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CHAPTER I

INTRODUCTION

1.1 Research purpose

Fresh water is one of the most important natural resources. However, like other

natural resources, the usable water is limited while the demand for water increases as

industrialization proceeds and the population grows. What makes matters worse is that

water resources are being reduced by pollution.

Groundwater is an important water resource. However, in many countries, it has not

been fully developed yet, either because of sufficient surface water sources, technical

problems, or geographical conditions. Generally groundwater is relatively clean and is

better protected from pollutants than surface water. Thus groundwater is an important

subject for water engineers and scientists who have focused on its development and

protection. In both cases, research into the movement of pollutants plays an important

role in the effective exploitation of groundwater.

Recently hydrologists concerned with groundwater pollution have studied multiphase

flows in the subsurface because many pollution problems are characterized by

multiphase contamination. The simplest multiphase pollution problem is solute

transport in the unsaturated zone. More complex multiphase pollution problems

involve organic matter such as petroleum products discharged to use oil. Since many

of organic products are essential to our normal life and industry, the potential for

groundwater pollution by them is significant unless they are controlled properly. In

multiphase problems, the organic compounds may form their own flows that are

distinct from the subsurface water flow but partly dissolve with the water phase and

cause low concentration long term pollution of the water phase.

There have been many efforts dedicated to predicting the movement of pollutants. A

lot of mathematical and numerical models have been developed with the aid of

laboratory and field works. However almost all models have been developed to solve a

few restricted scenarios. Model users are obliged to invest considerable time in

understanding the various models; their numerical accuracy and coding.
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The purpose of this study is to categorize the pollution patterns in the subsurface and

to develop a numerical model that can be applicable to a wide variety of subsurface

contamination. The general primary variables and generalizing procedures are

employed to make the numerical model applicable to various pollution patterns. Many

kinds of tracers can be used to know the behaviors of fluid phases in the subsurface.

Because the model is able to describe partitioning of mass of a component among fluid

phases, tracer problems also can be simulated by the model.

1.2 Literature review

1.2.1 Basic definitions and pollution patterns

Beneath the surface of the ground, the solid matrix consists of soil, sand, gravel,

and rock. Usually there exists void space in the solid matrix, through which fluids may

migrate. This kind of solid matrix is defined as porous medium. Through the void

space, there may be flows of gas, water, or oil. If more than one fluid is found in a

porous medium and they can be characterized as distinct bodies separating each other

by distinct physical boundaries, and each being identifiable by distinct quantities in

space and time, they are referred to as phases. If void space is filled with only one fluid

phase, then the term, single phase flow, is used to characterize the movement of the

fluid; otherwise, multiphase flow. A phase may consist of several chemical species

defined as components.

The pollution patterns in the subsurface are subjected to properties of solid matrix,

fluid phases in void space, and interactions among fluid phases. Bear and

Buchlin( 1991) discuss the behaviors of water, gas, and oil, according to the property

of the solid matrix. If the solid matrix consists of hydrophilic material, water is the

wetting phase. The affinity of oil to the solid matrix is somewhere between those of

water and gas. On the other hand, if the solid matrix consists of oliophilic material,

the behaviors of water and oil are exchanged. The fluid phases in a porous medium

contribute to determining the pollution patterns. This study considers the four



3

combinations of the fluid phases: water-gas, organic-gas, water-organic, and water-

organic-gas. The interphase mass transfer that can be caused by dissolution and

evaporation is also an important factor that determines the pollution patterns. This

study categorizes the pollution patterns that can be simulated by a numerical model.

1.2.2 Mathematical model

The physical phenomena associated with multiphase fluid flows in porous media

can be expressed analytically to determine the basic thermodynamic quantities such as

mass density, motion, and temperature. The governing equations that describe

movements of these quantities are usually based on the conservation laws of mass,

momenta, energy and entrophy.

Grouse(1966), Soo(1967), and Butterworth and Hewitt(1977) have relied on

somewhat intuitive or empirical concepts to derive the conservation equations. So

these models are generally restricted in application to particular multiphase systems.

The continuum theory of mixtures are employed by Eringen and Ingram(1965), and

Muller(1968) to obtain governing equations for multiphase systems. In this method,

phases are viewed as overlapping continua, which simultaneously exist everywhere and

occupy the whole space.

The previous two approaches are focused on particular assumptions such as

incompressible, steady state, or one-dimensional flow. To derive flexible general

conservation equations for multiphase systems, the local volume averaging technique is

adopted by some scholars.

In the approach of local volume averaging, the system is considered to be composed of

interpenetrating continua. The thermodynamic quantities of a phase are assumed to be

continuous for the phase but discontinuous over the entire space, because each phase

occupies part of space and is separated by highly irregular interfaces. The classical

balance laws of continuum mechanics may be applied to the system. However because

the description of the configuration of pore space is an overwhelming task, the

governing equations obtained at the microscopic scale should be averaged over

representative local volume.
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Various scholars emphasize the value of the local volume averaging technique in

obtaining equations applicable to multiphase systems. Whitaker( 1966) employs local

area averaging to develop Darcy's law. However, this technique proves too

complicated from the standpoint of the notational conventions. The difficulties of area

averaging are overcome when Whitaker( 1967) and Slattery( 1967) adopt the volume

averaging method. Slattery( 1967) and Whitaker( 1969) develop a theorem which

relates the average of a spatial derivative of a function to the spatial derivative of the

average of the function. Bachmat(1972) applies a column averaging technique to

continuum equations that contain spatial derivatives and time derivatives. However, it

seems that one of the most useful researches has been conducted by Gray and

Lee(1977). They present the theorems of local volume averaging which relate averages

of derivatives to derivatives of averages. Given its simple and clear generalization, it is

very useful for deriving macroscopic mass balance equations of multiphase fluids in

porous media.

1.2.3 Numerical model

Some authors have developed analytical solutions for multiphase flows in porous

media. However most of them are focused on special cases which are extremely

simplified. It is very difficult to solve highly nonlinear partial differential equations

analytically that describe fluids transport in porous media. Consequently many

modelers have turned to numerical techniques for their solution. The two most popular

numerical techniques are the finite difference method and the finite element method.

Each has advantages and disadvantages and it is difficult to say which one is better.

For a long time, the finite difference technique has been very popular among

hydrologists. Nolen(1972) develops a reservoir simulator to solve both water-coning

and gas-percolation problems in an oil reservoir. The reservoir simulator is based on

the nonlinear form of the semi-implicit finite difference equations.

Abriola and Pinder(1985) present a mathematical model for three-phase flows(water,

gas, and organic compounds). Because they consider interphase transfer from organic

compounds to water and gas phases, the transport of a chemical contaminant is

described as a nonaqueous phase, as a soluble component of an aqueous phase, and as
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a mobile fraction of a gas phase. The contaminant is assumed to be composed of, at

most, two distinct components, one of which is volatile and water soluble and the

other of which is non-volatile and insoluble in water. In addition, the effects of matrix

and fluid compressibilities, gravity, capillarity, diffusion and dispersion are all

considered. The resulting mathematical model is solved using the finite difference

technique. However, this model is restricted to only water dominated situation,

because it assumes that water phase is in contact with gas phase.

Faust(1985) produces a numerical model that describes the simultaneous flow of

water, a second immiscible fluid and gas. The two-dimensional equations for flow in a

vertical plane are approximated by the finite difference scheme. No mass transfer

between the phases is considered.

Corapcioglu and Baehr(1987a) develop a mathematical model describing the fate of

hydrocarbon constituents of petroleum products. Three-phase(water, gas and oil)

flows are expressed analytically, allowing mass transfer of reactive constituents such as

benzene, toluene, and xylene found in refined petroleum products like gasoline. In

addition adsorption is considered and microbial degradation of petroleum products is

also discussed, focusing on the mass conservation of oxygen which plays an important

role in the metabolism of hydrocarbons. This solution is obtained by using a finite

difference method and a method of forward projection to evaluate the nonlinear

coefficients. However, unlike the model of Abriola and Pinda(1985a,b), it is not

suitable for treating the water dominated system.

Sleep and Sykes(l993) develop a compositional simulator for analyzing simultaneous

flow of three fluid phases(water, gas, and organic). The model which uses a block-

centered finite difference discretization can simulate interphase partitioning and

transport of an arbitrary number of organic and inorganic components. However, its

application is restricted to only the case that the water phase is the most wetting and

the gas phase is the least wetting, and that in a three-phase system only organic-water

and organic-gas interfaces are formed. Thus the compositional model is not general

because of the fixed assumption.

Baehr(1987) presents a system of partial differential equations defining radially

symmetric transport of solutes and vapours from a multiconstituent immiscible

contaminant at residual saturations. The finite difference method is used for the
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numerical solution of the equations. His model predicts long-term groundwater

pollution from vapours and solutes emanating from organic liquids at residual

saturations. He considers the mass transfer of organic phases to water and gas phases.

A numerical model to predict the migration of organic contaminants in the subsurface

is developed by Kia(1991). In a three-phase fluid system of gas, water and

contaminant, simultaneous flow of the water and contaminant phases is formulated by

applying mass conservation principles to each of the phases under the condition of no

interphase mass exchange. The complex formulations are solved numerically using an

implicit finite difference scheme.

The finite element technique is more suitable for complex geometry and can track

sharp fronts more accurately. However, when applying them to highly nonlinear,

immiscible flow problems, several numerical difficulties can be encountered. Mercer

and Faust( 1977) discuss these difficulties and suggest several techniques to overcome

them.

Voss(1984) produces the numerical model, SUTRA, employing a finite element

technique. SUTRA solves solute transport problems in the unsaturated and saturated

zone. Many authors have made considerable progress in the solution of solute

transport problems. In this thesis, they are considered as a subject of the more general

multiphase problem.

Langsrud(1976) presents a finite element model for two-phase(oil and gas) flows in

porous media. Two-phase flow of compressible fluids in a porous medium is

characterized by two coupled, non-linear equations for oil and gas.

Osborne and Sykes(1986) develop a two-dimensional mathematical model for two-

phase flows in porous media. The numerical model is based on a generalized method of

weighted residuals in conjunction with the finite element method and linear

quadrilateral isoparametric elements. Incompressible fluid and porous medium are

assumed.

Lin(1987) develops a model for the flow of two incompressible and immiscible fluids

in incompressible porous media. He does not consider mass transfer, diffusion and

dispersion. Numerical analysis, based on the finite element method, is presented. To

overcome nonlinear systems of equations, the Newton-Raphson's method is employed.
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Kuppusamy et al(1987) develops a finite element model for multiphase flow through

porous media involving three immiscible fluids(gas, water and a nonaqueous phase). A

variational method is employed for the finite element formulation. No mass transfer is

considered among phases. Simplified flow equation is used because an incompressible

porous medium is assumed with constant fluid densities and viscosities.

As previously shown in this section, the existing numerical models have very narrow

validity in spite of the fact that there could be many cases of flow patterns in the

subsurface especially for the multiphase flows. Thus it is necessary to develop a

compositional multiphase model which is applicable to a wide range of multiphase flow

problems in porous media. This study is dedicated to meet the purpose, which may

make the scientists and engineers freer in applications and assumptions.

1.3 Research content

Chapter II derives the general macroscopic balance equation that describes the

movements of quantities such as mass, momentum, energy, or temperature. It

discusses the general physical characteristics of subsurface flows and introduces the

volume averaging method. The boundary conditions are considered to complete the

mathematical model.

Chapter III discusses the physical phenomena for multiphase systems in the subsurface,

focusing on interfacial tension, wettability, capillary pressure curve, velocity of a fluid

phase, dispersion and diffusion. Employing the general primary variables, the three

governing equations are determined by applying the mass balance law to components

and phases of concern. This chapter discusses the scope of application that can be dealt

with the three governing equations.

Chapter IV introduces the finite element technique used to discretize the governing

equations derived in chapter III. It explains the numerical techniques needed to

overcome difficulties that are caused by the attempt of dealing with various pollution

types. The variations of the general primary variables and the spatial and temporal

derivatives in the governing equations are categorized according to the pollution

patterns.
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Chapter V describes the verification of the numerical model, COMPO (COMPO1D

and COMPO2D), applying it to four examples. The accuracy of the code, COMPO, is

conveyed by the comparisons of simulation results obtained by COMPO and other

numerical models. The convergence properties of COMPO are also shown by grid and

time step refinement. Finally the extended use of the code is shown by applying it to a

tracer problem.
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CHAPTER II

TRANSPORT PHENOMENA IN POROUS MEDIA

The purpose of this chapter is to provide the general balance equation for a quantity

such as mass, momentum, energy, or temperature. The fundamental knowledges of the

continuum mechanics are introduced in section 2.1. The microscopic balance equation

is derived in section 2.2. Section 2.3 presents the averaging rules which are required

for deriving the macroscopic balance equation. Integrating the microscopic balance

equation over REV(Representative Elementary Volume), the macroscopic balance

equation is obtained in section 2.4 using the averaging rules. To obtain specific

solutions from the macroscopic balance equations, boundary conditions are needed.

Section 2.5 derives microscopic and macroscopic boundary conditions.

2.1 Basics of continuum

Phases may not be continuous throughout the domain of concern due to the

geological complexity. However, all phases are assumed to be continua over the

domain to construct an mathematical model. In this section, the basic concept of

kinematics of continuous materials is introduced.
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2.1.1 Coordinates

X3

Figure 2.1.1 Coordinate description

There are two ways to describe the position of a particle of a phase, depending on

the position of an observer. To start with, consider a small body, B, of the phase at

time, t0, that is occupied by continuously distributed matter of the phase(see figure

2.1.1). R0 is supposed to be the region which is occupied by B. The position of a

typical point P0 within R0 can be presented by using the spatial(Eulerian) coordinate

system where the position of the observer is fixed. Every point in R0 can be described

in this way. Let X be the position vector of P0. Then the components XR of X, in the

chosen coordinate system, are the coordinates of the position, P 0. occupied by a

particle of B at t0. Each point of the region R 0 corresponds to a particle of the body

B, and B is the assemblage of all such particles.

If the body which occupies the region R 0 at t=0 moves by any external forces, it will

occupy a new continuous region R at time t. Although the configuration of the body B

at t=0 changes with time, the same particles will be distributed continuously but in

different space. So the individual particles of the body B can be identified at time t. Let

us define a point of R as P which is occupied by the same particle that occupied P 0 at

t=0. As shown in figure 2.1.1, the position vector of P is x in the spatial coordinate

system.

Another coordinate system is the material(Lagrangian) coordinate system where the

observer moves along with the particle of B that occupies P 0 at t=0 and P at tt. At the
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reference time t=O, the particle can be identified by the position vector X. Regardless

of time elapse, the particle is defined by X according to the material coordinate system.

For practical purposes, it is required to establish the relationship between two

coordinate systems. The position of the particle of B, at t=t, can be denoted as x in the

spatial coordinate system. So the position vector x can be represented as the function

of X and t, because X reflects the origin of the particle and time is another independent

factor which decides the position of the particle:

x=x(X,t),	 or x= x,(Xg,t)	 (i,R1,2,3)	 (2.1.1)

where x, : components of x

XR: components of X

For physically realizable motions it is possible in principle to solve (2.1.1) for X in

terms of x and t, which gives equations of the form:

X=X(x,t),	 or XR=XR(x,,t)	 (i,R=1,2,3)	 (2.1.2)

Problems in continuum mechanics may be formulated either with the material

coordinates XR as independent variables, or with the spatial coordinates x 1 as

independent variables. In the material description attention is focused on what is

happening at, or in the neighbourhood of, a particular material particle. In the spatial

description attention is focused on events at, or near to, a particular point in space. In

principle it is possible to transform a problem from the material to the spatial

description or vice versa by using (2.1.1) or (2.1.2).

2.1.2 Displacement and velocity of a particle

The displacement vector, d, of the particle of B can be expressed as follows( see

figure 2.1.1):

d=x-X	 (2.1.3)



ad(X,t) ax(X,t)v(X,t)=	 =
at

(2.1.6)

v,(XR,t) = aX(XR,t)
at

(2.1.7)
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Adopting the material coordinate system, it can be rewritten as:

d(X,t)=x(X,t)-X
	

(2.1.4)

On the other hand, equation(2. 1.3) is able to be expressed in terms of the spatial

description as follows:

d(x,t)=x-X(x,t)
	

(2.1.5)

In the material coordinate system, the particle of B is always identified as the position

vector, X, regardless of time elapse. Thus the velocity vector of the particle can be

expressed in the material coordinate system as follows:

where the differentiations are performed with X held constant. In terms of the

components v, of v, sequation(2 1.6) can be written as:

The result of performing the differentiation (2.1.6) or (2.1.7) is to express the velocity

components as functions of XR and t; that is, they give the velocity at time t of the

particle which was at X at t=O. Frequently it needs to employ the spatial description.

To do so, it is necessary to express v in terms of x. by using the relations (2.1.2).
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2.1.3 Material derivative

Assuming that a general quantity, G, varies throughout the domain of interest with

time and space, G is the function of time and space. As mentioned previously, it can be

expressed by using either the material coordinate system or the spatial coordinate

system:

G=G(XR,t)=G(x, t)
	

(2.1.8)

The mathematical formulation of general physical laws and the description of the

properties of particular materials is often most easily accomplished in the material

description, but for the solution of particular problems it is frequently preferable to use

the spatial description. It is therefore necessary to employ both descriptions, and to

relate them to each other. The time derivative of G in terms of the material description

is called the material derivative. It can be expressed as:

Dt 

_ G(X,t)	
(2.1.9)

Adopting equation(2.1.l), equation(2.1.8) can be rewritten as follows:

G= G{x,(XR,t),t}= G{xQC R,t), x4XR,t), x(XR,t),t}	 (2.1.10)

Then, the following equation is obtained by differentiating equation (2.1.10) with

respect to t with XR constant:

DG - G(x,t) x(XR,t) aG(x1,t) aX2(XR,)

Dt	 t	 X2

+	 (x,t) x(XR,t) + G(x,t)
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By using the summation convention, this is rewritten concisely as:

DG	 G(x,t) aXJ (XR,)	 G(x,t)	
(2.1.12)+

Dt	 JXj

Equation (2.1.12) is rewritten in the simpler form by employing equation (2.1.7) as

follows:

—v 
aG(x,t)G(x,t)

Dt -
(2.1.13)

The final form of the derivative DG/Dt is called the material derivative or the

convective derivative that represents the changing rate of a general variable, G, of a

particle with time in terms of the spatial coordinates.

2.2 Microscopic balance equation

This section derives the microscopic balance equation by the two approaching

methods: the spatial and material approach. In both cases, it is assumed that there is a

single phase continuum in the domain of interest.

2.2.1 Spatial approach

dS

Figure 2.2.1 Control volume for the spatial approach
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To start with, an arbitrary point is chosen within the phase continuum. Its position

vector is defined as x. Consider a general quantity, G, in a volume, U, around the

point. The amount of the quantity within U is 5 gdU, where g is the density of G.

The fixed finite domain, U, is referred to as the control domain of the volume U of

arbitrary shape, bounded by a closed surface, S. Figure (2.2.1) shows such a control

domain, with U and S denoting its volume and the area of the surface bounding it,

respectively.

The instantaneous accumulation rate of the general quantity, G, within U can be caused

by influx or efflux crossing the boundary, self-production within the domain, and

external supply. Thus, the following relation can be established verbally:

Rate of	 Net influx of	 Net rate of	 Rate of

accumulation of = GintoU	 + production of + external supply

G within U	 through S	 G within U	 into U

(1)	 (2)	 (3)	 (4)

It can be rewritten in a mathematical form as follows:

(1) The rate of accumulation of G in U is expressed by

--5 gdU=5dU
atu	 uat

where the exchange of integration and differentiation is permitted in view of the

fact that the boundary of the domain U is fixed: the domain does not change in the

course of time.

(2) The net influx ( = total influx minus total efflux ) of G into U through 5, is

represented as:

where VG : velocity vector of the G continuum

gVG : flux vector of the G continuum
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Because n is defined as the outward normal unit vector on the elemental area dS,

the integral has the minus sign.

(3) The net rate of production of G from sources in U, is expressed by:

L pF°dhtJ

where rG: rate of internal production of G, per unit mass of the phase.

p : mass density of the phase

(4) The rate of external supply of G can be defined as follows:

L f GdU

where G : rate of external supply of G, per unit mass of the phase.

In summary, the balance of the G continuum in U is expressed by:

I -dU = -$ gV° .ndS+JpFGdU+$pfGdU	 (2.2.1)
ir

Assuming that pyG is differentiable within U, Gauss' theorem(refer to Bear and

Bachmat, 1990) can be applied to the first term on the right of (2.2.1). The Gauss

theorem is represented for the general quantity, G, as follows:

JV.GdU=JG.ndS
	

(2.2.2)

Employing equation(2.2.2), equation (2.2.1) can be rewritten as:

5	 V gyG - pfG - pfG	 = 0	 (2.2.3)
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By shrinking the volume U to zero around an arbitrary point, we obtain:

+V.gVG_pFG_pfG =0	 (2.2.4)

where all terms refer to the point. Equation (2.2.4) is the general microscopic balance

equation in a continuum.

2.2.2 Material Approach

Here, the observer follows a general quantity, G, within a domain, UG, enclosed by

a material surface, S'3 . Unlike the spatial approach, U' and S° change in the course of

time. The amount of G is defined within U°(t) at time t as follows:

G = .IuG(,)
	 (2.2.5)

Since the observer follows the general quantity, G, within U, no amount of G can cross

the boundary, S'. However, there is a possibility of the growth of G within the material

volume and the external supply of G in the course of time. Hence, the following

equation can be established as:

gdu=5 pFGdU+J G pfdU	 (2.2.6)
Dt U G (i)	 uG(t)

The first term of equation (2.2.6) can be rewritten by applying Reynold's transport

theorem(Bear and Bachmat,1990):

-- I	 gdU = $	 dU+JG gV G . fldS	 (2.2.7)
Di' JU G ( t)	UG(,)
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As in the spatial approach, the Gauss' theorem, equation(2.2.2) is applied in order to

transform the surface integral in equation(2.2.7) into a volume integral. Then,

equation(2.2.7) can be rewritten as:

- $	 gdlJ = J	 dlJ + $ V gV Gjrj
Dr U G ( ,)	 U0(t)	 uG(,) (2.2.8)

Substituting equation(2.2.8) into (2.2.6), the following equation can be obtained:

$	
(+V.gVG_prG_pfGJ=O	 (2.2.9)

Since the domain UG(t) is arbitrary, the integrand itself must vanish everywhere. Thus

the same balance equation is derived as follows:

+V.gVG_pFG_pfG =0	 (2.2.10)

2.3 Averaging rules

The necessity of the REV and the basic definitions for averaging are discussed in

subsection 2.3.1. The useful averaging theorems for deriving the macroscopic balance

equation are derived in subsection 2.3.2.

2.3.1 REV and the basic definitions for averaging

In the previous section, the microscopic balance equation has been derived for single

phase. However, there arise two big problems: one is how to trace out the complex

boundaries at this level and the other is that proof that the solution of the mathematical

equation is right can not be obtained, because of limitations of experimental methods.
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Even if it is possible to circumvent these problems, it is impractical to spend sufficient

money and time to solve the problem at the microscopic scale.

Hence, another approach is required which describes the transport phenomena as

accurate as possible, but overcomes these problems. To simplify the microscopic

behavior, averaging over a suitable volume which contains all characteristics under

consideration can be adopted. Introducing this simplifying tool, it is feasible to define a

point within a phase to represent a discrete volume, the REV(Representative

Elementary Volume).

Since the REV is the basic element for the macroscopic analysis, its selection demands

certain conditions. The REV should contain all characteristics of the system around a

point of interest. If it is too small, there can be a severe discontinuity problem. For case

that it is too large, the transport phenomena in the porous media can not be analyzed

exactly. Whittaker(1969) has shown that the conditions of REV can be met when the

characteristic length of the averaging volume is much greater than the pore diameter in

the medium but much less than the characteristic length of the medium. Hassanizadeh

and Gray( 1979) also discuss the conditions for the REV. Additionally the shape, size,

and orientation of the averaging volume are required to be independent of space and

time.





U(x, t)
E(x,t) =

U
(2.3.2)

within Ua
Y a (x+x') =

L°	 outside U
(2.3.5)
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Uv(x, t) may be occupied by fluid phases. Letting the subscript a one fluid phase in the

void space and the subscript 1 all other phases in the REV, the following relations can

be established as:

Ua(X,t)
E a(X , t ) =	 ,	 U = Ua(x,t)+Up(x,t)

U

= Ua(x,t) = Ea(X,t)Sa (x,t)
U(x,t)	 E(x,t)

(2.3.3)

(2.3.4)

where e (X , t ) : volumetric fraction of the a-phase

S(x, t) : saturation of the a-phase

U (x, t) : volume of the a-phase

U (x, t) : volume of the n-phase

The amount of the a-phase in the porous medium is able to be given by using (x, t)

or Sa(X,t). The distribution function Ia (x+x') is defined as follows:

The phase average,G, of a general quantity G is defined as:

Ga(Xt) = ---$ G(x+ X' , t )Ia (x +x',t)dU
Uu

(2.3.6)

where the volume of integration, U = Ua + U , is independent of space and time.

However Ua and U may depend on x and t. Physically, the phase average is a
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property of the a-phase only averaged over the entire volume occupied by the a- and

f3 -phases in the averaging volume(e.g. specific discharge is the phase average of the

fluid velocity). Becauseya is zero in the 3 -phase, equation(2.3.6) can be rewritten as:

1
G(x,t) =_fG(x+x',t)dUU

(2.3.7)

where the limits of integration depend on spatial location and time if the medium

deforms or the system is in motion. The intrinsic phase average, G, of a general

quantity G is defined as:

1
Ga (x,t) =	 G(x+x',t)dU	 (2.3.8)

Ua(X,t)

This type of average describes a property of the a-phase averaged over that phase

only(e.g. the fluid velocity obtained by averaging the point fluid velocities over the

volume occupied by the fluid is an intrinsic phase average). Employing equation(2.3.3),

comparison of equation(2.3.7) and (2.3.8) indicates that:

Ga (X,t) =Ea(X,t)G(X,t)	 (2.3.9)

The deviation of Ga at a point x+x' within an REV can be defined as:

G (x+x',t) = Ga( X + X', t ) —G a (x,t)	 (2.3.10)

By taking the volumetric phase average, the following relation can be established as:

(2.3.11)
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2.3.2 Averaging theorems

Average of a sum

Let G 1 (x+x',t) and G 2 (x+x',t) be two quantities in a phase, and ci, and 0 2 be

their corresponding averages. Then, the next averaging rule is obtained:

--$	 [G (x+x',t)+G2(x+x',t)}dU
U U(xj)

1$	 1
G (x-Fx',t)dU+_fG2(x+x',t)dUU U(x,c)	 U

from which it follows that:

G 1 +G 2 = G 1 +G2	 (2.3.12)

Average of product

G 1 (x + x', t) and G 2 (x + x', t) can be rewritten as follows:

G 1 (x+x',t) = G1(x,t)+Gç(x+x',t), G 2 (x+x',t) =G2(x,t)+G(X+X',t)

The average of a product can be expanded as:

0102 =i_ç G1(x+x',t2(x+x',t)dU
UJU(x)

= 
1$ 1(x,t)+G(x+x',t)}[(x,t)+G;(x+x',t)}dU
U U(x)l

= --J(x,t(x,t)'>	 dU
U	 J U(x)	 (2.3.13)

1
^G1(x,t)_-J G(x+x',t)dU

U U(x)

— 1
+G 2 (x,t)—J G(x+x',t)dU

U U(x)

1
^—c	 G(x+x',t)}[G'2(x+x',t)}dU
U
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Employing equation(2.3.11), the average of a product reduces to the following form:

G 1 G 2 =G 1 G2+GG
	

(2.3.14)

Spatial average of time derivative

The spatial average of a time derivative can be related to the time derivative of a

spatial average. This theorem is used by Whitaker(1973) who considers it to be the

transport theorem associated with a point fixed in space. From equation(2.3.6), the

phase average of a time derivative becomes:

aGa() 1	 G

at	 ' =	 L',t)1',t)d1U	 (2.3.15)

Application of the chain rule to the right of equation(2.3. 15) yields:

= !j
	 [G(x+x',t)y(X+x',t)]du

Jt	 Uuat
(2.3.16)

15 G(x+xF,t)a	 (x+x',t)
u	 at

Because U is independent of time, the order of differentiation and integration in the

first term on the right side can be changed. Thus, employing equation(2.3.6),

equation(2.3. 16) can be rewritten as:

	

aGa = aGa	
f G(x+x',t)--(x+x',t)dU	 (2.3.17)

at	 at	 uu	 at

If the a-phase is deforming, 	 is a function of time and the last term in

equation(2.3. 17) is non-zero. The total derivative of y with respect to time is:
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dt - t	 dt x1	 dt l x2	 dt	 x3
	 (2.3.18)

( I a / x1 ), () 1 / x2 ), and () I / ) x) are non-zero only on the S interface, ff

(dx1 / dt), (dx2 / dt), and (dx3/ dt) are chosen to be the velocity components of the

interface, the total derivative becomes a material derivative that moves with the

interface. Because an observer riding on the interfacial boundary sees no change, this

derivative is zero:

dla 'Ya =O=+UVIa
dt	 Dt	 at

(2.3.19)

where u is the velocity of the interface. Thus, the following relation can be established

as:

ala =—U.V1
	

(2.3.20)

Substitution of equation(2.3.20) into (2.3.17) yields:

aGa _+$ G(X+X',t)U(X+X',t).V1(X+X',t)
at - at Uu

(2.3.2 1)

Gray and Lee( 1979) have related the spatial derivative of the distribution function to

Dirac function as follows:

V'Ya(X)=
	 (2.3.22)

10,	 X ^ X
where (XXa) =	 - Dirac function.

X = X
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Substituting equation(2.3.22) into the last term of equation(2.3.21), the following

equation is obtained:

uSG(x+x',t)u(x+x',t) VYa(x+x',t)JU	 (2.3.23)

=	 SG+x',t)u+x',t fla(X+X'Xa,t)dU

The right of equation(2.3.23) involves the delta function which is zero everywhere

except at the a- phase interphase. The value of an integral whose integrand is a

function multiplied by some other quantity is just that quantity evaluated at the singular

points of the s-function. Therefore,

-1J G(x+x',t)u(x+x',t) •flaö(X+X'Xa	
(2.3.24)

Uu
1 

j	 Ga(x+x',t)u(x+x',t)•nadS
- U S(,)

Substituting equation(2.3.24) into (2.3.2 1), the final form can be obtained as follows:

aGaGai1 GunadS
t	 us	 a (2.3.25)

where u is velocity of interface. Equation(2.3.25) is a relationship between the spatial

average of a time derivative and the time derivative of a spatial average.

Spatial average of spatial derivative

The last theorem of interest relates the average of a gradient to the gradient of an

average and was developed by Slattery(1967) and Whitaker(1967). The average of the

spatial derivative of G within the u-phase can be represented by employing

equation(2.3 .6):
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VG a = -j 5 [VG(x +X', t)] j' çj (x +x',t)dS	 (2.3.26)

Application of the chain rule to the terms on the right of equation(2.3.26) yields:

VG = I V[G(X+X',t)Y a (X+X',t)JdUJ G(X+X',t)[VYa(X+X',t)]dUa uu	 uu

(2.3.27)

Substitution of equation(2.3.22) into equation(2.3.27) yields:

15 V[G(X+X',t)'Ya(X+X',t)}dUVGa - 
u u	

(2.3.28)
1+5 G(X+X',t)flaöa(X+X'Xaipt)dU
Uu

According to the definition of &function, the last integral of equation(2.3.28) can be

rewritten as follows:

1
--- I G(x + X',t)flaa (X + X' - Xa ,t)dU = 

U$S	 G a ( X +X',t)fladS 	 (2.3.29)
UJu

Then, equation(2.3.28) becomes:

VG	 I V[G(X+X',t)?a(X+X',t)'dU+ I	 G afladS	 (2.3.30)a	 u 'u	 JSJ)

If V on the right of equation(2.3.30) is considered to be V, it may be removed from

the integral sign because the volume of integration has been specified to be

independent of x. Thus,

VG a = vj!j G(X + X' , t ) ya(X + X' , t )dUl +! J G a fl adS	 (2.3.3 1)
[u u	 U
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Adopting equation(2.3.6), equation(2.3.31) can be rewritten as:

VG = VG+!JGfldS
	

(2.3.32)

Finally the averaging theorem for spatial derivatives has been derived.

2.4 Macroscopic mass balance equation

The averaging rules have been derived in the previous section. The macroscopic

balance equation is able to be obtained by integrating the microscopic balance equation

over the REV with the help of the averaging rules. A general quantity in thea-phase is

considered, letting all other phases the 1 -phase. To begin with, the microscopic

balance equation(2.2. 10) is rewritten as:

+J)+paT +pUf	 (2.4.1)

where the total flux of G is decomposed into an advective flux and a diffusive flux

JGU JGU = (V - V U ) , which represents the net influx of G per unit volume of the

phase per unit time.

By integrating equation (2.4.1) over the a-phase present within U, the domain of the

REV, and dividing the result by the REV, U, the following equation can be obtained:

1	 ag 
dU=_---$ V.(gU 

+JU)dU+:d:JuaPaFGdU+LS 
pafG

SUa at	 u U UU

(2.4.2)

Employing equatiofl(2.3.7), equation (2.4.2) takes the form:

_V.(g yU +J )+paF +pafG	 (2.4.3)
at
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Adopting equation(2 . 3 . 8) and (2.3.3), equation(2.4.3) can be rewritten as:

cx
g

+J) +Ea p a 1	 +EcxpUf	 (2.4.4)

By employing equation(2.3.25) and (2.3.32), equation(2.4.4) can be rewritten as

follows:

a	 1
g -
	

gu . ndS

_.(gaVa +J) _ J (g ya +JU).fldS+apaFa +Eapaf:

(2.4.5)

or

—a
aga =—V . (gVa	 GU _! g(ya —u)ndSa	 Us

(1)	 (2)	 (3)

(2.4.6)

	

- a	 a

UJSJa 
ndS + E par G +Eapaf:

(4)	 (5)	 (7)

where

(1) Rate of increase of G(in the a-phase), per unit volume of porous medium.

(2) Net influx of G by averaged advection and diffusion, per unit volume of porous

medium.

(3) Amount of G entering the phase, through the interface surface, S ap, of the phase

within U, per unit volume of porous medium and per unit time, by advection with

respect to the (possibly moving) San-surface.

(4) Same as (3), but by diffusion through San.

(5) Amount of G generated by sources of G within U, per unit volume of porous

medium and per unit time.

(6) Amount of G generated by external supply, per unit volume of porous medium and

per unit time.
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By equation(2 .3.14), the averaged advective flux, gay a , may be decomposed into

-a-a
two fluxes: a flux g'V' and a macroscopic advective flux g a ya With these

fluxes, (2.4.6) is rewritten in the form:

—a
gL	 -a-aa	 a	 y , a —j-a

______ --	 +Ja )

	

-	 (2.4.7)

	

1	 a	 a
__f{ga(ya _U)+J}

. S+E a p a F	 +Eapaf:

Equation (2.4.7) is the general macroscopic differential balance equation of a general

quantity, G, of a phase. Comparing (2.4.7) with the microscopic mass balance equation

(2.2.10), it can be observed that the macroscopic equation contains two additional

terms, introduced as a result of the averaging process. The first term is 
gya

 which is

the flux of G in excess of the average advection of G by the phase. The other is

{ga (V a - u) + jGu}. ndS which expresses the influx of G across the Sa

surface, which separates the considered phase from all other phases within U, by

advection relative to the possibly moving San-surface and by diffusion.

2.5 Boundary conditions

To obtain the solutions from the closed set of balance equations, it is necessary to

provide supplementary information such as initial conditions and boundary conditions.

In the microscopic analysis, the boundary simply indicates the contact area between

two phases. However, the macroscopic boundary is based on hypothetical assumption.
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2.5.1 Microscopic boundary condition

The microscopic differential balance equation for the general quantity, G, is

developed in section 2.2. If the quantity is energy or heat, it can be transported across

the microscopic(physical) boundary between two phases. On the other hand, if the

quantity can not be transported across the boundary, the boundary is defined as the

material boundary. For example, a fluid-solid boundary is material to fluid mass, but

not to energy. In the absence of sources and sinks of a general quantity on the

boundary, the amount of the quantity should be conserved as it is being transported

across the boundary.

.1

Figure 2.5.1 Microscopic boundary

An arbitrary portion of the system which contains the a-and /3-phases is chosen to

derive the general microscopic boundary equation(see figure 2.5.1). Here, the surface

surrounding Ua and	 is not the material surface with respect to the quantity G.

Assuming that the general quantity exists throughout the whole vo1ume(U + Up), the

microscopic mass balance equation can be applied to the concerned volume.
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For the purpose of deriving the microscopic boundary condition, the material approach

is adopted as in subsection 2.2.2. Equation(2.2.9) is derived assuming that the observer

follows the material boundary that no amount of the general quantity, G, can cross.

However, to derive the microscopic boundary condition, the observer must follow the

selected boundary that is not material. The balance equations of the general quantity,

G, can be given for the given a- and ,8-phase portions respectively, replacing VG, the

velocity of G, in equation(2.2.9) with u the velocity of the boundary.

For thea-phase in figure 2.5.1, Ua, the balance equation can be established as:

$
(+v.gvG_prG_pfG}iu

Ua (t) 3t

g(V G - u) . fldS +$ g(V G - u) . NdS

(2.5.1)

For the /3-phase in figure 2.5.1, U, the balance equation can be established as:

5

5

	

	
+v.gvG_pr0_pfG}Ju

tI(i)

	
g(V G _u).ndS+5 g(VG_u).NdS

r)	 S(t)

(2.5.2)

Then, the whole boundary surface surrounding the a-and /3-phases should be

considered to derive the boundary condition. Considering the sources, FSG, of G on

S , the following balance equation of G over U a + U can be obtained:

S	
I+V.gVG_pFG_pfG]	

(2.5.3)

=-5	 r'ds+5	 g(VG_u).NdS

By adding equation (2.5.1) and (2.5.2), and comparing the sum with equation (2.5.3)

the following equation can be established as:
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fS(,) {{ g (	 _ u)] .n+fsG}dS = 0
	

(2.5.4)

where[ ] =[ ] —{ ]

[ Ia : the quantity in the bracket is from the a-phase side

n = n43 = 111kx

Since equation (2.5.4) is valid for any size of San, the integrand must be zero at every

point of Sa• Thus the boundary condition should be as follows:

{g(v G _u)].n+FSG =0
	

(2.5.5)

2.5.2 Macroscopic boundary condition

Two typical examples of the macroscopic boundary are the environment of the

concerned domain and two adjacent porous medium subdomains of different solid

matrix porosities. For case of the discontinuity of porosities, a macroscopic boundary

can be shown for the single fluid phase(see figure 2.5.2).

A1

porosity	
fluid

porosity	 solid -
E2

fluid	 solid	 solid

fluid	 fluid	 solid

A2

macroscopic boundary

Figure 2.5.2 Macroscopic boundary(single fluid)
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where A ^A2 . It can be observed that there must be fluid-solid, solid-solid and fluid-

fluid contact areas at the macroscopic boundary across which there is discontinuity in

porosity. The same idea can be extended to multiple fluid phases in the void space.

Unlike the microscopic boundary, an idealized boundary is chosen at the macroscopic

level, which assumes an abrupt change in porosity across the boundary(figure 2.5.2).

To derive a general macroscopic boundary condition for the general quantity, G, an

arbitrarily chosen(mathematical) boundary should be considered within a domain on

the basis of the concept of the idealized macroscopic boundary. The general quantity,

G, is assumed to exist and transfer through all phases.

Following the same procedures used in deriving the microscopic balance equation, a

macroscopic boundary condition is obtained as follows(see Bear and Bachmat, 1990):

[g(v G _u))] •n+F=0
	

(2.5.6)

where subscript 1 and 2 indicate each side of the boundary. Thus it shows that the

difference in total flux between two sides, 1 and 2 is balanced by the possible source of

G on the boundary. Equation (2.5.6) can be rewritten in the form:

or

[e a ga (v_u)1 •n+EF=0
(a)	 J1,2	 (a)

(a)	 ]1,2

(2.5.7)

,Eai:;a =0
	

(2.5.8)
(a)

where	 = J*G(	 the dispersive flux of G and J, 	 denotes
(a)

the averaged diffusive flux of G. Equation (2.5.8) represents the general macroscopic

boundary condition for any general quantity, G, in a porous medium, and expresses the

notion that G does not accumulate on the boundary. In the absence of sources on the

boundary, (i.e., FSG = 0), equation (2.5.8) reduces to the continuity of the total flux

across the boundary
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(a)	 ill,2 
•n=0	 (2.5.9)

However, practically the boundary conditions take the form of specification of the

values of state variables or of fluxes on the boundary. In other words, assuming that

side 1 of a boundary is the considered porous medium domain and side 2 is the

external environment, the information related to the external side must be given by one

of the two ways.

Firstly, if the general quantity, G(x, t), is specified on the external side of a boundary

segment, the boundary condition can be simply represented as follows:

G(x,t) = f1 (x,r)
	

(2.5.10)

where f1 (x, t) is known at all points of the boundary. The condition is referred as a

boundary condition of the first kind, or a Dirichiet condition.

Secondly, if the total flux, f (x, t), is known on the external side of a boundary, the

macroscopic boundary condition can be obtained from equation(2.5.9) as:

[Ea{a(:: _u)+J +i iia11 =f2(x,t)
I (2.5.11)

where f2 (x,t) is a known function which is not affected by any processes that take

place in the concerned domain. This boundary condition is known as the boundary

condition of the second type, or a Neumann condition.
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CHAPTER 111

MULTIPHASE FLOWS IN POROUS MEDIA

In this chapter, the physical and mathematical descriptions of multiphase flow are

developed. Section 3.1 is dedicated to describing the physical phenomena for

multiphase flows in porous media. Then the governing equations that can be used for

the numerical model are developed in section 3.2.

3.1 General description of multipliase flow systems

The term, immiscible fluids, is used to indicate fluid phases which at the

microscopic level maintain a distinct surface that separates them. A component of a

fluid phase may cross this interface and dissolve and diffuse in a fluid phase present on

the other side of the surface of separation. Similarly, a volatile component of a liquid

may evaporate by crossing the gas-liquid boundary. However, under certain

conditions, in spite of these transfer phenomena, the two adjacent fluid phases continue

to keep a distinctive interface between them. This study assumes that at least two

immiscible fluid phases flow through the solid matrix. However, since four immiscible

fluid phases rarely flow simultaneously in porous media, three-phase (water, gas and

organic phase) flows are assumed to be the maximum number considered in this study.

Unlike in single phase flows, we must consider the physical phenomena describing the

interactions between fluid phases. In subsection 3.1.2, the concept of capillary pressure

is introduced, relating it to the interfacial tension. Capillary pressure curves are

introduced in subsection 3.1.3 which represents the relationships between capillary

pressures and saturations that can be obtained by experimental work. Darcy's law is

introduced in subsection 3.1.4. Finally subsection 3.1.5 deals with dispersion and

diffusion phenomena.
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3.1.1 Interfacial tension and wettability

A liquid molecule in a porous medium is influenced by two attraction forces

cohesion and adhesion. Cohesion acts in the interior of the liquid, while adhesion acts

between two liquids, liquid and gas, or liquid and solid matrix. The interfacial tension

is caused by the difference of the cohesive and adhesive forces on the interface.

Assume that water phase is in contact with the gas phase. A water molecule is

attracted equally in all directions within the water phase, because it is surrounded by

the same kind of molecules that have the same cohesive force. It applies to the gas

phase as well. However, a water molecule on the interface is not attracted equally by

the surrounding molecules because the adhesive force between water and gas

molecules is weaker than the cohesive force between water molecules. Thus, it is

natural that the water molecule moves towards the interior of the water phase. As a

consequence of the pull towards the water phase interior, the surface of the water

phase always tends to contract as much as possible to its interior. It results in the

formation of a thin film at the interface between the two phases which is capable of

sustaining tension. This property is known as interfacial tension. The interfacial

tension between a liquid and its vapour is known as surface tension. The same

phenomenon takes place at the interface between a liquid and a gas, or any two

immiscible liquids.

At the molecular level, no sharp surface of separation exists, instead, a gradual

transition takes place, across a relatively narrow zone from the phase occupied only by

one kind of molecules to that occupied only by molecules of the other kind. Because of

the different behaviour of the molecules in this transition zone, this zone is

conceptually replaced, as an approximation, by an interface that is assumed to separate

the two phases. In multiphase flows, transport of mass, or mass of a component may

take place through this interface, which is a curved two-dimensional surface.
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phases. If the solid matrix is composed of hycirophilic material, water is the wetting

phase and gas is the nonwetting phase. The wettability of organic phase lies between

water and gas. However, if the solid matrix is oliophilic, the behavior of water and

organic phases are interchanged.

3.1.2 Capillary pressure

For multiphase flows in porous media, there is a discontinuity in pressure across a

curved interface that separates any two immiscible fluids. The shape of the interface

between two fluids in a porous medium depends on the configuration of porous media

and pressures of the two fluids on the interface. Let us assume an infinitesimal element

of a curved interface between water and air phases (see figure 3.1.3).

Pdxdy	 dx

Figure 3.1.3 Infinitesimal element of a curved interface

Assuming the interfacial tension, 	 , to be constant, a balance equation of force

component normal to this element can be established as follows:



1	 ip_p c I
. r' r"

(3.1.3)
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where r',r" : two principal radii of curvature

72.75 dyne/cm at 20 C

Equation(3.1.3) is known as the Laplace formula. The left hand side of the

equation(3.1.3) represents the discontinuity of the two adjacent pressures, while the

right hand side consists of interfacial tension and curvature of the interface. Assuming

the interfacial tension to be constant, equation(3.l.3) relates the pressure difference to

the shape of interface. The difference in pressure of the two contacting fluids is known

as the capillary pressure, P,

pnw = F i —P
	

(3.1.4)

where P,, : pressure of nonwetting phase

pressure of wetting phase

Let us introduce the mean curvature Km:

1	 1 ( 1	 i'\
Km

ci

where rrn : harmonic mean of the principal radius of curvature

So equation(3.1.3) can be written as follows:

D = 2a	
(3.1.5)A aw

ci





43

interface is advancing or receding on the solid surface. This phenomenon is called

hysteresis. It will be referred again in the next subsection.

3.1.3 Capillary pressure curve

Even if equation(3.l.5) is valid mathematically, it is not suitable to apply practically,

because there is no way to measure the principal radii of curvature of interface. Thus

another expression that is practical and holds the concept of equation (3.1.5) is

required.

For a water-air fluid system in a porous medium, the smaller radius means that the

capillary pressure is bigger on the interface between the two fluid phases. Thus the

largest curvature (smallest radius of curvature) can be found in the narrowest pores,

where the capillary pressure is the biggest. The biggest capillary pressure indicates that

water exists only in the narrowest pores, whereas water in larger pores is withdrawn

until water meets the narrowest pores that can resist the corresponding capifiary

pressure. Generally the larger pores empty at low capillary pressures, while the narrow

pores, supporting interfaces of larger curvatures, empty at higher capillary pressures.

Because pores have different sizes and shapes even at the same height, some of them

may contain water, if they are narrow enough to resist the corresponding capillary

pressure, while others are empty.

Therefore, it can be said that the quantity of water within an REV is related to the

capillary pressure. Another expression for water quantity is water saturation. As a

consequence, the capillary pressure can be related to the saturation of a fluid. A

capillary pressure curve, P = P (S n ), or a capillary pressure head curve,

= h(Sj, can be obtained by experiments for a certain porous medium which

contains water and air phases. In soil sciences, these curves are called retention curves,

as they show how much water is retained in the soil by capillary forces against gravity.

The capillary pressure curves can be applicable to any two phase flows in porous

media, for instance, water-organic or organic-gas.
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S Wo	 1
Wetting fluid saturation S

Figure 3.1.5 Capillary pressure curve

A typical form of capillary pressure curve is shown in figure 3.1.5. Figure 3.1.5

shows that the capillary pressure curves may be different, depending on whether the

wetting phase, water, is replaced by the air phase or the nonwetting phase, air, is

replaced by the water phase. So let us call the process desaturation, dewetting, or

drainage that the wetting phase is being displaced by a nonwetting phase. Conversely,

if the nonwetting phase is displaced by a wetting phase, it is known as wetting or

imbibition.

The two different capillary pressure curves for the same fluids and solid matrix are due

to hysteresis. Generally the complex configuration of pore space causes hysteresis.

This study introduces four causes for it.
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Figure 3.1.5 is given by starting from a fully water-saturated sample. Even if a small

quantity of wetting fluid is drained at first stage, nonwetting fluid will not enter the

sample, until a certain capillary pressure is reached as shown in figure 3.1.5. The

corresponding pressure P , is called the critical pressure, threshold pressure, or

bubbling pressure. If the critical pressure is reached, the air begins to occupy the larger

pores, reducing water saturation SW.

As shown in figure 3.1.5, the drainage curve stops at S 0 , residual water saturation, or

irreducible water saturation. Because soil particles may absorb water and water may

remain in very tiny pores, complete drainage can not be achieved. Likewise, imbibition

curve can not reach the stage of complete wetting because of entrapped air, denoted

by S. Since residual fluid saturations depend on solid matrix and pair of fluids, they

should be decided by experiments.

In two phase flows, there is only one capillary pressure, which makes it possible to

decide the capillary pressure curve by experiments. Brooks and Corey(1964),

Corey(1986), Scheidegger(1974), and Su and Brooks(1980) contribute to obtaining

the capillary pressure curves for the two-phase systems. However, unlike the two-

phase systems, it is not easy to establish the relationship experimentally between

saturations and capillary pressures for a three-phase system. On top of this, the

concept of the capillary pressure curve itself is based on the two-phase systems. Thus

some scholars adopt assumptions linking two phase data to obtain the three-phase

data. For reasonable assumptions, it is important to decide the degree of affinity to the

solid matrix among the three fluid phases, say, water, organic and gas. if the porous

matrix consists of hydrophilic material, water is the wetting phase. The affinity of

organic to the solid matrix is somewhere between those of water and gas. So it is

defined as an intermediate wetting phase. Gas is the nonwetting phase with respect to

other phases. Occasionally organic phase may be the wetting phase for a certain solid

phase and water becomes the intermediate wetting phase. This study considers both

hydrophilic and oliophilic solid matrix.

Various authors, using two-phase data, have tried to establish the relationships

between saturations and capillary pressures in three-phase flow systems. For

hydrophilic solid matrix, Leverett( 1941) proposes that the total liquid saturation in the

three-phase fluid system is the function of gas-organic capillary pressure: S, = f ( P).
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Aziz and Settari( 1979) assume that water saturation in a water-gas-organic system is

the function of water-organic capillary pressure: S = f(P0 ). Thus, all the three fluid

saturations can be determined by simple manipulations: S 0 = S f - S , S = lS

Lenhard and Parker(1988) develop an experimental apparatus to directly measure

functional relationships between fluid saturations and capillary pressures of three-

phase(gas-oil-water) or two-phase fluid systems in consolidated porous media. The

experiment proves that the two-phase gas-oil data can be used to predict total liquid

content in the gas-oil-water systems and that the two-phase oil-water data can be used

to predict water saturations in the three-phase systems for rigid water wet porous

media subject to monotonic drainage saturation paths.

On the other hand, Abriola and Pinder(1985a,b) adopts the two phase water-gas data

to predict the gas saturation in the three-phase systems for hydrophilic solid matrix:

S= f( P ,), Sg _f(P g ), So=1SwSg

To describe flow in the subsurface correctly, it is be very important to decide which

method should be used for a certain problem. This research has been made to deal with

various assumptions and experiments. However, most of numerical models for

analyzing multiphase flows in porous media adopt fixed assumptions and experiments.

3.1.4 Fluid velocity in porous media

Darcy's law can be applied to even multiphase flows for deciding the velocity of a

fluid phase. Unlike single phase flows, the influence of the presence of other fluid

phases should be considered. However the pressure gradient and gravity are stifi

driving forces which make a fluid phase move. The general form of Darcy's law which

is commonly used to describe flow in porous media is presented for the a-phase in a

multiphase flow:

ya = (kk	
- peg)	 (3.1.7)

eS a



48

where

va : average velocity of a-phase

k : solid matrix permeability

relative permeability to a-phase flow

g : gravity acceleration

The solid matrix permeability, k, reflects the pure characteristics of the solid matrix

such as pore configuration, or roughness of the surface. It does not depend on the

properties of the fluid flowing in it. On the other hand, it is not easy to decide the

relative permeability K, of the a-phase, because it is influenced by other fluids. For

single phase flows, the relative permeability K,, surely becomes unity. However in

case of more than one fluid phase, it is subjected to the saturations of all fluid phases in

a porous media. For instance, the relative permeability of the a-phase increases but

less than 1, if the saturation of the a-phase increases. For two phase flows, many

scholars have conducted experimental works and developed mathematical expressions

to relate the relative permeability to the capillary pressure between two fluids.

Van Genuchten(1980) derives a mathematical expression, based on Mualem's(1976)

theory, which is

(1_(ah)l(1+(ah)h1Ym)2	
(3.1.8)=

(1 + (ah)n)ml2

where a : parameter to be fit

h : capillary head between the wetting and nonwetting fluid based on the

water density,	 h =
pg

n : parameter to be fit

in: 1-1/n

However, for three phase flows, the relative permeabilities of fluid phases can not be

measured directly. Stone(1970) assumes that in a three-phase system, water relative
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permeability and water saturation are functions of capillary pressure F, resulting that

they are identical to the two-phase system relations. Similarly, in both cases of two-

phase flows and three-phase flows, gas phase relative permeability and gas saturation

are subject to gas-organic capillary pressure. Stone's assumption is based on the

wettability order, water-organic-gas, to the solid matrix : no direct contact between

water and gas. However, the relative permeability of the organic phase Kro can not be

obtained directly from the two-phase data, whereas the saturation of the organic phase

S, , can be easily obtained by the constraint: S = 1— S - Sg Thus Stone suggested

the following relations:

S

* -	 -

0 - lSwir 5om

* - Sw - Sçj
SW - 

1—	 - S(,m

•	 Sg

Sg = - S ir - Sum

for SO^Som

for S ^ Swir

where	 S,,,,. : residual water saturation

Sum : minimum value of the residual organic saturation

Then the organic relative permeability is given as follows:

K 0 = sc,c8	 (3.1.9)

where	 = 
K row	

K rog

relative permeability of organic to water in a two phase system

1rog : relative permeability of organic to gas in a two phase system
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In the region where S, ^ Sw jr K 0 is assumed to be a function of gas saturation only.

For S0 ^ Som e K ro is set to zero. Stone(1973) produces another predictive equation for

organic relative permeability.

Kro = ( 1C row +K,ij,)(Kr(,g + K rg )(K ,w + K rg )	 (3.1.10)

3.1.5 Dispersion and Diffusion

Dispersion is caused by the difference between the average velocity calculated from

Darcy's law and the actual velocity of a fluid. The deviations from an average

advective flux of solute mass must be considered properly.

Regardless of velocity difference, a molecule of a species moves through another

species in a fluid phase. The phenomenon is known as diffusion. Bear and

Bachmat(1967) develop the following equation to consider dispersion and diffusion for

a-phase in a multiphase system:

where ya : average velocity of a-phase

V, V : velocity components in the coordinate directions

molecular diffusion tensor

dispersivity tensor

Equation (3.1.11) is also derived by Nikolaevski( 1959) using a statistical approach and

analogy with the theory of turbulence.

Bear(1979) introduces the longitudinal dispersivity, a , and the transversal dispersity,

a, which can be given by experiments. The longitudinal dispersivity, a, is related to

a diffusion coefficient which causes dispersion forward and backward along the local
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direction of fluid flow. The transversal dispersity, a, is related to a diffusion

coefficient which causes dispersion evenly in the directions perpendicular to the local

flow direction. The dispersivity tensor is expressed as follows:

=	
—a 

(ikjm +imjk)	 (3.1.12)
2

where	 : Kronecker delta

Employing equation(3.1.12), equation(3.1.11) can be rewritten for two dimensions as

follows:

D +(aVa2+aV2)/Vcz D +(a —a)VV /Va

D, =

	

	 (3.1.13)

D(a —a)VV /V Drna +(aV2 +aV2)/Va

3.2 Governing Equations

The mathematical expressions which govern the multiphase flows in porous media

are derived in this section by employing the concept of mass balance. As a first step, in

subsection 3.2.1, the mass balance for a general component present in the multiphase

system is obtained from the general balance equation in section 2.4. Subsection 3.2.2

shows components and phases under consideration in this study. Subsection 3.2.3

expands the mass balance equation in subsection 3.2.1 adopting the general primary

variables.

In subsection 3.2.4, the mass balance equation for the general component is applied to

all components in this system. Subsection 3.2.5 derives the water phase equation by

combining two component equations in the water phase. Finally subsection 3.2.6 is set

to mention the application range of the mathematical model derived in this chapter.
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3.2.1 General mass balance equation

In chapter II, the balance equation of the general quantity, G, was developed for a

multiphase flow in the subsurface. Mass transport has been a major concern for

analyzing the multiphase flows. In order to obtain the general mass balance equation,

g, the density of the general quantity, G, in equation (2.4.7) is replaced by p, the

density of mass of a component, c, in the a-phase:

-cx	 _____aa____________	 aJMU )aEaPc =_V.Ea(PaV+pVF	 a	
(3.2.1)at

_J{p (v a _U)+JcU}.ndS+Eapr:ca +EaPfaMC

where	 M : mass of component c

p = M / U oa , density of component c in a-phase

Equation (3.2.1) contains microscopic values such as Va,u,and V'. Thus proper

constraints and assumptions are required to get rid of microscopic values.

Since this study allows the interphase mass exchange through dissolution between two

contacting liquid phases and evaporation between liquid and gas phase, a component

can be found in all fluid phases. Thus the equation 3.2.1 is not suitable for describing

the movement of the component, because it is restricted to only one fluid phase. The

sum of the component mass balance equations over all fluid phases is required to trace

the movements of the component c. So the complete form of the general mass balance

equation for the component is given as follows:

a	

Ea	 +	 + J	
(3.2.2)

ata

+--I 
Jpa(Va_U)+JMU}.PIJS_EpaFMc_EpafMc}O

U s 4 I C
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The following constrains can be adopted for equation(3.2.2).

(1) The sum of all components' densities over the a-phase is equal to the density of

the a-phase.

pX 1f
	

(3.2.3)

(2) The third term of equation(3.2.2) represents the flux of a component to (or) from

the a-phase. So the sum of the term over all components existing in the a-phase is

equal to the mass gained(or lost) by that phase.

-	 {p (V - u) +M}. 
ndS = —_— f {pa (V - u)} . ndS	 (3.2.4)

(3) The mass of the total system is conserved. So the following constraint is given as:

—u)}.ndS=O
	

(3.2.5)

(4) The mass of each component is conserved over the entire system.

jLcx {p (V a - u) +	 }. ridS = 0	 (3.2.6)

Employing constraint (4) to get rid of the third term of the left hand side of (3.2.2), the

mass balance equation of the component, c, in a system is given as follows.
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a_ _ _Ea p a W 	 a—a
+V.Ea(paW: ya +PV/a +JM)

(3.2.7)

a paj-Mc a	 a	 a
-	 a	 aP fa

where	 W =	 , mass fraction of component c
p

But it still contains microscopic values in the flux terms, V', and p. They are

concerned with diffusive and dispersive flux. They can be written as the

macroscopically non-advective flux of the component, C:

—a	 a JMcU)	 (3.2.8)

Equation(3.2.8) will be rewritten in terms of macroscopic values in Chapter IV. Let us

remove the averaging symbol 
(a) 

for simplicity. So, otherwise stated, all variables

represent macroscopic values from now on. Equation(3.2.7) can be reexpressed as:

{(E a P a W)+(E a P a W a )+_E a P a1c _E a p a faMc }=O (3.2.9)

where p a wa = pa w

In this study, internal production and external supply terms will not be dealt with. Thus

equation (3.2.9) can be simplified as follows:

{_(caPaw:)+v.(EaPaw:va)+VD 
}= 

0	 (3.2.10)
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3.2.2 Components and phases under consideration

e	 e	 e

S

w	 0
	 a

water phase	 organic phase	 gas phase	 solid phase

Figure 3.2.1 Components of phases under consideration

Water, organic, gas, and solid phases are assumed to occupy the entire domain in this

study. Each phase is composed of at best two components as shown in figure 3.2.1.

Unlike other phases, the solid phase has only one component, since this study does not

consider any possibilities of adsorption of a fluid component to the soil phase. An

extensive component, e, is introduced in this thesis. The e component in the water

phase may be a solute(water-gas system) or a component of the organic phase which is

able to dissolve in water. On the other hand, the e component in the organic and gas

phase is always the component of the organic phase that is soluble and volatile.

Whereas the o component in the organic phase is assumed to be non-soluble and non-

volatile.

Let us designate soil , gas, water and organic phase as S. G, W and 0 subscript

respectively and soil, air, water, organic, extensive component as s, a, w, o and e

respectively.
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3.2.3 General mass balance equation for component c

tx-phase

Figure 3.2.2 Components of a-phase

Figure 3.2.2 shows a general phase which consists of two component e and a. Here

the a-phase may be one of the three fluid phases-water organic, or gas phase. To

derive the mass balance equation for the general component c, equation(3.2.1O) is

employed again:

{(EaP a )+V	 0	 (3.2.11)

where C a = ES

c : water(w), organic(o), air(a), or e component

The first term can be recognized as the total change in c component's mass of the a-

phase in void space in the course of time. The second term represents contributions to

c component's mass change due to excess of fluid inflows over outflows at a point. The

third term is for diffusion and dispersion of the c component in the a-phase. In this

thesis, the general primary variables are adopted for solving various pollution patterns

in the subsurface. The three general primary variables are defined as G 1 , G7 , and 03

The primary variables can be capillary pressures or mass fractions. They are



R -	 1 d(Vol)

Vol da'
(3.2.13)
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determined by the flow patterns(see table 4.3.1). For three phase flows, G 1 and G2 are

capillary pressures and G 3 is mass fraction, W°. Equation(3.2.1 1) are expanded for

the three-fluid phase system in this section. The first term of equation.(3.2. 11) can be

expanded as follows:

_(ESapaW:)SapaW+cpaWa aSc,

+ ESa W	 + ESa 
a a w

at

(3.2.12)

Time derivatives of E, Sa , and p a must be rewritten in terms of the general primary

variables.

To express --- in terms of the general primary variables, the coefficient of

compressibility for porous solid matrix is employed as:

where Vol: bulk volume of solid matrix

CT' : inter-granular stress

If the total stress is nearly constant, any change in intergranular(effective) stress will be

due to an equal and opposite change in the fluid pore pressure. Assuming that

individual solid grains are incompressible, equation(3.2.13) can be rewritten as:

R - 
1 dE5

Vs	
EsdPn,e

VOlç
where c =___:

Vol

(3.2.14)

Vo i5 : volume of solid grains, constant



(3.2.16)
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save : average soil fluid pressure

Thus, the derivative of porosity, 	 is expressed as follows:

E	 aE3

att	 alL (3.2.15)

where 
aV 

is the average pressure of fluids in void space that is function of water and

organic pressures, P and P0 . This study employs Abriola's(1985) assumption to

define 'av

Pay = icP +(1—K)P
	

(3.2.17)

where K=
so +sw
	 weighting factor

P0 : functions of the general primary variables(see table 4.3.3)

Secondly, because saturation is totally dependent on capillary pressures, derivative of

saturation,	 can be expanded as follows:

asa aSa aG, aSa aG7

at	 a, at	 a 2 at
(3.2.18)

The density of the a-phase changes according to the pressure of the a-phase and mass

fraction. So the compressibility of the a-phase can be defined as:
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1 dpa	 iapa

- Pa a ' w: Pap	 (3.2.19)

-	 }Jp
	

+

where I3 = compressibility of a-phase

= compressibility of a-phase with respect to pressure

= compressibility of a-phase with respect to mass fraction

Thus,

___ a a a1'a	 ___
at =p J3

at
(3.2.20)

So time derivative term can be summarized as follows:

(6ap)=Sapa(1_E)13s ai,

+ 
ay,ia [,a Sa a G, a Sa a G2

a, at	 at )

+EsaW:p	
a

at	 at )

a Wa+ESapa

(3.2.2 1)

The second term of equation (3.2.11) can be expanded as follows:

V.(ESap1Va)= paV (ES Wa ya )+ ES Trva .Vpa	 (3.2.22)

The first term on the right side of equation(3.2.22) can be written by employing

equation (3.1.7):

p a V.(ESWa Va) _p a V.{T	 (v _pag)	
(3.2.23)
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The second term on the right side of equation (3.2.22) is expanded by adopting the

compressibility coefficients:

ESa WV U .Vp a =_wa{1ca (vi _pag)}.(pa!3vP +pVW)
	

(3.2.24)

So equation(3.2.22) becomes:

V.(EPWVa)=_PaV.{l	
: 

(vP _pag)}	

(3.2.25)

Finally the mass balance equation for c component has been derived in terms of the

general primary variables:

[SaPa(l_E)psaaI+EPaWaaSaaGI 
as

a, at	 at)

at+ESaWP[3Pa ^p

(3.2.26)

3.2.4 Mass balance equations for components

Since equation (3.2.26) is the general mass balance equation, it can be applied to all

components: water, organic, air, and e component. From equation (3.2.26), it can be

observed that P , P0 Pg ,W ,w:, and W are the primary unknowns for the three

phase flows. Thus, 6 conditions are required to solve the three-phase systems. The
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assumption of a constant gas phase pressure reduces the unknowns to 5. In the case

that the organic phase is the source of e component, the relationships between

W ,W ,W can be established by experiments, producing two relevant equations.

Consequently three conditions must be obtained from equation (3.2.26). As a first

step, let us apply equation (3.2.26) to three components, water, organic, and e

component.

Water component equation

Since water component exists only in the water phase, the following equation can be

derived by applying equation (3.2.26) to the water component:

SpW(l—E)3 aaFv +Epww:(-_-1 
as aG,]

G1 at	 G2 at

a w	 ___	 ___
1+ ESp 

aw: - v . SW: 
kk 

(vP - 
wg)}

at)	 t	 _tw

1 w

(3.2.27)

Organic component equation

Like the water component, the organic component which is insoluble and non-volatile

is assumed to be found only in the organic phase. So the following equation can be

obtained as:

S0 °(l - E)	 + EW01	
a G1 + a s0 a G,

' aG, at	 as., at)
aw0_v.{wo(vp_pog)}

at	 a; 
J+cs0 

at

=0
I
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(3.2.28)

e component equation

The e component is considered to be observed in all three phases, water, organic and

gas. The importance of the gaseous migration of pollutants has been demonstrated by

the field and laboratory investigations of various authors and supported by the work of

Fried, et al (1979). Pelikan, I i (1978) uses soil-air sampling and analysis to

determine the extent of groundwater contamination in case studies. Experimental work

with the volatilization of organics from solutions and soils (Dilling(1977), Kilzer, et al

(1979)) suggests that the flux of volatiles is controlled by macroscopic diffusion. In

accordance with these findings, a Fickian-type of diffusive flux vector will be

postulated for D . The convective movement of the gas phase is neglected in this

study. So the following equation can be obtained as follows:

s 
H WW (1— E )	 +	

S, G 1 +	 G, 

JaG1 at	 at

+ESHP+W+CS aww

at )	

; _pHv.Jkc(vPw_pwg)}

I	 ii

wkk (v 
_PHg)}.(PHwVP +p:vw')+v.D

I
___	 aS0aG, as0aG,

at J

	

a 00)	 0w;°	 _pog)}

at	 ' at J	 at

_wJ(v _Pog)}.(Pov ^poV0)+V.D

asg

aG, at	 at)

	

"' a
e	

at 
+Vr=o

	

t	
g

(3.2.29)
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3.2.5 Water phase equation

In subsection 3.2.4, the three governing equations are derived, which are focused

on the mass of components. However it is better to use simpler forms of the governing

equations, if possible. Assuming that contaminants in the water phase are slightly

soluble, any changes in water properties such as density or viscosity due to the

presence of solute are small enough to be neglected. Thus this study assumes that

and t are not affected by the presence of the e component, and, therefore,

becomes zero. From figure 3.2.2, it can be observed that W' + W'' = 1. Hence

summing the water component equation and the part of e component equation that is

related to the water phase yields a water phase mass balance equation with a simpler

form than equation (3.2.27):

___ (asaG, aSWaG2'\
S(1—E)P 

ataG, at	 at J

+Es 
waPw _v.Sk (vPw_Pwg)}	 (3.2.30)K	 at

-
 
{(Vp - w g)} 

W	 = 0
-tw

3.2.6 Application range

As a consequence, equation (3.2.28), (3.2.29), and (3.2.30) are selected as the

governing equations for the analysis of the multiphase flows in the subsurface. This

model is basically designed for treating various pollution patterns that are subjected to

fluid phases in a porous medium, interphase mass exchange, and solid matrix

properties.

if polluted water flows through the unsaturated zone, it is considered as two-

phase(water and gas phase) flows. It can be solved by using the water phase equation

and e component equation, assuming that W° and W go to zero. It requires only two

governing equations.
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Pore space may be filled with water and organic phases. In the case that organic matter

does not dissolve in water, two governing equations(water phase equation and organic

component equation) are needed to trace the movements of the fluid flows. However,

if there is an organic component that dissolves in water, all three governing equations

are required to analyze the system. Notice that W should be zero in the e component

equation.

If the organic phase infiltrates through a porous medium in which no water is found,

the two phase(organic and gas phase) flow system needs only one(organic component)

or two(organic and e component) equations for simulation, depending on whether the

organic phase contains e component or not.

Even in the three(water, organic, and gas) phase flows, we don't have to use all the

three governing equations, if there is no e component in the organic phase. However,

all the three governing equations are required, if e component exists in all the fluid

phases.

Table 3.2.1 shows the pollution patterns in the subsurface that are able to be solved by

the model developed in this study. It also discusses which governing equations are

used for the pollution patterns. According to whether the solid matrix is hydrophilic or

oliophilic, four more pollution patterns can be added.
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Water Phase	 Organic	 e

Phase	 Component Equation Component Component

Equation	 Equation

Pollution	 W and G	 w and a	 Yes	 No	 Yes

pattern(I)

Pollution	 W and 0	 w and o
	

Yes
	

Yes	 No

pattern(ll)

Pollution	 W and 0 w, o and e
	

Yes
	

Yes	 Yes

pattern(llI)

Pollution	 OandG	 oanda
	

No
	

Yes	 No

pattern(IV)

Pollution	 0 and G	 o, a and e
	

No
	

Yes	 Yes

pattern(V)

Pollution	 W, 0 and w, o, and a
	

Yes
	

Yes	 No

pattern(VI)	 G

Pollution	 W, 0 and w, o, a, and
	

Yes
	

Yes	 Yes

pattern(VH)	 G	 e

Where W: water phase

O : organic phase

G : gas phase

w : water component

0: organic component

a: air component

e : e component

Table 3.2.1 Summary of application range
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CHAPTER IV

NUMERICAL APPROACH

The governing equations derived in chapter III can not be solved analytically. The

numerical methods have been used to solve these non-linear partial differential

equations. Section 4.1 refers to the general finite element method. The governing

equations are discretized in section 4.2 using a finite element method. Section 4.3

shows how the general primary variables and the derivatives in the governing equations

change according to the pollution patterns.

4.1 Finite element Analysis

The finite difference methods and finite element methods are two approximate

methods for solving linear and non-linear partial differential equations. Both methods

have been extensively used and developed for numerical modelling of groundwater

problems. The choice depends on the complexity of the problem and the user's

familiarity with the method. However, the finite element method is more flexible for

problems in which the boundaries are irregular or in which the medium is

heterogeneous or anisotropic. The basic principle of the finite element method is

introduced in this section. The discussion focuses on Galerkin's method which is one

of the most popular finite element techniques. Basic definitions and numerical

techniques are introduced for the numerical model, COMPO.

4.1.1 Galerkin's method

Considering a 1-dimensional domain which has N node points and N —1 elements,

the true solution, u(x), for a partial differential equation may be defined continuously

throughout the domain.
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However, it is very difficult to solve the partial differential equations analytically which

describe the subsurface flows. Thus, many scholars make use of numerical methods.

The finite element method begins with assuming an approximate solution. Denoting the

approximate solution as i(x), it can be expressed in terms of the nodal values and

interpolation functions:

i2(x) =
	

(4.1.1)

where u, : an approximate value for a primary unknown at node i

(x) : basis function or interpolation function

N: number of nodes

This study adopts the simplest basis function, (x), as shown in figure 4.1.1.

1	 23	 i	 i+1	 N-iN

Figure 4.1.1 Basis functions

To prove that an approximate solution is acceptable, an admissibility condition is

required. Substituting the approximate solution, i(x), into the partial differential

equation, L(u), a residual value can be defined as r(x, t): L(t2) = r(x,t). The problem

is how to minimise the residual caused by wild guess.

The residual r(x, t) is caused by employing the approximate solution that contains N

approximate values. The residual at each node is a measure of the degree to which the

approximate value does not satisfy the partial differential equation. If the residual
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r(x, t) is too big, the approximate values must be adjusted. Thus it can be said that the

finite element technique is the process of finding suitable approximate values by

iteration. Since N unknowns are assumed, N conditions are required to solve. The

method of weighted residuals is to make error of approximation unimportant for

certain sub-domains of concern. The Galerkin method is one of the weighted residual

methods. It adopts the basis function,(x), as the weighting function. Then the

partial differential equation weighted by the basis function is integrated over the entire

domain of the problem. N conditions can be given by making the integration zero for N

weighting functions centered on nodes:

L L(i	 (x)dx =0
	

(4.1.2)

wherei=l,2,... ,N

4.1.2 Basis function in a local coordinate system

The local element is employed, because it allows efficient organization of the

integration. For one-dimensional analysis, a local coordinate and basis functions are

shown in figure 4.1.2.

-1	 0

Figure 4.1.2 Basis functions in the local coordinate system
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Figure 4.1.3 shows that the local nodes are numbered counterclockwise from node 1

whose local coordinates ase (,T)=(-1,-1). The basis functions for two-dimension are

defined in terms of one-dimensional basis functions:

E
-	 2

E^1()=-(l+)	

(4.1.5)2

H
-	 2

H+1(ii) =!(1+11)
2

The above equations are combined to create the bi-linear basis functions for two

dimension:

= E1H1

= E^1H1

= E1H1

= E1H1

(4.1.6)

The basis functions are defined for each node, having a value of one at the node and

zero at the other three nodes. The surface of	 (E,r1) , where i=1,2,3,4, over the local

element is curved due to the product of and q. The derivatives of the bi-linear basis

functions are represented as:

___	 1	 ___	 1
=--H1

____ 1	 ____ 12 =+—H
2	

'	 2

____	 1	 ____	 1	
(4.1.7)

a3 =+—H^1	
ai13 

=+—E1

Q4 1 	 ____ 1
+1aE; 

=--H	
2
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4.1.3 Coordinate transformation

Figure 4.1.4 shows the global basis functions for an 1-D arbitrary element. For the

main calculations for the finite element mesh to be executed in the local coordinate

systems, the information should be transferred between the local coordinate system and

the global coordinate system.

	

m1	 m2

11

	

Xmi	 lm	 Xm2

Figure 4.1.4 Global basis function for an arbitrary element

x ) —x	 x—x1
where cI = -	 2 -	 f- x1 ^ x ^ x2

im	im

For one dimensional domain, x can be expressed as the function of :

x = x(E) = E 1 ()x1 + E 1 ()x2	(4.1.8)

Derivatives of both sides in equation(4. 1.8) give the following relations:

dx=-(x2 Xi)dE=1mdT

(4.1.9)
dx 1
d2'm

Applying the chain rule, the derivative of basis function can be transformed from the

global to the local coordinate system and the reverse:
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E,	 34, Jx
- ax a
a, a
	 (4.1.10)

ax - a ax

where i=1,2

Transformation between the two coordinate systems can be accomplished in a 1-D

domain by using equation(4.1.8), (4.1.9) and (4.1.10).

Following the same steps with the one dimensional coordinate system, transformations

between the local and global coordinate systems for the two dimensional problems can

be conducted. The global coordinates x, y are represented by using the local basis

functions and the corner values in the global coordinate (see figure 4.1.5):

x

(a)
	

(b)

Figure 4.1.5 (a) Square element in the local coordinate system

(b) Quadrilateral element in the global coordinate system



x = x(,1) =

Y = y(,i) =

(4.1.11)

ax _111
j ac2

ay	 a1

(4.1.14)
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The Jacobian matrix of the transformation from (,r1) to (x, y) coordinates is defined

as follows:

3x	 y

rJ'-

	

	(4.1.12)

ai1

where

r	 i r4ç .	___
1I	 'x

a	

I["	

i	 I

x	 __
YE]'V	 ix	 I

ai1	 ai1

As in the one dimensional system, the chain rule can be applied to transform the

derivatives of basis functions between the two coordinate systems:

11	 (4.1.13)

where j=1,2,3,4
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global basis function

[f_I] : inverse Jacobian matrix

The differential area dxdy in the quadrilateral element is transformed as follows:

dA = dxdy = Jjddi1
	

(4.1.15)

where
	 xsy JyJx

ar ar

Since the governing equation is derived in the global coordinate system, it is necessary

that the derivative,	 , should be rewritten in the local coordinate system. Using

equation (4.1.14), the following relation can be established as:

ax - axayayax
	 (4.1.16)

where	 ^, =---(1+,)(1+rI,11), 	 i= 1,2,3,4

(I'2'3'4) = (-1,1,1,—i)

(111,n2,n3,n4) = (-1,-1,1,1)

Using equation (4.1.11), the derivatives on the right hand side of equation (4.1.16) are

expanded as follows:
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ax
_=x

1=1 
14

ax
11

aT	 '4
(4.1.17)

i=
ai1

So the final form of	 and	 becomes:
ax	 ay

- (a1 +bX + p 1 )—(a 2 +bT1)(T1 + p)

ax - (c1+d11)(a1+bE)—(c2+dE)(a2+b11) 	
4118(. .	 )

a y - (c1 +dii)(a 1 +b)—(c2 +d)(a2 +b)

where

a1	 =—yi—y2+y3+y4

a 2 =y3 =—y1 +y2+y3—y4

b=

C1

C2 =x11

d =

pj =r1i

= ! [(C +dll)(a 1 ^b) — (c, +d)(a, +bll)J
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4.2 Development of Numerical Model

This section deals with the procedure of numerical simulation, applying the

Galerkin's method to the partial differential equations which govern the multiphase

flows in porous media. In subsection 4.2.1, the Galerkin's method is applied to the

governing equations derived in chapter III and numerical techniques are introduced.

The Newton Raphson method is employed in subsection 4.2.2 to solve the discretized

equation system which is nonlinear. Lastly, in subsection 4.2.3, the relations are

established among e components that may be found in all fluid phases, and the

densities and compressibilities of fluid phases that are coded in the model are

presented.

4.2.1 Application of the Galerkin's method

For the general primary variables, G1 , G2 and G3 , the approximate solutions can

be written as follows:

G1(x,y)=G1(t),(x,y)

G2 (x, y) =	 G (t) (x, y)	 (4.2.1)

O3 (x,y) =	 G3(t)(x,y)

where	 N: number of nodes

(x,y) : basis function in the global coordinate system

The approximate solutions can be applied to the organic component equation,

equation(3.2.30).
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dG2"l

t aG2 	t)

wO
+ES000+0	 I+ES - .o(vFpog)}

- o {

	
(	 -	 . (	 + 

V	 + V D = r(O1 , G2 , G3)

(4.2.2)

where r( Ô1 , O2 Ô3 ) is residual. The following equation can be given by using

equation(4. 1.2):

5 r(G1 , G2 , G3 )4,(x,y)dV =0	 (4.2.3)

Although celiwise discretization(see appendix A) may have a little problem in accuracy

because of mass lumping, this research adopts celiwise discretization for time

derivative terms in equation (4.2.3) to save computing time. Thus the time derivative

terms can be rewritten as follows:

i

asoao'soa2)

O1	 t	 aG2 at)	

(4.2.4)

+ES0W001130p --+	
a o')	

a	
•

dt	 dtj

where V1 55 , (x, y)dxdyfdz. Unit width is considered for the z direction which

is perpendicular to the x-y plane.
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vi =V11+v12+v3+v

Figure 4.2.1 Volume for celiwise discretization at node i

Figure 4.2.1 shows that node i is surrounded by e 1 , e2 , e3 , and e4 elements. In the

numerical model, 	 V2 V 3 and V 4 are calculated in the local coordinate system as

follows( see Appendix D):

v 1 JJ(1+)(1+11)IJI1dd11

2 =Jfl(1_E)(1+TI)IJI7dF.d1l

(4.2.5)

11; 3 =JJ(1_)(1-11)JI3dd11

v 4 =ffl.(1+Ex1-roIJl4ddrl

where	 IL IJ3,and II4 : 
Jacobian matrix of e1 , e2 , e3 , and e4

The time derivatives in equation (4.2.4) are assumed to be approximated by finite

differences. Therefore,
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aO11 - G 1 ' — G1;'

Jt - t"—t

,-. n-fl	 ,-, n
a G,. - -'2i - (_r2,

at -

(4.2.6)

where t" : current time

previous time

n-fl ,-, n-flG1,	 -'2, : capillary pressures at time tn+

G 1 , G2 : capillary pressures at time t'

as0	 as
Using the same approach, the two derivatives, 	 and —a-- , also should be

aG2

expressed as follows:
F 'F

a s0 - s0 - s:	 a S0 - s0 —s;
(4.2.7)

a G1 - G1"' -	 '	 d	 -	 - G

where
F

so =S0(G1,G)
'F

so =S0(G,G1)

The time derivative of the last term of equation (4.2.4) can be rewritten as follows:

P n+I .Pn

01

at - t 1 —t"	

(4.2.8)

where P is represented as the function of G 1 and G, ( see table 4.3.3). So, using

equation(4.2.6), (4.2.7) and (4.2.8), equation (4.2.4) becomes:
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n+I_ P n	 G'—G	 S G'—G'avj	 avj +E1
	 0	 lj 

+	
0	 2j

[So'1_Es	
At	

0 

At	

2iJ

	

+s°[ 
Pfl+I P"	 W0F 

_ W0 IJ s 
W0	 Wan]Oj	 01+130	 0j	 Oj	 Oj

At	 At	 At

(4.2.9)

The fifth term in equation (4.2.2) involving the divergence of fluid flux is rewritten by

using Green's Theorem.

-s 
[v.00(vk_p0g)}].j(x,y)dv

0

= _j[ro	 (vP - p0g)].ni(x,y)dr	 (4.2.10)

+ i [Ii:°(vk _Pog)].v4i(x,Y)dv
Jv

where n : unit outward vector normal to the three dimensional surface

F': surface of the region

The first term on the right of equation(4.2. 10) is the fluid mass flux across the region's

boundary at node i.

q <, (t)1 = 1r [
	

o(vP - og)]. n 1(x, y)dF	 (4.2.11)

To make matters simple, it is assumed that the principle axes of the intrinsic

permeability tensor, k, coincide with the coordinate directions. This is a reasonable

assumption for groundwater flow problems if the coordinate axes are taken

perpendicular and parallel to the bedding planes.

	

rk	 01

	

k=[0	
k,,J	

(4.2.12)
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The second term on the right of equation(4.2. 10), adopting equation(4.2. 1), can be

approximated as:

N	 N	

(ktw ' P;;' 
5 f	

----J-----dydx
k=I	 j=I

_twoo+h5
xv	 axk=I

+ w °;+p+ 'J 5

N	 N

k=I	 j=I	
ay)ay

t 0)	 —dydxof

_t 0 ;+h S J(x)ddxy
k=I

(4.2.13)

k x kro	 kk
where 'r 0 =	 =

1Lo

angles between the gravity acceleration vector and

x or y direction

and 'r are mobilities that depend on capillary pressures and locations. They are

discretized nodewise at current time step, n+1. Thus, equation (4.2.13) becomes

N	 N	 N

w0fl+'Tn+PJ5d	 dydx
/—I	 k=I	 j=I

_w1j1j(p0g)fl 

cosX$5 1 q	' dydxj —--
1=1	 k=I	 j=I

N	 N	 N

dydx+w3°1v,r	
a ayL_ °Yk

1=1	 k=1	 f=I

N	 N	
'

—o+1dT n+I
dydxOY k

1=1	 k=I	 j=I

(4.2.14)

The sixth term of equation(4.2.2) is integrated as follows:



82

-$ 
*oJ!(vP _p0g)}.(f3,VF +P,VW0)11dV

V 01jt

	

=—>W°t	 1^1po11YPn+I1J

N	 N	 N	 N	 N

mHk	 ,dydx

	

O n 	 OXm PkL...d°i Jx	 ax	 Jxn=I	 rn=1	 1=1	 k=I	 j1

+'V W't 
n+I(pOg)fl 

COS ? X 1dydx

	

0 fl	 OXm

n=I	 m=I	 k=I	 j1

N	 N	 N	 N	 N

	

_WO0hiV,r	 P3PJfp_-4dydx
n L °Ym

n—I	 m=I	 1=1	 kI	 j=I	
cI y

N	 N	
(pOg)n 

cosX ,,t p t F J $nm41k
n+I

	

fl	 0Ym
y

n—I	 rn—I	 I—I	 k1	 jI

(4.2.15)

The last term of equation (4.2.2) is related to the non-advective flux. At the

macroscopic level, a Fickian-type of the non-advective flux vector, D , is adopted as

follows ( Abriola and Pinder, 1985a):

D =—p°ES0D . VW0°
	

(4.2.16)

where the macroscopic second order tensor, D°, can be obtained from equation

(3.1.13). Velocity components V° and V for D,° are calculated explicitly by a fmite

difference discretization of Darcy's law. It is a reasonable assumption, because

velocities of fluids do not change significantly for a small time step. The Green's

theorem is applied to the last term, assuming that p° is constant over the elements of

concern. So the last term can be expanded as follows:

_f{v. (Es0 D; . vw0)}(x,y)dv

=_5(Es0D; .VW0).n.(x,y)d[	 (4.2.17)

vw0°) . V41(x,y)dV
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The first term on the right of equation (4.2.17) represents the diffusive and dispersive

flux of the organic component across the boundary in the region of node I. This term is

denoted as follows:

= _Jr(ESoD! .VW°) . n 1 (x,y)dr	 (4.2.18)

The second term on the right of equation (4.2.7) can be rewritten as follows:

N	 N	 N

dydx
1=1	 k=1	 j=I	

x )	 a	 a

N	 N

dydx
ay ax

N	 N	 ad?,	
(4.2.19)

ax -5--dydx

N	 N

}

ay ----dydx

Finally, by using equation (4.2.9), (4.2.11), (4.2.14), (4.2.15), (4.2.18), and (4.2.19),

equation(4.2.3) becomes:

L 
S0 W°(1 c)13	

(as0 G'—G	 as0 G'—G

	

______	

I	
Ij	 -.

-	 OVj	 OVj 
+ETTO

Ar	 aO2	 r	 J

	

+13°	
01	 Oj J+ES	 °'	

'^	 [ p 
n+I - 

P"	 - Won	 WO'' - Wfl]

	

At	 W	 At	 )	
°	 At

N	 N	 N

dyd
ax ax1=1	 k—I	 j=I

N	 N	 N
- w0fl+t fl+I(p0g)fl 

cosXf fd?ld?kd? dydx
ax1=1	 k=I	 jrI

N	 N	 N

dydx
/=1	 k=I	 j=I	 ay ay

k=I	
' ±(p°g)" cosX ).55 J d? k d? J _Ldydx
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N	 N	 N	 N	 N
- w::'t	 $k	 L cdydxOX m Pk	 Of	 ax	 Jxn-i	 m=t	 1=1	 k=i	 j=i

+ t w ': 1 	 (pg)	 1dyOX m
X) xn-i	 mi	 1=1	 k=I	 j=i

N	 N	 N	 N	 N	 aq:l
- w °	 $ k __.L 4 1 dydxOn

Pk	 of	 a	 ayn=I	 m=i	 1=1	 k=i	 j=l
N	 N	 N	 N	 N

+ W0°t 
n+I(pOgy 

C0SX,	
Jfnmk 

—41dydx
xyn-I	 m=i	 1=1	 k=i	 j=i

N	 1N	 N+ESo+ID01wo'I+lf J_ f _! dydxI	 xxk
I—I	 i.ki	 j=i	

x y	 a	 a
N	 N

+D07°1J 54I4k — "YX)k	 of
k=I	 j=I	 -	 ay ax
N	 N+VD0flwo0Jj_L_Ldyjx
_J )X/	 of

k=I	 j=I	
x )	 ax ay

+VDO?V
'	 )kL.s of ayay	 J

+q0(t)1 +\jJ(t)	 O
	

(4.2.20)

e3
,e4	 N3

el	 e2
N2N

Figure 4.2.2 Elements which are concerned with calculation for node i

Equation (4.2.20) can be rewritten for practical application, considering elements

around node i (see figure 4.2.2):

e2
I1 2
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[ s0w°i	
P	 (as0 G'—G	 as G'—G'

+	 2!	 2:aVj	 avj	 ___________________ ____________________

aO,	 At	 aô2	 J

.oI o	
+	

Oj
( p nI-I - p	 WI- - Won ] 

+ ES0 
W07I - W on 1

At	 At	 At

e4 rN
+	 W0'1	 t n+I 'Vpn+IJ 5k1YTX

OXk	 of
e=e 1	 k–N	 j=N	

-	 a	 a

- w	 t	 (p0g) cos? $ $	 kf --dydx
1=N	 k=N	 j=N	

x y	 a

a,
Oyk

I-N	 j=N	 ay ay

(p0g)fl 
COS? ).$$ kf	 Ldydx

1=N	 k=N	 j=N	 a

a.0n+l

	

-	
pnI 'V

Pk
X)	 Jx	 x

n–Nt	 mN	 I=N	 kN	 j=N

N

	+	 w:'	 t0:^'	
(pOg)fl cos? 'V 3 ° '	 PO+1Jf4fl4m4j4k___!_4,dydXxJ_	 /'k

n–Nt	 mN	 IN	 k=NT	 j=N7	
X	 a x

-

	

—	 w:'	 t0'	
Y—onPk X)	 dy	 ayn–Nt	 mN	 I=N7	 k=N7	 jN

N'n

	

+	 w:' 'Vt n+i	 (pog) cos?. 'V 13 017 V Pf$4n4)mj4k___!_4)jdYdX
.d °Ym ii	 )	 d Pk	 x	 a

	

17	 m_N	 I=N	 k=N	 j=N

+c	 yW0°;^'$ $!k 
LLdydx

Lk N	 j=N	
x	 a	 a

N

+	 Do	
w,o;+'$ _L dyd

x •,

k–N	 j=N	 ay ax

aa
+D00J$4	

!dydx
X k

k=N	 j=N	 ax ay

+	
D0	

w0;+I$ 
J4)I4k 

PLLdYdx}]
)' k

k=N	 j=N	
X Y	 ay ay

+qØ(t), +w0,(t)1 =0	 (4.2.21)
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The same procedures can be applied to the water phase and e component equations to

transform the mathematical expressions into the numerical expressions. Although the

integrations in equation(4.2.21) may be solved analytically, numerical integration by

Gaussian quadrature is simpler to code into a computer program when the integrands

are polynomials in x and y. As shown previously, the integrands are expressed in the

local coordinate system by using equation (4.1.11) and (4.1.18). Furthermore, the

shape of the local element matches with that of Gaussian quadrature exactly. This

study employs the following numerical integration which uses four Gauss points(see

figure 4.2.3).

U1 Addi1 =	 A(,,11,)14	 (4.2.22)

where	 1: order of integration

location of quadrature point

14', : weighting factor

A(,11) : polynomial in the local coordinate

L=4

11

Figure 4.2.3 Gauss points for integration
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where

(

( 2 '12)	

'-

(i	 1

( Th)

Appendix E shows the subprogram that is coded into the numerical model, COMPO.

The numerical integrations are carried out by the subprogram.

4.2.2 Newton Raphson Method

Because three governing equations are given and three unknowns are defmed at

all node points, a 3N*3N matrix is expected if the system of equations is written in a

matrix form. However, since the discretized equations are nonlinear for the primary

unknowns G1 , G7 , and G3 , the Newton-Raphson iteration method is employed to

solve a system of nonlinear algebraic equations. Denoting f, (G1 ,G2 , G3 ) as the water

phase equation, a Taylor's series expansion of f, (G1 , G2 , G3 ) can be written about

initial guesses G 1 °,	 and G3°

f1 (G1 ,G2 ,G3 ) = 0 = f1 (G°,G° ,G°)+6 G1° f(G,G,,G3)
G1°

	+ 6 G3° a f1 (G1 ,G7 G3)	
(4.2.23)

+6 G2° 
f1 (G1 ,G,,G3 )	 ____________

+...
3

where

6G1° =G1—G1°

6 G2 ° = G2 - G (0)

21

6G3 ° =G31 —G3°

(4.2.24)
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6	 6 G2 ° and 6 G3 ° can be solved, neglecting terms in 6 greater than order 1

and establishing two more relevant conditions that correspond to the mass balance

equations for the organic component and e-component: g (G 1 , G , G3 ) and

h1 (G 1 , G , G3 ). So new trial values for primary variables at node i can be given as

follows:

G1' = G 1 ° +6 G1°

'-'	 = '-'	 ,-. (0)
'2j

(0)'-' 
= G3 ° +6 G3 ,LI31

(4.2.25)

The procedure can be summarized as follows:

NN	
^6G2

N	 f, 
+6G36 G1 -f1(G1 G	

G (v))
'2	 '3

	

a G1 "	 GJ	 j=1	 a G3'°

N	 ag.	 N	 ag,N	 ag,	 _____	 _____

i-i	 a 
G2 ^6 G3' 

a G 
(v)	 -g1(G1	 ,- (v) G (v))

'2	 '3
j=1	 3j

N	 a 
h1 = h, (G (v) 

G (v) G
N	 h,	 _____

N	
_____	 _____

	

a G J '	 )=J	 a G2 "	 j=1	 a G3'	 I ' 2 ' 3

(4.2.26)

G1 "' = G 1 " +6 G1"

G (v+I) = 
G 

(v) ^6 G (v)
2j	 21	 2

G 
(v+I) = 

G 
(v) +6 G (v)

31	 3l	 31

where i=1,2,3, ......,N

v=O,1,2,	 f-vthtry

(4.2.27)

By repeating equation (4.2.26) and (4.2.27) until 6 G 11 , 6	 and 6 G3 '' become

small enough to satisfy convergence criteria, the primary variables may have accePtable
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values. The following matrix equation is the expanded form of equation (4.2.22) for

the domain that has N node points:

'I	 '2	 '3	 '4	 '5	 '6	 '	 3N-2	 ,3N-I	 3N - oq1	 -f

'jI	 'j2	 ,3	 ,4	 5	 '6	 ' '	 'j3N-2	 ,3N-1	 3N
	 -g1

',1	 '.2	 ',3	 ic,4	 ic,5	 ic,6	 ' '	 ic,3N-2	 'j3N-I	 'j3N

	

•	 S	 •	 •	 S	 S	 S	 S

	

•	 S	 S	 S	 S	 S	 S	 S

	

•	 S	 •	 S	 •	 •	 •	 S

ici-2.I ici-Z2 'c1-3 'c1-24 'c1-2,5 'c1-2.6 . .	 -2,3N-2 ici-2,3N-1 ici-2,3N
	 -J

ici-LI 'i-U 'i-U il-I.4 ijI,5 il-1.6	 • il-I,3N-2 ics-L3N-I il-1,3N
	 I = I -g

ici	 il,2	 il.3	 il,4	 il.5	 il,6	 • 'c,3N2	 'cI,3N-I	 ii,3N

	

•	 S	 S	 S	 S	 S	 S	 S

	

•	 S	 S	 •	 S	 S	 S	 S

	

•	 S	 •	 S	 •	 S	 S	 S

'cN-2.I 'cN. 2,2 iN-2,3 icN-2.4 "3N-2,5 iN-2,6 S	 'cN-Z3N-2 iN-13N-I iN-2,3N
	

-fN

iN 1,1 ilV 1,2 'cN-1,3 iN-IA 'cN-I.5 icN-1.6 	 icN-I,3N-2 icN-I,3 N-I iN-1,3N
	

gN

'cN.I	 iN2	 iN,3	 iN,4	 iN,5	 iN,6	 • iN,3N-2	 iN3N-I	 iN,3N -	 1v

(4.2.2 8)

where

F3i-2,3j-2 - a G1

ag.
i-I,3j-2	

a G1

ah.
' '3i,3j-2 = G,,

F-	 F -- ' 3i-2,3j-1 -	
G	

' 3i-2,3j - G

F	 F' 3i-I,3j-1 - a G21
	

3j-1,3j - a G3

F	 F'	 3i,3j-1	
'	

31.3)
3j

(4.2.29)

i=1,2,3,.....,N

j=1,2,3,.....,N

3j3*j

3j=3*j

3N=:3*N
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Equation (4.2.2 1) is the discretized form of the organic component equation at node i.

The other two equations also can be expressed numerically. Then, the elements of the

main matrix in equation(4.2.28) can be obtained by applying equation(4.2.29) to the

three discretized equations.

However, the matrix equation(4.2.28) has an infinite number of solutions. To obtain a

unique solution that corresponds to particular problems, initial and boundary

conditions are required. Subsection 2.5.2 introduced two types of boundary condition.

Dirichlet condition provides the general primary variables with fixed values on

boundaries. The following boundary condition may be adopted at node i:

G1,= C1,	 BJ1(G1 ,G2 ,G3 )= G11 -C1

G2, = C2	 B2 .(G1 ,G2 ,G3 )= G21 —C2	 (4.2.30)

G3, = C3	 B3 (GI ,G2 ,G3 )= G3 —C3

where C1 , C2 , C3 : constants

B1, , B2, , B3, : boundary conditions

The boundary conditions replace the mass balance equation at node i. The Newton

Raphson method equally applies to equation(4.2.3 1), resulting that

aB.
i-2,3i-2 = G11 = 1 ,

= G, =

JB.
F -__3131 - a 

3 , -

—B11 =—(G11 —C1)

—B2, =—(G7 —C2)

—B3, =—(G31--C3)

(4.2.31)
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All other elements of the i th row of the matrix [F] are zero except F1232

F3131 and -f1 ,- g, ,- h. are replaced by — B11 ,- B 1 ,- B31

Figure 4.2.4 Specified flow boundary condition

The Neuman condition defines fluxes on boundaries as mentioned in subsection 2.5.2.

Thus, if the normal flux, q, , is specified at a boundary node i(see figure 4.2.4), the

boundary terms such as q0,(t)1 ,w0(t)1 in equation(4.2.21) can be replaced as

follows:

q0 (t), +jJ 0(t)1 = -f 	 (F)dF - Jq(F)dF	 (4.2.32)

q, is positive when they represent inflow through the boundary. The integrals in

equation(4.2.32) can be simplified as follows:

-f q,, (F)d[' -	 (F)dF = —q 1	 - q 1	 (4.2.33)

where ii1 and ii2 are the distances between two nodes. The boundary conditions are

incorporated into the column vector of the right hand side of equation(4.2.28).

Combining the governing equations with the boundary conditions, the whole system of

equations is completed.



gw	 e
e

e

(4.2.34)

TAJ W
wo

ewo
(4.2.35)
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4.2.3 Partition, density and compressibility

As mentioned before, the mass of e component in the organic phase may transfer to the

water phase or gas phase by dissolution or evaporation. Two constitutive relations are

required to close the system of equations. Experiments have been conducted to prove

that the transfer of soluble hydrocarbons to the water phase might be modelled as a

single-stage extraction pocess. So partition coefficients are determined on the basis of

that. Van der Waarden, et al(1971), Kappler and Wuhrmann(1978) and Fried, et

i(l979) conclude that the use of a partition coefficient determines solute

concentrations.

Henry's law is the thermodynamic expression which relates the vapour pressure of a

solute to the mole fraction of this solute in the liquid phase. Henry's constant

represents proportionality between these two variables. Generally Henry's constant is a

function of both pressure and composition(Wark, 1971). There is a dimensionless

Henry's law constant that relates the concentration of a compound in the gas phase to

its concentration in the liquid phase(Lyman, et al(1982)). Therefore, this dimensionless

constant can be considered as a partition coefficient.

Local equilibrium between the three fluid phases are established for the e component.

where Co '' and w are partition coefficients which must be determined empirically.

So W'4' and 4' are presented as follows:

= WOWO
	

(4.2.36)

e	 C	 (4.2.37)
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As the model, COMPO, considers that the fluid phases are compressible, their densities

vary according to the fluid pressures and mass fractions. Assuming that there is only

one component in the a-phase, the density of the a-phase can be represented from

equation (3.2.19) as follows:

pa 
= p exp[i3 a (p - path)]	 (4.2.38)

where PaI : reference pressure

cth : fluid density at the reference pressure

Crookson,	 (1979) propose the following method of determining density of

organic phases that are mixture of the individual components:

0=	 (4.2.39)

where p : density of i component at the phase pressure P,

p can be obtained by using equation (4.2.38). Since this research assumes that the

organic phase is made up of two components, organic and e components, equation

(4.2.39) can be rewritten as follows:

0	 1	 ___________

	

We° W°
	

(4.2.40)

+---0	 0
P C 	Po

By using equation(3.2.19), the organic phase compressibilities can be derived by

differentiation and manipulation of equation (4.2.3 9).



0	 0
-	 P0Pe

0
W w00p;+wp0

(4.2.4 1)

PMp - g g
ZRUT

(4.2.43)

MeMa

M e (i - W )+ M 0W
(4.2.44)

94

0	 _____________	 (4.2.42)poPe	
Wo°P+We°P°0

where	 3 : compressibility of organic phase with respect to mass fraction

compressibility of organic phase with respect to pressure

compressibility of organic component in the organic phase

compressibility of e component in the organic phase

The density of gas phase is subject to the gas law:

where Pg : gas pressure(constant)

M g : molecular weight of the gas mixture

R	 universal gas constant

Z : compressibility factor

T : temperature

The gas phase is assumed to consist of air and e components. Thus, assuming that Pg

is constant, the following expression of the compressibility of the gas phase can be

derived from equation (3.2.19), (4.2.39) and (4.2.43):

where Me , Ma : Molecular weight of component e and air



95

4.3 Apparatus for generalizing a numerical model

The fixed primary variables may be obstacles for general applications. The general

variables G 1 , G2 , and G3 are very useful for applying a numerical model to the

various pollution patterns(see table 3.2.1). In this section, the pollution patterns are

categorized by the property of solid matrix, fluid phases in a porous medium, and

interphase mass transfer. Table 4.3.1 summarizes the variations of the general primary

variables, according to the pollution patterns.

G1	G2	 G3

W-G	 Pgw	 ww

O-G	 Pgo	
(g)*

W-O(h)	 Pow	 (w0

W-O(o)	 Pwo	 (w0)*

W-O-G(h)	 Pow	 Pgo	 (wo)*

W-O-G(o)	 P,0	 'gw	 (wo)*

where

W, 0, G : water, organic and gas phase respectively

h, o : hydrophilic and oliophilic solid matrix

(w )* G3 is considered under the condition of interphase mass exchange.

Table 4.3.1 Variations of the general primary variables

Table 4.3.2 presents the temporal derivative of the a-phase saturation according to the

pollution patterns.
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aSa asa aGi aSa aG2

3t	 G, 3t	 G2 Jt

w-G	 aSa aPgw
al gw at

O-G	 aS.aPgo

aPgo it

W-O(h)	 aSa aPow

a 0 at

W-O(o)	 aSa ap0

a p 0 at

W-O-G(h)	 aSa a0	aSa

aPow at	 aPgo at

W-O-G(o)	 aSa ar 0 + as, aPg;v

a p 0 a	 aPgw at

Table 4.3.2 Presentation of time derivative of the a-phase saturation

Table 4.3.3 summarizes the water, organic and average fluid pressure,

P0 , and P which are expressed in terms of the general primaiy variables, and

the derivatives of the three pressures with respect to the general primary variables, G1

and G2.

For a general application, it is also required to consider various ways of defining the

relations between saturations and capillary pressures, and relative permeabilities and

capillary pressures. They may be presented by mathematical expressions or

experimental data.

Employing the finite element method and the generalizing procedures, the numerical

model, COMPO, is developed in terms of FORTRAN language. Appendix B shows

the variable list coded in the model.
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CHAPTER V

VERIFICATIONS

The numerical model is applied to the four cases of subsurface contamination to

verify its algorithm. Section 5.1 deals with the pollution pattern (I). Water saturation

and concentration of a pollutant are anticipated over the domain in the course of time.

Section 5.2 treats the pollution pattern (II). The numerical model shows how the

organic phase replace the water phase in the course of time. In section 5.3, a porous

medium is assumed to be occupied by the three fluid phases-water, gas and organic

phase. Here, as in the pollution pattern (VII), interphase mass exchange is allowed

among the three fluid phases. Section 5.4 deals with a full two-dimensional problem of

the pollution pattern (VII). Finally section 5.5 shows the extended use of the numerical

model by applying it to a tracer problem.

5.1 Pollution pattern (I)

This contamination scenario is given by Van Genuchten(1982). A vertical colunm

which is 1.2 m long is assumed to be filled with clear water and gas initially. The

numerical model, COMPO1D, meshes the domain with 120 elements. So each 1-D

element is 1 cm, Ay = 1 cm. The vertical coordinate, y, is measured downward from

the top of the columm The time step is constant at At = 30 sec. The simulation is

carried out for 9 hours of infiltration. The parameters for this simulation are

summarized in Table 5.1.1.

parameters	 value	 units

water	 Jt	 1.0 x 10'	 kg! (rn.sec)

0	 rn2/N

pW	 1000	 kg/rn3



2in

m2/N

m / sec2

m2 / sec

in
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solid matrix

k

gravity	 g

dispersion &

diffusion	 a

0.38

4.4558 x iO'3

0

9.81

0

0.01

Table 5.1.1 Parameters for example 1

The water saturation is represented in terms of the capillary pressure, gw , and the

relative permeability of water is a function of water saturation. The relationships are

shown as follows:

S = 1.52208-0.0718947ln(Pgw)

for 1421.96	 2892.38 kg/(m•sec2)

(5.1.1.)

S = 2.94650-0.250632 In (gw)

for	 ^ 2892.38 kg/(m•sec2)

k r = 1.235376x lO 6 exp( 13.604 S)
	

(5.1.2)

Initial water saturation along the vertical colunm is expressed as follows:

10.394737 + O.2l92W7y	 0< y ^ 0.6
S(y,t=0)=0526316	

O.6<y^l.2
(5.1.3)

Using equation (5.1.1), the initial capillary pressure distribution can be obtained. The

top boundary consists of an infiltration pond, where water saturation is S=1.0
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During the simulation the capillary pressure, P, , is fixed to be 1421.96 kg / (m•sec2)

at the top boundary. The bottom boundary is held at a specified saturation of

S=0.5263l6, by specification of pressure, gw= 15616.5 kg / (m•sec2). No flow

occurs across either side boundary, but flow enters the top boundary due to the

pressure gradient. For the first 168 minutes, contaminated water enters from the top

boundary, where the solute concentration is c=209 meq / liter. After that, clean water

flows again from the pond.

As shown in table 4.3.1, the general primary variables become G1 = gw

G, = WW = c . The initial and boundary conditions are summarized in table 5.1.2.

Boundary condition

upper boundary	 G1 = 'gw = 1421.96 kg/(m.sec2)

G3 =W =c=209 meq/liter (t^l68min)

G3 =	 = c = 0 meq / liter	 (r> 168 mm)

lower boundary	 G 1 =Pg =15616.Skg/(msec2)

G3 =	
0

ay	 ay

Initial condition
	

The initial distribution of G 1 = Pgw is calculated

from equation (5.1.1) and (5.1.3)

G3 =W =c=Omeq/liter

Table 5.1.2 Boundary and initial conditions
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Note that the concentration units are arbitrary (need not to be mass fraction ) because

this is a constant density simulation. Simulation results are shown in figure 5.1.1 and

5.1.2 . The simulation results of COMPO1D and Van Genuchten (1982) coincide

almost exactly for water content and solute concentration. Thus it can be said that

COMPO1D is applicable to solute transport problems in water-gas system.

5.2 Pollution pattern (II)

This example is originated from Gamiel(1989). Table 5.2.1 shows the properties of

solid matrix, water, and TCE. TCE(Trichloroethylene) is a degreasing agent commonly

used by industry and private households. To know the physical properties of TCE in

more detail, refer to Gallant(1966) or Lyman, et al (1982). TCE is a liquid at room

temperature and is both volatile and slightly water soluble. Thus, it may transfer to

water and gas phases while TCE flows through porous media. However, the interphase

mass exchange is not considered in this example. The compressibility of TCE is

assumed to be negligible.

parameters	 value	 units

water	 _tw	 1.0019 x 10_2	poise

4.532 x 10"	 cm2 Idyne

pW	 0.9997964	 g/cm3

TCE	 5.8 x 10'	 poise

Pa	 0	 cm2 Idyne

pOb	 1.4657	 g/cm3

solid matriX	 0.36

k	 5.823 1 x i0	 cm2

2.0 x 10b0	 cm2 Idyne

gravity
	 g	 9.8O665x 102	 cm/sec2

residual
	

Swr	 0.306

saturation
	

Som	 0.17
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S vr	 0.306

parameters for	 S	 0.9998

van Genuchten	 a,	 0.11	 cm'

equation (3.1.8)	 n	 6.5

and (5.2.1)	 akW	 0.108	 cm'

fl,	 6.60

Table 5.2.1 parameters for example 2

It adopts Van Genuchten's equation for establishing the relation between water

saturation and capillary pressure, P,

s -s +SSara -
	 [1+(ahy]m

(5.2.1)

Where Sc,, : residual saturation of a-phase

Sc, : maximum saturation of a-phase

To decide the parameters for equation (3.1.8) and (5.2.1), the experiments are

conducted by Lin, et al (1982). Figure 5.2.1 shows the relationship between

saturations and capillary pressure calculated from equation (5.2.1). TCE saturation S,

is given by a simple constraint, S, = 1— S
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1

0.8

!0.6

C/D 0.4

0.2

0
0
	

5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

P(dyne/cn)

Figure 5.2.1 Capillary pressure curve in water-TCE system

The relative permeabilities of water and TCE are presented in figure 5.2.2, which is

based on the data of Lin, et al( 1982).

1

0.8

0.6

kr

0.4

0.2

0
0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

P0(dyne / cni)

Figure 5.2.2 Relative permeabilities of water and TCE in water-TCE system
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Consider a horizontal soil column initially saturated with TCE and water. The length of

the column is 19 cm. Both fluids are above their residual level. The initial water

pressure is 1000 dyne/cm 2 throughout the horizontal column and the organic pressure

is 11000 dyne/cm2 . Thus the initial capillary pressure is P = 10000 dyne / cm 2 . At

one end, organic pressure abruptly increases to 15610 dyne/cm 2. No organic flow

condition is set at the other end. Water pressure is fixed at its initial conditions at both

ends. Table 5.2.2 shows the boundary and initial conditions.

Boundary condition

upper boundary	 G1 =	 = 14610 dyne / cm2

G2 = = 1000 dyne/cm2

lower boundary	 =	 =0

	

x	 3x

G2 = = 1000 dyne/cm2

Initial condition	 G1 =	 = 10000 dyne / cm2

G2 = = 1000 dyne/cm2

Table 5.2.2 Boundary and initial conditions

As shown in table 4.3.1, the general primary variables become G1 = P0 and G2 =

The water and organic phase equations are used to analyze the pollution pattern (II).

The relevant derivatives are expressed in terms of the general primary variables in the

code(see table 4.3.2). The column is divided by 18 1-D elements. The length of each

element is Ax = 1.0 cm equally and the time step, At , is 1 sec. Simulation results are

shown in figure 5.2.3 and 5.2.4 . The comparison of the pressure and saturation
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distributions obtained by COMPO1D and Gamiel's model verifies the applicability of

COMPO1D to the pollution pattern (II). The Gamiel's model adopts the finite element

scheme to anticipate flows in the subsurface. Thus the comparison of the results of this

research and the Gamiel's model also conveys the accuracy of COMPO1D for organic-

water system.

5.3 Pollution pattern (VII)

Water, gas and organic phases are present in pore space. Assuming that the porous

matrix consists of hydrophilic material, water is the wetting phase. Gas is the

nonwetting phase with respect to both of the other liquids. The wettability of TCE

phase is between water and gas. No direct contact between the water and gas phase is

assumed. The parameters for this example are given by Lin, et al (1982) and

Abriola(1983). Table 5.3.1 summarizes the parameters of the fluid phases and solid

matrix.

water

TCE

air

parameters

M

1_t

1w

psb

M0

i-to

10

ob

pob

MA

2:

Pg

vaiue

18.02

1.0019x 102

4.532 x 10"

0. 999 79 64

1.0133 x 106

131.4

5.8 x 10_I

0

1.4657

1.0133 x 106

28.97

1.0

1.0133x 106

umts

poise

cm2 Idyne

g/cm3

dyne I cm2

poise

3
g / c/fl

2
dyne / cm

dyne / cm2



9.80665 x 102

293.15

0.36

5.8231 x i0

2.0 x 10'°

0.306

0.17

,	 2cm i sec

2cm

cm2 /dyne
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g

T

solid matrix	 £

k

residual
	

S vr

saturation	
Som

partition	 0) 
O	

3.018 x i0

coefficients	 w	 5.549 x 102

dispersion &	 0.039	 cm2 / sec

diffusion	 8.434 x 10	 cm2 I sec

a's'	 0.1	 cm

Dm°	 0

a°	 0

Table 5.3.1 Parameters for example 3

This example assumes that the water relative permeability and saturation are functions

of the capillary pressure, P., alone even for a three-phase system. It means that the

experimental data of the two-phase(water and organic) system can be applied to the

three-phase system, as far as water relative permeability and saturation are concerned.

Similarly the gas relative permeability and saturation are functions of P, alone in a

three-phase system. So they can be determined from the experiments of the two-phase

system, although this example deals with the three-phase flow. Figure 5.3.1, 5.3.2,

5.3.3 and 5.3.4 show the relevant relations obtained from the experiments of the two-

phase systems, TCE-gas and TCE-water.
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Figure 5.3.1 Capillary pressure curve in TCE-gas system
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0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

Pgo (dyne / crr)

Figure 5.3.2 Relative permeability of TCE in TCE-gas system
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1
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0.6
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0.4

0.2

0
0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

PO W (dyne / cn)

Figure 5.3.3 Capillary pressure curve in TCE-water system
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P0(dyne/ cn?)

Figure 5.3.4 Relative permeability of TCE and water in TCE-water system

Gas saturation, S g , and water saturation, S , are obtained from figure 5.3.1 and

5.3.3 respectively. Then the saturation of TCE is determined from the constraint

(S0 = 1—S,, Sg ). The relative permeability of water is able to be obtained from figure
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G3 = W° =05

lower boundary	 G1 =	 = 50000 dyne / cm2

G2 ___=_pOg —noTCEflow
ay -

__ aw; —0

y	 Jy

Initial condition	 G1 =	 = 50000 dyne / cm2

G2 =Pg = 8300 dyne/cm2

G3=W°=1

= 0.306

S0 0

Table 5.3.2 Boundary and initial conditions

To simulate the hypothetical transient flow, a negligible saturation of TCE is assumed

at each node at the start of the simulation. However, in the case that TCE saturation is

below its residual level, the derivatives of TCE saturation with respect to capillary

pressures become zero theoretically. It may cause numerical difficulties, because the

mobility, 'r 0 , becomes zero too. So a minimum value for the saturation derivatives has

been incorporated into the numerical model. Numerical experiments have proved that a

minimum value of 10 appears optimum for this simulation. Interphase mass

exchange and dispersion/diffusion are considered in this example.

Firstly the domain is considered as a 1-dimensional problem. It is divided into 1 cm

increments for 21 nodes. Figure 5.3.6, 5.3.7, and 5.3.8 display the simulation results

obtained by the 1-D numerical model COMPO1D.
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Figure 5.3.9(a) examines the effect of mesh refinement on the organic saturation

profile. Solutions for three nodal spacing are compared at a fixed time, t=20 sec, and

time step, & =0.5 sec. It shows that the saturation front steepens, as the spacing

becomes smaller. For relatively small spacings, zx=0.5 cm and ix=1 cm, the

simulation results are very similar. It can be said that the simulation results become

closer to the true solution as the spacing is smaller. Figure 5.3.9(b) is a semi-log plot

of the absolute value of the maximum error G	 , versus the number of iterations.
2: max

It shows that more iterations are required as the spacing becomes smaller.

0.8

0
	

2	 4	 6	 8	 10	 12	 14	 16	 18	 20
x(cm)

Figure 5.3.9(a) Nodal spacing comparison for &=0.5 sec

	

.11	 I	 I	 I

	1 	 2	 3	 4	 5	 6	 7

iteration
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Figure 5.3.10(a) illustrates the effect of time step size for a fixed nodal spacing Ax= 1

cm. Solutions for three time step sizes are compared at a specific time, t=20 sec. The

organic saturation curve becomes a little bit steeper as At decreases. However, as

shown in figure 5.3.10(a), the three time step sizes do not influence the simulation

results considerably. Figure 5.3.10(b) shows that solutions are converging for the three

different time steps. However, there is a small jump at iteration 4 for At =0.1 sec. It

also can be observed that higher number of iterations is required for bigger time step

size.
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parameters	 value	 units

water	 M	 18.02

1.0019 x 10_2	poise

4.532x 10"	 cm2 Idyne

pWb	 0.9997964	 g/cm3

pwb	 1.0133x 106	 dyne/cm2

a°

TCE

air

solid matrix

residual

saturation

partition

coefficients

dispersion &

diffusion

131.4

5.8 x 10_I

0

1.4657

1.0133x 106

28.97

1.0

1.0133x 106

9.80665 x 102

293.15

0.36

5.823 1 x i0

2.0 x 10b0

0.306

0.17

3.018 x 10

5.549 x iO

0.039

8.434x 106

0.1

0

0

poise

g/cm3

dyne / cm2

dyne / cm2

cm / sec2

2cm

cm2 Idyne

cm2 / sec

cm2 / sec

cm

Table 5.4.1 Parameters for example 4
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The simulation parameters are presented in table 5.4.1. They are almost same with

those in the previous example. Thus the fluid saturations and relative permeabilities are

determined by the same procedures used in section 5.3 . The boundary and initial

conditions are listed in table 5.4.2.

Boundary condition

upper boundary	 G1 = P0 = 50000 dyne/cm2

aG	 ai
= ----- =—p g

ay

= a w° 
—0

ay	 ay

at nodes 41 & 51 (rift) G1 =P0 =50000 dyne/cm2

G2 =	 = 1500 dyne / cm2

G3 = W° = 0.5

lower boundary	 G1 =	 = 50000 dyne / cm2

aG.	 a	 0
- =--------=—p g

ay

aG aw° _

ay	 ay
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left boundary	 G1 = P = 50000 dyne / cm2

G2 P = 8300 dyne/cm2

G3 =	 = 1

2right boundary	 G1 = P = 50000 dyne / cm
OW

G2 = Pgj = 8300 dyne/cm2

G3 =W =1

Initial condition	 G1 = P = 50000 dyne / cm2
OW

G2 — P = 8300 dyne/cm2

G3 =W =1

= 0.306

SO0

Table 5.4.2 Boundary and initial conditions

COMPO2D is used to solve this scenario. Simulation results are shown in figure 5.4.2,

5.4.3, and 5.4.4. TCE propagation is presented in figure 5.4.2 for various time steps.

Three different simulation times are presented. Each contour delineates the region

within which the organic phase saturation is greater than 0.1. Figure 5.4.3 and 5.4.4

show the movements of e component in the gas and water phases respectively. Each

contour in figure 5.4.3 and 5.4.4 delineates the region respectively within which Ww

or W is greater than lx10 or 0.01. Here, linear interpolation between nodal values

are used to develop the contours shown in the figures. A time step of 10 seconds are

employed for the grid shown in figure 5.4.1.
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Figure 5.4.9(b) Convergence in time for grid 1

5.5 Extended use of the code (Tracer experiment)

This section is contributed to show the extended capacity of the code by applying it to

a simple tracer scenario. Let us consider a horizontal soil column initially saturated

with TCE and water. The length of the column is 10 cm. Both fluids are above their

residual level. Table 5.2.1 are used again to show the properties of solid matrix, water,

and TCE. Figure 5.2.1 and 5.2.2 are also employed to establish the relations between

capillary pressure and saturations or relative permeabilities.

As in section 5.2, the initial water and organic pressures are assumed to be 1000

dyne/cm2 and 1 1000 dyne/cm 2 respectively throughout the horizontal column. Thus the

initial capillary pressure is P = 10000 dyne / cm 2 . However, at one end, an organic

phase which contains a tracer of 1000 ppm is introduced, increasing organic pressure
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to lS6lOdyne / cm 2 . Water pressure is fixed at its initial conditions at both ends. Table

shows the boundary and initial conditions.

Boundary condition

upper boundary	 G1 =	 = 14610 dyne / cm2

G2 = = 1000 dyne/cm2

G3 = We° = 0.999

lower boundary	 G2 = = 1000 dyne / cm2

Initial condition	 G1 =	 = 10000 dyne/cm2

G2 = = 1000 dyne/cm2

G3 = We = 1

Table 5.5.1 Boundary and initial conditions

As it can be observed, this tracer example is able to be categorised as the pollution

pattern (III) which allows the interphase mass exchange. To display the effect of

partitioning of the tracer between water and organic phase, numerical simulations are

conducted for the three partition coefficient, o° = 0, 5 x iO 3 , and 7.5 x iO 3 . The

length of each element is Ax = 1.0 cm equally and the time step size, At =5 sec.

The breakthrough curves at the other end are compared in figure 5.5.1 for the three

partition coefficients. Figure 5.5.1 shows that the tracer concentration becomes smaller

as the partition coefficients becomes larger. It is because the tracer transfers to the

water phase in the course of migration.
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Figure 5.5.2 displays the saturations of organic phase at a certain time step for the

varying spacings. For Lix=O.5 cm and \x= 1 cm, the simulation results are very similar.

On the other hand, the curve for L\x=2 cm is slightly off from the others.

0.7

0.65

0.6

S0 0.55

0.5

0.45

0.4
0	 2	 4	 6	 8	 10

x(cm)

Figure 5.5.2 Nodal spacing comparison for At5 sec and time=200 sec

From the simulation results in figure 5.5.3, it can be said that the effect of the time step

size is minor for the three time step sizes, &= 1 sec, &=5 sec, and it= 10 sec.

0.7
+=lOsec -.-dt=5sec &dt=1 sec

. :E

0.45 -

0.4	 I	 I	 I	 I

0	 2	 4	 6	 8	 10

x(cm)

Figure 5.5.3 Time step comparison for Ax=1 cm and time=200 sec
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5.6 Summary

The example of the pollution pattern(I) conveys the accuracy of the algorithm of

COMPO which is concerned with the water phase equation and the e component

equation. The application of COMPO to the pollution pattern(II) proves that the

organic component equation is coded correctly into the model. Finally, applying

COMPO to the pollution type(Vll), it is proved that the concepts of

diffusionldispersion and interphase mass transfer are correctly considered in the model.

Therefore, the other pollution patterns categorized in this study also can be treated by

using COMPO. On top of that, the applicability of the code can be extended even to

tracer experiments.
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CHAPTER VI

CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

This thesis has been dedicated to tracing the movements of pollutants in porous

media. Table 3.2.1 shows pollution patterns that can take place in the subsurface. The

pollution patterns can be categorised by the property of solid matrix, fluid phases in a

porous medium, and interphase mass transfer among fluid phases. The wettability

order is determined by whether the solid matrix is hydrophilic or oliophilic. Four

combinations of fluid phases are considered in categorizing the pollution patterns:

water-gas, water-organic, organic-gas, and water-organic-gas. Interphase mass

transfer is allowed in this study by dissolution and evaporation and it also contributes

to determining the pollution patterns.

The general primary variables are employed to derive the mathematical model. Matrix

and fluid compressibility, capillarity, diffusion and dispersion, and interphase mass

transfer are all incorporated in deriving the three governing equations for the analysis

of multiphase flows in heterogeneous porous media. However, the modelers do not

have to use all the three governing equations for some of the pollution patterns. Table

3.2.1 indicates which governing equations are used for the pollution patterns. The

variations of the general primary variables and the relevant derivatives are categorized

in table 4.3.1, 4.3.2, and 4.3.3, according to the pollution patterns.

The numerical simulators for 1- and 2-dimension are developed to solve the nonlinear

partial differential equations employing a fmite element discretization method. A

Newton-Raphson method is chosen to solve the resultant system of nonlinear algebraic

equations.

To demonstrate its applicability, firstly the numerical model, COMPO1D, is applied to

a two-phase flow (water and gas) system where contaminated water infilterates from

the top boundary( pollution type I ). The accuracy of the 1-D model, COMPO1D is

verified by comparing the simulation results with those of Van Genuchten's model.

Secondly a TCE and water phase flow is considered to verify the applicability of
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COMPO1D( pollution type II). The comparison of the simulation results among the

relevant numerical models shows that COMPO1D is able to predict the movements of

TCE and water. Thirdly the three fluid phases(water, gas, and TCE) are assumed to

exist in a domain of interest, taking into account interphase mass exchange( pollution

type VII). For this example, the convergence properties of the code are shown by grid

and time step refinement. Additionally the 2-D model, COMPO2D is applied to the

same l-D example to verify its algorithm. The results of the 1-D and 2-D models are

nearly overlapped. The applicability of 2-D model, COMPO2D, is demonstrated by

applying it to a full 2-dimensional TCE migration scenario. The potential applicability

of the code to tracer problems is illustrated by applying it to a simple tracer problem.

In conclusion, this research has developed a generalized compositional numerical

model that is able to deal with various pollution problems. The generalizing procedures

have been fully presented throughout this thesis.

6.2 Recommendations

Basically it is very complex to accurately describe subsurface flows. The complexity

increases much more, if multiphase flows are considered. On top of this, there could be

various pollution types in the subsurface as this study presents. Thus, more than one

numerical model are required to solve these different types of pollution problems. The

completely different pollution mechanisms may take place within a domain of concern,

because of the state of the existing fluids in a porous medium or the change of the

property of solid matrix. However, most of the established models have very restricted

range of application. The newly developed numerical model, COMPO, is able to

overcome these difficulties. If the primary variables are fixed as in most of models,

their experimental data also should be obtained on the basis of the fixed assumptions.

Thus, many experimental data for the subsurface contaminations may be useless to

some modelers who make use of only one or two models. However, the numerical

model, COMPO, can handle with many kinds of experimental data and experimental

methods.



137

Although COMPO has big advantages, the idea of combining procedures is not

difficult. Thus, if a numerical code is formulated for anticipating the movements of

three-phase flows in the subsurface, it is recommendable to adopt the concept of the

general primary variables and the generalizing procedures. Changing part of the code,

its application range can be wider. Furthermore, if the code is developed under the

condition of interphase mass exchange, it can deal with all the pollution patterns

categorized in this study.

This model could be very useful for tracer problems. However, according to the

properties of tracers, it may be required to change part of the code which is concerned

with partitions between tracers and fluid phases.
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where S, (x, y) is constant for (x, y) coordinates within the cell and zero outside the

cell. Thus, S (x, y) is a flat topped box standing on a cell i.
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APPENDIX B

The variable list for COMPO2D

nfl	 number of nodes

ne	 = number of elements

dt	 time step

nt	 = number of time steps

itype = pollution type

X	 = x coordinate

e	 coordinate

	

gel	 G, at previous time

	

ge2	 G2 at previous time

	

ge3	 G3 at previous time

pwg P, at previous time

pog = P, at previous time

ww2 = 147 at previous time

	

wg2	 at previous time

	

row	 p at previous time

	

roo	 p° at previous time

rogn = p g at current time

alpa = j3 constant

	

bop	
=	 at previous time

	

beg	 g at current time

	

rx,ry	 andX

n3	 = nnx3

nr	 = number of rows

nc	 number of columns

time = current time

kount = iteration number

y	 = y coordinate

fl	 = r coordinate

geni = G1 at current time

gen2 = G2 at current time

gen3	 G at current time

pwgn = at current time

pogn = P, at current time

wwn2 = WeW at current time

wgn2 = W at current time

rowm = average of p w over an element

room = average of p° over an element

pg	 Pg constant

bew	 = J3 constant

bo 1	 , at previous time

g	 = g gravity

rkp	 = k weighting factor
at previous time
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SW	 = S at previous time	 swn = S at current time

so	 = S0 at previous time	 son	 = S0 at current time

sg	 = Sg at previous time	 sgn	 = S8 at current time

twx =	 kk,	 twy =	 k/c_=	 at current time	 =	 ' at current time
P W 	Pw

tox =	 -	 toy =-	 at current time	 =	 at current time
!t0

dswgel=
at current time

dswge2= a S 
at current time

dswg2l =	 a 2 s	
at current time

a 2a G1

dsogel=	 S0
at current time

aG,

dsoge2 = a S0 
at current time

aG2

dsog2l=	 a 2 So,	
at current time

a ,a G1

dsggel= as8
at current time

aG,

dsgge2=	 S8
at current time

aG2

dsgg2l=	 a2s8
at current time

aG2aG,

dswgll= a2s	
atcurrenttime

a G12

dswg22= a2	
at current time

aG22

dswgl2=	 a2	
at current time

aG1aG2

dsogl 1 = a 2 S0 
at current time

a

dsog22 = a 2 S0 
at current time

aG22

dsog 12 =	 a 2 S0	
at current time

aGaG2

a 2 sdsggl 1 
=	 at current time

aG12

dsgg22 = a 2 S8 
at current time

a G22

dsggl2 =	 a 2 Sg	
at current time

aG1aG2
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twxge 1 = at	
at current time

aG,

twxge2 =

	

	 at current time
aG2

toxge 1	
—a- at current time

toxge2 =	 a	
at current time

aG2

dwwge 1 = a WW 
at current time

aG,

dwwge3= a WW 
at current time

aG3

dwgge2= a	
at current time

aG2

dbgdwo= a g	
at current time

aG3

dwxx = element of D
at previous time

dwyx = element of D.
at previous time

doxx = element of D,
at previous time

doyx	 element of D,
at previous time

dg	 = diffusion coefficient of gas,
constant

twyge 1 = at	
at current time

aG,

twyge2 = a	
at current time

aG2

toygel =	 at	
at current time

toyge2 =	 a0	
at current time

aG2

dwwge2= a w	
at current time

aG2

dwggel= a v	
at current time

aG,

dwgge3= a	
at current time

aG3

drgge3 = a g	
at current time

aG3

dwxy = element of D,
at previous time

dwyy = element of D.
at previous time

doxy = element of D.
at previous time

doyy = element of D,
at previous time
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APPENDIX C

Source Code of COMPO2D

program compo2d
common /moon/ge 1 (200),ge2(200),ge3(200),pWg(2OO)P0g(20O),

+	 wo2(200),ww2(200),wg2(200),bop(200),bo 1 (200),sw(200),
+	 rowm(200),room(200),rkp(200),so(200),Sg(200)

common /sun/ gen 1 (200),gen2(200),gen3(200) ,pwgfl(200),pogn(200),
+	 won2(2O0),wwn2(200),wgn2(200),swn(2O0),50(2OO),Sgfl(200),
+	 twx(200),twy(200),tox(200),toy(200),beg(200),dbgdWO(200),

+	 twxge 1 (200),twyge I (200),twxge2(200),twyge2(200),

+	 toxge I (200),toyge 1 (200),toxge2(200),toyge2(200),

+	 dwwge 1 (200),dwwge2(200),dwwge3(200),

+	 dwgge 1 (200),dwgge2(200),dwgge3(200),
+	 rogn 200),drgge3(200)
common /dove/dwxx(200),dwxy(200),dwyx(200),dWyy(200),
+	 doxx(200),doxy(200),doyx(200),doyy(200),
+	 dmw,atw,alw,dmo,ato,alo,dmg,dg(200)
common /Iake/gintx 1 (4,4,2),ginty I (4,4,3),gintx2(4,4,4,3),

+	 ginty2(4,4,4,3),gintx3(4,4,4,4,3),ginty3(4,4,4,4,3),
+	 gintx4(4,4,4,4,4,2),ginty4(4,4,4,4,4,2)
common /may/ dswge 1 (200),dswg 11 (200),dswg2 1(200),
+	 dswge2(200),dswg22(200),dswg 12(200),
+	 dsogel(200),dsogl 1(200),dsog2l(200),
^	 dsoge2(200),dsog22(200),dsog 12(200),
+	 dsgge 1 (200),dsgg 11 (200),dsgg2 1(200),
+	 dsgge2(200),dsgg22(200),dsgg 12(200)
common /door/asw,rnsw,swr,sws,akw,rnkw,aso,rnso,sor,sos,ako,rnko,
+	 ako I ,rnkol ,ako2,rnko2,swir,som
common IhiJl/ni,t,z
common /june/rkx,rky,rx,ry,g
common /july/a(600,600),b(600),u(600),rmax
common /windlnn,pg,rm 1 ,rm2,rkpg,rkpw,rmw,rma,uo(200),row(200),

+	 roo(200)
common /tree/pwb,pob 1 ,pob2,bew,be 1 ,be2,rwb,rob 1 ,rob2,
+	 rmuw,rmu 1 ,rmu2,theta,eps,itype
common /birdlx(200),y(200),nne(200,4),e(4),n(4)
common /phic/ dpc(20),drw(20),dro(20),dro 1 (20),dro2(20),
+	 dsw(20),dso(20)
dimension tge 1 (200),tge2(200),bc(200),qwbo(200),qobo(200)

C

C DATA INPUT ACCORDING TO FLOW PA1TERNS
c

open(50, file=da2l)
open(5 1, file=da22')
read(50, *) itype
if(itype.eq.4.or.itype.eq.5) then
go to 901

else

read(50,') rmw,rmuw,bew,rwb,pwb
endif
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901 if(itype.eq.1) go to 902
read(50,*) rml ,rmu 1 ,be 1 ,rob 1 ,pob 1
if(itype.eq.2.or.itype.eq.4) go to 902
if(itype.eq.6) go to 902
read(50,*) rm2,rmu2,be2,rob2,pob2

902 read(50 , *) eps,alpa,rkx,rky,rx,ry,g,pg,swir,som
if(itype.eq.5.or.itype.eq.7) then
read(50 , *) rma,z,t,ru
read(50 , *) dmw,dmo,dmg,atw,alw,ato,alo,rkpw,rkpg
endif
if(itype.eq.3) then
read(50,*) dmw,dmo,dmg,atw,alw,ato,alo,rkpw,rkpg
endif
if(itype.eq.1) read(50,*) dmw,atw,alw

C

c isw,iso,irw,iro,irol, AND iro2 DEFINE DATA TYPES WHICH RELATE
c SATURATIONS AND RELATIVE PERMEABILITIES TO CAPILLARY PRESSURES
c THREE TYPES ARE DEFINED IN ThIS CODE.

c 1: Van Genuchten
c 2: Experimental Data
c 3: Others

if(itype.eq. 1) then
read(50 , *) isw,irw
if(isw.eq.1) read(50, *) asw,rnsw,swr,sws
if(isw.eq.2) then
read(50 , *) mum
read(50, *) (dpc(i),i=1 ,inum)
read(50 , *) (dsw(i),i=1 ,inum)

endif
if(irw.eq. I) read(50, *) akw,rnkw
if(irw.eq.2) then
read(50,*) mum
read(50,*) (dpc(i),i=1 ,inum)
read(50,*) (drw(i),i=1 ,inum)

endif
end if

if(itype.eq.2.or.itype.eq.3) then
read(50,*) isw,irw,iro
if(isw.eq.1) read(50,*) asw,rnsw,swr,sws
if(isw.eq.2) then
read(50,*) mum
read(50,*) (dpc(i),i=1 ,inum)
read(50,*) (dsw(i),i=1,inum)

endif
if(irw.eq.1) read(50,*) akw,rnkw
if(irw.eq.2) then
read(50,*) mum
read(50,*) (dpc(i),i1 ,inum)
read(50,*) (drw(i),i1,inum)

end if
if(iro.eq.1) read(50,*) ako,rnko
if(iro.eq.2) then
read(50 , *) mum
read(50, *) (dpc(i),i1,inum)
read(50 , *) (dro(i),i=1,inum)
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endif
endif

if(i(ype.eq.4.or.itype.eq.5) then
read(50,*) iso,iro
if(iso.eq. 1) read(50, *) aso,rnso,sor,sos
if(iso.eq.2) then
read(50,*) mum
read(50 , *) (dpc(i),i=1 ,inum)
read(50,*) (dso(i),i=1 ,inum)

endif
if(iro.eq.1) read(50, *) ako,rnko
if(iro.eq.2) then
read(50, *) mum
read(50, *) (dpc(i),i=1 ,inum)
read(50 , *) (dro(i),i=1 ,inum)
endif
endif

if(itype.eq.6.or.itype.eq.7) then
read(50,*) isw,iso,irw,irol ,iro2
if(isw.eq. 1) read(50, *) asW,rnsw,swr,sws
if(isw.eq.2) then
read(50,*) mum
read(50,*) (dpc(i),i=1 ,inum)
read(50,*) (dsw(i),i=1 ,inum)

endif
if(iso.eq. 1) read(50 , *) aso,rnso,sor,sos
if(iso.eq.2) then
read(50,*) mum
read(50,*) (dpc(i),i=1 ,inum)
read(50 , *) (dso(i),i=1 ,inum)

endif
if(irw.eq.I) read(50, *) akw,rnkw
if(irw.eq.2) then
read(50,*) mum
read(5O,*) (dpc(i),i=1 ,inum)
read(50,*) (drw(i),i=1 ,inum)

endif
if(iro 1 .eq. 1) read(50,*) akol ,rnko 1
if(irol.eq.2) then
read(50, *) mum
read(50 , *) (dpc(i),i= 1 ,inum)
read(50,*) (dro(i),i=1,inum)

endif
if(iro2.eq.1) read(50,*) ako2,mko2
if(iro2.eq.2) then
read(50 , *) mum
read(50,*) (dpc(i),i=1 ,inum)
read(50 , *) (drol (i),i=l ,inum)

endif
endif
read(50 , *) ne,nn,nr,nc,nt,dt
data e( 1 ),e(2),e(3),e(4)/- 1,1,1,-li
data n(1),n(2),n(3),n(4)/-1,-1,1,1/
rx=3.14159/180.*rx
ry=3.14159/180.*ry
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c NODE AND ELEMENT NUMBERS ARE DECIDED AND EACH NODE IS DECIDED IN
c THE LOCAL COODINATE SYSTEM FROM THE SUBROUTINE coor.

call coor(ne,nn)

do 13 i=1,nn
gel(i)=O
ge2(i)=O
ge3(i)=O
pwg(i)=O
pog(i)=O
wo2(i)=O
wg2(i)=O
ww2(i)=O
sw(i)=O
so(i)=O
swn(i)=O
son(i)=O
sgn(i)=O
genl(i)=O
gen2(i)=O
gen3(i)=O
pwgn(i)=O
pogn(i)=O
won2(i)=O
wgn2(i)=O
wwn2(i)=O
uo(i)=O
bop(i)=O
bol(i)=O
row(i)=O
rowm(i )=O
roo(i)=O
room(i)=O
twx(i)=O
twy(i)=O
tox(i)=O
toy(i)=O
beg(i)=O
rogn(i)=O
rkp(i)=O
dswge 1 (i)=O
dswgl 1(i)=O
dswg2 1 (i)=O
dswge2(i)=O
dswg22(i)=O
dswg 1 2(i)=O
dsogel(i)=O
dsogl 1(i)=O
dsog2 1 (i)=O
dsoge2(i)=O
dsog22(i)=O
dsog I 2(i)=O
dsggel(i)=O
dsggl 1(i)=O
dsgg2 1 (i)=O
dsgge2(i)=O
dsgg22(i)=O
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dsgg 1 2(i)=0
twxge 1 (i)=O
twyge I (i)=0
twxge2(i)0
twyge2(i)O
toxge 1 (i)=0
toyge 1 (i)=0
toxge2(i)=0
toyge2(i)=0
dwwge 1 (i)=0
dwwge2(i)=0
dwwge3(i)=0
dwgge 1 (i)O
dwgge2(i)0
dwgge3(i)0
drgge3(i)0
dwxx(i)=0
dwxy(i)=0
dwyx(i)=0
dwyy(i)=0
doxx(i)=0
doxy(i)=0
doyx(i)=0
doyy(i)=0
dg(i)=0
bc(i)=0
qwbo(i)=0
qobo(i)=0

13 continue
C

c SUBROUTINE inicon AND bouncon ARE CONCERNED WITH iNiTIAL CONDITION
c AND BOUNDARY CONDITION
C

call inicon(ge 1 ,ge2,ge3,gen 1 ,gen2,gen3,nn)
call bouncon(gel,ge2,ge3,genl,gen2,gen3,nr,nc,nn)

C

n3=nn*3
time=O
nk= 1

c
c DO LOOP 1000 IS FOR CALCULATING THE ELEMENTS OF THE RESULTANT MATRIX
c EQUATION,
c

do 1000 idt=1,nt
if(idt.eq.1 1) dt=dt*10
ikount=0
kount=0
time=time+dt

1001 do 17 i=1,n3
b(i)=0
u(i)=0
do 17j=1,n3
a(i,j)=0

17 continue
if(ikount.eq.1) go to 1056
tune=0.5
kount=kount+ 1

1056 if(kount.gt.30) then
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stop
endif
do 133 i=1,nn

C

c WATER PRESSURE, ORGANIC PRESSURE, DERIVATIVES OF WATER AND ORGANIC
c PRESSURES WITH RESPECT TO THE PRIMARY VARIABLES ARE REPRESENTED
c ACCORDIN TO FLOW PA1TERNS.

if(itype.eq. 1) then
pwg(i)=-ge 1 (i)+pg
pwgn(i)=-gen 1 (i)+pg
pog(i)=O
pogn(i)=O
pwgge 1=-i
pwgge2=O
pogge1O
pogge2=O
goto 133
endif
if(itype.eq.2.or.itype.eq.3) then
pwg(i)ge2(i)
pwgn(i)gen2(i)
pog(i)ge 1 (i)+ge2(i)
pogn(i)gen 1 (i)+gen2(i)
pwggelO
pwgge2l
pogge11
pogge2 1
go to 133

end if
if(itype.eq.4.or.itype.eq.5) then
pwg(i)O
pwgn(i)=O
pog(i)=-ge2(i)+pg
pogn(i)=-gen2(i)+pg
pwggel=O
pwgge2=O
poggel=O
pogge2=- 1
go to 133
endif
if(itype.eq.6.or.itype.eq.7) then
pwg(i)=-ge I (i)-ge2(i)+pg
pwgn(i)=-gen 1 (i)-gen2(i)+pg
pog(i)=-ge2(i)+pg
pogn(i)=-gen2(i)+pg
wo2(i)= 1 -ge3(i)
won2(i)=I -gen3(i)
pwgge 1=-i
pwgge2=- 1
poggel=O
pogge2=- 1
endif

133 continue
if(kount.gt.1) go to 221

c SUBROUTINE ocof IS TO CALCULATE COEFFICIENTS THAT IS RELATED TO
c THE PREVIOUS TIME.
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call ocof(nr,nc)

c SUBROUTINE coef IS TO CALCULATE COEFFICIENTS THAT IS RELATED TO
c THE CURRENT TIME.

221 call coef

kkl=0
do 108 ie=1,ne
nl=nne(ie,1)
n2=nne(ie,2)
nn3=nne(ie,3)
n4=nne(ie,4)
do 110 i4=1,4
if(i4.eq.1) nO=nl
if(i4.eq.2) nO=n2
if(i4.eq.3) nO=nn3
if(i4.eq.4) nO=n4
if(nO.eq.l.or.nO.eq.21) then
a(3*n02 , 3 *nO..2) 1
a(3*n01,3*n01)=1
a(3*nO,3*nO)=1
go to 110
endif
do 19 i19=1,nk
if(nO.eq.bc(i 19)) then
ih=bc(i 19)
a(ih*3_2,ih*32)=l
a(ih*3_ 1 ,ih*3 1 )=l
a(ih*3,ih*3)=1
go to 110
endif

19 continue
if(nO.eq.20.or.nO.eq.40) then
a(3*n02,3*n02)=1
a(3*nO=1,3*nO_1)=1
a(3*nO,3*nO)=1
goto 110

endif
do 92 ih2,nr-1
if(nO.eq.ih) then
rboabs(y(n I )-y(n4))/2
go to 793
endif
jh=nr*(nc_ 1 )+ih
if(nO.eq.jh) then
rboabs(y(n I )-y(n4))/2
go to 793
endif

92 continue
do 93 ih=1,nc
jh=nr*(ih_1)+1
if(nO.eq.jh) then
rbo=abs(x(n I )-x(n2))/2
go to 793
endif
lh=nr*ih
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if(nO.eq.Ih) then
rbo=abs(x(n 1 )-x(n2))/2
go to 793
endif

93 continue
793 pav=rkp(nO)*pog(nO)+( 1 rkp(nO))*pwg(nO)

pavn=rkp(nO) *pogn(nO)+( 1 rkp(nO))*pwgn(nO)

c DERIVATIVES OF ThE AVERAGE FLUID PRESSURE ARE PRESENTED ACCORDING TO
FLOW PA1TERNS.

if(itype.eq. 1) then
pavge 1=-i
pavge2=O

goto 1333
endif
if(itype.eq.2.or.itype.eq.3) then
pavge 1 =rkp(nO)
pavge2=l
goto 1333

endif

if(itype.eq.4.or.itype.eq.5) then

pavgel=O
pavge2=- I

goto 1333

endif

if(itype.eq.6.or.itype.eq.7) then
pavge 1 =rkp(nO)- 1
pavge2=- 1
endif

1333 continue
rowm(nO)=(row(n I )+row(n2)+row(nn3 )+row(n4))/4
room(nO)=(roo(n 1 )+roo(n2)+roo(nn3)+roo(n4))/4
qvol=vol(n 1 ,n2,nn3,n4,i4)
kk I =kk 1 + 1

c SUBROUTINE gint IS FOR NUMERICAL INTEGRATIONS BY GAUSSIAN QUAGRATURE.

call gint(n 1 ,n2,nn3,n4,i4)

if(swn(nO).lt.swir) go to 453
a(3*nO2,3*nO_2)=a(3*nO2,3*nO2)

+	 +(eps*(dswg 11 (nO)(gen 1 (nO)-ge 1 (nO))Idt
^	 +dswge 1 (nO)/dt+dswg 1 2(nO)*(gen2(nO)ge2(nO))/dt)

+	 +sw(nO)*bew*eps/dt*pwgge 1

+	 +sw(nO) *alpa*( 1 eps)*pavge 1 /dt)*qvol
a(3*nO2 ,3*nO 1 )=a(3*nO2,3*nO 1)

^	 +(eps*(dswg21(nO)*(gen1(nO)ge1 (nO))/dt
+	 +dswg22(nO)*(gen2(nO)ge2(nO))/dt+dswge2(nO)/dt)
+	 +sw(nO)*alpa*( 1 eps)*pavge2/dt+sw(nO)*bew*eps*pwgge2Jdt)

+	 *qvol
b(3*nO2)=b(3*nO2)

+	 (eps*(dswge 1 (nO)*(gen 1 (nO)-ge 1 (nO))/dt+dswge2(nO)
+	 *(gen2(no)ge2(no))/dt)+sw(no)*bew*eps
+	 *(pwgn(nO)..pwg(nO))/dt
+	 +sw(nO)*alpa*( 1 eps)*(pavnpav)/dt)*qvol
+	 qwbo(i)*rbo

453 if(itype.eq. 1) go to 1311
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a(3*nO_1 ,3 I L1O2)=a(3*nO_I ,3*nO_2)
+(ge3(nO)*so(nO)*eps*bop(nO)/dt*pogge 1

+	 +epsgen3(nO)*(dsog 11 (nO)*(gen I (nO)-ge I (nO))/dt
+	 +dsoge 1 (nO)/dt+dsog 1 2(nO)*(gen2(nO)ge2(nO))/dt)
+	 +so(nO)*ge3(nO)*alpa*( 1 eps)*pavge I/dt)*qvol
a(3*nO 1 ,3nO- 1 )=a(3*nO_I , 3*nO 1)

+	 +(ge3(nO)*so(nO)*eps*bop(nO)/dt*pogge2
+	 ^epsgen3(nO)*(dsog2 1 (nO)*(gen 1 (nO)-ge 1 (riO))/dt
+	 +dsog22(nO)*(gen2(nO)ge2(nO))/dt+dsoge2(nO)/dt)
+	 +so(nO)*ge3(nO)*alpa*( 1 eps)/dt*pavge2)*qvo1
a(3*nO 1 ,3*nO)=a(3*nO 1 ,3*nO)

+	 +(ge3(nO)*so(riO)*eps*bo 1 (nO)/dt+eps*so(nO)/dt
+	 +eps*(dsoge I (nO)* (gen 1 (nO)-ge I (nO))/dt+dsoge2(nO)
+	 *(gen2(nO).ge2(no))/dt))*qvol
b(3*nO 1 )=b(3*nO_1)

+	 (ge3(nO)*so(nO)*eps* (bop(nO)*(pogn(nO)pog(nO))/dt

+	 +bo 1 (nO)*(gen3(nO)ge3(nO))/dt)+eps*so(nO)
+	 *(gen3(no)ge3(no))/dt+eps*gen3(no)
+	 *(dsoge 1 (nO)*(gen 1 (nO)-ge I (nO))/dt+dsoge2(nO)
+	 * (gen2(nO)ge2(nO))/dt)+so(nO)*ge3(nO)*a1pa*( 1 -eps)
+	 *(pavnpav)/dt)*qvol
+	 qobo(i)*rbo

if(swn(nO).It.swir) go to 454

1311 a(3*nO,3*nO_2)=a(3*nO,3*nO2)
+ +(row(nO)*eps*sw(nO)/dt*dwwge 1 (nO)
+ +row(nO)*eps*dwwge 1 (nO)*(dswge 1 (nO)*(gen I (nO)-ge 1 (nO))/dt
+ -i-dswge2(nO) *(gen2(nO)ge2(nO))/dt)+row(nO)*eps*wwn2(nO)
+ *(dswg 11 (nO)*(gen I (nO)-ge 1 (nO))/dt+dswge 1 (nO)/dt+dswgl 2(nO)
+ *(gen2(nO)ge2(nO))/dt)+row(nO)*wwn2(nO)*sw(nO)
+ *bew*eps/dt*pwggel)*qvol
+ +(alpa*( 1 eps)*(row(nO)*sw(nO)*dwwge 1 (nO)+row(nO)*dswge 1 (nO)
+ *wwn2(nO))*(pavn..pav)/dt
+ +alpa*( 1 eps)*(row(nO)*sw(nO)*wwn2(nO))*pavge 1/dt)*qvol
a(3*nO,3*nO 1 )=a(3*nO,3*nO_1)
+ +(row(nO)*eps*sw(nO)/dt*dwwge2(nO)
+ +row(nO)*eps*dwwge2(nO)*(dswge 1 (nO)*(gen 1 (nO)-gel (nO))/dt
+ +dswge2(nO)*(gen2(nO)ge2(nO))/dt)+row(nO)*eps*wwn2(nO)
+ *(dswg2 I (nO)*(gen 1 (nO)-ge I (nO))/dt+dswg22(nO)
+ *(gen2(nO)ge2(nO))/dt+dswge2(nO)/dt)+row(nO)*wwn2(nO)
+ *sw(nO)*bew*eps/dt*pwgge2)*qvol
+ +(alpa*( 1 eps)*(row(nO)*sw(nO)*dwwge2(nO)+row(nO)*dswge2(nO)
+ *wwn2(flO))*(pavn..pav)/dt
+ +alpa*( 1 eps)*(row(nO)*sw(nO)*wwn2(nO))*pavge2/dt)*qvo1

a(3*nO,3*flO)=a(3*nO,3*nO)
+ +(row(flO)*eps*sw(nO)/dt*dwwge3(nO)+row(nO)*eps
+ *dwwge3(nO)*(dswge 1 (nO)*(gen 1 (nO)-ge 1 (nO))/dt+dswge2(nO)
+ *(gen2(nO)_ge2(nO))/dt)
^ +a1pa e ( 1 eps)*row(nO)*sw(nO)*dwwge3(nO)*(pavnpav)/dt)*qvo1
b(3*nO)=b(3*nO)
+ (row(flO)*eps*sw(nO)*(wwn2(nO)ww2(nO))/dt+row(nO)*eps
+ *wwn2(riO)* (dswge 1 (nO)*(gen I (nO)-ge 1 (nO))/dt+dswge2(nO)
+ *(gen2(to)ge2(no))/dt)+row(no)*ww2(no)*sw(no)*bew*eps
^ *(pwgn(nO).pwg(nO))/dt
+ +alpa*( 1 eps)*row(nO)*sw(nO)*wwn2(nO)*(pavnpav)/dt)*qvo1

454 if(itype.eqJ) go to 1211



158

a(3*nO,3*nO2)=a(3*nO,3*nO2)
+ +(roo(nO)*eps*won2(nO)*(dsog 11 (nO)
+ *(gen I (nO)-ge I (nO))/dt+dsoge 1 (nO)/dt+dsog 1 2(nO)
+ *(gen2(no)ge2(no))/dt)
+ +roo(nO)*wo2(nO)*so(nO)*eps*bop(nO)/dt*pogge 1 +rogn(nO)*eps
+ *sg(nO)* (1 +wg2(nO)*beg(nO))/dt*dwgge I (nO)
+ +rogn(nO)*eps*dwgge I (nO)*(dsgge 1 (nO)*(gen 1 (nO)-gel (nO))/dt
+ +dsgge2(nO)*(gen2(nO)ge2(nO))/dt)
+ +rogn(nO)*eps*wgn2(nO)*(dsggl I (nO)*(gen 1 (nO)-ge 1 (nO))/dt
+ +dsgge I (nO)/dt+dsgg I 2(nO)* (gen2(nO)ge2(nO))/dt))*qvo1
a(3*nO,3*nO2)=a(3*nO,3*nO2)
+ +(alpa*( 1 eps)*(sg(nO)*rogn(nO)*dwgge 1 (nO)+roo(nO)*dsoge 1 (nO)
+ *won2(no)+rogn(no)*dsgge 1 (nO)*wgn2(nO))*(pavnpav)/dt
+ +alpa*( 1 eps)*(roo(nO)*so(nO)*won2(nO)
+ +sg(nO)*rogn(nO)*wgn2(nO))*pavgel/dt)*qvol
a(3*nO, 3*nO 1 )=a(3*nO,3*nO_I)
+ +(roo(nO)*eps*won2(nO)*(dsog2l (nO)*(gen 1 (nO)-ge 1 (nO))/dt
+ +dsog22(nO)*(gen2(nO)ge2(nO))/dt+dsoge2(nO)/dt)
+ +roo(nO)*wo2(nO)*so(nO)*eps*bop(nO)/dtpogge2+rogn(nO)*eps
+ *sg(nO)*( I +wg2(nO)*beg(nO))/dt*dwgge2(nO)
+	 +rogn(nO)*eps*dwgge2(nO)*(dsgge 1 (nO)*(gen I (nO)-ge 1 (nO))/dt
+ +dsgge2(nO)*(gen2(nO)ge2(nO))/dt)
+ +rogn(nO)*eps*wgn2(nO)(dsgg2 1 (nO)*(gen 1 (nO)-ge 1 (nO))Idt
+ +dsgg22(nO) *(gen2(no)ge2(no))/dt+dsgge2(no)/dt))*qvo!
a(3*nO, 3*nO I )=a(3*nO,3*nO_1)
+ +(alpa*( 1 eps)*(sg(nO)*rogn(nO)*dwgge2(nO)+roo(nO)*dsoge2(nO)
+ *won2(no)+rogn(no)*dsgge2(no)*wgn2(no))*(pavn..pav)/dt
+ +alpa*( I eps)*(roo(nO)*so(nO)*won2(nO)
+ 4sg(nO)*rogn(nO)*wgn2(nO))*pavge2/dt)*qvoI
a(3*nO,3*nO)=a(3*nO,3*nO)
+ +(roo(nO)*eps*so(nO)*(_ 1 )/dt^roo(nO)*eps*( 1 )*(dsoge 1 (nO)
+ *(gen 1 (nO)-ge 1 (nO))/dt+dsoge2(nO)*(gen2(nO)_ge2(nO))/dt)
+ +roo(nO)*wo2(nO)*so(nO)*eps*bo I (nO)/dtidrgge3(nO)*eps
+ *sg(nO)*( I +wg2(nO)*beg(nO))*(wgn2(nO)wg2(nO))/dt
+ +rogn(nO)*eps*sg(nO)*( 1 +wg2(nO)*beg(nO))/dt*dwgge3(nO)
+ +eps*(drgge3(nO)*wgn2(nO)+rogn(nO)*dwgge3(nO))*(dsgge I (nO)
+ *(gen I (nO)-ge I (nO))/dt^dsgge2(nO)*(gen2(nO)ge2(nO))/dt)
+ +alpa*( 1 eps)*(roo(nO)*so(nO)*(_ 1)
+ +sg(nO)*(drgge3(nO)wgn2(nO)
+ +rogn(nO)*dwgge3(nO)))*(pavnpav)/dt) *qvol

b(3*nO)=b(3*nO)
+	 (roo(nO)*eps*so(nO)*(won2(nO)wo2(nO))/dt+roo(nO)*eps
+ *won2(no)*(dsogel(no)*(genl(no)..gel(no))/dt+dsoge2(nO)
+ *(gen2(no)..ge2(no))/dt)
+ +roo(nO)*won2(nO)*so(nO)*eps*(bop(nO)*(pogn(nO)pog(nO))

+ /dt+bo 1 (nO)*(gen3(nO)ge3(nO))/dt)+rogn(nO)*eps*sg(nO)
+ *( 1 +wg2(nO)*beg(nO))*(wgn2(nO)wg2(nO))/dt
+ +rogn(nO)*eps*wgn2(nO)*(dsgge 1 (nO)*(gen 1 (nO)-ge 1 (nO))/dt

+ +dsgge2(nO) *(gen2(no)ge2(no))/dt)
+ +alpa*( 1 eps)*(roo(nO)*so(nO)*won2(nO)
+ +sg(nO)*rogn(nO)*wgn2(nO))
+ *(pavnpav)/dt)*qvoI

C

1211 doll! ii=1,4

if(ii.eq.1) i=n!

if(ii.eq.2) i=n2

if(ii.eq.3) i=nn3
if(ii.eq.4) i=n4
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do Il2jj=1,4
if(jj.eq. 1) j=n 1
if(jj.eq.2) j=n2

if(jj.eq.3) j=nn3
if(jj.eq.4) j=n4
if(swn(nO).lt.swir) go to 455

C
a(3*nO2,3*i2)=a(3*nO2,3*i2)

+	 +pwgn(j)*twxge I (i)*gintx 1 (iijj, 1)
+	 +pwggel*twx(j)*gintxl(jj,ii,1)

+	 -twxge 1 (i)*row(j)*g*cos(rx)*gintx 1 (ii,jj,2)
+	 ^pwgn(j)*twyge 1 (i)*gin ty 1 (ii,jj, 1)
+	 +pwggel*twy(j)*gintyl(jj,ii,1)

+	 -twyge 1 (i)*row(j)*g*cos(ry)*ginty 1 (ii,jj,2)

a(3*nO2 ,3*i I )=a(3*nO2,3*j 1)

+	 +twx(j)*gintxl(jj,ii,1)*pwgge2
+	 +pwgn(j)*twxge2(i)*gintx 1 (ii,jj, 1)
+	 _twxge2(i)*row(j)*g*cos(rx)*gintx 1 (iijj,2)
+	 +twy(j)*ginty 1 (jj,ii, 1 )*pwgge2
+	 +pwgn(j)*twyge2(i)*ginty 1 (ii,jj, 1)
+	 _twyge2(i)*row(j)*g*cos(ry)*ginty 1 (iijj,2)
b(3*nO2)=b(3*nO2)

+	 (pwgn(,j)*twx(i)*gintx 1 (ii,jj, 1)
+	 _twx(i)*row(j)*g*cos(rx)*gintx 1 (ii,jj,2))
+	 (pwgn(j)*twy(i)*ginty1(ii,jj,I)
+	 twy(i)*row(j)*g*cos(ryyIginty 1 (ii,jj,2))

455 do 113 kk=1,4
if(kk.eq.1) k=nl
if(kk.eq.2) k=n2
if(kk.eq.3) k=nn3
if(kk.eq.4) k=n4
if(itype.eq.1) go to 1312
a(3 *nO_ I ,3*i_2)=a(3*nO_ I ,3*j)

+	 +gen3(k)*toxgel(i)*(pogn(j)
+	 *gintx2(ii,jj,kk,1)
+	 _roo(j)*g*cos(rx)*gintx2(ii,jj,kk,2))
+	 +gen3(k)*tox(j)*gintx2(jj,ii,kk, 1 )*pogge 1
+	 +gen3(k)*toygel(i)*(pogn(j)
+	 *ginty2(ii,jj,kk,I)
+	 roo(j)*g*cos(ry)*ginty2(ii,jj,kk,2))
+	 +gen3(k)*toy(j)*ginty2(jj,ii,kk, 1 )*pogge 1
+	 +eps*dsoge 1 (i)*(doxx(k)*gen3(j)*gintx2(ii,jj,kk, 1)
+	 +doxy(k)*gen3(j)*gintx2(ii,jj,kk,3))
+	 1eps*dsoge 1 (i)*(doyx(k)*gen3(j)*ginty2(ii,jj,kk, 1)
+	 idoyy(k)*gen3(j)*ginty2(ii,jj,kk,3))
a(3*nO I ,3*j_ 1 )=a(3*nO 1 ,3*j 1)

+	 +gen3(k)*toxge2(i)*(pogn(j)

+	 *gjntx2(jj,jj,kkl)
+	 roo(j)*g*cos(rx)*gintx2(ii,jj,kk,2))
+	 1gen3(k)*tox(j)*gintx2(jj,ii,kk, 1 )*pogge2
+	 sgen3(k)*toyge2(i)*(pogn(j)
+	 *ginty2(iijj,kkl)
^	 roo(j)*g*cos(ry)*ginty2(ii,jj,kk,2))
+	 +gen3(k)*toy(j)*ginty2(jj,ii,kk, 1 )*pogge2
+	 +eps*dsoge2(i)* (doxx(k)*gefl3(j)* gj flx2(ii ,jj ,kk, 1)
^	 +doxy(k)*gen3(j)*gintx2(ii,jj,kk,3))
+	 +eps*dsoge2(i)*(doyx(k)*gen2(j)*gjfly2(ii,jj,kk, 1)

+	 'idoyy(k)*gen3(j)*ginty2(ii,jj,kk,3))
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a(3*n01 , 3*i)=a(3*nOl ,3*j)
+	 +tox(k)*(pogn(j)*gintx2(ii,jj,kk, 1)
+	 roo(j)*g*cos(rx)*gintx2(ii,jj,kk,2))
+	 +toy(k)*(pogn(j)*gin ty2(ii,jj,kk, 1)
+	 roo(j)*g*cos(ry)*ginty2(ii,jj,kk,2))
+	 +eps*son(j)*(doxx(k)*gintx2(jj,ii,, 1)

^	 +doxy(k)*gintx2(jj,ii,kk,3))
+	 +eps*son(j)*(doyx(k)*ginty2(jj ,ii,kk, 1)
+	 +doyy(k)*ginty2(jj,ii,kk,3))
b(3*n01)=b(3*n01)

+	 gen3(k)*tox(i)*(pogn(j)*gintx2(jj,jj, 1)
+	 _roo(j)*g*cos(rx)*gintx2(ii,jj,kk,))
^	 gen3(k)*toy(i)*(pogn(j)*ginty2(jj,jj,, 1)

+	 _roo(j)*g*cos(ry)*ginty2(ii,jj,kk,2))
+	 _eps*son(i)*(doxx(k)*gen3(j)*gjfltx(ji,jj,, 1)

+	 +doxy(k)*gen3(j)*gintx2(ii,jj,kk,3))
+	 eps*son(i)*(doyx(k)*gen3(j)*ginty2(ii,jj,, 1)

+	 +doyy(k)*gen3(j)*ginty2(ii,jj,kk,3))

if(swn(nO).lt.swir) go to 456

1312 a(3*n0,3*i2)=a(3*n0,3*i2)
+	 +rowm(nO)*dwwge I (i)*twx(k)*(pwgn(j)
+	 *gintx2(ii,jj,kk,1)
+	 row(j)*g*cos(rx)*gintx2(ii,jj,kk,2))
+	 +rowm(nO)*wwn2(k)*twxge 1 (i)*(pwgn(j)
+	 *gintx2(kk,jj,ii,l)
+	 _row(j)*g*cos(rx)*gintx2(kk,jj,ii,2))

+	 +rowm(nO)*wwn2(j)*twx(k)*gintx2(jj,ii,kk, 1 )*pwgge 1
+	 +rowm(nO)*dwwge 1 (j)*twy(k)*(pwgn(j)
+	 *ginty2(ii,jj,kk,1)
+	 _row(j)*g*cos(ry)*ginty2(ii,jj,kk,2))

+	 +rowm(nO)*wwn2(k)*twyge 1 (i)*(pwgn(j)
+	 *ginty2(kk,jj,ii,1)
+	 row(j)*g*cos(ry)*ginty2(kk,jj,ii,2))
^	 +rowm(nO)*wwn2(j)*twy(k)*ginty2(jj,ii,kk, I )"pwgge 1

a(3*n0,3*i2)=a(3*n0,3 *j2)
+	 +rowm(n0)*eps*dswge1(i)*(dwxx(k)*wwfl(j)

+	 *gintx2(ii,jj,kk,1)
+	 +dwxy(k)*wwn2(j)*gintx2(ii,jj ,kk,3))
+	 +rowm(nO)*eps*swn(j)*(dwxx(k)*dwwgel (i)
^	 *gintx2(jj,ii,kk,I)
+	 +dwxy(k)*dwwge 1 (i)*gintx2(jj,ii,kk,3))
+	 +rowm(nO)*eps*dswge I (i)*(dWyX(k)*Wwn2(j)
+	 *ginty2(ii,jj,kk,3)
+	 +dwyy(k)*wwn2(j)*ginty2(ii,jj,kk, 1))
+	 +rowm(nO)*eps*swn(j)*(dwyx(k)*dwwge 1(i)
+	 *ginty2j,jj,kk,3)

+	 +dwyy(k)*dwwgel (i)*ginty2j,ji,kk,1))

a(3*n0, 3*i 1 )=a(3*nO,3*i_1)
+	 +rowm(nO)*dwwge2(i)*twx(k)*(pwgrl(i)
+	 *gintx2(ii,jj,kk,1)
+	 row(j)*g*cos(rx)*gintx2(ii,jj,kk,2))

+	 +rowm(nO)*wwn2(k)*twxge2(i)*(pwgfl(j)
+	 *gintx2(kkjj,ii,I)
+	 _row(j)*g*cos(rx)*gintx2(kk,jj,ii,2))
+	 +rowm(nO)*wwn2(j)*twx(k)*gintx2(Jj, ii ,kk, 1 )*pwgge2
+	 +rowm(nO)*dwwge2(i)*twy(k)*(pwgn(j)
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+	 *ginty2(iijj,kk,1)
+	 row(j)*g*cos(ry)*ginty2(ii,jj,kk,2))
+	 +rowm(nO)*wwn2(k)*twyge2(i)*(pwgn(j)
+	 *ginty2(kk,jj,ii,1)
+	 row(j)g*cos(ry)*ginty2(kk,jj,ii,2))
+	 +rowm(r)*wwn2(j)*twy(k)*ginty2(jj,ii,kk, I )'pwgge2

a(3*nO,3*i_1 )=a(3*nO,3*il)
+	 +rowm(nO)*eps*dswge2(i)*(dwxx(k)*wwn2(j)
+	 *gintx2(ii,jj,kk,I)
+	 +dwxy(k)*wwn2(j)*gintx2(ii,jj,kk,3))
+	 1rowm(nO)*eps*swn(j)*(dwxx(k)*dwwge2(i)
+	 *gintx2(jj,ii,kk,1)
+	 +dwxy(k)*dwwge2(i)*gintx2(jj,ii,kk,3))
+	 +rowm(nO)*eps*dswge2(i)*(dwyx(k)*wwfl(j)

+	 *ginty2(ii,jj,kk3)
+	 +dwyy(k)*wwn2(j)*ginty2(ii,jj,kk, 1))
+	 +rowm(nO)*eps*swn(j )*(dwyx(k)*dwwge2(i)
+	 *ginty2(jj,ii,kk3)
+	 +dwyy(k)*dwwge2(i)*ginty2(jj,ii,kk, 1))
a(3*nO,3*i)a(3*nO,3*j)

+	 +rowm(nO)*dwwge3(i)*twx(k)*(pwgn(j)
+	 *gintx2(ii,jj,kkl)
+	 _row(j)*g*cos(rx)*gintx2(ii,jj,kk,2))
+	 +rowm(nO)*dwwge3(i)*twy(k)*(pwgn(j)
+	 *ginty2(ii,jj,kk, 1)
+	 _row(j)*g*cos(ry)*ginty2(iijj,kk,2))

+	 +rowm(nO)*eps*swn(J)*(dwxx(k)*dwwge3(j)
+	 *gintx2(jj,ii,kk,1)
+	 edwxy(k)*dwwge3(i)*gintx2(Jj,ii,kk,3))

+	 +rowm(nO)*eps*swn(J)*(dwyx(k)*dwwge3(i)
+	 *ginty2(jj,ii,kk,3)
+	 jdwyy(k)*dwwge3(i)*ginty2(jj,ii,kk, 1))

b(3*nO)=b(3 *nO)
+	 -rowm(nO)*wwn2(i)*twx(k)*(pwgn(j)

+	 *gintx2(ii,jj,kk,1)
+	 row(j)*g*cos(rx)*gintx2(ii,ji,kk,2))
+	 rowm(nO)*wwn2(i)*twy(k)*(pwgn(j)

+	 *ginty2(ii,jj , kk , 1)
+	 _row(j)*g*cos(ry)*ginty2(iijJ,kk,2))

+	 -rowm( nO)*eps*swn(i)*(dwXx(k)*wwn2(j)
^	 *gintx2(ii,jj,kk,1)
^	 +dwxy(k)*wwn2(j)*gintx2(ii,jj,kk,3))
+	 rowm(nO)*eps*swn(i)*(dwyx(k)*wwn2(j)
+	 *ginty2(ii,jj,kk,3)
+	 +dwyy(k)*wwn2(,j)*ginty2(ii,jj,kk, 1))

C

456 if(itype.eq.1) go to 113
C

a(3*nO,3*i2)a(3*nO,3*i_2)
+	 +room(nO)*won2(k)*toxgel (i)*(pogn(j)
+	 *gintx2(kk,jj,ii,1)
+	 roo(j)*g*cos(rx)*gintx2(kkii,ii,2))
+	 +room(fl)*won2(j)*toX(k)*gintX2(jj,ii,kk,1)*pOgge 1

+	 +room(fl)*won2(k)*tOyge 1 (i)*(pogn(j)

+	 *ginty2(kk,jj,ii,1)
+	 _roo(j)*g*cos(ry)*ginty2(kk,ii,ii,2))
^	 +roo(fl)*won2(j)*tOy(k)*giflty2(Jj,ii,kk, 1 )*poggel

a(3*nO,3*i_2)a(3*nO,3*i2)
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C

+	 +room(nO)*eps*dsogel(i)*(doxx(k)*won2(j)
+	 *gintx2(ii,jj,kk,I)
+	 +doxy(k)*won2(j)*gintx2(ii,jj ,kk,3))
+	 iroom(nO)*eps*dsoge1(i)*(doyx(k)*won2(j)
+	 *ginty2(ii,jj,kk,3)
+	 +doyy(k)*won2(j)*ginty2(ii,jj,kk, 1))
a(3*nO , 3*i_ 1 )=a(3*nO,3*i 1)

+	 +room(nO)*won2(k)*toxge2(i)*(pogn(j)
+	 *gintx2(kk,jj,ii,1)
+	 roo(j)*g*cOs(rx)*gifltX2(kk,ii,ii,2))
+	 )*pogge2
+	 Iroon1(nO)*won2(k)*tOyge2(i)*(pogn(j)
+	 *ginty2(kk,jj,ii, 1)
+	 roo(j)*g*cOs(ry)*gifltY2(kk,ii ,ii,2))
+	 +room(nO)*won2(jtoy(k)*giflty2(jj,ii,kk, I )"pogge2

+	 +room(nO)*eps*dsoge2(i)*(dOXX(k)*w0n2(j)
+	 *gintx2(ii,jj,kk,1)
+	 +doxy(k)*won2(j)*gintx2(ii,ji ,kk,3))
+	 +room(nO)*eps*dsoge2(i)*(dOyX(k)*won2(j)
+	 *ginty2(ii,jj,kk,3)
+	 +doyy( k)*won2(j)*ginty2(ii,jj,kk, 1))
a(3*nO,3*i)=a(3*nO,3*i)

+	 +room(riO)*(1)*tox(k)*(pogn(j)
+	 *gintx2(ii,jj,kk,I)
+	 roo(j)*g*cos(rx)*gintx2(ii,jj,kk,2))
+	 +room(nO)*(I)*toy(k)*(pogn(j)
+	 *ginty2(ii,jj,kk,1)
+	 roo(j)*g*cos(ry)*ginty2(ii,jj,kk,2))
+	 *room(nO)*eps*son(j)*(doxx(k)*( I)
+	 *gintx2(jj,ii,kk,1)
+	 +doxy( k)*(_1 )*gintx2(jj,ii,kk,3))
+	 +room(nO)*eps*son(j)*(doyx(k)*(1)
+	 *ginty2(jj,ii,kk,3)
+	 +doyy(k)*(_ 1 )*ginty2(jj,ii,kk, 1))
b(3 *nO)=b(3 *nO)

+	 room(nO)*won2(i)*tox(k)*(pogn(j)
+	 *gintx2(iijj,kk,1)
+	 _roo(j)*g*cos(rx)*gintx2(ii,jj,kk,2))
+	 room(nO)*won2(i)*toy(k)*(pogn(j)
+	 *ginty2(ii,jj,kk,I)
+	 roo(j)*g*cos(ry)*ginty2(ii,iJ,kk,2))

+	 room(nO)*eps*son(i)*(dOXX(k)*won2(j)
+	 *gintx2(ii,jj,kk,1)
+	 +doxy(k)*won2(j)*gintx2(ii,jj ,kk,3))
+	 room(nO)*eps*son(i)*(dOyX(k)*won2(j)
+	 *ginty2(ii,jj,kk,3)
+	 +doyy(k)*won2(j)*ginty2(ii,jj ,kk, 1))

do 115 11=1,4
if(11.eq.1) 1=nI
if(11.eq.2) 1=n2
if(1I.eq.3) 1=nn3
if(11.eq.4) 1=n4
a(3*nO,3*i_2)a(3*nO,3 *j.2)

+	 +eps*rogn(1)*dsgge 1 (j)*dg(k)*wgn2(j)
+	 *gintx3(11,jj,kk,ii,1)
+	 +eps*rogn (j) *sgn(k)*dg(I)*dwgge 1(i)
+	 *gintx3(jj,ii,kk,11,1)



163

+	 +eps*rogIi(1)*dsgge 1 (j)*dg()*Wgfl2(J)
+	 *ginty3(fl,jj,kk,ii,1)
+	 ^eps*rogn(j)*sgn(k)*g()*wgge1 (i)

+	 *ginty3(jj,ii,kk,II,1)
a(3*nO , 3*i_ 1 )=a(3*nO,3*j 1)

+	 +eps*rogti(1)*dsgge2(j)*Jg()*wgn2(j)

+	 *gintx3(11,jj,kk,ii,1)
+	 +eps*rogn(j)*sgn(k)*g()*wgge2(i)

+	 *gintx3(jj,ii,kk,11,1)
+	 +eps*rogn(I)*dsgge2(j)*1g()*wgn2(j)

+	 *ginty3(11,jj,kk,ii,1)
+	 +eps*rogn(j)*sgn(k)*g()*cjwgge2(i)

+	 *ginty3(jj,ii,kk,11,1)
a(3*nO,3*i)a(3*nO,3*i)

+	 +eps*drgge3(i)*sgn()*g(j)*wgn2(j)

+	 *gintx3(ii,jj,kk,11,1)
+	 +eps*rogn(j)*sgn(k)*g()*wgge3(i)

+	 *gintx3(jj,ii,kk,I1,I)
+	 +eps*drgge3(i)*sgn()*dg(J)*wgn2(j)

+	 *ginty3(ii,jj,kk,I1,1)
+	 +eps*rogn(j)*sgn(k)*g()*wgge3(i)

+	 *ginty3(jj,ii,kk,II,1)
b(3 *nO)=b(3 *nO)

+	 eps*rogn(i)*sgn(k)*dg(1)*wgn2(j)

+	 *gintx3(ii,jj,kk,fl,)
+	 eps*rogn(i)*sgn(k)*g(1)*wgn2(j)

+	 *ginty3(ii,jj,kk,l1,1)

do 116 mm=1,4
if(mm.cq.1) m=nl
if(mm.eq.2) m=n2
if(mm.eq.3) m=nn3
if(mm.eq.4) m=n4
a(3*nO 1,3 *j2)a(3 *nO.. I ,3*i2)
^	 gen3(k)*toxge1 (j)*(pogn)*bop(1)*pogn(m)

+	 *gintx4(ii,jj,kk,11,mm,1)
+	 +pogn(j)bo I (1)*gen3(m)*gintx4(ii,jj,kk,lI,mm,l)
+	 roo(j)*g*cos(rx)thop(1)*pogn(m)
+	 *gintx4(ii,jj,kk,11,mm,2)
+	 _roo(j)*g*cos(rx)*bol (1)*gen3(m)
+	 *gin[x4(ii,jj,kk,I1,mm,2))
+	 gen3(m)*tox(k)*pogge1 *(2*bop(1)*pogn(j)
+	 *gin tx4(mm,jj , kk,11,ii, 1)

+	 +bol (fl*gen3(j)*gintx4(mm,jj,kk,I1,ii,1)
+	 roo(j)*g*cos(rx)*bop(1)
+	 *gintx4(mm,jj,kk,I1,ii,2))
a(3*nO I ,3*i2)=a(3*nO 1 ,3*i.2)

+	 gen3(k)*toyge I (i)*(pogn(j)*bop(I)*pogn(m)
+	 *ginty4(iijj,kk,11,mm,1)
+	 +pogn(j)*bo 1 (I)*gen3(m)*ginty4(ii,jj,kk,11,rfl m, 1)
+	 roo(j)*g*cos(ry)*bop(1)*pogn(m)
+	 *ginty4(ii,jj,kk,II,mm,2)
+	 _roo(j)*g*cos(ry)*bol (1)*gen3(m)
+	 *ginLy4(ii,jj,kkIl,mm,2))
+	 gen3(m)*toy(k)*pogge 1 *(2*bop(1)*pogn(j)
+	 *ginty4(mm,jj,kkIl,ii, 1)
+	 +bo I (1)gen3(j)*ginty4(mm,jj,kk,1I,ii,1)
+	 roo(j)*g*cos(ry)*bop(1)

+	 *ginty4(mmjjkkll,ii,2))
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a(3*nO 1 ,3*j I )=a(3*nO_1 ,3*j 1)
+	 gen3(k)toxge2(i)*(pogn(j)*bop(1)*pOgfl(m)
+	 *gintx4(ii,jj,kk,11,mm,1)
+	 +pogn(j)*bol (1)*gen3(m)*gintx4(ii,jj,kk,ll,fllrfl,l)
+	 roo(j)*g*cos(rx)*bop(1)*pogn(m)
+	 *gintx4(ii,jj,kk,11,mm,2)
^	 roo(j)*gcos(rx)*bo1 (I)*gen3(m)
+	 *gintx4(ii,jj,kk,I1,mm,2))
^	 gen3(m)*tox(k)*pogge2*(2Thop(1)pOgfl(i)
+	 *gintx4(mm,jj,kk,II,ii,1)

+	 +bo 1 (1)*gen3(j)*gin tx4(mmjj , kk , 11 , ii, 1)
+	 roo(j)*gcos(rx)Thop(I)
+	 *gintx4(mm,jj,kk,11,ii,2))
a(3*nO 1 ,3*j 1 )=a(3*nO_1 ,3*i_1)

+	 gen3(k)*toyge2(i)*(pogn(j)*bop(1)*pogn(m)
+	 *ginty4(ii,jj,kk,11,mm,1)
+	 +pogn(j)*bo 1 (1)*gen3(m)*ginty4(ii ,jj,kk,11,mm, 1)
+	 roo(j)*g*cos(ry)*bop(1)*pogn(m)
+	 *gjflty4(ij,jj,kkllmm,2)
+	 roo(j)*g*cos(ry)*bo 1 (I)*gen3(m)
+	 *ginty4(iijj,kk,11,mm,2))
+	 gen3(m)*toy(k)*pogge2*(2*bop(1)*pogn(i)
+	 *ginty4(mm,jj,kk,I1,ii,1)
+	 +bo I (I)*gen3(j)*ginty4(mm,jj,kk,11,ii,1)
+	 roo(j)*g*cos(ry)*bop(1)
+	 *ginty4(mm,jj,kk,II,ii,2))
a(3*nO_1 ,3*i)=a(3*nO..1 ,3*j)

+	 tox(k)*(pogn(j)*bop(I)*pogn(m)
+	 *gintx4(kk,jj,ii,II,mm,1)
+	 +pogn(j)*bo I (I)*geri3(m)*gintx4(kk,jj,ii,1I,rflm, 1)
+	 roo(j)*g*cos(rx)*bop(I)*pogn(m)
+	 *gintx4(kk,jj,ii,lt,mm,2)
+	 _roo(j)*g*cos(rx)*bol (I)*gen3(m)
+	 *gintx4(kkjj,ii,II,mm,2))
+	 gen3(m)*tox(k)*(pogn(j)*bo1 (1)
+	 *gintx4(mm,jj,kk,1I,ii,1)
+	 _roo(j)*g*cos(rx)*bol(1)
^	 *gintx4(mm,jj,kk,I1,ii,2))
a(3*nO1 ,3*i)=a(3nO ,3*j)

+	 toy(k)*(pogn(j)*bop(l)*pogn(m)
+	 *ginty4(kk,jj,ii,II,mm,1)
+	 +pogn(j)*bo 1 (I)*gen3(nl)*ginty4(kk,jj,ii,11,mm, 1)
+	 roo(j)g*cos(ry)*bop(I)*pogn(m)
+	 *ginty4(kk,jj,ii,II,mm,2)
+	 _roo(j)*g*cos(ry)*bol (1)*gen3(m)

+	 ginty4(kkjj,ii,I1,mm,2))
+	 gen3(m)*toy(k)*(pogn(j)tho1 (1)
+	 *ginty4(mm,jj,kk,1I,ii,1)
+	 roo(j)*g*cos(ry)*bo1(I)
+	 *ginty4(mm,jj,kk,Il,ii,2))
b(3*nO1 )=b(3*nO 1)
^	 +gen3(k)*tox(i)*(pogn(j)Thop(I)*pogn(m)

+	 gintx4(ii,jj,kk,11,mm,1)
+	 i pogn(j)*bo 1 (I)*gen3(m)*gintx4(ii,jj,kk,1I,nlm, 1)
+	 roo(j)*g*cos(rx)*bop(1)*pogn(m)

+	 *gintx4(ii,jj,kk,II,mm,2)
+	 _roo(j)*g*cos(rx)*bol (I)*gen3(m)

+	 *gintx4(ii,jj,kk,11,mm,2))
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+	 +gen3(k)*toy(i)*(pogn(j)*bop(1)*pogn(m)
+	 *gin ty4(ii,jj,kk , Ilmm, 1)
+	 +pogri (j)*bol (1)*gen3(m)*ginty4(ii,jj ,kk,11,mm, 1)
+	 -roo(j )*gcos(ry)*bop(I)*pogn(m)
+	 *ginty4(ii,jj,kk,I1,mm,2)
+	 roo(j)*g*cos(ry)*bo1 (I)*gen3(m)
+	 *ginty4(ii,jj,kk,11,mm,2))
a(3*nO ,3 *j2)a(3*nO3*j2)

^	 room(nO)*won2(k)*toxge I (i)*(pogn(j)*bop(I)*pogn(m)
+	 *gintx4(ii,jj,kk,l1,mm,1)
+	 +pogn(j)*bo I (1)*gen3(m)*gintx4(ii,jj ,kk,I1,mm, 1)
+	 roo(j)*g*cos(rx)*bop(I)*pogn(m)
+	 *gintx4(ii,jj,kk,I1,mm,2)
+	 roo(j)*g*cos(rx)*bo I (1)gen3(m)
+	 *gintx4(ii,jj,kk,11,mm,2))
+	 room(nO)*won2(m)*tox(k)*pogge 1 *(2*bop(I)*pogn)
+	 *gintx4(mm ,jj , kk , 11,ii, I)

+	 +bol (I)*gen3(j)*gintx4(mm,jj,kk,11,ii, I)
+	 roo(j)*g*cos(rx)*bop(1)
+	 *gintx4(mm,jj,kk,II,ii,2))
a(3*rIO,3*i_2)=a(3*nO,3*i_2)

^	 room(nO)*won2(k)*toyge 1 (i)*(pogn)*bop(I)pogn(m)
+	 *ginty4(ii,jj,kk,11,mm,I)
+	 +pogn(j)*bo 1 (I)*gen3(m)*ginty4(ii,jj,kk,I1,mm, I)
+	 roo(j)*gcos(ry)*bop(I)*pogn(m)

+	 ginty4(ii,jj,kk,I1,mm,2)
+	 roo(j)*g*cos(ry)*boI (I)*gen3(m)
+	 *ginty4(ii,jj,kk,11,mm,2))

+	 -room( nO)*won2(m)*toy(k)*pogge 1 *(2*bop(l)$pogfl(j)
+	 *ginty4(mm,jj,kk,1I,ii,1)

+	 +bo 1 (1)*gen3(j)*ginty4(mmjj,kk,11,ii, 1)
+	 roo(j)*g*cos(ry)*bop(I)

+	 tginty4(mm,jj,kk,I1,ii,2))
a(3*nO , 3*i_ I )=a(3*nO,3*i_1)

+

+	 *gintx4(ii,jj,kk,11,mm,1)
+	 ^pogn(j)*bo 1 (I)*gen3(m)*gintx4(ii,jj,kk,11,mm, I)
+	 roo(j)*g*cOs(rx)*bop(1)*pogfl(m)
+	 *gintx4(ii,jj,kk,I1,mm,2)
+	 _roo(j)*g*cos(rx)Thol (1)*gen3(m)
+	 *gintx4(ii,jj,kk,1I,mm,2))
+	 room(nO)*won2(m)*tox(k)*pOgge2*(2*bop(IpOgfl(i)

+	 *gintx4(mm,jj,kk,I1,ii,1)

+	 +bo I (1)*gen3(j)*gintx4(mm,ji,kk,11,ii, 1)
+	 roo(j)*g*cos(rx)*bop(1)
+	 *gintx4(mm,jj,kk,II,ii,2))
a(3*nO ,3*i 1 )=a(3*nO,3*i_I)

+	 roon1(nO)*Won2(k)*toyge2(i)*(pOgn(j)*bop(I)*pOgt1(m)

+	 *ginty4(ii,jj,kk,1I,mm,I)
+	 +pogn(j)*bo 1 (I)*gen3(m)*giflty4(iijj,kk,11,mm, 1)

+	 -roo(j )*g*cos(Iy)*bop(1)*pogn(m)
+	 *ginty4(ii,jj,kk,1I,mm,2)
+	 roo(j)*g*cos(ry)*bo 1 (1)*gen3(m)
+	 *ginty4(ii,jj,kk,1I,mm,2))
+	 room(nO)*won2(m)*toy(k)*pOgge2*(2*bop(1)*pOgfl(J)

+	 *ginty4(mm,jj,kk,11,ii, 1)

+	 +bol (1)gen3)*ginty4(mmjj,kk,11,ii, 1)
+	 roo(j)*g*cos(ry)*bop(I)
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+	 *ginty4(mmjj,kk,lI,ii,2))
a(3*nO,3*i)=a(3*nO,3*i)

+	 room(n0)*( 1 )*tox(k)*(pogn(j)*bop(1)*pogn(m)
+	 *gintx4(ii,jj,kk,11,mm,1)
+	 +pogn(j)*bO 1 (1)*gen3(m)*gintx4(ii ,jj , kk,11,mm, 1)
+	 roo(j)*g*cos(rx)*bop(1)*pogn(m)
+	 *gintx4(ii,jj,kk,1l,mm,2)
+	 roo(j)*g*cos(rx)*bo 1 (1)*gen3(m)
+	 *gintx4(ii,jj,kk,l1,mm,2))
+	 room(n0)*won2(m)*tox(k)*(pogn(j)*bo1 (1)
+	 *gintx4(mm,jj,kk,I1,ii,1)
+	 roo(j)*g*cos(rx)*bo1(1)
+	 *gintx4(mm,jj,kk,11,ii,2))
a(3*nO,3*i)=a(3*nO,3*i)

+	 room(n0)*( I )*toy(k)*(pogn(j)*bop(1)*pogn(m)
+	 *ginty4(ii,jj,kk,11,mm,1)
+	 +pogn(j)*bo 1 (1)*gen3(m)*gin ty4(ii ,jj , kk,11,mm, 1)

+	 -roo(j )*g*cos(ry)*bop(1)*pogn(m)
+	 *ginty4(ii,jj,kk,I1,mm,2)
+	 _roo(j)*g*cos(ry)*bol (1)*gen3(m)
+	 *ginty4(ii,jj,kk,I1,mm,2))
+	 room(n0)*won2(m)*toy(k)*(pogn(j)*bo1 (1)
+	 *ginty4(mm,jj,kk,11,ii,1)
+	 _roo(j)*g*cos(ry)*bol(1)
+	 *ginty4(mm,jj,kk,1l,ii,2))
b(3*nO)=b(3*nO)

+	 +room(nO)*won2(k)*tox(i)*(pogn(j)*bop(1)*pogn(m)
+	 *gintx4(ii,jj,kk,1I,mm,1)
+	 +pogn(j)*bo 1 (1)*gen3(m)*gintx4(ii,jj ,kk,11,nim, 1)
+	 roo(j)*g*cos(rx)*bop(1)*pogn(m)
+	 *gintx4(ii,jj,kk,11,mm,2)
+	 roo(j)*g*cos(rx)*bo1 (1)*gen3(m)
+	 *gintx4(ii,jj,kk,l1,mm,2))
+	 +room(nO)*won2(k)*toy(i)*(pogn(j)*bop(1)*pOgn(m)
+	 *ginty4(ii,jj,kk,11,mm,1)
+	 +pogn(j)*bo I (1)*gen3(m)*gin ty4(ii ,jj ,kk, 11 ,mm, I)

+	 -roo(j )*g*cos(ry)*bop(1)*pogn(m)
+	 *ginty4(ii,jj,kk,I1,mm,2)
^	 roo(j)*g*cos(ry)*bo1 (1)*gen3(m)
+	 *ginty4(ii,jj,kk,I1,mm,2))

116 continue
115 continue
113 continue
112 continue
111 continue
110 continue
108 continue

do 338 i=1,nn
do 339j=l,3*nn
if(3*i.2 . eq .j) then
a(3*i2,j)1

else
a(3 *i2,j)0

endif
339 continue

b(3*i2)=0

338 continue
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c SUBROUTINE solv IS TO SOLVE THE MATRIX EQUATION.
C

call solv(n3)
C

irmm=abs(rmm)* 100
irmax=abs(rmax)* 100

278 forrnat(lx,' rmax =',flO.3)
if(kount.eq.1) go to 1008
if(irmm.le.irmax) then
do 1020 i=2,nn
if(i.eq.21) go to 1020
gen3(i)=tge 1 (i)+u(i*3)*tune
gen2(i)=tge2(i)+u(i*3_ 1 )*tune

1020 continue
ikount= 1
num=num+ 1
conu=0.9
if(num.ge.40) then
conu=1.1
isa=-1
tune=tune*conu*isa
if(tune.gt.0) tune=isa*tune
else
isa=1
tune=tune*conu*isa
endif
go to 1001
endif

172 format(lx,/,'rmax stopping,/,lx 'previous maximum residual =,
+	 f 10.2,!,' current maximum residual = ',f 10.2)

1008 rmmrmax
tune=0.9
isa= I
num=0
ikount=0

C

c DO LOOP 117 IS TO GETNEW TRIAL VALUE
C

do 117 i-2,nn
do 219 ip=1,nr*(nc1)i1,nr
if(i.eq.ip) go to 117

219 continue
do 217 ip=1,nk
if(i.eq.bc(ip)) go to 117

217 continue
gen 1 (i)=gen 1 (i)+u(i*3_2)
gen2(i)=gen2(i)+u(i*3_ 1)
gen3(i)=gen3(i)+u(i*3)
nge2=gen2(i)
if(nge2.le.15l0) then
gen2(i)=1 500
geri3(i)=0.5
bc(nk)=i
nk=nk+1
endif
tgel(i)=gen3(i)
tge2(i)=gen2(i)

117 continue
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c DO LOOP 123 Is TO CHECK THE CONVERGENCY CRITERIA.

do 123 1=1,n3-2,3
11=1 + I
12=1+2
if(abs(u(l)).gt.10) go to 1001
if(abs(u(l1)).gt.10) go to 1001
if(abs(u(12)).gt.le-3) go to 1001

123 continue
do 65 i=1,nn
gel(i)genl(i)
ge2(i)=gen2(i)
ge3(i)=gen3(i)
ww2(i)=wwri2(i)
wg2(i)=wgn2(i)

65 continue

c OUTPUT OF THE RESULTS

if(time.eq.20.or.time.eq.40) then
print 999,time

999 format(lx,//,TIME = ',flO.4)
do 211 i=1,nn
print 899,i,son(i),i,wwn2(i),i,wgn2(i)

211 continue
899 format( I x,'so(',i2,') =,f6.4,3x,'wwn2,i2,) =',e9.3,

+	 3x,'wgn2(,i2,') =',e9.3)
endif
if(time.eq.60.or.time.eq.80) then
print 999,time
do 311 i=1,nn
print 899,i,son(i),i,wwn2(i),i,wgn2(i)

311 continue
endif
if(time.eq. 100) then
print 999,time
do 411 i=1,nn
print 899,i,son(i),i,wwn2(i),i,wgn2(i)

411 continue
endif

1000 continue
stop
end

subroutine ocof(nr,nc)
common /moonlge I (200),ge2(200),ge3(200),pwg(200),pog(200),

+	 wo2(200),ww2(200),wg2(200),bop(200),bo 1 (200),sw(200),
+	 rowm(200),room(200),rkp(200),so(200),sg(200)
common /dove/dwxx(200),dwxy(200),dwyx(200),dwyy(200),

+	 doxx(200),doxy(200),doyx(200),doyy(200),
+	 dmw,atw,alw,dmo,ato,alo,dmg,dg(200)
common /door/asw,rnsw,swr,sws,akw,rnkw,aso,rnso,sor,sos,ako,rnko,

+	 ako 1 ,rnkol ,ako2,rnko2,swir,som
common /june/rkx,rky,rx,ry,g
common /wind/nn,pg,rm 1 ,rm2,rkpg,rkpw,rmw,rma,uo(200),row(200),

+	 roo(200)
common /tree/pwb,pob 1 ,pob2,bew,be 1 ,be2,rwb,rob 1 ,rob2,
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+	 rmuw,rmul ,rmu2,theta,eps,itype
common /birdlx(200),y(200),nne(200,4),e(4),n(4)
nm=nn- 1

C

c IT CALCULATES DENSITIES, COMPRESSIBILITIES, VISCOSITIES, AND
c DIFFUSION COEFFICIENTIES

do 63 i=1,nn
row(i)=rwb*exp(bew*(pwg(i)pwb))
row(i)=rwb
roo 1 =rob 1 *exp(be 1 *(pog(i)..pobl))
roo2=rob2*exp(be2*(pog(i)pob2))

roo(i)= I .I(ge3(i)/roo I +wo2(i)/roo2)
bol (i)=(roo 1 _roo2)/(ge3(i)*roo2+wo2(i)*rool)
bop(i)=be I +be2_(wo2(i)*be I *icc 1 +ge3(i)*be2*roo2)/(ge3(i)*roo2+

+	 wo2(i)*rool)
x2=rm I ( I -ge3(i))/(rm 1 -rml *ge3(i)+1T112*ge3(i))
xl=1-x2
uo(i)=rmui **x1*rn1u2**x2
xo2=rm I "( I -ge3(i))I(rm I -rml *ge3(i)+in2*ge3(i))
xw2=rkpw*xo2
xg2=rkpg*rkpw*xo2
wg2(i)=xg2*rm2J(rmaxg2*rma+xg2*rm2)
ww2(i)=xw2*rm2/(rmwxw2*rmw+xw2*rm2)
sw(i)=sat(swr,sws,asw,gel(i),rnsw,row(i))
si=sat(sor,sos,aso,ge2(i),rnso,row(i))
so(i)=sl-sw(i)
sg(i)= 1-si
rkrw=graw(ge 1(i))
if(sw(i).It.swir) rkrw=O
if(so(i).It.som) then
rkro=O

else
swi=sw(i)
soi=so(i)
rkrow=grao(ge 1(i))
rkrog=per(ako2,ge2(i),rnko2)
soak=(soi-som)/( 1 -swir-som)
if(sw(i).gt.swir) then
swak=(swi-swir)/( 1 -swir-som)

else
swak=O
endif
sgak=( I -swi-soi)/( 1 -swir-som)
omw=rkrow/( 1 -swak)
omg=rkrog/( 1 -sgak)
rkro=soak*omw*omg
endif

c CALCULATING VELOCOTIES FOR DIFFUSION AND DISPERSION COEFFICIENTS

do53 it=1,nr
if(i.eq.it) then
dpwdx=(pwg(i+nr)-pwg(i))/(x(i+nr)-x(i))
if(it.eq.1) then
dpwdy=(pwg(i+I )-pwg(i))/(y(i+1 )-y(i))
go to 43
endif
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if(it.eq.nr) then
dpwdy=(pwg(i)-pwg(i- I ))/(y(i)-y(i- 1))
go to 43
endif
dpwdy=(pwg(i+ 1 )-pwg(i- I ))/(y(i+ 1 )-y(i- 1))
go to 43
endif

53 continue
do 54 it=nr*(ncI)+1,nr*nc
if(i.eq.it) then
dpwdx=(pwg(i)-pwg(i-nr))/(x(i)-x(i-nr))
if(it . eq . nr*(nc 1 )+ 1) then
dpwdy=(pwg(i+ I )-pwg(i))/(y(i-4- l)-y(i))
go to 43
endif
if(i t.eq . nr*nc) then
dpwdy=(pwg(i)-pwg(i- 1 ))/(y(i)-y(i-I))
go to 43
endif
dpwdy=(pwg(i+ 1 )-pwg(i- 1 ))/(y(i+ I )-y(i- 1))
go to 43
endif

54 continue
do 55 it=nr+1,nr*(nc_2)+1,nr
if(i.eq.it) then
dpwdx(pwg(i+nr)-pwg(i-nr))/(x(i+nr)-x(i-nr))
dpwdy=(pwg(i+1 )-pwg(i))I(y(i+ 1 )-y(i))
go to 43
endif

55 continue
do 56 it=2*nr,nr*(nc_1),nr
if(i.eq.it) then
dpwdx=(pwg(i-i-nr)-pwg(i-nr))/(x(i+nr)-x(i-nr))
dpwdy=(pwg(i)-pwg(i- 1 ))/(y(i)-y(i- 1))
go to 43
endif

56 continue
dpwdx=(pwg(i+nr)-pwg(i-nr))/(x(i+nr)-x(i-nr))
dpwdy(pwg(i+ I )-pwg(i- I ))/(y(i+ I )-y(i- I))

43 continue
temw=rki-w/(rmuw*eps*sw(i))
VWx+temw*rh*(clpwdx.row(i)*g*cos(rx))
VWy=+temw*rky*(clpwdyrow(i)*g*cos(ry))
vvw=(vwx**2+vwy**2)**(1./2.)
if(vvw.Ie.0) then
dwxx(i)dmw
dwxy(i)0
dwyx(i)0
dwyy(j)dmw
else
dwxx(i)dmw+(atw*vwy**2+aIw*vwx**2)/vvw
dwxy(i)(a1watw)*vwx*vwy/vvw
dwyx(i)dwxy(j)
dwyy(i)dmw+(atw*ywx**2+alw*vwy**2)/vvw
endif
temoro/(uo(i)*eps*so(i))
do 73 it=1,nr
if(i.eq.it) then
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dpodx=(pog(i+nr)-pog(i))/(x(i+nr)-x(i))
if(it.eq.1) then
dpody(pog(i+1 )-pog(i))/(y(i+1 )-y(i))
go to 83
endif
if(it.eq.nr) then
dpody=(pog(i)-pog(i- I ))/(y(i)-y(i- 1))
go to 83
endif
dpody=(pog(i+ I )-pog(i- 1 ))/(y(i+ 1 )-y(i- 1))
go to 83
endif

73 continue
do 74 it=nr*(nc_1)+1,nr*nc
if(i.eq.it) then
dpodx=(pog(i)-pog(i-nr))/(x(i)-x(i-nr))
if(it . eq.nr*(nc1) i 1) then
dpody=(pog(i+ I )-pog(i))/(y(i+ 1 )-y(i))
go to 83
endif
if(i t.eq . nr*nc) then

dpody=(pog(i)-pog(i- 1 ))/(y(i)-y(i- 1))
go to 83
endif
dpody=(pog(i+ 1 )-pog(i- 1 ))/(y(i+ 1 )-y(i- 1))
go to 83
endif

74 continue
do 75 it=nr+I,nr*(nc_2)+1,nr
if(i.eq.it) then
dpodx=(pog(i+nr)-pog(i-nr))/(x(i+nr)-x(i-nr))
dpody=(pog(i+ I )-pog(i))/(y(i+ I )-y(i))
go to 83
endif

75 continue
do 76 it=2*nr,nr*(nc_1),nr
if(i.eq.it) then
dpodx=(pog(i+nr)-pog(i-nr))/(x(i+nr).x(jnr))
dpody=(pog(i)-pog(i- 1 ))/(y(i+ 1 )-y(i- 1))
go to 83
endif

76 continue
dpodx=(pog(i+nr).pog(inr))/(x(i+nr).x(inr))
dpody=(pog(i+ I )-pog(i- I))/(y(i+l )-y(i- 1))

83 continue
temo=Ikro/(uo(i)*eps*so(j))
vox=+temo*rkx*(dpodxroo(i)*g*cos(rx))
voy=+temo*rky*(dpodyroo(i)*g*cos(ry))
vvo=(vox**2+voy**2)**( 1./2.)
if(vvo.Ie.0) then
doxx(i)=dmo
doxy(i)=O
doyx(i)=O
doyy(i)=dmo
else
doxx(j)=dmo+(ato*voy**2+alo*vox**2)/vvo
doxy(i)=(aloato)*vox*voy/vvo
doyx(i)=doxy(i)
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doyy(j)dmo+(ato*vox**2+alo*voy**2)/vvo
end if
dg(i)dmg
rkp(i)SO()/(So(I)+SW(I))

63 Continue
return
end

C
subroutine coef

Common /sun/ gen I (200),gen2(200),gen3 (200),pwgn(200),pogn(200),
+	 won2(200),wwn2(200),wgn2(200),swn(200),son(200),sgn(200)
+	 twx(200),twy(200),tox(200),toy(200),beg(200),dbgdwo(200),
+	 twxge 1 (200),twyge 1 (200),twxge2(200),twyge2(200),
+	 toxge I (200),toyge I (200),toxge2(200),toyge2(200)
+	 dwwge 1 (200),dwwge2(200),dwwge3(200),
+	 dwgge I (200),dwgge2(200),dwgge3(200),
+	 rogn(200),drgge3(200)

common /may/ dswge I (200),dswg 11 (200),dswg2 1(200),
+	 dswge2(200),dswg22(200),dswg 12(200),
+	 dsoge 1 (200),dsog 11 (200),dsog2 1(200),
+	 dsoge2(200),dsog22(200),dsog 12(200),
+	 dsgge I (200),dsgg 11 (200),dsgg2 1(200),
+	 dsgge2(200),dsgg22(200),dsgg 12(200)

common /door/asw,rnsw,swr,sws,akw,rnkw,aso,rnso,soi-,sos,ako,rnko,
+	 akol,rrikol,ako2,rnko2,swir,som
common IhiIl/ru,t,z
common /june/rkx,rky,rx,ry,g
common /windlnn,pg,rm I ,rm2,rkpg,rkpw,rmw,rma,uo(200),row(200),

+	 roo(200)
common /tree/pwb,pob I ,pob2,bew,be I ,be2,rwb,rob 1 ,rob2,

+	 rmuw,rniu I ,rmu2,theta,eps,itype

C
c THIS SUBROUTINE CALCULATES SATURATIONS, RELATIVE PERMEABILITIES,

c MOB ILITIES, DERIVATIVES OF SATURATION AND MOBILITIES WITH RESPECT TO

c THE PRIMARY VARIABLES.
C

wkx=rmuw/rkx
wky=rmuw/rky
do 10 i=1,nn
okx=uo(i)/rkx
oky=uo(i)/rky
dp=- 1
pcl=genl(i)
pc3=gen2(i)
pci 1=genl(i)^dp

PCi 0=gen 1 (i)-dp
pc3 I =pc3-i-dp
pc3O=pc3-dp
swn(i)=sat(swr,sws,asw,pc I ,rnsw,row(i))
if(swn(i).lt.swir) then
sw 1 =swn(i)
sw0=swn(i)
endif
sw I =sat(swr,s Ws,asw,pc 11 ,rnsw,row(i))
sW0sat(swr,sws,asW,pc I 0,rnsW,row(i))

dswge 1 (i)=0
dswge2(i)=0
dswgI 1(i)=O
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dswg I 2(i)=0
dswg22(i)=0
dswg2 1 (i)=O
sl=sat(sor,sos,aso,pc3,rnso,row(i))
si 1=sat(sor,sos,aso,pc3 1 ,rnso,row(i))
slO=sat(sor,sos,aso,pc3O,rnso,row(i))
son(i)=sl-swn(i)
so! !=sl-swl
so 1 0=sl-swO
so2 ! =sl 1 -swn(i)
so2O=slO-swn(i)
dsogel (i)=(sol 1-son(i))/dp
dsogel(i)=0
dsogl 1(i)=(so! 12*son(i)+so10)/(2*dp)
dsogl 1(i)=0
dsoge2(i)(so2 I -son(i))/dp
dsog22(i)(so2 1 2*son(i)+so20)/(2*dp)
dsogl 2(i)=0
dsog2 I (i)0

sgn(i)=1 -sI
sgl=1-sll
sgO= I -slO
dsgge2(i)=(sg I -sgn(i))/dp
dsgg22(i)=(sg ! 2*sgn(i)+sg0)/(2*dp)
twx(i)=graw(pc I )/wkx
twy(i)=graw(pc 1 )/wky
twl=graw(pcl I)
twO=graw(pc 10)
twxge I (i)=(twl _tw0)/(2*dp)
twyge 1 (i)=(tw 1 tw0)/(2*dp)
twxge2(i)0
twyge2(i)=0
if(swri(i).lt.swir) then
twx(i)=0
twy(i)=0
twxge 1 (i)=0
twyge 1 (i)=0

endif
if(son(i).It.som) then
rkro=0
tox(i)=0
toy(i )=0
toxgel(i)=0
toyge ! (i)=O
toxge2(i)=0
toyge2(i)=0
else
swi=swn(i)
soi=son(i)
do 95 ii=1,3
rkrow=grao(pc 1)
rkrog=per(ako2,pc3,rnko2)
soak=(soi-som)/( I -swir-som)
if(swn(i).gt.swir) then
swak=(swi-swir)/( I -swir-som)
else
swak=0
endif
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sgak=( 1 -swi-soi)/( I -swir-som)
omw=rkrow/( I -swak)
omg=rkrog/( 1 -sgak)
if(ii.eq.1 ) then
rkro=soak*omw*omg
endif
PCi =pC I +dp
swi=swl
soi=sol 1
if(ii.eq.3) go to 97
if(ii.eq.2) then
rkro I =soak*omw*onig
go to 96

endif
go to 95

96 pC1=pC12*dp
pc3=pC3+dp
swi=swn(i)
soi=so2l

97 rkro2=soak*omw*omg
95 Continue

toxge I (i)=((rkro I -rkro)/okx)/dp
toyge I (i)=((rkro 1 -rkro)/oky)/dp
toxge 1 (i)=0
toyge 1 (i)=0
toxge2(i)=((rkro2-rkro)/okx)/dp
toyge2(i)=((rkro2-rkro)/oky)/dp
tox(i)=rkro/okx
toy(i )=rkro/oky
endif
if(itype.eq.7) go to 891
if(itype.eq.I) then
dwwge I (i)=0
dwwge2(i)=O
dwwge3(i)= 1
go to 10
endif
son(i)=1-swn(i)
sol=1-swl
so0= 1 -swO
if(son(i).lt.som+0.001) then
dsogel(i)=Ie-6
dsogl 1(i)=0
else
dsoge I (i)=-dswge 1(i)
dsogl 1(i)=-dswgl 1(i)
dsoge2(i)=O
endif
dsog22(i)=0
dsogl 2(i)=0
dsog2 I (i)0
twx(i)=graw(pC 1)
twy(i)=graw(pc 1)
twl=graw(pcl 1)
tw0=graw(pC 10)
twxge 1 (i)=(tw I tw0)/(2*dp)
twyge I (i)=(tw I _two)/(2*dp)
twxge2(i)=0
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twyge2(i)0
if(son(i).lt.som) then
rkro=0
tox(i)=0
toy(i)=O
toxge I (i)0
toyge I (i)0
toxge2(i)0
toyge2(i)=0
else
tox(i)=grao(pc 1)
toy(i)=grao(pc 1)
tol=grao(pcl 1)
to0=grao(pc 10)

toxge I (i)(tol_toO)/(2*dp)
tOyge 1 (i)=(to 1 to0)/(2*dp)
(oxge2(i)=0
tOyge2(i)=0
end if

if(itype.eq.1) then
dwwge I (i)=0
dwwge2(i)=0
dwwge3(i)= 1
go to 10
endif

891 dww=-0.0001
wonl 1=gen3(i)+dww
xo2=rm I (i -gen3(i))/(rm 1 -rm I *gen3(i)+rm2*gen3(i))
xo2I=rmI*(1wonh1)/(rmlrm1*wonh1+rm2*wonh1)
xw2rkp *son(i)/(son(i)+le..4)*xo2
xw2l=rkpw*sol 1/(sol I+1e4)*xo2
xw22=rkpw*so2 I/(so2 1 + I e4)*xo2

xw23=rkpw*son(i)/(son(i)+ I e-4)xo2 1
wwn2(i)=xw2*rm2/(rmwxw2*rmw+xw2*rm2)

wwn2 I =xw2 I * 2J(rmw-xw2 I *jf,	 1 *1m2)

wwn22=xw22*rm2J(rniwxw22*fmw+xw22*rm2)
wwn23=xw23*rm2/(rmWxw23*rniw+xw23*rm2)
dwwge I (i)=(wwn2 1 -wwn2(i))/dp
dwwge2(i)(wwn22-wwfl2(i))/dp
dwwge3(i)=(wwn23-WWfl2(i))/dww
xg2=rkpg*rkpw*son(i)/(SOn(i)+1 e4)*xo2
xg2l=rkpg*rkpw*sOl I/(so 1^1e4)*xo2
xg22=rkpg*rkpw*s02 1/(so2 1 + I e4)*XO2

xg23=rkpg*rkpw*sofl(i)/(Son(i)+ I e-4)xo2 1

wgn2(i)=xg2*rm2I(rmaxg2*rma+xg2*rm2)

wgn2 1 =xg2 1 *n/(rma..xg2 1 *çma+xg2 I *-m)
wgn22=xg22*rm2/(rmaxg22*rma+xg22*rm2)

wgn23=xg23*rm2/(rmaxg23*rma+xg23 *2)
dwgge I (i)(wgn2 1 -wgn2(i))/dp
dwgge2(i)(wgn22-Wgn2(i))/dp
dwgge3(i)=(wgn23-wgn2(i))/dww
rmg=rm2*rrnal(wgn2(i)*rma+( I wgn2(j))*i-m2)
rmgi=rm2*rma/(wgn23*rma+(l_wgn23)*)

rogn(i)=pg/(z*ru*t)*rmg
rog I =pg/(z*ru*t)*rmg I

drgge3(i)=(rog I -rogn(i))/dww
beg(i)=(rm2rma)/(Wgn2(i)*rma+( I _wgn2(i))*rm2)
beg! =(rm2-rrna)/(wgn23 * lma+( 1 wgn23)*rm2)
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dbgdwo(i)=(beg I -beg(i))/dww
10 continue

return
end

c
c THIS FUNCTION IS VAN GENUCHTENS EQUATION FOR CALCULATING
c RELATIVE PERMEABILITIES
C

function per(a,pc,rn)
g=9 80.7
h=pc/980.456
if(h.le.0) then
per=1
else
rm=1-I/rn
per=( 1 (a*h)**(rn I )( 1 +(a*h)**rn)* *(rm))**2/( 1 +(a*h)**m)
+ **(rm/2)
endif
return
end

c
c IT IS ANOTHER TYPE OF FUNCTION STATEMENT FOR CALCULATING RELATIVE
c PERMEABILITIES WHIC IS USED BY ABRIOLA.
C

function pero(bO,bl ,b2,b3,sat)
pero=bO+bl*sat+b2*sat**2+b3*sat**3
if(pero.lt.0) then
print 294,pero,sat

294 format( STOP BECAUSE RELATIVE PERMEABILITY IS NEGATIVE ',/,
+	 'pero = ,elO.4,' Sw = ',elO.4)
stop
endif
return
end

C

c IT IS A MATHEMATICAL EXPRESSION FOR CALCULATING SATURATION
C

function sat 1(pc)
if(pc.gt.-2892.38.and.pc.le.- 1421.96) then
sat! = 1.52208-0.071 8947*log(pc)

else
sat! =2.946500.250632*log(pc)
endif
return
end

C

c IT IS A MATHEMATICAL EXPRESSION FOR CALCULATING PERMEABILITY
C

function perl(sat)
pen =( 1 .235376e_6)*exp( 1 3.604*sat)
return
end

C

c IT IS VAN GENUCHTEN'S EQUATIONS FOR CALCULATING SATURATIONS
c

function sat(sar,sas,a,pc,rn,r)
g=980.7
h=pc/980.456
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if(h.le.0) then
sat=sas
else
rm=l-l/rn
sat=sar+(sas-sar)/( 1 +(a*h)**rn)**rm
endif
return
end

c FUNCTION graw AND grao ARE FOR TREATING EXPERIMENTAL DATA OF
c RELATIVE PERMEABILITIES

function graw(pc)
common /phic/ dpc(20),drw(20),dro(20),drol(20),dro2(20),
+	 dsw(20),dso(20)
do 10i=1,15
if(pc.ge.dpc(i).and.pc.lt.dpc(i+1)) then
graw=(drw(i+ 1 )-drw(i))/(dpc(i+ I )dpc(i))*(pcdpc(i))+drw(i)
go to 20
endif

10 continue
20 return

end

function grao(pc)
common /phic/ dpc(20),drw(20),dro(20),dro 1 (20),dro2(20),

+	 dsw(20),dso(20)
do lOi=1,15
if(pc.ge.dpc(i).and.pc.lt.dpc(i+1)) then
grao=(dro(i+ I )-dro(i))/(dpc(i+ I )dpc(i))*(pcdpc(i))+dro(i)
go to 20
endif

10 continue
20 return

end

subroutine coor(ne,nn)
common Ibird/x(200),y(200),nne(200,4),e(4),n(4)
do 10 i=1,ne
read(51 , *) (nne(i,j),j=1,4)

10 continue
do 20 i=1,nn
read(51 , *) x(i),y(i)

20 continue
return
end

subroutine inicon(gel,ge2,ge3,genl,gen2,gen3,nn)
dimension gel (200),ge2(200),ge3(200),gen 1 (200),gen2(200),gen3(200)
read(5 1 ,*) gei I ,gei2,gei3
do lOi=l,nn
gel (i)=gei 1
ge2(i)=gei2
ge3(i)=gei3
gen 1 (i)=ge 1(i)
gen2(i)=ge2(i)
gen3(i)ge3(i)

10 continue
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return
end

subroutine bouncon(ge 1 ,ge2,ge3 ,gen I ,gen2,gen3,nr,nc,nn)
dimension gel (200),ge2(200),ge3 (200),gen I (200),gen2(200),
+	 gen3(200),dc(60)
read(5 1 ,) (dc(i),i=l ,2*nr+2*nc_4)
k=O
do 10 i=1,nr
k=k+l
if(dc(k).eq.0) go to 10
read(5 I ,*) gel (i),ge2(i),ge3(i)
gen I (i)=gel (i)
gen2(i)=ge2(i)
gen3(i)=ge3(i)

10 continue
do 12 i=1,nr
k=k+l
if(dc(k).eq0) go to 12
j=nr"(nc- 1 )+i
read(51 , *) gel(j),ge2(,j),ge3(j)
genl(j)=gel(j)
gen2(j )=ge2(j)
gen3(j)=ge3(j)

12 continue
do 20 i=2,nc-1
k=k+1
if(dc(k).eq.0) go to 20
j=tir*(i 1 )+ I
read(5 I ,) gel (j),ge2(j),ge3(j)
genl(j)=gel(j)
gen2(j)=ge2(j)
gen3(j)=ge3(j)

20 continue
do 22 i=2,nc-1
k=k+1
if(dc(k).eq.0) go to 22
Iflr*i
rcad(5 I ,*) gel (1),ge2(l),ge3(l)
gen I (1)=ge 1(1)
gen2(1)=ge2(1)
gen3(I)=ge3(1)

22 continue
return
end

subroutine gint(n I ,n2,n3,n4,i4)
common Ibird/x(200),y(200),nne(200,4),e(4),n(4)
common Ilake/gintxl(4,4,2),gintyl(4,4,3),gintx2(4,4,4,3),
+	 ginty2(4,4,4,3),gintx3(4,4,4,4,3),ginty3(4,4,4,4,3),
+	 gintx4(4,4,4,4,4,2),ginty4(4,4,4,4,4,2)
al =0
a2=0
b=0
ci =0
c2=0
d=0
r=0
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do 5 ia=1,3
do 5 i=1,4
do5j=1,4
if(ia.eq.3) go to 6
gintx I (i,j ,ia)=0

6 gintyl (i,j,ia)=0
do 5 k=1,4
gintx2(i,j,k,ia)=0
ginty2(i,j ,k,ia)=0
do 5 1=1,4
gintx3(i,j,k,1,ia)=0
ginty3 (i,j ,k,1,ia)=0
do 5 m=1,4
if(ia.eq.3) go to S
gintx4(i,j,k,1,m,ia)=O
ginty4(i,j ,k,1,m,ia)=O

5 continue
do 10 ii=1,4
if(ii.eq.1) i=nl
if(ii.eq.2) i=n2
if(ii.eq.3) i=n3
if(ii.eq.4) i=n4
al=al+y(i)*n(ii)
a2=a2+y(i)*e(ii)
b=b+y(i)*n(ii)*e(ii)
ci =c 1 +x(i)*e(ii)
c2=c2+x(i)*n(ii)
d=d+x(i)* n(ii)*e(ij)

10 continue
te=(3./5 )* *05
(n=(3/5)**05
do 20 ig=-1,1
if(ig) 23,24,25

23 ge=-te
wx=5./9.
go to 32

24 ge=0
wx=8./9.
go to 32

25 ge=te
wx=5 .19.

32 do 2Ojg=-1,1
if(jg) 27,28,29

27 gn=-tn
wy=5 .19.
go to 31

28 gn=0
wy=8./9.
go to 31

29 gn=tn
wy=5./9.

31 tem=(c1id*gn)*(a1+b*ge)(c2+d*ge)*(a2+b*gn)
ajac=temll 6
gx2=((a 1 +b*ge)*(e(i4)+e(i4)*n(i4)*gn)(a2+b*gn)
+	 *(n(i4)+e(i4)*n(i4)*ge))Item

gy2=((c 1 +d*gn)*(n(j4).,e(i4)*n(i4)*ge)_(c2+d*ge)
+	 *(e(i4)+e(i4)*n(i4)*gn))/tem
ginn=0.25*( 1 +e(i4)*ge)*( 1 +n(i4)*gn)
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do 20 i=1,4
gin 10.25*(1+e(i)*ge)*( 1+n(i)*gn)

do 20j=1,4
giin0.25*(1 +e(j)*ge)*(1 +n(j)*gn)
gx 1 ((al +b*ge)*(e(j)+e(j)*n(j)*gn)(a2+b*gfl)

4	 *(n(j)+e(j)*n(j)*ge))/tem
gy 1 =((c 1 +d*gn)*(n(j)+e(j)*n(j)*ge)(C2+d*gC)

4	 *(e(j)+(j)*n(j)*gn))/tem

gintx I (i,j, 1 )=gintxl (i,j, I )+wx*wy*gin I *gx 1 *gx2*ajac

gintx I (i,j,2)=gintx 1 (i ,j , 2)+wx*wy*gin 1 *abs(gx 1 )*gx2*ajac

ginty 1 (i,j, 1 )=ginty 1 (i,j, 1 )+wx*wy*gin I *gy I *gy2*ajac

ginty 1 (i,j,2)=ginty I (i,j , 2)+wx*wy*gin 1 *giin*gy2*ajac

ginty 1 (i j,3)=ginty 1 (i ,j ,3)+wx*wy*gin 1 *giin*gy2*ajac

do 20 k=1,4
gin2=0.25*( 1 +e(k)*ge)*( 1 +n(k)*gn)

gintx2(i,j,k, I )=gintx2(i,j,k, 1 )+wx*wy*gin 1 *gin2*gx 1 *gx2*ajac
gin tx2(i ,j , k , 2)=gintx2(i ,j , k , 2)+wx*wy*gin J *gin2*bs(g 1 )*gx2*ajac

gintx2(i ,j , k ,3)=gintx2(i ,j , k , 3)+wx*wy*gin 1 *gin2*gy 1 *gx2*ajac

ginty2(i,j,k, 1 )=ginty2(i,j,k, I )+wx*wy*gin 1 *gin2*gy I *gy2*ajac

ginty2(i,j,k,2)=ginty2(i,j,k,2)+wx*wy*gin 1 *gin2*giin*gy2*ajac

ginty2(i,j,k,3)=ginty2(i,j ,k ,3)+wx*wy*gin 1 *gin2*gx I *gy2*ajac

do 201=1,4
gin3=0 . 25*(1+e(l)*ge)*( 1+n(1)*gn)

gintx3(i,j,k,I, I )=gintx3(i,j,k,1, I )+wx"wy'gin 1 *gin2*gin3*gx 1 *gx2

+	 *ajac
gin tx3(i ,j , k , 1 ,2)=gintx3(i ,j ,k,1,2)+wx*wy*gin 1 *gin2*gin3

+	 *abs(gxl)*gx2*ajac
gintx3(i,j ,k,1,3)=gintx3(i,j,k,1,3)+wx*wy*ginl *gin2*gin3*gy 1 *gx2

+	 *ajac

ginty3(i,j,k,I, 1 )=ginty3(i,j,k,1, 1 )+wx*wy*gin 1 *gin2*gin3*gy I *gy2

+	 *ajac
gin ty3(i ,j , k , 1 ,2)=gin ty3(i ,j , k , 1 ,2)+wx*wy*gin I *gin2*gin3

+	 *giin*gy2*ajac
ginty3(i,j,k,1,3)=ginty3(i,j,k,1,3)+wx*wy*gin 1 *gin2*gin3*gx 1 *gy2

I	 *ajac

do 20 m=1,4
gx3=((al +b*ge)*(e(m)+e(m)*n(m)*gn)(a2+b*gfl)

I-	 *(ncm)^e(m)*n(m)*ge))/tem
gy3=((c I +d*gn)*(n(m)+e(m)*n(m)*ge)_(c2+d*ge)

+	 *(e(m)+e(m)*n(m)*gn))/tem

gintx4(i,j,k,1,m, 1 )=gintx4(i,j ,k,1,m, 1 )+wx*wy*ginn*gin 1 *gin2*gin3

+	 *gxl*gx3*ajac
gjfltx4(i,j,k,1,m,2)=gjntx4(i,j,k,1,rn,2)+wx*wy*ginn*gifl 1 *gin2*gin3

+	 *abs(gxl)*gx3*ajac

ginty4(i,j,k,1,m, 1 )=ginty4(i,j,k,1,m, 1 )+wx*wy*ginn*gin 1 *gin2*gin3
+	 *gyl*gy3*ajac

gjflty4(j,j,k,1,m,2)=ginty4(i,j,k,1,m,2)+wx*wy*ginn *gi fl l *gin2*gin3

+	 *abs(gyl)*gy3*ajac

20 continue

return

end

c IT IS FOR CALCULATING THE VOLUME OF A CELL

function vol(nl,n2,n3,n4,i4)
common /bird/x(200),y(200),nne(200,4),e(4),n(4)

a 1=0
a2=0
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b=0
ci =0
c2=0
d=0
r=0
do 10 ii=i,4
if(ii.eq.i) i=nl
if(ii.eq.2) i=n2
if(ii.eq.3) i=n3
if(ii.eq.4) i=n4
ai=ai +y(i)*n(ii)
a2=a2+y(i)*e(ii)
b=b+y(i)*n(ii)*e(ii)
c i=c 1 +x(i)*e(ii)
c2=c2+x(i)*n(ii)
d=d+x(i)*n(ii)*e(ii)

10 continue
ge=1 ./3*0.5
gn=1 ./3**0.5
vol=0
do 201=1,2
ge=ge*( 1)
do 20j=1,2
gn=gn*(1)
vol=vol+ 1 ./64*( 1 Ie(i4)*ge)*( 1 +n(i4)*gn)*((cl +d*gn)*(al +b*ge)
+ (c2+d*ge)*(a2+b*gn))

20 continue
return
end
subroutine solv(n3)
common /july/a(600,600),b(600),u(600),rmax
do 40 i=1,n3
pivot=a(i,i)
do 30j=i+1,n3
dult=a(j,i)/pivot
a(j,i)=0
do 25 k=i+1,n3
a(j ,k)=a(j,k)duIt*a(i,k)

25 continue
b(j)=b(j )du1t*b(i)

30 continue
40 continue

u(n3)=b(n3)/a(n3,n3)
do 20 i=n3-1,1,-i
quot=b(i)
do lOj=i+1,n3
quot=quot-a(i,j )*u(j)

10 continue
u(i)=quot/a(i,i)

20 continue
rmax=0
do 29 i=1,n3
if(abs(u(i)).gt.abs(rmax)) then
rmax=u(i)
endif

29 continue
return
end
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