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Abstract 

This thesis is concerned with the structural, chemical and physical 

properties of carbon nanotubes (CNTs) and composites of CNTs with conductive 

polymers and DNA. The application of these composites in electronic sensors for 

volatile organic compounds VOCs, carbon monoxide and ozone gas was also 

investigated. CNTs are promising materials for a gas sensor because of their unique 

properties; small size, large specific surface area and high aspect ratio. However, the 

conductance of bare CNTs gives a small response to many analytes and therefore the 

formation of CNT composites with other polymeric materials to enhance the sensing 

performance was explored.  

 

The first part of the study is based on coating CNTs by polypyrrole and using these 

composites to detect volatile organic compounds (VOCs: methanol, ethanol, acetone 

and chloroform). Polypyrrole (Ppy)-coated CNTs were prepared by an in situ oxidative 

polymerization method with FeCl3:6H2O as the oxidant. TEM and AFM images showed 

a significant change in the diameter of the nanotubes upon polymerization from the 

mean value of 10 nm for multi walled carbon nanotubes (MWCNTs) to 60 nm after 

coating and from 5 nm to 50 nm for single-walled carbon nanotubes (SWCNTs). FTIR 

and Raman spectra indicated successful coupling between CNTs and polypyrrole. In 

addition, I-V characterization of two terminal nanotube devices and impedance 

spectroscopy demonstrated the change in the electrical properties of drop-cast CNT 

films after coating with polymer. The electrical current decreased after coating for both 

MWCNTs and SWCNTs (8 mA to 0.027 μA) and (10 mA to 88 μA) at an applied 

voltage of 2 V. Uncoated CNTs had a small analytical sensitivity (S), where S is 
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defined as the percentage change in resistance upon exposure to analyte. For 12.9 

kPa of methanol vapour, typically S < 1% for bare CNTs, while the sensitivity of the 

nanocomposites was typically S > 50% for 12.9 kPa of MeOH at room temperature. 

The sensing mechanism was found to be reversible and the temperature dependence 

could be analyzed using a simple extension of the Van’t Hoff equation. This suggests 

that the temperature dependence of the sensitivity is controlled by the enthalpy of 

adsorption on the composite.  

 

The second part of this study used CNTs/boron nitride nanotube (BNNTs) composites 

as an ozone gas sensor. Ozone is a powerful oxidant and polymer additives are not 

sufficiently robust for this application. CNT/BNNT films were prepared by drop-casting 

from equimolar solutions of BNNTs/methanol and CNTs/methanol. The electrical 

properties of drop-cast CNTs were changed after adding the insulating BNNTs; the 

electrical current decreased from 8 mA to 1 mA at applied voltage of 2 V. The 

sensitivity was improved from 18% to 50% for 80 ppm of ozone. However, the problem 

with the CNT ozone sensor was a long recovery time which can be 25 min or more, 

depending on the gas concentration. For CNTs/BNNTs the recovery time was shorter, 

but still lies between (2-17) min at room temperature.  

 

The third part of the study was related to detection of CO gas by CNTs/Ppy at room 

temperature. It has been shown that the sensitivity of CNTs is enhanced after 

polypyrrole coating:    > 20% for SWCNTs/Ppy and   < 2% for SWCNTs at 1923 ppm 

CO in air. Again, the sensitivity of these nanotube composites decreased with 

increased temperature according to an adsorption equilibrium model. 
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The last part of this study evaluated DNA@CNT composites as a VOCs sensor. Three 

samples of CNTs/DNA were prepared with three different amounts of -DNA 2μL, 5 μL 

and 10 μL of (500 μg mL-1) which were added to 50μL (0.001 mg mL-1) of an aqueous 

dispersion of CNTs. DNA@CNT Films were drop cast across microelectrodes and 

from I-V measurements, it was found that the current (at a bias of 2 V) decreased after 

coating with increasing amounts of DNA from 8 mA (bare CNTs) to 4.5 mA to 2 mA 

and finally to 1 mA for the 50:10 sample. AFM and TEM images showed the DNA 

coats the CNTs and this suggests that tunnel junctions are introduced between CNTs 

which account for the drop in conductance. These junctions are also suggested to be 

the origin of the improved sensing response: DNA@CNT composites have good 

sensitivity for VOCs (MeOH, EtOH, C3H6O and CHCl3) and are more sensitive to 

methanol vapour than other VOCs. Further, DNA/CNTs films show a larger response 

to chloroform vapour at 21.08 kPa than CNTs/Ppy films at room temperature. 

Interestingly, the sensitivity of CNTs/DNA films increased as the temperature was 

raised; this suggests that another mechanism apart from adsorption/desorption is 

involved in their response.  

 

Although CNTs have been suggested as transducers in various gas sensors, they 

show a poor sensitivity (fractional change in resistance upon exposure to analyte). 

However by preparing composites of CNTs and less conductive materials, the 

analytical sensitivity can be greatly increased even though the conductivity of the 

composite is usually much less than of the bare CNTs.  
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Abbreviations 

CNTs Carbon nanotubes 

SWCNTs Single walled carbon nanotubes 

MWCNTs Multi walled carbon nanotubes 

DWCNTs Double walled carbon nanotubes 

   Chiral vector  

EAD Electrical are discharge  

LA Laser ablation  

CVD Chemical vapour deposition  

   Energy gap 

CPs Conductive polymers  

Py Pyrrole  

Ppy Polypyrrole 

MO Metal oxide  

PID photoionization detector 

AMGS Amperometric gas sensor 

BNNTs Boron nitride nanotubes 

e.V  Electron volt 

VRH Variable range hopping  

ICP Inductively couple plasma  

S-SWCNTs Semiconducting-single walled carbon nanotubes  

QCM Quartz crystal microbalances  

SAWs Surface acoustics wave  

DEP Dielectrophoresis  

VOCs Volatile organic compounds  

W Watt 

Hz Hertz  

AFM Atomic force microscope  

TEM  Transmission electron microscope  

BE Binding energy 
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FTIR Fourier transform infrared spectroscopy  

IS impedance spectroscopy 

I-V Current-Voltage  

Ω Ohm  

K Kelvin  

    Standard enthalpy of reaction 

T  Temperature  

XPS X-ray photoelectron spectroscopy 

EDX Energy Dispersive X-Ray Analysis 

q Electron charge  =1.6x10-19 C 

   Sensitivity  

m Electron mass  = 9x10-31 Kg 

G Conductance in S 

Rc Contact resistance in Ω 

Rb Film resistance in Ω 

iss Current steady state in A 

SEM  Scanning electron microscope  

nm Nanometer  

J Joule  

R  Gas constant 8.314 J/mol 

Ea Activation energy  

V Volt  

  Wavelength  

μL Microliter  

E Energy 

P Power in watt  

P* saturated vapour pressure 

DMFC Digital mass flow control  

DMM Digital Multimeters 

mL Millilitre  

M Molar  

I  Current in Ampere  
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mol Mole  

f Force in Newton (N) 

oC  Celsius  

C Capacitance 

Z`` impedance for capacitance/ imaginary part in Ω 

Z` Real electrical resistance in Ω 

  angular frequency  =     in Hertz  

  Surface excess of the analyte  

   Monolayer coverage 
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1. Chapter one: carbon nanotubes, properties and 

applications 

In recent years, there has been an increasing interest in nanoscience, 

whose aim is to understand the behavior of structures of size in the range 1-

10 nm. While many nano structures are currently under investigation, the 

area of carbon nanotubes is one of the most active1. Carbon is an atom that 

contains six electrons, two of them are core and the four remaining valence 

electrons are available to form bonds with other atoms. The most common 

allotropes of carbon are graphite and diamond. The high strength of 

diamond is due to covalent bonding of all the carbon atoms. On the other 

hand, in graphite there is a layered structure with a hexagonal arrangement 

of carbon atoms in each layer held together by strong covalent bonds, but 

also weak inter-layer bonding.  

Figure (1-1) shows the new relatively recent discovery of a type of 

carbon2
  known as C60 which represents the first fullerene or “Buckyball” or 

“Buckminsterfullerene” and was discovered by H. Kroto, R. Smalley and 

R.F. Curl  in 19853. In 1991, using electron microscopy Iijima could analyse 

the carbon material (soot) and observed long and thin fibers known as 

carbon nanotubes4. 
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Figure 1-1 (a)types of carbon (b) five allotropes of carbon: a) diamond, b) graphite, 
c)C60 buckminsterfullerene, d) amorphous carbon, and e) single-walled carbon 
nanotube1. 

1.1.  Carbon nanotubes  

Carbon nanotubes may be considered as sheets of graphite rolled up 

into cylinders and can be capped; they are essentially hollow nanowires1, 5. 

In general, there are three types of CNTs, two major types and the other is 

a sub-type: Single Wall Carbon Nanotubes SWCNTs, Multiwall Carbon 

Nanotubes MWCNTs and Double Wall Carbon Nanotubes DWCNTs6.  
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1.1.1. Multi walled carbon nanotubes MWCNTs 

MWCNTs were discovered in 1991 by Iijima6-8, figure (1-2) displays 

the first TEM images of MWCNTs by Iijima after his experiment with the arc 

discharge9.  

 

Figure 1-2 The first HRTEM image of MWCNTs-Russian doll with different number 
of walls, a)4 layers; b)two layers and c) five layers ; d) bamboo of CNTs10. 

 

MWCNTs have different numbers of graphite layers and form in two 

different shapes parchment/Swiss roll and Russian doll11, as shown in figure 

(1-3 a&b). Their diameter can be between 10-20 nm with a separation 

distance 0.34 nm between the layers5, 12. They may have either open or 



Chapter one: carbon nanotubes, properties and applications                          s    

4 

 

closed ends according to high resolution TEM (HRTEM). MWCNTs can also 

have a bamboo shape as shown in figure (1-4)11. However, Russian doll 

CNTs can describe sheets of graphite arranged in concentric cylinders, for 

example (0,5) SWCNTs within a larger (0,12) SWCNTs, as shown in figure 

(1-4a). Parchment-type CNTs are a single sheet of graphite rolled in around 

itself as a newspaper is rolled, as demonstrated in figure (1-4b). The 

external layer of MWCNTs can protect the internal layers from chemical 

reactions.  

 

Figure 1-3 a) One bamboo stick (plant); (b&c)  HRTEM images of CNTs as a 
bamboo structure9, 13 
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Figure 1-4 Two models for multiwall carbon nanotubes a) Russian doll consisting 
of a number of nanoribbons, b) structure parchment model from large sheet of 
graphite14

.

 

1.1.2. Single walled carbon nanotubes SWCNTs 

SWCNTs were discovered in 1993, two years after the discovery of 

MWCNTs, by Iijima’s group and Bethune et al.4. Figure (1-5) shows the first 

TEM of SWCNTs taken by Iijima 9, 10. 
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Figure 1-5 The first HRTEM image of SWCNTs was published in Nature journal10

 

The TEM image shows many curves and loops of SWNTs with small 

particles (black dots), which are impurity particles. The diameter of 

SWCNTs is (0.5-1.3) nm and the tube length can reach the micrometre 

range. However, there are three types of SWCNTs depending on the 

wrapped direction of the graphene sheet: zigzag, chiral and armchair6, 15-17. 

The ‘‘chiral vector’’ is a linear combination of   ⃗⃗⃗⃗  and   ⃗⃗⃗⃗  vectors18, and is 

defined in figure (1-6). 

   (   )     ⃗⃗⃗⃗     ⃗⃗⃗⃗                      (   ) 

Where   ̅̅ ̅ and   ̅̅ ̅ are the lattice vectors in the 2D hexagonal lattice of a 

graphite sheet and     are integers. According to the CNT maps as seen in 

figure (1-6),   is the angle between    and the zigzag direction. For zigzag 

nanotubes        (   ), for chiral nanotubes         (   ) and 

      for armchair nanotubes (n=m)1, 9, 18, 19. The diameter of SWCNTs 

depends 4, 20 on   and  .  
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√                                   (   ) 

Where a=0.246 nm.  

The electrical properties of CNTs depend on the roll direction of the 

graphene sheet, for example, armchair CNTs (n, n) are metallic nanotubes, 

while the zigzag (n, 0) and chiral (n, m) conductivity depends on n and m 

values. If        , chiral CNTs are metallic nanotubes, but if       , 

CNTs are semiconductors and in the case of zigzag     , CNTs are 

metallic and if not, they are semiconducting nanotubes. Any change in the 

roll direction can therefore affect the electrical properties of carbon 

nanotubes.  

 

Figure 1-6 Map of SWCNTs on which is shown the three types of SWCNTs 
according to the roll direction. 

 

1.1.3. Double walled carbon nanotubes DWCNTs 

DWCNTs are a sub-class of MWCNTs with 0.34 nm as a distance 

between the two layers. DWCNTs have the similar structures to MWCNTs 
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and the same physical properties as SWCNTs. This combination of 

properties encourages researchers to use DWNTs, in biosensors, biological 

applications and chemical sensors21. During preparation of DWCNTs, either 

SWCNTs or MWCNTs can be produced, therefore ultracentrifugation is 

used to separate the tubes22. 

1.2. The production of carbon nanotubes 

There are many methods used to obtain carbon nanotubes, but the 

three most important are: Electrical arc discharge (ECD), Laser ablation 

(LA) and Chemical vapor deposition (CVD). 

1.2.1. Electrical arc discharge EAD 

EAD is the first method was used to produce MW-carbon nanotubes 

by Iijima in 19911. The discharge happens between two electrodes: the 

cathode and the anode, which are made from graphite. In the case of 

SWCNTs, the chamber contains metal particles, for example, Ni, Co and 

Fe23-25. The typical distance between the electrodes is ~ 1mm, typical 

diameters are in the range 5–20 mm and the applied voltage 10-35 V with a 

current of 60-100 A. Because of the high temperature, the anode almost 

sublimes and the soot (carbon) is collected from the chamber walls and the 

cathode surface26, figure (1-7) shows a diagram of the arc discharge 

approach. The advantage of this method is a large production of carbon, but 

the disadvantage is loss of control of the alignment of the nanotubes25.  
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Figure 1-7 EAD method to fabricate CNTs27

 

1.2.2. Laser ablation LA 

  In this technique, a graphite target is settled on quartz tube and 

placed in an oven with temperature controller. A pulsed Nd:YAG laser 

(λ=1064 nm) is used with second harmonic generation (S.H.G) (λ=532 nm) 

or a CO2 laser (continuous wave) with a wavelength 10.6 μm can be used to 

ablate the target and produce CNTs, as shown in figure (1-8). The CNT-

containing soot is collected inside the instrument11, 28. Generally, the main 

advantage of the LA method is that it can produce a higher purity of 

nanotubes than CVD and EAD methods (absence of deliberately added 

metal particles), but smaller quantities of CNTs are produced compared to 

CVD and EAD. 
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Figure 1-8 Schematic demonstrating the laser ablation method to produce CNTs 
using an Nd:YAG laser29. 

 

1.2.3. Chemical vapour deposition CVD 

The CVD process depends on the thermal decomposition of gas 

molecules with high carbon content at a high temperature under the action 

of a catalyst30. The concept of this method is entrenching metallic particles 

such as Fe in the alignment holes in the Si, which is the substrate as shown 

in figure (1-9A). Furthermore, the nanotubes’ diameters depend on the 

diameter of the metal seed. Pyrolysis of CO or hydrocarbons including 

butane, hexane, propane, benzene toluene and methane provides the 

carbon source. The synthetic process is performed at high temperature; 

(600-800) oC  for MWCNTs and (900-1000) oC for SWCNTs31. The 

advantage of the CVD technique is that it produces large quantities of CNTs 

with high alignment of tubes. However, shrinking, cracking and curvature 

can be noticed on these tubes11. Figure (1-10) demonstrates the CVD 

technique to fabricate CNTs. According to the supplier information from 

Thomas Swan company https://thomas-swan.co.uk/, SWCNTs and 
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MWCNTs which were used in this thesis were produced by a CVD method. 

TEM images and EDX spectra indicate some Fe particles associated with 

nanotubes, as shown in chapter three figures (3-9) and (3-10). By weight, 

the sample purity was 70% for MWCNTs and 90% for SWCNTs.  

 

Figure 1-9 A) Scheme of growth of CNTs by the CVD method, nanotubes have 
different diameters which are depended on a metal diameter. B) TEM images of 
CNTs have been grown at different , temperature under the atmospheric pressure: 
(a,b and c) are MWCNTs were grown at 550C, 600C and 900C respectively; d) 
SWCNTs grown at 900C32. (c and d) have good growth of the MW and SW 
nanotubes at a high temperature <550C. 
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Figure 1-10 Schematic drawing of an CVD system to produce CNTs33. 

 

Table (1-1) shows the comparison of these techniques to produce CNTs.  

 

Table 1-1 A comparison between the three methods to produce carbon 
nanotubes34, 35 

Method Arc discharge CVD Laser ablation 

Who Iijima,  1991 Endo, 1993 Smalley, 1995 

MWCNTs 

Diameter: inter (1-

3) nm and (10 nm) 

outer diameter and 

short tubes 

Diameter: (10-

240) nm with long 

tubes 

Diameter: 100 to 

200 nm 

SWCNTs 

Diameter: (0.6-1.4) 

nm with short 

tubes 

Diameter: (0.6-4) 

nm with long 

tubes 

Diameter : ~ (1-2) 

nm. Length (5-20) 

μm.  

Production 

SWCNTs and 

MWCNTs, with 

some defects in 

the SWCNTs 

SWCNTs and 

MWCNTs, 

SWCNTs are 

more common 

than MWCNTs 

Advantage 
Cheap, large 

quantities of CNTs 

Large quantities 

of CNTs with 

some control of 

the tube diameter 

Higher purity 

compared to 

other methods 

Disadvantage 

Short tubes with a 

wide range of 

different sizes 

More defects for 

MWCNTs than 

SWCNTs 

Expensive 

because it 

depends on laser 

(CO2 or Nd:YAG) 



Chapter one: carbon nanotubes, properties and applications                          s    

13 

 

1.3.  Properties of carbon nanotubes 

Carbon nanotubes have a variety of remarkable physical properties.  

high aspect ratio and a high specific surface area make CNTs promising 

materials for applications requiring small conductive elements. Many 

researchers have attempted to use them in a range of applications, for 

example in sensors, transistors, super capacitors, water filtration and 

composite materials4, 9, 35. CNTs also have notable mechanical properties; 

they are a stronger material than steel. Table (1-2) shows some of the 

mechanical properties of CNTs and a comparison to other materials. They 

are one of the strongest materials discovered; this is because of the short, 

strong sp2 bonds between the sp2 carbon atoms1 . However, the hollow 

structure of CNTs means the tubes can lose their strength under 

compression36. 

Table 1-2 Young’s modulus and tensile strength of CNTs compared to other materials
24

 

CNTs 
Young’s Modulus   

(GPa) 
Tensile Strength  

(GPa) 

MWCNTs 1200 150 

SWCNTs 1054 150 

Steel  208 0.4 

wood 16 0.008 

 

Singh and coauthors reported that CNTs have excellent thermal 

conductivity, higher than copper. They can transmit ≥6000 W K-1 m-1 

compared to copper ~ 385 W K-1 m-1. They showed stable thermal 
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conductivity at 750 oC under air and at 2800 oC in vacuum37, 38. CNTs can 

support a higher current density than copper ~ 1013 A cm-2  while 105 A cm-2 

is the typical limit for Cu36, 39 . It has also been found that under certain 

conditions, the charge transport in the nanotubes can be ballistic; this 

happens when the mean free path of the electrons between scattering 

events exceeds the tube length40. These unique properties of CNTs open 

the door for many researchers to use them in a wide range of applications 

in different fields. In particular, SWCNTs and MWCNTs are promising 

materials in sensing applications25, 41. A change in the tube’s diameter or 

chiral angle affects the electrical properties of CNTs42. The CVD growth of 

CNTs proceeds from nanoparticle seeds such as Fe. These nanoparticles 

may undergo agglomeration because of the high temperatures in the growth 

of CNTs and the control of the nucleation and growth process is very 

important for the electrical properties of the nanotubes43, 44 

CNTs can be either semiconducting or metallic and it has been reported 

that the energy gap of semiconducting tubes is related to their chirality45, 46 

and proportional to the inverse of their diameters47 . In general, SWCNTs 

are grouped in bundles and the interactions between them are dominated 

by Van der Waals' forces. In these bundles, a few CNTs are metallic. 

Photoluminescence from the recombination of electron-hole pairs across 

the band gap is expected19, but the metallic CNTs may provide a non-

radiative channel. The luminescence of the bundles of semiconducting 

CNTs may therefore be quenched because of the interaction between 

metallic and semiconducting NTs. In order to observe the 



Chapter one: carbon nanotubes, properties and applications                          s    

15 

 

photoluminescence, the bundles should be separated as individual tubes. 

The most common technique to separate the nanotubes is the sonication 

process45, 48.  

The electronic structure of CNTs includes an extensive π-electron system, 

figure (1-11). The density of states shows Van Hove Singularities (VHSs) of 

the form typical for a one-dimensional system. 

 

Figure 1-11 scheme of photoluminescence excitation for semiconducting 
SWCNTs. The conductance and valence Van Hove Singularities (VHSs) are 
categorized with the sub-band index. The dashed lines demonstrate non-radiative 
transitions for holes and electrons. Optical transitions E11 and E22 are also 
clarified19.  

 

The optical spectroscopy of the semiconducting nanotubes corresponds to 

transitions between the corresponding VHSs in the conductance and 

valence band DOS49 which are denoted E11 and E22 in figure (1-11). The 
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photoluminescence emission is the (E11) transition. The energy of VHS 

maxima is dependent on the diameter of CNTs50., consequently, different n 

and m of SWCNTs will demonstrate various  distinct Exx transitions and 

show different wavelengths51. As a result, the diameters and the geometries 

could be obtained by an analysis of the photoluminescence spectra, 

however, the data also seems to be sensitive to the purity and to the 

presence of chemical defects45. Van Hove Singularities (VHSs) in the 

density of states can have a profound effect on the electrical and structural 

properties of solids52. The quantization of electronic states of small diameter 

nanostructures also influences the chemical and physical properties. 

Recently, many studies of pairing mechanisms at VHSs in carbon 

nanotubes and graphene predict superconductivity with a transition 

temperature61-64 >10 K. Figure (1-12) shows the density of states of  

semiconducting nanotubes with sharp VHSs at the onset of sub-bands with 

      as an energy spacing between the sub-band 1 and 2 as shown in the 

figure (1-12). The energy is determined by the CNTs diameter65-68. For each 

sub-band, the electron energy level spacing is set by the length of the 

nanotubes and is almost constant in the linear part of the sub-band. The 

level spacing becomes smaller at the onset of the sub-band, as 

demonstrated by     and     for the 1 and 2 sub-bands. Generally, Van 

Hove Singularities affect interfacial models of the electronic wave functions 

in CNTs and can be identified in the transport measurements in single 

CNTs. 
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Figure 1-12 Schematic of the electronic band structure (right) and the density of 
states (left) of a semiconducting carbon nanotube. The energy level spacing near 
the onset of a new sub-band, ΔE2 (black vertical bar) is smaller than the energy 
level spacing ΔE1 in the linear part of the dispersion relation (red vertical bar)52. 

 

Charge transport in a network of semiconducting nanotubes can be 

modelled as a random- resistor network with resistors at the CNT-CNT 

junctions. The charge transport is facile inside CNTs, but more resistance is 

encountered at the junction points as shown in figure (1-13). At the 

junctions, the charge transport involves variable range hopping VRH and 

each junction is represented as a resistance. It has been reported that the 

conductivity measurements and temperature-dependent mobility in dense 

CNT networks clearly demonstrate thermally activated transport, which is 

described by variable, range hopping VRH or fluctuation induced 

tunneling36, 37. However, in this thesis we observe that networks of CNTs 

may also show metallic behaviour (resistance increasing with increasing 

temperature). The electrical properties of networks of MWCNTs and 

SWCNTs will be described in chapter three.  
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Figure 1-13 2-dimensional network of 1D sticks as a geometric pattern for 
SWCNTs (grey network),(a) illustrates the junctions (red points) between SWCNTs 
(blue lines) and their conversion into a random resistor network as shown in (b) 

with the junctions acting as resistors and SWCNTs as nodes69. 
 

1.4. Conductive polymers 

Conductive polymers such as polypyrrole, polyaniline and 

polythiophene are promising materials because of their electrical properties 

and have many applications, for example, as sensors and electrical 

supercapacitors38, 39. In addition, conductive polymers have reasonable 

strength, low density and simple processing (polymerization)5. Pyrrole is 

one of the class of aromatic organic heterocycles. It is a colourless liquid at 

room temperature, but easily oxidized and gradually becomes yellow upon 

exposure to air40. Before using pyrrole, it is recommended to distill it to 

remove the yellow oxidation products. Polypyrrole has the structure shown 

in figure (1-14)41. 
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Figure 1-14 mechanism of the oxidative polymerization of pyrrole. 

 

There are two common methods to polymerize CPs: electrical and 

chemical polymerization. Chemical polymerization is convenient to prepare 

bulk samples of material and also dispersions, while electrochemical 

polymerization would be preferred to produce a thin layer of polymer on a 

conductive substrate42. In our case, CP/CNT composites were desired and 

because these were later drop-cast onto substrates which were not 

uniformly conductive (lithographically defined microelectrodes with 

insulating gaps on SiO2), the chemical polymerization method was 

preferred. The oxidation process leads to long chains of pyrrole monomers 

by the action of iron(III) chloride (FeCl3) and the polymerization process 

happens via the formation and oligomerization of the pi-radical cation 

C4H4NH+•.  
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The spin density on the radical cation is predominantly at the C2 

position and therefore the radical cations tend to dimerize by the formation 

of s-bond via C2 carbons on each pyrrole unit. This leads to a linear 

polymer as shown in figure 1-14. As prepared, the polymer is in an oxidized, 

polycationic, conductive state.  

The coupling between CNTs and polypyrrole produces a composite 

material with good electrochemical charge storage properties43. 

Electrochemical capacitors have attracted attention in high power-energy 

storage devices and there have been many attempts to use conducting 

polymers, such as polypyrrole (Ppy) and polyaniline (PANI) in these 

applications44. Polypyrrole is a promising material in many applications 

because it is insoluble, infusible, has high adhesion to iron or steel treated 

with nitric acid, higher conductivity, easy synthesis and low cost compared 

with other polymers45, 46. The main applications of polypyrrole are in 

electronic devices and chemical sensors. Carbon nanotubes can be coated 

with Ppy to alter their electrical properties in sensing applications. In 

general, CNT/CPs as nanocomposite materials can show different 

mechanical, electric, optical, electrochemical, catalytic, and structural 

properties to those of each individual component. It has been shown that 

many specific properties of the composite exceed the sum of the values for 

individual components47. CNTs/Ppy films are significant materials, 

especially in sensing applications. Polypyrrole-carbon nanotube composites 

have a core/shell structure in which the polymer coats the nanotubes as 
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shown in figure (2-3) and more TEM images in the appendix S2 and S3. 

There is a strong interaction between the nanotubes and the polypyrrole 

matrix48-50. Although CPs are generally much less conductive than metallic 

CNTs, the Ppy/CNT composite has advantages in sensing because the 

conductance of the composite is more responsive than that of the bare 

CNTs (Chapter 3). Generally, the change in the conductivity of CPs upon 

exposure to various vapours has been attributed to two mechanisms5 : (i) 

structural changes related to polymer swelling and (ii) electron transfer 

between the vapour and the polymer leading to changes in the density of 

carriers in the polymer. In addition, the change in the configuration of the 

nanotubes after coating can affect the charge transport in networks where 

the conductance depends on the pathway by which the carriers move 

through the network. Generally, variable range hopping (VRH) is the main 

theoretical model for charge transport in these nanomaterials 51. 

1.5. Boron nitride nanotubes BNNTs   

BNNTs have a similar structure to CNTs52. A hexagonal arrangement 

of alternating B and N atoms is isoelectronic to graphite on a simple 

electron-counting argument. In 1995, arc discharge was the main method 

used to produce BNNTs. Later researchers used laser ablation and CVD to 

fabricate BNNTs53. Recently, ICP technology ‘‘inductively coupled plasma’’ 

was used to create these nanotubes54, 55. Although, BNNTs have a similar 

structure to CNTs, BNNTs have a different electrical behaviour. They are 

insulating nanotubes with a wide band gap56 (5.5 – 6) e.V. BNNTs are 

stable thermally and chemically at 800oC with a good thermal conductivity 56 
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~ 600 W K-1 m-1. Figure (1-15) shows the differences and similarities 

between CNTs and BNNTs. BNNTs also have a yarn structure in two types 

single walled or multi walled (2-5) walls57, the coupling between CNTs and 

BNNTs (CNBNNTs) produces a promising sensor to detect ozone gas 

(Chapter 4), in fact there are no deep studies on this specific subject and in 

our study we will present the effect of CNTs-BNNTs thin films on ozone 

detection. 

 

Figure 1-15 Comparison between CNTs and BNNTs24, 57 

1.6. Carbon nanotubes as gas sensors 

The development of nanotechnology has created the potential to 

build highly sensitive, portable sensors, which are low-cost and consume 

little power. Gas sensors have a wide range of applications in medical, 

agriculture, industry and environmental situations, especially with the 

increasing concern surrounding air quality and global warming58. An 

excellent gas sensor should be sensitive, reliable, low-cost and responsive; 
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therefore, it was necessary to search for new sensing technology and 

materials59, 60. CNTs have been developed as gas sensors because of their 

unique properties, for example their small size, hollow centre, nanometre 

size, large surface area and the ability to change their electrical resistance 

when exposed to gases at room temperature61, 62. In addition, CNTs have a 

good thermal conductivity, encouraging researchers to consider 

applications for carbon nanotubes in high temperature gas sensors16. 

Figure (1-16) shows the histogram of numbers of papers about CNTs from 

Web of Science in different topics from (properties and their applications) 

between 2001 to May 2018. 
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Figure 1-16 The histogram of a) the numbers of CNTs publications in different 
subjects (properties and applications); (b) numbers of CNTs publications as a gas 
sensor. All the data was taken from Web of Science http://wok.mimas.ac.uk/. May 
2018. 

 

Generally, there are three types of common commercial gas sensors: metal 

oxide (MO), photoionization detector PID and amperometric63-65. Metal 

oxide: there are two types of MO gas sensors, n-type and p-type. Each 

depends on the resistance change caused by injection of electrons from the 

analyte into the semiconducting metal oxide. N-type devices are simple to 
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manufacture and operate at a low temperature, but these sensors have 

three problems: sensitivity to humidity, negative response and baseline drift. 

In contrast, p-type devices have a low sensitivity to humidity and a positive 

gas response (resistance increases in the presence of analyte) and a stable 

baseline. MO sensors have been widely used in industrial safety 

applications, e.g., to detect H2S gas at temperatures upon > 120oC (for oil 

and gas applications), VOCs for low cost IAQ1 applications and carbon 

monoxide for humid environments or extreme temperatures. MO n-type 

devices have used to detect organic compounds in the range between 10 to 

50 ppb65 and p-type devices to detect high concentrations of VOCs65. In 

general, MO sensors have a nonlinear relationship between the gas 

concentration and sensor resistance, although a linear relationship has 

been found for H2S at < 20 ppm and < 50 ppm for CO gas. MO gas sensors 

are used to detect the CO, VOCs, H2S gas in both harsh and benign 

environments with working temperatures between 20 to 120 oC. However, 

the operating principle of MO devices requires high temperatures for the 

MO film, typically of the order of 400 oC. The MO sensor depends on the 

redox reaction between the gas and the MO film of the device and the high 

temperature of the MO film is necessary to drive the reaction. Electron 

transfer to/from the gas changes the electrical resistance of the sensitive 

layer, which is printed on a chip that includes co-planar interdigitated 

electrodes and an integrated heater65. 

                                            
1
 IAQ: Indoor air quality.  
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Photoionization detectors (PID) show a good response for VOCs. 

One of the major manufacturers, Alphasense Ltd., sells two models of PID: 

PID-AH2 (Photoionization detector (ppb)) and PID-A12 (Photoionization 

detector (ppm))65.  PID-A12 has a linear range of 50 ppb to 6,000 ppm and 

1 ppb to 50 ppm for PID-AH2. The working temperature is between -40 to 

55 oC for PID-AH2 and PID-A12. When the gas enters the top of the film 

filter of the PID cell (figure 1-17c), it diffuses into the chamber formed by the 

filter, walls and UV-lamp. The UV-lamp emits photons at high energy and 

when the gas molecules absorb such a photon two ions are generated 

positive X+ and negative Y-. The electrical field between two electrodes 

(anode and cathode) causes a current to flow depending on the amount of 

ionized gas. From the current measured, the gas concentration is 

determined. In this type of gas sensor, a fence electrode was added to 

avoid any significant contributions from water in the chamber65. The lifetime 

of the sensors is typically five years with about 5000 hours for the lifetime of 

the UV-lamp. PID detectors have a fast response time, typically ~ 3 s. Since 

PIDs are not purely electrical devices, they have practical disadvantages 

associated with the power consumed by the UV lamp.  

Amperometric gas sensors (AMGS) require very little power to 

operate and have a linear sensitivity, but a slightly longer response time 

< 50 s. This type of the sensor is classified as an electrochemical sensor 

and is used to detect carbon monoxide, oxygen, NOx, SOx, hydrogen and 

any gas that may be oxidized or reduced with a linear calibration of the 

device current against the volume fraction of the analyte. It has been shown 
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that AMGS are suitable for higher gas concentrations than the other sensor 

types described above. The typical structure of an AMGS consists of a 

stack of several layers corresponding to the three electrodes required. At 

the top is the sensing (working) electrode, covered with a gas-permeable 

membrane, next is the reference electrode and finally the counter electrode 

layer. A potentiostat controls the sensing-reference potential and records 

the current flowing between the sensing and counter electrodes. This 

applied potential is chosen so that the oxidation/reduction of the analyte at 

the sensing electrode proceeds at the mass-transport limited rate. Under 

this condition, the current is directly proportional to the concentration of 

analyte and is insensitive to small fluctuations of the potential because the 

mass-transport rate is potential independent. In order to allow permeation of 

electrolyte through the stack and to increase the surface area of the electro 

catalysts, metal nanoparticle beds are usually used as the electrode layers. 

Pt and Pt-group metals are typical working electrode electro catalysts. 

Power consumption in AMGS is low because almost no current flows in the 

absence of analyte. The main disadvantages of AMGS relate to the 

electrolyte: evaporation of the electrolyte or absorption of ambient humidity 

can degrade the sensor performance over time and typical warranted 

lifetimes are about 2 years65. Figure (1-17) shows the MO, PID and AMGS 

sensors.  
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Figure 1-17 Shows a) Metal Oxide gas sensor b) Amperometric gas sensor and c) 
Photoionization detector65, 66. 
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Since 2000, CNTs have become important materials in the sensing field. 

CNTs are used as bare nanotubes and as components of composites to 

alter the sensitivity of the devices. CNTs may be combined with 

nanoparticles, such Au, Ag, Pt, Ti or biopolymers (DNA, RNA) or conductive 

polymers or chemically altered by thermal treatment67-71. The devices 

generally operate using the change in conductance of CNTs in the 

presence of the analyte as the signal. The conductance may decrease or 

increase depending on the nature of the gaseous analyte 

(oxidant/reductant). The device signal may also originate from changes in 

the Schottky barrier at the CNTs/metal contact if the contact resistance is 

significant compared to the bulk resistance. Zhao et al72 demonstrated that 

bare CNTs have a weak response for VOCs, NH3 and NO2. The adsorption 

of the gas molecules was suggested to either withdraw or donate electrons 

from/to CNTs and to produce a small change in the electrical properties of 

CNTs upon VOC/gas exposure72. However, it is not clear if this mechanism 

can explain the sensitivity to NH3, which is not easily oxidized or reduced 

under ambient conditions. Many studies have been reported73 to use 

conductive polymers, Au, Ag ,Pt to enhance the sensitivity of carbon 

nanotubes to VOCs, NH3, NO2, O3 and CO. Wang et al73 investigated the 

sensitivity of SWCNTs/hexafluoroisopropanol (HFIP-PT) functionalized 

polythiophene (P3HT) for dimethyl methyl phosphonate (DMMP). They 

found that the sensitivity of hybrid CNTs increased after coating, which they 

attributed to strong H-bonding interactions with the analyte (DMMP) and 

they reported that DMMP changed the Schottky barrier of the 
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SWCNTs/HFIP-PT/Au contact. Young and Lin74 investigated the effect of 

Au nanoparticles to enhance the sensitivity of CNTs for detection of ethanol 

vapour in the range (50 m Torr to 800 m Torr). Upon injection of different 

amounts of ethanol into a chamber containing the CNTs/Au sensor, they 

observed reversible changes to ethanol. The nanocomposite shows 

semiconducting behaviour and an increased resistance in the presence of 

ethanol. Nevertheless, the sensitivity of the CNTs/Au composite was slightly 

greater than for bare CNTs with a maximum response (percentage change 

in resistance) at 800 m Torr of 5.3% for the composite and 2% for the bare 

CNTs. Sanchez et al75 investigated a sensing element comprising CNTs 

entrenched in a sol–gel TiO2 matrix with the aim of detecting NH3 and 

acetone vapour. They explained the acetone response by the creation of 

negatively charged ions at the TiO2 clusters, but they indicated more 

investigation was required to propose a mechanism for the response to 

NH3.  

A variety of polymer/CNT composites have been studied, below the 

responses of the devices are discussed and the attempts to explain the 

mechanism of the response are considered. CNTs coated with 

poly(ethylene glycol) (PEG), CNTs/PEG showed higher sensitivity to 

isopropanol, acetone and ethanol than pristine nanotubes. The coating also 

improved the detection limit-LDL- of the sensor ~ 9 ppm. The response was 

reversible with a response time of 110-115 s and a recovery time 152-155s. 

Santhanama et al76 studied the sensitivity of CNTs/poly(3-methylthiophene) 

to VOCs, CNTs were coated by in situ chemical polymerization process, 
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they reported that CNTs/poly (3-methylthiophene) have a higher sensitivity 

to the chloromethane than acetone, MeOH, EtOH, THF and acetaldehyde. 

Santhanama et al explained the response of this nanocomposite film in 

terms of adsorption of the VOC and ionization           , where XA 

refers to CHCl3, CCl4, CH2Cl3 or CH4 and B indicates the nanocomposite 

material. However, the charge transfer from such inert molecules as CH4 

seems unlikely at ambient temperature. In another study of CNTs and 

conductive polymer - based VOC sensors, Verma et al77 showed that the 

sensitivity of MWCNTs/Poly(m-aminophenol)(PmAP) for MeOH, EtOH 

(aliphatic alcohols) increased compared to the pure PmAP at room 

temperature. Generally, conductive polymers coat CNTs by in situ chemical 

polymerization process. The adsorption of VOCs changed the electrical 

resistance of the nanocomposite film and MeOH showed a higher response 

compared to EtOH, which was attributed to greater film permeation by the 

smaller MeOH molecules and lower permeation by EtOH. Such an effect 

can be useful to control the selectivity towards various analytes, but it does 

not in itself explain the mechanism of the sensing response.   
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Figure 1-18 Proposed electrical responses of PmAP/c-MWCNT (2 wt%) 
nanocomposite sensor upon exposure of (a) methanol and (b) ethanol vapor at 

different concentration, i.e., 90 ppm (), 140 ppm (•), 190 ppm (o) and 240 ppm 
(⌂). B) Scheme of the Interactions of MeOH vapour molecules with 
nanocomposites77. 

 

The decrease in the electrical resistance was attributed to an 

interaction between PmAP and alcohols via H-bonding as shown in figure 

(1-18b). Although such interactions can clearly lead to changes in the 

polymer conformation and perhaps their conductivity, it remains unclear 
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how the CNTs are involved in the device response. In another study of 

CNTs decorated by polymer (Poly-methyl methacrylate)-microbands 

(PMMAµB) to detect VOCs, the coating process depended on spraying 

layer by layer. Feller et al78 reported this method as an attempt to obtained 

a more reproducible and quantitative response to detect MeOH, EtOH, 

CHCl3 and toluene. However, during VOC exposure, the electrical 

resistance increased in an irreversible manner. MeOH gave the highest 

response compared with other VOCs and the CNTs/(PMMAµB) is selective 

for MeOH over EtOH, CHCl3 and toluene. EtOH, CHCl3 and toluene showed 

approximately the same response. Feller et al found that pure PMMAµB did 

not function as well and that the selectivity and sensitivity of 

CNTs/(PMMAµB) were superior to bare CNTs. In general, the mechanism 

of operation of many CP/CNT devices is unclear, although many papers 

have shown good analytical performance. Mechanisms have been 

suggested involving swelling of the CP by the analyte or charge transfer 

between the analyte and the CP, but the role of the CNTs is unclear and the 

contribution of each component to the overall conductance of the device is 

often not known. 

Collins et al79 studied the sensitivity of SWCNTs as an oxygen gas 

sensor; the nanotubes were treated by heating to 700oC to remove 

microcrystalline and amorphous carbon. In this study, the electrical 

resistance increased during oxygen exposure and upon application of a 

vacuum, the resistance decreased. The sensor showed reversible 

behaviour under the conditions applied. Star and Kauffman found that the 
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adsorption of oxygen at room temperature was slow with a long recovery 

time. However by heating under vacuum the reversal of the response is 

made much more rapid80. Derycke et al81 investigated the sensitivity of  

bare CNTs as an oxygen sensor and found that the response of oxygen gas 

originates from the interaction between CNTs-and the metal contact: 

oxygen apparently modifies the Schottky barrier. Another study gave 

evidence that oxygen adsorbs and affects the electrical structure of CNTs81-

83. From theoretical studies, it has been found that the oxygen adsorption 

can lead to charge transfer72, 84, 85. The mechanism of operation of these 

devices therefore appears more soundly based than the CP/CNT VOC 

sensors.  

In 2004, Cho et.al prepared SWCNTs-EC (SWCNT/polymer (Ethyl 

Cellulose)) to detect benzene in (gas phase), it was found that the film’s 

resistance increased during gas exposure86 as shown in figure (1-19). 

https://aip.scitation.org/author/Derycke%2C+V
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Figure 1-19 The response size of the SWCNTs/polymer as benzene sensor58 

 

Philip et.al designed a nanocomposite film by coating MWCNTs with 

Poly(methyl methacrylate) PMMA to detect chloroform, acetone and 

dichloromethane and it has been shown that dichloromethane has the 

largest response compared with acetone and chloroform as seen in figure 

(1-20) with a short recovery time and fast response time. The film 

resistance increased in the presence of the gas and returned to the 

baseline when the gas was removed.87 
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Figure 1-20 The change in the electrical resistance of CNTs/PMMA film58 

 

On the other hand, another attempt was made by An to study the 

sensitivity of SWCNTs as bare and hybrid nanotubes to sense NO2 gas 88. 

SWCNTs were coated by polypyrrole and according to SEM images the ppy 

coated completely SWCNTs as shown in figure (1-21a). The sensitivity, 

defined as the fractional change in resistance, and the sensitivity  (S), of 

CNTs was increased after the coating treatment. For pristine CNTs  S = 

20% and after coating S increased to 90% at 3000 ppm of NO2 gas with fast 

response time and acceptable recovery time as shown in figure (1-21b).  



Chapter one: carbon nanotubes, properties and applications                          s    

37 

 

 

Figure 1-21 a) SEM images of bare and hybrid CNTs88, b) the sensitivity of CNTs 
after and before coating by polypyrrole to enhance the sensitivity of the films to 
NO2  3x103 ppm88. 

 

Interestingly, the response of the composites may even change sign 

as a function of target analyte concentration; this suggests that a simple 

mechanism based on swelling and its effect on the percolation behaviour of 

CNTs in the polypyrrole matrix is not sufficient, nor is the mechanism solely 

due to charge transfer between CP and analyte. Young and Lin designed 

gas sensors based on bare MWCNTs deposited on a Si substrate to detect 

ethanol in the gas phase at room temperature and found that the sensitivity 

was very weak for pristine nanotubes89 S < 2%. Zhang et al used an 

SWCNT/CuCl film to detect carbon monoxide in different concentrations 
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between 20 ppm- 100 ppm at room temperature and found that the 

sensitivity of the nanocomposite film increased over bare SWCNTs as 

shown in figure (1-20). The film sensitivity increased more than 100% after 

the coating process90. 

 

Figure 1-22 The sensitivity of bare and hybrid carbon nanotubes for CO gas at 
room temperature.90. 

 

In 2018, Gautam et.al used SWCNTs/Au films to detect the toxic gases NO2 

and NH3 and noted that CNTs/Au have a better sensitivity for NH3 and NO2 

than pristine SWCNTs 
91, as shown in (1-23 a&b). 



Chapter one: carbon nanotubes, properties and applications                          s    

39 

 

 

Figure 1-23 The sensitivity of bare CNTs, Au coated CNTs and carboxylated for 
nitrogen dioxide and ammonia. The figure was re-plotted for clarification from the 
original copy91. 

 

The big challenges in design of the any gas sensor are to achieve low cost, 

reliability, high sensitivity, selectivity and fast response with a short recovery 

time. These factors have pushed many researchers to develop new 

materials and CNTs have proved to be a useful component. This thesis 

describes the design of hybrid nanotube (SWCNTs and MWCNTs) 

materials as thin films to detect VOCs, CO and ozone gas. In order to 

improve sensitivity CNTs were decorated by conductive polymer 

(polypyrrole), BNNTs or DNA. Laser treatment of the CNTs was also 

applied.  
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In this thesis, carbon nanotubes are used as the basis of several 

types of gas sensor. There are many methods reported for the fabrication of 

CNT gas sensors, e.g., drop-casting or printing electrodes on the CNT film 

58, however in this study, the CNTs were drop cast onto Pt microelectrodes 

for simplicity. CNT devices are somewhat similar to the metal oxide gas 

sensors in that they are based on changes in electrical resistance, but they 

do not employ on-chip heaters, which further simplifies the device design.  

Bare CNTs were found to have a weak response toward many 

different gases. However, the response increased significantly after coating 

by polypyrrole and DNA (VOC sensors) or mixing with boron nitride 

nanotubes (ozone sensor). As noted in the survey of the literature, this 

effect is known, but its mechanism remains unclear. The sensitivity of CNT 

conductance to adsorbed molecules has been explained on the basis of the 

curvature in the graphene sheet of a nanotube. The -electron system of 

the nanotube is distorted and there is an asymmetry in the electron 

distribution outside and inside tubes4. These effects have been suggested 

to make CNTs active materials in which adsorption of molecular species 

disturbs the -electron system. Electron withdrawing/donating molecules, 

such as O3, NO2 and H2 may lead to withdrawal of electrons from, or 

injection of electrons into, the nanotubes with increased or decreased the 

conductivity of the nanotubes4.  

                                     

Where   is the number of charges transferred. However, such a mechanism 

seems unlikely under ambient conditions of temperature and pressure for 
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less reactive species such as stable organic molecules. Other mechanisms 

that may operate include swelling of the CNT/CP network by the analyte or 

changes in the interfacial barrier at junctions between CNTs and CPs or 

between two CNTs or at the contact electrodes. This thesis is concerned 

with attempts to prepare and characterize CNT composite gas sensors and 

to understand more about the mechanism of the operation. In general, we 

find that materials which reduce the overall conductance of the CNTs have 

a beneficial effect on their sensing behaviour. A variety of different 

composites have been prepared in this thesis with CNT / conductive 

polymer composites studied in Chapters 3 and 5, CNT/BNNT (boron nitride 

nanotube) mixtures in Chapter 4 and DNA/CNT composites in Chapter 6. 

The motivation for these choices is described in the relevant chapter. 
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2. Chapter two: Experimental part 

This chapter will outline the main materials, which were used to prepare 

the nanocomposites films and introduce all the techniques, which were 

used to study the chemical and physical characteristics of the samples, for 

instance, their structure and electrical properties. 

2.1.  Materials  

Two types of carbon nanotubes were used in this thesis: single walled 

carbon nanotubes (SWCNTs) (1-2) nm in diameter with purity 90% (by 

mass) and multi-walled carbon nanotubes MWCNTs (10-12) nm diameter 

and 70% purity. These impurities include metallic (Fe) nanoparticles used 

as seeds for the growth of CNTs in the CVD process and carbonaceous 

impurities such as amorphous carbon. Our samples of SWCNTs contain 

1.36% Fe (by mass) and the MWCNTs contain 3.61% Fe (by mass) 

estimated from EDX spectra, as shown in chapter three section (3.1.2.). 

Both types of CNTs were purchased from Thomas Swan Company, UK, 

(ElicarbTM). For other chemical materials such as pyrrole 98%, iron (III) 

chloride hexahydrate FeCl3.6H2O (98-102) % and chloroform 99.9% were 

purchased from Sigma Aldrich Ltd. Acetone, methanol and ethanol were 

obtained from Fisher Scientific Ltd. In addition, boron nitride nanotubes (1-

10) nm, purity >50%, BNNTs were a gift from (LLC Builds Nanotube 

Factory, Virginia, USA). For all atomic force microscope (AFM) experiments 

silicon wafers, dopant boron <111> oriented, p-type, resistivity 0.09-0.12 

Ohm.cm and wafer diameter 1000.3 mm, were purchased from Pi-KEM 

Ltd, UK. For transmission electron microscopy (TEM) the samples were 
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examined on holey carbon grids (HC300 Cu 50) which were obtained from 

EM Resolutions Ltd. The deionized water used in this thesis was supplied 

from a NanoPure Diamond Life Science ultrapure water system equipped 

with a Diamond RO reverse Osmosis System (Barnstead International). 

Additionally, silicon wafers were cleaned with sulfuric acid H2SO4 99.99% 

and hydrogen peroxide solution 30% (4:1), purchased from Sigma Aldrich 

Ltd. 

2.2. Preparation the solution of carbon nanotubes  

In this thesis, both methanol and chloroform were used to disperse 

carbon nanotubes. 0.0001 g CNTs were added to 10 mL of methanol or 

chloroform depending on the oxidizing agent as shown in table (2-1). To 

disperse the nanotubes and break down agglomerates, the mixture was 

treated ultrasonically (750W, 20 kHz, amplitude 20%, 230 Volt, ultrasonic 

processor)  for 3h as shown in fig (2-1 & 2) then the solution was ready to 

use to prepare the nanocomposite films. 

 

Figure 2-1 Schematic of dispersion CNTs by ultrasonic in 3 hours. 
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Figure 2-2 Ultrasonic process to disperse carbon nanotubes. 

 

2.3.  Templating polypyrrole on carbon nanotubes/ 

synthesis of CNTs/polypyrrole: 

        The nanocomposite films were prepared by an in situ chemical 

oxidative polymerization method. This method is the main approach to coat 

CNTs because it is easy, inexpensive and polypyrrole coats CNTs directly, 

as shown in section 1.4. In this study iron(III) chloride hexahydrate 

(FeCl3.6H2O) was used to polymerize the conducting polymer (pyrrole) as 

the oxidant. To template the conductive polymer on the CNTs, there are two 

steps: first step depended on adding (1M 5µL) pyrrole to CNTs (100 μL of 

100 μg mL-1). The second step was the addition (1M 5µL) of the oxidizing 

agent to the CNTs/pyrrole combination and then the sample was left for 3h 

before examining it. Polypyrrole coated CNTs as a thick shell as 

demonstrated in figure (2-3). 
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Figure 2-3 a) TEM image of CNTs/Ppy, b) scheme presents the thick polypyrrole 
shells around the nanotubes.  

Table 2-1 The chemical materials were used to prepare CNTs/polypyrrole. 

Carbon nanotubes 
/g 

Solvent Pyrrole Oxidising agent  

0.0001 Methanol 10 mL 5 µL,1 M FeCl3.6H2O: 5 µL,1 M 

0.0001 Methanol 10 mL 5 µL,0.5 M FeCl3.6H2O : 5 µL,1 M 

2.4.  Synthesis of the hybrid CNTs/BNNTs (CNTs) films 

Single wall carbon nanotubes and multiwall carbon nanotubes were 

used to prepare the hybrid nanotubes CBNNTs. The same amount of 

carbon nanotubes and boron nitride nanotubes were used about ~10-4 g, 

and added to 10mL of Methanol. Methanol was used to disperse the 

nanotubes because it has been shown that organic solvents are effective. 

CNTs/methanol were treated ultrasonically (750W, 20 KHz, amplitude 20%, 

230 V, ultrasonic processor) for 3 h, while 1 h at a lower intensity (300 W, 

40 Hz, Langford ultrasonic) was sufficient for BNNTs/methanol, to 
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breakdown agglomerates and disperse the nanotubes. After the ultrasonic 

process, 100 µL was taken and from each dispersion and BNNTs/MeOH 

and CNTs/MeOH were mixed in 1:1 ratio to obtain 200 µL CNBNNTs. 2-3 

μL was taken from the mixed solution and drop cast as a thin film on the 

microband electrodes for I-V characterisation and impedance spectroscopy. 

The mixture was also drop cast on Si chips for FTIR and Raman 

measurements. The film of CNBNNTs was dried at room temperature. 

Many techniques were used to study the structures, electrical properties of 

carbon nanotubes and the nanocomposites films for example AFM, TEM, 

FTIR, SEM, I-V characterizations and impedance spectroscopy IS. The 

main part of the study was an investigation of their performance in gas and 

vapour sensing. 

2.4.1.  Atomic force microscope AFM 

The atomic force microscope AFM is a kind of scanning probe 

microscope (SPM) with established resolution on the order of a nanometer, 

more than 100 times better than the diffraction limit for visible light. In this 

study the images were obtained via a multimode 8 scanning probe 

microscope (SPM) (Bruker), as shown in figure (2-4). The operation system 

was ScanAsyst Mode, NanoScope, and Version 9.1. Additionally, the 

cantilever was made from silicon nitride with 0.4 N/m as a spring constant 

and 70 kHz resonant frequency which was supplied from Bruker. 

Additionally to reduce the vibration noise the isolation table was used from 

Bruker, UK. The image information is collected by touching the surface by 

the mechanical probe. The map of surface (topography) is drawn as a false 
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colour image using the height obtained from the cantilever defection. The 

height of the tip is related to the force on the tip and stiffness of the 

cantilever by Hooke’s law, equation(1)92 

                                          (   )                            

Where:   is a height of the tip or the amount of displacement observed,   is 

a spring constant. Generally, there are three AFM modes: Contact, Non-

Contact and tapping mode. In this thesis, tapping mode and ScanAsyst 

were used to study the morphology of the samples.  

2.4.1.1. ScanAsyst system 

ScanAsyst is an first automatic image improvement technology for 

AFM, which uses algorithms to automatically monitor and adjust the quality 

of the image and by controlling the imaging parameters directly to obtain 

high resolution image for example set point, scan rate and gain. ScanAsyst 

is simpler to use compared to conventional tapping mode systems where 

these parameters must be tuned by the operator92.  
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Figure 2-4 a) Schematic diagram of Atomic Force microscope ScanAsyst , 
b)ScanAsyst interface, all the setting of the feedback and the scan rate were 
calculated automatically by AFM. c) Manual change 

2.4.1.2.  Contact, non-contact and tapping mode  

Contact mode (CM) represents the basic mode for AFM. The 

principle of CM is that the cantilever bends according to the tip/sample 

force. The feedback system adjusts the sample height to keep the force on 

the tip constant. The force is proportional to the deflection of the cantilever 

with a proportionality constant called the spring constant. As the tip rasters 

over the sample, the computer collects the deflection data in (nm) and X-Y 

position and assembles an image map on sample height in grayscale or 

false colour93. The major disadvantage of CM is the high tip/sample force 

which can damage either tip or sample. It is therefore best for studies of 

hard inorganic samples or where other data, such as tip/sample friction is 



Chapter two: Experimental part                                                                      .   

49 

 

required as well as topography94. In non-contact mode or dynamic force 

microscopy (DFM) the tip oscillates close to the sample surface without 

touching. As a result the probe has a long lifetime and there is a low force 

on the surface, therefore the probability to damage the sample surface is 

very small. DFM has a lower resolution in comparison with contact mode 

because of the greater average tip/sample distance. Tapping mode or 

intermittent contact mode. Figure (2-5) shows the tapping mode system and 

figure (2-6) shows the force curve. In this mode the probe lightly taps on the 

surface during the scanning process and by preserving a regular oscillation 

amplitude a steady tip-sample integration is maintained and it is easy to 

obtain the image of the surface. This technique permits high resolution 

imaging with less sample damage than contact mode. This mode 

represents the intermediate case between non-contact and contact mode95. 

In this type of mode, the cantilever-tip are oscillated at a resonant 

frequency. The sample surface is struck by the tip once during each 

oscillation95. The sampled is imaged whilst there is no change in the value 

of  

tapping amplitude96 . The amplitude of the oscillation usually in a few 

tens of angstroms in order to keep the tip from sticking on the sample 

surface. One of the advantages of this mode is the probability of tip damage 

is small because the average force is decreased92. 
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Figure 2-5 Tapping mode AFM system 

 

Figure 2-6 Force curve. The method (red) and (blue) withdraw curves are 
presented on the right. Generally, the total contact force depends on the adhesion 
in addition to the applied load. 

 

https://www.google.co.uk/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwijy-71953QAhUBWhQKHdpXC-0QjRwIBw&url=https://en.wikipedia.org/wiki/Atomic-force_microscopy&psig=AFQjCNEYogm3-tRV3LlqJF2ZlAd6UvF7eQ&ust=1478858628976370
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Figure 2-7 Plot of the force against the distance 

 

A piezoelectric scanner monitors the accurate position of a probe in the 

relation to the surface. X-Y are by convention the coordinates in the plane 

of the sample and Z is the coordinate normal to this plane. The cantilever 

oscillates with a fine probe deflects as the probe tip scans the surface. The 

computer, optical mirror, electronics, and laser diode are used to collect the 

data. and draw the image. Generally, for this study the operation system 

was Veeco Digital Instruments Dimension 5 Atomic Force Microscope, and 

the cantilever frequency 300 kHz, radius <10nm. The cantilever was 

obtained from Budge Sensor Company, Bulgaria. 
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2.4.1.3. Preparation the samples for atomic force 

microscope Test 

All the silicon wafers were cut into 1x1 cm2 chips and they were treated 

with a strong oxidizing agent known as piranha. Piranha solution represents 

the mixture between sulfuric acid (H2SO4) and 30% hydrogen peroxide 

solution (4:1). It was used to remove most of the organic matter and it also 

hydroxylates the Si- surface making it highly hydrophilic. After one hour of 

treatment the chips were washed with deionized water and were dried with 

nitrogen gas. Then 2 to 3 uL drops were deposited on the Si chip and dried 

at the room temperature before imaging.  

2.4.2. Transmission electron microscope TEM 

The transmission electron microscope is common tool in materials science. 

A high energy beam of electrons is focused and passes through a very thin 

sample. Scattering of the electrons by the atoms of the sample can be used 

to demonstrate the structural properties and features of the sample 97. TEM 

can provide information about the shape and the size of surface features. In 

addition, TEM has high resolution compared with AFM. Generally, TEM 

system contains eight parts: thermionic gun, electron source, electron 

beam, sample stage, phosphorus, fluorescent screen, condenser, vacuum 

chamber and electromagnetic lenses as shown in figure (2-8). 
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Figure 2-8 General design of a TEM describing the path of electron beam in a TEM 

98
 

 

Fig (2-8) shows the layout of a TEM and explaining the path of the e-beam. 

The limited resolution of light microscopes led to development of the 

microscope system and use of an electron beam. To explain why the 

scientists select the electron beam to be used in TEM it is necessary refer 

to simple optics and physics equations.  In optics the numerical aperture 

(NA) is99: 

  
 

       
 

 

   
                                                        (   )             

Where: d the maximum resolution, λ the wavelength, NA the numerical 

aperture, n the refractive index and   is the collecting angle. 

The electron beam can diffract as electromagnetic radiation and according 

to the de Broglie equation there is a relation between the wavelength of the 

moving particles and the momentum and the relation between the 

wavelength of electrons with their kinetic energy as shown below100: 
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                                                           (   ) 

                                                              (   ) 

 

Where E is the equivalent energy, m is the mass, c is the speed of light   is 

the frequency and h is Planck’s constant. (6.626x10-34 J.s). 

 Planck-Einstein law: 

                                                                     (   ) 
and  

   
 

 
           ( )       

 

 
                    (   ) 

 
   

 

 
                                                          (   ) 

           
For electrons ( ) replaces the speed of light and then the equation (2-7) 

becomes: 

                                                                             (   )         

The momentum of the particle  

                                                                              (   )        
 

As a result of that  

  
  

  
                                                                           (    )        

Equation (2-10) is the de Broglie relation. 

In TEM technique the velocity of electron can be close to the speed of the 

light101 ~ (3x108 ms-1) 

   
 

√     (  
 

    
 )

                              (    )            

Where: h is Planck’s constant,    is the mass of electron and   is the 

energy of accelerated electrons.  
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According to the equations above the electron wavelength (     pm) at 20 

keV and it is much smaller that the wavelength of light 

Usually, the electrons are generated from thermionic emission by a 

tungsten filament or by electron field emission, see figure (2-9). The 

transmitted beam holds all the information about the electrons for example 

phase, electron density and the periodicity97. 

. 

 

Figure 2-9 Tungsten filament as an emission source98 

 

2.4.2.1. The main parts of TEM instrument 

For transmission electron microscope there are main parts: Illumination 

System, the lens objective and the imaging system.  

The illumination system depends on the electrons which were provided from 

the electron gun and transfer them to the sample surface (grid), the lens 

objective which is represented the heart of TEM. Lastly, the imaging system 

includes projector lens and intermediate lens98 
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2.4.2.2. The interaction between the specimen and electrons  

The active electrons in the microscope strike the sample surface and many 

reactions can happen on the surface as shown in figure (2-10) .In TEM the 

detector is underneath the sample while in SEM it is on the top. The 

detected electrons may be categorized: unscattered electrons, elastically 

scattered and inelastically scattered102. 

 

Figure 2-10 Interaction between the electron beam and specimen 

 

Unscattered electrons: from incident electron beam and transmitted to the 

sample without any interaction inside the pattern. Unscattered electrons 

decreased as the sample thickness increases. A thicker sample transmits 

fewer unscattered electrons and appears dark, whereas a thin sample 

appears lighter. Elastically scattered incident electrons are scattered by 

the sample’s atoms without any energy loss. These electrons are 

transmitted through the remaining portions of the sample. In this part the 

electrons follow Bragg’s law (        ) Where:   is a scattering angle, λ 
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incident wavelength is,    is a path difference (the distance between two 

layers), n is any integer. All the incident electrons have the same 

wavelength and energy thus the electron will be scattered by the same 

angle if they have the same atomic spacing, these electrons will be 

collected via magnetic lenses to form a model of spots that correspond to a 

specific atomic plane98. This model or pattern can give the information 

about the atomic arrangement and the orientation. Inelastically scattered 

electrons are those scattered with loss of energy. The rest of the beam are 

transmitted through the sample. The energy loss can be used to give 

information about the electronic spectrum of the sample. Nevertheless, the 

ionizing beam can damage the sample, especially polymers, ceramic and 

most organic materials97, 98 because of , the high voltage up to 400 kV. 

2.4.2.3.  Preparation of samples for TEM  

400-mesh carbon-coated copper grids (Gilder grids) and Holey carbon 300-

mesh HC300Cu were used to prepare samples. 2uL from the materials, 

CNTs or CNTs/Ppy, were deposited on the grid and the sample was dried 

before the test. Most of the data were examined on a Philips CM100 TEM 

(FEI), 40 – 100keV tungsten filament.  To collect the digital images a CCD 

camera (Deben) was used. Fig (2-11) shows the TEM grid.  
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Figure 2-11 a) the sample holder which inserts into TEM goniometer. b) Holey 
Carbon Grid for TEM. c) multi-walled carbon nanotubes MWCNTs. 

 

2.4.3. Fourier transform infrared Spectroscopy 

Fourier transform infrared FTIR experiments were carried out on an 

IRAffinity-1S spectrometer provided with DLaTGS detector (Deuterated 

Lanthanum α Alanine doped TriGlycine Sulphate detector exhibits the most 

effective pyroelectric effect known, the major application of DLaTGS is in 

FTIR). This type of detector can work uncooled or with temperature 

stabilisation. Wavenumber range (053 to 0033) cm-1 with resolution 16 cm-1. 

2.4.4. Raman spectrophotometer  

Raman spectroscopy depends on the interaction between the 

incident light and the chemical bonds of samples103. Both Raman and FTIR 

are powerful techniques to identify inorganic/organic materials but the there 

is a difference between Raman and FTIR; in FTIR system the energy of 

infrared over a wide range of the frequencies interacts directly with the 

sample and the absorption happens when the frequency of the incident 
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radiation corresponds that of a molecular vibration. Thus, the molecules are 

promoted to an excited vibrational state. It is supposed that the irradiation 

beam loses energy when pass through the sample and the instrument 

measures I/Io where I and I are transmitted and incident beam. In Raman 

techniques one incident frequency typically in the visible range, is used, 

which is scattered inelastically with excitation of a molecular vibration. In 

quantum mechanics, the scattering can be defined as an excitation to an 

imaginary/virtual state lower in energy than the actual electronic transition 

with a change in the oscillation (vibration) energy. In addition, the scattering 

process happens in very short time104 <10-14 s, figure (2-12) shows the 

Raman scattering. 

 

Figure 2-12 the basic of Raman scattering 

 

Equation (2-12) defines the Raman shift105 : 

 ̌  
 

         
 

 

           
                                 (    ) 

Where λ is the wavelength in cm. 
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For all Raman spectra a Witec (alpha CRM200 – Confocal Raman 

Imaging microscope) was used and the back scattered light was collected 

by a cooled CCD (KL1500 LCD). The laser wavelength was 488 nm, 60 

mW. Figure (2-13) demonstrates the main parts of a Raman microscope.  

 

Figure 2-13 The main parts of Raman microscope103

 

2.5. Electrical measurements 

2.5.1. I-V characteristics 

This study depended also on the effect of temperatures on the electronic 

properties of bare and hybrid CNTs. A probe station (Cascade Microtech) 

and 1500A semiconductor parameter analyzer/Agilent was used, as shown 

in figure (2-14). The applied voltage was from +2 V to -2 V with steps 0.05V. 
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Nitrogen gas was used to remove humidity in the sealed area. I-V 

characteristics for both bare CNTs and the nanocomposite films were done 

in various temperature (213-353) K which were controlled by a thermal 

chuck system (Model ETC-200 L, ESPEC), Japan. Conductances were 

calculated from the slope of the I-V plot at zero bias. In some cases, 

temperature-dependent I-V curves could be measured and the conductance 

– temperature data was analysed according to the Arrhenius equation 

which is shown below106 and as figure (2-15): 

       
  

  
                                                         (    ) 

  
 

     
          (       )             (    ) 

Where: R is the electrical resistance (Ω) and G the conductance (S) 

  
 

  
  

  

  
                                                         (    )  

Where R is the gas constant and Ea is the activation energy and is 

sometimes written as an effective temperature To = Ea / R. 
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Figure 2-14 A probing station (Cascade Microtech) 

 
Figure 2-15 a) Current-voltage curves for SWCNTs/Ppy at various temperatures, 
b) Arrhenius plot. 
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2.5.2. Impedance spectroscopy IS. 

The best description of the impedance is the ability of the electrical circuit to 

resist the current flow. It is more complex than the electric resistance which 

is defined by Ohm’s Law107: 

  
 

 
                                         (    ) 

R is independent of frequency but impedance depends on the frequency, 

therefore IS can be more general than the electrical resistance and it gives 

more information about the materials108 109. IS data was analyzed by fitting 

to an equivalent electrical circuit as shown in table (2-2).  

Table 2-2 The comment of electrical elements107. 

Component 
Current Vs. 

Voltage 
Impedance 

Resistor E = IR Z = R 

Capacitor I = C dE/dt Z = 1/jwC 

 

From table (2-2) the impedance of a resistance independent of frequency 

(only real part) and zero phase shift, while the impedance of a capacitor 

dependent on the frequency and has an imaginary part, ±90o out of phase, 

as figure (2-15). Generally, the impedance represents the concept of 

resistance that applies also to capacitive circuit elements.  

                                                        (    ) 

Where C is the proportionality constant and is known as a capacitance. 

From table (2-2) 

   
  

  
                                                  (    ) 
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If: 

     
                                

  

  
      

                    (    )   

Where 

   √                                    (  )      (  )            

In the IS study an ac potential was applied and an ac current was measured 

which has two parts: a sine and a cosine component.   

                 
 

 
 

 

   
  

 

  
          (    ) 

From the table (2-2)      for the resistor and the impedance of the 

capacitance is purely imaginary          . The total impedance for the 

equivalent circuit that was used in this study, is obtained from a parallel 

combination of C and Rc (fig (2-16b)). 

                                                               (    ) 

From  
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Therefore, the total impedance of the equivalent circuit in fig (2-16b) 

expressed as real and imaginary parts is:  

     
   

         
   

      
 

         
                (    ) 

By eq (2-21)    (    )      
   

        
   and    (   )   

      
 

        
      (    )  
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Figure 2-16 a) The Nyquist plot the results for the electrical elements of circuit. b) 
SEM of MWCNTs/Polypyrrole on the microband electrodes 

 

The range of frequency was (50-20000) Hz and (100uA to 10mA). PDTrace 

version 4.8 was used as software to analyse the data.  

2.5.3. Analysis of current-time transients for two-terminal 

nanotubes devices. 

As shown in figure (2-15b &16) a small drop from CNTs or the 

nanocomposite on the electrode can occur two terminal devices. In this 

experiment, different potentials were applied from 1 V to 5 V. Generally, 

application of a potential results in two different contributions to the current 

in the circuit: the current flowing in the resistances and the charging of the 

interfaces. The former corresponds to electrons crossing from the metal into 

the nanotubes, flowing through the film and afterwards out into the other 

metal terminal. This type of current depends on the potential and the film’s 

resistance between two electrodes Rb and contact resistance Rc which is 

situated at Pt/NTs interface and NTs/Pt interface. The second type of 

current (capacitive) corresponds to charges, which accumulate at or near 

Pt/CNTs or CNTs/Pt interface on either side of the device and does not 
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involve electrons flowing through the whole device. This is because the 

current flows only whilst electrons/ions adjust their positions in response to 

the applied potential E, which is divided between that across the capacitor 

EC and that dropped across the bulk resistance ER. 

                                                                 (    ) 

Q is the amount of electrical charge and C is the capacitance. 

                                                           (    ) 

  
 

 
                                                        (    ) 

By differentiation of equation (2-26) with respect to time (t) and using the 

fact that E is constant for t > 0.   

  

  
   

  
 
   

  

  
                                   (    ) 

 

Where i≠ic and i represents the total current while    is the electrical current 

flowing through the capacitor. The current flowing through the parallel 

resistor Rc is given by the potential on the capacitor and Ohm’s law. This 

gives: 

     
  
  

       
     
  

                     (    ) 

Substitution of eq (2-28) into eq (2-27) and rearranging gives: 

   
  

  
  (  

  
  
)  

 

  
                         (    ) 

The solution of (2-29) is  

  
 

  

  
     

      
 

     
               (    ) 
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 [
 

  
 
 

  
]                                       (    ) 

In the steady state, the current obeys Ohm’s law as demonstrated in eq (2-

30) where      . 

    
 

     
                                                  (    ) 

The microband electrodes that were used in this study have four parallel 

bands and four independent terminals. By changing the contact to the 

terminals for example (1&2), (1&3) and (1&4) it is possible to increase Rb , 

while retaining the same value for Rc approximately; this facilitates 

separation of the contact and bulk resistances.  
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Figure 2-17 The equivalent circuit element are also superimposed image on the 
question (2-21) 

 

2.5.4. X-Ray photoelectron spectroscopy (XPS)  

XPS or electron spectroscopy for chemical analysis ESCA, this 

technique is used to analyse materials surfaces and determine the 

chemical/electronic state and the composition of the elements110. To obtain 

XPS spectrum the sample is irradiated by an X-ray beam. Both the number 

and the kinetic energy of the photoelectrons from the sample are 

analysed92. However, ultra-high vacuum conditions (pressure <10-10 Torr) 

are necessary to avoid the collision of electrons that escape from the 

surface before reaching the detector110. Equation (2-34) describes the 

kinetic energy of the photoelectrons.  

                                (    ) 

Where ν is the incident frequency, h is Planck’s constant and   is the work 

function. XPS spectra describes as a chart of the binding energy of 
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electrons with the number of electrons’ core level. Each spectrum has a 

number of XPS peaks at distinguishing binding energy EB that match with 

each element found on the sample surface. These peaks identify the 

elements within the sample and the number of electrons that are detected is 

related to the amount of each in the element in the irradiated area92, 110.  All 

XPS spectra were carried out on a ThermoScientific K-Alpha XPS 

spectrometer (East Grinstead, United Kingdom), provided with an Al K X-

ray source (1486 e.V) 90o is the take-off angle. All the results were collected 

and analysed by CasaXPS. Figure (2-18) shows the main parts of the XPS 

system. Generally, all XPS curves were corrected to 284 eV of hydrocarbon 

C 1S peak as a reference. For narrow scan spectra, the pass energy was 50 

and 0.1 eV and 150 with 1 eV for a wide scan (survey spectra). The 

samples were deposited on Si chips after cleaning these chips by piranha 

solution and was left to dry at room temperature for (10-20) min. 

 

Figure 2-18 The schematic diagram of the X-Ray photoelectron spectroscopy 
system 92 



Chapter two: Experimental part                                                                      .   

70 

 

2.6. Carbon nanotubes as gas sensors: 

This part will present how carbon nanotubes can be used to detect 

volatile organic compounds (VOC) and gases such as ozone. Two different 

method were used to measure the sensitivity of the nanotubes to these 

gases.   

2.6.1. Vapour sensor  

Methanol, ethanol, acetone and chloroform were studied as volatile organic 

compounds and the sensitivity of the films was determined by the change in 

the electrical resistance for the nanotubes before and after exposure to 

vapour. The electrical resistance was measured by a 61/2 digit DMM 

(34401A, Agilent). DMMs are also known as a Volt-Ohm-Multimeters (VOM) 

and have many measurement functions in one unit. Typically, DMM can 

measure current, voltage and resistance. DMMs are more common than 

analog meter because of the accuracy, the cost and auto ranging 111. An 

Agilent 34401A, 61/2 Digital Multimeter (Agilent Technologies, USA) was 

used to measure the resistance value. U1163A Clip-on probe 3A black red 

300V (Agilent Technologies, USA) was used to hold the sample as shown 

in fig (2-19). Lab view was used to monitor the change in the electrical 

resistance with time over a National Instruments IEEE/USB interface.  
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Figure 2-19 a) Agilent 34401A, 61/2 Digit Multimeter instrument was used to 
measure the electrical resistance of the nanotubes) the probes. 

 

In this sensing system zero air (zero air is prepared by mixing pure oxygen 

and nitrogen in a 1:4 ratio and has a much lower level of impurities than 

ambient air (hydrocarbons < 0.1 vpm; CO2 < 1 vpm; H2O < 2 vpm and NOx 

< 0.1 vpm)) was used to calibrate the sample. The gas bottle was supplied 

from (BOC for industrial gases, UK) and the gas flow was controlled by 

mass flow controllers (MFC) which were purchased from (Flotech Solutions 

Ltd., UK) and controlled using Brooks Smart Interface 0260 and software 

which was obtained from (Brooks Instrument, USA). The sensing response 

is defined as S = ((R-R0)/R0)*100%  where R0 is the resistance in an air 

atmosphere and R is the resistance at steady-state after exposure to an 

air/analyte mixture112. In general, two MFCs were used, one for the zero air 

and the second to control the flow of volatile organic compounds (VOCs), 

as shown in fig (2-20). 
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Figure 2-20 Schematic diagram of the sensing measurement system for VOCs 
sensing. 

 

2.6.2.  Ozone gas sensor 

An ozone gas UV-generator using 185 nm UV irradiation of air was 

purchased (UVP, Analytik Jena's Life Science Business Unit, 

(www.UVP.com). To generate the gas, zero air2 was used 125 mL.min-1 as 

a gas carrier. Ultraviolet light can dissociate the oxygen molecule to atomic 

oxygen. Oxygen atoms then combine with O2 to form ozone (O3)
113. Three 

different concentrations of ozone were used in this test at three different 

temperatures (20, 40 and 60oC). To control the temperature during the 

sensing process, a water bath was used which was purchased from (Wolf 

Laboratories Limited, UK) with temperature range (15-150 oC). As shown in 

fig (2-21). Ozone concentration was controlled by shielding/unshielding 

lengths of the UV lamp. This method of controlling the ozone concentration 

                                            
2
 A pure synthetic air made by mixing oxygen and nitrogen. Details in section (2.6.1). 

http://www.uvp.com/
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uses a long UV lamp running parallel to the tube containing the flow of air 

inside the generator. An aluminium shield slides in/out of the generator and 

covers a fraction of the lamp length: maximum ozone concentration is 

obtained by uncovering the full length of the lamp and proportionally less 

ozone is generated by shielding a fraction of the lamp. To measure the 

absolute concentration of ozone, we used colorimetric analysis of a solution 

of aqueous KI through which the air/ozone was bubbled. The output of the 

ozone generator was bubbled through (0.1M, 200mL) of aqueous KI in a 

Dreschel bottle for 20 minutes. Then the UV-vis spectrum of the solution 

was measured and the absorbance of the strong peak for triiodide   
  at 350 

nm was recorded. This peak arises from the oxidation of iodide by ozone 

and was used to quantify the amount of ozone generated in 20 minutes via 

Beer’s law. (more details on the measurements of ozone concentration are 

given in Appendix table S1). 

  

Figure 2-21 The sensing system to detect Ozone gas 
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 Table 2-3 Show the conditions to sense ozone gas by CNTs and CNTs/BNNTs 
samples. 

  
 
 

 

 

 

During ozone exposure, the electric properties of the nanotubes change 

and to observe this behaviour for the bare CNTs and hybrid nanotubes a 

PalmSens potentiostat (4.8) was used to measure the changes in the 

current with time before and after exposure. The film sensitivity was 

measured by the difference between the electrical current before and after 

gas as shown in eq (2-35): 

      
(    )

  
                                (    ) 

Where: S is a film sensitivity, Io is the current in an air atmosphere and I is 

the current at steady-state after exposure to ozone.   

2.7. Saturated vapour pressure (SVP) calculations 

For the sensing study, it was necessary to calculate the saturated vapour 

pressure for the volatile organic compounds (VOC) to understand the 

sensitivity level of the nanotubes for the VOC at the different temperature. 

SVP is known as a pressure extended by a vapour in an equilibrium system 

with its condensed modes/phases at a specific temperature in closed 

system114, 115. Saturated vapour pressure depends on Antoine’s equation 

parameters as shown in equation (2-36) discovered in 1888 by French 

engineer Louis Charles Antoine115. 

Ozone / 

ppm 

Exposed lengths of 

the UV lamp / cm 
Temperature / Co 

128 10 20 

217.6 17 40 

320 25 60 
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                         (    ) 

Where      is the saturated vapour pressure, T is a temperature in Kelvin, 

A, B and C are the constants (compound specific), their value for each VOC 

was obtained from the NIST web site (https://webbook.nist.gov). The gas 

concentration at the sensor was controlled by varying the mixing ratio of 

zero air at flow rate    (   ) to the flow rate of air/analyte,   ( ). The analyte is 

reported as a partial pressure     . 

Using Psat from equation (2-36),      is given by: 

          
  ( )

  ( )    (   )
                                          (    ) 

Where Vf(s) is the amount of the gas/vapour flow which is controlled by 

DMFC and Vf(s) for the dry air mL/min. 

In our study, four different analyte amounts were used as shown in table  

(2-4).

https://webbook.nist.gov/
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Table 2-4 The      of the VOCs were investigated in this part of the study. P* 

refers to saturated vapour pressure. 

      ( ) (      )   (   )(      )        

Methanol 

125 

250 

375 

500 

125 0.5P* 

125 0.67P* 

125 0.75P* 

125 0.8P* 

Ethanol 

125 

250 

375 

500 

125 0.5P* 

125 0.67P* 

125 0.75P* 

125 0.8P* 

Acetone 

125 

250 

375 

500 

125 0.5P* 

125 0.67P* 

125 0.75P* 

125 0.8P* 

Chloroform 

125 

250 

375 

500 

125 0.5P* 

125 0.67P* 

125 0.75P* 

125 0.8P* 

 

2.8.  Measuring the response time and recovery time for the 

sensors 

The response times of the gas sensors in this thesis are reported as 

estimates of the time taken for the measured signal to reach close to 

steady-state after exposure to the analyte. The equivalent recovery times 

are estimates of the time taken for the signal to return to the baseline after 

the gas flow is switched back to zero air. A typical signal-time trace is 

shown in figure (2-22) with estimates of response and recovery times 

marked.
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Figure 2-22 Schematic explanation of how the response and recovery time were 
measured in this thesis for VOCs, ozone and CO gas. In case of ozone sensors, 
the electrical resistance is replaced by the electric current as shown in chapter 
four. 
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3. Chapter three: Carbon nanotubes/conductive polymer 

composites 

This chapter investigates the structure and electrical properties of 

carbon nanotubes (single wall and multi walls) and the nanocomposite films 

CNTs/polypyrrole. Results for the sensing of VOCs by bare and composite 

CNT films are presented. The effect of laser activation of the CNTs on the 

sensor characteristics is also reported. 

3.1. Structural properties   

3.1.1.  Atomic force microscope AFM  

The morphology of the carbon nanotubes was studied using AFM by 

depositing a drop of CNTs (~2µL of 100 μg mL-1) and CNTs/Ppy on the 

surface of Si chips. According to this technique the distribution and the 

shapes of the carbon nanotubes SW and MW may change with the period 

of sonication. Three different times were used to prepare the carbon 

nanotubes: 30 min, 1 hr and 3 hrs and the effect of the sonication time is 

obvious in figure (3-1). After short sonication times (30 min), the nanotubes 

appear tangled with a high density and can be described as bundles or 

yarn. In addition, it was difficult to measure the real diameter of the carbon 

nanotubes, however after 3 hours sonication the nanotubes are more 

clearly separated and it was easier to measure a histogram of the diameter 

of the CNTs.  
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Figure 3-1 The effect of sonication time on the morphology of carbon nanotubes 
(SW and MW). a) MW at 30 min, b) MW at 60 min and c) MW at 180 min in 
sonication process. d) SW at 30 min, e) SW at 60 min and f) SW at 180 min. 
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At 60 min SWCNTs and MWCNTs appear as long tubes with small dots on 

the surface of nanotubes; these dots can be assigned to the metal 

nanoparticles used in their preparation 116. Small knots are also seen, which 

can be assigned to agglomerates of CNTs, but from figure (3-1 b &e) the 

nanotubes have fewer agglomerates compared with the 30 min sample and 

individual nanotubes are apparent. After 180 min it is clear that the number 

of agglomerates decreased and the nanotubes for both SW and MW have 

smooth surfaces with few metal nanoparticles evident. The diameter for 

single wall carbon nanotubes was around (3-4.9) nm and (8-9.9) nm for 

multi walled carbon nanotubes. For the nanocomposite films, CNTs/CP, the 

diameters are significantly increased as demonstrated in figure (3-2), with 

some roughness on the surface of the carbon nanotubes, which points to 

the conductive polymer (polypyrrole). This indicates CNTs were 

successfully coated by Ppy. The PPy appears to form a shell around the 

CNTs as can be seen in the upper image of figure (3-2) where the CNT 

protrudes from the Ppy coating in the nanotube in the bottom, middle of that 

image. It is suggested that polypyrrole adheres to the CNTs by non  

covalent reactions which likely include dispersion forces and     

interactions with the sp2 carbons of the tubes. More AFM images are 

provided in the appendix, figure (S4). The lower image in figure (3-2) shows 

a MWCNT/Ppy sample; the rougher nature of the CNTs compared to figure 

(3-1c) is due to the Ppy coating. 
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Figure 3-2 AFM images for the nanocomposite carbon nanotubes/polypyrrole. 

 
3.1.2.  Transmission electron microscope TEM 

More features of carbon nanotubes (single wall and multi walls) have been 

studied by transmission electron microscopy TEM technique. Generally, in 

this thesis the multi walled carbon nanotubes have a Russian doll structure 

as shown in figure (3-3 & 3-4). 
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Figure 3-3 Russian doll model for multi-walled carbon nanotubes. 

 

Figure 3-4 HTEM images of MWCNTs as a Russian doll structure prepared by 
CVD method. a) no. of walls is 8 with diameter 9.4 nm, b) no. of wells is 9 and the 
width equal 11.25nm. 

 

More details for pristine multi walls carbon nanotubes can be examined by 

this technique. Nanotubes can be open or have capped ends and at the 

same time some of these nanotubes have a bamboo shape and possibly 

include numbers of buds growing on the surface of multi walls carbon 

nanotubes and hold the same physical properties as the main tube 18, 117 as 

seen in figure (3-5&6). 

5 

2 

http://www.google.co.uk/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwiYqJv6rMHQAhWBPRoKHe2zCMoQjRwIBw&url=http://www.medgadget.com/2010/07/wake_forest_researchers_use_litt_nanoparticles_to_fight_cancer.html&psig=AFQjCNGXHcj-zB14EYLf0ylIaYurkptN3A&ust=1480075451881682
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Figure 3-5 TEM images of MECNTs a) opened end, b) capped end. 

  

a 

b 

5 nm 

5 nm  
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Figure 3-6 HTEM images of MWCNTs demonstrate nanotubes buds in the 
different position on the nanotubes. a) from the sidewall the tube, b) from the top of 
the nanotubes. 

  

100 nm  

12.

8 

nm 

3.8 nm 

9.4 nm 

2
7
 n

m
 9.43 nm 

12

.3 

n

a) b) 

5 nm  5 nm  
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Closed end 

Bud 100 nm  
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However, purity represents the main problem to produce carbon nanotubes 

by chemical vapour deposition. In the CVD approach, three metals (nickel, 

cobalt and iron) are used in combination or alone. In our carbon nanotubes, 

iron was used as a catalyst to prepare SW and MW. EDX spectra confirmed 

the presence of iron particles inside or around the nanotubes32. In this 

study, the purity of MWCNTs is 70% and 90% for single wall carbon 

nanotubes and TEM images showed small metal particles beside or inside 

the nanotubes, as shown in figures (3-7 & 3-8). The purity of our nanotubes 

is 70% (by weight) for MWCNTs and 90% for SWCNTs (according to the 

supplier, Thomas Swan Ltd.), the impurities are mainly non-CNT graphitic 

carbons, but with some Fe nanoparticles. 

 

Figure 3-7 TEM image of bare MWCNTs, b) EDX analysis and iron peaks 
appearing with carbon matrix. 

100 nm 
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For bare single wall carbon nanotubes, more tangled perhaps because they 

are more flexible, we can see the metal particles around the nanotubes. In 

addition, it was difficult to measure the length of the nanotubes due to the 

tangling. Generally, TEM for bare carbon nanotubes gave clear images with 

long and smooth nanotubes with minimal agglomerates or tangles but TEM 

for SWCNTs are more tangled than MWCNTs. 

 

Figure 3-8 a) TEM image of bare SWCNTs, b) EDX analysis and iron peaks 
appeared with carbon matrix. 

100 nm 100 nm 

SWCNTs 

a 

b 
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TEM of pristine CNTs gave clear images with long and smooth nanotubes 

with minimal tangles or agglomerates shown in figure (3-9a) for MWCNTs. 

However, the TEM analysis for SWCNTs demonstrated that the nanotubes 

are more tangled than MWCNTs as shown in figure (3-9c). The treatment 

with polypyrrole for the tubes (SW and MW) led to a change in their shape, 

for example, the length of the nanotubes for MW reduced with some 

roughness on the surface as seen in figure (3-9b) and for SWCNTs the 

nanotubes become more tangled than before the reaction with Ppy. 

Notably, films of polypyrrole appeared closed to the carbon nanotubes as 

shown in figure (3-9d). However, the significant increase in the width of 

CNTs after coating with Ppy, for example, the width of MWCNTs before 

treatment was (7~18) nm which became (21~50) nm, and for SWCNTs was 

(2~10) nm which increased to (8~35) nm after being coated with Ppy, as 

shown in figure (3-10). This means that after the polymerization Ppy was 

immediately created on the surface of CNTs. 
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Figure 3-9 TEM images of (a) multiwall carbon nanotubes before coated by Ppy, 
(b) hybrid MWCNTs (c) bare SWCNTs, (d) SWCNTs after templated by Ppy. 
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Figure 3-10 The histogram of carbon nanotubes a) bare and hybrid MWCNTs. b) 
pristine and hybrid SWCNTS. This histogram was depended on TEM images in 
figure (3-10) and figure (S2) in Appendix. 

 

For all the CNTs/ppy samples in this thesis, the ratio between 

CNTs:Ppy was (20:1), this ratio was selected after examining three different 

ratios (50:1), (20:1) and (10:1).TEM images of CNT/Ppy composites for 

these Ppy/CNT ratios are shown in figure (3-11). At a ratio 50:1, the CNTs 

are incompletely coated by Ppy – there are substantial sections of uncoated 

CNT in figure (3-11a). At a ratio (10:1), very large dense deposits of 

polypyrrole and the nanotubes are hidden by this mass of polymer, as 
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shown in figure (3-11c). The ratio of 20:1 showed CNTs coated with a thick 

shell of Ppy, which though not smooth, was contiguous.  

 

Figure 3-11 TEM images of CNTs/Ppy to show the effect the ratio between CNTs 
and polypyrrole on coating process. 

 

3.1.3.  I-V Characteristics and dependence on temperature 

for bare carbon nanotubes and hybrid nanotubes.  

Two terminal I-V characteristics are an important approach to study 

the temperature dependence of the conductance of bare carbon nanotubes 

and nanocomposite tubes. A wide range of temperatures was used from 

(213 to 353) K and for controlling, monitoring and collecting the data a 

Casade microtech probe station and a 1500A semiconductor parameter 

analyser (Agilent) was used. A small drop (3 μL) of CNTs or CNTs/CP was 
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deposited on parallel microelectrodes, dried, then used as demonstrated in 

figure (3-12). 

 

Figure 3-12 Schematic showing the distribution of the nanotubes on the active 
area of the electrode. 

 

A small applied voltage was stepped between -2 V to +2 V and a linear 

response was measured over the wide range of temperatures from 213 to 

353 K. For both SWCNTs and MWCNTs the current-voltage plots were 

completely linear, as shown in figure (3-13). However, the conductivity of 

the bare carbon nanotubes is very high and for SWCNTs the current was 10 

mA at 2 V and at 213 K and decreased to ~ 9 mA at 353 K while it was 8.6 

mA at 213 K and 7.6 mA at 353 K for multi wall carbon nanotubes. As noted 

in chapter two (2.1), it is clear that not all the carbon nanotubes are metallic, 

some nanotubes are semiconducting and it is difficult to separate them. 

However, in a film comprising a mixture of both in which there are multiple, 

parallel current pathways, the electrical current will be dominated by the 

most conducting, i.e., the metallic nanotubes. The conductivity of metallic 

nanotubes decreases when the temperature increases above 213K for both 

SW and MW nanotubes. The resistance of the nanotubes increased when 
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the temperature rose above 213 K and the conductivity or the conductance 

decreased; this is the expected behaviour for metallic materials118 as 

demonstrate in figure (3-13).   

According to the Drude model, the conductance of the metallic nanotubes is 

described by equation (3-1)119 : 

   
    

 
                                               (   ) 

Where:   is the conductivity in Siemens (S), τ the scattering time (relaxation 

time), m the electron (or more generally charge carrier) mass, q the 

magnitude of the electron charge 1.6×10−19 C and   is the carrier density. 

Increasing the temperature leads to excitation of lattice vibrations and 

reduces the relaxation time, because the charge carriers scatter off lattice 

vibrations. The relaxation time is proportional to the conductivity of the 

nanotubes as demonstrated in equation (3-1). The heating of bare CNTs 

affects the mean free path of the electrons as demonstrated in equation (3-

2)120: 

                                                     (   ) 

Where λ mean free path of the charge,   relaxation time and    velocity of 

the electron, and as a result of the heating process the number of electron-

phonon collisions increases, resulting in a smaller mean free path120. As the 

temperature increase, the number of phonons (quantized lattice vibrations) 

increases. The relaxation time   is determined by the scattering of charge 

carriers off phonons, therefore as the temperature increases,   decreases 

and the conductivity   of a metal also decreases.  
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Figure 3-13 I-V curves measured by Casade microtech probe station a 1500A 
semiconductor parameter analyser (Agilent). a) bare MWCNTs b) bare SWCNTs. 
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Figure 3-14 Reduction of the conductance of bare carbon nanotubes at different 
temperatures

 

The conductance of SWCNTs and MWCNTs was reduced or suppressed 

after coating by polypyrrole  and templated CNTs by polypyrrole  can effect 

on the pathways of the electrons between the nanotubes121 122. Also it has 

been shown that some types of the conductive polymer may change the 

carbon nanotubes from p-type to n-type depending on the height of the 

Schottky barrier123. Most conductive polymers such as pyrrole have a 

significant increase in their conductivity with the temperature and 

conductivity dominated by charge transport in the conductive polymers106. 

The conductivities of polypyrrole between room temperature and 420K have 

been reported by Maddison and Tansley124 to lie between 0.35 to 55.15 S 

cm-1. Qingwen and coworkers measured the conductivity of bare CNTs to 

be (105-106) S m-1 at 293 K 125. It is clear that the conductivity of polypyrrole 

is much less than that of CNTs. In figure (3-15) I-V measurements of 

CNTs/polypyrrole composites show a nonlinear behaviour when a small 

voltage was applied between -2 V and 2 V. The data indicates clearly that 
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the polymer impedes charge transport so the (presumably) greater contact 

between tubes imparted by the polymer is more than offset by the lower 

conductivity of the tube-polymer-tube contacts; this is illustrated 

schematically in figure (3-16). The electrical current of the nanocomposite 

films increased with the temperature up to 343K and the electrical current 

was increased from 0.012 μA at 223K to 0.12 uA for MWCNTs/polypyrrole 

at 343K and from 88 μA at 223K to 128 μA at 343K for SWCNTs/polypyrrole 

126.  
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Figure 3-15 I-V measurements for a) MWCNTs/Ppy and b) SWCNTs/Ppy at 
different temperatures.  
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It is worth to note that for applied voltages in the range -0.5 V to 0.5 V, 

linear I-V plots appeared around the origin while the nonlinear curves were 

observed when the applied potential was larger than 0.5 Volt. This nonlinear 

behaviour could arise from rate limiting charge transfer across a Schottky 

barrier between the junction Pt-CNTs/Ppy. Yu and et al in 2010 found that 

the arrangement and conformation of the conductive polymer chains are a 

crucial feature in the conductivity of CNTs/CP, as shown in figure (3-16), 

also they reported that the expanded chains of the conductive polymer 

(Pyrrole), this expansion reduces the barrier between the inter and intra 

chain hopping which may enhance the electrical conductance of the 

CNTs/CP127.  

 

Figure 3-16 Schema demonstrates the effect of polypyrrole configuration on the 
electrical properties of carbon nanotubes, the arrows refer to the configuration of 
CP.  

 

The data of figure 3-15 also show that the conductance of the CNT/Ppy 

composites increases as the temperature is raised, unlike the CNT films 

which some a decrease (metallic behaviour). In the conjugated polymers 

the temperature dependence of the conductivity is described by the 

variable-range-hopping model and the equation (3-3): 

       
 (
  
 
)               (   ) 
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Where T0 is an effective temperature equal which can be related to an 

activation barrier Ea/kB, Go is a constant and β depends on the theoretical 

model and the dimensionality of the sample where: 

  
 

(   )
                   (   ) 

n=1, 2,…….is the dimensionality  

A thick film of polypyrrole demonstrates temperature dependence 

characterized by 3D VRH where n = 3 and β = 0.25, but for the thin film of 

polypyrrole β=0.5, which is also predicted by the Efros-Shklovski model128. 

In 1D materials, where the electrons or other charge carriers cannot avoid a 

large barrier, the arguments leading to equation (3-4) break down. The 

value of β may be controlled by a variety of factors. It has been observed 

that in one dimension β= 1 is typical and leads to Arrhenius- like behaviour 

of the conductance 128. Arrhenius’ law originates in the study of chemical 

kinetics, but applies to conductance measurements when there is a rate-

limiting single (or narrowly distributed) activation energy Ea. A plot of     vs 

1/T has slope =       and   increases as    increases and slope 

  with     , Where   is the conductance,   is the gas constant 8.314 

J.mol-1,   temperature (Kelvin), Ea is the activation energy (J.mol-1) or eV. 

Figure (3-17) shows the conductance of CNTs/Ppy at different 

temperatures, the conductance of the nanocomposite films increases with 

the heating, which is similar to the semiconductor behaviour, and the 

hopping rates increase upon raising the temperature. Figure (3-18) displays 

the linearity of Arrhenius plots for SWCNTs/Ppy and MWCNTs/Ppy and as 

explained before hopping dominates in this part. According to the Arrhenius 
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plots the activation energy for SWCNTs/Ppy and MWCNTs/Ppy were 

calculated as 0.14 eV for MW/Ppy and 0.03 eV for SW/Ppy.  

 

Figure 3-17 The conductance of CNTs/Ppy at a wide range of temperatures.

 

From figure (3-17) the conductance of the hybrid single carbon nanotubes is 

higher that MWCNTs/Ppy and this is further evidence that the electrical 

properties of SWCNTs samples are superior to those of MWCNTs1, 129.  
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Figure 3-18 Arrhenius curve of the conductivity of the hybrid carbon nanotubes, a) 
MWCNTs/Ppy and b) SWCNTs/Ppy. 

3.1.4.  Electronic analysis of two terminal nanotube devices: 

Further information on the electrical properties of bare carbon 

nanotubes and hybrid nanotubes was obtained from impedance 

spectroscopy and current-time transients. These techniques can provide 

information on the contact resistance and the behaviour at high applied 

voltages.  

The conductivity of pristine carbon nanotubes is much higher than 

CNTs/Conductive polymer and, from the linearity of I-V curves for bare 

carbon nanotubes, the nanotubes obeyed Ohm’s law in figure (3-13). In an 
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impedance spectroscopy experiment a resistor that obeys Ohm’s law has a 

frequency-independent real part and no imaginary part (table (2-2) chapter 

two). IS is a very important technique to understand and evaluate the 

electrical properties of materials that have one or more interfaces with 

contact electrodes 109 107, 108. In this study IS was measured by applying a 

small (order of 10 mV) alternating potential to the electrical circuit as shown 

in figure (3-19) and measuring the alternating current over a frequency 

range of 5 Hz - 10 kHz. The Nyquist plot for bare carbon nanotubes 

showed, as expected, that the imaginary component was small compared to 

the real component and the latter was frequency-independent (figure         

(3-19)). The real resistance for SWCNTs was ~ 213 Ω and ~ 300 Ω for 

MWCNTs which is further evidence that SWCNTs have a higher 

conductivity than MWCNTs.  

IS is a small signal technique (small applied bias). The high bias 

region was investigated by studying the current-time transient in response 

to an abrupt potential step across the device. We found that both SWCNTs 

and MWCNTs recorded a high current when a small potential was applied 

and no capacitive effects due to the Pt-CNTs interface were observed, i.e., 

the transients had flat tops at the voltages 1,2,3 and 4 V. Some small 

evidence of capacitive effects are seen only at the highest applied bias of 5 

V in figure 3-20. SWCNTs show a high current compared with MWCNTs (5-

22) mA and between (3-16) mA for bare MWCNTs as shown in figure (3-

20a). The distance between the terminals affected the electrical current in 

this type of device by changing the length of the current path through the 

CNT films. As shown in figure (3-20b) the current was reduced for 40 μm 
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and 60μm paths compared with 20μm and the bulk film resistance,      

increased as displayed in figure (3-20b). From I-V studies, IS and current-

time transients on bare carbon nanotubes for both SWCNTs and MWCNTs 

it has been found that the film resistance has a similar value in these three 

techniques ~ 213 Ω for SWCNTs and ~ 300 Ω for MWCNTs. This 

agreement confirms that the electrical behaviour of the bare nanotubes is 

well-described by a simple resistance over a range of applied biases and 

frequencies.  

 

Figure 3-19 a) electric circuit where Rc is the contact resistance and Rb is the film 
resistance. b) Nyquist plot of bare carbon nanotubes. 
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Figure 3-20 a) Current-time transient analysis for SWCNTs and MWCNTs in 
different voltage applied b) Ri-v of bare MWCNTs at a room tempertature with 
different distances between the terminals during applied potential 

 

In contrast, the nanocomposite films MWCNTs/Ppy and SWCNTs/Ppy have 

a different electrical behaviour to the bare nanotubes. IS studies were 

performed on hybrid nanotubes with the same frequency range (5-10000) 

Hz. However, both real (Z’re) and imaginary (Z’’img) parts were observed in 

the impedance spectrum. The IS was modelled by an equivalent circuit 

comprising a pure capacitor representing charge stored at the Pt/composite 

interfaces, C=1/(2πf Z’’img), and a simple resistance for the bulk film. Any 

barrier between Pt contacts and the CNTs/polypyrrole composite may lead 

to accumulation of charges at the Pt/CNTs/Ppy interface. Generally, when a 

potential is applied two types of currents flow inside the device (CNTs/Ppy) 

as shown in the figure (3-21). The first is the flow of charges through the Pt 

contacts and through the CNTs/Ppy film. The second corresponds to 

accumulation of charges at the Pt/CNTs/Ppy interfaces. Both Pt/CNTsPpy 

and CNTsPpy/Pt interfaces are represented by capacitors in this electrical 
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circuit which is the origin of the imaginary impedance in the system130. The 

film resistance was estimated from the intercept on the real axis at high 

frequency as Z’re for SWCNTs/Ppy = 0.061 GΩ and 0.2 GΩ for 

MWCNTs/Ppy. The IS and the transient data provide another way (along 

with variation of electrode terminal separation) to distinguish contact 

resistance at the Pt/CNTs/Ppy from the bulk CNTs/ppy film resistance. 

Large transient currents suggest a substantial contact resistance,   , 

contribution.    

 

 

Figure 3-21 a) Nyquist plot of CP/CNT composite. b) scheme of the electric circuit 
where Rc is the contact resistance, Rb the film resistance, Pt-electrode (terminal). 
C represents the capacitance at the Pt/composite interfaces. 

 

b) 

High f  Low f  

a) 
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Current - time transients for the nanocomposite films show a large transient 

component of the current compared with pristine carbon nanotubes 

(compare the data in figure (3-24) with that in figure (3-20) for bare CNTs). 

Using the current immediately after the applied potential step, itotal, the 

steady-state current at long times, iss and equation (2-31) it is possible to 

extract values of both Rc, the contact resistance and Rb, the bulk resistance 

of the composite as shown in figure (3-21). These values are in principle 

related to the resistance derived from the slope of the steady-state I-V 

characteristic                  as displayed in figure (3-22 & 23) and 

table (3-1). The factor of 2 accounts for the two nominally identical contact 

resistances at each Pt electrode. 

 

Figure 3-22 Scheme pattern of measuring the electrical resistance by current-time 
technique. 

 

Figure (3-24) shows the current-time data for SWCNTs/Ppy and 

MWCNTs/Ppy. There are two regions with different behaviour, labelled A 
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and B. In area A, where the magnitude of the applied voltage is < 2 V, the i-t 

response has a flat top, itotal = iss and the contact resistance is small. In area 

B there is a transient current to analyse and the contact resistance is 

significant. It was also possible to vary the interelectrode spacing and by 

assigning the change in the resistance to the bulk, Rb, an independent 

estimate of contact resistance can be made. Figure 3-21 shows the 

approximately 

linear trend for overall resistance against electrode separation; a non-zero 

intercept indicates a significant contact resistance.   

 

 

Figure 3-23 Ri-v of hybrid carbon nanotubes at three potentials 3, 4 and 5 V for 
three terminals (1&2), (1&3) and (1&4) which equals Rb+2Rc 
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Figure 3-24 Current- time transient of MWCNTs/ and SWCNTs/Ppy after applying 
different potential at room temperature 
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Table 3-1 Rc (at one contact) and Rb for MWCNTs/Ppy and SWCNTs/Ppy films at 
different voltages and for three interelectrode distances. 

d (μm) Voltage (V) 
MWCNTs/Ppy SWCNTs/Ppy 

Rb / Ω Rc / Ω Rb /Ω Rc / Ω 

20 

1 

7.04 x104 9.03 x106 8.9 x103 1.67 x105 

40 7.57 x105 2.66 x107 13.6 x103 2.11 x105 

60 5.1 x106 5.1 x107 27.7 x103 1.46 x106 

20 

2 

1.9 x104 7.09 x106 6.9 x103 5.6 x104 

40 3.85 x105 9.4 x106 1.24 x104 1.94 x105 

60 5.3 x105 1.89 x107 2.48 x104 7.3 x105 

20 

3 

2.33 x105 5.48 x106 5.7 x103 3.85 x104 

40 5.22 x105 5.75 x106 1.12 x104 1.22 x105 

60 6.41 x105 1.24 x107 2.25 x104 3.64 x105 

20 

4 

3.01 x105 4.3 x106 4.8 x103 2.85 x104 

40 6.7 x105 5.19 x106 1.02 x104 9.25 x104 

60 8.03 x105 1.02 x107 2.06 x104 2.64 x105 

20 

5 

2.61 x105 4.24 x106 4.21 x103 2.34 x104 

40 8.11 x105 4.92 x106 9.37 x103 8.59 x104 

60 9.15 x105 9.14 x107 1.91 x104 2.26 x105 

 

Table (3-1) collects the bulk resistance (Rb) and contact resistances (Rc) for 

MWCNTs/Ppy and SWCNTs/Ppy devices over a range of applied potentials 

and interelectrode gaps. Consistent with the IS data, the bulk resistances 

are generally smaller than the contact resistance.  

3.2.  Optical properties  

3.2.1.  Raman spectroscopy 

Raman spectroscopy is a powerful tool to analyse the composition of the 

conductive polymer / carbon nanotube samples. The vibrational Raman 

spectrum of bare carbon nanotubes (single walled and multi walled) was 

measured as a control to compare that with the spectrum of the 

nanocomposite CNTs/polypyrrole. A layer of the bare and hybrid carbon 

nanotubes was applied by drop-coating on a silicon chip which was cleaned 

by piranha solution. All the spectra were measured by a CRM 200-confocal 
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Raman microscope (Witec) equipped with a diode laser of wavelength 488 

nm. Raman spectroscopy gives unique information about carbon nanotubes 

and it was easy recognize the spectrum of CNTs by this technique131. The 

spectrum of carbon nanotubes including one phonon emission comprises: 

G-band, radial breathing mode RBM and D-band131 .Generally, the D-band 

is assigned to the breathing mode of sp3 atoms (defects), while the G-band 

corresponds to the E2g mode of hexagonal graphite and relates to the 

vibration of sp2 hybridized carbon atoms in a layer of graphite. For pristine 

carbon nanotubes and as shown in figure (3-25) two bands are observed: 

the G and D bands. The D-band has a wavenumber of 1328 cm-1 and is 

stronger in the MWCNTs, but can be recognized easily for the 

nanocomposite films SW/Ppy and MW/Ppy. The typical peak of pristine 

SWCNTs and MWCNTs is at 1612 cm-1. After a polypyrrole coating forms 

on the carbon nanotubes’ surface, three additional Raman peaks appeared 

at 1328, 1063 and 1611 cm-1 and because silicon was used as substrate, a 

sharp peaks is found at 521 cm-1. However, the Raman spectrum of 

polypyrrole  was measured also and it was found that Ppy has a peak at 

1058 cm-1 which corresponds to the C=N in plane deformation of the 

conductive polymer and the same peak appeared in the spectrum of 

CNTs/Ppy and that confirms polypyrrole successfully coated the carbon 

nanotubes132.  
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Figure 3-25 Raman spectrum of carbon nanotubes before and after polypyrrole 
coating. The excitation wavelength was 488nm and the spectrograph used a 
grating with 600 line/mm. The spectra are offset on the vertical axis for clarity. 

 

3.2.2.  Fourier transform infrared spectroscopy (FTIR) 

Fourier transform infrared spectroscopy was used to study the optical 

properties of pristine and hybrid carbon nanotubes. In figure (3-26A&B) 

most of the spectra include a wide absorption band in the range between 

3800-2800 cm-1 which is related to  O-H, N-H and C-H groups133 . In figure 
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(3-26 A) the spectrum of SWCNTs has a sharp peak at 1590 cm-1 due to C 

= C stretching vibrations in the single walled nanotubes walls and another 

peak at 1485 cm-1 of SWCNTs relates to C-C stretches. In addition, the 917 

cm-1 absorption band is assigned to ring breathing134. From FTIR spectra, 

as shown in figure (3-26 A & B, e), there are specific peaks of polypyrrole in 

the SWCNTs/Ppy spectrum which are shifted slightly compared to 

polypyrrole in the absence of nanotubes as shown in figure (3-26A c,e). 

Examples are the bands at 1046 cm-1, 543 cm-1 and 669 cm-1; the 720 cm-1 

band shifts substantially to 669 cm-1 due to the effect of interaction of the 

polymer with the SWCNTs. A similar shift from 720 cm-1 to 667 cm-1 is 

observed in the MWCNTs/Ppy spectrum133, 135. For pure polypyrrole, it was 

easy to recognise the peaks from FTIR such as 1529 cm-1, 1468 cm-1, 1415 

cm-1, 1046 cm-1, 1012 cm-1, 876 cm-1 and 544 cm-1. 867 cm-1 is assigned to 

C-H wagging136, 137. In summary, on comparing FTIR spectra of 

MWCNTs/Ppy to SWCNTs and Ppy, and SWCNTs/Ppy to SWCNTs and 

Ppy in figures (3-26A & B), the composites show features from both Ppy 

and CNTs, but with some small shifts in certain band positions. These 

spectral shifts show that the composites involve intimate interaction 

between Ppy and CNTs, probably via weak, non-covalent interactions 

rather than covalent bonds which would produce new bands.  
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Figure 3-26 A) shows the FTIR spectra of bare and hybrid SWCNTs, e,d and c 
show SWCNTs/Ppy,  bare SWCNTs and polypyrrole, respectively. Figure B) 
shows the FTIR spectra of bare and hybrid MWCNTs, e,d and c show 
MWCNTs/Ppy,  bare MWCNTs and polypyrrole, respectively.  

 

3.3.  The application of CNT/polypyrrole composites as a 

gas sensor  

Since the last decade many studies interested in sensing application 

depended on nanomaterials to design sensors, using nanowires and 
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nanotubes to detect a wide range of gases and vapors58, 138 139. Carbon 

nanotubes are well suited for sensing because of their unique physical 

properties for instance; hollow centre, small size, excellent electrical 

properties, large surface area and high aspect ratio 6, 17, 140
 
5. Generally, any 

sensor should be reliable, low cost, sensitive and with a fast response and a 

short recovery time61
. In 1962 Seiyama5 designed the first gas sensor based 

on ZnO film at 400 oC as a working temperature, then researchers made big 

efforts to use nanomaterials as sensors because of their efficiency, 

sensitivity, selectivity, small size and low power consumption compared with 

bulk materials1. Therefore, carbon nanotubes are promising materials in this 

type of application58, 61.Despite the unique properties of carbon nanotubes 

and fast response with a short recovery time at the room temperature, the 

sensitivity is limited141, 142, 143. In recent years it has been found that many 

researchers have shifted research in sensing technology toward more 

sensitive materials that have a small diameter using nanomaterials instead 

of bulk films80, 144
.  To evaluate CNTs as a gas senor, the nanotubes were 

deposited on microband electrodes as shown in chapter two section (2.8) 

and as shown in figure (3-27). This type of sensor is called a two terminal 

gas sensor145, 146. This gas sensor depends on monitoring change in the 

electrical resistance of the carbon nanotubes/polypyrrole between two 

terminals80, 147as shown in figure (3-28).  



Chapter three: Carbon nanotubes/conductive polymer composites               . 

 114 

 

Figure 3-27 SEM image of the distribution of CNTs/Ppy on the electrode. The Pt 
microband electrodes are visible as uniformly-spaced white lines running through 
the centre of the image. 

 

In general, the detection of volatile organic compounds (VOCs) is important 

in safety applications because these compounds are associated with 

cancer, damage to the liver, kidney and central nervous system, in addition 

their effect on the respiratory system of the elderly and young. VOC 

pollution occurs indoors, in homes, and workplaces more commonly than 

outdoors148
. Four types of VOCs were studied in this thesis: ethanol, 

methanol, acetone and chloroform and it was necessary to design/prepare 

sensors for this purpose.  

Both single walled and multiwall nanotubes were evaluated for their 

analytical response. From the first sensing experiment, it was noted that the 

sensor has a rapid response for all the VOCs –our analyte target- with a 

short recovery time. As mentioned before the principle of operation 

depended on recording the change in the electrical resistance by a DMM 

and the sensitivity of the VOCs was measured by S = (R-R0)/R0) *100% 

where R0 is the resistance in an air atmosphere and R is the resistance at 

steady-state after exposure to an air/analyte mixture. The normalization of 

the response in the form of a dimensionless ratio S allows for a better 

200 µm 
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comparison between devices because factors relating to device size and 

amount of material cancel. For bare SWCNTs and MWCNTs sensors, 

acetone showed the highest sensitivity among VOCs and chloroform 

showed the lowest, as shown in figure (3-28). 

   

  

Figure 3-28 (a&b) The change of the electrical resistance of bare MWCNTs and 
SWCNTs at the room temperature (293K), (c&d) the sensitivity of pristine carbon 
nanotubes at 293K. 

 

In addition, during observation of the electrical resistance for both SWCNTs 

and MWCNTs, it was found that the electrical resistance of the film 

increased when the sensor was exposed to the gas and gradually 

decreased after gas-off. It is noted that the resistance did not return 

precisely to the baseline level. Because of the weak change in the 

resistance value, as demonstrated in figure (3-28 a&b), the resistance-time 

plot looks almost a straight line, but in fact there is a small change in the 
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resistance and, as shown in figure (3-29) after expanding the Y-axis scale 

for bare SWCNTs as ethanol sensor, the resistance increased about 3% 

after vapor exposure. 

 

Figure 3-29 Shows the effect of ethanol vapor on the electrical resistance of bare 
SWCNTs at 293K. 

 

Figure (3-30) shows the effects of the vapor pressure of the VOCs on the 

size of the response of bare carbon nanotubes at room temperature. The 

values of the vapor pressure were determined as shown in chapter two 

section (2-7) and more information in the appendix table S11. . 

 

Figure 3-30 Shows the effect of vapor pressure on the sensitivity of bare carbon 
nanotubes at the 293K. 
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It is easy to realize that acetone has the greatest vapor pressure at room 

temperature compared with ethanol and methanol. Interestingly, however, 

chloroform has a greater vapor pressure than methanol and ethanol but 

shows a small response size. The response appears to correlate instead 

with measures of polarity. The dipole moments are 1.03D (chloroform), 

2.388D (acetone), 1.70D (methanol) and 1.69D (ethanol)149. The largest 

response was observed for the molecule with the greatest dipole moment 

and the smallest response for chloroform, which has the lowest dipole 

moment. The two alcohols have similar responses and similar dipole 

moments. 

These gas sensors have a rapid response with a short recovery time, as 

shown in figure (3-31).  

 

Figure 3-31 The response and recovery times of pristine SWCNTs for different 

concentrations of VOCs in dry air at 293K (room temperature). 
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In general, the response and recovery time increased with increases in 

concentration –VOCs: dry air- , however the SWCNTs film was very 

sensitive for methanol and had a rapid response (78-90) s with very short 

recovery time (15-30) s. This suggests the surface of SWCNTs very active 

and can return to the baseline in a short time. It was found that ethanol 

shows a longer recovery time (78-90) s and (156-90) s as a response time. 

However, for MWCNTs films, as demonstrated in figure (3-32), acetone 

recorded a good response time (66-96) s and acceptable recovery time 

(102-156) s, while the shortest recovery time for the films was for ethanol 

(96-144) s compared with other VOCs. On the other hand, MWCNTs film 

took a long time to respond to the chloroform vapour ~ (72 – 180) s and had 

a long recovery time (102-288) s although the sensitivity of bare MWCNTs 

to the chloroform vapour is very weak. Similar observations have been  

reported before58. 
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Figure 3-32 The response and recovery time of bare MWCNTs for different mixture 
concentration of (VOCs:dry air) at 293K (room temperature) 

From the results above, it was found that bare carbon nanotubes (SWCNTs 

and MWCNTs) have a weak response to the volatile organic compounds 

and it was necessary to enhance the sensitivity by adding other 

nanoparticles like Cu, Ag and Au or coating the nanotubes by conductive 

polymer142, 150. Many reasons led to the choice of polypyrrole, for example 

good electrical properties, reasonable stability, easy preparation, low-cost5, 

151
. Moreover, compared with other materials carbon nanotubes are 

promising material for the polymer composite owing to their electrical and 

mechanical properties. The CNTs/CPs composite is a good combination in 

many applications, e.g. supercapacitors152 and due to their electrical 



Chapter three: Carbon nanotubes/conductive polymer composites               . 

 120 

properties CNTs/CPs can be used as electromagnetic interface shielding 

materials and electrostatic discharge 153-155
.  

In this study, carbon nanotubes were coated by polypyrrole as a 

conductive polymer and all the details about how to prepare the samples 

were given in chapter two. From the first sensing test, it was noted that the 

sensitivity of carbon nanotubes increased greatly compared to bare CNTs 

as shown in figure (3-33) and these results are better than obtained in 

previous studies140, 142. In more detail,  An et al, used SWCNTs/polypyrrole 

as a gas sensor to detect 300 Pa of ethanol vapour at room temperature, 

the nanocomposites were prepared by ‘‘in situ chemical polymerization’’ 

and then ‘‘spin-coated’’ onto a pattern142. They found that the sensitivity of 

SWCNTs/Ppy for EtOH was S < 2%. On the other hand, Brahim’s group140 

tried to enhance the sensitivity of bare SWCNTs by coating CNTs with 

different metals as, Fe, Pt, Pd, Mn and Ti and they found that the sensitivity 

of SWCNTs/metal was increased from zero to < 2% for ethanol vapour (1-

10) ppm. However, our thin film of SWCNTs/Ppy improved the response 

from 0.15% to 7% upon coating treatment for ethanol vapour at 334 Pa at 

room temperature. As can be seen in figure (3-33) acetone recorded the 

highest response of all the VOCs studied with SWCNT/Ppy sensors. The 

much larger response of SWCNTs/Ppy than MWCNTs/Ppy to acetone 

suggests another factor, other than dipole moment, is responsible. It is 

difficult to identify the precise cause, but a superior permeability resulting 

from a different morphology of the Ppy in SWCNTs/Ppy is suggested. 
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Figure 3-33 (a&b) The change of the electrical resistance of MWCNTs/Ppy and 
SWCNTs/Ppy films at the room temperature 293K, (c&d) the sensitivity of the 
hybrid nanotubes at 293K 

 

It is easy to recognise that the sensitivity increased more than 100% for all 

the VOCs in CNT/Ppy composites compared to CNTs alone (figure (3-30)). 

Figure (3-34) shows the response and recovery time of SWCNTs/Ppy at 

different concentrations (VOC:dry air) at room temperature. Both response 
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and recovery times were longer than for bare CNTs. This is suggested to be 

a result of the penetration of the VOC molecules inside the polymer by 

diffusion, which is a slower process than adsorption at the bare CNT 

surfaces or the diffusion in between CNTs. 

 

Figure 3-34 The response and recovery time of SWCNTs/Ppy for different mixture 
concentration of (VOCs: dry air) at 293K (room temperature) 

 

Although, the composite films respond more slowly than bare nanotubes, 

they still have acceptable response and recovery times for all the VOCs. It 

was noted that increasing the mixture concentration affects the recovery 

time, which becomes longer, but no more than 4 mins as demonstrated in 

figure (3-35). At P/P* = 0.5 the longest recovery time was only 2 min. For 

MWCNTs/Ppy, both the response and recovery time are good, but the 

response and recovery time increased with increasing concentration of 
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vapour. For example at P/P* = 0.5 the fastest response time was about 24 s 

with recovery time 56 sec for EtOH while the film took 132 s to respond and 

240 s to recover at P/P* =0.8, see figure (3-35). It is likely that the slow-

down in response/recovery is related to diffusion of the VOC molecules 

within the Ppy component of the sensor. In general, the recovery times 

were longer than the response times at high concentrations, which suggests 

a significant kinetic component rather than a pure diffusion-limited 

mechanism. It is suggested that these kinetic effects are related to 

structural changes in the polymer caused by swelling effects at high VOC 

concentrations and that the rate of adsorption/desorption and/or diffusion in 

the dry and swollen polymers is different. We note that the recovery time is 

roughly proportional to the concentration of VOCs. 

 

Figure 3-35 The response and recovery time of MWCNTs/Ppy for different mixture 

concentration of (VOCs: dry air) at 293K (room temperature). The response and recovery 

time were measured when the electrical resistance reached the steady state level as shown 

in figure chapter two, section (2.8). 
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3.3.1. Effect of the temperature on the performance of the 

carbon nanotubes as a gas sensor 

To study the effect of the temperature on the sensitivity of bare and hybrid 

carbon nanotubes, five different temperatures were used between 20 to 60 

oC for all VOCs as shown in table (2). 

Table 3-2 shows the temperatures which were employed in this study for pristine 
and hybrid nanotubes 

Sample SW, SW/Ppy, MW, MW/Ppy 

VOCs MeOH EtOH C3H6O CHCl3 

Temp. (20-60)oC (20-60)oC (20-60)oC (20-60)oC 

 

This part depends on observing the change in the electrical resistance with 

time during the vapor exposure at the different temperatures.  

For bare CNTs, it was found that the maximum working temperature was 

50oC for each SWCNTs, while for MWCNTs measureable responses were 

obtained at temperatures up to to 60oC for MW/Ppy and SW/Ppy. However, 

the response size decreased with the temperature for each bare and hybrid 

device for all the VOCs. The highest sensitivity was at 20 oC and decreased 

dramatically at 60 oC, as shown in figure (3-36). In addition, from the same 

figure one can recognize that the sensitivity of CNTs increased also with the 

vapor pressure for the VOCs. Generally, a small amount of polypyrrole can 

enhance the sensitivity of the nanotubes at the high temperatures 

compared with the bare nanotubes156. On the other hand, acetone has the 

highest response size, proportionally greater than a simple comparison of 

vapour pressures would predict. There is relatively little difference in the 

sensitivity of ethanol, methanol and chloroform relative to their vapour 
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pressures as shown in figure (3-36 a-d). However, for the hybrid SWCNTs, 

acetone and methanol have the largest response size, but the weakest 

sensitivity was for chloroform vapor throughout the temperature range. 

Interestingly, at 50oC and 60oC the sensitivity of ethanol, methanol and 

chloroform can be almost the same as shown in figure (3-36 e-j). The 

response of the MWCNTs and MWCNTs/Ppy also changed with heating, for 

example, the sensitivity of MWCNTs for acetone vapor decreased about 

26% at 30oC, 34.7% at 40oC and 43% at 50oC, as shown in figure (3-37). 

The highest response was for acetone vapour and chloroform recorded the 

lowest response size. Moreover, from monitoring the vapor pressure, the 

sensitivity increased with increasing partial pressure and it is difficult to 

explain the low sensitivity to chloroform although it has a high vapor 

pressure compared with ethanol and methanol, the calculations of the 

vapour pressure can find in the appendix, table S2. This effect was 

analysed in terms of an adsorption equilibrium of the analyte on the 

polymer/CNT composite and the enthalpy of adsorption/desorption could be 

extracted from the data by plotting lnS against 1/T as shown in figure (3-

38&39).   
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Figure 3-36 Shows the sensitivity of the nanotubes (a to d) the response size of 
bare SWCNTs at different temperature, (e-j) the sensitivity of SWCNTs/Ppy at the 
wide range of temperatures between (20 to 60)oC with different mixture 
concentration of (VOC: dry air).  



Chapter three: Carbon nanotubes/conductive polymer composites               . 

 127 

 

Figure 3-37 Shows the sensitivity of the MWCNTs (a to d) at different temperature, 
(e-j) the sensitivity of MWCNTs/Ppy at a wide range of temperatures between (20 
to 60) oC with different mixture concentration of (VOC: dry air). 
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Figure 3-38 Shows the relation between lnS and temperature for the different 
concentrations of the analyte (VOCs: dry air) for bare and hybrid MWNTs. 
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Figure 3-39 Shows the relation between lnS and temperature for the different 
concentrations of the analyte (VOCs: dry air) for bare and hybrid SWNTs. 

 
The Van't Hoff equation was used to understand the effect of temperature 

on the performance of the nano-vapor sensor as shown in figure (3-40) for 

the pristine and hybrid nanotubes. The Van't Hoff equation refers to the 

change of the equilibrium constant of a chemical reaction with temperature 

change. The variation of equilibrium constant change with temperature 



Chapter three: Carbon nanotubes/conductive polymer composites               . 

 130 

depends on the change in standard enthalpy for the reaction. The Van't Hoff 

equation gives information about the nature of the interaction of gas with the 

sensor surface as shown by the lnS Vs 1000/T plots in figures (3-38 & 39). 

H can be determined as shown below: 

    
 (   )

 (
    
 )

                                     (   ) 

From figure (3-41&42) : 

      
 (   )

 (
    
 )

                                             (   ) 

Where R is the gas constant 8.314 J K-1mol-1. 

    
  was negative for bare and hybrid nanotubes as demonstrated at 

figure (3-40); the negative value is necessary for consistency of the analysis 

based on a model of adsorption equilibrium because the entropy of 

adsorption is always negative. The     
  of these VOCs by (NIST 

webbook) are all larger in absolute value than the magnitudes of the 

apparent adsorption enthalpies      
   from the van’t Hoff analysis. For 

example     
  of MeOH at 303 K is 38.7 kJ/mol157 while      

   was 

31.4 kJ/ mol at (P = 0.8P*), the same for C3H6O |    
 | was 22.04 kJ mol-

1 at (P = 0.8P*)  while     
  equals 41.2 kJ/mol158 at 303 K. This indicates 

the VOCs molecules were adsorbed by the sensor material and not simply 

condensed as a liquid film on the device. 
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Figure 3-40 Shows the change in enthalpy of a system which is referred to the 
exothermic reaction for each pristine CNTs and CNTs/Ppy for the VOCs:dry air. 

 

Figure (3-41) shows a schematic diagram of the amount of gas molecules 

absorbed at the surface of the nanotubes at the different temperatures. 

 

Figure 3-41 Effect of the temperature on the adsorption process for the organic 
compounds molecules. a) at 20oC, b) 40oC and c) 60oC. 
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To study the effect of temperature on the sensitivity of our sensor a simple 

isotherm model was designed for the adsorption of the VOCs.  

                                                                (   )   

Where   represents the signal which is assumed proportional to the 

adsorbed amount of the analyte,    is the surface excess of the analyte 

(VOCs: dry air) in mol.m-2. The Langmuir model was used describe the 

adsorption isotherm in as simple a manner as possible. If the analyte has a 

weak adsorption on the surface of nanotubes, the isotherm reduces to a 

linear relation between     (partial pressure) in the gas phase and  . If 

instead the surface coverage reaches a plateau at (  )- monolayer 

coverage- the response size would not depend on the analyte pressure and 

would have no particular interest for a sensor: In the linear region: 

 

  
                                                   (   ) 

Where    is the complete monolayer coverage,      is the partial pressure 

of VOC and K is the equilibrium constant. Note that      depends on the 

temperature of the Dreschel bottle not the temperature of at the sensor. Our 

model therefore has a sensor temperature dependence originating from    

alone and therefore on the Van't Hoff equation applies.  

    

    
   

   

 
                                    (   ) 

Where     is the enthalpy of the adsorption reaction. Figure (3-38 & 39) 

shows the plots of     Vs     for CNTs and CNTs/Ppy for methanol, 

ethanol, acetone and chloroform.      
  is shown in figure (3-40).
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3.3.2. Evaluation of the nano-vapor sensor for a small 

amount of the volatile organic compounds. 

This section describes the sensitivity of the nanotubes to small amounts of 

VOCs P/P*<0.2. On observing the change in the electrical resistance of the 

nanotubes upon exposure to the analytes it has been found that CNTs are 

insensitive to VOCs S<0.45 %, but the sensitivity increases when the CNTs 

are coated with polypyrrole: 2%< S <17%. Figure (3-42) shows the 

response of the nanotubes for P/P*<0.2. When S is plotted against P/P* (S5 

and S6 in the appendix), a linear calibration is observed for most of VOCs 

as judged by the correlation coefficients. R2 was between 0.99 to 0.91 for 

bare CNTs and for hybrid CNTs R2 values were between 0.79 to 0.95 for 

C3H6O, EtOH and MeOH. However the correlation coefficient was much 

lower for CHCl3 at both MWCNT/Ppy and SWCNT/Ppy devices for which 

values of R2 = 0.22 and 0.68 were determined. The low values of R2 and 

nonlinear calibration curves (S5, S6, appendix) suggest that the interaction 

between the analyte and the nanocomposite film is more complex than with 

the bare CNTs. Previous workers have suggested that adsorption of VOC 

molecules at the conductive polymer is followed by diffusion to the active 

sites 77. Clearly there is a difference in the shape of the calibration curve for 

CHCl3 which is nonlinear for SWCNT/Ppy as shown in figure (3-42g) and 

almost independent of P/P* in figure (3-42h) for MWCNT/Ppy. It is 

worthwhile to note that the size of the response of SWCNT/Ppy devices to 

CHCl3 is similar to other VOCs, therefore there is clearly some interaction 

between Ppy and CHCl3. We suggest that the data can be rationalized if 

Ppy becomes saturated with CHCl3 at relatively low values of P/P*. Other 
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analytes, such as MeOH, EtOH and C3H6O may still be in the linear region 

of the adsorption isotherm and therefore the devices show a more linear 

calibration.   
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Figure 3-42 (a-d) show the change in the electrical resistance with vapour pressure 
of (SW, SW/Ppy, MW & MW/Ppy) respectively, (e-h) show the sensitivity of pristine 
and hybrid nanotubes for the low concentration of (VOCs:zero air) at room 
temperature. More statistics analysis in the appendix figures S5 and S6. 
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3.3.3. Effect of the concentration of the conductive polymer 

on the sensitivity of the carbon nanotube sensors. 

Generally, two concentrations were used in this study for the conductive 

polymer (0.5 M and 1 M) and by TEM images, it was easy to recognize that 

at the high concentration, the CP coated the CNTs completely while the low 

concentration of polypyrrole covered the nanotubes in interrupted form, as 

demonstrated in figure (3-43). 

 
Figure 3-43 shows TEM images of how the conductive polymer coated the 
nanotubes in two different concentration, (a) bare MWCNTs, (b) MWCNTs/Ppy 
with 0.5M of CP, (c) MWCNTs/Ppy with 1M of polypyrrole,(d) schematic 
distribution of the CP on the surface of CNTs prepared from 0.5 M concentration.  

 

Although, the sensitivity of the CNTs/Ppy is smaller with a low 

concentration of the conductive polymer, the response to VOCs is still larger 

than in the case of bare nanotubes. That suggests a small amount of 
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pyrrole can make a significant change in the sensitivity of carbon nanotubes 

and enhance the performance of the nanosensor159. As can be seen in 

figure (3-44) it was observed that the sensitivity to chloroform was most 

strongly affected by pyrrole concentration of all the VOCs studied. The 

nature of the coating affects the response size of the nanotubes for VOCs –

our target- as shown in figure (3-44). This shows that the CNT: Ppy ratio 

can also can affect the selectivity of the sensor. Low concentrations of 

pyrrole produce interrupted coating; these samples have the lowest 

conductivity, but an improved sensitivity. High pyrrole concentrations do not 

regain the conductivities of pristine CNTs, but have good sensitivities. 

Figure (3-43d) illustrates schematically how small amounts of Ppy can have 

significant effects. The conduction path between the two terminals of the 

device involves hopping between multiple CNTs where these cross. If the 

conductive polymer coats the CNTs at these crossing points, the tunneling 

barrier may be strongly affected. An increase in these tunneling barriers will 

reduce the conductivity of the device because Ppy coatings at the crossings 

will separate the CNTs slightly and increase overall resistance. However, 

the Ppy will also increase the sensitivity S because adsorption of VOCs by 

the Ppy at the crossings may have a large effect on the tunneling barrier, 

e.g. by swelling of the polymer and a separation of the CNTs at the 

crossings. 
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3-44 Shows the change in the sensitivity of the hybrid nanotubes for the VOCs with 
two different concentrations of the conductive polymer (L=0.5M) and (H=1M) at the 
room temperature. 

 

Figure (3-45) shows the change in the I-V measurements of bare and hybrid 

CNTs at 293K for 1 M and 0.5 M of the conductive polymer. 
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Figure 3-45 I-V charactrazation of bare and hybrid CNTs with concentrations of 
polypyrrole 1 M and  0.5 M. 

 

3.3.4. Evaluate the performance of bare carbon nanotubes 

as a nano-sensor after laser treatment. 

Many studies have tried to improve the sensitivity of carbon 

nanotubes as a gas sensor to detect VOCs. For example by decorating the 

nanotubes with nanoparticles such as Au and Ag or making composites 

with conductive polymer70, 159, 160. This section investigates an alternative: 

the effect of laser irradiation on the response of bare CNTs. Briefly, a diode 

laser was used as a pulsed laser source with wavelength 532 nm, the laser 

power was 250 watt with a spot diameter 1.5 mm, and the CNTs were 

exposed for 1 min, the intensity of laser was 1.4 x 108 W/m2. 

The intensity of the laser was measured as shown in equation (3-10)161. 

          
 (    )

 (  )
                  (    )    
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Where (P) is the laser power in watt and (A) the spot area. 

From monitoring, the change in the electrical resistance of the 

carbon nanotube film it was found that the sensitivity of bare carbon 

nanotubes for chloroform increased significantly compared with ethanol, 

methanol and acetone as shown in figure (3-46). So the laser radiation 

enhances the sensitivity of chloroform of MWCNTs to become more 

selective for the chloroform vapour over other VOCs. It was found that the 

bare MWCNTs sensor treated with laser radiation shows a higher sensitivity 

to chloroform than without any laser treatment, while the sensitivity to 

acetone, ethanol and methanol decreased after laser treatment for instance 

the response size of C3H6O dropped to 80% and to 66% and 55% for EtOH 

and MeOH. Simultaneously the sensitivity to CHCl3 jumped to 230%. Bare 

CNTs are more selective for chloroform vapor than the other VOCs. Laser 

irradiation of CNTs therefore provides another useful means to alter the 

selectivity of CNTs sensors. 
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Figure 3-46 Shows the change in the sensitivity and the selectivity of the bare 
MWCNTs before and after laser treatment with P=0.5P* for the (VOCs:dry air).

 

Interestingly, the nanotubes in this thesis were prepared by chemical 

vapor deposition with a purity of 70% by mass for MWCNTs with some Fe 

particles as shown in EDX spectrum in chapter 3 figure (3-7b).  It has been 

reported that laser treatment of the nanotubes can modify –only the spot 

area of the MW film-  and decrease the impurity content of the 

nanotubes162. In addition, laser ablation with wavelength 532 nm (SHG3)163 

is a more efficient method to produce high purity CNTs than the CVD 

approach but it is expensive 164. According to the Raman spectrum of CNTS 

                                            
3 S.H.G : divided the wavelength of Nd:YAG laser (1064 nm) to 532 nm by 
using a KDP crystal to obtain the doubled frequency with high intensity. 
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before and after there is a significant change in the structure of MWCNTs 

as shown in figure (3-47); similar results were identified before in previous 

studies 162, 165-167 and the ratio of the D-band to the G-band for bare carbon 

nanotubes decreased. The relative decrease of D:G bands suggests fewer 

sp3 defects remain after irradiation.  

 

Figure 3-47 Shows the Raman spectrum of bare MWCNTs before and after laser 
treatment.The excitation wavelength is 488 nm. The spectrograph used a grating 
with 600 line/mm. 

 
 

3.3.5.  Repeated measurements  

A good gas sensor should be stable, reliable, with a good life time 

and to evaluate the stability of CNTs as a gas sensor it was necessary to 

use the same mixture concentration (P/P*) for each VOC for around 30 min 

to check the behaviour of the nanotubes over time as shown in figure (3-

48&49). It was found that the change in the electrical resistance of the 

CNTs films was stable for all the VOCs. 
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Figure 3-48 Shows the stable change in electrical resistance of SWCNTs and 
SWCNTs/Ppy in (P=0.5/P*) for VOCs at the room temperature. 
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Figure 3-49 Shows the stable change in electrical resistance of MWCNTs and 
MWCNTs/Ppy in (P=0.5/P*) for VOCs at the room temperature. 
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In addition, the sensor was examined for ten days to sense acetone vapour 

at (P = 0.67 P*) and from observing the change in the electrical resistance it 

was found that the film’s resistance decreased with the time and the 

response size decreased also as shown in figure (3-50). Upon checking the 

film under microscope it was noted that there were cracks in the film of 

CNTs/Ppy. These cracks may expose bare CNTs reduce the sensitivity of 

the sensor.     

 

Figure 3-50 Shows the change in the electrical resistance of CNTs for acetone 
vapor (P = 0.67/P*) at room temperature in ten days 
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3.3.6.  The mechanism of the response of carbon nanotubes 

as a nanosensor. 

The operating principle work of the nanogas sensor depends on the 

change in the electrical resistance of the films before and after gas 

exposure138. The change in the electrical resistance or the conductivity can 

arise from different mechanisms. First, charge transfer between the vapor 

molecular (analyte) and the conductive polymer in the nanocomposite films 

or between vapor molecular and the nanotubes in the case of bare NTs 

films might alter the carrier density. This seems unlikely for the VOCs 

studied in this work, which are relatively unreactive, stable molecules, not 

easily oxidised under ambient conditions. Such a mechanism, based on 

charge transfer reactions of organic species would also be unlikely to be 

reversible. Second, it is possible that adsorption of the VOCs by the 

polymer produces conformational changes and/or swelling of the polymer 

that affects the hopping process responsible for the polymer’s conductivity. 

This type of mechanism is much more likely on the basis of the data 

discussed above which showed reversible responses under ambient 

conditions and a decrease in response at higher temperatures, consistent 

with a mechanism based on adsorption. 

 As shown previously in this chapter the main mechanism of 

electrons transport inside the CNTs and CNTs/Ppt depends on the variable 

range hopping (VRH) and tunnelling transport (TT)5. However, it has been 

reported that the main part in the sensing mechanism is the interaction 

between the coating layer and the analyte and according to the observation 

of the electrical properties of the films during the sensing process it was 
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noted that the electrical resistance for bare and hybrid nanotubes increased 

with gas exposure. From I-V characterization, the Schottky barrier at the 

contact electrodes also increased and the work function decreased for 

CNTs/Ppy168. Generally, in the sensing experiments, the adsorption of the 

gas’ molecules on the surface of the nanotubes can relate to the surface 

coverage 4,169. Mostly, any small amount of polypyrrole on the CNTs will 

increase the sensitivity of the nanosensor for VOCs. However, the response 

of the composites may even change sign as a function of target analyte 

concentration; this suggests that a simple mechanism based on swelling 

and its effect on the percolation behavior of CNTs in the polypyrrole matrix is 

insufficient to explain the data. In addition, in some sensing tests of 

chloroform and acetone vapor it was found that the electrical resistance 

decreased during gas exposure and from observing the sample by atomic 

force microscopy it was noted that the diameter of polypyrrole increased or 

swelled which led to a change the electrical conductivity and decreased the 

sensitivity of the film as shown in figure (3-51). In 2010 Yakovlev and et al 

found the best description of this case is related to re-aggregation of the 

carbon nanotubes and the CP concentration below the percolation 

threshold, a new arrangement between CNTs and the conductive polymer 

effects the sensing response with decreasing resistance value due to the 

weak interaction between the nanotubes and pyrrole127.  

                                            
4
 Surface coverage is known as an occupation of vapor/ gas molecules on the surface of 

materials as nanotubes.  
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Figure 3-51 Shows a) the negative change in the electrical resistance of 
SWCNTs/Ppy for CHCl3: dry air exposure,b)reduce the response size of the film 
during the sensing process,c)AFM images of hybird nanotubes before and after 
gas exposure, d)the effect of swelling on the polypyrrole size after gas exposure.  

 

3.4.  Conclusions  

Polypyrrole/CNTs composites were synthesised succssesfully using the in 

situ chemical oxidative polymerization method. Morphology and electrical 

properties were studied for MWCNTs/Ppy, SWCNTs/Ppy, pure Ppy and 

pristine CNTs. The results show that the multi wall and single wall carbon 

nanotubes were nanocomposites effectively synthesised using the oxidative 

polymerization method. As demonstrated by AFM and TEM, the diameter of 

CNTs increased after treatment with Ppy, which suggests that the 

polypyrrole covered most of the surface of the nanotubes. In addition, as 

demonstrated in FTIR and Raman experiments, Ppy covered most of the 

surface of CNTs. I-V characterization showed that the electrical 

conductance of CNTs decreased after the coating process. However, the 

c) 
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sensitivity of bare CNTs for VOCs was increased after Ppy coating by more 

than ten-fold. Upon evaluation of the peformance of bare and hybrid CNTs 

gas sensors at  different temperatures, it was been found that the device 

sensitivity decreased with temperature. The temperature dependence is 

consistent with the Van’t Hoff equation and reversible adsorption of the 

analyte on the device. For all sensing measurments, bare and hybrid CNTs 

have a fast response time   (1-2) min and fast recovery time   (1-4) min 

MeOH, C3H6O and EtOH have a good response size, in contrast, CHCl3 

had the lowest sensitivity at pristine and hybrid CNTs, while the sensitivity 

of CHCl3 increased after laser treatment of CNTs. It has been noted that the 

sensitivity for MeOH, C3H6O and EtOH was decreased after laser treatment 

and this method made CNTs partially selective to chloroform over other 

VOCs. CNTs and the nanocomposite thin films show a stable response for 

a constant gas concentration for 30 min. However,on conducting the 

sensing experiment for ten days, the film sensitivity decreased. The reason 

for this was probably associated with the appearance of cracks in the 

polypyrrole film; these would expose bare CNTs and alter the way in which 

the analyte is adsorbed. 
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4. Chapter four: CNTs/BNNTs as ozone gas sensors 

This chapter will demonstrate how carbon nanotubes can be used to 

sense ozone gas and the effect of boron nitride nanotubes BNNTs on the 

sensitivity of carbon nanotubes in this matter. Exposure to ozone at ground 

level leads to damage to the lung and nervous system. Therefore, the 

development of ozone sensors for use in urban pollution monitoring is 

important. In addition, ozone is hazardous to not only humans but also 

plants and animals. Near ground level ozone gas forms from the action of 

sunlight on NO2 (nitrogen dioxide) from soil emissions and from burning 

fuels in cities. The choice of BNNTs to make composites with CNTs is 

motivated by the observations in the previous chapter that decreasing the 

conductivity of CNT films often leads to an increase in sensitivity of the gas 

sensing devices. Ozone is an extremely reactive molecule, therefore the 

material used to prepare the composite should be chemically robust: 

BNNTs are both robust (similar to CNTs) and insulating. 

4.1. Carbon nanotube and boron nitride films. 

Generally, the good physical properties of carbon nanotubes 

encourage researchers to use this material in a wide range of sensing 

applications. CNTs show utility to detect different types of volatile organic 

compounds and gases170-175. It is worthwhile to note that CNTs/Ppy films 

did not work well as a sensor for ozone gas. Although a fast response was 

initially recorded, the electrical resistance during gas exposure was 

unstable and it was difficult to evaluate the film sensitivity, see figure (4-1). 

This is due to the extreme oxidizing power of ozone which reacts with 

organic polymers in an irreversible manner. A more inert second component 
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of the composite was required and BNNTs were observed to produce more 

stable devices in combination with CNTs. 

 

Figure 4-1 The unstable change in the electrical resistance of CNTs/Ppy as ozone 
gas sensor at room temperature with different concentrations of the gas. 

 

It has been noted from previous studies that to design a CNT ozone 

sensor one needs a high working temperature (optimum working 

temperature) (330-650) K in order to recover rapidly under vacuum. The 

recovery time can be (1-2) h at room temperature and depends on the gas 

concentration176. In this part of the study, three types of nanotubes were 

used: multiwall carbon nanotubes MWCNTs, single wall nanotubes 
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SWCNTs and also boron nitride nanotubes BNNTs. Chapter two includes 

all the details of these nanotubes and preparation of the films. The coupling 

between carbon nanotubes and boron nitride nanotubes can enhance the 

sensitivity of carbon nanotubes as ozone sensor, improve response, and 

retain a good recovery time at different temperatures. For bare carbon 

nanotubes, although the response time was fast ~ 1 to 2 min with good 

sensitivity, the recovery time was very long   27.8 min for bare MWCNTs at 

320 ppm as shown later in this chapter. Combining carbon nanotubes with 

BNNTs can improve the recovery time and enhance the sensitivity. BNNTs 

are one-dimensional (1D) nanostructures and have recently attracted 

significant interest from the scientific community. BNNTs are close 

analogues to carbon nanotubes. BN-nanotubes are electrical insulating with 

a large band gap ~ (5.9 to 7.1) eV177. Chemically and thermally BNNTs vary 

stable with excellent thermal conductivity178, 179. 

4.2. Synthesis of CNTs/BNNTs films.  

Chapter two, section 2.4 demonstrated how to prepare the thin films. 2-3 μL 

was taken from the mixing solution (CNT/BNNTs) (100 µL:100 µL) of 100 μg 

mL-1 for CNTs and BNNTs and drop cast as a thin film on the microband 

electrodes to examine the I-V characterizations and the impedance 

spectroscopy IS of the film or on silicon chip for FTIR and Raman. Many 

techniques were used to study the physical properties of CNTs after mixing 

by BNNTs: TEM, Raman spectra, FTIR, I-V characterization and IS.  
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4.2.1. Transmission electron microscopy TEM. 

More structural properties of CNTs and BNNTs have been studied by 

transmission electron microscope. Figure (4-2) show TEM images of bare 

and hybrid nanotubes. BNNTs appear as wrapped up CNTs and can be in 

parallel with CNTs and from the histogram the diameter of CNTs increased 

after mixing with BNNTs as shown in figure (4-3). 

 

Figure 4-2 Shows TEM images of a) bare MWCNTs (b) bare SWCNTs, (c) bare 
BNNTs, (d) SWCNTs/BNNTs, (d) MWCNTs after templated by BNNTs. 
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SWCNTs and MWCNTs after mixing look more tangled; this is related to the 

natural structure of BNNTs52, 180. The tangles occur due to the π-π 

interaction and Van der Waals forces between BNNTs and CNTs52, 

180.Figure (4-2) demonstrates the average diameter of SWCNTs and 

MWCNTs after mixing with BNNTs. 

 

Figure 4-3 The histogram data of the distribution of the nanotubes by TEM 
technique a) bare and hybrid SWCNTs, b) MWCMTs before and after mixing with 
BNNTs.
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4.2.2. Electronic analysis of two terminal nanotubes devices: 

I-V characterizations were carried out with a small applied voltage (1V to -1 

V) and the results were collected and monitored by a Casade Microtech 

probe station as described in chapter two. Figure (4-4) shows the linear, 

Ohmic plot of carbon nanotubes before and after mixing with BNNTs at 

room temperature. In general, carbon nanotubes show a linear plot and 

there is no evidence of any barrier between at the Pt/NTs contacts. Adding 

BNNTs to the nanotubes reduced the current from 8 mA to 1.4 mA for 

MWCNTs and 5 mA to 1 mA for SWCNTs at the applied voltage (-1 to 1) V. 

This indicates the BNNTs partially interrupt the current flow between CNTs. 

The working hyposthesis was that modulation of this effect by the analyte 

would generate improved analytical sensitivity compare to pure CNT 

devices. 

 

Figure 4-4 The change in the I-V characterizations of carbon nanotubes before and 
after coated by BNNTs at room temperature. 
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4.2.3. Impedance spectroscopy IS 

The impedance spectroscopy is a useful technique to understand the 

electrical behaviour of the samples after mixing with BNNTs. Figure (4-5) 

shows the Nyquist plot of CNTs/BNNTs thin films and bare CNTs. For each 

bare and hybrid nanotube it was noted that there is no imaginary part or Z’’ 

for these films and the spectra show only the real resistance Z’ (part 

Z’=R=V/I). However, as demonstrated before, carbon nanotubes are 

metallic tubes and from IS measurements in chapter three it has been found 

that both SWCNTs and MWCNTs have a high electrical current with a small 

Rb ~275 Ω and 213 Ω for MWCNTs and SWCNTs respectively. Mixing 

CNTs with BNNTs did not result in a change in the shape of the impedance 

spectrum, but did shift the spectrum along the real axis. This suggests that 

the BNNTs only partially interfere with current flow between MWCNTs and 

the film properties are still mainly due to the highly conductive MWCNT 

fraction. The effect of mixing with BNNTs was larger for the case of 

SWCNTs; the resistance increased by an order of magnitude as shown in 

figure(4-b5).  
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Figure 4-5 Nyquist plot of a) bare MWCNTs and MWBNNTs, b) pristine and hybrid 
SWCNTs. 

 

 

Figure 4-6 The equivalent circuit of (Pt-NTs-Pt) devise, the cross sings refers to 
there is no carriers passed in this part of the circuit. 

 

All IS measurements were carried out with frequencies between 5-10000 

Hz and from Nyquist plots for both SWCNTs and MWCNTs the ohmic bulk 

resistance was the main behaviour in these electrical devices, see figure (4-

6). 
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4.2.4. Raman spectroscopy 

The mixing led to the appearance of new peaks in CNTs/BNNTs spectra as 

shown in figure (4-7). Generally, bare CNTs spectra have three main peaks 

G, D bands and RBM 177, 181 with stronger intensity for G-band than D-band. 

For SWCNTs spectra, the D-band is found at 1351 cm-1 and the G-band at 

1588 cm-1. For MWCNTs, the D-band has been noted at 1360 cm-1 and the 

G-band at 1590 cm-1. BNNTs added new peaks for example, the peak with 

wavenumber 981 cm-1 appeared in the SWCNTs/BNNTs spectra and 1076 

cm-1 at MWCNTs/BNNTs spectra. Obviously, pure BNNTs spectra have 

shown a wide range of peaks, which have been recorded at 981cm-1, 1258 

cm-1, 1645 cm-1, 2104 cm-1 and 2077 cm-1. It is not possible to resolve all 

the peaks of BNNTs in BNNTs/CNTs mixture.  
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Figure 4-7 Raman spectra of a) Bare MWCNTs before and after coated by BNNTs, 
b) pristine SWCNTs before and after coated by BN nanotubes.at the room 
temperature. The excitement wavelength is 488nm with the spectrograph used a 
grating with 600 line/mm. 
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. Table 4-1 The wavenumbers of bare and hybrids CNTs peaks in Raman spectra 

 

4.3. Ozone generation  

One of the general approaches to generate ozone in the laboratory is the 

ultraviolet light technique. Both dry air and UV-light with a wavelength 

185nm were used to generate the ozone. The UV-lamp was supplied by 

UVP, LLC/ UK. Basically, dry air is passed over the UV-tube and leads to 

dissociation of the oxygen gas (O2), these atoms (O
.
) try to stabilize by 

reaction with O2 molecule and create ozone molecules182. Figure (4-8) 

shows a schematic diagram of the generation of ozone gas by a UV-lamp. 

Wavenumber (cm-

1) 
Description 

Plot (A) 

1050 
1240 
1360 
1590 
1659 
2077 
2747 

BNNTs 
BNNTs 

CNTs (D-band) 
CNTs (G-band) 

BNNTs (analogous to G-band of 
CNTs) 
BNNTs 
CNTs 

Plot (B) 

981 
1351 
1360 
1588 
2706 

BNNTs 
BNNTs (analogous to D-band of 

CNTs) 
CNTs (D-band) 
CNTs (G-band) 

CNTs 
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Figure 4-8 Schematic diagram of ozone generation by using UV-lamp with the 
wavelength 185 nm (absorption energy to break the O-O bond) O2+hv→O+O 
(these atoms try to stabilize by reaction with another oxygen molecule) O+O2→O3 
and finally ozone molecule will destroy with more UV absorption (O3+hv→O+O2) 
all these steps are happened in close cycle of destruction and formation of the 
ozone, this method is cheaper and lower cost than other methods182  

 

However, table (2) demonstrates the conditions and the parameters that 

were used in this part of this thesis for ozone sensing.   

 

Table 4-2 The conditions and the parameters were used for ozone sensing. 

Ozone 
(ppm) 

Dry air 
 

(mL/min) 

Temperature 
(K) 

Thin films / Sensor 
material 

128 125 293,313, 333 

(SW, MW, SWBNNTs, 

MWBNNTs) 
217.6 125 293,313, 333 

320 125 293,313, 333 

 

4.4. Ozone gas sensor based on carbon nanotubes. 

The sensing process of ozone gas depends on observing the change in the 

electrical current using a potentiostat as shown in chapter two section 2.8.2. 

This part depended on measuring the current instead of resistance because 

the resistance was very small and more precise measurements could be 
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obtained by observing current at fixed applied potential. An irreversible 

increase in current was observed upon exposure of CNTs to ozone. The 

likely mechanism of this effect is injection of positive charge into the CNTs, 

which increases the hole concentration, however the oxidation reaction can 

also lead to irreversible chemical changes to the CNTs. SWCNTs are more 

sensitive than MWCNTs, probably because the oxidation process happens 

rapidly because smaller diameter tubes are more strained and are oxidized 

more speedily than larger diameter tubes183, 184.  

 Picozzi et al185 used bare CNTs5 in ozone gas sensors (90 ppb to 200 

ppb); they found that the decrease in electrical resistance was irreversible. 

Recovery of the film resistance after removal of ozone took no less than 

150 min at room temperature. In our devices the maximum recovery time 

for our samples was ~ 27 min at room temperature. They suggested that 

charge transfer was the main mechanism responsible the conductance 

change upon gas adsorption. Generally, for CNTs, the reaction with ozone 

molecules occurs at the sidewall and end caps of CNTs186. On the other 

hand, Picozzi et al in their theoretical study reported that the reaction of 

ozone molecules with CNTs can effect the density of states in the vicinity of 

the Fermi level and this can be represent another mechanism of gas 

detection. A few previous studies found that the conductance of CNTs 

decreases during gas exposure and that was ascribed to a reduction in the 

density of states near the Fermi level186.  Our first sensing results showed a 

fast response time with a good sensitivity for ozone but a long recovery time 

~ (10-27) min which depended on the gas concentration. Figure (4-9) shows 

                                            
5
 Picozzi et al treated CNTs by heating up to 563 K to remove the amorphous carbon. 
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the change in the electrical current during gas exposure. The device 

sensitivity    
    

  
        where    is the current in air atmosphere and   

is the electrical current at steady-state after exposure to ozone gas. 

 

Figure 4-9 The change in the electrical current of bare CNTs as ozone gas sensor 
at 293K. 

 

Figure (4-9) shows two regions A and B. In area (A), the response is almost 

reversible (returns to baseline after gas-off) and corresponds to reversible 

charge injection. Area (B) of figure (4-9) is the region is change in current 
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which is never recovered and corresponds to the irreversible chemical 

change that was clear in the XPS analysis in section (4.6.) below. By 

monitoring the current change with time it was noted that the current 

increased rapidly during ozone exposure 113, 187 with a good response time 

and good sensitivity, however the recovery time was long   25 min. This is 

one of the main disadvantages of using bare nanotubes in this kind of gas 

detection because an important practical feature of any reusable gas sensor 

is a fast response with a short recovery time. The response and recovery 

times are summarised in fig (4-10). 

 

Figure 4-10 a) The sensitivity of SWCNTs and MWCNTs as ozone gas sensor and 
shown a strong adsorption of ozone on the SWCNTs than MWCNTs with high 
sensitivity than MW, b) the recovery time of SWCNTs and MWCNTs, SWCNTs 
recorded a short recovery time (3-5) min than MWCNTs (8-27) min. 
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The recovery time became longer with an increase the concentration of the 

gas. Ozone has an effect on the electrical properties of bare carbon 

nanotubes because it is a strong oxidant. From IS measurements it was 

found that the film behaves electrically as a simple resistance, dominated 

by a real impedance, (Z’re). The resistance of SWCNTs decreased ~ 9.3% 

and ~ 14% for MWCNTs after ozone treatment as shown in figure (4-11). 

 

Figure 4-11 Nyquist plot of bare carbon nanotubes before and after ozone 
treatment at 293K. 

 

Mixing carbon nanotubes with boron nitride nanotubes affected significantly 

the sensitivity of carbon nanotubes. Upon current monitoring of 

CNTs/BNNTs films, it was found that the current increased during the 

sensing process, but did not completely return to the background level after 

switching off the UV-light to remove ozone from the gas flow as shown in 

figure (4-12b&d). 
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Figure 4-12 (a&c) I-V characterizations of MWCNTs/BNNTs and SWCNTs/BNNTs 
films before, during and after ozone treatment (oxidation process), (b&d) the 
change in the electrical current of CNTs/BNNTs with a time during ozone sensing 
process.

 

SWCNTs have a greater sensitivity to ozone gas than MWCNTs. BNNTs 

enhance the sensitivity of SWCNTs. The response increases ~ 261-645% 

compared to bare SWCNTs, but with a long recovery time ~(10-17) min. In 
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comparison pristine SWCNTs recover in (2.5-4) min. In contrast, MWCNTs 

mixed with BNNTs showed a drop in the sensitivity of 39-60 % dependent 

on the gas concentration, as shown in figure (4-12). From above it appears 

that there is a relationship between the recovery time and the response of 

the nanotubes. In general, BNNTs enhance the sensitivity of SWCNTs more 

than they do MWCNTs at room temperature 293K. Ozone is a very strong 

oxidant and it has been shown that SWCNTs are more sensitive to ozone 

than MWCNTs; ozone causes the formation of more defects on the 

sidewalls of SWCNTs than MWCNTs188-190. In addition, the external tube in 

MWCNTs can act as protective layer to shield the inner tubes from 

interaction with gas molecules. Raman spectra of SWCNTs and MWCNTs 

show an increase in D/G6 ratio after ozone exposure176, as shown in figure 

(4-13). 

The effects of the reaction between BNNTs and ozone gas are different 

than the effect of ozone on CNTs. Ozone molecules adsorb on the 

sidewalls and end caps of CNTs and led to depletion of electrons from the 

-system, but in BNNTs ozone also causes a decrease in the energy 

gap191-193 from 5.5 e.V to 0.96-1.29 eV. This changes the electrical 

behaviour from insulating to semiconducting. Therefore the analytical 

sensitivity of SWCNT/BNNTs mixtures to ozone increased over pure 

SWCNTs. In addition, XPS data (section 4.6) give further evidence of major 

chemical changes to BNNTs upon exposure to ozone. Such chemical 

                                            
6
 D/G: refers to the ratio between two bands D-band and G-band of CNTs. G-band is 

related to vibration mode of C-C and D-band is pointed to dislocate in graphene. This ratio 
has been change after ozone treatment. 
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changes are likely a cause of the increased recovery time observed in 

figure (4-13d). 
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Figure 4-13 (a,c) the change in the sensitivity of bare and Hybrid nanotubes as 
ozone gas sensor, (b&d) the recovery time of the bare and pristine nanotubes at 
the 293K. 
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Table 4-3 Shows the sensitivity, response and recovery time of pristine and hybrid carbon nanotubes for different concentration of ozone at 
room temperature. 
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Figure 4-14 Raman spectra of CNTs/BNNTs before and after oxidation process 
with higher sensitivity for SWCNTs/BNNTs than MWCNTs/BNNTs and it has been 
noted that D/G ratio increased after exposing to O3 at room temperature which is 
assigned to the defect in the structure of CNTs after ozone exposure. The 
excitement wavelength is 488 nm with the spectrograph used a grating with 600 
line/mm. these figures were offset in intensity by 100 and 1000 for clarity of 
presentation ,respectively. 

 

4.4.1.  Effect of the temperature on the sensor performance  

This section discusses the effect of the working temperature on the 

sensitivity of (bare and hybrid nanotubes) films. Two temperatures were 

used 313K and 333K in addition to the room temperature. It has been found 
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that the thermal treatment increases the response size and the recovery 

time for bare and hybrid nanotubes. Figure (4-15) presents the change in 

the sensitivity of CNTs at different temperatures and from observation of the 

change in the electrical current at 313K and 333K it was easy to recognize 

that oxidation led to an increase in the current for both CNTs and 

CNTs/BNNTs films. Interestingly, the recovery time was shorter at higher 

temperatures (figure 4-15). The decrease in recovery time upon increasing 

the temperature suggests the process is limited by chemical kinetics. 

Analysis of the temperature-dependence of the sensitivity S according to 

the Van’t Hoff equation gives an enthalpy HƟ > 0. An adsorption 

mechanism is therefore an unlikely explanation because the loss of 

translational entropy upon adsorption requires it to be exothermic. It is likely 

that mechanism is based on a chemical reaction between ozone and CNTs 

(oxidation) that is faster at higher temperature, figure (4-16) the relation 

between lnS and the temperature for different gas concentrations and figure 

(4 -17) shows the positive values of ΔHƟ these thin films. In the case of 

ozone / CNTs / CNT/BNNTs, ΔHƟ should be interpreted as an activation 

energy and the rate-limiting process is most likely a chemical reaction 

following Arrhenius’ law: 

     
  
                                  (   ) 

Where k is a rate constant, A is a pre exponential or frequency factor, Ea is 

an activation energy,   is the gas constant 8.314 J mol-1 K-1 and   is a 

temperature in K. 

                                            (   ) 

Where   is the signal, which is proportional to the amount of the analyte.  
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                         (   ) 

Our ΔHƟ is corresponds to the activation energy    and does not represent 

a thermodynamic quantity, such as the enthalpy of adsorption. 

Figure (4-17) shows the change in I-V properties of CNTs films. The 

shortest recovery time was for SWCNTs and SWCNTs/BNNTs (2.6-3) min 

at 80 ppm of ozone which increased gradually with increased concentration 

of the gas. 
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Figure 4-15 Shows the change in the sensitivity of bare and hybrid nanotubes at 
293, 313 and 333K and the improvement in the recovery time for the thin films of 
CNTs at the same conditions after ozone treatment. 
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Figure 4-16 Shows the relation between lnS and temperatures for the different 
concentrations of the ozone for bare and hybrid CNTs.  

 

Figure 4-17 Shows the change in activation energy (Ea) of the system. The 
sensitivity of the films increases with temperature, which indicates a chemical 
kinetic mechanism (Arrhenius behavior) rather than an adsorption mechanism 
(van’t Hoff equation with exothermic process) best describes the response of these 
films to ozone. 
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The Nyquist plots (insets on figure 4-18)) demonstrate the effect of 

temperatures on the electrical properties of CNTs after gas exposure. The 

film resistance decreased with increased temperature for both 

SWCNTs/BNNTs and MWCNTs/BNNTs as shown in figure (4-18). This is 

unusual for a metal-like conductor, but may be rationalised on the basis of a 

chemical process as described by equation (4-3). 
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Figure 4-18 (A and B) show the effect of temperature on the I-V characterizations 
of MWCNTs/BNNTs and SWCNTs/BNNTs after oxidation prosess, (A(i) and B(i)) 
Nyquist plot of hybrid nanotubes at different temperature and it appears that the IS 
measurements of CNTs/BNNTs has a real part (Z’ real) without imaginary 
resistance. 

 

Raman spectra give worthwhile information about the effectiveness of ozone 

treatment at different temperatures. It has been shown that the oxidation 

process at 313 K and 333 K increased the defect density in the nanotubes. 
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Table (4-4) and figure (4 -19) show the change in the G/D ratio for 

SWCNTs/BNNTs and MWCNTs/BNNTs at different temperatures after 

ozone exposure. 

Table 4-4 Shows the change in G/D ratio because of ozone at different 
temperature. 

Thin film Temperature in oC G/D 

MWCNTs/BNNTs 

20 1.06 

40 1.08 

60 1.67 

SWCNTs/BNNTs 

20 1.4 

40 1.44 

60 1.96 
 

 

Figure 4-19 (a&b) show the Raman spectrum of MWCNTs/BNNTs and 
SWCNTs/BNNTs after ozone exposure, c) effect the ozone treatment on G/D ratio 
at different temperature. 

 

The change in the G/D ratio probably effects the formation of 

hydroxide and carboxyl groups on the nanotubes’s sidewall and breakage 

of C-C 176, 187, 194, 195. 
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4.5. The mechanism of the electrical current change of CNTs 

and CNTs/BNNTs films as an ozone sensor. 

Ozone is a strong oxidant and during adsorption process on the surface of 

nanotubes there is transfer of electrons from carbon nanotubes to ozone. 

Ozone depletes electrons from carbon nanotubes and increases the hole 

concentration as majority chargers in the nanotubes network. Increases of 

the observed currents are seen in figures (4-7&10). However, it has been 

shown that after removal of ozone, the recovery was limited at room 

temperature (4 - 27) min. This points to a strong binding between carbon 

nanotubes and ozone molecules or an irreversible chemical reaction. In 

several studies a vacuum system was used to rapidly recover from ozone 

exposure and break the contact between CNTs and O3 
176, 196, 197.   

4.6. X-ray photoelectron spectroscopy (XPS) 

XPS was carried out to study the chemical composition of bare and hybrid 

SWCNTs. All XPS studies were calibrated using C 1s at 284 eV. Figure (4-

20a) shows the survey spectra of bare SWCNTs before the oxidation 

process with ozone and shows three peaks, which are related to C 1s, O 1s 

and Si (substrate). Figure (4-20b) shows the high-resolution C 1s spectra. 

There are five peaks: C1, C2, C3, C4 and C5, which are assigned to C-C 

sp2 at 284 eV, C-C sp3 at 284.86 eV, C-O at 285.76 eV, C=O at 286.8 eV 

and C5 is assigned to O-COO at 289.78 eV198-200
.  Figure (4-20c) shows the 

O 1s spectrum of pristine SWCNTs before ozone treatment and comprises 

two peaks, 531.68 eV assigned to =C-O- while the weak peak is assigned 

to C=O at 533.62 eV. Figure (4-20a*) is the survey spectrum of bare 

SWCNTs after ozone treatment and presents three peaks C 1s, O 1s and 
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Si, the Si peak appears simply because of the sample substrate. The C 1s 

spectrum  shows five carbon peaks: C1 is assigned to sp2 C at 284 eV, C2 

is assigned to  sp3 C at 284.95 eV, C3 is assigned to C-O200 at 285.9 eV, 

C4 is assigned to C=O199, 200 at 287.18 eV and C5 is assigned to O-COO199 

at 289.54 eV, as seen in figure (4-20b*). After ozone treatment, it a small 

change in the area of these peaks was found. As shown in table (4-5) sp2 

C, C-O and C=O as were increased to 1%, 3% and 7%, respectively. A 

small shift in the binding energy of 0.1 eV for C-O, 0.35 eV and 0.14 eV for 

C-O, C=O and O-COO respectively was observed. O 1s spectra after ozone 

treatment show two peaks at 531.67 eV assigned to =C-O and 533.44 eV 

assigned to C=O with a small shift of 0.2 eV for C=O compared to its BE 

before the oxidation process. In addition, the intensity of the =C-O peak was 

increased by about 4% after gas exposure compared to C=O, as shown in 

figure (4-20c*) and table (4-5). Figure (4-21d) presents the survey spectrum 

of SWCNTs/BNNTs before oxidation process and shows carbon C 1s, 

boron B 1s, nitrogen N 1s, Oxygen O 1s and Si (substrate). Figure (4-21e) 

shows the core peak of carbon with five components: C1, C2, C3, C4 and 

C5, which are assigned to sp2 (C-C) at 284 eV, sp3 (C-C) at 285.7 eV, C-

graphite at 284.55, C-O at 286.89 eV and C=O at 288.13 eV, respectively. 

After ozone treatment, four peaks appeared as shown in figure (4-21e*) and 

can be described as: sp2 and sp3 C-C,  C-O and >C-O at 284 eV, 285.29 

eV, 286.5 eV and 287.9 eV, respectively199. However, ozone treatment 

produced an obvious effect on the carbon spectra of the SWCNTs/BNNTs 

film, especially on the sp2 component. The sp2 peak increased more than 

100% compared to sp3 as shown in table (4-5). Boron (B 1s) spectra before 
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ozone treatment have two peaks B-N at 190.27 eV and B-B at 186.9 eV201, 

after ozone treatment there is a small shift for B-N from (190.2 to 189.9) eV 

while a big shift from 186.9 eV to 190.9 eV for B-B202 that is likely due to 

oxidation of B-B to B-O. From the same survey spectra of SWCNTs/BNNTs, 

nitrogen spectra N 1s shows two peaks at 397.72 eV assigned to Si3N4
203 

204 and 398.45 eV assigned to B-N, as shown in figure (h). Figure (h*) 

shows two peaks for N 1s after ozone treatment  with two main peaks at 

397.54 eV which is assigned to Si3N4 and another peak assigned to B-N at 

398.62 eV. B and N in SWCNTs/BNNTs have a significant change after 

oxidation process which is evidenced by an increase in the peak area B and 

N with a small shift < 0.2 eV. Oxygen (O 1s) shows two peaks in the survey 

spectrum of hybrid SWCNTs before and after the oxidation process. Before 

ozone treatment, two  peaks appeared at 531.87 eV and 533.7 eV, which 

were assigned to C=O and C-O, respectively. However, after ozone 

treatment it can be seen that there is a shift from 531.87 to 531.65 eV in the 

first and 533.7 eV to 533.28 eV in the second. There is also an increase of  

11% of the intensity of the C-O component, as shown in figure (4-21g & g*). 

In summary, the XPS data shows that ozone treatment of CNTs results in 

the formation of oxidised carbon species. Similar, but larger, effects are 

seen in BNNTs where oxidation of B atoms occurs.  
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Table 4-5 XPS analysis of bare and hybrid SWCNTs before and after ozone 
exposure with the description of the peaks, ‘‘ratio’’ was determined from the area 
of each element per the summation of all the peaks under core spectra for each 
sample, for example the area of C1/(C1+C2+C3+C4+C5) and the same procedure 
for all the elements under the core spectra 

 

 

C 1s @ SWCNTs

peaks Description BE ev peaks Description BE ev ratio before after

C1  sp2 C-C 284 C1  sp2 C-C 284 75.87 76.49

C2  sp3 C-C 284.86 C2  sp3 C-C 285 13.05 12.18

C3  C-O 285.76 C3  C-O 285.9 5.63 5.87

C4 C=O 286.838 C4 C=O 287.2 2.80 2.90

C5 O-COO 289.68 C5 O-COO 289.5 2.65 2.56

O 1s @ SWCNTs

peaks Description BE ev peaks Description BE eV ratio before after

O1  =C-O 531.6855 O1  =C-O 531.7 91.35 94.46

O2  C=O 533.625 O2  C=O 533.4 8.65 5.54

C 1s @ SWCNTs/BNNTs after 

peaks Description BE eV peaks Description BE eV ratio before after

C1  sp2 C-C 284 C1  sp2 C-C 284 15.81 41.24

C2  sp3 C-C 285.7 C2  sp3 C-C 285.3 48.63 46.70

C3 C-graphite 284.55 C3 >C-O 287.9 24.12 1.92

C4 C-O 286.889 C4 C-O 286.5 8.49 10.14

C5 C=O 288.13 2.96

B 1s @ SWCNTs/BNNTs

peaks Description BE eV peaks Description BE eV ratio before after

B1 B-N 190.27 B1 B-N 189.9 94.76 83.03

B2 B-B 186.9 B2 B-O 190.9 5.24 16.97

O 1s @ SWCNTs/BNNTs

peaks Description BE eV peaks Description BE eV ratio before after

O1 C=O 531.877 O1 C=O 531.6 21.30 13.08

O2 C-O 533.7134 O2 C-O 533.3 78.70 86.92

N 1s @ SWCNTs/BNNTs

peaks Description BE eV peaks Description BE eV ratio before after

N1 Si3N4 397.72 N1 Si3N4 397.5 65.92 86.50

N2 B-N 398.45 N2 B-N 398.6 34.08 13.50

before

before 

before 

before 

before 

before 

after 

after 

after 

after 

after
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Figure 4-20 XPS spectra of (a&a*) the survey spectra of bare SWCNTs before and 
after gas exposure, (b&b*) high resolution scan of carbon before and after 
treatment, (c&c*) XPS plots in high resolution scan of oxygen before and after 
ozone treatment.  
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Figure 4-21 XPS spectra of (d&d*) the survey of SWCNTs/BNNTs before and after 
gas exposure, (e&e*) carbon before and after treatment, (f&f*) boron before and 
after ozone treatment, (g&g*) oxygen before and after oxidation process, (h&h*) 
nitrogen before and after gas exposure.  
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4.7. Conclusions: 

Carbon nanotubes show a good sensitivity for ozone molecules at room 

temperature with a fast response time but a long recovery time ~27 min. 

Mixing SWCNTs with BNNTs led to an increase the sensitivity of carbon 

nanotubes but also increased the recovery time. The sensitivity of MWCNTs 

to ozone was not much affected by mixing with BNNTs. Thermal treatment 

improved the recovery time with a significant increase in sensitivity of 

SWCNTs and MWCNTs. The conductivity of carbon nanotubes increased 

with temperature after BNNTs coating. Our interpretation is that the 

insulating BN-nanotubes partially separated CNTs and introduced tunnel 

junctions.  

Analysis of the sensing data as a function of temperature according to 

the Van’t Hoff equation gave an apparent positive enthalpy for the sensing 

reaction. Along with the effect of temperature on recovery, this strongly 

suggests that the sensing reaction is a kinetic process and should not be 

described in terms of simple adsorption of ozone on the nanotubes. 

Spectroscopic data (especially XPS) confirm the formation of oxygen-

containing species in the nanotube films after ozone exposure via the 

observation of increased amounts of B1s or C1s components at higher 

binding energy. The effect was most noticeable in BNNTs which appear to 

be more reactive towards ozone than CNTs. The lack of complete 

reversibility remains a serious issue for CNT-based ozone sensors and may 

limit their lifetime and restrict their use in quantitative measurements. 
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5. Chapter five: A Carbon monoxide sensor based on carbon 

nanotubes  

The concept of this chapter is to study the sensitivity of carbon nanotubes 

as a carbon monoxide gas sensor. Carbon monoxide is a toxic gas and 

indoors is commonly associated with faulty heating systems. 

Environmentally, vehicle exhaust is the main source of this gas. In general, 

it forms from incomplete combustion of fuels. Carbon monoxide is a 

dangerous gas because it has no colour, no odour and can be explosive if 

its concentration is between 12-74% 80, 90. Also, CO is one of the main 

sources of ozone gas near ground level due to a photochemical reaction: 

CO+O2+hv→O3+CO2 
205.  

Since 1991 when carbon nanotubes were discovered by Iijima, they have 

become an important nanomaterial and candidate for a wide range of 

applications due to their unique properties for example, high aspect ratio 

and high surface area6. Carbon nanotubes have been used as sensing 

materials for a wide range of gases NO2, NH3, CO2, CO, O3 and VOCs 58, 

170, 206-208. Many studies found that CNTs have a weak response to CO gas 

in pure form. It is usual  to decorate the nanotubes by CPs, NPs90, or to pre-

heat the nanotubes77, 151, 209, 210. In our study, we used bare and hybrid 

Ppy/carbon nanotubes as carbon monoxide sensors and studied the effect 

of temperature on the sensor performance. 

5.1.  Sensing test.  

Figure (5-1) shows the gas sensing system which is included the gas bottle, 

mass flow controllers (DMFC) and the resistance measurement (DMM) –
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more details about the DMM are given in chapter two-. However, a drop of 

CNTs was deposited on the microband electrode as shown in figure (5-1) 

and was dried at the room temperature. Dry air was used to purge the 

surface of CNTs before and after gas exposure and help to dilute the gas 

concentration. Two strategies were applied in this part; bare CNTs and 

CNTs/conductive polymer composite gas sensors and both types of device 

were examined at different temperature as shown in table (5-1). 

 

Table 5-1 Shows the sensing system conditions of CNTs as CO gas sensor. 

 

Figure 5-1 Shows the diagram of measuring the sensing system 

Films Temperature in K 
CO concentration in 

ppm 

SWCNTs 293, 313, 333 
1923, 1960, 1974, 

1980 

MWCNTs 293, 313, 333 
1923, 1960, 1974, 

1980 

SW/Ppy 293, 313, 333 
1923, 1960, 1974, 

1980 

MW/Ppy 293, 313, 333 
1923, 1960, 1974, 

1980 
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5.2. Carbon monoxide sensor based on carbon nanotubes  

The evaluation of CNTs a gas sensor depended on observation of the 

change in the electric resistance of CNTs films in a two-terminal device. 

From the first sensing test, bare SWCNTs and MWCNTs showed a low 

sensitivity for CO gas and this matched previous studies in this field80. Many 

researchers reported that pristine carbon nanotubes have a weak response 

for CO gas if there is no catalysis of electron exchange between the gas 

and the surface of bare nanotubes80. According to the first sensing 

experiments a low sensitivity of bare CNTs for CO gas, was seen as shown 

in figure (5-2). 
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Figure 5-2 (a&c) the response size of bare CNT for of CO gas, (b&d) the change in 
the resistance of the films with different concentrations of carbon monoxide gas at 
293K. 

 

It is clear that the film resistance decreased during gas exposure and 

partially recovered in zero air. Afrin et.al reported at room temperature the 

reduction in the electrical resistance and assigned it to the electrons that 

are donated from gas molecules to the nanotubes 211. However the 

mechanism remains unclear because , as noted in the last chapter, injection 

of holes by ozone is also suggested to reduce CNT film resistance. In 

general, the film sensitivity S was measured by relative  
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resistance resistance   
     

  
        where    is the film resistance 

during gas presence,    the film resistance under air exposure only. A poor 

change in the film sensitivity has been shown from Nyquist plot special for 

MWCNTs Smw~0.12% <Ssw~2.8% at 1980 ppm, but with a fast response 

time as shown fig (5-2 b&d) ~ 30 s. Single wall carbon nanotubes are more 

sensitive to the CO gas than multi-walled carbon nanotubes; this can be 

ascribed to the structure of SWCNTs. Previous studies have found that 

SWCNTs have a higher adsorption capacity than MWCNTs because of their 

smaller diameter than MWCNTs212.In addition the adsorption can affect the 

entire SWCNT while, for MWCNT, most occurs on the first layer, therefore 

MWNTs are expected to be less sensitive than SWNTs because many 

layers are not exposed to CO, as shown in figure (5-3). In some application 

researchers prefer to use reactions in the edge of the nanotubes to be more 

active213
. From a comparison of the response and recovery time, SWCNTs 

have a longer response time than MWCNTs, as shown in figure (5-4).

 

 

Figure 5-3 A schematic diagram illustrating how the adsorption can occur on the 
surface of CNTs 
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Figure 5-4 The response time of Bare SWCNTs and bare MWCNTs as CO gas 
sensor at room temperature at different concentration of the gas target. 

 
Impedance spectroscopy (IS) was used to study the effect of CO gas on the 

electrical properties of CNTs; bare CNTs have only the real part (R=1/Zre) 

where Zre is the bulk film resistance. Carbon monoxide did not have a large 

effect on the electrical properties of bare nanotubes and as shown in the 

Nyquist plot of figure (5-5) for SWCNTs and MWCNTs. The resistance of 

bare MWCNTs decreased ~1.14% during the gas exposure and increased 

~0.08% after gas off, while for SWCNTs it was reduced about ~9.5 % 

during presence the gas and increased to ~6.4% when the gas was off. On 

the other hand, the resistance level did not return to the baseline level after 

gas off, which suggests not all CO molecules were released from the 

nanotubes surface. Return to the baseline level will be very difficult to 
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access as in MWCNTs (less sensitive) and can be more notable for 

SWCNTs (more sensitive).  

 

Figure 5-5 Shows the Nyquist plot of bare SWCNTs and bare MWCNTs before, 
during and after gas exposure at 293K. The ohmic contact is the main behaviour in 
this electrical circle.   



Chapter five: a Carbon monoxide sensor based on carbon nanotubes        . 

 193 

In 2008 Star and Kauffman reported that the carbon monoxide doesn’t 

participate in charge transfer to the pristine carbon nanotubes80 and 

Bockrath and Matrange suggested CO can adsorb by hydrogen-bonds with 

hydroxyl groups on the CNT214.  Although, carbon monoxide is not involved 

in charge transfer to the bare nanotubes, the gas displays other sensing 

mechanisms. Varghese et.al145 found that defects can be introduced to the 

nanotubes during the exposure to the gas. Otherwise to enhance and 

develop the sensitivity of carbon nanotubes as a CO gas sensor, it has 

been found that decorating these tubes by metal oxide, 

conductive/unconducive polymers helps to increase the response of the 

carbon nanotubes58. Conductive polymers couple easily with CNTs and are 

promising films in the application. Preparation of these samples was 

explained before in chapter two. Figure (5-6 a, b&c) shows the significant 

change in the sensitivity after coating the nanotubes, for instance 

SWCNTs/Ppy recorded  dramatically increased responses compared to  

bare SWCNTs. In contrast, a small increase in the response size of 

MWCNTs after coating was seen. On the other hand, although increase in 

the sensitivity was noted, the response time for hybrid nanotubes became 

longer than for pristine CNTs. This suggests the gas molecules take time to 

interact with plypyrrole/CNTs or perhaps they must diffuse into the polymer. 

An increase in the recovery time over pristine CNTs can occur because gas 

molecules need more time to desorb from sites specially new sites which 

were added after coating by polypyrrole, as shown in figure (5-6 g,h&i). The 

resistance decreases during gas presence and increases when the gas is 

switched off, but the film resistance does not always return to the baseline 
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level prior to exposure to CO. This suggests some molecules are not 

released completely from the surface of the nanocomposite films, as 

demonstrated in figure (5-7). In addition, the resistance chart of 

MWCNTs/Ppy looks smoother than SWCNTs/Ppy.
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Figure 5-6 (a,b &c) the sensitivity of CNTs and CNTs/Ppy at different concentration of the gas target, (d,e&f) the change in the response time  
for the films during gas exposure, (g,h&i) the recovery time of the CNTs films after gas off.  
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Figure 5-7 Shows the change in the film resistance of MWCNTs/Ppy and 
SWCNTs/Ppy at 293K with different concentrations of CO gas. The resistance 
change is partially reversible, but there is some drift in the baseline after gas 
exposure. 

 

The IS technique demonstrates the change in the resistance of 

SWCNTs/Ppy and MWCNTs/Ppy before and after gas exposure as shown 

in figure (5-8). As explained in chapter three polypyrrole coating of the 

CNTs causes a change in the electrical properties of CNTs and the 

nanocomposite film (CNTs/Ppy) which now is represented by an equivalent 

circuit that includes capacitive elements related to the electrode contacts.
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Figure 5-8 Shows the Nyquist plot of (a&c) SWCNTs/Ppy and MWCNTs before 
gas exposure,(b&d) the change in Z’’im and Z’re after CO treatment at 293K. 

 

From the Nyquist plots, it is easy to see that the film resistance Rb 

decreased a little after the gas treatment and table (5-2) displays the 

change in the Rb and Rc for the hybrid films before and after gas treatment, 

where Rb is the film resistance (between electrodes) and Rc is a contact 

resistance. 

Table 5-2 The change in the film resistance of SWCNTs/Ppy and MWCNTs/Ppy 
before and after carbon monoxide treatment. 

Thin Films Rb (kΩ) 2Rc (kΩ) Rc (kΩ) 

SWCNTs/Ppy 

(Before) 
21.9 58.1 29.05 

SWCNTs/Ppy 

(after) 
21.75 56 28 

MWCNTs/Ppy 

(Before) 
2.21 0.11 0.055 

MWCNTs/Ppy 

(after) 
2.05 0.1 0.05 
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5.2.1. The effect of temperature on the performance of the 

gas sensor. 

In this part of the study 1923 ppm was used as the test CO 

concentration and 293K, 313K and 333K were used as the working 

temperatures. The heating affects negatively the sensitivity of bare and 

hybrid nanotubes and the decrease in sensitivity with temperature can be 

described by the Van't Hoff equation as an adsorption equilibrium. Table (5-

2) shows the effect of temperature on the sensitivity of pristine and the 

nanocomposite films. 

Table 5-3 Shows the effect of temperature on the sensitivity of bare and hybrid 
nanotubes. 

Thin Films ppm S% @293K S% 

@313K 

S% 

@333K 

MWCNTs 1932 0.96 0.135 0.097 

MWCNTs/Ppy 1932 3.214 2.51 1.2 

SWCNTs 1932 1.23 0.93 0.86 

SWCNTs/Ppy 1932 13.5 2.69 1.8 

  

Figure (5-9) the relation between lnS and the temperature for different gas 

concentrations and figure (5-9c) shows the ΔHϴ values of these thin films. 
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Figure 5-9 (a&b) show the relation between lnS and temperatures for the different 
concentrations of CO for bare and hybrid CNTs, c) Shows the change in enthalpy 
of the system, the sensitivity of the films decreased with increase the temperature. 
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5.2.2.  The effect of the gas flow and the gas concentration 

on the response size of CNTs and hybrid CNTs.  

Two experiments were performed to study the effect of gas 

concentration and the gas flow on the response size of CNTs and 

CNTs/Ppy. In the first part the gas flow was constant and the second part is 

related with fixing the concentration of the gas along the sensing process. 

In the first experiment the amount of the gas flow was fixed at 100 mL 

min-1 in total as shown in table (5-4) and it led to an increase in the 

sensitivity with increasing the gas concentration gradually for each bare and 

hybrid nanotubes. In contract with the first experiment, the second 

experiment depended on passing the same concentration of the gas during 

the sensing process, but at different flow rates. No change in the sensitivity 

of the devices was observed as shown in table (5-5). Figure (5-10) shows 

the observation of the change in resistance of CNTs’ films in the two 

experiment for bare and hybrid CNTs and how the gas concentration has 

affected the response of the nanotubes.  

Table 5-4 Shows the significant change in the response size of the films at the 
different concentration of the mixture (CO:zero air) at 293K. 

CO 
mL/min 

Dry air 
mL/min 

Flow 
total 

mL/min 

Conce. 
ppm 

Sensitivity S% 

SW MW MW/Ppy SW/Ppy 

20 80 100 400 0.2 0.006 11.2 40 

30 70 100 600 0.31 0.009 15.3 45 

40 60 100 800 0.4 0.02 16.5 51 

50 50 100 1000 0.48 0.04 23 49 

60 40 100 1200 0.54 0.06 28 57 

70 30 100 1400 0.6 0.062 33.2 59 

80 20 100 1600 0.67 0.064 40 75 

90 10 100 1800 0.75 0.07 47 114 

100 0 100 2000 1 0.08 53 117 
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Table 5-5 Shows the constant change in the response size of the sensor at the 

same concentration of the mixture (CO: zero air) at 293K. 

CO 
mL/min 

Dry air 
ml/min 

Flow total 
mL/min 

Conce. 
ppm 

Sensitivity S% 

SW MW MW/Ppy SW/Ppy 

20 20 40 1000 0.52 0.035 10 111 

30 30 60 1000 0.52 0.035 9.7 112 

40 40 80 1000 0.52 0.035 10 111 

50 50 100 1000 0.52 0.036 9.7 112 

60 60 120 1000 0.53 0.036 9.7 112 

70 70 140 1000 0.53 0.036 10 111 

80 80 160 1000 0.53 0.035 10 112 

90 90 180 1000 0.53 0.035 10 112 

100 100 200 1000 0.53 0.035 10 112 
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Figure 5-10 a) The change in the resistance of SWCNTs/Ppy at different 
concentrations of the mixture (CO:zero air) at 293K and as shown in table (5-4), b) 
No change in the resistance of SWCNTs/Ppy at fix concentration of (CO:zero air) 
at 293K and as shown in table (5-5). 

 

Furthermore, from the observation of electrical resistance of the 

nanotubes in the sensing system it was noted that CNTs have a weak 

response size while the film’s resistance increased to the MΩ-level after 

treatment by the conductive polymer –polypyrrole- with a high response 

size because after polymerization process polypyrrole adds new active sites 
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to CNTs215. The gas sensing mechanism of the nanocomposite films 

(CNTs/polypyrrole) relies on the interaction with gas molecules changing 

the electrical properties of CPs. The charge transfer from gas molecules 

and the swelling of the conductive polymer are the main mechanisms 

proposed when CPs are used in gas sensing5. At ambient temperature, 

however, the charge transfer mechanism seems unlikely for CO/polypyrrole. 

Typically, CNTs are sensitive to the gaseous environment when 

electron/hole transfer between the gas and the CNTs may occur. The case 

of ozone in the previous chapter is an example. However, CNTs show 

rather weak responses (low sensitivity) to gases which are not strongly 

oxidising/reducing, such as CO at ambient temperature. Instead, the 

interface between the conductive polymer and the carbon nanotubes has a 

major effect on the sensing process. Adsorption of CO by the polymer 

causes conformational changes and swelling of the polymer. This in turn 

affects the charge transport through the film as the electrons/holes hop from 

one nanotube to the next.  

5.3. Conclusions 

Although they have a fast response and short recovery time, carbon 

nanotubes have a weak response to carbon monoxide gas S%< 0.1. The 

sensitivity of the nanotubes increased after coating by polypyrrole via the 

chemical polymerization in situ) with a fast and a short recovery time. 

Thermal treatment led to a decrease in the sensitivity of the bare and hybrid 

nanotubes consistent with a mechanism based on adsorption of the gas 

which can be described as an exothermic reaction at 313K and 333K. The 

observation of increased sensitivity of CNTs/Ppy to CO compared to CNTs 
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alone is another example of the phenomenon in which the decrease in 

conductivity of the film produced by incorporation of conductive polymer is 

actually beneficial to the performance of the film in gas sensor applications.
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6. Chapter Six: DNA/CNTs gas sensors  

CNTs are promising materials in sensing applications due to their 

physical properties 216 217. The surface of CNTs are sensitive to gases 

and VOCs and the sensitivity increases after decoration by NPs, CPs, 

RNA and DNA or thermal treatment 133, 217-219. Although, CNTs have 

unique and good physical properties, they  have a weak response to 

VOCs 218. As observed in previous chapters materials that reduce the 

conductance of films of CNTs tend to increase their sensitivity to VOCs. 

DNA is known to adhere strongly to CNTs220. Therefore, a combination 

of CNTs with DNA suggests itself as an alternative method to enhance 

the sensitivity of these nanotubes. 

The simple description of DNA is a polymer, which is made of monomer 

units named nucleotides67, 220. The structure of DNA contains 

phosphate, deoxyribose sugars and one of the nitrogenous bases which 

can be guanine G, thymine T, adenine A or cytosine C. Double stranded 

DNA (dsDNA) includes two chains of polynucleotide which nitrogenous 

bases are linked by hydrogen bond221. According to this arrangement, 

each strand reflects the other as an antiparallel direction or orientation of 

the sugar phosphate backbones. In 1952, R. Franklin was the first 

scientist who saw saw clear X-ray diffraction patterns of DNA 222, 223, as 

shown in figure (6-1).  
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Figure 6-1 a) The first X-Ray diffraction image of DNA by R. Franklin in 1952,by 
this image it was able to measure the molecules distance inside the helix structure 
and  by this image it was able to measure the molecules distance inside the helix 
structure1, b) schemed of dsDNA structure224

.

 

In 2003, Zheng et.al. presented the first combination between CNTs 

and ssDNA to disperse the nanotubes 220 and in 2004 Nakashima et.al. 

used dsDNA to coat SWCNTs 225. Some studies have shown that the 

sensitivity of CNTs increases when these NTs are better dispersed in order 

to increase the active area and give more space on the surface to increase 

the adsorption of gas molecules. For example, polymers such as polyaniline 

have been used to disperse CNTs to increase the sensitivity of CNTs to CO 

gas and DNA was used to disperse CNTs and increase their sensitivity to 

limonene enantiomers and dimethyl sulfone 220, 225-227.  

In sensing applications dispersed nanotubes are more active than tangled 

nanotubes and coating nanotubes by DNA, hydrophilic proteins, SDS-

sodium dodecyl sulphate, or peptides 71 have been tried. Some technical 

applications depend on the polymer/DNA combination to purify CNTs which 

is affected by the nanotubes chirality. Chirality is important because the 

physical properties (electrical and optical) of the CNTs depend on the chiral 

vector              where n and m are integers and a1 and a2 are unit 
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vectors of the graphene surface 2, 71. The coupling between dsDNA and 

CNTs was also used to regulate the assembly of particles 228, 229. 

6.1. Preparation of the DNA@MWCNTs films 

MWCNTs ElicarbTM were purchased from Thomas Swan, UK with diameter 

(2-10) nm. Lambda DNA (λ-DNA) was supplied from England New Bio labs 

Ltd. While methanol was purchased from Fisher Scientific Ltd., UK. The 

solution of CNTs was prepared after sonicating 0.0001g MWCNTs in 10 mL 

of MeOH in 3h by using micro tip ultrasonic (750 W, 20 kHz, amplitude 

20%, 230 Volt, ultrasonic processor) to reduce the agglomerate of the 

tubes. Figure (6-2) shows the preparation stages of DNA@MWCNTs.

 

Figure 6-2 Schematic of preparation DNA@MWCNTs. In stage (1) MWCNTs as a 
solution was prepared and in the stage (2) DNA was added to the bare CNTs in 
three different ratio.  

 

In this study, three samples were prepared in three different ratio of 

CNTs:DNA by adding 2µL, 5µL and 10µL respectively to 50µL of MWCNTs 

solution as shown in table (6-1).  
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Table 6-1 Shows the amount of bare MWCNTs and DNA in this part of the study. 

MWCNTs in µL 

(100 μg mL-1) 

DNA in µL 

(500 μg mL-1) 
Ratio of the mixture 

(CNTs: DNA) 

50 

2 10:0.4 

5 10:1 

10 5:1 

Many techniques were used to examine the properties of DNA@CNTs, for 

example, AFM, I-V characterisations, UV-Visible spectroscopy, FTIR and 

Raman spectroscopy.  

6.1.1. Atomic Force Microscopy AFM 

Tapping mode was used to investigate the structural properties of 

DNA@CNTs. The films were drop cast from solution (3µL) onto Si chips 

and were dried at room temperature. Silicon wafers (dopant boron and 

<111> oriented p-type, resistivity 0.09-0.12 Ohm.cm) of diameter 1000.3 

mm were purchased from Pi-KEM Ltd.  Figure (6-3Aa) shows bare 

MWCNTs with long tubes and some tangled nanotubes. Figure (6-3Ab-d) 

shows the hybrid nanotubes with different DNA:CNT ratio. At  a CNTs:DNA 

ratio (10:0.4) figure (6-3Ab) shows less DNA adhered to the CNTs. Figure 

(6-3Ac) of (CNTs:DNA) ratio (10:1) shows more separation in the 

nanotubes with short lengths and it appears DNA coated NTs as particles or 

can be described as agglomerations on the CNTs . For the 10:1 ratio, the 

nanotubes appeared more tangled and agglomerated than 10:0.4 and 5:1 

as shown in figure (6-3d). Figure (6-3 Ab-d) show the agglomerates of DNA, 

the number of which increase with increases in the ratio of CNTs:DNA. 

Figure (6-3A b) also shows a thin, unstructured layer which we tentatively 

ascribe to the organic solvent that was used to prepare DNA@CNTs. 

Additional AFM images are provided in the appendix as figures S8 & S9. 
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Histograms of DNA, CNT and DNA/CNT diameters are shown in the 

appendix S10. The histograms show a substantial increase in the apparent 

diameter of the CNTs after interaction with DNA, which supports the 

schematic interpretation of figure 6-3B. There is a wide spread of diameters 

(up to 75 nm) and this suggests there is also some bundling of multiple 

tubes in the presence of DNA. 
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Figure 6-3 (A) AFM images of a) bare MWCNTs, b) CNTs:DNA ratio (50,2)µL, c) 
CNTs:DNA ratio (50,5)µL and d) CNTs:DNA (50,10)µL. (B) Schematic diagram of 
DNA sticking as agglomerations on the sidewalls of MWCNTs for different ratios of 
MWCNTs to DNA 

DNA@CNTs

Thin layer 

of the 

Solvent  

DNA@CNTs

Agglomerate 

of DNA Agglomerate 

of DNA

DNA@CNTs
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6.1.2. I-V characterizations (current-voltage measurements) 

According to the AFM images above, which show that the CNTs are coated 

with DNA, DNA is expected to impact the electrical properties of films of 

DNA@CNTs. About 3 µL of CNTs:DNA in water was deposited on 

interdigitated Pt microelectrodes with a 5 µm gap. The samples were dried 

at the room temperature. A probe station (Cascade Microtech) and 1500A 

semiconductor parameter analyser (Agilent) was used, as shown before in 

fig (1-14). The applied voltage was from +2 Vto -2 V with steps of 0.05 V. 

Nitrogen gas was used to keep the sealed area dry. I-V characteristics for 

both bare CNTs and the nanocomposite film were measured at various 

temperatures (293-333 K) which were controlled by a thermal chuck system 

(Model ETC-200 L, ESPEC), Japan. Figure (6-4) shows the I-V plots of bare 

and hybrid nanotubes and from observing the change in the current during 

applied voltage -2 V to +2 V there are two things we can recognize. First, 

the current decreased after DNA coating. Second, the device current 

decreases with increases of the DNA:CNTs ratio. In addition, during heating 

the conductance of bare CNTs is reduced because the heating leads to 

increased electron scattering from lattice vibrations. 
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Figure 6-4 a) I-V plots of bare CNTs and CNTs/DNA nanocomposite, b) Arrhenius 
plot of MWCNTs and  DNA@MWCNTs at different mixing ratios. 

 

On the other hand, the current of the DNA/CNTs films at the highest 

DNA:CNTs ratio increases with temperature. In these films, contact 

between CNTs can be described as a ‘tunnel junction’ as shown in figure 

(6-5). 
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Figure 6-5 Schematic clarification of the transport of electrons in DNA@MWCNTs 
device. a) DNA-MWCNTs film deposited between two Pt- electrodes, electrons 
hop between the NTs to cross the interelectrode gap; b) and c) describe a single 
tunnelling barrier between two DNA@CNTs. 

 

The effect of the insulating DNA coating on the CNTs is to separate 

CNTs at the point at which they cross and introduce an additional barrier to 

change transport that alters the temperature dependence of the 

conductance. Electrons in carbon nanotubes  
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cross between the two Pt terminals by transport along the individual 

nanotubes and hopping between junctions where CNTs cross. 

The resistance of CNTs can be described as a linear function of 

temperature, as shown below.  

                                             (   ) 

Where   and   are proportional to the CNTs length. The resistance at the 

tunnel junction between DNA coated MWCNTs follows a VRH -variable 

range hopping- model. 

            (
  
 
)                                 (   ) 

Where          and       and    is the activation energy. So, the 

conductance of DNA/CNTs is formulated as shown below.  

  (          )
  
                             (   ) 

Equation (6-3) qualitatively describes the switch from metal-like behaviour 

for bare CNTs to hopping behaviour as the DNA:CNTs ratio increases in 

figure (6-4b) and the resistance of the junctions, Rgap increases. 

 

Table 6-2 Shows the activation energy of DNA-coated MWCNTs at different 
MWCNTs:DNA ratio, Ea change proportional with MWCNTs:DNA ratio.  

DNA@MWCNTs  
ratio (µL) 

Ea (e.V) error 

50:2 0.0032 0.0005 

50:5 0.015 0.00053 

50:10 0.019 0.00131 
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6.1.3. The optical properties of DNA@CNTs films 

6.1.3.1. UV-Visible spectroscopy. 

UV-Visible spectroscopy is a useful technique to understand the reaction 

between CNTs and DNA. All UV-visible measurements of aqueous 

MWCNTs and DNA@MWCNTs were carried out on a Nano-drop absorption 

spectrometer which was obtained from Thermo Fisher Scientific Ltd with 

wavelength range between (200-400) nm. 2µL of methanol was used as a 

background and the sample was 2 µL of DNA@MWCNTs (aqueous 

solution) as shown in figure (6-6) and (200-400) nm. 

 

Figure 6-6 Shows UV-visible spectroscopy and how the measurements have been 
taken. 

 

Generally, the operating principle of UV-vis absorption is dependent on the 

Beer-Lambert law230. 

 (          )       (     )                                      (   )  

 

Where    is the intensity of the incident light,    the transmitted 

intensity,   constant or extinction coefficient, c the concentration of the 
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sample and b the cell path length of the light230. The UV-Vis spectrum 

shows three curves for bare MWCNTs, λ-DNA and λ-DNA-coated MWCNTs 

as presented in figure (6-8). UV-vis of bare CNTs in previous studies is 

somewhat inconsistent because of amorphous carbon. Some workers 

reported two absorbance bands assigned to the CNTs231, 232 and some 

reported one main peak for naked CNTs and a broad shoulder in the range 

(237-307) nm 233, which is similar to the spectrum shown in figure 6-7. λ-

DNA has a well-known spectrum with a sharp peak at 260 nm 232 assigned 

to π-π* transitions in DNA bases as shown in figure(6-7c). The DNA 

spectrum shows no absorption at wavelengths longer than about 300 nm 

and from figure 6-7 it is clear that DNA dominates the UV Vis spectrum of 

the composite.  

 

Figure 6-7 UV-vis plots of aqueous bare MWCNTs, DNA and DNA-coated 
MWCNTs. The CNT spectrum is offset on the y-axis for clarity. The absorbance is 
scaled by the Nano-drop instrument to that which would be observed for a 1 cm 
pathlength conventional cell. 
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6.1.3.2. Raman spectroscopy  

For Raman measurements 3µL of each sample (bare MWCNTs, λ-DNA and 

DNA@MWCNTs) was drop cast on an Si chip and the samples were dried 

at room temperature. All the Raman spectra were measured on a CRM200 

(confocal Raman imaging microscope, Witec) with a laser wavelength of 

488 nm and output power of 60 mWatt. The wavenumber range of the 

spectrum was between (0-3100) cm-1. Figure (6-8) presents plots of pristine 

MWCNTs, DNA and hybrid nanotubes. Bare CNTs show two main peaks in 

1375cm-1 and 1590cm-1 for D and G bands, respectively. DNA chart shows 

a signal peak at the wavenumber 805cm-1 for phosphate vibration mode. A 

small defect increase happens for CNTs after DNA stacking and increased 

the ratio between G/D from 0.9 to 1.004. On the other hand, for 

DNA@MWCNTs a simple shift (~ 6 cm-1) of the G band in 1584 cm-1 and ~4 

cm-1 for D-band in 1379cm-1 is observed. These shifts can be attributed to 

the interaction through oxygen group of CNTs and DNA molecules234, 235.
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Figure 6-8 Raman spectra of a) bare MWCNTs, b) DNA and c) DNA@MWCNTs. 
The excitement wavelength is 488nm with the spectrograph used a grating with 
600 line/mm. 

6.1.3.3. Fourier transform infrared spectroscopy (FTIR) 

FTIR was used to investigate DNA adhered to the surface of CNTs. 

The measurements were performed on an IRAffinity-IS spectrometer with 

DTGS detector. The attenuated total reflectance (ATR) method was used, 

so 2 µL from each samples were dropped on the ATR substrate as shown 

in figure (6-9). 2 µL of methanol was examined first as a background. ATR 

technique has many advantages; it is compatible with thick samples and 

many forms of the materials including solids and liquids. This method also 

needs a minimal amount of sample236, 237. All the FTIR measurements were 

carried out over the range (400-4000) cm-1. 
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Figure 6-9  a) FTIR instrument, b)ATR technique, here we increased the size of 
drop for clarification only c) the principle works of ATR and shows how the incident 
beam (IR) is reflected many times before detecting237. 

 

Figure (6-10) presents the FTIR spectra of bare and hybrid 

nanotubes. FTIR spectra of bare MWCNTs show many peaks in 1112cm-

1,1541cm-1 and 1705 cm-1 238 . 1448 cm-1 points to D-band of CNTs239 . 

Figure (6-10b) shows a number of DNA peaks, in area (A) for DNA plot, the 

lower wavelength area (400-800) cm-1 is referred to the sugar and 

phosphate group vibrations 240, 241. Other peaks for pure DNA appear at the 

wavenumbers 960 cm-1 ,1069 cm-1 assigned to stretching modes of 

phosphate groups and nucleobase modes at 1631 cm-1 242 . Area (B) is 

assigned to –OH and –NH stretches due to bound water and NH groups of 
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DNA. The peaks from 3000 cm-1 to ~3740 cm-1 are OH stretching vibrations 

240.   

In the case of DNA-coated MWCNTs films, many shifts have been 

noted for MWCNTs and DNA due to interaction between them. The 

MWCNTs band at 1257 cm-1 shifts to 1230 cm-1  243. The D-band for 

MWCNTs has been shifted from 1448 cm-1 to 1460 cm-1  244. Another shift 

occurs for the 1707 cm-1 band to the lower wavenumber 1675 cm-1. DNA in 

the DNA@MWCNTs curve has a shift also at 1253 cm-1 to lower 

wavenumber 1244 cm-1 this feature is assigned to sugar vibrations CH2-O-

P-O 234, 238. These shifts are evidence the samples involve intimate 

interaction of DNA and CNTs and are not simple mixtures. 

 

Figure 6-10 FTIR spectra of bare MWCNTs, DNA and DNA-coated MWCNTs films 
with baseline correction, resolution 8cm-1 and scan number 16. 

6.2. Sensing. 

We investigated DNA:CNTs combinations because bare CNTs have 

a low sensitivity. DNA is also used to enhance the sensitivity of CNTs 245. 

Modification of the surface of carbon nanotubes was necessary to improve 
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their sensitivity 68, 246 . Bare carbon nanotubes are not selective for a wide 

range of gas molecules around their environment so treatment of them can 

increase their selectivity for gases by coating these nanotubes by enzymes, 

RNA or conductive polymers219, 247, 248. In 2005 Staii et.al. found that CNTs 

have a weak response for methanol (in the gas phase) and after coating by 

DNA the electrical properties of the nanotubes did not change and showed 

a small response for methanol67, while in this thesis, it has been found that 

there is a significant change in the sensitivity of CNTs after adding DNA 

which is let to change in the electrical properties of the CNTs. The sensing 

study in this chapter depended on the same sensing system for Ppy@CNTs 

as shown before in chapter two. However, 3µL (500μg mL-1 of DNA and 100 

μg mL-1 CNTs) of aqueous samples were drop cast on Pt-integrated 

microband electrode and were dried at the room temperature. Two DMFCs 

(digital mass flow controllers) were used to control the flow rate for VOCs 

and zero air. Air was passed through a Dreschel bottle to introduce VOCs 

and then mixed with zero air before passing to the gas cell/sample as 

shown in figure (6-11). Equation (6-5) shows the adjustment of the mixing 

ratio of       and      . 

       
    

         
                                     (   ) 

Where    is the saturated pressure of volatile organic at the Dreschel bottle 

temperature which was measured by a K-type thermocouple. All the data 

for vapour pressure were obtained from Antoine equation parameters A, B 

and C as shown below in equation (6-6) and obtained from NIST webbook 

site (https://webbook.nist.gov). 

https://webbook.nist.gov/
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                                       (   ) 

In this study, nonpolar and polar molecules were used to study the 

sensitivity of DNA/MWCNTs films: methanol, ethanol, acetone and 

chloroform. The film sensitivity was calculated by observing the change in 

film resistance.  

   
    
  

                                           (   ) 

Where    is the film resistance in the zero air (in background) and   is the 

film resistance during the analyte exposure (VOCs:dry air). 

 

 

Figure 6-11 Scheme of the dynamic vapour sensing device 

. 

DNA has a significant effect on the sensitivity of carbon nanotubes for 

VOCs (MeOH, EtOH, C3H6O and CHCl3) and it was noted that the largest 
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response was for MeOH and the lowest response size for CHCl3. Two 

different amounts of DNA were used: 2 µL and 5 µL of DNA concentration 

(500 μg mL-1) and were mixed with (50 µL:100 μg mL-1) of MWCNTs, 

individually. It has been found that the CNTs:DNA ratio (50:2) µL gave the 

largest response, but both ratios increased the sensitivity of CNTs 

compared with bare CNTs. Increasing amounts of DNA impeded electron 

transport between the nanotubes as was very clear from the I-V 

measurements in figure (6-4). The electrical current of bare MWCNTs was 

decreased after coating by DNA and the value decreased further with 

increasing ratio between DNA:CNTs. In the sensing measurements, 

observations of device resistance were used to find the film sensitivity, as 

shown in figures (6-12 to 14).  
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Figure 6-12 The change in the film resistance of DNA-Coated MWCNT (2 , 50)µL, 
it is clear that there is a dramatic change in the film resistance during methanol 
exposure in the gas phase and the other VOCs seem as a straight line compared 
with MeOH plot. Chart (a) has been expanded in two charts (b) and (c) to see 
easily the change in the resistance of the device for the rest of VOCs. 
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Figure 6-13 The change in the films resistance of DNA-Coated MWCNT (5 , 50)µL, 
it is clear that there is a large change in the film resistance during methanol 
exposure in the gas phase and the other VOCs seem as a straight line compared 
with MeOH plot . Chart a) has been expanded in two charts b) and c) to see the 
change in the resistance of the device for acetone vapour   
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Figure 6-14 The change in the films resistance of bare MWCNTs, for pristine 

nanotubes the significant change in the resistance was for acetone compared with 
the other VOCs. (a) Chart is expanded in two charts (b) and (c) for more 
clarification.  
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From figures (6 – 12, 13 and 14) it can recognise that the film resistance 

increased after DNA treatment, for example, in bare MWCNTs the 

resistance was in Ohm (Ω) and jumped to kilo ohm (kΩ) and mega ohm 

(MΩ) after the DNA coating process. This is explained by the introduction 

of tunnel barriers between the nanotubes. The resistance increases more 

with the ratio of DNA:CNTs in contrast to  bare CNTs, figure (6-5). Figure 

(6-15) shows the response size of the devices in two different vapour 

concentrations P=0.5P* and P=0.8P*.

 

Figure 6-15 The change in the response size of bare and hybrid MWCNTs. 
DNA@CNTs in (2,50) L is recorded the highest response size compared with 
bare MWCNTs and (5,50) l. 
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The data for the highest ratio (1:5) of DNA:CNTs has not been given 

because the resistance was bigger that the DMM full scale value. On the 

other hand, the device sensitivity also depended on the system 

temperature, which was explained previously in chapter 3 section (3.3.1) 

equations (3 - 7 to 9) in terms of an adsorption equilibrium. Figure (6-16) 

shows the change in the sensitivity of bare and hybrid CNTs at different 

temperature to a different ratio between CNTs and DNA. Figure (6-17) 

shows the plots of      Vs     for CNTs and DNA/MWCNTs at different 

ratios of CNTs:DNA for methanol, ethanol, acetone and chloroform. The 

adsorption enthalpies,     are given in figure (6-17d).  
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Figure 6-16 The change in the sensitivity of bare and hybrid MWCNTs at different ratio of MWCNTs:DNA for methanol, ethanol, acetone and 
chloroform at different temperatures 
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Figure 6-17 (a-c) show the change in     of bare MWCNTs and DNA-coated 

MWCNTs films at different temperatures, (d) plot of     of pristine MWCNTs and 
DNA@MWCNTs with different VOCs in  =         

 

DNA can enhance the sensitivity and selectivity of carbon nanotubes for 

VOCs and comparing these results with what have been obtained in 

chapter three of Ppy@MWCNTs, it can be recognized that 

DNA@MWCNTs are more selective to methanol in the gas phase than 

ethanol, acetone and chloroform, see figure (6-18). And from figure (6-18) 

it has been shown that Ppy/CNTs respond strongly to acetone than 

DNA/CNTs. The sensing mechanism can depend on the surface coverage 

and also DNA affects the binding between analyte and CNTs (absorbent 

layer). 
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Figure 6-18 The change in the sensitivity of MWCNTs after coated by conductive 
polymer (polypyrrole) and DNA. DNA is more promising than polypyrrole to sens 
VOCs and more selective for methanol and ethanol than polypyrrole.  

 

From figure (6-18) the ratio of DNA:CNTs (1:10) has a less effect than 

CNTs/DNA ratio (10:0.25) and CPs and larger than bare CNTs for ethanol 

and methanol. 

6.3. Conclusions  

Chemical sensors have been designed and based on MWCNTs decorated 

by dsDNA. DNA coated carbon nanotubes adsorb on the walls of CNTs 

and introduce tunnel barriers where CNTs cross. The electrical current of 

MWCNTs was decreased with increase of the ratio of DNA to CNTs, but 

the sensitivity of CNTs was enhanced. DNA can increase the sensitivity 

and the selectivity of the nanotubes for VOCs in the gas phase. 

DNA@MWCNTs become more sensitive for methanol than others VOCs 



Chapter six: DNA/CNTs gas sensors                                                           s  

232 

 

and it has been found that the films sensitivity depended on the 

temperature according to the Van't Hoff equation and the films sensitivity 

were decreased with raising the temperature. It has been noted that    

was negative value for bare and hybrid nanotubes as seen in figure (3-40). 

    
  of the VOCs were obtained from the NIST webbook 

(https://webbook.nist.gov). and compared to the enthalpies estimated from 

the temperature dependence of the sensor. It was found that the 

experimental values for most of    in this study were smaller than 

    
 , for example, in chloroform case and as a gas phase     

   

 
   
    for all CNTs:DNA ratios, and also acetone vapour has  

    
 (  

  

   
        )    

   
   , while  

   
    equals 24 kJ mol-1 and 

2.4 kJ mol-1 for bare CNTs and CNTs:DNA (lowest ratio), respectively and 

33 kJ mol-1 for the lowest ratio of (CNTs:DNA). In contrast (CNTs:DNA) 

(50:5) has a very small      
 | = 2.4 kJ mol-1 which means a very weak 

reaction between the analyte and the sensor material. On the other hand,   

    
  of EtOH at 303 K is 42.2 kJ mol-1 157 while      

   for bare CNTs 

and CNTs:DNA (50:5) equal 23 kJ mol-1 and 33 kJ mol-1, respectively, but 

for the lowest ratio of CNTs:DNA shows 

     
   (  

  

   
)      

 (    
  

   
) which means a strong interaction 

between the analyte and the sensor material. In general  
   
    

    
 , which suggests the VOCs molecules were adsorbed by the sensor 

material and not simply condensed as a liquid. However when      
   

    
   (in the case of acetone for the lowest ratio of CNTs:DNA) the 

https://webbook.nist.gov/
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process can be described in terms of the VOCs simply condensing as a 

liquid on the device. 
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1. 7. Chapter Seven: Conclusions and future work 

7.1. Conclusions 

The aim of this chapter is to draw together the main conclusions from 

the thesis and to provide general perspective on the results. The aim of 

this study was to understand the sensitivity of bare and hybrid carbon 

nanotubes in two types: single-walled and multi-walled carbon nanotubes 

as VOCs, CO and ozone gas sensors. In general, networks comprising 

only CNTs (MWCNTs or SWCNTs) were found to show the highest 

conductivity (chapter three, section 3.1.3), however these bare CNT or 

pure CNT composites generally showed the smallest sensitivity to various 

analytes (chapter three, section 3.3). The sensitivity is the fractional 

change in current or resistance of the device in response to the analyte 

and was used because it normalizes for factors such as device size and 

the amount of material deposited. We observed that incorporation of 

conductive polymers (polypyrrole) into CNT composites changed the 

overall electrical behaviour from metal-like to semiconducting in the sense 

that the resistance decreased with increasing temperature. This behaviour 

is consistent with a network model of the composite in which conduction 

through the portion of polymer between CNT junctions is limiting the 

transport. Similarly, DNA-coated CNTs (chapter six) showed a transition 

from metal-like conduction behaviour to semiconductor-like conduction 

behaviour as the DNA: CNT ratio increased (chapter six, section 6.1.2.). 

The composites showed superior sensitivity to various analytes in almost 

all cases; this suggests that the origin of the resistance changes 
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responsible for the sensing behaviour is at the resistive CNT/CNT 

junctions which are modified by the presence of semiconducting 

(polypyrrole) or insulating (DNA, BNNT) materials. 

More specific conclusions for various aspects of the work are presented 

in four parts: 

(1): Polypyrrole@CNTs as VOCs gas sensor, (2): BNNTs@CNTs as 

ozone gas sensor, (3): Polypyrrole@CNTs to detect carbon monoxide gas 

and (4): DNA@CNTs to detect VOCs.  

 

(1) 

The general results of coated CNTs by the conductive polymer Ppy are: 

 Carbon nanotubes were successfully coated with polypyrrole 

using in situ chemical oxidative polymerization method.  

 AFM and TEM images show the significant change in the 

diameters of the nanotubes after coating and poly pyrrole coated 

CNTs as shells.  

 FTIR demonstrated peaks of polypyrrole in the spectrum of 

CNTs with a small shift in the peaks, which indicates chemical 

interaction between the conductive polymer and CNTs during 

the polymerisation process, while Raman peaks showed the G 

and D bands of carbon nanotubes and bands due to polypyrrole. 

 I-V characteristics for two terminal nanotube devices showed a 

change in the electrical properties of carbon nanotubes after 

coating. The electrical conductance decreased after coateing. 

Impedance spectroscopy showed that the bare CNTs behave as 
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a simple real resistor, while the Ppy@CNTs have also an 

imaginary part of the impedance. Furthermore 

polypyrrole@CNTs showed a semiconductor-like behaviour as a 

function of temperature which can be interpreted in terms of a 

hopping mechanism, Arrhenius equation gave more details 

about the electrical properties of polypyrrole@CNTs (chapter 

three, section 3.1.3.)  

 Pristine CNTs showed a weak sensitivity to volatile organic 

compounds VOCs for (methanol, ethanol, acetone and 

chloroform), but the film sensitivity was enhanced more than ten-

fold after coating CNTs by polypyrrole. Acetone showed the 

highest response of the tested VOCs for SWCNTS/Ppy while 

CHCl3 recorded the lowest response.  

 As a gas sensor, CNTs and CNTs/Ppy demonstrated increasing 

in the electrical resistance when the VOC exposure and 

decreased after gas off with a reversible change. This suggests 

the mechanism does not involve a chemical reaction with the 

polymer.  

 Generally, acetone showed a higher response than MeOH, 

EtOH and CHCl3 0.7% and 6 % for SWCNTs and MWCNTs 

respectively. Bare and hybrid CNTs have a fast response time 

(1-2) min and with recovery times between (1-4) min. 

 The sensitivity of bare and hybrid carbon nanotubes decreased 

with increasing temperature and the temperature dependence is 
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consistent with the Van’t Hoff equation and reversible adsorption 

of the analyte on the device. 

 Bare CNTs show a linear change between the film sensitivity 

and the VOCs concentration with correlation coefficient between 

(0.91-0.99) for a small amount of the VOCs P/P* < 0.2 , in 

contract with CNTs/Ppy correlation coefficient between 0.79 to 

0.95 for correlation coefficient, and 0.22 to 0.68 for chloroform. 

There was a nonlinear relation between the film sensitivity and 

the vapor concentrations.  

 It was observed that decreasing the concentration of the 

conductive polymer below 1 M led to a discontinuous coverage 

of the nanotubes by polypyrrole and lower sensitivity. 

 Laser treatment of bare CNTs led to increase the sensitivity of 

CNTs to chloroform vapour than MeOH, EtOH and C3H6O, Laser 

irradiation of CNTs therefore provides another useful means to 

alter the selectivity of CNTs sensors. Laser radiation also led to 

disorder in the structure of the CNTs. 

 From observing the sensitivity of bare and hybrid CNTs for 30 

min, it has been found that the change in the electrical 

resistance of the CNTs films was stable and reversible for all the 

VOCs. While observing CNTs/Ppy for 10 days found the 

sensitivity of the nanocomposite decreased after ten days.  

 The main mechanism of electrons transport inside the CNTs and 

CNTs/Ppy depends on the variable range hopping (VRH) and 

tunnelling transport (TT) at junctions.  
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 In some sensing experiments of CNTs/Ppy as chloroform 

sensor, it has been shown swelling in the polypyrrole matrix and 

appeared to decrease the electrical resistance and an 

irreversible change.  

 

(2) 

The general results of BNNTs@CNTs films are: 

 Electrical current of SWCNTs and MWCNTs was decreased 

after mixing with BNNTs and from I-V characteristics it has been 

shown that the linear plot between the current and the voltage 

without any evidence refers to a barrier between Pt/NT mixtures. 

 Impedance spectroscopy demonstrated that there is only real 

part of the resistance before and after mixing BNNTs with CNTs 

unlike the case of polypyrrole/CNT composites.  

 Raman spectroscopy shows a strong interaction between 

BNNTs and CNTs. 

 In the sensing applications, bare SWCNTs and bare MWCNTs 

shows a fast response to the ozone gas with irreversible change 

and long recovery time depending on the gas concentration.  

 Upon ozone exposure, the electrical current increased and 

decreased when the gas was switched off.  

 The mixture of BNNTs CNTs increased the film sensitivity to the 

ozone with short recovery times. 

 Bare and hybrid SWCNTs showed more sensitivity to the ozone 

molecules than pristine and hybrid MWCNTs. 
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 The sensitivity of bare and hybrid carbon nanotubes increased 

with increasing the temperature and it has been noted that the 

recovery times decreased.  

 From the Van’t Hoff analysis of the sensitivity, and apparent 

enthalpy     > 0 was observed. A positive enthalpy is not 

consistent with an adsorption mechanism and along with the 

irreversibility this suggests instead the mechanism involves a 

chemical reaction and the temperature dependence reflects 

Arrhenius kinetics. 

 Ozone depletes electrons from CNTs and increase the 

concentration of the holes as majority chargers in the nanotube 

network.  

 XPS data show that exposure ozone gas on CNTs led to 

oxidation of the nanotubes, but greater effects are seen in 

BNNTs where oxidation of boron atoms happens. 

 

(3) 

The main conclusions of using CNTs as a carbon monoxide gas sensors 

are:  

 Bare CNTs have a weak sensitivity to carbon monoxide gas. 

 Coating CNTs by polypyrrole led to an increase the sensitivity.  

 From observing the change in the electrical resistance, it has 

been shown that the electrical resistance decreased with gas 

exposure with irreversible change, with a fast response times. 
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 Bare SWCNTs more sensitive to the carbon monoxide gas than 

bare MWCNTs.  

 The  recovery times become slower after coating by polypyrrole, 

but no more than 5.5 min in SWCNTs/Ppy and >2.5 min for 

MWCNTs/Ppy.  

 The sensitivity of bare and hybrid carbon nanotubes decreased 

with an increase the temperature, and from the Van’t Hoff equation 

it was found that the interaction of carbon monoxide gas with 

surface of CNTs can be described as an exothermic adsorption 

reaction.  

 

(4) 

The last part in these conclusions are related to the coated MWCNTs by 

dsDNA as a VOCs gas sensors: 

 DNA coated MWCNTs function as a VOC gas sensor.  

 The electrical properties of MWCNTs have been changed after 

coating, the electrical conductance decreased after the coating 

process.  

 The ratio of CNTs: DNA (10:1) represents the best ratio to 

obtain a good response to the VOCs vapour, while increasing the 

ratio beyond 10:1 led to devices insensitive to the VOCs.  

 As a gas sensor, the sensitivity of MWCNTs increased after 

DNA coating. 

 DNA@MWCNTs become more sensitive for methanol vapour 

than others VOCs (acetone, ethanol and chloroform). 
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 When the temperature > 293 K, the film sensitivity decreased 

and according to the Van’s Hoff equation for the samples of 

     
       

 , the VOCs molecules were adsorbed by the 

sensor material and not simply condensed as a liquid and when 

     
             

   (in acetone case for the lowest ratio of 

CNTs:DNA) can be described the VOCs molecules as simply 

condensed as a liquid. 

 DNA@CNTs films are more promising than Ppy/CNTs to sense 

VOCs and more selective for ethanol and methanol than 

polypyrrole.  

7.2. Limitations and future work  

This thesis focused on using bare and hybrid carbon nanotube 

networks as gas and vapour sensors, and it has been found that the 

conductive polymer as polypyrrole, DNA and BNNTs enhanced the 

sensitivity of carbon nanotubes for volatile organic compounds, carbon 

monoxide and ozone gas. The coating and mixing process helped to 

change the electrical properties of CNTs to increase the sensitivity to 

gases and vapour.  

Coating CNTs by DNA helped to increase the selectivity of CNTs to 

methanol over other VOCs, whereas polypyrrole/CNT composites showed 

selectivity for acetone.  In previous works185, 186, CNTs were used to detect 

ozone, however these devices suffered from long recovery times after 

removal of the ozone.  In this thesis BNNTs@CNTs films was used in the 

first time to detect the ozone gas with reduced recovery time. Previous 
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researchers used vacuum and the thermal treatment to obtain a recovery 

time of 30 min at best while in our study we obtained a lower recovery time 

(3-17) min –depending on the gas concentration- at room temperature 

without vacuum system. Generally, the mechanism of response for pristine 

and composite carbon nanotube devices was different and dependent on 

the types of the gas. We have observed evidence of mechanisms based 

on adsorption (VOC on Ppy/CNY and based on reaction ozone/CNTs). It 

has been noticed that during chloroform vapour detection there was a 

negative response and an irreversible change with the swelling in the 

polypyrrole@CNTs matrix.  AFM imaging showed that there was an 

increase in the polypyrrole particles size which suggests a mechanism 

based on swelling and closing of gaps in the conduction pathway. 

In summary, we find that modification of CNTs by incorporation of various 

insulating or lower conductivity materials improves their analytical 

sensitivity in a range of gas sensing devices. The bare CNTs are too 

conductive and too inert to show a strong response to analytes despite 

their high surface to volume ratio. However, the decrease in conductance 

upon making various composites is not a significant disadvantage to the 

production of sensing devices and also allows one to adjust the selectivity 

by careful choice of materials. 
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9. Appendix  

Supplemental Materials 

Table S1: Ozone calibration  

Absorbance at the 350 nm peak (A) 

for four tests 

4.652 

5.451 

5.225 

5.939 

Absorbance average (A) 5.209 

Absorption coefficient () 

dm3 mol-1 s-1
 

2.60E+04 

Pathway cell width d (cm) 1 

Concentration of iodide in aliquot 

(C) 

C=A/( d) in mol dm-3
 

2.00E-04 

KI volume (dm
3
) 0.1 

No. of moles of   
   (mol) = Volume x C 2.00E-05 

No. of moles of     (mol) = Volume x C 2.0035E-05 

Time (min) 20 

Flow rate (m
3 
S

-1
) 2.0833E-06 

Volume of air  (m
3
) = flow rate x time 0.0025 

Ozone concentration = No. of moles of    / 

Volume of air 

0.00801385 

 

Air concentration assuming ideal gas law = 

P T/R 

P= 101325 Pa, R=8.314 J K
-1

 mol
-1 

, T= 

293 K 

41.5947934 mol m-3 

Mole fraction ozone = O3 Conc. / (Air Conc. 

+ O3 Conc.) 
0.00019263 

Mass fraction ozone = (O3 Conc. x 

Moleculare wight of O3) / (O3 Conc. x 

Molecular wight of O3 + Air Conc. x 

Molecular weight of air) 

 

0.00031981 

Uncertainty 29.57 

Ozone (ppm) = 1000000 x Mass fraction 

ozone 
320  30 

Note 

320 ppm for 100% UV tube 

illumination 

217.6 ppm for 68% UV tube 

illumination 

128 ppm for 40% UV tube 

illumination 
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Figure S1: UV-vis plots of KI aqueous 

 

 

 

Figure S2: TEM images of SWCNTs/polypyrrole 

 

 

 

100 nm 500 nm 



Appendix                                                                                                       . 

256 

 

 

 

 

Figure S3: TEM images of MWCNTs/Polypyrrole 

  



Appendix                                                                                                       . 

257 

 

 

 

 

 

 

Figure S4: AFM images of (a&b) SWCNTs/Ppy, (c&d) MWCNTs/Ppy. 

  



Appendix                                                                                                       . 

258 

 

 

Figure S5: The variation of the sensing response of bare and hybrid 

SWCNTs towards different VOCs as a function of the vapour 

concentration. 
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Figure S6: The variation of the sensing response of bare and hybrid 

MWCNTs towards different VOCs as a function of the vapour 

concentration. 
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Figure S7: AFM images of (A) bare MWCNTs 
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Figure S8: AFM images of DNA:CNTs (2:50) µL 
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Figure S9: AFM images of DNA:MWCNTs: (A) (5:50)μL, (B) (10:50)μL 
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Figure S10: The histogram of (A) bare carbon nanotubes and pure DNA, (B) 

DNA@MWCNTs at different ratios. 
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Table S2: the calculations of the vapour pressure for acetone, ethanol, methanol 

and chloroform at different temperature with different concentration mixture 

(VOC:zero air). 

@ 293K  

                                                           

C3H6O 
Psat = 24603.8 Pa 

12300 16500 18500 19700 

EtOH 
Psat =  5872 Pa 

2940 3930 4400 4700 

MeOH 
Psat = 12996 Pa 

6500 8710 9750 10400 

CHCl3 
Psat = 208205. 27 Pa 

104000 139000 156000 167000 

@ 303K 

 
                                                          

C3H6O 
Psat = 37752 Pa 

18900 25300 28300 30200 

EtOH 
Psat =  10469.7 Pa 

5230 7010 7850 8380 

MeOH 
Psat = 21860.9 Pa 

10900 14600 16400 17500 

CHCl3 
Psat = 31964 Pa 

15900 21400 23973.0 25600 

@ 313 K 

 
                                                          

C3H6O 
Psat = 561866 Pa 

281000 376000 421000 449000 

EtOH 
Psat =  17891.9 Pa 

8900 12000 13400 14300 

MeOH 
Psat = 35430.3 Pa 

17700 23700 26600 28300 

CHCl3 
Psat = 47581.6 Pa 

23800 31900 35700 38100 

@ 323 K 

 
                                                          

C3H6O 
Psat = 81366 Pa 

40700 54500 61000 65100 

EtOH 
Psat =  29439.43 Pa 

14700 19700 22100 23600 

MeOH 
Psat = 55539 Pa 

27800 37200 41700 44400 

CHCl3 
Psat = 68861.23 Pa 

34400 46100 51600 55100 

@ 333 K 

 
                                                          

C3H6O 
Psat = 114963.2 Pa 

57500 77000 86200 92000 

EtOH 
Psat = 46898.4 Pa 

23400 46900 35200 37500 

MeOH   
Psat = 84999.8 Pa                

42500 56900 63700 68000 

CHCl3 
Psat = 97167.8 Pa                     

48500 65100 72900 77700 


