
Tools and Techniques for Multi-Valued

Networks using Rewriting Logic
PhD Thesis

Alhumaidan, Abdullah Saleh A

Supervisor: Dr Jason Steggles

School of Computing

Newcastle University

This dissertation is submitted for the degree of

Doctor of Philosophy

February 2019

Declaration

I hereby declare that except where specific reference is made to the work of others, the

contents of this dissertation are original and have not been submitted in whole or in part

for consideration for any other degree or qualification in this, or any other university. This

dissertation is my own work and contains nothing which is the outcome of work done in

collaboration with others, except as specified in the text and Acknowledgements.

Alhumaidan, Abdullah Saleh A

February 2019

Acknowledgements

First and foremost, my parents Saleh and Norah have given me nothing but love and support

throughout my PhD studies, and for that I am very grateful.

I would like to thank my supervisor Jason Steggles, who has gone above and beyond

to make sure work was running smoothly by always making time to have regular meetings

throughout the course of my research.

I would also like to thank the Ministry of Higher Education in Saudi Arabia for sponsoring

my studies over the past few years.

Outside of work, I thank my friends in Newcastle for making my life in the north east a

very social and enjoyable experience.

Abstract

Multi-valued networks (MVNs) are an important, widely used qualitative modelling technique

where time and states are discrete. MVNs extend the well-known Boolean networks by

providing a more powerful qualitative modelling approach for biological systems by allowing

an entity’s state to be within a range of discrete set of values instead of just 0 and 1. They

provide a logical framework for qualitatively modelling and analysing control systems and

have been successfully applied to biological systems and circuit design. While a range of

support tools for developing and analysing MVNs exist, more work is needed to develop

tools to support the practical applications of those techniques.

One of the frameworks that have been successfully applied to biological systems is

Rewriting Logic (RL), an algebraic specification framework that is capable of modelling and

analysing the behaviour of dynamic, concurrent systems. The flexibility of RL techniques

such as implementation of strategies has allowed it to be successfully used to model a wide

range of different formalisms and systems, such as process algebras, Petri nets, and biological

systems. RL specification, programming and computation is supported by a range of powerful

analysis tools which was one of the motivations for choosing to use RL. We choose Maude

as a tool in our work here which is a high-performance reflective language supporting both

equational and RL specification. Maude is going to be used through this thesis to model and

analyse a range of MVNs using RL.

In this thesis we aim to investigate the application of RL to modelling and analysing

both synchronous and asynchronous MVNs, thus enabling the application of support tools

available for RL. We start by constructing an RL model for MVNs using a translation

approach that translates an MVNs set of equations into rewrite rules. We formally show that

viii

our translation approach is correct by proving its soundness and completeness. We illustrate

the techniques and the developed RL framework for MVNs by presenting a range of case

studies which provides a good illustration of the practical application of the developed RL

framework. We then introduce an artificial, scalable MVN model in order to allow a range of

model sizes to be considered and we investigate the performance of our RL framework. We

analyse a larger regulatory network from the literature using our RL framework to give some

insights into how it coped with a larger case study.

Table of contents

List of figures xiii

List of tables xv

1 Introduction 1

1.1 Context . 1

1.2 Aim and Contributions . 2

1.3 Organisation of Thesis . 6

1.4 Publications . 8

2 Background 9

2.1 Introduction . 9

2.2 Genetic Regulatory Networks . 10

2.3 Multi-Valued Networks . 11

2.4 Rewriting Logic(RL) . 17

2.5 Maude . 19

2.5.1 Maude Specification . 19

2.5.2 Rewriting in Maude . 20

2.5.3 Searching in Maude . 21

2.5.4 Linear Temporal Logic (LTL) Model Checking 23

2.5.5 Rewriting Strategies . 26

2.6 Existing Work on Supporting MVNs . 27

2.6.1 Petri Nets . 27

x Table of contents

2.6.2 GINsim . 29

2.6.3 Other Support Tools . 30

2.7 Related work on RL . 31

2.8 Tool Support . 33

2.9 Conclusions . 34

3 An RL Model for Asynchronous MVNs 37

3.1 Introduction . 37

3.2 Constructing an RL Model for an Asynchronous MVN 38

3.3 RL Model Correctness . 43

3.4 Case Study: The Regulation of Biosynthesis of

Tryptophan in E. coli . 46

3.4.1 Tryptophan Model . 46

3.4.2 Constructing the RL Model . 48

3.4.3 Analysis in Maude . 53

3.4.4 LTL Model Checking . 56

3.5 Conclusions . 58

4 An RL Model for Synchronous MVNs 61

4.1 Introduction . 61

4.2 Constructing an RL Model for a Synchronous MVN 63

4.2.1 Basic RL Model . 63

4.2.2 Using a Rewriting Strategy for Synchronous Updates 66

4.3 RL Model Correctness . 69

4.4 Case Study . 72

4.4.1 The Model . 73

4.4.2 Constructing the RL Model . 74

4.4.3 Analysis in Maude . 76

4.4.4 LTL Model Checking . 79

4.5 Conclusions . 82

Table of contents xi

5 Performance Evaluation 85

5.1 Introduction . 85

5.2 Performance Test Model . 86

5.3 Testing Approach . 90

5.4 Asynchronous Model Performance Evaluation 91

5.4.1 Basic Model Analysis . 92

5.4.2 Scaling to 10 Entities . 94

5.4.3 Further Scaling Analysis . 96

5.4.4 Evaluating Test Results . 98

5.5 Synchronous Model Performance Evaluation 100

5.5.1 Basic Model Analysis . 101

5.5.2 Scaling to 10 Entities . 102

5.5.3 Further Scaling Analysis . 105

5.5.4 Testing Conclusions . 108

5.6 Conclusions . 108

6 Case Study 111

6.1 Introduction . 111

6.2 The Model . 113

6.3 Asynchronous Semantics . 118

6.3.1 Basic model of a Single Cell . 118

6.3.2 Extending the Model to 2 Cells 126

6.4 Synchronous Semantics . 130

6.4.1 Basic Model of a single Cell . 130

6.4.2 Extending the Model to 2 Cells 133

6.5 Conclusions . 137

7 Concluding Remarks 139

7.1 Summary . 139

7.2 What has been achieved . 141

xii Table of contents

7.3 Future Work . 142

References 145

Appendix A Appendix A 157

A.1 Asynchronous Semantics . 157

A.1.1 Basic model of a Single Cell . 157

A.1.2 Extending the Model to 2 Cells 160

A.2 Synchronous Semantics . 162

A.2.1 Basic model of a Single Cell . 162

A.2.2 Extending the Model to 2 Cells 162

List of figures

2.1 The GRN for the lysis-lysogeny switch in bacteriophage lambda(based on

[25]). 11

2.2 An MVN model PL2 of the regulatory network for the lysis-lysogeny switch

in bacteriophage λ (based on [25]). 13

2.3 Temporal Operators in LTL. 25

2.4 The Non-Deterministic Behaviour of the Dynamic System. 26

2.5 The effect of prioritising rule3. 27

2.6 A Simple Example of a Petri net [61]. 28

2.7 A Simple Example of Modelling an MVN in GINsim [60]. 30

2.8 A Fragment of the Mammalian EGFR System. Taken from [64]. 32

2.9 A Support Tool for Boolean and Multi-Valued Networks. 34

3.1 The Translation Process, Equations to Rewrite Rules. 41

3.2 Correctness Requirements for our Translation Approach. 44

3.3 An MVN model MTRP of the regulatory mechanism for the biosynthesis of

Tryptophan in E. coli (based on [23]). The state transition table for TrpExt

has been omitted as this is a simple input entity that does not change its initial

state. Note that the state transition tables use a shorthand notation where an

entity is allowed to be in any of the states listed for it in a particular row. . 47

3.4 The State Graph of the MTRP Model. 49

3.5 Rewrite Rules Produced for Trp1. 52

4.1 The Two Phase Update for Synchronous MVNs. 63

xiv List of figures

4.2 The Two Phase Update for Synchronous semantics. 64

4.3 The Translation Process: Equations to Rewrite Rules (Applied to PL2). . . 65

4.4 Correctness Requirements for our Translation Approach. 70

4.5 An extended MVN model PL4 of the control mechanism for the lysis-

lysogeny switch in bacteriophage λ (based on [25]). 73

5.1 An MVN model ABCDI which is used as a basic building block to construct

models of increasing size. 87

5.2 The State Graph of MVN model ABCDI which is used as a basic building

block to construct models of increasing size. 89

5.3 A pictorial representation of the five test MVN models constructed incremen-

tally from the basic building block MVN given in Figure 5.1. Note that the

arcs ending in arrows represent activation whereas the arcs ending in bars

represent inhibition. 90

5.4 Number of Rewrites in Relation to Model Size for Test Searches 1,2 and 3. 99

5.5 A Representation of the log of Search Time for Test Searches 1,2 and 3. . . 99

5.6 Number of Rewrites in Relation to Model Size for Test Searches 1,2 and 3. 109

5.7 Search Time in Relation to Model Size for Test Searches 1,2 and 3. 109

6.1 The Wiring Diagram for Cell i . 113

6.2 The Simplified Wiring Diagram for Cell i. 115

6.3 The Simplified Model Showing Connections to Cells i-1 and i+1. 116

6.4 a 2-Cell Model Showing Connections to Cells i-1 and i+2. 119

List of tables

5.1 Summary of test results for performing three simple searches on the series of

asynchronous test MVNs for model size 5. 94

5.2 Summary of test results for performing three simple searches on the series of

asynchronous test MVNs for model sizes 5 and 10. 96

5.3 Summary of test results for performing three simple searches on the series of

asynchronous test MVNs for Models of sizes 5 to 25. 98

5.4 Summary of test results for performing three simple searches on synchronous

test MVN of Size 5. 103

5.5 Summary of the performance of the three test searches on the synchronous

test MVN of Size 10. 104

5.6 Summary of test results for performing three simple searches on the series of

synchronous test MVNs. 108

6.1 The Global State Representing the Solution found by Maude. 123

6.2 The Global States Representing the two Solutions found by Maude. 124

6.3 The Global State Representing the single Solution found by Maude. 125

6.4 The Global State Representing the single Solution found by Maude. 128

6.5 The Global State Representing the single Solution found by Maude. 129

6.6 The Global State Representing the Solution found by Maude. 132

6.7 The Global State Representing the Solution found by Maude. 132

6.8 The Global State Representing the Solution found by Maude. 133

6.9 The Global State Representing the 2 Solutions found by Maude. 136

Chapter 1

Introduction

1.1 Context

Multi-valued networks (MVNs) [2, 3, 72] are an important, widely used qualitative modelling

technique for biological systems where time and states are discrete. MVNs extend the

well-known Boolean networks [72, 78, 80] allowing an entity’s state to be within a range

of discrete set of values instead of just 0 and 1 [52]. They provide a logical framework for

qualitatively modelling and analysing control systems and have been successfully applied to

biological systems [3, 4, 29, 5] and circuit design [2, 30]. While a range of support tools for

developing and analysing MVNs exist, more work is needed to develop tools to support the

practical applications of those techniques in the biological setting.

Rewriting Logic (RL) [34,36] is an algebraic specification framework that is capable

of modelling and analysing the behaviour of dynamic, concurrent systems. It has been

successfully used to model a wide range of different formalisms and systems, such as process

algebras [10, 11], Petri nets [12, 13], and biological systems [14, 15]. RL specification and

programming is supported by Maude [28], a high-performance reflective language for a wide

range of applications.

In this thesis we investigate using Maude to model and analyse a range of MVNs using RL.

Maude supports logical reflection in a systematic way thus making it remarkably extensible

and powerful. It allows many advanced metaprogramming and metalanguage applications

2 Introduction

such as rewriting strategies[17, 41]. It also has a range of analysis tools such as a built-in

model checker and the LTL model checker. Some of the most interesting applications of

Maude are metalanguage applications where it is used to create executable environments for

different languages and models of computation [28].

Techniques were developed during this work to construct RL models of MVNs that can

be analysed using Maude. We define a semantic approach that translates the behaviour of

an MVN to an RL model and we provide an argument for its correctness by showing its

soundness and completeness. We develop tool support for this which takes in a description of

an MVN and generates an RL model and a set of rewriting rules that model the behaviour of

the MVN. We test the performance of our RL framework by developing a scalable test model

that can be used to construct a range of test models of different sizes. We test the performance

of our RL framework by performing a range of searches as well as LTL checks for the

generated models for both synchronous and asynchronous semantics before we analyse a

larger regulatory network from the literature using our RL framework and give some insights

into how did it cope with a larger case study.

1.2 Aim and Contributions

This thesis sets out to develop RL techniques to support the use of MVNs. The high-level

aim of this thesis can be stated as follows:

This thesis aims to investigate the application of RL to modelling and analysing

MVNs, and to develop a set of tools and techniques to support this.

We set out to strengthen the tool support available for MVNs by developing translation

techniques that translate the behaviour of an MVN to an RL model and so enabling the

application of the support tools available for RL. A support tool was implemented in Java to

implement those translation techniques by producing RL models when given a description of

an MVN. We test the performance of our RL framework by developing a scalable test model

1.2 Aim and Contributions 3

that can be used to construct a range of test models of different sizes before we analyse a

larger regulatory network from the literature using our RL framework and give some insights

into how did it cope with a larger case study.

This thesis sets out to develop and evaluate the use of RL in modelling and analysing

MVNs. In particular, this thesis will aim to contribute to the literature in the following key

aspects:

1. Define a semantic translation from an asynchronous MVN into an RL model and

formally prove the correctness of the translation approach.

We start by constructing an RL model for MVNs based on their asynchronous update

semantics, and we derive a set of rewrite rules that are used to capture an MVN’s

behaviour. We represent within our model the next state function associated with each

entity and the associated asynchronous update rules using a translation approach that

takes in a structured MVN file and produce an RL Model with required definitions and

set of rewrite rules. Techniques and the developed RL framework are illustrated during

that process alongside the resulting analysis possible by presenting a detailed case

study. We use a published MVN model from the literature that is used for modelling

and analysing the genetic regulatory network [74] for the synthesis of Tryptophan

in E. coli [21, 22] as a case study for our RL model for asynchronous MVNs. The

case study helps motivate our RL framework by illustrating the analysis techniques

and tools when using RL and the tool Maude. We formally investigate the model

using a range of powerful analysis tools provided by Maude, which was one of the

motivations for choosing to use RL. We formally show that our translation process

from an asynchronous MVN to an RL model is correct, that is done by showing and

proving the soundness and completeness of our translation process. To do this we show

that: 1) (soundness) each global state transition possible in our RL model represents a

corresponding asynchronous update in the original MVN; and 2) (completeness) every

asynchronous update possible in an MVN is specified in our RL model.

4 Introduction

2. Define a semantic translation from a synchronous MVN into an RL model and

formally prove the correctness of the translation approach.

In a synchronous MVN, all entities update their state simultaneously and this leads

to deterministic, infinite traces. While asynchronous MVNs are seen as being more

realistic, they can result in too much behaviour and their dynamics can be more difficult

to analyse. Synchronous MVNs are seen as being less realistic than asynchronous

MVNs [12] because of their assumption of simultaneous updates. However, their

dynamics can be easier to analyse and this has made them very popular. We provide

a formal translation of synchronous MVNs to RL. The challenge here lies in the

ability to coordinate update steps to ensure that entities are using the current states

of other entities as inputs rather than next states. In order to handle this we define a

rewriting strategy[64] to apply a two phase state update which is defined as follows:

First, we define a metalevel operation that applies rewrite rules using current entities’

states using synchronous rewrite rules. We then build on this by defining a metalevel

operation that resets the current state of each entity after applying the first phase,

and that gives us all we need to analyse our model using Maude. We illustrate the

techniques and the RL framework developed for synchronous MVNs by presenting a

case study using an existing MVN model for the genetic regulatory network controlling

the lysis–lysogeny switch in the bacteriophage λ [25, 4]. The case study helps to

motivate our RL framework by illustrating the analysis techniques and tools when

using RL and Maude. We formally investigate the model using simple model checking

based on the search command and LTL model checking.

3. Develop a scalable benchmark test model to carry out a formal investigation into

the scalability of the developed RL framework and it’s performance.

The case studies presented for our RL framework for asynchronous and synchronous

MVNs provide a good illustration of the practical application of the RL techniques

we have developed. However, as they provide little indication of how the developed

RL approach would scale when applied to larger MVN models and what impact the

1.2 Aim and Contributions 5

well–known state space explosion problem would have, we address this by defining an

artificial, scalable MVN model in order to allow a range of model sizes to be considered

and we investigate how our RL framework performs as the MVN size (i.e. number of

entities) increases. We use a test model generation approach where we create a series

of MVN test models in incremental steps of 5 and for every new test model we add, we

connect an entity of the new model to a connecting entity in the previous test model to

generate a more complicated behaviour within the test model. We use this scalable test

model (both synchronous and asynchronous versions) to test the performance of our

RL framework using Maude’s search command with regards to states visited during

different search commands and also with regards to time. We start our analysis for

our scalable model with a basic model of 5 entities. Then we extend it repeatedly by

adding a new block of entities and we perform some tests using the search command

and the LTL model checker to come up with some performance results for our RL

framework to give an idea on how well would our our RL framework cope with the

scalable test model. We present our results for both asynchronous and synchronous

versions of our model using a testing approach where we make use of Maude’s search

command as well as LTL.

4. Develop an integrated toolset to support the developed RL framework and per-

form automatic translation from an MVN to an RL model and vice versa.

We develop an integrated toolset that is capable of studying and analysing MVNs

behaviour. The toolset was implemented in Java to implement translation techniques

that translate the behaviour of an MVN to an RL model thus enabling the application of

the support tools available for RL. The toolset produces synchronous and asynchronous

RL models containing a set of rewrite rules when given a description of an MVN’s

behaviour .We use the tool support available for RL (in this case Maude) to study and

analyse the dynamical behaviour of a wide range of MVN case studies using the RL

models generated by the toolset.

6 Introduction

5. Undertake a biologically relevant case study from the literature to investigate the

practical applications of the developed RL framework and new RL techniques

and tools using a parametric model.

We present a case study from the literature to test the developed tools and techniques

where we analyse the gene regulatory network of the segment polarity gene family at

the basis of Drosophila embryonic development. The network has been investigated

through mathematical modelling to determine the network’s capacity for generating and

maintaining a specific gene expression pattern. During the initial stages of development

of the fruit fly [96], three families of genes are successfully activated [95]: the gap

genes; the pair-rule genes; and the segment polarity genes. A first mathematical

model was proposed in an attempt to understand and study this network and its

properties. Improvements to the model were introduced in [86], including an alternative

mathematical description and analysis of its properties have been presented since [93].

We analyse this regulatory network using the tool support and the RL framework we

develop and give some insights into how well they coped with a larger case study.

1.3 Organisation of Thesis

This thesis is organised as follows:

Chapter 2 Background

Introduces MVNs and explores their application and the available tool support, and intro-

duces RL, an algebraic specification framework for modelling and analysing the behaviour of

dynamic, concurrent systems. We introduce Maude, a high-performance reflective language

supporting both equational and rewriting logic specification and programming and give a

few examples to illustrate the Maude syntax by introducing rewriting, search and Linear

temporal logic commands. We give an example of using rewriting strategies to control the

rewriting performed by Maude. We introduce the tool support that was developed during

the course of this thesis by giving a brief summary of the available functions within the toolset.

1.3 Organisation of Thesis 7

Chapter 3 An RL Model for Asynchronous MVNs

Builds on existing RL tool support to construct an RL model for asynchronous MVNs

deriving a set of rewrite rules capturing a system’s behaviour. We use a translation approach

to translate an MVN behaviour to a set of rewrite rules and prove the correctness of the

developed RL framework by formally showing its soundness and completeness. We illustrate

the developed RL framework by presenting a case study from the literature and formally

investigate the model using the range of powerful analysis tools provided by Maude.

Chapter 4 An RL Model for Synchronous MVNs

Follows on Chapter 3 by Constructing an RL model for synchronous MVNs deriving a set

of synchronous rewrite rules capturing a system’s behaviour. We use a translation approach

to translate the synchronous behaviour of an MVN to a set of rewrite rules and prove the

correctness of our translation approach by formally showing its soundness and completeness.

We illustrate the developed RL framework for synchronous MVNs by presenting a case study

from the literature an formally investigate the model using Maude.

Chapter 5 Performance Evaluation

We test the tools and techniques developed in Chapters 3 and 4 by introducing a scalable

test model. We then introduce our testing approach that provides three search tests and two

tests that are based on the LTL model checker. We start our analysis using a model of five

entities and analyse it using the set of predefined tests. We then scale our model in increments

of 5 by adding a new block of 5 entities and perform the same set of tests. We introduce

both asynchronous and synchronous versions of our test model for these tests and provide a

summary of results for each model size at the end of our tests.

Chapter 6 Case Study

Tests the developed tools and techniques in a larger case study from the literature. We

introduce the model and our testing approach before we start testing our RL frame work

8 Introduction

using a set of defined tests for both asynchronous and synchronous versions of our model.

We give a summary of our results and discuss the performance of our RL framework when

applied to larger case studies.

Chapter 7 Concluding Remarks

Concludes this thesis by giving a brief summary of the thesis. We discuss the aim of this

thesis and how well it was met by discussing key insights. We introduce some conclusions

and discuss how well would our RL framework compare to existing tools such as the use of

Petri nets. We discuss a number of interesting areas of future research that can be done to

take this work forward.

1.4 Publications

The work presented in Chapters 3, 4 and 5 has been published as a journal paper [42] in

Fundamenta In f ormaticae. This paper was jointly written with my supervisor who provided

the initial idea for the translation into RL and also provided support and advice during the

development of this work.

Chapter 2

Background

2.1 Introduction

We begin by introducing Multi-valued networks [2, 3] which are mathematical models of

control systems where time and states are discrete. MVNs extend the well-known Boolean

networks [3, 75] by providing a more powerful qualitative modelling approach for biological

systems; they extend Boolean networks by allowing an entity’s state to be within a range of

discrete set of values instead of just 0 or 1.

We introduce Rewriting Logic which is an algebraic specification framework that is

capable of modelling and analysing the behaviour of dynamic, concurrent systems. RL has

been successfully used to model a wide range of different formalisms and systems, such

as process algebras [10, 11], Petri nets [12, 13], and biological systems [14, 15]. After

introducing RL we then introduce Maude, which is a high-performance reflective language

supporting both equational and rewriting logic [41, 70] specification and programming for a

wide range of applications.

We introduce the syntax of Maude and give some examples using models that were

introduced alongside the introduction to MVNs.We provide some examples of using Maude’s

search and rewrite commands to explore certain properties of a model using our running

examples. We extend our analysis by using Maude’s built in Linear Temporal Logic (LTL)

model checker and give some examples of some uses of LTL.

10 Background

This chapter is organised as follows, we introduce Multi-valued networks in Section

2.3. In Section 2.4, we give an introduction to rewriting logic and give an example of using

RL using a simple dynamic system. We then introduce Maude in Section 2.5 and discuss

Maude’s specifications using the same dynamic system introduced in Section 2.4, we give

an example of performing rewrites in Maude before we introduce the search command and

Linear Temporal Logic(LTL) which we use to model check our running example before

introducing rewrite strategies in Section 2.5.5. In Section 2.6 we discuss existing tools and

techniques in the literature before concluding the chapter with concluding remarks in Section

2.9.

2.2 Genetic Regulatory Networks

DNA (deoxyribonucleic acid) is an important molecule found in every living cell which

contains information needed for constructing key molecules, called proteins, that control

the construction and operation of a cell. DNA is primarily composed for genes, small units

of DNA that directly represent a protein. The proteins produced by genes can regulate the

use of other genes and this leads to complex regulation networks known as Gene Regulatory

Networks (GRNs) [108, 109]. For an introduction to GRNs see [108]. We now give a list of

the terminologies relevant to GRN’s [108] which are used in the sequel:

• DNA: The molecule used in all living cells to code information about the construction

and operation of the cell.

• Gene: A unit found in DNA that codes for a protein.

• Protein: An important molecule used by cells for constructing biological entities and

controlling biological processes.

• Transcription: A key step in the process of using a gene to produce a protein.

• Gene expression: When a gene is being used to produce a protein.

• Enzyme: An important type of protein that promotes a chemical reaction.

• Activation: Facilitating the expression of a gene.

2.3 Multi-Valued Networks 11

• Inhibition: Preventing the expression of a gene.

• Repressor: A molecule that inhibits the expression of a gene.

Figure 2.1 gives an example of a GRN which is found in an organism called bacteria

phage lambda that controls a key biological behaviour known as the lysis-lysogeny switch

(where lysis is the destruction of a cell and lysogeny is the process of embedding itself

within another cell) [31]. It consists of two genes CI and Cro which behave as follows: the

entity Cro inhibits the expression of CI (stops it producing its protein) and at high-levels of

expression it also inhibits itself; gene CI inhibits the expression of Cro and promotes its own

expression.

CI Cro

Fig. 2.1 The GRN for the lysis-lysogeny switch in bacteriophage lambda(based on [25]).

2.3 Multi-Valued Networks

Multi-Valued networks (MVNs) [2, 25, 3] extend the well-known Boolean networks [2, 3]

(which are mathematical models of control systems) by providing a more powerful qualitative

modelling approach for biological systems; they extend Boolean networks by allowing an

entity’s state to be within a range of discrete set of values instead of just 0 and 1.

Multi-valued networks provide a logical framework for qualitatively modelling and

analysing control systems. They have been successfully applied to biological systems

[3, 4, 29, 5] and circuit design [2, 30]. In this section we introduce the basic definitions for

MVNs and provide an illustrative example.

An MVN global state is the composition of that MVN’s entities’ values at any given

time. Entities update their values either synchronously [24, 44, 83] or asynchronously

[33, 81] which can be more biologically realistic [79]. The number of network states grows

exponentially with the number of entities, this is called the state-space explosion problem.

12 Background

As the number of global states in an MVN is finite, that means that sooner or later a trace

will visit a previously visited MVN state which results in a repeated set of states in the trace.

The cycle of repeated states in an MVN is called an attractor [81]. There are two types

of attractors: a point attractor, where the attractor has only one state (such as: 021 being

constantly produced as a result of updating network entities), and a cycle attractor, where

the attractor has more than one state, such as: 012 → 111 → 012. The basin of an attractor

[82] is the set of states that lead to that attractor. Source entities have no states leading to

them and their only occurrence is at the start of a trace. The time an MVN takes to reach an

attractor is referred to as transient time.

An MVN comprises a set of control entities each of which has a discrete state taken from

a given set of states. The state of each entity is regulated by a subset of entities in the MVN

and we refer to this subset as the neighbourhood of an entity (which may or may not be

in its own neighbourhood). Each entity has a neighbourhood of entities which regulate its

state (the entity itself may or may not play a part in its own regulation). An entity updates

its state by applying a logical next–state function to the current states of the entities in its

neighbourhood. A formal definition of an MVN can be given as follows.

Definition 1. An MVN MV is a four-tuple MV = (G,D,N,F) where:

i) G = {g1, . . . ,gn} is a non-empty, finite set of entities;

ii) D = (D(g1), . . . ,D(gn)) is a tuple of state sets, where each D(gi) = {0, . . . ,mi}, for some

mi ≥ 1, is the state space for entity gi;

iii) N = (N(g1), . . . ,N(gn)) is a tuple of neighbourhoods, such that N(gi)⊆ G is the neigh-

bourhood of gi; and

iv) F = (fg1 , . . . , fgn) is a tuple of next-state multi-valued functions, such that if N(gi) =

{gi1, . . . ,gin} then the function fgi : D(gi1)×·· ·×D(gin)→ D(gi) defines the next state of

gi. 2

2.3 Multi-Valued Networks 13

To illustrate the above definition consider the example PL2 (see figure 2.2). PL2 is a

simple example of an MVN that models the core regulatory mechanism for the lysis-lysogeny

switch [11, 12] in the bacteriophage [13]. for example transcripts and proteins The model

consists of two entities CI and Cro. In this MVN, the entity Cro inhibits the expression of CI

(i.e. acts to lower its state) and at higher levels of expression, also inhibits itself. Meanwhile,

entity CI inhibits the expression of Cro and promotes its own expression (i.e. acts to increase

its state).

Figure 2.2 models the regulatory network underlying the lysis–lysogeny switch in the

bacteriophage λ [3, 25, 31]. This MVN consists of two entities: CI and Cro, defined with

CI Cro

CI Cro CI
0 0 1
0 1 0
0 2 0
1 0 1
1 1 0
1 2 0

CI Cro Cro
0 0 1
0 1 2
0 2 1
1 0 0
1 1 0
1 2 1

(a) Network structure (b) State transition tables

0112 02

1000 11

0110 02

12

00

11

(c) Synchronous state graph (d) Asynchronous state graph

Fig. 2.2 An MVN model PL2 of the regulatory network for the lysis-lysogeny switch in
bacteriophage λ (based on [25]).

neighbourhoods N(CI) = {CI,Cro} and N(Cro) = {CI,Cro}. These entities have the state

spaces D(CI) = {0,1} and D(Cro) = {0,1,2}, and their next-state functions are defined by

the state transition tables given in Figure 2.2.(b).

In the sequel, let MV = (G,D,N,F) be an arbitrary MVN. A global state of an MVN

MV with n entities is represented by a tuple of states (s1, . . . ,sn), where si ∈ D(gi) represents

14 Background

the state of entity gi. The set of all global states, denoted SMV , is then defined by SMV =

D(g1)×·· ·×D(gn). As a notational convenience we normally write s1 . . .sn to represent a

global state (s1, . . . ,sn) ∈ SMV . When the current state of an MVN is clear from the context

we let gi denote both the name of an entity and its corresponding current state.

The global state of an MVN can be updated synchronously [6, 7], where the state of

all entities is updated simultaneously in a single step, or asynchronously [32, 8], where

entities update their state independently. Both update semantics are important and used

widely in the literature; the synchronous semantics leads to simpler dynamic behaviour

which aids analysis (thus historically it was favoured) while the asynchronous semantics is

seen as providing a more realistic model since entities are allowed to react independently.

Note that different variations of the asynchronous semantics have been considered in the

literature (see for example [35]) but that we focus on the one most commonly used for MVNs.

Definition 2. (Synchronous Update) Given two states S1,S2 ∈ SMV , we let S1
Syn−−→ S2 repre-

sent a synchronous update step such that S2 is the state that results from S1 by simultaneously

updating the state of each entity gi, for i = 1, . . . ,n, using its next-state function fgi and the

appropriate states from S1 as indicated by the neighbourhood N(gi). 2

Given a global state S0 we can generate a (synchronous) trace by repeatedly applying

the synchronous update step S0
Syn−−→ S1

Syn−−→ S2
Syn−−→ ·· · . Note in the sequel we will often

represent such traces simply as a comma separated list of global states S0,S1,S2, Such

traces are deterministic and so each possible initial state generates only a single trace. Since

the set of global states is finite this means the set of synchronous traces is always finite.

Each synchronous trace is itself infinite and will eventually enter an attractor cycle [33, 7]).

For example, under the synchronous semantics PL2 has three attractors: a point attractor

10,10, . . .; and two cyclic attractors 00,11,00, . . . and 01,02,01,

Definition 3. (Asynchronous Update) For any entity gi ∈ G in MV and any state S ∈ SMV we

let [S]gi denote the global state that results by updating the state of gi in S using fgi . Define

2.3 Multi-Valued Networks 15

the global state function nextMV : SMV → P(SMV) on any state S ∈ SMV by

nextMV(S) = {[S]gi | gi ∈ G and [S]gi ̸= S}

Given S1 ∈ SMV and S2 ∈ nextMV(S1), we let S1
Asy−−→ S2 denote an asynchronous update step.

2

Note that given the above definition, only asynchronous update steps that result in a

change in the current global state are considered (see [8]). In the asynchronous case, traces

are non-deterministic and can be finite or infinite. A single initial state can have an infinite

number of possible asynchronous traces starting from it and thus in the asynchronous case

there can be an infinite number of traces.

To illustrate the above, consider the global state 12 for PL2 (see Figure 2.2) in which CI

has state 1 and Cro has state 2. Then a single synchronous update step will result in the state

01. 12
Syn−−→ 01 is a single synchronous update step on this state resulting in the new state 01.

The set of all synchronous traces for PL2 is:

00,11,00, . . . 10,10, . . .

01,02,01, . . . 11,00,11, . . .

02,01,02, . . . 12,01,02,01, . . .

Applying the asynchronous update semantics, we have nextPL2(12) = {02, 11} and so

12
Asy−−→ 02 and 12

Asy−−→ 11 are valid asynchronous update steps. The MVN PL2 has the

following (finite in this case) set of asynchronous traces:

00,01,02,01, . . . 10 12,02,01,02, . . .

00,10 11,01,02,01, . . . 12,11,01,02,01, . . .

01,02,01, . . . 11,10 12,11,10

02,01,02 . . .

When analysing the behaviour of an MVN it is important to consider its attractors [34, 35]

since they can represent important biological phenomena.

16 Background

The state transition behaviour of an MVN can be represented by a state graph [34] in

which the nodes of the graph are the global states and the edges are precisely the update steps

allowed. The synchronous and asynchronous state graphs for PL2 are presented in Figure

2.2.

Any state S ∈ SMV which cannot be asynchronously updated, i.e. nextMV(S) = {}, is a

point attractor. The notion of a simple cyclic attractor is not valid in the asynchronous case

and instead we consider terminal connected components in an MVN’s asynchronous state

graph to be attractors [34, 35]. For example, the MVN PL2 has one point attractor 10 and

one cyclic attractor 01,02,01,

In the example presented we defined the next–state function for each entity using a state

transition table. An alternative approach is to specify the next–state function equationally

[2, 30] by using Boolean terms called literals to represent when an entity gi is in one of its

given states. The literals have the form giS, for any S ⊆ D(gi), and evaluate to true when

gi ∈ S and to false otherwise. The literals can be combined using conjunction resulting in

product terms which represent possible states for a collection of entities. These can then be

used to construct equations to represent the next–state function for an entity.

As an example, consider the entity CI in the MVN PL2. From the state transition table in

Figure 2.2.(b) we can see that CI will have next state 1 when we are in state CI = 0, Cro = 0

or when we are in state CI = 1, Cro = 0. Therefore, the product term CI{0,1}Cro{0}

specifies when CI’s next state will be 1. Using this approach we are able to completely

specify equationally the next–state functions for the entities, as presented below:

CI{0}= CI{0,1}Cro{1,2} Cro{0}= CI{1}Cro{0,1}

CI{1}= CI{0,1}Cro{0} Cro{1}= CI{0}Cro{0,2}+CI{1}Cro{2}

Cro{2}= CI{0}Cro{1}

An important observation is that the Boolean terms derived above can normally be

simplified using multi-valued logic minimization techniques [30] which has recently received

increased interest due to a connection that has been made between it and the state assignment

problem [64]. Briefly stated the idea of this connection is that the states of a finite state

2.4 Rewriting Logic(RL) 17

machine can be represented as the set of possible values for a single multiple-valued variable.

We make use of this when modelling an MVN in the next section.

2.4 Rewriting Logic(RL)

Rewriting logic (RL) [9] is an algebraic specification framework which is capable of mod-

elling and analysing the behaviour of dynamic, concurrent systems. RL has been successfully

used to model a wide range of different formalisms and systems, such as process algebras

[10, 11], Petri nets [12, 13], and biological systems [14, 15]. For a detailed introduction to

RL we recommend [9, 17].

In RL the static states of a system are described using a standard equational specification.

The dynamic behaviour of the system is then modelled using rewrite rules which are able to

capture the non–deterministic state transitions that occur in such systems. RL also provides

rewrite strategies which are able to control the application of rewrite rules and so allow an

RL model to capture subtle aspects of the behaviour of a dynamic system.

As an example of using RL, consider modelling a simple dynamic system in which

system states are multi–sets consisting of the symbols A , B, and C. The system’s dynamic

behaviour occurs by transforming symbols and can be summarised as follows:

• Symbol A can dynamically change to B.

• If symbol B is present then symbol C can change to A.

• Two occurrences of symbol B can be replaced by symbol C.

To model the above RL specification we introduce the sorts Symbol and State to represent

symbols and multi–sets of symbols. We define the sort Symbol to be a sub-sort of State, and

so every symbol can be viewed as a singleton multi–set. Three constants are declared to rep-

resent the symbols: A : State, B : State, and C : State in the system and an implicit multi-set

union operator _ _ : State State → State (where _ is used to denote an infix argument location

[17]) is declared. We define this operator by adding the following equations to be associative:

18 Background

A (B C) = (A B) C

and commutative:

A B = B A

We then define a set of rewrite rules to capture the dynamic behaviour in the system:

A ⇒ B

B C ⇒ B A

B B ⇒C

These rewrite rules are used to rewrite and navigate through system states. For example:

let A C be a multi–set representing the initial state of the system. Then the following rewrite

trace represents one possible evolution of the system:

A C ⇒ B C ⇒ B A ⇒ B B ⇒C

Starting with A C the A gets rewritten to a B using the first rewrite rule giving us B C.

Then, the B C is rewritten to B A using the second rule, B A gets rewritten to B B using the

first rule again. Then finally the B B gets rewritten to C where this trace terminates as there

are no more possible rewrites.

An important motivation for using RL is the powerful support tools available (e.g. [17–

19]). Examples of such tools include: Maude [17]; Elan [18]; and Tom [19]. We have chosen

to use Maude [17] in this piece of work due to its range of analysis tools, such as a Linear

Temporal Logic model checker [27], and meta–programming capabilities.

2.5 Maude 19

2.5 Maude

Maude[17, 28] is a high-performance reflective language supporting both equational and

rewriting logic [41] specification and programming for a wide range of applications. Maude

also supports logical reflection in a systematic way thus making Maude remarkably extensible

and powerful. It allows many advanced metaprogramming and metalanguage applications.

Some of the most interesting applications of Maude are metalanguage applications where it

is used to create executable environments for different languages and models of computation

[28].

Maude can be used to model check certain properties using the search command which

allows us to explore a network using an initial state. The Maude LTL (Linear Temporal

Logic) Logical Model Checker (LMC) [28] can be used to verify LTL properties in concurrent

systems expressed as rewrite rules, using a pattern of initial states. Many applications in

areas such as rewriting logic models of cellular biology [101] can be easily specified and

model checked using the Maude model checker, while some basic properties in considerably

smaller systems can be checked using the Maude search command.

2.5.1 Maude Specification

We illustrate using Maude by considering the simple RL example introduced in Section 2.4.

Below is the formal description of this RL model in Maude:

mod EX1 is

sorts Symbol State .

subsort Symbol < State .

ops A B C : -> Symbol .

op __ : State State -> State [assoc comm].

rl [rule1] : A => B .

rl [rule2] : B C => B A .

20 Background

rl [rule3] : B B => C .

endm

We define our model using the mod command and use EX1 to represent the model name.

We introduce the sorts Symbol and State and define sort Symbol as a sub-sort of State.

Three constants are declared to represent the symbols A, B, and C in the system and an implicit

multi-set union operator is declared:

__ : State State -> State

We define the union operator to be associative and commutative using appropriate flags

within Maude:

[assoc comm]

Note that those represent the equations for those properties that were used in Section 2.4.

We then define a set of rewrite rules to model the system’s dynamic behaviour. These rules

are labelled to allow their application to be traced and the definition of rewrite strategies.

2.5.2 Rewriting in Maude

Using our running model representation in Section 2.5.1, we can now use Maude to execute

the rewrite system as follows:

Maude > rew [1] B C .

rewrite [1] in EXABC : B C .

rewrites: 1 in 0ms cpu (0ms real) (52631 rewrites/second)

result State: A B

The command rew[1] rewrites the system state B C one time and returns the resulting

state A B (this is the order returned by Maude). We can search to termination in Maude by

omitting the number of rewrites from the rew command. Using the system state A C from

Section 2.4:

2.5 Maude 21

Maude > rew B C .

rewrite in EXABC : B C .

rewrites: 3 in 0ms cpu (0ms real) (130434 rewrites/second)

result Symbol: C

Maude rewrites the system state until no further rewrite rules can be applied and returns

the resulting state C after performing 3 rewrites.

2.5.3 Searching in Maude

Maude provides a built–in model checking command search S =>+ P, which allows us to

check if a pattern term P can be reached by rewriting an initial ground term S. The search

command is defined in Maude as follows:

search {[bound {,depth}]} {in module :} subject searchtype

pattern {such that condition} .

We can use the search command to perform a search starting from state A C as follows:

Maude > search A C =>! s:State .

search in EXABC : A C =>! s:State .

Solution 1 (state 4)

s:State --> C

Notice the use of the symbol ! in the search command (this specifies the type of search

to be search to termination). Possible values for search type are:

=>1 one step proof.

=>+ one or more steps proof.

=>* zero or more steps proof.

=>! only canonical final states are allowed as solutions.

22 Background

The optional bound argument provides an upper bound in the number of solutions to

be found; if it is omitted, infinity is assumed. The optional depth argument indicates the

maximum depth of the search. If it is omitted, infinity is assumed. It is also possible to give a

depth bound without giving a bound on the number of solutions returned. The search type

=>1 is an abbreviation of the search type =>+ with the depth bound set to 1. As usual, if the

in clause is omitted, the current module is assumed [16].

The Search command can be used to check for network properties starting from a network

state. We can use this search command to investigate whether we can reach a state containing

C C from an initial state A A B A A:

search A A B A A =>+ C C s:State .

This search returns true, and we can view a corresponding witness rewrite trace. We can

check that all four A’s are needed by executing the following search which returns false.

search A A B A =>+ C C s:State .

The Maude search command is helpful in exploring system states, for example: it can be

used to check whether a certain state is reachable from a certain starting state as follows:

Maude > search A C =>+ C .

search in EXABC : A C =>+ C .

Solution 1 (state 4)

states: 5 rewrites: 4 in 0ms cpu (0ms real)

(34782 rewrites/second)

empty substitution

No more solutions.

states: 5 rewrites: 4 in 0ms cpu (0ms real)

(26490 rewrites/second)

This search is checking whether the state C is reachable starting from the state A C using

the set of rewrite rules defined in the Maude file. Maude identified the state as reachable in 4

rewrites, the path that Maude took to come up with this result can be checked using the show

path command:

2.5 Maude 23

Maude > show path 4 .

state 0, State: A C

===[rl A => B [label rule1] .]===>

state 1, State: B C

===[rl B C => A B [label rule2] .]===>

state 2, State: A B

===[rl A => B [label rule1] .]===>

state 3, State: B B

===[rl B B => C [label rule3] .]===>

state 4, Symbol: C

Maude shows the search path along with what rewrite rule was performed at every

iteration until the resulting final state C.

2.5.4 Linear Temporal Logic (LTL) Model Checking

Model Checking [45, 63, 69] or property checking is a method used to automatically check

whether a certain model of a system meets a given specification. Techniques of model

checking are used to automatically verify correctness properties of finite-state systems. A

simple model-checking problem is verifying whether a given structure is satisfying a given

propositional logic formula. Checking models of hardware and software designs is also done

using a class of model checking methods where the specification is given by a temporal logic

formula [71]. Model checking is often applied to hardware designs, because for software,

there is no decidability (there is no algorithmic procedure that can correctly decide whether

some arbitrary mathematical propositions are true or false).1

Under appropriate conditions, mathematical models can be checked to check whether

they satisfy some important properties, or in some cases, obtain a useful counterexample

showing that such property is violated. LTL (Linear Temporal Logic) [68] or linear-time

temporal logic is a modal temporal logic referring to time. Using LTL, future of certain paths

1 Entscheidungsproblem [73], German for decision problem is a challenge proposed by David Hilbert in
1928 where it has been proven that it is not effectively decidable.

24 Background

can be encoded using formulas, e.g., a condition will eventually be false, a condition will be

true until another fact becomes false, etc. The Maude module model-checker.maude has a

key operator modelCheck that takes an initial state and an LTL formula and returns either the

Boolean true if the formula is satisfied, or a counterexample when it is not satisfied. Current

work involves using LTL formulas to check for properties MVN’s (both synchronous and

asynchronous) and what sort of properties can only be proved using LTL model checking

and not the Maude’s search command. While any LTL property of a system can be model

checked when the system is specified in Maude as a system module, Search allows for a

simpler, yet very useful model checking capabilities, such as model checking of invariants,

which can be accomplished just by using the Maude search command. Model checking

using Maude’s search command was the first approach taken to model-check the models and

case studies mentioned in this document. Invariants are the most common and useful safety

properties, where the property checked is stating that something bad should never happen.

An invariant is a predicate defining a set of states that contains all states reachable from a

starting state s0, if an invariant holds then it is guaranteed that something “bad” (a certain

property) can never happen.

The Maude manual provides the following introduction to LTL formulas that given a set

AP of atomic propositions, we define the formulas of the propositional linear temporal logic

LT L(AP) inductively as follows:

• True: T ε LT L(AP) .

• Atomic propositions: If p ε AP , then p ε LT L(AP) .

• Next operator: If ℘ ε LT L(AP) , then ⃝ p ε LT L(AP).

• Until operator: If p,ψ ε LT L(AP) , then p υ ψ ε LT L(AP).

• Boolean connectives: If p,ψ ε LT L(AP) , then the formulas ¬ p , and p
∨

ψ are in

LT L(AP) .

Other LTL connectives can be defined in terms of the above minimal set of connectives

as shown in Figure 2.3:

2.5 Maude 25

Fig. 2.3 Temporal Operators in LTL.

To use the model checker we define a range of atomic propositions to represent the key

properties of interest. For example, for our running example introduced in 2.4 we define

a proposition hasA : -> Prop , where hasA(s) is true only if an A is present. This

can be done equationally as follows (where [owise] is a Maude short-cut which allows all

remaining possibilities to be covered):

eq (A s:State) |= hasA = true .

eq (s:State) |= hasA = false [owise] .

We can then model check a range of interesting dynamic properties expressed using the

temporal operators of LTL as illustrated by the example below for EX1(where init1 =

A B B):

Maude > red modelCheck(init1 , <> none(A)) .

reduce in EXABC -CHECK : modelCheck(init1 , <> none(A)) .

rewrites: 12 in 0ms cpu (0ms real) (35398 rewrites/second)

result [ModelCheckResult]: counterexample ({A B B,’rule3}

{A C,’rule1} {B C,’rule2} {A B,’rule1} {B B,’rule3},

{C,deadlock })

This example shows that starting from state A B B, eventually no A’s will be present and

the model checking command results in true.

26 Background

2.5.5 Rewriting Strategies

With our running example introduced earlier in Section 2.5.1. Suppose we start from the

system state BBC in Figure 2.4 we can either use rule3 which will result in state CC, or

rule2 which will result in a different state BBA this shows the non-deterministic behaviour

of our running example. Suppose we want to prioritise the application of rule 1 over the

other two rules, we can do that with the help of rewriting strategies.

Fig. 2.4 The Non-Deterministic Behaviour of the Dynamic System.

The meta–programming capabilities offered by Maude are invaluable as they allow the

construction of rewriting strategies which can control how rewrite rules are applied. As an

example, suppose we want to prioritise the application of rule3 over the other two rules.

Then we can construct a corresponding rewrite strategy threeFirst in Maude to do this as

shown below (Figure 2.5 shows the effect of prioritising rule3 over the other two rules.):

ceq threeFirst(T) = if Step? :: Result4Tuple then getTerm(Step?)

else (if Step2? :: ResultPair then getTerm(Step4?) else T fi) fi

if Step? := metaXapply(upModule(’EXABC,false),T,’rule1,none,0,unbounded

,0) /\ Step2? := metaRewrite(upModule(’EXABC,false),T,1) .

Using the red command to apply this strategy on the term B B C C prioritizes rule3

now instead of applying rule2 as it would without this strategy in place:

Maude> red threeFirst(’__[’B.Symbol,’B.Symbol,’C.Symbol,’C.Symbol]) .

reduce in CheckABC : threeFirst(’__[’B.Symbol,’B.Symbol,’C.Symbol,

2.6 Existing Work on Supporting MVNs 27

’C.Symbol]) .

rewrites: 10 in 0ms cpu (0ms real) (40650 rewrites/second)

result GroundTerm: ’__[’C.Symbol,’C.Symbol,’C.Symbol]

Fig. 2.5 The effect of prioritising rule3.

Prioritising rule3 resulted in a much shorter trace reaching termination after two rewrite

steps. Implementing this strategy has allowed us to control how rewrite rules are applied

within our model resulting in a different trace. This strategy is implemented using a con-

ditional equation and makes use of two metalevel operations: metaXapply which allows a

specific rule to be applied (in this case rule3) to a term T ; and metaRewrite which allows

a term T to be rewritten a given number of times using all rules in a module. Note the use of

type checking to see whether the meta-level operations have been successfully applied, e.g.

Step? :: Result4Tuple is used to check if rule3 has been successfully applied. For full

details of the notation used here and further strategy examples see the Maude manual [28].

2.6 Existing Work on Supporting MVNs

2.6.1 Petri Nets

A Petri net [46], also known as a place/transition (PT) net, is one of several mathematical

modelling languages for the description of distributed systems whcih can be used to model

MVNs. The theory of Petri nets (PNs) combines a formal mathematical semantics with a

graphical notation for modelling and reasoning about complex concurrent systems [46]. A

Petri net is a directed bipartite graph and consists of four basic components: places, which

28 Background

are denoted by circles; transitions denoted by black rectangles; arcs denoted by arrows; and

tokens denoted by black dots.

PNs have been applied to many problem domains including system verification [47, 48],

hardware design [49], medicine [50] and biological systems [51, 53]. Specifically, PNs offer

a number of advantages for modelling biological systems, such as their ability to capture both

the static structure and dynamical behaviour of a system in a concise way, and the wealth of

formal techniques and tools for simulation and analysis that they have [54].

The state of a Petri net is given by its marking, which is the distribution of tokens on

places within it, therefore the state space of a Petri net is the set of all possible markings. The

dynamics of a Petri net are modelled by transitions which can fire to move tokens between

places in a Petri net. Transitions are only enabled when each of their input places contain

at least one token. An enabled transition can fire by consuming one token from each of its

input places, then depositing one token on each of its output places. For example: in Figure

2.6 both transitions t1 and t2 are enabled. Firing transition t2 would result in a token being

taken from place p2 and a new token being deposited in place p4.

Fig. 2.6 A Simple Example of a Petri net [61].

An important advantage of Petri nets is the wide range of techniques and tools available

for their simulation and analysis. For example: a Petri net can be analysed by constructing

2.6 Existing Work on Supporting MVNs 29

its reachability graph [56] which captures the possible firing sequences that can occur from

a given initial marking. Petri nets can be automatically cheeked for boundedness and the

presence of deadlocks [55]. Petri nets have been used to represent regulatory networks

[77, 76] , more specifically high level Petri nets which has a unique transition and as many

places as genes in the regulatory graph [58] where each place corresponds to a gene in the

regulatory network and carries one token. Petri nets provide a natural alternative framework

for modelling MVNs, one notable tool framework is GINsim [59] which we introduce in

2.6.2.

2.6.2 GINsim

GINsim [59, 84] (Gene Interaction Network simulation) is a Java software for the modelling

and simulation of genetic regulatory networks. GINsim also provides an impressive array

of techniques for modelling and analysing asynchronous MVN models. It consists of a

simulator of qualitative models of genetic regulatory networks based on a discrete, logical

formalism. GINsim allows the user to specify a model of a genetic regulatory network in term

of asynchronous, multivalued logical functions, and to simulate and/or analyse its qualitative

dynamical behaviour [43]. GINsim is based on public graph libraries, JGraph and JGraphT,

and is designed in a modular way to ease extensions and collaborative developments [59].

Models in GINsim are stored in a specific XML file format, GINML, but can also be

exported into various formats, including PNG (image), SVG, Graphviz and BioLayout

(graphs), as well as Cytoscape (xgmml) formats. Thanks to the many plugins available

for Cytoscape (e.g. BiNoM, which handles CellDesigner, BioPAX and SBML formats

[38]), regulatory and state transition graphs defined with GINsim can now be converted into

virtually any relevant format, thereby enabling the combination of various software tools

with complementary functionalities.

GINsim encompasses four main modules: a user interface, a parser, a core simulator and

a graph analysis toolbox. Implementation of new modules in GINsim can be done using

GINsim’s plug-in based architecture, in particular to complete the graph analysis toolbox

[59].

30 Background

As in example of using GINsim to model a regulatory network. We model the process of

controlling the lysis-lysogeny decision in the phage lambda that is based on the model PL2

introduced earlier in Section 2.3.

Fig. 2.7 A Simple Example of Modelling an MVN in GINsim [60].

Figure 2.7 gives an example of modelling a proposed four entities model encompassing

the roles of the regulatory genes CII and N in addition to CI and Cro. This model is

introduced in further detail and analysed in Section 4.4.1.

2.6.3 Other Support Tools

BooleSim [103] is a web-based easy-to-use Boolean network simulator. It is a standalone tool

that only requires an HTML5-capable web browser to run. BooleSim is coded in JavaScript,

which makes it platform-independent, and it’s available under the software license: GNU

Affero GPL v3. The tool can be either used on-line or off-line by installing the off-line

version of the tool. BooleSim uses several other projects such as: biographer UI [104], which

is a biographer simulator, libSBGN.js [105], a graphical notation that is aims to standardize

the graphical notation used in maps of biological processes, D3 (Data-Driven Documents)

[106] which is a JavaScript library that can be used to produce dynamic, interactive data

visualizations in web browsers, and Rickshaw, which is also a JavaScript toolkit that can be

used to produce interactive real-time graphs. The tool provides a user-friendly interface that

2.7 Related work on RL 31

allows the user to load Boolean networks in various formats; the user can then display and

interactively simulate those networks.

The tool can be used by either starting a new Boolean network from scratch, or by

importing an existing network. The tool website provides two demos: Pluripotency demo

and Cell cycle demo. The tool provides an easy-to-use Boolean network simulator, but it

doesn’t produce either traces or state graphs. This tool also does not cover either clustering

or basin of attraction.

BNS [13] is a tool for computing attractors in Boolean networks with synchronous

update. Synchronous Boolean networks [24, 44, 83] are commonly used in modelling

genetic regularity networks. BNS takes a .cnet file format that contains a Boolean network

description. The tool will then print out the network’s attractors. BNS binaries are available

for Linux and Windows Cygwin with version 1.0, and have been tested on both platforms

according to the tool website. The tool website provides a set of test input files with different

number of attractors, the format used in those test input files is explained in the user manual

available on the tool’s website. The tool can find attractors in synchronous Boolean networks,

but it is limited to that functionality, it does not produce any traces, state graphs or a wiring

diagram. This tool also does not cover neither clustering nor basin of attraction.

2.7 Related work on RL

Pathway Logic (PL) [36, 37], an existing RL framework for symbolically modelling and

analysing signal transduction and metabolic pathways. It represents each biomolecule

involved in a biological pathway using a term containing three components: the name of the

biomolecule; a modifier which indicates the state of the biomolecule (such as whether it is

phoshorylatd or not); and the location of the biomolecule. Using the standard RL approach,

the state of a cellular pathway is represented as a multi-set of biomolecule terms. Rewrite

rules are used to capture the local changes that occur to biomolecules during the signal

transduction steps and these rules then form the so called Rule Knowledge Base which

specifies how a pathway can be traversed. The resulting pathway model can then be executed

32 Background

and analysed in Maude using the tool’s model checking capabilities. A range of work has

been done to develop interesting techniques and tools for PL (see [38] for an overview) and

the end result is a powerful framework for engineering biological pathways.

PL is used as an approach to model biological processes as executable formal specifica-

tions in Maude where the resulting models can be queried using formal methods tools. The

queries can aim to find some pathway given an initial state, find all reachable states meeting

a given property and model-check by finding a pathway that satisfies a temporal formula.

PL have been applied to pathways regulating a wide range of biological processes such as

the epidermal growth factor receptor (EGFR) pathway [62]. Figure 2.8 shows a fragment

of the mammalian EGFR system that illustrates the activation of a downstream signalling

pathway and a potential mechanism for cross-communication between the EGFR and a G

protein-coupled receptor (AT1) which is adapted from [62].

Fig. 2.8 A Fragment of the Mammalian EGFR System. Taken from [64].

2.8 Tool Support 33

The algebraic structure of PL can be expressed using Maude [28] to model the EGFR

pathway logic where we can define sorts to represent amino acids and proteins to model the

behaviour of the model.

2.8 Tool Support

A tool support was developed over the course of this thesis using Java to aid in analysing

MVNs and constructing RL models. The tool builds on what the author worked on during

his Masters’ dissertation where the focus was on building a basic support tool for Boolean

networks. As a start, the tool was extended to support MVNs by reading an XML description

of a network using its entities’ truth tables. The tool would then allow the user to perform

traces, identify attractors and produce state graphs of the MVN semantics. The tool was then

extended to support RL by generating RL model files to enable the use of the powerful and

wide range of RL applications such as Maude. The tool was used over the course of this

thesis to perform a range of tasks to help model and analyse a range of MVN models using

Maude and RL. Figure 2.9 shows a screen-shot of the tool in action.

Graphs were generated using the Java Universal Network/Graph Framework (JUNG) [57]

which is a software library written in Java that provides an extendible language for analysing

and visualising any type of data that can be represented as a network of entities or a graph.

JUNG was chosen because of its powerful yet easy to use visualization framework, which

provides a range of layout algorithms for graphs to suit different types of networks. Filtering

in JUNG has helped in making the generated graphs using the developed tool support a lot

more meaningful and has allowed us to focus on specific areas or portions of the generated

state graphs. This makes it easy to construct tools for the interactive exploration of network

data. Users can use one of the layout algorithms provided, or use the framework to create

their own custom layouts. In addition, filtering mechanisms are provided which allow users

to focus their attention, or their algorithms, on specific portions of the graph.

The aim here is to produce a support toolset for MVNs using RL that can read in an

MVN structure and produce traces and attractors that can help identify a certain behaviour.

34 Background

Fig. 2.9 A Support Tool for Boolean and Multi-Valued Networks.

The tool set will also be able to produce different types of graphs such as a basin of attraction

or a clustered version of the state graph. RL models representing the behaviour of an MVN

can also be generated to enable the use of the powerful tool support available for RL.

2.9 Conclusions

In this chapter, we introduced MVNs which are mathematical models of control systems

where time and states are discrete. MVNs extend the well-known Boolean networks[1,2,3]

by providing a more powerful qualitative modelling approach for biological systems; they

extend Boolean networks by allowing an entity’s state to be within a range of discrete set of

values instead of just 0 or 1. We gave a formal definition to what an MVN is and introduced

2.9 Conclusions 35

an MVN model as an example. We gave formal definitions to what both synchronous and

asynchronous updating mechanisms mean.

After that, we introduced Rewriting Logic which has been successfully used to model a

wide range of different formalisms and systems, such as process algebras [10, 11], Petri nets

[12, 13], and biological systems [14, 15]. After introducing RL we then introduced Maude,

which is a high-performance reflective language supporting both equational and rewriting

logic [41, 70, 28] specification and programming for a wide range of applications.

We introduced the syntax of Maude and give some examples using models that were

introduced in Section 2.3. We provided some examples of using Maude’s search and rewrite

commands to explore certain properties of a model using our running examples. We extended

our analysis by using Maude’s built in Linear Temporal Logic (LTL) model checker and gave

some examples of some uses of LTL.

We introduced rewriting strategies which can control how rewrite rules are applied within

a model using Maude’s meta-programming capabilities allowing the construction of rewriting

strategies. A discussion of related work and existing support tools was provided in Section

2.6.

In the next chapter we develop an RL model for asynchronous MVNs based on their

asynchronous update semantics. We present a translation approach that translates an MVN

into an RL model and we provide a formal correctness argument for our approach. We

present a detailed case study using techniques and the developed RL framework alongside

the resulting analysis made possible using those tools and techniques.

Chapter 3

An RL Model for Asynchronous MVNs

3.1 Introduction

While a range of tools and techniques for developing and analysing MVNs exists in the

literature (see Section 2.6), more work is needed to develop tool support to help with the

practical applications of those techniques. In this chapter we set out to strengthen the tool

support available for MVNs by linking them to RL and so enabling the application of the

wide range of support tools available for RL.

We start by constructing an RL model for MVNs based on their asynchronous update

semantics, we derive a set of rewrite rules that are used to capture an MVN’s behaviour. We

use Maude to introduce a module file representing the model, we represent within our model

the next state function of network entities and the associated asynchronous update rules. We

use a translation approach that takes in a structured MVN file and produce an RL Model with

required definitions and set of rewrite rules.

We formally show that our translation process from an asynchronous MVN to an RL

model is correct, that is done by showing and proving the soundness and completeness of

our translation process. To do this we show that: 1) (soundness) each global state transition

possible in our RL model represents a corresponding asynchronous update in the original

MVN; and 2) (completeness) every asynchronous update possible in an MVN is specified in

our RL model.

38 An RL Model for Asynchronous MVNs

Techniques and the developed RL framework are illustrated alongside the resulting

analysis possible by presenting a published case study from the literature that is based on

modelling and analysing the genetic regulatory network for the synthesis of Tryptophan in E.

coli[21, 22]. This case study helps to motivate our RL framework by illustrating the analysis

techniques and tools available when using RL and the tool Maude. We formally investigate

the model using a range of powerful analysis tools provided by Maude, which was one of the

motivations for choosing to use RL.

This chapter is organised as follows: in Section 3.2, we construct an RL model for an

asynchronous MVN, and we derive a set of rewrite rules using a translation approach that

enables us to produce a formal representation of an MVN using RL. In Section 3.3 we prove

the correctness of our translation approach by showing its soundness and completeness. In

Section 3.4, we illustrate our RL framework by presenting a detailed case study based on

modelling and analysing the genetic regulatory network for the synthesis of Tryptophan in E.

coli. Finally in Section 3.5, we conclude the work presented in this chapter with concluding

remarks.

3.2 Constructing an RL Model for an Asynchronous MVN

Let MV = (G,D,N,F) be an MVN and assume that we are using the asynchronous update

semantics. Then we construct a corresponding RL model RLA(MV) as follows.

For each discrete state space D(g) = {0, . . . ,m} associated with some entity g ∈ G define

a corresponding sort Dm in RLA(MV) with constants i : Dm, for i = 0, . . . ,m. We define

the sort Entity in RLA(MV) for entities and represent each entity g ∈ G in our MVN by a

function g : Dm → Entity, where D(g) = {0, . . . ,m}. We represent global states in an MVN

as non-empty multi–sets of entities. To do this we introduce the sort GState, defining Entity

to be a sub sort of GState, and then use the normal approach of adding an implicit union

operator (see the example in Section 2.3). Note that given the above definitions not all terms

of sort GState will correspond to well–defined global states of MV (they may omit an entity

or contain multiple terms for an entity). For simplicity, we avoid restricting the generation of

3.2 Constructing an RL Model for an Asynchronous MVN 39

global state terms and instead introduce appropriate restrictions as part of our correctness

argument (see Section 3.3 below).

As an example, consider the following signature generated for our running example PL2

introduced earlier in section 2.3 (see Figure 2.2) presented using the Maude syntax [17]:

mod PL2 is

sorts Entity GState .

sorts D1 D2 .

subsort Entity < GState .

ops 0 1 : -> D1 .

ops 0 1 2 : -> D2 .

op CI : D1 -> Entity .

op Cro : D2 -> Entity .

op __ : GState GState -> GState [assoc comm].

endm

We define our model using the mod command and use PL2 to represent the model name,

sorts Entity and GState are defined and sort Entity is defined as a sub-sort of GState

(meaning that a combination of entities can be used to form a GState). Two constants are

declared to represent entities CI and Cr0 in the model and an implicit union operator __ :

GState GState → GState is declared which we define to be associative and commutative

using the flags ([assoc comm]) in Maude. Entity CI has a state space that is represented using

sort D1 = {0,1}, while Cr0 has a state space of D2 = {0,1,2}. Given the above definitions

a global state in which CI has state 1 and Cro has state 2 would be represented by the term

CI(1) Cro(2).

The final stage in modelling an MVN is to represent within our RL model the next–state

function associated with each entity and the associated asynchronous update rule. Note that

in doing this we will implicitly capture the neighbourhood information associated with the

MVN. In order to do this we begin by deriving a equational representation for the next–state

functions as described in Section 2.3. We then simplify the resulting equations using multi–

40 An RL Model for Asynchronous MVNs

valued logic minimization techniques [30] (note that this process can be automated using

tools such as MVSIS [36]). Each of the simplified equations will have the general form

g{s}= P1 + · · ·+Pk

for some k > 0, g ∈ G and s ∈ D(g). The equation specifies that g will have next state s

precisely when one or more of the product terms P1, . . . ,Pk is true. We generate the rewrite

rules for asynchronously updating g to state s by deriving a set of rewrite rules for each

product term Pi, i = 1, . . . ,k, as follows.

First we need to ensure that a term representing the current state of g occurs within Pi. To

do this we check Pi and if no term of the form gS′ is present, for some S′ ⊆ D(g), then we

use conjunction to add the term g(D(g)−{s}) to Pi (in a slight abuse of notation we let Pi

still denote this new term). Now suppose

Pi = gE1S1 . . . gEmSm gSm+1

for some m ≥ 0, and state sets S j ⊆ D(gE j), 1 ≤ j ≤ m and Sm+1 ⊆ D(g). Then we add the

following rewrite rules to RLA(MV):

gE1(u1) . . . gEm(um) g(um+1) =⇒ gE1(u1) . . . gEm(um) g(s)

for each u j ∈ S j, 1 ≤ j ≤ m+1, such that um+1 ̸= s. Note the final restriction um+1 ̸= s is

needed here to ensure that only state transitions which change the current state of entity g are

allowed (this is a fundamental part of the asynchronous update semantics).

To illustrate the above process consider applying it to our running example PL2. First we

derive the equations for PL2 (see Section 2.3). We then apply multi–valued logic minimiza-

tion to simplify these to the following set of equations:

3.2 Constructing an RL Model for an Asynchronous MVN 41

1) CI{0}= Cro{1,2}

2) CI{1}= Cro{0}

3) Cro{0}= CI{1}Cro{0,1}

4) Cro{1}= CI{0}Cro{0}+Cro{2}

5) Cro{2}= CI{0}Cro{1}

The final stage is to use the simplified equations to derive a set of rewrite rules to model

the asynchronous update of PL2. Figure 3.1 describes the translation process starting from

simplified equations representing entities behaviour and ending up with the matching Maude

rewrite rule.

Fig. 3.1 The Translation Process, Equations to Rewrite Rules.

To illustrate the approach defined above consider deriving the rewrite rules for Cro

entering state 0. From the equations above we see that Cro has next state 0 whenever CI is in

state 1 and Cro is in state 0 or 1. However, a state change occurs here only if Cro is currently

in state 1 so we need only one rewrite rule to model this state transition:

CI(1) Cro(1) =⇒ CI(1) Cro(0)

42 An RL Model for Asynchronous MVNs

In equation number 1, CI has the value of 0 when the value of Cro is either 1 or 2. With

Cro having two possible values here there is a need for two rewrite rules to cover both values.

Also there is a need to add the value of CI{1} to represent the change in behaviour for CI

going from state 1 to state 0. Equation number 2 is straightforward and requires only a single

rewrite rule to model it that covers the case of Cro{0} and CI going from state 0 to state 1.

In equation number 3, Cro has two values here but only one of them represents a change

in its value, so Cro{0} is not needed in the rewrite rule since there is no point of rewriting

Cro{0} as Cro{0} again. We have an equation of two parts that are combined by disjunction

in equation number 4 which means that we need two rewrite rules to represent the two parts

of the equation. Finally, equation number 5 is straightforward and the rewrite rule is a simple

rewrite of Cro{1} to Cro{2}.

The full set of rules derived to model the asynchronous next–state functions for PL2 is

given below:

rl [CI0] : CI(1) Cro(1) => CI(0) Cro(1) .

rl [CI0] : CI(1) Cro(2) => CI(0) Cro(2) .

rl [CI1] : CI(0) Cro(0) => CI(1) Cro(0) .

rl [Cro0] : CI(1) Cro(1) => CI(1) Cro(0) .

rl [Cro1] : CI(0) Cro(0) => CI(0) Cro(1) .

rl [Cro1] : Cro(2) => Cro(1) .

rl [Cro2] : CI(0) Cro(1) => CI(0) Cro(2) .

The tool support was extended at this point to automatically apply the above translation

process given an XML description of an MVN. Equations and Rewrite rules for the module

are automatically generated using tool support and are stored in text files in the same format

Maude uses for rewrite rules. The tool also produces basic Maude files with needed variables

and rewrite rules to represent a network.

3.3 RL Model Correctness 43

3.3 RL Model Correctness

In this section we formally show that our translation from an asynchronous MVN to an RL

model given in the previous section is correct. To do this we show that: 1) (soundness) each

global state transition possible in our RL model represents a corresponding asynchronous

update in the original MVN; and 2) (completeness) every asynchronous update possible in an

MVN is specified in our RL model.

We begin by precisely defining which terms in our RL model represent well–defined

global states. Note that not all RL terms of sort GState represent represent valid global

states. For example, in our running example introduced earlier in section 3.2, CI(1) does not

represent a valid global state as it does not represent the state of Cro. We also can not have an

entity present at two different states, such as: CI(1) CI(0), every entity has to appear exactly

once within a global state for that state to be a valid state within the MVN. Let MV be an

MVN with entities G = {g1, . . . ,gn}, for some n > 0. Then we define the set validGS(MV)

of RL terms of sort GState representing well–defined global states in MV by

validGS(MV) = {g1(s1) . . . gn(sn) | s1 ∈ D(g1), . . . ,sn ∈ D(gn)}

The following result shows that rewrite steps in our RL model preserve valid global state

terms.

Theorem 4. For any GS1 ∈ validGS(MV), if GS1 =⇒ GS2 in one rewrite step in RLA(MV)

then GS2 ∈ validGS(MV).

Proof. Let GS1 = g1(s1) . . . gn(sn)∈ validGS(MV), for some si ∈D(gi), 1≤ i≤ n. Suppose

that GS1 =⇒ GS2 in one rewrite step in RLA(MV). Then by the definition of the rewrite rules

in RLA(MV) we know that no term representing the state of an entity is added or removed

from a global state term when a rewrite rule is applied. Noting that the multi–set union

operator is associative and commutative, it therefore follows that GS2 must have the form

GS2 = g1(s′1) . . . gn(s′n), where for some j ∈ {1, . . . ,n} we have s′i = si, for i = 1, . . . ,n, i ̸= j,

44 An RL Model for Asynchronous MVNs

and s′j ∈ D(g j) such that s′j ̸= s j. Then by definition we have GS2 is a valid global state term

(i.e. GS2 ∈ validGS(MV)). 2

In order to formally map global states of an MVN MV to corresponding global state terms

in RLA(MV) we define a global state term mapping φ : D(g1)×·· ·×D(gn)→ validGS(MV)

by

φ(s1 . . .sn) = g1(s1) . . . gn(sn),

for any states si ∈ D(gi), 1 ≤ i ≤ n. Note that since φ can be shown to be a bijective mapping

it has an inverse φ−1 : validGS(MV)→ (D(g1)×·· ·×D(gn)).

We can now show that RLA(MV) correctly captures the semantics of the MVN. To do

this we show two things: first, the soundness of our translation which means that for every

rewrite step in RLA(MV), a rewrite rule must have been applied to transition from state GS1

to state GS2 that was derived from an equation in MV . Secondly, the completeness of our

translation which means that for every asynchronous update step in MV that updates a global

state S1 to state S2, there must exist a rewrite rule derived from an equation in MV that can

be used to rewrite S1 to S2.

GS1 GS2

S1 S2

-
rewrites

-
Asy

6
φ−1 6

φ−1

GS1 GS2

S1 S2

-
rewrites

-
Asy

?
φ

?
φ

(a) Soundness. (b) Completeness.

Fig. 3.2 Correctness Requirements for our Translation Approach.

Theorem 5. (Soundness) Let GS1,GS2 ∈ validGS(MV) be any valid global state terms

such that GS1 =⇒ GS2 in a single rewrite step in RLA(MV). Then φ−1(GS1)
Asy−−→ φ−1(GS2).

That is shown in figure 3.2 (a), (where S1,S2 ∈ D(g1)×·· ·×D(gk)).

Proof. Suppose that GS1 =⇒ GS2 in a single rewrite step in RLA(MV). Then a rewrite

3.3 RL Model Correctness 45

rule with the following form must have been applied:

gE1(s1) . . . gEm(sm) g(s) =⇒ gE1(s1) . . . gEm(sm) g(s′)

for some m ∈ N, distinct gE1, . . . ,gEm,g ∈ G, si ∈ D(gEi), i = 1, . . . ,m, and s,s′ ∈ D(g) such

that s ̸= s′. By the definition of RLA(MV) this rule was derived from an equation of the form

g{s′} = P1 + · · ·+Pk, for some k > 0 and product terms Pi, i = 1, . . . ,k. In particular, the

rewrite rule was derived from one of the product terms, say Pi, for some i ∈ {1, . . . ,k}. It is

therefore clear that product term Pi must be true in global state φ−1(GS1) and so the state of

entity g can be asynchronously updated to state s′ (as specified by the equation). In other

words, we have that φ−1(GS1)
Asy−−→ φ−1(GS2) as required. 2

Theorem 6. (Completeness) Let S1,S2 ∈ D(g1)×·· ·×D(gn) be global states in MV such

that S1
Asy−−→ S2. Then φ(S1) =⇒ φ(S2) in a single rewrite step in RLA(MV). That is shown in

figure 3.2 (b), (where S1,S2 ∈ D(g1)×·· ·×D(gk)).

Proof. Suppose that the asynchronous update S1
Asy−−→ S2 can occur in MV . Then this

means the global state S2 is produced by updating the state of one entity in S1 while keeping

the states of all other entities the same. Suppose that the entity which has been updated is g,

for some g ∈ G and that its state has changed from s to s′, for some states s,s′ ∈ D(g) such

that s ̸= s′. Then there must exist an equation of the form g{s′} = P1 + · · ·+Pk, for some

k > 0 and product terms Pi, i = 1, . . . ,k. Furthermore, at least one of the product terms Pi, for

some i ∈ {1, . . . ,k}, must evaluate to true in the global state S1. It follows by the definition

of RLA(MV) that there must exist a rewrite rule derived from the above equation and in

particular, derived from the product term Pi which has the form:

gE1(s1) . . . gEm(sm) g(s) =⇒ gE1(s1) . . . gEm(sm) g(s′)

for some m ∈ N, distinct gE1, . . . ,gEm ∈ G, si ∈ D(gEi), i = 1, . . . ,m. Clearly, given the as-

sumptions above we must be able to apply this rewrite rule to φ(S1) and the resulting state

46 An RL Model for Asynchronous MVNs

term will correspond to φ(S2). In other words, we have that φ(S1) =⇒ φ(S2) in a single

rewrite step in RLA(MV) as required. 2

We have now shown that our translation is formally correct. Therefore, anything we

derive about our RL model must also hold in the original MVN. Now we can use the powerful

support tool available for RL to better analyse and understand an MVN by illustrating the

analysis techniques and flexibility available when using RL.

3.4 Case Study: The Regulation of Biosynthesis of

Tryptophan in E. coli

We illustrate the RL framework developed above by presenting a case study based on

modelling and analysing the genetic regulatory network for the synthesis of tryptophan in

E. coli [21, 22]. This case study helps to motivate our RL framework by illustrating the

analysis techniques and flexibility available when using RL and the tool Maude [17].The

case study chosen here is a published MVN model of the regulatory system used to control

the biosynthesis of tryptophan in E. coli.

3.4.1 Tryptophan Model

Tryptophan is an amino acid that is essential for the development of E. coli. The biosynthesis

of the tryptophan amino acid in E. coli is carefully regulated because of how essential it is to

the growth of the bacteria and how costly it is to produce. The synthesis of tryptophan is

resource intensive and for this reason it is carefully controlled to ensure it is only synthesized

when no external source of tryptophan is available [21, 22]. An MVN for the underlying

genetic regulatory network for the biosynthesis of tryptophan in E. coli (based on [23]) is

presented in Figure 3.3. The regulatory network has 4 entities:

TrpE – indicates the presence of the activated enzyme required for synthesising tryptophan,

has neighbourhood N(TrpE) = {TrpR,Trp} and state space D(TrpE) = {0,1};

3.4 Case Study: The Regulation of Biosynthesis of
Tryptophan in E. coli 47

Trp

TrpRTrpE

TrpExt

2

TrpE TrpExt Trp [Trp]
0 0 0,1 0
0 0 2 1
0 1 0,1,2 1
0 2 0 1
0 2 1,2 2
1 0,1 0,1,2 1
1 2 0 1
1 2 1,2 2

Trp [TrpR]
0,1 0
2 1

Trp TrpR [TrpE]
0 0 1
0 1 0

1,2 0,1 0

Fig. 3.3 An MVN model MTRP of the regulatory mechanism for the biosynthesis of Tryp-
tophan in E. coli (based on [23]). The state transition table for TrpExt has been omitted as
this is a simple input entity that does not change its initial state. Note that the state transition
tables use a shorthand notation where an entity is allowed to be in any of the states listed for
it in a particular row.

TrpR – indicates if the repressor gene for tryptophan production is active, has neighbourhood

N(TrpR) = {Trp} and state space D(TrpR) = {0,1};

TrpExt – an input entity indicating the level of external tryptophan, has D(TrpExt) =

{0,1,2};

Trp – indicates the level of tryptophan within the bacteria, has neighbourhood N(Trp) =

{TrpExt,TrpE} and state space D(Trp) = {0,1,2}.

The above entity order is used when presenting global states for MTRP. We can see from

the model that the presence of Tryptophan in the external medium TrpExt directly affects the

level of tryptophan within the bacteria Trp. The regulatory network works as follows: the

activated enzyme TrpE is required to synthesise Tryptophan but this enzyme is deactivated by

the presence of Tryptophan within E. coli and at higher-levels of Tryptophan the production

of TrpE is inhibited by the activation of the repressor TrpR. The state graph (shown in figure

3.4) consists of 36 global states and has the following three attractors: two point attractors

48 An RL Model for Asynchronous MVNs

0011 and 0122 which occur in the presence of external tryptophan; and a cyclic attractor

0000−−> 1000−−> 1001−−> 0001−−> 0000 representing tryptophan synthesis.

3.4.2 Constructing the RL Model

Following the approach defined in Section 3.2 we can construct an RL model RLA(MTRP)

for MTRP. We begin by deriving equations for the next state functions of MTRP from the

state transition tables in Figure 3.3. Equations are used to come up with the needed rewrite

rules for the Maude file representing the model using the translation process. The regulatory

network that controls the biosynthesis of tryptophan by E. coli has been chosen to illustrate

basic model checking using Maude.We start by defining the 4 entities (TrpE, TrpR, TrpExt

and Trp) and assign a sort defining the values the states that they can be in. Entities TrpE and

TrpR both have a state space of size 2 containing the values 0 and 1, while entities TrpExt

and Trp have a state space of size 3 for values 0,1 and 2. The Maude file now represents the

network structure as follows:

mod EXTRP is

protecting NAT .

sort Entity .

sort GState .

sorts D1 D2 .

subsort Entity < GState .

ops 0 1 : -> D1 .

ops 0 1 2 : -> D2 .

ops TrpE TrpR : D1 -> Entity .

ops TrpExt Trp : D2 -> Entity .

op __ : Entity Entity -> GState [assoc comm].

vars E1 E2 : Entity .

vars s1 s11 : D1 .

endm

3.4 Case Study: The Regulation of Biosynthesis of
Tryptophan in E. coli 49

0010
1010

0012
0112

1012
1112

1011
0110

1110
1111

0011

0111

0102
1002

1102

0101
0100

1000

1001
1100

0000

1101

0002

0001

1020
0120

1120

0121
1121

1021

1122
1022

0021

0022

0122

0020

Fig. 3.4 The State Graph of the MTRP Model.

50 An RL Model for Asynchronous MVNs

We now have within this module all the necessary operators and variables to represent

the structure of this network. With GState being used to represent network entities states

and entities defined as a sub sort of GState. The simplified set of equations are then used to

derive a set of rewrite rules for RLA(MTRP) to model the asynchronous behaviour of MTRP

as described in Section 3.2. We begin by presenting the set of unsimplified equations:

TrpE{0} = Trp{0}TrpR{1} + Trp{1,2}TrpR{0,1}

TrpE{1} = Trp{0}TrpR{0}

TrpR{0} = Trp{0,1}

TrpR{1} = Trp{2}

Trp{0} = TrpE{0}TrpExt{0}Trp{0,1}

Trp{1} = TrpE{0}TrpExt{0}Trp{2} + TrpE{0}TrpExt{1}Trp{0,1,2} +

TrpE{0,1}TrpExt{2}Trp{0} + TrpE{1}TrpExt{0,1}Trp{0,1,2}

Trp{2} = TrpE{0,1}TrpExt{2}Trp{1,2}

Simplifying these equations results in the following set of equations:

TrpE{0} = TrpR{1} + Trp{1,2}TrpR{0}

TrpE{1} = Trp{0}TrpR{0}

TrpR{0} = Trp{0,1}

TrpR{1} = Trp{2}

Trp{0} = TrpE{0}TrpExt{0}Trp{0,1}

Trp{1} = TrpE{0}TrpExt{0}Trp{2} + TrpExt{1} +

TrpExt{2}Trp{0} + TrpE{1}TrpExt{0}

Trp{2} = TrpExt{2}Trp{1,2}

3.4 Case Study: The Regulation of Biosynthesis of
Tryptophan in E. coli 51

We use these equations to derive a set of rewrite rules that are used by Maude to navigate

through network states. Taking TrpR as an example we have the following equations for

TrpR:

TrpR{0} = Trp{0,1}

TrpR{1} = Trp{2}

TrpR updates its value to 0 when Trp is either at state 0 or 1, and it updates its value

to 1 when Trp is at state 2. Since a value can only be updated if there is a change in the

value itself, we represent that by adding TrpR(1) for TrpR{0} and TrpR(0) for TrpR{1}

as follows:

rl [TrpR0] : TrpR(1) Trp(0) => TrpR(0) Trp(0) .

rl [TrpR0] : TrpR(1) Trp(1) => TrpR(0) Trp(1) .

rl [TrpR1] : TrpR(0) Trp(2) => TrpR(1) Trp(2) .

Rewrite rules are derived from the network entities truth tables. They are used to rewrite

network states (going from one network state to the other). As an example: Entity TrpR has

the value of 0 when Trp is either 0 or 1, we use rewrite rules to describe that (also TrpR

has to be at state 1 to change to state 0 because rewrite rules are only used when there are

changes in the network entities values). Following the same procedure for the remaining

network entities, we end up with the full set of rewrite rules that goes into the Maude file.

The set of rewrite rules derived for RLA(MTRP) is as follows:

rl [TrpR0] : TrpR(1) Trp(0) => TrpR(0) Trp(0) .

rl [TrpR0] : TrpR(1) Trp(1) => TrpR(0) Trp(1) .

rl [TrpR1] : TrpR(0) Trp(2) => TrpR(1) Trp(2) .

rl [TrpE0] : TrpE(1) TrpR(1) => TrpE(0) TrpR(1) .

rl [TrpE0] : TrpE(1) Trp(1) TrpR(0) => TrpE(0) Trp(1) TrpR(0) .

rl [TrpE0] : TrpE(1) Trp(2) TrpR(0) => TrpE(0) Trp(2) TrpR(0) .

rl [TrpE1] : TrpE(0) Trp(0) TrpR(0) => TrpE(1) Trp(0) TrpR(0) .

52 An RL Model for Asynchronous MVNs

rl [Trp0] : TrpE(0) TrpExt(0) Trp(1) => TrpE(0) TrpExt(0) Trp(0) .

rl [Trp1] : TrpE(0) TrpExt(0) Trp(2) => TrpE(0) TrpExt(0) Trp(1) .

rl [Trp1] : TrpExt(1) Trp(0) => TrpExt(1) Trp(1) .

rl [Trp1] : TrpExt(1) Trp(2) => TrpExt(1) Trp(1) .

rl [Trp1] : TrpE(1) TrpExt(0) Trp(0) => TrpE(1) TrpExt(0) Trp(1) .

rl [Trp1] : TrpE(1) TrpExt(0) Trp(2) => TrpE(1) TrpExt(0) Trp(1) .

rl [Trp1] : TrpExt(2) Trp(0) => TrpExt(2) Trp(1) .

rl [Trp2] : TrpExt(2) Trp(1) => TrpExt(2) Trp(2) .

Figure 3.5 shows the four parts of the Trp{1} equation and the corresponding rewrite

rules, this was singled out because it produced many rewrite rules. First part of the equation

produces a rewrite rule that is straight forward. Second and third parts are interesting because

Trp is not present in those equations. With Trp having a state space of 3 values (0,1 and

2) and it being not present in the equations for Trp{1}, we have to cover both possibilities

of Trp being either 0 or 2 before it was updated to 1 and that is why have 2 equations

for the second and third equation parts while the fourth part of the Trp{1} produces a

straightforward rewrite rule.

Fig. 3.5 Rewrite Rules Produced for Trp1.

3.4 Case Study: The Regulation of Biosynthesis of
Tryptophan in E. coli 53

Once a model has been developed for a biological system then the next stage is to analyse

its behaviour. The idea is to validate the model by checking that it has known biological

properties and to produce important new insights that can then be experimentally investigated

by biologists. We illustrate the wide range of analysis possible using our RL framework and

the support tool Maude by providing a selection of analysis examples for RLA(MTRP).

3.4.3 Analysis in Maude

The above model can now be formally investigated using the range of powerful analysis tools

provided by Maude which was introduced in Section 2.5. We briefly illustrate the range of

analysis techniques available below (for a more detailed introduction to Maude’s analysis

tools see [28]).

Rewrite rules can now be used by Maude to rewrite system states and perform searches.

Using Maude’s rew command we rewrite the system state 0000 one time (i.e. gets the next

state for 0000); the resulting output is as follows:

Maude> rew [1] TrpR(0) TrpE(0) TrpExt(0) Trp(0) .

rewrite [1] in exTrp : TrpR(0) TrpE(0) TrpExt(0) Trp(0) .

rewrites: 1 in 0ms cpu (0ms real) (1000000 rewrites/second)

result [State]: TrpE(1) TrpR(0) TrpExt(0) Trp(0)

Maude performs a tracing simulation of one rewrite and the resulting state is 1000 as

expected. Maude also shows the rewriting CPU and real time alongside the number of

rewrites performed per second. The number of rewrites can be specified in Maude as follows:

Maude> rew [3] TrpR(0) TrpE(1) TrpExt(1) Trp(2) .

rewrite [3] in exTrp : TrpR(0) TrpE(1) TrpExt(1) Trp(2) .

rewrites: 3 in 0ms cpu (0ms real) (3000000 rewrites/second)

result [State]: TrpE(0) TrpR(1) TrpExt(1) Trp(1)

Maude performs 3 rewrites on the given initial state and returns the state 0111 as a result.

We can also omit the number of rewrites and Maude will rewrite to termination as follows:

54 An RL Model for Asynchronous MVNs

Maude> rew TrpR(0) TrpE(1) TrpExt(1) Trp(2) .

rewrite in exTrp : TrpR(0) TrpE(1) TrpExt(1) Trp(2) .

rewrites: 4 in 0ms cpu (0ms real) (4000000 rewrites/second)

result [State]: TrpE(0) TrpR(0) TrpExt(1) Trp(1)

Maude rewrites the initial state to termination after performing 4 rewrites resulting in

state 0011.

Basic model checking can be done using the Maude search command. We can start by

checking for Trp changing from state 0 to state 1 starting from the global state 0010 using

the following search command:

search TrpR(0) TrpE(0) TrpExt(1) Trp(0) =>+

Trp(1) TrpR(t1:D1) TrpE(t2:D1)TrpExt(t3:D2) .

Solution 1 (state 2)

states: 3 rewrites: 2 in 0ms cpu (0ms real)

(40816 rewrites/second)

t2:D1 --> (0).D1

t1:D1 --> (0).D1

t3:D2 --> (1).D2

Solution 2 (state 3)

states: 4 rewrites: 3 in 0ms cpu (0ms real)

(34090 rewrites/second)

t2:D1 --> (1).D1

t1:D1 --> (0).D1

t3:D2 --> (1).D2

No more solutions.

states: 4 rewrites: 4 in 0ms cpu (0ms real)

(33333 rewrites/second)

This search is limited to reachable states starting from 0010 that has Trp at state 1.

Maude’s Search Command explores all reachable states that match the pattern given (Trp(1)

3.4 Case Study: The Regulation of Biosynthesis of
Tryptophan in E. coli 55

TrpR(t1:D1) TrpE(t2:D1) TrpExt(t3:D2)) which means any reachable state where the

value of Trp changes to 1. As seen above two states are reachable which are 0011 and 0111.

Basic model checking can be done in Maude using the Search command. Next, we present

some examples to illustrate the type of invariant analysis possible using Maude’s built-in

search command [17] which provides interesting ways to search the set of states reachable

from a given initial state. For example, the following search allows the attractors in our

model to be investigated by checking whether an initial state leads to a point attractor (note

the use of =>! here to ensure the rewriting terminates).

search TrpE(1) TrpR(0) TrpExt(2) Trp(2) =>! GS:GState .

This command confirms that 1022 leads to the point attractor 0122 in MTRP and we can

view the associated trace for this behaviour.

Using the show path command we could then view an example trace for this behaviour.

state 0, GState: TrpE(1) TrpR(0) TrpExt(2) Trp(2)

===[rl TrpR(0) Trp(2) => TrpR(1) Trp(2) [label nxtTrpR1] .]===>

state 1, GState: TrpE(1) TrpR(1) TrpExt(2) Trp(2)

===[rl TrpE(1) TrpR(1) => TrpE(0) TrpR(1) [label nxtTrpE0] .]===>

state 3, GState: TrpE(0) TrpR(1) TrpExt(2) Trp(2)

A similar search shows that the initial state 1102 does not lead to a point attractor.

search TrpE(1) TrpR(1) TrpExt(0) Trp(2) =>! GS:GState .

We can also check general invariant properties on the state space reachable from a given

initial state such as checking whether entities reach a certain level of activation as the example

below illustrates.

search TrpE(1) TrpR(1) TrpExt(1) Trp(0) =>+ Trp(2) GS:GState .

This search confirms that Trp can not reach state 2 from the initial state 1110. A similar

search shows that Trp can reach state 2 from initial state 0120 (in fact, there are four different

traces that result in this behaviour and we can view these). As a final example, consider the

56 An RL Model for Asynchronous MVNs

following search which confirms that TrpE and TrpR are not mutually exclusive from the

initial state 0120.

search TrpE(0) TrpR(1) TrpExt(2) Trp(0) =>+ TrpE(1) TrpR(1) GS:GState .

Maude indicates there is a single counter example trace here, and we able to view

it to gain insight into this behaviour. A similar search confirms that TrpE and TrpR are

mutually exclusive from 0121. Furthermore, we can show that the basins of attraction for

each attractor in MTRP are disjoint. Using this approach we can explore a wide range of

interesting properties for trpMV .

3.4.4 LTL Model Checking

The above examples give an initial idea of the wide range of analysis checks possible of our

RL model. Maude also provides a model checking tool for Linear Temporal Logic (LTL)

[37] which allows dynamic properties that can not be checked using the search command to

be analysed for finite state rewrite systems [27]. Since any MVN has a finite state space we

can use this model checking tool to investigate a wide range of biologically relevant dynamic

properties of an MVN.

To use the model checker we start by defining a range of atomic propositions to represent

the key properties of interest. For example, for MTRP we might define an atomic proposition

atTrp:D2 -> Prop, where atTrp(s) is true only if Trp is in state s. This can be done

equationally as follows (where [owise] is a Maude shortcut which allows all remaining

possibilities to be covered):

eq Trp(s2) GS |= atTrp(s2) = true .

eq GS |= atTrp(s2) = false [owise] .

We can then model check a range of interesting dynamic properties expressed using the

temporal operators of LTL as illustrated by the examples below for MTRP.

The first property we consider is used to validate the model by showing that the Tryp-

tophan enzyme is always eventually present in the bacteria. We represent this property in

3.4 Case Study: The Regulation of Biosynthesis of
Tryptophan in E. coli 57

Maude using the LTL formula [] <> (atTrp(1) \/ atTrp(2)), where [] stands for the

always operator and <> for eventually [37]. We can check this LTL formula for the initial

state 0000 using the following Maude reduce command:

red modelCheck(TrpE(0) TrpR(0) TrpExt(0) Trp(0),

[] <> (atTrp(1) \/ atTrp(2)))

This returns true showing that the property holds and indeed it holds for all initial states

considered.

Another property we might consider is whether an entity eventually becomes stable in a

given state from a given initial state. For example, suppose we want to check that from initial

state 0020 in which input entity TrpExt is in state 2, Trp must eventually become fixed in

state 2 (i.e. present at high–levels in the bacteria). We can confirm this property holds using

the command:

red modelCheck(TrpE(0) TrpR(0) TrpExt(2) Trp(0), <> [] atTrp(2))

We can extend this property further to check whether a high–level of external tryptophan

is enough to ensure a high–level of tryptophan in the bacteria. We represent this property

using the formula atExt(2) -> (<> [] atTrp(2)), and model checking shows it holds

for all initial states sampled.

As a final example, suppose we want to check whether an entity entering a specific

state can trigger some important behaviour. For example, the following LTL formula

[] (atTrp(2) -> <> atR(1)), captures the property that if Trp is ever fully expressed

then eventually TrpR must become active. We can model check this LTL formula for

some initial state, say , TrpE{1} TrpR{0} TrpExt{0} Trp{2}, using the following Maude

command:

red modelCheck(TrpE(1) TrpR(0) TrpExt(0) Trp(2),

[] (atTrp(2) -> <> atR(1)))

This returns false showing that the formula does not hold (as expected) and provides a

counter example trace which gives important insight into the result. Repeating the above

check we are able to confirm that the property does hold for initial state 1020.

58 An RL Model for Asynchronous MVNs

Under appropriate conditions, mathematical models can be checked to check whether they

satisfy some important properties, or in some cases, obtain a useful counterexample showing

that such property is violated. While any Linear Temporal Logic (LTL) property of a system

can be model checked when the system is specified in Maude as a system module, Search

allows for a simpler, yet very useful model-checking capabilities, such as model-checking of

invariants, which can be accomplished just by using the Maude Search command.

3.5 Conclusions

In this chapter, we worked on developing an RL model for asynchronous MVNs based on

their asynchronous update semantics. We started by introducing a translation approach that

translates an MVN into an RL model. The translation approach deals with straightforward

translations taking a single equation part and producing a matching rewrite rule. More

importantly, the translation approach deals with more complex translations when an entity is

missing from the equation and can hold more than one value hence the need for two or more

equations as was shown in Section 3.4.2. The translation approach also has to make sure to

add missing terms in case they are not present.

We provided a formal correctness argument for this translation approach where we

formally showed that our translation from an asynchronous MVN to an RL model is correct.

This was done by proving the soundness (see Section 3.3) (each global state transition

possible in our RL model represents a corresponding asynchronous update in the original

MVN) and completeness (see Section 3.3) (every asynchronous update possible in an MVN

is specified in our RL model) of the RL model (see Figure 3.2).

Techniques and the developed RL framework were illustrated in this chapter using a

detailed case study that was based on modelling and analysing the genetic regulatory network

for the synthesis of tryptophan in E. coli. The case study have helped motivate our RL

framework by illustrating the analysis techniques and flexibility available when using RL and

the tool Maude [17]. We formally investigated the model using a range of powerful analysis

tools provided by Maude, which was one of the motivations for choosing to use RL. We

3.5 Conclusions 59

demonstrated a wide range of analysis where we started by using basic rewrite commands

before moving into the search command, we performed some basic search commands

checking for certain properties. After that we introduced LTL model checking and showed

the powerful and wide range of analysis that LTL allows us to perform.

We extend our translation approach in the next chapter to cover the synchronous semantics

of MVNs and prove correctness using a detailed case study. The synchronous mechanisms

are more challenging as we need to introduce and make use of rewriting strategies (more on

that in Chapter 4).

In order to evaluate the performance and the scalability of our RL framework, further

ahead in Chapter 5 we take a look at a scalable case study using a performance test model.

The model is a multi-valued network of five entities. The network has four boolean entities

and one multi–valued one, with A acting as the only multi-valued entity in the network with

a state space of size three for values 0, 1 and 2. Using the developed techniques and tools

we start by presenting an asynchronous version of the model. We perform some analysis

using the Maude’s search command and rewriting logic. Then we introduce the synchronous

version of the model and perform a similar analysis. We perform some LTL model checking

before scale the model in increments of five and then providing analysis summary tables.

In order to illustrate the practical application of tools and techniques developed for our

RL framework, we carry out a larger case study in Chapter 6 by introducing models of sizes

13 and 22 using a scalable test model based on the gene regulatory network of the segment

polarity gene family which is at the basis of Drosophila embryonic development [95, 94].

Chapter 4

An RL Model for Synchronous MVNs

4.1 Introduction

Synchronous MVNs [24, 44, 83] are an important modelling technique that has a wide range

of applications. In this chapter we focus on using the synchronous update rule for MVNs

as opposed to the asynchronous rule used in the previous chapter. Synchronous MVNs are

seen as being less realistic than asynchronous MVNs [12] because of their assumption of

simultaneous updates which can lead to deterministic, infinite traces. Their dynamics can be

easier to analyse and this has made them very popular, while asynchronous MVNs can result

in too much behaviour which can make their dynamics more difficult to analyse.

In this chapter, we extend our work on asynchronous MVNs (Chapter 3) to synchronous

MVNs to continue to strengthen the tool support available for MVNs. In particular, we

provide a formal translation of synchronous MVNs to RL. The challenge here lies in the

ability to coordinate update steps to ensure that entities are using the current states of other

entities as inputs rather than next states. In order to handle this we make use of rewriting

strategies to implement a two phase update [41]. This includes first storing all entities’ next

states and then performing a coordinated state update. We implement this by making use of

rewriting strategies implemented using Maude’s metalevel capabilities [16, 41, 70].

We start by developing an RL model for synchronous MVNs. Similar to what we have

done in Chapter 3, we derive a set of rewrite rules from the MVN’s set of equations to

62 An RL Model for Synchronous MVNs

represent system transitions using our translation approach. However the difference here is

that we have two values for each entity in our module storing both current and next states.

We develop our model using Maude and implement within our model the next state function

associated with each entity and the required synchronous update rules. We make use of

rewriting strategies which are required for synchronous updates to apply a two phase state

update as follows: First, we define a metalevel operation that applies rewrite rules using

current entities’ states using synchronous rewrite rules. We then build on this by defining a

metalevel operation that resets the current state of each entity after applying the first phase,

and that gives us all we need to analyse our model using Maude.

We formally show that our translation process from a synchronous MVN to an RL model

is correct by proving the soundness and completeness of our translation process (similar to

the approach used in Section 3.3). In particular, this includes showing the soundness and

completeness of our translation approach which we introduced in Section 3.3.

We illustrate the techniques and the RL framework developed by presenting a case

study using an existing MVN model for the genetic regulatory network controlling the lysis–

lysogeny switch in the bacteriophage λ [25, 4]. The case study helps to motivate our RL

framework by illustrating the analysis techniques and tools when using RL and Maude. We

formally investigate the model using simple model checking based on the search command

and LTL model checking.

This chapter is organised as follows, In Section 4.2, We construct an RL model for a

synchronous MVN, and we derive a set of rewrite rules using a translation approach that

enables us to produce a formal representation of an MVN using RL. In Section 4.3 we prove

the correctness of our translation approach by showing it soundness and completeness. In

Section 4.4, we illustrate our RL framework by presenting a detailed case study based on

an existing MVN model for the genetic regulatory network controlling the lysis–lysogeny

switch in the bacteriophage λ . Finally in Section 4.5, we conclude the work presented in this

chapter and give a brief introduction to Chapter 5 where we evaluate the performance of the

techniques developed in this Chapter and Chapter 3.

4.2 Constructing an RL Model for a Synchronous MVN 63

4.2 Constructing an RL Model for a Synchronous MVN

Modelling the synchronous update semantics for an MVN in RL follows along similar lines

to the asynchronous approach in Section 3.2. However, it is more complex since we have to

ensure that all entities update their state simultaneously when moving from one global state

to another. For this reason we use a two phase update approach [38] for computing global

next states:

1) Compute and record the next state of each entity while preserving their current states.

2) Update the current states of all entities to reflect the recorded next states.

Fig. 4.1 The Two Phase Update for Synchronous MVNs.

4.2.1 Basic RL Model

To model the first phase of the update step we take the basic sort and function definitions

given in Section 3.2 and adapt the term representation of entities so that they contain a second

state component to represent the recorded next state. Given an MVN MV = (G,D,N,F)

we let RLS(MV) represent the RL model resulting from the construction outlined below for

the synchronous update semantics of MV . For each entity g ∈ G in the MVN we define

the function g : Dm × Dm → Entity, where D(g) = {0, . . . ,m}. The idea is that g(s1,s2)

represents that g is currently in state s1 and will have next state s2. We will use the convention

that before a synchronous update takes place each entity’s current and next state are the

same. For example, the global state 12 in the example MVN PL2 (see Section 2.3) would

64 An RL Model for Synchronous MVNs

be represented by the term CI(1,1) Cro(2,2). Thus the current and next states of an

entity will only differ when we are partly through the synchronous update step. Figure 4.2

illustrates our two phase update approach for state CI(1,1) Cro(2,2) transitioning to state

CI(0,0) Cro(1,1):

Fig. 4.2 The Two Phase Update for Synchronous semantics.

We formalize the next–state function associated with each entity using a similar approach

to that detailed in Section 3.2 for the asynchronous model. The difference here is that we

reformulate the resulting rewrite rules so that the current state is not changed at this stage

(Phase 1) and instead the next state of an entity is simply recorded. To illustrate this consider

the rewrite rule

rl [CI0] : CI(1) Cro(1) => CI(0) Cro(1) .

derived previously to represent an asynchronous update of CI from state 1 to 0 in PL2 (see

Section 2.3). This rule is replaced by the following one in the synchronous case:

rl [CI0] : CI(1,1) Cro(1,s2) => CI(1,0) Cro(1,s2) .

There are now two values for every entity, old and next value; if the two values match

it means that the value of the entity has not been updated yet. While if the two values are

different it means that the update step has already taken place. The use of variable s2 is

needed since the next state of Cro may or may not have been updated at this stage. Note

that this rule can only be applied if the current and next state of CI are the same. This is

4.2 Constructing an RL Model for a Synchronous MVN 65

important as it ensures the rule can only be applied at most once during a given update step

and links to our assumption above about the representation of global states. Figure 4.3 shows

our translation approach for the synchronous case applied to our running example PL2.

Fig. 4.3 The Translation Process: Equations to Rewrite Rules (Applied to PL2).

The full set of rewrite rules used to model the synchronous case for PL2 is presented

below:

rl [CI0] : CI(1,1) Cro(1,s2) => CI(1,0) Cro(1,s2) .

rl [CI0] : CI(1,1) Cro(2,s2) => CI(1,0) Cro(2,s2) .

rl [CI1] : CI(0,0) Cro(0,s2) => CI(0,1) Cro(0,s2) .

rl [Cro0] : CI(1,s1) Cro(1,1) => CI(1,s1) Cro(1,0) .

rl [Cro1] : CI(0,s1) Cro(0,0) => CI(0,s1) Cro(0,1) .

rl [Cro1] : Cro(2,2) => Cro(2,1) .

rl [Cro2] : CI(0,s1) Cro(1,1) => CI(0,s1) Cro(1,2) .

The idea is that rewriting using the resulting set of rewrite rules will update the next states

of entities and that when rewriting terminates the first phase of the two phase synchronous

update will be complete. To model the second, synchronization phase of the update we need

to replaces each current state by its recorded next state. In order to do this we define an

66 An RL Model for Synchronous MVNs

update function upDate:GState -> GState recursively as follows:

1) For each entity E, we have an update equation of the form (where s1 and s2 are state

variables corresponding to possible state at E):

eq upDate(E(s1,s2)) = E(s2,s2) .

2) We also have a recursive equation that calls upDate over network states and updates each

entity’s state (where GS1 and GS2 are variables of sort GState):

eq upDate(GS1 GS2) = upDate(GS1) upDate(GS2) .

For our running example PL2, these equations for CI and Cro would be written as follows

(where s1, s11 are state variables of sort D1, and s2 and s22 are state variables of sort D2):

eq upDate(CI(s1,s11)) = CI(s11,s11) .

eq upDate(Cro(s2,s22)) = Cro(s22,s22) .

eq upDate(GS1 GS2) = upDate(GS1) upDate(GS2) .

We now have all the functionality required to implement the two phase synchronous state

update and what is now needed is a way to combine them correctly. We do this by making use

of Maude’s metalevel capabilities [17] to define an operator to capture the required rewriting

strategy.

4.2.2 Using a Rewriting Strategy for Synchronous Updates

When working at the metalevel global states will be represented using Maude’s meta–notation

and are given the meta–type Term. For example, the metalevel term:

’__[’CI[’0.D1,’0.D1],’Cro[’1.D2,’1.D2]]

will be used to represent the global state term CI(0,0) Cro(1,1) (Note that Maude pro-

vides the operator upTerm to lift a term to the metalevel.) The rewriting strategy we require

4.2 Constructing an RL Model for a Synchronous MVN 67

for synchronous updates is defined in two parts (following the two phase update):

1) We define a metalevel operation phaseOne : Term -> Term which implements the

first phase of the global state update by applying the synchronous rewrite rules (in this case

assumed to be in module EXPL2) to a global state term T using metaRewrite (which takes

as arguments the metarepresentation of a module, the metarepresentation of a term T, and a

value b of the sort Bound, i.e., either a natural number or the constant unbounded):

ceq phaseOne(T) =

if Step? :: ResultPair then

getTerm(Step?)

else

T

fi

if Step? := metaRewrite(upModule(’EXPL2, false), T, unbounded) .

2) We then build on this by defining a metalevel operation next : Term -> Term which

applies phaseOne to a term and then resets the current state using the upDate function:

ceq next(T) =

if Step? :: ResultPair then

getTerm(Step?)

else

T1

fi

if T1 := phaseOne(T) /\

Step? := metaReduce(upModule(’EXPL2, false), ’upDate[T1]) .

Note that in the above we use the metalevel representation of upDate as indicated by the

back–quote and that metaReduce is used to apply its defining equations.

68 An RL Model for Synchronous MVNs

We can now use the metalevel operator next to simulate synchronous update steps. For

example, the synchronous step 12
Syn−−→ 01 in PL2 can be reproduced by the following Maude

command:

red next(’__[’CI[’1.D1,’1.D1],’Cro[’2.D2,’2.D2]]) .

which correctly returns the metalevel state term:

’__[’CI[’0.D1,’0.D1], ’Cro[’1.D2,’1.D2]].

The first phase of the two phase update can be produced by the following Maude com-

mand:

red phaseOne(’__[’CI[’1.D1,’1.D1],’Cro[’2.D2,’2.D2]]) .

which correctly returns the metalevel state term:

’__[’CI[’1.D1,’0.D1], ’Cro[’2.D2,’1.D2]].

We can now make use of the rewriting strategy next to produce traces (based on repeat-

edly applying a step using an equation run that is recursively defined on next):

op run : Nat Term -> Term .

eq run(0,T) = T .

eq run(s(N),T) = run(N,next(T)) .

The first equation returns the input term as a result, while the second equation is a

recursive call to next to produce a trace using N as the number of steps to be taken. We can

now make use of run to produce a trace as follows:

Maude> red run(3 , ’__[’CI[’1.D1,’1.D1],’Cro[’2.D2,’2.D2]]) .

reduce in PL2-META : run(3, ’__[’CI[’1.D1,’1.D1],’Cro[’2.D2,’2.D2]]) .

rewrites: 53 in 0ms cpu (2ms real) (68564 rewrites/second)

result GroundTerm: ’__[’CI[’0.D1,’0.D1],’Cro[’1.D2,’1.D2]]

4.3 RL Model Correctness 69

In order to use the full range of Maude’s analysis tools to investigate the behaviour of the

PL2 model, we have to ensure the rewriting strategy next we developed is invoked when

rewriting the model at the metalevel. This can be done by adding the following rewrite rule

(where T1 and T2 are variables of type Term):

rl [step] : ’__[T1,T2] => next(’__[T1,T2]) .

This approach allows next to be introduced after each synchronous update step and is

based on the fact that Maude always applies equations first before considering rewrite rules,

this is critical when it comes to searching and using LTL at the metalevel.

4.3 RL Model Correctness

We now show that the RL model proposed above for an MVN using the synchronous update

semantics is correct by following a similar approach to that used in Section 3.3 for the

asynchronous case. We begin by precisely defining which terms in our RL model represent

well–defined global states in the synchronous case. We define the set validGS(MV) of RL

terms of sort GState representing well–defined global states in an MVN MV by:

validGS(MV) = {g1(s1,s1) . . . gn(sn,sn) | s1 ∈ D(g1), . . . ,sn ∈ D(gn)}

The following result shows that the metalevel operator next preserves valid global state

terms. Note that to apply next we need to move to and from the metalevel representation of

state terms.

Theorem 7. For any GS1 ∈ validGS(MV), if GS1 =⇒ GS2 in one application of next

in RLS(MV) then GS2 ∈ validGS(MV).

Proof. Let GS1 = g1(s1,s1) . . . gn(sn,sn) ∈ validGS(MV), for some si ∈ D(gi), 1 ≤ i ≤ n.

Suppose that GS1 =⇒ GS2 in one application of next in RLS(MV). By the definition of

phaseOne and the synchronous rewrite rules in RLS(MV) we know that no term representing

70 An RL Model for Synchronous MVNs

the state of an entity is added or removed from a global state term. It follows that after

applying phaseOne to GS1 we must have a state term of the form g1(s1,s′1) . . . gn(sn,s′n),

for some s′i ∈ D(gi), 1 ≤ i ≤ n. Applying the reset function upDate to this state term will

result in the state term GS2 = g1(s′1,s
′
1) . . . gn(s′n,s

′
n) which is clearly a valid global state

term as defined above. 2

We define a global state term mapping φ : D(g1)×·· ·×D(gn)→ validGS(MV) by

φ(s1 . . .sn) = g1(s1,s1) . . . gn(sn,sn),

for any states si ∈ D(gi), 1 ≤ i ≤ n.

The following results show that RLS(MV) is a correct (i.e. sound and complete) model of

MV under the synchronous update semantics.

GS1 GS2

S1 S2

-
next

-
Syn

6
φ−1 6

φ−1

GS1 GS2

S1 S2

-
next

-
Syn

?
φ

?
φ

(a) Soundness. (b) Completeness.

Fig. 4.4 Correctness Requirements for our Translation Approach.

Theorem 8. (Soundness) Let GS1,GS2 ∈ validGS(MV) be any valid global state terms

such that GS1 =⇒ GS2 in one application of next in RLS(MV). Then φ−1(GS1)
Syn−−→

φ−1(GS2).

Proof. Let GS1 = g1(s1,s1) . . . gn(sn,sn), GS2 = g1(s′1,s
′
1) . . . gn(s′n,s

′
n) ∈ validGS(MV),

for some si,s′i ∈ D(gi), 1 ≤ i ≤ n. Suppose that GS1 =⇒ GS2 in one application of next in

RLS(MV). Then by the definition of φ we need to show that s1 . . .sn
Syn−−→ s′1 . . .s

′
n.

For each i = 1, . . . ,n there are two possible cases to consider:

Case 1: Suppose si ̸= s′i. Then a rewrite rule with the following form must have been

4.3 RL Model Correctness 71

applied:

gE1(sE1,v1) . . . gEm(sEm,vm) gi(si,si) =⇒ gE1(sE1,v1) . . . gEm(sEm,vm) gi(si,s′i)

for some m ∈ N, distinct entities gE1, . . . ,gEm ∈ G and state variables v1, . . . ,vm. By the defi-

nition of RLS(MV) this rule was derived from an equation of the form gi{s′i}= P1 + · · ·+Pk,

for some k > 0 and product terms Pj, j = 1, . . . ,k. It is therefore clear that the right hand side

of the equation must be true in the global state s1 . . .sn and so by definition the state of entity

gi must be updated to s′i after a synchronous update is applied.

Case 2: Suppose si = s′i. Then the state of entity gi is not changed meaning that none

of the rewrite rules updating gi were applicable in GS1. Since by the definition the rewrite

rules of RLS(MV) are derived from the next state equations of MV this implies that the only

equation applicable for gi was of the form gi{si}= P1 + · · ·+Pk. Therefore, it follows that

the state of gi remains unchanged after a synchronous update step is applied to s1 . . .sn. 2

Theorem 9. (Completeness) Let S1,S2 ∈ D(g1)×·· ·×D(gn) be global states in MV such

that S1
Syn−−→ S2. Then φ(S1) =⇒ φ(S2) in one application of next in RLS(MV).

Proof. Let S1 = s1 . . .sn, S2 = s′1 . . .s
′
n ∈ D(g1)× ·· · ×D(gn) and suppose that the syn-

chronous update step s1 . . .sn
Syn−−→ s′1 . . .s

′
n can occur. Then for each i = 1, . . . ,n there are two

cases to consider:

Case 1: Suppose si ̸= s′i. Then the state of gi changes from si to s′i during the syn-

chronous step and so the next–state equation applicable for gi must have been of the form

g{s′i}= P1+ · · ·+Pk, for some k > 0 and product terms Pj, j = 1, . . . ,k. In particular, at least

one of the product terms, say Pj, for some j ∈ {1, . . . ,k}, must be true. Then by definition of

RLS(MV) there must be a rewrite rule

gE1(sE1 ,v1) . . . gEm(sEm,vm) gi(si,si) =⇒ gE1(sE1,v1) . . . gEm(sEm,vm) gi(si,s′i)

72 An RL Model for Synchronous MVNs

that was derived from the equation above based on Pj. Clearly, this rewrite rule will be

applicable in the global state term φ(S1) and so by definition of next the entity term gi(si,si)

must be updated to gi(s′i,s
′
i) as required.

Case 2: Suppose si = s′i. Then the state of entity gi is not changed in the update step meaning

that the only next–state equation applicable for gi was of the form gi{si} = P1 + · · ·+Pk.

Therefore, it follows by definition that no rewrite rule exists in RLS(MV) that can be applied

to the global state term φ(S1) and so the entity term gi(si,si) remains unchanged from φ(S1)

to φ(S2) as required. 2

4.4 Case Study

In this section we build on the results of the previous section by developing an RL model for

synchronous MVNs. The challenge here is to be able to coordinate update steps and we make

use of Maude’s metalevel capabilities to achieve this. We again show that the resulting model

construction is formally correct and illustrate the developed RL framework for synchronous

MVNs with a case study. We illustrate the RL framework developed above by presenting a

case study In this section we illustrate the RL framework developed for synchronous MVNs

by considering an existing MVN model for the genetic regulatory network controlling the

lysis–lysogeny switch in the bacteriophage λ [25, 4]. This example extends the simple two

entity model introduced in Section 2.3 to a more detailed four entity model [25].

The temperate bacteriophage λ is a virus infects the bacteria Escherichia coli [3, 31].

Interestingly, after infecting a host cell λ makes a decision based on environmental factors

whether to enter the lytic cycle and lysogenic cycles [3]. In most cases, λ enters the lytic

cycle, where it generates as many new viral particles as the host cell resources allow before

producing an enzyme to lyse the cell wall, releasing the new phage into the environment.

Alternatively, the λ DNA may integrate into the host DNA and enter the lysogenic cycle.

Importantly, genes expressed in the λ DNA synthesize a repressor which blocks expression

4.4 Case Study 73

of other phage genes including those involved in its own excision. As such, the host cell

establishes an immunity to external infection from other phages, and the phage λ is able to

lie dormant, replicating with each subsequent cell division of the host.

4.4.1 The Model

An MVN PL4 of the resulting regulatory network underlying the lysis–lysogeny switch is

presented in Figure 4.5. Note that a truth table entry that has multiple values for an entity

means that the output is the same for all such values. For example: when CI is 0, Cro can be

either 0 or 1 for N to become 1.

3CroCI

CII N

2

2

2

3

2 CI Cro [N]
0 0,1 1
0 2,3 0

1,2 0,1,2,3 0

CI Cro CII [CI]
0,1 1,2,3 0 0
0 0,1,2,3 1 1
0 0 0 1
1 0,1,2,3 1 2
2 0,1,2,3 0,1 2
1 0 0 2

CI Cro [Cro]
0,1 0 1
0,1 1 2
0,1 2 3

0,1,2 3 2
2 0,1 0
2 2 1

CI Cro N [CII]
0,1,2 0,1,2,3 0 0
0,1 0,1,2 1 1
0 3 1 0
1 3 1 0
2 0,1,2,3 1 0

Fig. 4.5 An extended MVN model PL4 of the control mechanism for the lysis-lysogeny
switch in bacteriophage λ (based on [25]).

This MVN extends PL2 [25] and contains four entities: N, with D(N) = {0,1}, which

promotes CII expression; CII, with D(CII) = {0,1}, which activates CI; CI, with D(CI) =

{0, . . . ,2}, a repressor which is expressed in the lysogenic cycle; and Cro, with D(Cro) =

{0, . . . ,3}, a repressor present in the lytic cycle. This MVN has a global state space consisting

of 48 states and has two attractor cycles: 0003,0002,0003, . . . which corresponds to the lytic

cycle; and 0020,0020, . . . which corresponds to the lysogenic cycle.

74 An RL Model for Synchronous MVNs

4.4.2 Constructing the RL Model

Applying our RL translation approach detailed above we begin by deriving the following

simplified equations for PL4 from the truth tables given in Figure 4.5:

N{0}= CI{0}Cro{2,3} + CI{1,2}

N{1}= CI{0}Cro{0,1}

CII{0}= N{0}+Cro{3}+CI{2}

CII{1}= N{1}CI{0,1}Cro{0,1,2}

CI{0}= CII{0}CI{0,1}Cro{1,2,3}

CI{1}= CII{1}CI{0} + CII{0}CI{0}Cro{0}

CI{2}= CII{1}CI{1} + CII{0,1}CI{2} + CII{0}CI{1}Cro{0}

Cro{0}= CI{2}Cro{0,1}

Cro{1}= CI{0,1}Cro{0} + CI{2}Cro{2}

Cro{2}= CI{0,1}Cro{1} + Cro{3}

Cro{3}= CI{0,1}Cro{2}

From these equations we are then able to derive the rewrite rules required in RLS(PL4)

to model the synchronous behaviour of PL4. To illustrate further this approach we present

below the set of rewrite rules derived for this network’s entities:

To illustrate further this approach we present below the rewrite rules derived from the

previous set of equations:

rl [N0] : N(1,1) CI(0,s2) Cro(2,s3) => N(1,0) CI(0,s2) Cro(2,s3) .

rl [N0] : N(1,1) CI(0,s2) Cro(3,s3) => N(1,0) CI(0,s2) Cro(3,s3) .

rl [N0] : N(1,1) CI(1,s2) => N(1,0) CI(1,s2) .

rl [N0] : N(1,1) CI(2,s2) => N(1,0) CI(2,s2) .

rl [N1] : N(0,0) CI(0,s2) Cro(0,s3) => N(0,1) CI(0,s2) Cro(0,s3) .

rl [N1] : N(0,0) CI(0,s2) Cro(1,s3) => N(0,1) CI(0,s2) Cro(1,s3) .

4.4 Case Study 75

rl [CII0] : N(0,s0) CII(1,1) => N(0,s0) CII(1,0) .

rl [CII0] : CII(1,1) Cro(3,s3) => CII(1,0) Cro(3,s3) .

rl [CII0] : CII(1,1) CI(2,s2) => CII(1,0) CI(2,s2) .

rl [CII1] : N(1,s0) CII(0,0) CI(0,s2) Cro(0,s3) =>

N(1,s0) CII(0,1) CI(0,s2) Cro(0,s3) .

rl [CII1] : N(1,s0) CII(0,0) CI(0,s2) Cro(1,s3) =>

N(1,s0) CII(0,1) CI(0,s2) Cro(1,s3) .

rl [CII1] : N(1,s0) CII(0,0) CI(0,s2) Cro(2,s3) =>

N(1,s0) CII(0,1) CI(0,s2) Cro(2,s3) .

rl [CII1] : N(1,s0) CII(0,0) CI(1,s2) Cro(0,s3) =>

N(1,s0) CII(0,1) CI(1,s2) Cro(0,s3) .

rl [CII1] : N(1,s0) CII(0,0) CI(1,s2) Cro(1,s3) =>

N(1,s0) CII(0,1) CI(1,s2) Cro(1,s3) .

rl [CII1] : N(1,s0) CII(0,0) CI(1,s2) Cro(2,s3) =>

N(1,s0) CII(0,1) CI(1,s2) Cro(2,s3) .

rl [CI0] : CII(0,s1) CI(1,1) Cro(1,S3) => CII(0,s1) CI(1,0) Cro(1,S3) .

rl [CI0] : CII(0,s1) CI(1,1) Cro(2,S3) => CII(0,s1) CI(1,0) Cro(2,S3) .

rl [CI0] : CII(0,s1) CI(1,1) Cro(3,S3) => CII(0,s1) CI(1,0) Cro(3,S3) .

rl [CI1] : CII(1,s1) CI(0,0) => CII(1,s1) CI(0,1) .

rl [CI1] : CII(0,s1) CI(0,0) Cro(0,s3) => CII(0,s1) CI(0,1) Cro(0,s3) .

rl [CI2] : CII(1,s1) CI(1,1) => CII(1,s1) CI(1,2) .

rl [CI2] : CII(0,s1) CI(1,1) Cro(0,s3) => CII(0,s1) CI(1,2) Cro(0,s3) .

rl [Cro0] : CI(2,s2) Cro(1,1) => CI(2,s2) Cro(1,0) .

rl [Cro1] : CI(0,s2) Cro(0,0) => CI(0,s2) Cro(0,1) .

rl [Cro1] : CI(1,s2) Cro(0,0) => CI(1,s2) Cro(0,1) .

rl [Cro1] : CI(2,s2) Cro(2,2) => CI(2,s2) Cro(2,1) .

76 An RL Model for Synchronous MVNs

rl [Cro2] : CI(0,s2) Cro(1,1) => CI(0,s2) Cro(1,2) .

rl [Cro2] : CI(1,s2) Cro(1,1) => CI(1,s2) Cro(1,2) .

rl [Cro2] : Cro(3,3) => Cro(3,2) .

rl [Cro3] : CI(0,s2) Cro(2,2) => CI(0,s2) Cro(2,3) .

rl [Cro3] : CI(1,s2) Cro(2,2) => CI(1,s2) Cro(2,3) .

Note that for some equation parts there was more than a single rewrite rule being produced.

For example: there was a single equation for CII{1}, but with the value of CII being missing,

CI having two possible values and Cro having 3, that equation ended up producing 6 rewrite

rules to cover all possible combinations of those entities’ values.

4.4.3 Analysis in Maude

The above model can now be formally investigated using the range of powerful analysis tools

provided by Maude. We start with a simple rewrite command for state 1023:

Maude> rew N(1,1) CII(0,0) CI(2,2) Cro(3,3) .

rewrite in SWITCH : N(1, 1) CII(0, 0) CI(2, 2) Cro(3, 3) .

rewrites: 2 in 0ms cpu (0ms real) (29850 rewrites/second)

result GState: N(1, 0) CII(0, 0) CI(2, 2) Cro(3, 2)

Maude performs 2 rewrites returning the state 0022 as a result. We can also instruct

Maude to perform a certain number of rewrites. For example: let’s say we want Maude to

rewrite the state 1103 three times, we can do that using the following instruction:

Maude> rew[3] N(1,1) CII(1,1) CI(0,0) Cro(3,3) .

rewrite [3] in SWITCH : N(1, 1) CII(1, 1) CI(0, 0) Cro(3, 3) .

rewrites: 3 in 0ms cpu (0ms real) (1500000 rewrites/second)

result GState: N(1, 0) CII(1, 0) CI(0, 1) Cro(3, 3)

Maude performs the three rewrites and returns the resulting state 0013.

We now introduce some searches at the metalevel similar to those illustrated in Section

3.4. For example, the following search checks whether CI and CII can be simultaneously in

state 1 starting from initial state 0000:

4.4 Case Study 77

search ’__[’N[’0.D1,’0.D1],’CII[’0.D1,’0.D1],’CI[’0.D2,’0.D2],

’Cro[’0.D3,’0.D3]] =>+ ’__[’CI[’1.D2,’1.D2],’CII[’1.D1,’1.D1],

T1:Term,T2:Term] .

Maude returns that this search has no solutions showing that the property doesn’t hold. A

similar search using initial state 1001 does hold and this indicates there is one solution that

results in state 0113. Using the same starting state we can check whether Cro ever reaches

state 3 as follows:

search ’__[’N[’0.D1,’0.D1],’CII[’0.D1,’0.D1],’CI[’0.D2,’0.D2],

’Cro[’0.D3,’0.D3]] =>+ ’__[T1:Term,T2:Term,’Cro[’3.D3,’3.D3],T3:Term] .

Maude returns two solutions in states 3 and 5 of the trace:

Solution 1 (state 3)

states: 4 rewrites: 70 in 8ms cpu (9ms real) (7961 rewrites/second)

T1 --> ’CI[’1.D2,’1.D2]

T2 --> ’CII[’0.D1,’0.D1]

T3 --> ’N[’0.D1,’0.D1]

Solution 2 (state 5)

states: 6 rewrites: 113 in 11ms cpu (11ms real) (10091 rewrites/second)

T1 --> ’CI[’0.D2,’0.D2]

T2 --> ’CII[’0.D1,’0.D1]

T3 --> ’N[’0.D1,’0.D1]

No more solutions.

states: 6 rewrites: 134 in 12ms cpu (13ms real) (10940 rewrites/second)

We can check the trace of the search using the command show path 5 and Maude would

return the states visited during the search:

78 An RL Model for Synchronous MVNs

Maude> show path 5 .

state 0, GroundTerm: ’__[’N[’0.D1,’0.D1],’CII[’0.D1,’0.D1],

’CI[’0.D2,’0.D2],’Cro[’0.D3,’0.D3]]===[rl ’__[T1,T2,T3,T4] =>

next(’__[T1,T2,T3,T4]) [label step] .]===>

state 1, GroundTerm: ’__[’CI[’1.D2,’1.D2],’CII[’0.D1,’0.D1],

’Cro[’1.D3,’1.D3],’N[’1.D1,’1.D1]] ===[rl ’__[T1,T2,T3,T4] =>

next(’__[T1,T2,T3,T4]) [label step] .]===>

state 2, GroundTerm: ’__[’CI[’0.D2,’0.D2],’CII[’1.D1,’1.D1],

’Cro[’2.D3,’2.D3],’N[’0.D1,’0.D1]]===[rl ’__[T1,T2,T3,T4] =>

next(’__[T1,T2,T3,T4]) [label step] .]===>

state 3, GroundTerm: ’__[’CI[’1.D2,’1.D2],’CII[’0.D1,’0.D1],

’Cro[’3.D3,’3.D3],’N[’0.D1,’0.D1]]===[rl ’__[T1,T2,T3,T4] =>

next(’__[T1,T2,T3,T4]) [label step] .]===>

state 4, GroundTerm: ’__[’CI[’0.D2,’0.D2] ,’CII[’0.D1,’0.D1],

’Cro[’2.D3,’2.D3],’N[’0.D1,’0.D1]]===[rl ’__[T1,T2,T3,T4] =>

next(’__[T1,T2,T3,T4]) [label step] .]===>

state 5, GroundTerm: ’__[’CI[’0.D2,’0.D2],’CII[’0.D1,’0.D1],

’Cro[’3.D3,’3.D3],’N[’0.D1,’0.D1]]

We can check if a state is reachable from a certain starting state. For example: we can

check if the state 0020 is reachable starting from state 1000:

search ’__[’N[’1.D1,’1.D1],’CII[’0.D1,’0.D1],’CI[’0.D2,’0.D2],

’Cro[’0.D3,’0.D3]] =>+ ’__[’CI[’2.D2,’2.D2],’CII[’0.D1,’0.D1],

’Cro[’0.D3,’0.D3],’N[’0.D1,’0.D1]] .

Maude returns a single solution in state 4:

state 4, GroundTerm: ’__[’CI[’2.D2,’2.D2],’CII[’0.D1,’0.D1],

’Cro[’0.D3,’0.D3],’N[’0.D1,’0.D1]]

Identifying the point attractors for a model is an important part of the analysis. This

was straightforward in the asynchronous case since point attractors represented deadlocked

4.4 Case Study 79

global states. However, in the synchronous case all traces are infinite and so additional

work is needed. One way to address this is to introduce a Boolean operator repState at

the metalevel that indicates if a global state remains unchanged after a synchronous update

step. (Note that this again illustrates the expressiveness provided by Maude’s metalevel

capabilities). This can be defined equationally as follows:

op same : Term Term -> Bool .

eq same(’__[T1,T2,T3,T4],’__[T1,T2,T3,T4]) = true .

eq same(T1,T2) = false [owise] .

op repState : Term -> Bool .

eq repState(T) = same(T,next(T)) .

where same is an equationally defined function that returns true only if two metalevel state

terms contain the same entities in the same states. We can make use of this function We can

then use this together with the search command to find point attractors. For example, the

following search shows that state 1010 will eventually enter the point attractor 0020,0020, . . .

(note the use of such that to place a condition on the result of the search).

search ’__[’N[’1.D1,’1.D1],’CII[’0.D1,’0.D1],’CI[’1.D2,’1.D2],

’Cro[’0.D3,’0.D3]] =>+ T:Term such that repState(T) .

Performing the same search again starting from state results in no solution as the trace

does not end in a point attractor:

search ’__[’N[’0.D1,’0.D1],’CII[’0.D1,’0.D1],’CI[’0.D2,’0.D2],

’Cro[’0.D3,’0.D3]] =>+ T:Term such that repState(T) .

This returns no solution which is correct.

4.4.4 LTL Model Checking

The above examples give an initial idea of the wide range of analysis checks possible of our

RL model. Further analysis of PL4 can be done by again utilizing the LTL model checker

80 An RL Model for Synchronous MVNs

provided by Maude. This can be applied in a similar way to that illustrated in Section 3.4.4

but in this case it will work at the metalevel.

To illustrate this, consider checking the hypothesis that when CI becomes permanently

inactive then Cro must continually be able to reach full activation. This can be checked using

the following model checking instruction:

red modelCheck(’__[’CI[’1.D2,’1.D2],’CII[’1.D1,’1.D1],’Cro[’2.D3,’2.D3],

’N[’0.D1,’0.D1]], <> [] atCI(’0) -> []<> atCro(’3)) .

This holds for the given initial state 0112, and further tests indicate this is a potential invariant.

We can check the hypothesis that starting with Cro at full activation then at some point

ending up with CI always at state 1:

Maude> red modelCheck(’__[’CI[’0.D2,’0.D2],’CII[’0.D1,’0.D1],

’Cro[’3.D3,’3.D3],’N[’0.D1,’0.D1]], [] (<> [] atCI(1))) .

reduce in SWITCH-CHECK : modelCheck(’__[’CI[’0.D2,’0.D2]

,’CII[’0.D1,’0.D1],’Cro[’3.D3,’3.D3],’N[’0.D1,’0.D1]], []<> []atCI(1)) .

rewrites: 55 in 3ms cpu (5ms real) (16917 rewrites/second)

result ModelCheckResult: counterexample(nil, {’__[’CI[’0.D2,’0.D2],

’CII[’0.D1,’0.D1],’Cro[’3.D3,’3.D3],’N[’0.D1,’0.D1]],’step}

{’__[’CI[’0.D2,’0.D2],’CII[’0.D1,’0.D1],’Cro[’2.D3,’2.D3],

’N[’0.D1,’0.D1]],’step})

Maude returns a counter example showing that the property does not hold for starting

state 0030. The counter example is a trace that starts from the initial state 0030 and stops

when the hypothesis no longer holds (in this case, the trace stops at state 0020 with Cro

going back to state 2).

We can check the hypothesis that if we eventually have CI always at 0, then its always

possible to have Cro at 3 (Maude returns true in this case):

Maude> red modelCheck(’__[’CI[’1.D2,’1.D2],’CII[’1.D1,’1.D1],

’Cro[’2.D3,’2.D3],’N[’0.D1,’0.D1]], <> [] atCI(’0) -> []<> atCro(’3)) .

4.4 Case Study 81

reduce in SWITCH-CHECK : modelCheck(’__[’CI[’1.D2,’1.D2],

’CII[’1.D1,’1.D1],’Cro[’2.D3,’2.D3],’N[’0.D1,’0.D1]], <> []atCI(’0) ->

[]<> atCro(’3)) .

rewrites: 135 in 9ms cpu (10ms real) (14475 rewrites/second)

result Bool: true

We can check whether Cro can always eventually be at state 3 starting from state 0000:

Maude> red modelCheck(’__[’CI[’0.D2,’0.D2],’CII[’0.D1,’0.D1],

’Cro[’0.D3,’0.D3],’N[’0.D1,’0.D1]], []<> atCro(’3)) .

reduce in SWITCH-CHECK : modelCheck(’__[’CI[’0.D2,’0.D2],

’CII[’0.D1,’0.D1],’Cro[’0.D3,’0.D3],’N[’0.D1,’0.D1]],

[]<> atCro(’3)) .

rewrites: 147 in 13ms cpu (14ms real) (10925 rewrites/second)

result Bool: true

We can further extend our analysis capabilities by developing our own metalevel operators

which can be used to define interesting atomic propositions. As an example, consider using

the metalevel Boolean operator repState to define an atomic proposition rept : -> Prop

as follows:

eq T |= rept = repState(T) .

where T is a variable of type Term. This atomic proposition can the be used to form interesting

LTL formulas for model checking. For example, suppose we want to check whether N and

CII becoming simultaneously active is a predictor for a point attractor. The following model

checking instruction shows the property is true for initial state 1000.

red modelCheck(’__[’CI[’0.D2,’0.D2],’CII[’0.D1,’0.D1],

’Cro[’0.D3,’0.D3],’N[’0.D1,’0.D1]],

(<> (atN(’1) /\ atCII(’1))) -> <> rept) .

Checking a further sample of initial states shows that the property is potentially an

invariant of the model.

82 An RL Model for Synchronous MVNs

4.5 Conclusions

Following on chapter 3, in this chapter we aimed to strengthen the tool support available for

MVNs by linking synchronous MVNs to RL and so enabling the application of the support

tools available for RL. The challenge here lied in the ability to coordinate update steps,

we made use of rewriting strategies implemented using Maude’s metalevel capabilities to

achieve this using a two phase update protocol. We define a rewriting strategy to apply a

system synchronous update step which is defined in two parts: a metalevel operation applying

the synchronous rewrite rules,then a metalevel operation that resets the current state after

applying the first phase. We developed an RL model for synchronous MVNs and within

that we represented the next state function associated with each entity and the associated

synchronous update rules.

We provided a formal correctness argument for this translation approach where we

formally showed that our translation from an asynchronous MVN to an RL model given in

the previous section is correct. That was done by showing and proving the soundness and

completeness of our translation process. To do this we show that: 1) (soundness) each global

state transition possible in our RL model represents a corresponding asynchronous update in

the original MVN; and 2) (completeness) every asynchronous update possible in an MVN is

specified in our RL model.

We illustrated the RL framework developed by presenting a case study based on an

existing MVN model for the genetic regulatory network controlling the lysis–lysogeny

switch in the bacteriophage λ [25, 4]. The case study helped motivate our RL framework by

illustrating the analysis techniques and tools when using RL and the tool Maude. We formally

investigated the model using a range of powerful analysis tools provided by Maude, which

was one of the motivations for choosing to use RL. We started our analysis using basic rewrite

commands before we moved onto making use of the search command and performed some

basic model checking for certain properties in Section 4.4.3. We then extended our analysis

by utilizing the LTL model checker provided by Maude in Section 4.4.4 where we showed

how that is done at the metalevel in synchronous MVNs and how certain hypothesis can be

4.5 Conclusions 83

proved, and we showed how Maude provides us with a counter example for hypothesis that

do not hold.

A prototype tool has been developed that given an XML description of an MVN will

automatically translate a model into an RL model. We can then use that module to perform

some analysis using Maude and LTL. In order to illustrate the practical application of tools

and techniques developed in this chapter, we carry out a larger case study in Chapter 6

by introducing models of sizes 13 and 22 using a scalable test model based on the gene

regulatory network of the segment polarity gene family which is at the basis of Drosophila

embryonic development.

Again, one important aspect is the performance of the techniques developed in this

chapter. We use a scalable test model to investigate that in Chapter 5 where we start with a

multi-valued network of five entities. Using the developed techniques and tools we start by

presenting an asynchronous version of a scalable test model, we perform a range of analysis

using the Maude’s search command and the LTL model checker. We then introduce the

synchronous version of the model alongside an analysis of its behaviour. We perform some

LTL model checking before we scale the model in increments of five and test the performance

of our techniques and the RL framework before we provide some analysis summary tables.

Chapter 5

Performance Evaluation

5.1 Introduction

The case studies presented in Section 3.4.1 and Section 4.4 provide a good illustration of

the practical application of the RL techniques we have developed. However, they provide

little indication of how the developed RL approach would scale when applied to larger MVN

models and what impact the well–known state space explosion problem would have. In this

section we set out to address this by investigating how the our RL framework performs as the

MVN size (i.e. number of entities) increases. The approach we take is to define an artificial,

scalable test MVN and then use this to produce an incremental set of test models. Note

that the ease with which this scalable test model can be implemented in our RL framework

illustrates how versatile it is.

We start by introducing our performance test model using a basic model ABCDI which

consists four Boolean entities A,C,D and I and one multi-valued entity B with a state space

of size 3 (0, 1 or 2). We then give a brief analysis of the ABCDI model behaviour. We then

explain the approach we took in scaling the model and discuss our testing approach in detail

and give a summary of the different model checking tests applied to test the performance

of our RL framework. Using the developed techniques and tool support we present both

asynchronous and synchronous versions of the basic model of five entities and perform a

range of analysis using our testing approach where we start by performing three test searches

86 Performance Evaluation

as well as two LTL model checking commands using LTL formulas. We then extend our

model in increments of 5 entities and perform the same set of test searches and LTL formulas

to test the performance of our RL framework as the size of our model increases. We provide

summary tables for the different sizes of our scalable test model showing the results of

our test searches as well as introduce two graphs summarizing the performance of our RL

framework with this model in terms of time and the number of rewrites performed.

This chapter is organised as follows, in Section 5.2 we present our basic test model

of 5 entities and explain the approach we took scaling the model. We then introduce our

testing approach in Section 5.3. We introduce the asynchronous version of our model in

Section 5.4 and produce a set of test models in increments of 5 entities. We test each model

using Maude’s model checking tools (both search command and the LTL model checker). In

Section 5.5 we introduce the synchronous version of our model and analyse it using a similar

approach to the asynchronous version. Finally, we conclude the chapter by providing some

reflection on what was done in Section 5.6.

5.2 Performance Test Model

In order to allow a range of model sizes to be considered we define an artificial, scalable

MVN model ABCDI, that is a multi-valued network of 5 entities which contains four Boolean

entities A,C,D and I and one multi-valued entity B with a state space of size 3 (0, 1 or 2).

Note that the entity I can be viewed as simply an input entity that remains in its initial state

and is used to introduce different behaviour in a block when connecting to a neighbouring

block of entities. The idea is that ABCDI can be used as a basic building block and instances

of these basic blocks can be composed to make models of size 10, 15, 20, 25, etc. The

basic building block MVN ABCDI is presented in Figure 5.1 with the following equations

representing the behaviour of the model:

5.2 Performance Test Model 87

A D

B C

I

Fig. 5.1 An MVN model ABCDI which is used as a basic building block to construct models
of increasing size.

A{0} = B{0}D{0} + B{1,2}

A{1} = B{0}D{1}

B{0} = A{0}C{0}

B{1} = A{0}C{1} + A{1}C{0}

B{2} = A{1}C{1}

C{0} = I{1}

C{1} = I{0}

D{0} = I{0} + B{2}

D{1} = B{0,1}I{1}

I{0} = I{0}

I{1} = I{1}

This model has a state space of 48 global states and 2 attractors, a point attractor in state

01100, and one of size 4: 00011− > 10011− > 11011− > 01011− > 00011. The state

graph for the basic ABCDI model of 5 entities is given in Figure 5.2.

88 Performance Evaluation

To allow multiple instances of this model to be easily composed we represent each entity

as a family of entities. This is straightforward to do in RL by associating a natural number

parameter to each entity as the following Maude excerpt shows for the asynchronous case:

ops A C D I : Nat D1 -> Entity .

op B : Nat D2 -> Entity .

We can then have general rewrite rules for the MVN as the following rules modelling the

asynchronous behaviour of entity A illustrate (where i is the index of the block):

rl [A0] : A(i,1) B(i,0) D(i,0) => A(i,0) B(i,0) D(i,0) .

rl [A0] : A(i,1) B(i,1) => A(i,0) B(i,1) .

rl [A0] : A(i,1) B(i,2) => A(i,0) B(i,2) .

rl [A1] : A(i,0) B(i,0) D(i,1) => A(i,1) B(i,0) D(i,1) .

The full list of rewrite rules for both asynchronous and synchronous version of this

scalable model is given in Sections 5.4 and 5.5, respectively.

To compose instances of ABCDI together we simply link them by allowing one instance

to influence the state of entity I in the other instance. For example, to create a model of

size 10 we could compose two instances, referred to as instance 1 and 2, by having entity

A in instance 2 activating entity I in instance 1. This is straightforward to do by adding the

following rules for I in instance 1:

rl [I10]: I(1,1) A(2,0) => I(1,0) A(2,0) .

rl [I11]: I(1,0) A(2,1) => I(1,1) A(2,1) .

Using the test model generation approach presented above we were able to create a series

of MVN test models in incremental steps of 5 entities as depicted in Figure 5.3. For every

new test model we add, we connect an entity of the new model to the entity I in the previous

test model. We alternate between activation and inhibition for the rewrite rules of I to add

complexity and introduce different behaviours as the model scales. For example: when

adding the second test model, I(1) takes the value of A(2) as an input, and when we add

the third test model, I(2) takes the value of B(3) as an input and so on. We now give the

rewrite rules for the first four instances of I as follows:

5.2 Performance Test Model 89

Fig. 5.2 The State Graph of MVN model ABCDI which is used as a basic building block to
construct models of increasing size.

rl [I10]: I(1,1) A(2,0) => I(1,0) A(2,0) .

rl [I11]: I(1,0) A(2,1) => I(1,1) A(2,1) .

rl [I20]: I(2,1) B(3,1) => I(2,0) B(3,1) .

rl [I21]: I(2,0) B(3,0) => I(2,1) B(3,0) .

rl [I30]: I(3,1) C(4,0) => I(3,0) C(4,0) .

rl [I31]: I(3,0) C(4,1) => I(3,1) C(4,1) .

90 Performance Evaluation

rl [I40]: I(4,1) D(5,1) => I(4,0) D(5,1) .

rl [I41]: I(4,0) D(5,0) => I(4,1) D(5,0) .

A

I

C

B

D

1

A

I

C

B

D

2

A

I

C

B

D

3

A

I

C

B

D

4

A

I

C

B

D

5

Fig. 5.3 A pictorial representation of the five test MVN models constructed incrementally
from the basic building block MVN given in Figure 5.1. Note that the arcs ending in arrows
represent activation whereas the arcs ending in bars represent inhibition.

5.3 Testing Approach

The scalable ABCDI model (both the synchronous and asynchronous versions) was used to

test the performance of our RL framework. The two key performance measures used were

the number of explored states and the command run time. Our testing approach consisted of

using Maude’s search command to perform three search tests and two LTL model checking

commands using predicates. For each test model we used three simple types of test searches

to see how the model performed:

1) Search for a point attractor.

2) Search for a state in which all input places become inactive.

3) Check whether the entities could all go from being active to being inactive.

We also used LTL model checking to check the following properties:

1) Starting off with the first instance of B at full activation then at some point ending up with

the last instance of A always at state 1.

5.4 Asynchronous Model Performance Evaluation 91

2) The last instance of C can always eventually be at state 1 starting from an initial state

where all instances of A are at state 0.

We use these test searches to compare the performance results for our scalable test model

based on time in milliseconds and the number of rewrites performed. The tests were carried

out using Maude on a computer with a 2.7 GHz Intel Core i5 processor and containing 16

GB 1333 MHz DDR3 memory.

5.4 Asynchronous Model Performance Evaluation

We start by considering the asynchronous version of the basic ABCDI model of size 5. We

present the full set of rewrite rules for the asynchronous version of our scalable test model as

follows:

rl [Ai0]: A(i,1)B(i,1) => A(i,0)B(i,1) .

rl [Ai0]: A(i,1)B(i,1)D(i,1) => A(i,0)B(i,1)D(i,1) .

rl [Ai0]: A(i,1)B(i,2) => A(i,0)B(i,2) .

rl [Ai1]: A(i,0)B(i,0)D(i,1) => A(i,1)B(i,0)D(i,1) .

rl [Bi0]: B(i,1)A(i,0)C(i,0) => B(i,0)A(i,0)C(i,0) .

rl [Bi0]: B(i,2)A(i,0)C(i,0) => B(i,0)A(i,0)C(i,0) .

rl [Bi1]: B(i,0)A(i,0)C(i,1) => B(i,1)A(i,0)C(i,1) .

rl [Bi1]: B(i,0)A(i,1)C(i,0) => B(i,1)A(i,1)C(i,0) .

rl [Bi2]: B(i,1)A(i,1)C(i,1) => B(i,2)A(i,1)C(i,1) .

rl [Ci0]: C(i,1)I(i,1) => C(i,0)I(i,1) .

rl [Ci1]: C(i,0)I(i,0) => C(i,1)I(i,0) .

rl [Di0]: D(i,1)B(i,2) => D(i,0)B(i,2) .

rl [Di0]: D(i,1)I(i,0) => D(i,0)I(i,0) .

92 Performance Evaluation

rl [Di1]: D(i,0)B(i,0)I(i,1) => D(i,1)B(i,0)I(i,1) .

rl [Di1]: D(i,0)B(i,1)I(i,1) => D(i,1)B(i,1)I(i,1) .

With these rewrite rules we now have the set of rewrite rules we need to perform our

analysis for this model (note that entity I is acting as an input entity and therefore does not

have any rewrite rules as its value is never updated).

5.4.1 Basic Model Analysis

We start our analysis for the basic model of five entities using the three types of test searches

that were introduced in Section 5.3 to see how the model performed:

1) Searching for a point attractor starting from an initial state where all entities are at

their highest possible value:

search A(0,1) B(0,2) C(0,1) D(0,1) I(0,1) =>! A(0,tA:D1) B(0,tB:D2)

C(0,tC:D1) D(0,tD:D1) I(0,tI:D1) .

Maude performs 30 rewrites taking less than a millisecond to visit 17 states.

2) For our second search we start at an initial state where all entities have the value 1

and we check for the possibility of entity I going back to state 0:

search A(0,1) B(0,1) C(0,1) D(0,1) I(0,1) =>! I(0,0) Gs:GState .

Maude performs 33 rewrites resulting in it not finding a solution after visiting 18 states.

3) For our third test search, we start with an initial state where all entities are at state

0, exploring the possibility of all entities reaching their highest:

Maude> search A(0,0) B(0,0) C(0,0) D(0,0) I(0,0) =>!

A(0,1) B(0,2) C(0,1) D(0,1) I(0,1) .

5.4 Asynchronous Model Performance Evaluation 93

Maude performs only two rewrites here exploring 3 states and returns no solution where all

entities are at their highest value. We give a summary of results for the three test searches in

Table 5.1.

We now perform our LTL checks:

1) Starting off with the first instance of B at full activation then at some point ending up with

the last instance of A always at state 1.

Maude> red modelCheck(A(0,0) B(0,2) C(0,1) D(0,1) I(0,1), []

(<> [] hasAat(0,1))).

Maude performs 16 rewrites returning a counter example showing that the property does not

hold:

rewrites: 16 in 0ms cpu (0ms real) (26315 rewrites/second)

result [ModelCheckResult]: counterexample({A(0, 0) B(0, 2) C(0, 1)

D(0, 1)I(0, 1),’Bi1} {A(0, 0) B(0, 1) C(0, 1) D(0, 1) I(0, 1),’Ci0},

{A(0, 0) B(0, 1) C(0, 0) D(0, 1) I(0,1),’Bi0} {A(0, 0) B(0, 0) C(0, 0)

D(0, 1) I(0, 1),’Ai1} {A(0, 1) B(0, 0) C(0, 0) D(0,1) I(0, 1),’Bi1}

{A(0, 1) B(0, 1) C(0, 0) D(0, 1) I(0, 1),’Ai0})

2) The last instance of C can always eventually be at state 1 starting from an initial state

where all instances of A are at state 0.

Maude> red modelCheck(A(0,0) B(0,1) C(0,1) D(0,1) I(0,1),

[] <> hasCat(0,1)).

Maude performs 12 rewrites here returning a counter example showing that the property does

not hold:

rewrites: 12 in 0ms cpu (0ms real) (55045 rewrites/second)

result [ModelCheckResult]: counterexample({A(0, 0) B(0, 1) C(0, 1)

D(0, 1) I(0, 1),’Ci0}, {A(0, 0) B(0, 1) C(0, 0) D(0, 1) I(0, 1),’Bi0}

{A(0, 0) B(0, 0) C(0, 0) D(0, 1) I(0, 1),’Ai1} {A(0, 1) B(0, 0) C(0, 0)

D(0, 1) I(0, 1),’Bi1} {A(0, 1) B(0, 1) C(0, 0) D(0, 1) I(0, 1),’Ai0})

94 Performance Evaluation

Table 5.1 Summary of test results for performing three simple searches on the series of
asynchronous test MVNs for model size 5.

Model Size 5
30

Rewrites 33
2
0

Time (ms) 0
0

5.4.2 Scaling to 10 Entities

For performance evaluation purposes, our test model can be scaled up by adding instances of

A, B, C, D and I, thus doubling the system state space. The same rules for A, B, C and D

can be used again by changing the value of i to represent different instances of those entities.

The only part of the system that is changing now is the behaviour of the first instance of I,

which is used to connect the new 5 entities to the old ones as follows:

rl [I10]: I(1,1) A(2,0) => I(1,0) A(2,0) .

rl [I11]: I(1,0) A(2,1) => I(1,1) A(2,1) .

This connects the second instance of A(2) to the first instance of I(1). We now start our

analysis using the three types of test searches:

1) Our first test is searching for a point attractor from an initial state where all entities

are their highest possible value:

search A(0,1) A(1,1) B(0,2) B(1,2) C(0,1) C(1,1) D(0,1) D(1,1) I(0,1)

I(1,1) =>! A(0,tA0:D1) A(1,tA1:D1) B(0,tB0:D2) B(1,tB1:D2)

C(0,tC0:D1) C(1,tC1:D1) D(0,tD0:D1) D(1,tD1:D1) I(0,tI0:D1) I(1,tI1:D1) .

The number of rewrites performed has increased from 30 in the 5-entity model to 2472 now

in 17 milliseconds.

5.4 Asynchronous Model Performance Evaluation 95

2) For our second test search, we start with an initial state where all entities are at state 0,

exploring the possibility of all entities reaching their highest:

Maude> search A(0,0) A(1,0) B(0,0) B(1,0) C(0,0) C(1,0) D(0,0) D(1,0)

I(0,0) I(1,0) =>! A(0,1) A(1,1) B(0,2) B(1,2) C(0,1) C(1,1) D(0,1)

D(1,1) I(0,1) I(1,1) .

Maude performs 12 rewrites in one millisecond exploring 9 network states.

3) For our third search test, we start from an initial state where all entities have the value 1

and we search for the possibility of both instances of I going back to state 0:

search A(0,1) A(1,1) B(0,1) B(1,1) C(0,1) C(1,1) D(0,1) D(1,1) I(0,1)

I(1,1) =>! I(0,0)I(1,0) Gs:GState .

The number of rewrites performed has increased from 33 in the 5-entity model to 2632

rewrites now with the search taking 17 milliseconds to finish.

We now give a summary table of the search results for the 3 considered tests in Table 5.2.

The table shows a clear jump in both the number of rewrites and the search time which is to

be expected after doubling the state space of our model.

We now perform our LTL checks:

1) Starting off with the first instance of B at full activation then at some point ending up with

the last instance of A always at state 1.

Maude> red modelCheck(A(0,0) A(1,0) B(0,2) B(0,1) C(0,1)

C(0,1) D(0,1) D(1,1) I(0,1) I(1,1) , [] (<> [] hasAat1(1,1))).

Maude now performs 106 rewrites in 2 milliseconds returning a counter example showing

that the property does not hold.

96 Performance Evaluation

2) The last instance of C can always eventually be at state 1 starting from an initial state

where all instances of A are at state 0.

Maude> red modelCheck(A(0,0) A(1,0) B(0,2) B(0,1) C(0,1)

C(0,1) D(0,1) D(1,1) I(0,1) I(1,1) , [] <> hasCat(1,1)).

Maude performs 104 rewrites here returning a counter example.

Table 5.2 Summary of test results for performing three simple searches on the series of
asynchronous test MVNs for model sizes 5 and 10.

Model Size 5 10
30 2472

Rewrites 33 2632
2 12
0 17

Time (ms) 0 17
0 1

5.4.3 Further Scaling Analysis

We further scaled our model to sizes 15, 20 and 25 and performed some analysis using the

Maude search command and our three types of test searches:

1) Searching for a point attractor from an initial state where all entities are their highest

possible value in the model of size 15:

search A(0,1) A(1,1) A(2,1) B(0,2) B(1,2) B(2,2) C(0,1) C(1,1) C(2,1)

D(0,1) D(1,1) D(2,1) I(0,1) I(1,1) I(2,1) =>! A(0,tA0:D1) A(1,tA1:D1)

A(2,tA2:D1) B(0,tB0:D2) B(1,tB1:D2) B(2,tB2:D2) C(0,tC0:D1)

C(1,tC1:D1) C(2,tC2:D1) D(0,tD0:D1) D(1,tD1:D1) D(2,tD2:D1)

I(0,tI0:D1) I(1,tI1:D1) I(2,tI2:D1) .

The result returned by Maude shows that a number of performed rewrites of 150133 which is

a big jump from the model of 10 entities and that result was generated in 1040 milliseconds.

5.4 Asynchronous Model Performance Evaluation 97

For the model of size 20 those numbers again had a huge jump to 8374315 rewrites in 10

minutes.

2) For our second search test, starting from an initial state where all entities have the

value 1 we search for the possibility of all instances of I going back to state 0 in the model

of size 15:

search A(0,1) A(1,1) A(2,1) B(0,1) B(1,1) B(2,1) C(0,1) C(1,1) C(2,1)

D(0,1) D(1,1) D(2,1) I(0,1) I(1,1) I(2,1) =>! I(0,0) I(1,0) I(2,0)

Gs:GState .

Maude performs 292228 rewrites in 2234 milliseconds in the 15-entity model. Those num-

bers jump to 12696152 in 26 minutes for the model of size 20 before Maude fails to produce

any results for this search command in the 25-entity model.

3) We now explore the possibility of all entities going back to 0 starting from an initial

state where all entities are at their highest value with respect to their state spaces in the model

of size 15:

search A(0,0) A(1,0) A(2,0) B(0,0) B(1,0) B(2,0) C(0,0) C(1,0) C(2,0)

D(0,0) D(1,0) D(2,0) I(0,0) I(1,0) I(2,0) =>! A(0,1) A(1,1) A(2,1)

B(0,2) B(1,2) B(2,2) C(0,1) C(1,1) C(2,1) D(0,1) D(1,1) D(2,1)

I(0,1) I(1,1) I(2,1) .

The result returned by Maude shows a number of performed rewrites of 16092 which is a big

jump from the model of 10 entities and that result was generated in 177 milliseconds.

For the model of size 20 those numbers again had a huge jump to 431891 rewrites in 4.72

seconds. A summary of the test results produced is shown in Table 5.3.

We now perform our LTL checks on the model of size 15:

1) Starting off with the first instance of B at full activation then at some point ending up with

the last instance of A always at state 1.

98 Performance Evaluation

Maude> red modelCheck(A(0,0) A(1,0) A(2,0) B(0,2) B(1,1) B(2,1)

C(0,1) C(0,1) C(2,1) D(0,1) D(1,1) D(2,1) I(0,1) I(1,1) I(2,1),

[] (<> [] hasAat1(2,1))) .

Maude now performs 184 rewrites in 3 milliseconds before returning the counter example.

For the model of size 20, the number of rewrites jumped to 727 in 9 milliseconds before

returning the counter example.

2) The last instance of C can always eventually be at state 1 starting from an initial state

where all instances of A are at state 0.

Maude> red modelCheck(A(0,0) A(1,0) A(2,0) B(0,2) B(1,1) B(2,1)

C(0,1) C(0,1) C(2,1) D(0,1) D(1,1) D(2,1) I(0,1) I(1,1) I(2,1),

[] <> hasCat(2,1)) .

Maude performs 182 rewrites here in 3 milliseconds before returning a counter example. For

the model of size 20, the number of rewrites increased to 725 in 10 milliseconds.

Table 5.3 Summary of test results for performing three simple searches on the series of
asynchronous test MVNs for Models of sizes 5 to 25.

Model Size 5 10 15 20 25
30 2472 150133 8374315 -

Rewrites 33 2632 292228 12696152 -
2 12 16092 431891 -
0 17 1040 10.01mins -

Time (ms) 0 17 2234 26mins -
0 1 177 4728 -

5.4.4 Evaluating Test Results

We started our analysis for our scalable model with the basic model of 5 entities. Then we

extended it repeatedly by adding a new block of 5 entities and performed some tests using

the search command to come up with some performance results for our RL framework before

we gave a summary of those results in Table 5.3. Figure 5.4 gives a visual representation

5.4 Asynchronous Model Performance Evaluation 99

of the number of rewrites with relation to different model sizes for test searches 1,2 and 3,

while Figure 5.5 gives a visual representation of the log of search time.

Fig. 5.4 Number of Rewrites in Relation to Model Size for Test Searches 1,2 and 3.

Fig. 5.5 A Representation of the log of Search Time for Test Searches 1,2 and 3.

100 Performance Evaluation

It can be seen that the largest test model that was able to produce results in the asyn-

chronous case was the model of 20 entities. The test model with 25 entities did not complete

the searches even after an extended period. This highlights one of the key limitations of

MVNs given the state space explosion problem. In order to allow larger models to be anal-

ysed new ways to compositional construct and analyse MVNs are needed and we discuss this

further in the conclusions section at the end of this chapter.

5.5 Synchronous Model Performance Evaluation

For the synchronous version of this performance test model, entities now have three values

instead of just two; i representing the index; a value representing the current state; and

another value representing the next state of the entity. Note that we now use the meta-level

operators to represent different model states. We now present the full list of synchronous

rewrite rules for the module:

rl [Ai0]: A(i,1,1)B(i,1,S2) => A(i,1,0)B(i,1,S2) .

rl [Ai0]: A(i,1,1)B(i,1,S2)D(i,1,S4) => A(i,1,0)B(i,1,S2)D(i,1,S4) .

rl [Ai0]: A(i,1,1)B(i,2,S2) => A(i,1,0)B(i,2,S2) .

rl [Ai1]: A(i,0,0)B(i,0,S2)D(i,1,S4) => A(i,0,1)B(i,0,S2)D(i,1,S4) .

rl [Bi0]: B(i,1,1)A(i,0,S1)C(i,0,S3) => B(i,1,0)A(i,0,S1)C(i,0,S3) .

rl [Bi0]: B(i,2,2)A(i,0,S1)C(i,0,S3) => B(i,0,2)A(i,0,S1)C(i,0,S3) .

rl [Bi1]: B(i,0,0)A(i,0,S1)C(i,1,S3) => B(i,0,1)A(i,0,S1)C(i,1,S3) .

rl [Bi1]: B(i,0,0)A(i,1,S1)C(i,0,S3) => B(i,0,1)A(i,1,S1)C(i,0,S3) .

rl [Bi2]: B(i,1,1)A(i,1,S1)C(i,1,S3) => B(i,1,2)A(i,1,S1)C(i,1,S3) .

rl [Ci0]: C(i,1,1)I(i,1,S5) => C(i,1,0)I(i,1,S5) .

rl [Ci1]: C(i,0,0)I(i,0,S5) => C(i,0,1)I(i,0,S5) .

rl [Di0]: D(i,1,1)B(i,2,S2) => D(i,1,0)B(i,2,S2) .

5.5 Synchronous Model Performance Evaluation 101

rl [Di0]: D(i,1,1)I(i,0,S5) => D(i,1,0)I(i,0,S5) .

rl [Di1]: D(i,0,0)B(i,0,S2)I(i,1,S5) => D(i,0,1)B(i,0,S2)I(i,1,S5) .

rl [Di1]: D(i,0,0)B(i,1,S2)I(i,1,S5) => D(i,0,1)B(i,1,S2)I(i,1,S5) .

We now have the necessary set of rewrite rules we need to start our analysis of our basic

model of 5 entities.

5.5.1 Basic Model Analysis

We start our analysis for the synchronous version of our basic model of five entities using

the three types of test searches that were introduced in Section 5.3 to see how the model

performed:

1) Our first search is searching for a point attractor:

search ’__[’A[’0.Nat,’1.D1,’1.D1],’B[’0.Nat,’0.D2,’0.D2],

’C[’0.Nat,’0.D1,’0.D1], ’D[’0.Nat,’0.D1,’0.D1],

’I[’0.Nat,’1.D1,’1.D1]] =>! ’__[T:Term] .

Maude returns no solution here after performing 120 rewrites in 6 milliseconds.

2) We now explore the possibility of all entities going back to 0 starting from an initial

state where all entities are at their highest value (where upTerm is used to left the initial state

to the metalevel representation of the state):

search upTerm(init1) =>! ’__[’A[’0.Nat,’0,’0],’B[’0.Nat,’0,’0],

’C[’0.Nat,’0,’0],’D[’0.Nat, ’0,’0],’I[’0.Nat,’0,’0]] .

Maude returns no solution here after exploring 9 states and performing 182 rewrites in 8

milliseconds.

3) For our third and final search here, starting from an initial state of 10101, we search

102 Performance Evaluation

for the possibility of B reaching the value 2 (which is its highest), with C simultaneously

going back to state 0:

search upTerm(init2) =>! ’__[’B[’0.Nat,’2,’2],’C[’0.Nat,’0,’0],T:Term] .

No solution is found here after Maude have explored 7 states and performed 142 rewrites in

7 milliseconds. Table 5.4 gives a summary of the test results for the three searches performed

for the model of size 5.

We now perform our LTL checks:

1) Starting off with the first instance of B at full activation then at some point ending up with

the last instance of A always at state 1.

red modelCheck(’__[’A[’0.Zero,’0.D1,’0.D1],’B[’0.Zero,’2.D2,’2.D2],

’C[’0.Zero,’1.D1,’1.D1], ’D[’0.Zero,’1.D1,’1.D1],’I[’0.Zero,’1.D1,

’1.D1]] , [] (<> [] atA(0,’1.D1))) .

Maude performs 181 rewrites in 12 milliseconds returning a counter example showing that

the property does not hold.

2) The last instance of C can always eventually be at state 1 starting from an initial state

where all instances of A are at state 0.

Maude> red modelCheck(’__[’A[’0.Zero,’0.D1,’0.D1],’B[’0.Zero,’2.D2,

’2.D2],’C[’0.Zero,’1.D1,’1.D1], ’D[’0.Zero,’1.D1,’1.D1],

’I[’0.Zero,’1.D1,’1.D1]] , [] <> atC(0,’1.D1)) .

Maude performs 179 rewrites here in 12 milliseconds returning a counter example showing

that the property does not hold.

5.5.2 Scaling to 10 Entities

For performance evaluation purposes, we now double the system state space (following the

same approach in Section 5.4.2. We now present our test searches:

5.5 Synchronous Model Performance Evaluation 103

Table 5.4 Summary of test results for performing three simple searches on synchronous test
MVN of Size 5.

Model Size 5
120

Rewrites 182
142
6

Time (ms) 8
7

1) We perform our first search for this size of our scalable model by searching for a point

attractor:

Maude> search ’__[’A[’0.Int,’1.D1,’1.D1],’B[’0.Int,’0.D2,’0.D2],

’C[’0.Int,’0.D1,’0.D1], ’D[’0.Int,’0.D1,’0.D1],’I[’0.Int,’1.D1,’1.D1],

’A[’s_^1[’0.Zero],’1.D1,’1.D1],’B[’s_^1[’0.Zero],’0.D2,’0.D2],

’C[’s_^1[’0.Zero],’0.D1,’0.D1],’D[’s_^1[’0.Zero],’0.D1,’0.D1],

’I[’s_^1[’0.Zero],’1.D1,’1.D1]] =>! ’__[T:Term] .

No solution was found here after Maude performed 400 rewrites compared to 120 in smaller

model of size 5. Maude also explored 16 states here compared to 6 in the 5 entity model and

now has taken 14 milliseconds to perform this search instead of 6.

2) For our second search (exploring the possibility of all entities going back to 0 start-

ing from an initial state where all entities are at their highest value):

Maude> search upTerm(init1) =>! ’__[’A[’0.Int, ’0,’0],’B[’0.Int, ’0,’0],

’C[’0.Int, ’0,’0],’D[’0.Int, ’0,’0],’I[’0.Int, ’0,’0],’A[’s_^1[’0.Zero],

’0,’0],’B[’s_^1[’0.Zero], ’0,’0],’C[’s_^1[’0.Zero], ’0,’0],

’D[’s_^1[’0.Zero], ’0,’0],’I[’s_^1[’0.Zero], ’0,’0]] .

104 Performance Evaluation

Maude performed 477 rewrites here compared to 182 in the 5 entity model. The number

of explored states has increased from 9 to 19, and the time taken to perform the search has

increased from 8 milliseconds to 19.

3) For our final search here, we perform the same third search we did in the 5 entity

model which checks whether both instances of B can become active from a given initial state:

Maude> search upTerm(init2) =>! ’__[’B[’0.Int, ’2,’2],’C[’0.Int, ’0,’0],

’B[’s_^1[’0.Zero], ’2,’2], ’C[’s_^1[’0.Zero], ’0,’0], T:Term] .

The number of rewrites has more than trebled here after Maude performed 452 rewrites in 19

milliseconds. Table 5.5 gives a summary of the test results for the three searches performed

for the model of size 10. We now perform our LTL checks:

Table 5.5 Summary of the performance of the three test searches on the synchronous test
MVN of Size 10.

Model Size 5 10
120 400

Rewrites 182 477
142 452
6 14

Time (ms) 8 19
7 19

1) Starting off with the first instance of B at full activation then at some point ending up with

the last instance of A always at state 1.

red modelCheck(’__[’A[’0.Zero,’0.D1,’0.D1],’B[’0.Zero,’2.D2,’2.D2],

’C[’0.Zero,’1.D1,’1.D1],’D[’0.Zero,’1.D1,’1.D1],’I[’0.Zero,’1.D1,’1.D1],

’A[’s_^1[’0.Zero],’0.D1,’0.D1],’B[’s_^1[’0.Zero],’2.D2,’2.D2],

’C[’s_^1[’0.Zero],’1.D1,’1.D1], ’D[’s_^1[’0.Zero],’1.D1,’1.D1],

’I[’s_^1[’0.Zero],’1.D1,’1.D1]] , [] (<> [] atA(1,’1.D1))).

5.5 Synchronous Model Performance Evaluation 105

Maude performs 455 rewrites in 22 milliseconds returning a counter example showing that

the property does not hold.

2) The last instance of C can always eventually be at state 1 starting from an initial state

where all instances of A are at state 0.

Maude> red modelCheck(’__[’A[’0.Zero,’0.D1,’0.D1],’B[’0.Zero,’2.D2,

’2.D2],’C[’0.Zero,’1.D1,’1.D1],’D[’0.Zero,’1.D1,’1.D1],’I[’0.Zero,

’1.D1,’1.D1],’A[’s_^1[’0.Zero],’0.D1,’0.D1],’B[’s_^1[’0.Zero],’2.D2,

’2.D2],’C[’s_^1[’0.Zero],’1.D1,’1.D1],’D[’s_^1[’0.Zero],’1.D1,

’1.D1],’I[’s_^1[’0.Zero],’1.D1,’1.D1]] , [] <> atC(1,’1.D1)).

Maude performs 453 rewrites here in 26 milliseconds returning a counter example showing

that the property does not hold.

5.5.3 Further Scaling Analysis

We now extend our analysis to models of sizes 15,20,25 and 30 to give an idea on the

performance of our RL framework with regards to this scalable test model. Below are the

three test searches:

1) We search for a point attractor for our first test in the model of size 15:

search ’__[’A[’0.Int,’1.D1,’1.D1],’B[’0.Int,’0.D2,’0.D2],’C[’0.Int,

’0.D1,’0.D1], ’D[’0.Int,’0.D1,’0.D1],’I[’0.Int,’1.D1,’1.D1],

’A[’s_^1[’0.Zero],’1.D1,’1.D1],’B[’s_^1[’0.Zero],’0.D2,’0.D2],

’C[’s_^1[’0.Zero],’0.D1,’0.D1],’D[’s_^1[’0.Zero],’0.D1,’0.D1],

’I[’s_^1[’0.Zero],’1.D1,’1.D1],’A[’s_^2[’0.Zero],’1.D1,’1.D1],

’B[’s_^2[’0.Zero],’0.D2,’0.D2],’C[’s_^2[’0.Zero],’0.D1,’0.D1],

’D[’s_^2[’0.Zero],’0.D1,’0.D1], ’I[’s_^2[’0.Zero],’1.D1,’1.D1]]

=>! ’__[T:Term] .

106 Performance Evaluation

this command now results in 510 rewrites being performed by Maude compared to 400 in

the model of size 10 taking 19 milliseconds to finish (compared to 14 in the model of size

10). For the model of size 20 the number of rewrite rules jumps to 805, then to 1080 in the

25-entity model and 1395 in the model of size 30.

2) For our second test, we introduce the following search for the 15-entities model:

search upTerm(init1) =>! ’__[’A[’0.Int, ’0,’0],’B[’0.Int, ’0,’0],

’C[’0.Int,’0,’0],’D[’0.Int, ’0,’0],’I[’0.Int, ’0,’0],’A[’s_^1[’0.Zero],

’0,’0],’B[’s_^1[’0.Zero], ’0,’0],’C[’s_^1[’0.Zero], ’0,’0],

’D[’s_^1[’0.Zero], ’0,’0],’I[’s_^1[’0.Zero], ’0,’0],’A[’s_^2[’0.Zero],

’0,’0],’B[’s_^2[’0.Zero], ’0,’0],’C[’s_^2[’0.Zero], ’0,’0],

’D[’s_^2[’0.Zero], ’0,’0],’I[’s_^2[’0.Zero], ’0,’0]].

the number of rewrites performed by Maude for this command has gone up to 752 rewrites

that were performed in 28 milliseconds. That number jumps to 807 in 28 milliseconds in

the model of size 20; then to 1082 in 37 for the 25-entity model and finally 1397 in 48

milliseconds for the model of size 30.

3) For our third search that checks if all instances of entity B can become active we have the

following command for the 15-entity model:

search upTerm(init2) =>! ’__[’B[’0.Int, ’2,’2],’C[’0.Int, ’0,’0],

’B[’s_^1[’0.Zero], ’2,’2], ’C[’s_^1[’0.Zero], ’0,’0],

’B[’s_^2[’0.Zero], ’2,’2],’C[’s_^2[’0.Zero], ’0,’0], T:Term].

the number of rewrites has gone up from 452 to 602 for this command taking 3 more

milliseconds compared to the 10 entity model. It increases to 772 in the model of size 20

then to 962 in the 25-entity model then finally 1307 in the model of size 30, with times being

27,35 and 45 milliseconds respectively.

5.5 Synchronous Model Performance Evaluation 107

We now perform our LTL checks:

1) Starting off with the first instance of B at full activation then at some point ending up with

the last instance of A always at state 1.

red modelCheck(’__[’A[’0.Zero,’0.D1,’0.D1],’B[’0.Zero,’2.D2,’2.D2],

’C[’0.Zero,’1.D1,’1.D1],’D[’0.Zero,’1.D1,’1.D1],’I[’0.Zero,’1.D1,’1.D1],

’A[’s_^1[’0.Zero],’0.D1,’0.D1],’B[’s_^1[’0.Zero],’2.D2,’2.D2],

’C[’s_^1[’0.Zero],’1.D1,’1.D1], ’D[’s_^1[’0.Zero],’1.D1,’1.D1],

’I[’s_^1[’0.Zero],’1.D1,’1.D1],’A[’s_^2[’0.Zero],’0.D1,’0.D1],

’B[’s_^2[’0.Zero],’2.D2,’2.D2],’C[’s_^2[’0.Zero],’1.D1,’1.D1],

’D[’s_^2[’0.Zero],’1.D1,’1.D1],’I[’s_^2[’0.Zero],’1.D1,’1.D1]] ,

[] (<> [] atA(2,’1.D1))).

Maude performs 687 rewrites in 34 milliseconds returning a counter example showing that

the property does not hold.

2) The last instance of C can always eventually be at state 1 starting from an initial state

where all instances of A are at state 0.

Maude> red modelCheck(’__[’A[’0.Zero,’0.D1,’0.D1],’B[’0.Zero,’2.D2,

’2.D2],’C[’0.Zero,’1.D1,’1.D1],’D[’0.Zero,’1.D1,’1.D1],’I[’0.Zero,

’1.D1,’1.D1],’A[’s_^1[’0.Zero],’0.D1,’0.D1],’B[’s_^1[’0.Zero],’2.D2,

’2.D2],’C[’s_^1[’0.Zero],’1.D1,’1.D1],’D[’s_^1[’0.Zero],’1.D1,

’1.D1],’I[’s_^1[’0.Zero],’1.D1,’1.D1],A[’s_^2[’0.Zero],’0.D1,’0.D1],

’B[’s_^2[’0.Zero],’2.D2,’2.D2],’C[’s_^2[’0.Zero],’1.D1,’1.D1],

’D[’s_^2[’0.Zero],’1.D1,’1.D1],’I[’s_^2[’0.Zero],’1.D1,’1.D1]] ,

[] <> atC(2,’1.D1)).

Maude performs 675 rewrites here in 37 milliseconds returning a counter example showing

that the property does not hold.

A full summary of the test results produced using our 3 test searches for the synchronous

version of our model is shown in Table 5.6 below for model sizes 15,20,25 and 30.

108 Performance Evaluation

Table 5.6 Summary of test results for performing three simple searches on the series of
synchronous test MVNs.

Model Size 5 10 15 20 25 30
120 400 510 805 1080 1395

Rewrites 182 477 752 807 1082 1397
142 452 602 772 962 1307
6 14 19 29 37 48

Time (ms) 8 19 28 28 37 48
7 19 22 27 35 47

5.5.4 Testing Conclusions

We started our analysis for our scalable model with the basic model of 5 entities. Then we

extended it repeatedly by adding a new block of 5 entities using the same approach we used

to extend the asynchronous version of our test model and performed some tests using the

search command to come up with some performance results for our RL framework before

we gave a summary of those results in Table 5.6. Figure 5.6 gives a visual representation

of the number of rewrites with relation to different model sizes for test searches 1,2 and 3,

while Figure 5.7 gives that in terms of search time in milliseconds.

In the synchronous case test results could be obtained for a much larger set of models

(up to size 30 and beyond) and the resources needed to carry out the tests scaled well

with respect to the MVN size. This is perhaps not surprising; while the synchronous

RL framework is more complex due to the need to use meta–level strategies the actual

dynamics of synchronous MVNs is far less complex (recall traces are deterministic) than

their asynchronous counterparts.

5.6 Conclusions

The RL framework developed for asynchronous and synchronous MVNs in Chapters 3 and 4

needed further testing with regards to its performance. In order to address that we developed

a scalable test model in this chapter to test its scalability as the number of entities and the

5.6 Conclusions 109

Fig. 5.6 Number of Rewrites in Relation to Model Size for Test Searches 1,2 and 3.

Fig. 5.7 Search Time in Relation to Model Size for Test Searches 1,2 and 3.

states in the model increases. In particular, using the metalevel with synchronous update

semantics with its costs and implications.

110 Performance Evaluation

We started off by introducing a test model of 5 entities in 5.2 as the main building block

of our scalable model. We then scaled the model in increments of five by adding a new block

of entities and connecting one of its entities to the connecting entity in the first block which

we determined to be I. We focused on two factors in our scalable model test which were

the number of performed rewrites and the time it took to perform those rewrites. We started

off by doubling the number of entities in our model by adding a new block then we kept on

adding a new block of 5 entities until Maude was not able to produce search results.

We first presented the asynchronous version of the model in Section 5.4, and we performed

some analysis using the Maude’s search command by performing three different types of test

searches. We then moved into the next level of our analysis which was to use some LTL model

checking formulas starting with the main building block of 5 entities. We then extended our

model analysis by adding a new block of entities at a time and performing the same set of

test searches and LTL model checking formulas. After that, we introduced the synchronous

version of the test model in Section 5.5 alongside an analysis of the synchronous behaviour.

We followed a similar structure to our scaling and testing to the one for the asynchronous

model in Section 5.4, and discussed using metalevel with synchronous update semantics with

its costs and implications.

In order to illustrate the practical applications of tools and techniques developed in

Chapters 3 and 4, we carry out a larger case study in Chapter 6. We introduce models of

sizes 13 and 22 using a larger scalable test model based on the gene regulatory network of

the segment polarity gene family which is at the basis of Drosophila embryonic development.

We perform soma analysis using the Maude search command as well as LTL model checking

formulas in a similar manner to the the simpler scalable model presented in this chapter.

Finally, we note that while the performance evaluation of our RL framework presented in

this chapter does provide some insight into the scalability of the developed RL framework, it

is limited in its scope. Much further work is needed here and in particular, we aim to develop

a set of benchmark scalable test models which can be used to evaluate MVN approaches in

the literature.

Chapter 6

Case Study

6.1 Introduction

Following on the scalable case study in Chapter 5, in this chapter we consider the gene

regulatory network of the segment polarity gene family [95, 94] as a larger case study

from the literature. This model was selected as a larger case study in order to evaluate the

developed techniques and tool support as it is a larger and more complex model compared

to our scalable test model. This regulatory network is at the basis of Drosophila embryonic

development[92, 95, 93, 94]. The network has been investigated through mathematical

modelling to determine the network’s capacity for generating and maintaining a specific

gene expression pattern. During the initial stages of development of the fruit fly [96], three

families of genes are successfully activated [95]: the gap genes; the pair-rule genes; and

the segment polarity genes. A first mathematical model was proposed by [85], the model

was proposed in an attempt to understand and study this network and its properties. Some

improvements to the model were introduced in [86], including an alternative mathematical

description and analysis of its properties have been presented since [93]. Those studies

reached a common conclusion that the interconnections among genes and proteins that make

the segment polarity network are the crucial factor for the robustness of the expression pattern

with respect to small biological perturbations.

112 Case Study

We start by introducing the boolean version of the model where we discuss the two

different entities within the model. The model has five different polarity genes and their

corresponding proteins. We discuss the behaviour of model entities and the relationship

between them by giving a detailed introduction to the interactions happening within a cell

of entities. We then introduce a proposed simplified version of the model that reduces the

number of entities from 13 to 9 entities and explain the decision behind the simplification.

We then introduce a version of the model where we have a single cell with fixed input

values for connecting entities from neighbouring cells. We alternate the inputs for those

input entities and discuss the effect of doing so by giving a brief analysis of the model using

Maude. We then extend our model to two cells with connecting entities to neighbouring cells

increasing the number of entities to 22 where we have two cells of size 9 and four connecting

entities to neighbouring cells. We then introduce the set of rewrite rules generated for our

model using tool support for both asynchronous and synchronous versions of the model and

perform a range of analysis for both models of one and two cells using Maude by performing

some searches and LTL model checking formulas.

This Chapter is organised as follows, in Section 6.2 we introduce the original boolean

model of 13 entities. In Section 6.2 we discuss the original Boolean model and our simplified

version of the model with 9 Entities for a single cell before with 4 connecting entities to

neighbouring cells, we then extend our model by adding a new cell which takes the size of

the model to 22 entities. We discuss the asynchronous semantics of the model in Section

6.3 starting with the model of one cell in Section 6.3.1, we perform a set of test searches

before we extend our model in Section 6.3.2 by adding a new cell and carrying out a set of

test searches. We then introduce the synchronous version of the model in Section 6.4 starting

with the basic model of one cell in Section 6.4.1 before extending the model by adding a

second cell in Section 6.4.2. Finally we give a brief summary to this chapter in Section 6.5.

6.2 The Model 113

6.2 The Model

A boolean version of the continuous model described in [85] was proposed in [86]. There

are 5 different main polarity genes in the boolean version shown in Figure 6.1, wingless(wg),

engrailed(en), hedgehog(hh), patched(ptc) and cubitus interruptus(ci) [87, 88, 95, 97]. These

genes code for their corresponding proteins (respectively represented by symbols WG, EN,

HH, PTC and CI). Protein Cubitus interruptus can be converted to a transcriptional activator

(CIA), or may be cleaved to form a transcriptional repressor (CIR) [97]. Proteins EN, CIA

and CIR are transcription factors. While WG and HH are secreted proteins[98, 99]. PTC is a

transmembrane receptor protein [100].

Fig. 6.1 The Wiring Diagram for Cell i

The pair-rule gene SLP activates wg transcription and represses en transcription, where

wg is secreted from the cells synthesizing it [87, 88] and initiates a signalling cascade leading

to the transcription of en. Gene product EN promotes the transcription of the gene hh and

represses the transcription of ci [89], possibly ptc [90]. Gene HH is also secreted, and binds

114 Case Study

to the HH receptor PTC on a neighbouring cell [91]. We propose an Initial simplified model

of 9 entities that simplifies the behaviour of four original model entities (minimizing the state

space for the model from 213 to 29). After that, a two-cell model with 22 entities (2 cells of

size 9 and 4 connecting entities to cells i-1 and i+2) is presented and analysed.

We start by introducing the simplified boolean model that reduces the network state by

simplifying entities WGi,ENi,HHi and CIi, reducing the number of network entities from 13

down to 9 (thus reducing the network’s state space size from 213 to 29). These entities hold

the values of wgi,eni,hhi and cii from the previous iteration. The list of boolean updating

functions is given below:

Entity Boolean Updating Function

SLPi SLPi(k+1) = (WGi(k) and not ENi(k)) or SLPi(k)

wgi wgi(k+1) = (CIAi(k)) and SLPi(k) and not CIRi(k)) or

[wgi(k) and (CIAi(k)) SLPi(k)) and not CIRi(k))]

eni eni(k+1) = not SLPi(k)

hhi hhi(k+1) = ENi(k) and not CIRi(k)

ptci ptci(k+1) =CIAi(k) and not ENi(k)) and not CIRi(k)

PTCi PTCi(k+1) = ptci(k) or PTCi(k)

cii cii(k+1) = not ENi(k)

CIAi CIAi(k+1) =CIi(k) and not PTCi(k)

CIRi CIRi(k+1) =CIi(k) and PTCi(k)

Figure 6.2 shows the structure of entities contained in a single cell for the simplified

version of the model. The model has two single attractors in states 001111000 and 100001101.

We simulate the model using tool support and produce different types of state graphs, those

can help in finding different properties within the network structure and can give some insight

into the behaviour of the network. Those insights can help determine some model properties

that can be checked using the Maude’s search command and LTL model checker.

Cell i can be more descriptive of the network behaviour when it’s fully represented with

inter-cell connection entities from cells i-1 and i+1 where The values of entities wgi−1, hhi−1,

wgi+1 and hhi+1 are set to different combinations of fixed values (For example: wgi−1 = 0,

6.2 The Model 115

Fig. 6.2 The Simplified Wiring Diagram for Cell i.

hhi−1 = 1, wgi+1 = 1 and hhi+1 = 1) increasing the state space of the cell division model by

24 states and allowing us to use those 4 values as a testing environment. Adding connecting

entities from cells i-1 and i+1 (wgi−1,wgi+1,hhi−1 and

hhi+1) and setting them to fixed values will change the look of the network attractors to:

000001101(0000) and 100001101(0000), Where the values in brackets range from 0000 to

1111 for connecting entities resulting in 32 attractors (original 2 * 24).

Based on the simplified boolean model, a list of simplified entities equations can be

generated using tool support:

SLPi{0}= SLP{0}wg{0}+SLP{0}wg{1}+SLP{1}wg{1}

SLPi{1}= SLP{1}wg{0}

116 Case Study

Fig. 6.3 The Simplified Model Showing Connections to Cells i-1 and i+1.

wgi{0}= SLP{0}wg{1}CIA{0}CIR{0}+SLP{0}wg{1}CIA{1}

+SLP{1}wg{1}CIA{1}

wgi{1}= SLP{1}wg{0}ci{0}CIR{1}

eni{0}= SLP{1}

eni{1}= SLP{0}

hhi{0}= en{0}+ en{1}CIR{1}

hhi{1}= en{1}CIR{0}

ptci{0}= en{0}CIA{0}+ en{0}CIA{1}CIR{1}

ptci{1}= en{0}CIA{1}CIR{0}+ en{1}CIA{0}+ en{1}CIA{1}

6.2 The Model 117

PTCi{0}= PTC{1}+ ptc{0}PTC{0}

PTCi{1}= ptc{1}PTC{0}

cii{1}= en{0}

cii{0}= en{1}

CIAi{0}= PTC{0}ci{0}+PTC{1}

CIAi{1}= PTC{0}ci{1}

CIRi{0}= PTC{0}+PTC{1}ci{0}

CIRi{1}= PTC{1}ci{1}

We now present the set of equations for the simplified model with the four connecting

entities:

Entity Boolean Updating Function

SLPi SLPi(k+1) = (WGi(k) and not ENi(k)) or SLPi(k)

wgi wgi(k+1) = (CIAi(k)) and SLPi(k) and not CIRi(k)) or

[wgi(k) and (CIAi(k)) SLPi(k)) and not CIRi(k))]

eni eni(k+1) = wgi−1(k) or wgi+1(k) and not SLPi(k)

hhi hhi(k+1) = ENi(k) and not CIRi(k)

ptci ptci(k+1) =CIAi(k) and not ENi(k)) and not CIRi(k)

PTCi PTCi(k+1) = ptci(k) or (PTCi(k) and not hhi−1(k) and not hhi+1(k))

cii cii(k+1) = not ENi(k)

CIAi CIAi(k+1) =CIi(k) and [not PTCi(k) or hhi−1(k) or hhi+1(k)]

CIRi CIRi(k+1) =CIi(k) and PTCi(k) and not hhi−1(k) and not hhi+1(k)

Once a model has been developed for a biological system then the next stage is to analyse

its behaviour. The idea is to validate the model by checking that it has known biological

properties and to produce important new insights that can then be experimentally investigated

118 Case Study

by biologists. We illustrate the wide range of analysis possible using our RL framework and

the support tool Maude by providing a selection of analysis examples for the simplified cell

division network of 9 entities with 4 input entities from neighbouring cells representing the

setting in which our testing will be carried out.

After we introduce and analyse our model of size 13 using the search command and LTL

operators. We extend our model by adding a new cell of 9 entities to study the behavioural

changes to the model as its state space grows. Figure 6.4 shows the structure of the model

after adding a new cell.

We can now use the list of equations for cells in the model to create an RL model

representing the behaviour of the model and generate a set of rewrite rules using tool support.

6.3 Asynchronous Semantics

6.3.1 Basic model of a Single Cell

A list of asynchronous rewrite rules can be generated using tool support and the developed

RL framework. We now present the set of rewrite rules for our model:

rl [SLP1] : SLP(i,0)wg(i,1)en(i,0) => SLP(i,1)wg(i,1)en(i,0) .

rl [wg0] : wg(i,1)CIA(i,0)SLP(i,0) => wg(i,0) CIA(i,0)SLP(i,0).

rl [wg0] : wg(i,1)CIA(i,1)CIR(i,1) => wg(i,0) CIA(i,1)CIR(i,1) .

rl [wg0] : wg(i,1)CIA(i,0)SLP(i,1)CIR(i,0) =>

wg(i,0) CIA(i,0)SLP(i,1)CIR(i,0) .

rl [wg0] : wg(i,1)CIA(i,1)SLP(i,0)CIR(i,0) =>

wg(i,0) CIA(i,1)SLP(i,0)CIR(i,0) .

rl [wg1] : wg(i,0)CIA(i,1)SLP(i,1)CIR(i,0) =>

wg(i,1) CIA(i,1)SLP(i,1)CIR(i,0) .

rl [wg1] : wg(i,0)CIA(i,0)SLP(i,1)CIR(i,0)wg(i,1) =>

wg(i,1) CIA(i,0)SLP(i,1)CIR(i,0)wg(i,1) .

rl [wg1] : wg(i,0)CIA(i,1)SLP(i,0)CIR(i,0)wg(i,1) =>

6.3 Asynchronous Semantics 119

Fig. 6.4 a 2-Cell Model Showing Connections to Cells i-1 and i+2.

120 Case Study

wg(i,1) CIA(i,1)SLP(i,0)CIR(i,0)wg(i,1) .

rl [en0] : en(i,1)wg(i - s(0),0)wg(i + s(0) ,0) =>

en(i,1)wg(i - s(0),0)wg(i + s(0) ,0).

rl [en0] : en(i,1)wg(i - s(0),1)wg(i + s(0) ,1) =>

en(i,1)wg(i - s(0),1)wg(i + s(0) ,1).

rl [en0] : en(i,1)wg(i - s(0),0)wg(i + s(0) ,1)SLP(i,1) =>

en(i,0)wg(i - s(0),0)wg(i + s(0),1)SLP(i,1).

rl [en0] : en(i,1)wg(i - s(0),1)wg(i + s(0) ,0)SLP(i,1) =>

en(i,1)wg(i - s(0),1)wg(i + s(0),0)SLP(i,1).

rl [en1] : en(i,0)wg(i - s(0),0)wg(i + s(0) ,1)SLP(i,0) =>

en(i,1)wg(i - s(0),0)wg(i + s(0),1)SLP(i,0) .

rl [en1] : en(i,0)wg(i - s(0),1)wg(i + s(0) ,0)SLP(i,0) =>

en(i,1)wg(i - s(0),1)wg(i + s(0),0)SLP(i,0) .

rl [hh0] : hh(i,1)en(i,0) => hh(i,0)en(i,0) .

rl [hh0] : hh(i,1)en(i,1)CIR(i,1) => hh(i,0)en(i,1) CIR(i,1) .

rl [hh1] : hh(i,0)en(i,1)CIR(i,0) => hh(i,1)en(i,1) CIR(i,0) .

rl [ptc0] : ptc(i,1)CIA(i,0) => ptc(i,0)CIA(i,0) .

rl [ptc0] : ptc(i,1)CIA(i,1)en(i,0)CIR(i,1) =>

ptc(i,0)CIA(i,1)en(i,0) CIR(i,1) .

rl [ptc0] : ptc(i,1)CIA(i,1)en(i,1) =>

ptc(i,0)CIA(i,1)en(i,1).

rl [ptc1] : ptc(i,0)CIA(i,1)en(i,0)CIR(i,0) =>

ptc(i,1)CIA(i,1)en(i,0) CIR(i,0) .

rl [PTC0] : PTC(i,1)ptc(i,0)hh(i + s(0),1) =>

PTC(i,0)ptc(i,0)hh(i + s(0),1) .

rl [PTC0] : PTC(i,1)ptc(i,0)hh(i - s(0),1)hh(i + s(0),0) =>

PTC(i,0)ptc(i,0)hh(i - s(0),1)hh(i + s(0),0) .

rl [PTC1] : PTC(i,0)ptc(i,1) => PTC(i,1)ptc(i,1) .

rl [ci0] : ci(i,1)en(i,1) => ci(i,0)en(i,1) .

6.3 Asynchronous Semantics 121

rl [ci1] : ci(i,0)en(i,0) => ci(i,1)en(i,0) .

rl [CIA0] : CIA(i,1)ci(i,0) => CIA(i,0)ci(i,0) .

rl [CIA0] : CIA(i,1)ci(i,1)PTC(i,1)hh(i - s(0),0)hh(i +

s(0),0) => CIA(i,0)ci(i,1)PTC(i,1)hh(i - s(0),0)hh(i + s(0) ,0).

rl [CIA1] : CIA(i,0)ci(i,1)PTC(i,0) => CIA(i,1)ci(i,1)PTC(i,0) .

rl [CIA1] : CIA(i,0)ci(i,1)PTC(i,1)hh(i - s(0),0)hh(i + s(0),1)

=> CIA(i,1)ci(i,1) PTC(i,1)hh(i - s(0),0)hh(i + s(0) ,1).

rl [CIA1] : CIA(i,0)ci(i,1)PTC(i,1)hh(i - s(0),1) =>

CIA(i,1)ci(i,1) PTC(i,1)hh(i - s(0),1) .

rl [CIR0] : CIR(i,1)ci(i,0)PTC(i,1)hh(i - s(0),0) hh(i + s(0)

,0) => CIR(i,0)ci(i,0) PTC(i,1)hh(i - s(0) ,0) hh(i + s(0),0) .

rl [CIR1] : CIR(i,0)ci(i,1)PTC(i,1)hh(i - s(0),0)hh(i + s(0)

,0) => CIR(i,1)ci(i,1) PTC(i,1)hh(i - s(0) ,0)hh(i + s(0) ,0).

We can test certain properties using this set of rewrite rules for the simplified model. For

example: searching for entity CIA switching off from a given initial state:

search SLP(1,0)wg(0,1)wg(1,1)wg(2,1)en(1,0)hh(0,0)hh(1,1)

hh(2,0)ptc(1,1)PTC(1,0)ci(1,0)CIA(1,1)CIR(1,1) =>!

SLP(1,tSLP:D1)wg(0,twgp:D1)wg(1,twg:D1)wg(2,twgn:D1)

en(1,ten:D1)hh(0,thhp:D1)hh(1,thh:D1)hh(2,thhn:D1)ptc(1,

tptc:D1)PTC(1,tPTC:D1)ci(1,tci:D1)CIA(1,0)CIR(1,tCIR:D1) .

Maude returns three solutions in states 125,126 and 127 indicating that CIA does switch

off in three states in the trace from the chosen initial state:

Solution 1 (state 125)

states: 128 rewrites: 352 in 10ms cpu (10ms real)

(32854 rewrites/second)

twgp:D1 --> (1).D1

twg:D1 --> (1).D1

twgn:D1 --> (1).D1

122 Case Study

ten:D1 --> (0).D1

thhp:D1 --> (0).D1

thh:D1 --> (0).D1

thhn:D1 --> (0).D1

tptc:D1 --> (0).D1

tPTC:D1 --> (1).D1

tci:D1 --> (1).D1

tCIR:D1 --> (1).D1

tSLP:D1 --> (1).D1

Solution 2 (state 126)

states: 128 rewrites: 352 in 10ms cpu (10ms real)

(32263 rewrites/second)

twgp:D1 --> (1).D1

twg:D1 --> (0).D1

twgn:D1 --> (1).D1

ten:D1 --> (0).D1

thhp:D1 --> (0).D1

thh:D1 --> (0).D1

thhn:D1 --> (0).D1

tptc:D1 --> (0).D1

tPTC:D1 --> (1).D1

tci:D1 --> (1).D1

tCIR:D1 --> (1).D1

tSLP:D1 --> (0).D1

Solution 3 (state 127)

states: 128 rewrites: 352 in 11ms cpu (11ms real)

(31734 rewrites/second)

6.3 Asynchronous Semantics 123

twgp:D1 --> (1).D1

twg:D1 --> (0).D1

twgn:D1 --> (1).D1

ten:D1 --> (0).D1

thhp:D1 --> (0).D1

thh:D1 --> (0).D1

thhn:D1 --> (0).D1

tptc:D1 --> (0).D1

tPTC:D1 --> (1).D1

tci:D1 --> (1).D1

tCIR:D1 --> (1).D1

tSLP:D1 --> (1).D1

One property we can check is CIA turning on from an initial state where all entities are at

state 0 using the following search command:

Maude > search SLP(1,0)wg(0,0)wg(1,0)wg(2,0)en(1,0)hh(0,0)

hh(1,0)hh(2,0)ptc(1,0)PTC(1,0)ci(1,0)CIA(1,0)CIR(1,0) =>!

SLP(1,tSLP:D1)wg(0,twgp:D1)wg(1,twg:D1)wg(2,twgn:D1)

en(1,ten:D1)hh(0,thhp:D1)hh(1,thh:D1)hh(2,thhn:D1)

ptc(1,tptc:D1)PTC(1,tPTC:D1)ci(1,tci:D1)CIA(1,1)CIR(1,tCIR:D1) .

Maude returns one solution where CIA turns on from the given initial state which is found

at the 4th state of the trace (we now start using tables to present solution states for brevity

and show the full solutions as returned by Maude in Appendix A):

Table 6.1 The Global State Representing the Solution found by Maude.

wg0 wg1 wg2 en1 hh0 hh1 hh2 ptc1 PTC1 ci1 CIR1 SLP1
0 0 0 0 0 0 0 1 1 1 0 0

Solution 1 (state 4)

124 Case Study

states: 5 rewrites: 4 in 0ms cpu (0ms real)

(8714 rewrites/second)

Another property we can check is that CIR is typically absent in cells expressing wg.

CIR=0 when wg =1. We can check that property using the following search command starting

from an initial state where all instances of wg are at state 1:

Maude > search SLP(1,0)wg(0,1)wg(1,1)wg(2,1)en(1,0)hh(0,0)

hh(1,0)hh(2,0)ptc(1,0)PTC(1,0)ci(1,0)CIA(1,0)CIR(1,0) =>!

SLP(1,tSLP:D1)wg(0,twgp:D1)wg(1,twg:D1)wg(2,twgn:D1)en(1,

ten:D1)hh(0,thhp:D1)hh(1,thh:D1)hh(2,thhn:D1)ptc(1,tptc:D1)

PTC(1,tPTC:D1)ci(1,tci:D1)CIA(1,tCIA:D1)CIR(1,0) .

Maude returns two solutions here at states 17 and 18 of the trace where the property

holds:

Table 6.2 The Global States Representing the two Solutions found by Maude.

wg0 wg1 wg2 en1 hh0 hh1 hh2 ptc1 PTC1 ci1 CIA1 SLP1
1 1 1 0 0 0 0 1 1 1 1 1
1 0 1 0 0 0 0 1 1 1 1 0

Solution 1 (state 17)

states: 20 rewrites: 30 in 1ms cpu (1ms real)

(15923 rewrites/second)

Solution 2 (state 18)

states: 20 rewrites: 30 in 2ms cpu (2ms real)

(13210 rewrites/second)

Another property we can check is that either CIA is absent or CIR is present in cells not

expressing wg. CIA=0 or CIR=1 when wg=0. We can check this property using the following

search command:

6.3 Asynchronous Semantics 125

Maude > search SLP(1,0)wg(0,0)wg(1,0)wg(2,0)en(1,0)hh(0,0)

hh(1,0)hh(2,0)ptc(1,0)PTC(1,0)ci(1,1)CIA(1,0)CIR(1,0) =>!

SLP(1,tSLP:D1)wg(0,twgp:D1)wg(1,twg:D1)wg(2,twgn:D1)en(1,

ten:D1)hh(0,thhp:D1)hh(1,thh:D1)hh(2,thhn:D1)ptc(1,tptc:D1)

PTC(1,tPTC:D1)ci(1,tci:D1)CIA(1,tCIA:D1)CIR(1,1) .

Maude returns a solution at the third state where CIA is absent and CIR is present and

both properties hold from the given initial state.

Table 6.3 The Global State Representing the single Solution found by Maude.

wg0 wg1 wg2 en1 hh0 hh1 hh2 ptc1 PTC1 ci1 CIA1 SLP1
0 0 0 0 0 0 0 1 1 1 0 0

Solution 1 (state 3)

states: 4 rewrites: 3 in 0ms cpu (0ms real)

(6593 rewrites/second)

We now make use of Maude model checking capabilities to check for certain properties.

We define an atomic proposition atCIA: Nat D1 -> Prop , where atCIA(s) is true only

if CIA is in state s.

eq CIA(i,s1) s |= atCIA(i,s1) = true .

eq s |= atCIA(i,s1) = false [owise] .

We define a similar proposition for entity wg , We can then model check a range of

interesting dynamic properties expressed using the temporal operators of LTL as illustrated

by the example below for the cell division model:

red modelCheck(SLP(1,0)wg(0,0)wg(1,0)wg(2,0)en(1,0)hh(0,0)

hh(1,0)hh(2,0)ptc(1,0)PTC(1,0)ci(1,1)CIA(1,0)CIR(1,0), [] <>

(atCIA (1,1) \/ atwg (1 ,1)).

performing this model checking command, Maude returns the following output:

126 Case Study

rewrites: 27 in 0ms cpu (0ms real)

(188811 rewrites/second)

result Bool: true

which tells that the property holds from the given starting state and Maude returns true.

Starting from an initial state where ci,CIA and CIR are all active, we check for the possibility

of ending up with en always at state 1 using the following model checking command:

Maude > red modelCheck(SLP(1,0)wg(0,1)wg(1,0)wg(2,0)en(1,0)

hh(0,0)hh(1,0)hh(2,0)ptc(1,0)PTC(1,0)ci(1,1)CIA(1,1)

CIR(1,1), [] (<> [] aten (1 ,1))) .

Maude returns a counter example showing that no state matching the LTL formula

condition is reachable from the given initial state and returns a counter example as follows:

rewrites: 13 in 0ms cpu (0ms real) (28697 rewrites/second)

result [ModelCheckResult]: counterexample(nil , {wg(0, 1)

wg(1, 0) wg(2, 0) en(1, 0) hh(0, 0) hh(1, 0) hh(2, 0) ptc(1,

0) PTC(1, 0)ci(1, 1) CIA(1, 1)CIR(1, 1) SLP(1, 0),deadlock })

The counter example shows the LTL checker reaching a deadlock with en at state 0.

6.3.2 Extending the Model to 2 Cells

Building on the single cell model that was presented in Section 6.3.1, we now add a new cell

to the model without making any changes to the rewrite rules or the model definition as we

are working with indexes. We now add a new cell with the index 2 that is using the same set

of rewrite rules as the cell in the previous model of one cell.

We now present our first search for this model which looks to the entity CIA in the second

cell turning off, from a starting state that is now represented using 22 entities (two cells of

size 9 and four connecting entities to neighbouring cells):

Maude > search SLP(1,0)SLP(2,0)wg(0,0)wg(1,0)wg(2,0)wg(3,0)

en(1,0)en(2,1)hh(0,0)hh(1,0)hh(2,0)hh(3,0)ptc(1,0)ptc(2,0)

6.3 Asynchronous Semantics 127

PTC(1,0)PTC(2,1)ci(1,1)ci(2,1)CIA(1,0)CIA(2,1)CIR(1,0)

CIR(2,0) =>! SLP(1,tSLP:D1)SLP(2,tSLP2:D1)wg(0,twgp:D1)

wg(1,twg:D1)wg(2,twg2:D1)wg(3,twgn:D1)en(1,ten:D1)

en(2,ten2:D1)hh(0,thhp:D1)hh(1,thh:D1)hh(2,thh2:D1)

hh(3,thhn:D1)ptc(1,tptc:D1)ptc(2,tptc2:D1)PTC(1,tPTC:D1)

PTC(2,tPTC2:D1)ci(1,tci:D1)ci(2,tci2:D1)CIA(1,tCIA1:D1)

CIA(2,0)CIR(1,tCIR:D1)CIR(2,tCIR2:D1) .

Maude returns a single solution which was found on the 23rd state of the trace as follows:

Solution 1 (state 23)

states: 24 rewrites: 46 in 3ms cpu (4ms real)

(12182 rewrites/second)

twgp:D1 --> (0).D1

twg:D1 --> (0).D1

twg2:D1 --> (0).D1

twgn:D1 --> (0).D1

ten:D1 --> (0).D1

ten2:D1 --> (1).D1

thhp:D1 --> (0).D1

thh:D1 --> (0).D1

thh2:D1 --> (1).D1

thhn:D1 --> (0).D1

tptc:D1 --> (1).D1

tptc2:D1 --> (0).D1

tPTC:D1 --> (1).D1

tPTC2:D1 --> (1).D1

tci:D1 --> (1).D1

tci2:D1 --> (0).D1

tCIA1:D1 --> (1).D1

tCIR:D1 --> (0).D1

128 Case Study

tCIR2:D1 --> (0).D1

tSLP:D1 --> (0).D1

tSLP2:D1 --> (0).D1

For brevity and similar to the representation of solutions introduced earlier in Section

6.3.1, we present search solutions found by Maude using tables from now on. Table 6.4

represents the solution found using the first search command for this model.

Table 6.4 The Global State Representing the single Solution found by Maude.

wg0 SLP1 wg1 en1 hh1 ptc1 PTC1 ci1 CIA1 CIR1 wg3
0 0 0 0 0 0 1 1 1 0 0

hh0 SLP2 wg2 en2 hh2 ptc2 PTC2 ci2 CIA2 CIR2 hh3
0 0 0 1 1 0 1 0 0 0 0

We now take a look at the behavioural changes to entities hh and wg within cell i. We

start from an initial state where they are both at state 1 and check if they reach a point where

they are both at state 0 using the following search command:

search init1 =>! SLP(1,tSLP:D1)SLP(2,tSLP2:D1)wg(0,twgp:D1)

wg(1,0)wg(2,twg2:D1)wg(3,twgn:D1)en(1,ten:D1)en(2,ten2:D1)

hh(0,thhp:D1)hh(1,0)hh(2,thh2:D1)hh(3,thhn:D1)

ptc(1,tptc:D1)ptc(2,tptc2:D1)PTC(1,tPTC:D1)PTC(2,tPTC2:D1)

ci(1,tci:D1)ci(2,tci2:D1)CIA(1,tCIA1:D1)CIA(2,tCIA2:D1)

CIR(1,tCIR:D1)CIR(2,tCIR2:D1) .

Maude returns a single solution where hh(1) and wg(1) are both at state 0 that was

reachable after performing 609 rewrites. Table 6.5 represents the solution found using this

search command for this model.

Solution 1 (state 169)

states: 212 rewrites: 688 in 21ms cpu (23ms real)

(32544 rewrites/second)

6.3 Asynchronous Semantics 129

Table 6.5 The Global State Representing the single Solution found by Maude.

wg0 SLP1 wg1 en1 hh1 ptc1 PTC1 ci1 CIA1 CIR1 wg3
1 0 0 0 0 1 1 1 1 0 1

hh0 SLP2 wg2 en2 hh2 ptc2 PTC2 ci2 CIA2 CIR2 hh3
1 0 0 1 0 0 1 0 0 1 1

We now perform two model checking tests using LTL formulas using the same initial

state and only changing We can check the hypothesis that when en(1) becomes permanently

inactive then en(2) must continually be able to be on. This can be done using the following

model checking instruction:

Maude> red modelCheck(SLP(1,0)SLP(2,1)wg(0,1)wg(1,1)wg(2,1)

wg(3,1)en(1,0)en(2,0)hh(0,0)hh(1,0)hh(2,0)hh(3,0)ptc(1,0)

ptc(2,0)PTC(1,0)PTC(2,0)ci(1,0)ci(2,1)CIA(1,0)CIA(2,1)

CIR(1,0)CIR(2,0), <> [] aten(1,1) -> [] <> aten(2,1)) .

This holds for the given initial state and Maude returns the following:

rewrites: 162 in 7ms cpu (8ms real) (20349 rewrites/second)

result Bool: true

Furthermore we can now check how the interaction between the two cells affects the

original behaviour of entity ptc as an example, we can check whether en(2) being inactive

can lead to the activation of ptc(2) using the following model checking instruction:

Maude> red modelCheck(SLP(1,1)SLP(2,1)wg(0,0)wg(1,0)wg(2,0)

wg(3,0)en(1,1)en(2,1)hh(0,1)hh(1,0)hh(2,0)hh(3,1)ptc(1,0)

ptc(2,0)PTC(1,0)PTC(2,0)ci(1,0)ci(2,0)CIA(1,0)CIA(2,1)

CIR(1,0)CIR(2,0), <> [] aten(2,0) -> [] atptc(1,1)) .

Maude returns true from the given initial state showing the effect of setting the value

hh(3) to 1 on the behaviour of the ptc instance in cell 1.

130 Case Study

rewrites: 81 in 0ms cpu (2ms real) (97826 rewrites/second)

result Bool: true

The two model checking instructions show an increase in the number of rewrites per-

formed compared to the single-cell model. Maude is performing less rewrites per second as

a result of the new model size which is expected.

6.4 Synchronous Semantics

6.4.1 Basic Model of a single Cell

We now move onto the synchronous semantics of the single cell model. A list of synchronous

rewrite rules are generated using the RL framework and tool support. The Introduction of

variables s3 and s4 is needed as the next state of entities ptc and hh may or may have not

been updated at this stage:

rl [PTC0] : PTC(i,1,1)ptc(i,0,S4)hh(i + s(0),1,S3) =>

PTC(i,1,0)ptc(i,0,S4)hh(i + s(0),1,S3) .

rl [PTC0] : PTC(i,1,1)ptc(i,0,S4)hh(i - s(0),1,S3)

hh(i + s(0),0,S3) => PTC(i,1,0)ptc(i,0,S4)hh(i - s(0),1,S3)

hh(i + s(0),0,S3) .

rl [PTC1] : PTC(i,0,0)ptc(i,1,S4) => PTC(i,0,1)ptc(i,1,S4) .

The meta-level term representing a global state is as follows:

’__[’wg[’0.Zero ,’0.D1 ,’0.D1],’wg[’s_[’0.Zero],’0.D1 ,’0.D1],

’wg[’s_^2[’0. Zero],’0.D1 ,’0.D1],’en[’s_[’0.Zero],’0.D1 ,’0.D1],

’hh[’0.Zero ,’0.D1 ,’0.D1],’hh[’s_[’0.Zero],’0.D1 ,’0.D1],

’hh[’s_^2[’0. Zero],’0.D1 ,’0.D1],’ptc[’s_[’0.Zero],’0.D1 ,’0.D1],

’PTC[’s_[’0.Zero],’0.D1 ,’0.D1],’ci[’s_[’0.Zero],’1.D1 ,’0.D1],

’CIA[’s_[’0.Zero],’0.D1 ,’0.D1],’CIR[’s_[’0.Zero],

’0.D1 ,’0.D1],’SLP[’s_[’0.Zero],’0.D1 ,’0.D1]]

6.4 Synchronous Semantics 131

We define this meta-level term as an initial state and name it init to be used in the

following searches.

We now perform a few tests using the search command starting from the initial state

init. We search for both CIA and ptc both turning on at the same time (under settings

hh(0,1) hh(2,0) wg(1,1) wg(2,0) :

search init =>+ ’__[’CIA[’s_[’0.Zero],’1.D1 ,’1.D1],T1:Term ,

T2:Term ,T3:Term ,T4:Term ,T5:Term ,T6:Term ,T7:Term ,T8:Term ,

’ptc[’s_[’0.Zero],’1.D1 ,’1.D1],T10:Term ,T11:Term ,T12:Term] .

Maude returns a single solution at the fourth state of the trace after performing 149

rewrites in 16 milliseconds:

Solution 1 (state 4)

states: 5 rewrites: 122 in 14ms cpu (14ms real)

(8691 rewrites/second)

T1 --> ’CIR[’s_[’0.Zero],’0.D1 ,’0.D1]

T2 --> ’PTC[’s_[’0.Zero],’1.D1 ,’1.D1]

T3 --> ’SLP[’s_[’0.Zero],’1.D1 ,’1.D1]

T4 --> ’ci[’s_[’0.Zero],’1.D1 ,’1.D1]

T5 --> ’en[’s_[’0.Zero],’0.D1 ,’0.D1]

T6 --> ’hh[’0.Zero ,’1.D1 ,’1.D1]

T7 --> ’hh[’s_[’0.Zero],’0.D1 ,’0.D1]

T8 --> ’hh[’s_^2[’0. Zero],’0.D1 ,’0.D1]

T10 --> ’wg[’0.Zero ,’0.D1 ,’0.D1]

T11 --> ’wg[’s_[’0.Zero],’1.D1 ,’1.D1]

T12 --> ’wg[’s_^2[’0. Zero],’0.D1 ,’0.D1]

Now that we presented the Meta-level representation of solutions found by Maude, we

start using tables to present solutions for brevity (we provide the full solutions as returned by

Maude in Appendix A):

132 Case Study

Table 6.6 The Global State Representing the Solution found by Maude.

CIR1 PTC1 SLP1 ci1 en1 hh0 hh1 hh2 wg0 wg1 wg2
0 1 1 1 0 1 0 0 0 1 0

We now change the initial state of our search to have PTC at 1 and we set the four con-

necting entities to 1 and check if SLP can turn on from the given initial state:

search init =>+ ’__[T0:Term ,T1:Term ,T2:Term ,

’SLP[’s_[’0.Zero],’1.D1 ,’1.D1],T4:Term ,T5:Term ,

T6:Term ,T7:Term ,T8:Term ,T9:Term ,T10:Term ,T11:Term ,T12:Term] .

Maude returns a single solution after performing 58 rewrites in total reaching the solution

after performing 31 rewrites:

Table 6.7 The Global State Representing the Solution found by Maude.

CIA1 CIR1 PTC1 ci1 en1 hh0 hh1 hh2 ptc1 wg0 wg1 wg2
0 0 1 1 0 1 0 1 0 0 0 1

Solution 1 (state 1)

states: 2 rewrites: 31 in 5ms cpu (5ms real)

(5819 rewrites/second)

We now reset our initial state to have all internal cell entities at state 0 while the four

connecting entities (hh(i-1),hh(i+1),wg(i-1) and wg(i+1)) are at state 1 and check if

we can have four entities (CIA, PTC, SLP and ci) all turning on at the same time:

search init =>+ ’__[’CIA[’s_[’0.Zero],’1.D1 ,’1.D1],T1:Term ,

’PTC[’s_[’0.Zero],’1.D1 ,’1.D1],’SLP[’s_[’0.Zero],’1.D1,

’1.D1],’ci[’s_[’0.Zero],’1.D1 ,’1.D1],T5:Term ,T6:Term ,

T7:Term ,T8:Term ,T9:Term ,T10:Term ,T11:Term ,T12:Term] .

6.4 Synchronous Semantics 133

Maude finds a single solution where all four entities are at state 1 at the same time and

returns the following output:

Table 6.8 The Global State Representing the Solution found by Maude.

CIR1 en1 hh0 hh1 hh2 ptc1 wg0 wg1 wg2
0 0 0 0 1 1 0 1 1

Solution 1 (state 4)

states: 5 rewrites: 117 in 13ms cpu (13ms real)

(8760 rewrites/second)

We can check if SLP and CIA can become simultaneously active from an initial state

where they are inactive using the following model checking instruction:

Maude> red modelCheck(init , <> [] (atSLP(1,’1.D1) /\ atCIA(1,’1.D1))) .

Maude returns a counter example showing that no state meeting the LTL formula can be

reached from the given initial state:

rewrites: 163 in 15ms cpu (17ms real) (10324 rewrites/second)

result ModelCheckResult: counterexample({’__[’wg[’0.Zero,’0.D1,’0.D1],

’wg[’s_[’0.Zero],’1.D1,’1.D1],’wg[’s_^2[’0.Zero],’1.D1,’1.D1],

’en[’s_[’0.Zero],’0.D1,’0.D1],’hh[’0.Zero,’0.D1,’0.D1],’hh[’s_[’0.Zero],

’1.D1,’1.D1],’hh[’s_^2[’0.Zero],’1.D1,’1.D1],’ptc[’s_[’0.Zero],’0.D1,

’0.D1],’PTC[’s_[’0.Zero],’0.D1,’0.D1],

We now look into extending our synchronous model by adding a second cell taking and

performing a range of tests using the search command and the LTL model checker.

6.4.2 Extending the Model to 2 Cells

We now add a second cell to the model taking the number of entities within the model to 22.

We define the following meta level term as the starting point for our search and give it the

name init:

134 Case Study

’__[’wg[’0.Zero,’0.D1,’0.D1],’wg[’s_[’0.Zero],’0.D1,’0.D1],

’wg[’s_^2[’0.Zero],’0.D1,’0.D1],’wg[’s_^3[’0.Zero],’0.D1,’0.D1],

’en[’s_[’0.Zero],’0.D1,’0.D1],’en[’s_^2[’0.Zero],’1.D1,’1.D1],

’hh[’0.Zero,’0.D1,’0.D1],’hh[’s_[’0.Zero],’0.D1,’0.D1],

’hh[’s_^2[’0.Zero],’0.D1,’0.D1],’hh[’s_^3[’0.Zero],’0.D1,’0.D1],

’ptc[’s_[’0.Zero],’0.D1,’0.D1],’ptc[’s_^2[’0.Zero],

’0.D1,’0.D1],’PTC[’s_[’0.Zero],’0.D1,’0.D1],

’PTC[’s_^2[’0.Zero],’1.D1,’1.D1],’ci[’s_[’0.Zero],’1.D1,’1.D1],

’ci[’s_^2[’0.Zero],’1.D1,’1.D1],’CIA[’s_[’0.Zero],’0.D1,’0.D1],

’CIA[’s_^2[’0.Zero],’1.D1,’1.D1],’CIR[’s_[’0.Zero],’0.D1,’0.D1],

’CIR[’s_^2[’0.Zero],’0.D1,’0.D1],’SLP[’s_[’0.Zero],

’0.D1,’0.D1],’SLP[’s_^2[’0.Zero],’0.D1,’0.D1]] .

Our first search checks if both instances of CIA and both instances of PTC can be active

at the same time:

search init =>+ ’__[’CIA[’s_[’0.Zero],’1.D1,’1.D1],

’CIA[’s_^2[’0.Zero],’0.D1,’0.D1],T2:Term,T3:Term,

’PTC[’s_[’0.Zero],’1.D1,’1.D1],’PTC[’s_^2[’0.Zero],’1.D1,’1.D1],

T6:Term,T7:Term,T8:Term,T9:Term,T10:Term,T11:Term,T12:Term,

T13:Term,T14:Term,T15:Term,T16:Term,T17:Term,T18:Term,

T19:Term,T20:Term,T21:Term] .

Maude returns a single solution at the third state of the trace reaching the solution after

performing 115 rewrites:

Solution 1 (state 3)

states: 4 rewrites: 115 in 12ms cpu (12ms real)

(9200 rewrites/second)

T2 --> ’CIR[’s_[’0.Zero],’0.D1 ,’0.D1]

T3 --> ’CIR[’s_^2[’0. Zero],’0.D1 ,’0.D1]

T6 --> ’SLP[’s_[’0.Zero],’0.D1 ,’0.D1]

6.4 Synchronous Semantics 135

T7 --> ’SLP[’s_^2[’0. Zero],’0.D1 ,’0.D1]

T8 --> ’ci[’s_[’0.Zero],’1.D1 ,’1.D1]

T9 --> ’ci[’s_^2[’0. Zero],’0.D1 ,’0.D1]

T10 --> ’en[’s_[’0.Zero],’0.D1 ,’0.D1]

T11 --> ’en[’s_^2[’0. Zero],’1.D1 ,’1.D1]

T12 --> ’hh[’0.Zero ,’0.D1 ,’0.D1]

T13 --> ’hh[’s_[’0.Zero],’0.D1 ,’0.D1]

T14 --> ’hh[’s_^2[’0. Zero],’1.D1 ,’1.D1]

T15 --> ’hh[’s_^3[’0. Zero],’0.D1 ,’0.D1]

T16 --> ’ptc[’s_[’0.Zero],’1.D1 ,’1.D1]

T17 --> ’ptc[’s_^2[’0. Zero],’0.D1 ,’0.D1]

T18 --> ’wg[’0.Zero ,’0.D1 ,’0.D1]

T19 --> ’wg[’s_[’0.Zero],’0.D1 ,’0.D1]

T20 --> ’wg[’s_^2[’0. Zero],’0.D1 ,’0.D1]

T21 --> ’wg[’s_^3[’0. Zero],’0.D1 ,’0.D1]

We now search with the aim of finding a state where both instances of PTC from cells 1

and 2 are at state 1 using the following search:

Maude> search init =>+ ’__[T0:Term,T1:Term,T2:Term,T3:Term,

’PTC[’s_[’0.Zero],’1.D1,’1.D1],’PTC[’s_^2[’0.Zero],’1.D1,’1.D1],

T6:Term,T7:Term,T8:Term,T9:Term,T10:Term,T11:Term,T12:Term,

T13:Term,T14:Term,T15:Term,T16:Term,T17:Term,T18:Term,

T19:Term,T20:Term,T21:Term] .

Maude returns two solutions after performing 120 rewrites and Table 6.9 shows the two

solution states.

We now make use of Maude model checking capabilities to check for certain properties.

We define an atomic proposition atPTC, where it is true only if PTC is in state 0.

op atPTC : Nat Qid -> Prop .

eq ’__[T1:Term ,T2:Term ,T3:Term ,’PTC[’s_[’0.Zero],’0.D1 ,’0.D1],

136 Case Study

Table 6.9 The Global State Representing the 2 Solutions found by Maude.

wg0 SLP1 wg1 en1 hh1 ptc1 PTC1 ci1 CIA1 CIR1 wg3
1 0 0 0 0 0 1 1 1 0 0

hh0 SLP2 wg2 en2 hh2 ptc2 PTC2 ci2 CIA2 CIR2 hh3
0 0 0 1 1 0 1 0 1 0 0

wg0 SLP1 wg1 en1 hh1 ptc1 PTC1 ci1 CIA1 CIR1 wg3
1 0 0 0 0 1 1 1 1 0 0

hh0 SLP2 wg2 en2 hh2 ptc2 PTC2 ci2 CIA2 CIR2 hh3
1 0 0 1 1 0 1 0 0 0 0

T5:Term ,T6:Term ,T7:Term ,T8:Term ,T9:Term ,T10:Term ,T11:Term ,

T12:Term ,T13:Term ,T14:Term ,T15:Term ,T16:Term ,T17:Term ,

T18:Term ,T19:Term ,T20:Term ,T21:Term] |= atPTC(i,’1) = true .

eq T |= atPTC(i,Q1) = false [owise] .

We can then model check a range of interesting dynamic properties expressed using the

temporal operators of LTL as illustrated by the example below for the cell division model of

two cells:

red modelCheck(init , <> [] atPTC(1,’1.D1)) .

Maude returns a counter example in this case for the check starting from the starting

state init(the full trace of the counter example is omitted for brevity and is shown in full in

Appendix A):

rewrites: 166 in 21ms cpu (23ms real) (7851 rewrites/second)

result ModelCheckResult: counterexample({’__[’wg[’0.Zero,’0.D1,

’0.D1],’wg[’s_[’0.Zero],’0.D1,’0.D1],’wg[’s_^2[’0.Zero],’0.D1,

’0.D1],’wg[’s_^3[’0.Zero],’0.D1,’0.D1],

We can check if SLP and CIA instances in the second cell can become simultaneously

active from an initial state where their instances in the first cell are inactive using the following

model checking instruction:

6.5 Conclusions 137

Maude> red modelCheck(init , <> [] (atSLP(2,’1.D1) /\ atCIA(2,’1.D1))) .

Maude returns a counter example showing that the property does not hold and no state

meeting the LTL formula is reachable from the initial state init (the full trace of the counter

example is omitted for brevity and is shown in full in Appendix A):

rewrites: 137 in 9ms cpu (13ms real) (14204 rewrites/second)

result ModelCheckResult: counterexample({’__[’wg[’0.Zero,’1.D1,’1.D1],

’wg[’s_[’0.Zero],’1.D1,’1.D1],’wg[’s_^2[’0.Zero],’1.D1,’1.D1],

’wg[’s_^3[’0.Zero],’0.D1,’0.D1],’en[’s_[’0.Zero],’0.D1,’0.D1],

’en[’s_^2[’0.Zero],’1.D1,’1.D1],’hh[’0.Zero,’0.D1,’0.D1],

’hh[’s_[’0.Zero],’0.D1,’0.D1],’hh[’s_^2[’0.Zero],’0.D1,’0.D1],

’hh[’s_^3[’0.Zero],’0.D1,’0.D1],’ptc[’s_[’0.Zero],’1.D1, ’1.D1],

6.5 Conclusions

In this chapter, an analysis of the effect of cell division on expression patterns of the segment

polarity genes was produced as a larger case study that builds on the scalable test model

introduced in Chapter 5. We started with a simplified version of a single cell model that

reduced the model’s state space from 213 to 29 by simplifying the behaviour of 4 entities.

After that, a proposed model with of size 13 was introduced by adding the 2 connecting

entities from neighbouring cells i−1 and i+1, those entities were set to fixed values at first

to study the effect they had added from the original 9 entities model. Lastly, a model of size

22 was introduced that represented two cells and their 4 connecting entities to cells i−1 and

i+2.

We started by introducing an adapted boolean version of the model where we introduced

the dynamics of the system which has five different polarity genes and their corresponding

proteins. We discussed the behaviour of model entities and the relationship between them by

giving a detailed introduction to the interactions happening within a cell of entities. We then

introduced a proposed simplified version of the model that had 9 entities instead of 13 and

explained the decision behind the simplification.

138 Case Study

We then proposed a version of the model where we have a single cell with four fixed input

values for connecting entities from neighbouring cells. We alternate the inputs for those input

entities and performed a range of analysis using the search command starting from an initial

state with different input values from neighbouring cells. We then extended our analysis by

performing some LTL checks using certain properties that were true in the original network

and presented a few counter examples where those properties do not hold in our adapted

version of the model. We then extended our model to two cells with connecting entities to

neighbouring cells increasing the number of entities to 22 and performed a range of checks

using the search command where the number of rewrites per second was increasing, and the

LTL model checker where it was apparent that Maude was taking longer to come up with

counter examples for our LTL checks. After that, we introduced the synchronous versions of

of the two model sizes and performed a range of analysis for both models using Maude by

performing some searches and LTL model checking formulas.

The case study presented in this chapter have concluded the technical content of this

thesis by introducing a larger case studies than the ones considered in Chapters 3,4 and 5 and

have proven to be a good test to the developed RL framework and tool support by starting

the analysis of the model from traces and attractors to modelling it using RL and Maude and

producing a range of interesting biological properties.

Chapter 7

Concluding Remarks

7.1 Summary

At the start of this thesis, we stated that "This thesis aims to investigate the application

of RL to modelling and analysing MVNs, and to develop a set of tools and techniques

to support this". We have set out to develop and evaluate tools and techniques for MVNs

based on using RL and Maude. Rewriting logic has formed the core of this work, owing to

its numerous modelling advantages, including: (i) the ability of the framework to model and

analyse the behaviour of dynamic, concurrent systems; (ii) the success RL had in being used

to model a wide range of different formalisms and systems such as: process algebras, Petri

nets and their application in biological systems; (iii) the ability of RL to model the dynamic

behaviour of a given system using rewrite rules that can capture the non–deterministic

state transitions that occur in such systems; and (iv) rewriting strategies that can control

the application of rewrite rules and so allow an RL model to capture subtle aspects of the

behaviour of a dynamic system.

We developed an RL model for asynchronous MVNs based on their asynchronous update

semantics. A translation approach that translates an MVN into an RL model was presented

and discussed. The translation approach dealt with straightforward translations taking a

single equation part and producing a matching rewrite rule. More importantly, the translation

approach dealt with more complex translations when an entity is missing from an equation

140 Concluding Remarks

and can hold more than one value hence the need for two or more equations. The translation

approach also had to make sure to add missing terms in case they are not present. We

provided a formal correctness argument where we formally showed that our translation

approach for both asynchronous and synchronous MVNs to an RL model was correct. In our

argument we proved the soundness and completeness of our approach. Techniques and the

developed RL framework were then illustrated using case studies for both the asynchronous

and synchronous semantics. The synchronous mechanisms were more challenging as we

needed to introduce and make use of rewriting strategies and the metalevel representation of

terms within those models. Those case studies have helped motivate our RL framework by

illustrating the analysis techniques and flexibility available when using RL and Maude. We

formally investigated those case studies using a range of powerful analysis tools provided by

Maude, which was one of the motivations for choosing to use RL.

The case studies presented for our RL framework for asynchronous and synchronous

MVNs provided a good illustration of the practical application of the RL techniques we have

developed. However, as they provided little indication of how the developed RL approach

would scale when applied to larger MVN models and what impact the well–known state

space explosion problem would have. In order to evaluate the performance and the scalability

of our RL framework, we addressed this by defining an artificial, scalable MVN model in

order to allow a range of model sizes to be considered and we investigated how our RL

framework performed as the MVN size (i.e. number of entities) increased. We started off by

introducing a test model of 5 entities as the main building block, then we scaled the model

in increments of five and explained how blocks are connected when it comes to scaling our

test model. We started off by doubling the number of entities in our model by adding a new

block and performed some analysis on what kind of behaviour that adds to our test model.

Using the developed techniques and tools we presented both asynchronous and synchronous

versions of our test model and performed a systematic analysis. We started our analysis using

the Maude’s search command where we identified three types of test searches to be carried

out. Following that we defined two model checking commands using LTL model checking

formulas. We started off by testing the basic version of the model that had 5 entities before

7.2 What has been achieved 141

scaling the test models in increments of 5 and performing the same test searches and LTL

model checking commands. The results of those tests gave as an idea on the scalability of our

framework, as those test results were summarised and categorised as the models increased in

size.

A larger case study from the literature which was the gene regulatory network of the

segment polarity gene family at the basis of Drosophila embryonic development was also

introduced to be analysed and tested using the developed techniques and the RL framework.

After we analysed the case study and ran a range of tests using our RL framework we were

able to give some insights into how well it coped with a larger case study. We started with

a simplified version of a single cell model that reduced the model’s state space from 213 to

29 by simplifying the behaviour of 4 entities. After that, a proposed model with of size 13

was introduced by adding the 2 connecting entities from neighbouring cells i−1 and i+1,

those entities were set to fixed values at first to study the effect they had added from the

original 9 entities model. Lastly, a model of size 22 was introduced that represented two cells

and their 4 connecting entities to cells i−1 and i+2. The RL framework was able to cope

with the different model sizes and we were able to generate RL models that we analysed

using Maude’s search command and the LTL model checker under different sets of settings

using certain properties that were true in the original network and presented a few counter

examples where those properties do not hold in our adapted version of the model with no

issues regarding performance.

7.2 What has been achieved

Looking back at the list of contributions we identified in Section 1.2, we have focused on

developing these aspects of RL with a specific application to MVNs. In particular, this thesis

has resulted in the following key contributions:

1. Defining a new semantic translation from an asynchronous MVN into an RL model

that appears to be the first such translation in the literature (presented in Chapter 3).

142 Concluding Remarks

Importantly, we formally proved the correctness of our translation approach in Section

3.3.

2. Defining a new semantic translation from a synchronous MVN into an RL model

by the use of rewriting strategies that appears to be the first such translation in the

literature (presented in Chapter 4). Importantly, we formally proved the correctness of

our translation approach in Section 4.3.

3. Developing a scalable test model to carry out a formal investigation into the scalability

of the developed RL framework and it’s performance (presented in Chapter 5).

4. Developing an integrated toolset to support the developed RL framework and perform

automatic translation from an MVN to an RL model and vice versa (presented in

Chapter 2 and used for case studies presented in Chapters 3,4,5 and 6).

5. Undertaking a biologically relevant case study from the literature to investigate apply-

ing the developed RL framework and illustrate the practical applications and support

the application of new RL techniques and tools using a parametric model. This case

study provides a a starting point for anyone who would like to use the developed

techniques and the RL framework (presented in Chapter 6).

7.3 Future Work

This thesis has investigated the support tools available for MVNs and RL. With our RL

framework and the developed tools and techniques, a number of interesting areas of future

research can be done to take this work forward. We represent those as a prioritised list as

follows:

1. Evaluate the use of RL in modelling and analysing MVNs by considering larger case

studies from the literature to further test the performance of our RL framework with

regards to limitations and required computer power.

7.3 Future Work 143

2. Evaluate the developed tools and techniques and aim to enhance the performance of

our RL framework. While a range of case studies were undertaken during the course

of this thesis, case studies from different areas could be considered to enable further

development of the RL framework.

3. Integrate the developed tools and techniques into a compositional approach (for exam-

ple, see [102]) allowing a range of larger compositional models to be considered and

tested .

4. Extend the developed tool support to hide the use of Maude at the meta-level, and

develop meta-level search facilities that are tailored to MVN’s. This would simplify

the process of testing and analysing synchronous MVNs using the developed RL

framework.

5. Investigate Extending MVN modelling approach with new concepts such as prioritising

entities and support entity location based update which can lead to a wider range of

models from different areas to be analysed and tested.

6. Investigate further practical applications for the developed tools and techniques. Such

as: work with biologists to develop a range of synthetic models to support synthetic

biology [110] automating as a new area where the applicability of the developed

framework can be tested and improved, and to develop a range of adaptation techniques

for different sets of requirements.

References

[1] Bartocci, E. and Lió, P. (2016). Computational modelling, formal analysis and tools for

systems biology. PLOS Computational Biology, 12(1), pp. e1004591.

[2] Rudell, R. and Sangiovanni-Vincentelli, A. (1987). Multiple-Valued Minimization for

PLA Optimization. IEEE Transactions on Computer-Aided Design, CAD-6.

[3] Thomas, R. and D’Ari, R. (1990). Biological Feedback, CRC Press.

[4] Chaouiya C., Remy, E. and Thieffry, D. (2008). Petri Net Modelling of Biological

Regulatory Networks. Journal of Discrete Algorithms, 6(2):165–177.

[5] Banks, R. and Steggles, L. J. (2007). A High-Level Petri Net Framework for Multi-Valued

Genetic Regulatory Networks. Journal of Integrative Bioinformatics, 4(3):60.

[6] Kauffman, S. A. (1969). Metabolic stability and epigenesis in randomly constructed

genetic nets. Journal of Theoretical Biology, 22(3):437–467.

[7] Wuensch, A. (2002). Basins of Attraction in Network Dynamics: A Conceptual Frame-

work for Biomolecular Networks, In: G.Schlosser and G.P.Wagner (Eds), Modularity in

Development and Evolution, pages 288-311, Chicago University Press.

[8] Harvey, I. and Bossomaier, T. (1997). Time Out of Joint: Attractors in Asynchronous

Random Boolean Networks. In: P. Husbands and I. Harvey (eds.), Proc. of ECAL97,

pages 67–75, MIT Press.

[9] Meseguer, J. (1992). Conditional rewriting logic as a unified model of concurrency.

Theoretical Computer Science, 96(2):73–155.

146 References

[10] Martí-Oliet, N. and Meseguer, J. (2002). Rewriting logic as a logical and semantic

framework. In: D.M.Gabbay and F.Guenthner (eds), Handbook of Philosophical Logic

(Second Edition), Vol. 9, pages 1–87, Kluwer Academic Publishers.

[11] Ciobanu, G., Koutny, M. and Steggles, L. J. (2014). Strategy based semantics for

mobility with time and access permissions. Formal Aspects of Computing, 27(3):525–

549.

[12] Stehr, M-O., Meseguer, J. and P. C. Ölveczky. (2001). Rewriting Logic As a Unifying

Framework for Petri Nets. In: H. Ehrig, et al. (eds), Unifying Petri Nets: Advances in

Petri Nets, LNCS 2128, pages 250–303, Springer Verlag.

[13] Steggles, L. J. (2001). Rewriting Logic and Elan: Prototyping Tools for Petri Nets with

Time. Applications and Theory of Petri Nets 2001, LNCS 2075, pages 363-381, Springer

Verlag.

[14] Eker, S., Knapp, M., Laderoute, K., Lincoln, P., Meseguer, J. and Sonmez, K. (2004).

Pathway Logic: Executable models of biological networks. In: F. Gadducci, U. Montanari

(eds.), Proc. of WRLA 2002, Electronic Notes in Theoretical Computer Science, 71:144–

161.

[15] Nigam, V., Donaldson, R., Knapp, M., McCarthy, T. and Talcott, C. (2015). Inferring

Executable Models from Formalized Experimental Evidence. In: Computational Methods

in Systems Biology 9308, pages 90–103, Springer Verlag.

[16] Clavel, M., Durán,F., Eker, S., Meseguer, J. and Lincoln, P. (1998). An introduction to

Maude (beta version). Manuscript, SRI International (March).

[17] Clavel, M. (2002). Maude: Specification and Programming in Rewriting Logic. Theo-

retical Computer Science, 285(2):187–243, .

[18] Borovanský, P., Kirchner, C., Kirchner, H., Moreau, P.–E. and Ringeissen, C. (1998).

An overview of ELAN. In: C. Kirchner and H. Kirchner (eds), Proc. of WRLA ’98,

Electronic Notes in Theoretical Computer Science, 15.

References 147

[19] Balland, E., Brauner, P., Kopetz, R., Moreau, P.-E. and Reilles, A. (2007). Tom:

Piggybacking rewriting on java. In: RTA’07, LNCS 4533, pages 36–47, Springer Verlag.

[20] Eker, S., Martí-Oliet, N., Meseguer, J. and Verdejo, A. (2007). Deduction, Strategies,

and Rewriting. Proc. of STRATEGIES 2006, Electronic Notes in Theoretical Computer

Science, 174(11):3–25.

[21] Sen, A. K. and Liu, W. (1990). Dynamic analysis of genetic control and regulation of

amino acid synthesis: The tryptophan operon in Escherichia coli. Biotechnology and

Bioengineering, 35(2):185–194.

[22] Santillán, M. and Mackey, M. C. (2001). Dynamic regulation of the tryptophan operon:

A modelling study and comparison with experimental data. PNAS, 98(4): 1364-1369.

[23] Simão, E., Remy, E., Thieffry, D. and Chaouiya, C. (2005). Qualitative modelling of

regulated metabolic pathways: application to the tryptophan biosynthesis in E. Coli.

Bioinformatics, 21:190-196.

[24] Lahdesmki, H., Shmulevich, I. and Yli-Harja, 0. (2003). On learning gene regulatory

networks under the boolean network model. Machine Learning, 52:147-167.

[25] Thieffry, D. and Thomas, R. (1995). Dynamical behaviour of biological regulatory

networks - II. Immunity control in bacteriophage lambda. Bulletin of Mathematical

Biology, 57:277–295.

[26] Pathway Logic, http://pl.csl.sri.com/. Accessed: 30/12/2016.

[27] Eker, S., Meseguer, J., Sridharanarayanan, A. (2004). The Maude LTL Model Checker.

In: F. Gadducci, U. Montanari (eds.), Proc. of WRLA 2002, Electronic Notes in Theoreti-

cal Computer Science, 71:162–187.

[28] Clavel, M., et al. Maude Manual (Version 2.7) http://maude.lcc.uma.es/manual/maude-

manual.html Accessed April 2016.

148 References

[29] Schaub, M., Henzinger, T. and Fisher, J. (2007). Qualitative networks: A symbolic

approach to analyze biological signaling networks. BMC Systems Biology, 1:4.

[30] Mishchenko, A. and Brayton, R. (2002). Simplification of non-deterministic multi-

valued networks. In: ICCAD ’02: Proc. of the 2002 IEEE/ACM Int. Conference on

Computer-aided design, pages 557–562.

[31] Oppenheim, A.B., Kobiler, O., Stavans, J., Court, D. L. and Adhya, S. L. (2005).

Switches in bacteriophage λ development. Annual Review of Genetics, 39:4470–4475.

[32] Thomas, R. (1990). Boolean formalization of genetic control circuits. Journal of Theo-

retical Biology, 42:563–585.

[33] Kauffman, S. A. (1993). The origins of order: Self-organization and selection in

evolution. Oxford University Press, New York, January.

[34] Tournier, L. and Chaves, M. (2009). Uncovering operational interactions in genetic net-

works using asynchronous Boolean dynamics. Journal of Theoretical Biology, 260:196–

209.

[35] Saadatpour, A., Albert, I. and Albert, R. (2010). Attractor analysis of asynchronous

Boolean models of signal transduction networks. Journal of Theoretical Biology, 266:641–

656.

[36] MVSIS Group. UC Berkeley: https://embedded.eecs.berkeley.edu/mvsis/, Accessed:

30/12/2016.

[37] Manna, Z. and Pnueli, A. (1992). The Temporal Logic of Reactive and Concurrent

Systems – Specification. Springer.

[38] Steggles, L. J., Banks, R., Shaw, O. and Wipat, A. (2006). Qualitatively modelling and

analysing genetic regulatory networks: a Petri net approach. Bioinformatics, 23(3):336-

343.

References 149

[39] Chaouiya, C., Naldi, A. and Thieffry, D. (2012). Logical Modelling of Gene Regulatory

Networks with GINsim. Methods in molecular biology (Clifton, N.J.), 804:463-79.

[40] Meseguer, J. and Montanari, U. (1990). Petri nets are monoids. Information and Com-

putation, 88(2):105-155.

[41] Bruni, R., Meseguer, J., and Montanari, U. (1998). Internal strategies in a rewriting

implementation of tile systems. Electronic Notes in Theoretical Computer Science.

Volume 15, Pages 331-352.

[42] Alhumaidan, A. and Steggles, L. J. (2017). Modelling and Analysing Qualitative

Biological Models using Rewriting Logic. Fundamenta Informaticae, vol. 153, no. 1-2,

pp. 1-28.

[43] Chaouiya, C., Naldi, A. and Thieffry, D. (2012). Logical Modelling of Gene Regulatory

Networks with GINsim.. Methods in molecular biology (Clifton, N.J.). 804:463-479.

[44] Akutsu, T., Kuhara, S., Maruyama, 0. and Miyano, S. (1998). A system for identifying

genetic networks from gene expression patterns produced by gene disruptions. Genome

Informatics, 9:151-160.

[45] McMillan, K.L. (1993). Symbolic Model Checking. Kluwer Academic Publishers,

Boston, MA.

[46] Murata, T. (1989). Petri nets: Properties, analysis and applications. Proceedings of the

IEEE, 77:541-580.

[47] Shatz, S., Tu, S., Murata, T. and Duri, S. (1996). An application of petri net reduction

for ada tasking deadlockanalysis. Parallel and Distributed Systems, 7(12):1307-1322.

[48] Nazareth, D. (1993). Investigating the applicability of petri nets for rule-based system

verification. IEEE Transactions on Knowledge and Data Engineering, 5(3):402.

150 References

[49] Roig, O., Cortadella, J. and Pastor, E. (1995). Verification of asynchronous circuits by

bdd- based model checking of petri nets. 16th Int. Conf. on Application and Theory of

Petri Nets, 935:374-391.

[50] Will, J. and Heiner, M. (2002). Petri nets in biology, chemistry, and medicine-

bibliography. Computer, pages 1-36, Jan.

[51] Goss, P. J. E. and Peccoud, J. (1998). Quantitative modelling of stochastic systems in

molecular biology by using stochastic petri nets. Proceedings of the National Academy

of Sciences, 95:6750-6755.

[52] Shmulevich, I., Dougherty, E. and Zhang, W. (2002). From boolean to probabilistic

boolean networks as models of genetic regulatory networks. Proceedings of the IEEE,

90:1778-1792.

[53] Comet, J. P., Klaudel, H. and Liauzu, S. (2005). Modeling multi-valued genetic regula-

tory networks using high-level petri nets. LNCS, 3536:208-227.

[54] Petri Net World, www.informatik.uni-hamburg.de/TGI/PetriNets. Accessed on:

10/1/2017.

[55] Reisig, W. and Rozenberg, G. (1998). Lectures on Petri nets I: basic models. Advances

in Petri Nets, Lecture Notes in Computer Science 1491, Springer-Verlag.

[56] Murata, T. (1989). Petri nets: properties, analysis and applications. Proc. IEEE

,77,5414580.

[57] JUNG, Java Universal Network/Graph Framework. http://jung.sourceforge.net/. Ac-

cessed on: 15/3/2017.

[58] Comet, J. P., Klaudel, H. and Liauzu, S. (2004). Modeling Multi-Valued Genetic

Regulatory Networks Using High-Level Petri Nets. Rapport de Recherche.

References 151

[59] Gonzalez Gonzalez, A., Naldi, A., sanchez, L. S., Thieffry, D. and Chaouiya, C. (2006).

GINsim: A software suite for the qualitative modelling, simulation and analysis of

regulatory networks. BioSystems 84, 91-100.

[60] Chaouiya, C. (1995). Dynamical behaviour of biological regulatory networks–II. Im-

munity control in bacteriophage lambda, ginsim.org/node/47.

[61] Steggles, L. J., Banks, R., Shaw, O. and Wipat, A. (2007). Qualitatively modelling and

analysing genetic regulatory networks: a Petri net approach. BIOINFORMATICS, Vol.

23 no. 3 , pages 336–343.

[62] Gschwind, A., Zwick, E., Prenzel, N., Leserer, M. and Ullrich, A. (2001). Cell commu-

nication networks: epidermal growth factor receptor transactivation as the paradigm for

interreceptor signal transmission. Oncogene, 20:1594-1600.

[63] Kwiatkowska, M., Norman, G. and Parker. D. (2009). PRISM: Probabilistic Model

Checking for Performance and Reliability Analysis. Oxford University Computing

Laboratory.

[64] Eker, S., Knapp, M., Laderoute, K., Lincoln, P., Meseguer, J. and Sonmez, K. (2002).

Pathway Logic: Symbolic Analysis of Biological Signalling. Pacific Symposium on

Biocomputing, January 3-7, p400-412.

[65] Chaouiya, C., Naldi, A., Remy, E. and Thieffry, D. (2011). Petri net representation of

multi-valued logical regulatory graphs. Natural Computing, 10(2):727–750.

[66] Drossel, B., Mihaljev, T. and Greil, F. (2005). Number and length of attractors in a

critical Kauffman model with connectivity one. Physical Review Letters, 94(8).

[67] D’Silva, V., Kroening, D. and Weissenbacher,G. (2008). A Survey of Automated

Techniques for Formal Software Verification. IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, 27(7):1165–1178.

[68] Emerson, E.A. (1990). Temporal and modal logic. Handbook of Theoretical Computer

Science, Chapter 16, the MIT Press.

152 References

[69] William, L. K. (2005). Hardware Design Verification: Simulation and Formal Method-

Based Approaches.

[70] Clavel, M. and Durán, F. and Eker, S. and Lincoln, P. and Martí-Oliet, N. and Meseguer,

J. . Metalevel Computation in Maude, Electronic Notes in Theoretical Computer Science.

Volume 15.

[71] Emerson, E. A. (1990). Temporal and modal logic, Handbook of Theoretical Computer

Science, Chapter 16.

[72] D’haeseleer, P., Liang, S. and Somogyi, R. (2000). Genetic network inference: from co-

expression clustering to reverse engineering. Bioinformatics, 16:707-726.

[73] Hilbert, D. and Ackermann, W. (1928). Principles of Mathematical Logic. Springer-

Verlag , ISBN 0-8218-2024-9.

[74] Someren, E., Wessels, L., Backer, E. and Reinders, M. (2002). Genetic network model-

ing. Pharmacogenomics, 3(4):507-525.

[75] Kauffman, S. (1969). Metabolic stability and epigenesis in randomly constructed genetic

nets. J Theor Biol, 2(3):437-467.

[76] Akutsu,T., Miyano, S. and Kuhara, S. (2000). Algorithms for Identifying Boolean Net-

works and Related Biological Networks based on Matrix Multiplication and Fingerprint

Function.

[77] Thomas, R. (1973). Boolean formalization of genetic control circuits. Journal of theo-

retical biology. Dec. 42:563-585.

[78] Smolen, P., Baxter, D. and Byrne, J. (2000). Modeling transcriptional control in gene

networks-methods, recent results, and future directions. Bulletin of Mathematical Biol-

ogy, 62:247-292, Jan.

[79] Harvey, I. and Bossomaier, T. (1997). Proceedings of the Fourth European Conference

on Artificial Life (ECAL97).

References 153

[80] McAdams, H. and Arkin, A. (1998). Simulation of prokaryotic genetic circuits. Annual

Review of Biophysics and Biomolecular Structure, 27:199-224, Jan.

[81] Klemm, K. and Bornholdt, S. (2005). Stable and unstable attractors in boolean networks.

Physical Review E, Jan.

[82] Wuensche, A. (1998) Genomic regulation modelled as a network with basins of attrac-

tion. Pacific Symposium on Biocomputing, 3:89-102.

[83] Akutsu, T., Miyano, S. and Kuhara, S. (1999). Identification of genetic networks from

a small number of gene expression patterns under the boolean network model. Pacific

Symposium on Biocomputing., pages 17-28.

[84] de Jong, H. (2002). Modeling and simulation of genetic regulatory systems: a literature

review.. J Comput Biol. 9(1):67-103.

[85] Dassow, v., Meir, G., Munro, E., M., E. and Odell, G. M. (2000). The segment polarity

network is a robust developmental module. Nature 406, 188–192.

[86] Albert, R. and Othmer, H. G. (2003). The topology of the regulatory interactions

predicts the expression pattern of the Drosophila segment polarity genes. J. Theor. Biol.

223, 1–18.

[87] Hooper, J. E. and Scott, M. P. (1989). The Drosophila patched gene encodes a putative

membrane protein required for segmental patterning. Cell 59, 751–765.

[88] Hooper, J. E. and Scott, M. P. (1992). The molecular genetic basis of positional infor-

mation in insect segments. In Early embryonic development of animals (ed. W. Hennig),

pp. 1–49. Berlin, Germany: Springer.

[89] Eaton, S. and Kornberg, T. B. (1990). Repression of ci–d in posterior compartments of

Drosophila by engrailed. Genes Dev. 4, 1068–1077.

154 References

[90] Taylor, A. M., Nakano, Y., Mohler, J. and Ingham, P. W. (1993). Contrasting distri-

butions of patched and hedgehog proteins in the Drosophila embryo. Mech. Dev. 42,

89–96.

[91] Ingham, P. W. and McMahon, A. P. (2001). Hedgehog signaling in animal development:

paradigms and principles. Genes Dev. 15, 3059–3087.

[92] Chaves, M. and Albert, R. (2008). Studying the effect of cell division on expression

patterns of the segment polarity genes. J. R. Soc. Interface (2008) 5, S71–S84.

[93] Ingolia, N. T. (2004). Topology and robustness in the Drosophila segment polarity

network. PLoS Biol. 2, 0805–0815.

[94] Chaves, M., Sontag, E. D. and Albert, R. (2006). Methods of robustness analysis for

boolean models of gene control networks. IEE Proc. Syst. Biol. 153, 154–167.

[95] Sanson, B. (2001). Generating patterns from fields of cells. Examples from Drosophila

segmentation. EMBO Rep. 21, 1083–1088.

[96] Chaves, M., Albert, R. and Sontag, E. D. (2005). Robustness and fragility of boolean

models for genetic regulatory networks. J. Theor. Biol. 235, 431–449.

[97] Aza-Blanc, P. and Kornberg, T. B. (1999). Ci a complex transducer of the hedgehog

signal. Trends Genet. 15, 458–462.

[98] Baker, N. E. (1988). Transcription of the segment-polarity gene wingless in the imaginal

discs of Drosophila, and the phenotype of a pupal-lethal wg mutation. The Company of

Biologists Limited.

[99] Nosslein-Volhard, C. and Wleschaus, E. (1980). Mutations affecting segment number

and polarity in Drosophila. Nature, Lond. 287, 795-801.

[100] Jacinto, A., Alexandre, C. and Ingham, P. W. (1996). Transcriptional activation of

hedgehog target genes in Drosophila is mediated directly by the Cubitus interruptus

References 155

protein, a member of the GLI family of zinc finger DNA-binding proteins. Genes Dev.

10, 2003–2013.

[101] Jean-Louis, G. ,Grant M. and Olivier M. (2004). Rewriting systems and the modelling

of biological systems. Comparative and Functional Genomics, Comp Funct Genom 5:

95–99.

[102] H. Alkhudhayr and J. Steggles. (2017) A Formal Framework for Composing Quali-

tative Models of Biological Systems. In: C. Martín-Vide, R. Neruda and M. A. Vega-

Rodríguez, TPNC 2017, Lecture Notes in Computer Science 10687, pp. 25–36, Springer.

[103] BooleSim. https://rumo.biologie.hu-berlin.de/boolesim/. Accessed on: 15/7/2017.

[104] Biographer.Simulator. https://github.com/biographer/biographer.simulator. Accessed

on: 21/9/2017.

[105] The Systems Biology Graphical Notation. https://github.com/sbgn. Accessed on:

18/3/2018.

[106] Data-Driven Documents. https://d3js.org/. Accessed on: 20/3/2018.

[107] Alhumaidan, A. A Support Tool for BooleanNetworks. (2014). CSC8499 Individual

Project (Master’s Dissertation), Advanced Computer Science MSc. School of Computing

Science, Newcastle University.

[108] Macneil, LT, Walhout, AJ. (2011). Gene regulatory networks and the role of robustness

and stochasticity in the control of gene expression. Genome Res.c21(5):645-57.

[109] Davidson, E., Levine M. (2005). Gene regulatory networks. Proc Natl Acad Sci,

102:4935.

[110] Elowitz, MB, Leible,r S. (2000). A synthetic oscillatory network of transcriptional

regulators. Nature. Jan 20;403(6767):8-335.

Appendix A

Appendix A

In this section we provide search results for the tests we carried out in Chapter 6 in full and

as returned by Maude.

A.1 Asynchronous Semantics

A.1.1 Basic model of a Single Cell

CIA turning on from an initial state where all entities are at state 0 using the following search

command:

Maude> search SLP(1,0)wg(0,0)wg(1,0)wg(2,0)en(1,0)hh(0,0)hh(1,0)hh(2,0)

ptc(1,0)PTC(1,0)ci(1,0)CIA(1,0)CIR(1,0) =>! SLP(1,tSLP:D1)wg(0,twgp:D1)

wg(1,twg:D1)wg(2,twgn:D1)en(1,ten:D1)hh(0,thhp:D1)hh(1,thh:D1)

hh(2,thhn:D1)ptc(1,tptc:D1)PTC(1,tPTC:D1)ci(1,tci:D1)CIA(1,1)CIR(1,tCIR:D1) .

search in StartCellDivisionIndex : (((((((((((CIA(1, 0) CIR(1, 0)) ci(1, 0))

PTC(1, 0)) ptc(1, 0)) hh(2, 0)) hh(1, 0)) hh(0, 0)) en(1, 0)) wg(2, 0))

wg(1, 0)) wg(0, 0)) SLP(1, 0) =>! wg(0, twgp:D1) wg(1, twg:D1) wg(2, twgn:D1)

en(1, ten:D1) hh(0, thhp:D1) hh(1, thh:D1) hh(2, thhn:D1) ptc(1, tptc:D1)

PTC(1, tPTC:D1) ci(1, tci:D1) CIA(1, 1) CIR(1, tCIR:D1) SLP(1, tSLP:D1) .

158 Appendix A

Solution 1 (state 4)

states: 5 rewrites: 4 in 0ms cpu (0ms real) (6700 rewrites/second)

twgp:D1 --> (0).D1

twg:D1 --> (0).D1

twgn:D1 --> (0).D1

ten:D1 --> (0).D1

thhp:D1 --> (0).D1

thh:D1 --> (0).D1

thhn:D1 --> (0).D1

tptc:D1 --> (1).D1

tPTC:D1 --> (1).D1

tci:D1 --> (1).D1

tCIR:D1 --> (0).D1

tSLP:D1 --> (0).D1

No more solutions.

states: 5 rewrites: 4 in 0ms cpu (0ms real) (5571 rewrites/second)

CIR is typically absent in cells expressing wg. CIR=0 when wg =1. We can check that

property using the following search command starting from an initial state where all instances

of wg are at state 1:

Maude> search SLP(1,0)wg(0,1)wg(1,1)wg(2,1)en(1,0)hh(0,0)hh(1,0)hh(2,0)

ptc(1,0)PTC(1,0)ci(1,0)CIA(1,0)CIR(1,0) =>! SLP(1,tSLP:D1)wg(0,twgp:D1)

wg(1,twg:D1)wg(2,twgn:D1)en(1,ten:D1)hh(0,thhp:D1)hh(1,thh:D1)

hh(2,thhn:D1)ptc(1,tptc:D1)PTC(1,tPTC:D1)ci(1,tci:D1)CIA(1,tCIA:D1)CIR(1,0) .

search in StartCellDivisionIndex : (((((((((((CIA(1, 0) CIR(1, 0)) ci(1, 0))

PTC(1, 0)) ptc(1, 0)) hh(2, 0)) hh(1, 0)) hh(0, 0)) en(1, 0)) wg(2, 1)) wg(

1, 1)) wg(0, 1)) SLP(1, 0) =>! wg(0, twgp:D1) wg(1, twg:D1) wg(2, twgn:D1)

en(1, ten:D1) hh(0, thhp:D1) hh(1, thh:D1) hh(2, thhn:D1) ptc(1, tptc:D1)

A.1 Asynchronous Semantics 159

PTC(1, tPTC:D1) ci(1, tci:D1) CIA(1, tCIA:D1) CIR(1, 0) SLP(1, tSLP:D1) .

Solution 1 (state 17)

states: 20 rewrites: 30 in 1ms cpu (1ms real) (15552 rewrites/second)

twgp:D1 --> (1).D1

twg:D1 --> (1).D1

twgn:D1 --> (1).D1

ten:D1 --> (0).D1

thhp:D1 --> (0).D1

thh:D1 --> (0).D1

thhn:D1 --> (0).D1

tptc:D1 --> (1).D1

tPTC:D1 --> (1).D1

tci:D1 --> (1).D1

tCIA:D1 --> (1).D1

tSLP:D1 --> (1).D1

Solution 2 (state 18)

states: 20 rewrites: 30 in 2ms cpu (2ms real) (13692 rewrites/second)

twgp:D1 --> (1).D1

twg:D1 --> (0).D1

twgn:D1 --> (1).D1

ten:D1 --> (0).D1

thhp:D1 --> (0).D1

thh:D1 --> (0).D1

thhn:D1 --> (0).D1

tptc:D1 --> (1).D1

tPTC:D1 --> (1).D1

tci:D1 --> (1).D1

160 Appendix A

tCIA:D1 --> (1).D1

tSLP:D1 --> (0).D1

No more solutions.

states: 20 rewrites: 31 in 2ms cpu (2ms real) (12815 rewrites/second)

Starting from an initial state where ci,CIA and CIR are all active, we check for the

possibility of ending up with en always at state 1 using the following model checking

command:

Maude> red modelCheck(SLP(1,0)wg(0,1)wg(1,0)wg(2,0)en(1,0)hh(0,0)hh(1,0)

hh(2,0)ptc(1,0)PTC(1,0)ci(1,1)CIA(1,1)CIR(1,1), [] (<> [] aten(1,1))) .

reduce in StartCellDivisionIndex : modelCheck((((((((((((CIA(1, 1)

CIR(1, 1))ci(1, 1)) PTC(1, 0)) ptc(1, 0)) hh(2, 0)) hh(1, 0)) hh(0, 0))

en(1, 0)) wg(2, 0)) wg(1, 0)) wg(0, 1)) SLP(1, 0), []<> []aten(1, 1)) .

rewrites: 13 in 0ms cpu (0ms real) (26315 rewrites/second)

result [ModelCheckResult]: counterexample(nil, {wg(0, 1) wg(1, 0)

wg(2, 0) en(1, 0) hh(0, 0) hh(1, 0) hh(2, 0) ptc(1, 0) PTC(1, 0)

ci(1, 1) CIA(1, 1) CIR(1, 1) SLP(1, 0),deadlock})

A.1.2 Extending the Model to 2 Cells

We take a look at the behavioural changes to entities hh and wg within cell i. We start from

an initial state where they are both at state 1 and check if they reach a point where they are

both at state 0 using the following search command:

search init1 =>! SLP(1,tSLP:D1)SLP(2,tSLP2:D1)wg(0,twgp:D1)

wg(1,0)wg(2,twg2:D1)wg(3,twgn:D1)en(1,ten:D1)en(2,ten2:D1)

hh(0,thhp:D1)hh(1,0)hh(2,thh2:D1)hh(3,thhn:D1)

ptc(1,tptc:D1)ptc(2,tptc2:D1)PTC(1,tPTC:D1)PTC(2,tPTC2:D1)

ci(1,tci:D1)ci(2,tci2:D1)CIA(1,tCIA1:D1)CIA(2,tCIA2:D1)

CIR(1,tCIR:D1)CIR(2,tCIR2:D1) .

A.1 Asynchronous Semantics 161

Solution 1 (state 169)

states: 212 rewrites: 688 in 21ms cpu (23ms real)

(32544 rewrites/second)

twgp:D1 --> (1).D1

twg2:D1 --> (0).D1

twgn:D1 --> (1).D1

ten:D1 --> (0).D1

ten2:D1 --> (1).D1

thhp:D1 --> (1).D1

thh2:D1 --> (0).D1

thhn:D1 --> (1).D1

tptc:D1 --> (1).D1

tptc2:D1 --> (0).D1

tPTC:D1 --> (1).D1

tPTC2:D1 --> (1).D1

tci:D1 --> (1).D1

tci2:D1 --> (0).D1

tCIA1:D1 --> (1).D1

tCIA2:D1 --> (0).D1

tCIR:D1 --> (0).D1

tCIR2:D1 --> (1).D1

tSLP:D1 --> (0).D1

tSLP2:D1 --> (0).D1

162 Appendix A

A.2 Synchronous Semantics

A.2.1 Basic model of a Single Cell

Searching to check if SLP can turn on from a given initial state init:

search init =>+ ’__[T0:Term,T1:Term,T2:Term,

’SLP[’s_[’0.Zero],’1.D1,’1.D1],T4:Term,T5:Term,

T6:Term,T7:Term,T8:Term,T9:Term,T10:Term,T11:Term,T12:Term] .

Solution 1 (state 1)

states: 2 rewrites: 31 in 5ms cpu (5ms real)

(5819 rewrites/second)

T0 --> ’CIA[’s_[’0.Zero],’0.D1,’0.D1]

T1 --> ’CIR[’s_[’0.Zero],’0.D1,’0.D1]

T2 --> ’PTC[’s_[’0.Zero],’1.D1,’1.D1]

T4 --> ’ci[’s_[’0.Zero],’1.D1,’1.D1]

T5 --> ’en[’s_[’0.Zero],’0.D1,’0.D1]

T6 --> ’hh[’0.Zero,’1.D1,’1.D1]

T7 --> ’hh[’s_[’0.Zero],’0.D1,’0.D1]

T8 --> ’hh[’s_^2[’0.Zero],’1.D1,’1.D1]

T9 --> ’ptc[’s_[’0.Zero],’0.D1,’0.D1]

T10 --> ’wg[’0.Zero,’0.D1,’0.D1]

T11 --> ’wg[’s_[’0.Zero],’0.D1,’0.D1]

T12 --> ’wg[’s_^2[’0.Zero],’0.D1,’0.D1]

A.2.2 Extending the Model to 2 Cells

Searching with the aim of finding a state where both instances of PTC from cells 1 and 2 are

at state 1 using the following search:

A.2 Synchronous Semantics 163

Maude> search init =>+ ’__[T0:Term,T1:Term,T2:Term,T3:Term,

’PTC[’s_[’0.Zero],’1.D1,’1.D1],’PTC[’s_^2[’0.Zero],’1.D1,’1.D1],T6:Term,

T7:Term,T8:Term,T9:Term,T10:Term,T11:Term,T12:Term,T13:Term,

T14:Term,T15:Term,T16:Term,T17:Term,T18:Term,T19:Term,T20:Term,T21:Term] .

search in StartCellDivisionIndexSync22 : init =>+ ’__[T0,T1,T2,T3,

’PTC[’s_[’0.Zero],’1.D1,’1.D1],’PTC[’s_^2[’0.Zero],’1.D1,’1.D1],T6,T7,T8,T9,

T10,T11,T12,T13,T14,T15,T16,T17,T18,T19,T20,T21] .

Solution 1 (state 1)

states: 2 rewrites: 45 in 10ms cpu (10ms real) (4286 rewrites/second)

T0 --> ’CIA[’s_[’0.Zero],’1.D1,’1.D1]

T1 --> ’CIA[’s_^2[’0.Zero],’1.D1,’1.D1]

T2 --> ’CIR[’s_[’0.Zero],’0.D1,’0.D1]

T3 --> ’CIR[’s_^2[’0.Zero],’0.D1,’0.D1]

T6 --> ’SLP[’s_[’0.Zero],’1.D1,’1.D1]

T7 --> ’SLP[’s_^2[’0.Zero],’0.D1,’0.D1]

T8 --> ’ci[’s_[’0.Zero],’1.D1,’1.D1]

T9 --> ’ci[’s_^2[’0.Zero],’0.D1,’0.D1]

T10 --> ’en[’s_[’0.Zero],’0.D1,’0.D1]

T11 --> ’en[’s_^2[’0.Zero],’1.D1,’1.D1]

T12 --> ’hh[’0.Zero,’0.D1,’0.D1]

T13 --> ’hh[’s_[’0.Zero],’0.D1,’0.D1]

T14 --> ’hh[’s_^2[’0.Zero],’1.D1,’1.D1]

T15 --> ’hh[’s_^3[’0.Zero],’0.D1,’0.D1]

T16 --> ’ptc[’s_[’0.Zero],’0.D1,’0.D1]

T17 --> ’ptc[’s_^2[’0.Zero],’0.D1,’0.D1]

T18 --> ’wg[’0.Zero,’1.D1,’1.D1]

T19 --> ’wg[’s_[’0.Zero],’0.D1,’0.D1]

T20 --> ’wg[’s_^2[’0.Zero],’0.D1,’0.D1]

164 Appendix A

T21 --> ’wg[’s_^3[’0.Zero],’0.D1,’0.D1]

Solution 2 (state 2)

states: 3 rewrites: 84 in 13ms cpu (13ms real) (6093 rewrites/second)

T0 --> ’CIA[’s_[’0.Zero],’1.D1,’1.D1]

T1 --> ’CIA[’s_^2[’0.Zero],’0.D1,’0.D1]

T2 --> ’CIR[’s_[’0.Zero],’0.D1,’0.D1]

T3 --> ’CIR[’s_^2[’0.Zero],’0.D1,’0.D1]

T6 --> ’SLP[’s_[’0.Zero],’1.D1,’1.D1]

T7 --> ’SLP[’s_^2[’0.Zero],’0.D1,’0.D1]

T8 --> ’ci[’s_[’0.Zero],’1.D1,’1.D1]

T9 --> ’ci[’s_^2[’0.Zero],’0.D1,’0.D1]

T10 --> ’en[’s_[’0.Zero],’0.D1,’0.D1]

T11 --> ’en[’s_^2[’0.Zero],’1.D1,’1.D1]

T12 --> ’hh[’0.Zero,’0.D1,’0.D1]

T13 --> ’hh[’s_[’0.Zero],’0.D1,’0.D1]

T14 --> ’hh[’s_^2[’0.Zero],’1.D1,’1.D1]

T15 --> ’hh[’s_^3[’0.Zero],’0.D1,’0.D1]

T16 --> ’ptc[’s_[’0.Zero],’1.D1,’1.D1]

T17 --> ’ptc[’s_^2[’0.Zero],’0.D1,’0.D1]

T18 --> ’wg[’0.Zero,’1.D1,’1.D1]

T19 --> ’wg[’s_[’0.Zero],’1.D1,’1.D1]

T20 --> ’wg[’s_^2[’0.Zero],’0.D1,’0.D1]

T21 --> ’wg[’s_^3[’0.Zero],’0.D1,’0.D1]

No more solutions.

states: 3 rewrites: 120 in 17ms cpu (17ms real) (6966 rewrites/second)

A.2 Synchronous Semantics 165

Checking if SLP and CIA instances in the second cell can become simultaneously active

from an initial state where their instances in the first cell are inactive using the following

model checking instruction:

Maude> red modelCheck(init , <> [] (atSLP(2,’1.D1) /\ atCIA(2,’1.D1))) .

reduce in StartCellDivisionIndexSync22 : modelCheck(init,

<> [](atSLP(2, ’1.D1) /\ atCIA(2, ’1.D1))) .

rewrites: 137 in 16ms cpu (17ms real) (8078 rewrites/second)

result ModelCheckResult: counterexample({’__[’wg[’0.Zero,’1.D1,’1.D1],

’wg[’s_[’0.Zero],’1.D1,’1.D1],’wg[’s_^2[’0.Zero],’1.D1,’1.D1],

’wg[’s_^3[’0.Zero],’0.D1,’0.D1],’en[’s_[’0.Zero],’0.D1,’0.D1],

’en[’s_^2[’0.Zero],’1.D1,’1.D1],’hh[’0.Zero,’0.D1,’0.D1],’hh[’s_[’0.Zero],

’0.D1,’0.D1],’hh[’s_^2[’0.Zero],’0.D1,’0.D1],’hh[’s_^3[’0.Zero],’0.D1,’0.D1],

’ptc[’s_[’0.Zero],’1.D1,’1.D1],’ptc[’s_^2[’0.Zero],’0.D1,’0.D1],

’PTC[’s_[’0.Zero],’0.D1,’0.D1],’PTC[’s_^2[’0.Zero],’1.D1,’1.D1],

’ci[’s_[’0.Zero],’1.D1,’1.D1],’ci[’s_^2[’0.Zero],’1.D1,’1.D1],

’CIA[’s_[’0.Zero],’0.D1,’0.D1],’CIA[’s_^2[’0.Zero],

’1.D1,’1.D1],’CIR[’s_[’0.Zero],’0.D1,’0.D1],’CIR[’s_^2[’0.Zero],’0.D1,

’0.D1],’SLP[’s_[’0.Zero],’0.D1,’0.D1],’SLP[’s_^2[’0.Zero],’0.D1,’0.D1]],

’sync} {’__[’CIA[’s_[’0.Zero],’1.D1,’1.D1],’CIA[’s_^2[’0.Zero],’1.D1,

’1.D1],’CIR[’s_[’0.Zero],’0.D1,’0.D1],’CIR[’s_^2[’0.Zero],’0.D1,’0.D1],

’PTC[’s_[’0.Zero],’1.D1,’1.D1],’PTC[’s_^2[’0.Zero],’1.D1,’1.D1],’SLP[’s_[

’0.Zero],’1.D1,’1.D1],’SLP[’s_^2[’0.Zero],’0.D1,’0.D1],’ci[’s_[’0.Zero],

’1.D1,’1.D1],’ci[’s_^2[’0.Zero],’0.D1,’0.D1],’en[’s_[’0.Zero],’0.D1,’0.D1],

’en[’s_^2[’0.Zero],’1.D1,’1.D1],’hh[’0.Zero,’0.D1,’0.D1],’hh[’s_[’0.Zero],

’0.D1,’0.D1],’hh[’s_^2[’0.Zero],’1.D1,’1.D1],’hh[’s_^3[’0.Zero],’0.D1,

’0.D1],’ptc[’s_[’0.Zero],’0.D1,’0.D1],’ptc[’s_^2[’0.Zero],’0.D1,’0.D1],’wg[

’0.Zero,’1.D1,’1.D1],’wg[’s_[’0.Zero],’0.D1,’0.D1],’wg[’s_^2[’0.Zero],

’0.D1,’0.D1],’wg[’s_^3[’0.Zero],’0.D1,’0.D1]],’sync}, {’__[’CIA[’s_[

’0.Zero],’1.D1,’1.D1],’CIA[’s_^2[’0.Zero],’0.D1,’0.D1],’CIR[’s_[’0.Zero],

166 Appendix A

’0.D1,’0.D1],’CIR[’s_^2[’0.Zero],’0.D1,’0.D1],’PTC[’s_[’0.Zero],’1.D1,

’1.D1],’PTC[’s_^2[’0.Zero],’1.D1,’1.D1],’SLP[’s_[’0.Zero],’1.D1,’1.D1],

’SLP[’s_^2[’0.Zero],’0.D1,’0.D1],’ci[’s_[’0.Zero],’1.D1,’1.D1],’ci[’s_^2[

’0.Zero],’0.D1,’0.D1],’en[’s_[’0.Zero],’0.D1,’0.D1],’en[’s_^2[’0.Zero],

’1.D1,’1.D1],’hh[’0.Zero,’0.D1,’0.D1],’hh[’s_[’0.Zero],’0.D1,’0.D1],’hh[

’s_^2[’0.Zero],’1.D1,’1.D1],’hh[’s_^3[’0.Zero],’0.D1,’0.D1],’ptc[’s_[

’0.Zero],’1.D1,’1.D1],’ptc[’s_^2[’0.Zero],’0.D1,’0.D1],’wg[’0.Zero,’1.D1,

’1.D1],’wg[’s_[’0.Zero],’1.D1,’1.D1],’wg[’s_^2[’0.Zero],’0.D1,’0.D1],’wg[

’s_^3[’0.Zero],’0.D1,’0.D1]],’sync})

	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 Context
	1.2 Aim and Contributions
	1.3 Organisation of Thesis
	1.4 Publications

	2 Background
	2.1 Introduction
	2.2 Genetic Regulatory Networks
	2.3 Multi-Valued Networks
	2.4 Rewriting Logic(RL)
	2.5 Maude
	2.5.1 Maude Specification
	2.5.2 Rewriting in Maude
	2.5.3 Searching in Maude
	2.5.4 Linear Temporal Logic (LTL) Model Checking
	2.5.5 Rewriting Strategies

	2.6 Existing Work on Supporting MVNs
	2.6.1 Petri Nets
	2.6.2 GINsim
	2.6.3 Other Support Tools

	2.7 Related work on RL
	2.8 Tool Support
	2.9 Conclusions

	3 An RL Model for Asynchronous MVNs
	3.1 Introduction
	3.2 Constructing an RL Model for an Asynchronous MVN
	3.3 RL Model Correctness
	3.4 Case Study: The Regulation of Biosynthesis of Tryptophan in E. coli
	3.4.1 Tryptophan Model
	3.4.2 Constructing the RL Model
	3.4.3 Analysis in Maude
	3.4.4 LTL Model Checking

	3.5 Conclusions

	4 An RL Model for Synchronous MVNs
	4.1 Introduction
	4.2 Constructing an RL Model for a Synchronous MVN
	4.2.1 Basic RL Model
	4.2.2 Using a Rewriting Strategy for Synchronous Updates

	4.3 RL Model Correctness
	4.4 Case Study
	4.4.1 The Model
	4.4.2 Constructing the RL Model
	4.4.3 Analysis in Maude
	4.4.4 LTL Model Checking

	4.5 Conclusions

	5 Performance Evaluation
	5.1 Introduction
	5.2 Performance Test Model
	5.3 Testing Approach
	5.4 Asynchronous Model Performance Evaluation
	5.4.1 Basic Model Analysis
	5.4.2 Scaling to 10 Entities
	5.4.3 Further Scaling Analysis
	5.4.4 Evaluating Test Results

	5.5 Synchronous Model Performance Evaluation
	5.5.1 Basic Model Analysis
	5.5.2 Scaling to 10 Entities
	5.5.3 Further Scaling Analysis
	5.5.4 Testing Conclusions

	5.6 Conclusions

	6 Case Study
	6.1 Introduction
	6.2 The Model
	6.3 Asynchronous Semantics
	6.3.1 Basic model of a Single Cell
	6.3.2 Extending the Model to 2 Cells

	6.4 Synchronous Semantics
	6.4.1 Basic Model of a single Cell
	6.4.2 Extending the Model to 2 Cells

	6.5 Conclusions

	7 Concluding Remarks
	7.1 Summary
	7.2 What has been achieved
	7.3 Future Work

	References
	Appendix A Appendix A
	A.1 Asynchronous Semantics
	A.1.1 Basic model of a Single Cell
	A.1.2 Extending the Model to 2 Cells

	A.2 Synchronous Semantics
	A.2.1 Basic model of a Single Cell
	A.2.2 Extending the Model to 2 Cells

