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Abstract

The United Kingdom (UK) government intends to end the sale of new conventional petrol
and diesel cars by 2040, and Electric Vehicles (EVs) could emerge as the replacement. This
is likely to increase the load on electrical distribution networks, while uncontrolled EV
charging could increase load forecast uncertainty. Utilising sufficient Energy Storage System
(ESS) power to maintain the networks within their power flow and voltage limits without
needing to reinforce the network, while not over using the storage despite the uncertainty,
remains a challenge. Similarly, the EVs themselves have been suggested as a flexible load
however realising this flexibility also remains a challenge. This Thesis researches the ability
of ESSs and EVs to mitigate load and generation uncertainty within urban microgrids.

Initially, the technical and economic impacts of uncontrolled EV charging on distribution
networks is investigated by combining an extensive real world dataset of EV charging events
and domestic household load. It is found that distribution transformer power flow limits will
be the first operational limit to be breached when EV penetration reaches 40%. The resulting
reinforcement cost that Ofgem would allow Distribution Network Operators (DNOSs) to

recover from consumers is estimated at £60.81bn - £74.27bn up to 2040.

A methodology is then proposed to forecast future uncontrolled EV charging load based on
the ‘here and now’ load experienced on the network. In addition, a methodology is proposed
to aggregate a number of smart charging EVs to form a Virtual Energy Storage System
(VESS) able to deliver services to the distribution network with a high degree of
controllability (~99%), while also guaranteeing the energy required by the EVs for their
primary purpose of transportation. The VESS is combined with other forms of flexibility to
deliver an Enhanced Frequency Response (EFR) service where a fuzzy logic control

methodology is proposed to maximise power availability.

Finally, a Robust Optimisation (RO) formulation is developed that balances the trade-off
between the cost of protecting network operational limits from load and generation
uncertainty, against the cost of failing to protect network operational limits. RO requires a
linear representation of the power system, and the errors introduced through linearization via
sensitivity factors are calculated as up to 1.6% when there is no load and generation
uncertainty, and up to 4.0% when there is load and generation uncertainty.






Acknowledgement

I wish to thank my academic supervisors; Prof Phil Taylor, Prof Phil Blythe, Dr Haris Patsios
and Dr Neal Wade. The research presented in this Thesis would not have been possible
without their support, expertise, advice, harsh honesty, challenging debate and unwavering

faith in what could be possible.

I would like to thank the Engineering and Physical Sciences Research Council (EPSRC)
Siemens for the financial support that made the research possible.

I wish to thank my colleagues for their encouragement, support, interesting discussions and
sharing their expertise. In particular from industry | wish to thank Dr Vincent Thornley, Ola
Olabisi, lan Lloyd, Dr Padraig Lyons, Dale Geach and Steve Ingram, and in particular from
academia | wish to thank Dr Jialiang Yi, Dr David Greenwood, Dr Pete Davison, Dr Chris
Mullen, Dr Jonathan Powell, Dr Sara Walker, Myriam Neaimeh, Nikolas Spiliopoulos, llias
Sarantakos, Luke Burl and Laura Brown.

| would like to thank my PhD examiners; Dr Liana Cipcigan, Prof Elisabetta Cherchi and Dr
Paul Ezhichelvan, who provided a stimulating academic discussion during the oral
examination. Their suggested amendments have resulted in a much improved final version of
the Thesis.

The School of Engineering IT Team; lan Pitcher, Dr lan Clark, Carol Booth and Norbert
Wojciak, are thanked for their innovative thinking and the huge efforts made beyond the call
of duty to make possible the computing power required during the course of the research. At
one point, a total of 57 computers were assigned to the research from across the Newcastle

University campus accessible via remote login from a single machine.

Most importantly, 1 wish to thank my family for their continuous and unwavering love,
support and encouragement regardless of what challenges are put before me, or what course

of action I initially take.



Vi



List of publications

Journal papers

e A. M. Jenkins, C. Patsios, P. Taylor, O. Olabisi, N. Wade, P. Blythe, (2017),
“Creating virtual energy storage systems from aggregated smart charging electric
vehicles”, CIRED — Open Access Proceedings Journal, Volume 2017, Issue 1, p.
1664-1668. DOI: https://dx.doi.org/10.1049/0ap-cired.2017.0937

e M. Neaimeh, R. Wardle, A. M. Jenkins, J. Yi, G. Hill, P. Lyons, Y. Hibner, P.

Blythe, P. Taylor, (2015). “A probabilistic approach to combining smart meter and
electric vehicle charging data to investigate distribution network impacts”, Applied
Energy 157(0): 688-698. DOI: https://dx.doi.org/10.1016/j.apenergy.2015.01.144

Conference papers

e A. M. Jenkins, C. Patsios, P. Taylor, A. Khayrullina, V. Chirkin, “Optimising virtual
power plant response to grid service requests at Newcastle Science Central by
coordinating multiple flexible assets”, CIRED workshop 2016, Helsinki. DOI:
https://dx.doi.org/10.1049/cp.2016.0812

e A. M. Jenkins, J. Duncan and C. A. Lynch, "Impact of steam turbine valve closure on
a synchronous machine and its reverse power protection,” 12th IET International
Conference on Developments in Power System Protection (DPSP 2014), Copenhagen,
2014, pp. 1-6. DOI: https://dx.doi.org/10.1049/cp.2014.0075

e A. M. Jenkins, M. Scutariu and K. S. Smith, "Offshore wind farm inter-array cable
layout,” 2013 IEEE Powertech Conference, Grenoble, 2013, pp. 1-6. DOI:
https://dx.doi.org/10.1109/PTC.2013.6652477

vii


https://dx.doi.org/10.1049/oap-cired.2017.0937
https://dx.doi.org/10.1016/j.apenergy.2015.01.144
https://dx.doi.org/10.1049/cp.2016.0812
https://dx.doi.org/10.1049/cp.2014.0075
https://dx.doi.org/10.1109/PTC.2013.6652477

viii



Acronyms

Acronym Definition

A Amperes

AC Alternating current

ADMD After Diversity Maximum Demand

BAU Business As Usual

bn Billion

BoU Budget of Uncertainty

CESI The national Centre for Energy Systems Integration
CHP Combined Heat and Power

CIRED International Conference and Exhibition on Electricity Distribution
CLNR Customer Led Network Revolution

CO2 Carbon Dioxide

CycC Charge Your Car

DC Direct Current

°C Degrees Celsius

DNO Distribution Network Operator

DSO Distribution System Operator

DSR Demand Side Response

DUoS Distribution Use of System

EFR Enhanced Frequency Response

EHV Extra High Voltage (> 33 kV)



EMS

ENA

EOBoU

EOPoS

EPSRC

ESCos

ESS

EV

FFR

Ga2v

GB

GB

GW

HV

HVAC

IEEE

IET

km

kv

kVA

kw

Energy Management System

Energy Networks Association

Economically Optimal Budget of Uncertainty
Economically Optimal Probability of Success
Engineering and Physical Sciences Research Council
Energy Service Companies

Energy Storage System

Electric Vehicle

Firm Frequency Response

Grid-to-Vehicle

Great Britain

Giga Bytes

Giga Watts

High Voltage (0.4 kV > HV > 33 kV)
Heating, Ventilation, and Air Conditioning
Internal Combustion

Institute of Electrical and Electronic Engineers
Institute of Engineering and Technology
thousand

kilo-metres

kilo Volts

kilo Volt Amperes

kilo Watt



kWh

LCT

LP

LV

MCS

MEAV

MILP

mm

MVA

NP-hard

OLTC

ONS

ONSPD

OPF

PDF

PoS

PV

RAM

RO

RTTR

SoC

kilo Watt hours

Low Carbon Technologies

Linear Programming

Low Voltage (0.4 kV)

million

Monte Carlo Simulation

Modern Equivalent Asset Value
Mixed Integer Linear Programming
millimetres

Mega Volt Amperes
Non-deterministic Polynomial time hard
On-Load Tap Changers

Office for National Statistics
Office for National Statistics Postcode Directory
Optimal Power Flow

Probability Distribution Function
Probability of Success

photovoltaic

Random Access Memory

Robust Optimisation

Real Time Thermal Ratings
seconds

State of Charge

Xi



STOR Short Term Operating Reserve

TSO Transmission System Operator
TV Television

UCC Utility Controlled Charging

Ul Uncertainty Interval

UK United Kingdom

UMIST University of Manchester Institute of Science and Technology
USB Urban Sciences Building

V2G Vehicle-to-Grid

V2V Vehicle-to-Vehicle

VESS Virtual Energy Storage System
VolLL Value of Lost Load

VPP Virtual Power Plant

VSoC Virtual State of Charge

Q Ohms

xii



Symbol

Vunbalance

Creinforcement

G

H

ALy

Lt

Le+j

forecast
P; ;

Dityj

Nomenclature

Definition

Voltage unbalance

Allowable network reinforcement cost to the consumer
Growth in maximum demand

Historic cost of the network based upon the MEAV

Allowable ratio of capacity to be upgraded relative to the

growth in maximum demand

Allowable ratio of expected upgrade costs relative to the

historical network cost

Difference in uncontrolled EV charging load between

settlement period t and settlement period t+j.
Uncontrolled EV charging load at settlement period t

Uncontrolled EV charging load at j settlement periods

ahead of settlement period t
Number of settlement periods looking ahead

‘Here and now’ settlement period of the day

Expected uncontrolled EV charging aggregated load

range at t, looking forward by j

Difference between the longer term diurnal expected

uncontrolled charging load at settlement period t and

settlement period t+]

Short term forecast Ul of aggregated uncontrolled EV

charging load as a proportion of the diurnal Ul for a

forecast horizon of j settlement periods

Xiii

Unit

%

£m

MVA

£m/MVA

kW

kW

kW

Settlement periods

Settlement periods

kW

kW

%



diurnal
Wt+ Jj

Three times the standard deviation of the longer term

expected diurnal aggregated uncontrolled EV charging

load at settlement period t+]

The vector of coefficients for the cost function
The inverse of ¢

The array of decision variables or control variables
The matrix of constants for constraints

The right hand side vector of constraints

The matrix of coefficients for equality constraints
The right hand side vector of equality constraints
The lower limit of decision variables

The upper limit of decision variables

The maximum of the cost function

Control variable with fixed value of 1.0

Revised 4 matrix when it also includes the b, D, e, 1

and u vectors and matrices
The A matrix when its elements are subject to uncertainty

The nominal value of one element within the matrix A
The real value of a;;
The maximum variation of a;;

Robust optimisation control variable
Robust optimisation control variable

Robust optimisation control variable

Xiv

kW



Pap

Budget of uncertainty (Number of uncertain coefficients

that the constraints are protected against)

Power flow sensitivity factor between decision variable,

d, and branch (cable or transformer), b

Apparent power through the branch (cable or

transformer), b

Real power of the decision variable, d
Branch (cable or transformer) identifier
Decision variable identifier

Array of calibration values

Array of apparent power flow through each branch

(cable or transformer)
Inverse of the matrix of power flow sensitivity factors
Constraint derating value

Maximum variation of ¢ ;;,to0 model the maximum

uncertain variation of X within the constraints matrix

Maximum variation of x,

Network operating cost associated with the controllable

decision variable, d

Degradation cost associated with using the storage
Cost associated with replacing transformer, t

Cost associated with replacing cable, f

Value of energy

Number of transformers in the network

XV

kKVA/KW

KVA

kW

KVA

kKVA

KVA/KW
per unit

kKVA/KW

kW

£/kW

£/kW

£/kWh

Transformers



€at

Edf

Pr
%o
G
{2

Number of cables in the network

Loss of life sensitivity factor between transformer, t, and

controllable decision variable, d.

Loss of life sensitivity factor between cable, f, and

controllable decision variable, d.

Electrical losses sensitivity factor between transformer, t,

and controllable decision variable, d.

Electrical losses sensitivity factor between cable, f, and

controllable decision variable, d.

Life expectancy of cable, f

Loading of cable, f

Coefficient constant, —32.854
Coefficient constant, 2.2737 x 10713
Coefficient constant, 50.028

Time duration the constraint violation is experienced

XVi

Cables

% life/kW

% life/kW

KWh/kW

KWh/kW

years

per unit

hours



Table of contents

N o111 = Tod PSP OPURTRPRS ii
ACKNOWIBAGEMENT ...ttt v
LiSt OF PUDTICALIONS ... vii
F ol (0] 0]/ 1 TP UPT PR IX
NOMEBNCIALTUIE ...ttt e s et e e beentesae e teeneesreente e xiii
TaDIE OF CONTENTS ...t bbb bbbt nes XVii
Chapter 1 INrOAUCTION ........oiieiieee ettt st re et e eneesreas 1
1.1 BACKGIOUNG ..ot bbbttt 1
1.2 Future distribution network challenges and SOIULIONS.............cccceviiiiiiiii i 2
1.2.1 Challenges for future distribution NEIWOIKS..........ccccoveviiiiiic e 2
1.2.1.1 VOIAGE CONTIOL...c.eiiiiiiieeeee e 2

1.2.1.2  Power flow Management..........ccciiieiiieiie ettt sttt s 2

1.2.1.3 Load and generation forecast UNCErtaiNty ...........cccccveviiieeieseeie e 3

1.2.2 Potential solutions to future distribution network challenges ............cccoovvviiienciens 3
1.2.2.1  Microgrids & Virtual POWEr PIANTS .........ccooveiiiiiiiiiieeees e 4

O =T (0 |V (o] - Vo =T PSSR 4

1.2.2.3 Vehicle-to-grid and Smart Charging of Electric Vehicles ...........ccoocevvvivviviiiiiennnne. 4

1.2.2.4  Demand SIOE FESPONSE. ......cviuieiiriiitertestereeter ettt sttt b bbb e bbb b s 5

1.3 RESEAICH ODJECHIVES.....cuiiiiiii ittt s re et e s be e e sbeete e besre s 5
1.4  Contributions to knowledge, publications and awards ..............ccccevveeveiiiiieenese e 5
15 TRESIS OULIING ...eeueiieceie sttt e e st e entesteeaesteeneeseeaseentenre s 7
Chapter 2 LITErature FEVIEW ........coviiieiieecie sttt ettt ettt et et sae et e steebesneesre s 9
2 R 1011 € [1Tox o] OSSOSO SPSR 9
N |V, 1Tl oo [0 TSSOSO 10
221 Microgrid market frameWOrK..........c.ccuiiiiriiiieeeee s 10
2.2.2 Microgrid CONtrol NIEFArCRY ..o s 11
2.2.3 Determining power set-points of ESS under load and generation uncertainty ............. 12

2.3 EIBCHIC VENICIES ...ttt st 15
231 Electric VENICIE reqQUITEIMENTS..........ooiiiiiieeiee e 15
2.3.2 Electric vehicle impacts on the distribution Network ... 17
2.3.3 Realising flexibility from electric VEhICIes ...........ccoiiiiiii i 18

2.4 Chapter CONCIUSIONS ......c.oiiiitiiiite ittt bbbttt bbb 22
Chapter 3 Impact of uncontrolled electric vehicle charging on distribution networks ...... 25
3.1 10 (T [ o 4o o OSSR 25



3.2 Technical impacts of uncontrolled electric vehicle charging........cc.ccocvvoiiiiiiiiieniice 26

3.2.1 Calculation MethoOIOQY ......ccveiiiiiie e st sre s 26
3.2.1.1 Distribution network model and calculation method ............cccooeiviiiiiinneieneen, 27
3.2.1.2 Domestic load data pOPUIALION..........cviiiiiicee e 32
3.2.1.3  Future EV load data population ............ccceieieieiiiiiniineeeees e 32

3.2.2 RESUIES ...t bbb e s 33

3.3  Reinforcement costs to enable wide scale uncontrolled electric vehicle charging ............... 35

3.3.1 Charger and CUStOMEr CONNECLION COSES......c.veuveurriirieriinre ettt 37

3.3.2 Distribution network at 33 kV and below (TRANSFORM model).......c..cccecvvviiennee. 37

3.3.3 Distribution network at 33 kV and above (Ofgem model).......c.ccovvveeiiiiivcieeieee 40
3.3.3.1 Capacity by WhiCh t0 UPGrade............cooviiiieiieieieisiese e 41
3.3.3.2  COSt OF UPGIadES. ....cveveieeeieieieese sttt 42
3.3.3.3  AlOWADIE COSES ....vvveiiiiieeie ettt ettt 42
3.3.3.4  Results of the Ofgem mMOdel............cooiiiiiiiie e 43
3.3.3.5 Limitations of the Ofgem mOodel ...........ccccoiiiiiiiiiii e 44

3.34 TOLAI COSES ..ttt ettt bbbt e bbb ettt eneas 44

3.4  Forecasting uncontrolled electric vehicle charging load...........ccccooveiiiicii i, 45
341 Uncontrolled standard Charging ..........cocuoeveieieneieinisse s 46
3.4.2 Uncontrolled rapid Charging ..o s 53

3.5  Chapter conclusions and contributions to Knowledge..........ccccevviiiiiiiiicic s, 54

Chapter 4 Available flexibility of electric VEhICIES..........c.ccoveiveiiiiiieee e, 57

4.1 107 T [T 4T o OSSR 57

4.2  Aggregated power and energy flexibility from an electric vehicle fleet.............cccoeiines 58

4.3 Electric vehicle fleet energy management .........ccceoveiiiieiiic i s sre e 59

4.4  Case study: WOrk Dased Car Park.........ccoccoiiiiieriiis e 61
441 Characteristics of the work based car park ... 61
4.4.2 RESPONSE OF the WESS .....cviiieie e et st ee 64

45  Case study: VESS of EVs within a VPP delivering frequency response Services................ 67

45.1 Response required of the VPP to deliver an EFR SEIvice........cccccvvveiiiiiieve e 67

45.2 VPP description: Newcastle Science Central...........ccocvviiieieneneieeieescse e 68
4.5.2.1  ENEIQY SLOTAQE. ... eeeteeitieitie ittt ettt ettt ettt ettt sbe e et e s sb e st e b e e bt e sbeesbeeebbeenbeenree e 70
4522 Combined Heat ant POWEN .........cceiiiieriiiiiie et ste ettt nne e 70
4.5.2.3 Electric vehicle charging Station ............coceoeiiiiiiinine e 70
45.2.4 Building demand side Management ............ccceireieri e 70

45.3 VPP control to maximise aggregate power availability ............cccocoiiiiiiiie e 71

454 Ability of the VPP to deliver the EFR service using the developed control algorithm. 75

4.6  Chapter conclusions and contributions to KNOWIEdge...........cceceeieiieiinieniieniieee e 76

Xviii



Chapter 5  Risk based approach to voltage control and power flow management in urban

o1 £ | o PSSR 79
51 171 (T [T £ o OSSR 79
5.2 Urban microgrid UNAEr TSt ........cvoiiiiiiece st s re e 80

5.2.1 Electrical Network Parameters. ........coviiiieii i 82
L3020 I R €14 T I oo o o = ox 1 o] ST 82
LT A I - 11 (0] 4 1 £SO 82
52,13 CABIES .. 82

522 Large city centre office DUIIAING ... 83

523 LT 0 VS (] -0 TP PR PR 83

5.24 SOIAr PV gENEIALION ....c.vecvveiiie ettt st s te e be e e sresraebesre s 84

525 Electric VENICIE 1080.........ccoieieiiicece e 84

5.2.6 VAlIUE OF BNEIGY ...ttt 85

5.3  Linear programming fOrmulation............cccoviiiiiiiiic i 85

5.3.1 General form of linear programming .........cccooveiiiiiiie i 85

5.3.2 Uncertainty in the linear programming formulation .............ccocevevviiinininneneen 86

5.3.3 Transformation into robust OPtIMISALION............cceieiiiiiiiie e 87

5.34 Modelling the urban microgrid as an uncertain linear programming problem............. 88
5.3.4.1  DECISION VAADIES .....coviiiiiieieiees e 89
5.3.4.2  POWEr fIOW CONSITAINTS.......eeiiiiiiie sttt es 89
5.3.4.3  VOIAgE CONSIIAINTS.......civiiiieiiiteiie ettt ettt st s be e be s sreens 91
5.3.4.4 State of charge of energy storage and smart charging electric vehicles.................... 91
5.3.4.5 Optimisation 0bjective TUNCIION ............cooiiiiiiei e 92

5.35 Appropriate network state for lineariSation.............ccccoovviiiierenenee s 94

5.3.6 Potential for problem infeasibDility ... 97

5.4  Determining the long term average cost of network operation.............ccccoeveveeviciccncinennenn, 99
54.1 COSEMOAEI ...t re b nre s 99
5.4.2 Monte-carlo MOdelliNg.........ccooi i 100
5.5  Performance of robust optimisation under load and generation uncertainty ..................... 101
55.1 Investigating the accuracy of AC power system linearization with sensitivity factors.....
..................................................................................................................................... 102

55.2 Determining the economically optimal probability of success of remaining within
power flow and voltage limits when deciding ESS and VESS power set points under load and

0ENEIALION UNCEITAINTY .....tiieie ettt ettt ettt eeste e e seeete e e seeeneeneesreeneenee e 106

5.6  Chapter conclusions and contribution to KNOWIEAGE ..........ccceeeriiineieiciiirce e 114
Chapter 6 DISCUSSION ....cuviiiieiie ettt ettt a e et e et e e sas e e be e raeeteesneeenees 117
6.1 107 (T 11 o 4 o] o SR 117
6.2 Uncontrolled electric vehicle charging ... 117

Xix



6.3  Flexibility of electric vehicle Charging ..........ccocoeriieiiiiice s 118

6.4  Delivering freqUeNCY reSPONSE SEMVICES.......uciveiieiiriesieerieste e ste e e sre e e ste e sre e aneesreans 119
6.5  Linearisation of the POWET SYSIEM ......cciciiiicc et 120
Chapter 7 Conclusions and fUtUre WOIK ............cccooeiiiiiiicie e 123
0 A @ -] VT PSS 123
7.2 Conclusions and contributions to KNOWIEAQE ........c.ccvvveieiiiie i 123
7.3 Areas of potential fUtUre reSEArCh .........ccoviveii i e 125
Appendix A Images of PSCAD model used in Chapter 3 ... 127
Appendix B Frequency domain IPSA2 results associated with the PSCAD analysis presented in
L@ =T o (] 0 USROS 131
Appendix C MATLAB Simulink model of Newcastle Science Central and associated control for
SECHION 4.5 e e 133
R EIENICES ...ttt bbbt bbb bR r e 137

XX



Table of figures

FIQUIE 1-1 TRESIS OVEIVIEW ...eouiiiiieiiieiieeie ettt s ta e ste et e e naesnaesneeneesraenneans 8
Figure 2-1 How Chapter 2 fits into the Wider TheSIS..........ccooiiiiiiiiiiicee e 9
Figure 2-2 Respondent acceptance of guaranteed minimum charge assuming a pure EV with
240 km range. Early mainstream consumers only, m =530 [71].....ccccccvveiiiieniiereeeseenen, 16
Figure 3-1 How Chapter 3 fits into the wider ThesSiS........ccccvviveiiiieiieie e 26
Figure 3-2 Overview of calculation methodology ..o 27
Figure 3-3 UK Generic distribution network model..............cooooiiiiiiicce, 28
Figure 3-4 UK Generic distribution network modelled in PSCAD ........ccccccoveviiieiievieeee 29
Figure 3-5 MCS sampling methodology to create load profiles for the PSCAD model ......... 31
Figure 3-6 Maximum transformer loading magnitude observed for each EV penetration
AUIING A1 STUGIES ... bbbt bbb 34
Figure 3-7 Minimum voltage magnitude observed for each EV penetration during all studies
.................................................................................................................................................. 35
Figure 3-8 Maximum voltage unbalance observed for each EV penetration during all the

] (00 |- PR SUUSPRSPI 35
Figure 3-9 Stages of cost estimation for EV uptake ............ccccoveviiieiievi e 36
Figure 3-10 Maximum demand in BAU scenario from 2016 t0 2040............cccccvevveivvevirennenne. 39
Figure 3-11 Cumulative BAU gross Totex and cumulative cars and vans stock from 2016 to
2040, h et et et be et et h e b et e b e b e et et eaeebe b et re et et eneerens 39
Figure 3-12 Cumulative gross Totex for BAU and incremental scenarios............c.ccccevvevnenne. 40

Figure 3-13 Methodology to calculate the aggregated EV standard charging load uncertainty

Figure 3-14 Mean load and 3x standard deviation of 750 EVs standard charging per weekday,
using the arrival time and SOC StatiSticS IN [21] ...ccvveviveiiieiieiieeee e 48
Figure 3-15 Load Ul of 750 EVs standard charging per weekday, using the arrival time and
SOC SEALISTICS 1N [21] .ottt bbbt 48
Figure 3-16 Proportion of the diurnal UI that can be reduced based on the existing ‘here and
now’ known EV standard charging load and the forecasting horizon looking forward........... 50
Figure 3-17 Cone of increasing uncertainty looking forward from settlement period 0,

assuming the ‘here and now’ load is the mid-point of the diurnal expected range ................. 51

XXi



Figure 3-18 Derived short term forecast looking forward from settlement period 0 and the
maximum and minimum experienced load relative to the ‘here and now’ load during all 1000
days of the monte-carlo SIMUIALION...........ccoiiiiiie e 52
Figure 3-19 Derived short term forecast looking forward from settlement period 30 and the
maximum and minimum experience load relative to the ‘here and now’ load during all 1000
days of the monte-carlo SIMUIALION.............coveiiiie i e 52

Figure 3-20 Load Ul of 100 EVs rapid charging per day, using the arrival time and duration

SEALISTICS 1N [128] ...t bbbttt 53
Figure 3-21 Proportion of the diurnal UI that can be reduced based on the existing ‘here and
now’ known EV rapid charging load and the forecasting horizon looking forward ............... 54
Figure 4-1 How Chapter 4 fits into the Wider THeSIS..........cocvviiiriiiiiiie e 58
Figure 4-2 Algorithm deciding individual EV power eXChange...........cccoceveriiininiinnieinenn. 60
Figure 4-3 Maximum aggregate power demand percentiles of the VESS on the grid ............ 62
Figure 4-4 Minimum aggregate power demand (or maximum power supply) percentiles of the
VESS 0N TNE GEI ...t b bbbt 62
Figure 4-5 Maximum aggregate energy demand percentiles of the VESS on the grid ........... 63
Figure 4-6 Minimum aggregate energy demand (or maximum power supply) percentiles of
the VESS ONthe gFid......coieieieice ettt et be e anaenne s 64
Figure 4-7 Grid power decision, Profile A: Low constant 10ad............cccccoveniienincinniieienn, 64

Figure 4-8 Grid power decision, Profile B: High variability load reaching both power and

ENEIJY DOUNGS ...ttt ettt e et e sae e aeese e st e e beenbesaeesreeseesreeee e 65
Figure 4-9 Resulting power percentiles delivered to the grid, Profile A: Low constant load .65
Figure 4-10 Resulting power percentiles delivered to the grid, Profile B: High variability load
reaching both power and energy DOUNTS ...........cccooiiiiiiiiiei s 66

Figure 4-11 Uncontrolled charging demand percentiles at the end of the day resulting from no

energy delivered throughout the day............ccociiieii e 67
Figure 4-12 Service requirements for EFR (as 0f 2016) [133] ......ccccovreieneneneneniseseeiees 68
Figure 4-13 Proposed electrical distribution of phase 1 of Science Central, Newcastle, UK .68
Figure 4-14 MATLAB Simulink heat model............ccccooiiiiiiii e 71
Figure 4-15 Block diagram of the scalable fuzzy logic based control............c..cccceeveeiiennnne, 73
Figure 4-16 Fuzzy logic 4-dimendisonal control surface displayed as three 3-dimensional

control surfaces; A, B, C (all aXeS PEr UNIt)........ccceivereiiriieie e 74
Figure 4-17 Aggregate load of the VPPs flexible assets and their VSoC............cccccceevveinnn, 75
Figure 4-18 VSoC of assets delivering the service without coordination ...............ccccccveennene. 76

XXii



Figure 5-1 How Chapter 5 fits into the wider TheSiS........ccccccvviveiiiieviieiece e 79

Figure 5-2 Urban microgrid under analySiS ........ccovivieiieriiieieeie e 81
Figure 5-3 Non-linearity of ESS COSt FUNCLION ........ccoooviiiiiiiiiiiieecece e 93
Figure 5-4 Iterative method used to determine network operating state ............c.ccocveeveiveiennn. 96

Figure 5-5 Ensuring a high probability of the solver returning a feasible solution to a feasible
[010] ] 1= o S 98
Figure 5-6 Maximum error and simulation time as the number of days simulated increases,
for a confidence INterval OF 9090..........ooviiiiii i 101
Figure 5-7 Relationship between probability of success and derating value for the power flow
constraint of the large office building feeder............coevieii e 104

Figure 5-8 Relationship between PoS and derating value for the voltage constraint of the

large Office DUITAING ..o 104
Figure 5-9 Relationship between PoS and derating value for the power flow constraint of the

VESS and SOIar PV fEEAEK .......cveieieie et 105
Figure 5-10 Relationship between PoS and derating value for the power flow constraint of the
11/0.4 KV TraNSTOMMIET ...ttt sttt et sneesre e e ereesbeenteaneenre s 105
Figure 5-11 Relationship between PoS and derating value for all the constraints ................ 106

Figure 5-12 Relationship between BoU and PoS for all the constraints when using 30-minute-
LT T I (0] =T ] £ SRT SRR 107
Figure 5-13 Relationship between BoU and total operational cost all the constraints when
using 30-Minute-ahead fOrECASES.........ccviiiiicie et 107
Figure 5-14 Relationship between PoS and total operational cost for all the constraints when
using 30-minute-ahead and day-ahead fOreCasts ..........cccovreririiiniiece e 108
Figure 5-15 Relationship between PoS and total operational cost for the power flow
constraint of the large office building feeder when using 30-minute-ahead and day-ahead

(0] £=T0ro ] £SO P SRR PPPTRTO 109
Figure 5-16 Relationship between PoS and total operational cost for the voltage constraint of
the large office building when using 30-minute-ahead and day-ahead forecasts................... 109
Figure 5-17 Relationship between PoS and total operational cost for the power flow
constraint of the VESS and solar PV feeder when using 30-minute-ahead and day-ahead

(0] €= £ S 110
Figure 5-18 Relationship between PoS and total operational cost for the power flow

constraint of the 11/0.4 kV transformer when using 30-minute-ahead and day-ahead forecasts



XXV



List of tables

Table 1-1 Electric vehicle charge points [22] .......ccccvoieiiiiiiie e 3
Table 3-1 Summary of LV network and population parameters ...........ccccocevverervnenneiecnnenen, 30
Table 3-2 Uptake scenario of EV cars and vans defined by industrial partners in 2016......... 36
Table 3-3 Charger capital and installation cost eStIMate ............ccccvveviierieiieerieeic e 37
Table 3-4 SErviCe COSt ESTIMALE ........ccueiiiiiiiieieeee e 37
Table 3-5 Summary of gross and discounted Totex between 2020 and 2040 ..........ccccceeuenee. 40
Table 3-6 Results from the Ofgem cost model, estimating total network upgrade costs up to

20301ttt r Rt R R £ e Rt Ee Rt e R e Re b e Rt R e b e b e Rt e bR et e Re et re e ere s 43
Table 3-7 Results from the Ofgem cost model, estimating total network upgrade costs up to

2040, ettt h et et e et et bR e b et et b e et et eReebe st et renre et eneerens 43

Table 3-8 All estimated costs associated with EV uptake for 2030, present value, including
INAITECT COSES .ttt sttt ettt bbbt be e bt e st et e b ebe s beebe st e e b e eneaneeneas 45

Table 3-9 All estimated costs associated with EV uptake for 2040, present value, including

1T LT =T A o011 TSR 45
Table 4-1 Summary of flexible asset characteristics on Science Central .............cccccvevviinnen. 69
Table 5-1 Transformer parameters in urban microgrid model..............cccoooiiiiiiiccicccce, 82
Table 5-2 Cable types in urban microgrid model ............c.ccoooviiiiici e, 83
Table 5-3 Cable PAramMELEIS .....c.cciieee e 83
Table 5-4: Network parameters used to isolate each constraint ............ccccceevvivereicernenenne 102
Table 5-5 Summary of derating required to achieve 100% POS...........cccccevveiiveieiieieeee 104

Table 5-6 Summary of average daily network operating cost and EOPoS for using a risk
based approach and a traditional worst case approach, using 30-min-ahead forecasts ......... 111
Table 5-7 Summary of average daily network operating cost and EOPoS for using a risk
based approach and a traditional worst case approach, using day-ahead forecasts............... 111

Table 5-8 Range of VoLL to the customer and wider economy [155].......ccccccvvvviiieiirinnnnn, 113

XXV



XXVi



Chapter 1 Introduction

1.1 Background

There is a global desire to reduce greenhouse gas emissions from human activity to lower the
risks and impacts of climate change. The Paris Agreement sets out the responsibilities of each
nation state in order for global average temperatures to remain below 2°C above pre-industrial
levels [1]. Greenhouse gas emissions from within the United Kingdom (UK) are dominated
(81%) by carbon dioxide (CO.) [2] and the country has a target of reducing carbon emissions
to 80% of 1990 levels by 2050 [3]. In 2015, 24% of UK CO, emissions came from
transportation [2] however the UK government intends to end the sale of new conventional
petrol and diesel cars by 2040 [4]. Electric Vehicles (EVs), which typically have emissions
approximately 50% of an Internal Combustion (IC) vehicle when considering all energy
conversion processes from oil-well to wheel [5], may replace IC and shift the transportation
emissions onto the power system which itself represented 29% of all UK emissions in 2015
[2]. In preparation for this shift the UK government has passed the Automated and Electric
Vehicles Act 2018, giving the Department for Transport powers to create regulations
surrounding the compatibility, availability and technical requirements of EV charging [6].

To achieve the UK’s carbon reduction targets, the carbon intensity of electricity needs to be
below 50 gCO2/kWh by 2030 [7]. Achieving a low carbon solution is not the only
consideration however. Energy must also be delivered economically with a high security of
supply, leading to the idea of the energy trilemma [8]. Achieving any two elements of the

trilemma is not difficult, however ignoring any one element of the trilemma is unsustainable

[8].

Inspection of the range of carbon intensity and associated levelised cost of energy for a
number of generating technologies [9] suggests that a significant proportion of the future low
carbon generation mix is to come from technologies that are intermittent by nature and
connected to the distribution network. Traditionally, generation has been centralised and
connected at higher voltages. One technology likely to be connected to urban distribution
networks, where 81.5% of the English and Welsh population resides according to the UK
2011 census [10], is solar Photovoltaic (PV) which has experienced significant growth in

recent years [11].



1.2 Future distribution network challenges and solutions
The challenges for future distribution networks to achieve the required power system
decarbonisation are introduced in Section 1.2.1. The technologies that are seen as potential

solutions to these challenges are introduced in Section 1.2.2.

1.2.1 Challenges for future distribution networks
The challenges associated with voltage control, power flow management, and the uncertainty
surrounding load and generation forecasts within future distribution networks are introduced

in Section 1.2.1.1, Section 1.2.1.2 and Section 1.2.1.3 respectively.

1.2.1.1 Voltage control

In the UK, the voltage in all locations within the network must remain within +10% and -6%
of nominal for Low Voltage (LV) networks, and +6% for voltages between 1 kV and 132 kV
[12]. The voltage varies within the network dependent upon the load, or generation, and the
network impedance. It has been estimated that when around 30% of houses in urban networks
have a 2 kW solar array installed, the distribution network will experience unacceptable
voltage rise and require network reinforcement [13]. The traditional approach to maintaining
voltages within the limits is through network reinforcement to change the impedance, or to
utilise locally controlled On-Load Tap Changers (OLTC) at primary substations. The
reinforcement approach requires a high capital expenditure, while the OLTC approach applies
the voltage to all feeders supplied by the primary substation. It is possible in future scenarios
that one feeder might be heavily loaded with a cluster of EVs resulting in an under voltage,
while another feeder is supplied by a cluster of solar PV resulting in an over voltage, thus the
OLTC is unable to solve both voltage limit excursions concurrently. A smart solution to this
scenario is utilising an Energy Storage System (ESS) [14], which also has significant cost

associated with it.

1.2.1.2 Power flow management

Components in the power system, such as transformers and cables, all have a thermal rating.
If the current passing through the component exceeds the rating, there is risk of overheating
and reducing the life of the component [15]. It has been estimated that when EV deployment
reaches 15%, rural distribution networks will experience thermal overloads and need
reinforcing. Urban networks will need reinforcing when EV deployment reaches 60% [16].
The traditional approach to alleviate power flow overload is to reinforce the network,

requiring significant capital expenditure. A smart solution utilising an ESS could also be



implemented such as limiting the power flow through a network component to its Real Time
Thermal Rating (RTTR) [17], with an associated cost.

1.2.1.3 Load and generation forecast uncertainty

There is significant uncertainty in the load of individual houses on a domestic level that
becomes increasingly predictable with increasing numbers of properties considered together
due to their diversity [18]. Traditionally, the distribution network has been designed to the
worst case extremes of operation, and thermal generation plants follow the load at
transmission level with good forecasts available. In comparison, distributed renewable
generation can be connected at distribution level with its output uncertain with the uncertainty
of weather forecasts [19, 20]. Similarly, there is significant uncertainty over the arrival and
departure times [21] and the initial State of Charge (SoC) [16] of individual EVs and their
resulting load on the distribution network. This load is dependent on the rating of the EV
charge point, summarised in Table 1-1, which is significant when compared to the existing
UK domestic After Diversity Maximum Demand (ADMD) of 1.57 kW (for 100 customers)
[18].

Table 1-1 Electric vehicle charge points [22]

Charger Power rating
Standard  Up to 3 KW
Fast 7-22 kW

Rapid AC 43 kW
Rapid DC  Up to 50 kW

Any smart solution responding to the needs of the network must appropriately take into
account the load and generation uncertainty to ensure the robustness of the network with
respect to its operational limits.

1.2.2 Potential solutions to future distribution network challenges

A number of technologies have been suggested as potential solutions to future distribution
network challenges. These include microgrids and Virtual Power Plants (VPPs) introduced in
Section 1.2.2.1, ESS introduced in Section 1.2.2.2, smart charging EVs introduced in Section
1.2.2.3 and Demand Side Response (DSR) introduced in Section 1.2.2.4. This Thesis builds
on these technologies to provide economically effective voltage control and power flow



management through utilising ESS and smart charging EVs when the distribution network is

operated as a microgrid and subjected to load and generation uncertainty.

1.2.2.1 Microgrids & Virtual Power Plants

A microgrid consists of a combination of electrical or heat generation and load controlled in a
single system [23]. To enable some flexibility in operational control to ensure the network
remains within its operational limits despite the generation and load uncertainty, a form of

ESS is often included in a modern microgrid [24].

A VPP is similar to a microgrid, however there are some key differences [25]:
e Microgrids can be grid-connected, or islanded, or able to disconnect and reconnect as
required. VPPs however are always grid tied.
e Microgrids normally include some kind of storage. In VPPs, storage is possible but
not always required.
e Microgrids encompass resources within a limited geographical area. VPPs can
coordinate multiple resources over larger geographical areas.

1.2.2.2 Energy storage
An ESS can act as both a load and a generator in a controllable manner. It is a time limited
resource dependent upon its SoC and thus must be controlled carefully to ensure it is available

when required by the distribution network.

There are two main components to an ESS; an energy storage medium and a power interface

between the storage and the grid.

There are numerous storage technologies, including vanadium redox flow batteries, super-
capacitors, lead acid batteries, sodium-ion batteries, sodium-sulphur batteries, pumped hydro
storage, lithium-ion, compressed air storage, thermal storage, nickel based, flywheels, and
hybrid systems. Each technology has different characteristics such as cost, power and energy
density, round-trip efficiency, self-discharge rate, response time and lifetime making them
suitable, or unsuitable, for a particular application. In a distribution network, an ESS can
support location critical services such as power-flow management and voltage control [14,
17].

1.2.2.3 Vehicle-to-grid and Smart Charging of Electric Vehicles
EVs are typically parked around 96% of the time and could provide a valuable secondary
function as a responsive charging load [26]. Further support to the grid can also be provided

by exporting power from the battery of the vehicles to the grid [27]. Similarly to ESS, this is a
4



time limited resource requiring careful control, and sufficient energy also needs to be in the

vehicle for its primary purpose of travel at the time of departure.

1.2.2.4 Demand side response

Customers can be encouraged to change their load pattern and reduce demand when needed
by the distribution network. Such requests are Demand Side Response (DSR) calls, and one
trial showed that nine out of 13 calls were successfully delivered by the customer [28].
Industrial and commercial loads with DSR potential include Heating, Ventilation, and Air
Conditioning (HVAC), hot water, refrigeration, lighting, and water pumping. Domestic loads
with DSR potential include electric resistive storage heating, heat pumps, wet appliances, and

cold appliances [29].

1.3 Research objectives
Urban microgrids with high penetrations of EVs and subjected to load and generation
uncertainty is researched. The main objectives of the Thesis are:
e To quantify the likely technical and economic impacts of wide scale uncontrolled EV
charging within distribution networks.
e To develop a methodology to forecast aggregated uncontrolled EV charging load on
distribution networks and the uncertainty surrounding the forecast.
e To investigate the available flexibility to control EV charging load.
e To develop methods to balance the risk of failing to protect microgrids operating
under load and generation uncertainty from exceeding power flow and voltage limits,
against the cost of over protection through over use of ESS and the flexibility of smart

charging EVs.

1.4 Contributions to knowledge, publications and awards
The main contributions to knowledge are summarised as follows:

e A comprehensive study is undertaken to quantify the percentage uptake of EVs that is
likely to cause distribution networks to exceed transformer power flow, under voltage
and voltage unbalance limits. This is the first such study to utilise real EV charging
load data rather than statistical distributions or assume that EVs would be utilised in a
similar way to existing IC vehicles.

e A study, taking into account the networks of all Distribution Network Operators
(DNO:s), is undertaken to estimate the expected network reinforcement cost that DNOs

could expect to recover from consumers under a high EV uptake scenario.



A methodology is developed to forecast future uncontrolled EV charging load and the
uncertainty surrounding that forecast, based on the ‘here and now’ uncontrolled EV
charging load experienced on the network.

A methodology is developed for smart charging EVs to appear to the grid in aggregate
like traditional ESS with a high degree of controllability while ensuring the energy
needed on departure for transportation, thus allowing EVs to be integrated into storage
scheduling and control algorithms.

A methodology using fuzzy logic is developed to combine any number of flexible
loads and through effective energy management coordination to maximise total power
availability to deliver an Enhanced Frequency Response (EFR) service to the
macrogrid.

Using a Robust Optimisation (RO) technique and the Budget of Uncertainty (BoU) to
control the conservatism of ESS power set-points against load and generation
uncertainty, a methodology is developed to balance the risk of failing to protect
microgrids from exceeding power flow and voltage limits, against the cost of over

protection.

A number of journal and international conference papers have been published as a result of

the work in this Thesis, and are listed below:

A. M. Jenkins, C. Patsios, P. Taylor, O. Olabisi, N. Wade, P. Blythe, (2017),
“Creating virtual energy storage systems from aggregated smart charging electric
vehicles”, CIRED — Open Access Proceedings Journal, Volume 2017, Issue 1, p.
1664-1668. DOI: https://dx.doi.org/10.1049/0ap-cired.2017.0937

A. M. Jenkins, C. Patsios, P. Taylor, A. Khayrullina, V. Chirkin, “Optimising virtual
power plant response to grid service requests at Newcastle Science Central by
coordinating multiple flexible assets”, CIRED workshop 2016, Helsinki. DOI:
https://dx.doi.org/10.1049/cp.2016.0812

M. Neaimeh, R. Wardle, A. M. Jenkins, J. Yi, G. Hill, P. Lyons, Y. Hibner, P.

Blythe, P. Taylor, (2015). “A probabilistic approach to combining smart meter and
electric vehicle charging data to investigate distribution network impacts”, Applied

Energy 157(0): 688-698. DOI: https://dx.doi.org/10.1016/].apenergy.2015.01.144



https://dx.doi.org/10.1049/oap-cired.2017.0937
https://dx.doi.org/10.1049/cp.2016.0812
https://dx.doi.org/10.1016/j.apenergy.2015.01.144

A number of oral presentations have been made about the work presented in this Thesis, some
of which are available to watch online, as listed below:
e A.M. Jenkins, D. Greenwood, “Preparing the GB distribution system for the mass
uptake of electric vehicles”, Institution of Mechanical Engineers, 11 October 2017
e P. Agese, R. Fowler, V. Oldenbroek, A. M. Jenkins, 1. Muller, “NEETS: What is
Vehicle-to-Grid (V2G) and why should we care?”, NEETS live webinar 26 July 2017.
Available to watch on YouTube online:
https://www.youtube.com/watch?v=t3mvOkHb2Ns&t=3374s

e A. M. Jenkins, “Creating virtual energy storage systems from aggregated smart
charging electric vehicles”, CIRED conference 13 June 2017, Glasgow. Available to
watch on IET TV online: https://tv.theiet.org/?videoid=10399

A number of academic awards have been made during the study period, as listed below:

e First place for ‘Best Presentation’ in the Electrical Power research group at the
Newcastle University School of Electrical and Electronic Engineering Annual
Research Conference 2017.

e First place for ‘Best Paper’ in the Electrical Power research group at the Newcastle
University School of Electrical and Electronic Engineering Annual Research
Conference 2016.

1.5 Thesis outline

The Thesis outline is summarised in Figure 1-1, and structured as follows:
Chapter 1 — This chapter.

Chapter 2 — Literature review to identify the specific areas where a contribution to

knowledge can be achieved and inform the research direction.

Chapter 3 — An investigation into uncontrolled EV charging. First the technical impacts are
investigated, followed by estimating the economic cost to upgrade the domestic distribution
networks if uncontrolled charging becomes the norm. Finally, an uncontrolled EV charging

load forecasting methodology is developed.

Chapter 4 — A methodology is developed for smart charging EVs to appear to the grid in
aggregate like more traditional ESSs, allowing EVs to be integrated into storage scheduling
and control algorithms. The methodology is then used within a microgrid alongside other

forms of flexibility and storage to deliver an Enhanced Frequency Response (EFR) service. A


https://www.youtube.com/watch?v=t3mvOkHb2Ns&t=3374s
https://tv.theiet.org/?videoid=10399

fuzzy control algorithm is developed to maximise power availability through intelligent

energy management.

Chapter 5 — A Robust Optimisation (RO) formulation is developed and used to balance the
trade-off between the cost of protecting network operational limits from load and generation
uncertainty, and the cost of failing to protect network operational limits. The algorithm
requires a linear approximation to the non-linear power system equations, and the errors
associated with linearization are quantified under both certain and uncertain load and

generation scenarios.
Chapter 6 — A discussion of the ideas and results presented in this Thesis.

Chapter 7 — Conclusions and potential future research.
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Chapter 2 Literature review

2.1 Introduction

This Chapter presents a review of relevant literature to identify the specific areas where a
contribution to knowledge can be achieved and informs the research direction for later
Chapters. Chapter 3 presents research regarding the impact of uncontrolled EV charging on
distribution networks, Chapter 4 presents a methodology to aggregate smart charging EVs
into a Virtual Energy Storage System (VESS), and Chapter 5 presents a risk based approach
to voltage control and power flow management in urban microgrids. The literature associated
with microgrids is presented in Section 2.2 and the literature associated with EVs is presented
in Section 2.3. The flow of models and knowledge between Chapters is summarised in Figure
2-1.
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2.2 Microgrids

The commercial market framework of microgrids is reviewed in Section 2.2.1 in order to give
context for technological reviews. Section 2.2.2 reviews the different types of microgrid
control that could be researched and how they interact with one another, before focusing on
determining ESS power exchange with the network under load and generation uncertainty in
Section 2.2.3.

2.2.1 Microgrid market framework

A review of microgrid demonstrators is included in [30]. All examples were either built by
academic institutions demonstrating the technology, or developed when specific Low Carbon
Technology (LCT) integration issues were encountered that could be solved through the
deployment of a microgrid. In the UK, the majority of microgrids to date are owned and
operated independent from a Distribution Network Operator (DNO) and there is a risk that the
wide scale deployment of such microgrid systems could result in the duplication of the
existing networks [31]. The existing network is a natural monopoly because it exhibits such
strong economies of scale making it uneconomical to have active competition between
numerous smaller networks [32]. Historically the winners of competing technologies are not
necessarily the technologically superior, but the ones that are the more responsive to market
conditions and requirements [33]. Therefore for the largescale deployment in the UK,
microgrids must be retrofitted into existing networks by introducing microgrid control
systems that operate within the existing market frameworks.

The UK electricity market is separated into four licensed areas; Generators, Transmission
System Operator (TSO), DNOs, and Suppliers [34]. The suppliers sell energy on behalf of
generators to customers. Use of system charges are paid by suppliers on behalf of customers,
and by generators, for the use of networks. Suppliers and DNOs are not allowed to be the
same entity [34], making it difficult for DNOs to utilise flexible loads and generators to
facilitate the development of microgrids without procuring services from or through other
entities. Despite this, any and all actors could be the commercial benefactors of microgrids
[35].

It has been suggested by [35] that to achieve load flexibility the industry needs to move from
being supplier-centric to being consumer-centric, in a similar way to mainframe computers
becoming laptops, and conventional telephones became smart phones. However, only large
consumers can influence the market giving rise to the need of aggregators to combine the

services delivered by many small individual consumers to gain sufficient scale within the
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market [36]. Similarly, Energy Service Companies (ESCos) sell energy services such as a
warm home or illumination [37] and could develop to deliver this service while flexing their
demand as procured by a DNO. To enable the power and energy load (or generation)
flexibility, there needs to be high technological and social change, and thus it is expected that

new innovative business models will emerge and develop [38].

On the generation side there have been some moves toward constrained connection offers in
order to negate the need for network reinforcement. For one DNO the reduced cost of
connection offers (and reinforcement) through constrained connections was £38m, or £32m
when including the cost of the control system and generation curtailment [39]. Across the
industry, smart technologies have been estimated to reduce the future required investment in
distribution networks by 2050 from £46bn to £23bn-£27bn [40]. It is suggested in [41] that a
trusted intermediary between DNO and generator is required to help facilitate constrained
connections due to the commercial sensitivities involved. Commercially, the generator will
maximise energy delivery up until the point where the marginal cost of energy equals the
price offered by the DNO to curtail output [42].

Based on the literature reviewed, the author envisages that microgrids will be implemented in
existing networks by DNOs transitioning into Distributed System Operators (DSOs) and
procure services from third parties (generators, aggregators, ESCos, ESS providers amongst
others) for a contracted fee. The DSO would procure these services in the most economical
way for themselves while ensuring power flows and voltages remain within limits such that
reinforcement is not required. The loads and generators would see a commercial benefit
through the difference between what the DSO pays for a particular service, and what it costs
that entity to provide the service. This view is supported by the UK government energy
system flexibility plan published in July 2017, which stated that Ofgem will “ensure that
network operators cannot directly operate storage” because “if a network company owns or
operates storage it could impede the development of a competitive market for storage and
flexibility services” [43]. It is this market framework that is assumed throughout this Thesis.
It must be noted however that there is uncertainty regarding what market framework will

develop for DSOs to operate within.

2.2.2 Microgrid control hierarchy
There are three main control levels associated with the power export or import of flexible

assets within microgrids; primary, secondary and tertiary control [44]:
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e Primary control — This provides the fastest response and is implemented locally. It
takes the power set-points provided by the Secondary control and ensures that each
asset reaches its required operating state.

e Secondary control — This controls the microgrid assets to ensure reliable and
economical operation by determining the optimal unit commitment and dispatch of the
flexible loads and generators. It is often referred to as the Energy Management System
(EMS).

e Tertiary control — This controls the upstream interactions with the microgrid in

question, scheduling and coordinating the interaction of multiple microgrids.

Microgrid secondary control is chosen to be the subject of this Thesis because of the
challenges associated with load and generation uncertainty, and the time limited nature of the
power and energy flexibility solutions available within urban microgrids. These challenges
and solutions were discussed further in Section 1.2.

Secondary control can be implemented as a centralised or decentralised system, or a
combination of the two [44]. The centralised approach allows all relevant information to be
utilised to develop an optimised solution, but can require re-configuring when alterations are
made to the network. In contrast, the decentralised system is much more amenable to plug-
and-play, but can have difficulty in operating microgrids that require high levels of
coordination. The decentralised system typically consists of some central control guiding
local controllers [44]. This Thesis focuses predominantly on centralised systems due to
considering future scenarios of high penetrations of EVs and the potential need for high levels
of coordination to remain within distribution network operational limits for power flow
(within thermal limits of cables and transformers) and voltage (LV: between -6% and +10%
of nominal, 1 kV to 132 kV: £6% of nominal).

2.2.3 Determining power set-points of ESS under load and generation uncertainty

A review of microgrid and VPP scheduling literature is given in [25]. In general the objective
of the formulations is to minimise cost, or maximise profit, subject to various constraints.
Linear Programming (LP) (after problem linearization) is advocated due to its simplicity and
speed of calculation. The review, amongst other conclusions, found that greater emphasis has
to date been placed on deterministic formulations that are not subject to uncertainty, rather

than stochastic formulations that take into account the variability of the real world.

Scheduling procured power services from flexible load and generation to prevent power flows

and voltages from exceeding limits when using a DC representation to approximate the AC
12



network is considered a Mixed Integer Linear Programming (MILP) problem. This is
classified as NP-hard, and consequently there can be computational challenges [45]. The state
of the network is based on the forecasted status of constituent components such as renewable
generators and EVs which are subject to uncertainty. One way of considering the load
uncertainty during the optimisation is to undertake a Monte Carlo Simulation (MCS) based on
Probability Distribution Functions (PDFs). In a MCS [46], the PDFs are sampled to develop a
representative scenario of the uncertain problem which can then be evaluated. Through
evaluating a sufficiently large number of representative scenarios, a probabilistic
understanding can be obtained of the complex interactions between the uncertain load and
generation and its non-linear impact on power flows and voltages within distribution
networks. The greater the number of representative scenarios modelled, the more accurate the
MCS becomes however so does the computational challenge. Even after introduction of
scenario reduction techniques, the consideration of load uncertainty increases the
computational challenge relative to not considering uncertainty [47]. It is noted in [48] that
the computational challenge increases with the number of time steps considered during the
optimisation. There is sometimes a trade-off between solution quality and computational time
[45]. In [49] and [50] the compromise for including uncertainty in the formulation was
achieved by not considering the power flows and voltages relative to their respective limits. A
multi-objective formulation to minimise operational cost and maximise the minimum reserve
under load uncertainty in a day ahead context was modelled in [51] to find the pareto front
however 42 computer cores were required in order to execute the model within 30 minutes.
The model consisted of a 180-bus distribution network with 90-load points over 24-time
steps, and considered 116 diesel generation units, 7 ESSs and 1000 EVs. In [52], the authors
undertook a traditional worst case analysis to define critical nodes that had the potential to
exceed operational limits. Such analysis could be used to minimise the number of constraints
needing to be modelled in a microgrid scheduling optimisation thus minimising the

calculation time.

Within the problem constraints, the optimisation is based upon the objective function
formulation, which itself may be subject to uncertainty. A sensitivity analysis was undertaken
in [45] where it was found that the energy value had the greatest impact on results. It was
found in [53] that when the objective function was changed from minimising losses to
maximising EV charging energy, the electrical losses increased by 19.5%. These electrical

losses also have an economic value subject to uncertainty. Undertaking a new schedule on
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every time-step was found in [50] to return an operational cost 8.6% lower than scheduling

just once per day due to more accurate forecasts at the time of implementation.

In practice it is very difficult to calculate PDFs for the various uncertainties making the
stochastic optimisation techniques unrealistic, however it is often possible to determine an
Uncertainty Interval (Ul) in which it could be expected all values to fall within [54]. RO is a
technique based upon LP that finds solutions protected against the uncertain values falling
anywhere within the Ul. A parameter called Budget of Uncertainty (BoU) is used to adjust the
level of conservatism in protecting against the full Ul bounds. In this Thesis, the term ‘robust’
refers to the ability of a control system to maintain the distribution network within its safe
operational limits for power flow (within thermal limits of cables and transformers) and
voltage (LV: between -6% and +10% of nominal, 1 kV to 132 kV: £6% of nominal), despite
load and generation uncertainty.

The BoU was compared against the traditional unit outage criterion of reliability in [55],
calculating the cost of robustly operating the network with different numbers of network
components simultaneously out of service. A relationship between limit violation and BoU,
allowing the calculation of optimal BoU for specified probabilistic risk, was proposed by
[54]. The cost of operating the network and the number of constraint violations with and
without RO was presented in [56] leading to the quantification of the cost to protect the
network against each violation. No study found however has balanced this cost against the
value of supply to the consumer and thus the cost penalty applied to the DNO. An adjustable
interval was proposed by [57] to protect against changing uncertainties, however this was
based upon the running of traditional generators on low loading and minimising the reserve
cost which is not such a problem for ESS and EVs that can respond very quickly. The RO
method was utilised by [45] to estimate the number of EVs that could be integrated into a

Canadian network at differing levels of probabilistic risk of violating network constraints.

With RO based upon LP, it is possible that the problem presented to the solver is infeasible. It
was noted in [58] that as the BoU is set increasingly conservative, it is increasingly likely that
the LP problem will become infeasible. It has been suggested when optimising demand
response, that the most practical approach to rectify infeasibility in real time is to consider
load shedding [56].

It is possible that there could be some cross-correlation of uncertainties. This was considered
by [59] however the computational complexity resulted in only one time step being
considered by the formulation.
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It has been shown that by utilising a DC representation of the electrical constraints within the
optimisation formulation, power flow and voltage constraints can be exceeded when
implemented on the AC system [60]. Therefore the full AC system representation is required,
but needs to be linearised in order to utilise the RO technique. This has been undertaken in the
literature in two different ways. In [61] it was achieved by using a number of piecewise linear
functions when a MILP solver is available. It allows a single optimisation to be undertaken,
but with an increase in the number of constraints. In contrast, [62] uses a linear representation
based upon the operating state of the network, allowing a LP solver to be used, and is
recalculated following a generation power decision leading to an iterative process that

continues until a stable generation power decision is achieved.

2.3 Electric vehicles

The primary purpose of EVs is transportation, and the needs of EV owners to achieve their
primary objective is considered in Section 2.3.1. The literature is reviewed in Section 2.3.2 to
consider the impact of uncontrolled EV charging on distribution networks. Section 2.3.3 then
considers the various methods of controlling EVs to realise power flexibility that could be

utilised by the energy system to generate value.

2.3.1 Electric vehicle requirements

In 2014, 96% of all UK car journeys were shorter than 25 miles [63], well within the range of
many EVs [64-66]. Despite this, both actual and perceived range limitations are seen as a
barrier to adoption of EVs [67-69].

Rapid charge points are seen as more important than standard charging when a vehicle travels
more than 240 km per day, which accounts for less than 2% of journeys [67]. The potential
for queues to form at rapid charge points was investigated by [70], whereby the queue must be
kept to a minimum in order to maintain the advantage of rapid charge points over slower,
potentially cheaper, home standard charging. Queueing theory was utilised to propose reduced
cost of rapid charging in exchange for a reduced time at the charge point and associated
delivered energy. Such a business model would encourage utilising rapid charging only for
the amount of energy required to get to a destination, where a standard charge point would
then be used. This means there is little scope for energy system flexibility with regards to

rapid charging.

The majority of daily driving energy needs can be met by standard charging at locations such
as at home or at work [67]. With EVs stationary around 96% of the time, there is potential
that some control could be exercised by the grid in determining when the vehicles are

15



delivered the energy [26]. This flexibility can only be realised however, if EV owners are
willing to plug their vehicles into smart charging posts. The willingness of consumers to
utilise smart charging, or Utility Controlled Charging (UCC), overnight in Canada was
investigated by [71]. A total of 53% were open to enrolling without any benefit (financial or
increased renewable penetrations) provided 100% SoC was ensured by morning. As the
guaranteed SoC by morning decreases, the acceptance of users also decreases as shown in the
reproduced graph of Figure 2-2. The potential battery degradation was not considered by the
survey and has an impact on Vehicle-to-Grid (V2G) viability, representing a cost [72-74]. The
survey noted that if the cost of the energy reduced by 20% then adoption would increase by
18 percentage points [71]. It follows therefore that if the cost of degradation is greater than the
reduction in cost of energy, then the adoption of smart charging would be expected to reduce
relative to that shown in Figure 2-2. Despite this, there is clearly potential for significant

numbers of prosumers to partake in flexible charging.

“How frequently (days out of 5) would you be willing to wake up to a vehicle that was only X% charged?”

B () Days 1 Day 2 Days IDays ®4 Days B35 Days

50% GMC in the morning -
75% GMC in the morning _

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Percentage of Sample

Figure 2-2 Respondent acceptance of guaranteed minimum charge assuming a pure EV with
240 km range. Early mainstream consumers only, m = 530 [71]

Many EV batteries are based on the Lithium-lon chemistry [64-66, 75] whereby for a battery
that is being utilized, cycling losses (from usage) are much more significant than calendar
losses (from storage). Cycling losses are increased by [73, 74, 76-78]:

e Additional cycling

e Higher charge and discharge rates (through increased temperatures)

e Higher SoC

It has been suggested that V2G technology is best suited to high-value and time critical

services [27] as opposed to generating value from energy trading [79] where algorithms
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designed to extend battery life generate twice as much value [80]. Offering capacity as a
back-up yet rarely utilising it also presents opportunities for EVs to earn additional revenue
[81]. Every commercial EV battery has its own chemistry and resulting degradation
characteristics which could impact on the suitability of each V2G revenue generating

opportunity [72].

2.3.2 Electric vehicle impacts on the distribution network

Many of the studies investigating the impact of EVs on distribution networks did so as a
baseline for proposing smart charging techniques. In this section, only the baseline studies are
compared to understand the impact should uncontrolled charging become the norm. The
majority of the studies focused on whether the charging would result in transformer or cable
thermal overloads, or voltage limit excursions [26, 53, 68, 69, 82-97], some considered the
impact on electrical losses [53, 68, 85, 87-90, 92, 93, 98], and a few studied the transformer
life [85, 98] and voltage unbalance [68, 86, 93, 94]. The early studies made simple
assumptions regarding the time when vehicles would all plug-in and charge at the same time
[86, 89, 90, 95, 96]. Diversity was introduced by [87, 91] through implementing a couple of
periods through the day that the vehicles would charge, and by [53, 69, 82, 85, 97] through
making plug-in time statistical distribution assumptions. The diversity of charging was further
improved through using travel surveys of conventional IC vehicles [26, 68, 83, 84, 88, 92-94,
98]. The resulting synthesised diversified EV load was checked to have a similar profile to
that observed as the diversified load from a trial of 94 EVs in [94]. It was noted in [68]
however, that always topping up with charge when stationary is a significant shift in driver
behaviour whereby end users may restrict daily range rather than extensively using standard
charging infrastructure. Similarly, a rapid charge takes significantly longer time than present
refuelling practices [70]. Therefore there is uncertainty over consumer behaviour under a
widespread EV uptake scenario resulting in uncertainty over how transferable the travel

surveys are for modelling high penetrations of EV load on distribution networks.

Only one study was found to be based on data taken from EV usage trials [99]. This study
used data mining and fuzzy logic to predict the risk to distribution networks based on the
charging peak, growth of the peak over time, and weather predictability of the charging load.
It looked only at geographical areas and did not consider the networks in those areas.
Furthermore, it noted that there was no research to suggest what importance should be applied
to the charging peak, growth of the peak, and weather predictability, to determine an

appropriate risk factor.
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The studies found, to varying degrees, that networks would need to be reinforced if
uncontrolled changing would emerge as the norm while distribution losses would increase and
transformer life decrease. All these impacts have a cost associated with them, which could
indicate the potential financial value of smart charging. The cost of network reinforcement
was only considered in two studies [68, 83]. It was estimated by [83] using representative
networks from one DNO that the cost would be up to £36bn over 40 years, but could be
reduced to £10bn with smart infrastructure. In comparison, [68] recognised that all networks
have different levels of available capacity, making it difficult to extrapolate results. The
authors assumed that 30% of UK distribution transformers would need reinforcing resulting in

an estimated network upgrade cost of £2.6bn-£3.9bn.

2.3.3 Realising flexibility from electric vehicles

Price signals have been proposed to discourage charging at peak times, while still allowing
consumers access to energy at all times if it is required. Setting two or three time periods
during the day risks new peaks being formed by consumers delaying charging until a cheaper
time period and all plugging in together [53, 88, 100]. More dynamic time of use tariffs have
also been studied, allowing consumers to optimise their own charging locally with a greater
diversity of charge time [84, 97, 100, 101]. Despite this, it was noted in [84] that as renewable
penetration increases the method performs less favourably, and in [101] that greater economic

value can be achieved through more centralised control approaches.

Ensuring the network is kept within its power flow and voltage constraints under scenarios of
high EV penetrations can be achieved by simply curtailing charging when the limit is reached
[75, 88], and when capacity becomes available prioritise the re-connection of the vehicles that
were curtailed first [88]. A similar method was proposed by [92], however the vehicles
curtailed were chosen based on SoC required at departure, the expected departure time and the
location of the vehicle within the network relative to the constraint. Curtailment was also
utilised by [100] after local vehicle scheduling of charging based on time of use tariffs.
Although the curtailment method enables greater numbers of vehicles to connect to the
network, it could have adverse impacts on consumers not being able to get the energy they

need by the time they need it.

Both price signals and direct EV control is implemented in [95, 96, 102] via a hierarchical
approach. Initially [95] undertakes an extensive search of possible charging schedules locally
for each EV to determine its lowest cost acceptable charging schedule, [96] utilises price

signals for EVs to determine via CPLEX their optimal charging profile locally, while a
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microgrid auction is initially utilised in [102] to determine EV charging load based on the
microgrid generation. If network limits are expected to be exceeded based on the reported
charging plan, then the load is modified by a central agent in [95] based on a risk factor
corresponding to the urgency of each EV to charge during the next time step, and in [96]
based on a combination of network location and the number of idle charging hours within the
schedule. If network limits are expected to be exceeded in [102] then the generation output is
modified by an Optimal Power Flow (OPF). If network limits are still expected to be
exceeded then the sensitivity of each EV within the system relative to the limit is established,
and an iterative process is used to curtail or increase charging load as required to solve the

network problem.

It was shown by [75] that the increase in load from EV charging can have significant impacts
on distribution transformer life, and thus should be modelled in any network wide smart
charging formulations along with other distribution network costs such as losses [98].
Minimisation of losses was the objective function of the smart charging game theory
formulation in [87], whereby it was shown that the losses and voltage deviations increased
relative to no EV charging but were significantly less than the uncoordinated charging

scenario.

A non-linear solver within GAMS was used in [53] to control the charging load of each EV
distributed throughout a network with four different objective functions, to investigate the
value generation for consumers relative to the DNO:
e Minimising total energy drawn from a substation over a day — results in the highest
cost for consumers
e Minimising total feeder losses over a day — results in a balanced cost for the DNO
versus the consumer
e Minimising total cost of energy drawn from the external grid over a day — results in a
balanced cost for the DNO versus the consumer
e Minimising total cost for each individual consumer assuming precise forecast of time

of use pricing — results in increased losses and cost for the DNO

LP was utilised by [90, 93] to determine the charging load of individual EVs while
maximising the energy delivered to the vehicles subject to the network limitations. The
charging period was limited to between 10pm and 7am in [90], and a weighting factor based
on SoC was proposed to prevent the method prioritising vehicles closest to the substation at

the expense of those located further away. A LP formulation with individual EV charging
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loads as the decision variables was proposed in [93] whereby linearization of the power flow
and voltage constraints was achieved through a DC load flow because of a high power factor
throughout the network. When the resulting decisions were implemented with the full AC
power system equations, the maximum error observed for the transformer power flow

constraints was 4.46% while the error for the voltage constraints was minimal.

A non-linear optimisation solver was utilised in [94] to centrally maximise EV charging load
while maintaining voltage magnitude, voltage unbalance and power flow within the network
operational limits. Due to the limitations of the solver used regarding the number of decision
variables and constraints, an hourly resolution was initially utilised to determine network
capacity in each location. A look-up table then interpolated these results to determine EV load

despatch on a minutely basis.

It was noted in [97] that not all EV's would be willing to partake in controlled charging. The
study considered a number of responsive and unresponsive EVs to charging cost differentials,
finding that forecasting the demand from uncoordinated EV charging is critical to the optimal
scheduling of smart charging EVs. A similar approach was taken in [69] dividing EVs into
two groups, aware and unaware, when modelling both electrical and road network congestion.
The unaware EVs were early adopters with little knowledge of geographical variations in
charging cost and the road network congestion causing travel delays. The aware EVs had
perfect knowledge of charging cost, road network congestion and had greater trust in the
expected range of the vehicle allowing them more choice over when and where to re-charge
and by how much. It was observed that the unaware EVs contributed to the distribution
network peak load while the aware EVs displayed a valley filling characteristic. The aware
EVs spread the charging load relatively evenly across the charging network, while the
unaware EVs concentrated their load on the charging infrastructure in the centre of the traffic

networks. Similar results were observed regarding road traffic congestion.

Whole system cost minimisation is achieved in [103] through a fuzzy logic approach to each
vehicle choosing its driving route and associated charging locations, recognising that in a
V2G world energy can be transported both by road and by electrical power systems. The
study considered several large aggregations of EVs located electrically close to one another,
separated by transmission lines and roads. The available upper and lower energy bounds of
such a parking lot of 5000 EVs was calculated in [104] to optimise, via a MILP formulation,
the day ahead system operation cost from the network operator perspective before the real

time despatch of each individual vehicle. The formulation ensures that either all vehicles are
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operating as V2G or G2V, without the ability to have some vehicles operating as V2G
transferring energy to other G2V vehicles. With such a large number of vehicles aggregated,
they are likely to be spread within the distribution network which could have limited capacity
and was not considered in either of the studies [103, 104]. Similarly, [105] recognises a
parking lot as potential storage, and optimises the individual EV schedules using CPLEX to
maximise profit for the parking lot based on the energy value and reserve markets without
consideration of distribution network impacts. The marginal cost of charging based on the
cost of energy and the cost of parking is calculated for a parking lot with onside solar
generation in [106] for each vehicle to make its own schedule using CPLEX. It was shown
that rolling re-calculation of the formulation outperforms day-ahead schedules due to
responding to new information regarding solar generation output and vehicle arrival and
departure times. A fuzzy logic scheme was proposed by [107] for the internal energy
management of the parking lot considering present SoC, SoC required on leaving, time
remaining and the cost of energy, allowing the vehicles to charge with the lowest energy cost,
resulting in valley filling and peak shaving. The parking lot algorithm proposed in [108]
allowed vehicles to pass energy between one another via the grid to enable more flexibility
but does not allow the aggregated vehicles to operate as V2G in a formulation that calculates
virtual prices for each vehicle to determine its own charging schedule locally. The aggregator
is responding to energy price signals, and the maximum power draw is limited as required by
the capacity of the distribution network. Although this enables the parking lot aggregator to
be integrated into the local distribution network, it does not enable the EV flexibility to be
optimised in relation to other flexible elements of the power system, unless there is a major
overhaul of the market framework whereby DNOs become responsible for setting the real-

time price of energy.

In [109], a parking lot of EVs is considered as an uncertain storage medium where it’s
aggregated output is optimised in a microgrid alongside a Combined Heat and Power (CHP)
unit and heat storage. Kirchhoff’s law was used for the energy balance and thus no network
modelling was undertaken, and the internal energy interaction of the parking lot between
individual vehicles was not modelled; only the aggregated power and energy bounds were
calculated via the total number of vehicles as an input to the wider microgrid optimisation. It
is possible that if one vehicle has a low SoC and maximum V2G power is requested, then that
vehicle may reach a zero SoC condition and thus the aggregated VV2G available power
becomes less than what the scheduler thinks is possible. An internal energy management

scheme of the parking lot was proposed by [110] whereby a desired average SoC across the

21



whole EV fleet was calculated; those with a higher SoC discharged while those with a lower
SoC charged. The method results in better internal energy management of the EV fleet, in
terms of ensuring the maximum aggregate power that can be delivered, however also results
in some EVs having a net energy loss over their time plugged in, conflicting with the needs of

the users.

The location and sizing of smart charging parking lots was investigated by [111]. LP was used
to determine the schedules of the parking lots, inside a genetic algorithm determining their
size and location. It was found that land cost was the most influencing factor on the parking
lot location. Therefore it must be expected that parking lots could be added to any part of the
electrical network, rather than where is best electrically, and microgrid algorithms must utilise

the flexibility optimally wherever it may be on the network relative to other flexible loads.

UCC has been implemented in the ‘My Electric Avenue’ trial [112], where a binary on-off
decision is taken to ensure voltage and thermal limits are not exceeded on the feeders studied.
This is being built upon with the “Electric Nation” project, running from January 2017 to
December 2018, by expanding beyond one type of EV and managing the charging of 500-700
EVs [113]. By expanding beyond one type of EV the project will have to manage different
battery sizes and charging rates.

The charging control model presented in [97] based on a virtual price enabling EVs to
determine their charging schedule locally is being implemented at the Manchester Science
Park, with the UKs first domestic V2G installed in May 2017 [114].

2.4 Chapter conclusions
The following gaps have been identified in the literature, giving scope to make a contribution

to knowledge:

e Existing studies considering the technical impacts of uncontrolled EV charging make
assumptions regarding charging times or assume that drivers would utilise EVs in a
similar manor to conventional IC vehicles and charge whenever stationary. Chapter 3
improves on these studies by estimating network impacts using an extensive data set
of real uncontrolled charging events coupled with an extensive smart meter data set
available at Newcastle University.

e There is a large discrepancy between the two existing studies estimating UK network
upgrade costs associated with largescale uptake of EVs. Chapter 3 estimates network

upgrade costs considering the present network capacities of all UK DNOs.
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It has been found in the literature that understanding uncontrolled EV charging load is
critical to the optimal scheduling of smart charging EVs, however no methodologies
have been found to estimate aggregated uncontrolled EV charging load and the
uncertainty surrounding the forecast. Chapter 3 develops a methodology to forecast
uncontrolled EV charging load on distribution networks.

Very large aggregations of EVs have been considered similar to energy storage
previously to provide flexibility to the energy system on a transmission level,
however EVs are expected to charge at distribution level in smaller aggregations with
larger uncertainty surrounding the aggregate power and energy availability of the
fleet. At distribution level, EVs have either been considered individual actors within
optimisation formulations leading to scalability computational challenges, or when
considered in aggregate the internal energy management of the fleet does not
adequately take into account the needs of users with respect to delivering sufficient
energy for the EV’s primary purpose of transportation. Chapter 4 develops an EV
charging aggregation algorithm, taking account of the uncertainty of when EVs will
be connected and ensuring EVs have the energy needed on departure for
transportation, such that the combined fleet of EVs can be used in coordination with
other flexible loads to deliver services to the distribution system with a high degree of
controllability.

The literature has developed the RO technique to deterministically optimise the
procurement of ESS power services under load and generation uncertainty, using the
BoU to control the level of conservatism. Studies have considered how changing the
BoU changes the probability of remaining within power flow and voltage constraints,
however they have not determined what probability is economically optimal. A
methodology to determine the Economically Optimal Probability of Success (EOPoS)
of operating within power flow and voltage constraints is the subject of Chapter 5.
Previous studies have quantified the errors associated with using a DC load flow
within an optimisation formulation when implementing the resulting power set-points
with the full AC load flow equations. Other studies have used sensitivity factors
calculated based on the full AC load flow equations in order to achieve a linear
representation of the network for use within optimisation formulations, however no
study was found that quantified the errors arising from use of sensitivity factors.
Chapter 5 investigates the magnitude of the errors introduced through linearization of
the AC power system through sensitivity factors for use in RO algorithms operating

under load and generation uncertainty.
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Chapter 3 Impact of uncontrolled electric vehicle charging on distribution

networks

3.1 Introduction

In this Chapter, the likely impact of wide scale adoption of EVs is investigated whereby
consumers have full choice over when they plug in and charge their vehicles. The technical
Impacts are investigated in Section 3.2, and the associated reinforcement cost to enable the
uptake while maintaining the network within safe operating limits is investigated in Section
3.3. Finally, a methodology to forecast uncontrolled EV charging is proposed in Section 3.4.

The Chapter and how it fits within the Thesis as a whole is summarised in Figure 3-1.

The work presented in Section 3.2 has been published in an Applied Energy paper in 2015
[16]. The author took an existing PSCAD model of the test network and re-configured it to
undertake the unbalanced analysis, and supported the preparation of the published paper

manuscript. Others took the lead in the collection and preparation of load data.

The work presented in Section 3.3 was undertaken in collaboration with colleagues from the
National Centre for Energy Systems Integration (CESI) at Newcastle University with input
from every DNO in the UK. The author undertook the Ofgem Model analysis after having
taken the output of the TRANSFORM model from others.

The methodology in Section 3.4 to forecast uncontrolled EV charging was developed by the
author.
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Figure 3-1 How Chapter 3 fits into the wider Thesis

3.2 Technical impacts of uncontrolled electric vehicle charging

In this section, the technical impacts of uncontrolled EV charging on domestic distribution
networks is investigated. The technical impacts investigated include the distribution
transformer power flow, feeder voltage drop and voltage unbalance. In this Thesis,
uncontrolled EV charging refers to consumers having full choice over when and where they
charge their EVs. The calculation methodology employed is described in Section 3.2.1 with

the results presented in Section 3.2.2.

3.2.1 Calculation methodology

It was noted in Chapter 2 that there is uncertainty over the impact of EV charging on
distribution networks, since no study has to date investigated the complex interactions
between measured real world EV charging loads and measured real world domestic household
loads for residential networks. Although computationally expensive, MCS can accurately

handle complex uncertain variables [25] and have been used in this analysis. Non-residential
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networks have not been studied because their loads are very industry, business-need and

location specific [115] making it difficult to draw generalizable conclusions.

An overview of the calculation methodology is presented in Figure 3-2. The distribution
network model and software used in the analysis are discussed in Section 3.2.1.1, and the
sources of data for both domestic household load and future EV load are discussed in Sections
3.2.1.2 and 3.2.1.3 respectively

‘ START ’
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I EV penetration = 0% I

A 4

:: Develop load profile data files I

A 4

Run PSCAD model with a new load profile taken from the data files and updated
within the model every simulated 50 ms (representing one hour of time)

A 4

Extract time domain results from PSCAD

A 4

Post process exported results:
* Find the steady state result associated with each simulated load profile
* Calculate maximum, minimum and probabilistic results as displayed in results Figures
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No 1. EV penetration
> 100%
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Figure 3-2 Overview of calculation methodology

3.2.1.1 Distribution network model and calculation method
A generic network, based on [116] and shown in Figure 3-3, has been used in this study in
order to draw broad and generalizable conclusions across the UK distribution networks as a
whole. This network has been deemed to be representative of a heavily loaded UK
distribution network by all UK DNOs, who were involved in specifying and creating it. It has
also been utilised by a number of authors for modelling a generic UK distribution network in
order to draw broad and generalizable conclusions [52, 92, 94]. It consists of a 33 kV source
feeding two 15 MVA 33/11 kV transformers. There are six 11 kV feeders, each of which have
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eight 500 kVA 11/0.4 kV transformers equally spaced along 3 km of underground cable.
Downstream of each 500 kVA transformer are 4 LV feeders of 300 m in length with 96
customers spaced equally along each feeder. The population parameters for the 386 customers
under study on the generic network were assumed to be the same as that expected for an urban

network as described in Table 3-1.

33 kV Source
33kV

15 MVA 15 MVA

11 kv
=

l 500 kVA l
@ 7x transformers and feeders
2x 11 kV feeders 3x 11 kV feeders

500 kVA

4x service sections (96 customers
connected to each)

Figure 3-3 UK Generic distribution network model

The generic distribution network was modelled in PSCAD/EMTDC (See Appendix A for an
image of the model), which is a commercial power systems analysis software package
developed by the Manitoba HVDC Research Centre [117] and originally inspired by Dommel
[118, 119]. It uses a time-domain based analysis (as opposed to frequency domain) and was
used in this study primarily to allow the impact of unbalanced loads on the resultant voltages
within the network to be determined. Due to a limitation on PSCAD model size, a number of
load aggregations were made as shown in Figure 3-4 and described below:
e Five of the 11 kV feeders were lumped into three single phase loads; Load A.
e Inthe modelled 11 kV feeder, seven of the 11/0.4 kV transformers have their load
lumped into three single phase loads, Load B.
e Below the eighth 11/0.4 kV transformer, three LV feeders have been lumped into
three single phase loads, Load C.
e The most remote LV feeder has been modelled with 12 single phase loads each
representing 8 customers (Loads D-O), separated by four modelled cables.
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Table 3-1 Summary of LV network and population parameters

Urban network

) 6.6 k\V/400 V
Substation
500 kVA
Feeders 4
Total LV customers 386
Vehicle ownership 86.0%
Number of vehicles in vehicle-owning e
households '
ONS morphology code 1 (Urban)
Household thermal efficiency Medium
Percentage of households with under
44%

5s or over 65s
60%: > £30k

Equivalent annual income (gross) 35%: £15-£30k
5%: < £15k
Effective 100% home
Tenure )
ownership
Household occupancy 97%

Peak consumption of electricity is in winter in the UK. In order to assess the additional impact
of EVs during an existing peak loading event, a single peak load test day corresponding to the
DNO’s system peak load day in January is studied. MCS was used to build up a distribution
of possible demands on the generic network as summarised in Figure 3-5. To reduce the
computational burden in PSCAD, only the worst case hours of the peak day were assessed.
This was 17:00-05:00 based upon a less computationally expensive frequency domain method
calculated in IPSA2 and reproduced in Appendix B [16]. Load profiles for the simulation was
produced by sampling the domestic load profile (discussed in Section 3.2.1.2) and EV
charging profile (discussed in Section 3.2.1.3) populations. Individual households on the LV
networks were randomly assigned load profiles in proportion to the local demographic
makeup as defined in Table 3-1. A defined percentage of these users, corresponding to a level
of EV penetration, were further assigned an EV load profile which was added to their base
domestic profile. The EV penetration is defined as the ratio of EVs to the number of vehicle

owning households.
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Figure 3-5 MCS sampling methodology to create load profiles for the PSCAD model

Each load profile for 1000 simulated peak days was used in PSCAD and the transformer
power flow, voltage magnitude and voltage unbalance was assessed once each simulation
reached a steady-state. This was undertaken for different EV penetration levels ranging from
0% to 100% in 5% steps. The voltage unbalance in a three-phase system is defined in
Engineering Recommendation P29 [120] as the ratio (in per cent) between the rms value of
the negative sequence component and the positive sequence component of the voltage. This
can be approximated for the values of voltage unbalance of a few percent, as was the case for

this study, as calculated by Equation ( 3.1):

( Maximum deviation from the )

_ \average of the three phase voltages % 100%

, (3.1)
unbalance = gyerqge of the three phase voltages
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1000 simulated peak days (i.e. 1000 simulation runs) were generated to ensure adequate
variation of customer behaviour, EV charging profiles and customer location on the network.
The generation of multiple random configurations naturally captures any spatial concentration
of households with EVs (e.g. at the remote end of the longest feeder) which could cause
additional voltage drops. This number of simulated days was deemed acceptable to produce
stable and reliable estimates of simulated demand based on an analysis using the less
computationally expensive IPSA2 in [16] and reproduced in Appendix B. For the Urban
network with 60% EV penetration at 18.00 on the peak demand day, 1000 trials showed that
the mean transformer demand had converged to a stable 385.8 kVA (standard error 0.29
kVA). The standard deviation of the distribution of transformer demand had also stabilised to
9.1 kVA.

3.2.1.2 Domestic load data population

The domestic household load is modelled based on the Customer Led Network Revolution
(CLNR) project, which conducted a monitoring trial of over 9000 smart meters placed in
residential locations in the UK. The smart meter dataset is classified by household income,
presence of under 5 s or over 65 s, tenure, household thermal efficiency and area classification
(urban/rural). UK Office for National Statistics (ONS) data was used to determine the
characteristics of the study areas of this work, which are summarised in Table 3-1 along with
the electricity network characteristics. Using the parameters in Table 3-1, a representative
population of residential load profiles was extracted from the CLNR dataset representing the

study areas.

3.2.1.3 Future EV load data population

The EV charging load is based on the SwitchEV project, which recruited different types of
users (private and fleet drivers), who had access to an extensive charging infrastructure
(home, work, public). The majority of vehicles used in the trial are production vehicles
available on the market and were provided by Nissan (LEAF) and Peugeot (iOn). A total of
125 different users were recruited for the duration of the project [121]. The dataset included
the diversity of charge event starting SoC as a result of variables such as temperature, driving
behaviour of users (i.e. speed) and driving conditions such as the topography of the road
network and network conditions (i.e. free flow or congested), all affecting the driving energy
efficiency of the vehicle and the residual energy at the end of a driving event [122]. As a
result, the data collected from the SwitchEV trial captured how people would use an electric

car in a real-world context.
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The SwitchEV trial is distinctive because it collaborated with Charge Your Car (North Ltd)
(CYC), the operator of the North East of England’s “‘Plugged in Places’’ project, which has
provided one of the most extensive regional charging networks in Europe with more than 900
charging posts installed in public, work and home locations in the region during the
SwitchEV trial. As a consequence, the participants were not limited to one charging location
and they had real and varied options about when and where to charge. Their homes and work
places could be equipped with charging units; they could access charging posts on-street and
in commercial places and public car parks; and there were twelve accessible 50 kW DC rapid
chargers installed at strategic locations in the region. The analysis of the dataset collected
identified the charging locations used and the energy transferred at each of these locations,
allowing the extraction of home charging events that were used for this study.

The EVs on the trial were leased as private and fleet cars. The charging profiles of private
cars were used in this study. To determine the residence setting (i.e. urban vs rural) of the
users on the SwitchEV trial, the Office for National Statistics Postcode Directory (ONSPD)
was used. Postcodes on the ONSPD are assigned to urban or rural categories [123]. The
postcode of the SwitchEV users were identified in the ONSPD and their residence setting was
then determined. It was found that 70% of the SwitchEV users reside in urban areas while

30% reside in rural Areas.

3.2.2 Results

Figure 3-6 shows the average and maximum loading on the transformer, and the probability
that it remains within the transformer’s thermal limit, as EV penetration increases. The studies
show that the maximum load is on the transformer thermal limit of this network prior to the
addition of EVs, however due to the diversity between household load and EV charging the
probability of remaining within the limit does not start to fall below 97.5% until an EV
penetration of 40%. This is consistent with the frequency domain results calculated in IPSA2,
reported in [16] and reproduced in Appendix B, and suggests that distribution networks in
general are more robust than previous work has suggested because of the spatial, temporal and
behavioural diversity of EV charging demand demonstrated in this study. Furthermore, the
average demand remains well within the transformer thermal limit even at an EV penetration
of 100%, suggesting that ESS, smart EV charging or V2G technology could potentially
enable full electrification of the transport system without requiring traditional network

reinforcement.
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Figure 3-6 Maximum transformer loading magnitude observed for each EV penetration
during all studies

The worst case for voltage drop is at the furthest end of the feeder, and therefore the voltage
and its unbalance were measured at the end of the 400 V feeder. Industry planning regulations
state that the voltage unbalance should not exceed 2% when assessed over any one minute
period, and when sustained the voltage unbalance should not exceed 1.3% for systems with a
nominal voltage below 33 kV [120]. The minimum voltage magnitude experienced for each
EV penetration level during all the studies is shown in Figure 3-7 and the maximum voltage
unbalance during all the studies is shown in Figure 3-8. The results for minimum voltage are
consistent with the maximum loading condition of the frequency domain IPSA2 study [16]
(reproduced in Appendix B). The PSCAD results show a marginally lower minimum voltage
than IPSAZ2 results as the unbalance in load and EV connections across the LV network is
modelled. As the penetration of EVs increases the load increases and the minimum voltage
experienced reduces, although it does not cause a statutory limit violation even with 100% EV

penetration.

Similarly an increase in charging load results in the unbalance of the network increasing.
Using the 97.5% percentile, an EV penetration of 60% can be sustained on the generic

network before the voltage unbalance would be considered an issue.

It has been noted that during the CLNR field trials, networks have been observed to exhibit a
voltage unbalance that frequently approaches or exceeds the 1.3% limit with no EVs charging
at all [16]. Therefore, the impact of high EV penetrations on unbalance should not be ignored,
however the first limit expected to be encountered as EV uptake increases is transformer

power flow.
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Figure 3-8 Maximum voltage unbalance observed for each EV penetration during all the
studies

3.3 Reinforcement costs to enable wide scale uncontrolled electric vehicle charging

In this Section, the cost to reinforce the distribution networks to enable the largescale uptake
of EVs is estimated. The uptake scenario studied, defined by industrial partners in 2016, is
specified in Table 3-2. It should be noted that there is significant uncertainty surrounding the
realised EV uptake relative to that forecast and defined in Table 3-2, since it is unknown what
products and business models will be offered in a wide scale uptake scenario. Similarly, what

is offered to consumers will depend on realised demand as the market develops.

The four stages of cost estimation that were used are shown in Figure 3-9.
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Table 3-2 Uptake scenario of EV cars and vans defined by industrial partners in 2016

2020 470,000 50% 93% 1% 0% 5% 1%

2025 2,100,000 60% 87% 1% 2% 5% 5%

2030 8,200,000 70% 80% 1% 5% 5% 10%

2040 31,099,159 70% 80% 1% 5% 5% 10%
Costs from the DNOs

Charger costs, assuming 1

Customer charge point per vehicle

connection to

distribution { \ \
network

Charging point Vehicle

Distribution Distribution
network at 33kV network at 33kV
\ and above | \ and below |
f

Costs from Ofgem cost model Costs from TRANSFORM model

Figure 3-9 Stages of cost estimation for EV uptake

The author undertook the Ofgem model calculations presented in Section 3.3.3 within a
Team, from CESI at Newcastle University with input from every DNO in the UK, that
delivered the whole cost estimation. Since the Ofgem model’s input is dependent upon the
output of the TRANSFORM model, this is briefly described along with its input data in
Section 3.3.2. The charging point and customer connection costs are also briefly described in
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Sections 3.3.1. All costs are then brought together in Section 3.3.4. All values are calculated
as of 2016.

3.3.1 Charger and customer connection costs
The charger costs for 2040 were extrapolated based on estimates until 2030, and the total
capital cost is based on the uptake in Table 3-2 with an assumption of one charger per EV is

shown in Table 3-3.

Table 3-3 Charger capital and installation cost estimate

2030 2040
All chargers £11.80bn £26.62bn

Costs of single phase unbundling of looped connections and uprating some services to a three
phase connection, to enable chargers to connect to the DNO networks were provided by
industrial contacts within DNOs, and shown in Table 3-4. The costs do not include any

protection or metering upgrades, or customer wiring.

Table 3-4 Service cost estimate

2030 2040
All chargers £0.74bn £2.79bn

3.3.2 Distribution network at 33 kV and below (TRANSFORM model)

The TRANSFORM model is a tool which combines network design data and future LCT
assumptions to predict where reinforcement is required, and then completes a cost benefit
analysis of which network technologies (conventional and smart) could be applied to
overcome the constraint most economically. There is a brief overview of the functionality of
the TRANSFORM model in EA Technology’s product brochure [124], and its modelling
method and data are described in [125].

Only networks of 33kV and below are considered in the TRANSFORM model. For network
modelling, load flow is not used due to the scale of the model and only a parametric model is
used. Load diversity and different types of buildings are considered by the model, and all
profiles for LCTs are fully diversified. The lack of diversity that can occur on LV networks is
dealt with via scaling factors in line with accepted industry practice.
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The EV uptake scenarios were based on that presented in Table 3-2. Highly diversified EV
load profiles were based upon data taken from the SwitchEV project similar to that used in
Section 3.2. A less diverse profile might be appropriate for earlier periods of the model, and
thus costs might be underestimated for the period 2016-2030. Therefore a TRANSFORM
scenario was created with load profiles increased by 50%, to (very roughly) reduce the
diversity of the load profile. Since the TRANSFORM model looks forward for the most
economical solution over time, an estimation of the number of EVs for 2050 was required for
the TRANSFORM model. This was done through extrapolation as shown in Table 3-2 and as
a result the number of EVs for 2050 is very large. Therefore the later costs for the period

2031-2050 could be an overestimation.

Two scenarios, namely Business As Usual (BAU) and incremental, were studied. The BAU
approach includes only conventional network reinforcement and does not include smart grid
solutions. On the other hand, the incremental approach considers smart grid solutions such as
meshing radial networks, RTTR and ESS. All DNOs agreed the appropriate technology
solutions to include in the incremental case, and the year from which they could be applied in
the model.

A simplistic smart charging EV solution was implemented within TRANSFORM based on
work done by the University of Manchester where they evaluated outputs from the My
Electric Avenue project and assessed how much demand could successfully be constrained
using smart charging [126]. These results were fed into the TRANSFORM model to provide
an increase in capacity on those networks where the solution is applied, which is equal to the
amount of demand that can be constrained. Therefore the maximum demand arising due to
EV uptake is not altered in the TRANSFORM outputs, but the networks are assumed to have
greater ability to cope with the demand levels. The maximum demand was then post

processed to reduce it by the appropriate amount.

Maximum demand in the BAU scenario is shown in Figure 3-10, and is the input to the
authors work utilising the Ofgem model in Section 3.3.3. The blue curve is the maximum
demand and the dashed line is the maximum demand in 2016, which is approximately 56
GW. Despite the uptake of EVs, the peak demand decreases from 2016 to 2020 because the
assumptions of improvements in energy efficiency outweigh the new EV load. Peak demand
starts to increase from 2020. By 2025 and 2030, maximum demand is 56.8 GW and 62.4 GW,

respectively.
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Figure 3-10 Maximum demand in BAU scenario from 2016 to 2040

The network reinforcement costs to facilitate the increased demand for the BAU scenario is
shown in Figure 3-11 along with the cumulative number of EV cars and vans. By 2020, 2025
and 2030, cumulative gross total expenditure is £0.36bn, £1.01bn and £2.61bn, respectively.
Cumulative Totex and cumulative vehicle stocks follows an approximate linear relationship in
Figure 3-11.

16 35 ¢

15

= 30 »

2 v

= c

=12

[ s 8
H T =
] =
g 8 L=
= 158 E

2 102

& 4 =

5 3

S

E 2 =

S 3

0 o Y

2015 2020 2025 2030 2035 2040
Year
- - Cumulative Totex (£ billion) —Cumulative cars and vans stock

Figure 3-11 Cumulative BAU gross Totex and cumulative cars and vans stock from 2016 to
2040

In the incremental scenario, smart grid solutions such as RTTR and meshing radial networks
are considered. It is found that the use of smart grid technologies can reduce the total

expenditure for network reinforcement. In 2020, 2025 and 2030, the savings achieved by the
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use of smart grid solutions is £0.14bn, £0.28bn and £0.86bn respectively, as illustrated in

Figure 3-12.
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Figure 3-12 Cumulative gross Totex for BAU and incremental scenarios
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A summary of the gross and discounted Totex between 2020 and 2040 is shown in Table 3-5,

using a discount value of 3.5%.

Table 3-5 Summary of gross and discounted Totex between 2020 and 2040

Year 2020
Gross Totex

Baseline, BAU £0.36bn
Baseline, Incremental £0.22bn
Reduced diversity, BAU £0.36bn
Reduced diversity, Incremental £0.22bn

Discounted Totex

Baseline, BAU £0.33bn
Baseline, Incremental £0.20bn
Reduced diversity, BAU £0.33bn
Reduced diversity, Incremental £0.21bn

2025

£1.01bn
£0.74bn
£1.05bn
£0.76bn

£0.85bn
£0.60bn
£0.88bn
£0.63bn

2030

£2.61bn
£1.75bn
£3.71bn
£2.81bn

£1.87bn
£1.26bn
£2.60bn
£1.95bn

3.3.3 Distribution network at 33 kV and above (Ofgem model)
With advice provided by lain Miller, Head of Innovation at NPg, the Ofgem model [127] is

2035

£8.04bn
£5.49bn
£13.30bn
£7.65bn

£4.86bn
£3.32bn
£7.94bn
£4.66bn

2040

£14.94bn
£11.59bn
£23.28bn
£16.53bn

£8.06bn
£6.14bn
£12.67bn
£8.82bn

based upon the 33kV and above project specific upgrade costs that each DNO provided to

Ofgem for the RIIO-EDL1 price control. Ofgem compared these costs over a 13 year period
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across all the 14 DNO license areas and specified, using the model, an acceptable upgrade

cost level that can be passed onto the consumer.

The model is based upon two main criteria; the capacity by which to upgrade, and the cost of
those upgrades. These are considered in Sections 3.3.3.1 and 3.3.3.2 respectively, before the
model is brought together to calculate the allowable costs in Section 3.3.3.3 and the results
presented in Section 3.3.3.4. The limitations of the Ofgem model are then discussed in
Section 3.3.3.5.

3.3.3.1 Capacity by which to upgrade

When a circuit gets close to its maximum capacity, a small growth in maximum load will
require a network upgrade. In order to allow for further future load growth without
continually requiring expensive upgrades; some additional capacity is installed on top of that
causing the upgrade to take place. The ratio of capacity added against maximum demand

growth is used within the Ofgem model and labelled, o.

During the RI10-ED1 review, each DNO specified what their expected maximum demand
growth would be, and the resulting project specific upgrades required. This allowed for the o
value to be calculated for each DNO. The cost that Ofgem allowed a DNO to pass onto
consumers was based upon limiting a for each DNO by the median of all a values across the
industry. By limiting the value, Ofgem ensured that excessive over-engineering is not taking
place, while still allowing economically efficient network development over the long term.

The median o value was 7.69 across all DNOs. This is appropriate for the RIIO-ED1 period
for BAU with small changes in maximum demand in isolated locations. With the large scale
deployment of EVs adding significant maximum load growth over a short period of time, this

may not be appropriate.

With a large change in demand, it may be more appropriate for the consumer to fund the
upgrades that would leave the network in the same overall state of utilisation that they are
presently in. This could be defined as the same over capacity in MV A regardless of maximum
demand, or the utilisation could be defined as a multiple of the maximum demand. The latter
would result in a growth in spare capacity proportional to the increase in maximum demand.
During this work, the ratio of total system capacity against total system maximum load, 2.58,
has been used in place of a. If the networks were to be left in the same level of utilisation in

MVA regardless of maximum demand then an a value of 1.00 should be used.
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3.3.3.2 Cost of upgrades
Once the capacity to be upgraded has been decided, the cost of those upgrades must be
considered. There are two measures used within the model to calculate the allowable cost of
upgrades:
e The historical cost of the network per MVVA based on the Modern Equivalent Asset
Value (MEAV)

e The DNOs forecast for the project specific upgrade costs

The ratio of the DNO forecast upgrade costs divided by the historical cost of their network is
calculated, and is labelled . During RIIO-ED1, Ofgem limited this value for each DNO to the

median of B across the industry.
The median value of 8, 0.94, has been utilised during this work.

3.3.3.3 Allowable costs
The allowable costs under the Ofgem model, for the purposes of this work, are described in
equation ( 3.2).

Creinforcement =GXHXaxp (3.2)

Where:

Creinforcement Allowable cost to the consumer, £m

G Growth in maximum demand, MVA

H Historic cost of the network based upon the MEAV, £Em/MVA

a Allowable ratio of capacity to be upgraded relative to the growth in maximum
demand

B Allowable ratio of expected upgrade costs relative to the historical network
cost

The model results in a linear relationship between growth in maximum demand and the

allowable cost to the consumer of network upgrades.

When there are small changes in maximum load growth and an o value of 7.69 is appropriate,

the Ofgem model becomes equation ( 3.3 ).
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Creinforcement = 1.8922G (3.3)

However, for the EV uptake scenarios proposed and a large increase in maximum load an a

value of 2.58 is more appropriate, whereby the Ofgem model becomes equation ( 3.4 ).

Creinforcement = 0.6546G (34)

3.3.3.4 Results of the Ofgem model

The input to the Ofgem model is the maximum load growth in MVVA, as estimated by the
TRANSFORM model. Table 3-6 summarises the estimate of costs associated with this load
growth as found using the Ofgem model for the time period up to 2030 and Table 3-7 for the
time period up to 2040.

Table 3-6 Results from the Ofgem cost model, estimating total network upgrade costs up to

2030
o @™ Beeie  Redueddieniy
- BAU Incremental BAU Incremental
TRANSFORM model 6,268 6,268 1,755 7,755
maximum load growth (MVA)
Ofgem model cost £4.10bn £4.10bn £5.08bn £5.08bn
[33 kV and above]

Table 3-7 Results from the Ofgem cost model, estimating total network upgrade costs up to

2040
=Y EE s R
BAU Incremental BAU Incremental
TRANSFORM model 27,479 27,477 33,694 33,694
maximum load growth (MVVA)
Ofgem model cost £17.99bn £17.99bn £22.06bn £22.06bn
[33 kV and above]

43



3.3.3.5 Limitations of the Ofgem model
The Ofgem model project specific upgrades includes voltages of 33 kV and higher. The
MEAV includes all voltages.

The Ofgem model considers only the limited smart technologies that were proposed during
the RIIO-ED1 business plans at present prices. Further expected innovation within the
industry should enable new technologies to become available potentially reducing the costs,

potentially involving the flexibility of the EVs being charged at the lower voltages.

Rural and urban networks have varying operating costs associated with them; based on their
different nature. The Ofgem model takes this into account by comparing expected costs with
historical costs. By taking the allowable costs applied across the whole country, the
assumption is being made that the load increase is proportional to the size of the existing
network in each area of the country. This may not be the case, and a more detailed analysis of
the location of the greatest load increase may be required for more accurate upgrade cost

estimation.

The model estimates the cost, at present values, to upgrade the networks by the growth in
maximum demand such that the level of overcapacity remains similar to that observed within
the network at the moment. It does not consider at what point in time those upgrades are
undertaken and therefore the associated issues with cost of capital, change in costs for using
the various upgrade technologies, or availability of labour to undertake the upgrades which
may impact upon costs. Because of this, it is appropriate to compare Ofgem cost estimates
with the discounted present value cost estimates of the TRANSFORM model, which is shown
in Section 3.3.4.

3.3.4 Total costs

To obtain the total cost, the estimates for charger installation, service upgrades, LV & HV
reinforcement (TRANSFORM model) and EHV (Ofgem model) must all be summated. In
addition however, these costs do not include indirect costs such as training for technicians,
design, project management and end to end procurement. Currently, technicians are not used
to connecting three-phase supply to households. Necessary training needs to be provided to
the technicians installing three-phase home chargers. During the implementation of network
reinforcement, costs of design and project management should be considered as well. DNOs
have estimated the indirect costs as a percentage of total cost. The mean value of DNOs’

estimations, 27%, is used as the percentage uplift of total cost.
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All costs, including the indirect costs, are shown in Table 3-8 for 2030 and Table 3-9 for
2040.

Table 3-8 All estimated costs associated with EV uptake for 2030, present value, including
indirect costs

Baseline,

£2.37bn  £5.21bn £0.94bn £11.80bn £20.32bn
BAU
Baseline,

£1.60bn  £5.21bn £0.94bn £11.80bn £19.55bn
Incremental
Reduced diversity,

£3.30bn  £6.45bn £0.94bn £11.80bn £22.48bn
BAU
Reduced diversity,

£2.48bn  £6.45bn £0.94bn £11.80bn £21.66bn

Incremental

Table 3-9 All estimated costs associated with EV uptake for 2040, present value, including
indirect costs

Baseline,

£10.24bn £22.84bn £0.55bn £26.62bn £63.25hn
BAU
Baseline,

£7.80bn £22.84bn £3.55bn £26.62bn £60.81bn
Incremental
Reduced diversity,

£16.09bn £28.01bn £3.55bn £26.62bn £74.27bn
BAU
Reduced diversity,

£11.20bn £28.01bn £3.55bn £26.62bn £69.38hn

Incremental

3.4 Forecasting uncontrolled electric vehicle charging load

In this Section, a methodology is developed to forecast aggregated uncontrolled EV charging
load on distribution networks and quantify the Ul surrounding that forecast. The methodology
is developed considering standard charging in Section 3.4.1 before being applied to rapid
charging in Section 3.4.2.
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3.4.1 Uncontrolled standard charging

The SoC at the start of a charging event, along with the arrival and departure time has been
shown to be stochastic based on time of day and the number of charging events per vehicle
per day [21]. The number of charging events per vehicle per day itself is also stochastic.
Therefore the electrical load on the network is also stochastic based on time of day. Using the
stochastic relationships reported from real world weekday trials in [21] a MCS of 1000
simulated days has been undertaken, assuming a charge point rating of 3.6 kW, to gain a
greater understanding of the uncertainty of aggregated uncontrolled EV standard charging
dependent upon the time of day. The load of each individual vehicle was calculated with a
minutely resolution, with the aggregated load on the network calculated as the average over
each 30 minute settlement period. It was assumed that a parking bay was always available
when an EV wanted to charge. The methodology used to calculate the uncertainty of
aggregated uncontrolled EV standard charging dependent upon time of day is summarised in
Figure 3-13.

The results of this study, displayed in Figure 3-14, shows the mean aggregated uncontrolled
EV charging load for 750 EVs per day, and the associated three times diurnal standard
deviation. Three standard deviations either side of the mean creates a diurnal minimum and
maximum and thus an Ul, shown in Figure 3-15, for which it is expected 99.7% of values will
fall within. It should be noted however that the distributions used [21] are of early adopters,
and could change as the market develops to a wide scale EV uptake scenario.
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START

Create probability functions of EV charging based on published real-world trials:

* Probability of one or more connections in a day for an individual vehicle

* Probability distribution functions for arrival time (for first, or subsequent, connection)

* Probability distribution functions for arrival state of charge (for first, or subsequent, connection)

* Probability distribution functions for departure state of charge (for first, or subsequent, connection)

|
ol Ev=0 |<—| Day =0 |
!

For each EV, using uniform random number generator and probability distributions, determine:
* Arrival time

+ Arrival state of charge

« Departure state of charge (and therefore also connection duration)

EV=EV+1

I MinuteOfDay = 0

'

I HalfHourCounter =0 [

»| Ev-0,Totalload=0 |
For each EV, determine if they are demanding

power or not, and add to the TotalLoad:
TotalLoad = TotalLoad + Load(EV)

EV=EV+1

»

HalfHourCounter = HalfHourCounter + 1
MinuteOfDay = MinuteOfDay + 1

Save to file:
AverageHalfHourLoad = TotalLoad/30

HalfHourCounter
<30

MinuteOfDay
< 1440

Calculate mean and standard deviation
of AverageHalfHourLoad across all days,

for each half hour of the day

Day=Day+1

Day <
MaxDays

Figure 3-13 Methodology to calculate the aggregated EV standard charging load uncertainty
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Figure 3-14 Mean load and 3x standard deviation of 750 EVs standard charging per
weekday, using the arrival time and SoC statistics in [21]
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Figure 3-15 Load Ul of 750 EVs standard charging per weekday, using the arrival time and
SoC statistics in [21]

Figure 3-15 represents the range of aggregated diversified load for 750 EVs standard charging
each day, without any prior knowledge of each individual vehicles’ intentions regarding when
they intend to charge. However, it is possible to imagine through smart communications that
there be knowledge regarding the existing load on the network from EV charging, which
could influence future load in the short term based on the stochastic time that EVs remain
connected to the network for, without requiring consumers to indicate their future intentions.

This is investigated below.
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All load values, and the time at which they were observed within the MCS, were saved and
then post-processed. The difference between a value ‘here and now’ and 0-48 settlement
periods ahead was calculated as shown by ( 3.5 ). Over the 1000 simulated days of the MCS,
1000 different values of AL ;are found for each t and j, allowing for a standard deviation to
be calculated. Three times the standard deviation represents the short term Ul relative to the

existing ‘here and now’ load for which 99.7% of values will fall within at j settlement periods

ahead.
ALy =Ly — Leyj (35)
Where:
AL Difference in uncontrolled EV charging load between settlement period t and
settlement period t+j, kW
L¢ Uncontrolled EV charging load at settlement period t, kW
Leyj Uncontrolled EV charging load at j settlement periods ahead of settlement

period t, KW

The short term Ul was then normalised against the longer term diurnal Ul (shown in Figure
3-15) for the appropriate settlement period of the day. This gives 48 normalised values, one
for each ‘here and now’ settlement period, for each horizon looking forward. The value
represents the proportion of the longer term diurnal Ul which is appropriate in the shorter
term relative to the existing ‘here and now’ load. Therefore, a value greater than 1.0 becomes
meaningless since it exacerbates the Ul to be greater than that observed with no knowledge of
the existing load. The minimum, maximum and mean of the normalised values for each
horizon looking forward is shown in Figure 3-16, and demonstrates that reduced uncertainty
based on existing ‘here and now’ load can be estimated up to 1.5 hours ahead for standard

charging.
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Figure 3-16 Proportion of the diurnal Ul that can be reduced based on the existing ‘here and
now’ known EV standard charging load and the forecasting horizon looking forward

Therefore the minimum and maximum bounds for which all values are expected to fall within

can be estimated by ( 3.6 ).

di l dard ch [
Pt];orecast — Lt + Dt’t+j i njVVt_l_l}lrna standard c arging (36)

Where:

Pt’;."r“““ Expected uncontrolled EV charging aggregated load range at
settlement period t, looking forward by j settlement periods, kW

L; ‘Here and now’ uncontrolled EV charging load at settlement
period t, kW

Detyj Difference between the longer term diurnal expected
uncontrolled EV charging load at settlement period t and
settlement period t+j, KW

n; Short term forecast Ul of aggregated uncontrolled EV charging

load as a proportion of the diurnal Ul for a forecast horizon of |
settlement periods, as shown in Figure 3-16, %

Wdiurnal standard charging

Ay Three times the standard deviation of the longer term expected

diurnal aggregated uncontrolled EV charging load at settlement
period t+j, kW
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The method results in a ‘cone’ of increasing uncertainty, from zero uncertainty at the ‘here
and now’, up to the full diurnal UI 1.5 hours ahead. This is shown in Figure 3-17 for a ‘here
and now’ load at the mid-point of the diurnal expected range at settlement period 0.
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Figure 3-17 Cone of increasing uncertainty looking forward from settlement period O,
assuming the ‘here and now’ load is the mid-point of the diurnal expected range

To check the methodology and the formula given in ( 3.6 ), two forecasts have been
developed using a ‘here and now’ load at the mid-point of the longer term diurnal expected
range at settlement period 0 in Figure 3-18 and settlement period 30 in Figure 3-19. For each
example, the maximum and minimum AL, ; has been plotted relative to the ‘here and now’
value to demonstrate that the method works effectively when the ‘here and now’ load is at the
mid-point of the diurnal expected range.

The methodology proposed means that if the ‘here and now’ load is higher than the midpoint
of the diurnal range, then the forecasted minimum and maximum will be higher than the
diurnal minimum and maximum respectively when looking forward more than 1.5 hours
ahead. The assumption being made here is that all stochastic decisions are independent, which
is a valid assumption regarding new vehicles arriving and their initial SoC. However, it is not
necessarily a valid assumption regarding when vehicles leave since this is in part dependent
upon arrival time and initial SoC. Therefore the methodology is appropriate when the
aggregate ‘here and now’ load is close to the mid-point of the diurnal range. When the ‘here
and now’ load is close to the extremes of that expected by longer term diurnal analysis, the

method is expected to become less accurate of the true uncertainty bounds.
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Figure 3-18 Derived short term forecast looking forward from settlement period 0 and the
maximum and minimum experienced load relative to the ‘here and now’ load during all 1000
days of the monte-carlo simulation
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Figure 3-19 Derived short term forecast looking forward from settlement period 30 and the
maximum and minimum experience load relative to the ‘here and now’ load during all 1000
days of the monte-carlo simulation
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3.4.2 Uncontrolled rapid charging

To consider the uncertainty of forecasted rapid charging, the distribution of charge duration
and the distribution of the time of arrival were taken from [128]. Similarly to Section 3.4.1 the
analysis has been based on a MCS of 1000 days, however it is assumed that 100 EVs are

rapid charging per day.

The Ul has been calculated at each time of the day based on three times the standard deviation
as was the case with standard charging. If this was an Ul around the mean aggregated load
however, then the expected minimum load would regularly suggest significant negative load,
or V2G, which is clearly not appropriate. This is because of a higher aggregated load
uncertainty caused by the larger charge point rating of the rapid charger, and a lower
aggregated mean load because of only 100 EVs per day instead of the 750 EVs studied for
standard charging in Section 3.4.1. The midpoint between the maximum and minimum load
observed within the MCS was chosen as appropriate since it results in the diurnal minimum
load being approximately zero (as opposed to negative) throughout the day. The resulting
diurnal expected aggregate load range for the 100 rapid charging EVs each day is shown in
Figure 3-20. As with Section 3.4.1, the load of each individual vehicle is calculated on a
minutely resolution, and the diurnal expected range is shown in Figure 3-20 is calculated
based on the average aggregate load over each 30 minute settlement period. Furthermore, it
should be noted that the time of arrival and charge duration probability distributions used
[128] are of early adopters, and could change as the market develops to a wide scale EV

uptake scenario.
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Figure 3-20 Load Ul of 100 EVs rapid charging per day, using the arrival time and duration
statistics in [128]
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The same method used in Section 3.4.1 has been utilised to estimate the Ul derating relative
to the diurnal rapid charging load. This has been done on a 4 minutely resolution rather than
30 minutes, since EVs come and go much more frequently when rapid charging than standard
charging. A 4 minute resolution was chosen since it was the smallest time step that could be
calculated with the 4 GB RAM of computing resource available at the time of the calculation.
The resulting proportion of the diurnal UI that can be reduced based on the existing ‘here and
now’ known EV rapid charging load and the forecasting horizon looking forward is shown in

Figure 3-21.
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Figure 3-21 Proportion of the diurnal Ul that can be reduced based on the existing ‘here and
now’ known EV rapid charging load and the forecasting horizon looking forward

It can be seen in Figure 3-21 that the reduced uncertainty based on existing ‘here and now’

load can be determined up to 24 minutes ahead for rapid charging.

This analysis assumed that no queuing takes place which may not be the case in the future
according to [70]. Knowledge regarding queue length may enable short term forecasting over
a longer time period than 24 minutes.

3.5 Chapter conclusions and contributions to knowledge

A comprehensive study considering the complex interactions of real world measured domestic
EV charging load and measured domestic household load has been investigated, for its impact
on transformer thermal loading, voltage magnitude and voltage unbalance. This is the first
such study that the author is aware of that has investigated these impacts using real world
measured EV charging loads. It was identified that the first constraint likely to impact EV

uptake is the thermal limit of the transformer, however it was also shown that the average load

54



at 100% EV penetration was below the transformers limit suggesting that ESS or smart
charging could potentially be a solution. Furthermore, the cost of upgrading the network if
smart charging was not implemented was estimated for wide-scale EV uptake in the UK. This
is the first study to investigate the allowable cost to the consumer of upgrades associated with
wide-scale EU uptake, taking into account the individual network characteristics of each
DNO. This cost also represents the potential maximum value that is economical for DNOs to
pay smart charging EV aggregators over the typical life of a reinforced network asset to

compensate them for delivering services to offset the reinforcement.

A methodology has been developed to forecast uncontrolled EV charging load, and the
uncertainty around that forecast dependent upon the time looking forward. After around 1.5
hours, the uncertainty is as wide as that which could be determined by long term diurnal
analysis for standard charging. For rapid charging, the time at which the uncertainty is as wide
as that which could be determined by long term diurnal analysis is 24 minutes. The smaller
the forecast horizon, the smaller the Ul was observed. For both standard and rapid charging,
the analysis was undertaken for a set number of vehicles per day. If this were to change, the
level of diversity would change resulting in different levels of uncertainty. It is unknown to
what extent this would impact upon the reduced Ul that can be determined from a short

forecast horizon, and is an area for potential future research.
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Chapter 4 Available flexibility of electric vehicles

4.1 Introduction

The approach adopted in this Chapter is to determine the power range flexibility, and duration
over which it can be maintained, that can be reliably called upon from EVs in aggregate to
form a VESS. Using the VESS as an input to wider microgrid control systems has advantages
over considering the EVs individually through reduced computational challenge leading to
better scalability with EV uptake, while also enabling the microgrid control algorithms to
optimise the EV power demand flexibility alongside other forms of power flexibility.

The available power and energy flexibility that could be called upon from an EV fleet in
aggregate is investigated in Section 4.2. An algorithm to control the energy management
within the EV fleet to achieve the flexibility is developed in Section 4.3, before being tested
in relation to a work based car park in a case study in Section 4.4. This work was presented at
the CIRED conference in 2017 in Glasgow, with the oral presentation available to watch
online on IET TV [129] and the associated paper was published in the subsequent CIRED
journal [130].

An algorithm to utilise the work based car park within a VPP delivering an EFR service to the
wider grid is then developed in Section 4.5. This work was published at the CIRED workshop
in 2016 in Helsinki [131].

The Chapter and how it fits within the Thesis as a whole is summarised in Figure 4-1
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Figure 4-1 How Chapter 4 fits into the wider Thesis

4.2  Aggregated power and energy flexibility from an electric vehicle fleet
In order for EVs to be considered as a VESS, the equivalent energy capacity and power rating
of the fleet in aggregate must be established. Provided the energy management within the EV
fleet ensures no vehicle reaches a SoC limit before any other vehicle, the aggregate maximum
and minimum power and energy demands can be defined as follows:
e The maximum potential power demand is the sum of all the charge point ratings where
vehicles are plugged in.
e The minimum potential power demand (or maximum V2G supply) is the sum of all
the charge point VV2G ratings.
e The maximum potential energy demand is 100% minus the present SoC, multiplied by
the battery capacity.
e The maximum potential energy supply is the present SoC, multiplied by the battery
capacity.
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Since the arrival time, arrival SoC and departure time are all stochastic [21] for which the
aggregate power and energy are dependent; the aggregate power and energy flexibility is also
stochastic.

4.3 Electric vehicle fleet energy management

The algorithm developed to control the internal energy management of the EV fleet to form a
VESS is shown in Figure 4-2 and described next. A deterministic rule based algorithm has
been developed for fast real time implementation without requiring, or potentially in the
absence of, certain knowledge of future grid requests.

In any EV flexible charging algorithm, it must be ensured that all vehicles have sufficient
energy at departure; otherwise consumers will not charge their EVs by plugging into a charger
utilising the control strategy. How the EVs get to that minimum SoC at the time of departure
Is irrelevant (if neglecting battery degradation issues). Therefore, if a vehicle requires its
charge point’s fully rated demand to achieve the minimum SoC in the time remaining before
departure, this is allocated to those vehicles. The remaining power requirement to meet that

requested of the VESS must then be shared between all other vehicles.

In being sympathetic to battery degradation, the remaining power required should be shared
between as many vehicles as possible. In that way both C-rates and V2G-induced additional
cycles’ depths of discharge are kept to a minimum. The downside to this simple concept is
that those vehicles that have an initially high SoC can easily reach 100% SoC resulting in
them losing the ability to demand power. To reduce the occurrence of this situation, when the
remaining required aggregate power is charging power, it is averaged between only the EVs
that are presently below the SoC required at departure. Those vehicles with a SoC above the
minimum at departure only demand power if additional aggregated power is required to meet
the grid request. When V2G power is required in aggregate, the power is shared between all
vehicles that do not require fully rated demand to meet the minimum SoC at departure,

regardless of their SoC.
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Figure 4-2 Algorithm deciding individual EV power exchange

By actively controlling the charging process, there will inevitably be an impact on the EV
battery degradation and consequentially an economic impact on the EV owner. This cost is
very difficult to quantify, and an active area of research in its own right. A qualitative
assessment of the impact is given below, based on the battery degradation characteristics
described in Section 2.3.1.

Additional cycling: With the proposed control algorithm, it is expected that an individual
vehicle will rarely give up energy to charge another vehicle via the grid, and in most cases
will only act as V2G when the aggregate power requirement of the grid is from the VESS and
to the grid. Therefore additional charging cycles, causing additional degradation, are likely to

only be created when the aggregate power required is V2G.

Charging rates: At present, vehicles charge at the rating of the charge point. In the proposed

algorithm, the averaging of power across all vehicles reduces the charge rate meaning that the
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battery degradation through charging could be expected to reduce, relative to present charging

arrangements.

State of charge: By charging at a rate lower than the charge point rating, or using V2G, the
SoC will be at a lower level relative to uncontrolled charging. This results in a reduced

degradation effect on the battery.

Overall impact: It is expected that charging flexibility can be realised, using the algorithm
presented, with reduced degradation in the majority of situations relative to uncontrolled
charging. If the VESS is supplying power to the grid then an increase in degradation could be
expected.

4.4 Case study: work based car park

In this case study, the VESS is applied to a work based car park and the response to two grid
defined power set-point profiles is tested. The car park characteristics are described along
with the resulting power and energy availability of the VESS in Section 4.4.1. The response to
the two power set-point profiles is then tested in Section 4.4.2.

4.4.1 Characteristics of the work based car park

Consider an EV charging station with 50 spaces at a work-based site. The number of vehicles
arriving in a day is assumed to follow a normal distribution, with a mean of 45 and standard
deviation of 3. The arrival time for each vehicle is established using a normal distribution,
with the average car arriving at 09:00 with a standard deviation of 1.2 hours. Similarly for
departure time, a normal distribution is used with the average car departing at 18:00 with a
standard deviation of 1.2 hours. This is consistent with the weekday modelling approach used
in [107]. A more detailed statistical analysis of EV charging times was undertaken in [21].
The SoC on arrival is based on the SwitchEV project [16] and is established using a normal
distribution with an average of 53% and a standard deviation of 15%. The battery capacity of
all vehicles was assumed to be 24 kWh, with a requirement for 80% SoC on departure. It was
assumed that the charge rating is 7 kW and V2G rating is 3 KW.

A model of the work based car park was developed in Python based on the statistical
distributions described and calculated based on a time-step of 1 minute. Based on a MCS of
1000 days, the stochastic maximum and minimum aggregate power demand percentiles of the
parked EV fleet is shown in Figure 4-3 and Figure 4-4 respectively.

61



350 T
O IS S — . & S S
SR N 7\
200 )| SERTERTRRPPRPROY: ................. ...................... ........

180 oo ................. ......................... ................. .............

-

o

o
T

Maximum power demand (kW)

[4.]
o
T

i i i i i
08:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00

Time of day
T T
1 1
50 60

20

-40

60

80

-100

Minimum power demand (kW)

-120

-140

P i i i i i i i
e 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00
Time of day
T T T
1 1 1 I
50 60 70 80 90 100

Figure 4-4 Minimum aggregate power demand (or maximum power supply) percentiles of the
VESS on the grid

If the higher level controller of VESS output can handle uncertainty, such as that proposed in
[54], then a greater level of flexibility can be utilised than if the VESS alone is being relied
upon to ensure the robustness of the network against thermal and voltage limit violations. In
such a situation where the EVs are being fully relied upon, then the VESS power should be
limited to the region bounded by the minimum of Figure 4-3 and the maximum of Figure 4-4.
This could be considered somewhat pessimistic and in this Chapter the 5" and 95™ percentiles

have been used as the maximum and minimum bounds, respectively, giving a 90%
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confidence. A 90% confidence interval was chosen as it corresponds to the qualitative term
‘almost certain’ [132].

Figure 4-3 and Figure 4-4 assume that no vehicles have reached their SoC limits and can
contribute their fully rated power. This may not be the case depending on the internal energy
management of the EV fleet, and the previously called services of the VESS by the grid

controller.

The percentiles of maximum and minimum aggregate energy available based on the arrival
SoC as determined by the stochastic modelling and a departure SoC of exactly 80% for all
vehicles is shown in Figure 4-5 and Figure 4-6, respectively. To achieve a 90% confidence of
delivering to the grid what is requested, the energy exchange should remain within the region
bounded by the 5" percentile in Figure 4-5 and the 95" percentile in Figure 4-6. These two
lines cross shortly after 18:00, however making it impossible to achieve. This is due to the
assumption that all vehicles leave with exactly 80% SoC in the figures, which may not be
exactly true depending on the internal energy management of the EV fleet and the number of
vehicles parked on any particular day. Instead the range should consider the potential for
some vehicles to leave with more than the minimum 80% SoC and as such the 5™ percentile
in Figure 4-5 is taken to not reduce once it reaches its maximum value and corresponds to all
the vehicles having 100% SoC or less on leaving, 95% of the time, assuming the internal

energy management ensures all EV's would reach 100% SoC at the same time.
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Figure 4-5 Maximum aggregate energy demand percentiles of the VESS on the grid
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Figure 4-6 Minimum aggregate energy demand (or maximum power supply) percentiles of the
VESS on the grid

4.4.2 Response of the VESS

Using the power and energy bounds defined from the probabilistic analysis in Section 4.4.1,
two possible VESS service requests have been developed within MS Excel. Profile A is
shown in Figure 4-7 and displays a low constant load while profile B shown in Figure 4-8
displays higher load variability while reaching the defined power and energy bounds

numerous times throughout the day.
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Figure 4-7 Grid power decision, Profile A: Low constant load
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Figure 4-8 Grid power decision, Profile B: High variability load reaching both power and
energy bounds

For each VESS power profile, 1000 days of MCS was undertaken using the Python model as
described previously in Section 4.4.1 and the internal energy of the EV fleet is managed using
the control logic of Figure 4-2. The realised percentiles of power delivered to the grid within
the MCS is shown in Figure 4-9 for profile A and in Figure 4-10 for profile B. In both
profiles, the grid demanded output is realised in the majority of cases, and when it is not then
the value delivered is often close to that requested. Over the full day, the probability of

realising profile A was 99.98% and the probability of realising profile B was 98.83%.
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Figure 4-9 Resulting power percentiles delivered to the grid, Profile A: Low constant load
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Figure 4-10 Resulting power percentiles delivered to the grid, Profile B: High variability load
reaching both power and energy bounds

In Figure 4-9 at around 16:20, there are some days within the MCS that the VESS was unable
to deliver the service requested by the grid. It is unlikely to be as a result of vehicles leaving
earlier than normal because the power demanded is significantly below the maximum power
bound in Figure 4-7. The energy delivered to the VESS is, however, relatively close to the
maximum energy bound and as such the loss of control is due to some vehicles reaching
100% SoC and being unable to demand any further energy. Additional power is demanded on
some days within the MCS at around 20:00. This is because the SoC of some EVs are below

the minimum at departure when the desired VESS demand is zero.

In Figure 4-10, the power delivered around mid-day is less than that requested of the VESS.
This is likely to be due to some days within the MCS having either too few EVs, or EVs
reaching 100% SoC, or a combination of the two, since both desired power and energy are
close to the bounds at this point in time in Figure 4-8. In a similar way to that described for
profile A, there is a limited loss of control at around 19:30 when the EVs start to leave, where

the VESS request is close to both the power and energy bounds.

From these studies, it can be concluded that there is a high degree of controllability of the
VESS for the majority of the day. When vehicle numbers reduce to very low numbers, the EV
fleet becomes less reliably controllable. If the car park was located where new EVs were
always arriving as suggested in [21] then this limited loss of control would be reduced,
however new vehicles always arriving would make it more difficult to know the available
energy, or Virtual State of Charge (VSoC). In the case study shown there is always a

recalibration point at the start and end of the day when there are zero vehicles in the car park.
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The closer the energy delivery is to the mid-point of the upper and lower energy bounds in
Figure 4-7 and Figure 4-8, the less likely and severe the reduced controllable period becomes.
To consider an extreme case of the reduced controllable period of the day, one further study
has been conducted whereby the VESS is requested to demand no power throughout the full
day. It results in the EVs all waiting until the last moment to charge, and then do so at full
charge point rating. The resulting power demand percentiles of the VESS are shown in Figure
4-11. This is similar to the load profile that could be expected from uncontrolled charging for
the work based car park, but at the end of the day rather than at the start when the vehicles

arrive.
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Figure 4-11 Uncontrolled charging demand percentiles at the end of the day resulting from
no energy delivered throughout the day

4.5 Case study: VESS of EVs within a VPP delivering frequency response services
In this section, the ability of the VESS developed in Section 4.4 to support frequency
response services is investigated within the context of a real VPP being developed in
Newcastle-Upon-Tyne, UK. The required response of the VPP is described in Section 4.5.1
and the VPP is described in Section 4.5.2. A control algorithm for the VPP is developed in
Section 4.5.3, before its ability to deliver the EFR service from the VPP is investigated in
Section 4.5.4 using a MATLAB Simulink model replicated in Appendix C.

45.1 Response required of the VPP to deliver an EFR service
EFR is a new market to help maintain system frequency and started operating Winter
2017/18. The required response is dependent upon system frequency, as shown in Figure

4-12. The service allows an envelope of deviation from the set point curve, widening around
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the normal operating frequency. This is designed to enable SoC management, however in
2016 when this work was undertaken the magnitude of this range was still to be determined
by National Grid. The output must be delivered within 1 s of being called, and support the

grid for at least 9 s until the primary FFR service can take over.
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Figure 4-12 Service requirements for EFR (as of 2016) [133]

4.5.2 VPP description: Newcastle Science Central

Newcastle University and Newcastle City Council, are collaborating to redevelop a 24 acre
city centre brownfield site to be an exemplar sustainable urban environment encompassing
Smart Grid technologies throughout [134]. Electrically, the site will contain an ESS [135], an
EV charging station, a CHP plant, solar PV generation and both residential and commercial
buildings with the potential to provide DSR [134]. The proposed electrical distribution of the

site is shown in Figure 4-13.
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Figure 4-13 Proposed electrical distribution of phase 1 of Science Central, Newcastle, UK
68



There is considerable choice in how to control each of these flexible assets in order to provide
services to the grid at the point of connection whilst also providing value to the various
stakeholders on the site. The characteristics of the ESS is described in Section 4.5.2.1, the
CHP in Section 4.5.2.2, the smart charging EVs in Section 4.5.2.3 and the DSR potential of
the Core and Urban Sciences Building (USB) are described in Section 4.5.2.4. The
characteristics of all flexible assets on the site are summarized in Table 4-1. These
characteristics are based on the expectations of the site when this work was undertaken in
2016, and since then there has been considerable development of the site.

Table 4-1 Summary of flexible asset characteristics on Science Central

ESS -360 0 360 100 17
CHP 0 - 2000 - -
EV charging

-120 0 280 1077 231
(at 12:00)
The Core DSR 0 31 70 9 14
USB DSR 0 240 500 69 16
Aggregation of
the whole site -480 271 3210 1255 -
(at 12:00)
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45.2.1 Energy storage
The ESS will be built to allow different cell chemistries to be evaluated in response to real
grid disturbances and new control algorithms. The inverter is rated at 360 kVA, and is

assumed to have a storage capacity of 100 kWh.

4.5.2.2 Combined Heat and Power

A gas turbine CHP plant will be built with an electrical rating of 2000 kW and heat rating of
6000 kW. Since the gas will be supplied via the national gas networks, it is assumed that this
power can be supplied at all times. The heat generated will supply a heat network on the site

which is not the subject of this Thesis.

4.5.2.3 Electric vehicle charging station

The site is to have six rapid EV chargers, and it is possible that adjacent to these will be a
smart EV charging station, similar to the VESS proposed in Section 4.4. The individual
vehicle modelling is not modelled in this Section, and it is assumed that the EV fleet in
aggregate can deliver what is requested provided the power and energy remain within the

defined aggregated power and energy bounds.

4.5.2.4 Building demand side management

As the site progresses, numerous commercial and residential buildings will be erected to
include HVAC DSR capabilities. The first two building on site have now been opened; The
Core, and the USB.

Both buildings are to be heated using electrical pumps and the site heat network. The heat
model of Figure 4-14 was implemented in MATLAB Simulink for both buildings to control
the electrical demand of the heating system while calculating the temperature response from
DSR calls to be estimated. It was assumed the air condition deterioration takes place at the
same rate as the heat energy dissipates to the external atmosphere.

For the purposes of this study, it was assumed that the Core needs 31 kW and the USB needs
240 kW to maintain a constant temperature and air condition, based on an engineering
judgement that HVAC DSR can achieve up to 33% reduction in a buildings demand [136].
The minimum power for each building was set to 0 KW (representing an effective generating
power of 31 kW and 240 kW respectively). The maximum power demand was set to 70 kW
for the Core and 500 kW for the USB. For an allowable temperature variation of 4°C, the
model estimated the Core and USB to have an effective storage capacity of 9 kWh and 23

KWh respectively.
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Figure 4-14 MATLAB Simulink heat model

4.5.3 VPP control to maximise aggregate power availability

The EFR service requires full requested output to be delivered for at least 9 seconds with just
one second of notice. Despite this short duration, National Grid’s initial analysis of frequency
data indicates that the optimal battery capacity is that which corresponds to a 45 minute
duration (0%-100%) [133]. It can be seen in Table 4-1 that only the EVs, which are not
available at all times, have a duration above this. All the other assets have a duration
significantly below 45 minutes. A control scheme has been developed to combine the high
power ratings of the DSR and ESS with the high energy rating of the EVs, through intelligent
energy management to ensure that the aggregate maximum power of the site is realisable,
with little to no notice. The control scheme is designed to be scalable such that any flexible
asset can be utilised. Each asset is considered in a form similar to ESS and the equivalent
VSoC is used as a common currency across the different types of assets with varying

characteristics, that could otherwise be difficult to compare like for like.

In order to realise a power request, an asset must have energy available within its storage. By
targeting 50% VSoC, an asset without any prior knowledge of the service can maximise the

amount of time a power request can be delivered for. During the service however, the VSoC
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will deviate from 50% at varying rates for each asset dependent upon their power and energy
ratings. To maximise the power availability, all assets should approach their energy capacity
limits at the same time. To implement these ideas, the time each asset can deliver maximum
(positive or negative) power for is considered. The asset that can deliver for the longest period
of time is used primarily for its energy and no target VSoC is set. All other assets are used
primarily for their power and assigned a 50% VSoC target, unless the energy asset is
approaching its VSoC limits in which case the energy of these assets is needed. In this
situation, the power assets are assigned a VSoC target that would result in reaching their

VSoC limit at the same time as the energy asset.

A single fuzzy logic control surface is used multiple times, once for each asset as shown in
the block diagram of Figure 4-15. Fuzzy logic allows multiple variables to be considered at
once, similarly to human thinking, and an intelligent decision to be made [137]. In this
implementation, it ensures the overall requested microgrid power is delivered whilst
managing the internal energy of individual assets to be as close as possible to their respective
VSoC targets. Each controller has three inputs:
e Output power — the output of the asset’s fuzzy logic controller is fed back as a
reference signal to be increased or decreased based on the error and SoC difference.
e Error — the power outputs of all assets are summated and compared against the total
microgrid desired power output. The resulting error is fed into all fuzzy logic
controllers.

e SoC difference — the difference between an assets VSoC and its target VSoC.

Fuzzy logic rules were created to prioritise the reduction of the error so the correct power
output is delivered. At high power requests the error is picked up faster or slower depending
on the SoC difference. When the power request and error are both low, the rules try to reduce
the SoC difference. Therefore, a secondary control brings all assets towards their target VSoC
if possible. The 4-dimensional control surface, with axes in per unit, is shown in the three 3-

dimensional figures of Figure 4-16.
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control surfaces; A, B, C (all axes per unit)
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4.5.4 Ability of the VPP to deliver the EFR service using the developed control algorithm
In order for potential EFR providers to demonstrate their offering, National Grid has
published system frequency data at a one second resolution. One representative day has been

simulated using this data, in conjunction with Figure 4-12 and the proposed control algorithm.

The aggregate load of the VPPs flexible assets is shown in Figure 4-17 along with each assets
VSoC. The same study was undertaken without managing the VSoC of the assets, shown in
Figure 4-18. During the day of simulation there were 11 minutes when a service could not be
realised, during which the service was requested for 5 minutes. The deadband of Figure 4-12
could have been used to ensure VSoC when the assets are operating individually and without
coordination, however with the proposed algorithm this is not required meaning the deadband
could be used to layer other commercial services, thus increasing revenues. Furthermore, it
can be observed in Figure 4-17 that the VSoC for the ESS, Core and USB remain close to
50% with a relatively large headroom of storage capacity unutilised. This suggests that by
using the proposed control algorithm either; the storage capacities could be minimised

reducing initial capital expenditure, or power ratings increased maximising potential EFR

revenues.
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Figure 4-17 Aggregate load of the VPPs flexible assets and their VSoC
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Figure 4-18 VSoC of assets delivering the service without coordination

The proposed algorithm successfully maximizes power availability, however it does this
without considering the economical or environmental costs associated with the use of each of

the assets.

4.6 Chapter conclusions and contributions to knowledge

The stochastic nature of EV charging requirements has been considered and the aggregate
flexibility calculated for the grid. When aggregated to form a VESS, a higher level controller
can consider the vehicles as a more traditional ESS but with varying power and energy limits
in time. An internal energy management control scheme has been developed to realise the grid
requested demand within the advertised flexibility, prioritising at the highest level the EVs
SoC to be at a minimum level at the departure time. MCS has been used to show the resulting
aggregate power exchange delivered by the VESS to the grid for two fictitious grid requested
demand profiles. Over the full day, the probability of realising profile A was 99.98% and the
probability of realising profile B was 98.83%.

An example of how the VESS could be used within a real VPP at Newcastle Science Central
has also been proposed, to deliver the new EFR service. It was shown that through
coordination, the various flexible assets within the VPP could appear in aggregate to have a
larger energy capacity than if operating individually. This suggests that either the storage
capacities could be minimised reducing initial capital expenditure, or power ratings increased

maximising potential EFR revenues.

The Science Central site was considered as a VPP, rather than microgrid, because the flexible
assets can operate anywhere within their controllable power range without causing power
flow or voltage constraint issues within the network. The EFR service was delivered to the

wider macrogrid, rather than the local electrical network. It was shown in Section 3.2 however
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that power flow constraint violations are expected in domestic distribution networks when EV
penetrations reach 40%, and therefore the ability of the VESS to respond to the local needs of
the network should also be considered. This is investigated in Chapter 5 where a formulation
is developed to determine the optimal level of conservatism of determining ESS and VESS
power set-points to protect network constraints against the load and generation uncertainty

caused by uncontrolled EV charging and solar generation respectively.
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Chapter 5 Risk based approach to voltage control and power flow

management in urban microgrids

5.1 Introduction

It was determined in Chapter 3 that largescale uptake of uncontrolled EV charging could
cause distribution networks to exceed their operational limits without mitigation measures
implemented. One way of mitigating voltage and power flows limit excursions within
networks is to utilise ESS, where a methodology was developed in Chapter 4 to enable a
VESS from controlled EV charging. Determining the economically optimal power set-point
of ESS and VESS to prevent voltage and power flow limits from being exceeded when the
network is under load and generation uncertainty is the subject of this Chapter. The links of

model and information flow from previous chapters is summarised in Figure 5-1.
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When a network is operating under load and generation uncertainty, the exact power required
of an ESS or VESS to mitigate voltage and power flow constraint violations is unknown. A
control system could over protect thus ensuring the limits are maintained while also costing
more than necessary through battery degradation. On the other hand, a control system could
under protect causing a limit violation with an associated cost. This Chapter takes a risk based
approach, using a RO LP formulation and the BoU that controls conservatism, to balance the
costs associated with over protecting against the costs associated with under protecting the
network against power flow and voltage limitations while operating under load and generation
uncertainty. In this Chapter, the term ‘optimal’ refers to the level of conservatism displayed
when determining the power output of the ESS and VESS, despite the load and generation
uncertainty, to appropriately balance the costs associated with failing to protect the network
from power flow and voltage limit violations with the costs of procuring services from the

ESS and VESS to achieve the lowest overall network operating cost.

The modelled urban microgrid utilised during this Chapter is introduced in Section 5.2 along
with the uncertainty associated with the load and generation connected to the network. The
RO LP formulation to determine the power set-points of the ESS and VESS is developed in
Section 5.3, with the methodology used to determine the cost of operating the network
following implementation of the ESS and VESS power set-point developed in Section 5.4.
The economically optimal level of conservatism, and associated probability of ensuring

voltages and power flows remain within their respective limit, is determined in Section 5.5.

5.2 Urban microgrid under test

The microgrid studied during this Chapter is shown in Figure 5-2, with numerous network
constraints that would be violated without smart control. It is likely that the microgrid will
have been built over time to have such constraints, whereby it has been economical to utilise
smart technologies rather than reinforce the network at each expansion. The progression of
the microgrid from initial build to its constrained state is described below.

1. [Initially only the large building is fed from the Transformers. The building peak load
is within the thermal capacity of the cable supplying it from the Transformers. The
Transformers are over rated with the expectation of further feeders being added with
the re-development of the local area where the electrical network supplies.

2. A small solar system is installed with its exporting cable rated sufficient for the peak

export.
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3. An extension to the building load pushes its peak load above the capability of the
supplying cable. It was economical to install a peak shaving ESS rather than reinforce
the network.

4. An extension to the solar system is installed, which results in an overload of the
supplying cable at peak export. A smart EV charging car park VESS is built next to
the extended solar system to ensure that the power flow remains within the cable
thermal limit.

5. Anuncontrolled EV charging car park is built consisting of both rapid and standard
charge points. This additional load means there is a risk of transformer overload and
building under voltage in a transformer N-1 scenario. Due to the presence of the ESS
and VESS, a smart solution was employed to protect the transformer and building

under voltage in an N-1 condition.
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causing N-1 condition 14 MVA
04 kv
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2 Tx: Powerflow constraint Flexibility between 08:00-19:00 transformer in N-1 condition with
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ESS manages constraints Smart EV car park manages constraint Managed by the coordination of

Smart EV and ESS

Figure 5-2 Urban microgrid under analysis

The electrical network presented in Figure 5-2 was modelled in the IPSA2 software, and the
impedance parameters are described in Section 5.2.1. IPSA2 is a commercial power systems
analysis software package developed initially by the University of Manchester Institute of
Science and Technology (UMIST) in 1975 and is now supported by TNEI Services Ltd [138].
The IPSA2 load flow algorithm is based on the Fast Decoupled Newton—Raphson algorithm
[139]. In this work, IPSA2 has been scripted using Python to apply a load profile, run a load
flow, and to extract the calculated voltages, power flow and electrical losses at all locations of

the network. This allows the full AC load flow calculation to be utilised during control
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algorithm decision making under uncertainty as described in Section 5.3, and for determining

the network state once that decision has been made as described in Section 5.4.

The modelling of the large city centre office building load is described in Section 5.2.2. The
model of the ESS is described in Section 5.2.3. The modelling of the solar PV generation is
described in Section 5.2.4. The model of both uncontrolled and controlled EV load is
described in Section 5.2.5. The value of the energy consumed within the urban microgrid is
described in Section 5.2.6.

5.2.1 Electrical network parameters

The electrical network model consists of a source supplying two transformers which in turn
supplies three cable feeders and the load of the microgrid. The source is described in Section
5.2.1.1, transformers in Section 5.2.1.2 and the cables in Section 5.2.1.3.

5.2.1.1 Grid connection
The grid connection is modelled as the slack bus with a fault level of 180 MVA, based on the

Corporation Street 11 kV incomer to Science Central, Newcastle-Upon-Tyne, UK [140].

5.2.1.2 Transformers
Both transformers are of the same type, as described in Table 5-1. A replacement 11/0.4 kV

1.4 MW transformer was assumed to cost £40,000 based on discussions with contacts within

industry.
Table 5-1 Transformer parameters in urban microgrid model
Rating Impedance Tap setting
HV (kV) LV (kV) X/R
(MVA) (Y)) (%)
11.0 0.433 1.4 0.11 6.33 -2.5
5.2.1.3 Cables

The cables within the model are as described in Table 5-2. The impedance parameters are
listed in Table 5-3 and based on the Universal Cable XLPE Cable Catalogue [141]. A
replacement cable was assumed to cost £75/m based on [142, 143].

82



Table 5-2 Cable types in urban microgrid model

Cable type Number of Cable length

From To
(mm?) cables (m)
Transformer Building 120 5 250
Transformer Solar 95 1 100
Transformer EV charging 300 5 100

Table 5-3 Cable parameters

Cable type : Resistance Reactance
Voltage (kV) Ampacity (A)

(mm?) (Q/km) (Q/km)

95 0.4 319 0.247 0.073

120 0.4 363 0.197 0.073

300 0.4 592 0.080 0.072

5.2.2 Large city centre office building

Load data was taken from the Newcastle University Business School for a single
representative day, 22 July 2013, and scaled to an average daily peak load of 750 kW. A
summer day is chosen in order to be consistent across the network and is required in order to
obtain a large uncertainty in solar generation. With regular repeat business operations based
on time of day, it was assumed that this load profile could be forecasted with small variations,
assumed to be within 5% of the load experienced on the representative day. The load for a
particular settlement period is determined by sampling a normal distribution assuming 3
standard deviations between the nominal forecast value and the largest variation expected.

Therefore 99.7% of all sampled values should fall within the modelled UI.

5.2.3 Energy storage

The ESS is assumed perfectly controllable with no uncertainty. It is appropriately sized such
that its power and energy constraints are sufficiently large (1.0 MVA, 5.0 MWh) to not place
additional constraints on the power set-points determined by the RO LP formulation
developed in Section 5.3. It is assumed the ESS is based on Vanadium Redox Flow
technology, where the half cycle degradation cost was assumed to be £12/MW over a 30
minute settlement period with a round trip efficiency of 80% based on [144-146].
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5.2.4 Solar PV generation

Assuming clear skies and a solar collector produces it’s rated power when the sun is directly
overhead, and that solar collectors are on average placed facing normal to the earth’s surface,
the maximum available power can be calculated using the cosine of the solar zenith angle, in
per unit on the system’s rated power. The solar zenith angle is the angle between the ray
normal to the earth’s surface at the point of interest and the ray that points directly at the sun
[147]. The minimum generation of a solar collector is always zero. Based on this analysis, the
nominal forecast value and largest variation expected around that forecast can be set equal to
one another and to half the maximum generation calculated by the solar zenith angle based on
time of day and time of the year. The load for a particular settlement period is determined by
sampling a normal distribution assuming 3 standard deviations between the nominal forecast
value and the largest variation expected. Therefore 99.7% of all sampled values should fall
within the modelled Ul.

5.2.5 Electric vehicle load

The smart charging EV car park is a VESS based on the analysis presented in Chapter 4
however the maximum and minimum power and energy bounds are considered uncertain and
an appropriate Ul is applied in this Chapter. Similar to the ESS described in Section 5.2.3, the
power and energy bounds of the VESS are such that they do not place additional constraints
on the power set-points determined by the RO LP formulation developed in Section 5.3. The
VESS parameters were based on li-ion technology [144-146] since this is used for the
majority of EVs [64-66, 75]. The degradation cost was applied only when discharging and
thus the full cycle degradation cost of £30/MW over a 30 minute settlement period was used.
The degradation cost associated with charging was assumed zero since the vehicles must
charge anyway. A round trip efficiency of 95% was assumed.

The uncontrolled standard charging EVs are based on the analysis presented in Section 3.4.1.
When considering the uncertainties associated with a 30-minute-ahead forecast, the developed
forecasting model is employed. When considering the uncertainties associated with day-ahead

forecasts, the longer term diurnal analysis uncertainty is applied.

The uncontrolled rapid charging EVs are based on the analysis presented in Section 3.4.2.
Since the time-step of 30 minutes used in this Chapter is longer than the 24 minutes identified
in Section 3.4.2 as that where the uncertainty can be reduced from the long term diurnal
analysis, the long term diurnal uncertainty is applied regardless of whether considering the

uncertainties associated with 30-minute-ahead or day-ahead forecasts.
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5.2.6 Value of energy
The value of energy was assumed at £45/MWh based on UK wholesale spot prices observed
during 2016-2017 [148].

5.3 Linear programming formulation

The general form of LP is discussed in Section 5.3.1, before Section 5.3.2 builds upon the
general form to create an uncertain LP problem. Section 5.3.3 then introduces the RO
technique which turns an uncertain LP problem into a certain LP problem such that it can be
solved deterministically. Turning the urban microgrid presented in Figure 5-2 into the form
required for LP is the subject of Section 5.3.4. Since the power system is non-linear, it is
important to use an appropriate network operating state when undertaking the linearization for
LP, which is discussed in Section 5.3.5. It is possible that the LP will experience infeasibility
and this is discussed in Section 5.3.6.

5.3.1 General form of linear programming
A LP problem can be generalised by (5.1 ) [54]. In this Thesis, the Python function
“scipy.optimize.linprog()” [149] was utilised to solve the LP problem once it was transformed

into a form described by (5.1).

min c'x
subject to:
Ax<b (5.1)
Dx =
l<x<u
Where:
c The vector of coefficients for the cost function
c The inverse of ¢
X The array of decision variables or control variables
A The matrix of constants for constraints
b The right hand side vector of constraints
D The matrix of coefficients for equality constraints
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e The right hand side vector of equality constraints
l The lower limit of decision variables
u The upper limit of decision variables

5.3.2 Uncertainty in the linear programming formulation
Uncertainty could exist in any part of the generalised LP form of ( 5.1 ), however the
uncertain LP problem can be simplified by transferring all the uncertain elements to be

described within the A matrix as shown below [54].

Through introducing an additional control variable, d = 1, the inequality constraints can be
reformulated as (5.2 ).

min c'x
subject to:

Ax—bd <0 (5.2)
x—ud<0
—-x+1ld<0

Therefore all inequality constraints can be represented by a new constraints coefficient matrix

described by ( 5.3).

A -b
A =| D, —u] (5.3)
-D, 1
Where D, is a diagonal matrix and for i = 1,2, ...,n,D;; = 1, D;j;-; = 0 as shown in (5.4).
1
p,=| 1 | (54)

The equality constraints of ( 5.1 ) can be reformulated as two inequality constraints as shown

in (5.5), allowing the equality constraints to also be included within the A" matrix.

—e<Dx<e (5.5)
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Uncertainty in control variables, x, can be transferred so the uncertainty is applied on the
appropriate coefficients within the A’ (described fully in Section 5.3.4.2) which allows the

control variable to be modelled certain within the formulation.

Therefore the generalised uncertain LP problem can described by ( 5.6 ) where the accent
character (~) stands for uncertainty.

min c¢'x

subject to: (56)

!
=
IA
o

In order to utilise RO, the uncertainty is described by a range within which the true value will
fall. This can easily be determined from historical data. Utilising a range of uncertainty is
beneficial in contrast to other uncertainty methods which would require a PDF and is difficult

to derive in reality. The uncertainty of each entry a;; € A can be described by (5.7).

aij—&ideijSaij+ﬁij (57)
Where:
a; The nominal value of one element within matrix A
aj The real value of a;;
a;; The maximum variation of a;;

5.3.3 Transformation into robust optimisation

RO is a process that transforms an uncertain LP problem into a certain LP problem such that
it can be solved deterministically, and the formulation used in this Thesis was proposed by
Bertsimas and Sims in 2004 [150]. The method introduces three additional control variables z,
p and y, and the BoU, I'. The value of BoU represents the number of uncertain coefficients
that the constraints are protected against, although its value does not need to be an integer.
The RO formulation is described by (5.8).
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min c¢'x

Z ainj + zil“ + ZPU < bi

J J€Ji

subject to

z; + pij 2 A5

VSN =Y (5.8)

For the remainder of this Thesis, the BoU will be normalised against the number of uncertain

coefficients and quoted in per unit terms, which is more intuitive.

When the BoU is at a value of 1.0, the RO formulation protects against the worst case of all
uncertainties which is very pessimistic. It is likely that there will be some diversity as to the
value of a;; relative to its maximum or minimum value, and thus a lower BoU than 1.0 can
achieve a high Probability of Success (PoS) in terms of maintaining the system within the set
constraints. The BoU can therefore allow the level of conservatism (and resulting cost of
failure to protect against the constraints) to be balanced against the cost of the formulation

objective function.

5.3.4 Modelling the urban microgrid as an uncertain linear programming problem

In order to utilise LP; the decision variables, constraints and optimisation objective function
must be defined for the urban microgrid. The decision variables are defined in Section 5.3.4.1.
The powerflow constraints and voltage constraints are defined in Section 5.3.4.2 and Section
5.3.4.3 respectively. The SoC management of the ESS and VESS are discussed in Section

5.3.4.4. The optimisation objective function is defined in Section 5.3.4.5.

88



5.3.4.1 Decision variables

In this formulation, all load and generation elements are considered a decision variable, within
an upper and lower bound set as a constraint. For the microgrid controllable elements, such as
ESS and the VESS, the upper and lower bound are set based upon the inverter power limits.
For non-controllable loads and generation, such as the large office building, solar PV and
uncontrolled EV charging, the upper and lower bounds are set at the nominal forecast value
expected.

An additional decision variable fixed with a value of 1.0 is also introduced, to enable network
calibration when considering the power flow, voltage and electrical loss sensitivity factors,

which are described in full in the following sections.

5.3.4.2 Power flow constraints

The power flow through each transformer and cable is dependent upon the network state of

load and generation. With the load and generation considered decision variables within a LP
optimisation, their impact upon the power flow through each component must be calculated

and included as a constraint.

Using scripted IPSA2, the nominal forecast value for all load and generation is applied to the
network and a load flow undertaken, providing the nominal forecast network state. The
influence of each decision variable against each cable and transformer is calculated through
undertaking two load flows for each decision variable; one with the load increased slightly
and one with the load decreased slightly. This results in the calculation of a power flow

sensitivity factor, as shown in (5.9).

_ 0S5, 5 g
Pap = P, (5.9)
Where:
Pap Power flow sensitivity factor between decision variable, d, and
branch (cable or transformer), b, KVA/KW
Sy Apparent power through the branch (cable or transformer), kVA
P, Real power of the decision variable, kW

The sensitivity factors allow the change in power flow through a transformer or cable to be
calculated based on a change in a decision variable however in order to compare to a
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transformer or cable power flow limit, it must be calibrated against the existing power flow

through the transformer or cable. The calibration values are calculated by (5.10).

R=S—¢'x (5.10)
Where:
R Array of calibration values, kVA
S Array of apparent power flow through each branch (cable or
transformer) for the nominal forecast network state, KVA
@' The inverse of the matrix of power flow sensitivity factors,
kVA/KW
x The array of decision variables, kW

The full AC load flow calculated by IPSAZ2 is a non-linear system, while the power flow
sensitivity factors are a linear approximation to the non-linear system. As a result the nominal
forecast network state and choices made regarding the controllable decision variables
influences the sensitivity factors, and thus the load and generation uncertainty causes
uncertainty in the sensitivity factors. The sensitivity factor uncertainty is assumed small
relative to the impact of the load uncertainty itself on causing a limit violation. To account for

this and rounding errors, a per unit derating is applied to each constraint.

By utilising the additional decision variable of 1.0 introduced in Section 5.3.4.1 in
combination with the calibration value, and the constraint derating factor to account for errors
during linearisation, the resulting power flow constraints for use in the LP optimisation are
shown in (5.11).

_ , X
VSiimie < 9 R[] | < VStmie (5.11)
Where:
Y Constraint derating value, per unit
Slimit Array of power flow limits, kVA
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0] The inverse of the matrix of power flow sensitivity factors,

kKVA/KW
R Array of calibration values, kVA
X Array of decision variables, kW

As discussed in Section 5.3.2, to ensure that the decision variables remain certain within the
optimisation, the load uncertainty with regard to causing a limit violation is transferred to the

sensitivity matrices. This is achieved through (5.12).

. PapXa
Pap = (5.12)
Xd
Where:
@ap Calculated power flow sensitivity factor between decision
variable, d, and branch, b.
Pan Maximum variation of ¢4,to model the maximum variation of
XqWithin the constraints matrix
Xq Maximum variation of x,
Xgq The nominal forecast value of the decision variable

5.3.4.3 Voltage constraints

The voltage constraints are modelled through voltage sensitivity factors, calculated and
implemented as constraints in the same way as described for the power flow constraints in
Section 5.3.4.2.

5.3.4.4 State of charge of energy storage and smart charging electric vehicles

The power set-point of both the ESS and VESS are controllable decision variables that are
time limited based on SoC. The subject of the study however is the level of conservatism to
use when determining how much power is required to appropriately protect against the load
and generation uncertainty. With this in mind and to reduce simulation time, only one time
step is considered in the LP formulation and therefore the optimisation does not take the SoC
into account when determining the power set-point. To ensure SoC feasibility, the energy
capacity of the ESS and VESS have been appropriately sized for their role within the urban
microgrid under test, and the ESS re-charges to 100% SoC during a period of the day when

the re-charging would not cause any power flow or voltage constraint violations.
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5.3.4.5 Optimisation objective function

The objective function is the minimisation of network operating costs, based on the cost
associated with each controllable decision variable as defined in ( 5.13 ). In order to achieve
an increase in the cost of ESS degradation regardless of whether the storage is charging or
discharging, a different cost function is required dependent upon charging or discharging. The

cost associated with uncontrollable decision variables is zero.

Charging:
T F
Ca = Dd + (Ktﬁdt + Keedt) + Z(Kf@df + Keedf)
t=0 f=0
(5.13)
Discharging:
T F
Cqa = _Dd + Z(Ktﬁdt + Keedt) + (Kfedf + Keedf)
t=0 f=0
Where:
Cq Network operating cost associated with the controllable
decision variable, d
Dy Degradation cost associated with using the controllable decision
variable, d
K Cost associated with replacing transformer, t
K¢ Cost associated with replacing cable, f
K, Value of energy
T Number of transformers in the network
F Number of cables in the network
Iar Loss of life sensitivity factor between transformer, t, and
controllable decision variable, d, % life/lkW
Oar Loss of life sensitivity factor between cable, f, and controllable
decision variable, d, % life/kW
Edt Electrical losses sensitivity factor between transformer, t, and

controllable decision variable, d, KWh/kW
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€af Electrical losses sensitivity factor between cable, f, and

controllable decision variable, d, kWh/kW

The storage degradation cost is assumed linear with real power exchange, however due to the
change in sign between charging and discharging, the degradation cost applied within the cost
function becomes non-linear. This is shown diagrammatically in Figure 5-3. For example if
the fully linear dotted line of Figure 5-3 were implemented in a linear programming
formulation targeting minimum cost, then the maximum possible ESS supply would be

returned; thus not minimising ESS usage and its associated degradation.

Positive cost to use ESS (£)

ESS supply (MW) ’ ESS demand (MW)
7 )
e %)
% i
’ 3
7 3
/
’ 2
7/ 17
’ 8
4 1]
Vs 2
z

=—— Cost function of ESS when demanding energy

= — ESS demand cost function extrapolated to
ESS supply region

—— Cost function of ESS when supplying energy

Figure 5-3 Non-linearity of ESS cost function

In the case of the VESS of smart charging EVs, charging is assumed to have no cost since the
vehicles need to charge anyway. If discharging, then a linear cost with real power exchange is
assumed to compensate for the additional charge-discharge cycles experienced.

Similar to the power flow sensitivity factors calculated by (5.9 ) the influence of each
decision variable against the electrical loss and loss of life of each cable and transformer is
calculated through undertaking two load flows for each decision variable; one with the load
increased slightly and one with the load decreased slightly. The electrical loss sensitivity

factor between each network component and each decision variable can be calculated directly
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from the results of the load flow. The loss of life for the cables and transformers however

must be estimated based on their loading as reported from the load flow.

The transformer loss of life is estimated based on the model proposed in IEEE standard
C57.91-1995 Guide for Loading Mineral-Oil-Immersed Transformers and Step-Voltage
Regulators [15]. The cable loss of life has been estimated based on [151] and plotting a linear
fit through the four values for estimated life and operating temperature. It is assumed that at
rated current the cable operates at 70°C and that the operating temperature is proportional to
per unit loading squared. The resulting relationship between cable loading and expected cable
life is shown in (5.14).

Ly = (oP;% + {ipr + G (5.14)
Where:
L¢ Life cable expectancy, years
Df Loading of the cable, f, per unit
G Coefficient constant, —32.854
4 Coefficient constant, 2.2737 x 10713
¢ Coefficient constant, 50.028

5.3.5 Appropriate network state for linearisation

In Section 5.3.4, sensitivity factors were introduced to linearize the problem, however due to
the non-linear system the sensitivity factors are dependent upon the operating point of the
network. It was identified in the literature that two methods exist to ensure that the sensitivity
factors used are appropriate for the network operating state; a piecewise approach [61], and an

iterative approach [62].

Using a piecewise approach requires a MILP solver, and a large number of constraints to
bound the piecewise steps. In contrast, an iterative method uses a simpler LP solver and
updates the linearised sensitivity factors based on the LP determined decision variables and
re-runs the optimisation, continuing until a pre-defined convergence criteria. It is the iterative

method that has been implemented within this Thesis.
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On the first iteration, it is not known if the degradation cost should be applied positive or
negative, because it is not known if the decision variable will be determined to be positive or
negative. Therefore on the first iteration no cost is applied within the cost function and a
viable starting network operating state within the constraints set is found. The cost function is
then populated with the appropriate sign for the degradation cost, and the decision variable
bounded as necessary, to minimise the network operating cost. It is possible however that
from one iteration to the next, the decision variable may need to cross the bound and the sign
of the degradation cost be swapped based on the new sensitivity factors. This happens for the
next iteration if the decision variable reaches the bound. The iterative process continues until
the sum of the absolute error between each decision variable on one iteration to the next is
below a pre-defined value, or until a maximum number of iterations. This pre-defined
stopping criteria was set as 0.001 MW multiplied by the number of controllable decision
variables. Similarly, the accuracy of the linear programming function was set at 0.001 MW,
and as such all decision variable results were rounded to this same accuracy. The iterative

process is summarised in Figure 5-4.
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Figure 5-4 Iterative method used to determine network operating state

The method used allows the formulation to determine for itself whether storage should charge

or discharge and to determine suitable sensitivity factors. This is a key improvement over and

above that proposed in [54] where the charge or discharge decision and the network operating

state for the calculation of sensitivity factors for each point in time was determined by

intelligent human interaction in advance of executing the RO algorithm.

A counter was used in the iterative method of Figure 5-4 to prevent the potential scenario of

non-convergence and entering an infinite loop. This was observed in two scenarios; including

reactive power as a controllable decision variable, and when the degradation element of the

controllable decision variable cost function was small relative to the cost of losses and

equipment replacement.
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When reactive power is included in the formulation as a controllable decision variable, its
apparent power flow sensitivity factor is lower than that of its real power controllable decision
variable. Assuming negligible cost to utilise reactive power since it does not impact battery
degradation, the apparent power flow cost sensitivity factor is negligible for utilising reactive
power while a cost is applied for utilising real power. This results in the LP formulation trying
to solve apparent power flow constraint violations using the reactive power decision variable.
When the feeder gets close to zero reactive power, without the apparent power close to its
constraint limit, the reactive power overshoots and changes its sign resulting in a change of
sign for the apparent power flow sensitivity factor. This causes the iterative method to
oscillate around zero reactive power through the feeder while never achieving the required
reduction in apparent power flow to meet the network constraint. The need to control reactive
power in LV distribution networks, such as the test network used in this Thesis and presented
in Section 5.2, is low due to the X/R ratios in such networks. Having said this, the algorithm
presented is general to voltage level where the need to control reactive power might be more
prevalent. Furthermore, LV microgrids could control reactive power flows at the point of

common coupling to provide ancillary services to their supplying distribution networks.

If the degradation cost of a controllable decision variable is negligible, for example when the
VESS demands real power, then the cost of electrical losses and equipment replacement in
relation to the decision variable dominates. The optimal operating point for a single feeder in
such a situation is on zero load. It is possible that progressive iterations result in the decision
variable overshooting the desired zero load operating state of the feeder, thus changing the
sign of the power flow sensitivity factor for the next iteration leading to non-convergence and

an infinite-loop.

5.3.6 Potential for problem infeasibility

It was found in testing that the LP solver could fail to calculate and return a flag indicating an
infeasible problem, even in networks that were provably feasible. Bland’s anti-cycling
algorithm [149] was tested due to the large number of zeros within the formulation after
conversion to RO, however the probability of calculation success and time taken did not
provide superior results over simply running the standard LP solver multiple times. To
achieve an appropriate balance between calculation time and high probability of returning a
feasible solution to a feasible problem, the solver was run multiple times as defined in Figure
5-5.
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Infeasibility was a particular problem when the nominal forecast network state had a feeder
on, or close to, no-load (observed in the test microgrid on the solar PV and VESS feeder). In
this situation the charging current of the cable means a significantly larger reactive power
than real power while calculating the apparent power flow sensitivity factors. The resulting
apparent power flow sensitivity factors suggest that a much larger real power is needed than
in reality to protect against the power flow constraints, which could be larger than the power
capability of the VESS at that point in the day and thus the problem appears infeasible.

If the problem was concluded to be infeasible during the studies then the ESS and VESS

power set-point was set to zero.
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Figure 5-5 Ensuring a high probability of the solver returning a feasible solution to a feasible
problem
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5.4 Determining the long term average cost of network operation

It was defined in Section 5.3 how the formulation determines the ESS and VESS power set-
point, where it was noted that the BoU controls the conservatism. Section 5.4.1 defines how
the cost of network operation has been modelled following the implementation of the power
set-points on the network for any particular point in time. Section 5.4.2 then defines the

probabilistic methods used to estimate the network operating cost over the longer term.

5.4.1 Cost model

The cost function presented in 5.3.4.5 is used, however it is calculated directly from a load
flow of the load and generation experienced rather than via a linear approximation of costs
around the nominal forecasted network state. In addition, cost is borne if the system fails to

protect the network from its power flow and voltage operational constraints.

If a network constraint is violated, it is recognised that customers downstream of that point
could have a service interruption during the period of the violation. In the case of the large
office building feeder and the uncontrolled EV charging feeders, this is quantified in this
Thesis from the viewpoint of the DNO in ( 5.15 ) as twice the value of the energy not
delivered; thus compensating both the upstream generator unable to sell their energy and the
downstream customer unable to purchase energy. In the case of the VESS and solar PV
feeder, this is quantified in ( 5.16 ) as the value of energy being consumed by the EVs plus the
value of the energy being exported by the solar PV system; thus compensating both customers
of that feeder.

Cload only feeder = 2Ke":Pload only feeder ( 5.15 )
Where:
Cload only feeder Cost of constraint violation on a load only feeder, £
K, Value of energy, £/kWh
T Time duration the constraint violation is experienced, hours
Pioad only feeder Real power load of the feeder, kW
Cload & generation feeder — KeT(lploadl + |Pgeneration|) ( 5.16 )
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Where:

Cload & generation feeder Cost of constraint violation on a feeder containing both load and

generation, £

K, Value of energy, £/kWh

T Time duration the constraint violation is experienced, hours
Pioaa Real power load on the feeder, kW

Pyeneration Real power generation on the feeder, KW

Each time step is based on a settlement period with a duration of 30 minutes. For each
modelled day, the following is calculated:

e The PoS of protecting against the network constraints

e The cost to utilise the ESS due to degradation

e The cost to utilise the VESS due to additional degradation over uncontrolled charging

e The cost associated with loss of life of transformers and cables

e The cost of electrical losses

e The cost of not delivering energy due to excursion of limits

e The total cost of operating the microgrid (the sum of all other costs).

5.4.2 Monte-carlo modelling

A sequential MCS has been used with the probabilistic load and generation distributions as
described in Section 5.2 to model the microgrid and the response given by the developed RO
formulation over a period of time. Although computationally expensive, MCS modelling
captures the complex interactions between the various PDFs and the non-linear response of
the electrical power system.

To ensure SoC feasibility, the ESS re-charges to 100% SoC between the hours of 00:00 and
06:00. During this time period charging the ESS is not expected to cause any power flow or
voltage constraint violations. At the start of the simulation, it is not known what the previous
day’s usage would have been and consequently the appropriate cost associated with re-
charging. Therefore, the simulation starts with 100% SoC and the first day, with an

unrepresentative low degradation cost, is discarded.

The accuracy of the MCS increases with the number of days being modelled, as does the
computational time. Therefore there is a trade-off between accuracy and calculation time. A
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study has been undertaken to quantify the accuracy and to determine the shortest acceptable

period of time to use for the studies in this Thesis.

Assuming the daily cost is normally distributed, Student’s T distribution was used to
determine the maximum error of the mean cost per day with a defined confidence interval. A
90% confidence interval was chosen as it corresponds to the qualitative term ‘almost certain’
[132]. The resulting relationship between results accuracy and time taken is shown in Figure
5-6.
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Number of days simulated

x Mean daily probability of success x Mean total daily operating cost * Simulation time

Figure 5-6 Maximum error and simulation time as the number of days simulated increases,
for a confidence interval of 90%

Based on Figure 5-6 an appropriate balance between simulation time and accuracy of result
was chosen as 30 simulated days. This suggests that the true mean value for PoS and total
daily cost over the long term are almost certain to be within 0.22% and 3.24% of the values

quoted in this Thesis respectively.

Following the decision regarding number of days to simulate, the load and generation
determined from the respective PDFs modelling them for 30 simulated days was saved, and
used for all other studies in this Thesis. This means that comparative studies can be compared
like for like against the same load and generation scenarios making it easier to draw

conclusions regarding the RO formulation performance.

5.5 Performance of robust optimisation under load and generation uncertainty
It was recognised in Section 5.3.4.2 that there are errors introduced through the linearization
methods used and a constraint derating value was implemented in the formulation to take

account of this and ensure 100% PosS is achievable. An investigation into the derating value
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required is presented in Section 5.5.1. It was also recognised in Section 5.3.3 and Section
5.4.1 that there is a balance between the cost of protecting the network against the adverse
impacts of uncertainty and the cost having failed to adequately protect the network, leading to
the idea of an Economically Optimal Probability of Success (EOP0S) achieved through
implementing an associated Economically Optimal Budget of Uncertainty (EOBoU). This is

investigated in Section 5.5.2.

Two different levels of uncertainty are considered; that associated with 30-minute-ahead
forecasts and that associated with day-ahead forecasts. When considering the uncertainty
associated with 30-minute-ahead, the Ul of uncontrolled EV charging is that determined using
the forecasting methodology developed in Section 3.4. When considering the uncertainty
associated with day-ahead forecasting, the Ul of uncontrolled EV charging is based on the
long term diurnal analysis within Section 3.4.

The network under test, shown in Figure 5-2, has four different constraints that could be
violated. Each of these constraints have been studied independently as well as all together,
and the isolation was achieved through changing network parameters as summarised in Table
5-4.

Table 5-4: Network parameters used to isolate each constraint

Large office VESS and

Transformer building Solar PV
feeder cable feeder cable
Source Number of Number of
- Numberin ~ 250m 120mm?  100m 95mm?
Description voltage . -
parallel cables in cables in
(pu)
parallel parallel
Power flow on the large
office building feeder 1.00 2 > 2
Under voltage on the large
office building feeder U 2 [ 2
Power flow on the VESS
and solar PV feeder 1.00 2 ! .
Power flow through the
11/0.4 kV transformer e . ! e
All constraints 1.00 1 5 1

5.5.1 Investigating the accuracy of AC power system linearization with sensitivity factors
The constraints de-rating value has been investigated in two scenarios:
e When there is uncertainty over future load and generation, assuming 30-minute-ahead

forecasts
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e When there is perfect knowledge of future load and generation, and thus no

uncertainty

When there is no uncertainty, the derating value is used to mitigate against rounding errors
within the LP solver and the accuracy of the iterative method’s stopping criteria. When the
load and generation uncertainty is modelled, the de-rating value is used to mitigate against the
uncertainty in sensitivity factors as well as rounding errors and the iterative method’s
stopping criteria. In this uncertain situation there is a choice of BoU. If the BoU is too low
then the derating value would be the parameter determining the robustness of the network
rather than the BoU while constraining the solution space of the optimisation potentially
resulting in a sub-optimal solution. If the BoU is too high then the over protection provided

might over compensate for an inadequate derating. During this study, a BoU of 0.5 was used.

The relationship between PoS and constraint derating value for both the uncertain and certain
cases is shown in Figure 5-7 for the power flow on the large office building feeder, Figure 5-8
for under voltage on the large office building feeder, Figure 5-9 for power flow on the VESS
and solar PV feeder, Figure 5-10 for power flow through the 11/0.4 kV transformer and
Figure 5-11 for when all constraints are included. The derating value required to achieve

100% PoS in all situations is summarised in Table 5-5.

For certain loads in Figure 5-7 to Figure 5-11, the PoS is lowest at a constraint derating of
1.00. This is caused by rounding errors within the LP solver and the accuracy of the iterative
method’s stopping criteria. As the constraint derating reduces, the probability of the algorithm
accuracy resulting in a constraint violation reduces and thus the PoS increases. In the case of
uncertain loads however, it is not known what the BoU needs to be. The BoU was set
intentionally high to ensure that 100% PosS is possible, however this could also result in the
BoU over compensating for an inadequate constraint derating. This can be seen in Figure 5-7
to Figure 5-11 where at a constraint derating of 1.00 the PoS is higher for uncertain loads than
certain loads in all cases. It was particularly visible in Figure 5-9 where the uncertain loads

have a 100% PoS regardless of constraint derating.
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Table 5-5 Summary of derating required to achieve 100% PoS

Description Certain loads  Uncertain loads
Power flow on the large office building feeder 0.992 0.960
Under voltage on the large office building feeder 0.994 0.980
Power flow on the VESS and solar PV feeder 0.990 1.000
Power flow through the 11/0.4 kV transformer 0.996 0.980
All constraints 0.984 0.990
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X
i
0.975 :,.
0.970
0.95 0.96 0.97 0.98 0.99 1.00
Constraint Derating (%)
----- - Uncertain loads  —%-— Certain loads

Figure 5-7 Relationship between probability of success and derating value for the power flow
constraint of the large office building feeder
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Figure 5-8 Relationship between PoS and derating value for the voltage constraint of the
large office building
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Figure 5-9 Relationship between PoS and derating value for the power flow constraint of the
VESS and solar PV feeder

1000 3%-2-%-3%%32% % 3%HKXH K- % X XK XXX
# i""'"’"-x- %
0.995 K-

0.990

—

—_—

o 0.985
0.980
0.975

0.970
0.95 0.96 0.97 0.98 0.99 1.00
Constraint Derating (%)

----- ¥ Uncertain loads  -—%-— Certain loads

Figure 5-10 Relationship between PoS and derating value for the power flow constraint of the
11/0.4 kV transformer

105



1.000 3%-3-26-26-2-3%-3-3-3-2-2-2-363-H2%%X-X-%X %

. R ae K
* * %%
0.995 x
x
0.990
- 0.985 X
[=]
(=
0.980
0.975
0.970
0.95 0.96 0.97 0.98 0.99 1.00
Constraint Derating (%)
----- - Uncertain loads  ——%-— Certain loads

Figure 5-11 Relationship between PoS and derating value for all the constraints

Based on Table 5-5 and Figure 5-7 to Figure 5-11, it is concluded that for the network under
test a derating value of 0.99 is required when there is no load uncertainty, and 0.98 when there
is load uncertainty. In both the certain and uncertain load cases only one study needed a
derating value lower than this to achieve 100% PoS, by a very small margin.

For the remainder of this Thesis, a derating value of 0.98 has been applied to all studies.

5.5.2 Determining the economically optimal probability of success of remaining within
power flow and voltage limits when deciding ESS and VESS power set points under
load and generation uncertainty

In this Section the trade-off between over utilising the ESS and VESS to mitigate the

uncertainty, and the cost of failing to protect the network adequately, is investigated. This has

been achieved by progressively changing the BoU and seeing the impact on network

operation and the associated costs.

When all network constraints are included in the formulation and the uncertainty is that
associated with 30-minute-ahead forecasts, the relationship between BoU and PoS is shown in
Figure 5-12, and the relationship between BoU and average daily total operational cost is
shown in Figure 5-13. As the BoU increases, the PoS increases also. Initially the increase in
BoU reduces overall cost since the cost in utilising the ESS and VESS is smaller than the
saving that is delivered through reduced violation of the network constraints. At a larger BoU
however, the increased over protection results in greater ESS and VESS procurement cost that

is not outweighed by the benefit in network reliability and thus overall costs increase.
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Figure 5-12 Relationship between BoU and PoS for all the constraints when using 30-minute-
ahead forecasts
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Figure 5-13 Relationship between BoU and total operational cost all the constraints when
using 30-minute-ahead forecasts

The resulting relationship between PoS and average daily total operational cost is shown in
Figure 5-14, alongside the relationship that would result from the formulation when
modelling the uncertainty associated with day-ahead forecasting. It can be seen that the PoS
with the lowest operational cost, the EOPoS, for the test network with all constraints included
is 0.985 when using 30-minute-ahead forecasts and 0.976 when using day-ahead forecasts.
The associated average daily network operating cost is £191/day when using 30-minute-ahead

forecasts and £185/day when using day-ahead forecasts. These values can be compared
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against the average daily network operating cost when the BoU is very large?, representing the
cost associated with taking a traditional worst case approach to mitigating uncertainty rather
than a risk based approach, of £272/day when using 30-minute-ahead forecasts and £456/day
when using day-ahead forecasts. Therefore the risk based approach has a cost 70.2%, and
40.6%, of the traditional worst case approach when using 30-minute-ahead, and day-ahead
forecasts, respectively. To achieve this cost reduction, a small increase in risk has been
accepted.

Similar studies for the isolated constraints are shown in Figure 5-15 for the power flow
through the large office building feeder, Figure 5-16 for the voltage at the large office
building, Figure 5-17 for the power flow through the VESS and solar PV feeder, and Figure
5-18 for the power flow through the 11/0.4 kV transformer. The EOPoS and average daily
network operating cost for both a risk based approach and traditional worst case approach are
summarised for 30-minute-ahead forecasts in Table 5-6 and for day-ahead forecasts in Table
5-7.

300
250 *Mx"k

*® x
200 R0k X
150

100

Average daily cost (£)

50

0
0.850 0.875 0.900 0.925 0.950 0.975 1.000

Probability of success (%)
x 30-minute-ahead forecasts x Day-ahead forecasts

Figure 5-14 Relationship between PoS and total operational cost for all the constraints when
using 30-minute-ahead and day-ahead forecasts

1 When all the constraints were included in the formulation, very large BoU values resulted in the formulation
displaying infeasibility issues which in turn resulted in an unacceptably low PoS to represent the traditional
worst case approach. A BoU value of 0.249 was used to estimate the cost associated with the traditional worst
case approach when all constraints were included in the formulation. For the scenarios where the constraints
were isolated, a BoU value of 0.990 was used to estimate the cost associated with the traditional worst case
approach.
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Figure 5-15 Relationship between PoS and total operational cost for the power flow
constraint of the large office building feeder when using 30-minute-ahead and day-ahead
forecasts

200 %

» x

x“*x:

150

X ot e i ﬂu“‘

100

50

Average daily cost (£)

0.900 0.925 0.950 0.975 1.000
Probability of success (%)

x 30-minute-ahead forecasts x Day-ahead forecasts

Figure 5-16 Relationship between PoS and total operational cost for the voltage constraint of
the large office building when using 30-minute-ahead and day-ahead forecasts
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Figure 5-17 Relationship between PoS and total operational cost for the power flow
constraint of the VESS and solar PV feeder when using 30-minute-ahead and day-ahead
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Figure 5-18 Relationship between PoS and total operational cost for the power flow
constraint of the 11/0.4 kV transformer when using 30-minute-ahead and day-ahead forecasts

110



Table 5-6 Summary of average daily network operating cost and EOPoS for using a risk
based approach and a traditional worst case approach, using 30-min-ahead forecasts

) Traditional
I?;Skrggif]d worst case

PP approach!
Power flow on the large
office building feeder 99.7 107.46 107.68 99.8
Under voltage on the large 98.3 116.84 125.71 92.9
office building feeder
Power flow on the VESS
and solar PV feeder 100.0 37.45 37.50 99.9
Power flow through the
11/0.4 kV transformer 9.0 95.27 306.36 81.1
All constraints 98.5 191.10 271.89 70.3

Table 5-7 Summary of average daily network operating cost and EOPoS for using a risk
based approach and a traditional worst case approach, using day-ahead forecasts

Risk based ug(rjsittig:sael

approach approach?
E;V,(V;;rtﬂf,’lvg,ﬁg fhe farge 99.9 10706 10841 98.8
offce buding feeder 987 11539 13654 5.1
d solar PV feeter 1000 3745 3750 9.9
11/0:4 v ransformer 901 9463 38684 245
All constraints 97.6 184.92 455.56 40.6
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It can be seen in Table 5-6 and Table 5-7 that in all scenarios tested the risk based approach
provides superior results with a lower network operating cost than using a traditional worst
case approach. It can be observed however that to achieve this lowest cost operating point
within the risk based approach, each constraint has its own EOPoS. When all the constraints
are included in a single optimisation, there is no differentiation between the PoS of one
constraint against another when deciding the EOPoS of the whole network and thus it may
result in a sub-optimal solution relative to splitting the network into multiple microgrids of
singular constraints all targeting their own EOP0S. Delivering an algorithm to optimise the
PoS of each individual constraint could be difficult since the flexible element could be
protecting against multiple constraints each with their own EOPoS, or each constraint could
be protected by multiple flexible elements. This is the subject of potential future research.

When considering the EOPoS of each constraint independently; the constraints can be split
into two distinct groups:
1. Constraints that the studies suggest should target 100% PoS
o The power flow of the large city centre office building feeder
o The power flow of the solar PV feeder
2. Constraints that the studies suggest should target a PoS less than 100%
o The voltage at the large city centre office building

o The power flow through the transformer

The uncertainty in power flow through the large office building feeder is almost entirely
influenced by the uncertainty in the load of the building and the uncertainty in power flow
through the solar PV feed is almost entirely influenced by the uncertainty in solar generation.
In comparison, the uncertainty in voltage at the large office building is dominated by the
uncertainty of the building load, but is influenced by all load and generation uncertainties
within the network. The uncertainty in power flow through the transformer is influenced by
the uncertainty in all load and generation within the test network. These results suggest that
when there is only one source of uncertainty there is little benefit in using the RO risk based
approach relative to traditional worst case methods. When there is a greater number of
uncertain load and generation sources then the studies suggest an EOPoS lower than 100%
results, with the risk based approach providing value.

The Ul associated with day-ahead forecasts is larger than the Ul associated with 30-minute-
ahead forecasts. This results in the network operating cost for traditional worst case being

larger for day-ahead forecasts than 30-minute-ahead forecasts. Despite this, the cost at the
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EOPoS within the risk based approach is very similar (within the confidence bounds specified
in Section 5.4.2) regardless of the forecast type, albeit at a different EOP0S. The studies
indicate that by using a risk based approach, at some PoS values the uncertainty associated
with day-ahead forecasts can result in lower network operating cost than when using the
uncertainty associated with 30-minute-ahead forecasts. Previous studies in the literature
suggested that rolling re-calculation with updated more accurate forecasts result in lower cost
[50]. The claim in the literature is supported in Figure 5-14 however, when all constraints are
modelled and operating at a high PoS; there is a clear benefit to using 30-minute-ahead
forecasts over day-ahead forecasts. When considering these insights, it should be remembered
that the ESS and VESS are time limited resources based on SoC. The ESS and VESS were
appropriately sized in the studies such that they always had sufficient SoC to deliver the
power set-point determined by the formulation. If this were not the case, then some
forecasting over a horizon longer than 30 minutes would likely be required to ensure the SoC

Is at an acceptable level.

At present, DNOs achieve a very high PoS because they are mandated to do so as a
requirement of their licence to operate [152], regardless of the cost that would apply for a loss
of load. When domestic customers are left without power during normal weather conditions
for more than 12 continuous hours, the customer can apply for compensation from the DNO
of £100 [153], equating to £19,770/MWh lost load assuming the average UK domestic load
[154]. No information has been found to quantify how many customers know they are entitled
to this compensation, and what percentage actually claim the compensation when they are
entitled to it. This makes it difficult to ascertain with confidence the true cost of lost load to

the DNO in the present regulatory environment.

The Value of Lost Load (VoLL) to the customer and wider economy has been estimated for
different load types as summarised in Table 5-8 [155]. There is significant uncertainty over
VoLL and UK government and regulatory decisions have used a figure of £16,940/MWh in
the past [155].

Table 5-8 Range of VoLL to the customer and wider economy [155]

Customer type Low VoLL (E/MWh) High Voll (E/MWh)
Domestic customers 700 59,000
SME customers 9,700 225,000
Larger commercial and industrial customers 423 12,336
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In this Section, the EOPoS was proposed based on a cost applied to the DNO when the power
flow or voltage exceeded their respective limits. The cost each time this happened was
£90/MWh based on twice the wholesale value of energy; thus compensating both the
generator and load customers. This value is substantially lower than both the estimates for

VoLL in Table 5-8 and the present cost to the DNO through compensation.

The EOPoS is determined through the BoU associated with the lowest total operational cost; a
combination of flexibility procurement cost, electrical losses, degradation of network assets
and the cost of lost load. The formulation developed achieves this lowest operational cost as
an alternative to traditional reinforcement which has a high capital cost. The developed
formulation should not be viewed as replacing traditional reinforcement altogether however.
Determining whether a smart solution or traditional reinforcement is the most economical will
depend on the reinforcement cost, the smart solution operational cost, the internal cost of

capital of the DNO and their required payback period for investment capital.

5.6 Chapter conclusions and contribution to knowledge

A RO formulation has been developed to determine ESS and VESS power set-points that can
effectively mitigate against load uncertainty, appropriately balancing the replacement costs of
network components (storage, transformers, cables) that can be degraded based on how they
are utilised.

The modelling environment employed has enabled an assessment of the errors introduced
through linearization of the problem via sensitivity factors calculated based on load flows of
the full AC power system equations. The errors have been quantified as up to 1.6% when
there is no load and generation uncertainty, and up to 4.0% when there is load and generation
uncertainty. To mitigate against the errors introduced and to allow the simpler linear
optimisation methods to be utilised on the non-linear power system, a constraint derating

factor has been proposed.

A methodology to determine the EOP0S has been proposed using the BoU variable within
RO. It has been shown that by using a risk based approach, a lower network operating cost
can be realised relative to using a traditional worst case approach; as low as 24.5% of the cost
associated with the traditional worst case approach. The benefit was seen as negligible when
there was only one source of uncertainty affecting a constraint, and significant benefit was
achieved when there are multiple sources of uncertainty affecting a constraint. It has also been

shown that different parts of a network can have a different EOPoS. At high PoS when
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multiple network constraints are considered, using the uncertainty associated with 30-minute-

ahead forecasts out performed using the uncertainty associated with day-ahead forecasts.
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Chapter 6 Discussion

6.1 Introduction

This Thesis has investigated ESS and EVs as a means of mitigating uncertainty in urban
microgrids in order to maintain safe operation within the distribution system voltage and
power flow constraints without needing to reinforce the network. Chapter 2 reviewed the
literature to find the state-of-the-art within the field and to inform the research direction. This
led to researching the impacts of uncontrolled EV charging and proposing a methodology to
forecast demand in Chapter 3, which is discussed further in Section 6.2 in relation to the
research presented in later chapters. The available flexibility of EV charging demand was
aggregated to form a VESS in Chapter 4 and is discussed further in Section 6.3. Chapter 4
also considered a VPP delivering frequency response services, and is discussed further in
Section 6.4 in relation to when a microgrid has power flow and voltage constraints limiting
the contribution each individual flexible asset can provide to the frequency response services,
similar to that studied in Chapter 5. Section 6.5 discusses further the benefits and drawbacks
of the various power system linearization techniques relative to the insights presented in
Chapter 5.

6.2 Uncontrolled electric vehicle charging

The technical impacts of uncontrolled EV charging presented in Section 3.2 and the
associated reinforcement cost presented in Section 3.3 were based upon domestic
uncontrolled charging. In the case of the technical impacts this was because the existing
industrial and commercial load is very business specific making it difficult to draw
generalizable conclusions. The reinforcement cost was based on domestic uncontrolled
charging to understand the cost that Ofgem would allow DNOs to recover from consumers
through the socialised Distribution Use of System (DUoS) charging mechanism. It is expected
however that significant charging will take place in public and work locations that were not
considered within the scope of the Chapter 3 methodology. There is little concern among
DNOs regarding the costs associated with non-domestic uncontrolled charging induced
network reinforcement, because such connection offers are made on a commercial basis and
thus the costs are recoverable. On this basis, the non-domestic charging business models are
expected to pass on the cost of network reinforcement, or reduced cost through smart
charging, to the consumer where appropriate. Therefore the consumer is expected to

ultimately determine the appropriate charge point rating and associated levels of network
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reinforcement and charging duration in the non-domestic setting through natural economic

market forces regarding which business models emerge as successful.

It was found in the literature surveyed in Chapter 2 that although a significant number of
consumers would be willing to partake in smart charging, not all would be willing [71].
Previous studies in the literature also found that forecasting uncontrolled charging is critical to
utilising the flexibility of smart EV charging [97], and thus Section 3.4 proposed a
methodology to forecast the uncertainty of uncontrolled EV charging load. The methodology
proposed is most accurate when the existing uncontrolled charging load is central to that
expected from long term diurnal analysis. When the existing uncontrolled charging load is on
the extremes of that expected from long term diurnal analysis, the methodology is
significantly less accurate and therefore there is scope for further research. The forecasting
methodology was utilised for standard charging in Chapter 5 when modelling the uncertainty
surrounding 30-minute-ahead forecasts, where it was shown that a higher network PoS could
be achieved for the same network operating cost relative to the uncertainty surrounding day-
ahead forecasts when all constraints are considered. Despite this, the day ahead uncertainty
for rapid uncontrolled EV charging was used because it was shown in Chapter 3 that when the
forecast horizon is greater than 24 minutes then the uncertainty surrounding uncontrolled
rapid EV charging cannot be improved relative to that calculated using long term diurnal
analysis. The higher the charge point rating, the shorter forecast horizon needs to be to gain
value from short-term forecasting uncontrolled EV charging relative to using the long term

diurnal analysis.

6.3 Flexibility of electric vehicle charging

In Chapter 4, a methodology was developed to utilise the flexibility of EV charging to
develop what appears to the grid as a VESS, allowing the EV flexibility to be optimised
relative to other power system flexibility such as ESS. It was shown that EVs can reliably be
called upon (~99%), in aggregate, to supply services to the electrical distribution network
while also ensuring that the vehicles have sufficient energy within them for their primary
purpose of transport by the time the energy is needed. There is a period of the day when there
is a limited loss of controllability when the numbers of vehicles becomes low, due to the
prioritisation of the vehicles need for energy over the grid request. This could be accepted as
part of the price to pay to leverage the high level of controllability during the majority of the
day, since without the guarantee of prioritising the EVs need for energy the number of

consumers willing to use the smart charging system would be reduced.
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The ability of the VESS to deliver a power request is dependent upon the SoC of each
individual vehicle and thus based upon the control algorithm and previous grid requests of the
algorithm. Therefore there is scope to improve upon the reliability of the VESS to deliver grid
power requests through forecasting future power requests and optimising the internal energy
management of the fleet. Having said this, optimising the VESS to improve reliability of
delivering power requests may increase the additional charge-discharge cycles imposed on
some vehicles causing an impact on battery degradation. Minimising degradation is not in
itself single vector. The objective could be to minimise the maximum degradation within any
one vehicle thus sharing the cost. Alternatively, the objective could be to minimise the total
degradation to minimise operational cost for the VESS operator. Investigation into these
multiple objectives and identification of the pareto front may inform the optimal business

model for a VESS, and is the subject of potential future research.

6.4 Delivering frequency response services

A methodology was developed in Chapter 4 to successfully deliver an EFR service through
utilising numerous flexible assets that individually would not have been able to deliver the
service. The methodology centred around maximising power availability through maintaining
a SoC as close to 50% as possible during normal operation, and when all assets are close to
their SoC limits then aiming for all assets to reach their limit at the same time. Through this
SoC management it was shown that only a small proportion of the available energy capacity
was utilised meaning that the power rating could be increased to maximise revenue, or energy
capacity reduced to minimise costs; both increasing profitability of the system. Having said
this, the methodology did not consider the relative cost of utilising the flexibility of one asset
relative to another when controlling the internal energy management and could be the subject
for potential future research. Including the cost to utilise a flexible asset within the control
could impact on the energy capacity required. A methodology could also be developed in
future research to optimise the extent to which the VPP system delivering an EFR service

tries to maximise power availability relative to minimising operational cost.

During Chapter 4, the EFR service was delivered from a VPP where there were no network
constraints limiting the available power flexibility that could be delivered from any one
flexible asset. In the future however, the flexibility could be embedded within a distribution
network with power flow and voltage constraints similar to that studied in Chapter 5. It was
observed in Chapter 5 that each constraint could be considered independently resulting in an
understanding that the EFR service could be split between multiple flexible assets; some able

to demand additional power but not supply, while others are able to supply additional power
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but not demand. Through intelligent coordination, a full frequency response service could be
provided to the wider network from within a constrained microgrid and is the subject of
potential future research. This would increase the number of flexible assets able to partake in
frequency response services increasing competition and reducing costs for the TSO while
concurrently adding an additional layer of potential revenues for the flexible asset operator

helping their business case as an alternative to network reinforcement.

These ideas can be discussed further by taking the microgrid under test in Chapter 5 as an
example. At the times when there are no constraint limitations both the ESS and VESS of
smart charging EVs could deliver the full EFR service. When the feeder supplying the large
city centre office building is constrained by power flow or voltage limitations the ESS is
required to supply a minimum amount of real power generation to the network, and thus could
supply a greater amount of real power generation for frequency response. In contrast, when
the feeder supplying the solar PV system is constrained by power flow, the VESS is required
to demand a minimum amount of real power load, and thus could demand a greater amount of
real power load for frequency response. Together, despite these limitations, the ESS and
VESS could work together to provide a full EFR service. The microgrid under test in Chapter
5 however has one further limitation of the power flow through the transformer when in N-1
condition; in this situation the microgrid would have times when the full EFR service could
not be provided to the wider macrogrid, and another microgrid elsewhere within the network
would need to work collaboratively in a similar manner. Such a system of constrained

frequency response would rely on the diversity of flexibility availability.

6.5 Linearisation of the power system

The linearization of the power system allows the use of deterministic optimisation algorithms
such as LP and can be transformed through RO to operate effectively under uncertainty. It
was noted in the literature that through utilising a DC load flow within the linear optimisation
could result in power flow and voltage constraint violations when modelled on the AC system
[60], with errors up to 4.46% [93]. It has been shown in this Thesis however that linearization
through calculating power flow and voltage sensitivity factors based on the full AC power
system equations can display reduced linearization errors. Without load and generation
uncertainty the maximum error observed was 1.6% and with load and generation uncertainty
the maximum error observed was 4.0%. Furthermore, by basing the linearization on the full
AC power system equations instead of a DC load flow enables the sensitivity factors to be
calculated for both real and reactive power relative to the voltage and apparent power flow

through each part of the network. In theory, this should mean that reactive power could be
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implemented as a decision variable within the uncertain deterministic optimisation
methodology as well as real power. Since reactive power does not impact upon the
degradation of an ESS battery, its use to solve a network constraint violation could be more
cost effective than utilising real power. It was found during development of the formulation
used in this Thesis that reactive power as a decision variable within an iterative method, to
ensure representative sensitivity factors are used, could become unstable and result in non-
convergence. This issue could be mitigated by using a more complex MILP solver and a
piecewise approach similar to that proposed in [61] where load and generation certainty was
assumed. The transformation to RO to account for load and generation uncertainty vastly
increases the number of decision variables and constraints and implementing this within a

MILP solver is the subject for potential future research.

The non-convergence when using reactive power as a decision variable was caused because
the cost function assumed zero cost to utilising the reactive power. Regardless of the
magnitude of the real power decision variable to apparent power flow sensitivity factor
relative to the reactive power decision variable to apparent power flow sensitivity factor, the
cost function meant the LP always utilised the reactive power. This was unable to achieve the
required reduction in apparent power flow resulting in the non-convergence. There are two
potential modifications that could prevent this situation while still using a LP solver. One
option is to implement a cost to utilise the reactive power; small enough to be representative
to ensure an optimal solution is achievable, yet large enough that a real power decision
variable is used when it is more appropriate. Another option is to consider the results of
Chapter 5 in that each network constraint could be considered independently to achieve its
own EOPoS. In this situation, it would be an easier task to intelligently select the appropriate
decision variable for a particular network constraint; generally a real power decision variable
for an apparent power flow constraint, and a reactive power decision variable for a voltage

constraint. Exploring these ideas is the subject of potential future research.
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Chapter 7 Conclusions and future work

7.1 Overview

A literature review was undertaken in Chapter 2 to find the state-of-the-art within the field of
urban microgirds and EV charging. From this, Chapter 3 considered the technical and
economic impacts of uncontrolled EV charging, and developed a methodology to forecast
uncontrolled EV charging load. Chapter 4 developed a methodology to aggregate a number of
smart charging EVs into a VESS, which was then utilised with other flexible loads within a
VPP to deliver an EFR service to the wider grid. In Chapter 5, an algorithm was developed to
utilise flexible loads to mitigate uncertainty within the power system and prevent, with
economically optimal probability, power flow and voltage limits from being exceeded.

Finally, all chapters were compared, contrasted and discussed in Chapter 6.

The specific conclusions and contributions to knowledge from the research are listed in

Section 7.2, and the areas of potential future research are listed in Section 7.3.

7.2 Conclusions and contributions to knowledge
e A study has been undertaken to quantify the EV penetrations that would result in
domestic distribution networks exceeding statutory power flow, under voltage and
voltage unbalance limits. It was found that:

o Transformer power flow limits in a heavily loaded generic network are
expected to be exceeded when EV penetration reaches 40%

o Average load is within the power flow limits of the transformer within a
heavily loaded generic network even at 100% penetration, suggesting ESS or
smart charging could be an alternative solution to transformer reinforcement

o Under voltage limits are not expected to be exceeded even when EV
penetration reaches 100% in a heavily loaded generic network

o Voltage unbalance limits are expected to be exceeded when EV penetration
reaches 60% in a heavily loaded generic network

e A study has been undertaken to estimate the expected network reinforcement cost that
Ofgem would allow DNOs to recover from consumers under a largescale uptake
scenario. Total present value costs are expected to be within the range:

o £19.55bn - £22.48bn to 2030, assuming 8.2m EVs by 2030

o £60.81bn - £74.27bn to 2040, assuming 31.1m EVs by 2040
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A methodology has been developed to forecast future uncontrolled EV charging load
and the uncertainty surrounding that forecast, based on the ‘here and now’
uncontrolled EV charging load experienced on the network. Using the methodology
and historical charging probability distribution functions of early adopters, it was
found that the Ul could be reduced relative to that developed from long term diurnal
analysis by looking ahead no more than:

o 1.5 hours for standard charging of 750 EVs per day

o 24 minutes for rapid charging of 100 EVs per day

A methodology has been developed to aggregate a number of smart charging EVs to
form a VESS able to deliver services to the distribution network with a high degree of
controllability (~99% for the two power request profiles under test), while also
guaranteeing the EV's with the energy they need by the time it is needed for their
primary objective of transportation.

A methodology has been developed to combine any number of flexible loads and
through effective energy management coordination maximise their individual power
availability to deliver an EFR service to the macrogrid. Through utilising the
algorithm and an example based on Newcastle Science Central, it was shown that
storage capacities could be reduced minimising initial capital cost or power ratings
increased maximising potential EFR revenues, relative to the flexible loads operating
in isolation from one another.

A RO formulation has been developed to calculate the power set-point that an ESS
and VESS should operate at in order to protect a microgrid from power flow and
voltage limit violations caused through load and generation uncertainty. Using this
formulation, a specific LV test network and associated load and generation profiles:

o The errors introduced through linearization of the power system via sensitivity
factors calculated based on load flows of the full AC power system equations
were calculated as:

= Up to 1.6% when there is no load and generation uncertainty
= Up to 4.0% when there is load and generation uncertainty

o A lower network operating cost can be realised by taking a risk based approach
relative to using a traditional worst case approach. The benefit was larger when
there were multiple sources of uncertainty impacting upon a constraint. The
greatest benefit found was:

= The risk based approach costing 31.1% of the traditional worst case

approach cost, when using 30-minute-ahead forecasts
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= The risk based approach costing 24.5% of the traditional worst case
approach cost, when using day-ahead forecasts
o A methodology was developed to determine the EOP0S, where it was shown
through the studies that different parts of a network can have different EOPoS.
o At high PoS when multiple network constraints are considered, using the
uncertainty associated with 30-minute-ahead forecasts out performed using the

uncertainty associated with day-ahead forecasts.

7.3 Areas of potential future research
e Improve the ability to forecast uncontrolled EV charging:

o When the existing charging load is not close to the centre of the long term
diurnal Ul.

o When the numbers of EVs charging per day changes and consequently there
are different levels of diversity to that studied in this Thesis

e Investigate the multiple objectives that the internal energy management of a VESS of
smart charging EVs could be optimised for, and investigate the viability of potential
business models for each point on the pareto front.

e Develop new control algorithms to improve the coordination of flexible loads to
deliver EFR services to the macrogrid:

o Include the individual flexible load procurement cost within the formulation,
and investigate the impact this has on reduced power availability and resulting
revenue generation.

o Develop algorithms that allow multiple sources of flexibility, all constrained
through power flow and voltage limits within a microgrid, to deliver an EFR
service through intelligent coordination.

¢ Investigate RO formulations to calculate ESS and VESS power set-points further:

o Investigate how a RO formulation could be implemented within a MILP solver
to improve reliability of solution convergence and to enable the use of reactive
power decision variables

o Investigate the potential to split the problem into numerous sub-problems,
despite the potential for multiple sources of flexibility that could apply to each
constraint, and for multiple constraints that could apply to each source of
flexibility:

= To allow appropriate decision variables to be intelligently selected for a

particular constraint
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= To allow each constraint to target its own EOP0S
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Appendix A Images of PSCAD model used in Chapter 3

Screen shots of the PSCAD model used in Chapter 3 are shown in Appendix Figure A-1,
Appendix Figure A-2, Appendix Figure A-3 and Appendix Figure A-4.

R4 PSCAD Student - [GenMGMorteCarloLoads: Main] [E=SIECS ]
Ed File Edit View Build Window Help L

DFEd S sl o @ ~[NHOC-O- ™ @
WS ®® @ B G000 f 5| certans - —wm kb Mo E S LTSRS

Nfrocooodd | W BEOEREY Q-

ox
. i! master (M
a1 [ Vasisblel - >
4§ Windam i B
4.3 VSCTian R N e s
4§ nibian I . i
-5 118_bus i 1 At T
4§ PROTEC P -
5 6 GerhGh ol 5 d
24 1M e -
5 B Detri gl gD~ Eagan
+—O¢ 1 -t — -
VAR P
e 4 o] . vl vepal
»
r s el e i ey :
T— . 5 ooy ey
g i L SER TEEE Tmn |
B e O s
i b 2 RRRA bl
> -d
2 { ¥ %
povps
T
TITTT [ % cueun [TF Grootic 18 Porameters 110 1M Foran 1[@) Owa |

31 Ab VoriableLoad _ib *

%[ @ 4 master Master Library’
31 A Windform- 20111220-ightring *

“% u; g Rurtime I—Q T |

Appendix Figure A-1 PSCAD model 33/11 kV transformers, 11 kV lumped loads and link to
the model shown in Appendix Figure A-2
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Appendix B Frequency domain IPSA2 results associated with the
PSCAD analysis presented in Chapter 3

This appendix reproduces the frequency domain IPSA2 results that were referred to in the
PSCAD analysis of the impact of uncontrolled EV charging on distribution networks
presented in Chapter 3. These figures were produced by others in the development of the

journal paper co-authored by the author of this Thesis [16].

Appendix Figure B-1 displays the convergence of the MCS simulation, giving justification of
the 1000 simulated days used in Chapter 3, using the urban test network with an EV
penetration of 60%.

Appendix Figure B-2 displays the demand on the 11/0.4 kV transformer, as calculated in
IPSA2, for a number of EV penetrations. This result gives justification for focusing on the
worst case period 17:00-05:00 in the PSCAD analysis of Chapter 3.

Appendix Table B-1 displays the voltage drops calculated by IPSA2 for the generic network

for a number of EV penetrations.
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Appendix Figure B-1 Convergence of the MCS with number of simulated days, for 60% EV
penetration on the urban test network. The average values (blue curve) and standard error
(red curve) of the apparent power on the transformer under study.
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Appendix Figure B-2 Test day critical demand for the generic network, using IPSA2
calculation

Appendix Table B-1 Maximum voltage changes in the generic LV network (negative is a
voltage drop), using IPSA2 calculation

Lowest voltage 15% EVs 30% EVs 60% EVs

AV —Mean -1.58% -1.64% -1.73%
AV —Max -2.67% -2.79% -3.02%
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Appendix C  MATLAB Simulink model of Newcastle Science Central

and associated control for Section 4.5

Screen shots of the MATLAB Simulink model used in Section 4.5 are shown in Appendix
Figure C-1, Appendix Figure C-2, Appendix Figure C-3, Appendix Figure C-4, Appendix
Figure C-5 and Appendix Figure C-6.
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Appendix Figure C-1 MATLAB Simulink model of the Newcastle Science Central electrical
distribution system
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Appendix Figure C-3 MATLAB Simulink target SoC calculation
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