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Abstract 

Landslides are one of the most commonly occurring natural disasters that can cause a 

serious threat to human life and society, in addition to significant economic loss. 

Investigation and monitoring of landslides are important tasks in geotechnical 

engineering in order to mitigate the hazards created by such phenomena. However, 

current geomatics approaches used for precise landslide monitoring are largely 

inappropriate for initial assessment by an engineer over small areas due to the labour-

intensive and costly methods often adopted. Therefore, the development of a cost-

effective landslide monitoring system for real-time on-site investigation is essential to aid 

initial geotechnical interpretation and assessment. 

In this research, close-range photogrammetric techniques using imagery from a mobile 

device camera (e.g. a modern smartphone) were investigated as a low-cost, non-contact 

monitoring approach to on-site landslide investigation. The developed system was 

implemented on a mobile platform with cloud computing technology to enable the 

potential for real-time processing. The system comprised the front-end service of a mobile 

application controlled by the operator and a back-end service employed for 

photogrammetric measurement and landslide monitoring analysis. In terms of the back-

end service, Structure-from-Motion (SfM) photogrammetry was implemented to provide 

fully-automated processing to offer user-friendliness to non-experts. This was integrated 

with developed functions that were used to enhance the processing performance and 

deliver appropriate photogrammetric results for assessing landslide deformations. In 

order to implement this system with a real-time response, the cloud-based system required 

data transfer using Internet services via a modern 4G/5G network. Furthermore, the 

relationship between the number of images and image size was investigated to optimize 

data processing.  

The potential of the developed system for monitoring landslides was investigated at two 

different real-world UK sites, comprising a natural earth-flow landslide and coastal cliff 

erosion. These investigations demonstrated that the cloud-based photogrammetric 

measurement system was capable of providing three-dimensional results to sub-

decimeter-level accuracy. The results of the initial assessments for on-site investigation 

could be effectively presented on the mobile device through visualisation and/or 

statistical quantification of the landslide changes at a local-scale. 
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Chapter 1. Introduction 

 

 

 

 

 

1.1 Overview 

Landslides are generally found to be one of the most common environmental disasters 

occurring in natural terrain and man-made slopes (Davies, 2015). Landslides can have a 

disastrous effect on infrastructure, buildings and facilities, causing a serious threat to 

human life, economic loss, and society (Lee and Jones, 2004; Regmi et al., 2015). The 

assessment and monitoring of landslide hazards therefore plays an important role in the 

mitigation of damage to humans, society and the environment (Koizumi et al., 2013). 

Furthermore, the development of landslide monitoring systems may also help to enhance 

understanding of landslide behaviour. Thus, the investigation of landslide hazards should 

be undertaken appropriately and regularly. In particular, the monitoring and inspection in 

early-stage ground movements are essential for reducing the risk of landslides (Sassa et 

al., 2007). For example, the investigation of landslide movements by geologists and 

geotechnical engineers adopts different approaches ranging from simple, traditional 

methods to professional technologies, depending on the monitoring purposes and 

financial costs. However, current geomatics approaches used for precise landslide 

monitoring are somewhat inappropriate for initial assessment by an engineer over small 

areas due to the labour-intensive and costly methods often adopted (Niethammer et al., 

2012). Therefore, the development of a cost-effective landslide monitoring system for 

real-time on-site investigation is desirable in order to aid initial geotechnical 

interpretation and assessment of landslide phenomena. 
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With regard to using conventional geomatics approaches for ground-based landslide 

monitoring, the following problems are identified in their adoption for initial on-site 

assessment: 

1. High financial-cost of equipment and maintenance for surveying (Travelletti et 

al., 2012); 

2. Non-friendliness in operations (Piermattei et al., 2015); 

3. Requirement for data processing and analysis by experts (Teza et al., 2007); 

4. Difficulties in managing and processing of data in the field (James and Robson, 

2012); 

Due to the increasing development of mobile device technology, high-resolution digital 

cameras can be employed to potentially offer a cost-effective photogrammetric solution 

(Wang, 2013). In particular, close-range photogrammetric techniques using images from 

a mobile device camera (e.g. a modern smartphone) is proposed for a low-cost, non-

contact monitoring approach in terms of implementation, operation and equipment for 

landslide investigation. Furthermore, the development of the Internet of things (IoT), 

including Internet services and cloud computing technology, plays an increasingly 

important role in implementing and deploying near-real-time processing in 

geoinformatics applications on mobile platforms (Lee and Kang, 2013). Such 

developments could lead to a low-cost, real-time photogrammetric solution for in-situ 

landslide monitoring using a mobile device. 

This research therefore focuses on exploiting modern smart phone technology to develop 

a photogrammetric measurement system for real-time monitoring of landslides. The 

development of the mobile platform-based photogrammetric services is implemented 

using cloud-based computing technology to offer the potential for the development of a 

real-time on-site measurement system. The study involves analytical processes in order 

to obtain temporal change information for landslides. The developed functionality of the 

system is utilised to facilitate the photogrammetric processing and landslide monitoring 

analysis through a mobile application for non-experts. Validation is performed at two 

existing test sites to prove the efficiency of the developed system.   
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1.2 Research problem and background of landslide monitoring 

1.2.1 Definition and potential problems 

Landslide monitoring involves the acquisition of information on an unstable slope and 

the utilization of the observations to assess its condition and the active processes that 

might result in failure of the slope. The development of landslide monitoring is essential 

to retrieve critical information underlying slope failure. However, landslides are usually 

associated with various natural phenomena and are complex. To minimise the impact of 

potential landslide hazards through monitoring, it is essential to study the behaviour and 

destructive intensity of a landslide, which is mainly related to kinetic parameters such as 

velocity and acceleration. 

Landslide instrumentation and monitoring have been increasingly developed based on 

both geotechnical/geophysical and geomatics techniques (Kapeller et al., 2013). 

However, each method of landslide monitoring has inherent advantages and 

disadvantages that should be considered to develop an appropriate landslide monitoring 

system for on-site investigation. In particular, both geotechnical and geophysical 

investigations are well-established and offer effective acquisition of sub-surface 

information (Uhlemann et al., 2016). However, despite being suitable for landslide 

monitoring, limitations include the discrete character of observations and restricted 

spatial coverage. Furthermore, the establishment of geotechnical and geophysical 

monitoring systems can be labour-intensive, invasive and not always cost-effective 

(Miller et al., 2012). 

In landslide risk assessment, surface observations using geomatics techniques can play 

an important role in providing topographic information for landslide monitoring. 

However, the applicability of geomatics techniques in ground-based landslide monitoring 

has its own limitations, especially the high financial costs traditionally associated with 

instrumentation, operation and maintenance. Moreover, processing in the field is difficult 

to manage, and therefore these techniques are generally not suitable for real-time, on-site 

investigations of landslide monitoring. To reduce the risk of landslide hazards, the 

development of an appropriate monitoring system for real-time, on-site investigation is 

important to help initial geotechnical interpretation and assessment. 
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1.2.2 Motivation for study 

In terms of landslide monitoring applications, most ground-based geomatics approaches 

are primarily targeted at highly precise measurement. Due to the often labour-intensive, 

time-consuming and costly methods adopted, these approaches are inappropriate for the 

initial assessment of on-site investigations, especially in the case of small landslides. 

Considering the destructive impacts of landslide hazards, the monitoring of small areas 

should be undertaken appropriately and regularly. For the initial assessment of landslide 

processes, a close-range photogrammetric technique can be used for landslide monitoring 

as it is a lower cost approach in terms of implementation, operation and equipment 

(Travelletti et al., 2012). The huge demand for spatial information on the kinematics of 

landslides in order to be used for the assessment of landslide processes in real-time is 

noticeably increasing. However, the adoption of a close-range photogrammetric system 

for on-site investigation is still difficult because it necessitates management of a large 

amount of data in real-time.  

The development of advanced technologies in recent years have become more important 

for data acquisition in landslide monitoring applications. Mobile devices can now be 

employed to provide information from the field because they have many useful sensors 

for in-situ observations. Thus, this research attempts to develop a cost-effective 

photogrammetric measurement system for a real-time, in-situ landslide monitoring based 

on a mobile device platform.  

1.3 Aim and objectives 

This research aims to exploit mobile device and other modern information and 

communication technology (ICT) in order to develop a photogrammetric measurement 

and monitoring solution for real-time slope stability hazard analysis. To achieve this aim, 

the objectives of the research are: 

1. To investigate the potential of commonly used approaches and technologies in 

landslide monitoring and to propose the basic requirements of a low-cost 

photogrammetric solution for initial landslide assessment during on-site investigations by 

non-photogrammetrists; 
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2. Building on objective 1, to develop the mobile platform-based photogrammetric 

services associated with cloud-based computing technology for the provision of real-time 

slope monitoring information; 

3. To exploit the photogrammetric results by developing appropriate functionality to 

assess landslide temporal change directly using a mobile device; 

4. To ensure the accuracy and reliability of the results and the capabilities of the low cost 

sensors found on common mobile devices for landslide monitoring applications by 

validating the developed system at real-world test sites; 

1.4 Research scope 

System development of an in-situ landslide monitoring was based on a low-cost solution 

in terms of implementation and operation. System implementation has therefore utilised 

only off-the-shelf software and tools. Firstly, close-range photogrammetry has offered a 

flexible, low-cost approach to monitoring. Secondly, affordable mobile devices (such as 

tablets, smart phones) with built-in digital cameras provided a cost-effective instrument 

for image acquisition. The user can also employ the operation of the system through this 

mobile device. Thirdly, the low-cost photogrammetric processing solution was based only 

on free-software. Furthermore, the development of the system has been implemented with 

other free or open source software packages, such as that for camera calibration and point 

cloud processing. Finally, the use of cloud-computing services, such as the cloud-based 

server, cloud storage, etc., were implemented to facilitate development. 
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1.5 Thesis structure 

Chapter 1 has provided an overview of the thesis and presented the aim and objectives of 

this research. 

Chapter 2 reviews the background of landslide hazards and reviews the capability of 

different approaches for landslide monitoring, which subsequently informs the design and 

development of a low-cost, real-time landslide monitoring system. 

Chapter 3 presents the close-range photogrammetric methodologies adopted for on-site 

investigation of landslide hazard analysis. The details of the development and 

implementation of a mobile platform-based landslide monitoring system are reported in 

this chapter. 

Chapter 4 reports the inspection of the system developed on the cloud and performance 

evaluation of functions employed for improved photogrammetric processing and 

landslide monitoring analysis. 

Chapter 5 involves the real-world testing and assessment of the developed system by 

monitoring at existing sites comprising different types of landslide hazard. 

Chapter 6 discusses the suitability of the system adopted for in-situ landslide monitoring 

based on the findings, which are reported in Chapters 4 and 5. 

Chapter 7 summarises the studies undertaken and presents the contributions and potential 

future work in this research. 
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Chapter 2. Techniques for landslide monitoring 

 

 

 

 

 

 

2.1 Introduction 

Advanced technologies have been developed in various ways in recent years for 

application to the monitoring and inspection of landslide hazards. The capability of each 

technique for landslide monitoring is discussed in this chapter. Taking into consideration 

measurement methods in the investigation of landslide hazards, the results of a review of 

these approaches is utilised for the design and development of a low-cost, real-time 

landslide monitoring system in this research. 

2.2 Landslide hazards and landslide monitoring  

Climate change is a global issue and is one of the leading factors influencing natural 

disasters (Datar et al., 2013). At present, natural disasters are also increasing in terms of 

frequency, complexity and destructive capacity (Sassa et al., 2007). Climate change also 

leads to many types of severe natural disaster, such as floods, drought, heavy storms, 

earthquakes and landslides. Among the many forms of natural disaster, landslides are one 

of the most common, causing a serious threat to human life and economic losses to 

society. Therefore, reducing the risk of landslides is an important consideration in 

preparing capability for disaster mitigation. 
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A landslide is defined as “the movement of rock, debris or earth down a slope” (Lee and 

Jones, 2004). Occurrences of landslides usually result from both internal and external 

factors which can cause changes in their physical mechanisms. External factors 

influencing the stability of slopes are mainly triggered by rainfall or earthquakes, whereas 

sub-surface conditions of physical components and ground water levels are the primary 

internal factors (Scaioni, 2015). However, landslides are associated with various natural 

phenomena and are highly complex. To minimise the impact of landslide hazards through 

monitoring, it is essential to study the behaviour and destructive intensity of a landslide, 

which is mainly related to kinetic parameters such as velocity and acceleration.  

Typically, landslide occurrences can cause a variety of behaviour. Landslides are usually 

classified in terms of both movement and materials. The type of material involved is 

described by the addition of an adjective in front of the landslide category, while landslide 

movement can be classified in terms of the displacement rate of material, as indicated in 

Table 2-1. Descriptions of each landslide type are shown in Table 2-2.  

Table 2-1: Types of landslide in different velocity classes (Cruden and Lan, 2015). 

Class Movement rate Velocity 
7 Extremely rapid >5 m/sec 
6 Very rapid 3 m/min 
5 Rapid 1.8 m/hr 
4 Moderate 3 m/week 
3 Slow 1.6 m/year 
2 Very slow 16 mm/year 
1 Extremely slow <16 mm/year 

Table 2-2: Types of landslide activity (Cruden and Lan, 2015). 

State of 
activity 

Style of 
activity 

Rate of 
movement 

Material Type 

Preparatory Complex Extremely rapid Rock Fall 
Marginal Composite Very rapid Soil: Debris Topple 
Active Multiple Rapid Earth Slide 
Reactivated Successive Moderate Sand Spread 
Suspended Single Slow Silt Flow 
Inactive  Very slow Clay  
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The deformation monitoring of an active landslide can help to display a general failure 

and movement (Figure 2-1). Due to pre-failure movement in landslides, the monitoring 

of small displacements can help in reducing the risk of damage from a landslide occurring 

(Lee and Jones, 2004).  

 

Figure 2-1: Illustration of slope movement in the pre-failure stage (Sassa et al., 2007). 

Both the behaviour and type of landslides are taken into consideration in the design of 

landslide monitoring systems and to represent the limitations of each monitoring 

approach. The design of an appropriate landslide monitoring system is related to four 

factors (Travelletti et al., 2012) :  

 Landslide type and size;  

 The range of observed velocity;  

 The required frequency of data acquisition;  

 The desired accuracy and the financial constraints; 

Landslide instrumentation and monitoring are generally developed based on both 

geotechnical/geophysical techniques and geomatics techniques (Kapeller et al., 2013). 

However, each method of landslide monitoring has both advantages and disadvantages. 

In order to develop an appropriate landslide monitoring system for on-site investigation, 

a review of landslide monitoring techniques based on different approaches is presented. 
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2.2.1 Geotechnical and geophysical techniques 

Fundamental knowledge of both geology and geotechnics is essential in being able to 

explain the first steps of landslide activity (Intrieri et al., 2012). In-depth studies of 

landslide processes also benefit from such an understanding in order to identify the critical 

conditions of slope instability. The development of landslide monitoring is based on 

geotechnical and geophysical approaches to retrieve critical information underlying slope 

failure. At present, many geotechnical and geophysical techniques may be used, ranging 

from simple, traditional methods such as extensometers, inclinometers or tiltmeters, 

piezometers and pore pressure sensors to professional landslide monitoring sensors which 

utilise electrical resistivity tomography (ERT). The main techniques used in both 

geological and geotechnical engineering are reviewed in this section. 

2.2.1.1 Extensometers 

Extensometers are one of the classical instruments used for in-situ landslide investigation, 

and are commonly employed to measure the displacement of ground surface or vertical 

movement in the ground between fixed points along the sliding direction. Extensometers 

are installed according to the type of measurement point required: 1) an opening measured 

on the landslide surface; or 2) in a borehole to detect changes in shear surfaces at depth, 

as shown in Figure 2-2 and Figure 2-3.  

 

Figure 2-2: Illustration of opening wire extensometers (Zhang et al., 2018). 
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                            (a)                                                            (b)            

Figure 2-3: Illustration of extensometer in a borehole: a) device components; and b) 
stages in the changed positions of a wire extensometer used for the investigation of 

landslide displacements (Corominas et al., 2000). 

In addition, in monitoring change associated with landslides, measurements are taken 

with various types of extensometers, such as probe or magnet extensometers using 

vibrating wire electronics, or fibre optics and rod extensometers using sliding rods. For 

example, the assessment of large movements due to cracks over a landslide surface can 

be observed by connecting simple wire-to-wire extensometers (Bandara et al., 2013). For 

rock mass monitoring, as shown in Figure 2-4, conventional tape extensometers are 

extensively used to detect large movements on the surface (Arosio et al., 2013; Devoto et 

al., 2013; Stefani et al., 2013). However, before a slope failure, the installation of 

instruments can interfere with the measurement of movements due to drilling and the 

setting up of geotechnical tools (Tuan et al., 2013).  

 

Figure 2-4: Illustration of a tape extensometer network for rock mass monitoring 
(Devoto et al., 2013). 
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Deformation monitoring may be affected by different weather conditions, such as 

moisture and temperature level variations as a result of seasonal changes. However, 

extensometers can provide reliable data when compared to other survey methods; for 

example using laser distance measurement device. As shown in Figure 2-5, extensometers 

can provide displacement data with little noise during the winter. 

The assessment of landslide displacement and slope stability using extensometers can 

deliver continuous monitoring. Moreover, extensometer sensors are usually employed in 

early warning systems (Bandara et al., 2013). Although these conventional geotechnical 

tools give highly reliable measurements in landslide monitoring, some uncertainty may 

be caused by interaction between their electronic components including transducers and 

digital converters (Intrieri et al., 2012). 

 

Figure 2-5: Comparison of landslide displacement data from distance measurement 
devices and an extensometer (Kristensen and Blikra, 2013). 

2.2.1.2 Inclinometers 

Based on landslide monitoring sensors, conventional inclinometers are usually 

instruments designed to measure horizontal deflections in the ground. Moreover, these 

sensors reveal the precise depth of the slip plane or a multi-slip surface (Di Maio et al., 

2013). Figure 2-6 shows the installation of an inclinometer sensor in a borehole for ground 

measurements. For inclinometer-based landslide monitoring, movement results can 

reveal differences in cumulative displacement in two measuring planes (Figure 2-7). 
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Figure 2-6: Measurement of horizontal displacements using an inclinometer (Segalini 
and Carini, 2013). 

  

Figure 2-7: Comparison of differences in cumulative displacements in two directions 
using an inclinometer (Milenkovic et al., 2013). 

Typically, the displacement rates and the depth of shear surfaces are determined using 

time-series data from an inclinometer sensor. For automated monitoring of sub-surface 

deformations, the installation of inclinometers in a borehole is usually more complicated 

and expensive than with extensometers due to the high-cost of the inclinometer sensor. 

Moreover, unreliability of the mechanical system is often related to casing deformation 

(Segalini and Carini, 2013). Therefore, inclinometers can often provide only low spatial 

resolution information concerning sub-surface deformations surrounding a borehole 

(Uhlemann et al., 2016).   
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2.2.1.3 Piezometers and pore pressure sensors 

For ground water monitoring, piezometers and pore pressure sensors are generally used 

to measure water levels and pore-water pressure in a borehole. These sensors can also 

provide essential information in order to predict slope stability due to the relationship of 

soil water-saturation in landslide monitoring. To acquire hydrological data for landslide 

monitoring, the piezometer technique can help to reveal significant seasonal changes 

related to shorter-term variations in ground water levels, as shown in Figure 2-8. In a 

subsurface investigation using piezometers, Wasowski et al. (2013) identified that short-

term rainfall events are found to be among the main factors associated with shallow 

landslide occurrences. 

 

Figure 2-8: Comparison of the relationship between rainfall and piezometric level 
(Wasowski et al., 2013). 

2.2.1.4 Electrical resistivity tomography (ERT) 

ERT is a geoelectrical ground imaging technique used in professional landslide 

monitoring sensors to study landslide structure and the process of slope failure (Chambers 

et al., 2013). In particular, geophysical measurements based on the ERT method are used 

to study the depths of sliding surfaces and water zones in the ground through observation 

of resistivity data (Reci et al., 2013). ERT monitoring can also provide highly precise 

data on the mechanisms of sub-surface deformations for 3D modelling investigations of 

landslides (Figure 2-9 (b)). 
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                             (a)                                                         (b) 

Figure 2-9: Illustrations of (a) the locations of installation for ERT landslide monitoring, 
and (b) 3D model of landslide obtained from ERT monitoring (Chambers et al., 2013). 

However, this approach sometimes requires the installation of ERT monitoring arrays on 

hard material, as per Figure 2-9 (a), with a layout of electric cables and electrodes (Furuya 

et al., 2013). Although ERT monitoring is more suitable for studying the processes of 

landslides over time, in the case of active landslide monitoring the movement of 

electrodes can misrepresent the changes in resistivity in the subsurface. Consequently, 

3D landslide models need to be calibrated with time-lapse resistivity data (Wilkinson et 

al., 2010). In-situ observations using the ERT method can also be applied to provide 

motion data for near-real-time landslide monitoring (Chambers et al., 2013). Therefore, 

electrical resistivity surveys are used to provide subsurface information in landslide 

monitoring. 

2.2.1.5 Additional instruments 

Tilt meters or sensors can be used to monitor the displacement of slopes, and are similar 

to geotechnical approaches using extensometers. However, the installation of a tilt sensor 

is simpler because no long wires are required. Moreover, the maintenance costs are also 

low (Uchimura et al., 2013). Typically, tilt sensors can also be integrated with other 

sensors, such as volumetric water content sensors, as shown in Figure 2-10. 
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Figure 2-10: Illustration of tilt and water content sensors implemented in a wireless unit 
(Uchimura et al., 2013).  

Landslide movements are often triggered by rainfall. In particular, heavy rainfall events 

have a direct effect on increasing the volumetric water content in the ground. In simple 

rainfall-induced landslides, rainfall gauges are used for the direct measurement of rainfall 

in landslide monitoring. Also, thermometers are used to observe the weather conditions 

around landslide areas, as shown in Figure 2-11.  

   

Figure 2-11: Example of a weather station, including rainfall gauge and thermometer 
(Bednarczyk, 2013).  
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In conclusion, geotechnical and geophysical landslide monitoring involving both 

conventional techniques such as extensometers, inclinometers and piezometers and recent 

developments including ERT monitoring can provide efficient, accurate and useful 

information for in-situ investigations of slope stability. In particular, both geotechnical 

and geophysical investigations are well-established and offer effective acquisition of sub-

surface information (Uhlemann et al., 2016). However, despite being suitable for 

landslide monitoring, limitations include the discrete character of observations and 

restricted spatial coverage. The establishment of geotechnical and geophysical 

monitoring systems can also be labour-intensive, invasive and not always cost-effective 

(Miller et al., 2012). Consequently, the installation of such systems is often more suitable 

once a landslide is known to exist (Perrone et al., 2014), and these monitoring systems 

are also recommended for at-risk hillsides (Kapeller et al., 2013). Therefore, geotechnical 

and geophysical investigations with additional instruments such as rainfall gauges and 

thermometers are more suitable for the implementation of landslide early warning 

systems (Intrieri et al., 2012). 

2.2.2 Geomatics techniques 

Geomatics technologies have been extensively used for the acquisition of geospatial data 

for various earth science applications in the last few decades. Geomatics techniques which 

can be used to measure surface movements in landslides include global navigation 

satellite systems (GNSS), satellite remote sensing, light detection and ranging (lidar) 

technology and photogrammetry. Geomatics techniques can be sub-divided in many 

ways, but can be generally split into two main groups for the purposes of landslide 

monitoring: airborne/space-borne and ground-based approaches. Both can be used to 

investigate the kinetics of landslides, consisting of ground movements and displacement 

rates. For the study of landslide processes, sub-surface changes often only reveal 

themselves through surface expressions of movement, where surface deformations will 

often reveal underlying patterns of slope failure (Miller et al., 2008). Although 

geotechnical and geophysical techniques can provide highly accurate subsurface 

information in landslide monitoring, surface observations using geomatics techniques can 

play an important role in low-cost monitoring for landslide assessment. Thus, a brief 

overview of geomatics techniques based on airborne/space-borne and ground-based 
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approaches is presented to inform the appropriate solution for subsequent development 

of a landslide monitoring system. 

In terms of space- and airborne-based landslide monitoring approaches, these remote 

sensing techniques are widely used for data acquisition from multiple altitudes and 

platforms. Geospatial data can be collected using remote sensing techniques such as 

satellite observations, synthetic aperture radar (SAR), lidar, aerial photogrammetry or 

unmanned aerial vehicle (UAV) platforms. Each approach may provide different details 

of spatial information, depending on the level of altitude for observation (Lillesand et al., 

2008). Thus, each remote sensing technique should be considered to investigate its 

potential in landslide monitoring. 

Based on the observations from high altitudes, modern satellite remote sensing can be 

used to identify landslides over large areas (Behling et al., 2014). In general, satellite 

approaches are based on two types of imaging system, which include optical sensors or 

passive sensing, and microwave or active sensing. Earth observation from satellites such 

as Landsat and SPOT can deliver multispectral image data that can be analysed and 

interpreted as geographical information for landslide monitoring. Then, a historical 

landslide inventory can be carried out using multi-temporal analysis of geographical 

information collected at different times, as shown in Figure 2-12.  Historical landslide 

inventories also have many benefits in landslide risk assessment and disaster management 

(van Westen et al., 2013).  

 

Figure 2-12: Example of a historical landslide inventory obtained from multi-temporal 
remote sensing (Martha et al., 2012).  
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Remote sensing using spaceborne radar is an active, day-or-night imaging system which 

can penetrate the atmosphere and is not influenced by solar illumination for data 

acquisition. A popular Radar imaging technique for surface monitoring in geoscience 

applications is SAR interferometry (InSAR). However, data processing and analysis of 

phase difference information using the InSAR method for measuring precise landslide 

displacements is complex for non-experts (Lillesand et al., 2008). Moreover, InSAR-

based landslide monitoring is more suitable for the inspection of slow-moving landslides 

over large areas, as shown in Figure 2-13 (Zhang et al., 2015). 

 

Figure 2-13: Comparison of landslide monitoring for deformation velocities using SAR 
satellites from: (a) ALOS/PALSAR data; and (b) ENVISAT/ASAR ascending data 

(Zhang et al., 2015).  

In terms of airborne-based landslide monitoring, aerial photogrammetry can deliver aerial 

imagery and derived digital elevation model (DEM) from analytical stereoplotters and 

digital photogrammetric workstations (DPWs). Orthophoto mapping can be produced by 

ortho-rectifying imagery using a DEM. Meanwhile airborne laser scanning (ALS) can 

directly measure the earth’s surface using lidar and GNSS technology to provide high-

accuracy and high-resolution 3D geospatial data in the form of a digital terrain model 

(DTM). This useful geospatial information is often used for landslide detection, and the 

historic deformation of landslides can be investigated using a multi-temporal approach. 

Although both methods can quickly produce mapping for landslide monitoring over large 

areas, the costs of surveying in this way are usually high. Moreover, the detection of 

deformation does not allow the inspection of small landslide features because of the 

inability to monitor landslides at lower spatial scales (Piermattei et al., 2015). 
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In addition, topographic complexity creates occlusions in aerial photogrammetric 

approaches for assessing landslide deformations, especially over mountainous areas due 

to large elevation differences and rough surfaces (Kääb, 2002). As a result of this, the 

challenge of generating precise DEMs for small areas in order to quantify change created 

by landslides can be problematic (Micheletti et al., 2015b). Due to uncertainties in DEM 

generation, topographic data over complex surfaces may be degraded by optical 

variations in photogrammetric approaches, especially when image quality is inadequate 

for processing (Lim et al., 2005). In the case of the coastal cliff monitoring, there might 

be problems with the application of aerial photogrammetry and airborne laser scanning. 

For example, these approaches may be unsuitable for near-vertical slope monitoring 

because they cannot deliver sufficient surface information of a coastal cliff for change 

detection due to shadowing (Rosser et al., 2005). 

Compared to landslide monitoring with lower altitude data, small UAVs can be deployed 

to apply photogrammetric or lidar approaches, which have been increasingly utilised for 

data acquisition in recent years due to the cost-effectiveness of the method and the ability 

to provide highly accurate high-resolution geospatial data (Niethammer et al., 2012). In 

general, data collection based on UAV platforms can prove more convenient and flexible 

than satellite and airborne platforms for observation when studying landslide processes 

(Lucieer et al., 2014). A mini-UAV system typically comprises a multi-rotor or a fixed-

wing UAV installed with an off-the-shelf or consumer-grade digital camera and on-board 

GNSS. However, a lightweight system is important in order to limit the power 

consumption of a mini-UAV platform. The main limitation of mini-UAV surveying is the 

fact that weather conditions such as strong (or even moderate) gusts of wind, fog or mist 

may affect the flight during observation. Consequently, it is difficult to control the quality 

of image data acquired (Peppa et al., 2016). Also, the use of blurred images in 

photogrammetric measurement may lead to vertical deformations in 3D reconstructions 

(James and Robson, 2012).  

Typically, remote-sensing datasets can be principally used to investigate surface 

displacements associated with landslides (Travelletti et al., 2012). In particular, landslide 

inventory mapping and landslide susceptibility analysis can be conducted using 

geospatial information gathered using remote-sensing techniques. The main advantage of 

remote sensing for landslide monitoring is that it is less labour-intensive than 
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conventional geotechnical or geophysical techniques. However, traditional airborne- and 

satellite-based remote sensing approaches are generally more suitable for landslide 

detection over large areas (Niethammer et al., 2012). If such approaches are used for 

small area monitoring, data need to be collected frequently, which results in high expense. 

Moreover, real-time data processing is difficult to manage, and therefore these techniques 

are generally not suitable for on-site investigations of landslide monitoring. 

Although high-magnitude landslides may be catastrophic for human life and 

communities, small- and medium-magnitude landslides occur more frequently than high-

magnitude landslides (Lee and Jones, 2004). Consequently, they result in severe impacts, 

especially in terms of economic loss. Considering these destructive impacts, landslide 

monitoring for small areas should be undertaken appropriately and regularly. There are 

many geomatics techniques which utilise ground-based platforms suitable for the 

investigation of small landslide displacements and features, such as total stations, GNSS, 

terrestrial laser scanning (TLS), ground-based synthetic aperture radar (GBSAR) and 

close-range photogrammetry. The following sections explain the most commonly used 

ground-based landslide monitoring techniques that may be used to find an appropriate 

solution for on-site investigation. 

2.2.2.1 Total stations 

Total stations are mostly used in surveying and civil engineering because they can provide 

direct measurements with high precision in terms of both angles and distances (Uren and 

Price, 2010). In a topographic survey for geoscience applications, landslide displacement 

and monitoring can be traditionally undertaken using total stations. The total station can 

be used for measuring three-dimensional coordinates derived from angle and distance 

measurements. At present, some models of total station, such as robotic total stations, can 

be automatically or remotely controlled in order to provide more convenient and 

automated measurement. Typically, electronic distance measurements using a total 

station requires reflectors or reflecting prisms that are permanently established at 

observation locations to detect landslide movements, as shown in Figure 2-14. 
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Figure 2-14: (a) A total station used for (b) rock mass monitoring at Cadireta; and (c) 
the installation of reflecting prisms on rock needles (Janeras et al., 2017). 

In reflectorless measurements, some models of total station can make distance 

measurements without using reflectors or prisms. The advantage of reflectorless mode is 

that it can be used for the measurement of points that are inaccessible or dangerous. 

However, although a reflector is not required for distance measurements when operating 

in reflectorless mode, it is inevitable that some form of target needs to be used for 

observing landslide displacement from point to point over time (Figure 2-15). For 

instance, the changes of the target locations mounted on the tops of houses can be 

measured by a total station to assess landslide movements for investigating slope stability 

(Figure 2-16). 

 

Figure 2-15: (a) A total station and (b) the establishment of targets for landslide 
movement monitoring in slope areas (Sarkar et al., 2013). 

(a) (b) 
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                                    (a)                                                                   (b) 

Figure 2-16: Time-series landslide movements of targets measured by total station: (a) 
horizontal movements; (b) vertical movements (Sarkar et al., 2013). 

Although the conventional geodetic method using total stations can provide highly 

accurate instantaneous measurements of landslide movements, the accuracy of 

measurement might be affected by the environmental conditions between the total station 

and the target. In particular, for long-range observations, the accuracy of measurement 

decreases significantly due to atmospheric problems and the capability of the instrument. 

Moreover, if a more precise total station is required for landslide monitoring, the costs of 

instrumentation increases and can become prohibitive (Uren and Price, 2010). 

2.2.2.2 Global Navigation Satellite System (GNSS) 

For acquisition of geospatial information used in landslide monitoring, GNSS or global 

positioning system (GPS) technology can be used to locate landslide features. In general, 

for any measurement point, a modern GNSS surveying receiver can calculate the three-

dimensional coordinates equivalent in precision to those taken by a total station. 

However, the accuracy of location measurement based on GNSS depends on the survey 

methods adopted and GNSS equipment used (Uren and Price, 2010). Typically, the 

differential GNSS method is extensively used for highly precise location measurements, 

and the positions of a GNSS receiver can be used to measure landslide movements at 

different times (Figure 2-17). For example, the permanent monitoring of the Villerville 

landslide in Normandy, France, using GNSS measurements is illustrated in Figure 2-18. 
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(a) GNSS-base 
station 

  

(b) GNSS-
moving station 

 
 

Figure 2-17: GNSS in the detection of landslide movements: (a) GNSS-base station; 
and (b) GNSS-moving station (Malet et al., 2013). 

 

Figure 2-18: Monitoring of the Villerville landslide in France using GNSS observations 
(Malet et al., 2013). 



25 

 

Compared with landslide monitoring using a total station, the observation data obtained 

from GNSS measurements can be collected immediately, and then transferred 

automatically. In an in-situ landslide investigation, a data logging system can be utilised 

in near real-time GNSS measurement for data collection and transfer without human 

interaction. This technique can also offer the potential for the detection of landslide 

movements in an early warning system (Intrieri et al., 2012). However, the method of 

GNSS measurement is more complicated due to the need for the processing and analysis 

of GNSS signals, and therefore experts are required to process location measurements.  

In conclusion, conventional geomatics methods for landslide monitoring using total 

stations and GNSS measurements can provide highly precise 3D absolute coordinates that 

are suitable for long-range surveying. However, the main drawback of these techniques 

is that they provide only discrete point measurements of landslide displacement. In 

addition, the targets and instruments often need to be installed in landslide areas. 

Therefore, total stations and GNSS are frequently based on contact monitoring techniques 

which only provide low spatial coverage for landslide detection (Piermattei et al., 2015). 

2.2.2.3 Terrestrial laser scanning (TLS) 

The TLS technique utilises lidar technology to capture data from object surfaces via 

ground-based observation, which can generate 3D point clouds of continuous surfaces. 

The application of TLS survey is widely used in earth sciences, particularly in terms of 

monitoring changes in geomorphic surfaces in natural environments. In particular, TLS 

can deliver highly accurate, high-resolution point clouds which can be extremely valuable 

in detailed landslide assessment (Scaioni, 2015). For instance, TLS surveys have been 

used to provide point clouds at different times, as shown in Figure 2-19, and the 

monitoring of landslide deformations has been carried out using multi-temporal DTM 

analysis, as illustrated in Figure 2-20.  
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(1)                                                                  (2) 

Figure 2-19: Illustrations of (1) point clouds from a TLS survey, (2) a DTM derived 
from the point cloud (Denora et al., 2013). 

 

Figure 2-20: Illustration of different DTMs used for monitoring the Montaguto landslide 
in Campania, Italy (Denora et al., 2013). 

Compared to other optical methods, an advantage of using TLS is that it can be operated 

during the day or night without the need for illumination because laser light is used to 

measure distances, in an active remote sensing technique (Lillesand et al., 2008). 

However, the main drawback of TLS equipment is that it is costly and generally requires 

expertise in operation. For field surveys, the TLS equipment might also be too heavy, 

which can result in transport or logistical difficulties (Piermattei et al., 2015).  
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When monitoring landslides in complex terrain using TLS, collection times can be 

relatively slow, particularly if data must be collected from multiple locations to ensure 

full coverage of the area, as shown in Figure 2-21. Ground control points and reflector 

targets are often required for geo-referencing and registration to combine each point 

cloud. Consequently, data processing may be complicated for non-experts. Furthermore, 

gaps in the data can occur in landslide areas due to the oblique perspective from ground-

based observation, and terrain occlusions in the line-of-sight (Teza et al., 2007). In the 

case of the coastal cliff monitoring, the use of terrestrial laser scanning often generates 

gross errors at the edges of scans due to the relief displacement of terrain along the line-

of-sight scanning (Lim et al., 2005). Although TLS surveys are used to deliver high-

resolution point clouds for the assessment of landslide movements, reductions in the 

number of points may be required to facilitate the capability of software and computer 

for data processing (Palenzuela et al., 2013). 

  

Figure 2-21: Illustration of point clouds from different TLS locations (Kuhn and Prüfer, 
2014). 
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2.2.2.4 Ground-based synthetic aperture radar (GBSAR) 

GBSAR utilises the radar interferometric technique to measure displacements in 

deformation monitoring, which plays an important role in the detection of surface changes 

for geoscience applications such as the study of landslides, glaciers and snow (Monserrat 

et al., 2014). In particular, GBSAR has been increasingly applied in the last decade for 

landslide monitoring of, for example, earth-flows and rockslides (Agliardi et al., 2013) 

and coastal cliff erosion (Mazzanti et al., 2015). The application of this technique can 

deliver time-series data useful in the detection of landslide deformation. Furthermore, 

GBSAR can be installed for in-situ investigation to measure surfaces (Figure 2-22). 

(a) landslides 

 
(b) rock 
deformation 

 

Figure 2-22: The use of GBSAR for measuring: (a) landslide movements; and (b) rock 
deformation (Caduff et al., 2015). 
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Based on it being a technique using an active sensor for measurements, GBSAR is similar 

to TLS  in that it can be operated during the day or night and in any weather conditions 

(Antolini et al., 2013). GBSAR provides measurements of landslides displacements over 

large areas, but these observations must be corrected for topography, necessitating the 

collection of further reference data such as from TLS or photogrammetry (Bardi et al., 

2014; Caduff and Rieke‐Zapp, 2014). Moreover, atmospheric effects can affect the 

quality of measurements (Bozzano et al., 2011). Consequently, GBSAR is only suitable 

for application by expert users. It is also costly, and requires significant post-processing 

to derive meaningful deformation measurements, as shown in Figure 2-23. 

 

Figure 2-23: Illustration of processes for visualization of terrestrial radar data from 
GBSAR (Caduff et al., 2015). 

2.2.2.5 Close-range photogrammetry 

Close-range photogrammetry is a non-contact measurement technique which 

encompasses various methods of image measurement in order to derive the position of an 

object from photographs, where the imaging distance is typically less than 300 meters 

(Luhmann et al., 2006). Ground-based photogrammetric monitoring can be used in 

geoscience applications such as the study of earth-flows or landslides, gully erosion, 
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coastal erosion and glacial processes (Eltner et al., 2016). In particular, photogrammetric 

approaches have been extensively used for landslide monitoring, as shown in Figure 2-

24 (Akca, 2013; Stumpf et al., 2015). 

Close-range photogrammetric techniques can also be used to acquire geospatial 

information in landslide monitoring, and yield photogrammetric outputs which are useful 

for the quantitative interpretation and analysis of landslides (Figure 2-25). Classical 

photogrammetric outputs typically involve DTM and orthophotography. Petley et al. 

(2005) showed that the results from surface monitoring data might reveal patterns of 

movement in a landslide, which is the basis of a monitoring system in order to mitigate 

landslide hazards. Clearly, close-range photogrammetric techniques could provide a 

measurement solution for landslide hazards.  

 

                                       (a)                                               (b) 

Figure 2-24: The Tartano valley landslides (Italy): (a) overview of landslide;  (b) 
configuration of photogrammetric imaging network used for landslide monitoring 

(Scaioni, 2015). 
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Figure 2-25: Assessment of landslide changes at the Super-Sauze landslide in the 
southern French Alps using photogrammetry (Stumpf et al., 2015). 

In comparison to other ground-based approaches, close-range photogrammetry can 

provide high measurement precision, potentially from mm to a few cm at 100 m range, 

and in this sense it is comparable to TLS and GBSAR. In addition, photogrammetry offers 

instantaneous data capture. Consequently, the benefits of photogrammetry are the speed 

of data acquisition and convenience in operation (Motta et al., 2013). Furthermore, the 

costs associated with instrumentation and maintenance for the use of photogrammetric 

surveys are considerably lower than those for TLS and GBSAR (Travelletti et al., 2012). 

Therefore, close-range photogrammetry can offer a cost-effective method for the 

acquisition of geospatial information for the assessment of landslide processes. 

In consideration of the execution cost for landslide monitoring systems, a 

photogrammetric approach can offer a low-cost monitoring system by combining the use 

of an inexpensive imaging device (e.g. a smartphone or a consumer-grade digital camera) 

with an affordable personal computer and free-license software for data processing. 

Meanwhile, landslide monitoring based on laser scanning, GNSS and GBSAR 

approaches invariably use expensive and sophisticated instrument. For example, the price 
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of a laser scanner or is usually more than £20,000 and GBSAR greater than £100,000. 

Moreover, whilst continually falling in price, the instrumentation cost of highly precise 

GNSS equipment is £10,000. In the case of photogrammetry, the cost of a modern 

smartphone or consumer-grade digital camera is approximately £500 and an affordable 

processing system is below £1,000. Evidently, the financial cost of standard 

instrumentation for the conventional methods typically spend an order of magnitude 

greater than the photogrammetric approach. 

2.3 Summary 

Investigation and monitoring of landslides are important tasks in geotechnical 

engineering in order to mitigate hazards created by such phenomena. Many of the more 

common geomatics, geotechnical and geophysical engineering approaches which have 

been adopted for landslide investigation and monitoring have been discussed in this 

chapter. Each approach has its advantages and disadvantages in generating measurements 

of landslide movements that might be useful for the in-situ monitoring of landslides. 

However, ground-based approaches are efficiently used for on-site investigations in 

landslide monitoring systems. The characteristics of each geomatics approach, based on 

a ground platform, for landslide monitoring are summarised in Table 2-3.  

Table 2-3: Comparison of ground-based geomatics approaches for landslide monitoring 
(adapted from: Wang, 2013). 

Characteristics 
Ground-based approaches 

Total 
station 

GNSS TLS GBSAR 
Close-range 

photogrammetry 
Monitoring 
method 

Non-
contact 

Contact 
Non-

contact 
Non-

contact 
Non-contact 

Instrument cost Medium High High High Low 
Coverage areas 
in monitoring 

Small Small Large Large Large 

Spatial 
resolution 

Point-
based  

Point-
based  

High High High 
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Although existing geomatics approaches are used for precise landslide monitoring, this 

initial assessment of small landslide areas is inappropriate for on-site investigation due to 

the often labour-intensive and costly methods used. Close-range photogrammetric 

techniques can offer a flexible, cost-effective, non-contact monitoring approach to on-site 

landslide investigation. In the next chapter, close-range photogrammetry, which is a 

clearly attractive approach for the assessment of landslide processes, is utilised to develop 

an appropriate monitoring system for real-time on-site investigation in order to aid initial 

geotechnical interpretation and assessment. 
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Chapter 3. A close-range photogrammetric 
methodology for landslide monitoring 

 

 

3.1 Introduction 

A close-range photogrammetric approach has enormous potential for the acquisition of 

geospatial information that is used for geoscience applications. In particular, the 

assessment of landslide deformation can use photogrammetric results acquired at 

different times. Important advantages of close-range photogrammetry, evident from 

several reviews in the previous chapter, are that it offers the use of a low-cost approach 

for efficient monitoring of landslide hazards. In this research, the development of a low-

cost monitoring system based on a mobile platform such as a smart phone is proposed. 

Moreover, the basic photogrammetric processing based on the Structure-from-Motion 

(SfM) technique can provide user-friendliness for non-experts due to the potential for 

fully-automated data processing for 3D model reconstruction from images. Nevertheless, 

the limitation of SfM-based photogrammetric processing with the relatively low-

performance processors adopted on mobile devices remains one of the main difficulties 

at present. A photogrammetric measurement and monitoring system based on mobile 

cloud computing technology can offer a potential solution to this, facilitating real-time 

processing of on-site investigation for landslide hazards analysis. With photogrammetric 

measurement and landslide monitoring on a mobile device, the development of a front-

end service for the operator can be obtained straightforwardly from the photogrammetric 

results and landslide assessment. Moreover, improved functions for photogrammetric 

processing have shown enormous potential for back-end services to enhance 

photogrammetric results for landslide monitoring analysis. This chapter therefore reports 

the methodologies adopted for the development and implementation of a mobile platform 

based photogrammetric monitoring system for on-site investigation of landslide hazard 

analysis. 



36 

 

3.2 A photogrammetric solution for deformation measurement of landslides 

Close-range photogrammetric techniques are believed to be suitable for adoption for 

monitoring purposes, as reviewed in the previous chapter, because the approach can offer 

a potentially low-cost solution in terms of implementation and operation. However, there 

are many difficulties in using such an approach for on-site investigation. To develop an 

effective close-range photogrammetric system for landslide monitoring there are 

therefore some important issues to be considered, as follows (Scaioni, 2015): 

 Imaging devices or sensors used;  

 Photogrammetric configuration adopted;  

 Photogrammetric processing method and software utilised; 

 Landslide analysis methods employed; 

Moreover, when using photogrammetric processing workflows for on-site investigation 

of landslide monitoring, the developed system needs to manage and process a large 

amount of information if a real-time response is required.  

With regard to the above-mentioned issues, several topics related to the methodologies of 

this research are explained in this chapter to achieve the objectives outlined in Chapter 1. 

3.2.1 Imaging devices and sensors 

A digital camera has an important role in image acquisition in any photogrammetric 

application since image quality depends largely on the imaging sensors adopted. 

Currently, there are many types of digital cameras being used for photogrammetric image 

collection, including DSLR cameras, consumer-grade or compact cameras, and mobile 

device cameras. For an optical sensor based on such digital cameras, a CCD (charge 

coupled device) or CMOS (complementary metal oxide semiconductor) sensor is used to 

record imagery instead of traditional film. The sensors are used to transform the natural 

light from the observed objects into electronic signals. The majority of digital cameras on 

mobile devices use a CMOS sensor with fixed focal length lens since this low-cost camera 

needs to be tiny enough to support the device assembly. In contrast, other digital cameras 

may use either CCD or CMOS as the adopted imaging sensor, usually with a higher 
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quality lens when compared to that found on mobile devices. As a result, it is often the 

case that mobile device camera provide lower quality imagery as a result of the adopted 

lens and imaging sensor. Nevertheless, the resolution of cameras on mobile devices has 

dramatically increased in recent years. One advantage of mobile devices with a high-

resolution digital camera (> 5 megapixels) is the acquired images can be readily used for 

photogrammetric monitoring applications (Wang, 2013). 

The smart phone camera tested for photogrammetric landslide monitoring in this research 

was primarily the Nexus 6, with 13-megapixel sensor; this was due to the fact that it was 

one of the state-of-the-art mobile device cameras at the outset of the research. To provide 

a comparison against other smart phone cameras, an iPhone 4’s camera, with 5-megapixel 

sensor, was also tested. The selection of this typical device was based on the basic 

functionality of a regular smart phone at the time. A comparison of the technical 

specification for the two smart phones utilised is outlined in Table 3-1.  

Table 3-1: Comparison of technical specifications between the two adopted smart 
phones: iPhone 4 and Nexus 6. 

Characteristics iPhone 4 Nexus 6 

Processer 
Apple A4,                       
800 MHz 

Krait 450,                      
2.7 GHz quad-core 

RAM 512 MB 3 GB 

Image format 
2592 x 1936;                         
5-megapixel 

4160 x 3120;                         
13-megapixel 

Sensor size 4.0 x 3.0 mm  4.7 x 3.5 mm 
Pixel size 1.5 µm  1.12 µm  
Lens maximum 
aperture 

N/A f/2.0 

Shutter speed (sec) 1/15-1/1000 N/A 
Output format JPEG JPEG 

Comparing the developed methodology to conventional close-range photogrammetry 

using a higher quality camera, such as a DSLR, was necessary to ensure the potential of 

the photogrammetric approach for landslide monitoring. The DSLR camera tested was a 

Nikon D300 fitted with an AF Nikkor 28 mm f/2.8D lens. The technical specification of 

the DSLR camera and the 28 mm lens is outlined in Table 3-2. 
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Table 3-2: Technical specifications of the Nikon D300 DSLR camera used in the 
research. 

Nikon D300 DSLR camera 

Image format 4288 x 2848; 12.3-megapixel 
Sensor size 23.6 x 15.8 mm 
Pixel size 5.6 µm 
Shutter speed (sec) 1/8,000~30 
Output format JPEG, TIFF and Raw 

AF Nikkor 28mm f/2.8D lens 

Focal length 28 mm 
Aperture range prime  f2.8 – f22 
Format FX/35mm 
Maximum Angle of View (DX-format) 53° 
Maximum Angle of View (FX-format) 74° 

All digital cameras mentioned above are non-metric cameras which were not primarily 

designed for the purpose of photogrammetric measurement, so investigation into their 

interior orientation is necessary. To achieve high-precision photogrammetric 

measurement for landslide monitoring, and investigate the potential of affordable image-

based mobile technology, it was therefore necessary to examine the geometric 

characteristics of all adopted cameras through the process of camera calibration. 

3.2.2 Camera calibration 

The purpose of camera calibration is to determine the geometric camera model described 

by the parameters of interior orientation (e.g. focal length, image coordinates of principal 

point, lens distortion and other additional parameters). There are many camera calibration 

approaches, including laboratory, test field, plumb-line, on-the-job and self-calibration 

(Luhmann et al., 2006). In particular, self-calibration is a basic method of camera 

calibration based on the bundle adjustment technique (Fraser, 2013). Moreover, 

automated self-calibration using a flat template or a grid is extensively used for camera 

calibration in digital photogrammetry as this method of camera calibration is based on a 

fully automatic procedure and offers user-friendliness for non-expert operators (Wang et 

al., 2010). Calibration accuracy depends on the methods used in photogrammetric 

measurement, the number of images and the quality of the convergent image network 
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(Luhmann et al., 2016). In this research, automated camera self-calibration was adopted 

based on three different available routines:  

1) The close-range photogrammetric software PhotoModeler; 

2) A camera calibration application for Matlab;  

3) A camera calibration program developed using a Python script with OpenCV 

library; 

For the automated camera self-calibration method, a planar target field or chess board 

template is used; PhotoModeler uses a calibration template with coded targets, as shown 

in Figure 3-1(a), while Matlab and OpenCV use a calibration template in the form of a 

chessboard, as shown in Figure 3-1(b). Both calibration templates were printed on A0 

paper for the purposes of the reported exercises.  

 

     (a)                                                           (b) 

Figure 3-1: Calibration template for (a) PhotoModeler, (b) Matlab and OpenCV. 

The self-calibration method requires acquisition of many images of the same calibration 

template from different viewing angles. Image capture covered all parts of the employed 

flat templates and the height of the camera was approximately 1 m above the template. 

Self-calibration was performed using twelve convergent images taken from three 

different orientations of camera from four sides of the template. This photogrammetric 

network configuration is illustrated in Figure 3-2. 
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Figure 3-2: Photogrammetric configuration for camera calibration. 

The parameters of interior orientation were calculated based on five repeated calibrations 

in order to provide the most appropriate camera model and improve the reliability of 

calibration results. However, the results from the three different approaches utilised 

different units. The calibration results from PhotoModeler are shown in the unit of 

millimetres (mm), whereas Matlab and OpenCV are shown in the unit of pixels. In order 

to compare the calibration results from those software packages, the results from Matlab 

and OpenCV were therefore required to be converted into mm. For the main parameters 

of the camera model (e.g. focal length, principal point in x and y), the calibration results 

in the unit of pixels can be converted into mm by simply multiplying by the pixel sensor 

size (mm). On the other hand, some parameters (especially lens distortion and other 

additional parameters from the different software) cannot be directly converted because 

they use different units for the additional parameters. 

Lens distortion can be separated into radial distortions and tangential distortions. Radial 

distortions are caused by the shape of the lens that may not be perfect. Tangential 

distortions result from the assembly process of the camera lens as a whole. The radial lens 

distortions are modelled using Brown’s distortion model (Brown, 1971), as shown in 

equation (3-1): 

∆𝑟′ௗ = 𝐾ଵ𝑟′ଷ + 𝐾ଶ𝑟′ହ+ 𝐾ଷ𝑟′ +  …      (3-1) 

 

Height ≈ 1 m 
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However, Carbonneau and Dietrich (2017) showed how these parameters can be 

converted using equations (3-2) to (3-4). 

𝐾ଵ(𝑓𝑜𝑐𝑎𝑙 𝑢𝑛𝑖𝑡𝑠 ) =   𝐾ଵ(𝑝𝑖𝑥𝑒𝑙 𝑢𝑛𝑖𝑡𝑠) ∗ 𝑓ଶ    (3-2) 

𝐾ଶ(𝑓𝑜𝑐𝑎𝑙 𝑢𝑛𝑖𝑡𝑠 ) =   𝐾ଶ(𝑝𝑖𝑥𝑒𝑙 𝑢𝑛𝑖𝑡𝑠) ∗ 𝑓ସ     (3-3) 

𝐾ଷ(𝑓𝑜𝑐𝑎𝑙 𝑢𝑛𝑖𝑡𝑠 ) =   𝐾ଷ(𝑝𝑖𝑥𝑒𝑙 𝑢𝑛𝑖𝑡𝑠) ∗ 𝑓     (3-4) 

where 𝑓 is the focal length in the unit of pixels. The resultant calibration results for each 

determined parameter of the Nexus 6 are shown in Table 3.3.
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Table 3-3: Camera calibration results for the Nexus 6 smart phone camera using three different calibration routines. 

Parameter 

Nexus 6 

PhotoModeler MATLAB OpenCV 

Mean σ Mean σ Mean σ 

Focal Length (mm) 3.798 0.004 3.783 0.005 3.773 N/A 

Xp - principal point x (mm) 2.320 0.004 2.326 0.005 2.333 N/A 

Yp - principal point y (mm) 1.735 0.004 1.732 0.006 1.731 N/A 

Fw - format width (mm) 4.639 0.002 
Not calculated 

Fh - format height (mm) 3.481 N/A 

K1 - radial distortion 1  -1.25x10-02 6.72x10-02 -1.29x10-02 8.49x10-02 -1.32x10-02 N/A 

K2 - radial distortion 2 3.02x10-03 2.23x10-02 3.25x10-03 3.20x10-02 3.33x10-03 N/A 

K3 - radial distortion 3 0.00 x10+00 0.00 x10+00 0.00 x10+00 0.00 x10+00 0.00 x10+00 N/A 

P1 - tangential distortion 1 -8.73x10-04 1.05x10-04 -9.92x10-05 6.27x10-04 -2.77x10-05 N/A 

P2 - tangential distortion 2 5.82x10-05 7.70x10-04 -3.80x10-05 6.33x10-04 -2.26x10-05 N/A 

Image measurement precision: 
Overall RMS (pixels) 

0.944 1.167 1.372 
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According to the camera calibration results for each parameter, as shown in Table 3-3, 

PhotoModeler, MATLAB and OpenCV approaches were comparable. The standard 

deviation (σ) of MATLAB results was slightly higher than for PhotoModeler. 

Considering the reported RMS values, PhotoModeler demonstrated the highest 

measurement precision. It is likely that the different experimental results cause the 

methods adopted in the software, with these software packages using different approaches 

to photogrammetric processing and camera modelling. MATLAB and OpenCV use the 

direct linear transformation (DLT) method based on the pinhole camera model (Bradski 

and Kaehler, 2008), while PhotoModeler uses the method of space resection based on the 

bundle adjustment (Zhang et al., 2010). Although the calibration parameters were not 

identical, the values for each of the main parameters from the three adopted routines were 

only slightly different, especially the parameters of focal length, principal point offset and 

radial distortion (K1, K2 and K3). However, the parameters of tangential distortion (P1 

and P2) from MATLAB and OpenCV had dramatically different values to those from 

PhotoModeler (Table 3-3). 

The radial lens distortion parameters of the Nexus 6, which were determined by equation 

(3-1) from the three routines, are shown in Figure 3-3. Based on these results, it may be 

concluded that MATLAB and OpenCV provided relatively similar camera calibration 

results for this type of smart phone camera when compared to PhotoModeler. The camera 

calibration results for the Nikon D300 DSLR camera and the iPhone4 smart phone camera 

are shown in Appendix A. 

 

Figure 3-3: Radial lens distortion of the Nexus 6, as determined from the three different 
calibration routines. 
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3.2.3 Photogrammetric network configuration 

Imaging network geometry is an important factor to achieve a high-accuracy in 

photogrammetric measurement. The adoption of multi-station networks are extensively 

used in photogrammetry for geospatial applications, including landslide monitoring 

(Scaioni, 2015). To provide a photogrammetric solution suitable for non-expert users and 

also ensure the requirement of high accurate photogrammetric results for landslide 

monitoring, photogrammetric network design was used to determine suitable camera 

locations and the number of necessary camera stations. Nonetheless, several important 

factors should be taken into consideration during image acquisition of the object, as 

follows (Luhmann et al., 2006): 

 Base to depth ratio (B/D); 

 Maximum allowable camera-to-object distance; 

 Field of view (FOV) of the camera; 

 Convergent imaging networks; 

Firstly, the base to depth ratio (B/D) of imaging geometry should ideally be in the range 

of 0.1-0.3. The geometry of the intersecting ray at each object point is used to find the 

location and the orientation of the imagery. The sufficiency of images when creating a 

3D model is to have suitable baselines between those images. A small B/D ratio can lead 

to an inappropriate geometry, resulting in an increase in errors for determined depths, as 

illustrated in Figure 3-4. Based on the study of Hullo et al. (2009) and following the 3x3 

CIPA rules (Waldhäusl and Ogleby, 1994), the optimal B/D ratio should be between 0.1-

0.3 for an effective 3D reconstruction and a high accuracy of ray intersection. 

 

Figure 3-4: Imaging geometry (a) small B/D ratio (b) large B/D ratio (Alsadik, 2014). 
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Secondly, the distance between the camera and the object should be close-range since the 

image scale has a direct impact on the precision of photogrammetric measurement. 

Consequently, the precision of any optical triangulation system results from the 

measurement resolution and the mean camera-to-object distance (Fryer et al., 2007). 

However, the algorithms used in digital image processing directly influences 

measurement resolution according to the pixel size of the imaging sensor. To control the 

photogrammetric precision, it is necessary to find the maximum allowable camera-to-

object distance, 𝑑௫ , which can be calculated using equation (3-5) (Luhmann et al., 

2006). 

𝑑௫ =  
ఙ√

ఙ
              (3-5) 

where 𝜎 is the standard error in the XYZ object point coordinate, 𝑐 is image scale, 𝑞 is 

a design factor expressing the strength of the basic camera station configuration (0.4-1.1), 

𝜎 is the standard error in the image coordinate and 𝑘 is the number of images per camera 

station. Following equation (3-5), the distance between the camera and the object (depth) 

is also influenced by many factors such as a field of view of the camera, measurement 

resolution and positional accuracy. 

Thirdly, FOV of the camera generally requires to be in the range 40-80° for close-range 

photogrammetric measurement in engineering applications (Fryer et al., 2007). For this 

reason, the operator has to use a camera with a suitable FOV. The coverage from each 

camera station can be estimated using the FOV computational formula (Luhmann et al., 

2006) shown in equation (3-6): 

𝐹𝑂𝑉 =  2 ×  tanିଵ ቀ
௦,

ଶ
ቁ               (3-6) 

where 𝑠ᇱis the maximum distance between two corners of the imaging sensor and 𝑐 is the 

focal length of the lens. 

The appropriate values for parameters of both 𝑑௫ and FOV for a mobile phone digital 

camera used in this research following equation (3-5) and equation (3-6) are shown in 

Appendix B. 
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Finally, convergent imaging networks are required to provide effective 3D reconstruction 

from the imagery. Image acquisition should fully cover the study area (360° coverage), 

with necessary overlaps to enable appropriate photogrammetric reconstruction. As 

mentioned above, the imaging plan is performed following these concerns to help the 

operator taking a suitable image network. By way of example, an imaging plan of the 

Hollin Hill survey using a mobile device is illustrated in Figure 3-5. With regard to 

finding an optimum camera station location, the maximum allowable camera-to-object 

distance was < 15 m, following equation (3-5), and the minimum distance between each 

camera station was approximately 2-3 m using a B/D ratio of 0.1-0.3. 

  

Figure 3-5: Example of photogrammetric network design for Hollin Hill landslide 
monitoring. 

3.2.4 Photogrammetric processing solution 

Although close-range photogrammetric techniques can be adopted for monitoring 

purposes, conventional photogrammetric processing still has some drawbacks for users. 

For example, the requirements involving network design, ground control points, 

photogrammetric software and a proficient photogrammetrist are essential for 

conventional photogrammetry (Fryer et al., 2007). The SfM pipeline can potentially 

overcome the many traditional constraints of digital photogrammetry, especially user-
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friendliness to non-experts and lower costs. This gives opportunity for the development 

of a photogrammetric processing system suitable for landslide monitoring. 

3.2.4.1 Structure-from-motion based photogrammetric processing 

In the last decade there has been a revolution in topographic measurements using 

photogrammetric computer vision for a number of geoscience and geomorphological 

applications, including land deformation of alluvial fans (Micheletti et al., 2015a), coastal 

erosion (James and Robson, 2012), gully headcut erosion (Gómez-Gutiérrez et al., 2014) 

and landslide monitoring (Stumpf et al., 2015). In particular, the development of SfM and 

multiview-stereo (MVS) techniques has improved the accessibility of photogrammetric 

workflows for non-expert users, and increased automation (Westoby et al., 2012; 

Javernick et al., 2014). At the same time, it has also been shown that the quality of results 

can conform to expected levels of accuracy for conventional photogrammetric processing 

(Micheletti et al., 2015a).  

The workflow of the SfM-MVS based photogrammetric approach consists of two main 

stages for 3D model reconstruction from imagery. Firstly, the SfM technique requires a 

set of images taken from different positions in front of the object of interest (as shown in 

Figure 3-6). The SfM workflow is mainly comprised of three processes: 1) feature 

detection in each image, with features extracted by Scale-invariant feature transform 

(SIFT) (Lowe, 2004) or Speeded-up robust features (SURF) (Bay et al., 2008); 2) 

matching within the image dataset; and 3) a bundle adjustment used to estimate camera 

positions and orientations and extract a sparse point cloud. Secondly, the MVS process 

can be defined as performing the dense image matching from the SfM output. This 

construction is used to efficiently filter out noisy data and generate the so-called ‘dense 

point cloud’. 
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Figure 3-6: Image acquisition for SfM (Westoby et al., 2012). 

3.2.4.2 SfM-Photogrammetric processing software  

With processing software based on SfM-photogrammetry for 3D model reconstruction, 

there are recently several commercial SfM-MVS software packages (e.g. AgiSoft 

PhotoScan, PhotoModeler) and open source or free software packages (e.g. Bundler 

Photogrammetry Package, VisualSFM & PMVS/CMVS). Moreover, web services such 

as Photosynth and Autodesk 123D Catch can provide free SfM-MVS based 

photogrammetric processing on the Internet. However, each SfM-MVS approach has both 

advantages and disadvantages, with a study by Micheletti et al. (2015a) reporting the 

effectiveness of each approach depending on the specific applications, as highlighted in 

Table 3-4. 

Table 3-4: The options of the SfM-MVS approach (Micheletti et al., 2015a). 

Availability of photogrammetry Main Characteristics 
Traditional photogrammetry Higher reliability and quality, high 

cost, expert knowledge 
SfM-MVS photogrammetry 
(commercial software packages) 

High quality but also greater 
automation, and low cost 

Local SfM-MVS software  
(open source software packages) 

Mostly free and semi-automated 
processing, low quality 

Internet-based SfM-MVS system No cost, near real-time, fully 
automated processing, lowest quality 

In an investigation into the adoption of processing software for SfM-photogrammetry, 

Eltner et al. (2016) reported that PhotoScan is the most popular SfM software used in 
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geoscience applications over the previous five years (2012-2016), as presented in Figure 

3-7. Photoscan may be the most favoured SfM-photogrammetric software due to its 

friendliness for non-expert users. However, the employability of this commercial 

software to implement on landslide monitoring system still has limitations since this 

commercial software is relatively high-cost and also refuses to allow accessibility via the 

Internet (Agisoft, 2016). 

 

Figure 3-7: SfM-photogrammetric processing software used in Geoscience applications 
(Eltner et al., 2016). 

For the development of an effective photogrammetric measurement solution related to a 

low-cost approach in this research, the photogrammetric processing for on-site 

investigation uses only non-commercial and freely available software. As regards the 

comparison of processing software for SfM photogrammetry (Figure 3-7), the free and/or 

open source software packages 1) Bundler and PMVS/CMVS; 2) APERO and MicMac; 

and 3) VisualSFM and PMVS/CMVS were the most utilised for monitoring applications 

(after PhotoScan). To compare and highlight the optimal potential processing software 

for system implementation, it was therefore necessary to investigate these software 

packages. In a useful study of freely available SfM software for landslide monitoring, 

Stumpf et al. (2015) revealed that APERO and MicMac provided more accurate results 

than VisualSFM and PMVS. However, the difference of photogrammetric accuracy 

between the two results was insignificant (at the millimetre level) for the purposes of 

assessing landslide deformations. Although VisualSFM and PMVS showed slightly 

lower accuracy results, this software offers a higher degree in automated processing 
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compared to APERO and MicMac and was therefore adopted in this research. Moreover, 

in terms of the processing performance for SfM photogrammetry, VisualSFM and PMVS 

can efficiently use both CPU and GPU processors for photogrammetric processing 

(Sawyer et al., 2012), whereas, APERO and MicMac or Bundler and PMVS still has the 

drawback that they can use only a CPU processor. As a result of the use of high-

performance GPU processing power, VisualSFM and PMVS were therefore believed to 

require less processing time. Therefore, VisualSFM and PMVS were identified as an 

effective SfM-photogrammetric processing solution for development of the proposed 

landslide monitoring system. 

3.2.5 Landslide analysis methods 

In considering landslide monitoring, the technique of multi-epoch analysis is used to 

assess landslide processes from photogrammetric results at different times. In particular, 

the methods based on 3D model comparison are generally used for analysis of landslide 

deformation which can be divided into area- and point-based approaches, as shown in 

Figure 3-8 (Lague et al., 2013; Scaioni, 2015).  

 

 

 

 

 

 

 

 

 

Figure 3-8: The methods of multi-epoch analysis for landslide monitoring. 

For the area-based comparison method, DEM of Difference (DoD) is a general technique 

of comparison between two surface models in the form of DEMs to evaluate the changes 

of landslide surfaces. However, in the case of point clouds obtained from 
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photogrammetric results, it is necessary to generate DEMs from two point cloud datasets 

prior to comparison. Moreover, it is difficult to find a suitable DEM resolution for 

analysis in order to maintain the details of the original data, especially the point cloud 

roughness. Thus, the comparison methods for multi-epoch analysis in this research only 

used point-based approaches in order to avoid the processing of surfaces interpolated 

from the measured point cloud.  

Regarding point-based approaches of 3D model comparison, the methods can be directly 

carried out using comparison of two point clouds. Although cloud-to-cloud comparison 

(C2C) and cloud-to-mesh distance (C2M) are normally used to find the differences 

between two point clouds, it is possible that gross errors result from an insufficient 

overlapping area between both two point clouds, such as void areas. Meanwhile, 

multiscale model-to-model cloud comparison (M3C2) was recently proposed as a method 

of point cloud comparison to consider the source of uncertainties over surfaces (such as 

roughness of surface, registration error and surface changes). In particular, the different 

varieties of natural surfaces, such as bare-earth areas or vegetated terrain, have a direct 

effect on comparison results (Lague et al., 2013). The photogrammetric results from 

landslide areas may often be saddled with these concerns. To minimise these effects for 

point cloud comparison, landslide monitoring in this research is therefore based on multi-

epoch analysis using the point cloud comparison M3C2 technique. The M3C2 point cloud 

comparison method was implemented in the stage of change assessment. Details of this 

approach are presented in the later sections on change assessment. 

3.2.6 Summary of the photogrammetric solution for landslide monitoring 

The detail of close-range photogrammetric approaches for landslide monitoring can be 

divided into several stages, as follows: (1) Camera calibration is an important procedure 

to examine the interior orientation of the camera. The use of open-source tools and 

automatic camera calibration routines, evaluated for mobile device cameras, showed 

similarly-accurate results as calibration tools available in commercial software. (2) The 

adopted photogrammetric network configuration should be based on multi-station 

networks and convergent imagery. The guideline for image capture determines the basic 

requirements comprising the maximum allowable camera-to-object distance and the 

distance between each camera station. (3) Modern SfM workflows offer the potential for 
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implementing a photogrammetric approach in terms of providing a high degree of 

automated processing. The investigation of the non-commercial, open-source SfM 

software packages VisualSFM and PMVS offer the promise of a low-cost 

photogrammetric processing solution for landslide monitoring. 

3.3 A mobile platform-based landslide monitoring system for on-site investigation 

Photogrammetric processing for landslide monitoring is usually performed in the office 

after image collection since the operator needs to transfer and process imagery on a 

workstation. This constraint may lead to one of the biggest obstacles in a real-time 

photogrammetric on-site investigation. Although, at present, a high-performance 

processor in a personal or a laptop computer might be able to deal with a requisite 

photogrammetric processing in the field, this research is based on the development of a 

stand-alone application for landslide monitoring. That probably makes the operator 

inconvenient for in-situ investigations. To overcome these difficulties, on-line 

photogrammetric processing and monitoring of landslide hazards is proposed. 

For the development of a photogrammetric system for on-site investigation, it is likely 

that a mobile device camera can be adopted as a low cost sensor for dynamic monitoring 

applications. Mobile devices are also potentially useful instruments for on-site 

investigation in geotechnical engineering and geophysics. A serious weakness with 

photogrammetric monitoring system using mobile devices for on-site investigation, 

however, is the requirement for real-time processing of observations. In order to achieve 

the requirements for a real-time landslide monitoring application, processing captured 

data using mobile cloud computing technology can potentially offer the possibility for a 

real-time measurement system. 

3.3.1 Mobile device technology 

Mobile devices have recently become powerful instruments with low-cost imaging 

sensors that are suited for close-range photogrammetry monitoring applications (Yun et 

al., 2012; Wang, 2013; Micheletti et al., 2015a). Mobile devices are usually classified 

according to their purpose of usage into either tablet or smart phone. The mobile device 

adopted in this research is a simple smart phone (aka mobile phone) because it is generally 
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more comfortable, convenient and portable for on-site investigation. Moreover, the 

majority of modern smart phones currently contain many sensor technologies, such as 

GNSS, digital compass, accelerometers, gyroscopes and/or magnetometers (Figure 3-9). 

These sensors might also provide useful information for photogrammetric measurement 

solution now and in the future. Nevertheless, tablet devices could also be adopted for such 

research. 

 

Figure 3-9: Sensors integrated on a modern smart phone (Daponte et al., 2013). 

GNSS microchip technology for use on mobile devices has been continuously 

developing, including smaller size and lower cost, and consequently has become an 

essential sensor for the majority of mobile devices. Most recent GNSS sensors on mobile 

devices are multi-constellation which can observe several navigation satellite systems 

(e.g. GPS, Galileo, GLONASS or BeiDou) in order to achieve a higher accuracy of 

positioning for navigation purposes. The horizontal location accuracy obtained from 

GNSS-based mobile devices is > 4 m (Yoon et al., 2016). Nevertheless, the GNSS 

observation from such a sensor on a smart phone still provides a low-accurate location of 

the camera station and does not provide sufficient precision of observations for 

photogrammetric processing (Kehl et al., 2016). 

In addition, there are a variety of mobile platform operating systems, including Android, 

Windows and iOS, that lead to different standards, programming languages and 

development tools (Corral et al., 2012). For research purposes, the development of an 

application on the Google Android OS is generally more favourable than iOS and 

Windows mobile because Android supports open source (Wang, 2013). However, the 

primary purpose of mobile devices is not for photogrammetric processing. Moreover, one 

current drawback of smart phones or mobile devices is the relatively low-performance 
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processing power compared to both personal computers and laptop computers. 

Photogrammetric processing on a mobile device is therefore one of the greatest 

challenges, and very difficult to achieve in real-time for 3D reconstruction from the 

imagery. To overcome these difficulties and find a solution to managing and processing 

large amounts of image data for photogrammetric measurement in (near) real-time, it was 

decided to transfer the task of photogrammetric processing from the mobile device onto 

cloud computing services (Chidburee et al., 2016). The proposed landslide monitoring 

system was therefore developed and implemented based on the cloud. 

3.3.2 Cloud computing technology 

The rapid development of ICT plays an important role. Cloud computing is now being 

effectively used to access computing resources and data storage on the Internet (Liao et 

al., 2017). A huge demand for a real-time geospatial processing based on the cloud has 

resulted. For example, the study of Karimi and Roongpiboonsopit (2012) shows that there 

are many challenges associated with computationally-intensive geospatial applications 

when a real-time response is needed. Using cloud computing for data-intensive, time-

sensitive geospatial applications is advantageous because it provides an efficient resource 

for storing and manipulating very large amounts of geospatial information. Thus, cloud 

computing can offer real-time processing potential for geospatial applications. 

In addition, Internet technology has rapidly developed in terms of both speed and device 

connection. The IoT, a modern IT technology, offers the opportunity to connect many 

types of device to the Internet other than the ordinary computer. With the development of 

mobile networks, telecommunication technology via 3G networks has changed into 4G 

networks, making it is possible to achieve data rates of 2-20 Mbps (Ohmori et al., 2001). 

Meanwhile, in the near future, a new 5G technology in the UK is developing that will 

cover 90% of the population by 2027 (Oughton and Frias, 2017). In the aspect of 

engineering, a 5G network will provide data rates of approximately 1-10 Gbps (Chih-Lin 

et al., 2016). This has opened up the potential for harnessing additional processing power 

for mobile devices from the cloud. Mobile cloud computing, which solves the resource 

problem of mobile devices in terms of the available computing power, can provide 

computing resources based on cloud computing technology (Fernando et al., 2013; Ayad 

et al., 2015).  
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In terms of mobile cloud computing in geospatial applications, Lee and Kang (2013) 

defined a mobile cloud service as a mobile application service based on cloud computing 

which can maintain a steadily high performance. This results in the advantage of flexible 

scalability of cloud computing resources. Lee and Kang developed a remote-sensing 

application on a mobile platform to analyse change detection of satellite images, as shown 

in Figure 3.10. Moreover, their study also reported a test on an iPad with geo-based image 

processing functions on the Amazon web service in a cloud environment that fulfills 

users’ requirements for real-time geospatial processing on a mobile device. Therefore, 

cloud-based technology has sufficient potential to solve real-time geospatial problems in 

the context of landslide monitoring. 

 

Figure 3-10: Example of a real-time satellite image processing for change detection 
analysis on an iPad (Lee and Kang, 2013). 

3.3.3 System design and integration 

Regarding a conventional in-situ photogrammetric approach for landslide monitoring, a 

single-camera system is generally used to collect the requisite dataset of sequential 

images. Such a system contains one camera mounted on a fixed pillar, a control system 

with a data logger and the power unit supplied by a solar panel (Figure 3-11). Normally, 

analysis of landslide deformation from such a system was carried out using image 

correlation for 2D displacement on the imagery (Scaioni, 2015). Moreover, additional 

information, such as a DSM from lidar, is used to re-project from 2D displacement into 
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3D movement in local units (Travelletti et al., 2012). Although such single-camera, real-

time photogrammetric systems are currently used in early warning systems for landslide 

monitoring, such an approach still has some serious drawbacks. For example, the level of 

investment in instruments for such an approach is usually high-cost, both in setup and 

maintenance. Such an approach is therefore most suitable for areas at high-risk to 

landslide hazards. As a result, it might not support in-situ initial assessment of the need 

for continuous landslide monitoring. For geotechnical engineering or geophysics, a 

system that can detect the preliminary stages of a landslide is an important requirement. 

 

Figure 3-11: Example of a single-camera based photogrammetric system for long-term, 
in-situ landslide monitoring (Travelletti et al., 2012). 

In the case of a generic ground-based photogrammetric approach for landslide 

monitoring, data collection using photogrammetry can offer time-savings compared to a 

comparable TLS survey (James and Robson, 2012). With regard to on-site initial 

assessment, data processing in the field is necessary to achieve a real-time response. 

Although Castillo et al. (2015) developed efficient and free software packages for a 
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photogrammetric workflow, data processing with this software package for in-situ 

investigation remains a significant challenge due to time-consuming processes. As 

discussed above, mobile devices and cloud computing technology are therefore used to 

overcome serious issues of system development for on-site investigation. 

Based on the requirements of developing a photogrammetric measurement and 

monitoring system for on-site investigation, a mobile platform can offer a portable device 

for the initial assessment of landslide processes. Mobile cloud computing technology can 

support real-time processing. A smart phone was used to capture images from all around 

a landslide area, transfer data for processing on the cloud and display the results of 

landslide deformation, while the cloud was used for photogrammetric processing and 

landslide monitoring analysis. The outline of system operation is illustrated in Figure 3-

12.  

  

Figure 3-12: The model for the implementation of a photogrammetric solution for 
landslide monitoring on mobile cloud computing adopted in this research. 

Regarding Figure 3-12, the operator can manage the cloud-based photogrammetric 

measurement and monitoring system on a smart phone through Internet services via a 

3G/4G or a Wi-Fi network. The main functionality of developed system may be classified 

on the basis of tasks for on-site investigation, as follows: 

1. High-precision photogrammetric measurement; 

2. Automated photogrammetric processing; 

3. High-precision geo-referencing; 

4. Minimising generic outliers; 

5. Automated landslide monitoring analysis; 

6. Real-time system and full service operation. 
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3.3.4 Summary of the mobile platform based landslide monitoring system 

With the difficulties of data processing for real-time landslide monitoring on a mobile 

device, it is necessary to find a solution to manage and process large amounts of 

information. The difficulties of data processing for real-time response of a system can be 

solved by mobile cloud computing technology. Mobile cloud computing can manage 

those problems through the development of mobile application software to utilise external 

resources from cloud computing technology. The cloud can provide high-performance 

computing power in order to compensate for the low-performance processor found in the 

majority of most mobile devices (Fernando et al., 2013). It is a combination of cloud 

computing and mobile networks that brings benefits for mobile users, network operators, 

as well as cloud computing providers. Finally, mobile device and cloud computing 

technology is used in the development of a photogrammetric measurement and 

monitoring solution.  

3.4 Improving photogrammetric processing for landslide monitoring analysis 

Although SfM-based photogrammetry can generate 3D model information for monitoring 

applications via automated processing, the workflows involving image reconstruction and 

analysis for photogrammetric monitoring in scientific geoscience applications are still 

complicated (Kaiser et al., 2014). Most commercial SfM software packages offer full 

photogrammetric processing workflows, but some advanced functions lack details and 

are treated as a black box for processing. Therefore, the development of a system in this 

research is only based on open-source software in order to provide a low-cost solution. 

When performing photogrammetric processing of open SfM-software, the requirement of 

additional functions in terms of pre-processing, geo-referencing and post-processing is 

necessary to achieve the appropriate photogrammetric results for monitoring purposes 

(Castillo et al., 2015). The development of an appropriate analysis workflow is also used 

to assess the change of landslide processes that is observed using the monitoring system, 

as illustrated in Figure 3-13. In order to develop an efficient system in terms of real-time 

response, it is also necessary to develop advanced functions for reducing time-consuming 

processes. 
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Figure 3-13: Photogrammetry-based landslide monitoring workflow. 

3.4.1 Pre-image matching 

A fully automated processing workflow based on the SfM-photogrammetric approach 

primarily uses the basic algorithms of 3D model reconstruction from imagery. Although 

this advantage can offer the convenience of photogrammetric processing for non-expert 

operators, it might lead to time-consuming processes in cases of datasets with a large 

number of images. Such an issue could create difficulties for real-time photogrammetric 

processing. The workflows of a photogrammetric measurement solution should 

incorporate an additional algorithm to reduce processing time in the stages of 3D 

reconstruction. To deal with time constrains of such a problem, a pre-image matching 

stage is proposed for reducing the time-consuming process of identifying image 

correspondence in SfM. 

Image matching, one of the workflows for the SfM-based photogrammetry, is generally 

used to find correspondence between each image in the photoset using key features on 

the imagery. Basically, image matching supposes no-correspondence between each 

image. Consequently, the image matching algorithm is carried out by a full-pairwise 

matching of all images. In the case of image acquisition, observation with a systematic, 

methodical approach can generate useful information in terms of the sequence in which 

images were captured. Normally, the image sequence is carried out by a frame-to-frame 
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coherence. From the benefits of sequential images, the relationship between each image 

may be shown in chronological sequence. The algorithm of pre-image matching, one of 

the pre-processing workflows before SfM-based photogrammetry is performed, is 

developed to make a pair-list of image correspondences from image sequences. 

 

             

(b)                                                             (c) 

Figure 3-14: Example of 3D reconstruction for (a) imaging configuration and the matrix 
comparisons of image matching between (b) an image sequence and (c) a non-image 

sequence. 

Following the illustration of Figure 3-14, the matrix of image matching for an image 

sequence can highlight the relationship between each image and an adjacent image 

(Figure 3-14(b)). In contrast, for a non-image sequence the image matching matrix was 

confused (Figure 3-14(c)), meaning there is no correspondence between adjacent images. 

For images captured from fully covered objects and chronological image capture, image 

sequences usually result from data acquisition. One advantage of sequent images is a 

reduced time in matching when using sequential matching. To find the image pairs for 

(a) 
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matching, a pre-image matching algorithm was carried out using the pseudocode, as 

follows: 

 Open the directory of image dataset; 

 READ all image files into the list of image dataset; 

 READ the input of the number of overlapping images; 

 For each image in the list of image dataset: 

 SET the central image; 

 Search for the left-hand side image following number of overlaps: 

 READ the image file into the list of left-hand side image 

dataset; 

 If all of the following left-hand side image dataset, then: 

 WRITE a pair of each left-hand side image name with 

the central image name into txt file; 

 Search for the right-hand side image following number of overlaps: 

 READ the image file into the list of right-hand side image 

dataset; 

 If all of the following right-hand side image dataset, then: 

 WRITE a pair of each right-hand side image name with 

the central image name into txt file; 

 Then close the directory. 

To explain the workflow of the algorithm developed for pre-image matching as shown in 

pseudocode above, the previous and the subsequent images are chosen for each image by 

following the number of overlaps. However, after pre-image matching, the process of 

image matching is still required, and is performed later at the SfM-based photogrammetry 

stage. In cases of later additional images or an infill of the circular configuration (Figure 

3-14(a)), this algorithm has limitations in immediately identifying new pairs. The 

recommendation for such situations is therefore not to run pre-image matching and 

instead perform only image matching. 

The function of this algorithm was developed using the Python programming language to 

derive a pair-list of image matches in the form of a text file. However, the image pairs for 

subsequent matching depend on the number of overlapping images. The operator can 
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select the appropriate number of overlaps for at least three images. The example of a pair-

list for image matching was computed from an image sequence, as illustrated in Figure 

3-15.  

 

Figure 3-15: The example of a pair-list of image matches from an image sequence. 

3.4.2 Lens distortion correction 

Lens distortion, especially radial, is one of the systematic errors that directly affect 

measurements from the imagery. To achieve a high-accuracy photogrammetric 

measurement, these errors should be minimized prior to photogrammetric processing. 

Most commercial SfM-based photogrammetric software packages can provide full 

photogrammetric workflows, whereas open-source SfM-software such as VisualSFM 

requires the addition of some functions to enhance the photogrammetric workflow. The 

function of lens distortion correction, for example, is not available to create undistorted 

images. Thus, a function for undistorted image creation in the pre-processing stage of the 

SfM photogrammetry pipeline is proposed. 

The development of the function for lens distortion correction was carried out using a 

Python script with OpenCV library (Bradski and Kaehler, 2008). This function allows the 

operator to set the parameters of the camera model (focal length, principal point and lens 

distortion). As already detailed, these parameters were examined for the smart phone 

camera using automated self-camera calibration using the camera calibration tool in 



63 

 

Matlab software (Bouguet, 2000). The undistorted images were then used with the fixed 

calibration mode in VisualSFM for photogrammetric processing to reconstruct 3D 

models. The workflow of the function for lens distortion correction is illustrated in Figure 

3.16. 

  

  

  

 

 

 

 

 

 

 

Figure 3-16: The workflow of the developed function for 3D reconstruction using lens 
distortion correction. 

3.4.3 Geo-referencing 

After 3D reconstruction from the imagery using the SfM workflow, photogrammetric 

results usually do not have any spatial information because its approach does not require 

ground control to calculate camera parameters and orientations. To assess landslide 

processes using multi-epoch analysis, photogrammetric results at different epochs have 

to be geo-referenced into the same coordinate system before comparison (Scaioni, 2015). 

Although the SfM-based photogrammetric processing does not require ground control 

points or targets, the use of targets is essential to achieve a high-level of precision for geo-

referencing of photogrammetric results. In the case of geo-referencing with photo control 

targets, observations should take place directly on the imagery rather than in the derived 
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point cloud. In this research, the use of some form of photo control targets is a requirement 

for geo-referencing. 

The methods of geo-referencing based on the system development may be classified by 

techniques of observing the locations of targets. Although the locations of the photo 

control targets may be observed using GNSS or TLS survey, because of the requirement 

for high-accuracy, this approach would be costly in terms of equipment and labour. 

Moreover, the requirement of post-processing for GNSS/TLS data would be prohibitive. 

Based on the practicalities of survey for landslide monitoring, geo-referencing without 

GNSS or TLS observation is therefore offered as an option for in-situ investigation. As a 

result of this, the functional development of geo-referencing is implemented into two 

methods of target observation with & without GNSS/TLS directly from the imagery on 

the smart phone. 

3.4.3.1 Geo-referencing with GNSS/TLS based target observation  

GNSS or TLS observations are required to provide the locations of targets for this method 

of geo-referencing. After post-processing of the GNSS or TLS data, the 3D coordinates 

of target locations are imported into the smart phone. The development of a function for 

manual geo-referencing on the smart phone is used to make a pair-list of target positions 

between image coordinates and the corresponding real world coordinates obtained from 

either the GNSS or TLS observation. The observation of targets can be made directly in 

the imagery through the function developed for geo-referencing. After target observation, 

a pair-list of target positions is exported into a text file format suitable for use in geo-

referencing the photogrammetric results in VisualSFM. This approach to geo-referencing 

is illustrated in Figure 3.17. 
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Figure 3-17: Illustration of the developed function for GNSS/TLS target observation. 

3.4.3.2 Geo-referencing without GNSS/TLS based target observation 

To avoid using GNSS or TLS survey for target locations, an alternative solution to geo-

referencing was developed. This approach is divided into three stages. Firstly, the scaling 

of the photogrammetric results using distances between targets is performed. The 

observation of distances between targets can be carried out using a tape measure or laser 

distance measurement device to provide a precise distance measurement. Measuring six 

distances between a pair of three targets is the minimum requirement for scaling the 

photogrammetric results (Figure 3-18(a)). To generate pseudo-position of targets from 

these distances, the locations in 3D coordinates of three targets are calculated using a 

Python script with NumPy and SciPy libraries (Figure 3-18(b)). Then, the location of the 

targets is directly observed in image data through the developed function (Figure 3-18(c)). 

Secondly, the alignment of photogrammetric results at different epochs is carried out 

manually using the point pairs picking tool in CloudCompare. The point pairs for 

alignment are selected from the key features in the point cloud. Thirdly, to enhance 

alignment of two point clouds, automatic geo-referencing is carried out using the iterative 

closest point (ICP) algorithm without scaling in CloudCompare. 
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(a)                                           (b)                                       (c) 

Figure 3-18: Illustrations of the developed function of scaling for geo-referencing using 
distances of known objects. 

This application of scaling with the distances of known objects on a smart phone was 

developed to provide accurate dimensions for photogrammetric results. However, this 

approach is not yet fully implemented on the system because web-based point cloud 

processing is necessary for the stage of manual alignment between epochs. At present, 

the web-based technology for point cloud is limited only to a 3D viewer for visualization. 

The practical application therefore still requires future development of a web-based 

service for point cloud processing. Thus GNSS/TLS is necessary for geo-referencing.  

3.4.4 Automatic de-noising 

Routine image capture using a mobile device camera in a natural environment cannot 

fully control the intensity of light at time of image capture. Image acquisition may 

therefore result in different image quality in terms of contrast and brightness. Moreover, 

the different kinds of surface type over landslide areas, such as grasses or trees, will be 

recorded. These concerns lead to an uncontrollable factor in photogrammetry. As a result, 

the SfM-photogrammetric results are often prone to matching errors in the multi-view 

stereo dense surface reconstruction process. Noise can be generated in the point cloud 
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due to repetitive texture patterns or poor image contrast in the imagery (Scaioni, 2015). 

This is particularly so over vegetated surfaces such as those found in a natural landslide, 

as presented in Figure 3.19, and these can have a direct impact on the quality of results.  

 
(a) Front view 

 
(b) Side view 

Figure 3-19: Example of noise in a point cloud from the SfM- photogrammetric 
approach applied to a natural landslide: the red circles highlight noisy points. 

To reduce the negative effect of gross errors, a de-noising stage is used to remove noise 

from the point cloud and improve the quality before the assessment of landslide processes. 

The de-noising is based on the application of a statistical outlier removal (SOR) filter. In 

this method, a computation at each point is performed to determine the average distance 

between itself and the neighbouring point dataset. The removal of points is determined 

by a criterion of statistical analysis based on the neighbour’s distances. The distribution 

of their resulting distances is supposedly normal. A mean and a standard deviation of this 

statistical analysis are considered as the criterion of de-noising. If the mean distance of 

each point is further from the criterion then these point are defined as outliers and noisy 

points are removed from the point cloud. An example of automatic de-noising is shown 

in Figure 3.20. 
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Figure 3-20: Example of automatic de-noising based on the SOR filter (PCL, 2017). 

The automatic de-noising filter was carried out using functions based on the system 

through command line syntax of the SOR filter in CloudCompare software. The selection 

of the optimum parameters for automatic de-noising is necessary to remove outliers from 

photogrammetric results. These parameters include the number of points to use and the 

statistic of standard deviation. However, the developed function can offer the setting of 

both parameters directly by the operator. 

3.4.5 Vegetation filtering 

Although a photogrammetric approach can provide the high-accuracy results required for 

landslide monitoring applications, photogrammetric approaches still have a significant 

drawback in that they cannot penetrate the surfaces of vegetated areas. In particular, 

vegetated surfaces (such as grass) are usually found in a natural landslide that directly 

affects photogrammetric results for surface deformation monitoring. Moreover, seasonal 

changes also result in different heights of vegetated surfaces over landslides. 

Consequently, the uncertainty of surfaces obtained from vegetation effects can cause 

unreliable assessment of landslide processes. The results obtained from the SfM-

photogrammetric approach over vegetated surfaces require elimination of this effect 

before landslide monitoring analysis. Vegetation filtering is proposed to extract only bare-

earth points of photogrammetric results and thereby ensure an appropriate assessment, 

especially in the case of a natural landslide. Thus, Figure 3-21 shows the workflow of a 

filter to remove points over vegetated surfaces. 
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Figure 3-21: A workflow for vegetation filtering of the photogrammetric results. 

Vegetation filtering was carried out using the green vegetation index obtained from point 

colours (RGB). The green vegetation index is calculated as shown in equation (3-7) 

(Meyer and Neto, 2008). 

𝐺𝐼 = 2𝑔 − 𝑏 − 𝑟         (3-7) 

where 𝐺𝐼 is the green vegetation index; 𝑟, 𝑏 and 𝑔 are the RGB values of each point. 

Focusing on the classification of the point cloud by the value of green vegetation index 

for each point, the setting for the threshold value of green vegetation index is carried out 

by the operator. All points that are less than the threshold value are non-green vegetated 

points and are assumed as bare-earth points. In contrast, points that are greater than the 

threshold value are assumed as points over vegetated surfaces, and are removed from the 

point cloud. The developed function on the system was carried out using a Python script 

with a function to export the point cloud file format through CloudCompare software. 
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3.4.6 Change assessment  

After the post-processing stages for photogrammetric results, including geo-referencing, 

automatic de-noising and vegetation filtering, the quality of photogrammetric results are 

improved for landslide monitoring analysis. The enhanced results at different epochs are 

used for multi-epoch analysis to assess landslide processes. Following the landslide 

analysis methods in section 3.2.5, the M3C2 technique of point cloud comparison method 

was used for assessment of the landslide changes to deliver the preliminary results of 

landslide monitoring in this research.  

The key parameters (Figure 3-22) of the M3C2 method for multi-epoch analysis are used 

for the change detection of landslides, including:  

 𝐷 - the scale factor or normal scale; 

 𝑑 - the project scale; 

 𝑝௫ - the height of the projection cylinder or the maximum distance; 

 

Figure 3-22: The outline of the key parameters used in the M3C2 algorithm (Lague et 
al., 2013). 

To explain the M3C2 algorithm as shown in the figure above, there are three main stages 

in a comparison to find the differences between two point clouds. Firstly, the normal 

vector is determined using the scale factor, 𝐷, to find a direction of the different distance 

in the comparison. Next, the distance is calculated along a normal vector within a cylinder 

of diameter 𝑑 to determine the difference. Finally, if the difference is more than the 

maximum distance, 𝑝௫, it is assumed it cannot be calculated due to missing data. It is 

acknowledged that the M3C2 parameters might be complicated for non-experts to 
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understand. Thus, details of the appropriate values for those parameters are reviewed and 

described in the next chapter. 

Although the M3C2 algorithm in CloudCompare is generally used for point cloud 

comparison to calculate the differences between two point clouds, this approach is 

difficult to implement on the landslide monitoring system due to its advanced plug-in 

software. To employ the M3C2 method in the system development, an open-source M3C2 

tool was therefore implemented into the workflow for landslide monitoring analysis, as 

illustrated in Figure 3-23. 

 

 

 

 

 

 

 

 

Figure 3-23: The outline of the workflow for landslide monitoring analysis. 

There are several procedures required for landslide monitoring using multi-epoch analysis 

based on the M3C2 technique. Firstly, the input datasets of two point clouds might need 

to be subsampled using CloudCompare through command line syntax if it is required to 

decrease the number of points for timesaving analysis. Secondly, the two point clouds are 

converted to TXT file format using CloudCompare in order for analysis using the M3C2 

tool. Thirdly, the differences between the two point clouds are determined using M3C2 

tool, and the results of different distances generated in TXT file format. Next, to represent 

the differences between both point clouds, a graph showing the results is generated using 

a Python script with Matplotlib library. Finally, the statistics of the differences comprising 

the value of mean, the standard deviation, minimum and maximum are calculated and 

represented using a Python script.  
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3.5 System development 

The workflow of photogrammetric measurement and monitoring process can be divided 

into two main modules: 1) photogrammetric measurement for providing 3d reconstruction 

results of the different epochs; 2) landslide monitoring analysis to assess the changes of 

landslide processes between two epochs. The main workflows of landslide monitoring in 

this research are shown in Figure 3-24.  

 

 

 

 

 

 

Figure 3-24: A generic landslide monitoring workflow using a photogrammetric 
approach. 

The development of each afore-mentioned function for enhanced photogrammetric 

processing, including pre-processing, geo-referencing and post-processing is applied in 

the workflows of the SfM-based photogrammetric approach. The developed workflow of 

change assessment is used for landslide monitoring analysis. The details of 

implementation and development of these two modules using mobile cloud computing 

technology are described in this section. 

3.5.1 System layout 

From the design of a photogrammetric measurement and landslide monitoring system for 

on-site investigation in this research, the solution was based on simplicity and flexibility 

for the operator. The architecture of system development was designed based on mobile 

cloud computing services. The components of the system are divided into two main 

aspects: 
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1) a remote, cloud-based server that is used to temporarily store and process image 

data in order to generate the photogrammetric results and analyse the landslide from those 

results;  

2) a local client, running on the mobile device, is used to upload images to the 

cloud, set processing options and then subsequently display the photogrammetric results 

(such as 3D point clouds of the landslide area). Moreover, it is used to control analysis of 

landslide monitoring and then display the results after landslide monitoring analysis. 

This developed system, which is named Sky Photogrammetric Measurement and 

Monitoring System or SkyPMMS, was based on client-server communication via the 

Hyper Text Transfer Protocol (HTTP) using the Internet service, as shown in Figure 3-

25.  

Figure 3-25: System architecture based on mobile cloud computing for 
photogrammetric measurement and landslide monitoring. 

SkyPMMS uses a public cloud server that adopts the Amazon Elastic Compute Cloud 

(Amazon EC2) instance (Amazon Web Services, 2016) as a cost-effective service with 

flexible handling. For example, the price of AWS cloud computing services depends on 
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pay-per-use. Moreover, the elasticity of cloud computing can help to automatically 

manage the processing workload on a system such as data processing based on a multi-

cloud server. The Amazon Simple Storage Service (Amazon S3), a cloud storage service, 

is used to back up the image data and the results from both the photogrammetric 

measurement and landslide monitoring analysis in order to avoid losing data. The 

SkyPMMS client uses the thin client approach, which is able to access the system through 

the standard web browser on a smart phone. However, the development of a mobile 

application can make accessibility to the system more convenient for the user. Thus, a 

front-end and back-end are developed in the system of SkyPMMS according to the 

requirements of the user. 

3.5.2 Implementing system 

Data processing for 3D reconstruction based on the SfM-photogrammetric approach 

required high-performance computing through the use of a GPU processor. GPU 

computing uses highly parallel processing based on many-core technology to deal with 

the computationally-intensive modules of the SfM workflow. Processing based on this 

solution can achieve a near real-time response. The system was implemented on a GPU 

cloud server in the g2.2xlarge Amazon EC2 instance type in order to handle the high 

processing demands of the SfM software modules. In addition, another type of Amazon 

EC2 instance for a GPU cloud server, which uses a higher-memory of GPU, can offer 

sufficiently faster processing times to meet the demands of a real-time monitoring system. 

However, the price of cloud computing services depends on the performance of 

components on a cloud server such as CPU, memory and storage. In particular, the price 

of data processing on a GPU cloud server is usually higher than a basic cloud server. In 

order to develop a system that minimises cost for data processing, the options of data 

processing on multi-cloud servers were developed to be chosen by the user. The operator 

needs to optimise the use of the cloud server from the expense of data processing and 

processing time on the cloud. In this research, the back-end of the system for data 

processing is divided into two basic cloud servers, comprising a GPU cloud server and a 

cloud server without GPU (Figure 3-26). 
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Figure 3-26: The workflow of data processing for photogrammetric measurement based 
on a multi-cloud server. 

For data processing based on multi-cloud servers, the components of this system have 

many functions. Firstly, a main cloud server of the t2.micro Amazon EC2 instance type, 

the lowest-cost of AWS cloud server, is used to control data transfer between mobile 

platform-to-cloud server and cloud-to-cloud servers, receive and send a request for data 

processing, and then respond to display the results on a smart phone. Secondly, a GPU 

cloud server in the g2.2xlarge or g2.8xlarge Amazon EC2 instance type is used to process 

the photogrammetric measurement of the SfM software and provide landslide change 

analysis. Finally, the Amazon S3, a cloud storage service, is used for central storage to 

transfer data between two cloud servers. Although this method may lead to delayed 

processing due to having many stages for data transfer between each cloud server, a 

reduced time delay between stages is insignificant for data processing. During the 

temporary disuse of data processing for photogrammetric measurement and landslide 

monitoring analysis, the user can stop the GPU cloud server working. This minimises 

expense of the pay-as-use cloud based system. The solution of data processing on a multi-

cloud server therefore performs a balance of the workload on cloud computing to provide 

a low-cost approach to system development. For the execution of this system developed 
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for landslide monitoring, the monthly costs of both photogrammetric processing and 

monitoring analysis using the Amazon cloud server and cloud storage are approximately 

£20 (2018 prices). 

To implement the system on a multi-cloud server, the development of the back-end 

service is divided into two key modules in SkyPMMS, following the illustration presented 

in Figure 3.25. With the module of photogrammetric measurement to generate the 

photogrammetric results (Figure 3.27), the cloud servers implement several procedures 

and software routines, as follows:  

1) jQuery File Upload is used to upload image files from the mobile device to the 

main cloud server.  

2) Image data are transferred from the main cloud server and stored in the Amazon 

S3 cloud storage using the AWS Command Line Interface (CLI).  

3) The settings of data processing are sent to the GPU cloud server with a request for 

processing and then the image data is retrieved from the Amazon S3 cloud storage. 

4) The developed functions of pre-processing for the SfM technique, such as pre-

image matching and lens distortion correction are used to prepare the image data 

before photogrammetric processing.  

5) VisualSFM is used for 3D reconstruction of the imagery from landslide 

monitoring areas and then MVS techniques using CMVS/PMVS (Furukawa et al., 

2010; Furukawa and Ponce, 2010) generates point clouds.  

6) The advanced functions of post-processing such as geo-referencing, automatic de-

noising and vegetation filtering are used to prepare the results prior to landslide 

deformation assessment.  

7) The PotreeConverter open source code (Schütz, 2015) is used to convert the 

results to Potree format to utilise rendering of the point clouds, and then the results 

are transferred from the GPU cloud server and stored on the Amazon S3 cloud. 

 

In addition, the main cloud server is used to retrieve the results from the cloud storage 

and update the view of the point cloud through a web-based 3D viewer. This 

implementation of the back-end service uses the HTML rendering code with a PHP script 

in order to control the workflow of the photogrammetric measurement system on both the 

cloud servers and display the output. 
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Figure 3-27: The workflow of the photogrammetric measurement module based on a 
multi-cloud server. 

With regards to the second main module of the back-end service (Figure 3.28), there are 

several tasks implemented on the cloud servers to analyse multi-epoch datasets in order 

to assess landslide processes over time, as follows: 

1) The main cloud server is used to retrieve the settings of multi-epoch analysis from 

a smart phone and send a request for analysis to a cloud server for data processing.  

2) The cloud server for data processing retrieves the photogrammetric results from 

the Amazon S3 cloud storage according to the settings of multi-epoch analysis, 

and then performs the change assessment of landslides (following the workflow 

in section 3.4.6).  
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3) The results from landslide monitoring analysis are transferred from this cloud 

server and stored on the Amazon S3 cloud.  

 

Furthermore, the main cloud server is used to retrieve the results from the cloud storage 

and update representation of the output to the mobile platform. SkyPMMS also employs 

the thin client approach through HTML5 technology such that it can operate using a 

standard web browser on multiple platform types (e.g. smart phone, tablet, desktop 

computer). 

 

Figure 3-28: The workflow of the landslide monitoring analysis module based on a 
multi-cloud server. 
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3.5.3 Development of a mobile application 

The mobile application is used as the front-end viewing platform for SkyPMMS in order 

to connect to the landslide monitoring system on the cloud environment. This application 

also helps the operator to control the system on a smart phone for on-site investigation of 

landslide monitoring. The development of this mobile application is based on an Android 

OS using the Java programming language in the Android Studio integrated development 

environment (IDE). The development of the front-end utilizes WebView to display web 

pages for Android mobile application that is similar to a standard web browser on a smart 

phone. The front-end client using a mobile application has an advantage over using a 

standard web browser in that it does not request the URL of the main cloud server. 

The main features of this front-end side of SkyPMMS can be classified according to the 

two main modules of the system, as shown in Figure 3-25. First, the photogrammetric 

measurement module is used to upload images, select options for processing, send data 

processing requests and illustrate point cloud results in a 3D viewer on a smart phone. 

Second, the landslide monitoring analysis module is used to select photogrammetric 

results, set the parameters of the M3C2 method and display the output of analysis in a 2D 

viewer. Figure 3-29 shows the user interface for the mobile application of both modules. 

The manual of this mobile application is provided in Appendix C. 
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Figure 3-29: Example of the user interface for the developed mobile application of the 
landslide photogrammetric monitoring system. 
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3.5.4 Summary of the developed system 

The SkyPMMS system was developed in the form of a Web-based service for 

photogrammetric measurement and landslide monitoring. The cloud server and cloud 

storage service were implemented for the back-end of the system. The multi-cloud server 

was applied to manage data processing for a real-time response. Photogrammetric 

processing on the GPU cloud server worked efficiently to resolve the problem of 

computationally-intensive workflows of the SfM software. The connection of the system 

uses Internet via a 3G/4G or a Wi-Fi network on mobile devices. The operator can utilize 

the developed system through a mobile application to process landslide monitoring in-

situ. 

3.6 Summary 

A photogrammetric monitoring solution using mobile devices has been proposed for on-

site investigation of landslide monitoring to deliver a low-cost approach for geology, 

geophysics or geotechnical engineering. The system implementation and development for 

on-site investigation of landslide monitoring is designed based on a mobile platform with 

cloud computing technology to enable real-time processing. SfM-based photogrammetry 

is used for photogrammetric processing that is fully-automated processing. Although the 

use of non-commercial SfM software for 3D reconstruction from the image data is 

required for the development of a low-cost landslide monitoring system, the development 

of advanced functions was necessary to deliver appropriate photogrammetric results 

before assessing landslide processes. Focusing on the stages related to pre- and post-

processing of SfM photogrammetry, the developed functions are used to improve the 

quality of results and enhance the performance of data processing. The development of 

workflows for landslide monitoring analysis are used to deliver the preliminary results 

for assessing the changes in landslide deformation. The landslide photogrammetric 

monitoring system utilises automated workflows to offer friendliness for the operator. 

Evaluation of the developed functions ensured satisfactory system performance before 

assessing and testing the solution at the landslide test areas. Experimental studies of the 

system are described in the next chapter. 
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Chapter 4. Performance evaluation 

 

 

 

 

4.1 Introduction 

The development of a monitoring system in this research aims to offer a low-cost, real-

time photogrammetric solution for the initial assessment of landslide hazards using a 

smart phone. The primary evaluation of the photogrammetric potential of a smart phone 

camera and the allied processing software was essential to ensure the quality of results 

for landslide monitoring purposes. In the case of on-site investigation, the developed 

system was expected to deliver a real-time photogrammetric measurement and 

monitoring solution directly on the employed mobile device. The performance of 

developed functions for the improved photogrammetric processing and landslide 

monitoring on the cloud is evaluated in this chapter. 

4.2 Photogrammetric landslide monitoring using mobile devices 

Before developing a solution for photogrammetric measurement and implementing 

landslide monitoring on a smart phone, it was necessary to evaluate the photogrammetric 

results from a smart phone camera to investigate the potential of affordable image-based 

mobile technology for landslide monitoring. A smart phone camera with a 5-megapixel 

sensor was evaluated as a typical off-the-shelf camera. Moreover, in this experiment 

imagery was collected using a DSLR camera with a high-quality sensor in order to 

compare against the photogrammetric results from a low-cost smart phone camera. The 

evaluation of the photogrammetric results from different processing softwares for both 

cameras was used to examine the capability for measuring landslide movement. 
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4.2.1 Experimental design 

In a comparison of using different digital cameras for landslide monitoring, a smart phone 

(iPhone 4) and a DSLR (Nikon D300) camera were tested. The details of both digital 

cameras were described in the previous chapter. Two image datasets were captured on 20 

March 2015 around a natural landslide slope at the British geological survey (BGS)’s 

Hollin Hill landslide observatory using both cameras at the same positions. Each image 

dataset comprised 48 images. Targets were established and used for photo control points 

in geo-referencing to provide photogrammetric results in the same coordinate system. The 

location of targets was determined using a TLS survey. Moreover, a higher-resolution, 

higher-accuracy dataset was collected on the same day using TLS observation to enable 

an accuracy assessment of photogrammetric results. In this experiment, the methodology 

was carried out as illustrated in Figure 4-1.  

 

Figure 4-1: Methodology in the camera comparison experiment. 

With regard to the SfM-photogrammetric processing, 3D reconstruction of both image 

datasets was performed using three software packages, including: 1) AgiSoft PhotoScan; 

2) VisualSFM & PMVS; 3) Bundler & PMVS. For geo-referencing in PhotoScan and 
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VisualSFM & PMVS, the observation of targets was directly carried out in the imagery. 

These photogrammetric results were in the form of 3D point clouds with geospatial 

information. On the other hand, photogrammetric results obtained from Bundler & PMVS 

had to be georeferenced using the resultant point clouds and the point pairs picking tool 

in CloudCompare. For assessment of photogrammetric accuracy, the comparison between 

photogrammetric results and higher quality data from the TLS survey was performed 

using the C2M distance in CloudCompare. This comparison method was computed by 

associating each point in the evaluation dataset (the SfM models) with its closest point in 

the reference dataset (the TLS data). As a result of this, the differences between the SfM 

models and the TLS data were calculated as three-dimensional distance errors. However, 

geo-referencing might cause additional errors in the transformation processes. To reduce 

this negative effect, the ICP algorithm (without adjustment of scaling) was applied to the 

photogrammetric results before comparison (James and Robson, 2012; Micheletti et al., 

2015a)  

4.2.2 Test results 

Unfortunately, the Bundler photogrammetry package, comprising Bundler and PMVS, 

could not deliver the necessary photogrammetric results in this experiment because of too 

few number images to enable reconstruction of a 3D model. However, photogrammetric 

processing was achieved in both PhotoScan and VisualSFM & PMVS for 3D 

reconstruction from the same images. The different performance of each SfM software 

had a direct impact on the potential of photogrammetric processing. The comparison of 

results between the SfM outputs and the TLS data was calculated as distance errors to 

quantify the photogrammetric accuracy of each camera and SfM software (Table 4-1).  
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Table 4-1: Statistics of distance errors between SfM models and TLS data for direct 
registration and after applying the ICP algorithm. 

Digital 
camera 

Processing 
software 

After geo-referencing After applying ICP 

Mean 
(m) 

SD 
(m) 

RMSE 
(m) 

Mean 
(m) 

SD 
(m) 

RMSE 
(m) 

Nikon 
D300 

PhotoScan 0.022 0.020 0.021 0.000 0.022 0.025 

VisualSFM 
& PMVS 

0.018 0.023 0.025 -0.002 0.030 0.031 

iPhone 4 
PhotoScan 0.032 0.034 0.035 0.015 0.030 0.032 

VisualSFM 
& PMVS 

0.030 0.058 0.060 0.008 0.056 0.057 

Following Table 4-1, the mean and root-mean-squared error (RMSE) values of both 

PhotoScan and VisualSFM and PMVS (using a direct registration) from a Nikon D300 

camera were smaller than from an iPhone 4 camera. It is likely than the photogrammetric 

accuracy captured from a Nikon D300 camera was slightly better than from an iPhone 4 

camera in both SfM software packages. Moreover, the photogrammetric results obtained 

from PhotoScan provided a higher accuracy than VisualSFM and PMVS for both 

cameras. After applying the ICP algorithm to photogrammetric results, the mean of 

distance errors between the SfM models and the TLS data decreased significantly to 0.0 

and 1.5 cm. This mean value of distance error reveals a biased outcome after geo-

referencing, whereas it does not show the quality of photogrammetric accuracy (Stumpf 

et al., 2015). Clearly, the ICP algorithm helped reduce influences of geo-referencing 

errors for the SfM approach.  The RMSE values of a Nikon D300 from PhotoScan and 

VisualSFM & PMVS increased to 0.4 and 0.6 cm, respectively after applying the ICP 

algorithm. Meanwhile, the RMSE values of an iPhone 4 from both software decreased to 

0.3 cm after applying the ICP algorithm. Nonetheless, the use of the ICP algorithm does 

not always return better accuracy and the photogrammetric accuracy was not significantly 

improved. Due to uncertainties of vegetated surfaces, photogrammetric results still had 

some errors from the vegetation effects. To conclude, the SfM outputs captured from a 

smart phone camera and photogrammetric processing based on freely available software 

using VisualSFM & PMVS provided results of sub-dm-level accuracy (between 5.7 and 

6.0 cm). 
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4.3 SfM-photogrammetric processing based on cloud computing 

From the development of a photogrammetric measurement system on the cloud, as 

described in the previous chapter, this experiment was carried out to ensure efficient 

performance of the developed system. In particular, the SfM-results obtained using a 

state-of-the-art smart phone at the outset of the research were evaluated for the 

photogrammetric accuracy and compared to two other alternative SfM methods. 

4.3.1 Experimental design 

The smart phone tested in this experiment was a Nexus 6. Imagery was captured on 10 

June 2015 with a maximum image resolution of 4160 x 3120 pixels (approximately 13 

megapixels). This image dataset comprised 36 images captured around a natural landslide 

at the BGS’s Hollin Hill landslide observatory. Markers for geo-referencing were located 

around the landslide, comprising six photo control targets printed on paper. The locations 

of markers, camera stations and viewing direction of the captured images are shown in 

Figure 4-2. 

 

Figure 4-2: Illustration of camera positions for photogrammetric image capture. 

Moreover, for validation of photogrammetric results, a high-resolution, high-accuracy 

TLS dataset was collected on the same date using a Leica ScanStation P20 to compare 

with each photogrammetric approach. The TLS data was captured from four scanner 

positions to ensure complete coverage of the full landslide area. Finally, the locations of 
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the six photo control targets and the four TLS stations were observed with GNSS at mm-

level accuracy. The configuration of this experiment is outlined in Figure 4-3. 

 

Figure 4-3: Methodology in the photogrammetric processing comparison experiment. 

Following the methodology flowline illustrated in Figure 4-3, each SfM-photogrammetric 

processing workflow, conducted under laboratory conditions, used the same 36 image 

dataset. Photogrammetric processing with PhotoScan was performed on a desktop 

computer running on Windows 8 OS using an Intel Core i7-4770 Processor with 3.4 GHz 

CPU, 16 GB of RAM and an Intel HD Graphics 4600 with 1.4 GHz GPU. SkyPMMS 

(based on VisualSFM and PMVS) was run on the g2.2xlarge of Amazon EC2 instance 

under Windows Server 2012 with Intel Xeon E5-2670 Processor, 15 GB RAM and 

NVIDIA GPUs with 4GB of video memory. For data processing in Autodesk 123D Catch, 

the specification of the processing system is unknown because it is a web-based black 

box service for SfM.  

For the geo-referencing step in VisualSFM and PMVS (implemented on the cloud) and 

Agisoft PhotoScan, the locations of targets were observed directly in the imagery, and 

this step was undertaken as part of the workflow. However, 123D Catch did not allow the 

user to undertake geo-referencing in the processing system. The SfM output from 123D 

Catch was georeferenced by identification of targets in the point cloud using the 

CloudCompare software. This step of the methodology for all SfM approaches required 
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manual input by the user. Next, the de-noising stage consisted of automatic and manual 

outlier removal was used to completely remove all gross errors for the photogrammetric 

results before the evaluation of SfM results from all three approaches. Finally, the 

comparison between photogrammetric results from each SfM approach and the TLS data, 

which was used for the evaluation of the SfM results, was carried out using the cloud-to-

mesh distance tool in CloudCompare. 

4.3.2 Test results 

Visual comparison of the results provided by different SfM methods, as shown in Figure 

4-4, shows Agisoft PhotoScan was able to produce a much denser point cloud than both 

Autodesk 123D Catch and the cloud-implemented VisualSFM & PMVS. Moreover, 

123D Catch produced more uniform coverage than VisualSFM & PMVS, which was 

sparser, especially over vegetated surfaces. Nevertheless, the resultant point clouds 

generated by the latter two methods still provided the key information over landslide 

areas, especially fissures and cracks on the landslide body. 

Figure 4-4: Photogrammetric point clouds obtained from the three adopted SfM 
approaches; (a) VisualSFM & PMVS, (b) Autodesk 123D Catch, (c) Agisoft 

PhotoScan, and the TLS validation data (d). 

(a)                                                                   (b) 

(c)                                                                   (d) 
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With regard to the assessment of photogrammetric accuracy from each SfM method with 

a high-resolution TLS dataset, statistics of the comparison between each SfM output and 

the TLS data are presented in Table 4-2. In addition, the distributions of distance 

difference are shown in Figure 4-5. 

Table 4-2: Statistics of differences between the different SfM-outputs and the TLS data. 

SfM method 
TLS-SfM 

Min 
(m) 

Max 
(m) 

Mean 
(m) 

SD 
(m) 

RMSE 
(m) 

Agisoft PhotoScan -0.545 0.463 0.022 0.034 0.036 

Autodesk 123D Catch -1.186 0.357 0.013 0.041 0.043 

VisualSFM & PMVS -0.406 0.461 0.027 0.050 0.053 

Table 4-2 shows that minimum differences between 123D Catch and the TLS reference 

was noticeably higher than that of both PhotoScan and VisualSFM & PMVS. This is due 

to gross errors in the point cloud produced by 123D catch which have a greater impact on 

the range of differences, even though it was reduced by de-noising. Statistics of the results 

provided by PhotoScan showed the highest quality. This is further confirmed in Figure 4-

5, which depicts the distribution of distance differences. 
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 (a) PhotoScan 
 

 
(b) 123D Catch 
 

 
(c) VisualSFM and  
      PMVS 
 

 

Figure 4-5: The distribution of distance differences between each SfM result and the 
TLS data; (a) PhotoScan, (b) 123D Catch and (c) VisualSFM & PMVS. 

Based on the presented results, all means of the distance differences showed positive 

values, indicating that all SfM point clouds were slightly above the ground points of TLS 

data because the results from the SfM approach were often on top of vegetated surfaces. 

The RMSE values from PhotoScan, 123D Catch and VisualSFM & PMVS were 0.036, 

0.043 and 0.053 m, respectively. Consequently, the photogrammetric approach using the 

SfM technique based on the development system can be deemed to provide results at sub-
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dm level accuracy for this type of landslide surface in the same previous experiment 

(about 5.3 cm). 

In terms of the application for photogrammetric processing, PhotoScan was not suited to 

on-site investigation of landslides because the software supports only a stand-alone 

system such as a desktop or laptop computer. On the other hand, Autodesk 123D Catch 

provides access for Internet-based processing, in a similar manner to SkyPMMS as cloud-

implemented VisualSFM & PMVS. However, manual target geo-referencing in the point 

cloud (123D Catch) proves more difficult than target identification in imagery 

(SkyPMMS), which makes the process less convenient for the end user. 

In the case of data transfer for photogrammetric processing on the cloud implemented 

SkyPMMS, this experiment required the uploading of 36 image files from a smart phone 

to the cloud server. The total file size of this image set was approximately 260 MB. Wi-

Fi with an average upload speed of 40 Mbps was used to transfer the images from a smart 

phone to the cloud, with the total upload time taking approximately 1 minute. Table 4-3 

summarizes the predicted upload time for such a dataset using different Internet networks 

on a smart phone. Transfer using a 3G network would take approximately 35 minutes, 

which is clearly unsuitable for a real-time photogrammetric measurement system. It is, 

however, anticipated that faster 4G internet will be more widespread in the future and 

would allow a near real-time response for such a system. 

Table 4-3: Estimated data transfer time from a smart phone to the cloud server for 36 
images (260MB in total). 

Type of mobile 
networks 

Average upload speed 
(Mbps) 

Time for data upload 
(minutes) 

3G 1 34.7 
4G 10 3.5 

Wi-Fi 40 0.9 

As discussed above, the photogrammetric processing for SkyPMMS (based on 

VisualSFM and PMVS) could provide results achieving centimeter-level accuracy. 

However, from the completeness assessment of photogrammetric results, the main 

weakness of the photogrammetric processing using free and open SfM software was the 

low point density and data gaps (void areas) in the generated point cloud results when 

compared to that produced by commercial SfM software. Typically, an increase in the 
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number of images will increase the number of points, or point density, for 

photogrammetric results. However, the use of additional images will result in an increase 

in uploading and processing time. To overcome this issue, optimisation of the imaging 

network for photogrammetry was considered to find a suitable relationship between the 

number of camera stations and size of each image before uploading images to the cloud-

based system. 

4.4 Optimisation of imaging network 

Due to a delay in real-time response for landslide monitoring when using SkyPMMS, 

time-consuming data transfer and processing on the cloud-based SfM-photogrammetric 

measurement system should be mitigated by optimising input data prior to uploading. 

This is necessary to mitigate 1) excessive amounts of image data used for processing on 

the cloud and 2) the inefficient performance of an Internet service via current mobile 

networks. Moreover, the completeness of photogrammetric results obtained from free 

SfM software was sometimes found to be insufficient to be used for landslide monitoring 

analysis. To deliver the appropriate quality of photogrammetric results for landslide 

monitoring, an optimal imaging network would provide an appropriate image size and a 

suitable number of camera stations prior to uploading data to the cloud.  

4.4.1 Experimental design 

As with the previous experiment, imagery was acquired on 10 June 2015 at the BGS’s 

Hollin Hill landslide observatory using a Nexus6 smart phone camera. The image data 

tested comprises 74 images of 4160x3120 pixels (maximum resolution of the Nexus6). 

The validation for assessing photogrammetric accuracy was performed using a Leica 

ScanStation P20 from four scanner positions. The locations of the four laser scanning 

stations were observed using the GNSS survey.  
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For the optimal imaging network in this experiment, the two main factors assessed were 

the number of images and size of each image. Firstly, the different number of images in 

each approach was defined according to the condition of the location of camera station 

and a B/D ratio. As reviewed in the previous chapter, the optimal B/D ratio for such 

photogrammetric networks is between 0.1-0.3 for SfM-based 3D reconstruction. The 

values of B/D ratio were calculated as shown in Table 4-4.  

Table 4-4: Comparison of B/D ratio used in each image dataset. 

Number 
of 

images 

Average 
base  
(m) 

Average 
distance 

(m) 

B/D 
ratio 

24 3.811 15 0.254 
28 3.271 15 0.218 
32 2.869 15 0.191 
36 2.558 15 0.171 
40 2.302 15 0.153 
44 2.097 15 0.140 
48 1.925 15 0.128 
52 1.775 15 0.118 
56 1.649 15 0.110 
60 1.540 15 0.103 
64 1.443 15 0.096 
68 1.361 15 0.091 
72 1.286 15 0.086 
74 1.251 15 0.083 

For this experiment, the number of images used in each approach was selected from 24 

to 60, increasing in steps of four images. The photogrammetric configuration of each 

approach is shown in Figure 4-6. 
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Figure 4-6: Comparison between photogrammetric configuration of each approach. 

Secondly, the size of each image was sequentially reduced by 10%. However, resizing 

images of more than 70% of the original image size were not considered because it was 

lower than the essential requirement of image resolution for photogrammetric approach 

(>1 megapixels defined as a high resolution of digital camera). Thus, the details of each 

image were used in this experiment from original size to 70%, reducing in image 

resolution, as shown in Table 4-5.  

 

24 images                               28 images                               32 images 

36 images                               40 images                               44 images             

48 images                               52 images                               56 images 

                                             60 images                                                       
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Table 4-5: Comparison between image resolution and size used in each approach. 

Size of image 
Image resolution 

(Pixels) 
Image size 

(MP) 
Pixel size 

(µm) 
Original size 4160x3120 13.0 1.12 
Reducing 10% 3744x2808 10.5 1.24 
Reducing 20% 3328x2496 8.3 1.40 
Reducing 30% 2912x2184 6.4 1.60 
Reducing 40% 2496x1872 4.7 1.87 
Reducing 50% 2080x1560 3.2 2.24 
Reducing 60% 1664x1248 2.1 2.80 
Reducing 70% 1664x1248 1.2 3.36 

 

 

Figure 4-7: Methodology in the optimisaion of imaging network experiment. 

Figure 4-7 shows the methodology that used a different number of images and image size 

in order to optimise photogrammetric results for landslide monitoring. All 

photogrammetric processing was carried out using SkyPMMS (based on VisualSFM and 

PMVS) on the cloud server. For geo-referencing with the target-based observations, a 

pair list of coordinates between target location in the imagery and the GNSS-based target 

observation were exported to text file format for geo-referencing. Then, the de-noising 

step was carried out manually using CloudCompare software on a desktop computer. 
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Finally, in terms of the evaluation of photogrammetric results and the performance of 

photogrammetric processing at each approach, an accuracy assessment was performed 

between the SfM point clouds and TLS data using the cloud-to-mesh distance in 

CloudCompare. 

4.4.2 Test results 

Unfortunately, photogrammetric processing of SkyPMMS (based on VisualSFM and 

PMVS) could not successfully reconstruct 3D models when the number of images fell 

below 36. Because the overlaps were less than three images, the quality of the 

photogrammetric network in those images was unacceptable (as shown in Figure 4-8).  

 

  

 

 
 

 

 

 

Figure 4-8: Comparison of image matching matrix for the relationship between each 
image in each approach. 

In terms of the assessment of photogrammetric accuracy in this experiment, the statistics 

of the comparison between each SfM approach and a high resolution TLS survey are 

shown in Table 4-6 and Table 4-7.  

24 images                                        28 images                        

32 images                                       36 images             
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Table 4-6: Comparison of mean value for the differences between each SfM approach 
and the reference TLS data. 

Size of image 
Mean (m) 

36 
images 

40 
images 

44 
images 

48 
images 

52 
images 

56 
images 

60 
images 

Original images 0.027 0.028 0.028 0.025 0.026 0.024 0.026 
Reducing 10% 0.028 0.026 0.029 0.030 0.025 0.028 0.024 
Reducing 20% 0.036 0.028 0.030 0.027 0.027 0.025 0.024 
Reducing 30% 0.032 0.030 0.038 0.027 0.028 0.029 0.026 
Reducing 40% 0.036 0.028 0.031 0.029 0.024 0.027 0.025 
Reducing 50% 0.040 0.030 0.026 0.031 0.029 0.031 0.028 
Reducing 60% 0.038 0.033 0.030 0.030 0.033 0.031 0.033 
Reducing 70% 0.041 0.036 0.038 0.038 0.034 0.031 0.036 

Table 4-7: Comparison of RMSE value for the differences between each SfM approach 
and the reference TLS data. 

Size of image 
RMSE (m) 

36 
images 

40 
images 

44 
images 

48 
images 

52 
images 

56 
images 

60 
images 

Original images 0.058 0.056 0.051 0.057 0.062 0.059 0.056 
Reducing 10% 0.059 0.062 0.056 0.058 0.059 0.057 0.056 
Reducing 20% 0.066 0.063 0.059 0.057 0.059 0.055 0.057 
Reducing 30% 0.058 0.063 0.057 0.059 0.057 0.058 0.060 
Reducing 40% 0.064 0.061 0.059 0.060 0.062 0.058 0.058 
Reducing 50% 0.070 0.068 0.063 0.061 0.067 0.063 0.062 
Reducing 60% 0.082 0.076 0.065 0.069 0.072 0.070 0.059 
Reducing 70% 0.095 0.088 0.074 0.071 0.074 0.071 0.065 

Table 4-6 and Table 4-7 reveal that the values of both mean and RMES of the differences 

between each SfM approach and the reference TLS data improved only very marginally 

when the number of images used for data processing increased. Meanwhile, reducing 

image resolution in each image led to the degraded values of both mean and RMSE of the 

differences between their results. This is to be expected as, in terms of photogrammetric 

accuracy, a lower-image resolution could directly affect the precision of image 

mensuration and geo-referencing. The lower quality of photogrammetric measurement 

therefore caused a decreased accuracy in the results. However, each SfM-

photogrammetric approach provided results from sub-dm (5.1 cm) to dm (9.5 cm) level 

accuracy, in this type of landslide. The natural slope in this experiment was mainly 



99 

 

covered by vegetated surfaces. Vegetation effects therefore had an influence on this 

assessment of photogrammetric results. 

With regard to the evaluation of completeness for photogrammetric results, the number 

of points and density of point cloud obtained from each approach were analysed and are 

showed in Figure 4-9. 

 

Figure 4-9: Comparison of the relationship between the number of points and point 
density of photogrammetric results obtained from each SfM approach. 

Figure 4-9 shows an increasing number of points and point density when using more 

images for processing. It can be seen that an increase in the number of images results 

directly in a higher number of both points and density due to the increased overlapping 

areas for dense image matching in 3D reconstruction. On the other hand, decreasing 

image resolution for each image reduces both the number of points and point density. 

Although the completeness of results was improved by increasing the number of images 

(or camera stations) for photogrammetric processing, their point clouds still had void data, 
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as shown in Figure 4-10. Such a point cloud over bare-earth surfaces of each approach 

retains the key information, such as cracks or fissures, that might be used for assessing 

the landslide deformation.  

 
 

 
 

 
 

 
 

Figure 4-10: Comparison of photogrammetric point clouds obtained from different 
number of images and different image size. 

Regarding the performance evaluation of photogrammetric processing on SkyPMMS, the 

results for the processing time at each approach are shown in Table 4-8. The estimation 

of file size and upload time for each approach was calculated from image data transfer to 

the cloud using a 4G and a Wi-Fi network (at approximately 10 and 40 Mbps of average 

upload speed, respectively), as shown in Table 4-9.  

 

 

 

 

48 images, Reducing 30% of image size 60 images, Original images 

36 images, Reducing 60% of image size 60 images, Reducing 60% of image size 
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Table 4-8: Comparison of processing time between the different camera station and 
image resolution using SkyPMMS on the cloud. 

Size of image 
Data processing time (min) 

36 
images 

40 
images 

44 
images 

48 
images 

52 
images 

56 
images 

60 
images 

Original images 8.58 9.63 11.78 13.65 14.70 16.13 17.58 
Reducing 10% 6.47 9.02 9.47 11.10 11.93 12.97 15.40 
Reducing 20% 5.93 6.90 7.65 8.77 9.05 10.67 11.70 
Reducing 30% 6.00 7.58 8.22 8.95 10.67 11.68 12.80 
Reducing 40% 5.58 6.55 8.13 8.88 10.35 11.02 11.88 
Reducing 50%  5.32   6.35   7.27   8.22   9.15   10.42   11.57  
Reducing 60%  3.70   4.40   4.82   5.63   6.15   6.83   7.50  
Reducing 70%  3.18   4.06   4.65   5.04   5.85   6.40   6.85  

Table 4-9: Comparison of image resolution between estimated file size and estimated 
upload time used in each approach. The data in brackets are estimated upload 
time using a 4G and a Wi-Fi network, respectively. 

Size of 
image 

Estimation of file size (MP) and upload time (min) 

36 
images 

40 
images 

44 
images 

48 
images 

52 
images 

56 
images 

60 
images 

Original 
images 

260 
(3.5, 0.9) 

289 
(3.9, 1.0) 

318 
(4.2, 1.1) 

347 
(4.6, 1.2) 

376 
(5.0, 1.3) 

404 
(5.4, 1.3) 

433 
(5.8, 1.4) 

Reducing 
10% 

234 
(3.1, 0.8) 

260 
(3.5, 0.9) 

286 
(3.8, 1.0) 

312 
(4.2, 1.0) 

338 
(4.5, 1.1) 

364 
(4.9, 1.2) 

390 
(5.2, 1.3) 

Reducing 
20% 

208 
(2.8, 0.7) 

231 
(3.1, 0.8) 

254 
(3.4, 0.8) 

277 
(3.7, 0.9) 

300 
(4.0, 1.0) 

324 
(4.3, 1.1) 

347 
(4.6, 1.2) 

Reducing 
30% 

182 
(2.4, 0.6) 

202 
(2.7, 0.7) 

222 
(3.0, 0.7) 

243 
(3.2, 0.8) 

263 
(3.5, 0.9) 

283 
(3.8, 0.9) 

303 
(4.0, 1.0) 

Reducing 
40% 

156 
(2.1, 0.5) 

173 
(2.3, 0.6) 

191 
(2.5, 0.6) 

208 
(2.8, 0.7) 

225 
(3.0, 0.8) 

243 
(3.2, 0.8) 

260 
(3.5, 0.9) 

Reducing 
50% 

156 
(1.7, 0.4) 

173 
(1.9, 0.5) 

191 
(2.1, 0.5) 

208 
(2.3, 0.6) 

225 
(2.5, 0.6) 

243 
(2.7, 0.7) 

260 
(2.9, 0.7) 

Reducing 
60% 

130 
(1.4, 0.3) 

145 
(1.5, 0.4) 

159 
(1.7, 0.4) 

174 
(1.9, 0.5) 

188 
(2.0, 0.5) 

202 
(2.2, 0.5) 

217 
(2.3, 0.6) 

Reducing 
70% 

104 
(1.0, 0.3) 

116 
(1.2, 0.3) 

127 
(1.3, 0.3) 

139 
(1.4, 0.3) 

150 
(1.5, 0.4) 

162 
(1.6, 0.4) 

173 
(1.7, 0.4) 

Based on the performance results of processing in Table 4-8, data processing time of 

SkyPMMS was inevitably longer when the number of images increased. Clearly the more 

images (camera stations) used for landslide photogrammetric monitoring, the longer time 

is required for both data transfer and data processing. The processing time from each 

approach dramatically increased from 3.18 to 17.58 minutes, whereas the estimation of 
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upload time of each approach (in Table 4-9) was slightly different (approximately 1.1 min 

ranging from 0.3 min to 1.4 min). Time for data transfer using a Wi-Fi network was 

relatively insignificant when compared to data processing time. On other hand, the 

estimation of upload time using a 4G network was dramatically different (about 4.8 min 

ranging from 1.0 min to 5.8 min).   

With respect to decrease of the data processing time, reducing the resolution of each 

image can also critically help. For example, the relationship between the 

photogrammetric accuracy and data processing time of each approach was generated to 

find the optimal imaging network as in the results of this experiment, as shown in Figure 

4-11.  

 

Figure 4-11: Comparison of the relationship between data processing time obtained 
from each SfM approach and the RMSE of differences between each SfM result and the 

TLS data in each approach. 

For the optimisation of the imaging network, there are four crucial factors to balance the 

data processing time for a near real-time response for landslide monitoring: 1) the number 

of images, 2) image resolution, 3) photogrammetric accuracy and 4) data processing time. 

The optimal image resolution for each image was selected by consideration of resultant 

photogrammetric accuracy and data processing time. From Figure 4-11, the resolution of 
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each image in a photoset can be reduced between 20% and 30% of the original image size 

with only slight differences in photogrammetric accuracy and processing time when 40 

and 44 images were processed. Referring to Table 4-4, the number of images (40 and 44 

images) were assumed as a B/D ratio of 0.14-0.15. Thus, the recommended design of 

photogrammetric configuration should be a B/D ratio of approximately 0.1-0.2. 

Furthermore, data processing time of each approach was not significantly lowered when 

> 20% reduction of original image size was applied (Figure 4-12). 

 

Figure 4-12: Data processing time obtained from each approach. 

To conclude, firstly, although a larger number of images (or camera stations) helps 

improve the quality of imaging network for photogrammetric approach, the improvement 

of photogrammetric accuracy and completeness of results were insignificant (i.e. 

accuracy increased slightly at the mm level). Secondly, a decrease in image resolution 

also helps increase the speed of photogrammetric processing reducing the processing 

time, whereas the difference of time for image data transfer using Internet service via a 

Wi-Fi network was insignificant (i.e. approximately 0.9 min), and the accuracy of 

photogrammetric results decreased slightly. Finally, for optimising the imaging network, 

the recommended design of photogrammetric configuration in this experiment (using a 

B/D ratio of 0.1-0.2) can be confirmed and this configuration yields the appropriate 

photogrammetric results. In addition, already improved image data (i.e. 20%-30% of 
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image size reduction) before transferring or uploading to the cloud-based server can 

enhance the performance of data processing.  

4.5 Performance evaluation of developed functions for photogrammetric 
processing 

In this section, the experimental studies of the functions implemented in the 

photogrammetric measurement and monitoring system were evaluated to ensure the 

development of a low-cost, real-time solution for on-site investigation of landslide hazard 

analysis. A series of assessments for each developed function was performed comprising 

pre-processing and post-processing stages for the SfM-photogrammetric approach and 

landslide monitoring analysis. 

4.5.1 Pre-image matching 

For the SfM-photogrammetric approach to reconstruct 3D models from images, there are 

normally four main stages, including feature detection, image matching, sparse 

reconstruction and dense reconstruction. To clarify understanding of processing time in 

each stage for the SfM approach, an experiment in photogrammetric processing from 

three image datasets acquired at the Hollin Hill landslide was carried out using 

VisualSFM and PMVS on a desktop computer running on Windows 8 OS including an 

Intel Core i7-4770 Processor with 3.4 GHz CPU, Intel HD Graphics 4600 and 16 GB 

RAM of memory. The processing times in this experiment are shown in Table 4-10 and 

Figure 4-13. 

Table 4-10: Data processing time of each stage in the SfM workflow obtained from 
different numbers of images. 

The 
number of 

images 

Data processing time (minutes) 

Feature 
detection 

Image 
matching 

Sparse 
reconstruct

-ion 

Dense 
reconstruct

-ion 
Total 

36 0.2 3.0 2.5 3.3 9.0 
48 0.3 5.3 2.8 5.4 13.8 
60 0.3 8.3 2.6 6.7 17.9 
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Figure 4-13: Comparison of data processing time at each stage obtained from the SfM-
photogrammetric processing using VisualSFM and PMVS. 

Considering Table 4-10 and Figure 4-13, the number of images used for processing had 

a direct effect on processing time. When the number of images increased from 36 images 

to 48 images and 60 images, matching time increased 77% and 176%, respectively. 

Clearly, the more images that were processed, the longer image matching took. The  

image matching stage in the SfM approach needs to be investigated. 

   
                     (a)                                           (b)                                          (c) 

Figure 4-14: Percentage comparisons of data processing time in each stage of the SfM-
photogrammetric approach using VisualSFM and PMVS with three image datasets; (a) 

36 images, (b) 48 images and (c) 60 images. 

Figure 4-14 shows the proportion of each stage for 3D reconstruction using VisualSFM 

and PMVS. The two stages that took the majority of data processing time were image 

matching and dense reconstruction. In this experiment, image matching time based on the 

method of full-image matching for 36, 48 and 60 images were approximately 34%, 39% 

and 46% of the total data processing time, respectively. As mentioned in Section 3.4.1, 

the algorithm developed for pre-image matching was used to reduce time in the image 

matching stage for the SfM approach. The comparison of image matching and data 
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processing times between pre-image matching and full-image matching are presented in 

Table 4-11 and Figure 4-15. 

Table 4-11: Comparison of image matching time and data processing time using full- 
and pre-image matching method. 

Number of 
images 

Image matching time 
(minutes) 

Percentage 
of reduced 

time for 
image 

matching 

Total of data 
processing time 

(minutes) 

Percentage 
of reduced 

time for 
data 

processing 

Full-
image 

matching 

Pre-
image 

matching 

Full-
image 

matching 

Pre-
image 

matching 
36 3.0 0.6 79% 9.0 6.6 27% 
48 5.3 1.1 80% 13.8 9.6 31% 
60 8.3 1.4 84% 17.9 10.9 39% 

 

 

                                   (a)                                                                 (b) 

Figure 4-15: Comparison of processing time from different image matching methods 
and the number of images; (a) image matching time and (b) data processing time. 

However, the method of pre-image matching needs to be processed using the developed 

function before image matching in the SfM workflow. Pre-image matching took only a 

few seconds of processing time and was insignificant compared to image matching time. 

To conclude, the function developed for pre-image matching from image sequences can 

help to reduce image matching time in the SfM workflow by around 80%. As a result, 

total data processing time of the SfM workflow using pre-image matching in this 

experiment can be reduced by approximately 30% compared to image matching based on 
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the standard method. The developed pre-image matching algorithm can therefore lead to 

improved performance in achieving a real-time landslide monitoring system. 

4.5.2 Lens distortion correction 

Imagery captured by a digital camera usually incorporates effects of lens distortion. To 

provide precise measurement from SfM-photogrammetry, this should be eliminated from 

the imagery before photogrammetric processing. Lens distortion correction is performed 

using a developed function with the calibrated camera modelling. The parameters of the 

camera model were derived from camera calibration tool in Matlab software. An example 

of imagery before and after applying lens distortion correction is illustrated in Figure 4-

16. 

 

    (a)                                                                (b) 

Figure 4-16: Comparison between original image and image after applying lens 
distortion correction; (a) before and (b) after. 

In terms of accuracy assessment of photogrammetric results from raw and images 

corrected for lens distortion, the imagery was acquired using a Nexus6 smart phone 

camera. Photogrammetric processing used VisualSFM & PMVS. The validation data for 

assessing photogrammetric accuracy was captured using a Leica ScanStation P20. The 

comparison results of photogrammetric accuracy between the use of raw images and lens 

distortion correction are shown in Table 4-12. 
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Table 4-12: Statistics of distance differences between the different SfM results and the 
TLS data. 

Pre-processing 
 TLS-SfM 

Min 
(m) 

Max 
(m) 

Mean 
(m) 

SD 
(m) 

RMSE 
(m) 

Raw images -0.958 0.866 -0.419 0.264 0.269 

Images corrected for lens 
distortion and fixed calibration 

-0.275 0.257 0.004 0.043 0.046 

Table 4-12 reveals that the mean and RMSE values of the differences between SfM output 

using undistorted images with fixed calibration and the TLS data decreased considerably 

when compared to the original images. The quality of photogrammetric results was 

improved using the function developed for lens distortion correction, provided a higher 

accuracy of photogrammetric results.  

4.5.3 Geo-referencing 

Geo-referencing, an important stage of post-processing for photogrammetric results, is 

used to provide a real-world coordinate system for comparison and analysis of landslide 

monitoring. For geo-referencing with GCPs or targets, their locations are normally 

observed using a high-precision survey (e.g. GNSS or TLS). However, a solution for geo-

referencing based on both real-time processing and low-cost observation is important for 

on-site investigation. This experiment focused only on geo-referencing without GNSS or 

TLS observation for the location of GCPs or targets. The solution developed for geo-

referencing with dimensions of known objects was evaluated to determine the suitability 

of a low-cost choice of geo-referencing for the user. 

Following the geo-referencing routine explained in Section 3.4.3.2, the dimension of 

known objects was firstly carried out using a high-precision distance measurement with 

a Leica Disto D510 (with precision ± 1 mm) to find the distances between each photo 

control target (Figure 4-17). The details of measuring these distances are shown in Table 

4-13. 
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Figure 4-17: Configuration for photo control targets. 

Table 4-13: Statistics of measuring distances between each photo control target. 

From To 
Distance measurements (m) Average of 

distances (m) #1 #2 #3 
PT1 PT2 14.11 14.11 14.12 14.11 
PT2 PT1 14.13 14.13 14.12 14.13 
PT2 PT3 14.37 14.38 14.39 14.38 
PT3 PT2 14.38 14.38 14.38 14.38 
PT1 PT3 28.13 18.13 28.13 28.13 
PT3 PT1 28.14 28.14 28.14 28.14 

The use of pseudo coordinates for the three points enables precise scaling in the 3D model 

of the photogrammetric results. Prior to scaling, the pseudo coordinates are generated as 

follows. Firstly, the coordinates of the PT1 point are set to (0, 0, 0). Next, the coordinates 

of PT2 are generated by (0, P1P2, 0) where P1P2 is the mean distance between PT1 and 

PT2. Finally, the coordinates of PT3 point are determined at the intersection of arc of 

length PT1 to PT3 and PT2 to PT3 in a 2D plane in which the Z coordinate of PT3 is set 

at 0. Note that points (PT1, PT2, PT3) lie in a 3D plane for which the Z coordinates are 

always 0. Thus, the photogrammetric results at each epoch are referenced using three 

pseudo points. 

PT1 PT3 

PT2 
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The scaling of photogrammetric results thus uses a pair list of three targets with photo 

coordinates and pseudo coordinates based on three distances measured between the target, 

as presented in Table 4-13. After scaling the photogrammetric results using the developed 

function, the next stage was manual alignment of photogrammetric results with the TLS 

data. Then, the application of the ICP algorithm without scaling was performed using the 

CloudCompare software on a desktop computer. To assess the photogrammetric accuracy 

from this method, comparison of photogrammetric results and the TLS data was carried 

out using the cloud-to-mesh distance tool in CloudCompare. The results of accuracy 

assessment for this photogrammetric approach are presented in Table 4-14.  

Table 4-14: Statistics of distance differences between the SfM results obtained from 
different geo-referencing with the dimensions of known objects and applying 
ICP and the TLS data. 

Pre-/Post-processing 
 TLS-SfM 

Min 
(m) 

Max 
(m) 

Mean 
(m) 

SD 
 (m) 

RMSE 
 (m) 

Original images, Direct geo-
referencing and ICP 

-0.574 1.602 -0.017 0.082 0.084 

Original image,  
Scaling, Alignment & ICP 

-0.282 0.297 0.010 0.045 0.047 

From Table 4-14, the values of the mean and RMSE of the differences between the SfM 

approach using geo-referencing with the dimensions of known object and applying ICP 

and the TLS data were slightly lower when compared to a normal SfM approach. Also, 

the quality of the photogrammetric accuracy using the function of geo-referencing and 

applying ICP was similar to a normal SfM approach.  

4.5.4 Automatic de-noising 

The development of a function for automatic de-noising is used for gross outlier detection 

and removal in point clouds to improve the quality of photogrammetric results before 

landslide monitoring analysis. This algorithm for automatic de-noising is based on the 

statistical outlier removal (SOR) filter. To clarify understanding of this method, the 

experiment used the photogrammetric results acquired on 10 June 2015 at the Hollin Hill 

landslide and processed using VisualSFM and PMVS. For the development of the 

automatic de-noising function, the settings of parameters consist mainly of the number of 
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points (N) considered and the number of multipliers (n) with a standard deviation to 

identify the threshold of classification for outlier detection. However, the solution for 

automatic de-noising can be changed from case to case since the values of these 

parameters were variable. For example, in the case of inappropriate n and N, manual 

cleansing may be required after automatic de-noising. 

In this experiment, the mean distances of K-nearest neighbours for each point from 

photogrammetric results were calculated according to two sets of n and N as illustrated in 

Figure 4-18. The points which had a mean distance greater than the threshold of outlier 

classification (above the red line in Figure 4-18) were eliminated from the point cloud. 

The use of different parameters in the number of K-nearest points and the number of 

multipliers caused different results for automatic de-noising (Figure 4-19).  

 

(a) Mean = 0.431, 1*SD = 0.702              (b) Mean = 0.665, 2*SD = 1.395 

Figure 4-18: Comparison of the mean distances of K-nearest neighbours using different 
parameters for automatic de-noising; (a) N = 500, n = 1 and (b) N = 1000, n = 2. The 
green and red lines show the mean distance and the threshold of outlier classification, 

respectively. 
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(a) 

 
 

(b) 

 
 

(c) 

 
 

Figure 4-19: Comparison of photogrammetric results when using different parameters 
for automatic de-noising; a) original point cloud, b) point cloud after automatic de-

noising using N = 500, n = 1 and (c) point cloud after automatic de-noising using N = 
1000, n = 2. The red circles show the outliers in the point cloud.  

Figure 4-19 shows the photogrammetric results before and after automatic de-noising. It 

is likely these outliers in the point cloud were noise, which are clearly located higher than 

the ground points. To ensure improved results after automatic de-noising, the accuracy 

assessment of photogrammetric results was performed using the cloud-to-mesh distance 

tool in CloudCompare with high-resolution, high-accuracy data from the TLS survey. 

Comparison of the photogrammetric accuracy before and after automatic de-noising is 

presented in Table 4-15. 
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Table 4-15: Comparison for statistics of differences between the TLS data and the SfM 
point clouds before and after automatic de-noising. 

Automatic 
de-noising 

Parameters of 
automatic de-

noising 

 TLS-SfM 
Min  
(m) 

Max  
(m) 

Mean 
(m) 

SD 
(m) 

RMSE  
(m) 

Before - -2.191 5.602 0.051 0.301 0.305 

After 
N = 500, n = 1 -0.252 2.958 0.031 0.132 0.137 

N = 1000, n = 2 -0.252 0.433 0.026 0.045 0.048 

From Table 4-15, mean and RMSE values of the differences between the TLS data and 

the SfM point clouds after automatic de-noising of the two approaches clearly decreased 

when compared to before automatic de-noising. In the comparisons using different 

parameters, the statistics using a higher degree of both n and N decreased, especially the 

maximum, mean and RMSE. The photogrammetric results were likely to provide a higher 

accuracy after automatic de-noising in this case.  

In summary, the function developed for automatic de-noising aims to remove gross 

outliers from the photogrammetric results, especially air points. Automatic de-noising can 

also improve the quality of photogrammetric results in terms of accuracy. However, due 

to the need for threshold determination, manual interaction may still often be required for 

de-noising. 

4.5.5 Vegetation filtering 

The vegetation filtering function was developed to remove points over vegetated surfaces 

from photogrammetric results before landslide monitoring analysis. In this experiment, 

two point clouds were obtained from the imagery acquired on 20 March 2015 and 10 June 

2015 at the Hollin Hill landslide using VisualSFM and PMVS. With regard to the 

vegetation filtering algorithm, points which had green vegetation index above the 

threshold for classification were eliminated from the point cloud. However, the threshold 

used for classification of vegetation depended on the weather and season. To find a 

suitable threshold for point cloud classification, histograms of the green vegetation index 

were considered, as shown in Figure 4-20.  



114 

 

 

                                  (a)                                                                 (b) 

Figure 4-20: The histograms of green vegetation index from two point clouds acquired 
on (a) 20 March 2015 and (b) 10 June 2015. 

In this experiment, both histograms of green vegetation index were assumed as a bimodal 

frequency distribution. The appropriate threshold was selected by the operator at 

approximately point 20 of the green vegetation index value. After vegetation filtering, the 

results of the point clouds are shown in Figure 4-21. 

 

 

Before                                                               After 

Figure 4-21: Comparison of point clouds before and after vegetation filtering acquired 
on (a) 20 March 2015 and (b) 10 June 2015. 

 

(a) 

(b) 
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To evaluate the photogrammetric accuracy before and after vegetation filtering, a 

comparison between photogrammetric results from the SfM point clouds and the TLS 

data was carried out using the cloud-to-mesh distance tool in CloudCompare. The 

assessment of photogrammetric accuracy in this experiment is presented in Table 4-16. 

Table 4-16: Statistics of differences between the SfM point clouds and reference TLS 
data and the comparison between before and after vegetation filtering. 

Images 
acquired on 

Vegetation 
filtering 

 TLS-SfM 
Min  
(m) 

Max  
(m) 

Mean 
(m) 

SD  
(m) 

RMSE  
(m) 

20 March 2015 
Before -0.287 0.288 0.017 0.024 0.026 

After -0.168 0.169 0.010 0.023 0.025 

10 June 2015 
Before -0.332 0.372 0.008 0.069 0.070 

After -0.286 0.310 0.004 0.046 0.048 

The statistical values of differences between the TLS data and the SfM point clouds after 

vegetation filtering of both epochs were obviously reduced. It could be that the 

photogrammetric accuracy achieved after vegetation filtering was higher. In comparison 

with two photogrammetric results at different times, the RMSE value of the results after 

vegetation filtering acquired on 20 March 2015 improved from 0.026 m to 0.025 m 

(approximately 4%), whereas the results acquired on 10 June 2015 improved by 40% 

when using vegetation filtering (from 0.070 m to 0.048 m). The seasonal changes for a 

natural landslide monitoring had a noticeably influence over the height of the vegetated 

surface. 

To conclude, the SfM-photogrammetric approach was only able to capture the visible 

surface, and hence was unable to penetrate vegetated surfaces. The photogrammetric 

accuracy could be improved using the developed function of vegetation filtering, 

especially for landslide monitoring in a natural terrain covered by the variety of vegetated 

surfaces. Vegetation has a direct impact on the assessment of landslide deformation. 

Before landslide monitoring analysis, this factor should be considered and eliminated. 

However, after vegetation filtering, some outliers still remained in the point cloud and 

needed to be removed manually by the operator. 
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4.5.6 Change assessment  

Change assessment was the crucial final step of the workflow to detect the deformation 

of the landslide over time. This experiment used photogrammetric results at different 

epochs using the PhotoScan software because the results had higher point density than 

those from SkyPMMS. The comparison of multi-epoch analysis was carried out using 

two methods of point cloud comparison: M3C2 and C2M. For the M3C2 method, based 

on the study of Stumpf et al. (2015) involving landslide monitoring using ground-based 

photogrammetry, the recommended parameter settings for change assessment are shown 

in Table 4-17.  

Table 4-17: The appropriate parameters based on a point cloud comparison method 
using M3C2 (Stumpf et al., 2015). 

M3C2 parameters Value (m) 

𝐷 5.0 

𝑑 0.5 

𝑝௫ 5.0 
Registration error 0.1 

 

 

Figure 4-22: Comparison of conceptual diagrams for cloud comparison method (a) C2M 
and (b) M3C2 (Barnhart and Crosby, 2013). 

Figure 4-22 presents conceptual diagrams of point cloud comparison methods for multi-

epoch analysis using M3C2 and C2M to assess landslide deformations at different times. 

In particular, a limitation of C2M point cloud comparison, is that it is possible that 
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variable values for landslide deformation are a result of extreme distance between two 

points used for assessing change detection (Figure 4-22(a)). In contrast, the M3C2 

algorithm can estimate the maximum difference between two point clouds within just a 

cylinder (Figure 4-22(b)). 

(a) M3C2                                                                      

 

 

 

 

 

 

 

(b) C2M 

 

 

 

 

 

 

 

Figure 4-23: Comparison results of change assessment using cloud comparison method 
based on (a) M3C2 and (b) C2M. 
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Table 4-18: Statistics of differences between two photogrammetric results using M3C2 
and C2M cloud comparison method. 

Comparison 
method 

 Differences 
Min  
(m) 

Max  
(m) 

Mean 
(m) 

SD  
(m) 

RMSE  
(m) 

M3C2 -1.027 0.706 -0.005 0.212 0.215 

C2M -1.181 0.972 -0.012 0.195 0.200 

The results of multi-epoch analysis from the M3C2 method (Figure 4-23(a)) showed the 

delicately detected changes of landslide monitoring, whereas the C2M method (Figure 4-

23(b)) provided discontinuous values for landslide deformation that might result from 

non-overlapping areas of both point clouds at different times of the multi-epoch analysis. 

However, the statistics of differences obtained from the two cloud comparison methods 

(as shown in Table 4.18) were slightly different. 

4.6 Summary 

This chapter has presented the photogrammetric potential for landslide monitoring using 

a mobile device. Also, it has described a series of experiments used in the investigation 

of performance for developed functions of the mobile cloud based photogrammetric 

measurement and monitoring system for landslide hazards. The main details of these 

experiments are highlighted in Table 4-19. 
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Table 4-19: Summary of findings from Chapter 4 experimentation. 

 Experiments Main findings 
§4-2 Investigation of the 

potential for 
photogrammetric 
landslide monitoring. 

 The photogrammetric precision was reliable 
and useful for measuring landslide movement 
at sub-decimeter-level accuracy. 

§4-3 Investigation of the 
developed system 
implemented on the 
cloud. 

 The time-consuming process of image data 
transfer from mobile device to the cloud was 
solved by Internet service with high bandwidth 
connectivity. If a modern 4G/5G network is 
available in the future for Internet service, data 
transfer will be less troublesome. 

§4-4 Investigation of 
relationship between the 
number of images and 
image size for optimal 
imaging network.  

 The suitable number of camera stations (or the 
number of images) was recommended by the 
design of photogrammetric configuration using 
a B/D ratio of 0.1-0.2. 

 Improved image data (i.e. 20%-30% of image 
size reduction) prior to upload enhanced the 
performance of both data transfer and 
processing. 

§4-5 Investigation of 
developed functions on 
the system 

 Pre-image matching from image sequences can 
help reduce the overall processing time by 
approximately 30%. 

 Scaling the photogrammetric results with the 
distances between targets can avoid the 
limitations of a conventional approach in geo-
referencing with GNSS or TLS observation. 
However, manual alignment and application of 
the ICP algorithm to the photogrammetric 
results between epochs is performed later to 
ensure referencing into the same coordinate 
system. 

 Automatic de-noising helps remove gross 
outliers from the photogrammetric results, 
especially air points. 

 The application of vegetation filtering for 
natural landslide monitoring can eliminate 
vegetated effects over photogrammetric results. 

With regard to the data collection for landslide monitoring, a TLS survey usually takes 

longer than a photogrammetric approach due to the nature of laser-based data capture. 

Moreover, the post-processing of TLS data can also be complex and normally involves 

significant manual interaction by an expert user. In contrast, SfM data collection is 

considerably faster than TLS, and the SfM method is arguably also better suited to 
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automation. However, the post-processing of the SfM approach based on the developed 

system does still require manual interaction, especially the geo-referencing and de-

noising stages. 

In terms of geo-referencing for photogrammetry, the aforementioned photo control 

targets, precisely measured by GNSS, enabled straightforward comparison of the 

photogrammetric results for each epoch in a common coordinate system. In contrast, geo-

referencing without GNSS based target observation was proposed using a solution with a 

function for geo-referencing which involved measuring the distances between points. 

This solution can provide low-cost observations to support on-site investigation of 

landslide monitoring. To ensure the efficiency of the cloud-based photogrammetric 

landslide monitoring system, the next chapter describes the validation of the developed 

system at two existing test sites with different types of landslide hazard. 
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Chapter 5. System implementation 

 

 

 

 

 

 

 

5.1 Introduction 

The development stages of the proposed measurement and monitoring system for on-site 

landslide investigation were described in the previous chapter. To assess the potential of 

the system for monitoring landslides, two experimental studies were performed: 1) one 

on a natural earth-flow landslide deformation and 2) one on an area of coastal cliff 

erosion. This chapter describes these two monitoring experiments and evaluates the 

performance of the low-cost, real-time approach for landslide hazard analysis. 

5.2 Natural earth-flow landslide monitoring experiment 

Earth-flows are one of the most common ground movements occurring in natural 

landslides. They typically have a wide range of movement speeds. In the case of very 

slow earth-flows, the ground movements can sometimes reveal clues on their slope areas, 

such as cracks and fissures. To understand the behaviour of this landslide type and 

evaluate the performance of the photogrammetric landslide monitoring system, the 

system was used to monitor an active landslide. 
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5.2.1 Study area 

The study area was located at the BGS’s Hollin Hill landslide observatory in North 

Yorkshire, UK. A number of in-situ monitoring systems are already installed at the site, 

including those based on geotechnical and geophysical techniques, such as ERT which is 

used for real-time monitoring of sub-surface deformation (Merritt et al., 2014). In 

addition, geomatics techniques (such as GNSS, lidar) were used to investigate the 

landslide movements and changes compared to both methods. The focus of this 

experiment was the main scarp at the top of the slope (red box in Figure 5-1), which 

extends for 25 m in an approximately east-west direction, and 25 m from north to south, 

with 8 m elevation difference between the top and bottom of the scarp as shown in Figure 

5-2. 

 

Figure 5-1: Overview of test site location at Hollin Hill landslide observatory: the red 
box shows the area used for this experiment. 
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Figure 5-2: Photograph of the main scarp at the top of the Hollin Hill landslide used for 
the photogrammetric monitoring experiment. 

The Hollin Hill landslide consists of a shallow rotational failure at the top of the slope 

and then moving through an area of translational landslide movement at the middle of the 

slope. The landslide extends as flow lobes towards the bottom of the slope. The landslide 

is mostly caused by the movement of the Whitby mudstone formation over the Cleveland 

ironstone and Staithes sandstone formations, which are highly prone to land sliding 

(Figure 5-3). The Hollin Hill landslide is vegetated with short grass, which is pasture land 

for sheep. 

 

Figure 5-3: Illustration of landslide characteristics at Hollin Hill landslide: the red box 
shows the area used for the landslide monitoring experiment (Merritt et al., 2014). 
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5.2.2 Experimental design 

In terms of image acquisition for photogrammetric monitoring, suitable camera locations 

were chosen using photogrammetric network design parameters (as reviewed in section 

3.2.3). Imaging configuration was based on a B/D ratio of 0.1-0.2, the maximum 

allowable camera-to-object distance was < 15 m and the maximum distance between each 

camera station was approximately 2-3 m. During the survey, those estimated distances 

were roughly measured by pacing. In order to obtain full coverage of the landslide 

monitoring area, images were taken around the main scarp in a 360° loop, providing a 

convergent imaging network. When ground-based photogrammetry was performed, 

images was captured obliquely depending on the height of operator, the viewing angle of 

camera and the angle of landslide slope. 

To inspect changes in landslide slopes, image data should be regularly collected. The 

experiment envisaged image collection every three months following seasonal changes 

in the UK. However, the frequency of image collection was restricted by the need for 

survey assistance. As a result, three image datasets were acquired using the same Nexus 

6 smart phone camera on 1) 10 June 2015, 2) 12 February 2016, and 3) 26 May 2016. 

Each photoset comprised 36 images of 4160 x 3120 pixels (≈ 13 megapixels). The photo 

control targets were established around the landslide for geo-referencing of the 

photogrammetric results. The camera position and viewing direction of each epoch is 

shown in Figure 5-4. The values of B/D ratio from the photogrammetric configuration at 

each epoch were calculated as shown in Table 5-1. 
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Figure 5-4: Illustration of photogrammetric configuration for each epoch. 

Table 5-1: Comparison of a B/D ratio used in each epoch. 

 10 June 2015 12 February 2016 26 May 2016 
Average base, B (m) 2.56 2.96 2.92 
Average distance, D (m) 15 15 15 

B/D ratio 0.170 0.197 0.195 

To assess the accuracy of photogrammetric results at different epochs, TLS survey was 

used to provide reference data that could be used for validation. The locations of six photo 

control targets and four TLS scanning stations were determined using a rapid-static GNSS 

technique at mm-level accuracy. However, in terms of data processing for each epoch (as 

shown in Figure 5-5), this experiment was carried out under laboratory simulation 

because of the inefficient performance of Internet service via current mobile networks in 

the study area, which was unsuitable for data transfer from mobile device to cloud. 

10 June 2015                          12 Feb 2016                            26 May 2016 
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Figure 5-5: The methodology scheme for the accuracy assessment of photogrammetric 
results at different epochs. 

Photogrammetric results for each date were generated using original image datasets that 

did not adjust the lens distortion in the imagery. The pre-processing stage was 

unnecessary thanks to a strongly convergent imaging network and a sufficient number of 

GCPs for the bundle adjustment. For geo-referencing, the target locations on the imagery 

were directly observed using the developed smart phone function. The quality of 

transformation for target-based geo-referencing (comprising rotation and translation 

components only) was computed as the RMSE of transformation from VisualSFM, as 

shown in Table 5-2.  

Table 5-2: Results after target-based geo-referencing of each epoch. 

Date 

Geo-referencing 

No. of targets 
(points) 

RMSE of 
transformation 

(m) 
10 June 2015 5 0.089 

12 February 2016 6 0.064 
26 May 2016 6 0.042 
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The RMSE value for the first epoch was higher than for other epochs because a lower 

quality target was used. Due to the different types of targets used for geo-referencing at 

each epoch, the small coloured plastic balls utilised as targets for the last two epochs 

provided a higher precision of mensuration in the imagery. Whereas, the first epoch 

utilised large markers printed on paper as targets for geo-referencing (Figure 5-6).  

Figure 5-6: Illustrations of the different types of targets used for geo-referencing. 

After photogrammetric processing and geo-referencing of each epoch, photogrammetric 

results were improved through three stages of post-processing, including 1) cropping, 2) 

de-noising, and 3) vegetation filtering. Firstly, three point clouds obtained from each 

epoch were selected using an automatic segmentation in the CloudCompare software. The 

same extents were chosen in order to avoid non-overlapping areas to allow for an effective 

comparison. Secondly, to reduce noise in those point clouds, outlier removal was 

performed using both automatic and manual de-noising in the CloudCompare software. 

Finally, vegetation filtering was used to extract bare-earth points in the photogrammetric 

results before assessing the photogrammetric accuracy through the developed function of 

the system. 

5.2.3 Test results 

The performance of photogrammetric processing on the developed system was assessed 

through data processing time, which depended on the performance of cloud computing. 

Although the higher-performance GPU cloud server (comprising a higher CPU memory 

size and multiple GPUs) was used to enhance the processing performance and achieve 

 

  
Physical target A circular marker printed on paper A coloured plastic ball 

Date of epoch 10 June 2015 
12 February 2016, 

26 May 2016 
Ø of target size 18 cm 6 cm 
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real-time processing capability, it was revealed that the use of multiple GPUs on a cloud 

server insignificantly decreased the processing time when compared to the use of 

PhotoScan software (Table 5-3). Because PhotoScan can support parallel data processing 

based on multicore-GPU platforms, processing time decreased dramatically by around 

46%. The limitation of photogrammetric processing with VisualSFM and PMVS is that 

they only utilised a single-core processing of GPU. Moreover, the use of the higher-

performance GPU cloud server resulted in a higher financial cost of photogrammetric 

processing. 

Table 5-3: Comparison of processing time between the different SfM software and the 
different performance of GPU cloud server. 

SfM 
software 

GPU cloud server Data processing time 
(min) memory size on GPU  No. of GPUs 

VisualSFM 
and PMVS 

4 GB  1 8.58 
4 GB  2 8.29 

PhotoScan 
4 GB  1 4.16 
4 GB  2 2.85 

To compare photogrammetric results achieved at different times, the details of point 

clouds were obtained after each post-processing step using the developed 

photogrammetric measurement system (SkyPMMS) and the validation data from TLS 

survey (Table 5-4 and Figure 5-7). 

Table 5-4: Point cloud comparisons of photogrammetric results at different times and 
the TLS data. 

Date 
Ground points 
of TLS survey 

(points) 

Point cloud of SfM results (points) 

after cropping  
after de-
noising  

after 
vegetation 
filtering 
(points) 

10 June 2015 12,434,476 109,308  104,004 33,377 
12 February 2016 10,626,995  157,564  149,007 25,554 

26 May 2016 14,111,055  155,275  150,019 36,292 
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Date a) cropping b) de-noising c) vegetation filtering 

10 June 
2015 

   

12 
February 

2016 

   

26 May 
2016 

   

Figure 5-7: Photogrammetric point clouds obtained after applying each post-processing step; a) cropping, b) de-noising, and c) vegetation filtering. 
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The resultant point cloud from the first epoch after cropping and de-noising was sparser 

than the point clouds generated at the two last epochs. Because this epoch had varying 

image quality due to the brightness changes at time of image capture (Figure 5-8), the 

low quality of dense matching directly affected the quality of the photogrammetric result 

by producing a fewer number of points. On the other hand, after vegetation filtering the 

number of bare-earth points from each epoch were very similar (Table 5-4). It is likely 

that bare-earth points from each epoch represent the key information on landslide areas 

such as cracks or fissures, although the landslide deformation had changed over time. 

 

Images acquired on: 10 June 2015 
Weather condition: sunny and light cloud 

 

Images acquired on: 12 February 2016 
Weather condition: cloudy 

 

Images acquired on: 26 May 2016 
Weather condition: cloudy 

Figure 5-8: Comparison of each image dataset used in the SfM photogrammetric 
approach at different times: the red boxes distinctly show the different brightness of 

images. 
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5.2.4 Assessment of photogrammetric accuracy 

To assess the accuracy of the photogrammetric approach for each epoch, point cloud 

comparisons between TLS data and photogrammetric results following each post-

processing stage were performed using the cloud-to-mesh distance tool in the 

CloudCompare software. The statistical results of the differences are as shown in Table 

5-5. 

Table 5-5: Statistics of the differences between TLS data and SfM-photogrammetric 
results for each epoch after post-processing stages using C2M. 

Post-
processing 

Statistics of 
distance 
errors 

Photogrammetric results at different times 

10 June 2015 12 Feb 2016 26 May 2016 

Point cloud 
after cropping 

Min (m) -0.297 -0.945 -0.394 
Max (m) 5.605 5.550 6.539 
Mean (m) 0.060 0.139 0.106 
SD (m) 0.320 0.730 0.482 
RMSE (m) 0.322 0.733 0.486 

Point cloud 
after de-
noising 

Min (m) -0.297 -0.382 -0.359 
Max (m) 0.442 0.440 0.549 
Mean (m) 0.027 0.009 0.051 
SD (m) 0.051 0.058 0.065 
RMSE (m) 0.053 0.061 0.069 

Bare-earth 
points after 
vegetation 
filtering 

Min (m) -0.298 -0.381 -0.333 
Max (m) 0.272 0.393 0.412 
Mean (m) 0.019 0.022 0.033 
SD (m) 0.045 0.056 0.058 
RMSE (m) 0.048 0.058 0.060 

The RMSE values for each epoch after cropping and de-noising varied between 5.3 and 

6.9 cm. Vegetation filtering provided slightly higher accuracy (RMSE of 4.8 – 6.0 cm). 

It is likely that photogrammetric accuracy can be improved using the functions developed 

for post-processing. The vegetated surfaces had an effect on the quality of the results 

because photogrammetric approaches cannot penetrate vegetated surfaces unlike TLS. 

SfM-photogrammetric approach based on the developed system (SkyPMMS) using a 

Nexus 6 smart phone camera can yield sub-dm accuracy level (from 4.8 cm to 6.0 cm) in 

this type of landslide. 
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5.2.5 Inspection of landslide monitoring analysis 

It was shown by the photogrammetric results in the previous section that the bare-earth 

point cloud after vegetation filtering can provide a higher accuracy for measuring 

landslide movement. Based on multi-epoch analysis, each point cloud after vegetation 

filtering should have been used to assess the changes of landslide deformation over time. 

However, bare-earth point cloud from SkyPMMS in this experiment revealed only sparse 

points (in Figure 5.7(c)) because this landslide site was mostly covered by vegetated 

surfaces; and the majority of points over those surfaces was eliminated though vegetation 

removal. Although bare-earth points can reveal the key information on landslide areas 

such as cracks or fissures, the insufficient point clouds used for landslide monitoring 

analysis might be more prone to fail in the recognition of landslide changes. Therefore, 

in this case the use of each point cloud after the de-noising stage was more suitable to 

analyse landslide monitoring. 

For the assessment of landslide changes, the comparison between three point clouds at 

different times was performed using the M3C2 technique based on the developed 

landslide monitoring system (SkyPMMS), which generates the elevation difference of 

landslide deformation for on-site investigation. Moreover, this experiment utilised three 

point clouds at different epochs obtained from PhotoScan software (as shown in Figure 

5-9) to compare with those results from the developed system. The results of multi-epoch 

analysis for the photogrammetric approaches (SkyPMMS and PhotoScan) are illustrated 

in Figure 5-10 and Figure 5-11, whilst the statistics of elevation differences for assessing 

landslide changes are presented in Table 5-6. 

   

Figure 5-9: Three point clouds of photogrammetric results at different epochs from 
PhotoScan software acquired on: (a) 10 June 2015, (b) 12 February 2016 and (c) 26 

May 2016. 

(a)                                         (b)                                           (c) 
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(a) 10 June 2015 –  
     12 February 2016 

 
(b) 12 February 2016 –    
      26 May 2016 

 
(c) 10 June 2015 –  
      26 May 2016 

 

Figure 5-10: Elevation difference of photogrammetric results at different times from the 
developed system (SkyPMMS) used in the assessment of landslide changes. 
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(a) 10 June 2015 –  
     12 February 2016 

 
(b) 12 February 2016 –    
      26 May 2016 

 
(c) 10 June 2015 –  
      26 May 2016 

 

Figure 5-11: Elevation difference of photogrammetric results at different times from 
PhotoScan software used in the assessment of landslide changes. 
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Table 5-6: Comparison statistics of elevation changes from TLS data and different SfM-
photogrammetric approach (SkyPMMS and PhotoScan). 

Epochs 
Statistics of 

elevation 
changes 

Method/SfM approach 

TLS SkyPMMS PhotoScan 

10 June 2015 
to 

12 Feb 2016 
(242 days) 

Min (m) -0.347 -0.594 -0.343 
Max (m) 0.356 0.493 0.424 
Mean (m) -0.049 -0.041 0.001 
SD (m) 0.070 0.120 0.076 

12 Feb 2016 
to 

26 May 2016 
(104 days) 

Min (m) -1.111 -1.076 -1.100 
Max (m) 0.821 0.956 0.812 
Mean (m) -0.014 -0.015 0.005 
SD (m) 0.213 0.180 0.234 

10 June 2015 
to 

26 May 2016 
(346 days) 

Min (m) -1.150 -1.109 -1.099 
Max (m) 0.814 0.614 0.801 
Mean (m) -0.066 -0.044 -0.008 
SD (m) 0.228 0.175 0.233 

Three analyses were performed to assess elevation changes shown by each different 

approach: 1) between 10 June 2015 and 12 Feb 2016 (242 days), 2) between 12 Feb 2016 

and 26 May 2016 (104 days), and 3) between 10 June 2015 and 26 May 2016 (346 days). 

Visual comparison of the landslide changes detected using different SfM approaches (as 

shown in Figure 5-10 and Figure 5-11) reveals that the changes of landslide deformation 

were clearer for the point clouds processed in PhotoScan. This is due to a much denser 

point cloud provided by PhotoScan. Nevertheless, the results obtained from SkyPMMS 

still highlighted the landslide changes near cracks or fissures over landslide areas. 

The elevation difference results using multi-epoch analysis (Table 5-6) showed that the 

values of minimum, maximum and standard deviation for elevation changes of TLS data 

and PhotoScan were slightly different (for both the first 242 days epochs and the second 

104 days epochs). In contrast, the mean values of TLS data and SkyPMMS were negative 

and differed slightly in terms of magnitude. As mentioned above, point clouds provided 

by PhotoScan were mostly above the vegetated surfaces, while point clouds from TLS 

data and SkyPMMS were mainly over the bare-earth surfaces. As a result, the mean value 

of elevation changes from PhotoScan was substantially different from TLS data and 

SkyPMMS because of vegetation effects. 
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However, due to vegetation effects, the main drawback of photogrammetric monitoring 

for landslide hazards is the inability to penetrate vegetated surfaces.  The height of 

vegetation during an annual cycle can directly impact on assessing landslide deformation. 

It is likely that positive changes in stable areas of landslide will be found, as shown in 

Figure 5-11. However, the uncertainty of this factor should be considered for evaluating 

elevation changes using a point cloud comparison method based on the M3C2 technique. 

In ideal experiments into landslide monitoring, it can be reasonably assumed that the 

comparison of point clouds over bare-earth surfaces only would eliminate the effects of 

vegetation when assessing landslide deformation. 

Due to the extremely different number of points and point density from SkyPMMS, the 

values of minimum, maximum and standard deviation of elevation changes were 

considerably different from both TLS data and PhotoScan. Nevertheless, the 

photogrammetric approach based on the developed system still had sufficient potential 

for quantitative analysis of landslide movement. It was shown that SkyPMMS 

photogrammetric results acquired at different times might be utilised for initial 

assessment of landslide monitoring. 

To further validate the landslide analysis, GNSS observations for the position of BGS 

pegs were regularly used to measure 3D displacement of this landslide site over 346 days. 

The location of three BGS’ pegs used in this validation are shown in Figure 5-12. The 

comparison results of change detection for landslide deformation using different 

geomatics technique are shown in Table 5-7. 
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Figure 5-12: Illustration of the location of BGS pegs used in landslide monitoring. 

Unfortunately, this validation step could not utilise photogrammetric results obtained 

from SkyPMMS because of the insufficient number of points in the point cloud. 

Inspection of landslide movement from this data at the location of the BGS pegs proved 

impossible. 
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Table 5-7: Comparison between cumulative displacement of GNSS survey and 
elevation changes of TLS data and SfM approach. 

Epochs 
No. of 
pegs 

Method/ SfM 
approach 

Cumulative displacement (cm) 
ΔE ΔN ΔH Δ 

10 June 2015 
till 

12 Feb 2016 
(242 days) 

28 
GNSS 6.8 -2.7 -1.4 7.4 
TLS   -4.6  
PhotoScan   0.8  

29 
GNSS 6.2 -6.6 -5.0 10.3 
TLS   -3.1  
PhotoScan   -1.4  

45 
GNSS 19.3 -61.9 -27.7 70.5 
TLS   -23.4  
PhotoScan   -14.9  

12 Feb 2016 
till 

26 May 2016 
(104 days) 

28 
GNSS -1.7 -4.3 6.3 7.8 
TLS   2.7  
PhotoScan   1.9  

29 
GNSS 51.3 -89.8 18.4 105.0 
TLS   25.9  
PhotoScan   24.8  

45 
GNSS 28.6 -85.5 -36.4 97.3 
TLS   -21.2  
PhotoScan   -25.1  

It can be seen from the cumulative displacement in Table 5-7 that GNSS-based 

observations showed significantly more information on displacement than both TLS 

survey and SfM approaches, in particular for the 3D displacements. Measuring the 

landslide changes using TLS survey and SfM approaches yielded only relative movement 

in terms of the elevation differences over time. The elevation changes over landslide areas 

using the three geomatics techniques showed significantly positive correlation, although 

slightly different values were recorded (≈ 3.2 − 12.8 cm of the first 242 days and ≈ 4.4 – 

11.3 cm of the second 104 days). The assessment of landslide monitoring analysis using 

photogrammetric results indicated that PhotoScan can provide measurement of landslide 

movement at dm-accuracy level (based on comparison to the GNSS observations). 

Although SkyPMMS could not deliver the elevation changes in this experiment due to a 

dramatically different density of point cloud, bare-earth points (e.g. cracks and fissures 

on landslides areas) might reasonably be used for tracking landslide deformations using 

the developed algorithm in future work. 
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5.3 Coastal cliff monitoring experiment 

This experiment aimed to investigate the performance of the SfM photogrammetric 

approach using the developed landslide monitoring system for change detection of coastal 

cliff deformation. In particular, geo-referencing without GNSS/TLS-based target 

observation was proposed and tested in order to provide a low-cost approach for on-site 

investigation of landslide monitoring for cliff deformation. 

5.3.1 Study area 

Coastal cliff monitoring mainly consists of inspection of the changes of cliff deformation 

or rock falls due to coastal erosion. In this experiment, the study site was located at 

Marsden Bay in South Shields, near Newcastle upon Tyne, UK. The deformation of 

coastal cliff was mostly caused by the crushed rock and natural aggregates of limestone 

or dolomite formations. To assess the changes occurring at this type of landslide hazard, 

visual comparison of the coastal cliff site was performed on 27 November 2016 and 13 

April 2017 (Figure 5-13). The section of coastal cliff to study erosion was over 5-m high 

by 20-m long. 

(a) 27 November 2016 

 

(b) 13 April 2017 

 

Figure 5-13: Illustrations of coastal cliff site at two epochs acquired on: (a) 27 

November 2016 and (b) 13 April 2017. 



140 

 

5.3.2 Experimental design 

The photogrammetric configuration used for the previous experiment could not be 

applied due to the high and steep geometry of the coastal cliff site. The block 

configuration was more suitable than a conventional configuration because images were 

taken in the front of the cliff in a linear sequence (as illustrated in Figure 5-14). The 

photogrammetric configuration design still utilised the same main factors according to 

the previous experiment using a B/D ratio of 0.1-0.2.  

Two datasets were acquired on 27 November 2016 and 13 April 2017 using a Nexus 6 

smart phone camera. Each photoset comprised 26 images with a maximum image size of 

4160 x 3120 pixels (approximately 13 MP). For geo-referencing, five photo control 

targets were located in front of the coastal cliff. The camera positions and viewing 

directions for each epoch are shown in Figure 5-14. 

 

 

 

 

  

 

 

 

 

   

Figure 5-14: Camera positions and viewing directions between two epochs acquired on 
(a) 27 November 2016 and (b) 13 April 2017.  

From Figure 5-14, a B/D ratio of each epoch was calculated as shown in Table 5-8. 

Coastal 
cliff 

Marsden 
Bay 

(a) 27 November 2016 (b) 13 April 2017 
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Table 5-8: Comparison of B/D ratio used at each epoch. 

 27 November 2016 13 April 2017 
Average base, B (m) 1.24 1.33 
Average distance, D (m) 12.10 10.85 

B/D ratio 0.102 0.122 

A Leica ScanStation P40 was used to acquire TLS data from a single scanner position on 

the same date as imaging observation to validate the photogrammetric results. To clarify 

the workflow used in the assessment of photogrammetric results, the design of this 

experiment is shown in Figure 5-15. Due to the unavailability of a mobile network at this 

study site, Internet service under real-world conditions was unavailable for data transfer 

and processing. Thus, laboratory experimentation was conducted using the data collected 

at the coastal cliff site. 

 

Figure 5-15: The methodology scheme for the accuracy assessment of photogrammetric 
results at different epochs. 
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In this experiment, photogrammetric results were generated from both raw images and 

images corrected for lens distortion with fixed calibration. The Nexus 6 smart phone 

camera was calibrated using the camera calibrating application in Matlab. Imagery was 

then corrected using a Python script with OpenCV library based on the developed 

function of SkyPMMS. For geo-referencing with TLS- based GCPs, the targets could be 

measured directly in the imagery to provide a pair list of targets with photo coordinates 

and the real-world coordinates acquired from TLS survey. The other geo-referencing 

approach without TLS observations, however, used a pair list of three targets with photo 

coordinates and pseudo coordinates from three distances measured between each target 

and then aligned manually with TLS data using four key features on the coastal cliff. The 

details of both geo-referencing approaches were described in Section 4.5.3. The quality 

of geo-referencing using photo control targets of each epoch was computed in the form 

of RMSE for transformation (comprising a rotation and translation only), as shown in 

Table 5-9. 

Table 5-9: Statistics of the results from geo-referencing using photo control targets and 
after applying ICP. 

Epoch Photoset 

After geo-referencing RMSE of 
transformation 
after applying 

ICP (m) 

The number 
of GCPs 
(points) 

RMSE (m) 

27 November 
2016 

Raw images 5 0.104 0.091 
Images corrected for 
lens distortion with 
fixed calibration mode 

5 0.069 0.050 

13 April 2017 

Raw images 5 0.148 0.082 
Images corrected for 
lens distortion with 
fixed calibration mode 

5 0.030 0.030 

Photogrammetric results were processed by cropping and de-noising in order to improve 

their quality. However, after geo-referencing, the SfM-approach might be prone to 

transformation errors. To reduce this problem, the ICP algorithm was applied in the 

experiment. To investigate the photogrammetric accuracy, the comparison between 

photogrammetric results at different times and TLS data was carried out using the C2M 

method in the CloudCompare software. 
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5.3.3 Test results 

The performance of the developed system for photogrammetric landslide monitoring was 

assessed in the previous experiment. This experiment tested the transferability to coastal 

cliff monitoring. In the first part of this experiment, the details of photogrammetric results 

obtained from SkyPMMS using a Nexus 6 smart phone camera before and after applying 

lens distortion corrections are shown in Table 5-10. Figure 5-16 and Figure 5-17 compare 

the point clouds at different times obtained from different SfM approaches (SkyPMMS, 

PhotoScan) and TLS survey. 

Table 5-10: Comparison between the SfM-photogrammetric results and TLS data 
acquired on 27th November 2016 and 13th April 2017. 

Date 

Ground 
points of 
TLS data 
(points) 

Photoset/Pre-
processing 

SfM-photogrammetric results 

Point cloud 
(points) 

Point cloud 
after cropping  
and de-noising 

(points) 

27 
November 

2016 
10,052,978 

Raw images 864,944 384,611 
Images corrected for 
lens distortion with 
fixed calibration mode 

879,795 442,656 

13 April 
2017 

11,609,458 

Raw images 758,241 537,576 
Images corrected for 
lens distortion with 
fixed calibration mode 

956,091 647,061 

As shown in Table 5-10, photogrammetric processing which utilised images corrected for 

lens distortion with the fixed calibration mode, provided a higher number of points; a 

denser point cloud and fewer void areas can be seen for those photosets in both Figure 5-

16 and Figure 5-17. Applying this method based on the developed system could 

significantly improve the quality of photogrammetric results for this type of coastal cliff 

surface. However, the bottom part of this coastal cliff point cloud obtained from 

SkyPMMS showed large areas of voids when compared to TLS data and the SfM 

approach using PhotoScan. Due to the insufficient dense matching in the developed 

system based on VisualSFM and PMVS, points were not generated in this area. The free 

SfM software was not able to produce as large a number of points as the SfM-commercial 

software (PhotoScan). 
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Figure 5-16: Comparison of four point clouds obtained using (a) raw images  
(SkyPMMS), (b) images corrected for lens distortion with the fixed calibration mode 

(SkyPMMS), (c) PhotoScan (d) and TLS survey (27 November 2016). 
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Figure 5-17: Comparison of four point clouds obtained using (a) raw images 
(SkyPMMS), (b) images corrected for lens distortion with the fixed calibration mode 

(SkyPMMS), (c) PhotoScan (d) and TLS survey (13 April 2017). 
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5.3.4 Assessment of photogrammetric accuracy 

Following the lens distortion correction of images, photogrammetric results were 

generated from images corrected for lens distortion with the fixed calibration mode using 

the developed system. To inspect the photogrammetric accuracy, the results at different 

times from original and improved image data were compared to the TLS data, as shown 

in Table 5-11. 

Table 5-11: Statistics of distance differences between TLS data and SfM results from 
original and images corrected for lens distortion with fixed calibration mode. 

Date 
Photoset/Pre-

processing 

TLS-SfM using C2M method 
Min 
(m) 

Max 
(m) 

Mean 
(m) 

SD 
(m) 

RMSE 
(m) 

27 
November 

2016 

Raw images -0.958 0.866 -0.419 0.266 0.269 

Images corrected for 
lens distortion with the 
fixed calibration mode 

-0.275 0.257 0.004 0.044 0.046 

13 April 
2017 

Raw images -0.735 0.684 -0.279 0.202 0.205 

Images corrected for 
lens distortion with the 
fixed calibration mode 

-0.191 0.257 0.022 0.040 0.042 

In Table 5-11, the minimum, maximum, mean and RMSE values of distance errors 

between the TLS reference and SfM approach using images corrected for lens distortion 

with the fixed calibration mode were noticeably smaller than for SfM using raw images. 

The results suggest applying lens distortion correction with the fixed calibration mode 

used in processing can help significantly improve the photogrammetric accuracy and 

provide a better quality of results in terms of a denser point cloud, as explained in the 

previous section. This is most probably related to the fact that 3D reconstruction with the 

fixed camera model from images corrected for lens distortion did not generate an error 

along the image sequence. Furthermore, lens distortion correction was applied to the 

imagery, which provided a higher accuracy of imaging mensuration. 

The mean errors of both epochs can represent the quality of transformation for 

photogrammetric results after geo-referencing. Table 5-12 shows the summary statistics 

for the accuracy assessment when applying ICP for photogrammetric results at each 

epoch with the TLS reference acquired at the same time. 
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Table 5-12: Statistics of distance differences between TLS data and SfM results from 
images corrected for lens distortion with the fixed calibration mode after 
applying ICP. 

Date 
Photoset/Pre-

processing 
Post-

processing 

TLS-SfM using C2M method 

Min 
(m) 

Max 
(m) 

Mean 
(m) 

SD  
(m) 

RMSE   
(m) 

27 
November 

2016 

Images corrected 
for lens distortion 
with fixed 
calibration mode 

- -0.275 0.257 0.004 0.044 0.046 

applying 
ICP 

-0.236 0.223 0.000 0.025 0.028 

13 April 
2017 

Images corrected 
for lens distortion 
with fixed 
calibration mode 

- -0.191 0.257 0.022 0.040 0.042 

applying 
ICP 

-0.204 0.234 0.000 0.028 0.030 

As shown in Table 5-12, the mean and RMSE values of distance errors between TLS data 

and photogrammetric results from both epochs decreased significantly after applying ICP 

algorithm. It is likely that the ICP adjustment in this experiment might help to reduce a 

potential bias after geo-referencing. However, point clouds in this type of landslide 

monitoring were mostly over bare-earth surfaces. Therefore, the use of ICP algorithm 

may be more suitable for stable areas and over surfaces without vegetation. 

The accuracy assessment of photogrammetric results for the geo-referencing solution 

without GNSS/TLS-based target observations is shown in Table 5-13. However, the last 

epoch was only processed by this solution because it was developed after the first data 

collection. 

Table 5-13: Statistics of distance differences between TLS data and SfM results from 
images corrected for lens distortion with the fixed calibration mode, different 
geo-referencing. 

Date 
Photoset/Pre
-processing 

Method of geo-
referencing 

TLS-SfM using C2M method 
Min 
(m) 

Max 
(m) 

Mean 
(m) 

SD 
(m) 

RMSE 
(m) 

13 
April 
2017 

Images 
corrected 
for lens 

distortion 
with the 

fixed 
calibration 

mode 

with TLS-based 
target observation 
and applying ICP 

-0.204 0.234 0.000 0.028 0.030 

Scaling with the 
dimensions of 
known object, 
manual alignment 
and applying ICP 

-0.256 0.265 0.000 0.026 0.027 
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The minimum, maximum, mean and RMSE values of distance errors between the TLS 

reference and photogrammetric results after applying ICP obtained from geo-referencing 

with the dimensions of known object and manual alignment were approximately the same 

as when geo-referencing with TLS-based target observation. Surprisingly, the 

photogrammetric results using the geo-referencing solution without GNSS/TLS-based 

target observations still provided an accuracy commensurate to conventional geo-

referencing.  

5.3.5 Cliff erosion monitoring analysis 

Monitoring analysis was performed by comparing two point clouds acquired at different 

times between 27 November 2016 and 13 April 2017 (135 days). To ensure the 

photogrammetric results were in the same reference coordinates before analysis, the point 

cloud from the second epoch (acquired on 13 April 2017) was georeferenced to the first 

epoch. The method of geo-referencing consisted of two main stages; 1) alignment with 

each other using four key features on the coastal cliff, and 2) application of the ICP 

algorithm. The assessment of cliff erosion was performed using the system developed for 

landslide monitoring analysis over the 135 day intervening period. Figure 5-18 compares 

the results of change assessment for cliff erosion obtained from TLS survey and different 

SfM approaches (SkyPMMS and PhotoScan) using M3C2. 

In terms of the additional results after point cloud comparison using the M3C2 method, 

the distance uncertainty and statistically significant change of differences between two 

point clouds at different times were calculated. Due to the uncertainty in different 

roughness of both point clouds, change significance should be considered for the 

differences in case of a real change (Lague et al., 2013). Significant change (value = 1) 

refers to situation where the value of differences from M3C2 is more than the distance 

uncertainty calculated with M3C2. On the other hand, insignificant change (value = 0) 

means that the differences between two point clouds is less than the distance uncertainty. 

The preliminary analyses of the three approaches showed significant changes at the toe 

of the cliff. The most active part in this coastal surface was significantly eroded during 

the investigated period. Based on initial visual assessment of Figure 5-18, the surface 

changed by between approximately -0.5 and -2.0 m. Figure 5-19 shows significant 
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changes within the analysis results obtained from TLS survey and different SfM 

approaches. It can be seen that no significant differences were found in the upper and 

central part of coastal cliff; in those parts the coastal surface remained predominantly 

stable. 

As shown in Figure 5-19(c), PhotoScan detected larger amounts of significant change in 

the left- and right-hand side of coastal cliff than both TLS and SkyPMMS. Moreover, 

those were not actual changes, but artefacts most probably related to the fact that point 

clouds from PhotoScan had greater errors due to the known problem of the doming effect. 

As SfM-photogrammetric PhotoScan processing was performed with many adverse 

conditions, systematic errors were often found in the results. For example, the use of 

independent camera models with poor photogrammetric network configuration could 

result in distorted reconstruction that was always found in the linear sequences of images. 

In addition, the number and distribution of GCPs was insufficient in bundle adjustment 

(Eltner and Schneider, 2015). 
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(a) TLS 

 
(b) VisualSFM & PMVS

 
(c) PhotoScan

 

 
The value of surface changed (m) 

Figure 5-18: Comparison of distance differences between two datasets acquired on 27 

November 2016 and 13 April 2017 from (a) the TLS approach, (b) the photogrammetric 
results using VisualSFM & PMVS and (c) PhotoScan using M3C2. 
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(a) TLS

 
(b) VisualSFM & PMVS

 
(c) PhotoScan

 
Statistical value of significant change 

 
         Insignificant change                                                           Significant change 

Figure 5-19: The comparison of statistically significant change between two datasets 
acquired on 27 November 2016 and 13 April 2017 from (a) the TLS approach, (b) the 
photogrammetric results using VisualSFM & PMVS and (c) PhotoScan using M3C2. 
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(a) TLS 

 

(b) VisualSFM & PMVS 

 
(c) PhotoScan 

 
 

Figure 5-20: Histograms of the distance differences between two point clouds acquired 
on 27 November 2016 and 13 April 2017 using M3C2 from (a) TLS survey, (b) 

photogrammetric results using VisualSFM & PMVS and (c) PhotoScan. 
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Table 5-14: Statistics of the distance differences between two epochs acquired on 27 
November 2016 and 13 April 2017 from (a) TLS survey, (b) SfM-
photogrammetric approach of VisualSFM & PMVS and (c) PhotoScan using 
M3C2. 

Method/ 
SfM-approach 

Multi-epoch analysis 

Min  
(m) 

Max 
(m) 

Mean 
(m) 

SD 
 (m) 

TLS -1.862 1.327 -0.145 0.358 

VisualSFM & PMVS -1.830 0.576 -0.016 0.209 

PhotoScan -1.901 0.799 -0.111 0.352 

The mean of the differences between two point clouds at different epochs (135 days apart) 

obtained from all approaches showed negative values (Table 5-14), indicating that the 

majority of surface changes of the coastal cliff monitoring at Marsden was caused by 

erosion. This was confirmed by the distribution of elevation differences (in Figure 5-20), 

which mostly displayed a negative bias of detected changes. The minimum, maximum 

and standard deviation values of the distance differences were slightly different for the 

different approaches. Whereas, the maximum value for the distance differences was 

significantly different because the point density of photogrammetric results from both 

PhotoScan and VisualSFM & PMVS had an insufficiently dense point cloud and more 

void areas when compared to the corresponding TLS survey. Nevertheless, the accuracy 

of photogrammetric results was shown to be sufficient for the initial assessment of change 

for this type of coastal cliff. 

Unfortunately, in this experiment images from a ground-based approach cannot be 

captured entirely due to the high cliff. The processing therefore mostly focused on the 

bottom part of the coastal cliff. Consequently, the change assessment was not able to 

comprehensively determine the volume balance in this experiment. 
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5.4 Summary 

In this chapter, two experiments were performed to inspect the photogrammetric potential 

of the cloud-based system for initial assessment of two types of landslide hazard. The 

study sites at a natural earth-flow landslide and a coastal cliff were used to examine the 

developed approach using different imaging configurations and geo-referencing 

approaches. The photogrammetric approach achieved moderate accuracy for the initial 

assessment of landslide monitoring at both sites. The improved photogrammetric 

processing with the developed functions solved many of the disadvantages associated 

with the implementation of a low-cost photogrammetric monitoring system (using a smart 

phone and a free-SfM Software). The test results for on-site investigation proposed a 

reliable method for geo-referencing without the need for high accuracy GNSS/TLS 

observation. The photogrammetric approach using the developed system was sufficiently 

accurate for assessing landslide changes and measuring landslide deformation at the dm-

level.  
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Chapter 6. Discussion of results 

 

 

 

 

 

 

 

 

 

6.1 Introduction 

A mobile device-based photogrammetric measurement and monitoring system for the 

initial assessment of landslide hazards has been developed in this research. Close-range 

photogrammetric approaches using imagery from a modern smartphone were investigated 

for use in a low-cost, non-contact monitoring approach for on-site landslide investigation. 

The system was implemented with mobile cloud computing technology to enable the 

potential for real-time processing. The developed system integrated with additional 

functions for the improved photogrammetric processing and landslide monitoring 

analysis was evaluated through a series of experiments to assess its potential. The 

landslide monitoring system was investigated using data collected from two different 

real-world sites in the UK. An additional discussion of the experiments and of the 

limitations of the developed system is presented in this chapter. 
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6.2 System inspection  

Close-range photogrammetric techniques can be practically adopted for the purpose of 

monitoring landslide hazards, and offer a potentially low-cost approach in terms of 

implementation and operation for ground-based platforms, as explained in Chapter 2. In 

particular, for initial assessments in on-site investigations for landslide monitoring, close-

range photogrammetry has the capability to be used in surveying to avoid the need for 

time-consuming data collection. Moreover, the digital camera technology in mobile 

devices can be widely utilised for image acquisition as part of a photogrammetric 

monitoring approach. However, due to the limited computational power of mobile 

devices, it is difficult to manage the intensive data processing required in 

photogrammetry. Cloud-based processing is used here to overcome the drawbacks of 

mobile computing. In this research, a photogrammetric measurement and monitoring 

system based on a mobile platform was developed and implemented using cloud 

computing technology to deliver a low-cost, near real-time solution for an in-situ 

landslide monitoring approach, as illustrated in Chapter 3. This section considers 

advantages and disadvantages of the developed system and provides recommendations 

for improvements. 

The architecture of the developed system is mainly based on client-server communication 

with a mobile cloud computing service. The system comprises a front-end service on a 

mobile application controlled by the operator and a back-end service on the cloud-based 

server employed for photogrammetric measurements and landslide monitoring analysis. 

In this solution, the crucial concept in system development was based on design simplicity 

associated with two components involving a controller and processor, as illustrated in 

Figure 3.25. Furthermore, the system has more flexibility in managing the resources of 

both the mobile device and cloud server. For example, data processing in the 

photogrammetric approach can be utilised on a multi-cloud server to optimize the low 

financial costs of cloud computing, as presented in section 3.5.2.  

In terms of the flexibility in the front-end part of the system, although an Android mobile 

application was developed to be controlled remotely by the user, the operation of the 

system can be independently employed on multiple platform types, including tablets, 

laptop computers and PCs, using a standard Web-based browser, as shown in Figure 6.1. 
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One of the benefits of the use of an independent platform is to reduce the need for the 

developer to design mobile applications.  

        

                                            (a)                                                   (b) 

Figure 6-1: Front-end service: (a) mobile application; (b) web browser. 

The evaluation of the development of a low-cost, real-time photogrammetric landslide 

monitoring system based on a mobile platform for on-site investigation can be divided 

into two main aspects, as follows: 

6.2.1 Mobile devices (smart phone case) 

In this research, the close-range photogrammetric approach has mainly utilised images 

captured from a modern smart phone camera (i.e. a Nexus 6 mobile phone) for landslide 

monitoring. Typically, smart phone technology can provide more convenience in image 

acquisition for on-site investigations. Moreover, images can be uploaded to a cloud-based 

server for data processing and the results of photogrammetric landslide monitoring 

displayed in order to facilitate an efficient initial assessment of landslide hazards.  
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The digital camera technology in mobile devices has become increasingly advanced in 

recent years, in terms of the high-resolution capabilities of the imaging sensors. On other 

hand, the quality of images produced is still lower than in images captured from DSLR 

cameras or consumer-grade digital cameras, as explained in section 3.2.1. Comparison of 

photogrammetric results obtained from a DSLR camera and a smart phone camera, as 

shown in the experiment of section 4.2, revealed that the photogrammetric accuracy of a 

DSLR camera was better than that of the smart phone camera. In the same situation (e.g. 

using the SfM photogrammetric software), a DSLR camera of Nikon D300 can provide 

more accurate photogrammetric results (between 0.0±2.5 and -0.2±3.1 cm) than that of 

an iPhone 4 smart phone camera (between 0.8±5.7 and 1.5±3.2 cm). It is likely that the 

quality of both cameras was not significantly different for the initial assessment of 

landslide monitoring.   

For highly precise photogrammetry using both UAV and ground-based platforms, DSLR 

and consumer-grade cameras are intensively used for image acquisition for monitoring 

purposes in geoscience applications (James and Robson, 2012; Micheletti et al., 2015a). 

However, images from DSLR or consumer-grade cameras can be used in the developed 

system in assessing landslide deformations. The system can support the uploading of 

images not only from the camera in a mobile device, but also images from multiple other 

cameras, thus increasing the opportunities for image acquisition from enhanced sensors. 

For instance, modern DSLR and off-the-shelf digital cameras have built-in wireless 

connectivity, such as Wi-Fi or Bluetooth, that can be used for direct connection to a smart 

phone for image transfer. In the case of on-site investigations using a DSLR or consumer-

grade camera, Figure 6-2 illustrates image acquisition through a mobile application for 

uploading to the landslide monitoring system.  
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Figure 6-2: The implementation of a DSLR or consumer-grade camera for image 
acquisition applied in the developed system. 

6.2.2 The cloud-based server 

For development of the back-end service of the system, all processing of 

photogrammetric measurement and landslide monitoring was implemented on cloud 

computing technology. The cloud-based server was used for the SfM-based 

photogrammetric processing of the image data from the smart phone and the assessment 

of landslide deformations from photogrammetric results at different times. Although the 

cloud computing technology is based on virtual machine (VM), the cloud-based server 

can operate the same as a hardware platform. Furthermore, the advantages of a cloud-

based server include the low financial investment in the system development for the end 

user and the flexibility in management and monitoring of the system. For instance, 

technical skills in the maintenance of the server are not required in developing the system. 

Currently, commercial SfM software such as Pix4D can be used on a desktop computer 

or with cloud computing technology for the SfM-photogrammetric services allowing 3D 

reconstruction from images. Unfortunately, a free Internet-based SfM system, such as 

Microsoft Photosynth or Autodesk 123D catch, is no longer available. Those SfM 

services offer full photogrammetric processing workflows, but some advanced functions 

lack details and are treated as a black box for processing. Moreover, the requirement of 

additional functions in terms of post-processing is necessary to achieve the appropriate 
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photogrammetric results for landslide monitoring purposes. Therefore, it is difficult for 

an Internet-based SfM service that had been implemented with low-cost landslide 

monitoring to be used in the photogrammetric processing. 

The proposed system has various strengths for initial assessments in in-situ landslide 

monitoring. It can offer visualisation of a three-dimensional scene of the photogrammetric 

results in near real-time after data processing. Consequently, the results can be instantly 

verified by the operator using 3D visualisation of a point cloud on a mobile device (such 

as a tablet), before assessing landslide deformations, as shown in Figure 3-29. Moreover, 

the system can back-up the image data, along with the photogrammetric results, as well 

as the results of the analysis of landslide monitoring using cloud storage technology with 

Amazon S3 to avoid data loss, and support subsequent multi-temporal comparisons. 

However, there are still some weaknesses of the developed system where improvements 

are needed. Firstly, the design of the system does not support multi-tasking, and the 

system can be operated only by a single user at one time. To support simultaneous use of 

the system by multiple users, a queuing management system would be required to 

facilitate access. Secondly, the security of the developed system for landslide monitoring 

was considered to be outside the scope of this study, but should be considered in any 

future development. Finally, feedback concerning system usability from geotechnical or 

geological engineers would be useful to evaluate practical applicability to the user 

community and steer further improvements in the system. 

6.3 Performance assessment 

The performance of the cloud-based system was assessed for its ability to deliver real-

time photogrammetric measurement and monitoring for use in on-site investigations 

assessing landslide hazards using mobile device technology. Evaluation of advanced 

functions for improved photogrammetric processing and the effectiveness for landslide 

monitoring is highlighted in this section. 

The proposed system requires an Internet service with high bandwidth connectivity in 

order to provide necessary connection speed for image data transfer from a smart phone 

to a cloud server for photogrammetric processing. As is often the main problem with 
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mobile cloud computing technology, successful upload of images from a smart phone is 

subject to variation given the inefficient performance of Internet services via current 

mobile networks. Service coverage is often a serious issue for the countryside or rural 

areas, as discussed in section 4.3. In the near future, mobile network operators are 

expected to deliver advances in both coverage and performance of mobile data 

technology. In summary, the cloud-based system requires Internet services via a modern 

4G/5G network to operate effectively. 

The state-of-the-art mobile device-based SfM photogrammetry avoid only the cloud-

based processing. In order to facilitate a real-time response capability, various processes 

in the SfM-based photogrammetric workflow can be performed on the mobile device, 

such as feature detection or image matching. As shown in Figure 6-3, photogrammetric 

processing can be carried out using the resources of both mobile devices and cloud 

computing in order to help reduce the demands for bandwidth connectivity (Nocerino et 

al., 2017). Moreover, an innovative approach to real-time 3D surface reconstruction on 

mobile devices has been developed using a new pipeline for image processing on 

GPU/CPU integrated with an inertial measurement unit (IMU) in order to eliminate the 

cloud-based processing (Ondrúška et al., 2015).  

 

Figure 6-3: Workflow of data processing for SfM-photogrammetry based on mobile 
devices and cloud computing (Nocerino et al., 2017). 
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These approaches can address the issue of the bandwidth demand for Internet connectivity 

between a smart phone and a cloud server. Nevertheless, an in-situ landslide monitoring 

approach based on the SfM technique is still more appropriate for cloud-based processing. 

That is because such approaches cannot deal with the photogrammetric processing with 

the requirement of large numbers of high resolution images to maintain the accuracy and 

resolution of results in real time.  

In this study, for example, the process of dense image matching from large numbers of 

images employed in generating the point cloud might be time-consuming. To deliver 

photogrammetric results with the appropriate quality for in-situ landslide monitoring, the 

relationship between the number of images and image size has been investigated to 

optimise data processing in real-time. Consequently, an optimal imaging network would 

deliver an appropriate image size and a suitable number of camera stations prior to 

uploading data to the cloud, as explained in section 4.4. The recommendation for 

photogrammetric configuration using a B/D ratio of 0.1-0.2 determines the number of 

camera stations or images for a close-range photogrammetric approach. Furthermore, 

improved image data (i.e. 20%-30% of image size reduction) before transfer may help in 

reducing both the uploading and processing time in order to achieve a near real-time 

response for landslide monitoring. 

In terms of the functions developed to improve photogrammetric processing in the 

system, a pre-image matching stage is used to reduce the image matching time using 

image sequences. In the experiment concerning pre-image matching, the time required 

for image matching can be decreased by approximately 80%, compared to using full 

matching, and this can help reduce the overall photogrammetric processing time by 

approximately 30%. In addition, the pre- and post-processing procedures, such as lens 

distortion correction, automatic de-noising and vegetation filtering, can help to improve 

the quality of photogrammetric results before assessment of landslide behaviour. Geo-

referencing is another important stage of post-processing for photogrammetric results, 

generally used to provide a real-world coordinate system for comparison and analysis of 

landslide monitoring. For this study, additional functions developed for geo-referencing 

can be directly employed on mobile devices in order to provide a highly precise geo-

referencing for photogrammetry. The development of additional functions can achieve 

the basic requirements for on-site investigations, as proposed in section 3.3.3.  However, 
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although the advanced functions of the system can enhance the potential for 

photogrammetric measurement and automated landslide analysis, human interaction may 

be required in post-processing, such as for geo-referencing and de-noising. 

Although development of additional functions in the system can facilitate the automated 

and straightforward workflows of photogrammetric processing and landslide monitoring 

analysis for non-expert users, basic knowledge of the use and understanding of each 

function is necessary to utilise the system appropriately for fieldwork. In particular, the 

settings of appropriate parameters for some functions is one of the greatest challenges 

faced by non-expert users. For example, the additional functions of automatic de-noising, 

vegetation filtering and assessing landslide deformations using M3C2 needs experimental 

study before fieldwork for specification of appropriate parameters. Moreover, the 

selection of suitable parameters depends on the different types of landslide hazard for 

monitoring. Therefore, the parameters for each function should be careful chosen to 

achieve sensible results in photogrammetric landslide monitoring. 

6.4 Assessment of photogrammetric accuracy 

In considering photogrammetric approaches for monitoring purposes, accuracy is the first 

concern. In particular, sources of reconstruction errors, which have a strong influence on 

photogrammetric precision, should be identified and tackled to optimise measurement 

quality, as highlighted in section 3.2. The accuracy of photogrammetric measurement in 

this research was investigated using two experimental studies in different landslide areas. 

The accuracy of the photogrammetry used an in-situ landslide monitoring is discussed in 

this section. 

The design of the photogrammetric network configuration for landslide monitoring 

should be determined by the characteristics of the area monitored. Firstly, the accessibility 

and steepness of landslide area should be considered. Convergent imaging networks and 

image acquisition with a full 360° coverage of the monitoring area are usually employed 

to deliver effectively a 3D reconstruction (Gómez-Gutiérrez et al., 2014), as shown in 

Figure 5-4. However, if the monitoring area is inaccessible or too steep, such as a coastal 

cliff, a block configuration is more suitable for the photogrammetric imaging network, 

and images should be taken from the front of the monitoring area in a linear sequence. 
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Therefore, the optimal quality of photogrammetric measurement can be achieved by 

choosing the most appropriate configuration for landslide monitoring in a specific site. 

In terms of photogrammetric processing software, point clouds obtained from free SfM 

software such as VisualSFM and PMVS produce relatively low-quality results in terms 

of both point density and accuracy when compared to results from commercial SfM 

software such as PhotoScan, as shown in section 4.2 and 4.3. Moreover, the different 

algorithms used in each type of SfM software (for example when conducting  feature 

detection using SIFT or SURF) have an influence of the precision of image measurement 

and thus on photogrammetric accuracy (James and Robson, 2012). The RMSE of 

measurement using SIFT is assumed to be approximately one half of a pixel (Barazzetti 

et al., 2010), but it is likely that SfM photogrammetry involves lower precision of image 

mensuration compared to traditional digital photogrammetry. Consequently, 

photogrammetric precision in 3D reconstruction from the imagery is further degraded due 

to these factors. Thus, the choice of photogrammetric processing software implemented 

in the developed system has an influence on accuracy in assessing landslide deformations. 

In geo-referencing, the use of photo control targets is essential for highly precise 

photogrammetric measurement. In general, control points should be distributed to cover 

the whole area to be monitored. If the distribution of targets is not good enough as 

described in the experiment of section 4.5.3, this will result in a low quality of geo-

referencing. For geo-referencing with GNSS/TLS-based target observations, the 

photogrammetric results for each epoch were determined so as to enable a straightforward 

comparison in a common coordinate system. In contrast, to avoid measurement using 

GNSS/TLS observations, an innovative solution with a newly-developed function was 

utilised for highly precise scaling of photogrammetric results. This application of scaling 

was performed using distances of known objects, such as with a scale bar (Kaiser et al., 

2014). However, after scaling, manual alignment of photogrammetric results at different 

epochs was required. This solution can also offer low-cost observations to support the on-

site investigation of landslide monitoring. As shown in the experiment described in 

section 5.3.4, the test results confirmed that this is a reliable method for geo-referencing 

without the need for highly accurate GNSS/TLS observation data. Thus, the development 

of automated alignment should be proposed for an additional study in the future. This 

automated alignment of results from different epochs would be definitely better than the 
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manual approach, especially for practical application by engineers. For example, the 

study on markerless point cloud registration (Theiler et al., 2013) and point cloud coarse 

registration (Bueno et al., 2016) may be utilised with an automated alignment. 

Compared with the accuracy of results for close-range photogrammetry in the 

experimental studies described in chapter 5, the photogrammetric measurement system 

based on a mobile-platform can yield a sub-dm accuracy level, especially over surfaces 

without vegetation. In the case of natural earth-flow landslide monitoring, 

photogrammetric precision was noticeably degraded due to the effect of vegetation. In 

the case of monitoring of coastal cliff erosion, the photogrammetric accuracy was at the 

level of centimetres (from 2.7 to 3.0 cm) due to the monitoring area consisting of a bare-

earth surface.  

However, due to the different types of landslide hazard being monitored, the conditions 

adopted in the photogrammetric approach have a direct impact on the quality of final 

results, i.e. the quality of camera for image acquisition, photogrammetric network 

configuration, the number and distribution of ground control points, etc. As shown in the 

experiment described in section 5.3.5, the problem of the doming effect can cause 

systematic errors in the results due to SfM-photogrammetric processing under adverse 

conditions. Firstly, the use of raw (un-calibrated) images with weak photogrammetric 

network geometry (the linear sequences of images) for processing could result in distorted 

reconstruction (James and Robson, 2012). Secondly, the number of ground control points 

were insufficient and they were poorly distributed. Consequently, a bundle adjustment 

has been insufficiently strong (Eltner and Schneider, 2015). Therefore, photogrammetric 

processing should be carefully performed to reduce these systematic errors and minimise 

any doming effect. 
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6.5 Assessment of landslide monitoring analysis 

After improving and evaluating photogrammetric accuracy, the enhanced results at 

different epochs can be utilised for assessment of landslide deformation. The proposed 

analysis of landslide monitoring is performed using a point-based approach with the 

comparison of 3D models from two point clouds. As shown in the experiment results 

presented in section 4.5.6, the M3C2 method reveals fine-scale changes occurring due to 

landslide activity. Furthermore, the levels of uncertainty in point clouds have been taken 

into consideration in this comparison method in order to provide an efficient analysis for 

landslide monitoring. In particular, for the initial assessment in an on-site investigation, 

the function developed for landslide monitoring analysis is based on the M3C2 technique 

comparing point clouds. The results of this function can be displayed directly on a smart 

phone through visualisation or statistical quantification by the developed system for the 

analysis of landslide monitoring, as shown in Figure 3-29. 

Before assessing landslide deformations, the photogrammetric results at different epochs 

should be aligned to a common reference system. In the case of geo-referencing without 

a highly precise GNSS survey for the observation of control point locations, improved 

referencing is essential to ensure that the results are well-aligned. In general, all epochs 

should be georeferenced to the first epoch. The primary method of improved referencing 

consists of an alignment of point clouds with each other using at least four key features 

in the monitored area, with application of the ICP algorithm. 

Comparing results of the landslide monitoring analysis in the two experimental studies 

described in chapter 5, the sources of uncertainty which might have an influence on the 

assessment of landslide changes should be taken into consideration when delivering the 

results. In the case of natural earth-flow landslide monitoring, the surfaces covered in 

vegetation can affect the accuracy of landslide measurements because the heights of 

vegetation surfaces change seasonally. Vegetation filtering is used over vegetated 

surfaces to deliver bare-earth point clouds so as to detect landslide movement over time. 

Typically, vegetation filtering is carried out using the green vegetation index to eliminate 

point clouds assumed over the vegetated surfaces. However, vegetated surfaces that are 

not coloured green, such as in the presence of brown grass, often appears in summer. 

Consequently, the point cloud over these vegetated surfaces remains and is used for 
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assessing landslide change. Furthermore, point clouds obtained from photogrammetric 

processing using VisualSFM and PMVS showed sparse points and large void areas. As a 

result, insufficient detail at each epoch might be more prone to fail in the recognition of 

the landslide deformation, as shown in Figure 5-10 and 5-18(b).  

Considering the sparse point clouds and large void areas, completeness of coverage of the 

results can be slightly improved by increasing the number of images (or camera stations) 

in photogrammetric processing. However, the results still contain void data because of 

the insufficient potential of free SfM software for generating the point cloud, as shown in 

Figure 4-10. Consequently, the use of dense image matching for a large number of images 

to increase the number of points might be too time-consuming, and thus would be 

inappropriate for initial assessments in on-site investigations. However, although a low-

quality point cloud (such as one with sparse points and void areas) might be inappropriate 

in the analysis of landslide monitoring, the extraction of bare-earth point clouds after 

vegetation filtering can allow the key information in landslide areas, such as cracks or 

fissures, to be presented. Therefore, landslide monitoring using a point-based approach 

(i.e. point cloud comparison method) might not be suitable in the case of landslide areas 

covered by vegetation. 

For 3D point-based analysis, bare-earth point clouds might have the potential to allow 

feature extraction, such as of cracks or fissures, in the scarp of landslides. The extraction 

of features is performed using the analysis of geomorphological factors, such as the 

surface roughness index, as shown in Figure 6-4. However, although this approach can 

be automatically performed, the tracking of features might be complicated and time-

consuming in evaluating landslide movements over time. Therefore, the 3D features have 

to be degraded into 2D information from the imagery in order to analyse landslide 

monitoring using an image correlation method. 
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Figure 6-4: Extraction of (a) landslide scarp using analysis of the surface roughness 
index, and (b) orthophoto derived from UAV approach (Al-Rawabdeh et al., 2016). 

Although the developed system was not implemented in the actual area, conditions in the 

simulation was equally assigned. The image data was collected from the study area. The 

experiments were carried out under laboratory simulation because of the inefficient 

performance of Internet service via current mobile networks, which was unsuitable for 

data transfer from mobile device to the cloud. Consequently, the photogrammetric 

approach using the developed system was sufficiently accurate to assess landslide 

movements and measuring landslide deformations at the dm-level.  

6.6 Potential challenges of operation 

As mentioned above, the main drawback of mobile devices is usually their low computing 

power when compared to PCs or laptop computers. The use of cloud-based processing is 

essential to overcome the problems of insufficient resources on mobile devices in order 

to manage data-intensive processing. In the development of a photogrammetric 

measurement and landslide monitoring system, the architecture is based on client-server 

communication using Internet services. Thus, the appropriate Internet connectivity 

between a smart phone and the cloud server is essential for the system to operate 

continuously. 
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Deficiencies in Internet connections are one of the main limitations of the proposed 

system. If a landslide occurs in the countryside, connection to the Internet might not be 

possible due to poor coverage of mobile networks, as found in the two experimental 

studies described in chapter 5. Furthermore, the Internet services may not perform well. 

If Internet connectivity is temporarily unavailable for data processing, the system cannot 

operate. When Internet connectivity is not available, it is essential to develop additional 

functions on the system to provide the synchronisation of both data and state for data 

processing (i.e. specifying status for the steps of data processing before Internet 

disconnection). In addition, the system could be improved to support offline data 

processing whereas it may become possible for the development of smart phone 

technology to undertake all processing. 

There are other factors affecting the photogrammetric measurement: 1) insufficient image 

matching and 2) presence of vegetation over the monitoring areas. Image matching, when 

overlaps were less than three images, may lead to failure in 3D model reconstruction from 

images. In this case, the recommendation for photogrammetric configuration should be a 

B/D ratio of 0.1-0.2 to provide a suitable number of camera stations or images for a close-

range photogrammetric approach. As for the presence of vegetation, this can have a direct 

impact on the accuracy of photogrammetric results due to the unreliability of 

photogrammetric measurement over these surfaces, which is discussed in the next 

chapter.  

6.7 Summary 

Following the evaluation of the developed system in chapter 4 and the results of the 

experiments described in chapter 5, an additional discussion has been presented in this 

chapter to assess the performance of the system. The proposed mobile platform-based 

system was investigated using the photogrammetric solution for landslide monitoring 

purposes that was explained in chapters 2 and 3. The experimental results have revealed 

the potential of mobile cloud-based processing, and the levels of photogrammetric 

accuracy and the quality of landslide monitoring analysis for on-site investigation. The 

experiments have confirmed that the developed low-cost, real-time system can be utilised 

for initial assessments of on-site investigation in landslide monitoring. 
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Chapter 7. Conclusions and future work 

 

 

 

 

 

 

7.1 Introduction 

This research has presented the development of a cost-effective photogrammetric 

monitoring system based on a mobile platform for real-time on-site investigation in order 

to aid initial geotechnical interpretation and assessment of landslide hazards. The 

potential of the developed system for monitoring landslides has been confirmed through 

exploitation at recognised real-world test sites, comprising a natural earth-flow landslide 

and an area of coastal cliff erosion. To conclude the findings and discussions of the 

implementation and the experimental studies in this research, the overall study, research 

contributions, and recommendations for future work are summarised in this chapter. 

7.2 Summary of work 

The research aimed to exploit mobile devices and modern ICT in order to develop a 

photogrammetric measurement and monitoring system for real-time on-site investigation 

of landslide hazards. The development and implementation of a system was accomplished 

in order to achieve the goal for this research that was divided into four stages. Thus, the 

review of the overall studies are summarized in this section following the research 

objectives, as originally presented in Chapter 1. 
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Objective 1: To investigate the potential of commonly used approaches and technologies 

in landslide monitoring and to propose the basic requirements of a low-cost 

photogrammetric solution for initial landslide assessment during on-site investigations 

by non-photogrammetrists; 

Regarding the first stage of this research, as presented in chapter 2, landslide hazards have 

been reviewed. This includes the occurrence, types, causes, factors and behaviour of 

landslides in order to understand key parameters required for landslide assessment and 

monitoring. Many of the more common geomatics, geotechnical and geophysical 

engineering approaches for landslide monitoring were inspected and the advantages and 

disadvantages relating to their adoption for on-site investigation purposes assessed. 

According to the assessment, many geomatics, geotechnical and geophysical approaches 

present restrictions in usability for landslide monitoring due to the often labour-intensive 

and costly methods used.  For initial assessment, the technique of modern close-range 

photogrammetry was deemed to offer a flexible, cost-effective approach to landslide 

monitoring. Taking this assessment into consideration, a photogrammetric measurement 

and monitoring solution that employed a mobile device and cloud computing technology 

was pursued, which thereby achieved Objective 1. 

Objective 2: To develop the mobile platform-based photogrammetric services associated 

with cloud-based computing technology for the provision of real-time slope monitoring 

information; 

Following the findings of Objective 1, the proposed photogrammetric landslide 

monitoring system was developed based on a mobile platform implemented with cloud 

computing technology to enable the potential for real-time processing, as proposed in 

Chapter 3. The components of the system comprised a front-end service of a mobile 

application controlled by the operator and a back-end service employed for cloud-based 

processing. In the case of smart phone technology, such a device can provide more 

convenience in image acquisition for on-site investigations, and can upload imagery for 

processing, as well as display the results. In developing a back-end service for the system, 

cloud-based processing using free SfM software has provided near-real-time, fully-

automated processing within a user-friendly, cost-effective photogrammetric framework 

for non-expert use. This was augmented with additional functions for pre- and post-
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processing of SfM photogrammetry, such as lens distortion correction, pre-image 

matching, geo-referencing, automatic de-noising and vegetation filtering, that were used 

to enhance the processing performance and deliver appropriate photogrammetric results 

prior to the assessment of landslide deformations. 

Objective 3: To exploit the photogrammetric results by developing appropriate 

functionality to assess landslide temporal change directly using a mobile device; 

This stage focused on the development of landslide monitoring analysis that utilised the 

enhanced photogrammetric results from different epochs. The proposed landslide analysis 

was performed using a point-based approach using the M3C2 technique for efficient 3D 

point cloud comparison. This additional system functionality was developed and carried 

out using cloud-based processing, as presented in Chapter 3. The results of landslide 

analysis were retrieved and displayed directly on a smart phone through the mobile 

application developed for visualisation and the statistical quantification of landslide 

deformations.  

Objective 4: To ensure the accuracy and reliability of the results and the capabilities of 

the low cost sensors found on common mobile devices for landslide monitoring 

applications by validating the developed system at real-world test sites; 

Prior to the experimental study at an existing landslide test site, the capabilities of 

functions developed for improved photogrammetric processing and landslide monitoring 

on the cloud were evaluated and inspected to ensure the accuracy and reliability of the 

results, as presented in Chapter 4. The potential of the developed system for monitoring 

landslides was investigated at two different real-world UK sites, comprising a natural 

earth-flow landslide and an area of coastal cliff erosion. These experiments and 

evaluations confirmed the performance of the developed low-cost, real-time approach for 

landslide hazard analysis, as presented in Chapter 5. These investigations demonstrated 

that the cloud-based photogrammetric measurement system was capable of providing 

three-dimensional results with sub-decimeter level accuracy. However, for coastal cliff 

erosion monitoring, it is necessary to consider the possibility of systematic errors from 

the doming effect due to weak geometry in the network configuration or inappropriate 

photogrammetric processing based on the raw imagery. As a solution to this problem, a 

convergent imaging network and multi-scale imaging could have been adopted, as well 
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as better distributed control points.  The results of the initial assessments for on-site 

investigation could therefore effectively detect landslide deformations at a local-scale. 

7.3 Research contributions 

The initial assessment for on-site investigations of landslide hazards is important in 

geophysical and geotechnical engineering to reduce the risk of landslides. Improvements 

to existing geomatics approaches based on ground platforms are essential to reduce the 

financial costs of both instrumentation and labour, as well as saving time for conventional 

landslide monitoring. In this research, the development of an appropriate monitoring 

system for use in real-time on-site investigation aids initial geotechnical interpretation 

and assessment of landslides. In comparison with conventional geomatics approaches, 

affordable mobile devices (such as smart phones and tablets) have been used to offer the 

potential for cost-effective, close-range photogrammetry. The immediate noticeable 

benefit of a smart phone is convenience in image acquisition. Another advantage is that 

a smart phone can upload the image data for data processing and it can display the results 

of photogrammetric landslide monitoring in order to facilitate an efficient initial 

assessment of landslide hazards. 

In terms of the proposed system to achieve a low-cost solution, the development of a 

system in this research was based solely on open-source or free software. Moreover, cost-

effective cloud computing services were implemented for data storage, processing and 

analysis in the system. The development of a cloud-based system was particularly utilised 

for SfM-based photogrammetric processing of the image data from the smart phone and 

the assessment of landslide deformations from photogrammetric results at different 

epochs. The implemented SfM workflow involved a high degree of automated 

processing. Furthermore, the development of additional functions for the SfM-

photogrammetric approach was utilised to enhance the processing performance and 

improve the quality of results. According to the workflow for photogrammetry-based 

landslide monitoring, as shown in Figure 3-13, the system utilises automated workflows 

to offer user-friendliness for non-experts.  

To provide a photogrammetric solution suitable for non-expert users and to achieve the 

necessary quality of photogrammetric results for landslide monitoring, photogrammetric 
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network design is an essential consideration for close-range photogrammetry (Luhmann 

et al., 2006). The imaging plan was calculated using four main factors, as follows: (1) 

base to depth (B/D) ratio of imaging geometry in the range of 0.1-0.3 to provide accurate 

ray intersection for 3D reconstruction (Hullo et al., 2009; Waldhäusl and Ogleby, 1994); 

(2) the maximum distance between the camera and the object (in this research it was kept 

at less than 30 m), because image scale, a function of the focal length of the camera lens, 

has a direct impact on the measurement precision; (3) a camera field of view (FOV) of 

~40° to 80° is generally required in deformation monitoring for engineering applications 

(Fryer et al., 2007), which is applicable here, given the requirement to capture detailed 

surface information; (4) images should fully cover the study area (360° coverage), with 

necessary overlaps, to enable effective 3D reconstruction. Therefore, it is crucial that the 

guideline for image capture should be determined following these basic requirements and 

should be considered prior to data collection. 

In terms of the implemented system’s capability to deliver a near real-time response, 

image upload and processing time are crucial factors to be considered. The GPU cloud 

server was required for dealing with the computationally-intensive modules of the SfM 

workflow. Moreover, the management of the image data upload from a smart phone to a 

cloud server is critical for achieving on-site investigation. The cloud-based system 

required data transfer using Internet services such as modern 4G/5G (future) networks in 

order to provide satisfactory connection speeds due to the need for high bandwidth 

connectivity. Reducing the workload for image data upload can help decrease the demand 

for high Internet connection speeds. The relationship between the number of images or 

camera stations and image size was investigated to optimize data processing, as presented 

in Chapter 4. The recommendation for the photogrammetric configuration (i.e. using a 

B/D ratio of 0.1-0.2) can offer a suitable number of camera stations or images for a close-

range photogrammetric approach. Moreover, reducing image resolution (i.e. 20%-30% of 

image size reduction) before data transfer may help reduce both the uploading and 

processing time in order to achieve a response closer to real-time. 

Focusing on the accuracy assessment of results obtained from the mobile platform-based 

photogrammetric measurement system, this approach can yield a sub-dm accuracy level, 

especially over surfaces without vegetation. In the case of natural earth-flow landslide 

monitoring, photogrammetric precision was noticeably degraded due to the effect of 
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vegetation. Meanwhile, in the case of monitoring coastal cliff erosion, photogrammetric 

accuracy was at the cm-level due to the monitoring area consisting of a bare-earth surface. 

Regarding the application of landslide monitoring, the photogrammetric results provided 

sufficient accuracy for initial assessment with measurements at the dm-level. 

7.4 Suggestions for future work 

The system developed as part of this research can provide a solution for low-cost, near 

real-time photogrammetric measurement and automated landslide analysis by non-

experts. However, human interaction is required at some stages of processing. Moreover, 

higher-performance in processing and highly precise photogrammetric measurements are 

required to increase user satisfaction. Taking into account some existing drawbacks of 

the developed system, potential improvements of the system are recommended in this 

section. 

7.4.1 Precision improvement of SfM-photogrammetric processing 

In the case of natural earth-flow landslide monitoring, the surfaces covered in vegetation 

can significantly degrade the quality of photogrammetry because of variation in the 

heights of vegetation. This can have a direct impact on the accuracy of photogrammetric 

results due to the unreliability of photogrammetric measurement over these surfaces. The 

masking of the vegetated surfaces in the imagery is proposed to improve the quality of 

photogrammetric measurement. The algorithm for this additional functionality might 

employ the green vegetation index, as calculated in equation (3-7), to remove pixels 

assumed as vegetated surfaces from the original imagery. As a result, images without 

vegetated surfaces are uniquely used for SfM photogrammetric processing, as shown in 

Figure 7-1(b). 
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(a)                                                              (b) 

Figure 7-1: Example of imagery used for photogrammetric landslide monitoring 
between (a) before and, (b) after masking of vegetation (Zhan and Lai, 2015).  

7.4.2 Automated target detection for geo-referencing 

The development of SfM techniques has improved the accessibility of photogrammetric 

processes for use by non-experts, and it can increase automation (Westoby et al., 2012; 

Javernick et al., 2014). In particular, a target-less approach based on SfM 

photogrammetry can offer fully-automated processing in the image matching stage. 

Consequently, the benefit from this approach is that there is no requirement for any 

markers or targets when compared to conventional digital photogrammetry. However, in 

this research, the use of photo control targets is still necessary to achieve high quality 

geo-referencing of photogrammetric results, as proposed in Section 3.4.3. The additional 

function of target detection could be developed to enable fully-automated geo-referencing 

as part of the system. Coded target detection would then be automatically carried out 

using the template matching method, for example by the Python script within OpenCV 

library, as shown in Figure 7-2. 
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Figure 7-2: Example of (a) automatic detection of (b) coded target used for geo-
referencing: the coded target is automatically found in the red boxed area.  

However, when using coded targets for geo-referencing of photogrammetric results at 

different epochs, the size of the coded target should be considered. Due to image scale, 

the distance between the camera and the target has a direct impact on the size of target in 

the resultant imagery. If a coded target is not large enough, it might be difficult to 

automatically detect and identify its location, in particular for landslide monitoring over 

large areas. Achieving the optimal size of coded target is still challenging for practical 

applications and the potential use of coded targets might therefore be impracticable for 

fieldwork. 

 

 

 

 

(a) 

(b) 
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7.5 Concluding remarks 

This research has demonstrated the potential of mobile and cloud computing in order to 

provide a cost-effective photogrammetric measurement solution on a mobile device for 

the purposes of small-area landslide monitoring. In particular, this approach supports off-

the-shelf hardware (including affordable smartphone cameras) and open source software 

in order to deliver a low-cost monitoring system. Alternatively, SfM-commercial 

software (e.g. PhotoScan) can effectively provide sufficient quality of photogrammetric 

results for assessing landslide deformations. In future work, the mobile application should 

therefore be improved and developed to support the additional photogrammetric results 

obtained from other SfM software packages. However, Internet services in the monitored 

areas of landslides is a critical problem that hinders the full implementation of such a 

system. Furthermore, manual intervention is inevitably required for preparing 

photogrammetric results in point cloud processing before landslide monitoring analysis. 

Based on the assessment of this system, the presented experiments utilising cloud-

implemented SfM photogrammetry show substantial potential in terms of landslide 

monitoring over limited spatial extents. 

In the case of the implementation for on-site landslide investigation, the developed system 

has taken into account a solution for near real-time processing. Two crucial factors are 

required to enable a near real-time response, including the use of a modern 4G/5G mobile 

network for data transfer and the GPU-based cloud server for SfM photogrammetric 

processing. Moreover, multi-epoch analysis needs to be considered in order to assess the 

photogrammetric results over time, thereby yielding information on landslides and hazard 

assessment. The additional functions of landslide monitoring analysis can automatically 

detect the landslide deformation at dm-level. 
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Appendix A 

Camera calibration results (Section 3.2.2) 

Table A-1: Camera calibration results for the Nikon D300 DSLR camera using three different calibration routines. 

Parameter 

Nikon D300 

PhotoModeler MATLAB OpenCV 

Mean σ Mean σ Mean σ 

Focal Length (mm) 30.300 0.009 30.165 0.038 30.183 N/A 

Xp - principal point x (mm) 12.120 0.007 12.125 0.023 12.168 N/A 

Yp - principal point y (mm) 8.130 0.005 8.132 0.020 8.157 N/A 

Fw - format width (mm) 24.002 0.001 
Not calculated 

Fh - format height (mm) 15.940 N/A 

K1 - radial distortion 1 -1.35x10-04 1.52x10-06 -1.34x10-04 4.57x10-05 -1.22x10-04 N/A 

K2 - radial distortion 2 1.04x10-07 1.48x10-08 1.24x10-07 4.68x10-07 1.85x10-08 N/A 

K3 - radial distortion 3 0.00x10+00 0.00x10+00 0.00x10+00 0.00x10+00 0.00x10+00 N/A 

P1 - tangential distortion 1 4.14x10-06 2.07x10-06 1.94x10-07 1.94x10-06 -1.89x10-07 N/A 

P2 - tangential distortion 2 -4.28x10-07 9.30X10-07 1.89x10-07 2.15X10-06 2.30x10-07 N/A 

Image measurement precision: 
Overall RMS (pixels) 

0.973  1.042  1.078  
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Table A-2: Camera calibration results for the iPhone4 smart phone camera using three different calibration routines. 

Parameter 

iPhone4 

PhotoModeler MATLAB OpenCV 

Mean σ Mean σ Mean σ 

Focal Length (mm) 3.808 0.003 3.816 0.007 3.829 N/A 
Xp - principal point x (mm) 1.983 0.002 1.987 0.005 1.990 N/A 
Yp - principal point y (mm) 1.484 0.002 1.468 0.006 1.469 N/A 
Fw - format width (mm) 3.959 0.000 

Not calculated 
Fh - format height (mm) 2.958 N/A 
K1 - radial distortion 1  -8.33x10-03 1.77E-04 -8.99x10-03 2.04x10-03 -8.97x10-03 N/A 
K2 - radial distortion 2 2.07x10-03 4.74E-05 2.28x10-03 7.73x10-04 2.26x10-03 N/A 
K3 - radial distortion 3 0.00x10+00 0.00x10+00 0.00x10+00 0.00x10+00 0.00x10+00 N/A 
P1 - tangential distortion 1 -2.67x10-04 3.93x10-05 -1.26x10-04 1.27x10-04 -1.16x10-04 N/A 
P2 - tangential distortion 2 -2.77x10-04 3.80x10-05 5.97x10-05 1.47x10-04 6.40x10-05 N/A 

Image measurement precision: 
Overall RMS (pixels) 

0.982 1.255 1.351 
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Figure A-1: Radial lens distortion of the Nikon D300, as determined from the three 
different calibration routines. 

 

 

Figure A-2: Radial lens distortion of the iPhone4, as determined from the three different 
calibration routines. 
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Appendix B 

Calculations of the maximum allowable camera-to-object distance and field of view 

of the camera (Section 3.2.3) 

Table B-1: Maximum allowable camera-to-object distance (𝑑௫) using the Nexus 6 
smart phone camera for image acquisition. 

Digital 
camera 

Standard 
error in 

the 
object 
point, 

 σc 
(m) 

Focal 
length,  

c 
(mm) 

Average 
number 

of 
exposure 
at/near 
each 

station, 
 k 

Design 
factor,  

q 

Standard 
error in the 

image 
coordinate, 

σ 
(µm) 

Maximum 
allowable camera-
to-object distance, 

dmax 
(m) 

Nexus 6 0.005 4 1 0.9 1.58 14.03 

 

Table B-2: Field of view (FOV) of iPhone 4, Nexus 6 and Nikon D300 digital cameras. 

Digital 
camera 

Focal 
length, c 

(mm) 

Format 
width, w 

(mm) 

Format 
height, h 

(mm) 

Image format 
diagonal, s'  

(mm) 

Field of view, 
2Ω  

(Degree) 

iPhone4 3.8  4.0  3.0  5.0  66.68  

Nexus 6 3.8  4.7  3.5  5.9  75.27  

Nikon D300 28.0  23.6  15.8  28.4  53.78  
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Appendix C 

SkyPMMS instructions (Section 3.5.3) 

As a user guide of the SkyPMMS application for photogrammetric landslide monitoring, 

a user guide is divided into two modules, as follows:  

Module 1: Photogrammetric measurement  

This module is used to upload images from a mobile device to a cloud server, process 

imaging data on the system and display the point cloud results for photogrammetric 

measurement. 

1) Create a new project or select an existing project 

 Click to start the SkyPMMS application 
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 Choose either to create a new project or to select an existing project. 

  

2) Create a new epoch for photogrammetric measurement 

 Click to start the module of photogrammetric measurement for generating results. 

  

 

 Click to add a new epoch of measurement. 
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 Select and set the date of data collection. 

 

 

 Click   to create a new epoch of photogrammetric measurement. 
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3) Upload a new image dataset 

 Click   to add a new image dataset. 

 Click  and select a path of image dataset. 

 

 

 Select image files from a list of images. 
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 Click    to upload images from a mobile device to a cloud server. 

 After uploading image data, the status of image upload  appeare. 

 

 

4) Settings for data processing 

 Click   for settings of photogrammetric processing. 

 These settings include three parts: 1) pre-processing, 2) geo-referencing, and 3) 

post-processing. 

4.1) Pre-processing 

In pre-processing, the user has two options to enhance the performance of data 

processing and improve the quality of photogrammetric results. 
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4.1.1) Lens distortion correction 

 Check to use the images corrected for lens distortion for 

processing. 

 The user has to import a TXT file of the parameters for a camera 

model. 

4.1.2) Pre-image matching 

 Check to use the pre-image matching. 

 The user has to select the number of overlaps for image matching. 

 In general, the user should select the appropriate number of 

overlaps for at least three images. 

4.2) Geo-referencing 

In the settings of geo-referencing for photogrammetric results, the user has four 

options, as follows: 

 

4.2.1) None 

 Select not to provide any spatial information for photogrammetric 

results. 

4.2.1) With GNSS-based target observations 
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 The user has to import a TXT file for a pair list of targets with 

photo coordinates and the real-world coordinates acquired from 

GNSS survey for geo-referencing. 

4.2.1) With real-time, GNSS-based target observations 

 The user has to measure the photo coordinates of targets on 

imagery and input the real-world coordinates acquired from GNSS 

survey. 

 Select to import or input the real-world coordinates of targets. 

 

 Select the target for measuring the photo coordinates. 

 Click  to measure the photo coordinates of target. 
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 Click  to identify and get the photo coordinates of 

target. 
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4.2.2) With distances between points 

 The user has to measure the photo coordinates of three targets on 

imagery and input three distances between targets. 

 This method is used for scaling the photogrammetric results. 

However, after scaling, manual alignment of photogrammetric 

results at different epochs is required on PC or laptop computer. 

 Input the three distances between points or targets, and click to 

next stage. 

 

 This function will automatically generate the three pseudo 

coordinates of points or targets. 

 Click to next stage for measuring the photo coordinates of targets. 
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 Again, the user has to measure the photo coordinates for all three 

points. 

4.3) Post-processing 

In post-processing, the user has three options to improve the photogrammetric 

results before assessing landslide deformations. 
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4.3.1) Cropping 

 Check to provide the point cloud of photogrammetric results 

within the boundary of the area of interest. 

 The user has to import a TXT file of the boundary of the area and 

select the orthogonal dimension in X, Y or Z axis. 

4.3.2) De-noising 

 Check to remove noise from the point cloud of photogrammetric 

results. 

 The user has to input two parameters including the number of 

points (N) considered and the number of multipliers (n) with a 

standard deviation to identify the threshold of classification for 

outlier detection. 

4.3.3) Vegetation filtering 

 Check to remove point cloud over vegetated surfaces. 

 The user has to input a parameter of the green vegetation index 

value. Points of photogrammetric results which have green 

vegetation index above the threshold for classification are 

eliminated from the point cloud. The threshold used for 

classification of vegetation depends on the weather and season. 

5) Process the photogrammetric measurement 

 Click to next stage for photogrammetric processing.  

 After photogrammetric processing, the status of data processing  appeares. 



198 

 

 

 

6) Display the photogrammetric results 

 Click   to display the point cloud of photogrammetric results. 
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Module 2: Landslide monitoring analysis 

This module is used to select datasets for assessing landslide deformation, process and 

analyse the landslide and show the results of landslide monitoring analysis. 

1) Select the project 

 Select an existing project of photogrammetric landslide monitoring. 

2) Select the epochs for a multi-epoch analysis 

 Click to start the module of landslide monitoring analysis. 

  

 

 Check to create a new analysis of landslide monitoring. 
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 Click to select each epoch of photogrammetric results used for assessing 

landslide deformation.  

 

 

 Click  to create the landslide monitoring analysis.  
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3) Setting of cloud comparison method using M3C2 technique 

 Click   for settings of landslide monitoring analysis. 

 For landslide monitoring analysis, the settings have four parts to identify the 

parameters of cloud comparison method using M3C2 technique. 

 

3.1) Main parameters 

 The main parameters of the M3C2 method for multi-epoch analysis are 

used for the change detection of landslides, including:  

o 𝐷 - the scale factor or normal scale; 

o 𝑑 - the project scale; 

o 𝑝௫ - the height of the projection cylinder or the maximum 

distance; 

3.2) Core points 

 The setting of core points is used to enhance the performance of the 

computation for point cloud comparison. A very high density of point 

cloud requites longer data processing for analysis. 

 In particular, the user should select the subsampling point cloud and input 

the distance between each point to decrease the number of points for 

timesaving analysis. 
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3.3) Normals 

 This setting is used to compute a normal vector in the vertical or horizontal 

direction of the projection cylinder. 

 In particular, the user should select the vertical direction to be used for 

detection of the elevation changes. 

3.4) Registration error 

 For point cloud comparison from different approaches, the user can input 

this error. 

 However, with point cloud comparison from the same photogrammetric 

approach for landslide monitoring analysis, the user should not input the 

registration error. 

4) Process the landslide monitoring analysis  

 Click to next stage for landslide monitoring analysis.  

 After analysis, the status of data processing  appeares. 
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5) Display the results of landslide monitoring analysis 

 Click   to display the results of landslide monitoring analysis. 
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