron 

donor, which in yeast is glutathione (Greetham and Grant, 2009). In all the 

examples above, the redox cycling of the cysteines within the active site of Prxs 

allows the reduction of H2O2. However, multi-oxidation states of Prxs have also 

been identified. In these examples, following the initial oxidation of the peroxidatic 

cysteine further oxidation can occur, resulting in formation of a sulphinic group, 

which inhibits protein activity. Interestingly, this oxidation is not irreversible as it 

can be  reduced back to a sulphenic group through the activity of sulphiredoxin 

(Srx) (Jeong et al., 2012). However, further oxidation of the sulphinic group 

results in the formation of an irreversible sulphonic group (Lian et al., 2012). 

Interestingly, Srx levels increase after H2O2 incubation (Biteau et al., 2003) 

suggesting that the redox cycling of Prxs are important for stress responses. In S. 

cerevisiae there are 5 Prxs: Tsa1 (cTpxI), Tsa2 (cTpxII), and Ahp1 (cTpxIII) 

which are cytoplasmic; Dot5 (nTpx) which is nuclear; and Prx1 (mTpx) which is 

mitochondrial (Wong et al., 2004). Although all Prxs have similar and often 

overlapping anti-oxidant roles, they are differentially expressed and usually are 

present in different cellular locations. For example, both Tsa1 and Tsa2 are 

highly homologous typical 2-Cys peroxidases that are required for the cellular 

responses to H2O2 (Garrido and Grant, 2002). The tsa2Δ mutants are more 

sensitive to exogenous H2O2 than the tsa1Δ mutants, suggesting they have 
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different roles (Wong et al., 2002). However the double tsa1Δ tsa2Δ displays 

greater sensitivity to H2O2 than either of the single mutants, suggesting they have 

overlapping functions to provide resistance to peroxide stress (Wong et al., 

2002). Although Ahp1 has been historically classified as a typical 2-Cys Prx, 

recent studies have suggested that Ahp1 may be classed in a new, separate 

group of typical 2-Cys Prxs based on to its structural similarity to atypical and 1-

Cys Prxs, but mechanistic similarity to typical 2-Cys Prxs (Lian et al., 2012). In S. 

cerevisiae the 1-Cys mitochondrial Prx1 has been found to detoxify cadmium and 

H2O2 within mitochondria (Greetham and Grant, 2009). In conclusion, Prxs have 

specific individual roles and localisations within the cell, but also have 

overlapping roles. Moreover, all of the Prxs have been deleted simultaneously in 

S. cerevisiae and yet the cells remain viable (Wong et al., 2004), suggesting 

there is redundancy with other cellular mechanisms. Indeed the quintuple mutant 

displays increased sensitivity when glutathione is depleted (Wong et al., 2004), 

suggesting that glutathione linked pathways have overlapping functions with the 

Tpxs. 

Gluathione peroxidases (Gpx) function similarly to Tpxs, except that tthey 

predominantly use glutathione as an electron donor. In S. cerevisiae there are 

three Gpxs, Gpx1, Gpx2, and Gpx3, all of which are atypical 2-Cys peroxidases 

(Delaunay et al., 2002; Tanaka et al., 2005; Ohdate et al., 2010). In contrast to 

higher eukaryotes, which have both classical Gpxs (cGpx), which use glutathione 

as an electron donor, and phospholipid hydroperoxide Gpxs (PHGpx) which can 

use other electron donors, S. cerevisiae has only PHGpxs (Avery and Avery, 

2001; Avery et al., 2004). Indeed Gpx2 predominantly uses thioredoxin as an 

electron donor, rather than glutathione (Ukai et al., 2011).  Although gpx1Δ and 

gpx2Δ mutants show no altered sensitivities in response to exogenous peroxide 

stress, gpx3Δ strains display increased sensitivity (Inoue et al., 1999), suggesting 

that Gpx3 has a larger role in peroxide response. Interestingly a fraction of Gpx3 

has been observed to localise to the mitochondrial intermembrane space where it 

has been suggested that Gpx3 plays a role in H2O2 detoxification (Kritsiligkou et 

al., 2017). Gpx3 has also been observed to be a major mediator of H2O2 

signalling by the transcription factor Yap1 (See section 1.2.4.3). 
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1.2.4.2. Non-enzymatic defences against ROS 

Eukaryotes have two major systems within the cell to defend against oxidative 

stress, the glutathione system (Grx) and the thioredoxin system (Trx). Both 

systems use NADPH produced from the pentose phosphate pathway as an 

electron donor in order to reduce oxidised proteins via the redox cycling of either 

glutathione reductase (Glr) and glutaredoxin (Grx), or thioredoxin (Trx) and 

thioredoxin reductase (Trr) respectively. Both systems, together with glutathione, 

are discussed below in the context of S. cerevisiae; for further reviews see 

(Fernandes and Holmgren, 2004; Lu and Holmgren, 2014).  

1.2.4.2.1. Glutathione 

Glutathione is a highly abundant tripeptide thiol found mainly in the cytoplasm, 

but which also localises to other organelles (Hwang et al., 1992; Lu, 2013). The 

thiol group on the cysteine allows glutathione to act as a ROS scavenger to 

directly detoxify chemicals including free radicals, peroxides, and xenobiotics 

(Toledano et al., 2013). However, it also allows glutathione to protect proteins 

from oxidation by formation of a disulphide bond between this cysteine and the 

substrate. This results in protein S-glutathiolation, which protects the protein from 

irreversible oxidative damage (Shenton and Grant, 2003). Glutathione is 

predominantly found in its reduced GSH state within the cell (Hwang et al., 1992; 

Couto et al., 2016), however oxidation of the active site cysteine in GSH allows 

formation of a disulphide bond to oxidised GSSG, subsequently reducing 

intracellular GSH levels (Lu, 2013). GSSG is reduced back to the GSH state 

through the activity of Glr utilising NADPH as an electron donor (Grant et al., 

1996a) (see 1.2.4.2.2). This oxidation and reduction forms a redox cycle which 

enables glutathione to act as a ROS scavenger or to protect substrate proteins 

from oxidation.  

Intracellular GSH is synthesised through two ATP-dependent reactions  (Figure 

1.6), (Couto et al., 2016). Firstly, γ-glutamylcysteine synthetase (encoded by 

GSH1 in S. cerevisiae) catalyses L-glutamate and L-cysteine into the 

intermediate L-γ-glutamyl-L-cysteine. Secondly, glutathione synthetase (encoded 

by GSH2 in S. cerevisiae) converts L-γ-glutamyl-L-cysteine and glycine into 
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glutathione (GSH) (Ohtake and Yabuuchi, 1991; Grant, 2001; Tang et al., 2015). 

In S. cerevisiae glutathione is essential (Grant et al., 1996b), and gsh1Δ mutants 

are inviable unless supplemented with exogenous glutathione in media. 

Interestingly, gsh2Δ strains can grow in glutathione depletion conditions, 

suggesting that γ-glutamylcysteine can partially substitute for GSH (Wheeler et 

al., 2002). The inability of gsh1Δ strains to grow in glutathione lacking media 

cannot be rescued by reducing agents, suggesting that the essential role of 

glutathione is not due to a general role as a reductant. 

1.2.4.2.2. Glutaredoxins 

Glutaredoxins (Grx) are small soluble proteins involved in the reduction of 

oxidised GSH-protein disulphides (Figure 1.7A). Grxs are divided into two 

subgroups, either dithiol or monothiol, depending on the number of active site 

cysteines they have (Hanschmann et al., 2013). Dithiol Grxs have two cysteine 

residues located in a CPYC motif, and S. cerevisiae expresses three dithiols, 

Grx1, Grx2, and Grx8 which localise to the cytosol (Li et al., 2010; Tang et al., 

2014). Interestingly Grx2 contains an alternative start codon which can alter its 

localisation to the mitochondria. Although Grx2 has the most oxidoreductase 

ability, both Grx1 and Grx2 are important for H2O2 response. In contrast, only 

Grx1 is necessary for the response to the superoxide generating drug 

menadione, indicating the specific roles for each Grx (Luikenhuis et al., 1998). 

Grx8 is not necessary for a general oxidative stress response, and also does not 

enhance the phenotypes displayed by grx1Δ and grx2Δ mutants (Eckers et al., 

2009; Tang et al., 2014). Monothiol Grxs have one cysteine located in a CGFS 

motif (Zhang et al., 2013), and S. cerevisiae expresses five monothiol Grxs; Grx3 

and Grx4 which are nuclear (Pujol-Carrion et al., 2006), and also regulate actin 

dynamics (Pujol-Carrion and de la Torre-Ruiz, 2010), Grx5 which is 

mitochondrial(Zhang et al., 2013), and Grx6 and Grx7 which localise to the ER 

and Golgi membrane (Izquierdo et al., 2008). Grx3 and Grx4 are involved in the 

maintenance of intracellular iron levels by regulating the transcription factor Aft1 

(Pujol-Carrion et al., 2006). For example, the double grx3Δ grx4Δ mutant displays 

an increased iron accumulation due to the nuclear accumulation of Aft1 (Pujol-

Carrion et al., 2006). Iron homeostasis is important for maintaining oxidative 
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Figure 1.6: Glutathione production is a two-step process. GSH is 

synthesised through two enzyme controlled reactions, catalysed by γ-

glutamylcysteine synthetase and glutathione synthetase. See text for details. 
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Figure 1.7: The redox cycling of the Glutaredoxin and Thioredoxin 

systems. (A) In the glutaredoxin system NADPH reduces GlrOX to produce 

GlrRED, which subsequently reduces oxidised glutathione (GSSG) to reduced 

glutathione (GSH). GSH then reduces GrxOX to produce GrxRED which is able to 

reduce oxidised target proteins. (B) The thioredoxin system is shown in B. 

NADPH reduces TrrOX to TrrRED which subsequently reduces Trx OX to TrxRED. 

Reduced Trx is then able to reduce oxidsed target proteins.  
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balance as iron is a critical factor in the Fenton reaction (1.2.1.2) which can 

increase oxidative stress. In contrast to Grx3 and Grx4, mitochondrial Grx5 is 

important for the response to H2O2 and menadione (Rodríguez-Manzaneque et 

al., 1999), and for the biogenesis of Fe-S clusters (Rodriguez-Manzaneque et al., 

2002). Thus, the roles of Grx’s within cells seem different, while dithiols possibly 

have a more generic response to oxidative stress; monothiols appear to act on 

more specific protein targets.  

1.2.4.2.3. Thioredoxins 

Thioredoxins (Trx) proteins contain two conserved active site cysteines which 

redox cycle by reduction by thioredoxin reductases (Trr) (Pedrajas et al., 1999) 

(Figure 1.7B). S. cerevisiae expresses three Trxs, Trx1 and Trx2 which are 

cytoplasmic together with the thioredoxin reductase Trr1, and Trx3 which is 

mitochondrial together with the thioredoxin reductase Trr2 (Pedrajas et al., 1999). 

Intriguingly, while trx1Δ, trx2Δ, trr1Δ, and trr2Δ single mutants all show increased 

sensitivity to H2O2, the single trx3Δ mutant does not (Trotter and Grant, 2005), 

suggesting that Trr2 has antioxidant functions in mitochondria that are different to 

Trx3. Interestingly, although the thioredoxin system is distinct from the 

glutaredoxin system, Trx3 accumulates in a glr1Δ mutant strain, suggesting that 

the systems overlap and that Glr1 may regulate Trx3 (Trotter and Grant, 2005). 

This overlap of roles is also consistent with the observation that a trx1Δ trx2Δ 

double mutant is viable, and a trx1Δ trx2Δ grx1Δ grx2Δ quadruple mutant is 

inviable (Garrido and Grant, 2002), indicating that at least one of these systems 

is necessary for viability. 

1.2.4.3. Transcriptional regulation in response to ROS 

Oxidative stress causes a change in RNA levels of many genes. A study by 

Gasch et al (2000) found that 900 genes were regulated by multiple different 

types of stress, including osmotic stress, heat stress, and oxidative stress among 

others (Gasch et al., 2000; Taymaz-Nikerel et al., 2016). Many genes were 

downregulated, for example  those with products involved in RNA metabolism 

and protein and DNA synthesis, while genes which were upregulated included 

those with products necessary for protein degradation, DNA damage repair, 
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signalling, ROS breakdown and redox control (Gasch et al., 2000). Two 

transcription factors are mainly involved with the response by S. cerevisiae to 

oxidative stress, Yap1 and Skn7, although other transcription factors have roles 

in transcriptional response to oxidative stress (for reviews see (Herrero et al., 

2008; Morano et al., 2012; Taymaz-Nikerel et al., 2016).  

Yap1 is a member of the conserved AP-1 transcription factor family (Moye-

Rowley et al., 1989; Delaunay et al., 2000), and binds to Yap1 recognition 

elements (YREs) which are present in many gene promoters (Lee et al., 1999; 

Herrero et al., 2008). Interestingly, certain Yap1 targets do not contain YREs, 

suggesting that there are additional recognition sites (Herrero et al., 2008). In S. 

cerevisiae Yap1 has been found to be activated by a number of stress conditions 

including different types of oxidation, metals and drugs (Delaunay et al., 2002; 

Rodrigues-Pousada et al., 2004). Indeed, Yap1 is the main cellular regulator of 

responses to different oxidants in S. cerevisiae (Herrero et al., 2008). Yap1 is 

activated by the different oxidants due to the subcellular localisation, more 

specifically by regulating Yap1 nuclear export. In unstressed conditions Yap1 

localises to the cytoplasm, where it is kept in a reduced form by the Trx system, 

and bound to the nuclear exportin Crm1 (Yan et al., 1998). Oxidants inhibit the 

interaction between Yap1-Crm1 by disrupting the Yap1 nuclear export signal, 

therefore enabling Yap1 to accumulate in the nucleus. While oxidation by the 

different oxidants such as H2O2 and diamide both induce nuclear accumulation of 

Yap1, the mechanism behind Yap1 activation by the different oxidants is 

different. In response to diamide, intramolecular disulphide bridges occur 

between closely located cysteines in the C-terminal (C598, C620, and C629) 

(Azevedo et al., 2003). However, H2O2 addition triggers the formation of an 

intramolecular disulphide between two cysteine residues (C303 and C598) in 

Yap1 (Delaunay et al., 2000), which requires Gpx3 and Ybp1 (Veal et al., 2003). 

Gpx3 senses H2O2 in the environment and transduces the signal to Yap1 by 

binding and forming an intermolecular disulphide between C36 in Gpx3 and C598 

in Yap1 (Delaunay et al., 2002). This is then resolved into the Yap1 

intramolecular disulphide of C303 and C598 which enables Yap1 to accumulate 

in the nucleus (Delaunay et al., 2002). This poses a 2-component system where 

Gpx3 senses intracellular H2O2, and relays the signal to Yap1. Yap1 then 
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disassociates from Crm1 and accumulates in the nucleus, whereby it can 

transcribe downstream stress response genes. Ybp1 is also required for Yap1 

nuclear accumulation in response to H2O2 (Veal et al., 2003). More recent data 

has elucidated the molecular mechanism for the role of Ybp1 in the formation of 

the Yap1 disulphide complex. Bersweiler et al (2017) identified that Ybp1 forms a 

ternary complex with the Gpx3-Yap1 intermolecular disulphide complex 

(Bersweiler et al, 2017). This in turn promotes the formation of the Yap1 

intermolecular disulphide complex between C303 and C598 by impeding the 

formation of an intramolecular disulphide complex within Gpx3. The importance 

of Ybp1 in the oxidation of Yap1 is highlighted by the fact that the Gpx3-Yap1 

intermolecular disulphide cannot be formed in a ybp1Δ delete strain (Veal et al., 

2003). It is interesting to note that certain S. cerevisiae strain backgrounds do not 

have a fully functional Ybp1 gene. The W303 strain background of S. cerevisiae 

encodes a truncated and therefore non-functional version of Ybp1, which is 

therefore unable to form the Yap1-Ybp1 complex (Veal et al., 2003). In the W303 

strain background Yap1 is activated independently of Gpx3 whereby the Tpx 

Tsa1 is required for activation of Yap1 (Veal et al., 2003). The difference in 

regulation of Yap1 by the different strain backgrounds of S. cerevisiae causes an 

increase in sensitivity to H2O2, but not diamide (Veal et al., 2003). Therefore it is 

intriguing to note the strain specific differences in the response to oxidative stress 

in cerevisiae. Interestingly, Yap1 is constitutively oxidised in trr1Δ mutants, and 

remains nuclear (Ragu et al., 2014). Nuclear Yap1 initiates the transcription of 

approximately 70 genes, including important components of the Grx and Trx 

systems for example GSH1, GPX3, TSA1, TRX1 and TRR1 (Mulford and 

Fassler, 2011).  

While many genes involved in the oxidative stress response are regulated by 

Yap1, the expression of several genes depend on Yap1 together with another 

transcription factor Skn7 (Mulford and Fassler, 2011). Interestingly there are only 

two genes that are dependent on Skn7 alone, DNM1 (a mitochondrial GTPase 

involved in morphology) and OLA1 (an ATPase linked to the proteasome) 

suggesting that Skn7 is not distinct from Yap1 in the oxidative stress response 

(Mulford and Fassler, 2011). In contrast to Yap1, Skn7 localises to the nucleus in 

both non stress and stress conditions (Raitt et al., 2000). After stress, Yap1 
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localises to the nucleus, where it can interact with Skn7 directly and bind to the 

promoters of specific genes to activate transcription (Mulford and Fassler, 2011). 

Consistent with the interaction between Yap1 and Skn7 cooperating to activate 

gene expression, single yap1Δ and skn7Δ mutants are extremely sensitive to 

H2O2 and superoxide producers, whilst the double yap1Δ skn7Δ mutant has no 

additional defects (Morgan et al., 1997; Ohdate et al., 2010; Yi et al., 2016).  

Sod1, a superoxide dismutase which detoxifies superoxide by catalysing O2·- to 

H2O2 and O2 (section 1.2.4.1.1) has recently been characterised as a 

transcription factor important for resistance to oxidative stress (Tsang et al., 

2014; Chung, 2017). After superoxide and H2O2 stress the predominantly 

cytoplasmic Sod1 became nuclear due to phosphorylation of Sod1 in a 

Mec1/Dun1-dependent manner. Once nuclear, Sod1 has been identified to be 

important in regulating the transcription of 123 genes, which are involved in a 

variety of stress responses (Tsang et al., 2014). Interestingly, changes in the 

localisation of Sod1 were not observed with agents that induce DNA damage, 

suggesting that Sod1 localisation is specifically sensitive to oxidation by 

superoxide and H2O2 (Tsang et al., 2014). It is also intriguing that H2O2 regulates 

Sod1 localisation, yet is not actually a target of Sod1 dismutase activity, possibly 

suggesting that the transcriptional role of Sod1 is distinct from detoxifying roles 

(Tsang et al., 2014).   

1.2.5. ROS sensing and signalling 

High levels of ROS are largely associated with causing damage to cellular 

components such as DNA, proteins, and lipids which can result in age-related 

diseases such as cancer and neurodegenerative disorders, and decrease 

lifespan (see previous sections and Figure 1.8). However, low levels of ROS also 

play essential roles in signal transduction mediating cellular functions such as 

proliferation, apoptosis and cell migration (Veal et al., 2007). However, as the 

levels of ROS increase from low to high, different response mechanisms are 

activated that induce the activation of defences to ROS, including the 

upregulation of antioxidants (Herrero et al., 2008). These antioxidants act to  
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Figure 1.8: The concentration-dependent effects of different levels of 

ROS. Different cellular and environmental processes can produce ROS, which 

have different effects depending on the concentration and type of ROS. For 

example, high levels of ROS can cause damage to DNA, proteins and lipids 

which can cause decreased lifespan and age-related diseases. However, low 

ROS levels are critical for many vital cellular processes including proliferation, 

apoptosis, and cell migration. As levels increase cells must be able to sense the 

change in ROS concentration and initiate the appropriate cellular responses. 

These responses include the activation of antioxidants which can reduce the 

intracellular ROS levels and also repair damage.  
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reduce levels of ROS within the cell and repair any damage to cellular 

components (Liou and Storz, 2010b) (Figure 1.8). Thus, cells require sensing 

mechanisms that can detect ROS levels, and also the types of ROS, to trigger 

the appropriate responses.  

Three important characteristics are important for ROS to be able to effectively act 

as a signalling molecule: production must be rapid and close to the site of action, 

the signal initiated must be able to be detected easily in order to initiate the 

appropriate response, and the signal must be able to be removed rapidly to 

attenuate the signalling cascade when necessary (Hancock, 2009). In this 

respect H2O2 is an especially good candidate for a signalling molecule. H2O2 can 

be produced rapidly by NADPH oxidases which produce O2·- by the transfer of 

electrons to oxygen (Landry and Cotter, 2014). Rapid dismutation by SODs 

produce H2O2 (section 1.2.1) which is much more stable than O2·- and able to 

cross intracellular membranes (Bienert et al., 2006), allowing H2O2 to be close to 

most sites of action (Lassegue and Griendling, 2010). H2O2 is also able to initiate 

different cellular responses depending on concentration and localisation. H2O2 

can be detected by H2O2 sensor proteins, often with the use of cysteine residues 

with a low pKa which increases their susceptibility to oxidation (Section 1.2.2.2). 

Not all proteins have cysteines with a pKa low enough to be able to be easily 

oxidised, thus the oxidation of only certain cysteines allows specific targeting of 

downstream responses (Rhee et al., 2005). After the desired response has been 

initiated by H2O2 the signal must be blocked at some point to inhibit the signalling 

cascade. With respect to this inhibition, firstly H2O2 itself must be removed from 

the cell to prevent further oxidation. Mechanisms here include the use of 

antioxidants which are able to remove H2O2 (Section 1.2.4). Secondly, cysteine 

residues oxidised by H2O2 must be reduced, to revert the protein back to its 

normal reduced state (Hancock, 2009). In many cases reduction of oxidised 

cysteine residues is performed by the Grx and/or Trx pathways (Section 1.2.4). 

In addition to distinguishing different levels of ROS, cells also need to be able to 

respond to different types of oxidising agents. As described previously (Section 

1.2.4.3), Yap1 is a transcription factor that is activated after oxidative stress. The 

nuclear accumulation and transcriptional activity of Yap1 is triggered by many 
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types of oxidising agent and at least two different sensing mechanisms are 

involved (Azevedo et al., 2003). For example, H2O2 addition to yeast cells triggers 

the formation of an intramolecular disulphide between two cysteine residues 

(C303 and C598) in Yap1. However in contrast, oxidation by other thiol reactive 

chemicals, such as diamide, caused the formation of disulphides between three 

different cysteines (C598, C620, and C629) (Azevedo et al., 2003) (see Section 

1.2.4.3). Interestingly menadione is able to oxidise Yap1 through both 

mechanisms (Azevedo et al., 2003). These different sensing mechanisms in 

Yap1 that detect different types of stress highlight the abilities of proteins to 

sense different types of ROS.  

Cells must also be able to distinguish between low and high levels of oxidising 

agents. One example of this is that the oxidation status of the Peroxiredoxin Tpx1 

in the fission yeast S. pombe can regulate specific transcription factors 

depending on the concentration of H2O2 (Veal et al., 2007). Two different 

transcription factors are important for regulating gene expression in response to 

H2O2 in S. pombe, and the concentration of H2O2 regulates which transcription 

factors are activated thus regulating which genes are upregulated (Veal et al., 

2007). At low concentrations of H2O2, the peroxidatic cysteine in Tpx1 is oxidised 

into a sulphenic acid, which results in activated Tpx1. Activated Tpx1 

subsequently activates Pap1 which induced the expression of Pap1 dependent 

genes (Quinn et al., 2002). In contrast, high levels of H2O2 hyperoxidises the 

peroxidatic cysteine of Tpx1 which activates the MAPK Sty1 which in turn 

phosphorylates Atf1 (Quinn et al., 2002; Day et al., 2012). Phosphorylated Atf1 

induces the transcription of Atf1 dependent genes. Interestingly, Atf1 results in 

the transcription of the sulphiredoxin Srx1. Srx1 reduces the sulphinic acid of 

hyperoxidised Tpx1 to a sulphenic acid, which results in the activation of Tpx1 

and the subsequent Pap1 activation (Vivancos et al., 2005). In conclusion, the 

differential oxidation status of Tpx1 to different concentrations of H2O2 in S. 

pombe exemplifies an effective mechanism whereby the levels of oxidative stress 

are sensed to allow the appropriate downstream response. 

Protein tyrosine phosphatases (PTPs) have important roles in many signalling 

pathways including those stimulated by growth factors and cytokines. In 
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particular, PTPs de-phosphorylating tyrosine residues which can inactivate 

MAPKs and activate CDKs (Veal et al., 2007). PTPs have a catalytic cysteine 

residue at their active site (H-C-X5-R (Tabernero et al., 2008)) which has a low 

pKa value. This feature allows the cysteine to act as a nucleophile to attack 

substrates, but also renders the cysteine susceptible to oxidation. Indeed 

oxidation of the catalytic cysteine inactivates PTP function (Liou and Storz, 

2010a), inhibiting its role in signalling pathways. Thus in order to maintain PTP 

roles in signalling, further irreversible oxidation must be prevented. One 

mechanism by which this is achieved is exemplified by the oxidation that a cyclic 

sulphenylamide forms in the PTP PTP1B which changes protein conformation 

(Salmeen et al., 2003). This conformational change prevents further oxidation of 

PTP1B, and also exposes the catalytic cysteine to reducing agents, which allows 

the redox cycling important for ROS-dependent signalling (Salmeen et al., 2003; 

van Montfort et al., 2003). More recently it has been identified that Trx1 

reactivates oxidised PTP1B into its reduced form (Schwertassek et al., 2014). 

This mechanism is not the case for all PTPs. For example, oxidation of Cdc25 

causes the formation of an intramolecular disulphide between the catalytic 

cysteine with another cysteine residue in the protein, which protects the catalytic 

cysteine from further irreversible oxidation (Buhrman et al., 2005). Similar to 

PTP1B this protective disulphide is reduced by thioredoxin (Seth and Rudolph, 

2006). 

Recently ubiquitin and ubiquitin-like pathways have been linked to ROS sensing 

and signalling, and these will be discussed in more depth in the next section. 

 

1.3. Regulation of ubiquitin and ubiquitin-like modifications by ROS 

As described previously (see Section1.1) many of the ubiquitin and ubiquitin-like 

modifier pathway enzymes use catalytic cysteines for function. Ubiquitin and 

ubiquitin-like E1 and E2 enzymes use catalytic cysteines to form a thioester with 

the C-terminal glycine residue of the ubiquitin and ubiquitin-like moiety. To act 

this way the catalytic cysteine must first be deprotonated to reduce the pKa. 

However, as a consequence this reduction in pKa also potentially increases their 
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susceptibility to oxidation by ROS. Interestingly, under normal physiological 

conditions the pKa of E2 catalytic cysteines is relatively high (Tolbert et al., 

2005), thus allowing specific regulation of E2s by oxidation only when the 

cysteine is deprotonated (Stankovic-Valentin and Melchior, 2018). When ubiquitin 

and ubiquitin-like modifiers are transferred from the E1 enzymes to E2 enzymes, 

the catalytic cysteines from the E1 and the E2 come into close proximity allowing 

nucleophilic attack of the C-terminal glycine residue of the ubiquitin and ubiquitin-

like modifier by the E2 catalytic cysteine (Stankovic-Valentin and Melchior, 2018). 

Interestingly, in addition to the conjugation machinery, isopeptidases which 

catalyse the cleavage of ubiquitin (dUbs) and SUMO (SENPs) utilise a catalytic 

cysteine which is deprotonated to allow cleavage of the isopeptide bond between 

the ubiquitin and ubiquitin-like modifiers and lysine residues. This deprotonation 

lowers the pKa of the cysteine, thus increasing their potential to be oxidised. 

Indeed, there is increasing evidence that enzymes in ubiquitin and ubiquitin-like 

modification pathways are regulated by ROS, and this is discussed below. 

1.3.1. SUMO 

Regulation of the ubiquitin-like modification pathway SUMO by ROS has been 

described previously. Bossis and Melchior (2006) found that in mammalian cells 

the addition and removal of SUMO through the conjugation and deconjugation 

cycle is differentially affected by H2O2 in a manner that is capable of 

distinguishing low and high levels of ROS (Figure 1.9). In this study, global 

SUMOylation was found to be reduced at low levels of H2O2 (1 mM H2O2) but 

increased at high levels (100 mM H2O2). Analysis of the SUMO conjugation 

pathway revealed that an intermolecular disulphide bond forms between the 

catalytic cysteine residues of Uba2 and Ubc9 (E1 and E2 respectively) at both 

low and high levels of H2O2 preventing SUMOylation (Bossis and Melchior, 

2006). However at low levels of H2O2, SENPS are still active, leading to global 

SUMO deconjugation and the accumulation of free SUMO (Bossis and Melchior, 

2006). Interestingly, it was also observed that the glutathione system reduced the 

Uba2-Ubc9 dimer (Bossis and Melchior, 2006). In contrast, increasing H2O2 

concentrations also inhibited the deconjugation machinery, preventing the 

removal of SUMO from substrates and consequently maintaining SUMOylation  
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Figure 1.9: ROS sensing by SUMO pathway enzymes in mammalian 

cells. In unstressed cells both the SUMO conjugation and deconjugation 

machinery function as normal, creating a balance of SUMOylation of substrates. 

At low levels of H2O2 SUMO conjugating enzymes are oxidised and form a 

disulphide complex between the E1 and E2, whereas the deSUMOylases are still 

active thereby causing a reduction of residual levels of SUMOylated substrates. 

However at higher H2O2 concentrations the deSUMOylases are also inhibited, 

thus maintaining global SUMOylation. 
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under higher concentrations of H2O2 (Bossis and Melchior, 2006). Interestingly, in 

response to H2O2 the mammalian SENP1 forms an intramolecular disulphide 

between the catalytic cysteine (C603) and a neighbouring cysteine (C613) (Xu et 

al., 2008; Stankovic-Valentin and Melchior, 2018). This disulphide, which is 

reversible, is suggested to be a protective mechanism to prevent further 

sulphydryl oxidation. The oxidation of SENP1 is also conserved in S. cerevisiae 

Ulp1 (Xu et al., 2008).  The differential sensitivity of different components in the 

SUMO conjugation/ deconjugation pathway to oxidation identifies a ROS sensing 

mechanism, whereby different concentrations of ROS result in different outcomes 

for SUMO substrates.  Importantly, after reduction the E1 and E2 enzymes which 

formed a disulphide complex in response to H2O2 were still catalytically active, 

revealing that oxidation was reversible (Stankovic-Valentin and Melchior, 2018).  

More recent investigations of the physiological importance of regulating SUMO 

pathway enzymes in this way found that the reversible oxidation of SUMO E1 and 

E2 enzymes was critical for cell survival after DNA damage by oxidative stress 

(Stankovic-Valentin and Melchior, 2018). Importantly this was seen not only after 

incubation with exogenous H2O2 which can sometimes be seen as not 

physiologically relevant, but after chronic oxidative stress in older cells caused by 

cultivation in 20% oxygen (Stankovic-Valentin and Melchior, 2018). 

1.3.2. NEDD/ Rub1 

The NEDD8 ubiquitin-like modification pathway in mammalian cells has also 

been found to be regulated by ROS. In response to bacterial infection 

mammalian epithelial cells can produce ROS as a defensive mechanism. 

Interestingly, this bacterially-induced ROS has been linked to the oxidation of the 

NEDD8 E2 Ubc12 which forms a high molecular weight complex (Kumar et al., 

2007). This observation suggests that NEDD8 may be regulated in a similar 

mechanism to the SUMO pathway described above. Further analysis of Cul1, a 

NEDD8 substrate that is a subunit of the SCFβ-TrCP E3 ubiquitin ligase, revealed 

that after oxidation of Ubc12, NEDDylation of Cul1 was abolished potentially 

inactivating SCFβ-TrCP (Kumar et al., 2007). In contrast to the SUMO pathway 

where Ubc9 formed a disulphide complex with Uba2, it remains unknown whether 
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Ubc12 forms a disulphide complex with another enzyme, as the E1 is not part of 

the Ubc12 oxidised complex (Kumar et al., 2007).  

1.3.3. Ubiquitination 

Initial studies of global ubiquitination after different concentrations of H2O2 were 

added to mammalian cells suggested that ubiquitin conjugation/ deconjugation 

was not affected by H2O2 (Bossis and Melchior, 2006). However, in contrast to 

SUMO conjugation, many more E2s and dUbs are involved in ubiquitination 

pathways, thus raising the possibility that specific ubiquitin pathways may be 

sensitive to ROS. Interestingly, studies in S. cerevisiae revealed that one 

particular ubiquitin pathway E2 does indeed form a disulphide complex in 

response to oxidative stress similar to that seen in the SUMO and NEDD8 

pathways in mammalian cells (Bossis and Melchior, 2006; Kumar et al., 2007). 

Studies from our lab showed that exposure of cells to different oxidising agents, 

the E2 Cdc34, but not other ubiquitin E2 enzymes, formed a HMW intermolecular 

disulphide complex with the E1, Uba1 (Doris et al., 2012). As described 

previously, Cdc34 regulates cell cycle progression in late G1 phase via the 

ubiquitination of the CDK inhibitor Sic1 (Section 1.1.1.3.1). In wild type, 

unstressed cells, Uba1 and Cdc34 ubiquitinate Sic1 which is subsequently 

degraded by the proteasome system, allowing normal cell cycle progression from 

G1 to S phase (Verma et al., 1997). However, after oxidation by H2O2 or diamide 

Cdc34 forms a disulphide complex. The kinetics of the formation of the disulphide 

complex coincides with an increase in Sic1 stability (Doris et al., 2012). Thus, 

these data suggest that the Cdc34-Uba1 disulphide complex cannot ubiquitinate 

Sic1, which is subsequently not degraded, resulting in cell cycle arrest (Figure 

1.10).  

At the beginning of this thesis studies it was unknown whether dUbs are 

differentially oxidised in response to ROS in S. cerevisiae. dUb oxidation in other 

organisms prior to this thesis studies is discussed below. 

1.3.3.1. Deubiquitination 

As many dubs are thiol proteases which use deprotonation of a catalytic cysteine 

for function, they also have the potential to be regulated by ROS. Prior to the  
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Figure 1.10: Schematic for the regulation of cell cycle progression by 

oxidation of Cdc34-Uba1 in S. cerevisiae. Under unstressed conditions 

Cdc34 and Uba1 ubiquitinate the CDK inhibitor Sic1, targeting it for degradation 

and allowing cell cycle progression. However after oxidation Cdc34 and Uba1 

form a disulphide complex which subsequently inhibits ubiquitination of Sic1. 

Thus, Sic1 is not degraded by the proteasome and inhibits cell cycle progression 

from G1 to S phase by inhibiting the CDK complex Cdc20/Clb5. 
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initiation of this thesis work, a study into the regulation of the ubiquitin pathway by 

ROS in mammalian cells revealed that many mammalian dUbs were activated, or 

had enhanced activity, when incubated with the reducing agent DTT in vitro, 

suggesting that oxidation inhibits dUb activity (Lee et al., 2013). Interestingly, it 

was also shown that different dUbs had different responses to H2O2, as many of 

the dUbs showed increased resistance to ROS. For example, while the 

mammalian USP19 was sensitive to inactivation by H2O2, USP1 and UCH-L1 

were found to be comparatively more resistant to oxidation by H2O2 (Lee et al., 

2013). Further evidence for regulation of dUbs by ROS was identified recently, 

where authors identified that USP1 (which removes removing mono-ubiquitin 

signals from PCNA at K164) was reversibly inactivated by ROS (Cotto-Rios et al., 

2012). In this case USP1 is responsible for removing mono-ubiquitin signals from 

PCNA at K164. Ubiquitination of PCNA allows for TLS to occur after DNA 

damage response (Section 1.1.2). Inactivation of USP1 by oxidation allows 

stabilisation of PCNA by mono-ubiquitination thus allowing DNA replication to be 

maintained after 1 mM H2O2 stress (Cotto-Rios et al., 2012). In the same study, 

the authors also describe the reversible oxidation of USP7 catalytic cysteine 

resulted in a decrease in the deubiquitination of USP7 substrates. Thus 

suggesting that oxidation inhibited USP7 function (Cotto-Rios et al., 2012). It was 

also shown that certain OTU dUbs are susceptible to reversible oxidation at the 

catalytic cysteine by H2O2 in order to regulate their catalytic activity (Kulathu et 

al., 2013). Importantly, it was identified that certain OTU enzymes were more 

susceptible to oxidation than others, for example the mammalian OTU dUb 

Cezanne was much more sensitive to oxidation than OTUD2 (Kulathu et al., 

2013). This study highlighted the importance of differential sensitivity of OTU 

dUbs to oxidative stress, however a cellular situation which was dependent on 

OTU oxidation was not defined (Kulathu et al., 2013).  

In conclusion, although dUbs have conserved domain regions, in particular the 

active site domains which contain the catalytic triad, dUbs do differ in the 

remaining regulatory regions. It has also been observed in mammalian cells that 

different dUbs appear to be more readily oxidised than others. It is also 

interesting that specific dUbs have also been observed to be oxidised differently 

depending on the concentration of oxidising agent. As such the differential 



 

[70] 
 

sensitivity of dUbs may be a key mechanism by which specific cellular outcomes 

are regulated.  

 

1.4. Aims and objectives 

Ubiquitination is a post-translational modification that is present in almost all 

cellular pathways. Ubiquitination has historically been associated with targeting 

substrates to the proteasome for degradation, however recently other signalling 

roles have been identified. Ubiquitin is removed from substrates by dUbs. dUbs 

are highly conserved in eukaryotes and cleave ubiquitin from proteins using an 

active site catalytic cysteine. This removal of ubiquitin from substrates recycles 

ubiquitin for further use, but importantly adds another level of control to the cycle, 

and of the function/activity of ubiquitinated substrates. The use of a catalytic 

cysteine for ubiquitin cleavage by dUbs, suggests that dUbs have the potential to 

be oxidised by ROS, as seen in other ubiquitin/ ubiquitin like pathway enzymes in 

order to regulate their activity. Thus, the aim of this thesis was to use the model 

organism S. cerevisiae to explore the potential functions and regulation of dUbs 

in response to oxidative stress. 

 

Specific objectives were: 

1. To investigate the relative requirements and modifications of dUbs in 

response to different oxidising agents. 

 

2. To investigate the potential roles and regulation of the dUb, Ubp12, in 

oxidative stress responses. 

 

3. To investigate the potential roles and regulation of the dUb, Ubp15, in 

oxidative stress responses and cell cycle regulation. 
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Chapter Two: Materials and Methods 

 

2.1. Yeast strains 

The S. cerevisiae strains used in this study are derived from W303 (ade2-1, 

can1-100, his3-11,15, leu2-3,112, trp1-1, ura3-1), BY4741 (his3Δ1, leu2Δ0, 

met15Δ0, ura3Δ0), or BY4742 (his3Δ1, leu2Δ0, ura3Δ0, lys2Δ0).  

All strains used in this study are listed in Table 2.1. 

 

2.2. Yeast techniques 

2.1.1 Growth conditions 

Strains were grown in either rich YPD complete media (1% w/v Bacto-yeast 

extract, 2% w/v Bacto-peptone, 2% w/v glucose, +/- 2% w/v agar), or SD minimal 

media (0.67% w/v Bacto-yeast nitrogen base without amino acids, 2% w/v 

glucose, +/- 2% w/v agar). For selective growth, SD was supplemented with 

adenine sulphate (20 mg/L, L-histidine hydrochloride (10 mg/L), L-leucine (20 

mg/L), L-tryptophan (10 mg/L), uracil (8 mg/L), L-methionine (10 mg/L), and L-

lysine hydromonochloride (30 mg/L) as required (all supplied by Sigma). G418 

antibiotic (Formedium) was supplemented in YPD at 400 µg/ml. Strains were 

grown at 30 °C unless otherwise stated.  

2.1.2 Transformation 

DNA was introduced into S. cerevisiae using a protocol based on the high 

efficiency lithium acetate method (Schiestl and Gietz, 1989). 50 ml of mid-log 

phase growing cells were pelleted (2000 rpm, 3 minutes), washed with 50 ml 

sterile water, and pelleted again. Cells were resuspended in 1 ml LiAc/TE (0.1 M 

LiAc/ 10 mM Tris-HCl pH 7.4, 1 mM EDTA pH8). 200 µl cells were added to 5 µg 

of salmon sperm DNA (Ambion), and 0.1 - 10 µg transforming DNA. 1.2 ml of 

LiAc/TE/PEG solution (0.1 M LiAc/ 10 mM Tris-HCl pH 7.4, 1 mM EDTA pH8/  
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Strain 

ID 
Genotype Reference 

FCC1 * 
MATa ade2-1 can1-100 his3-11,15 leu2-3,112 

trp1-1 ura3-1 
Lab Stock 

FCC2 * 
MATα ade2-1 can1-100 his3-11,15 leu2-3,112 

trp1-1 ura3-1 
Lab Stock 

FCC10 * 
MATa ade2-1 can1-100,15 his3-11 leu2-3,112 

trp1-1 ura3-1 ubp12::HIS3 
This study 

FCC23 # MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 Lab Stock 

FCC60 * 
MATa ade2-1 can1-100,15 his3-11 leu2-3,112 

trp1-1 ura3-1 ubp15::HIS3 
This study 

FCC63 # MATα his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0 Lab Stock 

FCC70 # 

 leu2Δ0/leu2Δ0 his3Δ1/his3Δ1 ura3Δ0/ura3Δ0 

met15Δ0/MET15 lys2Δ0/LYS2 UBP12/UBP12-

TAP:HIS3 

This study 

FCC73 # 
MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 

ubp2::KanMX 

Newcastle 

University High 

throughput service 

FCC74 # 
MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 

ubp3::KanMX 

Newcastle 

University High 

throughput service 

FCC75 # 
MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 

ubp12::KanMX 

Newcastle 

University High 

throughput service 

FCC80 * 
MATa ade2-1 can1-100 his3-11,15 leu2-3,112 

trp1-1 ura3-1 FZO1-3HA:HIS3 
This study 

FCC93 * 
MATa ade2-1 can1-100 his3-11,15 leu2-3,112 

trp1-1 ura3-1 UBP12-3HA:KanMX 
This study 

FCC96 # 
MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 

ubp1::KanMX 

Newcastle 

University High 

throughput service 

FCC97 # 
MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 

ubp5::KanMX 

Newcastle 

University High 

throughput service 

FCC98 # 
MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 

ubp6::KanMX 

Newcastle 

University High 

throughput service 

FCC99 # 
MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 

ubp7::KanMX 

Newcastle 

University High 

throughput service 

FCC100 

# 

MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 

ubp8::KanMX 

Newcastle 

University High 

throughput service 
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FCC101 

# 

MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 

ubp9::KanMX 

Newcastle 

University High 

throughput service 

FCC102 

# 

MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 

ubp10::KanMX 

Newcastle 

University High 

throughput service 

FCC103 

# 

MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 

ubp11::KanMX 

Newcastle 

University High 

throughput service 

FCC104 

# 

MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 

ubp13::KanMX 

Newcastle 

University High 

throughput service 

FCC106 

# 

MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 

ubp15::KanMX 

Newcastle 

University High 

throughput service 

FCC107 

# 

MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 

ubp16::KanMX 

Newcastle 

University High 

throughput service 

FCC108 

# 

MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 

otu1::KanMX 

Newcastle 

University High 

throughput service 

FCC109 

# 

MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 

otu2::KanMX 

Newcastle 

University High 

throughput service 

FCC110 

# 

MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 

yuh1::KanMX 

Newcastle 

University High 

throughput service 

FCC123 

# 

MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 OTU1-

TAP:HIS3 

(Ghaemmaghami 

et al., 2003b) 

FCC124 

# 

MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 OTU2-

TAP:HIS3 

(Ghaemmaghami 

et al., 2003b) 

FCC125 

# 

MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 RPN11-

TAP:HIS3 

(Ghaemmaghami 

et al., 2003b) 

FCC130 

* 

MATa ade2-1 can1-100,15 his3-11 leu2-3,112 

trp1-1 ura3-1 UBP15-3HA:HIS3 

(Ghaemmaghami 

et al., 2003b) 

FCC135 

# 

MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 CEX1-

TAP:HIS3 

(Ghaemmaghami 

et al., 2003b) 

FCC145 

* 

MATa leu2Δ0 met15Δ0 ura3Δ0 CDC34-

TAP:HIS3 

(Ghaemmaghami 

et al., 2003b) 

FCC146 

# 

MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 HIS4-

TAP:HIS3 

(Ghaemmaghami 

et al., 2003b) 

FCC147 

# 

MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 CDC19-

TAP:HIS3 

(Ghaemmaghami 

et al., 2003b) 

FCC148 

# 

MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 PDC1-

TAP:HIS3 

(Ghaemmaghami 

et al., 2003b) 
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FCC149 

# 

MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 TEF2-

TAP:HIS3 

(Ghaemmaghami 

et al., 2003b) 

FCC150 

# 

MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 ACO1-

TAP:HIS3 

(Ghaemmaghami 

et al., 2003b) 

FCC151 

# 

MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 TOM1-

TAP:HIS3 

(Ghaemmaghami 

et al., 2003b) 

FCC152 

# 

MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 MDN1-

TAP:HIS3 

(Ghaemmaghami 

et al., 2003b) 

FCC154 

# 

MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 UBP12-

6HA:HIS3 

(Gödderz et al., 

2017) 

FCC156 

* 

MATa ade2-1 can1-100 his3-11,15 leu2-3,112 

trp1-1 ura3-1 CDC34-13Myc:KanMX 
Lab Stock 

FCC157 

* 

MATα ade2-1 can1-100 his3-11,15 leu2-3,112 

trp1-1 ura3-1 CDC34-13Myc:KanMX 
Lab Stock 

FCC158 

# 

MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 UBP12-

TAP:HIS3, UBP12-3HA:KanMX 
This study 

FCC161 

MAT? ade2-1 can1-100,15 his3-11 leu2-3,112 

trp1-1 ura3-1 ubp15::HIS3, CDC34-

13Myc:KanMX 

This study 

FCC162 

FCC163 

* 

MAT? ade2-1 can1-100,15 leu2-3,112 trp1-1 

ura3-1 trr1::HIS3, UBP15-3HA:HIS3 
This study 

FCC167 

* 

MATa ade2-1 can1-100 his3-11,15 leu2-3,112 

trp1-1 ura3-1 trr1::HIS3 
Lab Stock 

FCC171 

FCC172 

FCC175 

* 

MATa ade2-1 can1-100 his3-11,15 leu2-3,112 

trp1-1 ura3-1 trr1::HIS3, UBP12-3HA:KanMX 
This study 

FCC176 

# 
MATa leu2Δ0 met15Δ0 ura3Δ0 PUF3-TAP:HIS3 

(Ghaemmaghami 

et al., 2003b) 

FCC178 

# 

MATa his3Δ1leu2Δ0 met15Δ0 ura3Δ0 GCN5-

TAP:HIS3 

(Ghaemmaghami 

et al., 2003b) 

FCC179 

# 

MATa his3Δ1leu2Δ0 met15Δ0 ura3Δ0 FKH1-

TAP:HIS3 

(Ghaemmaghami 

et al., 2003b) 

ELR28 # 
MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 UBP1-

TAP:HIS3 

(Ghaemmaghami 

et al., 2003b) 

ELR29 # 
MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 UBP2-

TAP:HIS3 

(Ghaemmaghami 

et al., 2003b) 

ELR30 # 
MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 UBP3-

TAP:HIS3 

(Ghaemmaghami 

et al., 2003b) 

ELR31 # 
MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 UBP4-

TAP:HIS3 

(Ghaemmaghami 

et al., 2003b) 

ELR32 # MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 UBP5- (Ghaemmaghami 



 

[75] 
 

TAP:HIS3 et al., 2003b) 

ELR33 # 
MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 UBP6-

TAP:HIS3 

(Ghaemmaghami 

et al., 2003b) 

ELR34 # 
MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 UBP8-

TAP:HIS3 

(Ghaemmaghami 

et al., 2003b) 

ELR35 # 
MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 UBP9-

TAP:HIS3 

(Ghaemmaghami 

et al., 2003b) 

ELR36 # 
MATa his3Δ1leu2Δ0 met15Δ0 ura3Δ0 UBP10-

TAP:HIS3 

(Ghaemmaghami 

et al., 2003b) 

ELR37 # 
MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 UBP11-

TAP:HIS3 

(Ghaemmaghami 

et al., 2003b) 

ELR38 # 
MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 UBP12-

TAP:HIS3 

(Ghaemmaghami 

et al., 2003b) 

ELR39 # 
MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 UBP13-

TAP:HIS3 

(Ghaemmaghami 

et al., 2003b) 

ELR40 # 
MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 UBP14-

TAP:HIS3 

(Ghaemmaghami 

et al., 2003b) 

ELR41 # 
MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 UBP15-

TAP:HIS3 

(Ghaemmaghami 

et al., 2003b) 

ELR42 # 
MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 UBP16-

TAP:HIS3 

(Ghaemmaghami 

et al., 2003b) 

 

Table 2.1: Yeast strains used in this study. Strains with * are in the 

W303 strain background, and strains with # are in the BY strain background. 

Where mating type is unknown it is shown as MAT?.  
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40% w/v PEG-4000) were added and gently mixed, before incubation at 30 °C 

with agitation for 30 minutes, followed by a heatshock at 42 °C for 15 minutes. 

Cells were pelleted (8000 rpm, 1 minute), resuspended in 150 µl nH2O and plated 

onto appropriate selective media. Plates were incubated for 3-5 days at 30 °C to 

allow for growth of transformants. For G418 selection of KanMX strains, the 

transformation mixture was spread onto a YPD plate and grown for 2 days at 30 

°C. The resulting lawns were replica plated using a wooden block and Wattman 

filter paper onto YPD plates supplemented with G418, and incubated for a further 

3 days at 30 °C to allow for growth of colonies.  

2.1.3 Strain construction  

2.1.3.1 Gene deletion 

Genes were substituted with a selectable marker in the genome of S. cerevisiae 

using the one-step homologous recombination method previously described 

(Rothstein, 1991) (Figure 2.1). The specific gene was replaced in S. cerevisiae 

using the appropriate forward and reverse deletion oligonucleotide primers (Table 

2.2), and YDp-H plasmid (Table 2.3) as a template (Berben et al., 1991). The 

forward primer contains 90 nucleotides homologous to the region located directly 

upstream of the ATG of the target gene, and 20 nucleotides homologous to the 

region directly upstream to the 5’ end of the selectable marker gene in the YDp-H 

plasmid. The reverse primer contains 90 nucleotides homologous to the DNA 

sequence located directly downstream of the stop codon of the target gene to be 

deleted and 20 nucleotides homologous to the 3’ end of the selectable marker 

gene. PCR fragments were then transformed into the relevant strain and 

successful transformants were selected by growth of colonies on media lacking 

histidine. Gene replacement was verified using the respective check forward and 

reverse primers (Check primer F and Check primer R) flanking the region of 

interest.  

Where strains were obtained from the deletion collection library (Newcastle 

University High throughput service) correct deletion of the gene from the 

chromosome was verified using a specific forward primer to the gene of interest 

and a reverse primer located in the kanamycin selectable marker (Kan909R). 
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Figure 2.1: Schematic diagram of gene deletion in S. cerevisiae. Deletion 

Primer F contains 90 base pairs homologous to the chromosome sequence 

directly upstream of the start codon of the gene to be deleted and 20 base pairs 

homologous to the 5’ end of the selectable marker gene in the YDp plasmid. 

Deletion Primer R contains 90 base pairs homologous to the chromosome 

sequence directly downstream of the stop codon of the gene to be deleted and 

20 base pairs homologous to the 3’ end of the selectable marker gene in the YDp 

plasmid. PCR using deletion Primer F and deletion Primer R and the YDp 

plasmid containing the selectable marker gene as a template generates a PCR 

fragment of the selectable marker and 90 base pairs homologous to the 

chromosome on either side of the gene. The cassette is transformed into wild 

type S. cerevisiae and homologous recombination results in the substitution of 

the gene to be deleted with the selectable marker gene onto the chromosome. 

Transformants were plated onto minimal media to select for the presence of the 

marker. Successful deletion was then verified by a check PCR using check 

Primer F and check Primer R which bind further upstream and downstream of the 

gene that has been deleted.  
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Primer Name Sequence 5’ → 3’  

ubp1ChkDelF CACATTCAAAGAATAGAAGC 

ubp1ChkTagF GAAGGATGATTTGGAAGCTATTCAG 

ubp2ChkDelF GTTCATAGTCTAAGGGTG 

ubp2ChkTagF ACTATTGGATATATATCAAGG 

ubp2ChkTagR TTACGCAACCTATCTAC 

ubp3ChkDelF GTATATAGGTGAACGGTAATAAG 

ubp3TagChkF2 CATTGAAAAACAACACCTC 

ubp3TagChkR2 GAAATAATTGGTTTCGTGG 

ubp4ChkTagF GTATGGTGGTCATTATACAGCC 

ubp5ChkDelF CTTCAACACATCAAGTAAAC 

ubp5ChkTagF CATGAAGCTATTGTTAATGAGGAC 

ubp6ChkDelF CTGCAAGTAATTGGTGC 

ubp6ChkTagF GATCGGTGTCATTACACATCAAG 

ubp7ChkDelF CGCTAGGAAATAGGTAC 

ubp7ChkTagF GGAGTGGTTAACCATACAGG 

ubp8ChkDelF CAACTGGCTGTCATAATTTTG 

ubp8ChkTagF GAAAATGGCAAGGTTCCAG 

ubp9ChkDelF GCTTGAACAAGCTTGAATG 

ubp9ChkTagF GGTTAAGGGATCGTAAATTGAGG 

ubp10ChkTagF CTCCTATACACGAGGCTAAC 

ubp11ChkDelF GTTGATTATAAGCTCTGAAAG 

ubp11ChkTagF GAGCCATGAAATTGGACTG 

ubp12ChkDelF TATAATCAGGTATATTTCG 

ubp12ChkDelR TTGCTTCGTTTATGTAATT 

ubp12ChkTagF GACGAAGATGACAATG 

ubp12ChkTagR TTGCTTCGTTTATGTAATT 

ubp13ChkTagF CTAATCAAGTACGATGATTGGC 

ubp13TagChkF2 GAATGATCGTGAAAATATGG 

ubp13TagChkR2 CTTGCATGCCTAAATACTTC 

ubp14ChkDelF GATCAAATTTATCACTTGATG 

ubp14DelChkF2 GATGAAATCACAGTGAAAAG 

ubp14DelChkR2 CTCGATAGATTTGATCATAC 

ubp14ChkTagF GTAAACTAGTGGCAGACAAATG 

ubp15ChkDelF GGATTAATCAGTTACACAGG 

ubp15ChkDelR CTGCTCTATAGTTTGTGTTC 

ubp15ChkTagF2 CTTCATGCAAAATTTGGTC 

ubp15ChkTagR2 CCTTTTAGCTACGGGTC 

ubp16ChkDelF CAAAGTCCAGCTATAAAAC 

ubp16ChkTagF GCACCAGTTGTCAACAATG 

otu1ChkDelF GGTAGTAACTAATAGTAAAGG 

otu1ChkTagF CTGGCCTCAAATTTGAAGC 
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otu2ChkDelF GTATTATTATGCGTCGCG 

otu2ChkTagF GATTTTGGCTCTCTCTCACG 

yuh1ChkDelF GTCGACTATAAAGGTGGAAG 

rpn11DelChkF2 CAAATTCACAAGAAAAGCC 

rpn11DelChkR2 CTACCAGTAGCCATTTC 

rpn11ChkTagF GAGTATGGTTAAGATAGCCGAAC 

TapTagChkR AACCCGGGGATCCGTCGACC 

kan909R ATCACGCTAACATTTGATTAAAATAG 

ubp12TagF2 
AAGTCGCTGATTTGAATTTAAAAAATGGTGTGACACTAGAA

TCGCCAGAACGGATCCCCGGGTTAATTAA 

ubp12TagR2 
TTATACATGTGGAAATTTATTAATTTTATCTATCATATAAAC

TCATGTCAGAATTCGAGCTCGTTTAAAC 

ubp15DelF 

CCCTACGTTTTGCCCCTTTGATCAAACTATCAGTTAAGATA

TTAATTTTTTTGAGAAAACGATTCTTTGATTAGTCTCTTCAA

ACAAACAGAATTCCCGGGGATCCGGTG 

ubp15DelR 

GTGTGGAAGTGATGGCGGCTGAGAGATTATCATAAAAAAA

CATAAAAAAAATGGAGAAAACATCAAAGCTAAACATAGTC

GTAAGACGTAAAGCTAGCTTGGCTGCAGGT 

ubp15TagSF 
ATAGATTGAGATCGCATTCTTCCTATGATAGACCAATGATC

ATTAAAAACCGGATCCCCGGGTTAATTAA 

ubp15TagSR 
CATAAAAAAAATGGAGAAAACATCAAAGCTAAACATAGTC

GTAAGACGTAGAATTCGAGCTCGTTTAAAC 

ubp12DelF 

TGAAGATAAAAGATGGGATTACTGGAAAAATAAAGGGAGG

AAAATCCTGCAGAACGTTGTTGTTTCAATCGAAGGTTTCTT

CATTCGAAAGAATTCCCGGGGATCCGGTG 

ubp12DelR 

GCCTAGGCAGTAAATAGTAGGCGAAAAAGATTGAAAAGTA

TTATACATGTGGAAATTTATTAATTTTATCTATCATATAAAC

TCATGTCAAAGCTAGCTTGGCTGCAGGT 

trr1DelChkF GCTTGTAGATTAATTTCTG 

trr1DelChkR GTATTGGCTTTCTCTAATAATG 

Cex1ChkTagF GCTTTCTATCAAGAAGAAG 

Cex1ChkTagR GATGACTCTTCTTGCTTATG 

His4ChkTagF CTAACCATACATTACCAAC 

Cdc19ChkTagF CCAATCATCTTGGTTACC 

Pdc1ChkTagF CTTGAAGCCATACTTGTTC 

Tef2ChkTagF CCAAAGTTCTTGAAGTCC 

Aco1ChkTagF CTGACTATGACAAGATCAAC 

Tom1ChkTagF CTTATGTTAATTACACCGC 

Mdn1ChkTagF CGAAGACCATGAAACAATAC 

Ubp12F1 
GGGCCCCCCCTCGAGGTCGACGGTATCGATAGAGATACG

TCTACGATAGCATGTAAC 

Ubp12R1 AAACCAGTAGTACCTGATGCTGGTTCGAGTTTATTATAAG 

Ubp12F2 GAACCAGCATCAGGTACTACTGGTTTGGTCAATTTG 
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Ubp12R2 TCTGGCTCTGTACTTGCATCTTCTTCAACATC 

Ubp12F3 GAAGAAGATGCAAGTACAGAGCCAGAATTAACAGATAAG 

Ubp12R3 
CCCGGGCTGCAGGAATTCGATATCACCAGTCCTTCTGTTT

TGTTTTTTTC 

Ubp12CCR1 AGAATTCATGTAAGATGTATTTCCCAAATTGACC 

Ubp12CCF2 TGGGAAATACATCTTACATGAATTCTGCGTTG 

Ubp12ccTagR3 TTCTGGCGATTCTAGTGTCACACCATTTTTTAAATTC 

HA-Prs316 TagR 
CCCGGGCTGCAGGAATTCGATATCAAGATCTATATTACCC

TGTTATCCCTA 

Ubp15F1 
GGGCCCCCCCTCGAGGTCGACGGTATCGATATGTGTATT

ACGATATAGTTAATAGTTGATAG 

Ubp15R1 TTAATATCCTATTCAATTCCTGCACATCGTG 

Ubp15F2 TGTGCAGGAATTGAATAGGATATTAATGGACAGGC 

Ubp15R2 TCATATATATTTCATTTATGGTACCAGGTTGG 

Ubp15F3 TGGTACCATAAATGAAATATATATGAAGGAGACAATATATG 

Ubp15R3 
CCCGGGCTGCAGGAATTCGATATCAACCACTGAAACTTCA

TTTACTTTATG 

Ubp15CCR1 CGAATTCAAATAAGATGTGGAACCCTGATTTCGG 

Ubp15CCF2 CAGGGTGCCACATCTTATTTGAATTCGTTATTGC 

Ubp15ccTagR3 GTTTTTAATGATCATTGGTCTATCATAGGAAGAATG 

M13F  GTAAAACGACGGCCAGTG 

M13R CAGGAAACAGCTATGACC 

fkh1ChkTagF GAGAAATACCTGCTCCTG 

fkh1ChkTagR CTGGCGGTTTCCTTAATC 

puf3ChkTagF CAAGGATCAATTTGCCAAC 

Puf3ChkTagR GCAGAAAAATAGAGATGAGG 

gcn5ChkTagF CCGTTAATAAAGAGGAGGTC 

gcn5ChkTagR CAGAAAGTCCAGAAGAAGC 

emw1ChkTagF GATACAGTGGATGCTTGTG 

emw1ChkTagR CGAGGTGATAAAGAAAAGGC 

cdc34TagChkF GGTCCGTCATTTTACAAG 

cdc34TagChkR CCTGTCAATCTCAGATTATC 

fzo1TagF 

AACTTGTTGTCAATCAAATTCTTCCAATCTCTATACGAAGG

AACCGTGGCTCAAAAATTGATGGTGGAAGAAATAAATTTA

GACATCGATCGGATCCCCGGGTTAATTAA 

fzo1TagR 

GTGAAAAAAAAAATGGACCTGCTTGGAATAAAATAATAAGT

AACATTATGTATATTGATTTGAAAAGACCTCATATATTTACA

AGAATATGAATTCGAGCTCGTTTAAAC 

fzo1ChkTagF TGTTTTGCGTGTACCTAC 

fzo1ChkTagR TTGCTCATTTTTCGTTCCG 

Table 2.2: DNA sequence of oligonucleotide primers used in this 

study. All primers were supplied by Sigma Aldrich. 
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Table 2.3: Plasmids used in this study. 

 

 

 

 

 

 

 

 

Plasmid name Comments Reference 

YDP-H 
Deletion plasmid containing 

HIS3 disruption cassette 

(Berben et al., 

1991) 

pFA6a-HIS3 

Epitope tagging plasmid 

containing HIS3 selectable 

marker 

(Longtine et al., 

1998) 

pFA6a-KanMX6 

Epitope tagging plasmid 

containing Kanamycin 

resistance selectable 

marker 

(Longtine et al., 

1998) 

pRS316 
Cen plasmid with URA3 

marker 
Lab stock 

pRS426 
2 micron plasmid with URA3 

marker 
Lab stock 

pRS426-UBP12-3HA 
Ubp12-3HA epitope tag, 2 

micron plasmid 
This study 

pRS426-UBP12C373S-3HA  

Ubp12-3HA epitope tag, 

C373S mutant, 2 micron 

plasmid 

This study 

pRS426-UBP12 Ubp12, 2 micron plasmid This study 

pRS316-UBP15C214S-3HA  

Ubp15-3HA epitope tag, 

C214S mutant, CEN 

plasmid 

This study 

pRS426-UBP15 Ubp15, 2 micron plasmid This study 
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2.1.3.2 Gene tagging 

Chromosomal gene tagging was achieved by using the method described 

previously (Longtine et al., 1998) (Figure 2.2). Ubp12 and Ubp15 were epitope-

tagged on the C-terminus by integration of a PCR-amplified cassette at the 

normal chromosomal locus for each gene, using the appropriate TagF and TagR 

primers (Table 2.2), with either the pFA6-3HA-KanMX6 or pFA6-3HA-HIS3 

plasmid as a template (Table 2.3). The forward primer (TagF) contains 50 

nucleotides homologous to the region located at the end of the 3’ region of the 

gene, immediately upstream of but excluding the stop codon, and 20 nucleotides 

homologous to the 5’ sequence of the plasmid used as the template for tagging. 

The reverse primer (TagR) contains 50 nucleotides homologous to the DNA 

sequence located directly after the stop codon of the gene to be epitope-tagged 

and 20 nucleotides homologous to the 3’ sequence of the plasmid used as the 

template for tagging. PCR fragments were then transformed into the relevant 

strain and successful transformants were selected by growth on media lacking 

histidine or by kanamycin resistance. The integration of the PCR cassette 

encoding the epitope-tag at the correct chromosomal location was verified using 

the respective check forward and reverse primers (TagChkF and TagChkR) 

flanking the region of interest.  

Where strains were obtained from the TAP tag library (Ghaemmaghami et al., 

2003) (Newcastle University High throughput service) correct epitope tagging of 

the gene was verified using a specific forward primer to the gene of interest, and 

a reverse primer homologous to a sequence encoding the TAP epitope tag. 
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Figure 2.2: Schematic diagram for epitope tagging genes at their normal 

chromosomal locus. The gene of interest Tag F primer contains 50 base pairs 

homologous to the chromosome sequence directly upstream of the stop codon of 

the gene to be epitope tagged, and 20 base pairs homologous to the 5’ end of the 

3HA sequence in the pFA6a plasmid. The gene of interest Tag R primer contains 

50 base pairs homologous to the chromosome sequence directly downstream of 

the stop codon of the gene to be epitope tagged, and 20 base pairs homologous 

to the 3’ end of the selectable marker in the pFA6a plasmid. PCR with the TagF 

and TagR primers and the plasmid pFA6a-3HA-marker plasmid as a template 

generates a PCR fragment encoding the 3HA epitope tag with the selectable 

marker and 50 base pairs homologous to the chromosome on either side of the 

stop codon of the gene of interest. The cassette is transformed into wild type S. 

cerevisiae and homologous recombination results in the replacement of the stop 

codon with the sequence encoding the 3HA epitope tag in frame with the gene to 

be tagged. Transformants were plated onto minimal media to select for the 

presence of the marker. Successful epitope tagging was verified by a check PCR 

using GOI Tag Check F (TagChkF) and GOI Tag check R (TagChkR) Primers. 
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2.1.3.3 Diploid and haploid strain construction 

Strains of opposite mating type were crossed on YPD agar and the resulting 

diploids were sporulated on sporulation media (1% w/v potassium acetate, 0.1% 

w/v yeast extract, 0.05% glucose) by incubation for 2 days at 30 °C. Cells were 

resuspended in 100 µl 5% v/v glusulase (PerkinElmer) and incubated at 30 °C for 

30 minutes. The cell suspension was gently mixed with 900 µl water and 100 µl 

were pipetted onto a YPD plate. Tetrads containing four spores were then 

separated using a tetrad dissector (Singer instruments) and the plates incubated 

at 30 °C for 3 days. 

2.1.4 Plasmid manipulations 

2.1.4.1 Plasmid construction 

Plasmids were constructed using the in vivo recombination ability of S. cerevisiae 

described previously (Oldenburg et al., 1997): Figure 2.3. Wild type DNA (FCC1) 

was used as a template for PCR reactions to construct fragments with over-

lapping regions of the gene of interest; including 20 nucleotides homologous to 

the pRS426 plasmid (Table 2.3) either side of the HindIII restriction site. The 

forward primer for Fragment 1 (F1) (Table 2.2) was designed with 20 nucleotides 

homologous to the plasmid (at one side of the HindIII site) and 30 nucleotides 

homologous to the 5’ end of the gene of interest. The internal primers (R1, F2, 

R2, and F3) were designed to have 20 nucleotides overlapping to produce three 

separate cassettes with internal overlapping regions. The reverse primer for 

fragment 3 (R3) was designed to have 30 nucleotides homologous to the 3’ end 

of the gene of interest, and 20 nucleotides homologous to the plasmid (at the 

other side of the HindIII cut site). The linearised plasmid (cut at the HindIII site), 

and the three overlapping fragments produced by PCR using the primers 

described above, were co-transformed into the yeast using the LiAc method 

described previously (2.2.2) with a vector: insert ratio of 1:3. Transformants were 

plated onto selective media lacking uracil whereby growth of colonies suggests 

uptake of the uracil gene within the plasmid. Positive colonies were checked for 

the full recombined plasmid using the universal M13 primers (M13F and M13R, 

Table 2.2). Plasmids from colonies which were identified to be of the correct size  
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Figure 2.3: Schematic diagram for plasmid construction in the pRS426 

plasmid. The plasmid pRS426 was linearised with the restriction enzyme HindIII 

in the multiple cloning site. Three fragments with overlapping regions were 

produced using three sets of primers. Fragment 1 forward primer (F1) had 20 

nucleotides homologous to the pRS426 plasmid directly before the HindIII cut 

site, and 30 nucleotides homologous to the 5’ end of the gene of interest, and the 

reverse primer (R1) is situated ~1500 base pairs into the gene of interest. 

Fragment 2 is produced using a forward primer (F2) which binds in the same 

position as R1 to produce 20 base pairs homology between the fragments, and a 

reverse primer (R2) which binds to the gene of interest to produce a fragment of 

~1500 base pairs. Fragment 3 is produced by a forward primer (F3) which binds 

at the same position as R2 to produce 20 base pairs homology between the 

fragments, and a reverse primer (R3) which has 30 nucleotides homologous to 

the 3’ end of the gene of interest, and 20 nucleotides homologous to the pRS426 

plasmid directly after the HindIII cut site. The fragments and the linearised 

plasmid were co-transformed into S. cerevisiae and homologous recombination 

of the overlapping regions of the DNA results in the construction of the pRS426 

plasmid containing the gene of interest in the correct orientation. Cells containing 

the potential constructs were selected on minimal ura- media as URA+ colonies. 

Colonies were tested for correct recombination using the universal M13 primers 

(M13F and M13R) located either side of the multiple cloning site. Plasmids of the 

correct size were extracted from S. cerevisiae (1.2.3.4) and transformed into E. 

coli. Plasmids were extracted from E.coli and sequenced to verify correct 

recombination. 
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using the check PCR were extracted (1.2.4.2) and transformed into E.coli (1.3.4). 

Plasmids were extracted from E.coli and sequenced to confirm proper 

construction of the plasmid. 

2.1.4.2 Plasmid recovery from yeast 

Plasmid recovery from yeast was adapted from the GenElute Plasmid Miniprep 

kit (SigmaAldrich). Cultures were grown overnight in appropriate media to select 

for the plasmid, and then pelleted by centrifugation (3000 rpm, 5 minutes). Cells 

were resuspended in 200 µl resuspension buffer (GenElute Plasmid Miniprep kit), 

and the cells lysed with glass beads using a Mini Beadbeater. The supernatant 

was collected, and 400 µl lysis buffer (GenElute Plasmid Miniprep kit) were 

added and incubated at room temperature for 5 minutes. 300 µl neutralisation 

buffer (GenElute Plasmid Miniprep kit) were added to the samples and gently 

mixed, before the samples were centrifuged at 13000 rpm for 10 minutes. The 

lysate was divided over two GenElute Spin Columns and the plasmid isolated 

and washed per the manufacturer’s instructions. The plasmids were eluted in 75 

µl elution buffer (GenElute Plasmid Miniprep kit), concentrated by ethanol 

precipitation, resuspended in 20 µl sterile H2O, and then transformed into E. coli 

(1.3.4). 

2.1.5 Stress sensitivity testing  

For stress sensitivity assays cells were grown to exponential phase and 5-fold 

serial dilutions were spotted using a 48 pin tool (Sigma) onto the indicated agar 

plates. Plates were incubated at 30 °C for 3 days unless otherwise indicated. For 

UV sensitivity cells were spotted onto plates and then treated with the appropriate 

UV dose by a Stratalinker, before being incubated in the dark at 30 °C for 3 days 

unless otherwise indicated. 

2.1.6 Genomic DNA extraction 

DNA was extracted from cells using a protocol described previously (Hoffman 

and Winston, 1987). 10 ml of culture were grown overnight, pelleted by 

centrifugation (3000 rpm, 2 minutes), washed in 1 ml sterile dH2O and 

resuspended in 200 µl STET solution (2% w/v Triton X-100, 1% w/v SDS, 100 
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mM NaCl, 10 mM Tris-HCl pH8). 200 µl phenol/chloroform/isoamyl alcohol 

(25:24:1, pH8) were added and the cells lysed with glass beads using a Mini 

Beadbeater (Biospec Products). 200 µl TE solution were added to the samples, 

which were then pelleted by centrifugation (13000 rpm, 5 minutes). The upper 

aqueous phase was placed in a fresh Eppendorf tube with 1 ml 100% ethanol, 

and DNA was pelleted by centrifugation (13000 rpm, 2 minutes). The DNA pellet 

was resuspended in TE solution containing 75 µg/ml RNase (Sigma) and 

incubated at 37 °C for 5 minutes. 10 µl of 4 M ammonium sulphate and 1 ml 

100% ethanol were added and the DNA precipitated (13000, 5 minutes). The 

DNA pellet was resuspended in 50 µl TE and stored at -20 °C. 

2.1.7 Protein extraction 

For soluble protein extraction, 50 ml of mid-log phase growing cells were pelleted 

by centrifugation (3000 rpm, 3 minutes). The pellet was snap frozen in liquid 

nitrogen and kept at -80°C. The pellet was thawed at room temperature and 

resuspended in 150 μl protein lysis buffer (20 mM HEPES, 350 mM NaCl, 10% 

v/v glycerol, 0.1% v/v Tween-20) containing aprotinin (0.097 trypsin inhibitor 

units/ml aprotinin), 2 μg/ml leupeptin, pepstatin (2 μg/ml pepstatin A), and 105 

μg/ml PMSF. Cells were lysed with 1 ml ice cold glass beads with a Mini 

Beadbeater (Biospec Products) and proteins were collected by centrifugation 

(13000 rpm, 10 minutes) at 4 °C. Protein concentrations were calculated using 

Bradford Assay (Pierce) following manufacturer’s instructions. 

When investigating protein oxidation, the TCA protein extraction method was 

used. 5 ml of mid-log phase cells were collected with 5 ml 20% (w/v) TCA, 

pelleted at 3000 rpm for 2 minutes, and the pellet frozen in liquid nitrogen. Pellets 

were thawed on ice and resuspended in 200 μl 10% (w/v) TCA before being 

lysed with ice-cold glass beads using a Mini Beadbeater (Biospec Products). 

After lysis, each pellet was centrifuged (13000 rpm, 15 minutes) and washed 3 

times with 200 μl acetone. Pellets were solubilised with TCA buffer (100 mM Tris-

HCl pH8, 1% w/v SDS, 1 mM EDTA) containing 5% (v/v) NEM and incubated at 

25 °C for 30 minutes followed by 37 °C for 5 minutes. The protein concentration 

was calculated using the BCA protein assay kit (Thermo Scientific) following the 

manufacturer’s instructions. 
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2.1.8 Western blotting 

Samples were prepared for analysis by adding 4 x sample buffer (0.5% w/v 

bromophenol blue, 10 % w/v SDS, 625 mM Tris-HCl pH 6.8, 50% v/v glycerol, +/-

10% v/v β-mercaptoethanol) and denaturing at 100 °C for 3 minutes. Proteins 

were separated on 6%, 8% or 15% SDS-polyacrylamide gels with a lane of 

PageRuler Prestained Protein Ladder (ThermoScientific) or HiMark™ Pre-stained 

Protein Standard (ThermoScientific) included allowing estimation of molecular 

weight. Separated proteins were transferred onto Protran® nitrocellulose 

membrane (Amersham) for 120 minutes at 400 mA, and blocked for non-specific 

binding by incubating in 10% w/v BSA in 1x TBST (1 mM Tris-HCl pH 8, 15 mM 

NaCl, 0.01% v/v Tween-20) for 30 minutes. The membrane was incubated at 4 

°C overnight with agitation with the indicated primary antibody. Antibodies were 

diluted (dilutions shown in Table 2.3) in 5% (w/v) BSA in 1x TBST. The 

membrane was washed with 1x TBST (3x5 minutes) and then incubated for 1 

hour at room temperature with the appropriate secondary antibody (anti-mouse 

HRP, or anti-rabbit HRP) diluted 1:2000 in 5x (w/v) BSA in 1x TBST. After 

washes (3 x 5 minutes) proteins were visualised with either ECL detection system 

(Amersham) onto film, or ECL plus Chemiluminescent kit (GE Healthcare) and 

scanned on a Typhoon FLA 9500 (GE Healthcare). Scanned images were 

quantified using ImageQuantTL software. To re-probe the nitrocellulose 

membrane with different antibodies, membranes were stripped by 30 minute 

incubation at 50 °C with stripping buffer (2% w/v SDS, 62.5 mM Tris-HCl pH 6.7, 

100 mM β-mercaptoethanol). The membrane was washed 4x 10 minutes in 1x 

TBST before being blocked again in 10% BSA w/v in 1x TBST before reprobing. 
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Antibody Name 
Dilution used in 

5% w/v BSA 
Supplier Raised in 

Peroxidase Anti-

peroxidase 
1:1000 

Sigma Aldrich 

(P1291) 
Rabbit 

Anti-HA 1:1000 
Thermo Scientific 

(26183) 
Mouse 

Anti-Myc 1:1000 
Sigma Aldrich 

 
Mouse 

Anti-TAP 1:1000 
Thermo Scientific 

(CAB1001) 
Rabbit 

Anti-tubulin 1:1000 
DSHB, University of 

Iowa 
Mouse 

Anti-Ub (F-11) 1:1000 

SantaCruz 

Biotechnology 

(sc-271289) 

Mouse 

Anti-Rabbit HRP 1:2000 Sigma Aldrich - 

Anti-Mouse HRP 1:2000 Sigma Aldrich - 

 Table 2.3: Antibodies used in this study. 
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2.1.9 TAP purification  

500 ml cells were grown to mid-log phase and either incubated with or without 2 

mM H2O2 for 10 minutes. Cells were pelleted (5000 rpm, 6 minutes), washed in 

ice cold PBS (137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 1.8 mM KH2PO4, pH 

7.4), before pelleting again (3000 rpm, 5 minutes) and snap freezing in liquid 

nitrogen. Pellets were stored at -80°C. Pellets were resuspended in ice cold 

TMN150 buffer (50 mM Tris-HCl pH 7.8, 150 mM NaCl, 1.5 mM MgCl2, 0.1% v/v 

NP-40) containing aprotinin (0.097 trypsin inhibitor units/ml aprotinin), 2 μg/ml 

leupeptin, pepstatin (2 μg/ml pepstatin A), 105 μg/ml PMSF and 5% (v/v) NEM, 

and allowed to thaw. Cells were lysed with 3 ml ice cold glass beads by vortexing 

(1 minute, followed by 1 minute in ice, repeated 5 times). 4 ml ice cold TMN150 

buffer were added to samples which were vortexed again for 10 seconds, 

followed by pelleting by centrifugation (4500 rpm, 28 minutes). The supernatants 

were transferred to fresh eppendorfs and samples were centrifuged again (13000 

rpm, 26 minutes) to remove cell debris. The supernatant was collected, 1% 

sample was taken for direct analysis by western blotting (1.2.8), and the 

remaining lysate was snap frozen in liquid nitrogen and stored at -80 °C. 150 µl of 

IgG sepharose slurry (Sigma Aldrich) were washed twice with 1.5 ml ice cold 

TMN150 buffer, and incubated with lysates for 2 hours at 4 °C with rolling. The 

beads were collected by gently pelleting (1000 rpm, 30 seconds). 1% supernatant 

was taken for direct analysis by western blotting (1.2.8). Beads were washed 4 

times with 10 ml ice cold TMN150. The beads were then resuspended in 50 µl 

TCA buffer (100 mM Tris-HCl pH8, 1% w/v SDS, 1 mM EDTA) containing 5% 

(v/v) NEM and boiled for 1 minute, mixed and boiled again for 1 minute. Samples 

were pelleted by centrifugation (2000 rpm, 1 minute) and lysates were stored at -

20 °C. Proteins were precipitated by mixing the lysate with an equal volume of 

20% (w/v) TCA and incubating on ice for 30 minutes. Precipitated proteins were 

pelleted by centrifugation (13000, 4 minutes, 4°C), washed with acetone, and 

resuspended in 20 µl TCA buffer with 5 % (v/v) NEM. Proteins were separated on 

a precast 4-15% Criterion™ Tris-HCl Protein Gel (BioRad), stained with 

InstantBlue™ Protein Stain (Expedeon), and excised for analysis. 
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2.1.10 DNA content analysis 

Approximately 5 x 106 mid-log phase cells were pelleted by centrifugation (3000 

rpm, 2 minutes), washed in 1 ml H2O and pelleted again. Cells were then fixed in 

1 ml (v/v) 70% ethanol and stored at 4 °C. Cells were sonicated for 5 seconds 

and pelleted (13000 rpm, 1 minute). The pellet was washed with 800 µl 50 mM 

sodium citrate (pH 7.2), pelleted again, resuspended in 500 µl RNase A solution 

(50 mM sodium citrate pH 7.2, 0.25 mg/ml RNase A from Thermo Scientific) and 

incubated at 37 °C overnight. 50 µl of proteinase K (20 mg/ml from Ambion) were 

added and cells incubated for 1 hour at 50 °C. Cells were sonicated for 5 

seconds and incubated with 500 µl Sytox Green solution (50 mM sodium citrate 

pH7.2, 4 µM Sytox Green from LifeTechnologies) for 1 hour in the dark at room 

temperature. DNA content analysis was performed using a FACSCanto™ II flow 

cytometer (BD Life Sciences) and DIVA software (BD Life Sciences). 

 

2.2 Molecular biology and bacterial techniques 

2.2.1 PCR 

DNA amplifications were carried out using either Phusion® High-Fidelity 

Polymerase (NEB) (2.3.1.1) or DreamTaq Green DNA Polymerase 

(ThermoScientific) (2.3.1.2). Primers used for PCR are shown in Table 2.2.  

2.2.1.1 Phusion High-Fidelity Polymerase (NEB) 

For PCR reactions where the amplified product was used for cloning or 

sequencing and required DNA proofreading, Phusion® High-Fidelity Polymerase 

(NEB) was used. Typical reaction conditions were: 0.5 µl Phusion® Polymerase 

(0.02 U), 0.1-1 ng template DNA, 0.5 µl forward and reverse primer (10 µM), 0.5 

µl dNTP mix (10 mM), 1.5 µl MgCl2 (1.5 mM), 10 µl 5x Phusion HF or GC buffer 

(supplied by manufacturer), made up to 50 µl with sterile dH2O. The reactions 

were placed in a thermocycler with the following conditions: 

Step 1: Initial denaturation  2 minutes, 94 °C 
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Step 2: Denaturation  30 seconds, 94 °C 

Step 3: Annealing   *30 seconds, 50 - 60 °C 

Step 4: Extension:    **0.5 – 3 minutes, 72 °C 

Step 5: Final extension:  10 minutes, 72 °C 

Steps 2-4 were cycled 35 times.  

* Annealing temperature was defined by the specific melting temperature of the 

primers used. 

** Extension time was defined by the length of the PCR product: 1 minute per 1 

kb DNA. 

2.2.1.2 DreamTaq Green DNA Polymerase (ThermoScientific) 

For check PCR reactions, DreamTaq Green DNA Polymerase (ThermoScientific) 

was used with the following conditions: 0.25 µl DreamTaq Green DNA 

Polymerase (0.1 U), 5 µl DreamTaq Green buffer (supplied by manufacturer), 

0.1-1 ng template DNA, 0.5 µl forward and reverse primer (10 µM), 0.5 µl dNTP 

mix (10 mM), made up to 50 µl with sterile dH2O. The reactions were placed in a 

thermocycler with the following conditions: 

Step 1: Initial denaturation  10 minutes, 94 °C 

Step 2: Denaturation  30 seconds, 94 °C 

Step 3: Annealing   *30 seconds, 50 - 60 °C 

Step 4: Extension:    **0.5 – 3 minutes, 72 °C 

Step 5: Final extension:  10 minutes, 72 °C 

Steps 2-4 were cycled 35 times.  

* Annealing temperature was defined by the specific melting temperature of the 

primers used. 
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** Extension time was defined by the length of the PCR product: 1 minute per 1 

kb DNA. 

2.2.2 Restriction enzyme digests 

Plasmid DNA was digested using the relevant restriction enzymes and buffers 

according to the manufacturer’s instructions (ThermoScientific). Digested 

plasmids were visualised on an agarose gel (see 2.3.3). 

2.2.3 Agarose gel electrophoresis, DNA purification and DNA sequencing 

DNA was separated by electrophoresis using 1 % w/v agarose gels using TAE 

buffer (40 mM Tris acetate, 1 mM EDTA pH8) and containing 5 µg/ml ethidium 

bromide. Where needed, DNA was extracted and purified using a QIAquick gel 

extraction kit (QIAGEN) as per manufacturer’s instructions. DNA concentrations 

were determined using a Nanodrop spectrophotometer (Labtech). Sequencing 

reactions were performed by GATC Biotech 

2.2.4 Escherichia coli transformation and plasmid isolation 

Plasmids were propagated by introducing them into E. coli SURE competent cells 

(Agilent Technologies) (e14- [McrA-] Δ[mcrCB-hsdSMR-mrr] 171 endA1 supE44 

thi-1 gyrA96 relA1 lac recB recJ sbcC umuC::Tn5 [Kanr] uvrC[F’proAB 

lacQZΔm15 Tn10 [TetR]]) using the standard CaCl2 transformation method 

described previously (Maniatis et al., 1985) onto LB agar (2 % w/v Bacto 

tryptone, 1 % w/v Bacto yeast extract, 1 % w/v NaCl pH7.2) containing 0.1 mg/ml 

ampicillin. Plates were incubated at 37 °C overnight. E. coli SURE cells 

containing plasmids with the Ampicillin resistance gene were grown in LB media 

containing 0.1 mg/ml ampicillin (SigmaAldrich). A GenElute Plasmid Miniprep kit 

(SigmaAldrich) was used to isolate plasmid DNA as per manufacturer’s 

instructions.  
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Chapter Three: Analyses of the relative contribution of yeast 

dUbs to ROS responses 

 

3.1. Introduction 

It is well characterised that high levels of ROS causes oxidative stress, however 

low ROS levels also play essential roles in signal transduction. It is therefore 

essential that cells can sense and distinguish the different levels and types of 

ROS so they respond in an appropriate manner (see Section1.2.5). Many 

signalling pathways utilise the reversible oxidation of cysteine thiol residues to 

regulate their activity (Veal et al., 2007). Catalytic cysteine thiols are widespread 

in the ubiquitination pathway, whereby catalytic activity is used for the 

conjugation and deconjugation of ubiquitin from target substrates (Finley et al., 

2012; Ronau et al., 2016). Recently it has been shown that the ubiquitin, SUMO, 

and NEDD8 pathways are important for sensing ROS levels (see Section1.3). 

Although many dUbs have been identified, and much research is focussed on 

finding their downstream targets, very little is known about dUb regulation and 

specificity. In S. cerevisiae 19 of the 20 known dUbs are cysteine thiols (Finley et 

al., 2012) suggesting a number of them could be regulated by ROS. Indeed 

investigations into mammalian SENPS (see Section 1.3.1) and dUbs (see 

Section 1.3.3.1) suggest reversible oxidation by ROS inhibits protein activity 

(Bossis and Melchior, 2006, Lee et al., 2013). Hence it is suggested that that 

oxidation of dUbs, and in particular the differential sensitivities of certain dUbs to 

specific oxidative stresses/ROS could potentially be a mechanism by which 

ubiquitination is linked to stress responses within cells. However the regulation of 

specific dUbs by different types and levels of stress remains unknown. 

To investigate the possibility that dUbs are regulated by ROS we decided to use 

the tractability of the model organism S. cerevisiae and the available genetic 

tools, to take a systematic approach to investigate all the yeast dUbs in response 

to a range of different oxidative stresses. The objective in this chapter was to 

investigate the potential modifications and roles of the yeast dubs to different 
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types of oxidative stresses in order to move towards an understanding of the 

response of dUbs to oxidative stresses at an organism-wide level.  

 

3.2. Results 

3.2.1. Confirmation of dUb deletion strains and strains expressing epitope 

tagged dUbs. 

Much work has been done in both mammalian and yeast cells to try and 

understand the response of specific dUbs to ROS; however extensive 

investigations into the global response of dUbs to a variety of types of oxidative 

stress have not previously been carried out. In order to begin analyses of all the 

S. cerevisiae dUbs all of the available dUb gene deletion mutants were obtained 

from the S. cerevisiae gene deletion collection (Giaever et al., 2002). In addition 

all of the available TAP epitope tagged dUbs were obtained from the TAP epitope 

tag strain collection (Ghaemmaghami et al., 2003a). Of the 20 dUbs in S. 

cerevisiae, 17 individual gene deletion mutants and 19 strains expressing 

individual TAP epitope tagged dUbs from their normal genome locus were 

obtained.  

Next, all of the deletion strains were checked by PCR to confirm they were 

correct using a generic reverse primer homologous to the kanamycin resistance 

cassette and a specific primer homologous to the individual dUb genome. Only 

successful deletion of the target gene would allow the PCR to produce a product 

as the wild-type locus would not allow annealing of the kanamycin reverse primer 

and therefore no extension would occur (Figure. 3.1A). A positive result for gene 

deletion is indicated by a band present at approximately 1500bp depending on 

the precise position of the specific forward primer (Figure 3.1B). Positive results 

were observed for all the obtained strains with the exception of ubp14Δ. It was 

possible the UBP14 gene was deleted and that the PCR had simply failed. Hence 

to test whether the UBP14 gene was deleted further PCR analyses, using a 

specific forward and specific reverse primer, were performed (Figure 3.1C). With 

these primers gene deletion was predicted to produce a PCR product for the  
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Figure 3.1: PCR analyses of the dUb gene deletion mutants. (A) PCR 

using a generic KAN reverse primer and a gene-specific forward primer, was 

performed with DNA isolated from each deletion strain obtained from the 

Saccharomyces cerevisiae genome deletion collection (FCC73-FCC75, FCC96-

FCC110) and a WT control (FCC23). Successful deletion produces a PCR 

product of approximately 1500bp. (B) Using DNA from each potential dUb 

deletion mutant, PCR products were analysed on a 1% agarose gel together with 

a wild type control using the same primers. (C) ubp14Δ showed no PCR product 

when using the generic KAN reverse primer and was repeated with both specific 

forward and reverse primers for the deleted gene (see A). Correct gene deletion 

yields a band of approximately 1900bp, whereas the expected band size for wild 

type UBP14 gene is 2550bp. 
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kanamycin cassette at approximately 1900bp, whilst the presence of the wild-

type gene was predicted to produce a product of approximately 2550bp. As can 

be seen the PCR analyses indicated the presence of the wild-type gene (Figure 

3.1C). These analyses confirmed the majority of the deletion strains, with the 

exception of the ubp14Δ strain, from the deletion library are correctly deleted and 

could be used in the rest of the investigation. 

Next, all TAP epitope-tagged strains were checked to confirm the presence of a 

TAP epitope tag, in frame at the C-terminus of the individual dUb protein. Firstly, 

an initial PCR check of all 19 strains was performed. A specific forward primer to 

each gene and a generic reverse primer homologous to the TAP epitope tag 

cassette were used. Only strains with the TAP epitope tag cassette integrated at 

the individual dUb gene locus would allow annealing of the TAP reverse primer 

and therefore extension of the product (Figure 3.2.A). A positive result is 

indicated by the presence of a band at approximately 200-500bp, depending on 

the precise binding position of the specific forward primer on the chromosome 

(Figure 3.2B). Positive results were obtained for the majority of strains, with the 

exception of Ubp2-TAP, Ubp3-TAP, Ubp15-TAP and Ubp13-TAP (Figure 3.2B). It 

was possible the results for these four strains were not correct. Hence, further 

PCR analyses using gene-specific forward and reverse primers were performed 

(Figure 3.2C). Using these primers, strains containing the TAP epitope tag 

cassette at the correct location were predicted to produce PCR products of 

approximately 3000bp, whilst the wild-type strains were predicted to produce 

PCR products of approximately 200-500bp. These analyses indicated that the 

Ubp2-TAP, Ubp3-TAP and Ubp15-TAP strains were correct whereas the Ubp13-

TAP strain produced a PCR product indicative of a wild type strain (Figure 3.2C) 

The PCR analyses of the epitope tagged strains confirmed the presence of the 

TAP epitope tag cassette. However, although the epitope tag cassette was 

located in the dUb gene loci, it was possible the cassette had integrated out of 

frame with the dUb ORF. In addition, it was also possible that the successfully 

tagged proteins might be difficult to detect due to low abundance and/or low 

stability. Hence, the TAP epitope-tagged dUbs were examined by western blot 

analyses. Protein extracts isolated from each of the strains were examined using  
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Figure 3.2: PCR analyses of the TAP epitope-tagged dUb strains. (A) PCR 

using a generic TAP reverse primer and a gene-specific forward primer, was 

performed with DNA isolated from each TAP epitope-tagged strain obtained from 

the Saccharomyces cerevisiae TAP‐tag collection (FCC123-FCC125, ELR28-

ELR42), and a WT control (FCC23). Successful integration of the TAP epitope 

tag cassette at each individual dUb gene locus produces a PCR product of 

approximately 200‐500bp depending on the position of the specific forward 

primer. (B) The PCR products using DNA from each potential TAP epitope 

tagged dUb strain were analysed on a 1% agarose gel together with a wild type 

control using the same primers. (C) PCR analyses using DNA isolated from 

strains that showed no PCR product when using the generic TAP reverse primer 

were repeated with both gene-specific forward and gene-specific reverse primers 

for the tagged locus.  
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the PαP antibody which recognises the TAP epitope (Figure 3.3). Importantly, a 

specific band was detected in protein extracts from the majority of strains (Figure 

3.3). In most cases, the band detected has a slower mobility than expected. The 

basis for this altered mobility is not clear but is likely associated with the effects of 

the TAP epitope tag. No specific band was detected in the extract from the Ubp7-

TAP strain. The basis for this lack of detection remains unclear, but may be 

related to decreased stability of the epitope-tagged protein and/or due to the 

failure to accurately insert the epitope tag cassette. It is unlikely that it is due to 

the relative expression of Ubp7, as Ubp8, which is predicted to have a lower 

abundance than Ubp7 (Kulak et al., 2014) (Figure 3.3), can be readily detected. 

No further work was performed with Ubp7-TAP due to the lack of detection of the 

protein. It is intriguing that the relative protein abundances of the TAP epitope 

tagged strains do not always correlate with the predicted protein abundance by 

Kulak et al (2014) as stated in Figure 3.3D. For example, the protein abundance 

predicted for Ubp4 is 294 molecules per cell (Kulak et al., 2014), however the 

western blot analyses show a specific band for Ubp4-TAP as fainter than the 

specific band for Ubp5-TAP, which is predicted to have only 125 molecules per 

cell (Kulak et al., 2014). It has been reported previously that the TAP epitope tag 

may affect protein abundance (Gloeckner et al., 2007)  which and that certain 

proteins are more susceptible to TAP epitope tag interference than other 

proteins. This may explain discrepancies between the abundance predicted by 

Kulak et al (2014) and the present data (Figure 3.3). Curiously, a specific band of 

the expected mobility was detected in extracts from the Ubp13-TAP strain (Figure 

3.3B-C). In contrast the PCR analysis described above suggested that the 

Ubp13-TAP strain did not contain the TAP epitope cassette at the correct location 

(Figure 3.2C). Hence, due to these conflicting results no further work was 

performed using the Ubp13-TAP strain. 

In conclusion, the initial analyses of the dUb deletion strains and the dUb TAP 

epitope tagged strains confirmed that 16 dUb gene deletion strains and 17 TAP 

epitope tagged dUb strains were available for further investigations. 
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Figure 3.3: Epitope tagged dUbs can be visualised by western blot 

analysis. (A)(B)(C) Protein extracts from all dUb strains expressing TAP epitope 

tags (FCC123-FCC125, ELR28-ELR42), and a WT control (FCC23) were 

analysed by western blot using a PαP primary antibody. Ponceau S stain was 

used as a loading control * indicates no epitope-tagged protein after western blot 

analysis. ** indicates potential Ubp13‐TAP. (D) The table shows the expected 

sizes of each TAP epitope-tagged strain and the expected protein abundance. 

Protein abundance was taken from (Kulak et al., 2014). 
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3.2.2. Different dUbs have specific responses to oxidative stress 

Having obtained most of the dUb deletion strains the next step was to investigate 

the relative contribution of the individual dUbs to responses to oxidative stress. 

Ubiquitin pathway enzymes have previously been shown to be regulated by 

oxidative stress, and recent work suggested that dUbs could also be regulated by 

ROS (Lee et al., 2013). However studies of the roles of all the dUbs in S. 

cerevisiae in response to a variety of stresses were limited. Indeed, although the 

roles of the dUbs in response to temperature and the toxic amino acid homolog 

canavanine (Amerik et al., 2000) had been studied, no large scale analyses of 

their linkage to oxidative stress had been performed. Here a systematic approach 

was undertaken to further the understanding of the roles of yeast dUbs in 

response to different oxidising agents. In particular, the relative sensitivities of 

each of the individual dUb deletion mutants was examined when exposed to the 

oxidising agents H2O2, diamide, and menadione. These three oxidising agents 

act through different mechanisms, and trigger different responses within cells 

(see introduction for details).  

3.2.2.1. H2O2 sensitivity 

To investigate the specific roles of dUbs to H2O2, the dUb deletion strains and a 

wild-type control were grown to mid-log phase and spotted onto YPD media 

containing increasing amounts of H2O2 (Figure 3.4). Interestingly, a diverse range 

of requirements for the dUbs was observed. For example the mutants displaying 

the greatest increase in sensitivity to H2O2 were ubp2Δ, ubp3Δ, and otu2Δ 

(Figure 3.4), suggesting that the three dUbs encoded by these genes are vital for 

the cells’ survival in the presence of H2O2. Indeed, this increased sensitivity of 

ubp3Δ has been reported previously (Jin, 2017), validating the present results. In 

contrast, the ubp1Δ mutant showed increased H2O2 resistance (Figure 3.4). Ubp1 

has been linked to the endocytic pathway as a component of protein transport 

machinery (Schmitz et al., 2005), however the role of Ubp1 in stress responses 

has not been well characterised.  
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Figure 3.4: dUbs have specific responses to H2O2 stress. The dUb deletion 

strains (FCC73-FCC75, FCC96-FCC110) and a WT control (FCC23) were grown 

to mid‐log phase in YPD and 5 fold serial dilutions were spotted onto YPD media 

containing increasing concentrations of H2O2. Plates were incubated at 30 °C for 

3 days before imaging. 
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3.2.2.2. Diamide sensitivity 

Next, the role of the different dUbs in response to diamide was examined. 

Diamide is a drug which permeates the plasma membrane and reversibly 

oxidises GSH into GSSG. Deletion strains and a wild type control were grown to 

mid-log phase and spotted onto YPD media containing increasing amounts of 

diamide (Figure 3.5). Similar to the results obtained using H2O2, a variety of 

different sensitivities was observed. Similar to the results with H2O2, ubp3Δ cells 

displayed increased sensitivity to diamide. Previous work indicated that ubp3Δ 

cells are more sensitive to diamide (Dodgson et al., 2016), however the present 

result (Figure 3.5) shows a greater increase in sensitivity than was previously 

reported. The basis of this difference is not known but is possibly due to the use 

of different strain background. Nevertheless, the fact that ubp3Δ cells display 

increased sensitivity to both H2O2 and diamide suggests a wide role of the Ubp3 

protein in responses to oxidative stress. The ubp15Δ strain showed increased 

sensitivity to diamide but not H2O2, suggesting Ubp15 has specific oxidative 

stress functions. Interestingly ubp5Δ, ubp8Δ, and ubp12Δ strains display 

increased resistance to diamide (Figure 3.5). The basis of this increase in 

resistance is not clear but suggests that these three dUbs inhibit the response to 

diamide. 

3.2.2.3. Menadione sensitivity 

To investigate whether any of the dUbs have specific roles in responses to 

menadione, the dUb deletion strains and a wild type control were grown to mid-

log phase and spotted onto YPD media containing increasing amounts of 

menadione (Figure 3.6). Consistent with the H2O2 and diamide sensitivity 

analyses the ubp3Δ mutant displayed increased sensitivity to menadione. Hence 

Ubp3 appears to have roles in responses to a range of oxidative stress 

conditions. Interestingly the ubp15Δ mutant showed increased sensitivity to 

menadione and to diamide, but not H2O2, whereas the yuh1Δ mutant showed 

increased sensitivity to menadione and H2O2, suggesting specific dUbs roles in 

certain stress responses. Furthermore, the ubp13Δ mutant showed increased 

sensitivity to menadione but not H2O2 or diamide, indicating a specific role in 

responses to menadione.  
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Figure 3.5: dUbs have specific responses to diamide stress. The dUb 

deletion strains (FCC73-FCC75, FCC96-FCC110) and a WT control (FCC23) 

were grown to mid‐log phase in YPD and 5 fold serial dilutions were spotted onto 

YPD media containing increasing concentrations of diamide. Plates were 

incubated at 30 °C for 3 days before imaging. 
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Figure 3.6: dUbs have specific responses to menadione stress. The dUb 

deletion strains (FCC73-FCC75, FCC96-FCC110) and a WT control (FCC23) 

were grown to mid‐log phase in YPD and 5 fold serial dilutions were spotted onto 

YPD media containing increasing concentrations of menadione. Plates were 

incubated at 30 °C for 3 days before imaging. 
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The data presented suggests that dUbs play a range of roles in response to 

specific and several different oxidative stress conditions (summarised in Table 

3.1). Using different oxidising agents has provided insight into the fact that all 

dUbs investigated in this chapter show some increased sensitivity or resistance 

to at least one of the oxidative stresses. However, it is important to note that 

dUbs have similar domain architecture, particularly in their active site, leading to 

the potential for redundancy of function. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.1: Summary of the differential dUb sensitivities in 

response to ROS. Blue columns show a summary of all the relative 

sensitivities of dUb deletion mutants to the different oxidising agents tested when 

grown on YPD media, ‐ indicates level of sensitivity, + indicates level of 

resistance, and WT indicates the strain responded the same as wild type. N/A 

indicates that the strain was either not present in the collection, or was found to 

be an incorrect strain. 

  



 

[113] 
 

3.2.3. Specific dUbs are modified in response to oxidative stress 

Having established the responses of the dUb deletion mutants to different 

oxidative stress conditions, the next step involved investigation into whether any 

of the dUb proteins were modified in response to oxidative stress. Previous work 

from our lab revealed that an E2 enzyme in the ubiquitin conjugation cycle, 

Cdc34, was oxidised into a high molecular weight complex in response to specific 

oxidising agents (Doris et al., 2012) (see Section 1.3.3). Given that many of the 

yeast dUbs utilise catalytic cysteine residues it was possible that one or more of 

the dUbs may also form disulphide complexes in response to oxidative stress. 

Indeed a previous study (Lee et al., 2013) demonstrated that dUbs can be 

inhibited by H2O2 and subsequently were either activated, or had their activity 

enhanced in the presence of the reducing agent DTT. Furthermore, it was also 

observed that a specific dUb, USP19, was oxidised into a sulphenylamide form 

by H2O2, and also formed a HMW disulphide complex (~250 kDa) (Lee et al., 

2013). Although that study suggested that dUbs can indeed be modified in 

response to H2O2 those experiments were undertaken in mammalian cells in 

vitro, and only examined a portion of the mammalian dUbs and only with H2O2. 

Hence here we examined whether there is any evidence for modifications of the 

different dUbs in S. cerevisiae in response to different oxidising agents.  

3.2.3.1. Analyses of dUb modification in response to H2O2 

To examine whether any of the dUbs were modified in response to H2O2 the 

different TAP epitope-tagged dUb strains (see Section 3.2.1) and a wild-type 

control strain were grown to mid log phase and incubated with 2 mM H2O2. 

Proteins were extracted in the presence of NEM, which maintains oxidation 

states by binding to reduced cysteines, resulting in no reduction of oxidised 

cysteines, and analysed via western blot (Figure 3.7). Interestingly, of the 17 

dUbs tested, 4 showed repeatable shifts in mobility suggesting post translational 

modification in response to H2O2. The nature of these potential modifications 

remains unclear but it is reasonable to speculate that small changes of mobility, 

for example Ubp5-TAP and Ubp6-TAP, may be phosphorylation. Indeed, both 

proteins contain potential phosphorylation sites (Albuquerque et al., 2008; 

Swaney et al., 2013). Ubp6 contains 4 ubiquitination sites (Swaney et al., 2013)  
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Figure 3.7: Specific dUbs are modified in response to H2O2. (A)(B) Cells 

expressing TAP‐tagged dUbs (FCC123-FCC125, ELR28-ELR42), and a WT 

control (FCC23) were incubated with 2 mM H2O2 for 0 (-) and 10 minutes (+). 

Protein extracts were prepared in non-reducing conditions and separated by 

SDS-PAGE. Proteins were visualised using PɑP antibodies. * denotes H2O2 

induced modifications. 
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and a succinylation site (Weinert et al., 2013), raising the possibility that the H2O2 

induced slower mobility forms may be due to ubiquitination or succinylation 

(Figure 3.7). Interestingly, H2O2 treatment of cells expressing Ubp12-TAP 

produced a high molecular weight (HMW) band at approximately 250 kDa, an 

increase in the normal molecular weight by approximately 50 kDa (Figure 3.7). 

Furthermore, approximately 50% of the Ubp12-TAP protein is in this HMW form, 

suggesting the possibility that Ubp12-TAP is forming some sort of disulphide 

containing complex analogous to Cdc34 (Doris et al., 2012) or USP19 (Lee et al., 

2013). Intriguingly, treatment of Ubp15-TAP expressing cells also resulted in the 

formation of a HMW Ubp15-TAP complex (Figure 3.7). However a smaller shift in 

mobility was also detected following H2O2 treatment which may be due to a 

modification such as phosphorylation and/or ubiquitination. Indeed Ubp15 

contains five lysine residues that are susceptible to ubiquitination (Swaney et al., 

2013). Interestingly, H2O2 induced a HMW complex in Ubp2-TAP cells (Figure 

3.7B); however this modification was not seen consistently. It is possible that the 

specific concentration or the short time frame used in these analyses, or the 

potentially transient formation of the complex, may miss the formation of the 

HMW complex.  

3.2.3.2. Analyses of dUb modification in response to diamide 

The potential modification of the dUbs in response to diamide was explored next. 

Similar to the H2O2 studies, cells expressing TAP epitope-tagged dUbs and a wild 

type control were grown to mid-log phase and incubated with 3 mM diamide. 

Proteins were extracted in the presence of NEM and analysed via western blot 

under non-reducing conditions (Figure 3.8). Interestingly, of the 17 dUbs tested, 

Ubp14-TAP and Ubp15-TAP showed repeatable diamide-induced shifts of 

mobility suggesting both proteins became modified (figure 3.8). For Ubp14-TAP 

the diamide-induced band has a faster mobility on the western blot (figure 3.8). 

Although the nature of this change in mobility is unknown it is tempting to 

speculate that diamide has induced an intramolecular disulphide(s) changing the 

folding which is causing the protein to have a faster mobility. In contrast the 

diamide induced band in the Ubp15-TAP cells has a much slower mobility than 

the TAP epitope tagged protein (Figure 3.8). This appears analogous to the 

effects of H2O2 on Ubp15 (see figure 3.7) where a HMW band is also induced.  
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Figure 3.8: Specific dUbs are modified in response to diamide. Cells 

expressing TAP‐tagged dUbs (FCC123-FCC125, ELR28-ELR42), and a WT 

control (FCC23) were incubated with 3 mM diamide for 0 (-) and 10 minutes (+). 

Protein extracts were prepared in non-reducing conditions and separated by 

SDS-PAGE. Proteins were visualised using PɑP antibodies. * denotes diamide 

induced modifications. 
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Hence it is tempting to speculate that the two HMW complexes are related. In 

contrast, no smaller HMW band was detected following diamide treatment similar 

to the smaller HMW band that was induced by H2O2 in the Ubp15-TAP cells 

(figures 3.7 and 3.8). Taken together with the experiments with H2O2, these data 

suggest different modifications are induced by different oxidising agents and, 

moreover, demonstrate dUb specificity in the modifications. 

3.2.3.3. Analyses of dUb modification in response to menadione 

We next explored whether any of the dUbs became modified in response to 

menadione. Cells expressing TAP epitope-tagged dUbs and a wild-type control 

were grown to mid-log phase and incubated with 0.1 mM menadione. Proteins 

were extracted in the presence of NEM and analysed via western blot under non-

reducing conditions (Figure 3.9). Similar to the effects of H2O2 and diamide, 

menadione-specific changes to mobility were detected. In particular, upon 

menadione treatment the mobility of both Ubp5-TAP and Ubp15-TAP were 

slightly slower (figure 3.9). It is interesting to note that in this case, and in contrast 

to H2O2 and diamide, the entire amount of Ubp5-TAP and Ubp14-TAP appeared 

to be shifted to the slightly slower mobility forms of each protein (figure 3.9).It is 

also intriguing to note that the mobility of Ubp5-TAP and Ubp14-TAP was 

affected by H2O2 and diamide respectively (Figure 3.7 and 3.8); although in both 

these cases the mobility change detected appears to be different to that induced 

by menadione (compare figures 3.7-3.9).   

Taken together these results have revealed that the three different oxidising 

agents induce a range of potential modifications of specific dUbs (summarised in 

Table 3.2). Furthermore different dUbs are modified by different oxidising agents. 

Given the range of cellular processes these dUbs influence, these experiments 

have potentially begun to reveal at a global level some of the aspects of 

specificity of regulation of deubiquitination that occurs in response to different 

oxidative stress conditions.  
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Figure 3.9: Specific dUbs are modified in response to menadione. Cells 

expressing TAP‐tagged dUbs (FCC123-FCC125, ELR28-ELR42), and a WT 

control (FCC23) were incubated with 0.1 mM menadione for 0 (-) and 10 minutes 

(+). Protein extracts were prepared in non-reducing conditions and separated by 

SDS-PAGE. Proteins were visualised using PɑP antibodies. * denotes 

menadione induced modifications. 
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Table 3.2: Summary of the differential dUb sensitivities and 

modifications in response to ROS. Blue columns show a summary of all 

the relative sensitivities of dUb deletion mutants to the different oxidising agents 

tested, ‐ indicates level of sensitivity, + indicates level of resistance, and WT 

indicates the strain responded the same as wild type. Orange columns show a 

summary of modifications to TAP epitope tagged strains in response to the 

oxidising agents tested, * indicates modification is present when incubated with 

each oxidising agent, ** indicates two modifications are seen in the same strain in 

response to an oxidising agent. ? indicates that a modification was identified 

occasionally, but not repeatedly. N/A indicates that the strain was either not 

present in the collections, or was found to be an incorrect strain. 
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3.2.4. Oxidative stress induced HMW modification of Ubp12 and Ubp15 are 

conserved in different strain backgrounds and with different epitope 

tags. 

As described earlier two of the dUbs, Ubp12 and Ubp15, form much larger HMW 

complexes in response to specific oxidising agents. Furthermore, loss of either 

protein affects the response of cells to various oxidising agents (Table 3.2). 

However, although none of the other TAP epitope-tagged dUbs displayed such 

large HMW complexes induced by oxidative stress, it was still possible that one 

or both complexes might be linked to the presence of the TAP epitope. In addition 

the TAP epitope-tagged proteins are expressed in the BY4741 strain background. 

This may also influence the results as previous studies have revealed that the 

BY4741 behaves differently to another commonly used strain background, W303, 

in response to different oxidising agents including H2O2 and diamide (Veal et al., 

2003). Hence potential effects of the choice of epitope tag and/or strain 

background used were investigated next. 

3.2.4.1. Analysis of Ubp12 in different strain backgrounds and with different 

epitope tagging 

As described above, Ubp12-TAP becomes specifically modified in response to 

H2O2, forming a HMW complex (Figure 3.7). This specificity to H2O2 and no other 

oxidising agent tested suggests that Ubp12 may play a specific role in H2O2 

signalling. However, as described above, Ubp12 modification has only been 

investigated in the BY4741 strain background, and hence the potential for the 

epitope tag and/or the strain background to play a role in this response to H2O2 

has not been explored. Indeed the TAP epitope tag is predicted to add ~21 kDa 

to the expected mobility of the wild type Ubp12 protein (Gloeckner et al., 2007) 

and yet Ubp12-TAP had a mobility of ~190 kDa instead of the predicted 164 kDa 

(Ubp12 has a molecular weight of ~143 kDa plus the addition of the 21 kDa TAP 

epitope tag). This indicates that the TAP epitope tag has an effect on the 

migration of Ubp12 and perhaps this influences the formation of the HMW 

complex induced by H2O2. Hence to address whether the TAP epitope tag was 

influencing the HMW modification, a strain expressing Ubp12-6HA from the 

normal chromosomal locus in the BY4741 strain background was obtained 
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(Gödderz et al., 2017) and checked by PCR (Figure 3.10A). Importantly the PCR 

analyses of the 6HA epitope-tagged version of Ubp12 identified that the epitope 

tag was integrated at the correct locus. Next the cells expressing Ubp12-TAP and 

Ubp12-6HA together with a wild type control were grown to mid log phase and 

incubated with 2 mM H2O2. Proteins were extracted in the presence of NEM, and 

analysed via western blot (Figure 3.10B). As expected, a HMW complex was 

induced in the cells expressing Ubp12-TAP. Ubp12-6HA also forms a HMW 

complex following H2O2 treatment (Figure 3.10B).  Interestingly, the mobility of 

Ubp12-6HA is similar to that observed for Ubp12-TAP. The 6HA epitope tag is 

predicted to add ~8 kDa to the mobility of the protein (Saiz-Baggetto et al., 2017), 

thus Ubp12-6HA would be predicted to be ~151 kDa, compared to the observed 

running size of ~190 kDa. Importantly, although the mobility of Ubp12-TAP and 

Ubp12-6HA are of similar sizes, the H2O2 induced HMW complexes are different 

in size, suggesting that epitope tag may change the size of the H2O2 induced 

complex. In both cases ~40% of the Ubp12 protein was in these HMW forms 

(figure 3.10C). Hence these data suggest the epitope tag does not influence the 

formation of the HMW complex. Previous analysis of Ubp12-TAP revealed that 

no HMW complex was formed in response to diamide (figure 3.8). However it 

was possible that the TAP epitope tag inhibits the formation of a HMW complex. 

To investigate this possibility, strains expressing Ubp12-TAP or Ubp12-6HA were 

incubated with 3 mM diamide and proteins were extracted in the presence of 

NEM and analysed via western blot. As expected, no HMW complex was 

detected in the Ubp12-TAP extract. Moreover, consistent with the hypothesis that 

the TAP epitope tag is not inhibiting the formation of a HMW complex, no HMW 

complexes were detected in the extract from the Ubp12-6HA strain treated with 

diamide (figure 3.10D).  

Next, we explored the potential effect of strain background on Ubp12 modification 

in response to H2O2. As described above it has previously been reported that 

different S. cerevisiae strain backgrounds have different responses to oxidative 

stress and use different signalling pathways (Veal et al., 2003). A 3HA epitope 

tag cassette, marked with KanMX was introduced to the C-terminus of Ubp12 at 

the normal chromosomal locus (described in 2.2.3.2). Potential transformants 
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Figure 3.10: Different epitope tagged versions of Ubp12 form a HMW 

modification after H2O2 treatment. (A) PCR using Ubp12-specific forward and 

reverse primers was performed using DNA isolated from Ubp12-6HA (FCC154). 

Successful integration of the 6HA epitope tag cassette at the Ubp12 gene locus 

produces a PCR product of ~2300bp. The resulting PCR product was analysed 

on a 1% agarose gel together with a wild type control using the same primers. (B) 

Cells in the BY4741 strain background expressing Ubp12-TAP (ELR38) or 

Ubp12-6HA (FCC154) and a WT control (FCC23) were incubated with 2 mM 

H2O2 for 0 (-) and 10 minutes (+). Protein extracts were prepared in non-reducing 

conditions and separated by SDS-PAGE. Proteins were visualised using PɑP 

antibodies (Ubp12-TAP) and anti-HA antibodies (Ubp12-6HA). (C) The band 

intensities of Ubp12-TAP (n=2) and Ubp12-6HA (n=2) with and without H2O2 

(from B) were quantified using ImageQuant. Bars show the percentage of HMW 

complex with respect to total Ubp12 in each lane, and error bars denote standard 

error of the mean. (D) Cells in the BY4741 strain background expressing Ubp12-

TAP (ELR38) or Ubp12-6HA (FCC154) and a WT control (FCC23) were treated 

with 3 mM diamide or 2 mM H2O2 for 10 minutes. Protein extractions were 

prepared as in (B) and visualised using PɑP antibodies (Ubp12-TAP) and anti-HA 

antibodies (Ubp12-6HA). * denotes H2O2 induced modifications 
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were analysed by PCR to confirm the integration of the 3HA epitope tag (Figure 

3.11A) which would show a PCR product of ~2200bp if correctly epitope tagged. 

After confirmation of the integration of the 3HA epitope tag at the Ubp12 

chromosomal locus (Figure 3.11A), W303 cells expressing Ubp12-3HA from the 

normal chromosomal locus, and Ubp12-6HA control cells were grown to mid-log 

phase and incubated with 2 mM H2O2. Proteins were extracted in non-reducing 

conditions in the presence of NEM and analysed via western blot (Figure 3.11B). 

Again the 3HA epitope-tagged Ubp12 strain had a slower mobility than predicted. 

The 3HA epitope tag adds ~3 kDa to the running size of the protein, however 

Ubp12-3HA runs at ~180 kDa, rather than the predicted 146 kDa. Significantly, 

Ubp12 forms a HMW complex in response to H2O2 in protein extracts isolated 

from both the BY4741 and W303 strain backgrounds. Furthermore, in both cases 

~40% of total Ubp12 was detected in the HMW form after incubation with H2O2. 

Thus, taken together with these data, it suggests that Ubp12 forms a HMW 

complex in both a background strain and epitope tag independent manner.  

While the epitope tag did not have an effect on the formation of the HMW form of 

Ubp12 in response to H2O2, it was unknown whether any of the epitope tags 

affected the functions and/or the stability of the Ubp12 protein. To obtain some 

insight into the potential effects of epitope tagging Ubp12, the BY4741 derived 

strains expressing Ubp12-TAP and Ubp12-6HA, together with ubp12Δ and WT 

strains as controls were grown to mid-log phase and their response to different 

stress conditions examined (Figure 3.12). Significantly, compared with wild type 

and ubp12Δ cells, it was found that the TAP epitope tag inhibited the normal 

function of Ubp12 in a variety of stress conditions. This is perhaps not surprising 

as the TAP epitope tag is large and can potentially affect protein localisation and 

stability (Gloeckner et al., 2007). Interestingly however, the phenotypes displayed 

by cells expressing Ubp12-TAP were not consistent with the phenotypes 

displayed by ubp12Δ cells (figure 3.12). The basis of the effects of the epitope 

tag on Ubp12 are not known but these results suggests that, rather than 

decreasing the stability of the protein, another aspect of Ubp12 activity is affected 

such as protein localisation and/or ability to interact with other substrates. In 

contrast to the TAP epitope tag, epitope tagging Ubp12 with 6HA appeared to 

result in little effect on Ubp12 function with the possible exception of diamide 
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Figure 3.11: Ubp12 forms a HMW complex after H2O2 treatment in cells 

from different strain backgrounds. (A) PCR using Ubp12-specific forward 

and reverse primers was performed using DNA isolated from Ubp12-3HA 

(FCC93). Successful integration of the 3HA epitope tag cassette at the Ubp12 

gene locus produces a PCR product of ~2200bp. The resulting PCR product was 

was analysed on a 1% agarose gel together with a wild type control using the 

same primers. (B) Cells in the BY4741 strain background expressing Ubp12-6HA 

(FCC154) and cells in the W303 strain background expressing Ubp12-3HA 

(FCC93) were treated with 2 mM H2O2 for 0 (-) and 10 (+) minutes. Protein 

extracts were prepared in non-reducing conditions and separated by SDS-PAGE. 

Proteins were visualised using anti-HA antibodies. * denotes HMW modification. 

(C) The band intensities of Ubp12-6HA (n=2) and Ubp12-3HA (n=3) with and 

without H2O2 (from B) were quantified using ImageQuant. Bars show the 

percentage of HMW complex with respect to total Ubp12 in each lane, and error 

bars denote standard error of the mean.  
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Figure 3.12: Analyses of the effects of epitope tagging Ubp12. 5-fold serial 

dilutions of wild type (FCC23), ubp12Δ (FCC75), and strains expressing Ubp12-

TAP (ELR38) and Ubp12-6HA (FCC154) from their normal chromosomal locus 

grown to mid-log phase in YPD, were spotted onto YPD plates containing the 

indicated concentrations of different stress inducing agents. Plates were 

incubated at 30°C for 3 days before imaging.  
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sensitivity where, like the ubp12Δ cells, cells expressing Ubp12-6HA appeared 

slightly more resistant to diamide, although not to the same extent as ubp12Δ. 

Taken together, these results suggest that epitope tags do affect the function of 

Ubp12, but importantly the 6HA epitope tag has very little impact in protein 

function. Importantly, neither the epitope tag nor the strain background had an 

effect on the formation of the H2O2 induced HMW form of Ubp12. 

3.2.4.2. Analysis of Ubp15 in different strain backgrounds and with different 

epitope tagging 

In contrast to Ubp12, Ubp15 forms a HMW complex in response to both H2O2 

and diamide (see figures 3.7 and 3.8). However, as described above, Ubp15 

modifications have only been investigated in the BY4741 strain background, thus 

the potential for the epitope tag and/or the strain background to play a role in this 

response to both H2O2 and diamide has not been explored. As described for 

Ubp12, the TAP epitope tag is predicted to add ~21 kDa to the mobility of Ubp15, 

and yet Ubp15-TAP had a mobility of ~180 kDa rather than the expected running 

size of 165 kDa (Ubp15 has a molecular weight of ~143.5 kDa plus the addition 

of the 21 kDa TAP epitope tag). This indicates, similar to Ubp12, the TAP epitope 

tag has an effect on the migration of Ubp15 and may influence the formation of 

the HMW complexes induced by H2O2 and diamide. Therefore, to address 

whether the strain background or the TAP epitope tag was influencing the 

formation of the HMW form of Ubp15 in response to H2O2 and diamide, a strain 

was created expressing Ubp15-3HA at the normal chromosomal locus in the 

W303 strain background. A 3HA epitope tag, marked with HIS3 was introduced to 

the C-terminus of Ubp15 at the normal chromosomal locus (described in 2.2.3.2). 

Potential transformants were analysed by PCR to confirm the integration of the 

3HA epitope tag (Figure 3.13A) which would show a PCR product of ~2200bp if 

correctly epitope tagged. After confirmation of the integration of the 3HA epitope 

tag at the Ubp15 chromosomal locus (Figure 3.13A), cells expressing Ubp15-

TAP and Ubp15-3HA were grown to mid log phase and incubated with 2 mM 

H2O2. Proteins were extracted in the presence of NEM, and analysed via western 

blot (Figure 3.13B). As expected, a HMW complex was induced in the cells 

expressing Ubp15-TAP. However interestingly, Ubp15-3HA also forms a HMW  
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Figure 3.13: Different epitope tagged versions of Ubp15 form a HMW 

complex after H2O2 and diamide treatment in cells from different strain 

backgrounds. (A) PCR using Ubp15-specific forward and reverse primers was 

performed using DNA isolated from Ubp15-3HA (FCC130). Successful 

integration of the 3HA epitope tag cassette at the Ubp15 gene locus produces a 

PCR product of ~2200bp. The resulting PCR product was analysed on a 1% 

agarose gel together with a wild type control using the same primers (A). Cells in 

the BY4741 strain background expressing Ubp15-TAP (ELR41), and cells in the 

W303 strain background expressing Ubp15-3HA (FCC130) were treated with 2 

mM H2O2 (B) and 3 mM diamide (C) for 0 (-) and 10 (+) minutes. Protein extracts 

were prepared in non-reducing conditions and separated by SDS-PAGE. Proteins 

were visualised using PɑP antibodies (Ubp15-TAP) and anti-HA antibodies 

(Ubp15-3HA). The panel below shows a shorter exposure time for band clarity. 

*denotes Ubp15 HMW modification 
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complex of the following H2O2 treatment (Figure 3.13B). As observed for Ubp12-

TAP, Ubp15-3HA had a slower running mobility than expected. Ubp15-3HA had a 

mobility of ~160 kDa, rather than the predicted 146 kDa. Intriguingly, the HMW 

complex induced by H2O2 in the Ubp15-3HA strain background had a faster 

mobility than the HMW complex formed in the Ubp15-TAP strain. It is also 

interesting to note that the proportion of HMW induced Ubp15-3HA appears to be 

different to that induced in the BY4741 strain background. Of note is the 

formation of the lower HMW band induced in Ubp15-TAP in response to H2O2, 

which is not present in the Ubp15-3HA strain. Whether these differences are due 

to strain background or epitope tag remains unknown. Next, the cells expressing 

Ubp15-TAP and Ubp15-3HA were grown to mid log phase and incubated with 3 

mM diamide. Proteins were extracted in the presence of NEM, and analysed via 

western blot (Figure 3.13C). As expected, a HMW complex was induced in the 

cells expressing Ubp15-TAP, however, interestingly, the Ubp15-3HA strain 

showed no HMW form induced after exposure to diamide. It is possible that 

Ubp15-3HA would show a modification in response to diamide at different 

conditions or for different time courses. As both strains are modified in response 

to H2O2, and diamide, however differently, it suggests that Ubp15 modification in 

response to ROS is strain and epitope tag independent.  

While the epitope tag did not have an effect on the formation of the HMW form of 

Ubp15 in response to H2O2 and diamide, it was unknown whether any of the 

epitope tags affected the functions and/or the stability of the Ubp15 protein. To 

obtain some insight into the potential effects of epitope tagging Ubp15, sensitivity 

analyses were performed on the epitope tagged Ubp15 strain. It was important to 

be able to compare Ubp15-3HA to an appropriate deletion mutant in the same 

strain background. Therefore a ubp15Δ mutant in the W303 strain background 

was created. A deletion cassette expressing the HIS3 gene as a marker was 

introduced to wild type W303 strains (see Section 2.2.3.1), and potential 

transformants were checked for correct gene deletion by PCR (Figure 3.14A). 

PCR analyses using a gene-specific forward primer for Ubp15, and a generic 

HIS3 reverse primer would show a correct ubp15Δ band at approximately 

1600bp. In a wild type strain a PCR product would not be produced (Figure 

3.14A). After confirmation of a correct ubp15Δ deletion mutant, the W303 derived  
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Figure 3.14: Analysis of the effects of epitope tagging Ubp15. (A) PCR 

using Ubp15-specific forward and generic His reverse primers was performed 

using DNA isolated from ubp15Δ (FCC60). Successful deletion of the UBP15 

gene produces a PCR product of ~1600bp. The resulting PCR product was 

analysed on a 1% agarose gel together with a wild type control using the same 

primers (A). (B) 5-fold serial dilutions of wild type (FCC1), ubp15Δ (FCC60), and 

a strain expressing Ubp15-3HA (FCC130) from the normal chromosomal locus 

grown to mid-log phase in YPD, were spotted onto YPD plates containing the 

indicated concentrations of different stress inducing agents. Plates were 

incubated at 30°C for 3 days before imaging.  
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strains expressing Ubp15-3HA, together with a ubp15Δ strain and wild type 

control were grown to mid-log phase and their response to different stress 

conditions examined (Figure 3.14B). Significantly, compared to wild type and 

ubp15Δ it was found that the strain expressing Ubp15-3HA from the normal 

chromosomal locus had very little effect on protein function, with the possible 

exception of cold stress, although not to the same extent as ubp15Δ. Taken 

together these results suggest that epitope tags do not affect the function of 

Ubp15-3HA. Importantly, although the different strain backgrounds show 

differences in forming HMW complexes in response to stress, the presence of the 

complexes is independent of strain background and epitope tag. 

 

3.3. Discussion 

While the detrimental effects of high levels of ROS are well characterised, the 

beneficial effects of low ROS levels are only recently becoming apparent. The 

mechanisms underlying how cells distinguish between low and high ROS levels 

to respond appropriately are not well understood, however oxidation of redox 

sensitive catalytic cysteines appears to be an important part of this regulation. 

dUbs have a conserved catalytic cysteine (Amerik et al., 2000) which have the 

potential to be oxidised by ROS (Clague, 2013). Hence, it was possible that the 

relative sensitivities of different dUb cysteines to ROS could determine cellular 

responses to ROS. To investigate this hypothesis we have utilised the genetic 

tools available to investigate dUbs in response to ROS in S. cerevisiae. Using the 

readily available S. cerevisiae gene deletion strain collection (Giaever et al., 

2002) and TAP epitope tag strain collection (Ghaemmaghami et al., 2003a) all 

available dUb-TAPs and dUb deletion strains were exposed to three different 

types of oxidative stress, H2O2, diamide (glutathione oxidiser) and menadione 

(superoxide producer). Interestingly diverse roles and specific sensitivities were 

observed using the gene deletion strains, and certain dUbs become modified in 

response to specific oxidising agents (Table 3.2). 

Using the strains acquired from the S. cerevisiae gene deletion collection, the 

specific roles of dUbs in response to different oxidising agents was observed. 
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Importantly, all the dUbs investigated showed some indication of increase in 

sensitivity or resistance to the different oxidising agents. Certain dUb deletion 

strains showed a growth phenotype to only one oxidising agent tested. For 

example ubp9Δ and ubp11Δ showed increased sensitivity only to H2O2, and 

ubp7Δ only showed increased sensitivity to menadione, whereas ubp1Δ showed 

an increased resistance to H2O2 specifically. In contrast to this many dUbs 

showed sensitivity or resistance to multiple different oxidising agents. For 

example yuh1Δ, otu1Δ, and ubp16Δ all show increased sensitivity to both H2O2 

and menadione, and ubp15Δ has increased sensitivity to diamide and 

menadione. It is also interesting to note that many of the dUb deletion strains 

show differences in sensitivity and resistance to different oxidising agents. For 

example, ubp2Δ is extremely sensitive to H2O2 however shows increased 

resistance to diamide, and ubp12Δ is resistant to diamide but shows increased 

sensitivity to menadione. The difference in sensitivity and resistance to certain 

oxidising agents suggests dUbs have specific responses to different oxidising 

agents. Since this study began, another study has looked at all dUbs in S. 

cerevisiae and their response H2O2 (Huseinovic et al., 2018). The research 

confirms many of the phenotypes shown by the dUbs in this screen in response 

to H2O2, including increased resistance in ubp1Δ strain, and increased sensitivity 

in otu2Δ, ubp2Δ, and ubp3Δ (Huseinovic et al., 2018), however the authors do 

not go into detail on the specific sensitivities the dUbs show in response to H2O2. 

However it must be remembered that the results gained may not be complete 

answers about dUb sensitivity to ROS due to the redundancy of dUbs across the 

cell (Amerik et al., 2000; Kouranti et al., 2010; Ostapenko et al., 2015). While 

dUbs have specific cellular roles that many research groups are investigating, 

their similar domain architecture, specifically the similarity in active site, allows 

dUbs to potentially fulfil roles normally carried out by other dUbs. Hence deletion 

of a single dUb may show little phenotype in response to stress. Indeed, a strain 

with 5 dUbs deleted (ubp1Δ, ubp2Δ, ubp3Δ, ubp7Δ, and ubp8Δ) showed the 

same growth under normal growth conditions to a single ubp8Δ deletion strain 

(Amerik et al., 2000) indicating the large redundancy of the dUbs. A technique 

that may overcome this problem is to over-express dUbs individually and repeat 

the spot tests performed, to see if any increased sensitivity or resistance is 

recovered and to identify which  protein inhibit or activate cell resistance. It is also 
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important to note that not all the dUb deletion mutants were available. Hence, it is 

possible that Ubp4, Ubp10, and/or Ubp14 may have roles which were not 

investigated in this thesis. However in other published studies of S. cerevisiae 

dUbs it was found that ubp4Δ, ubp10Δ, and ubp14Δ strains have similar growth 

phenotypes to wild type in unstressed conditions (Amerik et al., 2000; Huseinovic 

et al., 2018). 

One dUb of note in this screen was ubp3Δ, which showed increased sensitivity to 

all of the oxidising agents tested, suggesting Ubp3 may play a more general role 

in oxidative stress responses. Importantly, this analysis is consistent with other 

studies which have been published since work on this thesis began revealing that 

ubp3Δ is more sensitive to H2O2 (Jin, 2017; Huseinovic et al., 2018), and diamide 

(Dodgson et al., 2016). Interestingly ubp3Δ sensitivity is not limited to only 

oxidative stress. Huseinovic et al (2018) investigated all S. cerevisiae dUbs to 

many different stresses including rapamycin, ibuprofen, and benomyl among 

others suggesting Ubp3 is needed for most stress responses. Interestingly, 

ubp3Δ did not show a growth phenotype in response to the DNA damaging 

agents MMS (which methylates DNA (Hanway et al., 2002)) or HU (which inhibits 

DNA synthesis and repair (Koc et al., 2004), suggesting Ubp3 is not required for 

DNA damage responses.  Since this thesis work was performed, subsequent 

work published in 2016 identified that lacking Ubp3 were unable to form stress 

granules, leading to a decrease in cell survival in stationary phase (Nostramo et 

al., 2016). While this group only looked at temperature associated stress 

responses and not oxidative stress responses, it is possible that Ubp3 is 

important for the response to oxidative stress in a similar mechanism. Ubp3 has 

also been associated with mitochondrial control as a negative regulator of 

mitophagy (Müller et al., 2015). Mitophagy is an important cellular response as a 

mechanism to remove mitochondria damage by ROS (Müller and Reichert, 

2011). As mitochondria are intracellular ROS producers, any regulation of Ubp3 

by ROS has potentially important stress response roles. The sensitivity of ubp3Δ 

to H2O2, diamide, and menadione suggests that cells which cannot undergo 

mitophagy are less resistant to oxidative stress.  



 

[137] 
 

When investigating potential modifications to the dUbs in response to the 

oxidising agents, all experiments were carried out under non-reducing conditions 

to preserve the potential modifications that would affect mobility. Several dUbs, 

Ubp2, Ubp5, Ubp6, Ubp12, Ubp14, and Ubp15, showed altered mobility 

suggesting protein modification. The modifications were not characterised here, 

but possibilities include oxidation events, phosphorylation, and ubiquitination 

among others. The nature of the modification to Ubp12 and Ubp15 will be 

explored in chapters 4 and 5. Similar to the sensitivity data associated with the 

gene deletion strains, the specificity of the dUb modifications is apparent (Table 

3.2). Again a range of responses are seen, however in contrast to the sensitivity 

data where all of the dUb deletion strains showed some response to ROS, only a 

small number of dUbs show any modification in response to ROS. However, 

again it must be noted that, similar to the dUb deletion strain collection, not all the 

dUbs were available in the epitope tag collection for study. Thus investigations of 

any potential modifications of Ubp7, Ubp13, and Yuh1 were not performed 

preventing a complete understanding of dUb modifications in response to 

different oxidising agents. Of the six TAP epitope-tagged dUbs that showed 

change in mobility, three showed modifications specific to one type of oxidising 

agent. Ubp2, Ubp6 and Ubp12 showed modification specific to H2O2. The 

specificity of these dUbs to modifications by H2O2 suggests their potential role in 

signalling pathways, as H2O2 is a potent signalling molecule. This nature of 

certain dUbs being modified in response to specific types of ROS may potentially 

suggest the tight regulation of downstream deubiquitination is critical for cellular 

function, although it remains unknown whether the modifications identified in this 

work enables or inhibits protein activity. The method of detection of modification 

must also be considered. In this case NEM was added to protein samples after 

oxidation to preserve the oxidation event. However, using NEM to maintain 

oxidation states only shows modifications that cause a change in mobility, for 

example a disulphide in response to oxidation, or phosphorylation. In order to 

have a wider understanding of dUb modification by oxidative stresses AMS could 

be used to bind to oxidised cysteines, thus increasing the molecular weight and 

mobility of oxidised proteins. However chemicals such as AMS only increase 

protein size by a small shift (0.5 kDa (Rudyk and Eaton, 2014)), which may be 

hard to detect in proteins as large as the dUbs. As such a dramatic effect was 
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observed to specific dUbs when using NEM it concluded that these dUbs would 

be focused upon, however to have a more comprehensive understanding of dUb 

modification by oxidising agents other methods could also be investigated. 

Research published since work on this thesis began has identified that Ubp2 is 

oxidised in response to H2O2 but not in response to other stresses (Silva et al., 

2015a). Silva et al (2015) found that in response to low levels of H2O2 K63 poly-

ubiquitination levels dramatically increased in order to overcome H2O2 induced 

stress. They found the K63 poly-ubiquitination to be due to the reversible 

oxidation and thus inhibition of Ubp2 (Silva et al., 2015a) which normally 

functioned to remove K63 linked chains. As seen in figure 3.7B, Ubp2 is 

occasionally modified by H2O2, however this was not repeatable. However, as the 

shift is quite faint for Ubp2 after H2O2 treatment it is possible that in the time 

frame investigated, or concentration of H2O2 used, Ubp2 modification may have 

been missed. It is possible that the modification of Ubp2 observed in the present 

results may be linked to Ubp2 oxidation and could be important for K63 regulation 

in response to stress. Although there has been very little research looking into the 

modification of dUbs, it has been observed that mammalian USP19 forms a 

HMW complex at ~250 kDa in response to H2O2 (Lee et al., 2013). Curiously,the 

HMW disulphide for USP19 is a very similar size to that of Ubp12 modification in 

response to H2O2 in the present results, suggesting possible linked events.  

It is striking from the results shown, that two particular dUbs showed very large 

HMW shifts after treatment with specific oxidising agents. Ubp12-TAP formed a 

HMW shift after only H2O2 treatment, and Ubp15-TAP showed a HMW shift after 

H2O2 and diamide treatment. Interestingly, Ubp12 had a H2O2 induced HMW 

modification which contained a large portion of the total protein. Further analyses 

indicated that ~40% of Ubp12 was modified independent of strain background or 

epitope tag. Although the closest mammalian homolog to Ubp12 is USP15 (and 

the related USP11 and USP4), when comparing the mammalian USP19 dUb to 

the S. cerevisiae genome, Ubp12 has the highest similarity. This suggests that 

Ubp12 may be oxidised similarly to USP19 in mammalian cells. Importantly, Lee 

et al (2013) also identified that USP15 was inactivated by ROS, suggesting 

Ubp12 has the potential to be oxidised which will be investigated further in 
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chapter 4. The other dUb found to be modified in response to oxidising agents 

was Ubp15, which formed HMW forms in response to H2O2 and diamide. Thus 

Ubp15 shows less specificity for regulation by oxidation; however it does not 

show modifications in response to menadione. It is striking that the response by 

Ubp15 to oxidising agents closely resembles that of Cdc34, which was found to 

be oxidised in response to H2O2 and diamide, but not menadione. Importantly, 

Cdc34 oxidation has been shown to be critical in regulating G1-S phase 

progression through ubiquitination of Sic1 (see Section 1.3.3). Interestingly, 

Ubp15 has also been hypothesised to regulate the cell cycle as it is a known 

physical interactor with the APC/C activator Cdh1 (Bozza and Zhuang, 2011), 

whereby Ubp15 potentially regulates cell cycle proteins. This raises the exciting 

possibility that both Ubp15 and Cdc34 are oxidised in response to H2O2 and 

diamide in order to regulate cell cycle progression. It must also be noted that 

although it is known that the HMW Cdc34 complex formed by oxidative stress 

contains Cdc34 and Uba1, it is possible that the complex also contains other 

unknown proteins. The potential link between Ubp15 and Cdc34 oxidation and 

the subsequent cell cycle regulation will be investigated further in chapter 5.  

In conclusion we have identified specific dUb requirements for different oxidative 

stresses, suggesting that dUbs have diverse roles and responses to oxidising 

agents. We have also identified a novel range of modifications of different dUbs 

in response to specific oxidising conditions. Ubp12 and Ubp15 will be explored 

further in this these, but it is clear that dUbs have many roles in cellular response 

to stress which, although worthy of further study, is outside the scope of this 

thesis.  
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Chapter Four: Analyses of the roles and regulation of the dUb 

Ubp12 in stress responses. 

 

4.1. Introduction 

S. cerevisiae has 20 identified deubiquitinases, 16 of which form the main 

cysteine thiol USP group (Finley et al., 2012). USP dUbs have a highly conserved 

active site containing histidine and aspartic acid residues which deprotonate the 

catalytic cysteine allowing it to attack the isopeptide bond between the ubiquitin 

moiety and the substrate (Amerik and Hochstrasser, 2004) (see 1.1.2.2). 

Deprotonation of the catalytic cysteine reduces the pKa value of the cysteine and 

as a consequence increases its susceptibility to attack by oxidation (Finkel, 

2011). Although Ubp12 is a relatively uncharacterised USP dUb in S. cerevisiae a 

recent study revealed that it can cleave ubiquitin indiscriminately from the ends of 

longer lysine linked chains (Schaefer and Morgan, 2011). Ubp12 is also known to 

regulate mitochondrial dynamics through deubiquitination of the mitofusin Fzo1 

(Anton et al., 2013), and has been observed to deubiquitinate the G-protein ɑ 

subunit Gpa1, which changes the localisation from the cellular membrane to the 

cytoplasm and vacuole (Wang et al., 2005). Excitingly, work presented in the 

previous chapter revealed that Ubp12 forms a H2O2-induced HMW complex, 

independent of epitope tag and strain background. Furthermore, this is very 

specific as Ubp12 was only modified in response to H2O2 and no other oxidising 

agent tested. These data suggest that Ubp12 is specifically regulated by H2O2. 

As Ubp12 is a member of the thiol USP group (see above) this raises the exciting 

possibility that the oxidation of the catalytic cysteine of Ubp12 may be a 

mechanism by which the protein is regulated, thus affecting downstream targets. 

In this chapter we aimed to understand the nature of Ubp12 modification in 

response to H2O2. Specific objectives were to investigate the possibility that 

Ubp12 is regulated by oxidation and to elucidate the potential roles and 

regulation of Ubp12 by oxidative stress. 
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4.2. Results 

4.2.1. Analysis into the H2O2-induced HMW form of Ubp12 

When analysing proteins by western blotting, changes to protein mobility can 

occur for many different reasons including post translation modifications, such as 

phosphorylation, ubiquitination, and/or oxidation (Carruthers et al., 2015). For 

example, phosphorylation of proteins by the addition of a phosphate group(s) can 

cause the phosphorylated protein to change shape and size and therefore affect 

protein mobility (Peck, 2006). In addition, phosphorylation can influence the 

interaction with phospho-binding proteins. Similarly, ubiquitination of a protein 

can increase protein size by either the addition of a single ubiquitin molecule, or 

of chains of poly-ubiquitin. Proteins can also become oxidised at cysteine 

residues, which can result in the change of protein structure and potentially 

initiate disulphide intermolecular or intramolecular interactions with other cysteine 

residues possibly changing the size of the complex (Cumming et al., 2004; Doris 

et al., 2012).  

To investigate the H2O2-induced HMW form of Ubp12, the possibility that Ubp12 

was becoming oxidised was examined.  Hence, cells expressing Ubp12-TAP 

weres treated with 2 mM H2O2. Protein extracts were then prepared in either 

reducing or non-reducing conditions, and analysed by western blot (Figure 4.1). 

When incubated in the presence of β-mercaptoethanol as a reducing agent, the 

H2O2-induced HMW form of Ubp12 was no longer present (Figure 4.1), 

suggesting that the HMW complex contained disulphide bond(s) and/or a 

sulphenylamide as a result of oxidation by H2O2. Although it is unclear whether 

the H2O2-induced HMW form of Ubp12 contains disulphide(s) or 

sulphenylamide(s), the highly reactive and transient nature of sulphenylamides 

(Rehder and Borges, 2010), and their potential to rapidly form disulphides (Gupta 

and Carroll, 2014), supports the hypothesis that the H2O2-induced HMW form of 

Ubp12 contains at least one disulphide. 
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Figure 4.1: Ubp12 HMW complex is reduced by β-mercaptoethanol.  Cells 

expressing Ubp12-TAP (ELR38) in the BY4741 strain background were 

incubated with 2 mM H2O2 for 0 (-) and 10 (+) minutes. Protein extracts were 

prepared in reducing (+ 10% v/v β-mercaptoethanol) and non-reducing conditions 

and separated by SDS-PAGE. Proteins were visualised using PɑP antibodies. * 

denotes H2O2-induced modification.  
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4.2.1.1. The oxidation of Ubp12 responds to different concentrations of H2O2 

As described elsewhere (see Chapter1 Section 1.2.5), it is important for cells to 

be able to sense the different types and concentrations of ROS. Work described 

in the previous chapter revealed that Ubp12 was specifically modified in response 

to H2O2. Having established that this modification of Ubp12 involves oxidation, 

the next question was to address how this oxidation responds to a range of 

concentrations of H2O2. To investigate this, cells expressing Ubp12-6HA were 

treated with different concentrations of H2O2 for 10 minutes and protein extracts 

were analysed by western blot (Figure 4.2). Interestingly, theUbp12 HMW 

complex was induced by all the concentrations of H2O2 investigated. However, 

interestingly, the oxidation pattern was different depending on the concentration 

of H2O2 (Figure 4.2). At low concentrations of H2O2 (0.2 mM), Ubp12 was mainly 

in the reduced form, with the HMW complex only becoming apparent after a 

longer film exposure time. Qualitative analyses suggests that the ratio of HMW 

Ubp12 to low molecular weight Ubp12 peaks at 1 mM H2O2 and reduced by 2 

mM, after which the ratio is maintained, however further repeats and 

quantification of band intensity would be beneficial to confirm this. The observed 

difference in the amounts of Ubp12 HMW complex at different concentrations of 

H2O2 raises the possibility that oxidation of Ubp12 is a component of a 

mechanism by which the concentration of H2O2 is sensed.  

However, since these protein samples were all extracted at 10 minutes, it was 

possible that lower concentrations of H2O2 may induce higher levels of oxidation 

of Ubp12 but over a longer timeframe. It was also unknown whether the oxidation 

of Ubp12 was irreversible. Indeed dUbs can be either reversibly oxidised into a 

sulphenic form, or irreversibly oxidised into sulphinic and sulphonic forms which 

could initiate dUb degradation (Clague, 2013). Hence, next the dynamics of 

Ubp12 HMW complex formation were investigated. Cells expressing Ubp12-6HA 

were incubated with either 0.2 mM or 2 mM H2O2 for 60 minutes. Protein extracts 

were obtained at the indicated time points and analysed by western blot (Figure 

4.3). When incubated with 2 mM H2O2 Ubp12 is rapidly modified into the HMW 

form within 30 seconds, and this is sustained over the entire hour of the 

experiment (Figure 4.3A). Strikingly, 30% of Ubp12 is in the HMW complex by 30  
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Figure 4.2: Ubp12 is oxidised by a range of H2O2 conditions. Protein 

extracts from cells expressing Ubp12-6HA (FCC154) in the BY4741 strain 

background were incubated with a range of concentrations of H2O2 as indicated 

for 10 minutes. Protein extracts were prepared in non-reducing conditions and 

separated by SDS-PAGE. Proteins were visualised using ɑ-HA antibodies. * 

denotes H2O2-induced modification. The bottom panel is a longer exposure of the 

top panel. 
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Figure 4.3: The kinetics of the formation of the HMW form of Ubp12 is 

H2O2 concentration-dependent. (A) Protein extracts from cells expressing 

Ubp12-6HA (FCC154) in the BY4741 strain background were incubated with 2 

mM H2O2 for 0 – 60 minutes as indicated. Protein extracts were prepared in non-

reducing conditions and separated by SDS-PAGE. Proteins were visualised using 

ɑ-HA antibodies. * denotes H2O2 induced modification. (B) The band intensities of 

Ubp12-6HA (n=2) at each time point (from A) were quantified using ImageQuant. 

Each point shows the percentage of HMW complex with respect to total Ubp12 in 

each lane, and error bars denote standard error of the mean. (C) Protein extracts 

from cells expressing Ubp12-6HA were incubated with 0.2 mM H2O2 for 0 – 60 

minutes as indicated. Protein extracts were prepared and visualised as in (A) * 

denotes H2O2 induced modification. (D) The band intensities of Ubp12-6HA (n=2) 

at each time point (from B) were quantified using ImageQuant. Each point shows 

the percentage of HMW complex with respect to total Ubp12 in each lane, and 

error bars denote standard error of the mean. 
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seconds (Figure 4.3B). After this, the amount of Ubp12 present in the HMW 

complex increases at a much slower rate until 60 minutes when ~65% is in the 

complex (Figure 4.3B). Interestingly, the pattern of HMW complex formation is 

different at 0.2 mM and 2 mM H2O2. In contrast to 2 mM H2O2, when cells were 

incubated with 0.2 mM H2O2 a smaller amount of Ubp12 was in the in both the 30 

second and the 2 minute sample (Figure 4.3C and D). After treatment with 0.2 

mM H2O2 only ~12% of total Ubp12 is in the HMW form at 30 seconds, which 

increases to ~40% after 10 minutes (Figure 4.3D). Furthermore, after 10 minutes 

the amount of HMW complex begins to fall, and by 60 minutes has returned to 

basal levels (Figure 4.3D). The pattern of HMW formation at low levels of H2O2 

suggests that Ubp12 becomes oxidised but significantly, is able to recover its 

reduced state. The differences in HMW formation at low and high levels of H2O2 

could form the basis of a sensing mechanism for H2O2 levels whereby high levels 

of H2O2 cause Ubp12 to remain in the oxidised form for longer. However, these 

results cannot distinguish whether oxidised Ubp12 is reduced back to the original 

reduced form, or whether, perhaps, the oxidised form of Ubp12 is degraded and 

replaced with newly expressed reduced Ubp12. Interestingly, it is also worth 

noting that ~5% of Ubp12 is in the HMW form in unstressed conditions, 

suggesting that Ubp12 oxidation may be a cellular mechanism by which Ubp12 

activity is regulated in the absence of external stress. 

4.2.1.2. Analysis of the regulation of Ubp12 oxidation 

Oxidised proteins are regulated both enzymatically and non-enzymatically to 

maintain a redox balance within the cell (see Chapter 1 Section 1.2.4). 

Eukaryotes utilise two key non-enzymatic systems by which oxidised proteins are 

regulated, the glutaredoxin (Grx) and thioredoxin (Trx) pathways (see Section 

1.2.4.2). Glutathione (GSH) is an essential peptide found in the cytosol that can 

be oxidised by ROS into a GSSG form or protein-bound GSH (see Section 

1.2.4.2.1). Importantly, redox cycling of GSH by the glutaredoxin system allows 

GSH to act as a ROS scavenger to regulate the oxidation of many proteins (see 

Section 1.2.4.2.2). The chemical BSO inhibits Gsh1, which as a consequence 

depletes GSH in cells (Drew and Miners, 1984). Hence, BSO can be utilised to 

investigate whether GSH is required for the regulation of specific oxidised 
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proteins. Indeed, it has been shown previously that BSO addition triggers the 

formation of Cdc34 HMW complex similar to that observed after oxidation of 

Cdc34 by H2O2 and diamide (Doris et al., 2012). To investigate whether GSH 

plays a role in the regulation of Ubp12 HMW complex formation, cells expressing 

Ubp12-6HA were incubated with 5 mM BSO. Cells expressing Cdc34-13Myc 

were included as a positive control. However, despite multiple repeated attempts, 

the results obtained were inconclusive as the BSO-induced HMW form of Cdc34-

myc was difficult to observe in the positive control (data not shown).  

Another major eukaryotic system to regulate oxidised proteins is the thioredoxin 

system (see Section 1.2.4.2.3). Thioredoxins (Trx) reduce disulphides that are 

formed by oxidative stress by forming a disulphide with the oxidised cysteine of 

the substrate. The reduction of the substrate then initiates oxidation of the Trx 

which in turn is reduced by thioredoxin reductase and NADPH (see Chapter 1 

Figure 1.7). It is necessary for thioredoxin reductase to be active to maintain a 

reduced state within the cell; therefore thioredoxin reductase can be classed as a 

rate limiting step in the reduction of oxidised thiols by the thioredoxin system 

(Brown et al., 2013; Tomalin et al., 2016). To investigate whether Ubp12 is 

regulated by the thioredoxin pathway, a trr1Δ mutant expressing Ubp12-3HA 

from the normal chromosomal locus was created in the W303 strain background. 

A 3HA epitope tag PCR cassette, containing KanMX, was introduced into the 3’ 

end of the UBP12 gene at the normal chromosomal locus (described in Section 

2.2.3.2) in the trr1Δ strain. Potential integrants were analysed by PCR to confirm 

the integration of the 3HA epitope tag cassette (Figure 4.4A). The presence of a 

PCR product of ~2300bp indicates correct integration whilst a PCR product of 

~400bp indicates the wild type UBP12 locus. Several positive integrants were 

identified (Figure 4.4A). Next, three different trr1Δ strains containing the Ubp12-

3HA cassette were grown to mid-log phase and incubated with 2 mM H2O2. 

Proteins were extracted in non-reducing conditions in the presence of NEM and 

analysed via western blot (Figure 4.4B). As expected, Ubp12-3HA TRR1 forms 

the HMW complex after H2O2 treatment, and quantification suggests ~40% 

Ubp12 is in the HMW form (Figure 4.4B and C), as seen previously (Figure 3.11). 

Importantly, there is no Ubp12-3HA observed in the trr1Δ control strain, however 

a non-specific band can still be identified. Interestingly, there is a clear indication  
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Figure 4.4: Ubp12 oxidation is potentially regulated by the thioredoxin 

system. (A) PCR using UBP12-specific forward and reverse primers was 

performed using DNA isolated from 7 potential integrants of the 3HA epitope tag 

cassette into the trr1Δ strain (FCC167). Successful integration of the 3HA epitope 

tag cassette at the UBP12 gene locus produces a PCR product of ~2300bp 

(lanes 1, 4, and 7), whereas the UBP12 wild type locus produces a PCR product 

of ~400bp (lanes 2, 3, 5, and 6). The resulting PCR products were analysed on a 

1% agarose gel. The right panel shows PCR with an untagged trr1Δ negative 

control (FCC167) and a Ubp12-3HA positive control (FCC93) using the same 

primers. (B) Cells of a Ubp12-3HA strain (FCC93), a trr1Δ strain (FCC167), and 

three trr1Δ Ubp12-3HA strains (FCC171, 172, 175), all W303 strain background, 

were treated with 2 mM H2O2 for 0 (-) and 10 (+) minutes. Protein extracts were 

prepared in non-reducing conditions and separated by SDS-PAGE. Proteins were 

visualised using ɑ-HA antibodies. NS identified a non-specific band in each lane 

used as a loading control. (C) The band intensities of Ubp12-3HA TRR1 (n=4) 

and Ubp12-3HA trr1Δ (n=3) were quantified using ImageQuant. The percentage 

of HMW complex with respect to total Ubp12 is shown in each lane, and error 

bars denote standard error of the mean. T-test analysis between 0 and 2 mM 

H2O2 for Ubp12-3HA gives a value of P=0.000, and for trr1Δ Ubp12-3HA gives a 

value of P=0.0012. (D) The band intensities of Ubp12-3HA (n=4) trr1Δ Ubp12-

3HA (n=3) were quantified using ImageQuant.  The total protein abundance of 

Ubp12 in each lane was calculated relative to the non-specific (NS) band (from B) 

indicated by the arrow. Error bars denote standard error of the mean. T-test 

analysis between both strains without H2O2 gives a value of P=0.0336, and T-test 

analysis between both strains after H2O2 treatment gives a value of P=0.0057.  
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of HMW complex formation in the Ubp12-3HA trr1Δ cells following H2O2 

treatment (Figure 4.4B). The percentage of Ubp12 HMW complex formation was 

quantified in relation to the total amount of Ubp12 in the trr1Δ strain background 

(Figure 4.4C). However, the percentage of HMW complex in the trr1Δ strain after 

H2O2 treatment is 30%, compared to 40% seen in the TRR1 wild type (Figure 

4.4C). Whilst this difference is not quite significant as judged by the P value 

(P=0.0577), the error bar for the trr1Δ mutant strains is quite large (Figure 4.4C). 

Hence, it is possible that further repeats may reduce the error bars and increase 

the significance of the observed difference between the TRR1 and trr1Δ strain 

backgrounds. These data also suggest that basal levels of the HMW form of 

Ubp12 may be increased in trr1Δ cells (Figure 4.4C), however statistical analyses 

confirm that there is no significant difference between Ubp12-3HA levels in 

unstressed TRR1 or trr1Δ cells (P=0.0616). Importantly, it was observed that the 

total amount of Ubp12, both before and after stress, was reduced in the trr1Δ 

mutant compared to the TRR1 wild type control (Figure 4.4D). In particular, prior 

to H2O2 treatment, the amount of Ubp12 present in the trr1Δ strain was 

significantly lower (P=0.036) compared to the wild type strain (Figure 4.4D). 

Furthermore, following H2O2 treatment for 10 minutes the relative amount of 

Ubp12 in the trr1Δ mutant strain decreased significantly (P=0.0057) (Figure 

4.4D).  

Taken together this data suggests that a significant proportion of Ubp12 is 

oxidised into a HMW complex in response to H2O2. The data also revealed that 

the kinetics of complex formation is dependent on the concentration of H2O2, 

suggesting that Ubp12 oxidation may be a component of a mechanism that 

senses and responds to different levels of H2O2. The results also suggest that the 

thioredoxin system plays an important role in regulating the levels of Ubp12, both 

in normal conditions and after H2O2 stress. 

4.2.2. Analyses of the Ubp12 HMW complex 

The nature of the H2O2-induced Ubp12 HMW complex was next examined. One 

hypothesis to explain the HMW complex is that it consists of a disulphide 

complex between Ubp12 and on or more other proteins. Hence the first step was 

to attempt to identify the components of the complex. 
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4.2.2.1. Analysis of Ubp12 HMW complex by mass spectrometry  

Oxidised cysteines have the potential to form disulphide bonds with other 

cysteines. This can be with a cysteine in another protein thus forming an 

intermolecular dimer or between two cysteines in the same protein, resulting in 

an intramolecular disulphide bond. Interestingly, it was found that a specific 

mammalian USP dUb, USP19 forms a HMW disulphide complex which was 

hypothesised to involve an intermolecular disulphide bond (Lee et al., 2013).  

Although the closest mammalian homolog of Ubp12 is USP15 (and the related 

USP11 and USP4), USP19 shares 38% identity with Ubp12, suggesting that the 

HMW disulphide complex of Ubp12 may also be an intermolecular complex with 

another protein. Hence, to better understand the Ubp12 HMW complex large 

scale purification of the Ubp12-TAP protein was performed and the HMW 

complex analysed by mass spectrometry (University of Aberdeen). Large scale 

purification of Ubp12-TAP and protein analysis was performed twice. For both 

analyses, large scale purification was performed using cells expressing using 

Ubp12-TAP and a wild type control strain, both treated with 2 mM H2O2 for 10 

minutes. However, for the second analysis, large scale purification was also 

performed using unstressed Ubp12-TAP expressing cells. To isolate the HMW 

complex, Ubp12-TAP and wild type control cells were incubated with 2 mM H2O2, 

soluble proteins were extracted from the lysate (for details see Section 2.1.9), 

and 1% input of lysate was retained for analysis. Ubp12-TAP was then purified 

from the lysate using IgG beads (Section 2.1.9), and after conjugation 1% of the 

lysate was retained to confirm that Ubp12-TAP was bound specifically to the 

beads and was no longer in the supernatant. Ubp12-TAP was removed from the 

beads by boiling under non-reducing conditions and samples were separated by 

SDS-PAGE and stained by Coomassie to visualise the proteins (Section 2.1.9). 

1/10 of the sample was retained and visualised by western blot analysis using ɑ-

TAP antibodies to confirm the presence of protein at the expected mobility, and to 

confirm that Ubp12-TAP has been enriched in the purified sample. Importantly, 

the western blot analyses confirmed Ubp12-TAP in the protein lysate (Figure 

4.5A), and that no Ubp12 was present in the supernatant after Ubp12-TAP had 

been conjugated to the beads. Furthermore, Ubp12-TAP was enriched after 

removal from the IgG beads (Figure 4.5A). Large smears were observed after 
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Figure 4.5: Sample preparation for mass spectrometry analyses of 

oxidised Ubp12. Protein samples were obtained from wild type (WT) (FCC23) 

and Ubp12-TAP (ELR38) cells in a BY4741 strain background treated with 2 mM 

H2O2 for 0 (-) or 10 (+) minutes. Soluble proteins were extracted and prepared in 

non-reducing conditions. TAP epitope-tagged proteins were purified by binding to 

IgG beads, washed, and released from the beads by boiling. (A) 1/10 dilutions of 

protein samples from the whole protein lysate, bead supernatant, and purified 

samples were separated by SDS-PAGE and visualised using ɑ-TAP antibodies. * 

denotes H2O2-induced HMW complex and arrows identify reduced Ubp12-TAP. 

The right hand panel shows a shorter exposure of the tracks containing purified 

samples. (B) Protein samples from the whole protein lysate, bead supernatant, 

and purified samples were separated by SDS-PAGE on a 4-15% gradient gel and 

stained with InstantBlue. * denotes H2O2-induced HMW complex and the arrow 

identifies reduced Ubp12-TAP.  

 

  



 

[158] 
 

purification (Figure 4.5A), likely from the beads left in the sample which are 

detected by the secondary antibody. Using Coomassie stain, a band consistent 

with the mobility of Ubp12-TAP was identified after purification in samples 

isolated before and after stress. Importantly, H2O2-induced oxidation of Ubp12 

into the HMW disulphide complex was also identified by Coomassie (Figure 4.5B-

asterisk).  

Next, the H2O2-induced HMW complex was excised from the Coomassie-stained 

gel, together with the region of the gel of the corresponding size in the wild type 

and the unstressed Ubp12-TAP lanes. To identify the proteins present in the 

excised gel slices, the slices were analysed by mass spectrometry using Q 

Exactive LC-MS, and potential matches were searched for in the S. cerevisiae 

database (SGD). Mass spectrometry and this computational analysis were 

performed by David Stead at Aberdeen University. The raw data was analysed 

and proteins were identified based on the values of score, coverage and peptide 

number (# peptide). The score indicates the sum of the ion scores of all the 

distinct peptides, hence a higher score suggests a more confident match. The 

coverage indicates the percentage of the protein sequence covered by the 

identified peptides. Finally, the peptide number indicates the total number of 

distinct peptides identified from a specific protein. Using these analyses, the 

protein hits were ranked based on their cumulative score (Table 4.1). Importantly, 

results from both independent purification experiments identified Ubp12-TAP as 

the major component in the H2O2-induced HMW complex. However, some other 

proteins were identified with the potential that they could be part of the HMW 

complex and hence were investigated further (Table 4.1). For the full lists of mass 

spectrometry results see Appendix A and B.  

In the first mass spectrometry analysis, as expected, Ubp12 was identified in the 

gel slice of the HMW complex in the Ubp12-TAP lane, with a high score, 

coverage, and peptide number (Table 4.1A). Moreover, no Ubp12 was identified 

in the gel slice from the wild type lane at the equivalent mobility. Interestingly, 

Cex1 was also identified in the Ubp12-TAP sample but not the wild type sample 

(Table 4.1A). However the score, coverage, and peptide numbers for Cex1 were 

low, suggesting that Cex1 may be a contaminant of the Ubp12-TAP slice. 
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Table 4.1: Potential proteins in the H2O2-induced HMW complex identified by mass spectrometry. Proteins 

identified by mass spectrometry were ranked based on their score, coverage and peptide number from two independent repeats 

(A and B). 
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Nevertheless, the presence of Cex1 was investigated further as it was possible 

that it was a component of the Ubp12 HMW complex.  

In the second mass spectrometry analysis a gel slice from the unstressed Ubp12-

TAP lane at the equivalent mobility was also included. This control was added in 

case Ubp12 was detected in the first analysis due to contamination with reduced 

Ubp12-TAP. Indeed, Ubp12-TAP was detected in the equivalent gel slice from 

the unstressed sample (Table 4.1B). However, the score, coverage, and peptide 

numbers were lower than those obtained in the analysis of the stressed Ubp12-

TAP lane (Table 4.1B). The detection of Ubp12-TAP in the unstressed sample 

could be a contaminant of the whole lane, with Ubp12-TAP and/or possible due 

to the presence of a small amount of the Ubp12 HMW complex in unstressed 

cells. Ubp12 was also detected in the wild type control; however with such low 

numbers it is possible that this is contamination from the neighbouring lane. 

Importantly, the highest scores for Ubp12 were identified in the H2O2 treated 

Ubp12-TAP sample (Table 4.1B). As in the first experiment, Ubp12 was the 

predominant component identified by the analysis (Table 4.1B). However, several 

other proteins were potentially identified, all be it with much lower scores that 

may indicate some link to the HMW protein complex.  It was observed that the 

analysis for H2O2 treated Ubp12-TAP cells did not give as high a value for Ubp12 

as expected from the Coomassie stained gel. The overall score for Ubp12-TAP 

treated with H2O2 was only 4 times higher than the score for unstressed Ubp12-

TAP. However, the Coomassie stained gel suggested that the HMW form of 

stressed Ubp12-TAP had more than four times the amount of protein. Therefore it 

was suggested that the analysis for H2O2 treated Ubp12-TAP may not have 

worked as well as the other samples. When identifying components of the HMW 

complex, it was taken into account that it was possible that the scores for 

suggested proteins in the H2O2 treated Ubp12-TAP sample were higher than the 

results suggested. Protein hits that had a similar score for both stressed and 

unstressed Ubp12-TAP samples, ideally with a score higher than the result for 

the wild type sample, were identified as possible hits. Based on these criteria, 

His4, Cdc19, Pdc1, and Tef2 (Table 4.1B) which were selected for further 

analyses. Of all proteins identified by the second mass spectrometry analysis, 

only Aco1 displayed higher values for score, coverage, and peptide number in 
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the stressed Ubp12-TAP lane compared with the unstressed Ubp12-TAP lane 

(Table 4.1B). Therefore, Aco1 was also selected for further analysis.  

Next, to test whether Cex1, His4, Cdc19, Pdc1, Tef2, and/or Aco1 are potentially 

components of the H2O2-induced HMW complex with Ubp12, TAP epitope-tagged 

strains for each protein were obtained from the TAP epitope tag strain collection 

(Ghaemmaghami et al., 2003a). First, the TAP epitope-tagged strains were 

checked to confirm the presence of a TAP epitope tag, in frame at the C-terminus 

of each individual protein. PCR analyses using gene-specific forward primers and 

a TAP reverse primer were performed (Figure 4.6A). Using these primers, strains 

containing the TAP epitope tag cassette at the correct location were predicted to 

produce PCR products of approximately 200-500bp depending on the position of 

the specific forward primer, whilst the wild type untagged strains would not 

produce a PCR product (Figure 4.6A). These analyses indicated that all the 

strains were correct. Next, the various TAP epitope-tagged strains, and cell 

expressing Ubp12-TAP, were grown to mid log phase and incubated with 2 mM 

H2O2. Proteins were extracted in the presence of NEM, and analysed via western 

blot (Figure 4.6B-C). It was predicted that if any individual TAP epitope-tagged 

protein forms an intermolecular disulphide complex with Ubp12 after H2O2 

incubation then a HMW complex would be detected in the relevant lane with 

mobility similar to the Ubp12-TAP HMW complex. Importantly, no HMW form 

similar to that of Ubp12-TAP was observed using strains expressing any of the 

TAP epitope-tagged proteins identified by mass spectrometry, although neither 

Tef2-TAP nor His4-TAP could be observed by western blot analysis (Figure 4.6B 

and C). Interestingly, Cex1-TAP did actually form a HMW complex in response to 

H2O2; however the HMW complex did not appear to have the same mobility or 

abundance as the HMW Ubp12 complex (Figure 4.6C). Cex1 is an important 

component of tRNA export from the nucleus (Nozawa et al., 2013) and, although 

these analyses are preliminary they do suggest that Cex1 may be regulated by 

oxidation. However further investigation of Cex1 oxidation is outside the scope of 

this thesis, as there is no evidence of linkage to the Ubp12 HMW complex. 

Taken together, the mass spectrometry and western blotting analyses suggest 

that Ubp12 is the only protein present in the H2O2 induced HMW complex. This  
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Figure 4.6: The potential hits from mass spectrometry analysis do not 

form the same HMW complex as Ubp12-TAP. (A) PCR analyses, using a 

generic TAP reverse primer and gene specific forward primers, was performed 

with DNA isolated from each each TAP epitope-tagged strain obtained from the 

S. cerevisiae TAP epitope‐tag collection; Aco1-TAP (FCC150), His4-TAP 

(FCC146), Tef2-TAP (FCC149), Pdc1-TAP (FCC148), Cex1-TAP (FCC135), and 

Cdc19-TAP (FCC147). The PCR products using DNA from each potential TAP 

epitope-tagged strain were analysed on a 1% agarose gel together with a wild 

type control (FCC23) using the same primers. (B) and (C) Cells expressing 

Ubp12-TAP (ELR38), Aco1-TAP (FCC150), His4-TAP (FCC146), Tef2-TAP 

(FCC149), Pdc1-TAP (FCC148), Cex1-TAP (FCC135), and Cdc19-TAP 

(FCC147) were incubated with 2 mM H2O2 for 0 (-) and 10 (+) minutes. Protein 

extracts were prepared in non-reducing conditions and separated by SDS-PAGE. 

Proteins were visualised using PɑP antibodies. * denotes H2O2 induced HMW 

complexes. † denotes protein loaded at 1/5 dilution. 
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raised the possibility that the HMW complex consists of either a homodimer of 

two Ubp12 proteins, or perhaps contains one Ubp12 with one or more 

intramolecular disulphide bonds causing the Ubp12 protein to have a slower 

mobility. However it is also important to note that the mass spectrometry 

analyses may have missed potential components of the complex. 

4.2.2.2. Analysis of Ubp12 disulphide complex 

As discussed mass spectrometry analyses suggests that only Ubp12 is present in 

the H2O2-induced HMW complex. However, whether this consists of two Ubp12 

proteins forming a complex together, or consists of Ubp12 protein with one or 

more intramolecular disulphides is unclear. Hence, to gain further insight into the 

H2O2-induced HMW complex, a diploid strain containing one copy of Ubp12-TAP 

and one copy of untagged Ubp12 was created by mating the MATa Ubp12-TAP 

strain with the BY4742 MATα wild type strain. Potential diploid strains were 

analysed by PCR to confirm the presence of both wild type UBP12, and UBP12-

TAP genes (Figure 4.7A). Correct diploid strains were predicted to contain a PCR 

product for wild type UBP12 gene at approximately 300bp, and a PCR product for 

UBP12-TAP at approximately 2900bp (Figure 4.7A). After confirmation of the 

construction of the correct Ubp12/Ubp12-TAP diploid strain, diploid cells, haploid 

cells expressing Ubp12-TAP, and wild type cells were grown to mid-log phase 

and incubated with 2 mM H2O2. Proteins were extracted in non-reducing 

conditions in the presence of NEM and analysed by western blot (Figure 4.7B). 

As expected, the H2O2-induced HMW complex was observed in the Ubp12-TAP 

extracts. Significantly, the extract from the Ubp12/Ubp12-TAP diploid also 

showed a single H2O2-inducedHMW complex (Figure 4.7B). It was predicted that 

if the HMW complex contained two Ubp12 protein then two bands were expected 

to be detected, one containing two Ubp12-TAP and one containing Ubp12-TAP 

and untagged Ubp12. This second complex, if formed, would be predicted to 

have faster mobility than the complex containing two Ubp12-TAP due to loss of 

one TAP epitope (~21 kDa in size). However, only one HMW complex was 

detected of the same mobility as the Ubp12-TAP complex in lane 4 suggesting 

that the HMW complex does not contain two proteins. However, to confirm this, 

another diploid strain was constructed whereby the two copies of Ubp12 were  
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Figure 4.7: Ubp12 does not form a homodimer in response to H2O2. (A) 

Haploid wild type (FCC63) and Ubp12-TAP (ELR38) were mated and the 

resulting diploid strain was checked by PCR analysis using specific Ubp12 

forward and reverse primers. (B) UBP12/UBP12-TAP diploid strain (FCC70), 

UBP12-TAP, and wild type control strains were incubated with 2 mM H2O2 for 0 (-

) and 10 (+) minutes. Protein extracts were prepared in non-reducing conditions 

and separated by SDS-PAGE. Proteins were visualised using PɑP antibodies. * 

denotes H2O2-induced HMW complex. (C) A Ubp12-3HA cassette was 

transformed into the UBP12/Ubp12-TAP diploid strain (FCC70) to produce the 

UBP12-3HA/UBP12-TAP diploid strain. Potential integrants were checked by 

PCR analysis and compared to control strains using specific Ubp12 forward and 

reverse primers. (D) Cells expressing Ubp12-3HA and Ubp12-TAP (Lane 3 from 

(C) FCC158), Ubp12-3HA (FCC93), and Ubp12-TAP were incubated with 2 mM 

H2O2 for 0 (-) and 10 (+) minutes. Protein extracts were prepared in non-reducing 

conditions and separated by SDS-PAGE. Proteins were visualised using PɑP 

antibodies (Ubp12-TAP) and ɑ-HA (Ubp12-3HA) * denotes H2O2-induced HMW 

complex. 
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tagged by two different C-terminal epitope tags. To construct the strain a PCR 

cassette for a 3HA epitope tag was integrated into the 3’ end of the UBP12 gene 

in the UBP12/UBP12-TAP diploid strain (described in Section 2.2.3.2). Potential 

integrants were analysed by PCR to confirm the presence of both the Ubp12-TAP 

epitope tag and Up12-3HA epitope tag in the new strain (Figure 4.7C). Correct 

diploid strains were predicted to contain a PCR product for Ubp12-TAP at 

approximately 2900bp, and a PCR product for UBP12-3HA at approximately 

2200bp. In addition, the product for untagged UBP12 strain at approximately 

300bp was predicted to be absent (Figure 4.7C). Positive strains were observed 

in lanes 3 and 4 (Figure 4.7C). After confirmation of the construction of the 

correct UBP12-3HA/UBP12-TAP diploid strain, diploid cells, and haploid cells 

expressing either Ubp12-TAP or Ubp12-3HA, were grown to mid-log phase and 

incubated with 2 mM H2O2. Proteins were extracted in non-reducing conditions in 

the presence of NEM and analysed by western blot (Figure 4.7D). Again this 

analysis suggested that the H2O2-induced HMW Ubp12 complexes only contain 

one Ubp12 protein (Figure 4.7D). If both epitope tags were present in a HMW 

complex it was predicted that a third band would appear in protein extracts from 

the diploid strain. However, the presence of only two H2O2-induced HMW 

complexes of the same mobilities as that observed in the Ubp12-3HA and 

Ubp12-TAP expressing haploid strains suggests that only one epitope-tagged 

version of Ubp12 is present in the complex. 

Taken together, mass spectrometry analyses and the protein analysis of the 

diploid strains suggest that Ubp12 forms a HMW intramolecular disulphide 

complex after treatment with H2O2.  

4.2.3. Characterisation of the role of Ubp12 catalytic cysteine 

The results obtained from mass spectrometry and western blot analyses 

suggested that the H2O2-induced HMW Ubp12 complex may be due to one or 

more intramolecular disulphide(s) bond. Ubp12 has 19 cysteine residues which 

may be part of the HMW complex. We next explored the potential cysteine 

residue(s) which may be involved in the HMW complex formation. Inactive dUb 

catalytic cysteines are unable to be oxidised due to their higher pKa value. 

However, after deprotonation, the pKa value is reduced, increasing the 
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susceptibility of the catalytic cysteine to oxidation (Cotto-Rios et al., 2012). Most 

cysteines within Ubp12 are non-catalytic, which means they may not have a pKa 

value low enough to be susceptible to oxidation. The catalytic cysteine, however, 

is deprotonated to allow cleavage, hence it was hypothesised that one of the 

cysteines that form the H2O2-induced HMW intramolecular disulphide Ubp12 

complex included the catalytic cysteine. This does not rule out the role of other 

cysteines within Ubp12 that may have the potential to form a disulphide complex, 

however as there are 19 cysteines within the protein it was suggested that the 

catalytic cysteine would be a place to start investigations. To investigate this 

hypothesis, a catalytic cysteine mutant version of Ubp12 was created whereby 

the catalytic cysteine residue (C373) was mutated to a serine residue (C373S) 

which cannot become oxidised into a disulphide complex. To create a plasmid 

expressing the Ubp12C373S from the UBP12 promoter and tagged with 3HA 

epitopes at the C-terminus, overlapping PCR fragments incorporating the 

cysteine to serine substitution were first created by PCR using wild type UBP12 

DNA as a template (see Section 2.2.4.1). The fragments were transformed into 

ubp12Δ cells, with a pRS426 vector backbone, which would recombine the 

fragment and plasmid backbone to create a pRS426 plasmid containing 

Ubp12C373S-3HA. Wild type Ubp12-3HA fragments were also recombined into the 

pRS426 plasmid. Colonies containing the potential recombined plasmids were 

analysed by PCR using M13 forward and reverse primers which bind on either 

side of the insertion site in the plasmid (see Section 2.2.4.1). Plasmids which 

produced a PCR product of the expected size were extracted from ubp12Δ 

strains and transformed into E. coli. Plasmids were isolated from E. coli and 

sequenced to confirm the correct mutation of the cysteine 373 codon (TGT) to 

serine codon (TCT). 

Sequencing analysis confirmed the construction of pRS426-Ubp12-3HA, and 

pRS426-Ubp12C373S-3HA plasmids. We next wanted to use the plasmids 

pRS426-Ubp12-3HA and pRS426-Ubp12C373S-3HA to test the oxidative potential 

of the catalytic cysteine in the Ubp12 HMW complex. Hence, we introduced both 

plasmids and empty vector into ubp12Δ cells. Following successful 

transformation the different plasmid containing strains were grown in SD minimal 

media to mid-log phase and incubated with 1 mM H2O2. Proteins were extracted 
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in the presence of NEM, and analysed by western blot (Figure 4.8A). Importantly, 

a band with the expected mobility for Ubp12-HA was observed in cells containing 

pRS426-Ubp12-3HA and pRS426-Ubp12C373S-3HA, suggesting that the plasmid 

expresses Ubp12 correctly, and the 3HA epitope tag is able to be visualised. In 

addition, the data indicates expression of wild type and mutant proteins is similar, 

suggesting that the cysteine mutation does not affect protein stability. 

Interestingly, in contrast to cells containing pRS426-Ubp12-3HA no H2O2-induced 

HMW complex was observed in the cysteine mutant plasmid containing cells, 

suggesting that the formation of the disulphide complex is dependent on the 

presence of the catalytic cysteine (Figure 4.8A). It is also interesting to note that 

the data suggests that a higher proportion of wild type Ubp12-3HA is in the HMW 

form after H2O2 treatment than was observed previously (compare Figure 4.8 with 

Figure 4.4B and Figure 3.11). However, in the case of the experiments presented 

in figure 4.8 SD minimal media was used to maintain plasmid selection, whereas 

YPD media was used in the other experiments (Figure 4.4B and 3.11). SD 

minimal media has less buffering capacity than YPD therefore the effective 

concentration of H2O2 used to treat the strains expressing Ubp12 on the pRS426 

plasmid is different to YPD media. Hence, to investigate whether the 

concentration of H2O2 was having an effect on the formation of the H2O2-induced 

HMW complex in SD media, ubp12Δ cells containing pRS426, pRS426-Ubp12-

3HA and pRS426-Ubp12C373S-3HA were grown to mid log phase in SD minimal 

media and incubated with either 0.2 mM or 1 mM H2O2. Proteins were extracted 

in the presence of NEM and analysed by western blot (Figure 4.8B). As 

expected, Ubp12-3HA, but not Ubp12C373S-3HA formed a H2O2-induced HMW 

complex after treatment with 1 mM H2O2. However, after treatment with 0.2 mM 

H2O2, there was no observable HMW complex formed (Figure 4.8B) which 

contrasts with 0.2 mM in YPD media. The basis of this difference in HMW 

formation is unclear, although it is worth noting that these analyses have only 

been performed once. Consequently further repeats are necessary to confirm the 

results observed. Taken together, a key conclusion of this work is that no H2O2-

induced HMW complex was observed in cells expressing Ubp12C373S-3HA 

(Figure 4.8B), suggesting that oxidation of the catalytic cysteine in Ubp12 is 

essential for formation of the HMW complex. 
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Figure 4.8: Ubp12 does not form a H2O2-induced HMW complex in the 

absence of the catalytic cysteine. (A) The ubp12Δ (FCC73) in BY4741 strain 

background containing either pRS426 empty vector (EV), pRS426-UBP12-3HA, 

or pRS426-UBP12C373S-3HA, were grown to mid-log phase in minimal media and 

incubtaed with 1 mM H2O2 for 0 (-) and 10 (+) minutes. Two replicates of 

plasmids were used (labelled 1 and 2). Protein extracts were prepared in non-

reducing conditions and separated by SDS-PAGE. Proteins were visualised using 

anti-HA antibodies. * indicates H2O2-induced HMW complex. (B) The ubp12Δ 

(FCC73) in BY4741 strain background containing either pRS426 empty vector 

(EV), pRS426-UBP12-3HA, or pRS426-UBP12C373S-3HA, were grown to mid-log 

phase in minimal media and treated with 0.2 or 1 mM H2O2 as indicated for 10 

minutes. Protein extracts were prepared in non-reducing conditions and 

separated by SDS-PAGE. Proteins were visualised using anti-HA antibodies. * 

indicates H2O2-induced HMW complex.  
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4.2.4. Ubp12 functions in responses to oxidative stress 

The results described above suggest that Ubp12 activity is regulated in response 

to H2O2 treatment. Although the role of this regulation is unclear it is known that 

Ubp12 is able to indiscriminately remove chains of ubiquitin from substrates, 

regardless of chain linkage type (Schaefer and Morgan, 2011), suggesting that 

Ubp12 oxidation may have a global effect on ubiquitination throughout the cell. 

Furthermore, there is still much to learn about the specific cellular functions of 

Ubp12, although some specific pathways and interacting partners have been 

identified. Hence, this section explores further relationships between Ubp12 and 

oxidative stress responses.  

4.2.4.1. Overexpression of UBP12 affects cell responses to oxidative stress 

To understand potential consequences of Ubp12 oxidation it was important to 

more fully understand the roles of Ubp12 in oxidative stress responses. As 

described in Chapter 3, ubp12Δ cells display increased resistance to diamide, 

and increased sensitivity to menadione compared to wild type cells (Figure 3.5 

and 3.6). However, in contrast, ubp12Δ cells appeared to behave similarly to wild 

type cells to H2O2 (Figure 3.4). These data suggest that Ubp12 activity is 

necessary for resistance to menadione, but that Ubp12 activity inhibits the 

response to diamide. However, as described previously, dUbs have overlapping 

roles/functional redundancy (see Section 1.1.3); hence the use of single deletion 

mutants to investigate specific phenotypes may not allow a full understanding of 

the role of Ubp12 in response to stress. To gain a better understanding of the 

functions of Ubp12 in oxidative stress responses it was decided to examine the 

effects of increasing UBP12 expression. Hence, pRS426-UBP12 was constructed 

which expresses UBP12 from its own promoter on a multicopy (~20 copies per 

cell) 2 micron plasmid (Christianson et al., 1992). To obtain pRS426-UBP12, the 

UBP12 gene including promoter and 3’ region was incorporated into the multiple 

cloning site of pRS426 plasmid using overlapping PCR fragments (described in 

Section 2.2.4.1) , however the HA C-terminal epitope tag fragment was not 

included. The overlapping PCR fragments and pRS426 vector backbone were 

transformed into wild type yeast strains to allow recombination events to create a 

full pRS426-UBP12 plasmid (described in Section 2.2.4.1). Plasmids were 
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isolated from ura+ colonies and sequenced to confirm plasmid construction. To 

examine the effects of overexpression of UBP12, wild type and ubp12Δ strains 

were transformed with either pRS426 vector or pRS426-UBP12. Next, strains 

were grown to mid-log phase in SD minimal media to maintain selection for the 

plasmid, and spotted onto SD minimal media plates containing several oxidising 

agents (Figure 4.9). Consistent with the previous analyses (Chapter 3), ubp12Δ 

cells with vector displayed increased resistance to diamide compared to wild type 

cells with vector (Figure 4.9). These results indicate that ubp12Δ cells are more 

resistant to diamide than wild type cells on both YPD media (Figure 3.5) and SD 

minimal media (Figure 4.9). Interestingly, consistent with the proposal that Ubp12 

activity inhibits responses to diamide, UBP12 overexpression in either wild type 

or ubp12Δ cells caused increased sensitivity to diamide (Figure 4.9). In contrast 

to the phenotypes observed when ubp12Δ cells were grown on YPD media 

containing H2O2, when grown on SD minimal media containing H2O2 ubp12Δ cells 

containing vector display slightly increased resistance (Figure 4.9). The basis for 

this difference in H2O2 resistance is not clear, but it is possible it is linked to the 

fact that SD media does not contain glutathione. Nevertheless, this data suggests 

that inhibition of Ubp12 may be important for responses to H2O2. This difference 

in media use may also explain the differences in increased sensitivity to 

menadione displayed by the Ubp12 mutant on YPD media (Figure 3.6) versus SD 

minimal media (Figure 4.9). On SD media, ubp12Δ cells containing vector appear 

to show less increased sensitivity to menadione. When UBP12 was 

overexpressed in wild type and ubp12Δ cells there is some evidence that this 

causes increased sensitivity to both H2O2 and menadione (Figure 4.9). However, 

these observations are not as clear cut as the effects of UBP12 overexpression 

on diamide sensitivity. Taken together with the analyses of the ubp12Δ mutant, 

these data suggest that Ubp12 activity has specific roles in response to oxidative 

stress.  

4.2.4.2. Analyses of the effects of overexpression of Ubp12C373S on responses to 

oxidative stress 

DUbs cleave the isopeptide bond between ubiquitin molecules and the substrate 

lysine by utilising the activity of the catalytic cysteine which resides in the active 

site. The potential of this catalytic cysteine to be oxidised suggests a mechanism  
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Figure 4.9: Overexpression of UBP12 affects responses to oxidative 

stress. Wild type (FCC23) and ubp12Δ (FCC75) strains in the BY4741 strain 

background containing either pRS426 empty vector (EV) or pRS426 UBP12 were 

grown to mid‐log phase, spotted onto SD minimal media containing increasing 

concentrations of H2O2, diamide, and menadione, and incubated at 30 °C. Plates 

were incubated for 3 days, unless otherwise stated, before imaging.  
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by which the catalytic activity of the dUb enzyme can be regulated. Indeed, when 

specific mammalian dUbs were incubated with a reducing agent their activity was 

activated (Lee et al., 2013), suggesting that oxidation inhibited their catalytic 

activity. However, it is possible that one or more phenotypes associated with 

deletion and/or overexpression of UBP12 may be linked to another unidentified 

activity of Ubp12 unlinked to dUb catalytic activity. To address this possibility 

pRS426-UBP12-3HA and pRS426-UBP12C373S-3HA were introduced into ubp12Δ 

cells, grown to mid log phase in SD minimal media and spotted onto plates 

containing different oxidising agents (Figure 4.10). As a further control, wild type 

and ubp12Δ cells containing UBP12-3HA or empty vector were included to 

confirm that the 3HA epitope tags did not affect Ubp12 function. As expected 

ubp12Δ cells containing vector showed increased resistance to diamide 

compared with the wild type control strain, and moreover, overexpression of 

UBP12 in wild type and ubp12Δ cells resulted in increased sensitivity to diamide 

(Figure 4.10). Importantly, ubp12Δ cells containing pRS426-UBP12-3HA had a 

similar phenotype to diamide as ubp12Δ cells expressing untagged UBP12 from 

pRS426-UBP12 suggesting the 3HA epitope tags do not affect the function of 

Ubp12 (Figure 4.10). ubp12Δ cells containing pRS426-UBP12C373S-3HA 

displayed similar increased resistance to diamide as ubp12Δ cells containing 

vector (Figure 4.10). This result suggests that the increased resistance of cells 

lacking Ubp12 to diamide is due to loss of the catalytic activity of Ubp12. The 

effects of overexpression of UBP12 on the resistance/sensitivity of ubp12Δ cells 

to H2O2 and menadione are smaller than those observed using diamide (Figure 

4.9 and 4.10). Nevertheless, the data suggests that ubp12Δ cells expressing 

pRS426-UBP12C373S-3HA have similar phenotypes in response to H2O2 and 

menadione as ubp12Δ cells containing vector (Figure 4.10). Taken together, 

these data suggest that the effects of loss or overexpression of Ubp12 on 

responses to several oxidising agents is linked to the catalytic activity of the dUb 

rather than another function of Ubp12. However to further confirm these results it 

would be useful to examine the effects of expression of UBP12 and UBP12C373S 

from a CEN plasmid. 
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Figure 4.10: Phenotypes associated with overexpression of wild type 

UBP12 require the catalytic cysteine. Wild type (FCC23) and ubp12Δ 

(FCC75) strains in the BY4741 strain background containing either pRS426 

empty vector (EV), pRS426 UBP12, pRS426 UBP12-3HA, or pRS426 

UBP12C373S-3HA  were grown to mid‐log phase, spotted onto SD minimal media 

containing increasing concentrations of H2O2, diamide, and menadione, and 

incubated at 30°C. Two replicates of plasmids were used (labelled 1 and 2).  

Plates were incubated for 3 days before imaging.  
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4.2.4.3. Analyses of global ubiquitin levels after oxidative stress 

It has been shown previously that Ubp12 can indiscriminately remove ubiquitin 

chains from proteins, regardless of the linkage type (Schaefer and Morgan, 

2011). It was therefore possible that Ubp12 oxidation regulates global 

ubiquitination. For example, if oxidised Ubp12 was no longer able to de-conjugate 

ubiquitin signals, it might be predicted that global ubiquitination would increase 

after H2O2 stress in a Ubp12-dependent manner. However, nobody has 

compared global ubiquitin levels in BY4741 and W303 backgrounds in S. 

cerevisiae before and after H2O2 and diamide treatment. Therefore, it was 

important to establish the effects of H2O2 and diamide stress on global 

ubiquitination levels in the BY4741 and W303 strain backgrounds. Wild type cells 

in both strain backgrounds were grown to mid-log phase and incubated with 3 

mM diamide or 2 mM H2O2 for ten minutes. Proteins were extracted in non-

reducing conditions in the presence of NEM and analysed by western blot, 

(Figure 4.11A and B). Given the predicted slow mobility of heavily ubiquitinated 

substrates, the stacking gel was included in the western analyses.  

Significantly, after incubation with diamide no changes in the levels of the HMW 

substrates or free ubiquitin levels were detected (Figure 4.11A), suggesting that 

diamide does not induce global ubiquitination changes in either of the W303 and 

BY4741 strain backgrounds. Interestingly however, after incubation with H2O2 the 

levels of HMW ubiquitin conjugated substrates were induced (Figure 4.11B). 

Furthermore, this induction coincided with a decrease in the levels of free 

ubiquitin (Figure 4.11B). Hence these results suggest that H2O2 regulates the 

global cellular levels of ubiquitination in both strain backgrounds. It is striking that 

free ubiquitin is differently affected by H2O2 and diamide. After treatment with 

diamide the levels of free ubiquitin remain constant; however after incubation with 

H2O2 the levels of free ubiquitin are suggested to decrease, however further 

quantification would be necessary to confirm the precise abundance. It is 

possible that H2O2 may inhibit one of the currently unknown dUbs which process 

immature ubiquitin into free ubiquitin, which results in the loss of free ubiquitin. 

However the rapid change in protein level suggests that this may not be the case. 

It has been suggested in mammalian cells that after H2O2 treatment the levels of  
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Figure 4.11: H2O2, but not diamide, affects global ubiquitination. Wild type 

(WT) cells in the BY4741 (FCC23) and W303 (FCC1) strain backgrounds were 

incubated with (A) 3 mM diamide or (B) 2 mM H2O2 for 0 (-) and 10 (+) minutes. 

Protein extracts were prepared in non-reducing conditions and separated by 

SDS-PAGE. Ubiquitinated proteins were visualised using ɑ-ubiquitin antibodies. 

As a loading control in (B) Skn7 was visualised using ɑ-Skn7. (C) Wild type (WT) 

cells in the BY4741 and W303 strain backgrounds were incubated with 0.2 mM 

H2O2 for 0-60 minutes and samples were taken as indicated. Protein extracts 

were prepared and visualised as above (A and B). As a loading control Cdc28 

was visualised using ɑ-Cdc28 antibodies. 
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free ubiquitin reduce (Salazar et al, 2009), however the authors do not go into 

detail about the reasons behind this or the potential mechanisms involved. It is of 

interest to note that the levels of free SUMO in mammalian cells are observed to 

increase after incubation with H2O2 (Bossis and Melchior, 2006), suggesting that 

the results observed in the present data are specific to ubiquitin, or potentially 

specific to S. cerevisiae. Many papers focus on the change to poly-ubiquitination 

or HMW forms of ubiquitin after H2O2 stress, therefore further investigations into 

the nature of the loss of free ubiquitin would be of high interest.  The nature of the 

decrease in abundance in free ubiquitin after H2O2 treatment is unclear, but the 

potential for oxidative stress to regulate the pool of free ubiquitin is of interest for 

further investigation. 

It is intriguing that Ubp12 forms a HMW complex after H2O2 but not diamide 

treatment, and that this appears to mimic effects of these oxidising agents on 

global ubiquitination. This suggests a potential connection between global 

ubiquitination and Ubp12 oxidation. As described previously (Figure 4.3), Ubp12 

was also found to form the HMW complex in response to 0.2 mM H2O2. 

Furthermore, Ubp12 HMW complex formation peaked at ten minutes following 

addition of 0.2 mM H2O2 and this was reversed back to basal levels by 60 

minutes (Figure 4.3D). Hence, it was interesting to next examine the potential 

effects of 0.2 mM H2O2 on global ubiquitination over a similar timescale to further 

explore the relationship between Ubp12 oxidation and global ubiquitination. Wild 

type cells, in both the BY4741 and W303 strain backgrounds, were incubated 

with 0.2 mM H2O2 for 1 hour, with samples taken at 0, 10, 30, and 60 minutes. 

Proteins were extracted in non-reducing conditions in the presence of NEM and 

analysed via western blot, including the stacking gel (Figure 4.11C). This 

experiment was only performed once, and hence the results are preliminary. 

However, results suggest that the levels of HMW ubiquitin-conjugated substrates 

increase after incubation with 0.2 mM H2O2 (Figure 4.11C). Interestingly, the 

levels do not seem to peak and/or decrease in a manner that mimics Ubp12 

oxidation, suggesting the two events may be unlinked. Unfortunately, however, 

free ubiquitin levels also cannot be observed in this experiment. Hence it will be 

important to repeat this experiment before further conclusions are made.  
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Although the pattern of global ubiquitination did not mirror changes in the patterns 

of Ubp12 oxidation/HMW formation at 0.2 mM H2O2 this did not rule out the 

possibility that Ubp12 activity regulates H2O2 induced changes to ubiquitination. 

Hence, to further examine the potential role of Ubp12, wild type and ubp12Δ 

strains in both the W303 and BY4741 strain backgrounds were incubated with 2 

mM H2O2. Proteins were then extracted in non-reducing conditions in the 

presence of NEM and analysed by western blot, including the stacking gel 

(Figure 4.12). However, in both strain backgrounds the levels of HMW ubiquitin-

conjugated substrates and free ubiquitin appeared to show no differences 

between the wild type and ubp12Δ strains, suggesting that Ubp12 activity does 

not have a major impact on global ubiquitination in response to H2O2. In contrast 

to data presented here, a recent paper revealed that ubp12Δ strain has an 

increase in conjugated ubiquitin in unstressed cells, but did not affect free 

ubiquitin levels (Simões et al., 2018). The reason behind this discrepancy in 

results is unknown; however differences in strain background, growth conditions, 

and/or antibodies may play a role. However the present study suggests that 

Ubp12 is not involved in the regulation of ubiquitination after H2O2 stress. 

4.2.4.4. Analysis of known interacting partners of Ubp12 

Although no specific linkage of changes in global ubiquitination with Ubp12 

function was observed in response to H2O2, it remained possible that specific 

proteins may be regulated by Ubp12 oxidation. However, unfortunately to date 

only 10 known physical interactors with Ubp12 have been identified (according to 

the Saccharomyces cerevisiae Genome Database). Hence, as to understand the 

function of Ubp12 oxidation it will be important to identify all of the potential 

Ubp12 interactions by large scale analyses. Nevertheless, it was decided to 

investigate whether a few of the small number of identified interactors are 

affected by H2O2. Interestingly, Ubp12 is known to localise to both the nucleus 

and the cytoplasm, therefore candidate proteins were selected for further 

investigation from each of these locations. In particular Gcn5 and Fkh1 are 

nuclear proteins which both function in pathways known to be regulated by 

ubiquitination. Fkh1 is a forkhead family transcription factor which regulates   
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Figure 4.12: Loss of Ubp12 does not appear to affect global 

ubiquitination. Wild type (WT) and ubp12Δ cells in the (A) BY4741 (FCC23 and 

FCC75) and (B) W303 (FCC1 and FCC10) strain backgrounds were grown to 

mid-log phase and then incubated with 2 mM H2O2 for 0 (-) and 10 (+) minutes. 

Protein extracts were prepared in non-reducing conditions and separated by 

SDS-PAGE. Ubiquitinated proteins were visualised using ɑ-ubiquitin antibodies. 

As a loading control Skn7 was visualised using ɑ-Skn7 antibodies. 
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transcriptional elongation (Morillon et al., 2003) and is important for cell cycle 

progression from G2-M phase (Coïc et al., 2006). Gcn5 is a catalytic subunit of 

ADA and SAGA histone acetyltransferase complexes which acetylates lysines on 

H2B and H3 (Grant et al., 1997; Hoke et al., 2008). Interestingly, Gcn5 has also 

been linked to the Ubl SUMO pathway, however this ubiquitin-like modification 

does not regulate the enzymatic activity of Gcn5 (Sterner et al., 2006). Puf3 is 

another protein known to interact with Ubp12 which, in contrast to Gcn5 and 

Fkh1, localises to the cytoplasmic side of the mitochondrial outer membrane 

(García-Rodríguez et al., 2007). Puf3 binds to mRNAs and initiates degradation 

(Gerber et al., 2004), and has also been linked to the Arp2/3 complex during 

mitochondrial movement (García-Rodríguez et al., 2007). Puf3 has also been 

observed to regulate mitochondrial morphology and biogenesis (García-

Rodríguez et al., 2007). Strains expressing TAP epitope-tagged versions of the 

selected proteins were obtained from the TAP epitope tag strain collection 

(Ghaemmaghami et al., 2003a). Next, cells expressing either Ubp12-TAP, Fkh1-

TAP, Gcn5-TAP, or Puf3-TAP were grown to mid-log phase, treated with 0.2 mM 

H2O2 for 1 hour, and samples taken for protein extracts at 0, 10, and 60 minutes. 

Proteins were extracted in non-reducing conditions in the presence of NEM and 

analysed by western blot (Figure 4.13A). As expected, Ubp12-TAP formed a 

H2O2-induced HMW complex after 10 minutes, which contained ~55% of total 

Ubp12, which reduced to ~40% after 60 minutes (Figure 4.13B). Interestingly, the 

percentage of Ubp12 HMW complex after 60 minutes had not returned to basal 

levels (Figure 4.13B) in contrast to previous results (Figure 4.3B). The basis of 

this difference is not clear, but may possibly be linked to the use of different 

epitope tags. For example, perhaps TAP epitope-tagged Ubp12 is more resistant 

to reduction of the HMW complex. In addition, it is important to note that these 

data with Ubp12-TAP are preliminary and require more repeats to confirm the 

results. In contrast to Ubp12, neither Fkh1, Gcn5, nor Puf3 appear to form H2O2-

induced HMW complexes (Figure 4.13A). Interestingly, however, preliminary 

quantification (from only one experiment) revealed that the relative abundance of 

each protein did appear to change after incubation with H2O2. In particular, the 

abundance of Fkh1 increased after incubation with H2O2 for ten minutes, and was 

maintained at 60 minutes (Figure 4.13C). Furthermore, the levels of Gcn5 also 

appeared to increase after H2O2 incubation, but in this case, had decreased 
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Figure 4.13: The relative abundance of known interacting partners of 

Ubp12 are affected by H2O2. (A) Cells expressing Ubp12-TAP (ELR38), Fkh1-

TAP (FCC179), Gcn5-TAP (FCC178), and Puf3-TAP (FCC176) were incubated 

with 0.2 mM H2O2 for 0, 10, and 60 minutes as indicated. Protein extracts were 

prepared in non-reducing conditions and separated by SDS-PAGE. Proteins were 

visualised using PɑP antibodies. * denotes H2O2-induced HMW complex of 

Ubp12. Arrows show a non-specific band used for protein abundance 

quantification. (B) The band intensities of Ubp12-TAP (from A) were quantified 

using ImageQuant and the bars show the percentage of HMW complex with 

respect to total Ubp12 in each lane. (C) The band intensities for TAP epitope-

tagged proteins (from A) were quantified using ImageQuant. Bars show total 

amount of protein at each time point, related to the non-specific band denoted by 

the arrow (in A), and normalised to 0 minutes for each protein.  
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from this peak by 60 minutes (Figure 4.13C). At this stage it is not clear whether 

these changes in abundance are linked in some way to HMW complex formation 

of Ubp12 but it is intriguing that the preliminary data suggests that the abundance 

of these nuclear proteins changes with a timing that mimics the formation of the 

Ubp12 HMW complex. In contrast to Fkh1 and Gcn5, Puf3 levels appeared to 

decrease following H2O2 treatment (Figure 4.13C). Hence this preliminary 

analysis suggests that the abundance of several Ubp12 interacting proteins, (and 

Ubp12 itself) changes after H2O2 treatment and hence further experiments will 

focus on investigating whether there is a relationship between these changes and 

formation of Ubp12 HMW complex. 

Taken together, these data suggest that Ubp12 catalytic activity influences the 

responses of cells to several oxidising agents. We also observed that the 

formation of the Ubp12 HMW complex is dependent on the catalytic cysteine, and 

that Ubp12 likely forms a H2O2-induced intramolecular disulphide bridge between 

the catalytic cysteine and another cysteine in Ubp12. Furthermore, global 

ubiquitination is induced by H2O2, but at this stage it is unclear if this is linked to 

inhibition of Ubp12 activity. Interestingly, the abundance of several Ubp12 

interacting proteins is affected by H2O2. Hence, the data suggests that Ubp12 

plays key roles in oxidative stress responses.  

 

4.3. Discussion 

Ubp12 is a relatively uncharacterised S. cerevisiae USP dUb, and many specific 

roles and regulation of Ubp12 are unknown. Work in the Chapter 3 of this thesis 

revealed that a striking proportion of Ubp12 was specifically modified by H2O2 

into a HMW complex. In this chapter the main objective was to investigate the 

H2O2-induced HMW complex of Ubp12, and also begin to investigate the roles 

and regulation of Ubp12 in response to oxidative stress. Excitingly, here we found 

Ubp12 to be oxidised by H2O2, and importantly we found that Ubp12 is oxidised 

differentially depending on the concentration of H2O2 and moreover that this 

oxidation is the result an intramolecular disulphide complex which requires the 

catalytic cysteine. It was also observed that Ubp12 activity inhibited cellular 

growth after diamide and H2O2 stress, potentially suggesting a mechanism by 
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which Ubp12 was inhibited to allow cellular response to these oxidising agents. 

Interestingly, it was observed that Ubp12 was regulated by the thioredoxin 

pathway and preliminary investigations into specific Ubp12 substrates identified 

that Ubp12 oxidation may regulate the abundance of certain Ubp12 interacting 

proteins. 

As described previously, cells must be able to sense between the different types 

and levels of oxidising agent in order to elicit the appropriate downstream 

response (see Section 1.2.5). As described in Chapter 3, Ubp12 was found to 

form a HMW complex specifically in response to H2O2 and none of the other 

oxidising agents that were tested. This raises the possibility that Ubp12 oxidation 

may be a component of a signal transduction pathway to sense H2O2 stress. 

Furthermore, experiments also revealed that Ubp12 forms the HMW complex 

with kinetics that depend on the concentration of H2O2. For example, after 

incubation with high levels of H2O2, the Ubp12 HMW complex forms very rapidly, 

and moreover, the amount of Ubp12 contained in the complex continues to 

increase over the 60 minute time course. In contrast, when cells were exposed to 

lower levels of H2O2, the Ubp12 HMW complex formed at a slower rate, and 

reached a lower peak than that observed using higher concentrations of H2O2. 

Interestingly, after treatment with low levels of H2O2 the Ubp12 HMW complex 

disappeared over time, returning fully to basal levels by 60 minutes. At this point 

is unknown whether the HMW complex would also disappear using a longer time 

course after exposure to higher levels of H2O2. One likely explanation for this loss 

of Ubp12 HMW complex is that Ubp12 is reduced as the cells adapt to the levels 

of H2O2. However, at this stage another possibility is that the HMW complex is 

unstable and degraded and thus the loss detected may reflect diminished 

oxidation of Ubp12 by H2O2. However, qualitative analysis of the total level of 

Ubp12 across the time course suggests that protein levels remain constant. 

Hence, the data is consistent with a model whereby Ubp12 is regulated by 

oxidation in response to different levels of H2O2.  

To better understand the role of Ubp12 oxidation it was important to attempt to 

characterise the H2O2-induced HMW complex and also potentially identify any of 

the cysteines of Ubp12 involved. Importantly, the data from mass spectrometry 
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and western blot analyses suggested that the HMW complex likely contains one 

molecule of Ubp12 and, furthermore, that the increased mobility of Ubp12 was 

linked to the formation of an intramolecular disulphide(s). It is intriguing that 

USP19 has previously been shown to form a HMW disulphide complex after 

incubation with H2O2 (Lee et al., 2013). Moreover, when USP19 is compared to 

the S. cerevisiae genome, Ubp12 is the dUb with the highest protein similarity. 

Hence it is tempting to speculate that Ubp12 is forming a HMW complex similar 

to that observed with USP19, given the similar effects of H2O2 on the mobility of 

the dUb. However, in the case of USP19, the authors only proposed the 

presence of a possible intermolecular disulphide complex, although this was not 

characterised. Furthermore, no potential cysteine(s) involved in the complex 

formation were identified. DUbs tend to be cysteine-rich proteins, and indeed 

Ubp12 contains 19 cysteine residues, any of which have the potential to be 

oxidised and form an intramolecular disulphide bond(s). The catalytic cysteine in 

dUbs is deprotonated to allow catalytic activity whereby the cysteine can attack 

the isopeptide bond between the ubiquitin moiety and target lysine (see Section 

1.1.3). Importantly, deprotonation reduces the pKa value raising the possibility 

that this cysteine may be involved in disulphide bond formation. Excitingly, point 

mutation of the Ubp12 catalytic cysteine, C373, to serine prevented formation of 

the H2O2-induced HMW complex. Hence this suggests that C373 is part of the 

disulphide. However, it is also possible that the HMW complex may also be 

another form of oxidation such as a sulphenylamide, which could be confirmed by 

further mass spectrometry analyses. Interestingly, using software to predict 

protein structure, no other cysteine residue is predicted to be in close enough 

proximity to C373 of Ubp12 to be able to form a disulphide bridge. However it is 

worth noting that certain dUbs have been found to undergo conformational 

changes after binding to ubiquitin (Turcu et al., 2009). For example, the 

mammalian dUb USP7 undergoes conformational change to align the catalytic 

triad to allow hydrolysis (Hu et al., 2002). Furthermore, the active site of another 

mammalian dUb, USP14, is blocked by a loop which has to be displaced to allow 

deubiquitination (Hu et al., 2005), and another dUb, USP8 requires movement of 

a finger domain to allow binding of ubiquitin to the active site (Avvakumov et al., 

2006).  Interestingly, Ubp12 contains a large insertion between catalytic regions 

(Turcu et al., 2009), and although conformational changes of Ubp12 have not 
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been explored, it is possible that under certain structural conditions, that a 

cysteine in one of the insertion regions may be in close proximity to the catalytic 

cysteine and thus be able to form a disulphide bridge after H2O2 stress. As a next 

step in the investigation of Ubp12 it would be useful to identify which cysteine in 

Ubp12 is forming an intramolecular disulphide with C373. For example, further 

mass spectrometry analyses where Ubp12 HMW complex has been treated with 

an alkylating agent to cap reduced thiols, followed by addition of a reducing agent 

to reduce disulphide bridges could help to identify the possible target cysteine(s) 

which forms an intramolecular disulphide with the C373. Importantly, the inclusion 

of the catalytic cysteine in the disulphide complex suggests that oxidation of 

Ubp12 by H2O2 inhibits the deubiquitinating activity of the dUb. One role of this 

oxidation may be to prevent the further oxidation of the catalytic cysteine to an 

irreversible modification, in other words acting to protect Ubp12. However, it is 

also possible that the role of this oxidation is to inhibit dUb activity. Interestingly, 

support for this hypothesis comes from the observation that overexpression of 

UBP12 causes an increase in sensitivity of wild type cells to H2O2 (Figure 4.10). 

However, oxidation serves two purposes both protection and regulation. For 

example, the regulation of mammalian deSUMOylases by H2O2 forms a sensing 

mechanism, and subsequent regulation, of the SUMO pathway (Bossis and 

Melchior, 2006). Further studies will be required to resolve these possibilities for 

Ubp12 oxidation. 

Intracellular protein oxidation must be tightly regulated to maintain redox states. 

The thioredoxin system consists of multiple enzymes with redox capabilities to 

allow the reduction of specific substrates (see Section 1.2.4.2.3). Thioredoxin 

reductase (Trr) has been characterised as a rate limiting step in this system 

(Brown et al., 2013; Tomalin et al., 2016). As a consequence, trr1Δ mutants have 

fully oxidised thioredoxin, preventing reduction of oxidised thioredoxin substrates. 

Hence it was hypothesised that if Ubp12 oxidation was regulated by the 

thioredoxin system, the Ubp12 HMW complex would be dysregulated in a trr1Δ 

mutant. Analyses of the formation of the Ubp12 HMW complex in a trr1Δ mutant 

suggested that Ubp12 was oxidised similarly to a wild type strain background. 

However surprisingly, the total abundance of Ubp12 was significantly reduced in 

the trr1Δ mutant. In particular the abundance of Ubp12 in the trr1Δ strain 
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background in unstressed conditions was ~63% of that in a wild type background 

strain. Moreover, this difference in abundance increased after H2O2 treatment, 

where the levels of Ubp12 in the trr1Δ strain were ~35% of the wild type strain. 

Taken together, these data suggest that the thioredoxin system is actually crucial 

in maintaining Ubp12 stability in both stressed and unstressed conditions. The 

basis of this effect of the thioredoxin system on Ubp12 stability is unclear. 

However, it is worth noting that thioredoxin peroxidases (peroxiredoxin) and 

thioredoxin have been linked to molecular chaperone activity (Jang et al., 2004). 

For example, hyperoxidation of the 2-Cys peroxiredoxin Tsa1 in S. cerevisiae by 

oxidative stress activates molecular chaperone activity and reduces its 

peroxidatic activity (MacDiarmid et al., 2013). It would therefore be interesting to 

investigate the potential role of Tsa1 in regulating Ubp12 HMW complex 

formation and abundance of Ubp12.  

Interestingly, only ~50% of Ubp12-3HA is oxidised after treatment with H2O2. It is 

possible that only a subset of total cellular Ubp12 is being oxidised. Ubp12 is 

known to localise to the cytoplasm and the nucleus, therefore it is possible that 

only Ubp12 in one localisation is regulated by oxidation. To date, only 10 proteins 

have been identified as binding partners of Ubp12, although interestingly these 

include cytoplasmic and nuclear located proteins. Hence, to begin to explore the 

role of oxidation of Ubp12 example proteins were selected from each cellular 

location for further investigation. The nuclear Fkh1 and Gcn5 proteins were 

selected due to their links to pathways known to be regulated by ubiquitination. 

Fkh1, a forkhead family transcription factor, is ubiquitinated by APCCdc20 to initiate 

Fkh1 degradation and thus promote cell cycle progression through mitosis and 

G1 phase (Malo et al., 2016). Gcn5 is a sub-unit component of ADA and SAGA 

histone acetyltransferase complexes. Histone regulation has been linked to 

ubiquitination previously (Zou and Mallampalli, 2014), and interestingly, Gcn5 is 

SUMOylated, however this is thought to not regulate Gcn5 histone 

acetyltransferase function and instead has a role in transcriptional regulation 

(Sterner et al., 2006). Puf3, a mitochondrial outer membrane protein which faces 

into the cytoplasm, is an mRNA binding protein which interacts with mRNA 

transcripts and transports them to the mitochondria. Puf3 has been identified to 

inhibit mitochondrial biogenesis as Puf3 levels decrease after induction of 
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respiratory metabolism which promotes mitochondrial biogenesis (García-

Rodríguez et al., 2007). Preliminary investigations into the protein levels after 

treatment with low concentrations of H2O2 suggested that protein abundance of 

Fkh1, Gcn5, and Puf3 all changed. Interestingly, the pattern of change to protein 

abundance mimicked that of Ubp12 oxidation. However after these preliminary 

investigations it is not clear whether the change in protein abundance is due to 

Ubp12 oxidation, Ubp12 abundance, or the H2O2 treatment independent of 

Ubp12. In addition, since work on this thesis project began, Ubp12 has been 

identified to physically interact with more proteins and investigations into their 

regulation by Ubp12 would also be of interest. 

It is interesting to note that recent studies have linked Ubp12 to mitochondrial 

regulation (Anton et al., 2013, Simões et al., 2018). Furthermore, Ubp12 

regulated mitochondrial dynamics by working in opposition to another dUb, Ubp2 

in S. cerevisiae (Figure 4.14). It was demonstrated that Ubp2 and Ubp12 both 

remove specific ubiquitin signals from the mitofusin Fzo1, regulating Fzo1 levels 

and resulting in either mitochondrial fission or fusion (Anton et al., 2013). In 

particular, Ubp2 recognises Fzo1 targeted for destruction and removes these 

destabilising chains, effectively promoting mitochondrial fusion. On the other 

hand, Ubp12 removes ubiquitin chains which promote Fzo1 stability and as such 

promotes mitochondrial fission (Anton et al., 2013) (Figure 4.14) which is vital for 

mitophagy (Mao and Klionsky, 2013). Ubp12 has more recently been shown to 

regulate Ubp2 stability, suggesting that the dUbs work in a hierarchy to regulate 

mitochondrial dynamics (Simões et al., 2018). Interestingly it was observed in the 

present study that Ubp2 becomes modified in response to H2O2 (Chapter 3, 

Figure 3.7). However, the detection of the modification of Ubp2 was inconsistent. 

As described in Chapter 3, a study published since work on this thesis began 

revealed that the oxidation of Ubp2 in response to H2O2 is linked to the regulation 

of cellular K63 poly-ubiquitin levels (Silva et al., 2015a). However, no specific 

modification was identified in the 2015 study. Here, it was hypothesised that if the 

H2O2-induced Ubp2 modification was oxidation, the HMW shift might be reduced 

by a reducing agent. Indeed, after incubation of protein extracts with β-

mercaptoethanol, the H2O2-induced HMW form of Ubp2 was no longer detected 

(Figure 4.15A), suggesting that Ubp2 does become oxidised into a HMW form by  
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Figure 4.14: Regulation of mitochondrial morphology by Ubp2 and 

Ubp12. Fzo1 can be ubiquitinated differently to promote different mitochondrial 

morphology. Ubiquitination can either promote degradation of Fzo1 (destabilising 

chains) or promote Fzo1 stability (stabilising chains). Ubp2 removes the 

destabilising ubiquitin signals and promotes mitochondrial fusion. In contrast, 

Ubp12 removes stabilising chains from Fzo1, thus promoting mitochondrial 

fission. Adapted from (Anton et al., 2013). 
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Figure 4.15: Ubp2 oxidised in response to H2O2. (A) Cells expressing Ubp2-

TAP (ELR29) in the BY4741 strain background were incubated with 2 mM H2O2 

for 0 (-) and 10 (+) minutes. Protein extracts were prepared in reducing (+ β-

mercaptoethanol) and non-reducing conditions and separated by SDS-PAGE. 

Proteins were visualised using PɑP antibodies. * denotes H2O2-induced 

complexes. (B)Cells expressing Ubp12-TAP (ELR38) and Ubp2-TAP (ELR29) 

were grown to mid-log phase and treated with 0.2 mM H2O2 for 0, 10, and 60 

minutes. Protein extractions were prepared in non-reducing conditions in the 

presence of NEM. Proteins were separated by SDS-PAGE and visualised by 

western blotting using peroxidase anti-peroxidase antibodies. * indicates HMW 

modification. (C) The band intensities of Ubp12-TAP and Ubp2-TAP (from B) 

were quantified using ImageQuant and the bars show the percentage of HMW 

complex with respect to either total Ubp12 or total Ubp2 in each lane. (D) The 

band intensities for Ubp12-TAP and Ubp2-TAP (from B) were quantified using 

ImageQuant. Bars show total amount of protein at each time point, related to the 

non-specific band denoted by the blue arrow (in B), and normalised to 0 minutes 

for each protein. 
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H2O2. In the experiments described in Chapter 3, a time point of 10 minutes after 

H2O2 addition was chosen to analyse possible modifications of the dUbs. Hence, 

it was possible that the explanation for the inconsistency of detection of Ubp2 

modification was due to the fact that Ubp2 modification, in contrast to Ubp12, was 

still at the early stages of formation. Therefore, to test this possibility cells 

expressing Ubp2-TAP were incubated with H2O2 over a longer time frame to 

investigate the timing of Ubp2 oxidation. Interestingly, and in contrast to Ubp12 

which reached a maximum peak of HMW formation at 10 minutes and decreased 

in levels by 60 minutes, Ubp2 oxidation was observed to increase over the 60 

minutes time course (Figure 4.15C). Thus these results suggest that the kinetics 

of oxidation of Ubp2 and Ubp12 by H2O2 is different. It has been described 

previously that Ubp12 regulates Ubp2 stability (Simões et al., 2018). Hence it 

was possible that inactivation of a proportion of Ubp12 by oxidation might cause 

an increase in Ubp2 stability, due to reduced Ubp12 dependent deubiquitination 

of Ubp2. However, preliminary investigations of Ubp2 levels after oxidation of 

Ubp12 suggested a small decrease protein abundance (Figure 4.15D). However 

this result is preliminary and further studies are needed.  

Mitochondria are intrinsically linked to ROS levels, and have been shown 

previously to change their morphology depending on the levels of ROS in the 

environment (Zemirli et al., 2018). Under mild stress, mitochondria form fused 

chains, which allows increase of oxidative phosphorylation and ATP production to 

overcome the cellular stress. However, in contrast, after severe stress, 

mitochondria undergo fission and become more fragmented to allow damaged 

mitochondria to undergo mitophagy and be removed from the environment 

(Zemirli et al., 2018). Importantly mitochondrial homeostasis is a dynamic event 

which occurs naturally in the cell and readily adapts to the environment. Based 

on the observations about Ubp2 and Ubp12 oxidation described in this thesis 

work, together with the previous study demonstrating that Ubp2 and Ubp12 act in 

opposition to regulate mitochondrial dynamics, we propose a model whereby the 

relative sensitivities of Ubp2 and Ubp12 to oxidation by H2O2 stress regulates 

whether mitochondria undergo fission or fusion. In the model, under mild H2O2 

stress Ubp12 becomes oxidised and inactivated thus promoting fusion. However 

in more prolonged exposure, Ubp12 oxidation is reversed whist Ubp2 oxidation  
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increases, potentially inactivating Ubp2. In this case mitochondrial fission would 

be promoted. It would be interesting to investigate whether mitochondrial 

dynamics support this model using microscopic analyses. It will also be important 

to attempt to establish in which cell compartments the Ubp2 and Ubp12 dUbs 

become oxidised.  

In the work described in this chapter, Ubp12 was found to be rapidly oxidised by 

H2O2 forming a HMW intramolecular disulphide complex in a concentration 

dependent manner. Furthermore, the catalytic cysteine was shown to be 

essential for this complex suggesting that it forms an intramolecular disulphide 

with another unidentified cysteine residue in Ubp12. It was also revealed that 

Ubp12 abundance is regulated by the thioredoxin system, under stressed and 

unstressed conditions. Excitingly, the analysis of Ubp12 and Ubp2 led to the 

proposal of a model for mitochondrial morphology regulation whereby the 

differential sensitivities of Ubp12 and Ubp2 may regulate mitochondrial dynamics 

in response to H2O2 stress. Importantly, Ubp12 and Ubp2 have mammalian 

homologs, USP15 and USP28 respectively. Mitochondrial regulation is a key 

aspect of many diseases as mitochondrial fission is necessary for the removal of 

damaged organelles by mitophagy, it would therefore be extremely interesting to 

examine the oxidation, and potential regulation, of these proteins in mammalian 

cells.  
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Chapter 5: Analyses of the roles and regulation of the dUb 

Ubp15 in stress responses and cell cycle regulation 

 

5.1. Introduction 

Ubp15 is a member of the S. cerevisiae USP dUb family, which function by the 

activity of an active site catalytic cysteine. Although relatively little is currently 

known about the activity of Ubp15, previous work has revealed that Ubp15 is a 

highly active dUb (Bozza and Zhuang, 2011) which localises to the cytoplasm 

and the peroxisome (Debelyy et al., 2011). Excitingly, work presented in Chapter 

three in this thesis showed that Ubp15 was modified into HMW complexes after 

incubation with the oxidising agent’s diamide and H2O2, but not menadione. It is 

striking that the stress-induced HMW forms of Ubp15 appear similar in mobility to 

those observed when Cdc34 also forms a HMW complex after treatment with 

H2O2 and diamide, but not menadione (Doris et al., 2012). This HMW complex of 

Cdc34 involves an intermolecular disulphide with the E1 Uba1 and moreover, is 

linked with oxidative stress-induced cell cycle arrest (see Section 1.3.3). 

Interestingly, some previous work has also linked Ubp15 with cell cycle regulation 

through direct physical interaction with Cdh1 (Bozza and Zhuang, 2011), a WD40 

repeat containing protein which activates the key cell cycle E3, APC/C (see 

Section 1.1.1.3.1). Ubp15 interacts with Cdh1 at both N- and C- terminal 

domains. However, the interaction with Cdh1 does not appear to affect Ubp15 

activity, leading to the suggestion that Cdh1 may target Ubp15 to substrates 

(Bozza and Zhuang, 2011). Interestingly Cdh1 determines substrate specificity 

for the APC/C complex, whereby Cdh1 initiates the interaction with many cell 

cycle promoting proteins including the B-type cyclin Clb5 (Nagai and Ushimaru, 

2014). It was proposed that the interaction of Ubp15 and Cdh1 may tightly 

regulate cell cycle linked protein substrates of the APC/C. The potential for 

Ubp15 to regulate the cell cycle, and the similarity between Ubp15 HMW 

complexes Cdc34-dependent HMW complexes observed previously raised the 

exciting possibility that Ubp15 may be modified as a component of a mechanism 

to regulate cell cycle progression in response to oxidative stress. Hence, this 
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Chapter aimed to understand the nature of Ubp15 HMW complexes, to 

investigate the regulation of Ubp15 modification and to explore further the 

potential regulation of the cell cycle by Ubp15.   

 

5.2. Results 

5.2.1. Analyses of the H2O2- and diamide-induced HMW forms of Ubp15. 

As described previously, proteins can be modified in multiple ways which result in 

changes to protein mobility when analysed by western blot (Carruthers et al., 

2015). As described in Chapter three, Ubp15 was found to form HMW complexes 

in response to both diamide and H2O2. Furthermore, the work revealed that 

Ubp15 appeared to be modified differently by diamide and H2O2 in the BY4741 

strain background compared with the W303 strain background (Figure 3.13). 

Interestingly, previous studies revealed that BY4741 strains have a different 

response to oxidative stresses to W303 (see Section 1.2.4.3). Furthermore, given 

the similarity of the responses of Ubp15 and Cdc34 to oxidative stress, this raised 

the possibility that the Ubp15 HMW complexes were due to oxidation induced by 

H2O2 and diamide. Hence to investigate whether the HMW modifications of 

Ubp15 induced by diamide and H2O2 were oxidation, cells expressing TAP 

epitope tagged Ubp15 were treated with either 3 mM diamide or 2 mM H2O2. 

Protein extracts were prepared in either reducing or non-reducing conditions, and 

analysed by western blot (Figure 5.1). As a diamide-induced HMW form of Ubp15 

was not observed previously in the W303 strain (Figure 3.13), the effects of 

diamide on Ubp15 were only investigated in the BY4741 TAP-tagged strain 

background. Importantly, the diamide-induced HMW form of Ubp15 was found to 

be reduced by β-mercaptoethanol (Figure 5.1A), suggesting that Ubp15 was 

indeed oxidised by diamide. Interestingly, Ubp15 appears to be modified 

differently in response to H2O2 depending on the strain background. In the 

BY4741 background two HMW modifications of Ubp15 are observed after H2O2 

treatment; a very large HMW form, and another form which has only a slightly 

slower mobility than in unstressed cells (Figure 5.1B). In contrast, in the W303 

strain background only one HMW modification is detected, which appears to have  
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Figure 5.1: Ubp15 HMW modification is reduced by β-mercaptoethanol.  

(A) Cells expressing Ubp15-TAP (ELR41) in the BY4741 strain background were 

incubated with 3 mM diamide for 0 (-) and 10 (+) minutes. Protein extracts were 

prepared in reducing (β-mercaptoethanol) and non-reducing conditions and 

separated by SDS-PAGE. Proteins were visualised using PɑP antibodies. * 

denotes diamide-induced HMW complexes. (B) Cells expressing Ubp15-3HA  

(FCC130) in the W303 strain background, and cells expressing Ubp15-TAP in the 

BY4741 strain background, were incubated with 2 mM H2O2 for 0 (-) and 10 (+) 

minutes. Protein extracts were prepared as in (A), and visualised using ɑ-HA 

antibodies. * denotes H2O2-induced modifications. 
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a similar mobility as the very large HMW form seen in the BY4741 strain 

background (Figure 5.1B). Importantly, the large HMW forms of Ubp15 observed 

in both strain backgrounds were reduced by β-mercaptoethanol, suggesting that 

these HMW forms involve oxidation of Ubp15. However, in contrast, the relatively 

smaller modified form of Ubp15 detected in the BY4741 strain background was 

not reduced by β-mercaptoethanol, suggesting that this modification is not due to 

oxidation (Figure 5.1B). The basis of this β-mercaptoethanol resistant form of 

Ubp15 is not known, but it may be due to modifications such as phosphorylation 

or ubiquitination, which cannot be reduced by a reducing agent. Indeed, Ubp15 

has 5 lysine residues which have been observed to be ubiquitinated previously 

(K303, K508, K771, K1127, and K1163) (Swaney et al., 2013). Taken together 

these results indicate that, although the smaller mobility shift of Ubp15 in 

response to H2O2 in the BY4741 strain background is unlikely to be due to 

oxidation, the very large HMW forms of Ubp15 are reduced by a reducing agent, 

suggesting that they are dependent on the oxidation of Ubp15 by H2O2 and 

diamide.   

5.2.1.1. Analyses of the oxidation of Ubp15 by different concentrations of H2O2 

and diamide 

In order to respond in an appropriate manner cells need to be able to sense the 

different types and concentrations of oxidising agents (see Section 1.2.5). As 

described previously, Ubp15 is oxidised by H2O2 into HMW forms in both the 

BY4741 and W303 strain backgrounds. However, the initial studies suggested 

that only Ubp15 in the BY4741 strain background was oxidised by diamide. 

Previous studies have suggested that Ubp15 potentially regulates the cell cycle 

through its interaction with Cdh1, and the APC/C complex (Bozza and Zhuang, 

2011). For investigations of the cell cycle, the W303 strain background is 

particularly ideal as the cells can be easily synchronised using ɑ-factor. 

Therefore, to investigate the oxidation of Ubp15 and the potential links to cell 

cycle progression in response to oxidative stress it was decided to investigate 

Ubp15 oxidation in the W303 strain background. One possible explanation of the 

lack of detection of a diamide-induced HMW Ubp15 complex in the W303 strain 

background was that the concentration and/or timing of incubation required to 
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detect the complex is different to the BY4741 strain background. In Chapter 4 it 

was also shown that the kinetics of Ubp12 HMW complex formation is different 

depending on the concentration of H2O2 used. Hence, to explore some of these 

issues, cells expressing Ubp15-3HA in the W303 strain background were 

incubated with different concentrations of H2O2 and diamide for ten minutes and 

protein extracts were analysed by western blot (Figure 5.2). As observed 

previously, Ubp15 forms a very HMW complex in response to H2O2 (Figure 5.2A). 

However, interestingly, the formation of this complex appears to depend on the 

different concentrations of H2O2 used. For example, at low concentrations of 

H2O2, only a relatively small amount of Ubp15 can be detected in the HMW form. 

However, as the concentration of H2O2 used is increased the relative level of 

HMW complex is observed to increase, peaking at 2 mM H2O2. The levels of 

HMW complex then appear to reduce as the H2O2 concentration is further 

increased to 5 mM (Figure 5.2A). This difference in HMW complex formation 

depending on the concentration of H2O2 raises the possibility that this is a 

component of a mechanism that can sense and responds to different 

concentrations of H2O2. Interestingly, HMW forms of Ubp15 were also observed 

in response to diamide treatment (Figure 5.2B), similar to the studies of Ubp15-

TAP in the BY4741 strain background (Figure 5.1). However the levels of 

diamide-induced HMW forms detected in the W303 strain background seems to 

be much lower than those detected in the BY4741 strain background. It is also 

interesting to note that, although the western analyses were performed on 

different gels, in relation to the size marker track there seems to be a difference 

in the mobilities of the HMW complexes formed after H2O2 and diamide treatment 

(Figure 5.2 compare A and B). When comparing the Ubp15 HMW complexes 

formed in BY4741 strain background in response to H2O2 and diamide, it is hard 

to distinguish any obvious differences in mobility (Figure 5.1). However, the TAP 

epitope tag is large, and as a consequence may mask any differences in mobility. 

In conclusion, given the low levels of Ubp15 HMW complex formed in response 

to diamide in the W303 strain background, the next experiments focused on the 

H2O2-induced HMW complex. However, it is intriguing that different complexes 

are detected in response to different oxidising agents.  
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Figure 5.2: Ubp15 is oxidised by a range of oxidising conditions. (A) Cells 

expressing Ubp15-3HA (FCC130) in the W303 strain background were incubated 

with a range of concentrations of (A) diamide or (B) H2O2 as indicated for 10 

minutes. Protein extracts were prepared in non-reducing conditions and 

separated by SDS-PAGE. Proteins were visualised using ɑ-HA antibodies. * 

denotes stress-induced HMW forms. 
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Next, the dynamics of Ubp15 HMW complex formation were investigated in 

response to H2O2. When incubated with different concentrations of H2O2 it was 

observed that different amounts of Ubp15 formed a HMW complex (Figure 5.2A) 

However, as described above, all the samples analysed in Figure 5.2 were 

collected after 10 minutes exposure of cells to H2O2. It was possible, for example, 

that Ubp15 may form equivalent levels of HMW complex at lower concentrations 

of H2O2, but at a slower rate. Hence, to examine this possibility, cells expressing 

Ubp15-3HA was incubated with either 0.5 mM or 2 mM H2O2 for 60 minutes. 

Samples were taken at the indicated time points and analysed by western blot 

(Figure 5.3). When incubated with 2 mM H2O2 Ubp15 HMW complex forms by 30 

seconds, and is sustained over the 60 minutes time course (Figure 5.3A). The 

amount of Ubp15 in the HMW complex with respect to the total amount of Ubp15 

in each lane was calculated from two independent repeats (Figure 5.3B). By 30 

seconds, approximately 8% of Ubp15 is found in the HMW complex, which 

increases to a maximum of ~22% by 20 minutes (Figure 5.3B). Interestingly, the 

level of Ubp15 HMW complex is maintained at approximately the same amount 

as the maximum over the time course. Interestingly, the pattern of HMW complex 

at 0.5 mM H2O2 is different to that observed with 2 mM H2O2.  When cells were 

incubated with 0.5 mM H2O2 no HMW complex was detectable until ~5 minutes 

(Figure 5.3C). The amount of Ubp15 HMW complex with respect to total Ubp15 

was calculated from two independent repeats and confirmed this observation 

(Figure 5.3D). Strikingly, Ubp15 HMW formation with 0.5 mM H2O2 reached a 

maximum peak of only ~9% by ten minutes, after which the relative amount of 

HMW complex decreased over the time course (Figure 5.3D). It was also 

interesting to note that the relative amount of HMW complex was lower than 

basal levels at 30 and 60 minutes. However it is important to note that the basal 

level calculated is quite high and has a large error bar, therefore it is suggested 

that the actual basal level of Ubp15 oxidation is much lower, as per Figure 5.3B. 

Over both time courses the error bars are large, suggesting that basal and 

induced levels of HMW complex are difficult to quantify. This is potentially due to 

the low level of H2O2-induced HMW complex formation observed for Ubp15, as 

the signal is quite low it is hard to detect therefore the error bars are increased.  

However, taken together, these data indicate that Ubp15 HMW complex forms 

differentially depending on the concentration of H2O2. Thus it is possible that this  



 

[202] 
 

 

  



 

[203] 
 

 

  



 

[204] 
 

 

 

 

 

 

 

 

 

Figure 5.3: The kinetics of Ubp15 HMW complex formation is H2O2 

concentration-dependent. (A) Cells expressing Ubp15-3HA (FCC130) in the 

W303 strain background were incubated with 2 mM H2O2 for 0 – 60 minutes as 

indicated. Protein extracts were prepared in non-reducing conditions and 

separated by SDS-PAGE. Proteins were visualised using ɑ-HA antibodies. * 

denotes H2O2-induced HMW complex. (B) The band intensities of Ubp15-3HA 

(n=2) at each time point (from A) were quantified using ImageQuant. Points show 

the percentage of HMW complex with respect to total Ubp15 in each lane, and 

error bars denote the standard error of the mean. (C) Cells expressing Ubp15-

3HA in the W303 strain background were incubated with 0.5mM H2O2 for 0 – 60 

minutes as indicated. Protein extracts were prepared and visualised as in (A) * 

denotes H2O2-induced HMW complex. (D) The band intensities of Ubp15-3HA 

(n=2) at each time point (from C) were quantified using ImageQuant. Points show 

the percentage of HMW complex with respect to total Ubp15 in each lane, and 

error bars denote the standard error of the mean. 
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difference in complex formation is part of a mechanism that allows the cell to 

respond to the detected H2O2 concentration in an appropriate manner. 

5.2.1.2. Analyses into the regulation of Ubp15 oxidation 

Oxidised proteins are tightly regulated to maintain a redox balance within the cell 

(see Sections 1.2.4 and 4.2.1.2). It was observed in Chapter 4 that Ubp12 protein 

abundance is potentially regulated by the Trx system. However, it was unknown if 

the Trx, or indeed the Grx, pathway, would play a role in the regulation of the 

formation of Ubp15 HMW complex formation. The regulation of Ubp15 oxidation 

by the Grx system was investigated using the chemical BSO which inhibits Gsh1 

thus reducing cellular GSH levels. As described in the previous chapter (see 

Section 4.2.1.4) the chemical BSO inhibits Gsh1, which as a consequence 

depletes GSH in cells (Drew and Miners, 1984). Hence, BSO can be utilised to 

investigate whether GSH is required for the regulation of specific oxidised 

proteins. To investigate whether GSH plays a role in the regulation of Ubp15 

HMW complex formation, cells expressing Ubp15-3HA were incubated with 5 mM 

BSO. Cells expressing Cdc34-13Myc were included as a positive control. 

However, despite multiple repeated attempts, the results obtained were 

inconclusive as the BSO-induced HMW form of Cdc34-myc was difficult to 

observe in the positive control (data not shown). 

Next, the potential regulation of Ubp15 by the Trx system was investigated. As 

described previously, Trr1 acts as a rate limiting step in the thioredoxin system 

and deletion of Trr1 inhibits the ability of the thioredoxin system to reduce 

proteins (see Sections 1.2.4.2.3, and 4.2.1.2). Hence, the first step in the 

investigation was to construct a trr1Δ strain that expresses Ubp15 tagged with 

3HA epitopes at the C-terminus from its normal locus. To obtain this strain a trr1Δ 

haploid was mated with a strain expressing Ubp15-3HA from its normal locus. 

The resulting diploid was sporulated and resulting haploids tested by PCR 

analyses to identify the required strain (trr1Δ expressing Ubp15-3HA) (Figure 

5.4A and B). The potential strains were checked with gene specific primers to 

confirm the presence of the 3HA epitope tag cassette at the UBP15 gene locus  
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Figure 5.4: Ubp15 oxidation is not regulated by the thioredoxin system. 

(A) PCR using UBP15-specific forward and reverse primers, and (B) TRR1-

specific forward and reverse primers was performed using DNA isolated from the 

haploids isolated from the dissection of the sporulated diploid cells. The resulting 

PCR products were analysed on a 1% agarose gel. Strains with the 3HA epitope 

tag cassette at the UBP15 gene locus produce a PCR product of approximately 

2900 bp whereas the wild type (WT) UBP15 gene locus produces a PCR product 

of ~300 bp. Strains with the deletion of the TRR1 gene (trr1Δ) produce a PCR 

product of approximately 2000 bp whereas the wild type TRR1 gene locus 

produces a PCR product of ~1600 bp. DNA from WT (FCC1), Ubp15-3HA 

(FCC130), and trr1Δ (FCC167) were included as controls in the PCR analyses. 

(C) Cells of a Ubp15-3HA strain, a trr1Δ strain, and two Ubp15-3HA trr1Δ strains 

(1 (FCC162) and 2 (FCC163)) all W303 strain background, were treated with 2 

mM for 0 (-) and 10 (+) minutes. Protein extracts were prepared in non-reducing 

conditions and separated by SDS-PAGE. Proteins were visualised using ɑ-HA 

antibodies. * denotes H2O2-induced HMW complexes. The blue arrow identifies 

trr1Δ specific HMW modification of Ubp15. (D) The band intensities of Ubp15-

3HA (n=2) and trr1Δ Ubp15-3HA (n=2) (from C) were quantified using 

ImageQuant. The percentage of HMW complex with respect to total Ubp15 is 

shown in each lane, and error bars denote standard error of the mean. 
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(Figure 5.4A). The presence of the cassette would give a PCR product of ~2900 

bp. Wild type UBP15, and Ubp15-3HA expressing strains were analysed as 

control with the same primers which should yield PCR products of ~300bp or 

~2900 bp respectively (Figure 5.4A). Potential haploids were also checked with 

gene specific TRR1 primers, (Figure 5.4B), which were predicted to give a PCR 

product of ~2000 bp if the TRR1 gene was correctly deleted from the 

chromosome. Wild type TRR1 and trr1Δ mutant strains were analysed as 

controls with the same primers which should yield PCR products of ~1600 bp and 

2000 bp respectively. Two trr1Δ UBP15-3HA strains were confirmed (Figure 5.4A 

and B). Next, the two trr1Δ UBP15-3HA strains, the trr1Δ UBP15 strain, and the 

TRR1 UBP15-3HA strains were grown to mid-log phase and incubated with 2 mM 

H2O2. Proteins were extracted in non-reducing conditions in the presence of NEM 

and analysed by western blot (Figure 5.4C). As expected, the H2O2 induced 

HMW complex was detected in the TRR1 UBP15-3HA cells (Figure 5.4C). 

Interestingly, a H2O2-induced HMW complex was also observed in the trr1Δ 

UBP15 extracts (Figure 5.4C). Moreover, quantification of the percentage HMW 

complex in relation to the total amount of Ubp15-3HA in both strain backgrounds 

was very similar, suggesting that approximately the same proportion of Ubp15 is 

oxidised in response to H2O2 independent of the Trx system (Figure 5.4D). 

However, it is worth noting that the error bar for complex formation in the trr1Δ 

strain is large. Hence, it is possible that further repeats may reduce the error bars 

and perhaps reveal a significant difference in the amounts of Ubp15 oxidised in 

the TRR1 versus trr1Δ strain backgrounds.  

Interestingly, previously undetected, smaller HMW forms of Ubp15 were present 

in extracts from the trr1Δ UBP15-3HA strain, in both stressed and unstressed 

conditions (Figure 4.4C-blue arrow). The underlying basis of this mobility shift is 

unclear, but suggests that it is linked to the loss of Trr1 function. It is also 

interesting that this new HMW form has a similar mobility to the small HMW form 

of Ubp15 observed in the BY4741 strain background when treated with H2O2 

(Figure 5.1B). In this case the smaller HMW form of Ubp15 in the BY4741 strain 

background was found to be resistant to reduction by a reducing agent (Figure 

5.1B). Hence, to investigate whether the new HMW form of Ubp15 detected in 

trr1Δ cells was also resistant to reduction a trr1Δ UBP15-3HA strain, and a 
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UBP15-3HA control strain were grown to mid-log phase and treated with 2 mM H-

2O2, prepared in either reducing or non-reducing conditions, and analysed by 

western blot (Figure 5.5). As expected, the large HMW H2O2-induced complex of 

Ubp15-3HA was reduced by β-mercaptoethanol. Interestingly, the trr1Δ-specific 

smaller HMW form of Ubp15 was also reduced by β-mercaptoethanol, suggesting 

that Ubp15 is oxidised in the absence of Trr1 function. However the small HMW 

form did not appear in the presence of wild type TRR1, or was indeed induced by 

H2O2 in the trr1Δ strain background. Hence, it is not clear at this stage whether 

the smaller oxidised HMW complex is relevant to the regulation of Ubp15. Thus, 

taken together, the results reveal that the large H2O2-induced HMW form of 

Ubp15 appears to form independent of the Trx system. However, Ubp15 HMW 

complex formation in the trr1Δ strain background was only investigated after 10 

minutes incubation with H2O2, the kinetics of Ubp15 HMW complex formation 

were not investigated. Therefore, it remains possible that the Trx system (and 

indeed the GSH system) may be involved in reversing Ubp15 oxidation at a later 

time point.  

5.2.2. Comparison of the Ubp15 and Cdc34 HMW complexes 

Previous work from our lab revealed that an E2 enzyme in the ubiquitin 

conjugation cycle, Cdc34, forms a HMW intermolecular disulphide complex with 

Uba1 in response to specific oxidising agents (Doris et al., 2012) (see Section 

1.3.3). Furthermore, the formation of this Cdc34-Uba1 complex was linked to 

increased stability of the cyclin dependent kinase inhibitor Sic1 and delay of cell 

cycle progression from G1 to S phase (Doris et al., 2012) (see Section 1.3.3). 

Interestingly a key function of Sic1 is to inhibit Cdc28-Clb5 and thus delays 

actovation of DNA replication. However, despite these studies all the precise 

components of the Cdc34-Uba1 complex were not completely clear given the 

very large size of the complex. As revealed earlier, Ubp15 is also oxidised by 

H2O2 and diamide, but not menadione, forming large HMW complexes.  

Strikingly, the mobility of these complexes, and the proportion of oxidised Ubp15 

appears quite similar to Cdc34 oxidation. Hence, our hypothesis to explain these 

observations is that Ubp15 is also a component of the Cdc34-Uba1 complex and 

vice versa. To investigate whether Ubp15 and Cdc34 are present in the same 
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Figure 5.5: HMW modifications of Ubp15 in the TRR1 and trr1Δ strains 

are due to oxidation. TRR1 Ubp15-3HA (FCC130) and trr1Δ Ubp15-3HA 

(FCC162) cells in the W303 strain background were incubated with 2 mM H2O2 

for 0 (-) and 10 (+) minutes. Protein extracts were prepared in reducing (+ β-

mercaptoethanol) and non-reducing conditions and separated by SDS-PAGE. 

Proteins were visualised using PɑP antibodies. * denotes H2O2-induced 

modifications.  
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HMW complex, cells expressing TAP epitope tagged versions of Ubp15 and 

Cdc34 in the BY4741 strain background were incubated with H2O2 and diamide. 

Proteins were extracted in non-reducing conditions in the presence of NEM and 

analysed by western blot (Figure 5.6). It was proposed that if Ubp15 was in the 

same HMW complex as Cdc34 the HMW oxidised forms of Cdc34-TAP and 

Ubp15-TAP would have similar mobilities. However, when exposed to the 

different oxidising agents the HMW complexes of Cdc34-TAP and Ubp15-TAP 

were not observed to have the same mobility (Figure 5.6). However it is important 

to note that epitope tags may affect the proteins differently resulting in differences 

in protein mobility. In addition, proteins with a mobility of this size often migrate 

through the gel differently to expectations. Hence, due to these potential 

problems in interpretation, a ubp15Δ strain was constructed expressing Cdc34-

13Myc from its normal chromosomal locus. A ubp15Δ haploid was mated with a 

haploid expressing Cdc34-13Myc and the resulting diploid sporulated. Haploid 

spores were then analysed by PCR to confirm the presence of the ubp15Δ locus 

and the 13Myc tag cassette at the CDC34 locus. To check the presence of the 

13Myc tag cassette gene-specific CDC34 forward and reverse primers were 

used. The detection of a PCR product of ~3000 bp signifies a positive result 

whereas the detection of a band of ~300bp signifies no cassette present (Figure 

5.7A). To check for the presence of the ubp15Δ locus gene-specific UBP15 

forward primers and generic HIS reverse primers were used. A PCR product of 

~2000 bp signifies the presence of the ubp15Δ allele, whereas no band present 

indicates the UBP15 wild type gene (Figure 5.7B). After confirmation of strain 

construction, the Cdc34-13Myc ubp15Δ strain, together with Cdc34-13Myc 

UBP15 were grown to mid-log phase and incubated with 2 mM H2O2. Proteins 

were extracted in non-reducing conditions in the presence of NEM and analysed 

by western blot (Figure 5.7C). It was predicted that if Ubp15 was normally a part 

of the Cdc34-Uba1 complex, the H2O2-induced HMW form of Cdc34 would not be 

present and/or would display a change in mobility. As expected, Cdc34 formed a 

H2O2-induced HMW complex in UBP15 cells (Figure 5.7C). However, a HMW 

complex of a very similar mobility was formed in the absence of UBP15. 

Collectively, these data suggest that Cdc34 and Ubp15 are not components of 

the same HMW complex in responses to H2O2 and diamide.  
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Figure 5.6: Ubp15 and Cdc34 HMW complexes have different mobilities. 

Cells expressing Ubp15-TAP (ELR41) and Cdc34-TAP (FCC145) in the BY4741 

strain background were incubated with (A) 2 mM H2O2 or (B) 3 mM diamide for 0 

(-) and 10 (+) minutes. Protein extracts were prepared in non-reducing conditions 

and separated by SDS-PAGE. Proteins were visualised using PɑP antibodies * 

denotes H2O2- and diamide-induced HMW complexes.  
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Figure 5.7: Ubp15 is not oxidised into the same HMW complex as Cdc34. 

PCR using (A) CDC34-specific forward and reverse primers, and (B) UBP15 

gene-specific forward primers and generic HIS reverse primers was performed 

using DNA isolated from a possible ubp15Δ haploid expressing Cdc34-13Myc 

from sporulated cells. The resulting PCR products were analysed on a 1% 

agarose gel. The presence of a 13Myc tag cassette at the CDC34 locus produces 

a PCR product of ~3000bp, whereas the wild type CDC34 produces a PCR 

product of ~300 bp. The presence of the ubp15Δ allele at the UBP15 locus 

produces a PCR product of ~2000 bp. Control strains in (A) were wild type (WT) 

(FCC1) and Cdc34-13Myc expressing cells (FCC156). In (B) the control strains 

were WT (FCC1) and ubp15Δ (FCC60). (C) UBP15 and ubp15Δ cells expressing 

Cdc34-13Myc (FCC156, UBP15; FCC161, ubp15Δ) in the W303 strain 

background were treated with 2 mM H2O2 for 0 (-) and 10 (+) minutes. Protein 

extracts were prepared in non-reducing conditions and separated by SDS-PAGE. 

Proteins were visualised using ɑ-Myc antibodies and ɑ-HA. * denotes H2O2-

induced HMW complexes. 
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5.2.3. Characterisation of the potential role of the Ubp15 catalytic cysteine 

in the HMW complex formation 

As described previously, USP dUbs catalyse the isopetide bond between the 

ubiquitin moiety and the substrate lysine by the activity of a catalytic cysteine 

which resides within the active site (Amerik and Hochstrasser, 2004). After 

deprotonation the pKa value is reduced which results in the cysteine being 

susceptible to oxidation (Cotto-Rios et al., 2012). As described in Chapter 4, the 

catalytic cysteine of Ubp12 is essential for HMW complex formation, suggesting 

that this cysteine becomes oxidised in response to H2O2. Hence, it was possible 

that the catalytic cysteine of Ubp15 might also be involved in H2O2- and diamide-

induced HMW complex formation. To investigate this possibility, a mutant version 

of Ubp15 was created whereby the catalytic cysteine residue (C214) was 

mutated to a serine residue (C214S). To allow visualisation by western blot 

analysis the mutation was introduced into a version of Ubp15 tagged with 3HA 

epitopes and expressed from a plasmid (see Section 2.2.4.1). To create a 

plasmid expressing the Ubp15C214S from the UBP15 promoter and tagged with 

3HA epitopes at the C-terminus, overlapping PCR fragments incorporating the 

cysteine to serine substitution were first created by PCR using wild type UBP15 

DNA as a template (see Section 2.2.4.1). The fragments were transformed into 

ubp15Δ cells, with a pRS316 vector backbone, which would recombine the 

fragment and plasmid backbone to create a pRS316 plasmid containing 

UBP15C214S-3HA. The creation of a wild type version of UBP15-3HA in the 

pRS316 plasmid was attempted; however construction of the control plasmid of 

pRS316-UBP15-3HA was not completed. Colonies containing the potential 

recombined pRS316-UBP15C214S-3HA plasmids were analysed by PCR using 

M13 forward and reverse primers which bind on either side of the insertion site in 

the plasmid (see Section 2.2.4.1). Plasmids which produced a PCR product of 

the expected size were extracted from ubp15Δ strains and transformed into E. 

coli. Plasmids were isolated from E. coli and sequenced to confirm the correct 

mutation of the cysteine 214 codon (TGC) to serine codon (TCT).  

After confirmation of successful construction of pRS316-UBP15C214S-3HA the 

plasmid was transformed into ubp15Δ cells. Because attempts to construct a wild 
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type version of this plasmid were unsuccessful the pRS316 vector was 

transformed into cells expressing Ubp15-3HA at the normal locus and also into 

UBP15 wild type cells. Strains were then grown in SD minimal media to mid-log 

phase and incubated with 1 mM H2O2. Proteins were extracted in the presence of 

NEM, and analysed via western blot (Figure 5.8). As expected, cells expressing 

Ubp15-3HA from the normal locus containing empty vector pRS316 formed a 

H2O2-induced HMW complex (Figure 5.8). However, importantly, in the ubp15Δ 

cells containing pRS316-UBP15C214S-3HA no HMW complex can be detected, 

suggesting that the catalytic cysteine is essential for oxidation of Ubp15 by H2O2. 

As described above (See section 5.2.2), Ubp15 does not form a HMW complex 

with Cdc34 after treatment with H2O2. However, it is possible that Ubp15 forms a 

disulphide complex with another protein(s), perhaps even with another Ubp15 

protein. It is also possible that, similar to Ubp12, Ubp15 forms an intramolecular 

disulphide involving the catalytic cysteine residue, which affects mobility. Indeed 

Ubp15 contains another 6 cysteine residues in addition to the catalytic cysteine 

which may form part of the complex. It is also noteworthy that Ubp15 appears to 

form a different HMW complex after incubation with diamide compared to H2O2, 

and hence it would be important to investigate the role of the catalytic cysteine in 

the response of Ubp15 to diamide. 

5.2.4. Ubp15 functions in responses to oxidative stress 

Although Ubp15 activity is relatively uncharacterised, the results described above 

suggest that Ubp15 may have roles in responses to oxidative stress. Previous 

studies revealed that Ubp15 cleaves mono-ubiquitin from substrates (Schaefer 

and Morgan, 2011), therefore it is possible that oxidation of Ubp15 may regulate 

this process. Ubp15 has also been proposed to be linked to regulation of the cell 

cycle through interaction with Cdh1 (Bozza and Zhuang, 2011), where it was 

suggested that Ubp15 may counteract the activity of the APC/C complex. Hence, 

perhaps oxidation of Ubp15 influences cell cycle progression. Indeed, oxidation 

of specific proteins is a well characterised mechanism by which cell cycle 

progression is regulated (for reviews see (Shackelford et al., 2000; Chiu and 

Dawes, 2012; Diaz-Moralli et al., 2013)). 
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Figure 5.8: The catalytic cysteine of Ubp15 is required for H2O2-induced 

HMW complex formation. Wild type (UBP15) (FCC1) and UBP15-3HA 

(FCC130) cells containing pRS316 empty vector (EV) and ubp15Δ (FCC60) cells 

containing two different pRS316-UBP15C214S-3HA plasmids in the W303 strain 

background were grown to mid-log phase in SD media and incubated with 1 mM 

H2O2 for 0 (-) and 10 (+) minutes. Protein extracts were prepared in non-reducing 

conditions and separated by SDS-PAGE. Proteins were visualised using anti-HA 

antibodies. * indicates H2O2-induced HMW complex.  
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5.2.4.1. Global phenotypic analyses of Ubp15 

To begin to understand potential roles and regulation of Ubp15 in responses to 

oxidative stress it was decided to investigate global effects on ubiquitination. As 

described previously (see Chapter 3), ubp15Δ strains display increased 

sensitivity to menadione and diamide, but similar sensitivity to H2O2 as wild type 

cells. Interestingly, it was also found that ubp15Δ cells showed increased 

sensitivity to cold temperature (see Section 3.2.4.2). Hence, these data suggest 

that Ubp15 is necessary for cell responses to diamide, menadione and cold 

stress. However, as described previously, deletion of any specific dUb may not 

show severe phenotypes, due to overlapping roles with other dUbs (see Section 

1.1.3). Therefore it is difficult to make firm conclusions about specific dUb roles in 

response to stress based on analyses of single mutants. In attempt to overcome 

these limitations, a plasmid overexpressing UBP15 was constructed. If Ubp15 is 

involved in different stress responses it was hoped that overexpression might 

reveal roles for Ubp15 and confirm connections with stress responses identified 

in ubp15Δ cells. Hence, UBP15 was overexpressed using a pRS426 2micron 

plasmid (pRS426-UBP15). To obtain pRS426-UBP15, the UBP15 gene including 

promoter and 3’ region was incorporated into the multiple cloning site of pRS426 

plasmid using overlapping PCR fragments (described in Section 2.2.4.1). The 

overlapping PCR fragments, and pRS426 vector backbone were transformed into 

wild type yeast strains to allow recombination events to create a full pRS426-

UBP15 plasmid (described in Section 2.2.4.1). Plasmids were isolated from ura+ 

colonies and sequenced to confirm plasmid construction. To examine the effects 

of overexpression of UBP15, wild type and ubp15Δ strains were transformed with 

either pRS426 vector or pRS426-UBP15. Next, strains were grown to mid-log 

phase in SD minimal media to maintain selection for the plasmid, and spotted 

onto SD minimal media plates containing several oxidising agents (Figure 5.9). 

To further investigate whether Ubp15 was required for responses to different 

temperatures, plates were incubated at different temperatures, as indicated 

(Figure 5.9). Consistent with previous experiments (Figure 3.4), ubp15Δ 

containing vector display similar sensitivity to H2O2 as wild type cells (Figure 5.9). 

However interestingly, wild type cells containing pRS426-UBP15 display a small 

increase in sensitivity to H2O2 compared to the same cells containing vector 
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Figure 5.9: Over expression of UBP15 affects responses to oxidative 

stresses. Wild type (WT) (FCC1) and ubp15Δ (FCC60) strains containing either 

pRS426 empty vector (EV) or pRS426-UBP15 were grown to mid‐log phase in 

SD media, spotted onto SD media containing increasing concentrations of the 

indicated oxidising agent, and then incubated at 30 °C. To investigate the 

potential links with temperature strains were spotted onto SD minimal plates and 

incubated at the temperatures indicated. Plates were incubated for 3 days, unless 

otherwise stated, before imaging.  
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(Figure 5.9), suggesting that Ubp15 may mildly inhibit cellular growth in response 

to H2O2 stress. It was also interesting to note that ubp15Δ containing vector and 

wild type cells containing pRS426-UBP15 displayed increased sensitivity to 

diamide compared to wild type cells containing vector (Figure 5.9). Studies of the 

ubp15Δ strain using YPD media also indicated increased sensitivity to diamide 

(Figure 3.5). The explanation of why both deletion and overexpression of UBP15 

increases sensitivity to diamide is not clear at this stage but suggests that the 

activity of this dUb must be finely balanced to allow cells to respond to the 

oxidising agent in an appropriate manner. Attempts were made to examine the 

effect of pRS426-UBP15 on menadione sensitivity; however the results were 

inconclusive and would need to be repeated. As described in Chapter 3 (see 

Section 3.4.2.4) ubp15Δ strains display decreased growth at cold temperature 

compared to wild type cells. Consistent with these observations, cells containing 

empty vector also showed inhibited growth at cold temperatures (15°C) 

compared to wild type strains (Figure5.9). Moreover, this growth inhibition was 

complemented by pRS426-UBP15 (Figure 5.9), suggesting that Ubp15 is 

required for cell growth at these temperatures. Previous work has also reported 

that Ubp15 is required for cold temperatures, confirming the present results 

(Amerik et al., 2000). Interestingly, the study by Amerik et al (2000) also found 

that the growth of ubp15Δ strains were more sensitive to high temperatures 

(37°C). However in the present results this result was not observed. The basis for 

this inconsistency is not clear but perhaps it is linked to the strain background 

used in the studies. Nevertheless, these studies suggest that Ubp15 is required 

for the response of cells to cold temperature. To explore the response to cold 

temperature further, ubp15Δ cells incubated at 15°C were placed at 30°C after 7 

days to test whether the lack of growth at 15°C was due to growth inhibition or 

cell death (Figure 5.9). Interestingly, the growth of the ubp15Δ strains containing 

empty vector was not recovered at 30°C, suggesting that cell death had occurred 

at 15°C in the absence of UBP15. Taken together with the analyses of the 

ubp15Δ mutant, these data suggest that Ubp15 activity has specific roles in 

responses to oxidative and temperature stresses. It would be of interest to 

understand whether the catalytic activity of Ubp15 was required for the response 

to oxidising agents tested. Using the catalytic cysteine mutant strains created 

previously (see Section 5.2.3), would enable investigations into the necessity of 
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the catalytic cysteine in response to the different oxidising agents. If the cysteine 

mutant strain has the same phenotype as the deletion mutant it could be 

hypothesised that the catalytic cysteine mutant is required for growth in response 

to the different oxidative stress inducing agents, and temperature.  

5.2.4.2. Investigation of the potential role of Ubp15 in the regulation of global 

ubiquitin levels 

To investigate whether Ubp15 influences the ubiquitination of many substrates 

the global ubiquitin pattern was investigated in both wild type and ubp15Δ cells in 

stressed and unstressed conditions. Previous work revealed that Ubp15 has a 

high affinity for mono-ubiquitinated substrates, and that K48 linkages are more 

resistant to Ubp15 activity (Schaefer and Morgan, 2011). However, the 

breakdown of other poly-ubiquitin chains might also be catalysed by Ubp15, and 

consistent with this proposal it has been observed that Ubp15 removes both 

mono- and poly-ubiquitin from the substrate Pex5 (Debelyy et al., 2011). It was 

therefore possible that Ubp15 may regulate global ubiquitin levels. In Chapter 4 

global ubiquitination was examined in wild type cells after treatment with both 

H2O2 and diamide and significantly ubiquitination only changed in response to 

H2O2 (Figure 4.11). Therefore, here the potential role of ubp15 was investigated 

after H2O2 treatment. Wild type and ubp15Δ strains in both the W303 and 

BY4741 strain backgrounds were incubated with 2 mM H2O2. Proteins were 

extracted in non-reducing conditions in the presence of NEM and analysed by 

western blot, including the stacking gel (Figure 5.10). Consistent with the 

previous analysis in Chapter 4, incubation with H2O2 resulted in the increase in 

HMW ubiquitin conjugates in wild type cells and a corresponding decrease in free 

ubiquitin levels (compare Figure 4.11 and Figure 5.10). Interestingly, free 

ubiquitin also decreased after incubation with H2O2 in ubp15Δ in both strain 

backgrounds, suggesting that Ubp15 does not affect free levels of ubiquitin after 

H2O2 stress. However, in contrast, the pattern of HMW ubiquitin conjugates 

observed in extracts from ubp15Δ cells from different strain backgrounds 

displayed differences. In particular, in the W303 background ubp15Δ cells the 

HMW ubiquitin conjugates are not observed to increase similarly to wild type cells  
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Figure 5.10: Ubp15 regulates global ubiquitination. Wild type (WT) and 

ubp15Δ cells in the (A) W303 (FCC1 and FCC60) and (B) BY4741 (FCC23 and 

FCC106) strain backgrounds were incubated with 2 mM H2O2 for 0 (-) and 10 (+) 

minutes. Protein extracts were prepared in non-reducing conditions and 

separated by SDS-PAGE. Ubiquitinated proteins were visualised using ɑ-

ubiquitin antibodies. Skn7 was visualised using ɑ-Skn7 antibodies as a loading 

control.  
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following H2O2 treatment (Figure 5.10A).  It is not clear whether this reflects the 

fact that Ubp15 is critical in maintaining the level of either poly-ubiquitination 

and/or HMW mono-ubiquitination or perhaps alternatively that these ubiquitinated 

substrates are more unstable in the absence of Ubp15. Indeed, loss of a dUb 

would be predicted to increase substrate ubiquitination, potentially increasing 

instability. In contrast to the results with the W303 background, global 

ubiquitination appeared to be induced to a greater extent in the ubp15Δ cells in 

the BY4741 strain background compared to the wild type control cells (Figure 

5.10B). These data suggest that in the BY4741 strain background Ubp15 inhibits 

ubiquitination (or reverses ubiquitination) of substrates after H2O2 treatment. It will 

be interesting to investigate the specific type of ubiquitin linkage which is 

regulated by Ubp15 in response to H2O2 stress in the different strain backgrounds 

using linkage specific antibodies. Collectively, these results suggest that Ubp15 

activity is important for global ubiquitination following H2O2 stress, and, moreover 

that Ubp15 plays different roles in this response in different strain backgrounds. 

5.2.4.3. Investigation of the relationship between Ubp15 and the cell cycle 

Ubp15 has been suggested to play a role in the regulation of cell cycle 

progression through its interaction with Cdh1 (Bozza and Zhuang, 2011), an 

activator subunit of the APC/C complex (Krek, 1998). Cdh1 is important for 

activating the APC/C and also for substrate specificity (Visintin et al., 1997), and 

thus Cdh1 is critical for the ubiquitination of many cell-cycle related proteins. As 

Ubp15 interacts with Cdh1 (Bozza and Zhuang, 2011), it was suggested that 

Ubp15 may play a role in deubiquitinating APC/C substrates. Taken together with 

these studies, and based on the observation that Ubp15 is oxidised following 

H2O2 and diamide treatment, this led to the hypothesis that oxidation of Ubp15 

may influence the ubiquitination of certain cell cycle-related proteins. Indeed, it 

has been shown previously that oxidative stress influences cell cycle progression. 

For example H2O2 has been observed to cause G2 phase arrest in S. cerevisiae 

in a Rad9-dependent manner (Flattery-O'Brien and Dawes, 1998). Moreover, 

previous work from our lab and by others has identified a G1 phase arrest in S. 

cerevisiae in response to H2O2, although the underlying mechanism remains 

unknown (Leroy et al., 2001; O'Callaghan, 2004).  As described previously, our 
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lab also linked oxidation of Cdc34 to cell cycle inhibition in G1 phase via the 

stabilisation of the CDK inhibitor Sic1 (see Section 1.3.3) (Doris et al., 2012). As 

described above, the H2O2-induced HMW complex of Ubp15 does not appear to 

include Cdc34 (see Section 5.2.2), suggesting that if oxidation of Ubp15 does 

regulate the cell cycle it is not by the same mechanism as that observed for 

Cdc34 and Sic1. However it seemed possible that perhaps Ubp15 oxidation is 

critical for the regulation of the cell cycle by influencing Ubp15 activity towards 

APC/C substrates. Hence, to investigate the potential link between the Ubp15 

oxidation and the cell cycle, asynchronous cultures of mid-log phase growing wild 

type and ubp15Δ strains were incubated with 2 mM H2O2 for 60 minutes and 

DNA content analysis was performed (Figure 5.11A). Gating analysis also 

identified the proportion of the cell population with 1C (G1), 2C (G2/M), and 1-2C 

(S) DNA content (Figure 5.11B). Interestingly, after incubation with 2 mM H2O2 

the percentage of wild type and ubp15Δ cells in G1 phase increased, suggesting 

a H2O2-induced G1 phase delay, similar to that described previously by other 

studies (Leroy et al., 2001; O'Callaghan, 2004). Furthermore, this increase in G1 

phase cells corresponded in both wild type and ubp15Δ cell population with a 

decrease in the proportion of cells with 2C content (Figure 5.11B). However, it is 

important to note that growth analyses were not performed on these samples so 

it is not clear whether the cells have arrested or are just progressing through the 

cell cycle at a slower rate. It is also interesting to note that a similar proportion of 

G1 phase cells were detected in wild type and ubp15Δ cell populations in 

unstressed conditions (Figure 5.11B). This contrasts with a recent paper 

published after the thesis work was initiated suggesting that ubp15Δ cells had a 

larger proportion of G1 phase cells than normal (Ostapenko et al., 2015). The 

differences in conclusion between this paper and the present analyses is not 

clear but it is possible that issues such as strain background and/or cell clumping 

may influence the interpretation of the published study. It is also interesting to 

note that a higher proportion of G1 cells was observed following H2O2 treatment 

in the ubp15Δ cell population versus the wild type cell population (Figure 5.11B). 

The basis for this apparent increase in ubp15Δ cells is unknown but suggests 

Ubp15 activity influences the effects of oxidative stress on cell cycle progression. 
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Figure 5.11: DNA content analyses of wild type and ubp15Δ cells in 

response to 2 mM H2O2 treatment. Mid-log phase growing wild type (WT) 

(FCC1) and (FCC60) cells were incubated with 2 mM H2O2 for 60 minutes. The 

cells were fixed, DNA was stained with SYTOX green, and DNA content was 

analysed by flow cytometry. (A) DNA content histogram of the data from WT and 

ubp15Δ cells either unstressed or treated with H2O2 shows cell number plotted 

against relative fluorescence. (B) Graph shows gating analysis to determine the 

proportion of cells with 1C, 1-2C, or 2C DNA in H2O2 treated and unstressed WT 

and ubp15Δ cells. Error bars show the standard error of the mean where n=2. 
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It was possible that the results obtained above were influenced by the high H2O2 

concentration. Hence further analyses were performed using a lower 

concentration of H2O2. Previous studies from our lab and others revealed that low 

concentrations of H2O2 induced multiple cell cycle arrest points, including in G2 

phase in a Rad9 dependent manner (Flattery-O'Brien and Dawes, 1998), and in 

G1 phase (Leroy et al., 2001; O'Callaghan, 2004). For example, treatment with 

0.5 mM H2O2 triggers cell cycle arrest (Doris et al., 2012). Hence 0.5 mM H2O2 

was chosen as a lower concentration to investigate Ubp15 links to cell cycle 

control. To confirm that treatment of cells with 0.5 mM H2O2 induced cell cycle 

arrest, wild type and ubp15Δ cells were treated with this concentration of H2O2 

and growth analysed (Figure 5.12A). In the absence of H2O2 wild type and 

ubp15Δ cultures displayed exponential growth over the time course and their 

respective doubling times were 82.4 minutes (wild type, SE 0.58, n=2), compared 

to 75.5 minutes (ubp15Δ, SE 0.74, n=2). In contrast, after addition of H2O2 to a 

concentration of 0.5 mM the growth of cultures was inhibited greatly (Figure 

5.12A). However, some growth of both cultures was still apparent albeit with an 

extremely low doubling time (Figure 5.12A and B). After 300 minutes wild type 

cells have a fold growth of ~1.75, and ubp15Δ cells have a fold growth of ~2.5. 

The basis for these slower growth rates is not clear as the experiment has only 

been carried out once. It is possible that they reflect leaky arrest at several 

checkpoints which allows the cells to divide eventually. However it is also 

possible that the slow growth rates reflect a small proportion of the population 

that are dividing relatively quickly whilst the other cells in the population are 

completely arrested or perhaps even dying. Nevertheless, these data indicate 

that 0.5 mM H2O2 triggers cell cycle arrest in both wild type and ubp15Δ cells. 

Next, in an attempt to understand the effects of 0.5 mM H2O2 on the cell cycle 

profiles of the wild type and ubp15Δ cells, the DNA content of each strain was 

analysed (Figure 5.12C). From visual analyses of the asynchronous unstressed 

cultures of wild type and ubp15Δ cells it is apparent that there is some variability 

in the DNA content analyses at different time points (Figure 5.12C). Using gating 

analyses to find the number of cells with either 1C, 1-2C, or 2C DNA content, the 

relative timing of each phase in the cell cycle can be estimated using the doubling 

time calculated previously and the average number of cells in each phase of the  
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Figure 5.12: Regulation of the cell cycle after 0.5 mM H2O2 treatment in 

wild type and ubp15Δ strains. (A) Mid log phase growing wild type (FCC1) 

and ubp15Δ (FCC60) cells in the W303 strain background were diluted to an 

OD660 of 0.05, and either left untreated or treated with 0.5 mM H2O2. Samples 

were taken every 30 minutes and the cells were counted using a CASY® Model 

TT Cell Counter. Fold growth was calculated using the cell number at the time 

points relative to the cell number at time 0. Fold growth was calculated from one 

repeat. (B) The y-axis from the graph in (A) was modified to illuminate the fold 

growth of cells treated with 0.5 mM H2O2. (C) DNA content histogram from WT 

and ubp15Δ cells either unstressed or treated with H2O2 over the time course of 

300 minutes shows cell number plotted against relative fluorescence. Histograms 

are representative of one repeat. 
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cell cycle in wild type and ubp15Δ strains (Table 5.1). It is interesting to note that 

ubp15Δ cells have a slightly shorter S phase when compared to wild type cells. 

However, the amount of time for each strain spent in G1 phase is similar. This 

result is in agreement with that observed previously (Figure 5.11B) where wild 

type and ubp15Δ cells have a similar G1 phase in unstressed conditions. It also 

seems to contradict the published results observed by Ostapenko et al., (2015) 

where unstressed ubp15Δ strains have a G1 arrest/growth delay.  

Given the extremely slow doubling rate following addition of 0.5 mM H2O2 to the 

wild type and ubp15Δ cultures, the DNA content profiles of both strains suggests 

that H2O2 causes cells to arrest at various points in the cell cycle (Figure 5.12C). 

It is also clear that cells do not arrest at one point in the cell cycle, in agreement 

with earlier studies (Flattery-O'Brien and Dawes, 1998; Leroy et al., 2001; 

O'Callaghan, 2004; Doris et al., 2012). It has been described previously that S. 

cerevisiae cells in the W303 strain background have H2O2-induced cell cycle 

arrest points at G1 and G2 phase (Flattery-O'Brien and Dawes, 1998) and the 

present analysis of wild type cells is consistent with these conclusions (Figure 

5.12C). However, excitingly, the analyses presented here also revealed a 

potential cell cycle arrest in early S phase (Figure 5.12C red arrows). However it 

is important to note that these analyses have only been carried out once, 

therefore conclusions are preliminary. In addition, it is also important to consider 

that some cells may possibly indicate arrest suggesting a cell cycle checkpoint 

but in fact be ‘arrested’ due to killing by H2O2. With these points in mind, gating 

analysis was utilised to investigate how the cell cycle profiles of wild type and 

ubp15Δ cells were affected by H2O2. The data from one experiment were 

analysed in several ways (Figures 5.13). In particular, the percentage of cells in 

each phase of the cell cycle was plotted against time following the addition of 

H2O2 for both wild type (Figure 5.13A) and ubp15Δ (Figure 5.13B) strains. 

Interestingly, the percentage of cells with 2C content (indicative of G2/M phases) 

were quite similar and remained relatively constant for both the wild type and 

ubp15Δ cells over the time course, suggesting that there is at least one arrest 

point located later in the cell cycle. In contrast analyses of the 1C DNA content 

(indicative of G1 phase) suggested that wild type and ubp15Δ cells behave 

differently when treated with H2O2. In the wild type culture, the cells were  
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Table 5.1: Growth and cell cycle analyses of wild type and ubp15Δ 

cells. The time taken in G1, S, and G2 phase was predicted using the doubling 

time calculated from the fold growth of each strain (growth curves from Figure 

5.12). Gating analysis of the DNA content histogram gave the percentage of cells 

with either 1C (G1), 2C (G2/M), or 1-2C (S). The cell percentage was used to 

calculate the approximate predicted time spent in each phase of the cell cycle 

using the doubling rate. Data is representative of one repeat.  
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Figure 5.13: Analyses of DNA content after exposure of cells to 0.5 mM 

H2O2. Gating analysis of the DNA content histogram (Figure 5.12C) gave the 

percentage of cells with 1C, 2C, or 1-2C DNA content. The percentage of cells 

with particular DNA content for (A) wild type (FCC1) and (B) ubp15Δ (FCC60) 

strains was plotted against time. The graphs represent data from one experiment. 

(C) Gating analysis of the DNA content histogram (Figure 5.12C) gave the 

percentage of cells with DNA in the early S phase region (red arrow in Figure 

5.12C) relative to the total number of cells for Wild type (WT) and ubp15Δ strains.  
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observed to rapidly build up in G1 phase peaking by 60 minutes (Figure 5.13A), 

consistent with previous work that there is at least one cell cycle arrest point in 

G1 phase. In contrast, there is a possible delay in the initial increase in G1 phase 

cells of the ubp15Δ culture, although the peak also occurs at 60 minutes (Figure 

5.13B). Interestingly, there is some indication that a greater proportion of cells 

from the ubp15Δ culture are arrested in G1 phase compared to the wild type 

control (Figure 5.13 A and B). At later time points (from ~150 minutes) there is 

evidence in the DNA content profiles from both the wild type and ubp15Δ H2O2 

treated cultures that the cells delayed in G1 phase move into S phase (compare 

1C and 1-2C in Figure 5.13A and B). However, it appears that ubp15Δ cells may 

be entering S phase faster that the wild type cells (compare the slopes in Figure 

5.13A and B). Further analyses of the S phase profiles of both cultures (Figure 

5.13C) suggest that the percentage of cells in early S phase after 150 minutes is 

higher in the ubp15Δ versus wild type cell populations although in both cases the 

amount of cells in early S phase increases (Figure 5.13C). This may reflect the 

fact that in both cultures cells delayed in G1 phase are beginning to move into 

early S phase where they pile up due to the presence of a further checkpoint. 

Furthermore, the possible indication that more cells from the ubp15Δ culture than 

the wild type culture are present in early S phase at these later time points may 

simply reflect the fact that more cells were delayed initially in G1 phase in the 

ubp15Δ culture versus the wild type culture (Figure 5.13C). Although this data 

needs to be repeated there is some indication that the loss of Ubp15 function 

affects the cell cycle arrest profiles of cells, particularly in G1 phase initially and at 

the early S phase arrest point in the later time points following addition of H2O2. It 

is also interesting to note that the 2C content analyses (G2/M phases) of both 

cultures appears to change relatively little and similarly in both wild type and 

ubp15Δ cultures over the time course of the H2O2 treatment, despite the detected 

increases in cell numbers entering S phase after ~150 minutes (Figure 5.13A-C). 

Hence, taken together with the growth analyses (Figure 5.12A and B) these data 

suggest that the G2/M phase checkpoint remains active even after 300 minutes 

and that may be independent of Ubp15 activity. Taken together, investigations of 

the growth rate and DNA content of wild type and ubp15Δ cells suggests that 

H2O2 induces cell cycle arrest/delay in at least three places within the cell cycle; 

G1 phase, early S phase, and G2/M phase. Preliminary data also suggests that 
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Ubp15 function is important for the G1 arrest point, as indicated by the DNA 

profiles of ubp15Δ cells. There is also some evidence that Ubp15 affects the 

release of cells from G1 phase into early S phase at later time points following H-

2O2 addition. However, those cells that move into S phase don not appear to 

move quickly into G2/M phases suggesting S phase delay/arrest is still active. 

Analyses of the S phase profiles suggest that this late increase in S phase cells 

corresponds to a block in early S phase. 

Taken together, the data presented in this Chapter suggest that Ubp15 influences 

the responses of cells to several oxidising agents. We also observed that Ubp15 

forms a HMW complex in response to both diamide and H2O2, and interestingly it 

was suggested that the HMW complex formed was different for the different 

oxidising agents. Furthermore, we observed that the formation of the H2O2-

induced Ubp15 HMW complex was dependent on the catalytic cysteine, and that 

the HMW complex formation is dependent on the concentration of H2O2. In 

addition, we also observed that Ubp15 activity is important for global 

ubiquitination following H2O2 stress. Preliminary investigations into the cell cycle 

regulation by Ubp15 suggest that Ubp15 activity may be important for cell cycle 

arrest in G1 and entry into S phase. 

 

5.3. Discussion 

Ubp15 is a relatively uncharacterised S. cerevisiae USP dUb, which has been 

identified to be highly active against mono-ubiquitin signals (Schaefer and 

Morgan, 2011) and has also been identified to interact with Cdh1 (Bozza and 

Zhuang, 2011), suggesting possible links with cell cycle regulation. Work 

presented in Chapter 3 in this thesis revealed that Ubp15 is modified into a HMW 

complex after incubation with both H2O2 and diamide. In this chapter the HMW 

modifications of Ubp15 were further investigated. Excitingly, it was found that 

Ubp15 is oxidised into HMW forms in response to H2O2 and diamide and, 

importantly, that Ubp15 is oxidised differentially by H2O2 depending on the 

concentration. Further investigations suggested that Ubp15 oxidation occurred at 

the catalytic cysteine, and that formation of the HMW complex was independent 



 

[237] 
 

of Cdc34 oxidation. Interestingly, it was suggested that Ubp15 activity important 

for both oxidative and temperature stresses and, additionally, is important for 

global ubiquitination after H2O2 stress, and that Ubp15 may play an important role 

in G1 phase delay/arrest and release in response to H2O2. 

As described previously, cells need to be able to sense the difference between 

the types and levels of different oxidising agents (see Section 1.2.5). In Chapter 

three it was found that Ubp15 is modified into a HMW complex by diamide and 

H2O2. Interestingly, further investigations of this complex described in this chapter 

revealed that Ubp15 was oxidised by both oxidising agents, but also suggested 

that Ubp15 forms different complexes depending on the specific oxidising agent. 

The underlying explanation for this apparent alteration on complex formation is 

not clear, but it is tempting to speculate that these different complexes are 

components of mechanisms that allow cells to tailor the specific response to the 

oxidising agent detected. It is also interesting to note that the kinetics of Ubp15 

oxidation is affected by the concentration of H2O2. Similar to Ubp12 oxidation, 

lower concentrations of H2O2 induced slower oxidation of Ubp15, and importantly 

the oxidation was reduced over the hour time course. In contrast, with higher 

concentrations of H2O2 the HMW complex formed faster and to a greater extent 

and, moreover, was maintained over the time course. It is possible that the 

different kinetics of Ubp15 oxidation may allow cells to sense and respond 

differently to different levels of H2O2.  

Interestingly, it was observed in the present study that Ubp15 may respond 

differently to types of oxidative stresses depending on the specific strain 

background used in the experiment. In both W303 and BY4741 strain 

backgrounds, Ubp15 formed large HMW complexes after treatment with both 

diamide and H2O2. Interestingly, after H2O2 treatment of Ubp15 in the BY4741 

strain background another, smaller, HMW complex was detected. This complex 

was resistant to a reducing agent, suggesting that this form is not due to 

oxidation. However, the larger HMW form of Ubp15 induced by both diamide and 

H2O2 in both strain backgrounds was sensitive to a reducing agent, suggesting 

that they are dependent on oxidation of Ubp15. It was observed that the strength 

of the oxidised HMW forms of Ubp15 varied depending on the strain background 



 

[238] 
 

used. When oxidised by diamide, the signal detected in the BY4741 strain was 

stronger compared to the signal detected in the W303 strain. Conversely, after 

oxidation with H2O2, the signal for the Ubp15 HMW complex was stronger in the 

W303 strain background. The basis for the differences of Ubp15 oxidation in the 

different strain backgrounds are unknown, however it is well characterised that 

W303 and BY4741 strains respond differently to oxidative stress. W303 strains 

have a mutated version of Ybp1, which is subsequently unable to form a 

disulphide complex with Yap1 to allow Yap1 nuclear accumulation (Veal et al., 

2003) (see Section 1.2.4.3). This results in W303 strain backgrounds having an 

increased sensitivity to H2O2 stress (Veal et al., 2003; Tachibana et al., 2009). It 

is possible that the differences in response to H2O2 by the strain backgrounds 

influence the formation of the Ubp15 HMW complex. It is also interesting to note 

that differences in strain background are apparent when investigating the 

regulation of global ubiquitination by Ubp15. It was observed that in W303 stain 

backgrounds, the amount of HMW ubiquitinated substrates decreased in the 

ubp15Δ strain when compared to wild type cells, suggesting that Ubp15 is 

important for maintaining HMW ubiquitin conjugates after H2O2 stress. Indeed, 

this suggests that loss of Ubp15 results in increased ubiquitination of substrates 

and subsequent degradation. However in contrast, after H2O2 treatment of 

ubp15Δ cells in the BY4741 strain, global HMW ubiquitination increased, 

suggesting that in this case, Ubp15 may inhibit, or reverse ubiquitination after 

H2O2 stress. It would be interesting to understand the specific type of ubiquitin 

linkage which may be cleaved by Ubp15 in the BY4741 strain background after 

H2O2 stress, and the use of specific ubiquitin linkage antibodies may help 

understand this further. The basis behind the differences in the regulation of 

HMW ubiquitin conjugates by Ubp15 in different strain backgrounds, and the 

differences in the formation of the HMW complexes is unclear. However these 

results suggest that Ubp15 oxidation may play different roles depending on the 

specific S. cerevisiae strain background.  

Interestingly, spot test analyses of ubp15Δ cells suggested that Ubp15 activity has 

specific roles in responses to oxidative and temperature stresses as Ubp15 is 

required for cellular growth on plates containing different redox stresses and on 

plates incubated at 15°C. It remains unknown whether the response of ubp15Δ 
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mutants to cold stress and oxidative stress is through the same pathway, or 

through different roles of Ubp15. However, these types of stresses have been 

linked previously. In mammalian cells the heat shock protein Hsf1 is reversibly 

activated by both heat shock and H2O2 by oxidation at the catalytic cysteine (Ahn 

and Thiele, 2003). Similarly, the heat shock proteins Hsp90 and Hsp70 are also 

induced by both heat and oxidative stress (Fedoroff, 2006). However the precise 

nature of the link between heat shock and oxidative stress remains unclear. It is 

possible that Ubp15 may be important for mediating the response to both types of 

stress, however whether this is through the same mechanism of oxidation of 

Ubp15, or through independent mechanisms is unclear. Further investigations 

into the necessity of the catalytic cysteine of Ubp15 in response to redox stress 

and heat stress could help gain a better understanding of this. 

Analysis of the catalytic cysteine of Ubp15 revealed that it is essential for the 

formation of the H2O2-induced HMW complex. However it remains unknown 

whether Ubp15 forms an intermolecular disulphide complex with another 

protein(s), or whether oxidation by H2O2 forms an intramolecular disulphide 

bond(s) similar to that hypothesised for Ubp12 oxidation. Indeed, Ubp15 has 7 

cysteine residues, all of which may potentially form an intramolecular disulphide 

with the catalytic cysteine. Interestingly, Ubp15 contains an extended N-terminal 

TRAF domain (Bozza and Zhuang, 2011) which is crucial for recruitment of target 

substrates (Bozza and Zhuang, 2011; Kim et al., 2016). The TRAF domain is 

unique to Ubp15, and actually contains two cysteine residues (C111 and C112). 

Perhaps one of these cysteines forms a disulphide complex with the catalytic 

cysteine (C214). It also remains possible that oxidation of Ubp15 initiates a 

homodimer complex whereby the binding of two Ubp15 molecules, perhaps 

involving the catalytic cysteine of both proteins, acts as a protective mechanism 

to prevent further oxidation of Ubp15. However, although the HMW complex of 

Ubp15 is similar in mobility to the Cdc34-Uba disulphide complex, all the 

experiments reported here suggest that the Ubp15 and Cdc34-Uba1 complexes 

are unrelated. However, it remains possible that Ubp15 forms a disulphide 

complex with another, unidentified protein(s). Indeed, it is noteworthy that Ubp15 

has 71 known physical interactors (according to the Saccharomyces cerevisiae 

Genome Database), any one of which may form a complex with Ubp15. 
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It is interesting that, compared to Ubp12, only a small proportion of Ubp15 

appears to be oxidised by H2O2 and diamide into HMW complexes. It is possible 

that only Ubp15 at a specific subcellular location is oxidised in response to H2O2 

and diamide, whereas Ubp15 at other cellular locations does not form a HMW 

complex. Interestingly, although Ubp15 is known to localise to the cytoplasm, it 

has also been found that a small portion of Ubp15 localises to the peroxisome 

(Debelyy et al., 2011). This is intriguing as peroxisomes are important for both 

ROS scavenging and ROS production (particularly H2O2) (Schrader and Fahimi, 

2006). Furthermore, Ubp15 has been suggested to be critical for peroxisomal 

biogenesis after H2O2-induced stress by supporting the import of proteins into the 

peroxisome (Debelyy et al., 2011). Interestingly, Ubp15 has been shown to 

physically interact with the AAA peroxin Pex6 (Debelyy et al., 2011) which is 

important for the release of ubiquitinated Pex5 from the peroxisome membrane 

(Platta et al., 2005). In addition Pex6 has also been observed to be important for 

the deubiquitination of Pex5 by Ubp15 (Debelyy et al., 2011). Therefore, it is 

possible that a Ubp15 interaction with Pex6 regulates the deubiquitination of 

Pex5 after oxidative stress. In the present study the link between Ubp15 oxidation 

and peroxisome regulation was not investigated, but is an interesting avenue for 

future investigation. 

As stated above, Ubp15 is found throughout the cytoplasm, suggesting that 

Ubp15 has other cytoplasmic roles. Interestingly, previous work suggested that 

Ubp15 may be important for cell cycle regulation via direct interaction with the 

APC/C activator subunit Cdh1 (Bozza and Zhuang, 2011). Although the 

interaction between Ubp15 and Cdh1 did not activate Ubp15, it was suggested 

that interaction with Cdh1 may target Ubp15 to specific substrates (Bozza and 

Zhuang, 2011). The APC/C complex is an important E3 enzyme that regulates 

the cell cycle (Qiao et al., 2010), hence it was hypothesised that Ubp15 may play 

important roles in cell cycle regulation due to the interaction with Cdh1. Thus, in 

this regard, it is tempting to speculate that oxidation with Cdh1 interaction 

potentially influences cell cycle progression. Indeed the very fact that the catalytic 

cysteine of Ubp15 is required for HMW complex formation may interfere with the 

deubiquitinating activity of Ubp15 towards cell cycle regulators. However, DNA 

content analysis suggested that cells lacking Ubp15 did not display any major cell 
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cycle defects in unstressed conditions. This result appears to contradict a recent 

publication which suggested ubp15Δ cells had a delayed progression through S 

phase, hypothesised to be due to a decrease in the B-type cyclin Clb5 

(Ostapenko et al., 2015). However there is some indication in the analyses 

presented in the paper that clumped cells were present, which would affect the 

interpretation. However, it is also possible that the difference in conclusions with 

our data could be linked to differences in strain construction as different markers 

were used which may affect the phenotype observed.  

Previous work has shown that H2O2 causes arrest points in the cell cycle at both 

G1 and G2 checkpoints (Flattery-O'Brien and Dawes, 1998; Leroy et al., 2001; 

O'Callaghan, 2004; Doris et al., 2012). Indeed, in the present study when wild 

type cells were treated with 0.5 mM H2O2 they arrested in G1 phase and G2 

phase consistent with this previous data. However, the present data also 

suggested an early S phase arrest as no build up in any specific phase in the cell 

cycle was observed. Interestingly, when ubp15Δ cells were examined, it was 

suggested that Ubp15 function may influence the G1 arrest as it was observed 

that more cells accumulated in G1 phase in the ubp15Δ cells. Additionally Ubp15 

activity is suggested to affect the release into S phase. It is interesting that after 

150 minutes at 0.5 mM H2O2 there seems to be entry into S phase initiated in wild 

type and ubp15Δ. However there is some indication that cells are moving more 

efficiently into S phase in the ubp15Δ strain. The number of cells with 1C content 

after ~150 minutes in the ubp15Δ strain declines more rapidly than wild type, 

suggesting cells are able to move into S phase faster. This is particularly 

interesting as previous studies of Ubp15 suggested that Ubp15 regulated Clb5 

ubiquitination (Ostapenko et al., 2015), hence since Cdc28-Clb5 is important for 

S phase entry it might have been expected to have weaker induction into S 

phase in ubp15Δ cells, not more. However these analyses have only been 

carried out once, therefore further repeats are necessary before any conclusions 

are made. It would also be helpful to use synchronised cells to explore the 

function of Ubp15 in the G1 arrest and for progression into S phase. Previous 

studies of Cdc34-Uba1 oxidation at 0.5 mM H2O2 revealed that ~150 minutes 

after H2O2 addition the HMW Cdc34-Uba1 complex is reduced and this 

corresponds with decreased stability of Sic1 and entry into S phase (Doris et al., 
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2012). Hence, this raises the possibility that Sic1 ubiquitination is also a target of 

the dUb activity of Ubp15 and this is more unstable in ubp15Δ cells, allowing for a 

more robust release into S phase at ~150 minutes. To test this possibility it would 

be interesting to use synchronised cells repeating the Cdc34 experiment and 

investigating Sic1 stability and activity in ubp15Δ and wild type cells. However it 

is also important to note that the entry of cells into S phase may have little to do 

with the oxidation of Ubp15, as at 0.5 mM H2O2 the HMW form of Ubp15 is not 

present. It is possible that oxidation of Ubp15 may be possible for establishing G1 

arrest, or even that the formation of the HMW Ubp15 complex is a protective 

mechanism which prevents Ubp15 degradation in response to oxidative stress 

and ensures Ubp15 is available once the stress has been overcome. However, it 

is also possible that the oxidation of Ubp15 may regulate another role of Ubp15, 

for example peroxisome regulation, after H2O2 stress. 

In the work described in this chapter, Ubp15 was found to be oxidised by both 

H2O2 and diamide into HMW complexes. Interestingly, the HMW complex formed 

by the different oxidising agents is potentially different, suggesting a possible 

mechanism whereby Ubp15 forms complexes with different substrates depending 

on the specific oxidising agent. Furthermore, the catalytic cysteine was observed 

to be critical for the formation of H2O2-induced HMW complex, and interestingly, 

the formation of this HMW complex was found to be formed in a concentration 

dependent manner. It was also revealed that Ubp15 activity was important for the 

response to oxidative and cold temperature stresses, and also, in addition. It was 

observed that Ubp15 activity was important for global ubiquitination following 

H2O2 stress. Preliminary data also suggested that Ubp15 may be important for 

regulating G1 phase growth arrest/delay and that also Ubp15 may be important 

for the timing of release into S phase after H2O2 stress. Importantly, Ubp15 is 

conserved in mammalian cells, and the homolog USP7 has been observed to 

have import roles in disease progression, including many cancers. It would 

therefore be of great interest to examine the oxidation and potential regulation, of 

USP7 in mammalian cells. 
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Chapter 6: Final discussion 

Ubiquitination is highly conserved in eukaryotes and has historically been 

associated with targeting proteins for degradation by the proteasome system. 

Recently, however, ubiquitination has been observed to have other intracellular 

signalling roles. Ubiquitination is a reversible modification, and ubiquitin is 

removed from substrates by the activity of dUbs. DUbs are highly conserved in 

eukaryotes and remove ubiquitin from substrates by cleaving the isopeptide bond 

between the substrate lysine and the ubiquitin moiety by the activity of an active 

site catalytic cysteine. Interestingly, recent studies have shown that the 

conjugation/deconjugation of the ubiquitin-like modifications SUMO and NEDD8, 

and specific ubiquitin conjugation/deconjugation machinery can be regulated by 

ROS. Furthermore, the presence of catalytic cysteine residues in many dUbs 

suggest that oxidation of dUbs may be a potential mechanism by which 

deconjugation of ubiquitin is regulated. Indeed, initial studies of specific 

mammalian dUbs suggested that oxidation may regulate their activity. However, 

in depth investigations of all the dUbs was not performed due to the large number 

present. Thus, the overall aim of this project was to utilise S. cerevisiae as a 

model eukaryote in an attempt to examine the potential roles and regulation of 

most of the dUbs in response to oxidative stress.  

 

6.1. Summary and discussion of key findings from this study 

Prior to this study, it was unknown whether any S. cerevisiae dUbs are regulated 

by different types of oxidising agents. DUbs (especially the USP dUbs) have 

similar active site architecture, therefore often exhibit functional redundancy. 

Consistent with these suggestions, in unstressed conditions it was observed that 

single dUb deletion mutants showed no obvious change in growth phenotypes 

when compared to wild type cells. Excitingly, and in contrast to the results 

obtained with unstressed conditions, all the dUbs investigated showed diverse 

roles and specific sensitivities in response to the range of oxidising agents tested. 

This observation suggests that while dUbs may have overlapping roles in 

unstressed conditions, they may have specific roles in response to oxidative 
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stress. We also investigated whether any dUbs were modified in response to 

oxidative stress. Excitingly, it was observed that certain dUbs were indeed 

modified in response to specific oxidising agents. Interestingly, since work in this 

thesis began a further subgroup of thiol protease dUbs has been identified, 

termed MINDY dUbs (Abdul Rehman et al., 2016). These dUbs are found in all 

eukaryotes and have a high affinity for cleaving K48 linked ubiquitin chains 

(Abdul Rehman et al., 2016). S. cerevisiae expresses two MINDY dUbs, MIY1 

and its paralog encoded by YGL082W (Huseinovic et al., 2018), and hence it will 

be interesting to investigate whether either of these dUbs play a role in, or are 

modified by, responses to oxidising agents. 

Excitingly, it was observed that Ubp12 is oxidised into a HMW complex in 

response to H2O2, and moreover, that Ubp12 is modified differently depending on 

the concentration of H2O2. Furthermore, analyses of the H2O2-induced complex 

suggested that Ubp12 forms an intramolecular disulphide(s) between the catalytic 

cysteine and an unknown cysteine in Ubp12 after H2O2 treatment. It is interesting 

to note that the mammalian dUb USP19, which when compared to the S. 

cerevisiae genome suggests Ubp12 as the highest homology, also forms a HMW 

complex after treatment with H2O2 (Lee et al., 2013) with similar mobility as that 

observed for Ubp12. When aligned, USP19 and Ubp12 have 11 conserved 

cysteines, and it is tempting to speculate that one of these cysteines forms an 

intramolecular disulphide with the catalytic cysteine in both Ubp12 and USP19. 

Excitingly, it was observed that Ubp12 abundance was regulated by Trr1, 

suggesting that the thioredoxin system is crucial for maintaining Ubp12 stability. 

However, it is possible that Trr1 may be regulating the gene expression of 

UBP12, rather than protein stability. Interestingly it was also observed that Ubp12 

and Ubp2, are oxidised differently by H2O2. This is intriguing as Ubp2 and Ubp12 

function in opposition to one another to regulate mitochondrial morphology 

homeostasis (Anton et al., 2013). Mitochondria promote fission or fusion 

depending on the level of oxidative stress. For example, low concentrations of 

stress induce mitochondrial fission which increases oxidative phosphorylation to 

overcome the cellular stress (Zemirli et al., 2018), whereas severe stress induces 

mitochondrial fission to enable mitophagy and remove damaged mitochondria 

from the environment (Zemirli et al., 2018). Thus the potential for Ubp12 and 
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Ubp2 to promote either mitochondrial fission or mitochondrial fusion depending 

on the concentration of H2O2 and the relative oxidation of each dUb, may suggest 

a mechanism by which mitochondrial dynamics are regulated. It has recently 

been observed that Cdc48, a conserved AAA ATPase, may regulate Ubp12 for 

multiple downstream functions (Gödderz et al., 2017; Chowdhury et al., 2018; 

Simões et al., 2018). For example, a recent publication revealed that Cdc48 and 

a Ubp3 cofactor regulates Ubp12 stability in order to promote mitochondrial 

fission (Chowdhury et al., 2018). In this regard, in the present study it was found 

that Ubp3 is actually critical for cellular responses to all the oxidising agents, 

suggesting that the regulation of dUbs by oxidative stress may be a mechanism 

by which mitochondrial dynamics are regulated.  

The roles and regulation of another dUb, Ubp15 was also explored. Ubp15 was 

found to be oxidised in response to diamide and H2O2. However results 

suggested that the HMW Ubp15 complexes formed in response to H2O2 or 

diamide were different. It was also demonstrated that Ubp15 oxidation was more 

responsive to higher concentrations of H2O2. Taken together these results 

suggest that Ubp15 oxidation may be depend on the concentration of H2O2, and 

also the type of oxidising agent used may regulate the formation of Ubp15 HMW 

complex. Furthermore although the data suggest that Ubp15 forms a HMW 

disulphide complex via the catalytic cysteine, it currently remains unknown 

whether Ubp15 forms a complex with another protein, including another Ubp15, 

or whether Ubp15 forms an intramolecular disulphide(s). However, despite 

having similar mobility to Cdc34 HMW complexes, the Ubp15 H2O2-induced 

HMW complex does not include Cdc34. Interestingly, preliminary cell cycle 

analyses of unstressed ubp15Δ cells presented in this study suggested that 

Ubp15 may be important for regulating G1 phase growth arrest/delay, and that 

Ubp15 may be important for the timing of release into S phase after H2O2 stress. 

It is interesting to note that in the fission yeast S. pombe, Ubp15 (the homolog of 

Ubp15 in S. cerevisiae) has also been linked to regulating S phase, in this case 

by deubiquitination of PCNA (Alvarez et al., 2016). In the case of S. pombe 

Ubp15, it was found to regulate PCNA together with other dUbs, Ubp2, Ubp12, 

and Ubp16, equivalent to Ubp2, Ubp12 and Ubp8 respectively in S. cerevisiae. 

The authors propose that the coordinated activity of these four dUbs remove 
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specific ubiquitin signals from PCNA at K164, thus allowing cell cycle progression 

and response to DNA damage/ replication blocks (Alvarez et al., 2016). 

Ubiquitination of PCNA at K164 is conserved in S. cerevisiae (Gallego-Sanchez 

et al., 2012), however Ubp10 has been observed to remove the K164 ubiquitin 

signals from S. cerevisiae PCNA (Gallego-Sanchez et al., 2012). Interestingly the 

present study has suggested that S. cerevisiae Ubp2, Ubp12 and Ubp15 are all 

regulated by oxidative stress, although in different ways. It would be of interest to 

investigate whether oxidation of S. pombe Ubp2, Ubp12 and Ubp15 are also 

regulated by oxidative stress, which could pose a potential mechanism for 

regulating cell cycle progression via PCNA ubiquitination. 

Collectively, this project has revealed that dUbs play a range of specific roles in 

the responses to oxidative stress, and that under certain oxidising conditions 

specific dUbs become modified. Furthermore we observed that the dUbs Ubp12 

and Ubp15 were modified into HMW complexes by specific oxidising agents, 

however the relative sensitivity of these dUbs to the oxidising agent was different. 

It would be interesting in the future to understand the localisation of these dUbs 

and how this affects modifications by oxidative stress. It would also be interesting 

to investigate why specific dUbs are more sensitive than others to oxidising 

agents and to understand what determines the response and modifications to 

specific oxidising agents.  

 

6.2. Implications for mammalian cells 

Interestingly, although S. cerevisiae expresses only 20 dUbs, in comparison to 

~100 dUbs in mammalian cells, many S. cerevisiae dUbs are conserved in 

mammalian cells, both functionally and structurally. Studies in mammalian cells 

revealed that certain dUbs can be activated by a reducing agent, suggesting 

oxidation inhibits dUb activity (Lee et al., 2013). Other studies of the regulation of 

mammalian dUbs by oxidative stress showed that mouse USP18 was 

upregulated at the transcriptional level after H2O2 treatment, which had a 

protective role after oxidative stress and prevented cellular apoptosis, possibly 

via the upregulation of p53 (Lai et al., 2017). Importantly it was observed that the 

dysregulation of USP18 in response to oxidative stress could be reduced, 
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suggesting that USP18 was reversibly oxidised (Lai et al., 2017). Another dUb 

observed to be regulated by oxidative stress is USP9X. A previous study 

demonstrated that in response to high levels of H2O2, USP9X deubiquitinates, 

and thus stabilises ASK1 which results in cell death in a p38-dependent manner 

(Nagai et al., 2009). However a recent study revealed that treatment with lower 

concentrations of H2O2 causes USP9X levels to increase which results in the 

stabilisation of the methyl-CpG-binding transcriptional regulator, ZBTB38 (Miotto 

et al., 2018), which subsequently leads to cell survival after oxidative stress 

(Miotto et al., 2018). It is possible that these different studies provide evidence for 

mechanisms by which different concentrations of H2O2 affects the ability of 

USP9X to interact with different targets. Hence, it is possible that the differential 

sensitivity of dUbs to oxidation may be a key mechanism by which specific 

cellular outcomes are regulated, tailoring the response to both the oxidising agent 

present and its concentration.  

In the present study the roles and regulation of Ubp12 and Ubp15 in response to 

different oxidising agents were investigated. Interestingly, when the S. cerevisiae 

dUb is compared to the mammalian genome, both Ubp12 and Ubp15 have 

mammalian homologs, USP15 and USP7 respectively. The potential for these 

mammalian dUbs to be regulated by oxidative stress similar are discussed below. 

6.2.1. USP15 

The mammalian homolog to Ubp12, USP15, was observed to be activated by a 

reducing agent (Lee et al., 2013), suggesting that oxidation inhibits USP15 

activity. This is particularly interesting as dysregulation of USP15 has been 

implicated in many cancers (Chou et al., 2017). Indeed, USP15 has been linked 

to stabilising many proto-oncogenes, and moreover, upregulation of USP15 has 

been linked to ovarian and breast cancers and glioblastoma (Zou et al., 2014; 

Chou et al., 2017). In contrast, USP15 has also been linked to tumour-suppressor 

substrates, including p53 (Padmanabhan et al., 2018). In addition to cancer, 

USP15 has also been implicated with Parkinson’s disease (Cornelissen et al., 

2014). Parkin, an E3 ubiquitin ligase, normally localises to the cytoplasm, but 

translocates to the mitochondria to initiate mitophagy (Cornelissen et al., 2014). A 

major cause of Parkinson’s disease is the loss of function of Parkin. Interestingly, 
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USP15 has been observed to counteract Parkin mediated-ubiquitination, as 

inhibition of USP15 can rescue the defect in Parkin mediated-mitophagy that is 

observed in severe Parkinson’s disease cases (Cornelissen et al., 2014; Chou et 

al., 2017). It is interesting to note that Ubp12 in S. cerevisiae is important for 

promoting mitochondrial fission, a key element for mitophagy, and we propose 

that the oxidation of Ubp12 may regulate mitochondrial fission. Thus it would be 

of interest to investigate the potential links to mitophagy associated with USP15 

oxidation. However, it is also relevant that there are more dUbs present in 

mammalian cells, and hence it is possible that multiple mammalian dUbs may be 

important for mitochondrial regulation. For example USP30 (Bingol et al., 2014), 

USP35 (Wang et al., 2015), and USP8 (Durcan and Fon, 2015) have all been 

linked to mitochondrial morphology regulation in mammalian cells. 

6.2.2. USP7 

The mammalian homolog of Ubp15 is USP7. USP7 is often dysregulated in 

cancers (Yeasmin Khusbu et al., 2018), but it is also involved in other diseases 

including neurological disorders and immune dysfunction (Jackson et al., 2000). 

USP7 has been linked to many types of cancer, for example brain, prostate, and 

breast cancers, and also leukaemia (Jackson et al., 2000). USP7 was initially 

identified as a tumour suppressor by its ability to deubiquitnate p53, however it 

has also been observed to have oncogenic properties, for example by stabilising 

MDM2 (Bhattacharya et al., 2018). Indeed to date no USP7 mutations have been 

found to inhibit cancer progression, suggesting that neither loss, nor gain of 

function is advantageous (Bhattacharya et al., 2018). USP7 function has also 

been linked to oxidation. For example when incubated with a reducing agent, 

USP7 was found to have enhanced activity (Lee et al., 2013), suggesting that 

USP7 may be regulated by oxidation. Furthermore, USP7 was demonstrated to 

be reversibly oxidised by H2O2, and that this oxidation is inversely correlated with 

ubiquitination of USP7 substrates (Cotto-Rios et al., 2012). Analysis of this 

oxidation revealed that the catalytic cysteine in USP7 was oxidised to a sulphenic 

acid, but that activity was recovered after two hours. Interestingly it was also 

observed that other cysteines in USP7 were oxidised, and the authors 

hypothesised that USP7 sulphenic oxidation may be converted to a 

sulphenylamide or disulphide bond, potentially as a protective mechanism (Cotto-
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Rios et al., 2012). Hence, given the results presented in this thesis it would be 

extremely interesting to investigate whether mammalian USP7 forms a H2O2-

induced HMW complex similar to that observed for Ubp15.  

 

6.3. Potential implications for drug therapies 

In the clinic, several drug therapies have been used successfully that target the 

ubiquitin-proteasome system (including bortezomib and lenalidomide) (Pal et al., 

2014). However these treatments are limited to certain tumour types. As dUbs 

have a wide range of substrates, and have been observed to be dysregulated in 

many cancers, they pose an attractive target for therapeutic strategies. In 

addition, by targeting dUbs the remaining ubiquitin-proteasome system remains 

functioning, hopefully minimising potential deleterious side effects (Pal et al., 

2014). Consequently, many drugs have been developed which target specific 

mammalian dUbs. For example, the compound ML323 inhibits USP1 activity and 

therefore regulates PCNA deubiquitination (Liang et al., 2014). The chemicals 

HBX 41,108 (Colland et al., 2009) and P22077 (Altun et al., 2011) have both 

been identified to inhibit USP7 activity, and thus may have potential applications 

for cancer treatment. Interestingly, a recent drug Curcusone D, induces 

intracellular ROS levels, and thus has been observed to inhibit dUb activity (Cao 

et al., 2014). Consequently, apoptosis is induced in multiple myeloma cells, and 

thus Curcusone D has been suggested to be an effective combination therapy 

with other ubiquitin-proteasome inhibitory drugs to treat cancers (Cao et al., 

2014). The suggestion that drug therapies may be able to produce ROS which 

inactivate specific dUbs highlights the importance of understanding dUb 

regulation by oxidation. The data presented in this thesis suggests that certain 

dUbs are regulated differently by oxidative stress. Which highlights the question 

of why certain dUbs are oxidised by certain oxidising agents while others are not. 

Understanding this question may prove very beneficial to allow targeting of ROS-

producing drug therapies to certain dUbs in specific pathways.  
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6.4. Outstanding questions based on this study 

This study has increased our knowledge of the regulation of specific S. cerevisiae 

dUbs in response to different oxidative stresses. However, outstanding questions 

remain to be addressed in addition to repeating any data that was only obtained 

from a small number of experiments. For example, although results obtained from 

this study indicate that Ubp12 forms a H2O2-induced intramolecular disulphide 

complex at the catalytic cysteine, further mass spectrometry analyses would 

hopefully be able to pinpoint the other cysteine(s) involved in the complex. 

Furthermore, a model was proposed that suggested that the sensitivity of Ubp12 

and Ubp2 to oxidation may be important for regulating the dynamics of 

mitochondrial morphology. In this case, microscopy-based analyses of 

mitochondrial morphology should shed further light on the regulation of 

mitochondrial dynamics by oxidative stress. Other work has proposed that Ubp12 

may regulate the stability of Ubp2 (Simões et al., 2018), therefore in depth 

analyses of Ubp2 stability and its relationship with Ubp12 function after 

incubation with H2O2 would be of interest. It has also recently been observed that 

Ubp3 may regulate Ubp12 stability (Chowdhury et al., 2018). Hence further 

investigations into the relationships between these two dUbs could prove 

interesting. Furthermore, the mammalian homolog of Ubp12, USP15, has many 

roles in cancer progression and is a potential drug target. Hence, it would be of 

interest to investigate whether oxidation of Ubp12 was conserved in USP15 as a 

potential route to identifying drugs that specifically target this dUb.  

Results obtained from the present study have suggested that diamide and H2O2 

potentially modify Ubp15 differently. The basis of these differences in not 

understood and hence these studies should be expanded to confirm the data and 

identify the cysteines and proteins involved. In addition, although the catalytic 

cysteine of Ubp15 is involved in the H2O2-induced HMW complex, other aspects 

of this complex are not currently understood. Similar to the Ubp12 studies mass 

spectrometry analyses could be utilised to investigate this complex. Interestingly, 

preliminary investigations of the potential connections between Ubp15 function, 

oxidative stress responses, and cell cycle regulation of several potential cell cycle 

arrest/delay checkpoints in response to H2O2, revealed that Ubp15 may influence 

G1 phase arrest and/or entry into S phase. Indeed from the initial studies a model 
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was proposed whereby Ubp15 regulates Sic1 levels and consequently regulates 

timing of S phase entry. Future work to examine whether Ubp15 regulates Sic1 

would test this model. It is interesting to note that the mammalian homolog of 

Cdc34 (Cdc34) also regulates the mammalian of Sic1 (p27Kip1). Furthermore, 

Cdc28/Clb5 is also conserved in mammalian cells (CDK2, Cyclin E), thus it would 

be interesting to investigate whether USP7 is involved in regulating progression 

into S phase in mammalian cells, in a similar fashion as proposed for Ubp15 in S. 

cerevisiae.  

Finally, this study has only performed the essential first steps regarding dUb 

functions and regulation by oxidising agents. Indeed, Ubp5 and Ubp14 were 

observed to be modified by menadione, a superoxide generating oxidising agent 

which has not been further investigated in this thesis. Also the method of 

oxidation detection utilised in this study only shows certain modifications in 

response to oxidative stress. Other dUbs, indeed including Ubp12 and Ubp15, 

may also be oxidised in other ways and hence other techniques should be 

applied in future studies to expand the work in this thesis. 

 

6.5. Concluding remarks 

While many studies into the regulation of ubiquitin and ubiquitin-like modifications 

are emerging, detailed investigations of the regulation of many specific pathway 

enzymes, including the dUbs, involved in these systems remains limited. Work 

presented here, and also by other groups working with mammalian cell models, 

has suggested that dUbs are regulated by ROS signalling. As described above, 

dUbs are often dysregulated in common diseases. Therefore, improving our 

understanding of dUb regulation by ROS signalling may potentially lead to novel 

therapies which utilise the differential sensitivity of dUbs to ROS as a clinical 

approach to benefit human health.  
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Appendix A 

Total mass spectrometry results from the first mass spectrometry analysis, 

completed by David Stead at Aberdeen University. The raw data was analysed 

and proteins were identified based on the values of score, coverage and peptide 

number (# peptide). The score indicates the sum of the ion scores of all the 

distinct peptides, hence a higher score suggests a more confident match. The 

coverage indicates the percentage of the protein sequence covered by the 

identified peptides. Finally, the peptide number indicates the total number of 

distinct peptides identified from a specific protein. Also included is #PSM which is 

the total number of peptide spectrum matches for each protein. Using these 

analyses, the protein hits were ranked based on their cumulative score. 
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UBP12 1491.41  40.19 37 63         

URA2  1649.41  33.20 60 71 2709.07  48.87 89 110 

ACC1  1690.31  34.12 52 59 2685.90  48.05 77 93 

HIS4  571.21  25.03 17 19 985.36  37.67 26 34 

GCN1  676.56  13.96 25 25 460.18  8.83 18 18 

POL2  197.63  6.30 10 10 216.66  6.53 11 11 

UBR1  42.17  1.03 2 2 102.84  3.95 6 6 

RPS3 
S 

46.44  7.08 1 1 36.64  7.08 1 1 

CEX1  41.75  2.23 1 1         

SEC7  72.39  2.04 3 3 119.07  3.14 4 5 

CDC19  68.24  7.40 3 3 39.73  4.80 2 2 

ADH2 32.12  5.75 2 2 97.48  6.90 3 3 

FAS1  61.48  2.44 3 3 224.04  7.26 10 10 

YEF3  33.54  1.15 1 1 59.84  2.49 2 2 

TAO3  56.85  1.22 2 2 58.85  1.73 3 3 

CHC1          23.29  0.97 1 1 

ECM33          29.71  2.33 1 1 

TEF2          47.59  2.40 1 1 

FAS2          21.07  0.90 1 1 

FKS1          54.27  2.56 3 3 

GLT1          50.42  1.96 3 3 

HSC82          83.64  9.22 5 5 

SSA2          89.89  9.86 4 4 

SSC1          32.09  3.82 2 2 

PGK1          39.08  3.37 1 1 

PMA1          48.60  1.42 1 1 

RPO21          38.37  0.92 1 1 
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Appendix B 

Total mass spectrometry results from the second mass spectrometry analysis, 

completed by David Stead at Aberdeen University. The raw data was analysed 

and proteins were identified based on the values of score, coverage and peptide 

number (# peptide). The score indicates the sum of the ion scores of all the 

distinct peptides, hence a higher score suggests a more confident match. The 

coverage indicates the percentage of the protein sequence covered by the 

identified peptides. Finally, the peptide number indicates the total number of 

distinct peptides identified from a specific protein. Also included is #PSM which is 

the total number of peptide spectrum matches for each protein. Using these 

analyses, the protein hits were ranked based on their cumulative score. 
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UBP12  1765.8
0  

36.12 32 50 4197.7
9  

53.99 48 121 292.95  12.52 11 11 

VPS13  2872.3
4  

30.50 65 77 450.93  8.14 18 19 2454.2
4  

27.51 60 73 

URA2  980.15  18.25 30 31 283.48  6.59 12 12 1021.1
0  

16.94 29 30 

HIS4  581.64  23.03 13 16 576.24  22.03 12 16 771.25  30.04 17 23 

CDC1
9 

331.71  31.60 10 11 269.04  28.20 11 13 399.97  36.00 11 13 

ACC1  404.73  11.29 18 18 68.88  2.28 4 4 290.30  7.84 12 12 

FAS1  478.69  11.65 15 15 33.65  0.98 1 1 408.98  14.43 18 18 

GCN1  332.75  6.96 15 15 86.64  1.50 3 3 412.92  7.30 15 15 

PDC1  376.94  28.24 9 12 236.64  17.76 6 7 214.03  23.98 8 9 

FAS2  210.24  6.84 9 9 28.74  1.32 2 2 451.90  9.96 13 13 

TOM1  542.14  7.07 19 20         54.78  1.59 4 4 

TEF2  254.17  27.29 7 10 126.99  19.21 5 7 202.01  17.25 4 6 

YEF3  294.02  15.90 11 12 75.83  2.68 3 3 158.75  9.00 7 7 

NUM1 325.30  16.34 9 11 127.82  11.97 5 5 127.64  11.97 5 5 

TRA1  310.55  4.11 12 12         278.38  2.48 8 8 

SSA2  261.47  16.90 7 7 117.01  7.36 4 4 162.12  15.34 6 6 

ADH1  216.69  25.00 6 6 147.93  15.52 4 4 187.94  17.82 6 6 

EFT2  141.76  10.57 6 6 26.23  2.14 1 1 111.26  8.19 5 5 

MDN1  177.95  2.73 9 9         39.96  0.59 2 2 

KRS1  118.95  14.04 7 8 30.32  3.89 2 2 29.60  2.03 1 1 

VMA1  173.52  11.02 8 8 51.43  1.40 1 1 59.38  2.61 2 2 

ACO1  55.06  3.21 2 2 128.77  7.97 5 5 97.62  5.53 3 3 

ECM3
3 S 

108.85  9.32 3 3 89.86  5.83 2 2 121.21  9.32 3 3 

FKS1  73.26  2.19 2 2         81.47  5.44 6 6 

PMA1 117.55  7.63 4 4         120.08  4.47 3 4 

VMA2  190.48  11.41 4 4 28.67  2.90 1 1 94.77  4.45 2 2 

SSB1  61.68  9.62 3 3 25.60  2.28 1 1 56.27  6.36 2 2 

CDC6
0 

65.66  5.60 3 3         80.55  4.13 3 3 

CHC1  84.70  1.63 2 2         66.09  2.36 3 3 

EDE1  88.94  3.69 3 3         42.19  2.10 2 2 

ILS1  43.41  1.96 2 2 32.88  1.03 1 1 42.75  1.96 2 2 

ACT1  33.96  7.73 2 2         46.85  4.80 1 2 

CYS4  93.23  5.72 2 2 43.03  3.35 1 1 44.21  3.55 1 1 

TDH3 162.80  15.66 3 3 41.85  4.22 1 1         
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S 

PYK2  74.35  6.92 2 2 53.56  1.98 1 1 68.93  1.98 1 1 

RPL27
B  

72.82  10.29 1 1 37.07  10.29 1 1 104.10  20.59 2 2 

SEC16  45.80  1.82 3 3         48.01  0.82 1 1 

UBI4  107.34  21.00 1 1 93.16  32.81 2 2 77.99  21.00 1 1 

SAM1  175.96  12.30 3 3                 

PHO3  68.50  3.43 1 1         41.57  6.85 2 2 

RPL3  25.71  4.13 1 1         51.44  7.49 2 2 

UTP8  37.88  1.26 1 1 22.85  1.26 1 1 23.67  1.26 1 1 

HSC8
2  

                51.56  4.68 3 3 

ASN1 41.92  3.85 2 2                 

ASN2  28.84  3.85 2 2                 

SEC7  25.43  0.40 1 1         21.36  0.50 1 1 

RPA19
0  

                26.58  1.62 2 2 

INA1                  39.63  4.30 2 2 

GND1 62.32  3.48 1 1                 

ATP1  44.95  2.39 1 1                 

UTR2  20.46  3.21 1 1                 

CYC1 35.68  10.09 1 1                 

GUA1  38.93  2.29 1 1                 

NSR1  21.64  3.86 1 1                 

SAH1  36.30  3.12 1 1                 

MES1  27.52  2.13 1 1                 

DED8
1  

40.63  2.53 1 1                 

TSA1  29.15  7.14 1 1                 

YLR03
5C-A 

21.25  1.30 1 1                 

GLT1                  37.11  0.70 1 1 

KAP12
3  

                21.59  1.17 1 1 

FAA4                  20.41  2.31 1 1 

PFK2                  22.15  2.50 1 1 

RRP5                  21.00  0.52 1 1 

SMT3                 85.31  21.78 1 1 
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