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Abstract 

The corticospinal tract is well established as the dominant descending pathway in primates; 

however, it does not occupy an exclusive position in its ability to control movement. By 

lesioning this pathway, Lawrence and Kuypers (1968) demonstrated that a wide range of 

movements could be mediated by brainstem motor pathways, such as the reticulospinal tract. 

Fifty years after these experiments, the relative contributions of corticospinal and reticulospinal 

pathways to movement is still a topic of debate. Animal studies are invaluable in addressing 

this question and advancing our understanding of the motor system. However, these must be 

considered in combination with the use of non-invasive techniques in order to translate our 

findings into humans.     

This thesis describes three separate experiments. In the first, the mechanisms underlying 

transcranial magnetic stimulation (TMS) were investigated by applying TMS to anaesthetised 

rhesus macaques whilst recordings were made from individual corticospinal axons. Our results 

differ from the population effects observed in human recordings, emphasising the complexity 

of the responses evoked by TMS. Secondly, in humans we performed a choice reaction 

reaching task thought to involve tecto-reticulospinal pathways. By pairing stimuli targeting the 

reticular formation, we propose that the resulting change in muscle activity represents a 

modulation of reticulospinal output. Finally, a strength training study was performed in two 

rhesus macaques and the adaptations in corticospinal and reticulospinal pathways assessed, 

with EMG and spinal recordings implicating reticulospinal pathways in strength-induced 

adaptations.  

These experiments demonstrate that a comprehensive understanding of the motor system 

requires consideration of both the human and animal literature, with their respective strengths 

and limitations. Furthermore, we need to advance beyond the corticospinal-centric view that 

has dominated the field and instead consider the role of all neural elements in the motor system, 

including brainstem pathways and interneuron circuits. Only through such means can we 

further our clinical and scientific understanding of movement.   
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1.  

CHAPTER I 

Introduction 
 

Descending pathways 

The seminal work of Lawrence and Kuypers has shaped the field of motor neuroscience over the 

last 50 years by initiating the discussion on the relative contributions of descending pathways to 

movement (Lawrence and Kuypers, 1968a, b). The authors reported that surgical lesion of the 

corticospinal tract (CST) in macaques resulted in an initial flaccid paralysis followed by a deficit 

in independent limb movement. Although the animals largely recovered over a period of weeks, 

they did not regain independent finger control (Lawrence and Kuypers, 1968b). These findings 

suggest that despite the CST being the dominant descending pathway in primates (Lemon, 2008), 

subcortical pathways can also generate a wide range of movements, with the notable exception of 

manual dexterity. Subsequent lesions of either the ventromedial or lateral brainstem pathways led 

Lawrence and Kuypers (1968a) to attribute distal function to lateral brainstem pathways such as 

the rubrospinal tract (RuST), whilst ventromedial pathways including the reticulospinal tract 

(RST) were proposed to mediate proximal movements. Thus by the end of the 1960s, the RST, 

RuST and CST had been categorised as pathways for basic movement, independent limb control 

and independent finger control, respectively. Although aspects of this categorisation stand true 

today, over the last half a century a concerted effort to study the motor system has produced a more 

detailed characterisation of these pathways. 

The corticospinal tract 

Given the little evidence supporting a RuST contribution in man (Nathan and Smith, 1955; 

Onodera and Hicks, 2010), the literature, which is often centred on hand function, has focussed 

predominantly on corticospinal contributions to movement. The CST is an axon bundle originating 

from throughout the motor and somatosensory cortices (Dum and Strick, 2005; Lemon, 2008). The 
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majority of fibres decussate at the medulla to descend in the contralateral dorsolateral funiculus 

(DLF), and although approximately 10% descend in the ipsilateral DLF (Liu and Chambers, 1964; 

Ralston and Ralston, 1985), these cross the midline in the spinal cord and so also form contralateral 

terminations (Yoshino-Saito et al., 2010). Any ipsilateral corticospinal actions are therefore 

dependent upon the ~2% of fibres that descend in the ipsilateral ventromedial funiculus (VMF) 

and the extensive presence of commissural interneurons (Rosenzweig et al., 2009; Yoshino-Saito 

et al., 2010). Electrophysiological recordings suggest that this contribution is of little functional 

significance given the scarcity of ipsilateral responses in either muscles or motoneurons to 

corticospinal stimulation (Soteropoulos et al., 2011). Thus the CST can be considered as a 

predominantly unilateral pathway, an important distinction from the bilateral ventromedial 

brainstem pathways.  

Corticospinal terminations onto interneurons in the intermediate zone of the cord are well 

conserved across mammals, thus the main corticospinal drive to motoneurons is mediated by a 

disynaptic pathway. A notable exception to this is observed in primates in which corticospinal 

axons can also form monosynaptic corticomotoneuronal (CM) connections (Bernhard and Bohm, 

1954). Manual dexterity improves with the emergence of CM connections, both in terms of 

evolution and developmental maturation (see Kuypers, 1981), suggesting that this monosynaptic 

pathway endows the primate CST with the characteristic sophisticated movements with which it 

is associated. Although it should be noted that independent finger movements are not exclusively 

the domain of CM cells since they persist in the absence of these connections, presumably due to 

C3/C4 propriospinal interneurons (Sasaki et al., 2004).  

The functional division of monosynaptic and disynaptic connections to motoneurons is represented 

as an anatomical division in the primary motor cortex (M1). Anatomical and electrophysiological 

studies have revealed that fast-conducting corticospinal axons that form CM connections originate 

from the region of M1 on the anterior bank of the central sulcus, whereas corticospinal axons that 

terminate on interneurons, together with slower conducting fibres with CM connections, are found 

throughout M1 (Rathelot and Strick, 2009; Witham et al., 2016). This has led to the classification 

of two subdivisions – an evolutionarily new M1, located caudally, from which fast CM cells arise; 

and an evolutionary old M1, which is located rostrally and characterised by its lack of fast CM 

cells.   
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In summary, as a development of the ideas of Lawrence and Kuypers (1968b), the unique ability 

of the CST to produce independent finger movements has been attributed to CM connections and 

the caudal region of M1. Furthermore, the relatively limited collateralisation of CM cells (Buys et 

al., 1986) likely accounts for the role of this pathway in independent limb movements too. Thus, 

considerable progress has been made in identifying the anatomical substrates responsible for the 

behavioural observations of Lawrence and Kuypers (1968b).  

The reticulospinal tract  

In contrast to the widespread attention received by the CST, the RST has been comparatively 

neglected in the study of primate motor control. This bilateral pathway originates from the nuclei 

of the reticular formation (RF) and forms both monosynaptic and disynaptic connections with 

motoneurons (Riddle et al., 2009). Found in mammals as well as more primitive species, the RST 

has been considered as a phylogenetically old pathway that exerts simple and often reflexive 

control of movement. In its most basic form, the rudimentary reticulospinal system consists of just 

two Mauthner cells capable of evoking an escape reflex in fish and amphibians (Korn and Faber, 

2005). In the more developed form seen in cats, the RST has been associated with gross movements 

including locomotion (Drew et al., 1986; Mori et al., 2001), reaching (Schepens and Drew, 2004a, 

2006b) and postural control (Deliagina et al., 2008; Schepens et al., 2008). Similarly, primate 

studies have shown a direct involvement of the RST in upper limb movements such as reaching 

(Buford and Davidson, 2004; Davidson and Buford, 2004; Davidson and Buford, 2006; Davidson 

et al., 2007). These functions correspond with the extensive divergence of the RST (Peterson et 

al., 1975; Matsuyama et al., 1997), supporting its role in the synergistic control of movement.  

Only in recent years has a role for the RST in more distal movements been defined. The motivation 

for these investigations stems from the observation by Lawrence and Kuypers (1968a) that 

although animals with both CST and RuST lesions had severely impaired manual dexterity, they 

were still able to climb the bars of their cage, suggesting that the intact RST was able to mediate 

some degree of hand function. Accordingly, reticulospinal connections to motoneurons 

innervating wrist and digit muscles have been identified in primates (Riddle et al., 2009), with 

electrophysiological recordings demonstrating task-dependent modulation of RF neurons during 

precise index finger movements (Soteropoulos et al., 2012).  
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On the basis of these findings, our understanding of the RST has developed from the relatively 

dismissive view that this pathway can mediate only the most basic aspects of movement, to a more 

modern outlook suggesting that the connectivity exists within the RST to support a wide range of 

movements. The functional relevance of these connections, both in the healthy state and following 

the corticospinal damage associated with many neurological conditions, is still a debated subject.  

A comparison of pathways 

The similarities between the CST and RST in primates, particularly the innervation of distal and 

proximal muscles by both pathways, raises the question of why two descending pathways exist. 

The most simplistic view is that the existence of two pathways, which can converge onto the same 

populations of interneurons and motoneurons (Riddle and Baker, 2010), represents redundancy in 

the motor system. The phylogenetically newer CST dominates in the healthy state, with its CM 

cells providing additional dexterity, whereas the RST could be considered as an evolutionary relic. 

The corticospinal focus in the human motor control literature perhaps reflects this view. However, 

there is increasing evidence suggesting that the CST and RST are both functionally relevant in 

primates, with each uniquely contributing to the complex network that is the motor system.  

The first observation to make is that the CST and RST do not constitute entirely independent 

pathways. The interconnectivity of these two pathways can be demonstrated not only by the 

presence of cortico-reticular projections (Berrevoets and Kuypers, 1975; Jinnai, 1984), but also by 

the observation that many of these are actually corticospinal collaterals (Keizer and Kuypers, 

1989). This relationship is to some extent bidirectional since fibres ascend from the RF to the 

cortex, although this pathway is largely concerned with conveying sensory information (see 

Steriade, 1996).  

Furthermore, there is considerable overlap in the terminations of the CST and RST, with 

convergent input to interneurons in cats (Schepens and Drew, 2006b), and both interneurons and 

motoneurons in primates (Riddle and Baker, 2010). Although this could be taken to imply 

redundancy in the system, it has instead been proposed that by modulating the excitability of target 

neurons, the relatively specific corticospinal projections are able to gate the much more dispersed 
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reticulospinal input in order to produce the required pattern of muscle activation (Schepens and 

Drew, 2006b).  

It could be inferred from such a system that the RST provides the main drive to motoneurons whilst 

the CST fine tunes this input to produce precise, fractionated movement. This hypothesis is 

supported by the anatomy of these pathways, with the RST projecting bilaterally and showing 

extensive collateralisation compared to the less divergent, predominantly unilateral CST (Lemon, 

2008). Furthermore, since the lesion studies of Lawrence and Kuypers (1968b), the RST has been 

specifically implicated in strength due to the authors’ report of a progressive increase in strength 

following corticospinal lesions. Subsequent human studies have shown that when making strong 

contractions, an increasing number of muscles are activated both ipsilaterally and contralaterally 

(Zijdewind and Kernell, 2001), which matches with the bilateral and divergent nature of the RST. 

Further support for the dissociation between the strength and precision of movement can be drawn 

from human studies of hand function in healthy controls (Perez and Rothwell, 2015), stroke 

survivors (Xu et al., 2017) and individuals with spinal cord injury (Bunday et al., 2014; Baker and 

Perez, 2017).  

Clinical significance  

In addition to furthering our knowledge of the motor system, study of the descending pathways is 

motivated by the desire to generate clinically relevant therapies for the many neurological 

conditions characterised by motor deficits. For example, both stroke and spinal cord injury may 

result in selective lesioning of the CST with the possibility of relative sparing of the RST. 

Although, as discussed above, the RST does not constitute a parallel pathway to the CST, it is 

likely that the motor deficits experienced following stroke and spinal cord injury could to some 

extent be ameliorated by upregulating reticulospinal function (Baker, 2011; Baker et al., 2015).   

Reticulospinal adaptation following corticospinal injury has been demonstrated in primate lesion 

studies (Zaaimi et al., 2012; Darling et al., 2018). Following a stroke, the recovery of movement 

that occurs matches the anatomy of the RST; survivors can regain considerable motor function but 

often experience reduced dexterity (Lang and Schieber, 2003, 2004; Raghavan et al., 2006), 

increased co-contraction of muscles (Bourbonnais et al., 1989; Dewald et al., 1995), and enhanced 
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mirror movements (Nelles et al., 1998). Similarly, individuals with spinal cord injury show signs 

of increased reticulospinal function (Baker and Perez, 2017). 

Although it appears that plastic changes occur in the RST following corticospinal injury, the full 

potential of this pathway to compensate for the loss of descending drive associated with conditions 

such as stroke and spinal cord injury remains to be elucidated. Furthermore, it is not known to 

what extent the strengthening of reticulospinal connections is detrimental to movement. By better 

understanding the relative contributions of the CST and RST in the healthy state, we may be able 

to develop therapies to modulate reticulospinal plasticity following injury and thereby maximise 

the potential of this pathway to compensate for deficits elsewhere in the motor system.  

Non-invasive techniques  

Our current knowledge of the relative roles of descending pathways in movement control largely 

comes from animal experiments, predominantly performed in cats and non-human primates. These 

studies have proved invaluable in the characterisation of corticospinal and reticulospinal pathways. 

However, notable differences exist between the motor systems of different species (Lemon, 2008). 

If the ultimate goal of the field is to translate findings to humans and explore the possibility of 

clinical interventions, it is necessary to develop non-invasive techniques to study the motor system 

and in particular, the separate contributions made by its descending pathways.    

Structural imaging techniques can be used to draw some comparisons to the animal literature, such 

as the identification of human corticoreticular projections using diffusion tensor imaging (Yeo et 

al., 2012). However, a functional understanding of the motor system requires electrophysiological 

techniques. Non-invasive quantification of the activity of a neural pathway requires the ability to 

provide an input and record an output. Similarly to the animal studies, electrical stimulation of the 

motor system is unlikely to excite neurons in an analogous manner to the physiological activation, 

but nonetheless can provide considerable insight into motor function. Output measures of 

descending pathways are most easily obtained by recording muscle activity with electromyography 

(EMG).  
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Transcranial stimulation  

Given that the corticospinal tract originates from the cortex, it is logical that this pathway can be 

activated by passing current through the motor cortex to excite pyramidal tract neurons. This was 

first achieved with transcranial electrical stimulation (TES; Merton and Morton, 1980) in which a 

small current is passed between two electrodes placed on the scalp, typically with the anode over 

the motor cortex and a large distant cathode (Hern et al., 1962). This stimulus evokes contralateral 

muscle twitches, known as motor evoked potentials (MEPs). The onset latency of the earliest TES 

response is 2-2.6ms when recorded epidurally from the high cervical cord (Di Lazzaro et al., 

1998b) and approximately 21ms in muscle (Sakai et al., 1997). Comparison of these values to 

single unit recordings in primates (Patton and Amassian, 1954) led to the suggestion that TES 

directly excites descending corticospinal axons (Day et al., 1989). Measurement of MEP size can 

therefore be used to provide a measure of corticospinal output. However, application of TES has 

been limited by the discomfort associated with its use since the high currents required to penetrate 

the skull result in painful stimulation of the scalp muscles and sensory receptors in the skin.  

The development of transcranial magnetic stimulation (TMS) by Barker et al. (1985) overcame 

this major drawback of TES by using an electromagnetic coil to generate a magnetic field which 

can easily penetrate the skull and evoke currents in the brain. TMS was originally used as a non-

focal stimulus since the round coils through which it was delivered did not activate neural tissue 

directly under the coil but instead induced current that spread in an annulus. More recently, with 

the advent of figure of eight coils, TMS can be used focally since this configuration generates the 

largest current density directly below the centre of the coil (Ueno et al., 1988). Although all coil 

types and orientations are capable of producing measurable MEPs in muscles, the onset of these 

occurs at subtly but consistently different latencies (Sakai et al., 1997; Di Lazzaro et al., 1998b). 

This is thought to reflect indirect activation of corticospinal axons via circuits of cortical 

interneurons. Therefore, although TMS is effective in evoking measurable muscle responses which 

are indicative of corticospinal excitability, interpretation of the MEPs requires caution since the 

specific neural elements activated by this stimulus are not known.  
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Non-invasive measures of reticulospinal function  

The transcranial stimulation techniques available for the study of the CST are of limited use in 

deep structures such as the reticular formation (RF). Although TMS can activate reticular neurons 

(Fisher et al., 2012), is unlikely to provide a reliable reticulospinal assessment since any responses 

observed are presumably dominated by the much larger corticospinal activation. Instead, 

reticulospinal function in humans can be inferred by using sensory stimuli thought to target the 

reticular formation.  

Briefly, these include loud auditory stimuli which, via activation of the caudal pontine RF, evoke 

the startle reflex (Brown et al., 1991) and when delivered as an imperative signal, can dramatically 

shorten reaction times (Valls-Solé et al., 1995; Valls-Solé et al., 1999). Visual stimuli processed 

by the superior colliculus can activate the RF via the tecto-reticulospinal tract (Illert et al., 1978; 

Grantyn and Grantyn, 1982; Werner, 1993; Stuphorn et al., 1999; Philipp and Hoffmann, 2014) 

and can evoke short-latency EMG activity during fast reaching movements (Pruszynski et al., 

2010). Electrical stimulation over the mastoid processes can elicit vestibular sway responses 

(Fitzpatrick and Day, 2004), which are likely to have a reticulospinal component (Rothwell, 2006). 

Finally, increasing evidence supports a reticular role in the long latency stretch reflex 

(Soteropoulos et al., 2012; Kurtzer, 2014) hence quantification of this response may provide 

another means to assess reticulospinal excitability.  

Each of these techniques provides some indication of reticulospinal function, but it is important to 

note that none provide a pure measure of the RST. Instead they are likely to be contaminated by 

contributions from other descending pathways including the CST and vestibulospinal tract. 

Similarly to TMS MEPs, interpretation of experiments using these non-invasive assessments of 

reticulospinal function requires consideration of the wider motor system.    

The requirement for invasive measures 

Despite the increasing number of techniques available for the non-invasive study of the motor 

system, animal experiments are still extremely valuable in the continued effort to characterise 

descending pathways. These preparations also provide the opportunity to gain mechanistic insight 

into the non-invasive techniques used in humans, thereby facilitating the interpretation of data 
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collected with such methods. Only by integrating the knowledge gained from both human and 

animal experiments, as well as considering the contribution of all descending pathways, can the 

field move towards its ultimate goal of a complete understanding of the motor system and the 

development of effective therapies for neurological disorders affecting movement.   

Thesis objective  

The aim of this thesis is to explore the relative contributions of the CST and RST to movement in 

primates and humans by investigating the non-invasive techniques available for their study as well 

as demonstrating the role of the RST in a field previously dominated by the study of corticospinal 

adaptations.   

The application of non-invasive techniques used in humans to animal models can provide a means 

of studying their specific mechanisms of action. Chapter 2 uses this approach to study the specific 

neural elements activated by TMS. In anaesthetised macaques, recordings were made from 

individual corticospinal axons in response to different orientations of TMS delivered over M1. By 

studying single axons, rather than the population effects observed with epidural or muscle 

recordings, the origin of a number of these axons was identified. In combination with 

measurements of the latency of spikes observed in single axons, this enabled mechanistic 

inferences to be made about TMS and its activation of the CST.  

Similarly, the RST can be stimulated using non-invasive techniques. In Chapter 3, reticulospinal 

pathways were non-invasively studied in healthy human subjects by pairing loud auditory stimuli 

thought to target the RF with a choice reaction reaching task previously hypothesised to evoke 

tecto-reticulospinal activity. Recordings from shoulder muscles demonstrate both the ability to 

modulate this putative reticulospinal output, as well as the induction of plasticity.  

Chapter 4 brings together ideas on the relative roles of the CST and RST by comparing the neural 

adaptations that occur in each of these pathways with strength training. Two macaques were 

trained to perform a weight lifting task. Over a period of several months, the effects of a strength 

training intervention on the CST and RST was assessed by recording upper-limb responses to 

stimulation of each of these pathways. Following completion of the intervention, spinal 
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adaptations were assessed with bilateral recordings of spinal field potentials. These experiments 

demonstrated that significant adaptations occur in reticulospinal pathways during strength training.  

The experiments presented in this thesis further our understanding of non-invasive techniques 

available for investigating the motor system, demonstrate the applicability of non-invasive 

techniques to the study of the RST and elucidate the contributions of descending pathways to 

strength adaptations. Furthermore, this thesis bring together several ideas about the study of the 

motor system. Firstly, the importance of understanding the mechanisms underlying non-invasive 

stimulation, particularly if the aim is to draw specific conclusions from these relatively non-

specific techniques. Secondly, the limited number of techniques available for the study of 

reticulospinal pathways in man and the necessity to develop these if we are to continue to advance 

our knowledge of the human RST. Thirdly, despite the technical challenges associated with 

studying different elements of the motor system, the need to move away from a corticospinal-

centric view and consider the contributions of other pathways such as the RST. 
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2.  

CHAPTER II 

Corticospinal axonal responses to TMS with different coil 
orientations 

 

The experiments described in this chapter were performed by myself, Stuart Baker and Steve 

Edgley. They were supported by Norman Charlton, who designed and manufactured the TMS coil 

manipulator; Terri Jackson, who oversaw the care of the animals; Eisha Joshi, with whom I made 

the cortical wires; Rogue Research, who kindly lent us their cTMS device and manufactured 

adaptor cables; and the veterinary team at Newcastle University, who performed the initial stages 

of surgery and provided assistance throughout the experiments. I performed all data analysis.  

Introduction 

The study of descending motor pathways in humans requires the use of non-invasive stimulation 

techniques. Transcranial magnetic stimulation (TMS) is an example of one such technique, but the 

specific neural elements which it activates are not currently known. TMS generates a magnetic 

field which can in turn evoke current in the brain; these currents travel parallel to the skull’s surface 

and penetrate only superficially. When delivered through a round coil, the current spreads in an 

annulus, with no activation of neural tissue directly under the middle of the coil thereby making it 

a non-focal stimulus. In contrast, TMS with a figure of eight coil constitutes a focal stimulus since 

the largest current density is generated directly below the centre of the coil (Ueno et al., 1988) and 

the current direction depends upon the coil orientation.  

Measurement of strength-duration time constants suggests that the site of activation for TMS is 

within the axons of neurons, rather than the cell bodies (Burke et al., 1993). It is well established 

that in peripheral nerves, electrical stimulation is most effective when the induced currents are 

directed along the length of the axon (Rushton, 1927; Amassian et al., 1992). However, the 

situation is much more complex in the cortex where axons can travel in various directions, bend 

sharply, and cross from grey matter to white matter. A recent modelling study proposed that these 
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three features represent the most likely sites of activation with TMS (Salvador et al., 2011). Thus 

for an interneuron that does not cross the grey/white matter boundary and has a relatively straight 

trajectory, the activation threshold is determined by the orientation of the axon relative to the 

current. In contrast, pyramidal tract neurons (PTNs) are activated at the bend that occurs as they 

transition from the grey matter to white matter since the bend generates localised variations in the 

effective electric field (Amassian et al., 1992) and charge accumulation occurs at the boundary 

between grey matter and white matter (Miranda et al., 2007). Depending upon the direction of 

current, these two effects can summate or be in opposition (Salvador et al., 2011). Therefore, for 

all neurons present within the cortex, activation with TMS depends upon the direction of the 

current relative to the geometry of the axons.  

In primates, the primary motor cortex (M1) extends deep into the central sulcus (Geyer et al., 

1996). The orientation of the axons of both interneurons and PTNs relative to the scalp therefore 

depends on whether they reside in the gyral crown or the anterior bank of the central sulcus. This 

is particularly important when considering that M1 can be subdivided into a caudal (“new M1”) 

and rostral (“old M1”) region, as first reported by Geyer et al. (1996). Subsequent work has 

demonstrated that fast conducting corticospinal axons making corticomotoneuronal (CM) 

connections are exclusively located in new M1, whilst slower conducting axons generating both 

monosynaptic and disynaptic connections to motoneurons originate throughout M1 (Rathelot and 

Strick, 2009; Witham et al., 2016).  

The induction of current within the brain can generate measurable responses in contralateral 

muscles, known as motor evoked potentials (MEPs), which can be recorded both from surface 

electromyography (EMG) and single motor units. Descending volleys in the spinal cord can be 

directly measured using epidural recordings both in anaesthetised patients undergoing spinal 

surgery (Boyd et al., 1986; Berardelli et al., 1990; Burke et al., 1993), and in awake patients with 

implanted spinal cord electrodes, as first reported by Nakamura et al. (1996). Furthermore, in 

animal models, recordings can be made from individual corticospinal axons (Patton and Amassian, 

1954; Edgley et al., 1997). All of these methods demonstrate that stimulation of the motor cortex 

generates waves of activity in the corticospinal tract.   
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The earliest response evoked by stimulation of the cortex is the D-wave observed with transcranial 

electrical stimulation (TES). The short latency of this response, in combination with its persistence 

after removal of the cortical grey matter (Patton and Amassian, 1954) and lack of modulation with 

muscle contraction (Di Lazzaro et al., 1999a), suggests that it originates from direct activation of 

corticospinal axons below the level of the initial segment. In contrast, the D-waves evoked with 

TMS are subject to modulation with cortical excitability and so are thought to originate from closer 

to the soma (Baker et al., 1995). The later responses, termed I-waves, appear at intervals of 

approximately 1.5ms and are dependent upon the integrity of the grey matter, implying that they 

originate from trans-synaptic activation of PTNs by cortical interneurons (Patton and Amassian, 

1954). With increasing intensity, each cortical stimulus generates a different pattern of responses. 

For example, TES and non-focal TMS preferentially evoke D-waves (Hern et al., 1962; Burke et 

al., 1993; Di Lazzaro et al., 1998b), whereas TMS with a posterior to anterior (PA) current evokes 

early I-waves at the lowest threshold (Di Lazzaro et al., 1998b), and TMS with an anterior to 

posterior (AP) current evokes late I-waves, although these are more variable (Di Lazzaro et al., 

2001; Sakai et al., 2009). The recent development of controllable pulse parameter TMS (cTMS) 

(Peterchev et al., 2013), generates the possibility of selectively evoking different I-waves by 

changing the pulse width of TMS (D'Ostilio et al., 2016). 

In order to understand the output generated by TMS, it is paramount that we identify the specific 

neural elements activated by this stimulus. The aim of this study was to characterise the responses 

of individual corticospinal axons to PA and AP orientations of TMS, to compare the response 

profiles of corticospinal axons originating from old M1 and new M1, and to investigate the effects 

of TMS pulse width on corticospinal axons. We report the first example of recordings from 

individual primate corticospinal axons in response to focal TMS.  

Methods 

All animal procedures were performed under UK Home Office regulations in accordance with the 

Animals (Scientific Procedures) Act (1986) and were approved by the Local Research Ethics 

Committee of Newcastle University. Recordings were made from six terminally anaesthetised 

rhesus macaque monkeys (monkeys D, K, L, N, W, and Y; all female).  
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Surgical preparation 

Following sedation with an intramuscular injection of ketamine and induction of anaesthesia with 

intravenous propofol, animals were intubated and a central venous line inserted. Anaesthesia was 

then maintained through inhalation of sevoflurane and intravenous infusion of alfentanil. Pulse 

oximetry, heart rate, blood pressure, core and peripheral temperature, and end-tidal CO2 were 

monitored throughout surgery. Hartmann’s solution was infused to prevent dehydration, a heating 

blanket and a source of warm air maintained body temperature and a positive pressure ventilator 

ensured adequate ventilation. Anaesthetic doses were adjusted as necessary to ensure deep general 

anaesthesia was maintained.  

A craniotomy was performed to expose the left motor cortex and a burr hole drilled to allow access 

to the left medullary pyramidal tract (PT). Screws were inserted into the anterior and posterior 

skull to later enable replacement of the stereotaxic frame with plastic bars, as required for TMS. 

A laminectomy exposed segments C1-T1 and L1, enabling the vertebral column to be clamped at 

the high thoracic and mid-lumbar levels, and the head was fixed in a stereotaxic frame. Following 

this initial preparation, the anaesthetic regimen was switched to an intravenous infusion of 

alfentanil, ketamine and midazolam. 

A parylene-insulated tungsten electrode (LF501G, Microprobe Inc, Gaithersburg, MD, USA) was 

implanted into the medullary PT, rostral to the decussation, to allow stimulation of the 

corticospinal tract. The double angle stereotaxic technique, described by Soteropoulos and Baker 

(2006), was used to aim the electrode at the desired target from the craniotomy. The optimal 

position for the electrode was defined as the site with the lowest threshold for generating an 

antidromic cortical volley in ipsilateral M1, without eliciting a contralateral M1 volley at 300µA. 

Cortical and spinal volleys were obtained using silver ball electrodes.  

The cortical dura over the left motor cortex was opened and the region mapped to identify the 

angle of the central sulcus. Custom-made cortical electrodes, consisting of rows of insulated 

tungsten wire spaced 1.5mm apart, were inserted 4mm and 1.5mm deep, parallel to the sulcus, to 

target new M1 and old M1, respectively. In monkeys D, K, L and N, 12 electrodes were implanted 
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into old M1 and 6 into new M1. In monkeys W and Y, 16 electrodes were implanted into old M1 

and 8 into new M1. 

To enable TMS to be delivered, rigid plastic rods were clamped to the stereotaxic frame and 

cemented to the skull with dental acrylic so that the metal ear and eye bars could be removed; this 

ensured that no eddy currents could flow through the fixation system. A small figure of eight TMS 

coil (25mm loop diameter), mounted on a manipulator, was fixed over the left motor cortex 

tangential to the cranium and approximately 45 degrees from the midline, corresponding to a PA 

coil orientation. Attachment of a reversing cable changed the direction of the current so that it was 

possible to switch between PA and AP stimulation without moving the coil. This was necessary 

due to the fragility of the recordings. For the same reason, neuromuscular blockade with 

atracuronium prevented TMS-induced muscle twitches and a bilateral pneumothorax minimised 

respiratory movements of the chest. To prevent overheating, the TMS coil was cooled with ice 

throughout the experiment. 

In all monkeys, PA and AP TMS were delivered with a Magstim 200 stimulator. In monkeys W 

and Y, adaptor cables enabled attachment of the same TMS coil to a Brainsight cTMS device 

(Rogue Research) so that the length of the TMS pulses could be adjusted. Threshold for each TMS 

orientation and pulse width was determined using epidural volleys recorded with a silver ball 

electrode placed over the DLF on the cervical cord. Due to the volleys in these recordings being 

small in amplitude and variable, threshold was defined as the lowest intensity at which an 

unambiguous volley could be observed in an average of 15 sweeps.  

Axon recordings  

Recordings from individual axons were made using glass microelectrodes filled with 1M 

potassium acetate and manipulated with a Burleigh piezoelectric microdrive. After the dura was 

opened around the level of C5 and a small pial patch made, the microelectrode was inserted into 

the right DLF (Figure 2-1a). A pressure foot was used to reduce the pulsation artefact and improve 

the stability of recordings. Corticospinal axons were identified by a spike in response to PT 

stimulation (0.7mA biphasic pulses, 0.2ms per phase, 4Hz repetition rate; Figure 2-1b, Figure 2-2). 

Antidromic responses to stimulation of the lumbar electrode (2.0mA biphasic pulses, 0.2ms per 
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phase, 4Hz repetition rate; Figure 2-1c, Figure 2-2) were recorded. Failure to respond to this 

stimulus implied that the axon may have terminated in the cervical cord, although it is also possible 

that the axon had a very high threshold or terminated in the thoracic cord. Similarly, the presence 

of a response to the lumbar stimulation did not unequivocally mean that the axon terminated in the 

lumbar cord but simply that it projected at least as far as this point.  

Axons were classified as originating from old M1 if responses at D-wave latency (1.4-2.6ms) were 

evoked by stimulation of the old M1 electrodes, and from new M1 if responses at D-wave latency 

(1.4-2.6ms) were evoked by stimulation of the new M1 electrodes (0.3-1.0mA biphasic pulses, 

0.2ms per phase; Figure 2-1d, Figure 2-2). Since both the old M1 and new M1 electrodes spanned 

a considerable area, it was only necessary for an axon to respond to stimulation of a single electrode 

to be classified as originating from this region. In cases where both old M1 and new M1 electrodes 

generated D-waves, presumably due to spontaneous firing or current spread, the current was 

reduced until D-waves were observed with only one electrode type, and the axon classified as 

originating from this area.   

TMS was delivered in either PA or AP current direction for 1.2x, 1.5x and 2.0x epidural threshold 

(Figure 2-1e, Figure 2-2). After approximately 40 stimuli of each intensity, the current direction 

was changed using the reversing cable and the sequence repeated. In monkeys W and Y, cTMS 

was then delivered through the same figure of eight coil in an AP direction for a short-duration 

(AP30: 30µs positive pulse, 0.2 M-ratio) and long-duration (AP111: 111µs positive pulse, 0.2 M-

ratio) pulse. The 111µs pulse was chosen as this was the maximum pulse length achievable with 

the cTMS device and our coil configuration; however, this limited the stimulator output to 44% so 

only two intensities were delivered in monkey W (1.2x and 1.5x) and three in monkey Y (1.2x, 

1.5x, ~1.8x). The M-ratio is a measure of the ratio of electric field phases and the value of 0.2 was 

chosen since this resembles the monophasic pulse commonly used in TMS (Sommer et al., 2018).  

The PT, cortical and TMS stimuli were delivered in non-orderly sequence to give an overall 

repetition rate of 4Hz. Axon recordings (25kHz sampling rate, 200x gain, 100Hz to 100kHz band-

pass) and stimulation parameters were stored to disc. In many cases, the axons were lost mid-way 

through the recording and so the full sequence of stimuli was not delivered. 
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Figure 2‐1. Experimental design 

Schematic showing the stimulation and recording sites used in the experimental protocol. (a) Recordings were made 

from cervical axons. Stimulation was delivered at (b) the medullary PT to identify corticospinal axons, (c) the lumbar 

DLF to distinguish between axons likely to project to upper and lower limbs, (d) the cortex to identify the axon origin 

as old M1, new M1 or unknown, and (e) with TMS to identify the pattern of D and I waves generated.   
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Figure 2‐2. “Electroanatomy” methods  

Example recordings from individual corticospinal axons, each column presents a different axon (A, B) and its responses 

to PT stimulation,  lumbar stimulation, old M1 stimulation through three different electrodes, new M1 stimulation 

through  three different electrodes, and PA and AP TMS at 2x  threshold. Each sweep  is an  individual  trial and  the 

windows show the latencies representing D, I1, I2, I3 and I4 waves.  

 



25 

 

Data analysis  

All analysis was performed off-line using custom software written in MATLAB. The presence of 

PT and lumbar axon potentials were determined by visual inspection. Axons without a clear PT 

response could not be definitively identified as corticospinal and so were excluded from all 

subsequent analysis. Due to the relatively low number of axons responding to TMS (see Results), 

lumbar-responding axons were included in all analyses except those in which comparisons were 

made between old M1 and new M1 since this division has only been reported for corticospinal 

axons projecting to upper limb motoneurons (Rathelot and Strick, 2009; Witham et al., 2016).  

For the cortical electrodes and TMS responses, spike latencies were measured from stimulus onset 

to peak and were grouped into 0.2ms bins. Response windows for D and I waves were selected by 

visual inspection of the data and were applied uniformly to all axons and stimuli. These were as 

follows, D: 1.4-2.6ms; I1: 2.8-3.8ms; I2: 4.0-5.2ms; I3: 5.4-7.2ms; and I4: 7.4-9.4ms. Due to low 

levels of spontaneous firing, axons in which responses at D-wave latency were evoked with old 

M1 stimulation at least twice as often as new M1 were classified as originating from old M1, and 

vice versa. Axons that generated D-waves with both old M1 and new M1 stimuli at similar rates, 

or with neither stimulus, were classified as of unknown origin.  

Peri-stimulus time histograms (PSTHs) were constructed for the responses to TMS and cTMS for 

all axons, and separately for non-lumbar old M1 and new M1 axons for TMS responses. There 

were not sufficient data to construct cTMS histograms by axon origin. To control against the 

PSTHs being dominated by a few highly responsive axons and for the unequal number of axons 

in which each stimulus was delivered, the number of the axons responding in a given window was 

calculated as a proportion of the total number of axons in which that stimulus was delivered. The 

depth of anaesthesia meant that spontaneous activity was too low to calculate a reliable baseline 

firing rate for each axon, above which responses could be assumed to be stimulus-driven. 

Therefore, the analysis was performed separately for axons in which only a single spike was 

observed in a given window, which may be due to spontaneous firing, and for axons in which more 

than one spike was observed in a given window, which were more likely to be stimulus-driven. 

For all subsequent analysis, only axons that responded more than once in a given window were 

included. Nonetheless, it is important to note that we do not dismiss all single spikes as 
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spontaneous activity due to the effects of deep anaesthesia on excitability; instead it is possible 

that these responses represent stimulation of axons at threshold intensities and are scientifically 

meaningful.  

In addition to examining the proportion of axons in which each stimulus was effective, we also 

calculated the proportion of trials in which each stimulus evoked a response. Only axons which 

responded to the stimulus were included in this analysis. Thus the proportion does not represent 

the overall likelihood of a spike appearing in a given window for a given stimulus for all axons, 

but instead provides a measure of how reliably each stimulus could evoke a response in the 

responding axons.    

To study the repetitive firing of individual axons, the following analysis was performed. The 

pattern of I-waves generated in each axon by each stimulus was determined by allocating a 0 to 

response windows in which no spikes were observed, and a 1 to response windows in which spikes 

were observed. The ‘0000’ combination, indicating no I-waves, was excluded from the analysis. 

The observed patterns were compared against the null hypothesis that all I-waves are generated 

independently. The probability of each I-wave occurring, irrespective of I-waves in other windows, 

was calculated. Using these values, the predicted probability of each pattern was calculated by 

summing the response probabilities: 

 

To provide a statistical comparison of the predicted probabilities with the real data, the following 

Monte Carlo resampling method was performed. I-wave responses were simulated using the 

calculated probability of each I-wave and the assumption that each I-wave occurred independently. 

The probability of each pattern of I-waves being generated could then be calculated from this 

simulated data. Repetition of this process 1000 times generated distributions of the probability of 

each pattern of I-waves occurring if I-waves are assumed to be independent. The real data could 

then be compared to these distributions using a two-tailed test with p=0.05.      
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To compare the effects of PA and AP stimulation on individual axons, the number of axons in 

which both stimuli evoked a response was compared to the number of axons in which responses 

were observed with only one TMS coil orientation. This analysis was limited to axons in which 

both stimuli were delivered for at least 5 trials at a given intensity. For axons which responded to 

both stimuli, responses were classified as D- or I-waves and the probability of both PA and AP 

TMS generating I-waves (II), D-waves (DD) or a combination of the two (DI or ID) in the same 

axon was calculated. To test the statistical significance of the observed data relative to the null 

hypothesis that D- and I-waves were independently generated with each coil orientation, an 

additional Monte Carlo resampling method was performed. Data were simulated using the 

calculated probability of D- and I-waves for PA and AP TMS, under the assumption these 

responses were evoked independently. The number of times each D- and I-wave combination (DD, 

II, DI, ID) occurred was counted for the simulated data. Repetition of this process 1000 times 

generated distributions of the number of axons in which each combination of D- and I-waves was 

predicted to occur under the assumption that the two orientations were independent. The observed 

data were then compared to these distributions of predicted values using a two-tailed test with 

p=0.05.   

Results 

Epidural recordings  

Epidural recordings were made from all six animals to determine the stimulation threshold for each 

orientation and pulse width of TMS. In all cases, the lowest threshold volley corresponded to a D-

wave latency (i.e. <2.6ms). In agreement with the human literature (Day et al., 1989), significantly 

higher thresholds were observed with AP compared to PA TMS (Figure 2-3). It was not possible 

to make statistical comparisons with the AP30 and AP111 stimuli since these were only delivered 

in two monkeys.  

Intensities series were performed with epidural recordings for each stimulus (Figure 2-4). Volleys 

occurring at D-wave latencies were reliably evoked with both PA and AP TMS and increased in 

amplitude with increasing stimulus intensity. I-waves were rarely seen, even with the highest 

stimulus intensities (Figure 2-4). This is in contrast to recordings made in conscious humans (Di 

Lazzaro et al., 2001), but shows similarities to human recordings made under anaesthesia 
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(Berardelli et al., 1990; Burke et al., 1993), presumably reflecting the reduction in cortical 

excitability associated with anaesthetic use.  

 

Figure 2‐3. TMS thresholds  

Mean epidural TMS thresholds measured for PA (n=6), AP (n=6), AP30 (n=2), and AP111 (n=2) stimulation. Error bars 

represent standard error and the red asterisk shows a statistically significant (P<0.05) difference between PA and AP 

thresholds.  

 

Axonal responses to TMS  

Individual corticospinal axons were successfully recorded in all animals except monkey K. In total, 

264 corticospinal axons were identified, of which 154 responded to TMS and 106 responded to 

lumbar stimulation. Only 54 axons were identified which responded to TMS but not to lumbar 

stimulation, of which 29 were identified as originating from old M1 and 13 from new M1.  

Both PA and AP TMS preferentially evoked D-waves in corticospinal axons (Figure 2-5A), 

although these were generated more frequently with PA than AP TMS (Figure 2-5B). 

Comparatively few I-waves were evoked with either orientation of stimulation, although both the 

number of spikes and axons was greater with AP TMS (Figure 2-5). In agreement with the human 

literature (Di Lazzaro et al., 1998b; Di Lazzaro et al., 2001), PA TMS did not reliable evoke I3-
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waves with low intensity stimuli, and I1-waves were only clearly observed with AP TMS at the 

highest intensity.  

AP TMS generated a short latency spike around 1.2ms that preceded the D-wave (see 2x threshold 

AP TMS panel on Figure 2-5). This shows similarities to the reduction in D-wave latency of 0.8-

0.9ms with increasing TES intensity reported by Burke et al. (1993) and presumably reflects the 

site of activation of PTNs shifting deeper. The selectivity of this early D-wave for AP TMS may 

reflect an AP trajectory of axons in the brainstem. These short-latency spikes are likely unique to 

monkey recordings in which the comparatively small brain and large TMS coil allows current to 

spread deeper than observed in human studies.  

Response probabilities  

In addition to relatively few axons responding to each stimulus, of the axons in which responses 

were evoked, these rarely occurred on every trial (Figure 2-6). Fewer than 10% of stimuli delivered 

through the cortical electrodes in old and new M1 evoked a D-wave, and the probability of I-waves 

was even lower. Interestingly, a sequential reduction in response probability was observed with 

increasing latency for both old and new M1 stimulation.  The same trend was not observed for 

either orientation of TMS. Instead, PA TMS showed a high probability of D-waves being evoked 

in a responding axon and whilst the I-wave probability was lower, it was similar across all I-waves. 

AP TMS showed similar probabilities of both D- and I-waves being evoked on each trial, 

particularly at high intensities. In both cases, the number of trials in which an axon responded to 

the stimulus was consistent with increasing intensity (Figure 2-6C), but the number of axons 

recruited increased (Figure 2-5B). Note that stimulation threshold was not determined for 

individual axons but instead was set for each monkey using epidural recordings.  
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Figure 2‐4. Epidural recordings  

Example epidural recordings from monkey W. Each column represents the four different TMS stimuli delivered; each 

row is the intensity of this stimulus, relative to epidural threshold. Each sweep is an individual trial and the windows 

show the latencies representing D, I1, I2, I3 and I4 waves. There are no recordings at 1.5x and 2x threshold for AP111 

since the maximum stimulator output with this pulse length was 44%, which was less than 1.5x threshold.  

 

  



31 

 

 

Figure 2‐5. TMS responses  

A. PSTHs for three  intensities (columns) for PA and AP TMS (rows), summed across all corticospinal axons (n=264). 

The grey windows show the latencies representing D, I1, I2, I3 and I4 waves, relative to stimulus onset (red dotted 

line). The x axis has been split at 2.7ms to enable separate scales for the number of D‐ and I‐wave spikes. B. Number 

of axons in which a spike was recorded during each wave, expressed as a percentage of the total number of axons in 

which PA (n=184) or AP (n=179) TMS was delivered. The lighter shade represents axons in which only one spike was 

recorded in the given window.  
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I-wave patterns 

Examination of the patterns of responses generated in individual trials demonstrated that for both 

cortical stimulation and TMS, in less than 5% of trials was more than one spike at I-wave latency 

evoked. Compared to values predicted under the assumption that I-waves occurred independently, 

our results show that in individual trials, single I-waves were generated more often than expected 

and multiple I-waves were generated less often than expected (Figure 2-7A). In contrast, multiple 

I-waves were evoked in approximately 20% and 35% of axons responding to PA and AP TMS, 

respectively. The measured proportion of axons with each I-wave pattern were largely similar to 

the values predicted under the assumption that each I-wave occurred independently (Figure 2-7B). 

A notable difference between local stimulation through the cortical electrodes and gross 

stimulation with TMS is that whereas many axons responded to the former with four I-waves, no 

axons were identified which responded to TMS with more than three I-waves.  

Activation of axons by both PA and AP TMS 

At each stimulation intensity, four groups of axons were identified: those that didn’t respond to 

TMS, those that responded to both PA and AP TMS, and those that only responded to one 

orientation of TMS (Figure 2-8A). With increasing stimulus intensity, a greater proportion of axons 

responded to both PA and AP stimulation. Analysis of the latencies of spikes evoked by PA and 

AP TMS in axons responding to both stimuli demonstrated that both coil orientations can directly 

activate the same axons, whereas indirect activation of individual axons with both PA and AP 

stimulation was less common (Figure 2-8C). There was no significant difference between the 

predicted and observed values for the number of axons in which PA and AP TMS could both 

generate I-waves, suggesting that I-waves with PA and AP TMS are independent. In contrast, D-

waves were evoked with both PA and AP TMS by significantly more axons that predicted (Figure 

2-8B).  
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Figure 2‐6. Wave probabilities  

For axons which responded to a given stimulus in a given window, the mean proportion of trials in which the response 

was evoked in presented. These values equate to response probability and are presented for (A) old M1 stimuli, (B) 

new M1 stimuli and (C) three intensities of PA and AP TMS. Error bars represented standard error. 
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Figure 2‐7. I‐wave patterns  

Patterns of I‐waves recorded from (A) individual trials and (B) individual corticospinal axons, expressed as a percentage 

of the total number of trials or axons with I waves. Only axons which generated more than one spike in each window 

are  presented.  Blue  bars  represent  recorded  data,  red  lines  show  predicted  results  assuming  all  I waves  to  be 

independent. Red asterisks indicate a statistically significant (P<0.05) difference between actual and predicted data 

(see Methods). I wave patterns are shown as a 0s and 1s, representing the absence and presence of an I‐wave in that 

window,  respectively.  The  four  digits  represent  the  four  I‐wave windows:  I1,  I2,  I3  and  I4.  For  example,  ‘1000’ 

represents the stimulus evoking an I1‐wave but no later I‐waves.  
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Figure 2‐8. Activation of individual axons by both PA and AP TMS  

A. The number of axons in which responses were evoked, at any latency, by PA TMS only, AP TMS only, or both PA 

and AP TMS. Axons were only included if more than 5 stimuli of each TMS orientation and intensity were delivered. 

B. Sub‐analysis of the axons which responded to both PA and AP TMS. Blue bars show the number of axons which, in 

response to both PA and AP stimulation, evoked a D‐wave (DD), an I‐wave of any latency (II), or a D‐wave with PA and 

I‐wave  with  AP  (DI)  and  vice  versa  (ID).  Red  outlines  show  the  predicted  number  of  axons  for  each  of  these 

combinations based on the assumption that D‐ and I‐waves were independently evoked by PA and AP TMS in each 

axon. Red stars show a statistically significant (P<0.05) difference between predicted and observed values.   C. The 

combination of D‐ and  I‐waves  that can be evoked by PA and AP TMS  in  the same axon. The number of axons  is 

represented with  a  colour  scale. Only  axons  that  responded with more  than  one  spike  in  a  given window were 

included.  
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Old and new M1 

Both PA and AP TMS generated D- and I-waves from axons identified as originating from old and 

new M1 (Figure 2-9). D-waves were evoked from a greater proportion of new M1 axons, with PA 

being the more effective stimulus for this. Interestingly, with both coil orientations, I1-waves were 

only evoked from axons originating from old M1.  

Axonal recordings with cTMS 

AP TMS with different pulse widths was only tested in two animals (monkeys W and Y). 

Furthermore, in these two animals it was only delivered to 17 axons due to the difficulty in 

maintaining each axon recording for a sufficient time period. In total, AP30 and AP111 each 

evoked responses in 7 of these axons. The general trend observed was that AP30 preferentially 

evoked I3-waves, whilst AP111 has a less specific effect, predominantly evoking I2- and I3-waves 

(Figure 2-10).  
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Figure 2‐9. Old M1 vs New M1 TMS responses  

A. PSTHs for three intensities (columns) for PA and AP TMS (rows), summed across non‐lumbar corticospinal axons 

originating from old M1 (red, n=29) and new M1 (blue, inverted scale, n=13). The grey windows show the latencies 

representing D, I1, I2, I3 and I4 waves, relative to stimulus onset (black dotted line). The x axis has been split at 2.7ms 

to enable separate scales for the number of D‐ and I‐wave spikes. B. Number of axons in which a spike was recorded 

during each wave, expressed as a percentage of the total number of old M1 axons (red) or new M1 axons (blue) in 

which PA or AP TMS were delivered. The lighter shade represents axons in which only one spike was recorded in the 

given window. 
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Figure 2‐10. cTMS responses  

A. PSTHs for three intensities (columns) for AP30 and AP111 cTMS (rows), summed across all corticospinal axons in 

which this stimulus was delivered (n=17). The grey windows show the latencies representing D, I1, I2, I3 and I4 waves, 

relative  to stimulus onset  (red dotted  line). B. Number of axons  in which a spike was recorded during each wave, 

expressed  as a percentage of  the  total number of  axons  in which  cTMS was delivered  (n=17). The  lighter  shade 

represents axons in which only one spike was recorded in the given window.  
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Discussion 

With few exceptions (Edgley et al., 1997), the study of TMS has focussed on epidural recordings 

from the spinal cord and recordings of muscle activity made from either EMG or single units. 

Valuable as these studies have been, neither method represents the activity of individual 

corticospinal axons (Edgley et al., 1997). Mechanistic understanding of the action of TMS requires 

the study of single cells since there is much heterogeneity in the origin, size and post-synaptic 

actions of corticospinal neurons (Lemon, 2008).  

We report the first example of single corticospinal axon recordings with focal TMS. Despite the 

advantages of recording from individual corticospinal axons, it is important to note the limitations 

of this method, particularly when drawing comparisons to the human literature. Firstly, the small 

brain of the monkeys relative to the coil size makes it likely that we were able to stimulate deeper 

into the cortical and subcortical layers than is commonly achieved in humans. Secondly, the 

anaesthesia required for these experiments would have had a significant effect on cortical 

excitability, as has been reported in human studies (Berardelli et al., 1990; Burke et al., 1993), 

suppressing the generation of D- and I-waves (Baker et al., 1995; Di Lazzaro et al., 1998a). 

Thirdly, given that microelectrode recordings are more likely to be obtained from large diameter 

axons, and the inverse relationship between axon diameter and D-wave threshold (Edgley et al., 

1997), it is likely that our recordings were biased to the large diameter, fast-conducting axons that 

represent only a minority of the corticospinal tract (Porter and Lemon, 1993; Firmin et al., 2014).   

Nonetheless, our results show broadly similar patterns to those observed in previous studies, with 

higher threshold for AP than PA TMS (Sakai et al., 1997), I1-waves evoked more frequently with 

PA TMS, I3-waves evoked more frequently with AP TMS (Di Lazzaro et al., 2001), and shorter 

pulse widths of AP TMS selectively evoking later I-waves (D'Ostilio et al., 2016).  

Early I waves 

There is much evidence supporting the notion that I1-waves are generated by different circuits to 

the later I-waves. Primarily, unlike late I-waves, I1 is not affected by paired-pulse TMS techniques 

assessing cortical inhibition, such as short latency intracortical inhibition (Di Lazzaro et al., 1998c; 

Hanajima et al., 1998), long latency intracortical inhibition (Di Lazzaro et al., 2002), 
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interhemispheric inhibition (Di Lazzaro et al., 1999b) and short latency afferent inhibition 

(Tokimura et al., 2000).  Further support for the involvement of inhibitory pathways in late I-wave 

but not I1 generation comes from the observation that allosteric modulators of the GABAA receptor 

only suppress late I-waves (Di Lazzaro et al., 2000).  

Di Lazzaro and Ziemann (2013) recently proposed that I1-waves may be mediated by the 

monosynaptic projections of layer II and III pyramidal neurons to the large PTNs of layer V. These 

pyramidal neurons are easily excited by TMS due to their superficial location and in mouse, 

provide the main excitatory input to PTNs (Anderson et al., 2010). Our results are in agreement 

with this hypothesis, demonstrating that I1-waves are evoked in corticospinal axons originating 

from old M1, i.e. the convexity of the precentral gyrus, but not those originating from the deeper 

new M1. It is important to note that our methods did not permit assessment of whether the 

corticospinal axons formed mono- or disynaptic connections with motoneurons. However, given 

that large diameter, fast-conducting axons are likely to have lower activation thresholds (Edgley 

et al., 1997), responses evoked from old M1 likely reflect activation of fast PTNs that form 

disynaptic connections with motoneurons, whereas responses evoked from new M1 are 

presumably due to activation of fast CM cells (Rathelot and Strick, 2009; Witham et al., 2016). 

Thus, a D-wave evoked from new M1 will generate a response at D-wave latency in muscles 

whereas a D-wave evoked from old M1 will generate a response at I1 latency in muscles due to 

the additional synaptic delay.  

We therefore propose that D-waves recorded from muscles represent activation of CM cells 

originating from new M1. In contrast, given that we did not observe the generation of I1-waves 

from new M1, responses at I1 latency in muscle likely represent the disynaptic transmission of D-

waves in old M1 axons. Subsequent I-waves are a combination of disynaptic effects from old M1 

and monosynaptic effects from new M1. Thus, these results suggest that it may be possible to 

selectively assess monosynaptic and disynaptic corticospinal pathways with TMS.  

Late I waves 

Since they were first described by Patton and Amassian (1954), several theories have been 

proposed to explain the periodicity of I-waves. It is well established that I-waves represent indirect 
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excitation of PTNs by cortical interneurons.  However, the specific interneuron circuits involved 

have not been identified. The synaptic chain hypothesis originally suggested by Patton and 

Amassian (1954) proposed that sequential I-waves are generated by increasingly long chains of 

interneurons. Although this hypothesis accounts for the periodicity of I-waves, it has largely been 

disproven by the observation that I-waves can be evoked in a non-orderly sequence (Di Lazzaro 

et al., 2001). Our results show that with PA and AP TMS, the probability of evoking each I-wave 

does not decrease with latency, as could be expected by the increasing number of synapses. On 

this basis, our results provide further evidence for the rejection of the synaptic chain hypothesis. 

However, responses generated by stimulation of the cortical electrodes implanted into old and new 

M1 did show a progressive reduction in probability with increasing latency. In comparison to the 

gross stimulation provided by TMS, it is possible local stimulation through these implanted 

electrodes is able to activate chains of interneurons that terminate on PTNs. We propose that either 

TMS is unable to access these circuits, or that the responses generated by TMS are superimposed 

over these local circuits.   

An alternative hypothesis is that I-waves are generated by independent circuits of interneurons 

(Day et al., 1989; Sakai et al., 1997). The non-orderly recruitment of I-waves is easily explained 

by this model. Under our experimental conditions, it was rare for a stimulus to generate more than 

one I-wave per trial, even though the axon may respond to the same stimulus with multiple 

different I-waves. Although this could be taken as evidence to suggest that I-wave circuits are not 

independent, a more likely explanation is that the relative refractory period of the PTNs reduced 

excitability and prevented multiple spikes in response to one stimulus. Therefore, although our 

results neither support nor reject the independent circuit hypothesis, they do suggest that the I-

wave periodicity observed in epidural recordings represents a population effect and not repetitive 

discharge of individual neurons.  

It has also been suggested that the late I-waves evoked with PA and AP TMS are mediated by 

different mechanisms. This hypothesis stems from the observation that short-latency afferent 

inhibition has a greater inhibitory effect on the I-waves evoked with PA TMS than the I-waves of 

AP TMS (Ni et al., 2011). Interestingly, although we found that both PA and AP TMS could excite 

the same axons, particularly when high intensity stimuli were delivered, it was rare for both coil 

orientations to evoke I-waves in the same axon. Our results suggest that in contrast to D-waves, 
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the generation of I-waves with PA and AP TMS is independent, thus providing indirect support 

for this hypothesis. It is perhaps logical that PA and AP I-waves are mediated by different 

mechanisms when considering the orientation of intracortical interneurons and PTNs, and the 

importance of axon orientation, axon bends, and the grey to white matter transition in determining 

the threshold for excitation (Rushton, 1927; Amassian et al., 1992; Maccabee et al., 1993; Salvador 

et al., 2011). One possibility is that the late I-waves of AP TMS are generated by excitation of long 

cortico-cortical fibres which originate from premotor areas (Dum and Strick, 2005) and project to 

M1 in an anterior to posterior direction. In support of this, stimulation of the ventral premotor 

cortex in both man (Cerri et al., 2003) and monkey (Shimazu et al., 2004) has been shown to evoke 

I-waves.  Although we did not directly assess these projections, our observation that AP TMS was 

more effective in evoking I-waves provides some support for the involvement of cortico-cortical 

projections.  

In addition to the differing responses evoked with PA and AP TMS, pulse duration may also play 

a significant role in selecting the I-waves generated. Although TMS is typically delivered with an 

82µs pulse (Rothkegel et al., 2010), the recent development of cTMS (Peterchev et al., 2013) 

enables adjustment of this parameter. In accordance with previous work (D'Ostilio et al., 2016), 

our results suggest that I3-waves are preferentially generated by short AP pulses whereas longer 

AP pulses are less selective, evoking both I2- and I3-waves. Such findings add another level of 

complexity to I-waves.   

Old M1 versus New M1  

The extension of M1 into the central sulcus (Geyer et al., 1996) raises the question of which 

subdivisions of this structure (Rathelot and Strick, 2009; Witham et al., 2016) can be excited with 

TMS. In man, although there is a substantial degree of variation, the central sulcus is approximately 

2cm deep (Cykowski et al., 2008). It has been estimated that the currents generated by TMS can 

penetrate 2-3cm deep in the brain (Maccabee et al., 1990) hence it is feasible that TMS can excite 

axons deep into the central sulcus, as has been demonstrated with imaging studies (Fox et al., 

2004). We found that although TMS activated PTNs originating from both the anterior wall of the 

central sulcus (new M1) and the crown of the precentral gyrus (old M1), TMS responses were 

evoked in only 40.0% of new M1 axons compared to 71.4% of old M1 axons.  
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The most striking result from our comparison of old M1 and new M1 axons was the observation 

that I1-waves were only evoked in axons originating from old M1, as previously discussed. In 

addition, we found that with both PA and AP TMS, D-waves were evoked in a greater proportion 

of axons originating from new M1 than old M1. This may reflect the effect of axon bending on 

activation threshold (Rushton, 1927; Amassian et al., 1992; Maccabee et al., 1993; Salvador et al., 

2011). Due to their relative locations, it is likely that the corticospinal axons projecting from new 

M1 have a sharper bend than those projecting from old M1 as they transition from the grey matter 

to the white matter, and so the new M1 axons could be expected to have lower activation 

thresholds.  

Summary 

In this study, we recorded the responses of individual corticospinal axons to PA and AP coil 

orientations of TMS, and identified a number of these axons as originating from either old M1 or 

new M1. Our results suggest that the earliest I-wave (I1) is evoked in axons originating from old 

M1 and we speculate that it may be possible to target selectively monosynaptic and disynaptic 

corticospinal pathways by measuring different latency components of MEPs. Limited recordings 

of axonal responses to different pulse durations of AP TMS support previous findings that short 

pulses evoke later I-waves than long pulses, thus providing another means to selectively activate 

different intracortical networks with TMS. Our data suggest that although local stimuli may 

activate chains of interneurons, these are not responsible for the I-waves evoked by TMS. 

Furthermore, we propose that the periodicity of I-waves recorded epidurally may be a population 

effect and does not represent repetitive discharge of individual neurons. Our findings largely 

support the model proposed by Di Lazzaro and Ziemann (2013) in which I-waves are generated 

by a combination of excitatory projections from superficial to deep pyramidal cells and local 

intracortical interneuron circuits, as well as longer cortico-cortical projections.  
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3.  

CHAPTER III 

Modulation of rapid visual responses consistent with a 
putative tecto-reticulospinal pathway 

 

The data described in this chapter were collected by myself and Thomas Tay, a summer student 

from NU Malaysia who I supervised for a two month project. I collected the data for Experiment 

1 and Experiment 2b; Thomas Tay performed Experiment 2a, under my supervision. Stuart Baker 

devised the original experiments and programmed the task. I designed the plasticity protocol and 

performed all data analysis.  

Introduction 

Increasing evidence supports the role of reticulospinal pathways in upper limb function (Baker, 

2011), from gross reaching (Schepens and Drew, 2004b, 2006a) to precise finger movements 

(Carlsen et al., 2009; Soteropoulos et al., 2012; Honeycutt et al., 2013). Accordingly, the 

reticulospinal tract (RST) has been shown to project to motoneurons innervating both distal and 

proximal muscles in primates (Davidson and Buford, 2004; Davidson and Buford, 2006; Riddle et 

al., 2009). However, in contrast to the corticospinal tract, there are limited methods available for 

the non-invasive assessment of reticulospinal excitability.  

The tecto-reticulospinal pathway may provide a means of targeting the RST. It is well established 

that the reticular formation (RF) receives inputs from the deep layers of the superior colliculus 

(Illert et al., 1978; Grantyn and Grantyn, 1982). The firing of cells within the superior colliculus 

and the underlying RF has been shown to correlate with proximal arm movements (Werner, 1993; 

Stuphorn et al., 1999), and microstimulation of both these areas can evoke a range of arm 

movements (Philipp and Hoffmann, 2014), suggesting a role of tecto-reticulospinal pathways in 

upper limb function. These findings have been translated to human studies: fast reaching 

movements made towards visual targets evoke short-latency EMG activity that is similarly 
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proposed to be mediated by tecto-reticulospinal projections (Pruszynski et al., 2010). Thus choice 

reaction reaching tasks with visual targets may provide a means of non-invasively measuring 

reticulospinal excitability by delivering an input to this pathway via the superior colliculus, and an 

output measure in the form of short-latency EMG activity which can be recorded from proximal 

muscles. We refer to these responses as rapid visual reactions (RVRs).  

Loud auditory stimuli may also provide a means of assessing reticulospinal activity. The auditory 

startle reflex, characterised by a stereotyped sequence of muscle contractions (Brown et al., 1991), 

is thought to be mediated by a circuit including the caudal pontine RF (Hammond, 1973; Leitner 

et al., 1980; Davis et al., 1982). If the RF acts as a site of multisensory integration, it is possible 

that visual and startling auditory stimuli (SAS) may interact to modulate reticulospinal output and 

thus RVRs.  

In addition to the startle reflex, SAS can also reduce the reaction time for muscle responses (Valls-

Sole et al., 1999). This phenomenon, termed StartReact, has similarly been proposed to involve 

the RF (Valls-Sole et al., 1999; Rothwell, 2006). The onset latency of EMG activity in response 

to SAS may thus provide a second measure of reticulospinal excitability which could be subject to 

modulation by the pairing of sensory inputs to the RF.  The rationale for this comes from previous 

work suggesting that reticulospinal output can be modulated by pairing sensory inputs to the RF 

(Foysal et al., 2016), and that StartReact is modulated by the degree of reticulospinal involvement 

(Baker and Perez, 2017). 

The aim of this study was to assess whether SAS with different latencies relative to visual target 

appearance are able to modulate RVRs and EMG onset latency in a fast reaching task, thereby 

providing support for the hypothesis that these responses reflect reticulospinal activity. Secondly, 

we investigated whether repeated pairing of SAS with visual target appearance can induce 

plasticity in these pathways. By measuring the size of RVRs and the onset of EMG activity, we 

propose that these experiments have enabled us to assess reticulospinal excitability non-invasively 

in man.     
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Methods 

Subjects 

Eight subjects participated in Experiment 1 (age: 22.7 ± 3.7 years; 4 female), 14 subjects 

participated in Experiment 2a (age: 23.1 ± 3.7 years; 10 female) and 15 subjects participated in 

Experiment 2b (age: 27.5 ± 8.8 years; 13 female). All subjects were right-handed, had no history 

of neurological disorders, and provided written informed consent to participate in the study. All 

procedures were approved by the local ethics committee and the study complied with the 

Declaration of Helsinki.   

EMG recordings 

Surface electromyography (EMG) recordings were made from the right medial deltoid and right 

pectoralis major (PM). Two silver/silver chloride electrodes (Kendall H59P, Medcat) were placed 

on the skin of each muscle along the direction of the muscle fibres. EMG signals were amplified 

(200-10,000 gain), filtered (30Hz to 2kHz bandpass) and digitised (5kHz) for off-line analysis 

(CED 1401 with Spike2 software, Cambridge Electronic Design).  

Experimental sessions 

Our experimental task was based upon that reported by Pruszynski et al. (2010). All experiments 

were performed using a control arm that consisted of two metal shafts connected to each other and 

a firm base by vertical revolving joints. A joystick mounted at the free end provided a grip for 

subjects to hold. The control arm allowed free movement in a horizontal plane and optical encoders 

tracked its position. Subjects sat on a chair in front of the control arm with a 90° bend at the elbow 

when holding the joystick in a central position with their right hand. Targets were projected from 

a screen onto the plane of movement using a half-silvered mirror. This mirror also acted to prevent 

subjects from seeing their own hand, and experiments were performed in the dark to increase this 

effect. A red LED on the top of the joystick indicated hand position at appropriate times during 

each trial.  

The trial sequence is outlined in Figure 3-1.The appearance of a central marker (white circle, 1cm 

radius) indicated the start of each trial. Subjects moved the joystick to this marker at their own 
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pace. Successful positioning was indicated by the central marker changing colour from white to 

blue. Subjects were required to maintain this position for a randomised period of 1-2s after which 

the central marker disappeared for a gap period of 200ms, which has been shown to decrease 

reaction times (Fischer and Rogal, 1986; Gribble et al., 2002). A peripheral target (white circle, 

1cm radius) then appeared in one of four directions (45°, 135°, 225° or 315° relative to the right 

horizontal axis) at a distance of 10cm from the central marker position. Subjects were instructed 

to make fast reaching movements to this new target. The red LED was turned off from the start of 

the gap period until the target was reached to encourage subjects to make ballistic rather than 

tracking movements. Auditory feedback was provided at the end of each trial to indicate whether 

the target was reached in less than 500ms.   

Subjects performed blocks of 40 trials, separated by rest periods of 60s in which the mean reaction 

time for the preceding block was presented on the screen. For all experiments, subjects completed 

a total of 960 trials (24 blocks of 40 trials). During startle trials, SAS (~120dB, 20ms) were 

delivered during the gap period. 

In Experiment 1, SAS was delivered 150ms, 100ms, 75ms, 50ms and 0ms before the appearance 

of the peripheral target. In combination with a control condition in which no SAS was delivered, 

this protocol gave a total of 6 stimulus conditions which were randomised across trials, resulting 

in 40 trials per stimulus per target direction. In Experiment 2a, subjects separately performed a 

plasticity protocol and control protocol spaced one week apart. The order of these two 

experimental sessions was randomised across subjects. During the plasticity protocol, subjects 

performed the first 4 blocks with no stimulus (pre-intervention: 4x40 trials), followed by 16 blocks 

with SAS delivered 100ms before peripheral target appearance (intervention, S1-4: 4x4x40 trials) 

and a final 4 blocks with no stimulus (post-intervention: 4x40 trials). This protocol is subsequently 

referred to as ‘Startle100’. In the control condition, subjects performed all 24 blocks without SAS 

to assess the effects of training and fatigue. In Experiment 2b, subjects performed the same 

plasticity protocol as Experiment 2a but SAS was delivered at the same time as peripheral target 

appearance (i.e. t=0). This protocol is subsequently referred to as ‘Startle0’. In all three plasticity 

protocols, target direction was randomised across each sequence of 160 trials so that targets 

appeared 40 times per target direction for the pre-intervention session, four intervention sessions 

(S1-4) and post-intervention session.  
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Each experiment lasted approximately one hour. Task parameters including joystick position, 

stimulus condition, target direction and reaction time were stored to disc along with EMG 

recordings. To prevent the processing and graphics delays of the computer generating timing 

errors, a photodiode on the screen detected target appearance and all recordings were aligned to 

this signal.   

 

 

Figure 3‐1. Experimental paradigm 

Subjects made reaching movements in a horizontal plane by moving a control arm with their right hand. Targets were 

displayed on a screen and projected onto the plane of movement using a half silvered mirror that occluded view of 

the hand. A red LED on the handle of the control arm indicated position relative to the screen. Each trial began with 

the presentation of a central marker (white circle, 1cm radius). Subjects were required to align their hand with this. 

The central marker turned blue when  the hand was correctly aligned. Subjects had to maintain this position  for a 

randomised period of 1‐2s. The central marker then disappeared for a fixed gap period of 200ms and the red LED was 

turned off. Following the gap period, a peripheral target (white circle, 1cm radius) appeared in one of four directions 

(45°, 135°, 225° or 315° relative to the right horizontal axis, 10cm from the central marker). Subjects were instructed 

to move to this target as quickly as possible. Once reached, the red LED turned on again, the target disappeared and 

the central marker reappeared indicating the start of the next trial. Subjects were provided with auditory feedback of 

task performance, with a high pitch tone indicating that the target was reached in less than 500ms, and a low pitch 

beep indicating a reaction time of more than 500ms. During the startle condition, SAS (~120dB, 20ms) were delivered 

at one of the following latencies relative to target appearance: ‐150ms, ‐100ms, ‐75ms, ‐50ms, 0ms. No startle was 

delivered during the control condition.  
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Data analysis 

All data analysis was performed off-line using custom software written in MATLAB. EMG 

recordings were high pass filtered at 30Hz, full-wave rectified and smoothed over a 1ms window. 

Only trials that did not meet the following exclusion criteria were included in the analysis. Firstly, 

trials were deemed anticipatory and excluded if the first 5mm of movement was not in the 

appropriate 90° arc for that target direction. Secondly, trials were excluded on the basis of reaction 

time. We did not assess this using the time taken to reach the target since it was common for 

subjects narrowly to miss the target and then spend considerable time searching for it, often quite 

ineffectively since they could not see their hand. Instead, for trials that were made in the correct 

direction, we measured the time taken to reach the target distance (10cm) since this provided a 

measure of reaction time independent of movement accuracy. Trials in which it took more than 

500ms to reach target distance were excluded.  

We observed two notable effects in our EMG traces. Firstly, SAS appeared to induce a latency 

shift (see bottom right panel of Figure 3-2) and so the data have been analysed as a StartReact 

paradigm. The latency of EMG onset for each muscle was defined as the time point at which EMG 

activity exceeded a threshold value of three standard deviations above mean baseline EMG activity 

for at least 20ms. Negative EMG latency values represented an increase in EMG activity during 

the gap period. Baseline EMG activity for each trial was measured in the 500ms preceding the gap 

period (i.e. 700 to 200ms before target appearance). 

Secondly, the data demonstrated a band of short latency EMG activity (see top left panel of Figure 

3-2) which resembled the visual response described by Pruszynski et al. (2010). We refer to this 

response as the rapid visual response (RVR) and defined it to occur in a window 75-125ms after 

target appearance since this encompasses the range of values reported in the literature (Pruszynski 

et al., 2010; Gu et al., 2016; Gu et al., 2018). RVR size was calculated by two methods. Firstly, 

we measured the area under the curve above baseline EMG between 75 and 125ms, expressed as 

a percentage of the mean total EMG activity for the control condition (trials without SAS in 

Experiment 1, the pre-intervention session in Experiment 2); this is subsequently referred to as 

RVRc. Secondly, we measured the area under the curve above baseline EMG between 75 and 
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125ms, expressed as a percentage of the mean total EMG activity for the same trial, since this 

isolated changes in RVR from changes in total EMG activity; this is subsequently referred to as 

RVRt. Total EMG activity for each trial was calculated as the area under the curve, above baseline 

EMG, measured from t=0 (peripheral target appearance) until the time at which target distance 

was reached.  

The effect of stimulus and target direction on EMG latency, total EMG activity, RVR size, time to 

target and time to target distance in Experiment 1 was assessed using two-way repeated measures 

ANOVAs. The effect of session (pre-intervention, S1-4, post-intervention) and target direction 

was assessed for the plasticity protocols of Experiment 2. Post-hoc analysis was performed with t-

tests. Significance was set at P<0.05.   

To assess the effect of SAS throughout the time course of each trial, the following analysis was 

performed for Experiment 1. The mean EMG sweep for each target direction, stimulus and 

participant was divided into 10ms bins. The binned values for the control condition were subtracted 

from the binned values for each SAS condition, and this difference expressed as a percentage of 

the total EMG activity for the control condition (the sum of all bins from t=0 until the mean time 

taken to reach target distance). The same analysis was performed for the plasticity protocols using 

the pre-intervention session as the control condition against which each subsequent session was 

compared.  

For all analyses except EMG onset latency in Experiment 1 (see Results), similar trends were 

observed for deltoid and PM recordings and so although both have been described in the text, only 

the deltoid analysis has been presented graphically.  

Results 

In Experiment 1, 75.1% of trials were made in the correct direction and so deemed not to be 

anticipatory; and in 97.8% of trials target distance was reached in less than 500ms, resulting in a 

total of 73.5% of trials being included in the analysis. In the control, Startle100 and Startle0 

plasticity protocols, respectively, 88.8%, 83.4% and 81.3% trials were made in the correct 

direction, in 98.3%, 98.1% and 97.5% of trials target distance was reached in less than 500ms, 

resulting in 87.5%, 82.0%, and 79.9% of trials being included in the analysis.  
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Experiment 1: EMG latency 

We observed a significant effect of SAS on the latency of EMG responses for deltoid (Figure 3-3A; 

F=24.2, P<0.001) and PM (F=5.25, P=0.001). Relative to the control condition, post-hoc analysis 

showed a significant reduction in EMG onset latency for all SAS latencies recorded in deltoid and 

all but the -75ms SAS latency recorded in PM. Across all SAS conditions, the mean latency 

reduction was 28.9 ± 21.7ms for deltoid and 25.7 ± 39.6ms for PM. The latency reduction was not 

uniform across all SAS conditions but instead demonstrated a negative correlation to SAS latency 

for deltoid (Figure 3-3C; r2=0.92, P=0.010), with the earliest SAS condition (t=-150ms) evoking 

the shortest latency EMG response. Importantly, the reduction in EMG latency did not equal the 

relative SAS latency, i.e. SAS delivered 150ms before target appearance did not reduce EMG 

latency by 150ms. Instead, the slope of the linear regression (slope=-0.209) suggests an 

approximate ratio of 5:1 for the relationship between SAS latency and deltoid EMG latency. A 

similar correlation was not observed in PM recordings (r2=0.43, P=0.232, slope=-0.083), possibly 

due to the difficulty we experienced in obtaining good quality EMG recordings from this muscle 

in females, who constituted half the subjects in Experiment 1.  

The effect of SAS on EMG latency was consistent across subjects, with at least 6 out of 8 subjects 

showing a statistically significant reduction in EMG latency for each SAS condition for deltoid 

recordings (Figure 3-3D). Effects were more variable for PM. There was a significant effect of 

target direction on EMG latency for PM (F=3.56, P=0.03) but not deltoid (F=2.38, P=0.10).  
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Figure 3‐2. Example EMG recordings from a single subject 

Mean rectified EMG  traces  from one subject showing deltoid activity during  the choice reaction reaching  task  for 

targets appearing in each target directions (individual subplots) for each stimulus conditions (control; SAS at ‐150ms, 

‐100ms, ‐75ms, ‐50ms, 0ms relative to target appearance). The black dotted line shows baseline muscle activity (mean 

EMG activity for all stimulus conditions measured for 500ms before the gap period). The black arrow indicates target 

appearance. The red box shows the RVR window (75‐125ms). 
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Figure 3‐3. Effect of SAS on the onset of muscle activity  

Response latency for each muscle was defined per trial as the time point at which EMG activity exceeded a threshold 

value of three standard deviations above the baseline mean EMG for at least 20ms. A. Mean EMG latency for deltoid 

averaged across all participants (n=8) and target directions for each stimulus. Error bars represent standard error. The 

red  dotted  line  shows  the  EMG  latency  for  the  control  condition,  and  the  red  asterisks  represent  a  statistically 

significant  (P<0.05) deviation from  this  for each SAS  latency. B. Mean EMG  latency  for deltoid averaged across all 

participants  (n=8)  and  target  directions  for  each  stimulus,  presented  as  the  cumulative  percentage  of  trials.  C. 

Correlation of deltoid EMG onset latency against SAS latency. Each point represents the mean change in EMG latency 

relative to the control condition for each subject and each direction. The red  line shows the  linear regression  line, 

with the r2 and p values for this presented on the plot. The blue line represents no change between SAS and control 

EMG latency. D. Percentage of participants (n=8) showing a statistically significant change in deltoid EMG latency for 

each SAS condition compared to the control condition.   
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Experiment 1: RVR 

We measured the size of the EMG response 75-125ms after target appearance to quantify the RVR 

relative to the total EMG response (see Methods). We found a significant effect of SAS (Figure 

3-4A; deltoid: F=9.26, P=0.005; PM: F=15.0, P<0.001) and target direction (deltoid: F=5.65, 

P=0.005; PM: F=3.57, P=0.031) on RVRc size. The general trend of an increase in RVRc size 

with SAS was observed across all SAS conditions and target directions (Figure 3-4A) but post-hoc 

analysis did not identify a specific SAS latency that was most effective. Similarly, although the 

majority of subjects showed an increase in RVRc size with SAS, this was only significant in 

approximately half of subjects with either deltoid (Figure 3-4B) or PM recordings.  

To examine the RVR in isolation from overall changes in EMG activity, we calculated RVR as a 

percentage of the total EMG activity of the same trial, rather than the control condition. We found 

a significant effect of SAS (deltoid: F=4.16, P=0.005; PM: F=14.9, P<0.001) and target direction 

(deltoid: F=6.19, P=0.004; PM: F=3.51, P=0.033) on RVRt size. 
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Figure 3‐4. Effect of SAS on RVRc magnitude  

RVRs were measured as EMG activity above baseline 75‐125ms after  target appearance, and are expressed as a 

percentage of the mean total EMG activity for the control trial (EMG activity above baseline from target appearance 

until target distance reached, see Methods). A. Mean deltoid RVRc size for all participants (n=8), displayed for each 

SAS condition and target direction. Error bars represent standard error. The red line shows the control condition RVRc, 

and red asterisks represent a statistically significant (P<0.05) deviation from this. B. Percentage of participants showing 

a statistically significant change in deltoid RVRc size with SAS, displayed for each SAS latency and target direction.  

 



56 

 

Experiment 1: Total EMG activity  

Although the data can be analysed as a RVR or StartReact effect, the overall effect of SAS on 

EMG activity appears more complex. There was a significant effect of SAS on the total EMG 

activity generated in each trial (deltoid: F=8.11, P<0.001; PM: F=11.4, P<0.001). Post-hoc 

analysis showed that all SAS latencies significantly increased total EMG relative to the control 

condition for both muscles, except the -50ms SAS in deltoid recordings (Figure 3-5A). This is 

particularly interesting given that although SAS did not affect the time taken to reach the target on 

each trial (Figure 3-7A; F=1.701, P=0.159), there was a significant effect on time to reach target 

distance (Figure 3-7B; F=15.8, P<0.001). Post-hoc analysis showed a significant reduction in time 

to reach target distance for all SAS latencies, thereby reducing the length of the window over 

which EMG activity was assessed. It should be noted that although the effect of SAS on target 

performance was consistent across subjects (Figure 3-7B), there was considerable inter-subject 

variability in the total EMG activity produced during each trial, with 0-4 and 2-6 out of 8 subjects 

showing statistically significant increases in this value for deltoid (Figure 3-5B) and PM, 

respectively. There was no effect of target direction on either total EMG activity (deltoid: F=1.77, 

P=0.184; PM: F=0.928, P=0.445) or task performance (time to target: F=1.63, P=0.213; time to 

target distance: F=1.54, P=0.234).  

Comparison of each 10ms window of a trial with SAS to the control condition showed that SAS 

facilitated the response across at least the first 200ms (Figure 3-6). In the case of 135 and 225° 

targets for deltoid (Figure 3-6), and 45° and 315° targets for PM, SAS increased the EMG activity 

for all except the final stages of the trial.  
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Figure 3‐5. Effect of SAS on total EMG activity  

Total EMG activity for each trial was measured as EMG activity above baseline from target appearance until target 

distance reached (see Methods), and expressed as a percentage of total EMG activity for the control condition. A. 

Mean  total  deltoid  response  for  all  participants  (n=8)  and  target  directions,  for  each  SAS  condition.  Error  bars 

represent  standard  error.  The  red  line  shows  the  total  EMG  activity  for  the  control  condition,  and  red  asterisks 

represent a statistically significant (P<0.05) deviation from this. B. Percentage of participants showing a statistically 

significant change in total deltoid EMG with SAS, averaged across target directions and displayed for each SAS latency.  
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Figure 3‐6. Effect of SAS throughout the time course of each trial  

Deltoid EMG activity during SAS trials was compared to the control condition by dividing the mean EMG sweeps for 

each target direction and stimulus latency into 10ms bins, subtracting the equivalent values for the control condition 

from these and expressing this difference as a percentage of the total EMG activity for the control condition (the sum 

of all the bins up until the mean time taken to reach target distance). Percentage change values, averaged across all 

subjects (n=8) are presented for each target direction and SAS latency. The black arrow indicates target appearance, 

the horizontal black dotted line shows no change compared to the control condition, and the vertical black dotted 

lines show 100ms intervals. The traces are truncated at the mean trial duration (time taken to reach target distance). 
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Figure 3‐7. Effect of SAS on task performance  

Task performance was assessed by measurement of time to reach target (A,C) and time to reach target distance (B,D; 

see Methods). A,B. Mean values for all participants (n=8) and target directions relative to the control condition (red 

dotted line), with red asterisks representing a statistically significant (P<0.05) deviation from this. Error bars represent 

standard error. C,D. Percentage of participants showing a statistically significant change  in reaction time with SAS, 

displayed for each SAS latency. 
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Experiment 2: EMG latency 

In the plasticity experiments, a significant effect of session number on EMG latency was observed 

for both SAS protocols but not the control protocol (Figure 3-8A; Control deltoid: F=1.38, 

P=0.245; Control PM: F=2.35, P=0.050; Startle100 deltoid: F=8.56, P<0.001; Startle100 PM: 

F=4.98, P<0.001; Startle0 deltoid: F=14.0, P<0.001; Startle0 PM: F=9.50, P<0.001). Post-hoc 

analysis showed that only in the Startle0 condition was there a significant reduction in EMG 

latency from the pre- to post-intervention session. This was observed in both muscles and was 

statistically significant in 8 and 7 out of 15 subjects for deltoid and PM recordings, respectively.  

In contrast to the results of Experiment 1, target direction had a significant effect on EMG latency 

for all protocols (Control deltoid: F=57.4, P<0.001; Control PM: F=49.2, P<0.001; Startle100 

deltoid: F=41.6, P<0.001; Startle100 PM: F=40.6, P<0.001; Startle0 deltoid: F=40.8, P<0.001; 

Startle0 PM: F=84.5, P<0.001). 

Experiment 2: RVR 

There was a significant effect of session on RVRc size for all deltoid recordings (Figure 3-9A; 

Control: F=3.53, P=0.007; Startle100: F=5.60, P<0.001; Startle0: F=8.68, P<0.001) and all except 

the control protocol for PM recordings (Control: F=1.62, P=0.168; Startle100: F=5.30, P<0.001; 

Startle0: F=2.83, P=0.022). Only the Startle0 protocol generated a statistically significant 

difference in RVRc size between the pre- and post-intervention sessions, with this being observed 

in both deltoid and PM recordings. Although the trend of the Startle0 intervention increasing RVR 

size was present in the majority of subjects, it was significant in less than half of subjects in either 

muscle (deltoid: Figure 3-9B). Similarly to Experiment 1, there was a significant effect of target 

direction on RVRc size for all plasticity protocols (Control deltoid: F=10.6, P<0.001; Control PM: 

F=12.2, P<0.001; Startle100 deltoid: F=6.26, P=0.001; Startle100 PM: F=4.70, P=0.007; Startle0 

deltoid: F=17.2, P<0.001; Startle0 PM: F=15.4, P<0.001). 

To isolate changes in RVR from changes in total EMG activity, we also measured RVR size as a 

percentage of the total EMG activity for the same trial (RVRt). This method demonstrated a 

significant effect of session on RVRt size for deltoid (Control: F=2.95, P=0.019; Startle100: 

F=2.90, P=0.020; Startle0: F=3.34, P=0.009) but not PM recordings (Control: F=0.47, P=0.794; 
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Startle100: F=0.81, P=0.559; Startle0: F=0.29, P=0.919). Significant increases in RVRt size 

between the pre- and post-intervention sessions were observed in three target directions with the 

Startle0 protocol (45°, 135°, 225°) and one target direction with the control protocol (315°).  No 

significant changes in RVRt size were observed been the pre- and post-intervention sessions with 

PM recordings.  

 

 

Figure 3‐8. Effect of plasticity protocol on onset of muscle activity 

Response latency for each muscle was defined per trial as the time point at which EMG activity exceeded a threshold 

value of three standard deviations above the baseline mean EMG for at least 20ms. A. Mean EMG latency for deltoid 

averaged  across  all  participants  (Control:  n=14;  Startle100:  n=14;  Startle0:  n=15)  and  target  directions  for  each 

plasticity  intervention (Control: no SAS; Startle100: SAS 100ms before target appearance; Startle0: SAS with target 

appearance). Error bars represent standard error. S1‐S4 are the four intervention sessions (see Methods). The dotted 

lines  show  the  EMG  latency  in  the pre‐intervention  session,  and  the  asterisks  represent  a  statistically  significant 

(P<0.05) deviation from this during or after each intervention. B. Percentage of participants (Control: n=14; Startle100: 

n=14; Startle0: n=15)  showing  statistically  significant changes  in deltoid EMG  latency between  the pre‐ and post‐

intervention sessions.     
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Figure 3‐9. Effect of plasticity protocol on RVR magnitude 

RVRs were measured as EMG activity above baseline 75‐125ms after  target appearance, and are expressed as a 

percentage of the mean total EMG activity for the pre‐intervention session (EMG activity above baseline from target 

appearance until target distance reached, see Methods). A. Mean deltoid RVRc size for all participants (Control: n=14; 

Startle100: n=14; Startle0: n=15),  for each plasticity  intervention  (Control: no SAS; Startle100: SAS 100ms before 

target appearance; Startle0: SAS with target appearance), displayed for each target direction. Error bars represent 

standard error. The dotted  lines show the RVRc size before the  intervention, and asterisks represent a statistically 

significant (P<0.05) deviation from this during or after the intervention. B. Percentage of participants (Control: n=14; 

Startle100: n=14; Startle0: n=15) showing a statistically significant change in deltoid RVRc size between the pre‐ and 

post‐intervention sessions.  
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Experiment 2: Total EMG activity  

Similarly to Experiment 1, there was no effect of target direction on total EMG activity (Control 

deltoid: F=1.16, P=0.335; Control PM: F=1.06, P=0.379; Startle100 deltoid: F=0.41, P=0.745; 

Startle100 PM: F=1.08, P=0.368; Startle0 deltoid: F=0.63, P=0.602; Startle0 PM: F=1.14, 

P=0.341). The effect of session was more varied, with only the Startle100 protocol having a 

significant effect on total deltoid EMG activity (Figure 3-10A; Control: F=0.85, P=0.516; 

Startle100: F=7.43, P<0.001; Startle0: F=1.74, P=0.138), whilst both Startle0 and Startle100 had 

a significant effect on total PM EMG activity (Control: F=1.17, P=0.335; Startle100: F=3.57, 

P=0.007; Startle0: F=4.42, P=0.002). The only significant change in total EMG activity between 

the pre- and post-intervention sessions was a decrease in deltoid activity with the Startle100 

protocol (Figure 3-10A) and an increase in PM activity with the Startle0 protocol. Although the 

former effect was significant in 9 out of 14 subjects (Figure 3-10B), the latter was significant in 

only 7 out of 15 subjects.  

In contrast to Experiment 1, there was a significant effect of target direction on task performance 

for all protocols (Control time to target: F=4.44, P=0.009; Startle100 time to target: F=3.49, 

P=0.025; Startle0 time to target: F=10.4, P<0.001; Control time to target distance: F=9.01, 

P<0.001; Startle0 time to target distance: F=4.14, P=0.012; Startle100 time to target distance: 

F=4.43, P=0.009). Similarly, there was a significant effect of session on task performance for all 

protocols except the time to target distance recorded with the control protocol (Figure 3-12 A,B; 

Control time to target: F=2.94, P=0.019; Startle100 time to target: F=2.60, P=0.033; Startle0 time 

to target: F=5.41, P<0.001; Control time to target distance: F=2.04, P=0.085; Startle0 time to target 

distance: F=6.00, P<0.001; Startle100 time to target distance: F=5.37, P<0.001). Only with the 

Startle0 protocol was the reduction in time to target and time to target distance significant between 

the pre- and post-intervention sessions (Figure 3-12A,B); this effect was observed in over 60% of 

subjects (Figure 3-12C,D). 

Figure 3-12 shows the size of the EMG response for each session relative to the pre-intervention 

session in 10ms intervals for each plasticity protocol. Note that even with the control protocol there 

was a change in EMG activity over the sessions but only with the Startle0 protocol did this amount 

to a clear facilitation during that intervention that persisted in the post-intervention session.  
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Figure 3‐10. Effect of plasticity protocol on total EMG activity  

Total EMG activity for each trial was measured as EMG activity above baseline from target appearance until target 

distance reached (see Methods), and expressed as a percentage of total EMG activity for each trial, measured during 

the pre‐intervention session. A. Mean  total deltoid  response  for all participants  (Control: n=14; Startle100: n=14; 

Startle0: n=15) and target directions, for each plasticity intervention (Control: no SAS; Startle100: SAS 100ms before 

target appearance; Startle0: SAS with target appearance). Error bars represent standard error. The dotted lines show 

the  total  EMG  activity  in  the  pre‐intervention  session,  and  asterisks  represent  a  statistically  significant  (P<0.05) 

deviation  from  this  during  or  after  intervention.  B.  Percentage  of  participants  (Control:  n=14;  Startle100:  n=14; 

Startle0: n=15) showing a statistically significant change in total deltoid EMG between the pre‐ and post‐intervention 

sessions.  
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Figure 3‐11. Effect of plasticity protocols throughout the time course of each trial 

Changes in deltoid EMG activity during and after each intervention (Control: no SAS; Startle100: SAS 100ms before 

target appearance; Startle0: SAS with target appearance) were calculated as followed. The mean EMG sweep for each 

target direction, block and participant was divided into 10ms bins. The binned values in the pre‐intervention session 

were  subtracted  from  the  binned  values  during  or  after  the  intervention.  This  difference  was  expressed  as  a 

percentage of the total EMG activity for the pre‐intervention (the sum of all the bins until the mean time taken to 

reach  target  distance).  Percentage  change  values,  averaged  across  all  subjects  (Control: n=14;  Startle100: n=14; 

Startle0: n=15), are presented for each target direction and intervention. The black arrow indicates target appearance, 

the horizontal black dotted  line shows no change compared to the pre‐intervention session, and the vertical black 

dotted  lines show 100ms  intervals. The  traces are shown  for  the mean  trial duration  (time  taken  to  reach  target 

distance).  
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Figure 3‐12. Effect of plasticity protocols on task performance  

Task performance was assessed by measurement of time to reach target (A,C) and time to reach target distance (B,D; 

see Methods). A,B. Mean  values  for  all participants  (Control: n=14;  Startle100: n=14;  Startle0: n=15)  and  target 

directions for each intervention (Control: no SAS; Startle100: SAS 100ms before target appearance; Startle0: SAS with 

target appearance). Dotted lines show the values recorded during the pre‐intervention session, with asterisks showing 

a  statistically  significant  (P<0.05)  deviation  from  this.  Error  bars  represent  standard  error.  C,D.  Percentage  of 

participants (Control: n=14; Startle100: n=14; Startle0: n=15) showing a statistically significant change in reaction time 

between the pre‐ and post‐intervention sessions.  
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Discussion 

In this study we paired SAS with visually-evoked fast reaching movements to show that a range 

of SAS latencies can facilitate the first 75-125ms of responses and reduce the onset latency of 

activity in two shoulder muscles. Furthermore, our results show that repeated pairing of SAS with 

the appearance of the visual stimulus can induce plastic changes in both of these outcome 

measures. These results can be considered in the context of StartReact, stimulus-locked short-

latency responses, which we refer to as rapid visual responses (RVRs), or as part of a more 

integrated approach encompassing several ideas about reticulospinal pathways.  

StartReact 

StartReact is the phenomenon whereby SAS, typically delivered as a “go” cue, can drastically 

reduce voluntary reaction times (Valls-Sole et al., 1999). Our results show such an effect with the 

majority of SAS conditions significantly reducing the latency of EMG onset in deltoid and PM. 

Furthermore, repeated delivery of SAS synchronously with the appearance of the visual target 

(Startle0) induced a plasticity effect in which EMG responses continued to appear at a reduced 

latency in the absence of further auditory stimuli. Although we did not record the 

sternocleidomastoid response, a measure often used to demonstrate an overt startle response 

(Carlsen et al., 2011), Reynolds and Day (2007) showed that the latency shift associated with SAS 

can be observed in a choice reaction task in the absence of a startle reflex.  

Rapid visual reactions  

Originally described by Pruszynski et al. (2010), RVRs are short-latency, stimulus-locked 

responses evoked during reaching movements to visual targets and are proposed to be mediated 

by a tecto-reticulospinal pathway. This hypothesis originates from primate data showing that cells 

in the superior colliculus and RF fire during proximal arm movements (Werner, 1993; Stuphorn 

et al., 1999), as well as the recent observation that arm movements can be evoked by electrical 

stimulation of these regions (Philipp and Hoffmann, 2014). Our results support a reticulospinal 

involvement by demonstrating that RVRs can be facilitated by SAS (Figure 3-4), and that this 

facilitation persists when responses are normalised to the total EMG response, suggesting that it is 

independent of the general increase in EMG activity we observed with SAS. Similarly to the 
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StartReact effect, we were able to induce plasticity in RVRs through repeated pairing of SAS with 

the appearance of the visual target.  

We propose that the increase in short-latency EMG activity observed is not simply a consequence 

of StartReact reducing response latency and thereby increasing the proportion of the response that 

appears within our 75-125ms window for several reasons. Firstly, visual inspection of the data 

reveals a short-latency component of the response that qualitatively appears to increase in size 

rather than shift in latency (see top left panel of Figure 3-2). Secondly, in accordance with previous 

reports (Pruszynski et al., 2010), we found this short-latency window of EMG activity to be 

spatially tuned, whereas there was no effect of target direction on EMG onset latency recorded 

from deltoid. Finally, it is important to note that we do not claim to have captured the RVR either 

exclusively or in its entirety with the chosen 75-125ms window. However, by encompassing the 

latencies reported in the literature (Pruszynski et al., 2010; Gu et al., 2016; Gu et al., 2018), we 

aimed to provide a comparable measure and to isolate a region of the EMG response that is likely 

to be largely devoid of cortical input. Nonetheless, given that both the latency reduction and RVRs 

are proposed to act via the RF, it is likely that these two effects are not entirely separable and 

perhaps it is debatable whether this distinction is important if the conclusion can be drawn that 

both measures imply an increase in reticulospinal output.  

An integrated approach  

Valls-Sole et al. (1999) proposed that the latency shift observed with StartReact may relate to 

storage of pre-planned movements in brainstem or spinal structures, with SAS triggering their 

release. An important feature of StartReact is therefore that the required movement is known in 

advance such that it can be prepared and stored, this is supported by studies showing the absence 

of a latency reduction in choice reaction tasks (Carlsen et al., 2004b). However, modest reductions 

in EMG onset latency have been reported with SAS in a choice reaction task in which subjects 

made stepping movements towards visual targets that shifted position mid-step (Reynolds and 

Day, 2007). The authors propose that this choice reaction task is theoretically distinct from the 

simple reaction tasks that have dominated the StartReact literature since it is not possible for 

subjects to predict the upcoming movement and thus store an appropriate blueprint. Instead, they 

suggest that the reduction in reaction time, which at 18-31ms is modest compared to the ~100ms 
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values reported by Valls-Solé et al. (1995), represents a reduction in visuo-motor processing time, 

which could possibly occur through an interaction of visual and auditory stimuli at the caudal 

pontine RF (Reynolds and Day, 2007). 

Although the task described by Reynolds and Day (2007) constitutes a lower-limb perturbation 

protocol, it shows many similarities to the choice reaction upper-limb reaching task used in our 

study. For example, they report reaction times of around 100ms in the absence of SAS, a similar 

finding to the 100-150ms reaction times reported with upper-limb perturbation (Carlton, 1981; 

Soechting and Lacquaniti, 1983; Day and Lyon, 2000), as well as the 75-100ms response latency 

reported by Pruszynski et al. (2010). We recorded mean reaction times of 135.5ms and 128.7ms 

for deltoid and PM, respectively, in trials without the SAS stimulus. These values are all 

considerably lower than typical reaction times for visual stimuli, which have been reported to be 

around 180ms (Brebner and Welford, 1980), and so may reflect a subcortical involvement, as has 

been demonstrated for reaching movements (Day and Brown, 2001). Furthermore, Reynolds and 

Day (2007) argue that the nature of their task, in which movements were made in the same 

reference frame as the visual stimuli, crucially differs from classical StartReact protocols (e.g. 

Carlsen et al., 2004b) in which the visual target and reaching endpoint are spatially separated. They 

propose that the transformation of arbitrary visual stimuli into appropriate movement likely 

requires considerable cortical processing, whereas more natural movements may not have the same 

cortical dependence. This sentiment has been echoed by Perfiliev et al. (2010), who showed that 

reaching movements towards physical target have reaction times in the range of 90-110ms and 

suggest that in a natural environment, reaching movements may be controlled reflexively. Given 

the demonstration that microstimulation of the superior colliculus can evoke reaching-like arm 

movements (Philipp and Hoffmann, 2014), the tecto-reticulospinal pathway is one possible 

candidate that could mediate such reflexes. Although our task did not involve physical stimuli, the 

projection of visual targets into the plane of movement, similarly to Reynolds and Day (2007), 

may have reduced the requirement for cortical processing and therefore evoked reflexive reaching 

likely to involve subcortical pathways and largely bypass the cortex, at least in their initial stages.      

Further evidence that our task evoked reticulospinal responses comes from examination of the 

strength of contractions produced. In classical StartReact studies, the pattern of EMG activity 

generated is unaltered except for its onset latency (Valls-Sole et al., 1999; Carlsen et al., 2004a; 
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Dean and Baker, 2017). However, in accordance with our results (Figure 3-5), there are several 

reports of SAS facilitating EMG responses (Siegmund et al., 2001; Carlsen et al., 2003; Kumru et 

al., 2006; Kumru and Valls-Sole, 2006). Given that auditory stimuli have been shown to excite 

reticular neurons (Irvine and Jackson, 1983; Fisher et al., 2012), and the number of neurons 

recruited is positively correlated with stimulus intensity (Yeomans and Frankland, 1995), Carlsen 

et al. (2003) proposed that this increase in EMG activity with SAS may represent facilitation of a 

reticulospinal contribution to the movement. In turn, this reticulospinal activity is likely to increase 

motoneuron excitability, thereby increasing the efficacy of the later descending corticospinal 

commands. This hypothesis matches with our proposal that in addition to facilitating the early 

component of responses, SAS affects the full time course of each trial, perhaps through an initial 

reticulospinal input which primes the system for subsequent corticospinal modulation. It is also 

possible that SAS affects the corticospinal response via ascending projections from the RF to the 

cortex (see Carlsen et al., 2012).  

We observed relatively consistent results with SAS delivered up to 150ms prior to visual target 

appearance. Simple reaction tasks have shown that SAS delivered up to 1.4s before the “go” cue 

can reduce reaction times, although on a trial by trial basis, early stimuli were less likely to evoke 

a latency shift (MacKinnon et al., 2007). This effect may reflect the progressive preparation of 

movement in anticipation of an imperative stimulus (MacKinnon et al., 2007). However, as 

discussed above, it is unlikely that specific movements were prepared in our choice reaction task. 

Instead, the efficacy of the different SAS latencies used in our experiment could suggests that SAS 

produces relatively long-lasting changes in reticular excitability. This is supported by RF 

recordings in primates which show that even under deep anaesthesia, reticular neurons can 

continue to fire for up to 25ms after a (non-startling) auditory stimulus (Fisher et al., 2012). 

However, our data show a general trend of the earliest latency SAS (t=-150ms) having the greatest 

effect on response latency and RVR size, suggesting that SAS are not simply increasing reticular 

excitability for a fixed period but instead may somehow be non-specifically preparing the system 

for movement.  
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Reticulospinal plasticity  

It is well established that pairing of inputs can induce plasticity in the corticospinal tract (Stefan et 

al., 2000). However, until recently, such effects were unexplored in reticulospinal pathways. 

Foysal et al. (2016) provided the first demonstration that the long-latency stretch reflex (LLSR) 

can be modulated by paired delivery of auditory clicks and electrical stimulation of the biceps. 

Given the evidence supporting a reticular involvement in the LLSR (Soteropoulos et al., 2012; 

Kurtzer, 2014), this study may reflect the induction of plasticity in reticulospinal pathways. On 

this basis we paired SAS with the appearance of the visual target over 640 trials and observed that 

enduring changes in RVR size and EMG onset latency could be induced. This was not simply a 

training effect since a control protocol in which no SAS was delivered did not evoke the same 

effects. Furthermore, in contrast to our facilitation findings, the latency was important, with 

simultaneous SAS and visual target appearance inducing plasticity whilst SAS delivered 100ms 

prior to visual target appearance had no such effect.  

Summary 

In conclusion, we have used a choice reaction reaching task to show that loud auditory stimuli 

delivered across a range of latencies can significantly reduce reaction times in proximal muscles 

and facilitate short-latency responses. We propose that this reflects modulation of reticulospinal 

excitability. Furthermore, we have shown that repeated pairing of SAS with the presentation of the 

visual target can induce plasticity in these outcome measures, which may reflect enduring changes 

in the excitability of reticulospinal pathways. Given the wealth of sensory information received by 

the RF, it is possible that this structure acts as a site of multisensory integration and thus that 

appropriate pairing of inputs may provide a means of modulating its output. In the context of 

accumulating evidence supporting a role of the RST in functional recovery after corticospinal 

lesions (Dewald et al., 1995; Baker, 2011; Zaaimi et al., 2012), we tentatively suggest that the 

ability to influence reticulospinal excitability non-invasively with such techniques may be of 

clinical significance.    
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4.  

CHAPTER IV 

Cortical, corticospinal and reticulospinal contributions to 
strength training 

 

The experiments described in this chapter were supported by Norman Charlton, who designed and 

manufactured the apparatus for the behavioural task, and designed the headpieces; Terri Jackson, 

who undertook the initial behavioural training of the monkeys, assisted in the training sessions 

throughout the study and managed post-operative care; and Stuart Baker who performed the 

surgeries, contributed to the experimental design and set up the spinal recordings. I trained the 

monkeys on the task, manufactured the EMG implants and cortical electrodes, assisted in the 

surgeries, ran the recording sessions, recorded the spinal data and performed all data analyses.  

Introduction 

It is well established that the initial stages of strength training are dominated by neural adaptations 

rather than intramuscular mechanisms (Moritani and deVries, 1979; Sale, 1988; Folland and 

Williams, 2007). There are several arguments supporting this, including the absence of 

hypertrophy in the first few weeks of a strength training programme (Komi, 1986; Jones and 

Rutherford, 1987; Akima et al., 1999), and the effect of cross-education in which unilateral training 

elicits bilateral gains (Enoka, 1988; Zhou, 2000; Lee and Carroll, 2007).   

Over the last few decades, attempts have been made to characterise the neural adaptations 

associated with strength training by examining elements of the corticospinal tract (CST), the 

dominant descending pathway in primates (Lemon, 2008). A recent meta-analysis proposed that 

strength training is characterised by changes in intracortical and corticospinal inhibitory networks, 

rather than corticospinal excitability (Kidgell et al., 2017). Adaptations may also occur at the level 

of the motoneuron, although there are technical limitations associated with these studies (Carroll 

et al., 2011).  
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An alternative pathway in primate motor control has been overlooked in the strength training 

literature. Increasing evidence suggests that the reticulospinal tract (RST) plays an important role 

in upper limb function in primates (Baker, 2011). In addition to its established role in postural 

control (Prentice and Drew, 2001; Schepens and Drew, 2004b, 2006a), the RST has been shown 

to project to motoneurons innervating both distal and proximal muscles (Davidson and Buford, 

2004; Davidson and Buford, 2006; Riddle et al., 2009), and contributes to motor control 

throughout the upper limb, including hand function in humans (Carlsen et al., 2009; Honeycutt et 

al., 2013; Dean and Baker, 2017) and non-human primates (Soteropoulos et al., 2012). We 

therefore propose that reticulospinal pathways may contribute to strength training.  

In support of this hypothesis, Lawrence and Kuypers (1968b) reported an increase in strength 4-6 

weeks after bilateral pyramidal tract lesions in monkeys suggesting that strength adaptations can 

be achieved in the absence of the CST. Similarly, the human literature suggests that the RST may 

mediate recovery of strength after stroke (Xu et al., 2017). Given the adaptive changes that occur 

in the RST after corticospinal lesions (Zaaimi et al., 2012), reticulospinal pathways are a likely 

candidate in mediating strength adaptations.    

The aim of this study was to compare the relative contributions of intracortical, corticospinal and 

reticulospinal networks to the neural adaptations associated with strength training. We undertook 

two sets of experiments in rhesus macaques that were trained to perform a weight lifting task. 

Firstly, we measured motor-evoked potentials (MEPs) in response to M1, pyramidal tract (PT) and 

medial longitudinal fasciculus (MLF) stimulation to assess adaptations in the cortex, CST and 

RST, respectively. Secondly, after completion of the strength training protocol, we measured 

spinal field potentials elicited with PT and reticular formation (RF) stimulation to assess spinal 

adaptations. To our knowledge, this is the first attempt to perform a strength training study in non-

human primates and to investigate specifically strength-induced changes in reticulospinal function. 

Our results suggest that both intracortical and reticulospinal mechanisms contribute to the neural 

adaptations associated with strength training.  
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Methods 

All animal procedures were performed under UK Home Office regulations in accordance with the 

Animals (Scientific Procedures) Act (1986) and were approved by the Local Research Ethics 

Committee of Newcastle University. Recordings were made from two chronically implanted 

rhesus macaques (monkeys N and L; both female). Both animals were intact prior to the study, 

with the exception of monkey N who had lost fingers on the right hand in an unrelated incident.  

Behavioural Task 

Both monkeys were trained to pull a loaded handle towards the body using their right hand. After 

each trial the handle returned to its original position by the action of the load. Using a pulley 

system, weights could be attached to the handle so that the force required to pull it ranged from 

<5N in the unloaded control condition to 65N in the maximally loaded condition (Figure 4-1). The 

task was self-paced, with the only time constraint being a minimum inter-trial interval of 1s. Trials 

were identified as successful if the handle was moved at least 4cm; these were rewarded with food, 

and in the case of monkey L, stimulation of the nucleus accumbens as described below.  

Surgical Preparation 

Following successful training on the behavioural task, each animal underwent two surgeries, the 

first to implant a headpiece, electromyography (EMG) recording electrodes and cortical wires; and 

the second to implant chronic PT and MLF stimulating electrodes. Both surgeries were performed 

under general anaesthesia with full aseptic techniques.  

The animals were initially sedated with an intramuscular injection of ketamine. Intubation and 

insertion of a central venous line enabled anaesthesia to then be maintained through inhalation of 

sevoflurane and continuous intravenous infusion of alfentanil. During surgery, hydration levels 

were maintained with a Hartmann’s solution infusion, a thermostatically controlled heating blanket 

maintained body temperature, and a positive pressure ventilator ensured adequate ventilation. 

Pulse oximetry, heart rate, blood pressure, core and peripheral temperature, and end-tidal CO2 

were monitored throughout surgery, and anaesthetic doses adjusted as necessary. A full program 

of post-operative analgesia and antibiotic care followed surgery.  
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Figure 4‐1. Strength training task  

A. Schematic of  the experimental set‐up. The animal was atraumatically head‐fixed, and wore a neck collar and a 

restraint on the left (untrained) arm. The right (trained) arm was free to reach through a hole in the front of the cage 

to pull a handle. The load was adjusted by adding weights to the other end of the handle. EMG activity was recorded 

and stimulation was delivered via connectors on  the headpiece. B. Daily weight progression  for each animal. The 

intervention consisted of four stages: an initial assessment period with no added load (1), strength training with low 

loads (2), strength training with high loads (3), and a washout period with no added load (4).  
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In the first surgery, a headpiece was implanted to enable atraumatic head fixation during the 

behavioural task and to provide a mount for the electrode connectors. The headpieces were 

designed using a structural MRI scan, 3D printed with titanium powder, coated with 

hydroxyapatite and surgically attached to the skull using the expanding bolt assemblies described 

by Lemon (1984). During the same surgery, electrodes for EMG recording were implanted into 

the first dorsal interosseous (IDI), flexor digitorum superficialis (FDS), flexor carpi radialis (FCR), 

extensor digitorum communis (EDC), biceps brachii (BB), triceps brachii, pectoralis major (PM) 

and posterior deltoid (PD). Electrodes were placed bilaterally with the exception of the FCR, which 

was implanted on the left side of monkey L and right side of monkey N. Each EMG electrode was 

custom made and consisted of a pair of insulated steel wires, bared for 1-2mm at their tips, which 

were sewn into the muscles using silk sutures. The wires were tunnelled subcutaneously to the 

headpiece upon which their connectors were mounted. To facilitate stimulation of the motor 

cortex, two custom made wires were implanted onto the surface of each M1 and their connectors 

cemented onto the headpiece using dental acrylic.  

In a second surgery, performed three weeks later, four parylene-insulated tungsten electrodes 

(LF501G, Microprobe Inc, Gaithersburg, MD, USA) were chronically implanted bilaterally into 

the medullary PT and MLF, rostral to the decussation, to allow stimulation of the CST and RST, 

respectively. The double angle stereotaxic technique, described by Soteropoulos and Baker (2006), 

was used to aim each electrode at the desired target, from a craniotomy placed at an arbitrary 

convenient location on the headpiece. The optimal position for the PT electrodes was defined as 

the site with the lowest threshold for generating an antidromic cortical volley in ipsilateral M1, 

without eliciting a contralateral M1 volley at 300µA. The optimal MLF electrode position was 

defined as the site approximately 6mm above the PT electrode, which had the lowest threshold for 

generating a spinal volley without an antidromic cortical volley. All electrodes targeted an antero-

posterior coordinate at the inter-aural line (AP0). The estimated medio-lateral coordinate for PT 

electrodes was 0.5-3.1, and for MLF electrodes 0.5-1.4 relative to the midline. The dorso-ventral 

location of the electrodes was estimated as 6.5-9.3 for PT, and 0.1-5.5 for MLF. Threshold for 

evoking a spinal volley was 10-20µA for PT, and 20-100µA for MLF. Cortical volleys were 

obtained by recording from the cortical wires implanted in the previous surgery. Spinal volleys 
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were recorded using a wire temporarily positioned in the paraspinal muscle near the cord with a 

needle; this was removed at the end of surgery.  

Monkey L underwent an additional surgery prior to the start of the strength training protocol 

chronically to implant a parylene-insulated tungsten electrode (LF501G, Microprobe Inc, 

Gaithersburg, MD, USA) into the nucleus accumbens, stimulation of which has been shown to be 

an effective behavioural reward (Bichot et al., 2011). Following sedation with ketamine, a burr 

hole was drilled above the target penetration site and sealed with acrylic. The following day, in the 

awake animal, the acrylic was removed and an insulated tungsten electrode was driven towards 

the nucleus accumbens target location. To optimise its position, stimulus trains were delivered 

through the electrode (1.0mA biphasic pulses, 0.2ms per phase, 200Hz frequency, 200ms train 

duration) and the facial expressions and vocalisations of the animal monitored until an optimal 

response was observed. Typically, we found a sequence as the electrode was advanced: the animal 

first showed a mild orienting reaction following the stimulus, with characteristic retraction of the 

ears. Further electrode advancement produced vocalisation (typically grunting), which became 

stronger at deeper sites. At the optimal site, vocalisation could be produced at a threshold of 

100µA. The electrode was then fixed in place and a connector cemented onto the headpiece with 

dental acrylic. During subsequent training sessions, monkey L received nucleus accumbens 

stimulation every 1-3 successful trials at random, with the stimulation intensity increased as 

necessary to maintain motivation (1.0-2.5mA biphasic pulses, 0.2ms per phase, 200Hz frequency, 

200ms train duration).  

Experiment 1: EMG recordings 

Following recovery from surgery and retraining on the task, the animals underwent 12- (monkey 

L) and 13-week (monkey N) strength training protocols. The following sessions were performed 

5 days per week. Each day began with an initial stimulation session in which the animals performed 

50 unloaded trials whilst receiving stimulation of the four brainstem electrodes (bilateral PT and 

MLF: 500µA biphasic pulses, 0.2ms per phase, 2Hz repetition rate) and four cortical electrodes 

(bilateral medial and lateral M1: 3mA biphasic pulses, 0.2ms per phase, 2Hz repetition rate) in 

pseudo-random order. The unloaded task served to generate low-level background EMG activity 

upon which MEPs could be recorded. The animals then performed the strength training session 
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consisting of 50 loaded trials (1.5-6.5 kg); no stimulation was delivered during this session. 

Finally, to assess short-term adaptations, a second stimulation session was performed with the 

same format as the first. These three daily sessions will subsequently be referred to as the ‘pre-

training’, ‘strength training’ and ‘post-training’ sessions (Figure 4-2). 

 

 
Figure 4‐2. Overview of daily training sessions  

Training was performed 5 times per week. Each day began with a pre‐training stimulation session in which the animals 

performed 50 unloaded trials whilst receiving PT, MLF and cortical stimulation. This was followed by 50 loaded trials 

without stimulation for the strength training session. Finally, a second stimulation session was performed.   

 

During all of these sessions the task was performed with the right arm whilst the left arm was held 

in a restraint, a collar placed around the neck, and the head atraumatically fixed by the headpiece 

to allow connection to the EMGs and stimulating electrodes (Figure 4-1A). EMG (5kHz sampling 

rate, 200-1000 gain, 0.1 Hz to 10 kHz band-pass) and task parameters, such as lever position and 

stimulus times, were stored to disc. The total training each day took approximately 20 minutes. 

The first two weeks (initial assessment period) and last two weeks (washout period) of the training 

protocol were performed without weights during the strength training session in order to establish 

an unloaded baseline measure and to assess post-training washout effects. During the remaining 

7-8 weeks, the weights were gradually increased day by day, as tolerated by the animals (Figure 

4-1B).  

All analysis of EMG data were performed off-line using custom software written in MATLAB. 

EMG recordings were high pass filtered at 30Hz and then full-wave rectified. Visual inspection of 

mean traces identified stimulus-muscle combinations with reliable MEPs and only these were 

included in subsequent analyses. Background EMG activity was measured over a 40ms window 
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(from 50ms to 10ms before each stimulus). MEPs were measured as the area under the curve above 

background EMG between cursors that were manually positioned for each included stimulus-

muscle combination. Due to the variation in background EMG activity, and the known effect of 

this on MEP amplitude (Hess et al., 1987), MEPs were normalised by dividing by their 

corresponding background EMG measure. The human TMS and TES literature suggests that a 

linear relationship does not exist between background EMG level and MEP size (Kischka et al., 

1993; Taylor et al., 1997), but can instead plateau above a certain background EMG, depending 

upon the muscle. Nonetheless, we have persisted with this normalisation method because although 

it may attenuate our effects by over-compensating for background EMG activity, it reduces the 

likelihood that any trends observed are simply due to changes in background EMG activity.  

To assess short-term effects of individual strength training sessions, the daily recording sessions 

were grouped into four weight ranges for each monkey: no weight (0kg, unloaded task), light (0.5-

3.5kg), moderate (4.0-5.0kg) and heavy (5.5-6.5kg). Before and after effects were expressed as a 

percentage change in normalised MEP size from the pre-training session to the post-training 

session. Similar percentages were obtained for the different muscles and so the results were 

grouped simply by averaging the percentage change values for all of the included muscles for each 

stimulus and day. Statistically significant (p<0.05) changes in MEP size were identified with a 

one-sample t-test and multiple comparisons were corrected within each monkey using a 

Benjamini-Hochberg correction with a false discovery rate of 5%. This analysis was repeated for 

background EMG measures. 

To assess long-term adaptations to strength training, the pre-training daily sessions were grouped 

into four stages for each monkey: initial assessment, strength training 1, strength training 2 and a 

washout period (Figure 4-1B). Note that these sessions are time-based in contrast to the sessions 

used for assessment of short-term training adaptation, which are weight-based. For single muscles, 

mean MEP size for each stage was expressed as a percentage of the mean initial assessment period 

MEP. This analysis was performed for both the original MEP values and those normalised to 

background EMG, as described above. To combine the responses across muscles in order to 

provide a single measure for each stimulus, the daily MEP size for each muscle was Z-score 

transformed by subtracting the mean initial assessment period MEP and then dividing by the 

standard deviation of the initial assessment period MEP. These values were summed across 
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muscles and divided by the square root of the number of muscles to give a single daily measure 

across muscles, and averaged across days to give a single measure of MEP magnitude per stimulus 

per stage. Independent t-tests were performed relative to the initial assessment period and multiple 

comparisons were corrected within each monkey using a Benjamini-Hochberg correction with a 

false discovery rate of 5%. This analysis was repeated for background EMG measures. No long-

term analysis was performed on the post-training sessions.  

Experiment 2: Spinal recordings  

Following completion of the 12-13 week strength training protocol, each animal continued with a 

daily strength training regimen as part of a separate study in which single unit recordings were 

made from M1 and the reticular formation (RF). Over a 3 month period, 20-50 trials were 

performed approximately 5 days per week with each of the following weights: 0.5kg, 1kg, 1.5kg, 

2kg, 3kg, 4kg and 6kg; hence the animals received as least as much strength training as in the main 

intervention. An experiment under terminal anaesthesia was then performed in which recordings 

were made from the spinal cord to assess changes in synaptic efficacy.  

Initial sedation was achieved with an intramuscular injection of ketamine. Anaesthesia was then 

induced with intravenous propofol and maintained through intravenous alfentanil and inhalation 

of sevoflurane. Pulse oximetry, heart rate, blood pressure, core and peripheral temperature, and 

end-tidal CO2 were monitored throughout surgery, and anaesthetic doses adjusted as necessary to 

ensure deep general anaesthesia was maintained.  

A craniotomy and laminectomy were performed to expose the right motor cortex and cervical 

spinal cord, respectively. The vertebral column was clamped at the high thoracic and mid-lumbar 

levels and the head fixed in a stereotaxic frame. The anaesthetic regimen was then switched to an 

intravenous infusion of alfentanil, ketamine and midazolam. 

Using the methods described above, parylene-insulated tungsten electrodes (LF501G, Microprobe 

Inc, Gaithersburg, MD, USA) were inserted bilaterally into the PT and RF via a craniotomy 

adjacent to the foramen magnum, with their placement optimised using cortical and spinal volleys 

recorded from epidural ball electrodes. All electrodes targeted an antero-posterior coordinate at 

the inter-aural line (AP0) at an angle 30 degrees anterior. The estimated medio-lateral coordinate 
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for PT electrodes was 1.0, and for RF electrodes 2.0 relative to the midline. The dorso-ventral 

location of the electrodes was estimated as 7.7-9.4 for PT, and 4.3-5.5 for RF.   

Although chronic electrodes were already implanted into the PT and MLF, the decision was made 

to implant new electrodes for the spinal recordings due to gliosis likely reducing the efficacy of 

the chronic electrodes. Furthermore, reticular activity was assessed using electrodes implanted into 

the RF for the spinal recordings, in contrast to the MLF stimulation site used for the EMG 

recordings. This difference reflects the importance of laterality and symmetrically positioned 

electrodes in the spinal recordings, which was best achieved by targeting the RF via the obex, 

compared to the importance of evoking responses in a large number of muscles in the EMG 

recordings, which is most likely when targeting an axon bundle such as the MLF.  

To record the spinal field potentials, the dura was opened at a rostral (C5-C6) and caudal (C6-C7) 

site on the cord. Recordings were made using a single 16-channel electrode (LMA, 50µm contacts 

spaced 240µm apart, Microprobe Inc, Gaithersburg, MD, USA) per site. A series of 10 penetrations 

was made, progressing from lateral to medial in 500µm increments. Successive recordings 

alternated from the left to the right side of the cord, minimising the likelihood of differences being 

observed between the two sides due to changes in excitability with time, as may occur with changes 

in anaesthetic dose. The 500µm spacing of penetrations and 240µm spacing between electrode 

contacts produced a grid of recording sites across a cross-section of the cord (Figure 4-3). For each 

penetration, an intensity series was delivered through each of the newly implanted PT and RF 

electrodes for both single stimuli (50-500µA biphasic pulses in 50µA increments, 0.2ms per phase, 

4Hz repetition rate) and trains of three stimuli (50-500µA biphasic pulses in 50µA increments, 

0.2ms per phase, 4Hz repetition rate, 333Hz train frequency). In monkey N, spinal field potential 

recordings were made under neuromuscular blockade (atracurium); no neuromuscular block was 

used in monkey L. The spinal recordings (25 kHz sampling rate) and stimulation parameters were 

stored to disc. 

The aim of these recordings was to assess whether there were changes in the spinal field potentials 

on one side of the cord relative to the other as a result of strength training the right arm. We did 

not directly compare the spinal field potentials on the two sides since it was likely that slight 

differences in stimulus electrode location would have led to different volley output for a given 



82 

 

intensity (see Figure 4-6B). Instead our analysis focussed on the relationship between the volley 

and field across different stimulation intensities to give an indication of the relative strength of the 

synapses on either side of the cord. All analysis of spinal data were performed off-line using 

custom software written in MATLAB. 

Field and volley measurements were made between manually positioned cursors, with amplitude 

being defined as the maximum value between the cursors relative to the reference cursor (Figure 

4-4C,D). Cursor positions were fixed for all recordings made at a given site (rostral and caudal) in 

each monkey, in response to each stimulus.  

We rarely observed field potentials in response to a single stimulus. However, they were reliably 

evoked with trains of three stimuli (see Results and Figure 4-4A). We therefore measured field 

potentials after the third stimulus of a train. To prevent contamination of the field potentials with 

the decay of the volley, the data were post-processed as follows. For each recording, the volley 

evoked by a single stimulus, in which no field was present, was subtracted from the volley of the 

third stimulus in a train to produce an isolated field (Figure 4-4B).  

 

Figure 4‐3. Electrode positions for spinal recordings 

A single electrode was inserted into the spinal cord at 500µm intervals relative to the midline and at a constant depth. 

The electrode consisted of 16 contacts (red dots) spaced 240µm apart, with the first contact 1.5mm from the tip.   
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The volley measurements for each penetration and electrode contact were used to generate surface 

plots representing cross-sections of the spinal cord (Figure 4-5). This enabled identification of the 

dorsolateral funiculus (DLF) for the PT stimuli, and the ventrolateral funiculus (VLF) and 

ventromedial funiculus (VMF) for the RF stimuli. The locations corresponding to these regions 

were manually selected for each monkey and each electrode (Figure 4-5) and the volley amplitudes 

across them averaged to give a measure of the mean input to the cord by that stimulus for each 

stimulus intensity. It was thus possible to plot an input-output curve for each location on the cord 

where the input values were the summed volley amplitudes for each region (DLF, VLF and VMF) 

at each intensity and the output values were the individual field amplitudes for that location at each 

intensity. The slope of this line (Figure 4-6C) represents the gain of the system and thus provides 

a measure of synaptic efficacy. Comparing the slopes of the lines for corresponding locations 

mirrored across the midline thus gives a measure of changes in synaptic efficacy on one side of 

the cord compared to the other. The difference between the two gradients was calculated and an 

ANCOVA performed to test the significance of this. Positions with a negative gradient or an 

insignificant regression (p>0.05) were excluded from subsequent analysis.  

To summarise the results across the four equivalent recordings (a caudal and rostral recording site 

per monkey), an average of the gradient differences was calculated once the gradient differences 

for each stimulus were normalised to scale between 0 and 1. The significance of these group 

changes was assessed by assigning each of the original gradient differences 0 for an insignificant 

change, +1 for a significantly steeper gradient on the right cord compared to the left, and -1 for a 

significantly shallower gradient on the right cord compared to the left. Summing these values 

across the four equivalent recordings gave a score from -4 (all recordings showed a significantly 

steeper gradient on the right side of the cord) to +4 (all recordings showed a significantly shallower 

gradient on the right side of the cord). By simulating all possible combinations of scores across 

the 5 (penetrations) x 16 (electrode contacts) recording grid, we found that a score of +2 or higher, 

or -2 or lower, could be considered significant at p<0.05.   

After completion of the study, electrolytic lesions were made by passing current through the 

chronic PT and MLF electrodes (100 µA for 20 s) and the newly implanted PT and RF electrodes. 

Anaesthesia was then increased to a lethal level and animals were perfused through the heart with 

phosphate buffered saline followed by formal saline.  
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Figure 4‐4. Example spinal traces and amplitude measurements 

Example spinal traces recorded from all contacts of a single electrode positioned 2mm left of the midline at the caudal 

site of monkey N in response to a 300µA left PT stimulus. A. Recording of train of three stimuli. Note the constant size 

of the volley in contrast to the growing field. B. Example application of field isolation. The response to a single stimulus 

(red) was subtracted from the response to the last stimulus  in a train of three (black), to isolate the field from the 

decay of the volley. The amplitude of the volley (C. Original recording) and field (D. Isolated field data) were measured 

as the maximum value between the cursors relative to the reference cursor (red).  
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Figure 4‐5. Coordinates of volley recordings    

Spinal volley amplitudes recorded with (A) left PT, (B) right PT, (C) left RF and (D) right RF stimulation were used to 

define the DLF (blue squares), VLF (purple squares) and VMF (green squares) for their respective stimuli. The shown 

recordings are from the rostral site of monkey L with a 200µA stimulus intensity.   
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Figure 4‐6. Example of gradient calculation for field and volley relationship  

The data presented were recorded from the deepest contact of the caudal electrode of monkey N, 0.5mm to the left 

(first column) and right (second column) of the midline, in response to contralateral PT stimulation with the volley 

assessed at the DLF. Volley (A) and field (B) amplitude were measured (see Figure 4‐4 and Figure 4‐5) for a range of 

stimulus  intensities. C. For each  stimulus  intensity,  field amplitude was plotted against volley amplitude. A  linear 

regression was performed  to calculate  the gradient of  this volley‐field  relationship, which gave a measure of  the 

synaptic efficacy of the stimulus at that site in the cord. The difference between gradients for mirrored locations on 

the  cord was  calculated  (e.g.  2.7414‐1.8184=0.9230)  to  compare  the  effects  of  the  unilateral  strength  training 

intervention. The significance of this difference was assessed with an ANCOVA (e.g. P=0.000125). This analysis was 

repeated for each position on the recording grid (see Figure 4‐3), for each recording site (rostral or caudal) and each 

monkey.  
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Results 

Task performance  

Both animals complied well with the task, completing the required 150 trials on all but a few days. 

The progression of weight added to the task during the strength training session differed between 

the two animals and it is likely that the first few weeks of this (‘Training 1’) constituted 

familiarisation with lifting weight rather than intensive strength training. It was not possible to 

perform measures of maximum voluntary contraction (MVC) and so unlike in human strength 

training experiments, we were unable to fix the load to generate a certain percentage of MVC. 

Instead, subjective assessments were made of each animal’s capability, in terms of both strength 

and motivation, and the weights increased accordingly. Although we cannot definitively prove that 

the animals found the weights heavy and thus that this constituted a weight training programme 

(see Discussion), it should be noted that by the end of the intervention each was performing 50 

consecutive trials with at least 6kg, which was approximately equivalent to their body weight.  

The task was found to activate all recorded muscles on the right (trained) arm (Figure 4-7A), with 

increasing muscle activation with weight. Although designed to be unilateral, the task generated 

some bilateral activation, particularly in proximal muscles and with heavier loads (Figure 4-7B). 

Since the left (untrained) arm was held in a restraint, this activation does not represent bimanual 

task performance but instead may result from mirror activation (Armatas et al., 1994; Mayston et 

al., 1999) or postural bracing for the heavier loads.  
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Figure 4‐7. Example EMG activity during task with different loads 

Mean rectified EMG activity for all trials (n=50) on a given day recorded from muscles on the (A) right (trained) arm 

and (B) left (untrained) arm. Recordings are from the strength training sessions of day 2 (0kg), day 26 (3kg) and day 

50 (6kg) for monkey N; and day 2 (0kg), day 15 (3kg) and day 36 (6kg) for monkey L. Sweeps are aligned to maximum 

lever displacement (arrow). Note that the left arm was held in a restraint during these recordings. 
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MEP recordings 

MEPs were consistently observed in most muscles in response to contralateral PT and cortical 

stimulation. FCR and triceps brachii were excluded from the analysis since the former was only 

implanted unilaterally and the EMG recordings from the latter were unreliable. The medial and 

lateral cortical wires generated similar MEPs and so only responses to the lateral cortical wires 

have been presented. Although implanted bilaterally, the left MLF electrode elicited no MEPs in 

monkey L and few in monkey N so has been excluded from the analysis. In contrast, the right MLF 

electrode elicited clear MEPs bilaterally in both monkeys and so for the purposes of this analysis 

has been used to assess reticulospinal output in a non-lateralised manner. It is likely that the 

bilateral effect of this electrode relates both to current spread across the midline and the established 

bilateral effects of the RST, particularly in terms of facilitation of upper limb flexors (Davidson 

and Buford, 2006). The inefficacy of the left MLF electrode in both animals may simply relate to 

the tip being dislodged as the electrode was fixed in place, an outcome that is more likely with a 

small target such as the MLF.  

 

 

Figure 4‐8. Example MEP recordings  

Mean  rectified EMG  traces  showing MEPs  recorded  from  the muscles of  the  right  (trained)  arm during  the pre‐

strength training stimulation session of day 47 (monkey N) and day 31 (monkey L). Only stimuli giving a clear MEP in 

the specified muscle are shown. Sweeps are aligned to the stimuli (arrows).     
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Epidural electrical stimulation over the motor cortex generates D- and I-waves (Rosenthal et al., 

1967; Di Lazzaro et al., 2004) implying that it can activate corticospinal cells directly and also via 

intracortical circuits. We therefore propose that our M1 stimulation can be considered comparable 

to TMS. In contrast, our chronically implanted PT electrodes were positioned to stimulate the 

descending corticospinal fibres distant to the cortex, so that the volley evoked should be 

independent of cortical excitability. This stimulus can be considered comparable to 

cervicomedullary (or transmastoid) stimulation in humans, and to a lesser extend transcranial 

electrical stimulation (TES), both of which are thought to stimulate corticospinal axons directly 

(Rothwell et al., 1994; Taylor and Gandevia, 2004). Importantly, comparisons between M1 and 

PT MEPs can give an indication of whether adaptations are occurring within the cortex or 

subcortical levels, similarly to the comparison in the human literature between TMS and TES or 

transmastoid stimulation (Rothwell et al., 1994; Taylor and Gandevia, 2004). Finally, in addition 

to reticulospinal fibres (Jankowska et al., 2003; Edgley et al., 2004), the MLF contains 

vestibulospinal (Nyberg-Hansen, 1964b; Wilson et al., 1968) and tectospinal fibres (Nyberg-

Hansen, 1964a). However, we propose that MLF stimulation used in these experiments provided 

a generalised activation of reticulospinal fibres for reasons discussed elsewhere (Riddle et al., 

2009; Riddle and Baker, 2010). 

Short-term training adaptations  

Increasing load in the strength training sessions was associated with a progressive reduction in 

background EMG activity in monkey N but had no such effects in monkey L, as measured in the 

post-training session (Figure 4-9). This variation in background EMG activity provides 

justification for the MEP normalisation method previously described.  

From the pre-training to the post-training session, the normalised MEPs evoked by PT stimulation 

showed a consistent trend of increasing in size with low loads and decreasing in size with higher 

loads in both monkeys (Figure 4-10). However, the only statistically significant difference between 

the pre-training and post-training sessions was the facilitation of M1 MEPs in monkey L in the 

unloaded condition.    
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Figure 4‐9. Short‐term changes in background EMG activity in the right (trained) arm 

Percentage  change  in  background  EMG  activity  from  the  pre‐training  to  the  post‐training  stimulation  session. 

Background EMG was calculated as mean rectified EMG activity measured over a 40ms window (‐50 to ‐10ms) prior 

to each stimulus. Results have been combined across muscles (1DI, EDC, FDS, BB, PD, PM) on the right (trained) arm 

and stimulus type, and grouped into weight ranges (no weight: 0kg; moderate: 0.5‐4.0kg; heavy: 4.5‐6.5kg). Asterisks 

represent a statistically significant change (p<0.05)  in background EMG from the pre‐strength training to the post‐

strength training stimulation session.    
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Figure 4‐10. Short‐term adaptations to strength training in the right (trained) arm 

Percentage change in MEP area from the pre‐strength training to the post‐strength training stimulation session for 

(A) PT,  (B) MLF and  (C) M1 stimulation. MEP area was calculated as  the area above background EMG, divided by 

background EMG, for a custom window for each muscle‐stimulus combination. Results have been combined across 

all muscles on the right (trained) arm that showed a clear MEP for the given stimulus (see Figure 4‐8), and grouped 

into  weight  ranges  (no  weight:  0kg;  light:  0.5‐3.5kg; moderate:  4.0‐5.0kg;  heavy:  5.5‐6.5kg).  Asterisks  indicate 

statistically significant changes (p<0.05) in MEP size from the pre‐training to the post‐training stimulation session. 
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Long-term training adaptations  

Comparison of the pre-training stimulation sessions showed that during the strength training 

programme, there was a significant increase in background EMG levels in monkey N and decrease 

in background EMG levels in monkey L in the right (trained) arm (Figure 4-11A). This was largely 

consistent across all muscles recorded (Figure 4-11B). To account for these changes, MEP values 

were normalised to background EMG activity - both original and normalised values are presented 

in Figure 4-12, with similar trends being observed in both datasets. Focussing on the normalised 

data, both monkeys showed a significant facilitation of M1 MEPs. MLF MEPs were facilitated in 

both monkeys but this was only significant in monkey N. The PT MEPs show an inconsistent 

trend, with a significant suppression in monkey N and no change in monkey L (Figure 4-12B).  

Similarly, in the left (untrained) arm, significant increases in background EMG levels were 

observed in most muscles in monkey L, and although an upwards trend was observed at the group 

level for monkey N, the changes in individual muscles were more variable (Figure 4-13). It should 

be noted that the left (untrained) arm was held in a restraint during these recordings and so with 

the exception of bilateral activation during the task and movements unrelated to the task, 

background EMG levels here were expected to be low. 

Interestingly, despite no strength training in the left arm and the lack of substantial background 

EMG activity, the changes in MEP size in the left (untrained) arm were similar to those observed 

in the right (trained) arm. In both monkeys there was a significant increase in M1 MEPs whereas 

PT MEPs showed a significant reduction in monkey N and a significant increase in monkey L. 

MLF MEPs were facilitated in monkey L and showed no overall change in monkey N (Figure 

4-14).   
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Figure 4‐11. Long‐term changes in background EMG activity in the right (trained) arm  

Change in background EMG activity recorded from muscles on the right (trained) arm relative to the initial assessment 

period. Background EMG was calculated as mean rectified EMG activity measured over a 40ms window (‐50 to ‐10ms) 

prior to each stimulus. Asterisks represent a statistically significant change (p<0.05)  in background EMG relative to 

the initial assessment stage.  A. Changes in background EMG activity averaged across all muscles (1DI, EDC, FDS, BB, 

PD, PM) following Z‐score transformation of individual muscle percentages.  B. Percentage change in background EMG 

activity for individual muscles across the four training stages: initial assessment (IA), training 1 (T1), training (T2) and 

washout (W). See Figure 4‐1 for training stage details.  
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Figure 4‐12. Long‐term adaptations to strength training in the right (trained) arm  

Change in MEP size recorded from muscles on the right (trained) arm relative to the initial assessment period. MEP 

area was calculated as the area under the curve above background EMG activity for a custom window for each muscle‐

stimulus combination. Asterisks represent a statistically significant change (p<0.05) in MEP size relative to the initial 

assessment stage.  A. Changes in MEP size averaged across all muscles (1DI, EDC, FDS, BB, PD, PM) following Z‐score 

transformation of  individual muscle percentages. B. Same, but with normalisation of values relative to background 

EMG. C. Percentage change in MEP size for individual muscles normalised relative to background EMG across the four 

training stages: initial assessment (IA), training 1 (T1), training (T2) and washout (W). See Figure 4‐1 for training stage 

details.  
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Figure 4‐13. Long‐term changes in background EMG activity in the left (untrained) arm  

Change  in  background  EMG  activity  recorded  from muscles  on  the  left  (untrained)  arm  relative  to  the  initial 

assessment period. Background EMG was calculated as mean rectified EMG activity measured over a 40ms window (‐

50 to ‐10ms) prior to each stimulus. Asterisks represent a statistically significant change (p<0.05) in background EMG 

relative to the initial assessment stage.  A. Changes in background EMG activity averaged across all muscles (1DI, EDC, 

FDS,  BB,  PD,  PM)  following  Z‐score  transformation  of  individual muscle  percentages.    B.  Percentage  change  in 

background EMG activity for individual muscles across the four training stages: initial assessment (IA), training 1 (T1), 

training (T2) and washout  (W). See Figure 4‐1 for training stage details. Note that the arm was held  in a restraint 

during these recordings.  
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Figure 4‐14. Long‐term adaptations to strength training in the left (untrained) arm  

Change in MEP size recorded from muscles on the left (untrained) arm relative to the initial assessment period. MEP 

area was calculated as the area under the curve above background EMG activity for a custom window for each muscle‐

stimulus combination. Asterisks represent a statistically significant change (p<0.05) in MEP size relative to the initial 

assessment stage.  A. Changes in MEP size averaged across all muscles (1DI, EDC, FDS, BB, PD, PM) following Z‐score 

transformation of  individual muscle percentages. B. Same, but with normalisation of values relative to background 

EMG. C. Percentage change in MEP size for individual muscles normalised relative to background EMG across the four 

training stages: initial assessment (IA), training 1 (T1), training (T2) and washout (W). See Figure 4‐1 for training stage 

details. Note that the arm was held in a restraint during these recordings. 
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Spinal adaptations 

As expected, volleys were observed in the spinal cord recordings for all stimuli. In contrast, the 

field potentials were small even with the highest intensity stimuli when single stimuli were 

delivered. However, these field potentials, approximately 1ms after the volleys, were seen to grow 

with trains of three stimuli. Although the growth of a field with increasing number of stimuli would 

normally suggest a disynaptic connection, this is unlikely here due to the short latency relative to 

the volley. Instead, we propose that the field we recorded represents action potentials in the 

motoneurons and interneurons, which became more probable after stimulus trains due to temporal 

summation. This is supported by the field generally being concentrated within the regions 

corresponding to the ventral horn and intermediate zone.   

The spinal data combined across both recording sites (rostral and caudal) and both monkeys show 

few significant differences between the left (untrained) and right (trained) sides of the cord for 

contralateral responses to PT stimulation (Figure 4-15). In contrast, RF stimulation resulted in a 

statistically significantly steeper volley-field gradient in the ventral horn on the right (trained) cord 

relative to the left (untrained) for all four equivalent recordings (Figure 4-15). This suggests that 

for a given reticular input, the right (trained) side of the cord generated a bigger output that the left 

(untrained) cord, which could be interpreted as an increase in synaptic efficacy. Similar results 

were observed regardless of whether the reticular volley was measured from the VLF or VMF. 

This likely relates to the significant correlation between volley amplitude recorded at these two 

sites (see Figure 4-16 for example), presumably due to similar activation of these two reticular 

pathways by our RF stimulus.   

The results are less clear for ipsilateral stimulation. Ipsilateral PT stimulation resulted in a steeper 

volley-field gradient on the left (untrained) side of the cord, although this was not localised (Figure 

4-15). Ipsilateral RF stimuli showed a similar effect to the contralateral stimuli, albeit a much 

weaker one, with an increase in volley-field gradient in the approximate region of the ventral horn 

and intermediate zone (Figure 4-15).  
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Figure 4‐15. Spinal adaptations to strength training     

Field‐volley gradients are presented in the first column for contralateral PT volleys, contralateral RF volleys, ipsilateral 

PT volleys, and ipsilateral RF volleys. PT and RF volleys are measured from the areas corresponding to DLF and VLF, 

respectively (see Figure 4‐5). The outline of the cord indicates the approximate location of each measurement. The 

second column shows the difference in gradient between the left and right side of the cord for each stimulus. The 

third column shows the statistical significance of this gradient difference (see Methods and Figure 4‐6). 
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Figure 4‐16. Correlation of volley amplitude for VLF and VMF 

Example volley recordings made from sites corresponding to VLF and VMF (see Figure 4‐5) for the left side of the 

cord  at  the  caudal  site of monkey N  in  response  to  ipsilateral  (left  panel)  and  contralateral  (right panel) RF 

stimulation. Each data point shows a different stimulus intensity. A significant correlation was observed between 

VLF and VMF volleys (r2 and p values shown on each panel).   

Discussion 

A fundamental feature of a strength training protocol is the demonstration of an increase in 

strength. This is straightforward to measure in human studies in which participants can be 

instructed to perform MVCs. Unsurprisingly, a recent meta-analysis reported an increase in 

strength in all examined strength training studies (Kidgell et al., 2017). However, in the absence 

of MVC measurements in our animal model, strength gains had to be inferred through other 

means.  

Strength training typically consists of making repetitive movements against a substantial 

resistance, which could be defined as a load sufficient to induce fatigue – the reduction in force 

output from muscles following exercise. Fatigue can be assessed in our experiments by 

comparing stimulation effects. TMS studies have shown that low intensity contractions (10-

50% MVC) can facilitate MEPs for 2-4 minutes post-exercise (Samii et al., 1996). With 

increasing force, and the emergence of fatigue, the facilitation decays rapidly and the response 

is instead dominated by a suppression that can last for up to 30 minutes (Brasil-Neto et al., 

1993; Liepert et al., 1996; Samii et al., 1996). Based on the assumption that our M1 stimulation 

is comparable to TMS, with increasing load we would expect to see a shift from facilitation to 

suppression of MEPs, indicating that the task has progressed from low force to fatiguing 
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contractions. Although not statistically significant, this trend was observed in monkey N 

(Figure 4-10).  

In contrast to TMS, strength training elicits an initial suppression of cervicomedullary MEPs 

(CMEPs) lasting approximately 1-4 minutes (Gandevia et al., 1999; Petersen et al., 2003), 

followed by a longer lasting facilitation (Nuzzo et al., 2016, 2018). Increasing the force of 

contraction from 50% to 100% MVC enhances the initial CMEP suppression (Petersen et al., 

2003). Although we did not precisely time the interval between the strength training and post-

training sessions, it was typically less than a minute. It is therefore possible that the observed 

PT MEP trend in both monkeys, from an increase in MEP size to a decrease in MEP size with 

increasing load, represents a shift in dominance from the later facilitation to the earlier 

suppression.  

In combination, the reduction in background EMG and progression from facilitation to 

suppression of cortical MEPs in monkey N, along with the progression from facilitation to 

suppression of PT MEPs in both monkeys, provide support for the notion that the task was 

sufficiently fatiguing to constitute strength training.  

Cortical and corticospinal contributions to strength training  

The human strength training literature has made much use of the non-invasive techniques 

available to investigate the associated neural adaptation. Studies have predominantly focussed 

on TMS to assess cortical changes and reflex studies to examine spinal adaptations. Techniques 

to directly measure reticulospinal output non-invasively in humans are not currently available. 

In addition to intracortical and corticospinal circuitry, we were able to assess reticulospinal 

function in our animal model through stimulation of the MLF and RF, and the recording of 

EMG responses and spinal field potentials.  The different synaptic locations at which changes 

might have occurred are indicated by the lower case letters in Figure 4-17, which are referenced 

in our consideration below. 

The observed facilitation of M1 MEPs in the absence of a similar trend in PT MEPs suggests 

that neural adaptations occur at the cortical level (Figure 4-17a) with strength training. This is 

consistent with much of the human strength training literature. A recent meta-analysis reported 

a large effect of strength training interventions for decreasing short-interval intracortical 
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inhibition and a medium effect on reducing silent period duration (Kidgell et al., 2017), 

suggesting that strength training has an overall effect of reducing cortical inhibition.  

The facilitation of M1 MEPs in the absence of a corresponding trend in PT MEPs also excludes 

the possibility that adaptations occurred at the corticomotoneuronal synapse (Figure 4-17f). In 

addition to our inconsistent MEP findings, we did not observe any significant differences in 

PT-elicited spinal field volleys between the right (trained) and left (untrained) side of the spinal 

cord. This suggests that either a bilateral adaptation has occurred, or that strength training does 

not have a significant effect on corticospinal synapses onto motoneurons or interneurons. We 

are unable to draw any conclusions about the disynaptic action of the corticospinal tract on 

motoneurons (Figure 4-17e) since this pathways is rarely activated by PT stimulation without 

attenuation of feedforward glycinergic inhibition from the pyramid with strychnine (Maier et 

al., 1997; Maier et al., 1998; Alstermark et al., 1999; Isa et al., 2006).  

Reticulospinal contributions to strength training 

We are not aware of any previous reports of reticulospinal adaptations with strength training. 

Our finding of a facilitation of MLF MEPs is therefore novel but perhaps not surprising. From 

the seminal work of Lawrence and Kuypers (1968b) it is evident that subcortical pathways 

contribute to strength. Following bilateral PT lesions, monkeys quickly recovered grip strength 

sufficient to climb the bars of their cage despite a lack of independent finger movements 

(Lawrence and Kuypers, 1968b). The authors commented that “The most striking change after 

the first four to six post-operative weeks was a progressive increase in their general strength” 

(Lawrence and Kuypers, 1968b). Given the absence of corticospinal projections in these 

animals, it is likely that this increase in strength was mediated by subcortical pathways. More 

recent work has directly implicated the reticulospinal tract in this recovery process, 

demonstrating through intracellular motoneuron recordings that reticulospinal projections can 

strengthen following corticospinal lesions (Zaaimi et al., 2012). Furthermore, a recent study 

proposed two separable systems for recovery following stroke, one contributing all of the 

strength some individuation, the second providing additional individuation. Lesion analysis 

suggests these two systems may respectively be reticulospinal and corticospinal in origin (Xu 

et al., 2017).  

Another aspect of reticulospinal physiology implicating it in strength training is the extensive 

collateralisation of the RST (Peterson et al., 1975; Matsuyama et al., 1997) and thus its 
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disposition to activate muscle synergies. Strength training tasks typically involve gross 

movements requiring co-activation of several muscles, in contrast to the independent finger 

movements that may be associated with skill training. Our simple lever pulling task generated 

substantial EMG activity in all recorded muscles on the active arm (Figure 4-7), thus showing 

more similarity to the gross movements mediated by the reticulospinal tract (Davidson and 

Buford, 2004; Davidson and Buford, 2006) than the sophisticated individuation associated with 

corticospinal function (Zaaimi et al., 2018). It is therefore reasonable to suggest that repeated 

performance of the gross movements commonly associated with strength training are more 

likely to generate adaptive changes in the reticulospinal pathways.  

We assessed reticulospinal function on a daily basis through stimulation of the MLF in awake 

behaving monkeys. Our results show an increase in the size of MLF MEPs with increasing 

weight in both monkeys, suggesting an increase in the synaptic efficacy of reticulospinal inputs 

to the spinal cord. In support of this, after a further three months of strength training, spinal 

recordings demonstrated a steeper gradient between volley and field amplitude for the right 

(trained) side of the cord relative to the left (untrained) side in the region corresponding to the 

intermediate zone and ventral horn. It is important to note that this method does not permit 

quantification of absolute changes in synaptic efficacy but instead simply provides a 

comparison between the two sides of the cord. It is therefore possible that the observed effect 

could be due to an increase in synaptic efficacy on the right side of the cord, a decrease on the 

left side of the cord, or perhaps a bilateral adaptation that was more pronounced on one side. 

Given the observed facilitation of MLF MEPs, we interpret this result as an increase in synaptic 

efficacy of descending reticulospinal projections onto either interneurons or motoneurons in 

the right (trained) side of the spinal cord. Alternatively, given that stimulus trains delivered to 

the PT or RF have been shown to produce a later volley thought to represent activation of 

corticoreticular and reticulo-reticular connections, respectively (Jankowska et al., 2003; Edgley 

et al., 2004; Fisher et al., 2015), it is possible that the ‘field’ we measured at the VLF is actually 

a supernumerary volley. Therefore, increased synaptic efficacy within the RF may also 

contribute to the observed changes in field potential.  
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Figure 4‐17. Schematic showing simplified pathways  

Strength  training may  induce adaptive changes  in  (a)  intracortical circuits,  (b) corticoreticular connections,  (c) 

reticulospinal  projections  to  interneurons,  (d)  monosynaptic  reticular  projections  to  motoneurons,  (e) 

corticospinal projections to  interneurons, (f) corticomotoneuronal synapses, and/or (g) within the motor units 

themselves. See discussion.  
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The RST has been shown to form both monosynaptic and disynaptic connections with upper 

limb motoneurons (Riddle et al., 2009). We observed widespread differences in synaptic 

efficacy between the left (untrained) and right (trained) cord, which appeared concentrated in 

the intermediate zone rather than amongst the motor nuclei (Figure 4-15). This suggests that 

changes in reticulospinal output following strength training are more likely to occur at 

reticulospinal-interneuron synapses (Figure 4-17c) than reticulospinal-motoneuron synapses 

(Figure 4-17d).  

We reject the hypothesis that the observed adaptations are entirely due to post-synaptic changes 

in either motoneurons or interneurons leading to a changes in excitability, since these both 

receive convergent inputs from reticulospinal and corticospinal projections (Riddle et al., 2009; 

Riddle and Baker, 2010). If post-synaptic adaptations were a dominant effect we would expect 

to see similar trends for both our reticular and corticospinal stimuli, which was not the case. 

Although a rodent model has demonstrated considerable changes in motoneuron properties 

following a strength training programme (Krutki et al., 2017) and similar adaptations may be 

occurring here, the differences between the MEPs observed with PT, MLF and M1 stimulation 

in our experiments suggest that motoneuron changes are not the dominant factor. There is the 

possibility that our results are due to an increase in motoneuron excitability and decrease in PT 

responses in the absence of any MLF and M1 changes, but this is unlikely, particularly when 

considered in combination with our spinal recordings.   

Interestingly, we observed relatively similar trends in MEPs across all muscles examined. This 

is perhaps surprising in relation to the proximal-distal bias reported for corticospinal 

innervation. Given that corticospinal excitatory post-synaptic potentials (EPSPs) are greater in 

motoneurons innervating distal compared to proximal muscles (Porter and Lemon, 1993), 

whereas the amplitude of MLF-evoked EPSPs is similar across different muscle groups (Riddle 

et al., 2009), it could be expected that the relative size of PT and MLF MEPs would change 

from distal to proximal muscles. We observed no such distal to proximal trends. A possible 

explanation for this is activation of reticular pathways with the PT stimulus via cortico-reticular 

collaterals. Branching collaterals from the corticospinal tract project to the reticular formation 

in monkeys (Keizer and Kuypers, 1989) (Figure 4-17b). These corticoreticular connections can 

be activated with TMS (Fisher et al., 2012) and increasing evidence suggests they may be of 

importance in the recovery of strength following cortical injury (Darling et al., 2018; 

McPherson et al., 2018). 
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Cross-education effects 

MEP recordings from the left (untrained) arm provide insight into the neural adaptations 

associated with cross-education. The increase in both M1 and MLF MEPs (Figure 4-14) 

indicates that neural adaptations are occurring in the untrained limb. Furthermore, although the 

respective reduction and increase in PT MEP size for monkey N and L contradict each other, 

they match the trends observed in the right (trained) arm of each monkey. Overall these findings 

suggest that cross-education occurs both at the level of the cortex and spinal cord; this is in 

agreement with a recent proposal that “neural adaptations to cross-education are due to 

structural and functional changes within the cortical motor and non-motor regions and subtle 

changes along the entire neuroaxis” (Frazer et al., 2018).   

Cortical changes associated with cross-education have been studied in humans using both 

imaging and electrophysiological methods (Frazer et al., 2018). The former support the 

importance of interhemispheric pathways (Farthing et al., 2007; Palmer et al., 2013; Ruddy and 

Leemans, 2017) whereas the latter implicate increased corticospinal excitability (Kidgell et al., 

2015), decreased corticospinal inhibition (Hendy et al., 2015; Coombs et al., 2016), reduced 

interhemispheric inhibition (Hortobagyi et al., 2011; Zult et al., 2016) and increased voluntary 

activation (Lee et al., 2009) in cross-education.  

In contrast, few studies have examined spinal adaptations associated with cross-education 

(Frazer et al., 2018). Given that our PT and MLF electrodes were positioned amongst the axons 

of the CST and RST respectively, it can be assumed that any bilateral changes in the MEPs of 

these stimuli are due to spinal adaptations. We propose that commissural interneurons may 

mediate an element of cross-education. Reticulospinal projections have been shown to 

terminate on commissural interneurons, which in turn synapse onto contralateral motoneurons 

(Bannatyne et al., 2003; Jankowska et al., 2003; Edgley et al., 2004; Hammar et al., 2007). It 

is perhaps surprising that there has been little mention of the reticulospinal tract in cross-

education given the bilateral actions of this pathway in both cats (Jankowska et al., 2003; 

Schepens and Drew, 2006b) and primates (Davidson et al., 2007).  

It is important to note that although our task did generate some bilateral activation (Figure 4-7), 

particulary in more proximal muscles, there is not an obvious relationship between the 

active/inactive muscles on the left (untrained) and the changes in MEP size, thus making it 
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likely that the effects observed are due to a pure cross-education effect rather than active 

strength training in these muscles. 

Summary 

Strength training likely generates neural adaptations throughout the motor system, both 

unilaterally and bilaterally. We propose that for gross upper body movements eliciting 

significant co-activation, these adaptations primarily occur in intracortical and reticular 

networks. The latter likely consists of pre-synaptic changes at the synapses between descending 

reticulospinal projections and either motoneurons or interneurons.  Although we cannot rule 

out adaptations in motoneurons, we suggest that these did not make a significant contribution 

in our strength training model. Furthermore, our results suggest corticospinal adaptations do 

not play a major role. These findings highlight reticulospinal pathways as a new contender in 

the strength training field.  
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5.  

CHAPTER V 

General discussion  
 

The human literature on motor neuroscience has focussed predominantly on the corticospinal 

tract (CST); a bias that reflects its position as the dominant descending pathway. However, the 

motor system consists of an extensive network of neurons and it is an overly simplistic view to 

limit the study of this to any single component. Instead, an integrated approach for studying 

the motor system is required; this should involve consideration of cortical networks, the 

multiple descending pathways, and spinal cord circuitry. It is unlikely that any of these 

components simply represents a relay station; instead, increasing evidence shows that in 

addition to the processing that occurs at the level of the cortex, brainstem motor pathways and 

interneuron circuits also actively modulate motor commands.  

Our understanding of the motor system is largely attributable to animal experiments in which 

anatomy can be studied in detail and the activity of single neurons can be recorded in both 

awake and anaesthetised models. These experiments provide much insight into the motor 

systems of individual species, but the translation of findings across different species is limited 

due to both fundamental and subtle differences. For example, the corticomotoneuronal (CM) 

cells associated with independent finger movements are present only in primates and even 

within this group the CM system has developed to variable extents. Similarly, although rodents 

represent a readily available animal model, the CST in these animals differs to that of primates 

since it descends in the dorsal columns and can make a substantial ipsilateral contribution.  

Therefore, although the findings of animal experiments can provide a conceptual framework 

of the motor system, the study of the human motor system requires the use of non-invasive 

techniques. The introduction of transcranial electrical stimulation (TES) and transcranial 

magnetic stimulation (TMS) in the 1980s has propelled the study of the human motor system, 

specifically the CST. Given the widespread use of these techniques and the increasing number 

of inferences about motor control that are made using them, it is important that we understand 

their underlying mechanisms. Crucially, TMS does not simply provide an on/off switch for the 
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CST but instead the responses evoked in muscles represent a complex interplay between 

interneuron circuits in the cortex and spinal cord.    

The application of non-invasive techniques used in humans to animal models can provide a 

means of studying their specific mechanisms of action. Despite the considerable inter-species 

differences in the motor system, these experiments can still improve our understanding of non-

invasive techniques when considered in the context of the human literature. To this end, we 

delivered TMS to anaesthetised macaques and recorded from individual corticospinal axons, 

thereby providing insight into the action of TMS on single cells. Our results differ from the 

population effects observed with epidural or electromyography recordings. In combination 

with the known heterogeneity of the CST, our findings further highlight the complexity of the 

responses evoked by TMS. It is also important to remember that the large, directional current 

induced in the cortex by transcranial stimulation is unlikely to mimic physiological excitation 

of the descending CST. Caution is therefore required in the interpretation of TMS experiments 

and the comparability of these findings to the physiological control of movement.  

Non-invasive techniques can also be used to study the reticulospinal tract (RST). Although less 

widespread than those available for the CST, these techniques are increasingly being used to 

characterise this brainstem motor pathway in humans. For example, by combining startling 

auditory stimuli with a visually-guided reaching task, we propose to have modulated 

reticulospinal output. Furthermore, in line with the wealth of literature studying corticospinal 

plasticity, our results indicate that plastic effects can also be induced in the RST. In contrast to 

TMS, the sensory stimuli used in these experiments represent physiological activation of the 

motor system. However, they are unlikely to evoke a pure reticulospinal response and the 

extent of the involvement of other pathways is unknown.  

The selective excitation of descending pathways is only possible in animal models through the 

use of surgical techniques. For example, electrodes can be implanted into the pyramidal tract 

to give a pure excitation of the CST. Reticulospinal isolation is more complex since the medial 

longitudinal fasciculus, in which the RST descends, also contains vestibulospinal and 

tectospinal fibres. Nonetheless, compared to the non-invasive techniques available in humans, 

the surgical methods commonly used in animal experiments are significantly more selective 

and so are of great value when comparing corticospinal and reticulospinal function. We applied 

such techniques to study the relative contributions of these two pathways to strength training.  
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To date, the strength training literature has focussed almost exclusively on the CST. Although 

it is well established that strength training induces neural adaptations, it is perhaps surprising 

that so much emphasis has fallen on a pathway whose most characteristic feature is the control 

of fine, fractionated movement. In contrast, there is evidence to suggest a reticulospinal role in 

strength-induced adaptations. To compare the adaptations that occur in these two pathways 

with strength training, two macaques were trained to perform a weight lifting task and the 

output of each pathway periodically assessed through stimulation of electrodes chronically 

implanted into their axon bundles, as well as epidural stimulation of the cortex. In support of 

the literature, the results demonstrate a considerable cortical adaptation; however, no consistent 

changes were recorded from the CST. Crucially, an increase in reticulospinal excitability was 

evident.  

Having shown that the RST adapts during strength training, the next question to ask was 

whether neurons within the reticular formation code for force. Previous studies have shown 

that the firing rate of CM cells correlates with load for low force levels but can saturate at 

higher force levels (Cheney and Fetz, 1980; Maier et al., 1993). However, it is not known 

whether reticular cells show a similar relationship. To address this question and establish the 

relative contributions of the CST and RST to strength, we recorded from individual pyramidal 

tract neurons and reticular neurons whilst two macaques performed a weight lifting task with 

a range of loads, up to and including the equivalent of their bodyweight. Due to time 

constraints, the data collected in these experiments have not yet been analysed and are not 

presented in this thesis. Nonetheless, these recordings will provide unique insight into the 

neural mechanisms underlying strength.  

In summary, our understanding of the motor system and the relative contribution of the CST 

and RST has advanced considerably since the macaque lesion studies performed 50 years ago. 

However, the failure to translate these findings into clinically relevant outcomes for patients 

with motor deficits highlights the significant gaps in our knowledge. This may relate to the 

corticospinal-centric view that has dominated the field, as well as inter-species differences. 

Only by bridging the gap between human and animal studies, and considering the complex 

interplay between all elements of the motor systems, can we advance our clinical and scientific 

understanding of movement.    
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