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Abstract

Landslides are one of the most commonly occurring natural disasters that can cause a
serious threat to human life and society, in addition to significant economic loss.
Investigation and monitoring of landslides are important tasks in geotechnical
engineering in order to mitigate the hazards created by such phenomena. However,
current geomatics approaches used for precise landslide monitoring are largely
inappropriate for initial assessment by an engineer over small areas due to the labour-
intensive and costly methods often adopted. Therefore, the development of a cost-
effective landslide monitoring system for real-time on-site investigation is essential to aid

initial geotechnical interpretation and assessment.

In this research, close-range photogrammetric techniques using imagery from a mobile
device camera (e.g. a modern smartphone) were investigated as a low-cost, non-contact
monitoring approach to on-site landslide investigation. The developed system was
implemented on a mobile platform with cloud computing technology to enable the
potential for real-time processing. The system comprised the front-end service of a mobile
application controlled by the operator and a back-end service employed for
photogrammetric measurement and landslide monitoring analysis. In terms of the back-
end service, Structure-from-Motion (SfM) photogrammetry was implemented to provide
fully-automated processing to offer user-friendliness to non-experts. This was integrated
with developed functions that were used to enhance the processing performance and
deliver appropriate photogrammetric results for assessing landslide deformations. In
order to implement this system with a real-time response, the cloud-based system required
data transfer using Internet services via a modern 4G/5G network. Furthermore, the
relationship between the number of images and image size was investigated to optimize

data processing.

The potential of the developed system for monitoring landslides was investigated at two
different real-world UK sites, comprising a natural earth-flow landslide and coastal cliff
erosion. These investigations demonstrated that the cloud-based photogrammetric
measurement system was capable of providing three-dimensional results to sub-
decimeter-level accuracy. The results of the initial assessments for on-site investigation
could be effectively presented on the mobile device through visualisation and/or

statistical quantification of the landslide changes at a local-scale.
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Chapter 1. Introduction

1.1 Overview

Landslides are generally found to be one of the most common environmental disasters
occurring in natural terrain and man-made slopes (Davies, 2015). Landslides can have a
disastrous effect on infrastructure, buildings and facilities, causing a serious threat to
human life, economic loss, and society (Lee and Jones, 2004; Regmi et al., 2015). The
assessment and monitoring of landslide hazards therefore plays an important role in the
mitigation of damage to humans, society and the environment (Koizumi et al., 2013).
Furthermore, the development of landslide monitoring systems may also help to enhance
understanding of landslide behaviour. Thus, the investigation of landslide hazards should
be undertaken appropriately and regularly. In particular, the monitoring and inspection in
early-stage ground movements are essential for reducing the risk of landslides (Sassa et
al., 2007). For example, the investigation of landslide movements by geologists and
geotechnical engineers adopts different approaches ranging from simple, traditional
methods to professional technologies, depending on the monitoring purposes and
financial costs. However, current geomatics approaches used for precise landslide
monitoring are somewhat inappropriate for initial assessment by an engineer over small
areas due to the labour-intensive and costly methods often adopted (Niethammer et al.,
2012). Therefore, the development of a cost-effective landslide monitoring system for
real-time on-site investigation is desirable in order to aid initial geotechnical

interpretation and assessment of landslide phenomena.



With regard to using conventional geomatics approaches for ground-based landslide
monitoring, the following problems are identified in their adoption for initial on-site

assessment:

1. High financial-cost of equipment and maintenance for surveying (Travelletti et
al., 2012);

2. Non-friendliness in operations (Piermattei ef al., 2015);

3. Requirement for data processing and analysis by experts (Teza et al., 2007);

4. Difficulties in managing and processing of data in the field (James and Robson,
2012);

Due to the increasing development of mobile device technology, high-resolution digital
cameras can be employed to potentially offer a cost-effective photogrammetric solution
(Wang, 2013). In particular, close-range photogrammetric techniques using images from
a mobile device camera (e.g. a modern smartphone) is proposed for a low-cost, non-
contact monitoring approach in terms of implementation, operation and equipment for
landslide investigation. Furthermore, the development of the Internet of things (IoT),
including Internet services and cloud computing technology, plays an increasingly
important role in implementing and deploying near-real-time processing in
geoinformatics applications on mobile platforms (Lee and Kang, 2013). Such
developments could lead to a low-cost, real-time photogrammetric solution for in-situ

landslide monitoring using a mobile device.

This research therefore focuses on exploiting modern smart phone technology to develop
a photogrammetric measurement system for real-time monitoring of landslides. The
development of the mobile platform-based photogrammetric services is implemented
using cloud-based computing technology to offer the potential for the development of a
real-time on-site measurement system. The study involves analytical processes in order
to obtain temporal change information for landslides. The developed functionality of the
system is utilised to facilitate the photogrammetric processing and landslide monitoring
analysis through a mobile application for non-experts. Validation is performed at two

existing test sites to prove the efficiency of the developed system.



1.2 Research problem and background of landslide monitoring

1.2.1 Definition and potential problems

Landslide monitoring involves the acquisition of information on an unstable slope and
the utilization of the observations to assess its condition and the active processes that
might result in failure of the slope. The development of landslide monitoring is essential
to retrieve critical information underlying slope failure. However, landslides are usually
associated with various natural phenomena and are complex. To minimise the impact of
potential landslide hazards through monitoring, it is essential to study the behaviour and
destructive intensity of a landslide, which is mainly related to kinetic parameters such as

velocity and acceleration.

Landslide instrumentation and monitoring have been increasingly developed based on
both geotechnical/geophysical and geomatics techniques (Kapeller et al., 2013).
However, each method of landslide monitoring has inherent advantages and
disadvantages that should be considered to develop an appropriate landslide monitoring
system for on-site investigation. In particular, both geotechnical and geophysical
investigations are well-established and offer effective acquisition of sub-surface
information (Uhlemann et al., 2016). However, despite being suitable for landslide
monitoring, limitations include the discrete character of observations and restricted
spatial coverage. Furthermore, the establishment of geotechnical and geophysical
monitoring systems can be labour-intensive, invasive and not always cost-effective

(Miller et al., 2012).

In landslide risk assessment, surface observations using geomatics techniques can play
an important role in providing topographic information for landslide monitoring.
However, the applicability of geomatics techniques in ground-based landslide monitoring
has its own limitations, especially the high financial costs traditionally associated with
instrumentation, operation and maintenance. Moreover, processing in the field is difficult
to manage, and therefore these techniques are generally not suitable for real-time, on-site
investigations of landslide monitoring. To reduce the risk of landslide hazards, the
development of an appropriate monitoring system for real-time, on-site investigation is

important to help initial geotechnical interpretation and assessment.



1.2.2 Motivation for study

In terms of landslide monitoring applications, most ground-based geomatics approaches
are primarily targeted at highly precise measurement. Due to the often labour-intensive,
time-consuming and costly methods adopted, these approaches are inappropriate for the

initial assessment of on-site investigations, especially in the case of small landslides.

Considering the destructive impacts of landslide hazards, the monitoring of small areas
should be undertaken appropriately and regularly. For the initial assessment of landslide
processes, a close-range photogrammetric technique can be used for landslide monitoring
as it is a lower cost approach in terms of implementation, operation and equipment
(Travelletti et al., 2012). The huge demand for spatial information on the kinematics of
landslides in order to be used for the assessment of landslide processes in real-time is
noticeably increasing. However, the adoption of a close-range photogrammetric system
for on-site investigation is still difficult because it necessitates management of a large

amount of data in real-time.

The development of advanced technologies in recent years have become more important
for data acquisition in landslide monitoring applications. Mobile devices can now be
employed to provide information from the field because they have many useful sensors
for in-situ observations. Thus, this research attempts to develop a cost-effective
photogrammetric measurement system for a real-time, in-situ landslide monitoring based

on a mobile device platform.

1.3 Aim and objectives

This research aims to exploit mobile device and other modern information and
communication technology (ICT) in order to develop a photogrammetric measurement
and monitoring solution for real-time slope stability hazard analysis. To achieve this aim,

the objectives of the research are:

1. To investigate the potential of commonly used approaches and technologies in
landslide monitoring and to propose the basic requirements of a low-cost
photogrammetric solution for initial landslide assessment during on-site investigations by

non-photogrammetrists;



2. Building on objective 1, to develop the mobile platform-based photogrammetric
services associated with cloud-based computing technology for the provision of real-time

slope monitoring information;

3. To exploit the photogrammetric results by developing appropriate functionality to

assess landslide temporal change directly using a mobile device;

4. To ensure the accuracy and reliability of the results and the capabilities of the low cost
sensors found on common mobile devices for landslide monitoring applications by

validating the developed system at real-world test sites;

1.4 Research scope

System development of an in-situ landslide monitoring was based on a low-cost solution
in terms of implementation and operation. System implementation has therefore utilised
only off-the-shelf software and tools. Firstly, close-range photogrammetry has offered a
flexible, low-cost approach to monitoring. Secondly, affordable mobile devices (such as
tablets, smart phones) with built-in digital cameras provided a cost-effective instrument
for image acquisition. The user can also employ the operation of the system through this
mobile device. Thirdly, the low-cost photogrammetric processing solution was based only
on free-software. Furthermore, the development of the system has been implemented with
other free or open source software packages, such as that for camera calibration and point
cloud processing. Finally, the use of cloud-computing services, such as the cloud-based

server, cloud storage, etc., were implemented to facilitate development.



1.5 Thesis structure

Chapter 1 has provided an overview of the thesis and presented the aim and objectives of

this research.

Chapter 2 reviews the background of landslide hazards and reviews the capability of
different approaches for landslide monitoring, which subsequently informs the design and

development of a low-cost, real-time landslide monitoring system.

Chapter 3 presents the close-range photogrammetric methodologies adopted for on-site
investigation of landslide hazard analysis. The details of the development and
implementation of a mobile platform-based landslide monitoring system are reported in

this chapter.

Chapter 4 reports the inspection of the system developed on the cloud and performance
evaluation of functions employed for improved photogrammetric processing and

landslide monitoring analysis.

Chapter 5 involves the real-world testing and assessment of the developed system by

monitoring at existing sites comprising different types of landslide hazard.

Chapter 6 discusses the suitability of the system adopted for in-situ landslide monitoring

based on the findings, which are reported in Chapters 4 and 5.

Chapter 7 summarises the studies undertaken and presents the contributions and potential

future work in this research.



Chapter 2. Techniques for landslide monitoring

2.1 Introduction

Advanced technologies have been developed in various ways in recent years for
application to the monitoring and inspection of landslide hazards. The capability of each
technique for landslide monitoring is discussed in this chapter. Taking into consideration
measurement methods in the investigation of landslide hazards, the results of a review of
these approaches is utilised for the design and development of a low-cost, real-time

landslide monitoring system in this research.

2.2 Landslide hazards and landslide monitoring

Climate change is a global issue and is one of the leading factors influencing natural
disasters (Datar ef al., 2013). At present, natural disasters are also increasing in terms of
frequency, complexity and destructive capacity (Sassa et al., 2007). Climate change also
leads to many types of severe natural disaster, such as floods, drought, heavy storms,
earthquakes and landslides. Among the many forms of natural disaster, landslides are one
of the most common, causing a serious threat to human life and economic losses to
society. Therefore, reducing the risk of landslides is an important consideration in

preparing capability for disaster mitigation.



A landslide is defined as “the movement of rock, debris or earth down a slope” (Lee and
Jones, 2004). Occurrences of landslides usually result from both internal and external
factors which can cause changes in their physical mechanisms. External factors
influencing the stability of slopes are mainly triggered by rainfall or earthquakes, whereas
sub-surface conditions of physical components and ground water levels are the primary
internal factors (Scaioni, 2015). However, landslides are associated with various natural
phenomena and are highly complex. To minimise the impact of landslide hazards through
monitoring, it is essential to study the behaviour and destructive intensity of a landslide,

which is mainly related to kinetic parameters such as velocity and acceleration.

Typically, landslide occurrences can cause a variety of behaviour. Landslides are usually
classified in terms of both movement and materials. The type of material involved is
described by the addition of an adjective in front of the landslide category, while landslide
movement can be classified in terms of the displacement rate of material, as indicated in

Table 2-1. Descriptions of each landslide type are shown in Table 2-2.

Table 2-1: Types of landslide in different velocity classes (Cruden and Lan, 2015).

Class | Movement rate Velocity
7 Extremely rapid >5 m/sec
6 Very rapid 3 m/min
5 Rapid 1.8 m/hr
4 Moderate 3 m/week
3 Slow 1.6 m/year
2 Very slow 16 mm/year
1 Extremely slow <16 mm/year

Table 2-2: Types of landslide activity (Cruden and Lan, 2015).

State of Style of Rate of .

activity ac}t]ivity movement Material Type
Preparatory | Complex Extremely rapid Rock Fall
Marginal Composite | Very rapid Soil: | Debris Topple
Active Multiple Rapid Earth Slide
Reactivated | Successive | Moderate Sand Spread
Suspended | Single Slow Silt Flow
Inactive Very slow Clay




The deformation monitoring of an active landslide can help to display a general failure
and movement (Figure 2-1). Due to pre-failure movement in landslides, the monitoring
of small displacements can help in reducing the risk of damage from a landslide occurring

(Lee and Jones, 2004).
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Figure 2-1: Illustration of slope movement in the pre-failure stage (Sassa et al., 2007).

Both the behaviour and type of landslides are taken into consideration in the design of
landslide monitoring systems and to represent the limitations of each monitoring
approach. The design of an appropriate landslide monitoring system is related to four

factors (Travelletti et al., 2012) :

e Landslide type and size;
e The range of observed velocity;
e The required frequency of data acquisition;

e The desired accuracy and the financial constraints;

Landslide instrumentation and monitoring are generally developed based on both
geotechnical/geophysical techniques and geomatics techniques (Kapeller et al., 2013).
However, each method of landslide monitoring has both advantages and disadvantages.
In order to develop an appropriate landslide monitoring system for on-site investigation,

a review of landslide monitoring techniques based on different approaches is presented.



2.2.1 Geotechnical and geophysical techniques

Fundamental knowledge of both geology and geotechnics is essential in being able to
explain the first steps of landslide activity (Intrieri et al., 2012). In-depth studies of
landslide processes also benefit from such an understanding in order to identify the critical
conditions of slope instability. The development of landslide monitoring is based on
geotechnical and geophysical approaches to retrieve critical information underlying slope
failure. At present, many geotechnical and geophysical techniques may be used, ranging
from simple, traditional methods such as extensometers, inclinometers or tiltmeters,
piezometers and pore pressure sensors to professional landslide monitoring sensors which
utilise electrical resistivity tomography (ERT). The main techniques used in both

geological and geotechnical engineering are reviewed in this section.

2.2.1.1 Extensometers

Extensometers are one of the classical instruments used for in-situ landslide investigation,
and are commonly employed to measure the displacement of ground surface or vertical
movement in the ground between fixed points along the sliding direction. Extensometers
are installed according to the type of measurement point required: 1) an opening measured
on the landslide surface; or 2) in a borehole to detect changes in shear surfaces at depth,

as shown in Figure 2-2 and Figure 2-3.
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Figure 2-2: Illustration of opening wire extensometers (Zhang et al., 2018).
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Figure 2-3: Illustration of extensometer in a borehole: a) device components; and b)
stages in the changed positions of a wire extensometer used for the investigation of
landslide displacements (Corominas et al., 2000).

In addition, in monitoring change associated with landslides, measurements are taken
with various types of extensometers, such as probe or magnet extensometers using
vibrating wire electronics, or fibre optics and rod extensometers using sliding rods. For
example, the assessment of large movements due to cracks over a landslide surface can
be observed by connecting simple wire-to-wire extensometers (Bandara et al., 2013). For
rock mass monitoring, as shown in Figure 2-4, conventional tape extensometers are
extensively used to detect large movements on the surface (Arosio et al., 2013; Devoto et
al., 2013; Stefani et al., 2013). However, before a slope failure, the installation of
instruments can interfere with the measurement of movements due to drilling and the

setting up of geotechnical tools (Tuan et al., 2013).

-

Figure 2-4: Illustration of a tape extensometer network for rock mass monitoring
(Devoto et al., 2013).
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Deformation monitoring may be affected by different weather conditions, such as
moisture and temperature level variations as a result of seasonal changes. However,
extensometers can provide reliable data when compared to other survey methods; for
example using laser distance measurement device. As shown in Figure 2-5, extensometers

can provide displacement data with little noise during the winter.

The assessment of landslide displacement and slope stability using extensometers can
deliver continuous monitoring. Moreover, extensometer sensors are usually employed in
early warning systems (Bandara et al., 2013). Although these conventional geotechnical
tools give highly reliable measurements in landslide monitoring, some uncertainty may
be caused by interaction between their electronic components including transducers and

digital converters (Intrieri et al., 2012).
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Figure 2-5: Comparison of landslide displacement data from distance measurement
devices and an extensometer (Kristensen and Blikra, 2013).

2.2.1.2 Inclinometers

Based on landslide monitoring sensors, conventional inclinometers are usually
instruments designed to measure horizontal deflections in the ground. Moreover, these
sensors reveal the precise depth of the slip plane or a multi-slip surface (Di Maio et al.,
2013). Figure 2-6 shows the installation of an inclinometer sensor in a borehole for ground
measurements. For inclinometer-based landslide monitoring, movement results can

reveal differences in cumulative displacement in two measuring planes (Figure 2-7).
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Figure 2-6: Measurement of horizontal displacements using an inclinometer (Segalini
and Carini, 2013).
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Figure 2-7: Comparison of differences in cumulative displacements in two directions
using an inclinometer (Milenkovic et al., 2013).

Typically, the displacement rates and the depth of shear surfaces are determined using
time-series data from an inclinometer sensor. For automated monitoring of sub-surface
deformations, the installation of inclinometers in a borehole is usually more complicated
and expensive than with extensometers due to the high-cost of the inclinometer sensor.
Moreover, unreliability of the mechanical system is often related to casing deformation
(Segalini and Carini, 2013). Therefore, inclinometers can often provide only low spatial

resolution information concerning sub-surface deformations surrounding a borehole

(Uhlemann et al., 2016).



2.2.1.3 Piezometers and pore pressure sensors

For ground water monitoring, piezometers and pore pressure sensors are generally used
to measure water levels and pore-water pressure in a borehole. These sensors can also
provide essential information in order to predict slope stability due to the relationship of
soil water-saturation in landslide monitoring. To acquire hydrological data for landslide
monitoring, the piezometer technique can help to reveal significant seasonal changes
related to shorter-term variations in ground water levels, as shown in Figure 2-8. In a
subsurface investigation using piezometers, Wasowski et al. (2013) identified that short-
term rainfall events are found to be among the main factors associated with shallow

landslide occurrences.
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Figure 2-8: Comparison of the relationship between rainfall and piezometric level
(Wasowski et al., 2013).

2.2.1.4 Electrical resistivity tomography (ERT)

ERT is a geoelectrical ground imaging technique used in professional landslide
monitoring sensors to study landslide structure and the process of slope failure (Chambers
et al.,2013). In particular, geophysical measurements based on the ERT method are used
to study the depths of sliding surfaces and water zones in the ground through observation
of resistivity data (Reci et al., 2013). ERT monitoring can also provide highly precise
data on the mechanisms of sub-surface deformations for 3D modelling investigations of

landslides (Figure 2-9 (b)).
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Figure 2-9: Illustrations of (a) the locations of installation for ERT landslide monitoring,
and (b) 3D model of landslide obtained from ERT monitoring (Chambers ef al., 2013).

However, this approach sometimes requires the installation of ERT monitoring arrays on
hard material, as per Figure 2-9 (a), with a layout of electric cables and electrodes (Furuya
et al., 2013). Although ERT monitoring is more suitable for studying the processes of
landslides over time, in the case of active landslide monitoring the movement of
electrodes can misrepresent the changes in resistivity in the subsurface. Consequently,
3D landslide models need to be calibrated with time-lapse resistivity data (Wilkinson et
al., 2010). In-situ observations using the ERT method can also be applied to provide
motion data for near-real-time landslide monitoring (Chambers et al., 2013). Therefore,
electrical resistivity surveys are used to provide subsurface information in landslide

monitoring.

2.2.1.5 Additional instruments

Tilt meters or sensors can be used to monitor the displacement of slopes, and are similar
to geotechnical approaches using extensometers. However, the installation of a tilt sensor
is simpler because no long wires are required. Moreover, the maintenance costs are also
low (Uchimura et al., 2013). Typically, tilt sensors can also be integrated with other

sensors, such as volumetric water content sensors, as shown in Figure 2-10.
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Figure 2-10: Illustration of tilt and water content sensors implemented in a wireless unit
(Uchimura et al., 2013).

Landslide movements are often triggered by rainfall. In particular, heavy rainfall events
have a direct effect on increasing the volumetric water content in the ground. In simple
rainfall-induced landslides, rainfall gauges are used for the direct measurement of rainfall
in landslide monitoring. Also, thermometers are used to observe the weather conditions

around landslide areas, as shown in Figure 2-11.

Figure 2-11: Example of a weather station, including rainfall gauge and thermometer
(Bednarczyk, 2013).



In conclusion, geotechnical and geophysical landslide monitoring involving both
conventional techniques such as extensometers, inclinometers and piezometers and recent
developments including ERT monitoring can provide efficient, accurate and useful
information for in-situ investigations of slope stability. In particular, both geotechnical
and geophysical investigations are well-established and offer effective acquisition of sub-
surface information (Uhlemann et al, 2016). However, despite being suitable for
landslide monitoring, limitations include the discrete character of observations and
restricted spatial coverage. The establishment of geotechnical and geophysical
monitoring systems can also be labour-intensive, invasive and not always cost-effective
(Miller et al., 2012). Consequently, the installation of such systems is often more suitable
once a landslide is known to exist (Perrone et al., 2014), and these monitoring systems
are also recommended for at-risk hillsides (Kapeller et al., 2013). Therefore, geotechnical
and geophysical investigations with additional instruments such as rainfall gauges and
thermometers are more suitable for the implementation of landslide early warning

systems (Intrieri et al., 2012).

2.2.2 Geomatics techniques

Geomatics technologies have been extensively used for the acquisition of geospatial data
for various earth science applications in the last few decades. Geomatics techniques which
can be used to measure surface movements in landslides include global navigation
satellite systems (GNSS), satellite remote sensing, light detection and ranging (lidar)
technology and photogrammetry. Geomatics techniques can be sub-divided in many
ways, but can be generally split into two main groups for the purposes of landslide
monitoring: airborne/space-borne and ground-based approaches. Both can be used to
investigate the kinetics of landslides, consisting of ground movements and displacement
rates. For the study of landslide processes, sub-surface changes often only reveal
themselves through surface expressions of movement, where surface deformations will
often reveal underlying patterns of slope failure (Miller ef al, 2008). Although
geotechnical and geophysical techniques can provide highly accurate subsurface
information in landslide monitoring, surface observations using geomatics techniques can
play an important role in low-cost monitoring for landslide assessment. Thus, a brief

overview of geomatics techniques based on airborne/space-borne and ground-based



approaches is presented to inform the appropriate solution for subsequent development

of a landslide monitoring system.

In terms of space- and airborne-based landslide monitoring approaches, these remote
sensing techniques are widely used for data acquisition from multiple altitudes and
platforms. Geospatial data can be collected using remote sensing techniques such as
satellite observations, synthetic aperture radar (SAR), lidar, aerial photogrammetry or
unmanned aerial vehicle (UAV) platforms. Each approach may provide different details
of spatial information, depending on the level of altitude for observation (Lillesand e? al.,
2008). Thus, each remote sensing technique should be considered to investigate its

potential in landslide monitoring.

Based on the observations from high altitudes, modern satellite remote sensing can be
used to identify landslides over large areas (Behling ef al., 2014). In general, satellite
approaches are based on two types of imaging system, which include optical sensors or
passive sensing, and microwave or active sensing. Earth observation from satellites such
as Landsat and SPOT can deliver multispectral image data that can be analysed and
interpreted as geographical information for landslide monitoring. Then, a historical
landslide inventory can be carried out using multi-temporal analysis of geographical
information collected at different times, as shown in Figure 2-12. Historical landslide
inventories also have many benefits in landslide risk assessment and disaster management

(van Westen et al., 2013).
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Figure 2-12: Example of a historical landslide inventory obtained from multi-temporal
remote sensing (Martha et al., 2012).
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Remote sensing using spaceborne radar is an active, day-or-night imaging system which
can penetrate the atmosphere and is not influenced by solar illumination for data
acquisition. A popular Radar imaging technique for surface monitoring in geoscience
applications is SAR interferometry (InNSAR). However, data processing and analysis of
phase difference information using the InSAR method for measuring precise landslide
displacements is complex for non-experts (Lillesand et al., 2008). Moreover, InSAR-
based landslide monitoring is more suitable for the inspection of slow-moving landslides

over large areas, as shown in Figure 2-13 (Zhang et al., 2015).
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Figure 2-13: Comparison of landslide monitoring for deformation velocities using SAR
satellites from: (a) ALOS/PALSAR data; and (b) ENVISAT/ASAR ascending data
(Zhang et al., 2015).

In terms of airborne-based landslide monitoring, aerial photogrammetry can deliver aerial
imagery and derived digital elevation model (DEM) from analytical stereoplotters and
digital photogrammetric workstations (DPWs). Orthophoto mapping can be produced by
ortho-rectifying imagery using a DEM. Meanwhile airborne laser scanning (ALS) can
directly measure the earth’s surface using lidar and GNSS technology to provide high-
accuracy and high-resolution 3D geospatial data in the form of a digital terrain model
(DTM). This useful geospatial information is often used for landslide detection, and the
historic deformation of landslides can be investigated using a multi-temporal approach.
Although both methods can quickly produce mapping for landslide monitoring over large
areas, the costs of surveying in this way are usually high. Moreover, the detection of
deformation does not allow the inspection of small landslide features because of the

inability to monitor landslides at lower spatial scales (Piermattei et al., 2015).



In addition, topographic complexity creates occlusions in aerial photogrammetric
approaches for assessing landslide deformations, especially over mountainous areas due
to large elevation differences and rough surfaces (Kéib, 2002). As a result of this, the
challenge of generating precise DEMs for small areas in order to quantify change created
by landslides can be problematic (Micheletti ef al., 2015b). Due to uncertainties in DEM
generation, topographic data over complex surfaces may be degraded by optical
variations in photogrammetric approaches, especially when image quality is inadequate
for processing (Lim et al., 2005). In the case of the coastal cliff monitoring, there might
be problems with the application of aerial photogrammetry and airborne laser scanning.
For example, these approaches may be unsuitable for near-vertical slope monitoring
because they cannot deliver sufficient surface information of a coastal cliff for change

detection due to shadowing (Rosser et al., 2005).

Compared to landslide monitoring with lower altitude data, small UAVs can be deployed
to apply photogrammetric or lidar approaches, which have been increasingly utilised for
data acquisition in recent years due to the cost-effectiveness of the method and the ability
to provide highly accurate high-resolution geospatial data (Niethammer ef al., 2012). In
general, data collection based on UAV platforms can prove more convenient and flexible
than satellite and airborne platforms for observation when studying landslide processes
(Lucieer et al., 2014). A mini-UAV system typically comprises a multi-rotor or a fixed-
wing UAV installed with an off-the-shelf or consumer-grade digital camera and on-board
GNSS. However, a lightweight system is important in order to limit the power
consumption of a mini-UAYV platform. The main limitation of mini-UAV surveying is the
fact that weather conditions such as strong (or even moderate) gusts of wind, fog or mist
may affect the flight during observation. Consequently, it is difficult to control the quality
of image data acquired (Peppa et al, 2016). Also, the use of blurred images in
photogrammetric measurement may lead to vertical deformations in 3D reconstructions

(James and Robson, 2012).

Typically, remote-sensing datasets can be principally used to investigate surface
displacements associated with landslides (Travelletti et al., 2012). In particular, landslide
inventory mapping and landslide susceptibility analysis can be conducted using
geospatial information gathered using remote-sensing techniques. The main advantage of

remote sensing for landslide monitoring is that it is less labour-intensive than
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conventional geotechnical or geophysical techniques. However, traditional airborne- and
satellite-based remote sensing approaches are generally more suitable for landslide
detection over large areas (Niethammer et al., 2012). If such approaches are used for
small area monitoring, data need to be collected frequently, which results in high expense.
Moreover, real-time data processing is difficult to manage, and therefore these techniques

are generally not suitable for on-site investigations of landslide monitoring.

Although high-magnitude landslides may be catastrophic for human life and
communities, small- and medium-magnitude landslides occur more frequently than high-
magnitude landslides (Lee and Jones, 2004). Consequently, they result in severe impacts,
especially in terms of economic loss. Considering these destructive impacts, landslide
monitoring for small areas should be undertaken appropriately and regularly. There are
many geomatics techniques which utilise ground-based platforms suitable for the
investigation of small landslide displacements and features, such as total stations, GNSS,
terrestrial laser scanning (TLS), ground-based synthetic aperture radar (GBSAR) and
close-range photogrammetry. The following sections explain the most commonly used
ground-based landslide monitoring techniques that may be used to find an appropriate

solution for on-site investigation.

2.2.2.1 Total stations

Total stations are mostly used in surveying and civil engineering because they can provide
direct measurements with high precision in terms of both angles and distances (Uren and
Price, 2010). In a topographic survey for geoscience applications, landslide displacement
and monitoring can be traditionally undertaken using total stations. The total station can
be used for measuring three-dimensional coordinates derived from angle and distance
measurements. At present, some models of total station, such as robotic total stations, can
be automatically or remotely controlled in order to provide more convenient and
automated measurement. Typically, electronic distance measurements using a total
station requires reflectors or reflecting prisms that are permanently established at

observation locations to detect landslide movements, as shown in Figure 2-14.
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Figure 2-14: (a) A total station used for (b) rock mass monitoring at Cadireta; and (c)
the installation of reflecting prisms on rock needles (Janeras et al., 2017).

In reflectorless measurements, some models of total station can make distance
measurements without using reflectors or prisms. The advantage of reflectorless mode is
that it can be used for the measurement of points that are inaccessible or dangerous.
However, although a reflector is not required for distance measurements when operating
in reflectorless mode, it is inevitable that some form of target needs to be used for
observing landslide displacement from point to point over time (Figure 2-15). For
instance, the changes of the target locations mounted on the tops of houses can be
measured by a total station to assess landslide movements for investigating slope stability

(Figure 2-16).

Figure 2-15: (a) A total station and (b) the establishment of targets for landslide
movement monitoring in slope areas (Sarkar ef al., 2013).
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Figure 2-16: Time-series landslide movements of targets measured by total station: (a)
horizontal movements; (b) vertical movements (Sarkar et al., 2013).

Although the conventional geodetic method using total stations can provide highly
accurate instantaneous measurements of landslide movements, the accuracy of
measurement might be affected by the environmental conditions between the total station
and the target. In particular, for long-range observations, the accuracy of measurement
decreases significantly due to atmospheric problems and the capability of the instrument.
Moreover, if a more precise total station is required for landslide monitoring, the costs of

instrumentation increases and can become prohibitive (Uren and Price, 2010).

2.2.2.2 Global Navigation Satellite System (GNSS)

For acquisition of geospatial information used in landslide monitoring, GNSS or global
positioning system (GPS) technology can be used to locate landslide features. In general,
for any measurement point, a modern GNSS surveying receiver can calculate the three-
dimensional coordinates equivalent in precision to those taken by a total station.
However, the accuracy of location measurement based on GNSS depends on the survey
methods adopted and GNSS equipment used (Uren and Price, 2010). Typically, the
differential GNSS method is extensively used for highly precise location measurements,
and the positions of a GNSS receiver can be used to measure landslide movements at
different times (Figure 2-17). For example, the permanent monitoring of the Villerville

landslide in Normandy, France, using GNSS measurements is illustrated in Figure 2-18.
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Figure 2-17: GNSS in the detection of landslide movements: (a) GNSS-base station;
and (b) GNSS-moving station (Malet et al., 2013).
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Figure 2-18: Monitoring of the Villerville landslide in France using GNSS observations
(Malet et al., 2013).
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Compared with landslide monitoring using a total station, the observation data obtained
from GNSS measurements can be collected immediately, and then transferred
automatically. In an in-situ landslide investigation, a data logging system can be utilised
in near real-time GNSS measurement for data collection and transfer without human
interaction. This technique can also offer the potential for the detection of landslide
movements in an early warning system (Intrieri et al., 2012). However, the method of
GNSS measurement is more complicated due to the need for the processing and analysis

of GNSS signals, and therefore experts are required to process location measurements.

In conclusion, conventional geomatics methods for landslide monitoring using total
stations and GNSS measurements can provide highly precise 3D absolute coordinates that
are suitable for long-range surveying. However, the main drawback of these techniques
is that they provide only discrete point measurements of landslide displacement. In
addition, the targets and instruments often need to be installed in landslide areas.
Therefore, total stations and GNSS are frequently based on contact monitoring techniques

which only provide low spatial coverage for landslide detection (Piermattei et al., 2015).

2.2.2.3 Terrestrial laser scanning (TLS)

The TLS technique utilises lidar technology to capture data from object surfaces via
ground-based observation, which can generate 3D point clouds of continuous surfaces.
The application of TLS survey is widely used in earth sciences, particularly in terms of
monitoring changes in geomorphic surfaces in natural environments. In particular, TLS
can deliver highly accurate, high-resolution point clouds which can be extremely valuable
in detailed landslide assessment (Scaioni, 2015). For instance, TLS surveys have been
used to provide point clouds at different times, as shown in Figure 2-19, and the
monitoring of landslide deformations has been carried out using multi-temporal DTM

analysis, as illustrated in Figure 2-20.
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Figure 2-19: Illustrations of (1) point clouds from a TLS survey, (2) a DTM derived
from the point cloud (Denora et al., 2013).

Figure 2-20: Illustration of different DTMs used for monitoring the Montaguto landslide
in Campania, Italy (Denora et al., 2013).

Compared to other optical methods, an advantage of using TLS is that it can be operated
during the day or night without the need for illumination because laser light is used to
measure distances, in an active remote sensing technique (Lillesand et al, 2008).
However, the main drawback of TLS equipment is that it is costly and generally requires
expertise in operation. For field surveys, the TLS equipment might also be too heavy,

which can result in transport or logistical difficulties (Piermattei et al., 2015).
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When monitoring landslides in complex terrain using TLS, collection times can be
relatively slow, particularly if data must be collected from multiple locations to ensure
full coverage of the area, as shown in Figure 2-21. Ground control points and reflector
targets are often required for geo-referencing and registration to combine each point
cloud. Consequently, data processing may be complicated for non-experts. Furthermore,
gaps in the data can occur in landslide areas due to the oblique perspective from ground-
based observation, and terrain occlusions in the line-of-sight (Teza et al., 2007). In the
case of the coastal cliff monitoring, the use of terrestrial laser scanning often generates
gross errors at the edges of scans due to the relief displacement of terrain along the line-
of-sight scanning (Lim et al., 2005). Although TLS surveys are used to deliver high-
resolution point clouds for the assessment of landslide movements, reductions in the
number of points may be required to facilitate the capability of software and computer

for data processing (Palenzuela ef al., 2013).
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Figure 2-21: Illustration of point clouds from different TLS locations (Kuhn and Priifer,
2014).
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2.2.2.4 Ground-based synthetic aperture radar (GBSAR)

GBSAR utilises the radar interferometric technique to measure displacements in
deformation monitoring, which plays an important role in the detection of surface changes
for geoscience applications such as the study of landslides, glaciers and snow (Monserrat
et al., 2014). In particular, GBSAR has been increasingly applied in the last decade for
landslide monitoring of, for example, earth-flows and rockslides (Agliardi et al., 2013)
and coastal cliff erosion (Mazzanti et al., 2015). The application of this technique can
deliver time-series data useful in the detection of landslide deformation. Furthermore,

GBSAR can be installed for in-situ investigation to measure surfaces (Figure 2-22).

(a) landslides
t= 06.05.2013
towards W&) At =6.25 h (@ 3 min)
0 Vo 35cmiday R=3.1-38km
Continuous campaign
(b) rock
deformation

towards sensor-»
dos HE =mme W
-4 0

4 mm
S t=3.3-28.2010 At = 152 days
e R = ~400m Repeat campaign

Figure 2-22: The use of GBSAR for measuring: (a) landslide movements; and (b) rock
deformation (Caduff et al., 2015).
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Based on it being a technique using an active sensor for measurements, GBSAR is similar
to TLS in that it can be operated during the day or night and in any weather conditions
(Antolini et al., 2013). GBSAR provides measurements of landslides displacements over
large areas, but these observations must be corrected for topography, necessitating the
collection of further reference data such as from TLS or photogrammetry (Bardi et al.,
2014; Caduff and Rieke-Zapp, 2014). Moreover, atmospheric effects can affect the
quality of measurements (Bozzano et al., 2011). Consequently, GBSAR is only suitable
for application by expert users. It is also costly, and requires significant post-processing

to derive meaningful deformation measurements, as shown in Figure 2-23.

2D Polar radar geometry 2D Map geometry

T = 3 T T

2D Image geometry
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Figure 2-23: Illustration of processes for visualization of terrestrial radar data from
GBSAR (Caduff et al., 2015).

2.2.2.5 Close-range photogrammetry

Close-range photogrammetry is a non-contact measurement technique which
encompasses various methods of image measurement in order to derive the position of an
object from photographs, where the imaging distance is typically less than 300 meters
(Luhmann et al., 2006). Ground-based photogrammetric monitoring can be used in

geoscience applications such as the study of earth-flows or landslides, gully erosion,
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coastal erosion and glacial processes (Eltner et al., 2016). In particular, photogrammetric
approaches have been extensively used for landslide monitoring, as shown in Figure 2-

24 (Akca, 2013; Stumpf et al., 2015).

Close-range photogrammetric techniques can also be used to acquire geospatial
information in landslide monitoring, and yield photogrammetric outputs which are useful
for the quantitative interpretation and analysis of landslides (Figure 2-25). Classical
photogrammetric outputs typically involve DTM and orthophotography. Petley et al.
(2005) showed that the results from surface monitoring data might reveal patterns of
movement in a landslide, which is the basis of a monitoring system in order to mitigate
landslide hazards. Clearly, close-range photogrammetric techniques could provide a

measurement solution for landslide hazards.

(2) (b)

Figure 2-24: The Tartano valley landslides (Italy): (a) overview of landslide; (b)
configuration of photogrammetric imaging network used for landslide monitoring
(Scaioni, 2015).
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Figure 2-25: Assessment of landslide changes at the Super-Sauze landslide in the
southern French Alps using photogrammetry (Stumpf et al., 2015).

In comparison to other ground-based approaches, close-range photogrammetry can
provide high measurement precision, potentially from mm to a few cm at 100 m range,
and in this sense it is comparable to TLS and GBSAR. In addition, photogrammetry offers
instantaneous data capture. Consequently, the benefits of photogrammetry are the speed
of data acquisition and convenience in operation (Motta et al., 2013). Furthermore, the
costs associated with instrumentation and maintenance for the use of photogrammetric
surveys are considerably lower than those for TLS and GBSAR (Travelletti ez al., 2012).
Therefore, close-range photogrammetry can offer a cost-effective method for the

acquisition of geospatial information for the assessment of landslide processes.

In consideration of the execution cost for landslide monitoring systems, a
photogrammetric approach can offer a low-cost monitoring system by combining the use
of an inexpensive imaging device (e.g. a smartphone or a consumer-grade digital camera)
with an affordable personal computer and free-license software for data processing.
Meanwhile, landslide monitoring based on laser scanning, GNSS and GBSAR

approaches invariably use expensive and sophisticated instrument. For example, the price
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of a laser scanner or is usually more than £20,000 and GBSAR greater than £100,000.
Moreover, whilst continually falling in price, the instrumentation cost of highly precise
GNSS equipment is £10,000. In the case of photogrammetry, the cost of a modern
smartphone or consumer-grade digital camera is approximately £500 and an affordable
processing system is below £1,000. Evidently, the financial cost of standard
instrumentation for the conventional methods typically spend an order of magnitude

greater than the photogrammetric approach.

2.3 Summary

Investigation and monitoring of landslides are important tasks in geotechnical
engineering in order to mitigate hazards created by such phenomena. Many of the more
common geomatics, geotechnical and geophysical engineering approaches which have
been adopted for landslide investigation and monitoring have been discussed in this
chapter. Each approach has its advantages and disadvantages in generating measurements
of landslide movements that might be useful for the in-situ monitoring of landslides.
However, ground-based approaches are efficiently used for on-site investigations in
landslide monitoring systems. The characteristics of each geomatics approach, based on

a ground platform, for landslide monitoring are summarised in Table 2-3.

Table 2-3: Comparison of ground-based geomatics approaches for landslide monitoring
(adapted from: Wang, 2013).

Ground-based approaches
Ch teristi -
aracteristics To'Fal GNSS TLS GBSAR Close-range
station photogrammetry

Monitoring Non- Non- Non-
method contact Contact contact contact Non-contact
Instrument cost Medium High High High Low
Coverage areas Small Small Large Large Large
In monitoring
Spatial Point- Point- . . .
resolution based based High High High
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Although existing geomatics approaches are used for precise landslide monitoring, this
initial assessment of small landslide areas is inappropriate for on-site investigation due to
the often labour-intensive and costly methods used. Close-range photogrammetric
techniques can offer a flexible, cost-effective, non-contact monitoring approach to on-site
landslide investigation. In the next chapter, close-range photogrammetry, which is a
clearly attractive approach for the assessment of landslide processes, is utilised to develop
an appropriate monitoring system for real-time on-site investigation in order to aid initial

geotechnical interpretation and assessment.
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Chapter 3. A close-range photogrammetric
methodology for landslide monitoring

3.1 Introduction

A close-range photogrammetric approach has enormous potential for the acquisition of
geospatial information that is used for geoscience applications. In particular, the
assessment of landslide deformation can use photogrammetric results acquired at
different times. Important advantages of close-range photogrammetry, evident from
several reviews in the previous chapter, are that it offers the use of a low-cost approach
for efficient monitoring of landslide hazards. In this research, the development of a low-
cost monitoring system based on a mobile platform such as a smart phone is proposed.
Moreover, the basic photogrammetric processing based on the Structure-from-Motion
(SfM) technique can provide user-friendliness for non-experts due to the potential for
fully-automated data processing for 3D model reconstruction from images. Nevertheless,
the limitation of SfM-based photogrammetric processing with the relatively low-
performance processors adopted on mobile devices remains one of the main difficulties
at present. A photogrammetric measurement and monitoring system based on mobile
cloud computing technology can offer a potential solution to this, facilitating real-time
processing of on-site investigation for landslide hazards analysis. With photogrammetric
measurement and landslide monitoring on a mobile device, the development of a front-
end service for the operator can be obtained straightforwardly from the photogrammetric
results and landslide assessment. Moreover, improved functions for photogrammetric
processing have shown enormous potential for back-end services to enhance
photogrammetric results for landslide monitoring analysis. This chapter therefore reports
the methodologies adopted for the development and implementation of a mobile platform
based photogrammetric monitoring system for on-site investigation of landslide hazard

analysis.
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3.2 A photogrammetric solution for deformation measurement of landslides

Close-range photogrammetric techniques are believed to be suitable for adoption for
monitoring purposes, as reviewed in the previous chapter, because the approach can offer
a potentially low-cost solution in terms of implementation and operation. However, there
are many difficulties in using such an approach for on-site investigation. To develop an
effective close-range photogrammetric system for landslide monitoring there are

therefore some important issues to be considered, as follows (Scaioni, 2015):

e Imaging devices or sensors used;
e Photogrammetric configuration adopted;
e Photogrammetric processing method and software utilised;

e Landslide analysis methods employed;

Moreover, when using photogrammetric processing workflows for on-site investigation
of landslide monitoring, the developed system needs to manage and process a large

amount of information if a real-time response is required.

With regard to the above-mentioned issues, several topics related to the methodologies of

this research are explained in this chapter to achieve the objectives outlined in Chapter 1.

3.2.1 Imaging devices and sensors

A digital camera has an important role in image acquisition in any photogrammetric
application since image quality depends largely on the imaging sensors adopted.
Currently, there are many types of digital cameras being used for photogrammetric image
collection, including DSLR cameras, consumer-grade or compact cameras, and mobile
device cameras. For an optical sensor based on such digital cameras, a CCD (charge
coupled device) or CMOS (complementary metal oxide semiconductor) sensor is used to
record imagery instead of traditional film. The sensors are used to transform the natural
light from the observed objects into electronic signals. The majority of digital cameras on
mobile devices use a CMOS sensor with fixed focal length lens since this low-cost camera
needs to be tiny enough to support the device assembly. In contrast, other digital cameras

may use either CCD or CMOS as the adopted imaging sensor, usually with a higher
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quality lens when compared to that found on mobile devices. As a result, it is often the
case that mobile device camera provide lower quality imagery as a result of the adopted
lens and imaging sensor. Nevertheless, the resolution of cameras on mobile devices has
dramatically increased in recent years. One advantage of mobile devices with a high-
resolution digital camera (> 5 megapixels) is the acquired images can be readily used for

photogrammetric monitoring applications (Wang, 2013).

The smart phone camera tested for photogrammetric landslide monitoring in this research
was primarily the Nexus 6, with 13-megapixel sensor; this was due to the fact that it was
one of the state-of-the-art mobile device cameras at the outset of the research. To provide
a comparison against other smart phone cameras, an iPhone 4’s camera, with 5-megapixel
sensor, was also tested. The selection of this typical device was based on the basic
functionality of a regular smart phone at the time. A comparison of the technical

specification for the two smart phones utilised is outlined in Table 3-1.

Table 3-1: Comparison of technical specifications between the two adopted smart
phones: iPhone 4 and Nexus 6.

Characteristics iPhone 4 Nexus 6
Processer Apple A4, Krait 450,
800 MHz 2.7 GHz quad-core
RAM 512 MB 3GB
Image format 2592 x 1?36; 4160 x 3120;
5-megapixel 13-megapixel
Sensor size 4.0 x 3.0 mm 4.7 x 3.5 mm
Pixel size 1.5 pm 1.12 um
Lens maximum N/A 2.0
aperture
Shutter speed (sec) 1/15-1/1000 N/A
Output format JPEG JPEG

Comparing the developed methodology to conventional close-range photogrammetry
using a higher quality camera, such as a DSLR, was necessary to ensure the potential of
the photogrammetric approach for landslide monitoring. The DSLR camera tested was a
Nikon D300 fitted with an AF Nikkor 28 mm {/2.8D lens. The technical specification of
the DSLR camera and the 28 mm lens is outlined in Table 3-2.
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Table 3-2: Technical specifications of the Nikon D300 DSLR camera used in the

research.
Nikon D300 DSLR camera
Image format 4288 x 2848; 12.3-megapixel
Sensor size 23.6 x 15.8 mm
Pixel size 5.6 um
Shutter speed (sec) 1/8,000~30
Output format JPEG, TIFF and Raw
AF Nikkor 28mm f/2.8D lens
Focal length 28 mm
Aperture range prime 2.8 - 122
Format FX/35mm
Maximum Angle of View (DX-format) 53°
Maximum Angle of View (FX-format) 74°

All digital cameras mentioned above are non-metric cameras which were not primarily
designed for the purpose of photogrammetric measurement, so investigation into their
interior orientation is necessary. To achieve high-precision photogrammetric
measurement for landslide monitoring, and investigate the potential of affordable image-
based mobile technology, it was therefore necessary to examine the geometric

characteristics of all adopted cameras through the process of camera calibration.

3.2.2 Camera calibration

The purpose of camera calibration is to determine the geometric camera model described
by the parameters of interior orientation (e.g. focal length, image coordinates of principal
point, lens distortion and other additional parameters). There are many camera calibration
approaches, including laboratory, test field, plumb-line, on-the-job and self-calibration
(Luhmann et al., 2006). In particular, self-calibration is a basic method of camera
calibration based on the bundle adjustment technique (Fraser, 2013). Moreover,
automated self-calibration using a flat template or a grid is extensively used for camera
calibration in digital photogrammetry as this method of camera calibration is based on a
fully automatic procedure and offers user-friendliness for non-expert operators (Wang et
al., 2010). Calibration accuracy depends on the methods used in photogrammetric

measurement, the number of images and the quality of the convergent image network
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(Luhmann et al., 2016). In this research, automated camera self-calibration was adopted

based on three different available routines:

1) The close-range photogrammetric software PhotoModeler;

2) A camera calibration application for Matlab;

3) A camera calibration program developed using a Python script with OpenCV
library;

For the automated camera self-calibration method, a planar target field or chess board
template is used; PhotoModeler uses a calibration template with coded targets, as shown
in Figure 3-1(a), while Matlab and OpenCV use a calibration template in the form of a
chessboard, as shown in Figure 3-1(b). Both calibration templates were printed on AO

paper for the purposes of the reported exercises.

SRR
(a) (b)

Figure 3-1: Calibration template for (a) PhotoModeler, (b) Matlab and OpenCV.

The self-calibration method requires acquisition of many images of the same calibration
template from different viewing angles. Image capture covered all parts of the employed
flat templates and the height of the camera was approximately 1 m above the template.
Self-calibration was performed using twelve convergent images taken from three
different orientations of camera from four sides of the template. This photogrammetric

network configuration is illustrated in Figure 3-2.
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Figure 3-2: Photogrammetric configuration for camera calibration.

The parameters of interior orientation were calculated based on five repeated calibrations
in order to provide the most appropriate camera model and improve the reliability of
calibration results. However, the results from the three different approaches utilised
different units. The calibration results from PhotoModeler are shown in the unit of
millimetres (mm), whereas Matlab and OpenCV are shown in the unit of pixels. In order
to compare the calibration results from those software packages, the results from Matlab
and OpenCV were therefore required to be converted into mm. For the main parameters
of the camera model (e.g. focal length, principal point in x and y), the calibration results
in the unit of pixels can be converted into mm by simply multiplying by the pixel sensor
size (mm). On the other hand, some parameters (especially lens distortion and other
additional parameters from the different software) cannot be directly converted because

they use different units for the additional parameters.

Lens distortion can be separated into radial distortions and tangential distortions. Radial
distortions are caused by the shape of the lens that may not be perfect. Tangential
distortions result from the assembly process of the camera lens as a whole. The radial lens
distortions are modelled using Brown’s distortion model (Brown, 1971), as shown in

equation (3-1):

AT gq = K3 + Kpr'>+ Kar'7 + . (3-1)
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However, Carbonneau and Dietrich (2017) showed how these parameters can be

converted using equations (3-2) to (3-4).

K,(focal units ) = K, (pixel units) * f? (3-2)
K,(focal units ) = K,(pixel units) * f* (3-3)
K;(focal units ) = Kj(pixel units) = f© (3-4)

where f is the focal length in the unit of pixels. The resultant calibration results for each

determined parameter of the Nexus 6 are shown in Table 3.3.
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Table 3-3: Camera calibration results for the Nexus 6 smart phone camera using three different calibration routines.

Nexus 6
Parameter PhotoModeler MATLAB OpenCV
Mean o Mean c Mean c
Focal Length (mm) 3.798 0.004 3.783 0.005 3.773 N/A
Xp - principal point x (mm) 2.320 0.004 2.326 0.005 2.333 N/A
Yp - principal point y (mm) 1.735 0.004 1.732 0.006 1.731 N/A
Fw - format width (mm) 4.639 0.002
- Not calculated
Fh - format height (mm) 3.481 N/A
K1 - radial distortion 1 -1.25x102 6.72x102 -1.29x102 8.49x107%2 | -1.32x10702 N/A
K2 - radial distortion 2 3.02x10%3 2.23x10702 3.25x10%3 3.20x10702 3.33x1073 N/A
K3 - radial distortion 3 0.00 x10700 0.00 x10700 0.00 x10™° | 0.00 x10™° | 0.00 x10% N/A
P1 - tangential distortion 1 -8.73x10%4 1.05x107%4 -9.92x10° | 6.27x10°% | -2.77x10% N/A
P2 - tangential distortion 2 5.82x10% 7.70x1004 -3.80x10%° | 6.33x10°% | -2.26x100 N/A
Image measurement precision:
Overall RMS (pixels) 0.944 1.167 1.372
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According to the camera calibration results for each parameter, as shown in Table 3-3,
PhotoModeler, MATLAB and OpenCV approaches were comparable. The standard
deviation (o) of MATLAB results was slightly higher than for PhotoModeler.
Considering the reported RMS values, PhotoModeler demonstrated the highest
measurement precision. It is likely that the different experimental results cause the
methods adopted in the software, with these software packages using different approaches
to photogrammetric processing and camera modelling. MATLAB and OpenCV use the
direct linear transformation (DLT) method based on the pinhole camera model (Bradski
and Kaehler, 2008), while PhotoModeler uses the method of space resection based on the
bundle adjustment (Zhang et al., 2010). Although the calibration parameters were not
identical, the values for each of the main parameters from the three adopted routines were
only slightly different, especially the parameters of focal length, principal point offset and
radial distortion (K1, K2 and K3). However, the parameters of tangential distortion (P1
and P2) from MATLAB and OpenCV had dramatically different values to those from
PhotoModeler (Table 3-3).

The radial lens distortion parameters of the Nexus 6, which were determined by equation
(3-1) from the three routines, are shown in Figure 3-3. Based on these results, it may be
concluded that MATLAB and OpenCV provided relatively similar camera calibration
results for this type of smart phone camera when compared to PhotoModeler. The camera
calibration results for the Nikon D300 DSLR camera and the iPhone4 smart phone camera

are shown in Appendix A.
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Figure 3-3: Radial lens distortion of the Nexus 6, as determined from the three different
calibration routines.
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3.2.3 Photogrammetric network configuration

Imaging network geometry is an important factor to achieve a high-accuracy in
photogrammetric measurement. The adoption of multi-station networks are extensively
used in photogrammetry for geospatial applications, including landslide monitoring
(Scaioni, 2015). To provide a photogrammetric solution suitable for non-expert users and
also ensure the requirement of high accurate photogrammetric results for landslide
monitoring, photogrammetric network design was used to determine suitable camera
locations and the number of necessary camera stations. Nonetheless, several important
factors should be taken into consideration during image acquisition of the object, as

follows (Luhmann et al., 2006):

e Base to depth ratio (B/D);
e Maximum allowable camera-to-object distance;
o Field of view (FOV) of the camera;

e Convergent imaging networks;

Firstly, the base to depth ratio (B/D) of imaging geometry should ideally be in the range
of 0.1-0.3. The geometry of the intersecting ray at each object point is used to find the
location and the orientation of the imagery. The sufficiency of images when creating a
3D model is to have suitable baselines between those images. A small B/D ratio can lead
to an inappropriate geometry, resulting in an increase in errors for determined depths, as
illustrated in Figure 3-4. Based on the study of Hullo ef al. (2009) and following the 3x3
CIPA rules (Waldhdusl and Ogleby, 1994), the optimal B/D ratio should be between 0.1-

0.3 for an effective 3D reconstruction and a high accuracy of ray intersection.
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Figure 3-4: Imaging geometry (a) small B/D ratio (b) large B/D ratio (Alsadik, 2014).
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Secondly, the distance between the camera and the object should be close-range since the
image scale has a direct impact on the precision of photogrammetric measurement.
Consequently, the precision of any optical triangulation system results from the
measurement resolution and the mean camera-to-object distance (Fryer et al., 2007).
However, the algorithms used in digital image processing directly influences
measurement resolution according to the pixel size of the imaging sensor. To control the
photogrammetric precision, it is necessary to find the maximum allowable camera-to-
object distance, d,,,, , Which can be calculated using equation (3-5) (Luhmann et al.,
2006).

_ Tcovk

dmax - qo

(3-5)

where o is the standard error in the XYZ object point coordinate, c is image scale, q is
a design factor expressing the strength of the basic camera station configuration (0.4-1.1),
o is the standard error in the image coordinate and k is the number of images per camera
station. Following equation (3-5), the distance between the camera and the object (depth)
is also influenced by many factors such as a field of view of the camera, measurement

resolution and positional accuracy.

Thirdly, FOV of the camera generally requires to be in the range 40-80° for close-range
photogrammetric measurement in engineering applications (Fryer et al., 2007). For this
reason, the operator has to use a camera with a suitable FOV. The coverage from each
camera station can be estimated using the FOV computational formula (Luhmann et al.,

2006) shown in equation (3-6):
— -1(%
FOV = 2 x tan (ZC) (3-6)

where s'is the maximum distance between two corners of the imaging sensor and c is the

focal length of the lens.

The appropriate values for parameters of both d,,,, and FOV for a mobile phone digital
camera used in this research following equation (3-5) and equation (3-6) are shown in

Appendix B.
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Finally, convergent imaging networks are required to provide effective 3D reconstruction
from the imagery. Image acquisition should fully cover the study area (360° coverage),
with necessary overlaps to enable appropriate photogrammetric reconstruction. As
mentioned above, the imaging plan is performed following these concerns to help the
operator taking a suitable image network. By way of example, an imaging plan of the
Hollin Hill survey using a mobile device is illustrated in Figure 3-5. With regard to
finding an optimum camera station location, the maximum allowable camera-to-object
distance was < 15 m, following equation (3-5), and the minimum distance between each

camera station was approximately 2-3 m using a B/D ratio of 0.1-0.3.
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Figure 3-5: Example of photogrammetric network design for Hollin Hill landslide
monitoring.

3.2.4 Photogrammetric processing solution

Although close-range photogrammetric techniques can be adopted for monitoring
purposes, conventional photogrammetric processing still has some drawbacks for users.
For example, the requirements involving network design, ground control points,
photogrammetric software and a proficient photogrammetrist are essential for
conventional photogrammetry (Fryer et al., 2007). The SfM pipeline can potentially

overcome the many traditional constraints of digital photogrammetry, especially user-
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friendliness to non-experts and lower costs. This gives opportunity for the development

of a photogrammetric processing system suitable for landslide monitoring.

3.2.4.1 Structure-from-motion based photogrammetric processing

In the last decade there has been a revolution in topographic measurements using
photogrammetric computer vision for a number of geoscience and geomorphological
applications, including land deformation of alluvial fans (Micheletti ef a/., 2015a), coastal
erosion (James and Robson, 2012), gully headcut erosion (Goémez-Gutiérrez et al., 2014)
and landslide monitoring (Stumpf ez al., 2015). In particular, the development of SfM and
multiview-stereo (MVS) techniques has improved the accessibility of photogrammetric
workflows for non-expert users, and increased automation (Westoby et al., 2012;
Javernick et al., 2014). At the same time, it has also been shown that the quality of results
can conform to expected levels of accuracy for conventional photogrammetric processing

(Micheletti et al., 2015a).

The workflow of the SEIM-MVS based photogrammetric approach consists of two main
stages for 3D model reconstruction from imagery. Firstly, the SfM technique requires a
set of images taken from different positions in front of the object of interest (as shown in
Figure 3-6). The SfM workflow is mainly comprised of three processes: 1) feature
detection in each image, with features extracted by Scale-invariant feature transform
(SIFT) (Lowe, 2004) or Speeded-up robust features (SURF) (Bay et al., 2008); 2)
matching within the image dataset; and 3) a bundle adjustment used to estimate camera
positions and orientations and extract a sparse point cloud. Secondly, the MVS process
can be defined as performing the dense image matching from the SfM output. This
construction is used to efficiently filter out noisy data and generate the so-called ‘dense

point cloud’.
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Figure 3-6: Image acquisition for StM (Westoby et al., 2012).

3.2.4.2 SfM-Photogrammetric processing software

With processing software based on SfM-photogrammetry for 3D model reconstruction,
there are recently several commercial SfM-MVS software packages (e.g. AgiSoft
PhotoScan, PhotoModeler) and open source or free software packages (e.g. Bundler
Photogrammetry Package, VisualSFM & PMVS/CMVS). Moreover, web services such
as Photosynth and Autodesk 123D Catch can provide free SfM-MVS based
photogrammetric processing on the Internet. However, each SEIM-MVS approach has both
advantages and disadvantages, with a study by Micheletti et al. (2015a) reporting the
effectiveness of each approach depending on the specific applications, as highlighted in

Table 3-4.

Table 3-4: The options of the SIM-MVS approach (Micheletti et al., 2015a).

Availability of photogrammetry Main Characteristics

Traditional photogrammetry Higher reliability and quality, high
cost, expert knowledge

StM-MVS photogrammetry High quality but also greater

(commercial software packages) | automation, and low cost

Local SfTM-MVS software Mostly free and semi-automated

(open source software packages) | processing, low quality

Internet-based SfTM-MVS system | No cost, near real-time, fully
automated processing, lowest quality

In an investigation into the adoption of processing software for StM-photogrammetry,

Eltner et al. (2016) reported that PhotoScan is the most popular SfM software used in
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geoscience applications over the previous five years (2012-2016), as presented in Figure
3-7. Photoscan may be the most favoured SfM-photogrammetric software due to its
friendliness for non-expert users. However, the employability of this commercial
software to implement on landslide monitoring system still has limitations since this
commercial software is relatively high-cost and also refuses to allow accessibility via the
Internet (Agisoft, 2016).
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Figure 3-7: SfM-photogrammetric processing software used in Geoscience applications
(Eltner et al., 2016).

For the development of an effective photogrammetric measurement solution related to a
low-cost approach in this research, the photogrammetric processing for on-site
investigation uses only non-commercial and freely available software. As regards the
comparison of processing software for SfM photogrammetry (Figure 3-7), the free and/or
open source software packages 1) Bundler and PMVS/CMVS; 2) APERO and MicMac;
and 3) VisualSFM and PMVS/CMVS were the most utilised for monitoring applications
(after PhotoScan). To compare and highlight the optimal potential processing software
for system implementation, it was therefore necessary to investigate these software
packages. In a useful study of freely available SfM software for landslide monitoring,
Stumpf et al. (2015) revealed that APERO and MicMac provided more accurate results
than VisualSFM and PMVS. However, the difference of photogrammetric accuracy
between the two results was insignificant (at the millimetre level) for the purposes of
assessing landslide deformations. Although VisualSFM and PMVS showed slightly

lower accuracy results, this software offers a higher degree in automated processing
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compared to APERO and MicMac and was therefore adopted in this research. Moreover,
in terms of the processing performance for SfM photogrammetry, VisualSFM and PMVS
can efficiently use both CPU and GPU processors for photogrammetric processing
(Sawyer et al., 2012), whereas, APERO and MicMac or Bundler and PMVS still has the
drawback that they can use only a CPU processor. As a result of the use of high-
performance GPU processing power, VisualSFM and PMVS were therefore believed to
require less processing time. Therefore, VisualSFM and PMVS were identified as an
effective SfM-photogrammetric processing solution for development of the proposed

landslide monitoring system.

3.2.5 Landslide analysis methods

In considering landslide monitoring, the technique of multi-epoch analysis is used to
assess landslide processes from photogrammetric results at different times. In particular,
the methods based on 3D model comparison are generally used for analysis of landslide
deformation which can be divided into area- and point-based approaches, as shown in

Figure 3-8 (Lague et al., 2013; Scaioni, 2015).

Multi-epoch analysis

|
: :

Area-based approach Point-based approach
DEM of difference Cloud-to-cloud J L Cloud-to-mesh
(DoD) comparison (C2C) distance (C2M)

Multiscale model-to-model
cloud comparison (M3C2)

Figure 3-8: The methods of multi-epoch analysis for landslide monitoring.

For the area-based comparison method, DEM of Difference (DoD) is a general technique
of comparison between two surface models in the form of DEMs to evaluate the changes

of landslide surfaces. However, in the case of point clouds obtained from
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photogrammetric results, it is necessary to generate DEMs from two point cloud datasets
prior to comparison. Moreover, it is difficult to find a suitable DEM resolution for
analysis in order to maintain the details of the original data, especially the point cloud
roughness. Thus, the comparison methods for multi-epoch analysis in this research only
used point-based approaches in order to avoid the processing of surfaces interpolated

from the measured point cloud.

Regarding point-based approaches of 3D model comparison, the methods can be directly
carried out using comparison of two point clouds. Although cloud-to-cloud comparison
(C2C) and cloud-to-mesh distance (C2M) are normally used to find the differences
between two point clouds, it is possible that gross errors result from an insufficient
overlapping area between both two point clouds, such as void areas. Meanwhile,
multiscale model-to-model cloud comparison (M3C2) was recently proposed as a method
of point cloud comparison to consider the source of uncertainties over surfaces (such as
roughness of surface, registration error and surface changes). In particular, the different
varieties of natural surfaces, such as bare-earth areas or vegetated terrain, have a direct
effect on comparison results (Lague et al., 2013). The photogrammetric results from
landslide areas may often be saddled with these concerns. To minimise these effects for
point cloud comparison, landslide monitoring in this research is therefore based on multi-
epoch analysis using the point cloud comparison M3C2 technique. The M3C2 point cloud
comparison method was implemented in the stage of change assessment. Details of this

approach are presented in the later sections on change assessment.

3.2.6 Summary of the photogrammetric solution for landslide monitoring

The detail of close-range photogrammetric approaches for landslide monitoring can be
divided into several stages, as follows: (1) Camera calibration is an important procedure
to examine the interior orientation of the camera. The use of open-source tools and
automatic camera calibration routines, evaluated for mobile device cameras, showed
similarly-accurate results as calibration tools available in commercial software. (2) The
adopted photogrammetric network configuration should be based on multi-station
networks and convergent imagery. The guideline for image capture determines the basic
requirements comprising the maximum allowable camera-to-object distance and the

distance between each camera station. (3) Modern SfM workflows offer the potential for
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implementing a photogrammetric approach in terms of providing a high degree of
automated processing. The investigation of the non-commercial, open-source SfM
software packages VisualSFM and PMVS offer the promise of a low-cost

photogrammetric processing solution for landslide monitoring.

3.3 A mobile platform-based landslide monitoring system for on-site investigation

Photogrammetric processing for landslide monitoring is usually performed in the office
after image collection since the operator needs to transfer and process imagery on a
workstation. This constraint may lead to one of the biggest obstacles in a real-time
photogrammetric on-site investigation. Although, at present, a high-performance
processor in a personal or a laptop computer might be able to deal with a requisite
photogrammetric processing in the field, this research is based on the development of a
stand-alone application for landslide monitoring. That probably makes the operator
inconvenient for in-situ investigations. To overcome these difficulties, on-line

photogrammetric processing and monitoring of landslide hazards is proposed.

For the development of a photogrammetric system for on-site investigation, it is likely
that a mobile device camera can be adopted as a low cost sensor for dynamic monitoring
applications. Mobile devices are also potentially useful instruments for on-site
investigation in geotechnical engineering and geophysics. A serious weakness with
photogrammetric monitoring system using mobile devices for on-site investigation,
however, is the requirement for real-time processing of observations. In order to achieve
the requirements for a real-time landslide monitoring application, processing captured
data using mobile cloud computing technology can potentially offer the possibility for a

real-time measurement system.

3.3.1 Mobile device technology

Mobile devices have recently become powerful instruments with low-cost imaging
sensors that are suited for close-range photogrammetry monitoring applications (Yun et
al., 2012; Wang, 2013; Micheletti et al., 2015a). Mobile devices are usually classified
according to their purpose of usage into either tablet or smart phone. The mobile device

adopted in this research is a simple smart phone (aka mobile phone) because it is generally
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more comfortable, convenient and portable for on-site investigation. Moreover, the
majority of modern smart phones currently contain many sensor technologies, such as
GNSS, digital compass, accelerometers, gyroscopes and/or magnetometers (Figure 3-9).
These sensors might also provide useful information for photogrammetric measurement
solution now and in the future. Nevertheless, tablet devices could also be adopted for such

research.
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Figure 3-9: Sensors integrated on a modern smart phone (Daponte et al., 2013).

GNSS microchip technology for use on mobile devices has been continuously
developing, including smaller size and lower cost, and consequently has become an
essential sensor for the majority of mobile devices. Most recent GNSS sensors on mobile
devices are multi-constellation which can observe several navigation satellite systems
(e.g. GPS, Galileo, GLONASS or BeiDou) in order to achieve a higher accuracy of
positioning for navigation purposes. The horizontal location accuracy obtained from
GNSS-based mobile devices is > 4 m (Yoon et al., 2016). Nevertheless, the GNSS
observation from such a sensor on a smart phone still provides a low-accurate location of
the camera station and does not provide sufficient precision of observations for

photogrammetric processing (Kehl ez al., 2016).

In addition, there are a variety of mobile platform operating systems, including Android,
Windows and i0OS, that lead to different standards, programming languages and
development tools (Corral et al., 2012). For research purposes, the development of an
application on the Google Android OS is generally more favourable than iOS and
Windows mobile because Android supports open source (Wang, 2013). However, the
primary purpose of mobile devices is not for photogrammetric processing. Moreover, one

current drawback of smart phones or mobile devices is the relatively low-performance

53



processing power compared to both personal computers and laptop computers.
Photogrammetric processing on a mobile device is therefore one of the greatest
challenges, and very difficult to achieve in real-time for 3D reconstruction from the
imagery. To overcome these difficulties and find a solution to managing and processing
large amounts of image data for photogrammetric measurement in (near) real-time, it was
decided to transfer the task of photogrammetric processing from the mobile device onto
cloud computing services (Chidburee et al., 2016). The proposed landslide monitoring

system was therefore developed and implemented based on the cloud.

3.3.2 Cloud computing technology

The rapid development of ICT plays an important role. Cloud computing is now being
effectively used to access computing resources and data storage on the Internet (Liao et
al.,2017). A huge demand for a real-time geospatial processing based on the cloud has
resulted. For example, the study of Karimi and Roongpiboonsopit (2012) shows that there
are many challenges associated with computationally-intensive geospatial applications
when a real-time response is needed. Using cloud computing for data-intensive, time-
sensitive geospatial applications is advantageous because it provides an efficient resource
for storing and manipulating very large amounts of geospatial information. Thus, cloud

computing can offer real-time processing potential for geospatial applications.

In addition, Internet technology has rapidly developed in terms of both speed and device
connection. The IoT, a modern IT technology, offers the opportunity to connect many
types of device to the Internet other than the ordinary computer. With the development of
mobile networks, telecommunication technology via 3G networks has changed into 4G
networks, making it is possible to achieve data rates of 2-20 Mbps (Ohmori et al., 2001).
Meanwhile, in the near future, a new 5G technology in the UK is developing that will
cover 90% of the population by 2027 (Oughton and Frias, 2017). In the aspect of
engineering, a 5G network will provide data rates of approximately 1-10 Gbps (Chih-Lin
et al., 2016). This has opened up the potential for harnessing additional processing power
for mobile devices from the cloud. Mobile cloud computing, which solves the resource
problem of mobile devices in terms of the available computing power, can provide
computing resources based on cloud computing technology (Fernando et al., 2013; Ayad
etal.,2015).
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In terms of mobile cloud computing in geospatial applications, Lee and Kang (2013)
defined a mobile cloud service as a mobile application service based on cloud computing
which can maintain a steadily high performance. This results in the advantage of flexible
scalability of cloud computing resources. Lee and Kang developed a remote-sensing
application on a mobile platform to analyse change detection of satellite images, as shown
in Figure 3.10. Moreover, their study also reported a test on an iPad with geo-based image
processing functions on the Amazon web service in a cloud environment that fulfills
users’ requirements for real-time geospatial processing on a mobile device. Therefore,
cloud-based technology has sufficient potential to solve real-time geospatial problems in

the context of landslide monitoring.
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Figure 3-10: Example of a real-time satellite image processing for change detection
analysis on an iPad (Lee and Kang, 2013).

3.3.3 System design and integration

Regarding a conventional in-situ photogrammetric approach for landslide monitoring, a
single-camera system is generally used to collect the requisite dataset of sequential
images. Such a system contains one camera mounted on a fixed pillar, a control system
with a data logger and the power unit supplied by a solar panel (Figure 3-11). Normally,
analysis of landslide deformation from such a system was carried out using image
correlation for 2D displacement on the imagery (Scaioni, 2015). Moreover, additional

information, such as a DSM from lidar, is used to re-project from 2D displacement into
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3D movement in local units (Travelletti ef al., 2012). Although such single-camera, real-
time photogrammetric systems are currently used in early warning systems for landslide
monitoring, such an approach still has some serious drawbacks. For example, the level of
investment in instruments for such an approach is usually high-cost, both in setup and
maintenance. Such an approach is therefore most suitable for areas at high-risk to
landslide hazards. As a result, it might not support in-situ initial assessment of the need
for continuous landslide monitoring. For geotechnical engineering or geophysics, a

system that can detect the preliminary stages of a landslide is an important requirement.
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Figure 3-11: Example of a single-camera based photogrammetric system for long-term,
in-situ landslide monitoring (Travelletti ez al., 2012).

In the case of a generic ground-based photogrammetric approach for landslide
monitoring, data collection using photogrammetry can offer time-savings compared to a
comparable TLS survey (James and Robson, 2012). With regard to on-site initial
assessment, data processing in the field is necessary to achieve a real-time response.

Although Castillo et al. (2015) developed efficient and free software packages for a
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photogrammetric workflow, data processing with this software package for in-situ
investigation remains a significant challenge due to time-consuming processes. As
discussed above, mobile devices and cloud computing technology are therefore used to

overcome serious issues of system development for on-site investigation.

Based on the requirements of developing a photogrammetric measurement and
monitoring system for on-site investigation, a mobile platform can offer a portable device
for the initial assessment of landslide processes. Mobile cloud computing technology can
support real-time processing. A smart phone was used to capture images from all around
a landslide area, transfer data for processing on the cloud and display the results of
landslide deformation, while the cloud was used for photogrammetric processing and
landslide monitoring analysis. The outline of system operation is illustrated in Figure 3-
12.

Internet
service

A photogrammetric
measurement and
monitoring solution

% acquisition

3G/4G/Wi-Fi
Networks

Landslide areas Cloud computing technology

Mobile device

Figure 3-12: The model for the implementation of a photogrammetric solution for
landslide monitoring on mobile cloud computing adopted in this research.

Regarding Figure 3-12, the operator can manage the cloud-based photogrammetric
measurement and monitoring system on a smart phone through Internet services via a
3G/4G or a Wi-Fi network. The main functionality of developed system may be classified

on the basis of tasks for on-site investigation, as follows:

1. High-precision photogrammetric measurement;
Automated photogrammetric processing;
High-precision geo-referencing;

Minimising generic outliers;

Automated landslide monitoring analysis;

A

Real-time system and full service operation.
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3.3.4 Summary of the mobile platform based landslide monitoring system

With the difficulties of data processing for real-time landslide monitoring on a mobile
device, it is necessary to find a solution to manage and process large amounts of
information. The difficulties of data processing for real-time response of a system can be
solved by mobile cloud computing technology. Mobile cloud computing can manage
those problems through the development of mobile application software to utilise external
resources from cloud computing technology. The cloud can provide high-performance
computing power in order to compensate for the low-performance processor found in the
majority of most mobile devices (Fernando et al., 2013). It is a combination of cloud
computing and mobile networks that brings benefits for mobile users, network operators,
as well as cloud computing providers. Finally, mobile device and cloud computing
technology is used in the development of a photogrammetric measurement and

monitoring solution.

3.4 Improving photogrammetric processing for landslide monitoring analysis

Although SfM-based photogrammetry can generate 3D model information for monitoring
applications via automated processing, the workflows involving image reconstruction and
analysis for photogrammetric monitoring in scientific geoscience applications are still
complicated (Kaiser et al., 2014). Most commercial SfM software packages offer full
photogrammetric processing workflows, but some advanced functions lack details and
are treated as a black box for processing. Therefore, the development of a system in this
research is only based on open-source software in order to provide a low-cost solution.
When performing photogrammetric processing of open SfM-software, the requirement of
additional functions in terms of pre-processing, geo-referencing and post-processing is
necessary to achieve the appropriate photogrammetric results for monitoring purposes
(Castillo et al., 2015). The development of an appropriate analysis workflow is also used
to assess the change of landslide processes that is observed using the monitoring system,
as illustrated in Figure 3-13. In order to develop an efficient system in terms of real-time
response, it is also necessary to develop advanced functions for reducing time-consuming

processes.
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Figure 3-13: Photogrammetry-based landslide monitoring workflow.

3.4.1 Pre-image matching

A fully automated processing workflow based on the SfM-photogrammetric approach
primarily uses the basic algorithms of 3D model reconstruction from imagery. Although
this advantage can offer the convenience of photogrammetric processing for non-expert
operators, it might lead to time-consuming processes in cases of datasets with a large
number of images. Such an issue could create difficulties for real-time photogrammetric
processing. The workflows of a photogrammetric measurement solution should
incorporate an additional algorithm to reduce processing time in the stages of 3D
reconstruction. To deal with time constrains of such a problem, a pre-image matching
stage is proposed for reducing the time-consuming process of identifying image

correspondence in SfM.

Image matching, one of the workflows for the SfM-based photogrammetry, is generally
used to find correspondence between each image in the photoset using key features on
the imagery. Basically, image matching supposes no-correspondence between each
image. Consequently, the image matching algorithm is carried out by a full-pairwise
matching of all images. In the case of image acquisition, observation with a systematic,
methodical approach can generate useful information in terms of the sequence in which

images were captured. Normally, the image sequence is carried out by a frame-to-frame
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coherence. From the benefits of sequential images, the relationship between each image
may be shown in chronological sequence. The algorithm of pre-image matching, one of
the pre-processing workflows before SfM-based photogrammetry is performed, is

developed to make a pair-list of image correspondences from image sequences.

o

(b) ()

Figure 3-14: Example of 3D reconstruction for (a) imaging configuration and the matrix
comparisons of image matching between (b) an image sequence and (c) a non-image
sequence.

Following the illustration of Figure 3-14, the matrix of image matching for an image
sequence can highlight the relationship between each image and an adjacent image
(Figure 3-14(b)). In contrast, for a non-image sequence the image matching matrix was
confused (Figure 3-14(c)), meaning there is no correspondence between adjacent images.
For images captured from fully covered objects and chronological image capture, image
sequences usually result from data acquisition. One advantage of sequent images is a

reduced time in matching when using sequential matching. To find the image pairs for
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matching, a pre-image matching algorithm was carried out using the pseudocode, as

follows:

e Open the directory of image dataset;
e READ all image files into the list of image dataset;
e READ the input of the number of overlapping images;
e For each image in the list of image dataset:
e SET the central image;
e Search for the left-hand side image following number of overlaps:
e READ the image file into the list of left-hand side image
dataset;
e Ifall of the following left-hand side image dataset, then:
e WRITE a pair of each left-hand side image name with
the central image name into txt file;
e Secarch for the right-hand side image following number of overlaps:
e READ the image file into the list of right-hand side image
dataset;
o Ifall of the following right-hand side image dataset, then:
e WRITE a pair of each right-hand side image name with
the central image name into txt file;

e Then close the directory.

To explain the workflow of the algorithm developed for pre-image matching as shown in
pseudocode above, the previous and the subsequent images are chosen for each image by
following the number of overlaps. However, after pre-image matching, the process of
image matching is still required, and is performed later at the StM-based photogrammetry
stage. In cases of later additional images or an infill of the circular configuration (Figure
3-14(a)), this algorithm has limitations in immediately identifying new pairs. The
recommendation for such situations is therefore not to run pre-image matching and

instead perform only image matching.

The function of this algorithm was developed using the Python programming language to
derive a pair-list of image matches in the form of a text file. However, the image pairs for

subsequent matching depend on the number of overlapping images. The operator can
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select the appropriate number of overlaps for at least three images. The example of a pair-
list for image matching was computed from an image sequence, as illustrated in Figure

3-15.

c.jpg

v
A pair-list of image matching:

a.jpg c.jpg
b.jpg c.jpg
c.ipg d.jpg
c.jpg e.jpg
b.ipg d.jpg
c.ipg d.jpg
d.jpg e.jpg
dipg  fipg

Figure 3-15: The example of a pair-list of image matches from an image sequence.

3.4.2 Lens distortion correction

Lens distortion, especially radial, is one of the systematic errors that directly affect
measurements from the imagery. To achieve a high-accuracy photogrammetric
measurement, these errors should be minimized prior to photogrammetric processing.
Most commercial SfM-based photogrammetric software packages can provide full
photogrammetric workflows, whereas open-source SfM-software such as VisualSFM
requires the addition of some functions to enhance the photogrammetric workflow. The
function of lens distortion correction, for example, is not available to create undistorted
images. Thus, a function for undistorted image creation in the pre-processing stage of the

SfM photogrammetry pipeline is proposed.

The development of the function for lens distortion correction was carried out using a
Python script with OpenCV library (Bradski and Kaehler, 2008). This function allows the
operator to set the parameters of the camera model (focal length, principal point and lens
distortion). As already detailed, these parameters were examined for the smart phone

camera using automated self-camera calibration using the camera calibration tool in
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Matlab software (Bouguet, 2000). The undistorted images were then used with the fixed
calibration mode in VisualSFM for photogrammetric processing to reconstruct 3D

models. The workflow of the function for lens distortion correction is illustrated in Figure

3.16.
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Figure 3-16: The workflow of the developed function for 3D reconstruction using lens
distortion correction.

3.4.3 Geo-referencing

After 3D reconstruction from the imagery using the SfM workflow, photogrammetric
results usually do not have any spatial information because its approach does not require
ground control to calculate camera parameters and orientations. To assess landslide
processes using multi-epoch analysis, photogrammetric results at different epochs have
to be geo-referenced into the same coordinate system before comparison (Scaioni, 2015).
Although the SfM-based photogrammetric processing does not require ground control
points or targets, the use of targets is essential to achieve a high-level of precision for geo-
referencing of photogrammetric results. In the case of geo-referencing with photo control

targets, observations should take place directly on the imagery rather than in the derived
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point cloud. In this research, the use of some form of photo control targets is a requirement

for geo-referencing.

The methods of geo-referencing based on the system development may be classified by
techniques of observing the locations of targets. Although the locations of the photo
control targets may be observed using GNSS or TLS survey, because of the requirement
for high-accuracy, this approach would be costly in terms of equipment and labour.
Moreover, the requirement of post-processing for GNSS/TLS data would be prohibitive.
Based on the practicalities of survey for landslide monitoring, geo-referencing without
GNSS or TLS observation is therefore offered as an option for in-situ investigation. As a
result of this, the functional development of geo-referencing is implemented into two
methods of target observation with & without GNSS/TLS directly from the imagery on

the smart phone.

3.4.3.1 Geo-referencing with GNSS/TLS based target observation

GNSS or TLS observations are required to provide the locations of targets for this method
of geo-referencing. After post-processing of the GNSS or TLS data, the 3D coordinates
of target locations are imported into the smart phone. The development of a function for
manual geo-referencing on the smart phone is used to make a pair-list of target positions
between image coordinates and the corresponding real world coordinates obtained from
either the GNSS or TLS observation. The observation of targets can be made directly in
the imagery through the function developed for geo-referencing. After target observation,
a pair-list of target positions is exported into a text file format suitable for use in geo-
referencing the photogrammetric results in VisualSFM. This approach to geo-referencing

is illustrated in Figure 3.17.
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Figure 3-17: Illustration of the developed function for GNSS/TLS target observation.

3.4.3.2 Geo-referencing without GNSS/TLS based target observation

To avoid using GNSS or TLS survey for target locations, an alternative solution to geo-
referencing was developed. This approach is divided into three stages. Firstly, the scaling
of the photogrammetric results using distances between targets is performed. The
observation of distances between targets can be carried out using a tape measure or laser
distance measurement device to provide a precise distance measurement. Measuring six
distances between a pair of three targets is the minimum requirement for scaling the
photogrammetric results (Figure 3-18(a)). To generate pseudo-position of targets from
these distances, the locations in 3D coordinates of three targets are calculated using a
Python script with NumPy and SciPy libraries (Figure 3-18(b)). Then, the location of the
targets is directly observed in image data through the developed function (Figure 3-18(c)).

Secondly, the alignment of photogrammetric results at different epochs is carried out
manually using the point pairs picking tool in CloudCompare. The point pairs for
alignment are selected from the key features in the point cloud. Thirdly, to enhance
alignment of two point clouds, automatic geo-referencing is carried out using the iterative

closest point (ICP) algorithm without scaling in CloudCompare.
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Figure 3-18: Illustrations of the developed function of scaling for geo-referencing using
distances of known objects.

This application of scaling with the distances of known objects on a smart phone was
developed to provide accurate dimensions for photogrammetric results. However, this
approach is not yet fully implemented on the system because web-based point cloud
processing is necessary for the stage of manual alignment between epochs. At present,
the web-based technology for point cloud is limited only to a 3D viewer for visualization.
The practical application therefore still requires future development of a web-based

service for point cloud processing. Thus GNSS/TLS is necessary for geo-referencing.

3.4.4 Automatic de-noising

Routine image capture using a mobile device camera in a natural environment cannot
fully control the intensity of light at time of image capture. Image acquisition may
therefore result in different image quality in terms of contrast and brightness. Moreover,
the different kinds of surface type over landslide areas, such as grasses or trees, will be
recorded. These concerns lead to an uncontrollable factor in photogrammetry. As a result,
the SfM-photogrammetric results are often prone to matching errors in the multi-view

stereo dense surface reconstruction process. Noise can be generated in the point cloud
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due to repetitive texture patterns or poor image contrast in the imagery (Scaioni, 2015).
This is particularly so over vegetated surfaces such as those found in a natural landslide,

as presented in Figure 3.19, and these can have a direct impact on the quality of results.

(b) Side view

Figure 3-19: Example of noise in a point cloud from the SfM- photogrammetric
approach applied to a natural landslide: the red circles highlight noisy points.

To reduce the negative effect of gross errors, a de-noising stage is used to remove noise
from the point cloud and improve the quality before the assessment of landslide processes.
The de-noising is based on the application of a statistical outlier removal (SOR) filter. In
this method, a computation at each point is performed to determine the average distance
between itself and the neighbouring point dataset. The removal of points is determined
by a criterion of statistical analysis based on the neighbour’s distances. The distribution
of their resulting distances is supposedly normal. A mean and a standard deviation of this
statistical analysis are considered as the criterion of de-noising. If the mean distance of
each point is further from the criterion then these point are defined as outliers and noisy
points are removed from the point cloud. An example of automatic de-noising is shown

in Figure 3.20.
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Figure 3-20: Example of automatic de-noising based on the SOR filter (PCL, 2017).

The automatic de-noising filter was carried out using functions based on the system
through command line syntax of the SOR filter in CloudCompare software. The selection
of the optimum parameters for automatic de-noising is necessary to remove outliers from
photogrammetric results. These parameters include the number of points to use and the
statistic of standard deviation. However, the developed function can offer the setting of

both parameters directly by the operator.

3.4.5 Vegetation filtering

Although a photogrammetric approach can provide the high-accuracy results required for
landslide monitoring applications, photogrammetric approaches still have a significant
drawback in that they cannot penetrate the surfaces of vegetated areas. In particular,
vegetated surfaces (such as grass) are usually found in a natural landslide that directly
affects photogrammetric results for surface deformation monitoring. Moreover, seasonal
changes also result in different heights of vegetated surfaces over landslides.
Consequently, the uncertainty of surfaces obtained from vegetation effects can cause
unreliable assessment of landslide processes. The results obtained from the SfM-
photogrammetric approach over vegetated surfaces require elimination of this effect
before landslide monitoring analysis. Vegetation filtering is proposed to extract only bare-
earth points of photogrammetric results and thereby ensure an appropriate assessment,
especially in the case of a natural landslide. Thus, Figure 3-21 shows the workflow of a

filter to remove points over vegetated surfaces.
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Figure 3-21: A workflow for vegetation filtering of the photogrammetric results.

Vegetation filtering was carried out using the green vegetation index obtained from point
colours (RGB). The green vegetation index is calculated as shown in equation (3-7)
(Meyer and Neto, 2008).

Gl =2g—b—r (3-7)

where GI is the green vegetation index; r, b and g are the RGB values of each point.
Focusing on the classification of the point cloud by the value of green vegetation index
for each point, the setting for the threshold value of green vegetation index is carried out
by the operator. All points that are less than the threshold value are non-green vegetated
points and are assumed as bare-earth points. In contrast, points that are greater than the
threshold value are assumed as points over vegetated surfaces, and are removed from the
point cloud. The developed function on the system was carried out using a Python script

with a function to export the point cloud file format through CloudCompare software.
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3.4.6 Change assessment

After the post-processing stages for photogrammetric results, including geo-referencing,
automatic de-noising and vegetation filtering, the quality of photogrammetric results are
improved for landslide monitoring analysis. The enhanced results at different epochs are
used for multi-epoch analysis to assess landslide processes. Following the landslide
analysis methods in section 3.2.5, the M3C2 technique of point cloud comparison method
was used for assessment of the landslide changes to deliver the preliminary results of

landslide monitoring in this research.

The key parameters (Figure 3-22) of the M3C2 method for multi-epoch analysis are used

for the change detection of landslides, including:

e D -the scale factor or normal scale;
e d - the project scale;

®  Dnmax - the height of the projection cylinder or the maximum distance;

a |Princip.le of the Multiscale Model to Model Cloud Comparison M3C2 | b ‘ M3C2 on complex topography
Step 1 : Calculation of normal ; Step 2 : Average distance between the two *\ Normal at scale D, by roug| [
at a scale D around the core point i. clouds measured at a scale dalong N \ Normal at scale D,not affected by roughness D2

> Missing data =
& 4 .| no distance caiculation
[ >

Overestimation of distance due to
normal misorientation at scale D1

Average positions
of the point clouds

Figure 3-22: The outline of the key parameters used in the M3C2 algorithm (Lague et
al., 2013).

To explain the M3C2 algorithm as shown in the figure above, there are three main stages
in a comparison to find the differences between two point clouds. Firstly, the normal
vector is determined using the scale factor, D, to find a direction of the different distance
in the comparison. Next, the distance is calculated along a normal vector within a cylinder
of diameter d to determine the difference. Finally, if the difference is more than the
maximum distance, P,y it is assumed it cannot be calculated due to missing data. It is

acknowledged that the M3C2 parameters might be complicated for non-experts to
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understand. Thus, details of the appropriate values for those parameters are reviewed and

described in the next chapter.

Although the M3C2 algorithm in CloudCompare is generally used for point cloud
comparison to calculate the differences between two point clouds, this approach is
difficult to implement on the landslide monitoring system due to its advanced plug-in
software. To employ the M3C2 method in the system development, an open-source M3C2
tool was therefore implemented into the workflow for landslide monitoring analysis, as

illustrated in Figure 3-23.

Landslide monitoring analysis

e Subsampling (optional)
e Convert to TXT file format
e Multi-epoch analysis using a M3C2 tool

v

Post-processing

e Plotting the results using Matplotlib
e Calculate the statistics of the results

Figure 3-23: The outline of the workflow for landslide monitoring analysis.

There are several procedures required for landslide monitoring using multi-epoch analysis
based on the M3C2 technique. Firstly, the input datasets of two point clouds might need
to be subsampled using CloudCompare through command line syntax if it is required to
decrease the number of points for timesaving analysis. Secondly, the two point clouds are
converted to TXT file format using CloudCompare in order for analysis using the M3C2
tool. Thirdly, the differences between the two point clouds are determined using M3C2
tool, and the results of different distances generated in TXT file format. Next, to represent
the differences between both point clouds, a graph showing the results is generated using
a Python script with Matplotlib library. Finally, the statistics of the differences comprising
the value of mean, the standard deviation, minimum and maximum are calculated and

represented using a Python script.
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3.5 System development

The workflow of photogrammetric measurement and monitoring process can be divided
into two main modules: 1) photogrammetric measurement for providing 3d reconstruction
results of the different epochs; 2) landslide monitoring analysis to assess the changes of
landslide processes between two epochs. The main workflows of landslide monitoring in

this research are shown in Figure 3-24.

Photoset
(t=0) Photogrammetric N Photogrammetric results at
- measurement different times (t=0,1,..,1)
Photoset -
(t=1,2,..,1) |
Image Landslide monitoring | Temporal change
acquisition analysis information on landslide

Figure 3-24: A generic landslide monitoring workflow using a photogrammetric
approach.

The development of each afore-mentioned function for enhanced photogrammetric
processing, including pre-processing, geo-referencing and post-processing is applied in
the workflows of the SfM-based photogrammetric approach. The developed workflow of
change assessment is used for landslide monitoring analysis. The details of
implementation and development of these two modules using mobile cloud computing

technology are described in this section.

3.5.1 System layout

From the design of a photogrammetric measurement and landslide monitoring system for
on-site investigation in this research, the solution was based on simplicity and flexibility
for the operator. The architecture of system development was designed based on mobile
cloud computing services. The components of the system are divided into two main

aspects:
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1) aremote, cloud-based server that is used to temporarily store and process image
data in order to generate the photogrammetric results and analyse the landslide from those

results;

2) a local client, running on the mobile device, is used to upload images to the
cloud, set processing options and then subsequently display the photogrammetric results
(such as 3D point clouds of the landslide area). Moreover, it is used to control analysis of

landslide monitoring and then display the results after landslide monitoring analysis.

This developed system, which is named Sky Photogrammetric Measurement and
Monitoring System or SkyPMMS, was based on client-server communication via the
Hyper Text Transfer Protocol (HTTP) using the Internet service, as shown in Figure 3-

25.
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Figure 3-25: System architecture based on mobile cloud computing for
photogrammetric measurement and landslide monitoring.

SkyPMMS uses a public cloud server that adopts the Amazon Elastic Compute Cloud
(Amazon EC2) instance (Amazon Web Services, 2016) as a cost-effective service with

flexible handling. For example, the price of AWS cloud computing services depends on
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pay-per-use. Moreover, the elasticity of cloud computing can help to automatically
manage the processing workload on a system such as data processing based on a multi-
cloud server. The Amazon Simple Storage Service (Amazon S3), a cloud storage service,
is used to back up the image data and the results from both the photogrammetric
measurement and landslide monitoring analysis in order to avoid losing data. The
SkyPMMS client uses the thin client approach, which is able to access the system through
the standard web browser on a smart phone. However, the development of a mobile
application can make accessibility to the system more convenient for the user. Thus, a
front-end and back-end are developed in the system of SkyPMMS according to the

requirements of the user.

3.5.2 Implementing system

Data processing for 3D reconstruction based on the SfM-photogrammetric approach
required high-performance computing through the use of a GPU processor. GPU
computing uses highly parallel processing based on many-core technology to deal with
the computationally-intensive modules of the StM workflow. Processing based on this
solution can achieve a near real-time response. The system was implemented on a GPU
cloud server in the g2.2xlarge Amazon EC2 instance type in order to handle the high
processing demands of the SfM software modules. In addition, another type of Amazon
EC2 instance for a GPU cloud server, which uses a higher-memory of GPU, can offer

sufficiently faster processing times to meet the demands of a real-time monitoring system.

However, the price of cloud computing services depends on the performance of
components on a cloud server such as CPU, memory and storage. In particular, the price
of data processing on a GPU cloud server is usually higher than a basic cloud server. In
order to develop a system that minimises cost for data processing, the options of data
processing on multi-cloud servers were developed to be chosen by the user. The operator
needs to optimise the use of the cloud server from the expense of data processing and
processing time on the cloud. In this research, the back-end of the system for data
processing is divided into two basic cloud servers, comprising a GPU cloud server and a

cloud server without GPU (Figure 3-26).
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Figure 3-26: The workflow of data processing for photogrammetric measurement based
on a multi-cloud server.

For data processing based on multi-cloud servers, the components of this system have
many functions. Firstly, a main cloud server of the t2.micro Amazon EC2 instance type,
the lowest-cost of AWS cloud server, is used to control data transfer between mobile
platform-to-cloud server and cloud-to-cloud servers, receive and send a request for data
processing, and then respond to display the results on a smart phone. Secondly, a GPU
cloud server in the g2.2xlarge or g2.8xlarge Amazon EC2 instance type is used to process
the photogrammetric measurement of the SfM software and provide landslide change
analysis. Finally, the Amazon S3, a cloud storage service, is used for central storage to
transfer data between two cloud servers. Although this method may lead to delayed
processing due to having many stages for data transfer between each cloud server, a
reduced time delay between stages is insignificant for data processing. During the
temporary disuse of data processing for photogrammetric measurement and landslide
monitoring analysis, the user can stop the GPU cloud server working. This minimises
expense of the pay-as-use cloud based system. The solution of data processing on a multi-
cloud server therefore performs a balance of the workload on cloud computing to provide

a low-cost approach to system development. For the execution of this system developed
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for landslide monitoring, the monthly costs of both photogrammetric processing and
monitoring analysis using the Amazon cloud server and cloud storage are approximately

£20 (2018 prices).

To implement the system on a multi-cloud server, the development of the back-end
service is divided into two key modules in SkyPMMS, following the illustration presented
in Figure 3.25. With the module of photogrammetric measurement to generate the
photogrammetric results (Figure 3.27), the cloud servers implement several procedures

and software routines, as follows:

1) jQuery File Upload is used to upload image files from the mobile device to the
main cloud server.

2) Image data are transferred from the main cloud server and stored in the Amazon
S3 cloud storage using the AWS Command Line Interface (CLI).

3) The settings of data processing are sent to the GPU cloud server with a request for
processing and then the image data is retrieved from the Amazon S3 cloud storage.

4) The developed functions of pre-processing for the SfM technique, such as pre-
image matching and lens distortion correction are used to prepare the image data
before photogrammetric processing.

5) VisualSFM is used for 3D reconstruction of the imagery from landslide
monitoring areas and then MVS techniques using CMVS/PMVS (Furukawa et al.,
2010; Furukawa and Ponce, 2010) generates point clouds.

6) The advanced functions of post-processing such as geo-referencing, automatic de-
noising and vegetation filtering are used to prepare the results prior to landslide
deformation assessment.

7) The PotreeConverter open source code (Schiitz, 2015) is used to convert the
results to Potree format to utilise rendering of the point clouds, and then the results

are transferred from the GPU cloud server and stored on the Amazon S3 cloud.

In addition, the main cloud server is used to retrieve the results from the cloud storage
and update the view of the point cloud through a web-based 3D viewer. This
implementation of the back-end service uses the HTML rendering code with a PHP script
in order to control the workflow of the photogrammetric measurement system on both the

cloud servers and display the output.
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Figure 3-27: The workflow of the photogrammetric measurement module based on a
multi-cloud server.

With regards to the second main module of the back-end service (Figure 3.28), there are
several tasks implemented on the cloud servers to analyse multi-epoch datasets in order

to assess landslide processes over time, as follows:

1) The main cloud server is used to retrieve the settings of multi-epoch analysis from
a smart phone and send a request for analysis to a cloud server for data processing.
2) The cloud server for data processing retrieves the photogrammetric results from
the Amazon S3 cloud storage according to the settings of multi-epoch analysis,
and then performs the change assessment of landslides (following the workflow

in section 3.4.6).
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3) The results from landslide monitoring analysis are transferred from this cloud

server and stored on the Amazon S3 cloud.

Furthermore, the main cloud server is used to retrieve the results from the cloud storage
and update representation of the output to the mobile platform. SkyPMMS also employs
the thin client approach through HTMLS technology such that it can operate using a

standard web browser on multiple platform types (e.g. smart phone, tablet, desktop

computer).
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Figure 3-28: The workflow of the landslide monitoring analysis module based on a
multi-cloud server.
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3.5.3 Development of a mobile application

The mobile application is used as the front-end viewing platform for SkyPMMS in order
to connect to the landslide monitoring system on the cloud environment. This application
also helps the operator to control the system on a smart phone for on-site investigation of
landslide monitoring. The development of this mobile application is based on an Android
OS using the Java programming language in the Android Studio integrated development
environment (IDE). The development of the front-end utilizes WebView to display web
pages for Android mobile application that is similar to a standard web browser on a smart
phone. The front-end client using a mobile application has an advantage over using a

standard web browser in that it does not request the URL of the main cloud server.

The main features of this front-end side of SkyPMMS can be classified according to the
two main modules of the system, as shown in Figure 3-25. First, the photogrammetric
measurement module is used to upload images, select options for processing, send data
processing requests and illustrate point cloud results in a 3D viewer on a smart phone.
Second, the landslide monitoring analysis module is used to select photogrammetric
results, set the parameters of the M3C2 method and display the output of analysis in a 2D
viewer. Figure 3-29 shows the user interface for the mobile application of both modules.

The manual of this mobile application is provided in Appendix C.
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3.5.4 Summary of the developed system

The SkyPMMS system was developed in the form of a Web-based service for
photogrammetric measurement and landslide monitoring. The cloud server and cloud
storage service were implemented for the back-end of the system. The multi-cloud server
was applied to manage data processing for a real-time response. Photogrammetric
processing on the GPU cloud server worked efficiently to resolve the problem of
computationally-intensive workflows of the SfM software. The connection of the system
uses Internet via a 3G/4G or a Wi-Fi network on mobile devices. The operator can utilize
the developed system through a mobile application to process landslide monitoring in-

situ.

3.6 Summary

A photogrammetric monitoring solution using mobile devices has been proposed for on-
site investigation of landslide monitoring to deliver a low-cost approach for geology,
geophysics or geotechnical engineering. The system implementation and development for
on-site investigation of landslide monitoring is designed based on a mobile platform with
cloud computing technology to enable real-time processing. SfM-based photogrammetry
is used for photogrammetric processing that is fully-automated processing. Although the
use of non-commercial SfM software for 3D reconstruction from the image data is
required for the development of a low-cost landslide monitoring system, the development
of advanced functions was necessary to deliver appropriate photogrammetric results
before assessing landslide processes. Focusing on the stages related to pre- and post-
processing of SfM photogrammetry, the developed functions are used to improve the
quality of results and enhance the performance of data processing. The development of
workflows for landslide monitoring analysis are used to deliver the preliminary results
for assessing the changes in landslide deformation. The landslide photogrammetric
monitoring system utilises automated workflows to offer friendliness for the operator.
Evaluation of the developed functions ensured satisfactory system performance before
assessing and testing the solution at the landslide test areas. Experimental studies of the

system are described in the next chapter.
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Chapter 4. Performance evaluation

4.1 Introduction

The development of a monitoring system in this research aims to offer a low-cost, real-
time photogrammetric solution for the initial assessment of landslide hazards using a
smart phone. The primary evaluation of the photogrammetric potential of a smart phone
camera and the allied processing software was essential to ensure the quality of results
for landslide monitoring purposes. In the case of on-site investigation, the developed
system was expected to deliver a real-time photogrammetric measurement and
monitoring solution directly on the employed mobile device. The performance of
developed functions for the improved photogrammetric processing and landslide

monitoring on the cloud is evaluated in this chapter.

4.2 Photogrammetric landslide monitoring using mobile devices

Before developing a solution for photogrammetric measurement and implementing
landslide monitoring on a smart phone, it was necessary to evaluate the photogrammetric
results from a smart phone camera to investigate the potential of affordable image-based
mobile technology for landslide monitoring. A smart phone camera with a 5-megapixel
sensor was evaluated as a typical off-the-shelf camera. Moreover, in this experiment
imagery was collected using a DSLR camera with a high-quality sensor in order to
compare against the photogrammetric results from a low-cost smart phone camera. The
evaluation of the photogrammetric results from different processing softwares for both

cameras was used to examine the capability for measuring landslide movement.
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4.2.1 Experimental design

In a comparison of using different digital cameras for landslide monitoring, a smart phone
(iPhone 4) and a DSLR (Nikon D300) camera were tested. The details of both digital
cameras were described in the previous chapter. Two image datasets were captured on 20
March 2015 around a natural landslide slope at the British geological survey (BGS)’s
Hollin Hill landslide observatory using both cameras at the same positions. Each image
dataset comprised 48 images. Targets were established and used for photo control points
in geo-referencing to provide photogrammetric results in the same coordinate system. The
location of targets was determined using a TLS survey. Moreover, a higher-resolution,
higher-accuracy dataset was collected on the same day using TLS observation to enable
an accuracy assessment of photogrammetric results. In this experiment, the methodology

was carried out as illustrated in Figure 4-1.
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Figure 4-1: Methodology in the camera comparison experiment.

With regard to the SfM-photogrammetric processing, 3D reconstruction of both image
datasets was performed using three software packages, including: 1) AgiSoft PhotoScan;
2) VisualSFM & PMVS; 3) Bundler & PMVS. For geo-referencing in PhotoScan and

84



VisualSFM & PMVS, the observation of targets was directly carried out in the imagery.
These photogrammetric results were in the form of 3D point clouds with geospatial
information. On the other hand, photogrammetric results obtained from Bundler & PMVS
had to be georeferenced using the resultant point clouds and the point pairs picking tool
in CloudCompare. For assessment of photogrammetric accuracy, the comparison between
photogrammetric results and higher quality data from the TLS survey was performed
using the C2M distance in CloudCompare. This comparison method was computed by
associating each point in the evaluation dataset (the SfM models) with its closest point in
the reference dataset (the TLS data). As a result of this, the differences between the StM
models and the TLS data were calculated as three-dimensional distance errors. However,
geo-referencing might cause additional errors in the transformation processes. To reduce
this negative effect, the ICP algorithm (without adjustment of scaling) was applied to the
photogrammetric results before comparison (James and Robson, 2012; Micheletti ef al.,

2015a)

4.2.2 Test results

Unfortunately, the Bundler photogrammetry package, comprising Bundler and PMVS,
could not deliver the necessary photogrammetric results in this experiment because of too
few number images to enable reconstruction of a 3D model. However, photogrammetric
processing was achieved in both PhotoScan and VisualSFM & PMVS for 3D
reconstruction from the same images. The different performance of each SfM software
had a direct impact on the potential of photogrammetric processing. The comparison of
results between the SfM outputs and the TLS data was calculated as distance errors to

quantify the photogrammetric accuracy of each camera and SfM software (Table 4-1).
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Table 4-1: Statistics of distance errors between SfM models and TLS data for direct
registration and after applying the ICP algorithm.

. ) After geo-referencing After applying ICP
Digital | Processing

(m) (m) (m) (m) (m) (m)
: PhotoScan 0.022 0.020 0.021 0.000 0.022 0.025
Nikon

D300 VisualSFM

& PMVS 0.018 0.023 0.025 | -0.002 0.030 0.031

PhotoScan 0.032 0.034 0.035 0.015 0.030 0.032
Phone 3 1 aISFM

U
& PMVS 0.030 0.058 0.060 0.008 0.056 0.057

Following Table 4-1, the mean and root-mean-squared error (RMSE) values of both
PhotoScan and VisualSFM and PMVS (using a direct registration) from a Nikon D300
camera were smaller than from an iPhone 4 camera. It is likely than the photogrammetric
accuracy captured from a Nikon D300 camera was slightly better than from an iPhone 4
camera in both SfM software packages. Moreover, the photogrammetric results obtained
from PhotoScan provided a higher accuracy than VisualSFM and PMVS for both
cameras. After applying the ICP algorithm to photogrammetric results, the mean of
distance errors between the SfM models and the TLS data decreased significantly to 0.0
and 1.5 cm. This mean value of distance error reveals a biased outcome after geo-
referencing, whereas it does not show the quality of photogrammetric accuracy (Stumpf
et al., 2015). Clearly, the ICP algorithm helped reduce influences of geo-referencing
errors for the SfM approach. The RMSE values of a Nikon D300 from PhotoScan and
VisualSFM & PMVS increased to 0.4 and 0.6 cm, respectively after applying the ICP
algorithm. Meanwhile, the RMSE values of an iPhone 4 from both software decreased to
0.3 cm after applying the ICP algorithm. Nonetheless, the use of the ICP algorithm does
not always return better accuracy and the photogrammetric accuracy was not significantly
improved. Due to uncertainties of vegetated surfaces, photogrammetric results still had
some errors from the vegetation effects. To conclude, the SfM outputs captured from a
smart phone camera and photogrammetric processing based on freely available software
using VisualSFM & PMVS provided results of sub-dm-level accuracy (between 5.7 and
6.0 cm).

86



4.3 SfM-photogrammetric processing based on cloud computing

From the development of a photogrammetric measurement system on the cloud, as
described in the previous chapter, this experiment was carried out to ensure efficient
performance of the developed system. In particular, the SfM-results obtained using a
state-of-the-art smart phone at the outset of the research were evaluated for the

photogrammetric accuracy and compared to two other alternative SfM methods.

4.3.1 Experimental design

The smart phone tested in this experiment was a Nexus 6. Imagery was captured on 10
June 2015 with a maximum image resolution of 4160 x 3120 pixels (approximately 13
megapixels). This image dataset comprised 36 images captured around a natural landslide
at the BGS’s Hollin Hill landslide observatory. Markers for geo-referencing were located
around the landslide, comprising six photo control targets printed on paper. The locations

of markers, camera stations and viewing direction of the captured images are shown in

Figure 4-2.
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Figure 4-2: Illustration of camera positions for photogrammetric image capture.

Moreover, for validation of photogrammetric results, a high-resolution, high-accuracy
TLS dataset was collected on the same date using a Leica ScanStation P20 to compare
with each photogrammetric approach. The TLS data was captured from four scanner
positions to ensure complete coverage of the full landslide area. Finally, the locations of
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the six photo control targets and the four TLS stations were observed with GNSS at mm-

level accuracy. The configuration of this experiment is outlined in Figure 4-3.

Photo Control | Ground Control
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Figure 4-3: Methodology in the photogrammetric processing comparison experiment.

Following the methodology flowline illustrated in Figure 4-3, each SfM-photogrammetric
processing workflow, conducted under laboratory conditions, used the same 36 image
dataset. Photogrammetric processing with PhotoScan was performed on a desktop
computer running on Windows 8 OS using an Intel Core 17-4770 Processor with 3.4 GHz
CPU, 16 GB of RAM and an Intel HD Graphics 4600 with 1.4 GHz GPU. SkyPMMS
(based on VisualSFM and PMVS) was run on the g2.2xlarge of Amazon EC2 instance
under Windows Server 2012 with Intel Xeon E5-2670 Processor, 15 GB RAM and
NVIDIA GPUs with 4GB of video memory. For data processing in Autodesk 123D Catch,
the specification of the processing system is unknown because it is a web-based black

box service for SfM.

For the geo-referencing step in VisualSFM and PMVS (implemented on the cloud) and
Agisoft PhotoScan, the locations of targets were observed directly in the imagery, and
this step was undertaken as part of the workflow. However, 123D Catch did not allow the
user to undertake geo-referencing in the processing system. The SfM output from 123D
Catch was georeferenced by identification of targets in the point cloud using the

CloudCompare software. This step of the methodology for all SfM approaches required
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manual input by the user. Next, the de-noising stage consisted of automatic and manual
outlier removal was used to completely remove all gross errors for the photogrammetric
results before the evaluation of SfM results from all three approaches. Finally, the
comparison between photogrammetric results from each SfM approach and the TLS data,
which was used for the evaluation of the SfM results, was carried out using the cloud-to-

mesh distance tool in CloudCompare.

4.3.2 Test results

Visual comparison of the results provided by different SfM methods, as shown in Figure
4-4, shows Agisoft PhotoScan was able to produce a much denser point cloud than both
Autodesk 123D Catch and the cloud-implemented VisualSFM & PMVS. Moreover,
123D Catch produced more uniform coverage than VisualSFM & PMVS, which was
sparser, especially over vegetated surfaces. Nevertheless, the resultant point clouds
generated by the latter two methods still provided the key information over landslide

areas, especially fissures and cracks on the landslide body.

(a) e (b)

Figure 4-4: Photogrammetric point clouds obtained from the three adopted SfM
approaches; (a) VisualSFM & PMVS, (b) Autodesk 123D Catch, (c) Agisoft
PhotoScan, and the TLS validation data (d).

89



With regard to the assessment of photogrammetric accuracy from each SfM method with
a high-resolution TLS dataset, statistics of the comparison between each SfM output and
the TLS data are presented in Table 4-2. In addition, the distributions of distance

difference are shown in Figure 4-5.

Table 4-2: Statistics of differences between the different StM-outputs and the TLS data.

TLS-SIM
SfM method Min Max Mean SD RMSE
(m) (m) (m) (m) (m)
Agisoft PhotoScan -0.545 0.463 0.022 0.034 0.036
Autodesk 123D Catch -1.186 0.357 0.013 0.041 0.043
VisualSFM & PMVS -0.406 0.461 0.027 0.050 0.053

Table 4-2 shows that minimum differences between 123D Catch and the TLS reference
was noticeably higher than that of both PhotoScan and VisualSFM & PMVS. This is due
to gross errors in the point cloud produced by 123D catch which have a greater impact on
the range of differences, even though it was reduced by de-noising. Statistics of the results
provided by PhotoScan showed the highest quality. This is further confirmed in Figure 4-

5, which depicts the distribution of distance differences.
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Figure 4-5: The distribution of distance differences between each SfM result and the
TLS data; (a) PhotoScan, (b) 123D Catch and (c) VisualSFM & PMVS.

Based on the presented results, all means of the distance differences showed positive
values, indicating that all SfM point clouds were slightly above the ground points of TLS
data because the results from the SfM approach were often on top of vegetated surfaces.
The RMSE values from PhotoScan, 123D Catch and VisualSFM & PMVS were 0.036,
0.043 and 0.053 m, respectively. Consequently, the photogrammetric approach using the

StM technique based on the development system can be deemed to provide results at sub-
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dm level accuracy for this type of landslide surface in the same previous experiment

(about 5.3 cm).

In terms of the application for photogrammetric processing, PhotoScan was not suited to
on-site investigation of landslides because the software supports only a stand-alone
system such as a desktop or laptop computer. On the other hand, Autodesk 123D Catch
provides access for Internet-based processing, in a similar manner to SkyPMMS as cloud-
implemented VisualSFM & PMVS. However, manual target geo-referencing in the point
cloud (123D Catch) proves more difficult than target identification in imagery

(SkyPMMS), which makes the process less convenient for the end user.

In the case of data transfer for photogrammetric processing on the cloud implemented
SkyPMMS, this experiment required the uploading of 36 image files from a smart phone
to the cloud server. The total file size of this image set was approximately 260 MB. Wi-
Fi with an average upload speed of 40 Mbps was used to transfer the images from a smart
phone to the cloud, with the total upload time taking approximately 1 minute. Table 4-3
summarizes the predicted upload time for such a dataset using different Internet networks
on a smart phone. Transfer using a 3G network would take approximately 35 minutes,
which is clearly unsuitable for a real-time photogrammetric measurement system. It is,
however, anticipated that faster 4G internet will be more widespread in the future and

would allow a near real-time response for such a system.

Table 4-3: Estimated data transfer time from a smart phone to the cloud server for 36
images (260MB in total).

Type of mobile | Average upload speed | Time for data upload
networks (Mbps) (minutes)
3G 1 34.7
4G 10 3.5
Wi-Fi 40 0.9

As discussed above, the photogrammetric processing for SkyPMMS (based on
VisualSFM and PMVS) could provide results achieving centimeter-level accuracy.
However, from the completeness assessment of photogrammetric results, the main
weakness of the photogrammetric processing using free and open SfM software was the
low point density and data gaps (void areas) in the generated point cloud results when
compared to that produced by commercial SfM software. Typically, an increase in the
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number of images will increase the number of points, or point density, for
photogrammetric results. However, the use of additional images will result in an increase
in uploading and processing time. To overcome this issue, optimisation of the imaging
network for photogrammetry was considered to find a suitable relationship between the
number of camera stations and size of each image before uploading images to the cloud-

based system.

4.4 Optimisation of imaging network

Due to a delay in real-time response for landslide monitoring when using SkyPMMS,
time-consuming data transfer and processing on the cloud-based SfM-photogrammetric
measurement system should be mitigated by optimising input data prior to uploading.
This is necessary to mitigate 1) excessive amounts of image data used for processing on
the cloud and 2) the inefficient performance of an Internet service via current mobile
networks. Moreover, the completeness of photogrammetric results obtained from free
StM software was sometimes found to be insufficient to be used for landslide monitoring
analysis. To deliver the appropriate quality of photogrammetric results for landslide
monitoring, an optimal imaging network would provide an appropriate image size and a

suitable number of camera stations prior to uploading data to the cloud.

4.4.1 Experimental design

As with the previous experiment, imagery was acquired on 10 June 2015 at the BGS’s
Hollin Hill landslide observatory using a Nexus6 smart phone camera. The image data
tested comprises 74 images of 4160x3120 pixels (maximum resolution of the Nexus6).
The validation for assessing photogrammetric accuracy was performed using a Leica
ScanStation P20 from four scanner positions. The locations of the four laser scanning

stations were observed using the GNSS survey.
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For the optimal imaging network in this experiment, the two main factors assessed were
the number of images and size of each image. Firstly, the different number of images in
each approach was defined according to the condition of the location of camera station
and a B/D ratio. As reviewed in the previous chapter, the optimal B/D ratio for such
photogrammetric networks is between 0.1-0.3 for SfM-based 3D reconstruction. The

values of B/D ratio were calculated as shown in Table 4-4.

Table 4-4: Comparison of B/D ratio used in each image dataset.

Number | Average | Average
of base distance B/D

images (m) (m) ratio
24 3.811 15 0.254
28 3.271 15 0.218
32 2.869 15 0.191
36 2.558 15 0.171
40 2.302 15 0.153
44 2.097 15 0.140
48 1.925 15 0.128
52 1.775 15 0.118
56 1.649 15 0.110
60 1.540 15 0.103
64 1.443 15 0.096
68 1.361 15 0.091
72 1.286 15 0.086
74 1.251 15 0.083

For this experiment, the number of images used in each approach was selected from 24
to 60, increasing in steps of four images. The photogrammetric configuration of each

approach is shown in Figure 4-6.
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Figure 4-6: Comparison between photogrammetric configuration of each approach.
Secondly, the size of each image was sequentially reduced by 10%. However, resizing
images of more than 70% of the original image size were not considered because it was

lower than the essential requirement of image resolution for photogrammetric approach

(>1 megapixels defined as a high resolution of digital camera). Thus, the details of each

image were used in this experiment from original size to 70%, reducing in image
resolution, as shown in Table 4-5.
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Table 4-5: Comparison between image resolution and size used in each approach.

Size of imace Image resolution | Image size Pixel size

& (Pixels) (MP) (um)
Original size 4160x3120 13.0 1.12
Reducing 10% 3744x2808 10.5 1.24
Reducing 20% 3328x2496 8.3 1.40
Reducing 30% 2912x2184 6.4 1.60
Reducing 40% 2496x1872 4.7 1.87
Reducing 50% 2080x1560 3.2 2.24
Reducing 60% 1664x1248 2.1 2.80
Reducing 70% 1664x1248 1.2 3.36

¥ ¥
The number of images: Image size:
1 24 images % Original size
2. 28 images 2. Reducing 10%
3. 32 images 3 Reducing 20%
4. 36 images 4. Reducing 30%
5. 40 images 5y Reducing 40%
6. 44 images 6. Reducing 50%
AL 48 images L Reducing 60%
8. 52 images 8. Reducing 70%
9. 56 images
10. 60 images

!

VisualSFM and PMVS

Photo Control
Targets

Ground Control
Points

!

De-noising

!

Evaluation

Figure 4-7: Methodology in the optimisaion of imaging network experiment.

Figure 4-7 shows the methodology that used a different number of images and image size
in order to optimise photogrammetric results
photogrammetric processing was carried out using SkyPMMS (based on VisualSFM and
PMVS) on the cloud server. For geo-referencing with the target-based observations, a
pair list of coordinates between target location in the imagery and the GNSS-based target
observation were exported to text file format for geo-referencing. Then, the de-noising

step was carried out manually using CloudCompare software on a desktop computer.
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Finally, in terms of the evaluation of photogrammetric results and the performance of
photogrammetric processing at each approach, an accuracy assessment was performed
between the SfM point clouds and TLS data using the cloud-to-mesh distance in

CloudCompare.

4.4.2 Test results

Unfortunately, photogrammetric processing of SkyPMMS (based on VisualSFM and
PMVS) could not successfully reconstruct 3D models when the number of images fell
below 36. Because the overlaps were less than three images, the quality of the

photogrammetric network in those images was unacceptable (as shown in Figure 4-8).

24 images 28 images

36 images

_‘

Figure 4-8: Comparison of image matching matrix for the relationship between each
image in each approach.

In terms of the assessment of photogrammetric accuracy in this experiment, the statistics
of the comparison between each SfM approach and a high resolution TLS survey are

shown in Table 4-6 and Table 4-7.
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Table 4-6: Comparison of mean value for the differences between each SfM approach
and the reference TLS data.

Mean (m)

Size of image 36 40 44 48 52 56 60
images | images | images | images | images | images | images

Original images 0.027 0.028 0.028 0.025 0.026 0.024 0.026

Reducing 10% 0.028 0.026 0.029 0.030 0.025 0.028 0.024

Reducing 20% 0.036 0.028 0.030 0.027 0.027 0.025 0.024

Reducing 30% 0.032 0.030 0.038 0.027 0.028 0.029 0.026

Reducing 40% 0.036 0.028 0.031 0.029 0.024 0.027 0.025

Reducing 50% 0.040 0.030 0.026 0.031 0.029 0.031 0.028

Reducing 60% 0.038 0.033 0.030 0.030 0.033 0.031 0.033

Reducing 70% 0.041 0.036 0.038 0.038 0.034 0.031 0.036

Table 4-7: Comparison of RMSE value for the differences between each SfM approach
and the reference TLS data.

RMSE (m)

Size of image 36 40 44 48 52 56 60
images | images | images | images | images | images | images

Original images 0.058 0.056 0.051 0.057 0.062 0.059 0.056

Reducing 10% 0.059 0.062 0.056 0.058 0.059 0.057 0.056

Reducing 20% 0.066 0.063 0.059 0.057 0.059 0.055 0.057

Reducing 30% 0.058 0.063 0.057 0.059 0.057 0.058 0.060

Reducing 40% 0.064 | 0.061 0.059 | 0.060 | 0.062 0.058 0.058

Reducing 50% 0.070 |  0.068 0.063 0.061 0.067 0.063 0.062

Reducing 60% 0.082 0.076 0.065 0.069 0.072 0.070 0.059

Reducing 70% 0.095 0.088 0.074 0.071 0.074 0.071 0.065

Table 4-6 and Table 4-7 reveal that the values of both mean and RMES of the differences
between each SfM approach and the reference TLS data improved only very marginally
when the number of images used for data processing increased. Meanwhile, reducing
image resolution in each image led to the degraded values of both mean and RMSE of the
differences between their results. This is to be expected as, in terms of photogrammetric
accuracy, a lower-image resolution could directly affect the precision of image
mensuration and geo-referencing. The lower quality of photogrammetric measurement
therefore caused a decreased accuracy in the results. However, each SfM-
photogrammetric approach provided results from sub-dm (5.1 cm) to dm (9.5 cm) level

accuracy, in this type of landslide. The natural slope in this experiment was mainly
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covered by vegetated surfaces. Vegetation effects therefore had an influence on this

assessment of photogrammetric results.

With regard to the evaluation of completeness for photogrammetric results, the number

of points and density of point cloud obtained from each approach were analysed and are

showed in Figure 4-9.
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Figure 4-9: Comparison of the relationship between the number of points and point
density of photogrammetric results obtained from each SfM approach.

Figure 4-9 shows an increasing number of points and point density when using more

images for processing. It can be seen that an increase in the number of images results

directly in a higher number of both points and density due to the increased overlapping

areas for dense image matching in 3D reconstruction. On the other hand, decreasing

image resolution for each image reduces both the number of points and point density.

Although the completeness of results was improved by increasing the number of images

(or camera stations) for photogrammetric processing, their point clouds still had void data,
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as shown in Figure 4-10. Such a point cloud over bare-earth surfaces of each approach
retains the key information, such as cracks or fissures, that might be used for assessing

the landslide deformation.
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Figure 4-10: Comparison of photogrammetric point clouds obtained from different
number of images and different image size.

Regarding the performance evaluation of photogrammetric processing on SkyPMMS, the
results for the processing time at each approach are shown in Table 4-8. The estimation
of file size and upload time for each approach was calculated from image data transfer to
the cloud using a 4G and a Wi-Fi network (at approximately 10 and 40 Mbps of average

upload speed, respectively), as shown in Table 4-9.
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Table 4-8: Comparison of processing time between the different camera station and

image resolution using SkyPMMS on the cloud.

Data processing time (min)
Size of image 36 40 44 48 52 56 60

images | images | images | images | images | images | images
Original images 8.58 9.63 11.78 13.65 14.70 16.13 17.58
Reducing 10% 6.47 9.02 9.47 11.10 11.93 12.97 15.40
Reducing 20% 5.93 6.90 7.65 8.77 9.05 10.67 11.70
Reducing 30% 6.00 7.58 8.22 8.95 10.67 11.68 12.80
Reducing 40% 5.58 6.55 8.13 8.88 10.35 11.02 11.88
Reducing 50% 5.32 6.35 7.27 8.22 9.15 10.42 11.57
Reducing 60% 3.70 4.40 4.82 5.63 6.15 6.83 7.50
Reducing 70% 3.18 4.06 4.65 5.04 5.85 6.40 6.85

Table 4-9: Comparison of image resolution between estimated file size and estimated
upload time used in each approach. The data in brackets are estimated upload
time using a 4G and a Wi-Fi network, respectively.

_ Estimation of file size (MP) and upload time (min)
Sirlfljg"ef 36 | 40 [ 4 | 48 [ 52 | 56 | 60
images | images | images | images | images | images | images
Original 260 289 318 347 376 404 433
images (3.5,0.9) | (3.9,1.0) | (4.2, 1.1) | (4.6,1.2) | (5.0,1.3) | (5.4,1.3) | (5.8, 1.4)
Reducing 234 260 286 312 338 364 390
10% (3.1,0.8) | (3.5,0.9) | (3.8,1.0) | (4.2,1.0) | (4.5, 1.1) | (4.9,1.2) | (5.2,1.3)
Reducing 208 231 254 277 300 324 347
20% (2.8,0.7) | (3.1,0.8) | (3.4,0.8) | (3.7,0.9) | (4.0, 1.0) | (4.3, 1.1) | (4.6, 1.2)
Reducing 182 202 222 243 263 283 303
30% (2.4,0.6) | (2.7,0.7) | (3.0,0.7) | (3.2,0.8) | (3.5,0.9) | (3.8,0.9) | (4.0, 1.0)
Reducing 156 173 191 208 225 243 260
40% (2.1,0.5) | (2.3,0.6) | (2.5,0.6) | (2.8,0.7) | (3.0,0.8) | (3.2,0.8) | (3.5,0.9)
Reducing 156 173 191 208 225 243 260
50% (1.7,0.4) | (1.9,0.5) | (2.1,0.5) | (2.3,0.6) | (2.5,0.6) | (2.7,0.7) | (2.9,0.7)
Reducing 130 145 159 174 188 202 217
60% (1.4,0.3) | (1.5,0.4) | (1.7,0.4) | (1.9,0.5) | (2.0,0.5) | (2.2,0.5) | (2.3, 0.6)
Reducing 104 116 127 139 150 162 173
70% (1.0,0.3) | (1.2,0.3) | (1.3,0.3) | (1.4,0.3) | (1.5,0.4) | (1.6,0.4) | (1.7,0.4)

Based on the performance results of processing in Table 4-8, data processing time of

SkyPMMS was inevitably longer when the number of images increased. Clearly the more

images (camera stations) used for landslide photogrammetric monitoring, the longer time

is required for both data transfer and data processing. The processing time from each

approach dramatically increased from 3.18 to 17.58 minutes, whereas the estimation of
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upload time of each approach (in Table 4-9) was slightly different (approximately 1.1 min
ranging from 0.3 min to 1.4 min). Time for data transfer using a Wi-Fi network was
relatively insignificant when compared to data processing time. On other hand, the
estimation of upload time using a 4G network was dramatically different (about 4.8 min

ranging from 1.0 min to 5.8 min).

With respect to decrease of the data processing time, reducing the resolution of each
image can also critically help. For example, the relationship between the
photogrammetric accuracy and data processing time of each approach was generated to
find the optimal imaging network as in the results of this experiment, as shown in Figure

4-11.
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Figure 4-11: Comparison of the relationship between data processing time obtained
from each SfM approach and the RMSE of differences between each SfM result and the
TLS data in each approach.

For the optimisation of the imaging network, there are four crucial factors to balance the
data processing time for a near real-time response for landslide monitoring: 1) the number
of images, 2) image resolution, 3) photogrammetric accuracy and 4) data processing time.
The optimal image resolution for each image was selected by consideration of resultant

photogrammetric accuracy and data processing time. From Figure 4-11, the resolution of
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each image in a photoset can be reduced between 20% and 30% of the original image size
with only slight differences in photogrammetric accuracy and processing time when 40
and 44 images were processed. Referring to Table 4-4, the number of images (40 and 44
images) were assumed as a B/D ratio of 0.14-0.15. Thus, the recommended design of
photogrammetric configuration should be a B/D ratio of approximately 0.1-0.2.
Furthermore, data processing time of each approach was not significantly lowered when

> 20% reduction of original image size was applied (Figure 4-12).
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Figure 4-12: Data processing time obtained from each approach.

To conclude, firstly, although a larger number of images (or camera stations) helps
improve the quality of imaging network for photogrammetric approach, the improvement
of photogrammetric accuracy and completeness of results were insignificant (i.e.
accuracy increased slightly at the mm level). Secondly, a decrease in image resolution
also helps increase the speed of photogrammetric processing reducing the processing
time, whereas the difference of time for image data transfer using Internet service via a
Wi-Fi network was insignificant (i.e. approximately 0.9 min), and the accuracy of
photogrammetric results decreased slightly. Finally, for optimising the imaging network,
the recommended design of photogrammetric configuration in this experiment (using a
B/D ratio of 0.1-0.2) can be confirmed and this configuration yields the appropriate

photogrammetric results. In addition, already improved image data (i.e. 20%-30% of
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image size reduction) before transferring or uploading to the cloud-based server can

enhance the performance of data processing.

4.5 Performance evaluation of developed functions for photogrammetric
processing

In this section, the experimental studies of the functions implemented in the
photogrammetric measurement and monitoring system were evaluated to ensure the
development of a low-cost, real-time solution for on-site investigation of landslide hazard
analysis. A series of assessments for each developed function was performed comprising
pre-processing and post-processing stages for the SfM-photogrammetric approach and

landslide monitoring analysis.

4.5.1 Pre-image matching

For the SfM-photogrammetric approach to reconstruct 3D models from images, there are
normally four main stages, including feature detection, image matching, sparse
reconstruction and dense reconstruction. To clarify understanding of processing time in
each stage for the SfM approach, an experiment in photogrammetric processing from
three image datasets acquired at the Hollin Hill landslide was carried out using
VisualSFM and PMVS on a desktop computer running on Windows 8 OS including an
Intel Core 17-4770 Processor with 3.4 GHz CPU, Intel HD Graphics 4600 and 16 GB
RAM of memory. The processing times in this experiment are shown in Table 4-10 and

Figure 4-13.

Table 4-10: Data processing time of each stage in the SfM workflow obtained from
different numbers of images.

The Data processing time (minutes)
nl}mber of | Feature Image recsé)r?srtsrict recl?)flz‘f:uct Total
Images detection matching . .
-ion -ion
36 0.2 3.0 2.5 3.3 9.0
48 0.3 5.3 2.8 5.4 13.8
60 0.3 8.3 2.6 6.7 17.9
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Figure 4-13: Comparison of data processing time at each stage obtained from the SfM-
photogrammetric processing using VisualSFM and PMVS.

Considering Table 4-10 and Figure 4-13, the number of images used for processing had
a direct effect on processing time. When the number of images increased from 36 images
to 48 images and 60 images, matching time increased 77% and 176%, respectively.
Clearly, the more images that were processed, the longer image matching took. The

image matching stage in the SfM approach needs to be investigated.
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Figure 4-14: Percentage comparisons of data processing time in each stage of the SfM-
photogrammetric approach using VisualSFM and PMVS with three image datasets; (a)
36 images, (b) 48 images and (c) 60 images.

Figure 4-14 shows the proportion of each stage for 3D reconstruction using VisualSFM
and PMVS. The two stages that took the majority of data processing time were image
matching and dense reconstruction. In this experiment, image matching time based on the
method of full-image matching for 36, 48 and 60 images were approximately 34%, 39%
and 46% of the total data processing time, respectively. As mentioned in Section 3.4.1,
the algorithm developed for pre-image matching was used to reduce time in the image

matching stage for the SfM approach. The comparison of image matching and data
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processing times between pre-image matching and full-image matching are presented in

Table 4-11 and Figure 4-15.

Table 4-11: Comparison of image matching time and data processing time using full-
and pre-image matching method.

Ny Total of data
Image matching time Percentage . : Percentage
(minutes) £ reduced processing time f reduced
of reduce . of reduce
Number of feau (minutes) Jfeau
i mages time for time for
g 'Full- . Pre- image 'Full- ' Pre- data
1mage 1mage matching 1mage 1mage processing
matching | matching matching | matching
36 3.0 0.6 79% 9.0 6.6 27%
48 5.3 1.1 80% 13.8 9.6 31%
60 8.3 1.4 84% 17.9 10.9 39%
Image matching time Data processing time
m Full-image matching ~ m Pre-image matching ® Full-image matching ™ Pre-image matching
9.0 83 20.0
8.0 18.0
70 __ 160
‘g 6.0 53 ‘2 140
£ £ 120
£ >0 £ 100 9.0
o 4.0 (7]
E 3.0 E 80 6.6
= £ 60

36 48 60 36 48 60
The number of images The number of images

(@) (b)

Figure 4-15: Comparison of processing time from different image matching methods
and the number of images; (a) image matching time and (b) data processing time.

However, the method of pre-image matching needs to be processed using the developed
function before image matching in the SfM workflow. Pre-image matching took only a

few seconds of processing time and was insignificant compared to image matching time.

To conclude, the function developed for pre-image matching from image sequences can
help to reduce image matching time in the SfM workflow by around 80%. As a result,
total data processing time of the SfM workflow using pre-image matching in this

experiment can be reduced by approximately 30% compared to image matching based on
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the standard method. The developed pre-image matching algorithm can therefore lead to

improved performance in achieving a real-time landslide monitoring system.

4.5.2 Lens distortion correction

Imagery captured by a digital camera usually incorporates effects of lens distortion. To
provide precise measurement from SfM-photogrammetry, this should be eliminated from
the imagery before photogrammetric processing. Lens distortion correction is performed
using a developed function with the calibrated camera modelling. The parameters of the
camera model were derived from camera calibration tool in Matlab software. An example
of imagery before and after applying lens distortion correction is illustrated in Figure 4-

16.

T
500 1000 1500 2000 2500 3000 3500 4000 500 1000 1500 2000 2500 3000 3500 4000

(a) (b)

Figure 4-16: Comparison between original image and image after applying lens
distortion correction; (a) before and (b) after.

In terms of accuracy assessment of photogrammetric results from raw and images
corrected for lens distortion, the imagery was acquired using a Nexus6 smart phone
camera. Photogrammetric processing used VisualSFM & PMVS. The validation data for
assessing photogrammetric accuracy was captured using a Leica ScanStation P20. The
comparison results of photogrammetric accuracy between the use of raw images and lens

distortion correction are shown in Table 4-12.
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Table 4-12: Statistics of distance differences between the different SfM results and the

TLS data.
TLS-SfM
Pre-processing Min Max | Mean SD | RMSE
(m) (m) (m) (m) (m)
Raw images -0.958 | 0.866 | -0.419 | 0.264 | 0.269
Images corrected for lens
distortion and fixed calibration -0.275 | 0257 0.004 ) 0.043) 0.046

Table 4-12 reveals that the mean and RMSE values of the differences between SfM output
using undistorted images with fixed calibration and the TLS data decreased considerably
when compared to the original images. The quality of photogrammetric results was
improved using the function developed for lens distortion correction, provided a higher

accuracy of photogrammetric results.

4.5.3 Geo-referencing

Geo-referencing, an important stage of post-processing for photogrammetric results, is
used to provide a real-world coordinate system for comparison and analysis of landslide
monitoring. For geo-referencing with GCPs or targets, their locations are normally
observed using a high-precision survey (e.g. GNSS or TLS). However, a solution for geo-
referencing based on both real-time processing and low-cost observation is important for
on-site investigation. This experiment focused only on geo-referencing without GNSS or
TLS observation for the location of GCPs or targets. The solution developed for geo-
referencing with dimensions of known objects was evaluated to determine the suitability

of a low-cost choice of geo-referencing for the user.

Following the geo-referencing routine explained in Section 3.4.3.2, the dimension of
known objects was firstly carried out using a high-precision distance measurement with
a Leica Disto D510 (with precision + 1 mm) to find the distances between each photo
control target (Figure 4-17). The details of measuring these distances are shown in Table

4-13.
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Figure 4-17: Configuration for photo control targets.

Table 4-13: Statistics of measuring distances between each photo control target.

From | To Distance measurements (m) Average of
#1 #2 #3 distances (m)
PT1 | PT2 14.11 14.11 14.12 14.11
PT2 | PTI 14.13 14.13 14.12 14.13
PT2 | PT3 14.37 14.38 14.39 14.38
PT3 | PT2 14.38 14.38 14.38 14.38
PT1 | PT3 28.13 18.13 28.13 28.13
PT3 | PT1 28.14 | 28.14 28.14 28.14

The use of pseudo coordinates for the three points enables precise scaling in the 3D model
of the photogrammetric results. Prior to scaling, the pseudo coordinates are generated as
follows. Firstly, the coordinates of the PT1 point are set to (0, 0, 0). Next, the coordinates
of PT2 are generated by (0, P1P2, 0) where P1P2 is the mean distance between PT1 and
PT2. Finally, the coordinates of PT3 point are determined at the intersection of arc of
length PT1 to PT3 and PT2 to PT3 in a 2D plane in which the Z coordinate of PT3 is set
at 0. Note that points (PT1, PT2, PT3) lie in a 3D plane for which the Z coordinates are
always 0. Thus, the photogrammetric results at each epoch are referenced using three

pseudo points.

109



The scaling of photogrammetric results thus uses a pair list of three targets with photo
coordinates and pseudo coordinates based on three distances measured between the target,
as presented in Table 4-13. After scaling the photogrammetric results using the developed
function, the next stage was manual alignment of photogrammetric results with the TLS
data. Then, the application of the ICP algorithm without scaling was performed using the
CloudCompare software on a desktop computer. To assess the photogrammetric accuracy
from this method, comparison of photogrammetric results and the TLS data was carried
out using the cloud-to-mesh distance tool in CloudCompare. The results of accuracy

assessment for this photogrammetric approach are presented in Table 4-14.

Table 4-14: Statistics of distance differences between the SfM results obtained from
different geo-referencing with the dimensions of known objects and applying
ICP and the TLS data.

TLS-StM
Pre-/Post-processing Min | Max | Mean | SD | RMSE
(m) (m) (m) (m) (m)

-0.574 | 1.602 | -0.017 | 0.082 | 0.084

Original images, Direct geo-
referencing and ICP

Original image,

Scaling, Alignment & ICP -0.282 | 0.297 | 0.010 | 0.045| 0.047

From Table 4-14, the values of the mean and RMSE of the differences between the STM
approach using geo-referencing with the dimensions of known object and applying ICP
and the TLS data were slightly lower when compared to a normal SfM approach. Also,
the quality of the photogrammetric accuracy using the function of geo-referencing and

applying ICP was similar to a normal SfM approach.

4.5.4 Automatic de-noising

The development of a function for automatic de-noising is used for gross outlier detection
and removal in point clouds to improve the quality of photogrammetric results before
landslide monitoring analysis. This algorithm for automatic de-noising is based on the
statistical outlier removal (SOR) filter. To clarify understanding of this method, the
experiment used the photogrammetric results acquired on 10 June 2015 at the Hollin Hill
landslide and processed using VisualSFM and PMVS. For the development of the

automatic de-noising function, the settings of parameters consist mainly of the number of
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points (N) considered and the number of multipliers (n) with a standard deviation to
identify the threshold of classification for outlier detection. However, the solution for
automatic de-noising can be changed from case to case since the values of these
parameters were variable. For example, in the case of inappropriate # and N, manual

cleansing may be required after automatic de-noising.

In this experiment, the mean distances of K-nearest neighbours for each point from
photogrammetric results were calculated according to two sets of » and N as illustrated in
Figure 4-18. The points which had a mean distance greater than the threshold of outlier
classification (above the red line in Figure 4-18) were eliminated from the point cloud.
The use of different parameters in the number of K-nearest points and the number of

multipliers caused different results for automatic de-noising (Figure 4-19).

Mean distance to K-nearest heighbours (m)
Mean distance to K-nearest heighbours (m)

Point Index %10 Point Index %10

(a) Mean =0.431, 1*SD = 0.702 (b) Mean = 0.665, 2*SD = 1.395

Figure 4-18: Comparison of the mean distances of K-nearest neighbours using different
parameters for automatic de-noising; (a) N =500, n =1 and (b) N= 1000, n =2. The
green and red lines show the mean distance and the threshold of outlier classification,

respectively.

11



(a)

(b)

(c)

Figure 4-19: Comparison of photogrammetric results when using different parameters
for automatic de-noising; a) original point cloud, b) point cloud after automatic de-
noising using N =500, n =1 and (c) point cloud after automatic de-noising using N =
1000, n = 2. The red circles show the outliers in the point cloud.

Figure 4-19 shows the photogrammetric results before and after automatic de-noising. It
is likely these outliers in the point cloud were noise, which are clearly located higher than
the ground points. To ensure improved results after automatic de-noising, the accuracy
assessment of photogrammetric results was performed using the cloud-to-mesh distance
tool in CloudCompare with high-resolution, high-accuracy data from the TLS survey.
Comparison of the photogrammetric accuracy before and after automatic de-noising is

presented in Table 4-15.
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Table 4-15: Comparison for statistics of differences between the TLS data and the SfM
point clouds before and after automatic de-noising.

Automatic Parameters of TLS-SftM
d .. automatic de- Min Max Mean SD RMSE
e-noising ..
noising (m) (m) (m) (m) (m)
Before - -2.191 5.602 0.051 0.301 0.305
N=500,n=1 -0.252 2.958 0.031 0.132 0.137
After
N=1000,n=2 -0.252 0.433 0.026 0.045 0.048

From Table 4-15, mean and RMSE values of the differences between the TLS data and
the SfM point clouds after automatic de-noising of the two approaches clearly decreased
when compared to before automatic de-noising. In the comparisons using different
parameters, the statistics using a higher degree of both n and N decreased, especially the
maximum, mean and RMSE. The photogrammetric results were likely to provide a higher

accuracy after automatic de-noising in this case.

In summary, the function developed for automatic de-noising aims to remove gross
outliers from the photogrammetric results, especially air points. Automatic de-noising can
also improve the quality of photogrammetric results in terms of accuracy. However, due
to the need for threshold determination, manual interaction may still often be required for

de-noising.

4.5.5 Vegetation filtering

The vegetation filtering function was developed to remove points over vegetated surfaces
from photogrammetric results before landslide monitoring analysis. In this experiment,
two point clouds were obtained from the imagery acquired on 20 March 2015 and 10 June
2015 at the Hollin Hill landslide using VisualSFM and PMVS. With regard to the
vegetation filtering algorithm, points which had green vegetation index above the
threshold for classification were eliminated from the point cloud. However, the threshold
used for classification of vegetation depended on the weather and season. To find a
suitable threshold for point cloud classification, histograms of the green vegetation index

were considered, as shown in Figure 4-20.
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Figure 4-20: The histograms of green vegetation index from two point clouds acquired
on (a) 20 March 2015 and (b) 10 June 2015.

In this experiment, both histograms of green vegetation index were assumed as a bimodal
frequency distribution. The appropriate threshold was selected by the operator at
approximately point 20 of the green vegetation index value. After vegetation filtering, the

results of the point clouds are shown in Figure 4-21.

Before After

Figure 4-21: Comparison of point clouds before and after vegetation filtering acquired
on (a) 20 March 2015 and (b) 10 June 2015.
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To evaluate the photogrammetric accuracy before and after vegetation filtering, a
comparison between photogrammetric results from the SfM point clouds and the TLS
data was carried out using the cloud-to-mesh distance tool in CloudCompare. The

assessment of photogrammetric accuracy in this experiment is presented in Table 4-16.

Table 4-16: Statistics of differences between the SfM point clouds and reference TLS
data and the comparison between before and after vegetation filtering.

I Vegetati TLS-SftM
mages cectation Min Max Mean SD RMSE
acquired on filtering
(m) (m) (m) (m) (m)
Before -0.287 0.288 0.017 0.024 0.026
20 March 2015
After -0.168 0.169 0.010 0.023 0.025
Before -0.332 0.372 0.008 0.069 0.070
10 June 2015
After -0.286 0.310 0.004 0.046 0.048

The statistical values of differences between the TLS data and the SfM point clouds after
vegetation filtering of both epochs were obviously reduced. It could be that the
photogrammetric accuracy achieved after vegetation filtering was higher. In comparison
with two photogrammetric results at different times, the RMSE value of the results after
vegetation filtering acquired on 20 March 2015 improved from 0.026 m to 0.025 m
(approximately 4%), whereas the results acquired on 10 June 2015 improved by 40%
when using vegetation filtering (from 0.070 m to 0.048 m). The seasonal changes for a
natural landslide monitoring had a noticeably influence over the height of the vegetated

surface.

To conclude, the SfM-photogrammetric approach was only able to capture the visible
surface, and hence was unable to penetrate vegetated surfaces. The photogrammetric
accuracy could be improved using the developed function of vegetation filtering,
especially for landslide monitoring in a natural terrain covered by the variety of vegetated
surfaces. Vegetation has a direct impact on the assessment of landslide deformation.
Before landslide monitoring analysis, this factor should be considered and eliminated.
However, after vegetation filtering, some outliers still remained in the point cloud and

needed to be removed manually by the operator.
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4.5.6 Change assessment

Change assessment was the crucial final step of the workflow to detect the deformation
of the landslide over time. This experiment used photogrammetric results at different
epochs using the PhotoScan software because the results had higher point density than
those from SkyPMMS. The comparison of multi-epoch analysis was carried out using
two methods of point cloud comparison: M3C2 and C2M. For the M3C2 method, based
on the study of Stumpf et al. (2015) involving landslide monitoring using ground-based
photogrammetry, the recommended parameter settings for change assessment are shown

in Table 4-17.

Table 4-17: The appropriate parameters based on a point cloud comparison method
using M3C2 (Stumpf et al., 2015).

M3C2 parameters Value (m)
D 5.0
d 0.5
Pmax 5.0
Registration error 0.1
A: C2M B: M3C2 Point

an @

=== Distance Calculated

Figure 4-22: Comparison of conceptual diagrams for cloud comparison method (a) C2M
and (b) M3C2 (Barnhart and Crosby, 2013).

Figure 4-22 presents conceptual diagrams of point cloud comparison methods for multi-
epoch analysis using M3C2 and C2M to assess landslide deformations at different times.

In particular, a limitation of C2M point cloud comparison, is that it is possible that
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variable values for landslide deformation are a result of extreme distance between two
points used for assessing change detection (Figure 4-22(a)). In contrast, the M3C2

algorithm can estimate the maximum difference between two point clouds within just a

cylinder (Figure 4-22(b)).

(a) M3C2

(b) C2M

Figure 4-23: Comparison results of change assessment using cloud comparison method
based on (a) M3C2 and (b) C2M.
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Table 4-18: Statistics of differences between two photogrammetric results using M3C2
and C2M cloud comparison method.

C . Differences
Ompanson =y Max | Mean SD | RMSE
method
(m) (m) (m) (m) (m)
M3C2 -1.027 0.706 -0.005 0.212 0.215
C2M -1.181 0.972 -0.012 0.195 0.200

The results of multi-epoch analysis from the M3C2 method (Figure 4-23(a)) showed the
delicately detected changes of landslide monitoring, whereas the C2M method (Figure 4-
23(b)) provided discontinuous values for landslide deformation that might result from
non-overlapping areas of both point clouds at different times of the multi-epoch analysis.
However, the statistics of differences obtained from the two cloud comparison methods

(as shown in Table 4.18) were slightly different.

4.6 Summary

This chapter has presented the photogrammetric potential for landslide monitoring using
a mobile device. Also, it has described a series of experiments used in the investigation
of performance for developed functions of the mobile cloud based photogrammetric
measurement and monitoring system for landslide hazards. The main details of these

experiments are highlighted in Table 4-19.
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Table 4-19: Summary of findings from Chapter 4 experimentation.

Experiments

Main findings

§4-2

Investigation of the
potential for
photogrammetric
landslide monitoring.

The photogrammetric precision was reliable
and useful for measuring landslide movement
at sub-decimeter-level accuracy.

§4-3

Investigation of the
developed system
implemented on the
cloud.

The time-consuming process of image data
transfer from mobile device to the cloud was
solved by Internet service with high bandwidth
connectivity. If a modern 4G/5G network is
available in the future for Internet service, data
transfer will be less troublesome.

§4-4

Investigation of
relationship between the
number of images and
image size for optimal
imaging network.

The suitable number of camera stations (or the
number of images) was recommended by the
design of photogrammetric configuration using
a B/D ratio of 0.1-0.2.

Improved image data (i.e. 20%-30% of image
size reduction) prior to upload enhanced the
performance of both data transfer and
processing.

§4-5

Investigation of
developed functions on
the system

Pre-image matching from image sequences can
help reduce the overall processing time by
approximately 30%.

Scaling the photogrammetric results with the
distances between targets can avoid the
limitations of a conventional approach in geo-
referencing with GNSS or TLS observation.
However, manual alignment and application of
the ICP algorithm to the photogrammetric
results between epochs is performed later to
ensure referencing into the same coordinate
system.

Automatic de-noising helps remove gross
outliers from the photogrammetric results,
especially air points.

The application of vegetation filtering for
natural landslide monitoring can eliminate
vegetated effects over photogrammetric results.

With regard to the data collection for landslide monitoring, a TLS survey usually takes

longer than a photogrammetric approach due to the nature of laser-based data capture.

Moreover, the post-processing of TLS data can also be complex and normally involves

significant manual interaction by an expert user. In contrast, SfM data collection is

considerably faster than TLS, and the SfM method is arguably also better suited to
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automation. However, the post-processing of the SfM approach based on the developed
system does still require manual interaction, especially the geo-referencing and de-

noising stages.

In terms of geo-referencing for photogrammetry, the aforementioned photo control
targets, precisely measured by GNSS, enabled straightforward comparison of the
photogrammetric results for each epoch in a common coordinate system. In contrast, geo-
referencing without GNSS based target observation was proposed using a solution with a
function for geo-referencing which involved measuring the distances between points.
This solution can provide low-cost observations to support on-site investigation of
landslide monitoring. To ensure the efficiency of the cloud-based photogrammetric
landslide monitoring system, the next chapter describes the validation of the developed

system at two existing test sites with different types of landslide hazard.
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Chapter 5. System implementation

5.1 Introduction

The development stages of the proposed measurement and monitoring system for on-site
landslide investigation were described in the previous chapter. To assess the potential of
the system for monitoring landslides, two experimental studies were performed: 1) one
on a natural earth-flow landslide deformation and 2) one on an area of coastal cliff
erosion. This chapter describes these two monitoring experiments and evaluates the

performance of the low-cost, real-time approach for landslide hazard analysis.

5.2 Natural earth-flow landslide monitoring experiment

Earth-flows are one of the most common ground movements occurring in natural
landslides. They typically have a wide range of movement speeds. In the case of very
slow earth-flows, the ground movements can sometimes reveal clues on their slope areas,
such as cracks and fissures. To understand the behaviour of this landslide type and
evaluate the performance of the photogrammetric landslide monitoring system, the

system was used to monitor an active landslide.
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5.2.1 Study area

The study area was located at the BGS’s Hollin Hill landslide observatory in North
Yorkshire, UK. A number of in-situ monitoring systems are already installed at the site,
including those based on geotechnical and geophysical techniques, such as ERT which is
used for real-time monitoring of sub-surface deformation (Merritt et al., 2014). In
addition, geomatics techniques (such as GNSS, lidar) were used to investigate the
landslide movements and changes compared to both methods. The focus of this
experiment was the main scarp at the top of the slope (red box in Figure 5-1), which
extends for 25 m in an approximately east-west direction, and 25 m from north to south,
with 8 m elevation difference between the top and bottom of the scarp as shown in Figure

5-2.

468000 468100 468200

468900

468800

468000 468200

Figure 5-1: Overview of test site location at Hollin Hill landslide observatory: the red
box shows the area used for this experiment.
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Figure 5-2: Photograph of the main scarp at the top of the Hollin Hill landslide used for
the photogrammetric monitoring experiment.

The Hollin Hill landslide consists of a shallow rotational failure at the top of the slope

and then moving through an area of translational landslide movement at the middle of the

slope. The landslide extends as flow lobes towards the bottom of the slope. The landslide

is mostly caused by the movement of the Whitby mudstone formation over the Cleveland

ironstone and Staithes sandstone formations, which are highly prone to land sliding

(Figure 5-3). The Hollin Hill landslide is vegetated with short grass, which is pasture land

for sheep.
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Figure 5-3: Illustration of landslide characteristics at Hollin Hill landslide: the red box
shows the area used for the landslide monitoring experiment (Merritt et al., 2014).
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5.2.2 Experimental design

In terms of image acquisition for photogrammetric monitoring, suitable camera locations
were chosen using photogrammetric network design parameters (as reviewed in section
3.2.3). Imaging configuration was based on a B/D ratio of 0.1-0.2, the maximum
allowable camera-to-object distance was < 15 m and the maximum distance between each
camera station was approximately 2-3 m. During the survey, those estimated distances
were roughly measured by pacing. In order to obtain full coverage of the landslide
monitoring area, images were taken around the main scarp in a 360° loop, providing a
convergent imaging network. When ground-based photogrammetry was performed,
images was captured obliquely depending on the height of operator, the viewing angle of

camera and the angle of landslide slope.

To inspect changes in landslide slopes, image data should be regularly collected. The
experiment envisaged image collection every three months following seasonal changes
in the UK. However, the frequency of image collection was restricted by the need for
survey assistance. As a result, three image datasets were acquired using the same Nexus
6 smart phone camera on 1) 10 June 2015, 2) 12 February 2016, and 3) 26 May 2016.
Each photoset comprised 36 images of 4160 x 3120 pixels (= 13 megapixels). The photo
control targets were established around the landslide for geo-referencing of the
photogrammetric results. The camera position and viewing direction of each epoch is
shown in Figure 5-4. The values of B/D ratio from the photogrammetric configuration at

each epoch were calculated as shown in Table 5-1.
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Figure 5-4: Illustration of photogrammetric configuration for each epoch.
Table 5-1: Comparison of a B/D ratio used in each epoch.
10 June 2015 12 February 2016 26 May 2016
Average base, B (m) 2.56 2.96 2.92
Average distance, D (m) 15 15 15
B/D ratio 0.170 0.197 0.195

To assess the accuracy of photogrammetric results at different epochs, TLS survey was

used to provide reference data that could be used for validation. The locations of six photo

control targets and four TLS scanning stations were determined using a rapid-static GNSS

technique at mm-level accuracy. However, in terms of data processing for each epoch (as

shown in Figure 5-5), this experiment was carried out under laboratory simulation

because of the inefficient performance of Internet service via current mobile networks in

the study area, which was unsuitable for data transfer from mobile device to cloud.
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Figure 5-5: The methodology scheme for the accuracy assessment of photogrammetric
results at different epochs.

Photogrammetric results for each date were generated using original image datasets that
did not adjust the lens distortion in the imagery. The pre-processing stage was
unnecessary thanks to a strongly convergent imaging network and a sufficient number of
GCPs for the bundle adjustment. For geo-referencing, the target locations on the imagery
were directly observed using the developed smart phone function. The quality of
transformation for target-based geo-referencing (comprising rotation and translation
components only) was computed as the RMSE of transformation from VisualSFM, as

shown in Table 5-2.

Table 5-2: Results after target-based geo-referencing of each epoch.

Geo-referencing
Date No. of targets ¢ Rl\f/ISE Of
(points) ransformation
(m)
10 June 2015 5 0.089
12 February 2016 6 0.064
26 May 2016 6 0.042
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The RMSE value for the first epoch was higher than for other epochs because a lower
quality target was used. Due to the different types of targets used for geo-referencing at
each epoch, the small coloured plastic balls utilised as targets for the last two epochs
provided a higher precision of mensuration in the imagery. Whereas, the first epoch

utilised large markers printed on paper as targets for geo-referencing (Figure 5-6).

Physical target A circular marker printed on paper

12 February 2016,
26 May 2016

O of target size 18 cm 6 cm

Date of epoch 10 June 2015

Figure 5-6: Illustrations of the different types of targets used for geo-referencing.

After photogrammetric processing and geo-referencing of each epoch, photogrammetric
results were improved through three stages of post-processing, including 1) cropping, 2)
de-noising, and 3) vegetation filtering. Firstly, three point clouds obtained from each
epoch were selected using an automatic segmentation in the CloudCompare software. The
same extents were chosen in order to avoid non-overlapping areas to allow for an effective
comparison. Secondly, to reduce noise in those point clouds, outlier removal was
performed using both automatic and manual de-noising in the CloudCompare software.
Finally, vegetation filtering was used to extract bare-earth points in the photogrammetric
results before assessing the photogrammetric accuracy through the developed function of

the system.

5.2.3 Test results

The performance of photogrammetric processing on the developed system was assessed
through data processing time, which depended on the performance of cloud computing.
Although the higher-performance GPU cloud server (comprising a higher CPU memory

size and multiple GPUs) was used to enhance the processing performance and achieve
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real-time processing capability, it was revealed that the use of multiple GPUs on a cloud
server insignificantly decreased the processing time when compared to the use of
PhotoScan software (Table 5-3). Because PhotoScan can support parallel data processing
based on multicore-GPU platforms, processing time decreased dramatically by around
46%. The limitation of photogrammetric processing with VisualSFM and PMVS is that
they only utilised a single-core processing of GPU. Moreover, the use of the higher-
performance GPU cloud server resulted in a higher financial cost of photogrammetric

processing.

Table 5-3: Comparison of processing time between the different SfM software and the
different performance of GPU cloud server.

SfM GPU cloud server Data processing time
software | memory size on GPU No. of GPUs (min)
VisualSFM 4 GB 1 8.58
and PMVS 4 GB 2 8.29
4 GB 1 4.16
PhotoS
otoScan 1GB 5 535

To compare photogrammetric results achieved at different times, the details of point

clouds were obtained after each post-processing step using the developed

photogrammetric measurement system (SkyPMMS) and the validation data from TLS
survey (Table 5-4 and Figure 5-7).

Table 5-4: Point cloud comparisons of photogrammetric results at different times and
the TLS data.

Point cloud of SfM results (points)
Ground points after
Date of TLS survey . after de- vegetation

(points) after cropping noising filtering

(points)
10 June 2015 12,434,476 109,308 104,004 33,377
12 February 2016 10,626,995 157,564 149,007 25,554
26 May 2016 14,111,055 155,275 150,019 36,292
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Figure 5-7: Photogrammetric point clouds obtained after applying each post-processing step; a) cropping, b) de-noising, and c) vegetation filtering.
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The resultant point cloud from the first epoch after cropping and de-noising was sparser
than the point clouds generated at the two last epochs. Because this epoch had varying
image quality due to the brightness changes at time of image capture (Figure 5-8), the
low quality of dense matching directly affected the quality of the photogrammetric result
by producing a fewer number of points. On the other hand, after vegetation filtering the
number of bare-earth points from each epoch were very similar (Table 5-4). It is likely
that bare-earth points from each epoch represent the key information on landslide areas

such as cracks or fissures, although the landslide deformation had changed over time.

Images acquired on: 10 June 2015
Weather condition: sunny and light cloud

Images acquired on: 12 February 2016
Weather condition: cloudy

e L e
------- eather condition: cloudy
ik sy s —

—_—
P

Figure 5-8: Comparison of each image dataset used in the SfM photogrammetric
approach at different times: the red boxes distinctly show the different brightness of
images.
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5.2.4 Assessment of photogrammetric accuracy

To assess the accuracy of the photogrammetric approach for each epoch, point cloud
comparisons between TLS data and photogrammetric results following each post-
processing stage were performed using the cloud-to-mesh distance tool in the
CloudCompare software. The statistical results of the differences are as shown in Table

5-5.

Table 5-5: Statistics of the differences between TLS data and SfM-photogrammetric

results for each epoch after post-processing stages using C2M.

) Statistics of | photogrammetric results at different times
Post distance
processing errors | 10 June 2015 | 12 Feb 2016 | 26 May 2016
Min (m) -0.297 -0.945 -0.394
point clong|M2X () 5.605 5.550 6.539
oint cloud ) o (m) 0.060 0.139 0.106
after cropping

SD (m) 0.320 0.730 0.482
RMSE (m) 0.322 0.733 0.486
Min (m) -0.297 -0.382 -0.359
Point cloud | Max (m) 0.442 0.440 0.549
after de- | Mean (m) 0.027 0.009 0.051
noising SD (m) 0.051 0.058 0.065
RMSE (m) 0.053 0.061 0.069
Min (m) -0.298 -0.381 -0.333
B%re'eat{’th Max (m) 0.272 0.393 0.412
points after 7y o (m) 0.019 0.022 0.033

vegetation
filtering | SD (M) 0.045 0.056 0.058
RMSE (m) 0.048 0.058 0.060

The RMSE values for each epoch after cropping and de-noising varied between 5.3 and
6.9 cm. Vegetation filtering provided slightly higher accuracy (RMSE of 4.8 — 6.0 cm).
It is likely that photogrammetric accuracy can be improved using the functions developed
for post-processing. The vegetated surfaces had an effect on the quality of the results
because photogrammetric approaches cannot penetrate vegetated surfaces unlike TLS.
StM-photogrammetric approach based on the developed system (SkyPMMS) using a
Nexus 6 smart phone camera can yield sub-dm accuracy level (from 4.8 cm to 6.0 cm) in

this type of landslide.
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5.2.5 Inspection of landslide monitoring analysis

It was shown by the photogrammetric results in the previous section that the bare-earth
point cloud after vegetation filtering can provide a higher accuracy for measuring
landslide movement. Based on multi-epoch analysis, each point cloud after vegetation
filtering should have been used to assess the changes of landslide deformation over time.
However, bare-earth point cloud from SkyPMMS in this experiment revealed only sparse
points (in Figure 5.7(c)) because this landslide site was mostly covered by vegetated
surfaces; and the majority of points over those surfaces was eliminated though vegetation
removal. Although bare-earth points can reveal the key information on landslide areas
such as cracks or fissures, the insufficient point clouds used for landslide monitoring
analysis might be more prone to fail in the recognition of landslide changes. Therefore,
in this case the use of each point cloud after the de-noising stage was more suitable to

analyse landslide monitoring.

For the assessment of landslide changes, the comparison between three point clouds at
different times was performed using the M3C2 technique based on the developed
landslide monitoring system (SkyPMMS), which generates the elevation difference of
landslide deformation for on-site investigation. Moreover, this experiment utilised three
point clouds at different epochs obtained from PhotoScan software (as shown in Figure
5-9) to compare with those results from the developed system. The results of multi-epoch
analysis for the photogrammetric approaches (SkyPMMS and PhotoScan) are illustrated
in Figure 5-10 and Figure 5-11, whilst the statistics of elevation differences for assessing

landslide changes are presented in Table 5-6.

Figure 5-9: Three point clouds of photogrammetric results at different epochs from
PhotoScan software acquired on: (a) 10 June 2015, (b) 12 February 2016 and (¢) 26
May 2016.
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Figure 5-10: Elevation difference of photogrammetric results at different times from the
developed system (SkyPMMS) used in the assessment of landslide changes.
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Figure 5-11: Elevation difference of photogrammetric results at different times from
PhotoScan software used in the assessment of landslide changes.
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Table 5-6: Comparison statistics of elevation changes from TLS data and different SfM-
photogrammetric approach (SkyPMMS and PhotoScan).

Statistics of Method/SfM approach
Epochs elevation

changes TLS SkyPMMS | PhotoScan
10 June 2015 Min (m) -0.347 -0.594 -0.343
to Max (m) 0.356 0.493 0.424
12 Feb 2016 Mean (m) -0.049 -0.041 0.001
(242 days) SD (m) 0.070 0.120 0.076
12 Feb 2016 Min (m) -1.111 -1.076 -1.100
to Max (m) 0.821 0.956 0.812
26 May 2016 Mean (m) -0.014 -0.015 0.005
(104 days) SD (m) 0.213 0.180 0.234
10 June 2015 Min (m) -1.150 -1.109 -1.099
to Max (m) 0.814 0.614 0.801
26 May 2016 Mean (m) -0.066 -0.044 -0.008
(346 days) SD (m) 0.228 0.175 0.233

Three analyses were performed to assess elevation changes shown by each different
approach: 1) between 10 June 2015 and 12 Feb 2016 (242 days), 2) between 12 Feb 2016
and 26 May 2016 (104 days), and 3) between 10 June 2015 and 26 May 2016 (346 days).
Visual comparison of the landslide changes detected using different SfM approaches (as
shown in Figure 5-10 and Figure 5-11) reveals that the changes of landslide deformation
were clearer for the point clouds processed in PhotoScan. This is due to a much denser
point cloud provided by PhotoScan. Nevertheless, the results obtained from SkyPMMS

still highlighted the landslide changes near cracks or fissures over landslide areas.

The elevation difference results using multi-epoch analysis (Table 5-6) showed that the
values of minimum, maximum and standard deviation for elevation changes of TLS data
and PhotoScan were slightly different (for both the first 242 days epochs and the second
104 days epochs). In contrast, the mean values of TLS data and SkyPMMS were negative
and differed slightly in terms of magnitude. As mentioned above, point clouds provided
by PhotoScan were mostly above the vegetated surfaces, while point clouds from TLS
data and SkyPMMS were mainly over the bare-earth surfaces. As a result, the mean value
of elevation changes from PhotoScan was substantially different from TLS data and

SkyPMMS because of vegetation effects.
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However, due to vegetation effects, the main drawback of photogrammetric monitoring
for landslide hazards is the inability to penetrate vegetated surfaces. The height of
vegetation during an annual cycle can directly impact on assessing landslide deformation.
It is likely that positive changes in stable areas of landslide will be found, as shown in
Figure 5-11. However, the uncertainty of this factor should be considered for evaluating
elevation changes using a point cloud comparison method based on the M3C2 technique.
In ideal experiments into landslide monitoring, it can be reasonably assumed that the
comparison of point clouds over bare-earth surfaces only would eliminate the effects of

vegetation when assessing landslide deformation.

Due to the extremely different number of points and point density from SkyPMMS, the
values of minimum, maximum and standard deviation of elevation changes were
considerably different from both TLS data and PhotoScan. Nevertheless, the
photogrammetric approach based on the developed system still had sufficient potential
for quantitative analysis of landslide movement. It was shown that SkyPMMS
photogrammetric results acquired at different times might be utilised for initial

assessment of landslide monitoring.

To further validate the landslide analysis, GNSS observations for the position of BGS
pegs were regularly used to measure 3D displacement of this landslide site over 346 days.
The location of three BGS’ pegs used in this validation are shown in Figure 5-12. The
comparison results of change detection for landslide deformation using different

geomatics technique are shown in Table 5-7.
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Figure 5-12: Illustration of the location of BGS pegs used in landslide monitoring.

Unfortunately, this validation step could not utilise photogrammetric results obtained
from SkyPMMS because of the insufficient number of points in the point cloud.
Inspection of landslide movement from this data at the location of the BGS pegs proved

impossible.
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Table 5-7: Comparison between cumulative displacement of GNSS survey and
elevation changes of TLS data and SfM approach.

Epochs No. of | Method/ SfM Cumulative displacement (cm)
pegs approach AE AN AH A
GNSS 6.8 2.7 -14 7.4
28 TLS -4.6
PhotoScan 0.8
10 J“E;zo” GNSS 6.2 6.6 5.0 10.3
12 Feb 2016 29 |TLS 3.1
(242 days) PhotoScan -1.4
GNSS 19.3 -61.9 -27.7 70.5
45 TLS -23.4
PhotoScan -14.9
GNSS -1.7 -4.3 6.3 7.8
28 TLS 2.7
PhotoScan 1.9
12 Fiﬁlzow GNSS 513| -89.8 184 105.0
26 May 2016 29 TLS 25.9
(104 days) PhotoScan 24.8
GNSS 28.6 -85.5 -36.4 97.3
45 TLS -21.2
PhotoScan -25.1

It can be seen from the cumulative displacement in Table 5-7 that GNSS-based
observations showed significantly more information on displacement than both TLS
survey and SfM approaches, in particular for the 3D displacements. Measuring the
landslide changes using TLS survey and SfM approaches yielded only relative movement
in terms of the elevation differences over time. The elevation changes over landslide areas
using the three geomatics techniques showed significantly positive correlation, although
slightly different values were recorded (= 3.2 — 12.8 cm of the first 242 days and = 4.4 —
11.3 cm of the second 104 days). The assessment of landslide monitoring analysis using
photogrammetric results indicated that PhotoScan can provide measurement of landslide
movement at dm-accuracy level (based on comparison to the GNSS observations).
Although SkyPMMS could not deliver the elevation changes in this experiment due to a
dramatically different density of point cloud, bare-earth points (e.g. cracks and fissures
on landslides areas) might reasonably be used for tracking landslide deformations using

the developed algorithm in future work.
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5.3 Coastal cliff monitoring experiment

This experiment aimed to investigate the performance of the SfM photogrammetric
approach using the developed landslide monitoring system for change detection of coastal
cliff deformation. In particular, geo-referencing without GNSS/TLS-based target
observation was proposed and tested in order to provide a low-cost approach for on-site

investigation of landslide monitoring for cliff deformation.

5.3.1 Study area

Coastal cliff monitoring mainly consists of inspection of the changes of cliff deformation
or rock falls due to coastal erosion. In this experiment, the study site was located at
Marsden Bay in South Shields, near Newcastle upon Tyne, UK. The deformation of
coastal cliff was mostly caused by the crushed rock and natural aggregates of limestone
or dolomite formations. To assess the changes occurring at this type of landslide hazard,
visual comparison of the coastal cliff site was performed on 27 November 2016 and 13
April 2017 (Figure 5-13). The section of coastal cliff to study erosion was over 5-m high
by 20-m long.

(a) 27 November 2016

(b) 13 April 2017

Figure 5-13: Illustrations of coastal cliff site at two epochs acquired on: (a) 27
November 2016 and (b) 13 April 2017.
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5.3.2 Experimental design

The photogrammetric configuration used for the previous experiment could not be

applied due to the high and steep geometry of the coastal cliff site. The block

configuration was more suitable than a conventional configuration because images were

taken in the front of the cliff in a linear sequence (as illustrated in Figure 5-14). The

the previous experiment using a B/D ratio of 0.1-0.2.

photogrammetric configuration design still utilised the same main factors according to

Two datasets were acquired on 27 November 2016 and 13 April 2017 using a Nexus 6

smart phone camera. Each photoset comprised 26 images with a maximum image size of

4160 x 3120 pixels (approximately 13 MP). For geo-referencing, five photo control

directions for each epoch are shown in Figure 5-14.

targets were located in front of the coastal cliff. The camera positions and viewing
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Figure 5-14: Camera positions and viewing directions between two epochs acquired on

(a) 27 November 2016 and (b) 13 April 2017.

From Figure 5-14, a B/D ratio of each epoch was calculated as shown in Table 5-8.
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Table 5-8: Comparison of B/D ratio used at each epoch.

27 November 2016 13 April 2017
Average base, B (m) 1.24 1.33
Average distance, D (m) 12.10 10.85
B/D ratio 0.102 0.122

A Leica ScanStation P40 was used to acquire TLS data from a single scanner position on
the same date as imaging observation to validate the photogrammetric results. To clarify
the workflow used in the assessment of photogrammetric results, the design of this
experiment is shown in Figure 5-15. Due to the unavailability of a mobile network at this
study site, Internet service under real-world conditions was unavailable for data transfer

and processing. Thus, laboratory experimentation was conducted using the data collected

at the coastal cliff site.
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Figure 5-15: The methodology scheme for the accuracy assessment of photogrammetric
results at different epochs.
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In this experiment, photogrammetric results were generated from both raw images and
images corrected for lens distortion with fixed calibration. The Nexus 6 smart phone
camera was calibrated using the camera calibrating application in Matlab. Imagery was
then corrected using a Python script with OpenCV library based on the developed
function of SkyPMMS. For geo-referencing with TLS- based GCPs, the targets could be
measured directly in the imagery to provide a pair list of targets with photo coordinates
and the real-world coordinates acquired from TLS survey. The other geo-referencing
approach without TLS observations, however, used a pair list of three targets with photo
coordinates and pseudo coordinates from three distances measured between each target
and then aligned manually with TLS data using four key features on the coastal cliff. The
details of both geo-referencing approaches were described in Section 4.5.3. The quality
of geo-referencing using photo control targets of each epoch was computed in the form
of RMSE for transformation (comprising a rotation and translation only), as shown in

Table 5-9.

Table 5-9: Statistics of the results from geo-referencing using photo control targets and

after applying ICP.
After geo-referencing RMSE of
Epoch Photoset The number t;?;ifzrn}atilr(l)n
of GCPs | RMSE (m) X Cppgg) £
(points)
Raw images 5 0.104 0.091
27 November | Images corrected for
2016 lens distortion with 5 0.069 0.050
fixed calibration mode
Raw images 5 0.148 0.082
. Images corrected for
13 April 2017
Pr lens distortion with 5 0.030 0.030
fixed calibration mode

Photogrammetric results were processed by cropping and de-noising in order to improve
their quality. However, after geo-referencing, the SfM-approach might be prone to
transformation errors. To reduce this problem, the ICP algorithm was applied in the
experiment. To investigate the photogrammetric accuracy, the comparison between
photogrammetric results at different times and TLS data was carried out using the C2M

method in the CloudCompare software.
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5.3.3 Test results

The performance of the developed system for photogrammetric landslide monitoring was
assessed in the previous experiment. This experiment tested the transferability to coastal
cliff monitoring. In the first part of this experiment, the details of photogrammetric results
obtained from SkyPMMS using a Nexus 6 smart phone camera before and after applying
lens distortion corrections are shown in Table 5-10. Figure 5-16 and Figure 5-17 compare
the point clouds at different times obtained from different StM approaches (SkyPMMS,
PhotoScan) and TLS survey.

Table 5-10: Comparison between the SfM-photogrammetric results and TLS data
acquired on 27th November 2016 and 13th April 2017.

Ground Sﬂ\/[-photogrammle;tr'ic relsult(:
points of Photoset/Pre- ) omnt clou
Date TLS data processing Pomt_cloud after cropping
. (points) and de-noising
(points) .
(points)
7 Raw images 864,944 384,611
Images corrected for
N b 10,052,978
OO TSI Jens distortion with 879,795 442,656
2016 o
fixed calibration mode
Raw images 758,241 537,576
13 April Images corrected for
11,609,458
2017 T lens distortion with 956,091 647,061
fixed calibration mode

As shown in Table 5-10, photogrammetric processing which utilised images corrected for
lens distortion with the fixed calibration mode, provided a higher number of points; a
denser point cloud and fewer void areas can be seen for those photosets in both Figure 5-
16 and Figure 5-17. Applying this method based on the developed system could
significantly improve the quality of photogrammetric results for this type of coastal cliff
surface. However, the bottom part of this coastal cliff point cloud obtained from
SkyPMMS showed large areas of voids when compared to TLS data and the SfM
approach using PhotoScan. Due to the insufficient dense matching in the developed
system based on VisualSFM and PMVS, points were not generated in this area. The free
StM software was not able to produce as large a number of points as the StM-commercial

software (PhotoScan).
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Figure 5-16: Comparison of four point clouds obtained using (a) raw images
(SkyPMMS), (b) images corrected for lens distortion with the fixed calibration mode
(SkyPMMS), (c) PhotoScan (d) and TLS survey (27 November 2016).
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Figure 5-17: Comparison of four point clouds obtained using (a) raw images
(SkyPMMS), (b) images corrected for lens distortion with the fixed calibration mode
(SkyPMMS), (c) PhotoScan (d) and TLS survey (13 April 2017).
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5.3.4 Assessment of photogrammetric accuracy

Following the lens distortion correction of images, photogrammetric results were
generated from images corrected for lens distortion with the fixed calibration mode using
the developed system. To inspect the photogrammetric accuracy, the results at different
times from original and improved image data were compared to the TLS data, as shown

in Table 5-11.

Table 5-11: Statistics of distance differences between TLS data and SfM results from
original and images corrected for lens distortion with fixed calibration mode.

TLS-SfM using C2M method

Photoset/Pre-

Date . Min Max | Mean SD | RMSE
processing
(m) (m) (m) (m) (m)
7 Raw images -0.958 | 0.866 | -0.419 | 0.266 | 0.269
November | Images corrected for

2016 lens distortion with the | -0.275| 0.257| 0.004 | 0.044 | 0.046
fixed calibration mode

Raw images -0.735 | 0.684 | -0.279 | 0.202 | 0.205

13 April Images corrected for
2017 lens distortion with the | -0.191 | 0.257 | 0.022 | 0.040 | 0.042
fixed calibration mode

In Table 5-11, the minimum, maximum, mean and RMSE values of distance errors
between the TLS reference and SfM approach using images corrected for lens distortion
with the fixed calibration mode were noticeably smaller than for SfM using raw images.
The results suggest applying lens distortion correction with the fixed calibration mode
used in processing can help significantly improve the photogrammetric accuracy and
provide a better quality of results in terms of a denser point cloud, as explained in the
previous section. This is most probably related to the fact that 3D reconstruction with the
fixed camera model from images corrected for lens distortion did not generate an error
along the image sequence. Furthermore, lens distortion correction was applied to the

imagery, which provided a higher accuracy of imaging mensuration.

The mean errors of both epochs can represent the quality of transformation for
photogrammetric results after geo-referencing. Table 5-12 shows the summary statistics
for the accuracy assessment when applying ICP for photogrammetric results at each

epoch with the TLS reference acquired at the same time.
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Table 5-12: Statistics of distance differences between TLS data and SfM results from
images corrected for lens distortion with the fixed calibration mode after

applying ICP.
Photosct/P Post TLS-SfM using C2M method
Date otoset/rre- ost- Min | Max | Mean | SD | RMSE
pI‘OCCSSlIlg pI‘OCCSSll’lg (m) (m) (m) (m) (m)
Images corrected - -0.275 | 0.257 | 0.004 | 0.044 0.046
27 . .
November for lens distortion i
o016 | With fixed apl;ggng -0.236 | 0.223 | 0.000 | 0.025| 0.028
calibration mode
Images corrected - -0.191 | 0.257 | 0.022 | 0.040 | 0.042
13 April | for lens distortion ]
2017 | with fixed applying | 504 | 0.234 | 0.000| 0.028| 0.030
calibration mode ICP

As shown in Table 5-12, the mean and RMSE values of distance errors between TLS data

and photogrammetric results from both epochs decreased significantly after applying ICP

algorithm. It is likely that the ICP adjustment in this experiment might help to reduce a

potential bias after geo-referencing. However, point clouds in this type of landslide

monitoring were mostly over bare-earth surfaces. Therefore, the use of ICP algorithm

may be more suitable for stable areas and over surfaces without vegetation.

The accuracy assessment of photogrammetric results for the geo-referencing solution

without GNSS/TLS-based target observations is shown in Table 5-13. However, the last

epoch was only processed by this solution because it was developed after the first data

collection.

Table 5-13: Statistics of distance differences between TLS data and SfM results from
images corrected for lens distortion with the fixed calibration mode, different
geo-referencing.

Date Photoset/.Pre Met}flod of geo- Min TLSi;]:I ui;legaE2M SI'III)G thoc;{MSE
processing referencing (m) (m) (m) (m) (m)
Images with TLS-based
corrected | target observation | -0.204 | 0.234 | 0.000 | 0.028 | 0.030
13 for lens and applying ICP
April distortion | Scaling with the
pri . ) .
2017 with the dimensions of
fixed known object, -0.256 | 0.265 | 0.000 | 0.026 | 0.027
calibration | manual alignment
mode and applying ICP
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The minimum, maximum, mean and RMSE values of distance errors between the TLS
reference and photogrammetric results after applying ICP obtained from geo-referencing
with the dimensions of known object and manual alignment were approximately the same
as when geo-referencing with TLS-based target observation. Surprisingly, the
photogrammetric results using the geo-referencing solution without GNSS/TLS-based
target observations still provided an accuracy commensurate to conventional geo-

referencing.

5.3.5 Cliff erosion monitoring analysis

Monitoring analysis was performed by comparing two point clouds acquired at different
times between 27 November 2016 and 13 April 2017 (135 days). To ensure the
photogrammetric results were in the same reference coordinates before analysis, the point
cloud from the second epoch (acquired on 13 April 2017) was georeferenced to the first
epoch. The method of geo-referencing consisted of two main stages; 1) alignment with
each other using four key features on the coastal cliff, and 2) application of the ICP
algorithm. The assessment of cliff erosion was performed using the system developed for
landslide monitoring analysis over the 135 day intervening period. Figure 5-18 compares
the results of change assessment for cliff erosion obtained from TLS survey and different

SfM approaches (SkyPMMS and PhotoScan) using M3C2.

In terms of the additional results after point cloud comparison using the M3C2 method,
the distance uncertainty and statistically significant change of differences between two
point clouds at different times were calculated. Due to the uncertainty in different
roughness of both point clouds, change significance should be considered for the
differences in case of a real change (Lague et al., 2013). Significant change (value = 1)
refers to situation where the value of differences from M3C2 is more than the distance
uncertainty calculated with M3C2. On the other hand, insignificant change (value = 0)

means that the differences between two point clouds is less than the distance uncertainty.

The preliminary analyses of the three approaches showed significant changes at the toe
of the cliff. The most active part in this coastal surface was significantly eroded during
the investigated period. Based on initial visual assessment of Figure 5-18, the surface

changed by between approximately -0.5 and -2.0 m. Figure 5-19 shows significant
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changes within the analysis results obtained from TLS survey and different StM
approaches. It can be seen that no significant differences were found in the upper and
central part of coastal cliff; in those parts the coastal surface remained predominantly

stable.

As shown in Figure 5-19(c), PhotoScan detected larger amounts of significant change in
the left- and right-hand side of coastal cliff than both TLS and SkyPMMS. Moreover,
those were not actual changes, but artefacts most probably related to the fact that point
clouds from PhotoScan had greater errors due to the known problem of the doming effect.
As SfM-photogrammetric PhotoScan processing was performed with many adverse
conditions, systematic errors were often found in the results. For example, the use of
independent camera models with poor photogrammetric network configuration could
result in distorted reconstruction that was always found in the linear sequences of images.
In addition, the number and distribution of GCPs was insufficient in bundle adjustment

(Eltner and Schneider, 2015).
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Figure 5-18: Comparison of distance differences between two datasets acquired on 27
November 2016 and 13 April 2017 from (a) the TLS approach, (b) the photogrammetric
results using VisualSFM & PMVS and (c) PhotoScan using M3C2.
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Figure 5-19: The comparison of statistically significant change between two datasets
acquired on 27 November 2016 and 13 April 2017 from (a) the TLS approach, (b) the
photogrammetric results using VisualSFM & PMVS and (c) PhotoScan using M3C2.

151




(a) TLS
Gauss: mean = -0.145 / std dev. = 0.358 [650 classes]

18000
15000

12000

Count

5000

6000

3000

0 rrr T T T T T T T T T

-6 -1.2 408 -0.4 [¥] 0.4 0.8 1.2
M3C2 distance

(b) VisualSFM & PMVS
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(c) PhotoScan
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Figure 5-20: Histograms of the distance differences between two point clouds acquired
on 27 November 2016 and 13 April 2017 using M3C2 from (a) TLS survey, (b)
photogrammetric results using VisualSFM & PMVS and (c) PhotoScan.
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Table 5-14: Statistics of the distance differences between two epochs acquired on 27
November 2016 and 13 April 2017 from (a) TLS survey, (b) SfM-
photogrammetric approach of VisualSFM & PMVS and (c) PhotoScan using

M3C2.
Method/ ' Multi-epoch analysis
SfM-approach Min Max | Mean SD
(m) (m) (m) (m)
TLS -1.862| 1.327| -0.145| 0.358
VisualSFM & PMVS -1.830| 0.576| -0.016| 0.209
PhotoScan -1.901 0.799| -0.111| 0.352

The mean of the differences between two point clouds at different epochs (135 days apart)
obtained from all approaches showed negative values (Table 5-14), indicating that the
majority of surface changes of the coastal cliff monitoring at Marsden was caused by
erosion. This was confirmed by the distribution of elevation differences (in Figure 5-20),
which mostly displayed a negative bias of detected changes. The minimum, maximum
and standard deviation values of the distance differences were slightly different for the
different approaches. Whereas, the maximum value for the distance differences was
significantly different because the point density of photogrammetric results from both
PhotoScan and VisualSFM & PMVS had an insufficiently dense point cloud and more
void areas when compared to the corresponding TLS survey. Nevertheless, the accuracy
of photogrammetric results was shown to be sufficient for the initial assessment of change

for this type of coastal cliff.

Unfortunately, in this experiment images from a ground-based approach cannot be
captured entirely due to the high cliff. The processing therefore mostly focused on the
bottom part of the coastal cliff. Consequently, the change assessment was not able to

comprehensively determine the volume balance in this experiment.
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5.4 Summary

In this chapter, two experiments were performed to inspect the photogrammetric potential
of the cloud-based system for initial assessment of two types of landslide hazard. The
study sites at a natural earth-flow landslide and a coastal cliff were used to examine the
developed approach using different imaging configurations and geo-referencing
approaches. The photogrammetric approach achieved moderate accuracy for the initial
assessment of landslide monitoring at both sites. The improved photogrammetric
processing with the developed functions solved many of the disadvantages associated
with the implementation of a low-cost photogrammetric monitoring system (using a smart
phone and a free-SfM Software). The test results for on-site investigation proposed a
reliable method for geo-referencing without the need for high accuracy GNSS/TLS
observation. The photogrammetric approach using the developed system was sufficiently
accurate for assessing landslide changes and measuring landslide deformation at the dm-

level.
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Chapter 6. Discussion of results

6.1 Introduction

A mobile device-based photogrammetric measurement and monitoring system for the
initial assessment of landslide hazards has been developed in this research. Close-range
photogrammetric approaches using imagery from a modern smartphone were investigated
for use in a low-cost, non-contact monitoring approach for on-site landslide investigation.
The system was implemented with mobile cloud computing technology to enable the
potential for real-time processing. The developed system integrated with additional
functions for the improved photogrammetric processing and landslide monitoring
analysis was evaluated through a series of experiments to assess its potential. The
landslide monitoring system was investigated using data collected from two different
real-world sites in the UK. An additional discussion of the experiments and of the

limitations of the developed system is presented in this chapter.
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6.2 System inspection

Close-range photogrammetric techniques can be practically adopted for the purpose of
monitoring landslide hazards, and offer a potentially low-cost approach in terms of
implementation and operation for ground-based platforms, as explained in Chapter 2. In
particular, for initial assessments in on-site investigations for landslide monitoring, close-
range photogrammetry has the capability to be used in surveying to avoid the need for
time-consuming data collection. Moreover, the digital camera technology in mobile
devices can be widely utilised for image acquisition as part of a photogrammetric
monitoring approach. However, due to the limited computational power of mobile
devices, it is difficult to manage the intensive data processing required in
photogrammetry. Cloud-based processing is used here to overcome the drawbacks of
mobile computing. In this research, a photogrammetric measurement and monitoring
system based on a mobile platform was developed and implemented using cloud
computing technology to deliver a low-cost, near real-time solution for an in-situ
landslide monitoring approach, as illustrated in Chapter 3. This section considers
advantages and disadvantages of the developed system and provides recommendations

for improvements.

The architecture of the developed system is mainly based on client-server communication
with a mobile cloud computing service. The system comprises a front-end service on a
mobile application controlled by the operator and a back-end service on the cloud-based
server employed for photogrammetric measurements and landslide monitoring analysis.
In this solution, the crucial concept in system development was based on design simplicity
associated with two components involving a controller and processor, as illustrated in
Figure 3.25. Furthermore, the system has more flexibility in managing the resources of
both the mobile device and cloud server. For example, data processing in the
photogrammetric approach can be utilised on a multi-cloud server to optimize the low

financial costs of cloud computing, as presented in section 3.5.2.

In terms of the flexibility in the front-end part of the system, although an Android mobile
application was developed to be controlled remotely by the user, the operation of the
system can be independently employed on multiple platform types, including tablets,

laptop computers and PCs, using a standard Web-based browser, as shown in Figure 6.1.
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One of the benefits of the use of an independent platform is to reduce the need for the

developer to design mobile applications.
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Figure 6-1: Front-end service: (a) mobile application; (b) web browser.

The evaluation of the development of a low-cost, real-time photogrammetric landslide
monitoring system based on a mobile platform for on-site investigation can be divided

into two main aspects, as follows:

6.2.1 Mobile devices (smart phone case)

In this research, the close-range photogrammetric approach has mainly utilised images
captured from a modern smart phone camera (i.e. a Nexus 6 mobile phone) for landslide
monitoring. Typically, smart phone technology can provide more convenience in image
acquisition for on-site investigations. Moreover, images can be uploaded to a cloud-based
server for data processing and the results of photogrammetric landslide monitoring

displayed in order to facilitate an efficient initial assessment of landslide hazards.
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The digital camera technology in mobile devices has become increasingly advanced in
recent years, in terms of the high-resolution capabilities of the imaging sensors. On other
hand, the quality of images produced is still lower than in images captured from DSLR
cameras or consumer-grade digital cameras, as explained in section 3.2.1. Comparison of
photogrammetric results obtained from a DSLR camera and a smart phone camera, as
shown in the experiment of section 4.2, revealed that the photogrammetric accuracy of a
DSLR camera was better than that of the smart phone camera. In the same situation (e.g.
using the SfM photogrammetric software), a DSLR camera of Nikon D300 can provide
more accurate photogrammetric results (between 0.0+2.5 and -0.2+3.1 cm) than that of
an iPhone 4 smart phone camera (between 0.8+5.7 and 1.5£3.2 cm). It is likely that the
quality of both cameras was not significantly different for the initial assessment of

landslide monitoring.

For highly precise photogrammetry using both UAV and ground-based platforms, DSLR
and consumer-grade cameras are intensively used for image acquisition for monitoring
purposes in geoscience applications (James and Robson, 2012; Micheletti ef al., 2015a).
However, images from DSLR or consumer-grade cameras can be used in the developed
system in assessing landslide deformations. The system can support the uploading of
images not only from the camera in a mobile device, but also images from multiple other

cameras, thus increasing the opportunities for image acquisition from enhanced sensors.

For instance, modern DSLR and off-the-shelf digital cameras have built-in wireless
connectivity, such as Wi-Fi or Bluetooth, that can be used for direct connection to a smart
phone for image transfer. In the case of on-site investigations using a DSLR or consumer-
grade camera, Figure 6-2 illustrates image acquisition through a mobile application for

uploading to the landslide monitoring system.
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Figure 6-2: The implementation of a DSLR or consumer-grade camera for image
acquisition applied in the developed system.

6.2.2 The cloud-based server

For development of the back-end service of the system, all processing of
photogrammetric measurement and landslide monitoring was implemented on cloud
computing technology. The cloud-based server was used for the SfM-based
photogrammetric processing of the image data from the smart phone and the assessment
of landslide deformations from photogrammetric results at different times. Although the
cloud computing technology is based on virtual machine (VM), the cloud-based server
can operate the same as a hardware platform. Furthermore, the advantages of a cloud-
based server include the low financial investment in the system development for the end
user and the flexibility in management and monitoring of the system. For instance,

technical skills in the maintenance of the server are not required in developing the system.

Currently, commercial SfM software such as Pix4D can be used on a desktop computer
or with cloud computing technology for the SfM-photogrammetric services allowing 3D
reconstruction from images. Unfortunately, a free Internet-based SfM system, such as
Microsoft Photosynth or Autodesk 123D catch, is no longer available. Those SfM
services offer full photogrammetric processing workflows, but some advanced functions
lack details and are treated as a black box for processing. Moreover, the requirement of

additional functions in terms of post-processing is necessary to achieve the appropriate
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photogrammetric results for landslide monitoring purposes. Therefore, it is difficult for
an Internet-based SfM service that had been implemented with low-cost landslide

monitoring to be used in the photogrammetric processing.

The proposed system has various strengths for initial assessments in in-situ landslide
monitoring. It can offer visualisation of a three-dimensional scene of the photogrammetric
results in near real-time after data processing. Consequently, the results can be instantly
verified by the operator using 3D visualisation of a point cloud on a mobile device (such
as a tablet), before assessing landslide deformations, as shown in Figure 3-29. Moreover,
the system can back-up the image data, along with the photogrammetric results, as well
as the results of the analysis of landslide monitoring using cloud storage technology with

Amazon S3 to avoid data loss, and support subsequent multi-temporal comparisons.

However, there are still some weaknesses of the developed system where improvements
are needed. Firstly, the design of the system does not support multi-tasking, and the
system can be operated only by a single user at one time. To support simultaneous use of
the system by multiple users, a queuing management system would be required to
facilitate access. Secondly, the security of the developed system for landslide monitoring
was considered to be outside the scope of this study, but should be considered in any
future development. Finally, feedback concerning system usability from geotechnical or
geological engineers would be useful to evaluate practical applicability to the user

community and steer further improvements in the system.

6.3 Performance assessment

The performance of the cloud-based system was assessed for its ability to deliver real-
time photogrammetric measurement and monitoring for use in on-site investigations
assessing landslide hazards using mobile device technology. Evaluation of advanced
functions for improved photogrammetric processing and the effectiveness for landslide

monitoring is highlighted in this section.

The proposed system requires an Internet service with high bandwidth connectivity in
order to provide necessary connection speed for image data transfer from a smart phone

to a cloud server for photogrammetric processing. As is often the main problem with
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mobile cloud computing technology, successful upload of images from a smart phone is
subject to variation given the inefficient performance of Internet services via current
mobile networks. Service coverage is often a serious issue for the countryside or rural
areas, as discussed in section 4.3. In the near future, mobile network operators are
expected to deliver advances in both coverage and performance of mobile data
technology. In summary, the cloud-based system requires Internet services via a modern

4G/5G network to operate effectively.

The state-of-the-art mobile device-based SfM photogrammetry avoid only the cloud-
based processing. In order to facilitate a real-time response capability, various processes
in the SfM-based photogrammetric workflow can be performed on the mobile device,
such as feature detection or image matching. As shown in Figure 6-3, photogrammetric
processing can be carried out using the resources of both mobile devices and cloud
computing in order to help reduce the demands for bandwidth connectivity (Nocerino et
al., 2017). Moreover, an innovative approach to real-time 3D surface reconstruction on
mobile devices has been developed using a new pipeline for image processing on
GPU/CPU integrated with an inertial measurement unit (IMU) in order to eliminate the

cloud-based processing (Ondruska et al., 2015).
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Figure 6-3: Workflow of data processing for StM-photogrammetry based on mobile
devices and cloud computing (Nocerino et al., 2017).
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These approaches can address the issue of the bandwidth demand for Internet connectivity
between a smart phone and a cloud server. Nevertheless, an in-situ landslide monitoring
approach based on the SfM technique is still more appropriate for cloud-based processing.
That is because such approaches cannot deal with the photogrammetric processing with
the requirement of large numbers of high resolution images to maintain the accuracy and

resolution of results in real time.

In this study, for example, the process of dense image matching from large numbers of
images employed in generating the point cloud might be time-consuming. To deliver
photogrammetric results with the appropriate quality for in-situ landslide monitoring, the
relationship between the number of images and image size has been investigated to
optimise data processing in real-time. Consequently, an optimal imaging network would
deliver an appropriate image size and a suitable number of camera stations prior to
uploading data to the cloud, as explained in section 4.4. The recommendation for
photogrammetric configuration using a B/D ratio of 0.1-0.2 determines the number of
camera stations or images for a close-range photogrammetric approach. Furthermore,
improved image data (i.e. 20%-30% of image size reduction) before transfer may help in
reducing both the uploading and processing time in order to achieve a near real-time

response for landslide monitoring.

In terms of the functions developed to improve photogrammetric processing in the
system, a pre-image matching stage is used to reduce the image matching time using
image sequences. In the experiment concerning pre-image matching, the time required
for image matching can be decreased by approximately 80%, compared to using full
matching, and this can help reduce the overall photogrammetric processing time by
approximately 30%. In addition, the pre- and post-processing procedures, such as lens
distortion correction, automatic de-noising and vegetation filtering, can help to improve
the quality of photogrammetric results before assessment of landslide behaviour. Geo-
referencing is another important stage of post-processing for photogrammetric results,
generally used to provide a real-world coordinate system for comparison and analysis of
landslide monitoring. For this study, additional functions developed for geo-referencing
can be directly employed on mobile devices in order to provide a highly precise geo-
referencing for photogrammetry. The development of additional functions can achieve

the basic requirements for on-site investigations, as proposed in section 3.3.3. However,
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although the advanced functions of the system can enhance the potential for
photogrammetric measurement and automated landslide analysis, human interaction may

be required in post-processing, such as for geo-referencing and de-noising.

Although development of additional functions in the system can facilitate the automated
and straightforward workflows of photogrammetric processing and landslide monitoring
analysis for non-expert users, basic knowledge of the use and understanding of each
function is necessary to utilise the system appropriately for fieldwork. In particular, the
settings of appropriate parameters for some functions is one of the greatest challenges
faced by non-expert users. For example, the additional functions of automatic de-noising,
vegetation filtering and assessing landslide deformations using M3C2 needs experimental
study before fieldwork for specification of appropriate parameters. Moreover, the
selection of suitable parameters depends on the different types of landslide hazard for
monitoring. Therefore, the parameters for each function should be careful chosen to

achieve sensible results in photogrammetric landslide monitoring.

6.4 Assessment of photogrammetric accuracy

In considering photogrammetric approaches for monitoring purposes, accuracy is the first
concern. In particular, sources of reconstruction errors, which have a strong influence on
photogrammetric precision, should be identified and tackled to optimise measurement
quality, as highlighted in section 3.2. The accuracy of photogrammetric measurement in
this research was investigated using two experimental studies in different landslide areas.
The accuracy of the photogrammetry used an in-situ landslide monitoring is discussed in

this section.

The design of the photogrammetric network configuration for landslide monitoring
should be determined by the characteristics of the area monitored. Firstly, the accessibility
and steepness of landslide area should be considered. Convergent imaging networks and
image acquisition with a full 360° coverage of the monitoring area are usually employed
to deliver effectively a 3D reconstruction (Goémez-Gutiérrez et al., 2014), as shown in
Figure 5-4. However, if the monitoring area is inaccessible or too steep, such as a coastal
cliff, a block configuration is more suitable for the photogrammetric imaging network,

and images should be taken from the front of the monitoring area in a linear sequence.
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Therefore, the optimal quality of photogrammetric measurement can be achieved by

choosing the most appropriate configuration for landslide monitoring in a specific site.

In terms of photogrammetric processing software, point clouds obtained from free StM
software such as VisualSFM and PMVS produce relatively low-quality results in terms
of both point density and accuracy when compared to results from commercial StM
software such as PhotoScan, as shown in section 4.2 and 4.3. Moreover, the different
algorithms used in each type of SfM software (for example when conducting feature
detection using SIFT or SURF) have an influence of the precision of image measurement
and thus on photogrammetric accuracy (James and Robson, 2012). The RMSE of
measurement using SIFT is assumed to be approximately one half of a pixel (Barazzetti
et al., 2010), but it is likely that SfM photogrammetry involves lower precision of image
mensuration compared to traditional digital photogrammetry. Consequently,
photogrammetric precision in 3D reconstruction from the imagery is further degraded due
to these factors. Thus, the choice of photogrammetric processing software implemented

in the developed system has an influence on accuracy in assessing landslide deformations.

In geo-referencing, the use of photo control targets is essential for highly precise
photogrammetric measurement. In general, control points should be distributed to cover
the whole area to be monitored. If the distribution of targets is not good enough as
described in the experiment of section 4.5.3, this will result in a low quality of geo-
referencing. For geo-referencing with GNSS/TLS-based target observations, the
photogrammetric results for each epoch were determined so as to enable a straightforward
comparison in a common coordinate system. In contrast, to avoid measurement using
GNSS/TLS observations, an innovative solution with a newly-developed function was
utilised for highly precise scaling of photogrammetric results. This application of scaling
was performed using distances of known objects, such as with a scale bar (Kaiser ef al.,
2014). However, after scaling, manual alignment of photogrammetric results at different
epochs was required. This solution can also offer low-cost observations to support the on-
site investigation of landslide monitoring. As shown in the experiment described in
section 5.3.4, the test results confirmed that this is a reliable method for geo-referencing
without the need for highly accurate GNSS/TLS observation data. Thus, the development
of automated alignment should be proposed for an additional study in the future. This

automated alignment of results from different epochs would be definitely better than the
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manual approach, especially for practical application by engineers. For example, the
study on markerless point cloud registration (Theiler ef al., 2013) and point cloud coarse

registration (Bueno et al., 2016) may be utilised with an automated alignment.

Compared with the accuracy of results for close-range photogrammetry in the
experimental studies described in chapter 5, the photogrammetric measurement system
based on a mobile-platform can yield a sub-dm accuracy level, especially over surfaces
without vegetation. In the case of natural earth-flow landslide monitoring,
photogrammetric precision was noticeably degraded due to the effect of vegetation. In
the case of monitoring of coastal cliff erosion, the photogrammetric accuracy was at the
level of centimetres (from 2.7 to 3.0 cm) due to the monitoring area consisting of a bare-

earth surface.

However, due to the different types of landslide hazard being monitored, the conditions
adopted in the photogrammetric approach have a direct impact on the quality of final
results, i.e. the quality of camera for image acquisition, photogrammetric network
configuration, the number and distribution of ground control points, etc. As shown in the
experiment described in section 5.3.5, the problem of the doming effect can cause
systematic errors in the results due to SfM-photogrammetric processing under adverse
conditions. Firstly, the use of raw (un-calibrated) images with weak photogrammetric
network geometry (the linear sequences of images) for processing could result in distorted
reconstruction (James and Robson, 2012). Secondly, the number of ground control points
were insufficient and they were poorly distributed. Consequently, a bundle adjustment
has been insufficiently strong (Eltner and Schneider, 2015). Therefore, photogrammetric
processing should be carefully performed to reduce these systematic errors and minimise

any doming effect.
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6.5 Assessment of landslide monitoring analysis

After improving and evaluating photogrammetric accuracy, the enhanced results at
different epochs can be utilised for assessment of landslide deformation. The proposed
analysis of landslide monitoring is performed using a point-based approach with the
comparison of 3D models from two point clouds. As shown in the experiment results
presented in section 4.5.6, the M3C2 method reveals fine-scale changes occurring due to
landslide activity. Furthermore, the levels of uncertainty in point clouds have been taken
into consideration in this comparison method in order to provide an efficient analysis for
landslide monitoring. In particular, for the initial assessment in an on-site investigation,
the function developed for landslide monitoring analysis is based on the M3C2 technique
comparing point clouds. The results of this function can be displayed directly on a smart
phone through visualisation or statistical quantification by the developed system for the

analysis of landslide monitoring, as shown in Figure 3-29.

Before assessing landslide deformations, the photogrammetric results at different epochs
should be aligned to a common reference system. In the case of geo-referencing without
a highly precise GNSS survey for the observation of control point locations, improved
referencing is essential to ensure that the results are well-aligned. In general, all epochs
should be georeferenced to the first epoch. The primary method of improved referencing
consists of an alignment of point clouds with each other using at least four key features

in the monitored area, with application of the ICP algorithm.

Comparing results of the landslide monitoring analysis in the two experimental studies
described in chapter 5, the sources of uncertainty which might have an influence on the
assessment of landslide changes should be taken into consideration when delivering the
results. In the case of natural earth-flow landslide monitoring, the surfaces covered in
vegetation can affect the accuracy of landslide measurements because the heights of
vegetation surfaces change seasonally. Vegetation filtering is used over vegetated
surfaces to deliver bare-earth point clouds so as to detect landslide movement over time.
Typically, vegetation filtering is carried out using the green vegetation index to eliminate
point clouds assumed over the vegetated surfaces. However, vegetated surfaces that are
not coloured green, such as in the presence of brown grass, often appears in summer.

Consequently, the point cloud over these vegetated surfaces remains and is used for
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assessing landslide change. Furthermore, point clouds obtained from photogrammetric
processing using VisualSFM and PMVS showed sparse points and large void areas. As a
result, insufficient detail at each epoch might be more prone to fail in the recognition of

the landslide deformation, as shown in Figure 5-10 and 5-18(b).

Considering the sparse point clouds and large void areas, completeness of coverage of the
results can be slightly improved by increasing the number of images (or camera stations)
in photogrammetric processing. However, the results still contain void data because of
the insufficient potential of free SfM software for generating the point cloud, as shown in
Figure 4-10. Consequently, the use of dense image matching for a large number of images
to increase the number of points might be too time-consuming, and thus would be
inappropriate for initial assessments in on-site investigations. However, although a low-
quality point cloud (such as one with sparse points and void areas) might be inappropriate
in the analysis of landslide monitoring, the extraction of bare-earth point clouds after
vegetation filtering can allow the key information in landslide areas, such as cracks or
fissures, to be presented. Therefore, landslide monitoring using a point-based approach
(i.e. point cloud comparison method) might not be suitable in the case of landslide areas

covered by vegetation.

For 3D point-based analysis, bare-earth point clouds might have the potential to allow
feature extraction, such as of cracks or fissures, in the scarp of landslides. The extraction
of features is performed using the analysis of geomorphological factors, such as the
surface roughness index, as shown in Figure 6-4. However, although this approach can
be automatically performed, the tracking of features might be complicated and time-
consuming in evaluating landslide movements over time. Therefore, the 3D features have
to be degraded into 2D information from the imagery in order to analyse landslide

monitoring using an image correlation method.
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Figure 6-4: Extraction of (a) landslide scarp using analysis of the surface roughness
index, and (b) orthophoto derived from UAV approach (Al-Rawabdeh et al., 2016).

Although the developed system was not implemented in the actual area, conditions in the
simulation was equally assigned. The image data was collected from the study area. The
experiments were carried out under laboratory simulation because of the inefficient
performance of Internet service via current mobile networks, which was unsuitable for
data transfer from mobile device to the cloud. Consequently, the photogrammetric
approach using the developed system was sufficiently accurate to assess landslide

movements and measuring landslide deformations at the dm-level.

6.6 Potential challenges of operation

As mentioned above, the main drawback of mobile devices is usually their low computing
power when compared to PCs or laptop computers. The use of cloud-based processing is
essential to overcome the problems of insufficient resources on mobile devices in order
to manage data-intensive processing. In the development of a photogrammetric
measurement and landslide monitoring system, the architecture is based on client-server
communication using Internet services. Thus, the appropriate Internet connectivity
between a smart phone and the cloud server is essential for the system to operate

continuously.
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Deficiencies in Internet connections are one of the main limitations of the proposed
system. If a landslide occurs in the countryside, connection to the Internet might not be
possible due to poor coverage of mobile networks, as found in the two experimental
studies described in chapter 5. Furthermore, the Internet services may not perform well.
If Internet connectivity is temporarily unavailable for data processing, the system cannot
operate. When Internet connectivity is not available, it is essential to develop additional
functions on the system to provide the synchronisation of both data and state for data
processing (i.e. specifying status for the steps of data processing before Internet
disconnection). In addition, the system could be improved to support offline data
processing whereas it may become possible for the development of smart phone

technology to undertake all processing.

There are other factors affecting the photogrammetric measurement: 1) insufficient image
matching and 2) presence of vegetation over the monitoring areas. Image matching, when
overlaps were less than three images, may lead to failure in 3D model reconstruction from
images. In this case, the recommendation for photogrammetric configuration should be a
B/D ratio of 0.1-0.2 to provide a suitable number of camera stations or images for a close-
range photogrammetric approach. As for the presence of vegetation, this can have a direct
impact on the accuracy of photogrammetric results due to the unreliability of
photogrammetric measurement over these surfaces, which is discussed in the next

chapter.

6.7 Summary

Following the evaluation of the developed system in chapter 4 and the results of the
experiments described in chapter 5, an additional discussion has been presented in this
chapter to assess the performance of the system. The proposed mobile platform-based
system was investigated using the photogrammetric solution for landslide monitoring
purposes that was explained in chapters 2 and 3. The experimental results have revealed
the potential of mobile cloud-based processing, and the levels of photogrammetric
accuracy and the quality of landslide monitoring analysis for on-site investigation. The
experiments have confirmed that the developed low-cost, real-time system can be utilised

for initial assessments of on-site investigation in landslide monitoring.
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Chapter 7. Conclusions and future work

7.1 Introduction

This research has presented the development of a cost-effective photogrammetric
monitoring system based on a mobile platform for real-time on-site investigation in order
to aid initial geotechnical interpretation and assessment of landslide hazards. The
potential of the developed system for monitoring landslides has been confirmed through
exploitation at recognised real-world test sites, comprising a natural earth-flow landslide
and an area of coastal cliff erosion. To conclude the findings and discussions of the
implementation and the experimental studies in this research, the overall study, research

contributions, and recommendations for future work are summarised in this chapter.

7.2 Summary of work

The research aimed to exploit mobile devices and modern ICT in order to develop a
photogrammetric measurement and monitoring system for real-time on-site investigation
of landslide hazards. The development and implementation of a system was accomplished
in order to achieve the goal for this research that was divided into four stages. Thus, the
review of the overall studies are summarized in this section following the research

objectives, as originally presented in Chapter 1.
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Objective 1: To investigate the potential of commonly used approaches and technologies
in landslide monitoring and to propose the basic requirements of a low-cost
photogrammetric solution for initial landslide assessment during on-site investigations

by non-photogrammetrists;

Regarding the first stage of this research, as presented in chapter 2, landslide hazards have
been reviewed. This includes the occurrence, types, causes, factors and behaviour of
landslides in order to understand key parameters required for landslide assessment and
monitoring. Many of the more common geomatics, geotechnical and geophysical
engineering approaches for landslide monitoring were inspected and the advantages and
disadvantages relating to their adoption for on-site investigation purposes assessed.
According to the assessment, many geomatics, geotechnical and geophysical approaches
present restrictions in usability for landslide monitoring due to the often labour-intensive
and costly methods used. For initial assessment, the technique of modern close-range
photogrammetry was deemed to offer a flexible, cost-effective approach to landslide
monitoring. Taking this assessment into consideration, a photogrammetric measurement
and monitoring solution that employed a mobile device and cloud computing technology

was pursued, which thereby achieved Objective 1.

Objective 2: To develop the mobile platform-based photogrammetric services associated
with cloud-based computing technology for the provision of real-time slope monitoring

information;

Following the findings of Objective 1, the proposed photogrammetric landslide
monitoring system was developed based on a mobile platform implemented with cloud
computing technology to enable the potential for real-time processing, as proposed in
Chapter 3. The components of the system comprised a front-end service of a mobile
application controlled by the operator and a back-end service employed for cloud-based
processing. In the case of smart phone technology, such a device can provide more
convenience in image acquisition for on-site investigations, and can upload imagery for
processing, as well as display the results. In developing a back-end service for the system,
cloud-based processing using free SfM software has provided near-real-time, fully-
automated processing within a user-friendly, cost-effective photogrammetric framework

for non-expert use. This was augmented with additional functions for pre- and post-
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processing of SfM photogrammetry, such as lens distortion correction, pre-image
matching, geo-referencing, automatic de-noising and vegetation filtering, that were used
to enhance the processing performance and deliver appropriate photogrammetric results

prior to the assessment of landslide deformations.

Objective 3: To exploit the photogrammetric results by developing appropriate

functionality to assess landslide temporal change directly using a mobile device,

This stage focused on the development of landslide monitoring analysis that utilised the
enhanced photogrammetric results from different epochs. The proposed landslide analysis
was performed using a point-based approach using the M3C2 technique for efficient 3D
point cloud comparison. This additional system functionality was developed and carried
out using cloud-based processing, as presented in Chapter 3. The results of landslide
analysis were retrieved and displayed directly on a smart phone through the mobile
application developed for visualisation and the statistical quantification of landslide

deformations.

Objective 4. To ensure the accuracy and reliability of the results and the capabilities of
the low cost sensors found on common mobile devices for landslide monitoring

applications by validating the developed system at real-world test sites;

Prior to the experimental study at an existing landslide test site, the capabilities of
functions developed for improved photogrammetric processing and landslide monitoring
on the cloud were evaluated and inspected to ensure the accuracy and reliability of the
results, as presented in Chapter 4. The potential of the developed system for monitoring
landslides was investigated at two different real-world UK sites, comprising a natural
earth-flow landslide and an area of coastal cliff erosion. These experiments and
evaluations confirmed the performance of the developed low-cost, real-time approach for
landslide hazard analysis, as presented in Chapter 5. These investigations demonstrated
that the cloud-based photogrammetric measurement system was capable of providing
three-dimensional results with sub-decimeter level accuracy. However, for coastal cliff
erosion monitoring, it is necessary to consider the possibility of systematic errors from
the doming effect due to weak geometry in the network configuration or inappropriate
photogrammetric processing based on the raw imagery. As a solution to this problem, a

convergent imaging network and multi-scale imaging could have been adopted, as well
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as better distributed control points. The results of the initial assessments for on-site

investigation could therefore effectively detect landslide deformations at a local-scale.

7.3 Research contributions

The initial assessment for on-site investigations of landslide hazards is important in
geophysical and geotechnical engineering to reduce the risk of landslides. Improvements
to existing geomatics approaches based on ground platforms are essential to reduce the
financial costs of both instrumentation and labour, as well as saving time for conventional
landslide monitoring. In this research, the development of an appropriate monitoring
system for use in real-time on-site investigation aids initial geotechnical interpretation
and assessment of landslides. In comparison with conventional geomatics approaches,
affordable mobile devices (such as smart phones and tablets) have been used to offer the
potential for cost-effective, close-range photogrammetry. The immediate noticeable
benefit of a smart phone is convenience in image acquisition. Another advantage is that
a smart phone can upload the image data for data processing and it can display the results
of photogrammetric landslide monitoring in order to facilitate an efficient initial

assessment of landslide hazards.

In terms of the proposed system to achieve a low-cost solution, the development of a
system in this research was based solely on open-source or free software. Moreover, cost-
effective cloud computing services were implemented for data storage, processing and
analysis in the system. The development of a cloud-based system was particularly utilised
for SfM-based photogrammetric processing of the image data from the smart phone and
the assessment of landslide deformations from photogrammetric results at different
epochs. The implemented SfM workflow involved a high degree of automated
processing. Furthermore, the development of additional functions for the SfM-
photogrammetric approach was utilised to enhance the processing performance and
improve the quality of results. According to the workflow for photogrammetry-based
landslide monitoring, as shown in Figure 3-13, the system utilises automated workflows

to offer user-friendliness for non-experts.

To provide a photogrammetric solution suitable for non-expert users and to achieve the

necessary quality of photogrammetric results for landslide monitoring, photogrammetric
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network design is an essential consideration for close-range photogrammetry (Luhmann
et al., 2006). The imaging plan was calculated using four main factors, as follows: (1)
base to depth (B/D) ratio of imaging geometry in the range of 0.1-0.3 to provide accurate
ray intersection for 3D reconstruction (Hullo et al., 2009; Waldhéusl and Ogleby, 1994);
(2) the maximum distance between the camera and the object (in this research it was kept
at less than 30 m), because image scale, a function of the focal length of the camera lens,
has a direct impact on the measurement precision; (3) a camera field of view (FOV) of
~40° to 80° is generally required in deformation monitoring for engineering applications
(Fryer et al., 2007), which is applicable here, given the requirement to capture detailed
surface information; (4) images should fully cover the study area (360° coverage), with
necessary overlaps, to enable effective 3D reconstruction. Therefore, it is crucial that the
guideline for image capture should be determined following these basic requirements and

should be considered prior to data collection.

In terms of the implemented system’s capability to deliver a near real-time response,
image upload and processing time are crucial factors to be considered. The GPU cloud
server was required for dealing with the computationally-intensive modules of the StM
workflow. Moreover, the management of the image data upload from a smart phone to a
cloud server is critical for achieving on-site investigation. The cloud-based system
required data transfer using Internet services such as modern 4G/5G (future) networks in
order to provide satisfactory connection speeds due to the need for high bandwidth
connectivity. Reducing the workload for image data upload can help decrease the demand
for high Internet connection speeds. The relationship between the number of images or
camera stations and image size was investigated to optimize data processing, as presented
in Chapter 4. The recommendation for the photogrammetric configuration (i.e. using a
B/D ratio of 0.1-0.2) can offer a suitable number of camera stations or images for a close-
range photogrammetric approach. Moreover, reducing image resolution (i.e. 20%-30% of
image size reduction) before data transfer may help reduce both the uploading and

processing time in order to achieve a response closer to real-time.

Focusing on the accuracy assessment of results obtained from the mobile platform-based
photogrammetric measurement system, this approach can yield a sub-dm accuracy level,
especially over surfaces without vegetation. In the case of natural earth-flow landslide

monitoring, photogrammetric precision was noticeably degraded due to the effect of
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vegetation. Meanwhile, in the case of monitoring coastal cliff erosion, photogrammetric
accuracy was at the cm-level due to the monitoring area consisting of a bare-earth surface.
Regarding the application of landslide monitoring, the photogrammetric results provided

sufficient accuracy for initial assessment with measurements at the dm-level.

7.4 Suggestions for future work

The system developed as part of this research can provide a solution for low-cost, near
real-time photogrammetric measurement and automated landslide analysis by non-
experts. However, human interaction is required at some stages of processing. Moreover,
higher-performance in processing and highly precise photogrammetric measurements are
required to increase user satisfaction. Taking into account some existing drawbacks of
the developed system, potential improvements of the system are recommended in this

section.

7.4.1 Precision improvement of SfM-photogrammetric processing

In the case of natural earth-flow landslide monitoring, the surfaces covered in vegetation
can significantly degrade the quality of photogrammetry because of variation in the
heights of vegetation. This can have a direct impact on the accuracy of photogrammetric
results due to the unreliability of photogrammetric measurement over these surfaces. The
masking of the vegetated surfaces in the imagery is proposed to improve the quality of
photogrammetric measurement. The algorithm for this additional functionality might
employ the green vegetation index, as calculated in equation (3-7), to remove pixels
assumed as vegetated surfaces from the original imagery. As a result, images without
vegetated surfaces are uniquely used for SfM photogrammetric processing, as shown in

Figure 7-1(b).
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(a) (b)

Figure 7-1: Example of imagery used for photogrammetric landslide monitoring
between (a) before and, (b) after masking of vegetation (Zhan and Lai, 2015).

7.4.2 Automated target detection for geo-referencing

The development of SfM techniques has improved the accessibility of photogrammetric
processes for use by non-experts, and it can increase automation (Westoby et al., 2012;
Javernick et al., 2014). In particular, a target-less approach based on SfM
photogrammetry can offer fully-automated processing in the image matching stage.
Consequently, the benefit from this approach is that there is no requirement for any
markers or targets when compared to conventional digital photogrammetry. However, in
this research, the use of photo control targets is still necessary to achieve high quality
geo-referencing of photogrammetric results, as proposed in Section 3.4.3. The additional
function of target detection could be developed to enable fully-automated geo-referencing
as part of the system. Coded target detection would then be automatically carried out
using the template matching method, for example by the Python script within OpenCV
library, as shown in Figure 7-2.
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(b)

(@)

Figure 7-2: Example of (a) automatic detection of (b) coded target used for geo-
referencing: the coded target is automatically found in the red boxed area.

However, when using coded targets for geo-referencing of photogrammetric results at
different epochs, the size of the coded target should be considered. Due to image scale,
the distance between the camera and the target has a direct impact on the size of target in
the resultant imagery. If a coded target is not large enough, it might be difficult to
automatically detect and identify its location, in particular for landslide monitoring over
large areas. Achieving the optimal size of coded target is still challenging for practical
applications and the potential use of coded targets might therefore be impracticable for

fieldwork.
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7.5 Concluding remarks

This research has demonstrated the potential of mobile and cloud computing in order to
provide a cost-effective photogrammetric measurement solution on a mobile device for
the purposes of small-area landslide monitoring. In particular, this approach supports off-
the-shelf hardware (including affordable smartphone cameras) and open source software
in order to deliver a low-cost monitoring system. Alternatively, SfM-commercial
software (e.g. PhotoScan) can effectively provide sufficient quality of photogrammetric
results for assessing landslide deformations. In future work, the mobile application should
therefore be improved and developed to support the additional photogrammetric results
obtained from other SfM software packages. However, Internet services in the monitored
areas of landslides is a critical problem that hinders the full implementation of such a
system. Furthermore, manual intervention is inevitably required for preparing
photogrammetric results in point cloud processing before landslide monitoring analysis.
Based on the assessment of this system, the presented experiments utilising cloud-
implemented SfM photogrammetry show substantial potential in terms of landslide

monitoring over limited spatial extents.

In the case of the implementation for on-site landslide investigation, the developed system
has taken into account a solution for near real-time processing. Two crucial factors are
required to enable a near real-time response, including the use of a modern 4G/5G mobile
network for data transfer and the GPU-based cloud server for SfM photogrammetric
processing. Moreover, multi-epoch analysis needs to be considered in order to assess the
photogrammetric results over time, thereby yielding information on landslides and hazard
assessment. The additional functions of landslide monitoring analysis can automatically

detect the landslide deformation at dm-level.
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Appendix A

Camera calibration results (Section 3.2.2)

Table A-1: Camera calibration results for the Nikon D300 DSLR camera using three different calibration routines.

Nikon D300
Parameter PhotoModeler MATLAB OpenCV
Mean c Mean c Mean c

Focal Length (mm) 30.300 0.009 30.165 0.038 30.183 N/A
Xp - principal point x (mm) 12.120 0.007 12.125 0.023 12.168 N/A
Yp - principal point y (mm) 8.130 0.005 8.132 0.020 8.157 N/A

Fw - format width (mm) 24.002 0.001

: Not calculated
Fh - format height (mm) 15.940 N/A
K1 - radial distortion 1 -1.35x10% 1.52x107 -1.34x10% 4.57x10% | -1.22x10% N/A
K2 - radial distortion 2 1.04x1077 1.48x108 1.24x10707 4.68x10"7 1.85x108 N/A
K3 - radial distortion 3 0.00x10100 0.00x10700 0.00x10™° | 0.00x10%% | 0.00x10%% N/A
P1 - tangential distortion 1 4.14x10 2.07x10% 1.94x10°07 | 1.94x10°% | -1.89x107 N/A
P2 - tangential distortion 2 -4.28x10707 9.30X1077 1.89x10%7 | 2.15X10% | 2.30x10°"7 N/A
Image measurement precision:
Overall RMS (pixels) 0.973 1.042 1.078
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Table A-2: Camera calibration results for the iPhone4 smart phone camera using three different calibration routines.

iPhone4
Parameter PhotoModeler MATLAB OpenCV
Mean o Mean c Mean o
Focal Length (mm) 3.808 0.003 3.816 0.007 3.829 N/A
Xp - principal point x (mm) 1.983 0.002 1.987 0.005 1.990 N/A
Yp - principal point y (mm) 1.484 0.002 1.468 0.006 1.469 N/A
Fw - format width (mm) 3.959 0.000
. Not calculated
Fh - format height (mm) 2.958 N/A
K1 - radial distortion 1 -8.33x10% L.77E% | -8.99x10%3 | 2.04x10% | -8.97x10°° N/A
K2 - radial distortion 2 2.07x10 4.74E05 2.28x10% | 7.73x10% | 2.26x10 N/A
K3 - radial distortion 3 0.00x10" | 0.00x10" |  0.00x10* | 0.00x10" | 0.00x10" N/A
P1 - tangential distortion 1 2.67x10% | 3.93x10% | -1.26x10*| 1.27x10* | -1.16x10* N/A
P2 - tangential distortion 2 -2.77x10% | 3.80x10 5.97x10%5 | 1.47x10* | 6.40x10 N/A
Image measurement precision:
Overall RMS (pixels) 0.982 1.255 1.351
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Figure A-1: Radial lens distortion of the Nikon D300, as determined from the three

different calibration routines.
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Figure A-2: Radial lens distortion of the iPhone4, as determined from the three different

calibration routines.
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Appendix B

Calculations of the maximum allowable camera-to-object distance and field of view

of the camera (Section 3.2.3)

Table B-1: Maximum allowable camera-to-object distance (d,;, 4, ) using the Nexus 6
smart phone camera for image acquisition.

Standard Average Maximum
. number Standard | allowable camera-
CIOTI ) Focal of .| error in the | to-object distance,
. the Design . d
Digital . length, | exposure image max
object factor, . (m)
camera . c at/near coordinate,
point, q
s (mm) each c &' eih
(m) Statllfn’ (hm) ] :&tﬂm g‘, .
Bk
Nexus 6 0.005 4 1 0.9 1.58 14.03

Table B-2: Field of view (FOV) of iPhone 4, Nexus 6 and Nikon D300 digital cameras.

Digital Focal Format | Format Image format | Field of view,
car%lera length, ¢ | width, w | height, h diagonal, s' 2Q
(mm) (mm) (mm) (mm) (Degree)
iPhone4 3.8 4.0 3.0 5.0 66.68
Nexus 6 3.8 4.7 3.5 59 75.27
Nikon D300 28.0 23.6 15.8 28.4 53.78
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Appendix C

SkyPMMS instructions (Section 3.5.3)

As a user guide of the SkyPMMS application for photogrammetric landslide monitoring,

a user guide is divided into two modules, as follows:

Module 1: Photogrammetric measurement

This module is used to upload images from a mobile device to a cloud server, process
imaging data on the system and display the point cloud results for photogrammetric

measurement.
1) Create a new project or select an existing project

e Click to start the SkyPMMS application

SkyPMMS

Photogrammetric measurement and
monitoring system

//—-A’ u\
x‘_. TINS ...,‘

Click to start!
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e Choose either to create a new project or to select an existing project.

r—Project:

® Select an existing project: ]

) Create a new project:

Please, click to next stage.

2) Create a new epoch for photogrammetric measurement

e Click to start the module of photogrammetric measurement for generating results.

= skyPMMS :

—Project: HollinHill

¢ Select a system for processing:

Landslide monitering analysis
Back to start a new Project

e C(lick to add a new epoch of measurement.

= SkyPMMS :

r—Project: HollinHill

Photogrammetric measurement system:
Date of data  Upload Process Display
collection images data results
2015-06-10 v L' %
2016-02-12 "4 v Y
2016-05-26 1% v N
Create a new datase‘ \ v I
(oK)

Goback |
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e Select and set the date of data collection.

2018

Thu, 19 Apr

April 2018

CANCEL

e Click "“/ to create a new epoch of photogrammetric measurement.

= SkyPMMS

—Project: HollinHill
Photogrammetric measurement system:
Date of data Upload Process Display
collection images data results
2015-06-10 g v N
2016-02-12 4 v N
2016-05-26 4 L N
[|2018-04-19 G 2 x |
Create a new dataset: | v |
[oK]
Go back! |
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3) Upload a new image dataset

e C(lick e to add a new image dataset.

=+ Add files...
o C(lick - and select a path of image dataset.

Image Chooser

(3

Android system

Documents

e Select image files from a list of images.
= Images vi Q=

DSC_0214.JPG
20:44 9.54 MB

DSC_0218.JPG
20:44 9.48 MB

DSC_0222.JPG
20:44 9.03 MB

DSC_0225.JPG
20:44 9.20 MB

DSC_0228.JPG
20:44 8.62 MB

DSC_0230.JPG
20:44 8.75MB

DSC_0233.JPG
20:44 8.57 MB

DSC_0236.JPG
20:44 7.67 MB
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e Click to upload images from a mobile device to a cloud server.

e After uploading image data, the status of image upload v appeare.

= SkyPMMS :

—Project: HollinHill

Photogrammetric measurement system:

Date of data  Upload Process Display

collection images data results

2015-06-10 v v N

2016-02-12 v v N

2016-05-26 v v N

20180419 | 3 X

Create a new dataset: v
OK

| Go back!

4) Settings for data processing

Click = for settings of photogrammetric processing.
These settings include three parts: 1) pre-processing, 2) geo-referencing, and 3)

post-processing.

4.1) Pre-processing

In pre-processing, the user has two options to enhance the performance of data

processing and improve the quality of photogrammetric results.

Making a pair-list of image matching
from image sequence

= Number of matching neighbor
frames: 3 v |

Lens distortion correction

= select an existing camera model
from a text file:
| Choose file | No file chosen
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4.1.1) Lens distortion correction

e Check to use the images corrected for lens distortion for
processing.
e The user has to import a TXT file of the parameters for a camera

model.
4.1.2) Pre-image matching

e Check to use the pre-image matching.
e The user has to select the number of overlaps for image matching.
e In general, the user should select the appropriate number of

overlaps for at least three images.

4.2) Geo-referencing

In the settings of geo-referencing for photogrammetric results, the user has four

options, as follows:

Georeferencing

e |None

with GCPs/targets
from a GCP file of observations:
Choose file | No file chosen

with a real-time GCP observation on
imagery
Click to measurement

with dimensions of known objects
Click to process

4.2.1) None

e Select not to provide any spatial information for photogrammetric

results.

4.2.1) With GNSS-based target observations
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e The user has to import a TXT file for a pair list of targets with
photo coordinates and the real-world coordinates acquired from

GNSS survey for geo-referencing.
4.2.1) With real-time, GNSS-based target observations

e The user has to measure the photo coordinates of targets on
imagery and input the real-world coordinates acquired from GNSS
survey.

e Select to import or input the real-world coordinates of targets.

= skyPMMS : | = skyPMMS :

Select CSV file [PointID,E,N,H]:
. Choose file | No file chosen
—Georeferencing————— 0 !
mport
Import to GCPs gr?a:TDa. new GCP
Select CSV file [PointID,E,N,H]: ot 13
Choose file | No file chosen E(m):
Import N(m):
H(m):
Create a new GCP ad
Point ID:
E(m): .
& List of GCP(s):
N(m): x
H(m): IPcunt E (m) N (m) H (m)
Add B
PT1 468119.529 | 468913.364 | 96.766
List of GCP(s): PT2 |468123.513 | 468906.692 | 93.808
Zeintib) |Em) RALC B L) PT3 |468124.715(468894.216 | 90.374
Go back! | Please, click to next stage. PT4 468112.470 | 468889.020 | 90.767
PTS |468104.738 | 468898.593 | 93.234
PT6 | 468103.504 | 468904.930 | 96.053
Go back! | Please, click to next stage.

e Select the target for measuring the photo coordinates.

Start

o C(lick " to measure the photo coordinates of target.
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= skyPMMS i| = skyPMMS :

—Georeferencing——— —Georeferencing
Select Point ID: Select Point ID:
[PT1,19.738,2.56,2.045 v PT1,19.738,2.56,2.045 v |
Point Pi Start  |[Status: Off

LARIN

<<<I 1 of 26 I>>> | <<<l 1 0f 26 I>>>
GCP observations: GCP obser
[ ]
Cancel || Please, click to next stage. DSC_0761.jpg, (3431.59,1632.73),

PT1,19.738,2.56,2.045

Cancel || Please, click to next stage. |

o C(lick E’ to identify and get the photo coordinates of

target.

= SkyPMMS i | = SkyPMMS é

—Georeferencing—————— —G ferencing
Select Point ID: Select Point ID:
[PT1,19.7382.56,2.045 v 34050 REDAAE =

| x |

| )

DSC_0761.jpg, (3431.59,1632.73),
PT1,19.738,2.56,2.045

Point Picking: Finish [Status: On

oK Cancel

[ << 10f26 [>>> | <<<| 10f26 [>>>

GCP observations: GCP observations:
C 1 C ]
| Cancel || Please, click to next stage. Cancel || Please, click to next stage.

< O O < O O
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4.2.2) With distances between points

e The user has to measure the photo coordinates of three targets on
imagery and input three distances between targets.

e This method is used for scaling the photogrammetric results.
However, after scaling, manual alignment of photogrammetric
results at different epochs is required on PC or laptop computer.

e Input the three distances between points or targets, and click to

next stage.

= SkyPMMS - = SkyPMMS
Georeferencing Georeferencing
Measure distance between targets Measure distance between targets
P)‘Z PT2
//B\ // s\\
c a c a
[ AN L€ Ny mdAL €Ny
b b
PT1 — PT2 PT1 — PT2
PT2 - PT1 PT2 - PT1
PT1 - PT3 PT1 . PT3
PT3 - PT1 PT3 - PT1
PT2 - PT3 PT2 - PT3
PT3 - PT2 PT3 - PT2
Go back! | Please, click to next stage. Go back! || Please, click to next stage.
< O O < O O

e This function will automatically generate the three pseudo

coordinates of points or targets.

e Click to next stage for measuring the photo coordinates of targets.
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PT1,0.0,0.0,0.000

PT2,0.0,14.12,0.000

PT3,4.53,27.768,0.000

e Again, the user has to measure the photo coordinates for all three

points.

4.3) Post-processing

In post-processing, the user has three options to improve the photogrammetric

results before assessing landslide deformations.

Post-processing

Cropping
= select boundary file:
| Choose file | No file chosen

= orthogonal dimension: | x +

De-noising
= Number of points to use for
mean distance estimation:

= Standard deviation multiplier
threshold: 1 ~

Vegetation filtering
= Number of green index
threshold:
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4.3.1) Cropping

Check to provide the point cloud of photogrammetric results
within the boundary of the area of interest.
The user has to import a TXT file of the boundary of the area and

select the orthogonal dimension in X, Y or Z axis.

4.3.2) De-noising

Check to remove noise from the point cloud of photogrammetric
results.

The user has to input two parameters including the number of
points (N) considered and the number of multipliers (n) with a
standard deviation to identify the threshold of classification for

outlier detection.

4.3.3) Vegetation filtering

Check to remove point cloud over vegetated surfaces.

The user has to input a parameter of the green vegetation index
value. Points of photogrammetric results which have green
vegetation index above the threshold for classification are
eliminated from the point cloud. The threshold used for

classification of vegetation depends on the weather and season.

5) Process the photogrammetric measurement

e Click to next stage for photogrammetric processing.

v

e After photogrammetric processing, the status of data processing appeares.
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= skyPMMS :

Project: HollinHill
Photogrammetric measurement system:
Date of data  Upload Process Display
collection images data results
2015-06-10 4 v S
2016-02-12 v % A\
2016-05-26 v 4 S
2018-0419 v [ v \
Create a new dataset: v
0K
Go back!

6) Display the photogrammetric results

e C(Click ™ todisplay the point cloud of photogrammetric results.

= SkyPMMS SkyPMMS

—Project: HollinHill

Photogrammetric measurement system:

Date of data  Upload Process Display
collection images data results
2015-06-10 v 4 Y
2016-02-12 v Vv )
2016-05-26 v v \
2018-04-19 v v S
Create a new dataset: v
OK

Go back!
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Module 2: Landslide monitoring analysis

This module is used to select datasets for assessing landslide deformation, process and

analyse the landslide and show the results of landslide monitoring analysis.

1) Select the project
e Select an existing project of photogrammetric landslide monitoring.
2) Select the epochs for a multi-epoch analysis

e C(lick to start the module of landslide monitoring analysis.

= skyPMMS :

—Project: HollinHill————————————

» Select a system for processing:

Photogrammetric measurement system

Back to start a new Project

e Check to create a new analysis of landslide monitoring.

= skyPMMS :

r—Project: HollinHill————————

Landslide monitoring analysis:

Epochs of Update Analyse Display
analysis data data results
2015-06-10&
0160212 | ¥ | ¥ | W
2016-02-12&
0160526 | Y | ¥ | Wl
2015-06-10&
2016-05-26 ||| e il

Create w analysis:

pochT:| v|
Epoch2:| v|
OK

Go back! |
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e C(lick to select each epoch of photogrammetric results used for assessing

landslide deformation.

= SkyPMMS H = SkyPMMS

—Project: HollinHill r—Project: HollinHill

Landslide monitoring analysis: Landslide monitoring analysis:

Epochs of Update Analyse lay

Epochs of Update Analyse Display
ELEUEIS data data results

analysis data data results

2015-06-10& ; 2015-06-10 2015-06-10& :
20160212 v v l 2016-02-12 v v -
2016-02-12& . 0. 2016-02-12& : :
2016-05-26 b4 L ul 2016-02-12 2016-05-26 > 2 -
2015-06-10& 2015-06-108& :
2016-05-26 b v al 2016-05-26 ) 2016-05-26 v v ul
2016-05-26& - ¥ Create a new analysis:

v X yes:
2015-06-10 e Epoch1:(2016-0526 v

Epoch?2:[201506-10 v |
OK
| Go back!

© 9.4 42149

SkyPMMS :

— Project: HollinHill

Landslide monitoring analysis:

Epochs of Update Analyse Display

analysis data data results
2015-06-10& "
2016-02-12 v v il
2016-02-12&
0160526 | ¥ | ¥V | W
2015-06-10&
2016-05-26 Vi N -
2016-05-26& ;
2015:06-10 = L =

Create a new analysis:

Epochi:| v/

Epoch2:| v|

OK
| Go back!
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3) Setting of cloud comparison method using M3C2 technique

e C(lick L for settings of landslide monitoring analysis.
e For landslide monitoring analysis, the settings have four parts to identify the

parameters of cloud comparison method using M3C2 technique.

Method of comparison

* [M3C2

Main parameters:
Normal scale:

Projection scale:
Maximun distance:

Core points:
Use Epoch1
¢ Subsample Epoch1:

Normals:
Orientation of normal: \Vertical v

Registration error

3.1) Main parameters

e The main parameters of the M3C2 method for multi-epoch analysis are
used for the change detection of landslides, including:
o D - the scale factor or normal scale;
o d - the project scale;
O Pmax - the height of the projection cylinder or the maximum

distance;

3.2) Core points

e The setting of core points is used to enhance the performance of the
computation for point cloud comparison. A very high density of point
cloud requites longer data processing for analysis.

e In particular, the user should select the subsampling point cloud and input
the distance between each point to decrease the number of points for

timesaving analysis.

201



3.3) Normals

e This setting is used to compute a normal vector in the vertical or horizontal

direction of the projection cylinder.

e In particular, the user should select the vertical direction to be used for

detection of the elevation changes.

3.4) Registration error

e For point cloud comparison from different approaches, the user can input

this error.

e However, with point cloud comparison from the same photogrammetric
approach for landslide monitoring analysis, the user should not input the

registration error.
4) Process the landslide monitoring analysis

o Click to next stage for landslide monitoring analysis.

e After analysis, the status of data processing v appeares.

= skyPMMS :

—Project: HollinHill————————

Landslide monitoring analysis:

Epochs of Update Analyse Display

analysis data data results
2015-06-10& . .
2016-02-12 > ¥ -
2016-02-128 P )
2016-05-26 % ¥ —
2015-06-10& .
2016-05-26 e i -
2016-05-26& . ”
2015-06-10 ¥ = —

Create a new analysis:

Epoch1:| ~

Epoch2:| +

0K

Go back!
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5) Display the results of landslide monitoring analysis

o C(lick il to display the results of landslide monitoring analysis.

= SkyPMMS i = SkyPMMS

Project: HollinHill Multi-epoch analysis:
Project: HollinHill
Landslide monitoring analysis: Epoch1: 2015-06-10
Epoch2: 2016-05-26
Epochs of Update Analyse Display
analysis data data results Elevation Change:
2015-06-10& j Min(m) | Max(m) [Mean(m)] o(m) |
2016-02-12 v v il -1.109]  0.614] -0.044] 0.175
2016-02-12& 5 06
2016-05-26 s .
2015-06-10& i i ol N
2016-05-26 VE il s
2016-05-26& : ) £
2015-06-10 o i - wel
Create a new analysis: b o8
Epoch1:| ~ 10
Epoch2:| v iy s )
e
0K
Go back!
Go back!
< O O < O O
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