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Abstract   

The incorporation of multifunctional carbon nanomaterials, graphene nanoplatelets (GNP)  

and cup-stacked carbon nanotubes (CSCNT) into the polymer matrix of conventional carbon 

fibre reinforced composites as fillers, offers the potential for mechanical multifunctional 

improvements, for instance strength, stiffness and toughness without disrupting the original in 

plane mechanical properties. In this research, the GNP, the CSCNT and a novel combination 

of them (hybrid GNP-CSCNT nanofillers) were dispersed within a thermosetting resin matrix 

via mechanical dispersion techniques, such as ultra-sonication and ball milling/mixing to 

achieve uniform dispersion and full exfoliation of carbon nanomaterials in the matrix. The 

principal purpose of the combination of GNP and novel CSCNT into the matrix was to 

promote the strength and toughness properties of the polymer matrix as well as the 

conventional CFRP by availing the synergetic influence between these carbon nanomaterials.  

Three types of polymer nanocomposites (NP) were prepared successfully by the combination 

of these two dispersion techniques with the following formulations: GNP/epoxy 

nanocomposites, CSCNT/epoxy nanocomposites and hybrid GNP-CSCNT/epoxy 

nanocomposites. The greatest improvements of the HNP were achieved in flexural strength 

and flexural modulus after the combination of 2 wt.% of GNP and 2 wt.% of CSCNT by 

approximately 40% and 61%, respectively. In addition to significant improvement in fracture 

toughness by 85% at the same weight content, substantial improvements in the mechanical 

properties of novel HCFRP (hybrid GNP-CSCNT/CF/epoxy nanocomposites) were also 

gained after using the same optimum proportional weight content of these combined carbon 

nanomaterials. The flexural strength and flexural modulus improved by approximately 18% 

and 28% respectively, while the shear strength improved by 37%. Additionally, the energy 

propagation of Mode I and Mode II interlaminar fracture toughness increased by 

approximately 73% and 132% respectively.  

Most of the aforementioned properties of HCFRP showed superior improvement when 6 wt.% 

of CSCNT were individually incorporated, for instance the shear property of 

CSCNT/CF/epoxy nanocomposites improved by 38%, flexural strength by 25% and 

interlaminar fracture toughness Mode I and Mode II by 104% and 151% respectively. The 

GNP produces less improvements at optimum weight concentration 5 wt.% in comparison to 

CSCNT/CF/epoxy nanocomposites. For instance shear strength of GNP/CF/epoxy 

nanocomposites improved by 31%, flexural strength 20% and interlaminar fracture toughness 

Mode I and Mode II by 15% and 84% respectively.   
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The fracture mechanisms for these enhancements were investigated by extensive 

fratographyical analysis to show the synergetic associated mechanisms of hybrids composites. 

Multiple fracture mechanisms systems were generated into the fracture surface of the HCFRP 

after the addition of combined carbon nanomaterials into the fibre network.   

In conclusion, the addition of novel CSCNT is better than GNP in reinforcing the mechanical 

properties of thermoset resin (i.e. epoxy) and conventional CFRP. Additionally, the inclusion 

of the combined nanomaterials; GNP and CSCNT is useful in promoting the mechanical 

properties over the parent hybrid composites. Moreover, it is expected to be harmless to the 

original mechanical properties of epoxy composites and conventional carbon fibre composites. 
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Chapter 1. Introduction 

 

1.1 Aim of the study 

The objective of this experimental study was to produce novel hybrid nanocomposite (HNP) 

enhanced with multifunctional carbon nanomaterials; graphene nanoplatelets (GNP) and cup-

stacked carbon nanotubes (CSCNT) and to use this in the manufacture of hybrid carbon fibre 

reinforced polymer composites (HCFRP). The HNP was produced by a combination of GNP and 

CSCNT in a polymer matrix. The reason for the combination of these carbon nanomaterials is to 

promote the strength and toughness properties of polymer resin, which is the result of their 

beneficial synergetic properties within the matrix. Additionally, it is to investigate the effect of 

the optimum strengthened and toughened matrix on the mechanical properties of the carbon fibre 

reinforced polymer composites (CFRP), such as interlaminar shear strength, interlaminar fracture 

toughness and flexural strength properties sequentially.  

 

1.2 Introduction 

It is acknowledged that carbon fibre composites possess excellent strength and stiffness 

properties besides being light weight. These beneficial characteristics play a significant role in 

the structural design of aircraft, spacecraft and automobiles. Furthermore, the reduction of 

manufacturing costs for such types of fibre composites and an increase in their period of 

endurance is considered a critical issue in their structural designs when used for advanced 

engineering applications (Glover, 2004; Pora, 2003). 

The structural performance of fibre reinforced polymer composites (FRP) and their engineering 

applications as a primitive structure is hindered by their sensitivity to damage or defects. Whilst 

carbon fibre composites have excellent properties in-plane tensile and stiffness performance, they 

suffer from low resistance to compression loads, interlaminar and other polymer matrix 

dominated properties (Djabali et al., 2018; Sudarsono & Ogi, 2017; Mall et al., 2009; Liyong et 

al., 2002; Gamstedt & Sjogren, 1999).  

To develop these mechanical resistance properties of conventional FRP, classical approaches 

have been used to address these issues, such as use of advanced polymer resins through-thickness 

reinforcement (Kuwata & Hogg, 2011; Wilkinson et al., 1993; Greenhalgh et al., 2006). 

Nevertheless, the disadvantages of such approaches are costly and have a tendency to reduce the 

pristine properties of the fibre composites and fatigue performance owing to the sensitivity to 

synthesising conditions (Liyong et al., 2002). Furthermore, use of a single material, for instance 

a polymer resin is not sufficient or effective enough to reduce the delamination failure or damage 
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in the structure of fibre composites, in particular after exposure of the laminated composites to 

high compressive loads (Kim et al., 1992; Jang et al., 1990). 

A further significant and advanced method is the use of nanoreinforcement (i.e. carbon 

nanomaterials), which has proved successful and is still applied in the promotion of mechanical 

properties of FRP (Qian et al., 2010). The primary reason for using carbon nanomaterials as 

additional reinforcement in the matrix is to improve the strength and toughness properties of fibre 

composites, because these nanomaterials absorb a part of the strain energy before it reaches the 

pristine fibre networks. Thus, this approach would reduce the degree of damage and, therefore, 

increase the safety factor in relation to structural composites. In particular, there has been interest 

in the use of single (SWCNT) and multi-walled carbon nanotubes (MWCNT) to improve the 

strength and toughness properties of hybrid fibre reinforced polymer composites (HFRP) over 

the past three decades (Romhany & Szebenyi, 2009; Ashrafi et al., 2011; Wichmann et al., 2006; 

Fan et al., 2008; Qiu et al., 2007). The known drawbacks of such types of carbon nanomaterials 

are costly, in particular the SWCNT and dispersion difficulties regarding the polymer resins 

(Gkika et al., 2017; Ma et al., 2010). 

In recent years, GNP and CSCNT have been considered as possible alternatives to these 

conventional carbon nanomaterials (Roy and Kumar, 2017; Zhang et al., 2013; Wajid et al., 2013; 

Barrena et al., 2014; Landani, 2015; Yokozeki et al., 2009; Qin et al., 2015; Li et al., 2018). The 

GNP and CSCNT intrinsically possess extraordinary and excellent mechanical properties, with 

the strength and elastic modulus of the monolayer nanoplatelets and nanofiber having been 

measured experimentally as 130 GPa and 1 TPa (Lee et al., 2008) and 3.5 GPa and 172 GPa 

(Arshad et al., 2011), respectively. Additionally, each one has different morphological properties. 

For example, fibre nanotube has an excellent geometric structure and length, whilst graphene has 

a large surface area and high aspect ratio. Consequently, they have the potential to enhance 

several of the mechanical characteristics, particularly polymer resistance (i.e. strength and 

toughness). Additionally, the price is low (Kim et al., 2017; Phua et al., 2016; Landani et al., 

2015; Gkika et al., 2017). Therefore, use of GNP and CSCNT to reinforce the strength and 

toughness properties of fibre composites is probably more efficient than conventional carbon 

nanotubes (Kumar and Roy, 2018; Jia et al., 2015; Kostagiannakopoulou et al., 2015; Du et al., 

2017; Zhou et al., 2006; Khan and Kim, 2012; Green et al., 2009; Yokozeki et al., 2009). 

Two types of known practical techniques which are used in the manufacturing of HFRP currently 

are by way of the deposition of nanoparticles onto the surface of fibre networks (Kepple et al., 

2008; Kamar et al., 2015; Wang et al., 2011; Qian et al., 2010) or by the dispersion of 

nanoparticles in the polymer matrix (Ji et al., 2016; Wang et al., 2015; Hadden et al., 2015; 
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Kostagiannakopoulou et al., 2015; Shen et al., 2013; Ma et al., 2010; Yokozeki et al., 2009), as 

shown in Figure 1. Both techniques have achieved significant improvements in the strength and 

toughness properties of HFRP. The possibility of damage in the pristine fibres could be a sensible 

reason for choosing the dispersion process instead of the deposition process with respect to 

preparing modified matrix (Mathur et al., 2008). Moreover, it is helpful to implement for scale 

fabricating and has been commercialised at various nanoparticle loadings, probably due to its 

simple principles.  

 

Figure 1 Schematic diagram of conventional fibre composites modified with carbon nanomaterials via two 

approaches; grafting and dispersing (Qian et al., 2010). 

In previous and recent HFRP studies, the focus on dispersed and uniformed distribution of carbon 

nanomaterials within the matrix (Kumar and Roy, 2018; Du et al., 2017; Jia et al., 2015; Khan 

and Kim, 2012; Qian et al., 2010); with various synthesising methods and functionalisation have 

been explored to accomplish homogenous distribution of carbon nanomaterials in the polymer 

matrix. The purpose of that is to obtain high strength and toughness properties of modified matrix 

in the nanocomposite. It can then be used to reinforce the mechanical properties of FRP (Wang 

et al., 2015; Moriche et al., 2016; Zhou et al., 2006). Several fracture mechanism systems to 

dissipation energy have been suggested as sensible reasons to explain the observed enhancements 

in strength and toughness properties of the HFRP. For example, nanotubes pull-out (Fenner & 

Daniel, 2014), crack bridging (Menna et al., 2016; Ye et al., 2007), bi-furcation mechanisms 

(Kostagiannakopoulou et al., 2017), the fracture of nanofiller (Zaman et al., 2011; Gojny et al., 

2005) and matrix distortion (Wetzel et al., 2006). 

However, all these mechanisms need a degree of attraction between the reinforcement and the 

matrix at the interface regions. Therefore, the interface region between these two phases plays a 

key role in reinforcing the mechanical properties of composites, as it delivers the mechanical 
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forces between the polymer matrix and filler (Kundalwal and Kumar, 2016; Zhang et al., 2012). 

Furthermore, due to geometric transformations in size dimensions between the fibre 

reinforcement and nanomaterial reinforcement, the attraction mechanism remains a mystery with 

regard to interfacial bonding between these multi-sized reinforcements and the matrix.  

A very recent and novel approach is currently applied to promote these mechanical 

characterisations, which includes use of a combination of multifunctional carbon nanomaterials; 

GNP and MWCNT. They have been used in developing superior mechanical properties of FRP 

(Rodriguez-Gonazalez et al., 2017; Kostagiannakopoulou et al., 2017; Liu et al., 2017; Tan et 

al., 2016; Wang et al., 2015). However, there were moderate enhancements in mechanical 

properties of hybrid fibre composites modified with a combination of graphene and conventional 

carbon nanotubes in most of these previous studies, due to their tendency to form agglomerates 

in the matrix and difficulty in achieving alignment between the fillers and matrix (Ma et al., 

2010; Rodriguez-Gonazalez et al., 2017; Punetha et al., 2017). These undesirable behaviours 

weaken the mechanical interfacial property between the matrix and filler, particularly at the 

interface regions; therefore, decreasing the improvements in the mechanical properties of HFRP. 

Therefore, the use of additional dispersants is frequently necessary to improve the dispersion 

degree of such types of carbon nanomaterials in the matrix and, adhesion between the fillers and 

the matrix (Cho et al., 2008; Gojny et al., 2005). Thus, the manufacturing cost of hybrid 

composites is expected to increase. 

The high premium characterisation of novel CSCNT are excellent mechanical properties, has a 

unique geometric structure and the dispersion process of this type of carbon nanomaterials in the 

polymer resins is easier than conventional carbon nanotubes (Arshad et al., 2011; Yokozeki et 

al., 2012; Yokozeki et al, 2008; Iwahori et al., 2005). These benefits make it a promising carbon 

nanomaterial in relation to reinforcing the mechanical properties of HFRP (Landani et al., 2015; 

Khan and Kim, 2012; Yokozeki et al., 2009). Therefore, the novel combination of GNP and 

CSCNT instead of conventional carbon nanotubes could be more efficient in reinforcing the 

mechanical properties of hybrid composites and was adopted in the present work.   

To achieve optimum strength and toughness properties of the graphene and fibre nanotubes 

reinforced nanocomposites, requires high exfoliation and the uniform dispersion of these carbon 

nanomaterials in the polymer resin. Therefore, challenges lie in the dispersing processes 

regarding the combination of graphene and fibre nanotubes into the resin and ensuring that their 

geometric structure is not damaged. A modern approach has been applied successfully by 

researchers to optimise the dispersion degree of nanoparticles in the polymer resins, which 

included use of combined dispersive techniques (Guo and Chen, 2014; Tang et al., 2013; Ma et 
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al., 2010). Therefore, a combination of sonication and the ball milling technique was suggested 

to disperse these carbon nanomaterials in the polymer matrix mechanically without using the 

additional dispersants. Moreover, to use their optimum modified matrices in the manufacture of 

HFRP (Wang et al., 2015). 

The hypothesis that underpins the present experimental study suggests that with CFRP containing 

an optimised mixture of multifunctional carbon nanomaterials; GNP, CSCNT and hybrid GNP-

CSCNT nanofillers, the degree of attraction of the fibre/matrix interface region is modulated by 

their strengthened and toughened matrices. To construct the region with high mechanical 

interfacial properties between the laminates of HFRP, an optimum modified matrix in each 

nanocomposite was used to impregnate the surface of the fibre network uniformly. Hence, this 

created strong support regions composed of multifunctional tough modified matrix around the 

fibre tows. In contrast, to achieve full and multiple potential strengthening and toughening 

mechanisms in the composites, the crack path must be restricted or driven to extend into modified 

matrix. This experimental study explores the fracture mechanism systems besides the mechanical 

properties of a hybrid composites modified with multifunctional carbon nanomaterials, such as 

the strength and interlaminar fracture toughness properties, where these mechanical 

characterisations were promoted by a combination of graphene and novel fibre nanotubes, 

resulting from engineering integration and synergy property of these carbon nanomaterials within 

the matrix. 

 

1.3 Research objectives  

The specific research objectives of this experimental study are: 

a) To perform optimisation for three formulations of polymer nanocomposites (NP), namely: i) 

GNP/epoxy nanocomposites, ii) CSCNT/epoxy nanocomposites and iii) hybrid GNP-

CSCNT/epoxy nanocomposites. This was achieved by changing the weight content of the 

nanoparticles and the mechanical dispersion processes. The purpose of that is to 

achieve the optimum strength and toughness properties of the modified matrix in each 

nanocomposite. 

b) To examine the mechanical properties of these NP, which included tensile strength (TS) and 

flexural strength (FS) to specify the optimal loading of the modified matrix in each 

nanocomposite. 

c) To check the characterisation of fracture toughness properties for the three NP at optimum 

weight concentrations in order to determine the fracture toughness strength of the modified 

matrix in each nanocomposite. 
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d) To produce three types of HCFRP by use of the optimum strength and toughness properties 

of the modified matrix in each nanocomposite with the following formulations: i) GNP/CF/epoxy 

nanocomposites, ii) CSCNT/CF/epoxy nanocomposites and iii) hybrid GNP-CSCNT/CF/epoxy 

nanocomposites. 

e) To examine the mechanical properties of the HCFRP, which involved interlaminar shear 

strength (ILSS), flexural strength (FS) and interlaminar fracture toughness (Mode I) and (Mode 

II). 

f) To characterise the dispersion processing and orientation of nanofillers, besides the fracture 

surface morphologies of the NP and the HCFRP via Transmission Electron Microscopy (TEM), 

Scan Electron Microscopy (SEM) and Optical Microscopy. 

g) To evaluate the dispersion techniques used in the manufacture of the NP, particularly, the 

combined dispersive techniques method. 

h) To assess the mechanical properties of these three specific types of HCFRP. 

 

1.4 Structure of the thesis 

This thesis is classified into seven chapters. This chapter briefly reviews the drawbacks statement 

and motivation for the present study. Chapter 2 surveys the pertinent literature covering previous 

studies with similar material, as well as their research findings. The chapter describes the mutual 

trends that exist in the literature and the suggested important mechanisms. Chapter 3 exhibits the 

experimental methods which involves the materials used, the production methods of the 

optimised nanocomposites and the manufacture of hybrid fibre reinforced optimum 

nanocomposites. Chapter 4 demonstrates the characterisation methods utilised to assess the 

physical and mechanical properties of NP and HCFRP. Chapters 5 and 6 present the experimental 

results and discussion relevant to the evaluation of the mechanical properties of the NP and 

HCFRP respectively besides interpretation of the results. Chapter 7 concludes with the results of 

the experimental research and suggested future work.  
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Chapter 2. Literature review  

  

This chapter focuses on state of the art carbon nanomaterials, polymer reinforced with carbon 

nanomaterials as well as hybrid fibre reinforced polymer composites (HFRP). 

Over the last three decades, carbon nanomaterials have sparked significant interest due to 

the improved strength, stiffness and fracture toughness properties of these novel composites in 

comparison to those of the parent polymer composites. Challenges in relation to the synthesis 

preparation of these novel composites are explored and their reported improvements in 

mechanical properties are evaluated and analysed. Moreover, the behaviour of the fracture 

mechanisms that had contributed to these reinforced properties are also crucially surveyed in this 

review. 

 

2.1 Overview   

The development of composites has changed rapidly in recent years and they are utilised in 

numerous advanced engineering designs, particularly in aircraft and automobile structures. The 

composites can be made via a change to the reinforced materials in the matrix. Two main types 

of composites are currently being extensively used in these industrial applications. The first one 

is the conventional fibre composites, composed of a matrix, for instance polymer resins and fibre 

reinforcements, such as glass and carbon fibres. 

The second, novel NP, consist of at least two materials one of which has strong, rigid properties 

with nanoscale size such as carbon nanomaterial (i.e. CNTs, GNP and CNF). These have a 

different geometric shape and scale structure besides mechanical properties. The main aim of 

using such nanomaterials is to promote the mechanical properties of the polymer composites, 

such as strength, stiffness, toughness and other properties. The other material is the matrix, for 

example polymers, ceramics and metals. These two materials are connected with each other by 

the interface region. 

Recently, researchers and engineers have developed conventional fibre composites and 

nanocomposites, created by a combination of them into the polymer matrix to produce novel 

HFRP. In general, the main difference between these multi-sized reinforcements is transforming 

the dimensional size from a micro to nanoscale.  

The morphological configuration of this conversion is better distinguished by scanning electron 

micrographs, as depicted in Figure 2 (Thostenson, 2004; Thostenson et al., 2003). 
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Figure 2 The transformation in scale dimensions of multi-sized reinforcements from millimetres (fibre network) 

to nanometres (CNTs) (Thostenson, 2004; Thostenson et al., 1998; Thostenson & Chou, 2003). 

 

Thus, the image illustrates the conversion in engineering dimensions and morphological structure 

for fillers from millimetres and micrometres to the nanometre scale. This is where CNTs with 

nano-diameters of between 10-20 nm have been coated on the fibre surface his diameter 7 µm. 

Hence, this can appear as spun packages on it, where the variation in the enhancement scale is 

apparent. Their geometrical transformation in their size and scale, led to difficulties in 

discovering the interaction mechanism relevant to interfacial mechanical property between these 

multi-sized reinforcements and the polymer matrix. Therefore, this engineering problem became 

a critical case that attracted many researchers to understand the mechanism of fracture, especially 

after the mixing of more than one type of nanomaterials into the matrix and use of this modified 

matrix in the manufacture of HFRP. 

 

2.2 Conventional carbon nanotubes (CNTs) 

Numerous research efforts have been conducted by engineering researchers over the past three 

decades to produce different types of CNTs with high purity and quality and excellent 

morphological structures, such as nano-sized and geometric structure (Thostenson et al., 2001; 

Collins & Avouris, 2000; Wagner & Vaia, 2004; Curtin & Sheldon, 2004). These studies showed 

that the mechanical properties of CNTs are largely affected by these engineering issues. 

In general, there are three types of CNTs including SWCNT, DWCNT and MWCNT. Each one 

has a different geometric structure and mechanical properties, which depend on the processes of 

fabrication and the number of graphene layers in their structures. 
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The first type consists of a single layer of graphene, whereas the second and third types consist 

of more than one layer, which have the cylindrical geometric shape of graphene sheets with the 

bonds between layers held together by van der Waals forces (Bethune et al., 1993; Dresselhaus 

et al., 1995; Thostenson et al., 2001). Moreover, according to the rolling angle configuration of 

graphene networks, there are three chiralities that can be classified into three types: armchair, 

zigzag and chiral, as shown in Figure 3. 

 

 

Figure 3 Schematic diagram of hexagonal graphene networks describes three types of chiralities (A: armchair; 

B: zigzag; C: chiral) (Dreselhaus et al., 1995; Thostenson et al., 2001). 

 

Each chirality is described by the chiral vector Ch=na1+ma2 where integers (n,m) are represented 

by the number of steps for both unit vectors (a1,a2) of the hexagonal lattice (Dresselhaus et al., 

1995; Thostenson et al., 2001). Furthermore, the arrangement of carbon atoms around the 

circumference of the nanotube is defined by the values of (n, m) if n=m, which is termed an 

‘armchair’, whereas if m=0, it is described as a ‘zigzag’, otherwise, it is known as a chiral. Every 

layer of the multi-walled carbon nanotube (MWCNT) has a variety of chiralities. These 

complications related to the orientation of the nanotube could have a tremendous effect on the 

physical properties of the CNTs.  

Ideal CNTs possess unique and excellent mechanical properties with the elastic modulus of the 

nanotubes having been estimated as 270-950 GPa and experimentally calculated tensile strength 

of between 11-63 GPa (Yu et al., 2000). These unique properties have been linking the CNTs to 

be used in a wide range of mechanical engineering applications (Ma et al., 2019). 

However, the mechanical properties of CNTs are sensitive to being affected by the structure of 

nanotubes and Nano-dimensions, besides the chemical and physical bonding of the graphene 

network. (Collins and Avouris, 2000; Thostenson et al., 2001; Thostenson and Chuo, 2006).  

Here are some examples, Thostenson et al. (2001), reported that the morphological properties of 

CNTs represent a great degree of variability as an example of the existence of unstable diameters 
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in nanotubes and multiples of chiralities (i.e. zigzag, armchair) in graphene structure of 

nanotubes. Therefore, this produces a challenge in understanding the exceptional properties 

during the stages of preparing or applying CNTs in structural and functional composites. This is 

because of the lack of information related to control dimensions such as length, diameter and 

chirality, as well as the geometrical shape or configuration of CNTs. As an example SWCNT are 

capped at the end and consist of one layer of graphite. The bamboo structure is an extremely 

good example of the MWCNT. They are composed of graphite assembly tubes, with the basic 

structural parameters related to the outer and inner diameters, number of layers, generation-

induced configuration, in addition to the structural arrangement of graphite layers. 

As a result of non-stability in the chemical and physical bonding between the graphene network 

along the nanotube, such as the rolling angle configuration of graphene (i.e. zigzag, armchair), 

nanoscale size (i.e. aspect ratio), the mechanical properties of conventional carbon nanotubes 

(i.e. stiffness) are significantly affected by these geometric imperfections (Li and Chou, 2003) 

(see Figure 4 for further details).  

 

 

Figure 4 The relationship between diameter sensitivity and shear and elastic modulus of the CNTs estimated by 

molecular structural mechanics (Li & Chou, 2003). 

 

These engineering issues may affect the efficiency of their use in advanced engineering 

applications, particularly in the manufacture of NP and HFRP (Wicks et al., 2014; Gojny et al., 

2005; Li and Chou, 2003; Hernandez et al., 1998; Lu, 1997; Krishnan et al., 1998).  
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These facts could be one of the principal reasons for using other nanomaterials and justifying 

that as much as possible. A further reason is their high cost, particularly in SWCNT (Gkika et 

al., 2017), which currently led to limiting their use in engineering applications as reinforced 

material in the manufacture of NP. Therefore, researchers recently started to create new a 

generation of alternative conventional carbon nanomaterials, such as novel fibre nanotubes 

supported with the premium and unique structure of graphene layers with excellent mechanical 

properties and good surface area (Iwahori et al., 2005), that can be applied in the manufacture of 

advanced composites. Another alternative generation is GNP. The main advantages of this type 

of carbon nanomaterials are that it is inexpensive, has excellent mechanical properties and a high 

surface area (Gkika et al., 2017; Li et al., 2018). These two carbon nanomaterials could be more 

effective in reinforcing the mechanical properties of advanced polymer composites than 

conventional carbon nanotubes. Therefore, they have been used in the current work.   

2.2.1 CNTs/polymer nanocomposites 

Extensive studies have been undertaken by researchers to produce various types of polymer 

nanocomposites (NP) reinforced conventional carbon nanotubes, which can be used in advanced 

structural applications, with full potential applications. Nevertheless it is well-known that the 

previous studies had failed (Gkikas et al., 2012; Tang et al., 2011; Ayatollahi et al., 2011; Gojny 

et al., 2005; Ogasawara et al., 2004; Frogley et al., 2003; Loos et al., 2008; Zhou et al., 2007). 

The main obstacles that impeded most of these studies were difficulties in achieving the 

alignment between the nanotubes and polymer resins due to high nanoscale (i.e. high aspect ratio) 

and complete dispersion of tangled CNTs into the polymer matrix as a result of the influence of 

surface and van der Waals forces. Furthermore, the drawbacks that exist in nanocomposites may 

effect the interface property between the matrix and nanotubes. Thus, this decreases the 

mechanical properties of nanocomposites (Gkikas et al., 2012; Frogley et al., 2003). 

Here are a several examples, which address these issues. Gkikas et al. (2012), have used 

MWCNT to improve the tensile properties of epoxy resin. The results showed an increase in 

tensile strength and a reduction in elasticity properties at low weigh content (i.e. 0.5 wt.%). The 

reduction in this property could be relevant to mechanical interfacial property between the matrix 

and the fillers. 

Ogasawara et al. (2004), enhanced phenyl ethyl terminated polyimide by MWCNT that have 

lengths of less than 100µm and diameters ranging from 20-100nm. Mechanical blending was 

used to produce NP. The summary of the results explained that there is an improvement in tensile 

modulus. Meanwhile, there is a decrease in tensile strength. (Frogley et al., 2003), illustrated by 

the experimental study, which showed in the silicon-based elastomers enhanced with MWCNT, 
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whilst there is a good increase in the elastic modulus of nanocomposites and a reduction in the 

ultimate strength. Furthermore, the Raman spectroscopy experiments demonstrated that there is 

a loss in the load transferred to the CNTs by a strain of approximately 10-20%. This reduction 

may refer to the weakness of the effective interface between two phases.  

Therefore, use of chemicals and dispersant solvents and high advance techniques (i.e. extruder) 

are probably necessary for such types of carbon nanomaterials to achieve better alignment or 

dispersion of SWCNT and MWCNT (Tang et al., 2011; Gojny et al., 2005; Sun et al., 2008; Cho 

and Daniel, 2008; Prashantha et al., 2009). Table 1 reveals various examples of the effect of 

CNTs on the strength and stiffness properties of NP concerning previous experimental studies. 

Most of these studies demonstrated moderate improvements in strength and stiffness properties, 

as the CNTs have a tendency to create clusters in nanocomposites and difficulty in achieving 

alignment between the nanotubes and matrix (Ma et al., 2010; Gojny et al., 2005; Ayatollahi et 

al., 2011; Tang et al., 2011). That is why use of alternative carbon nanomaterials such as novel 

fibre nanotubes (i.e. CSCNT) could be more efficient in reinforcing the mechanical properties of 

NP. These can be used instead of conventional carbon nanotubes probably due to the lack of 

difficulties at dispersing them in the matrix and have an excellent resistance structure (Yokozeki 

et al., 2012; Iwahori et al., 2005). 

 

 

 

 

.
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Table 1 Strength and stiffness improvements of CNTs/polymer nanocomposites. 

Matrix 
Nano 

filler type 
Weight content Process 

Maximum 

strength (MPa), 

improvement (%) 

Maximum 

elastic (GPa), 

improvement (%) 

Test 

method 
Ref. 

Epoxy 

(Araldite LY 564 

and Aradur 

2954)  

MWCNT 0.5 wt.% Sonication (+25%) (-4%) TS 
Gkikas et 

al., 2012 

Epoxy 

 (Epon 862) 
MWCNT 

0 wt.% 

Ultrasonic irradiation 

mixing/high 

mechanical stirring 

93.5 2.46 

FS 

Zhou et al., 

2007 

 

0.1 wt.% 109(+16%) 2.54(+3%) 

0.2 wt.% 115(+22%) 2.60(+5%) 

0.3 wt.% 121(+29%) 2.65(+7%) 

0.4 wt.% 113(+20%) 2.75(+11%) 

Epoxy 

 (not mentioned) 
CNTs 

Base(0)  140 3.43 

FS 

 

Ma et al., 

2010 - 

Ultra-sonication 

In bath water 
144(+2%) 3.41(-1%) 

Shear mixing 140(0) 3.36(-2%) 

Probe sonication 143(+2%) 3.47(+1%) 

Calendering 145(+4%) 3.65(+6%) 

Epoxy 

(bisphenol-A 

epoxy) 

p-MWCNT 
Base(0)  73.4 2.87 

TS 
Tang et al., 

2011 

0.5 wt.% 

High speed mixer/three 

roll milling 

72(-2%) 2.89(+1%) 

p-MWCNT 1 wt.% 66(-10%) 2.96(+3%) 

f-MWCNT 0.5 wt.% 89(+21%) 2.88(+1%) 

f-MWCNT 1 wt.% 90(+23%) 2.93(+2%) 

Polypropylene 

(PP) 
MWCNT 

Base(0)  28.2 1.28 

TS 

Prashantha 

et al., 2009 

 

1 wt.% 

Extruder 

33.2(+17%) 1.65(+26%) 

2 wt.% 35.5(+25%) 1.73(+35%) 

3 wt.% 36.8(+30%) 1.80(+40%) 
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5 wt.% 35.2(+25%) 2.2(+67%) 

Epoxy 

(ML-506) 
MWCNT 

Base(0)  68.4 3.15 

TS 
Ayatollahi 

et al., 2011 

0.1 wt.% 
High mechanical 

stirring/sonication 

72(+4%) 3.24(+2%) 

0.5 wt.% 74(+8%) 3.51(+11%) 

1 wt.% 72(+6%) 3.69(+17%) 

Epoxy 

(Epon 862) 

p-MWCNT 
Base(0)  64.1 2.76 

TS 
Sun et al., 

2008 
1 wt.% 

Sonication 
74(+15%) 3.27(+18%) 

f-MWCNT 1 wt.% 75(+16%) 3.49(+26%) 

Epoxy 

(DGEBA-based 

epoxy resin 

(L135i) ) 

SWCNT 

Base(0)  63.8 2.6 

TS 

 

 

Gojny et al., 

2005 

 

0.05 wt.% 

High shear 

mixing/sonication 

66(+3%) 2.7(+3%) 

0.1 wt.% 66(+3%) 2.7(+3%) 

0.3 wt.% 67(+5%) 2.8(+8%) 

DWCNT 

0.1 wt.% 62(-2%) 2.8(+8%) 

0.3 wt% 68(+6%) 2.9(+13%) 

0.5 wt.% 68(+6%) 2.8(+8%) 

f-DWCNT 

0.1 wt.% 64(-1%) 2.6(0%) 

0.3 wt.% 67(+5%) 2.9(+13%) 

0.5 wt.% 69(+8%) 3.0(+14%) 

MWCNT 

0.1 wt.% 63(-1%) 2.8(+8%) 

0.3 wt.% 63(-1%) 2.7(+6%) 

0.5 wt.% 62(-4%) 2.6(0%) 

f-MWCNT 

0.1 wt.% 65(+1%) 2.8(+8%) 

0.3 wt.% 64(-1%) 2.8(+8%) 

0.5 wt.% 64(+1%) 2.8(+8%) 
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2.3 Graphene nanoplatelets (GNP) 

Graphene comprises individual nanoparticles, which consist of short stacks of graphene layers 

that have geometric platelets. Moreover, the fundamental structural geometry of each type of 

carbon nanomaterials is composed of a graphene network, as shown in Figure 5. 

In general, there are different types of GNP depending on the number of graphene layers in their 

structure; namely, monolayer graphene, bilayer graphene and trilayer graphene. Each one of 

these types has different mechanical properties depending on the size and chemical bonding of 

graphene atoms (i.e. chirality), (Zhao et al., 2009; Wang et al., 2012). 

 

 

Figure 5 The geometric morphology for graphene nanomaterials in various structure forms and dimensions 

(0D, 1D, and 3D), (Geim and Novoselov, 2007). 

The graphene production methods can be classified into several techniques, for instance, 

chemical vapour deposition, epitaxial growth, mechanical exfoliation, chemical oxidation-

reduction, arc discharge, besides many other techniques. Therefore, the quality of graphene such 

as mechanical properties could be affected by these production methods (Wang et al., 2017; Qin 

et al., 2015; Wu, 2010; Zhang et al., 2014). 

According to a study conducted by Lee et al. (2008), the mechanical properties of graphene, such 

as elastic modulus and tensile strength were experimentally estimated at about 1.0 TPa and 130 

GPa respectively. These two values have been compared with computer simulation illustrating 

values of elastic modulus 1.05 TPa and tensile strength 110 GPa (Liu et al., 2007). However, 

these two properties are more rigid and stronger than other carbon nanomaterials. Table 2 

demonstrates the mechanical properties of different types of graphene measured by atomic force 

microscope (AFM) method. 
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Table 2 Tensile and elastic modulus of different types of graphene measured experimentally by atomic force 

microscope (AFM) method. 

 

 

Due to these excellent mechanical properties as well as high physical properties (i.e. high surface 

area 750m2/g) which magnify the characteristics of nanotubes and low cost, it has been used in 

a wide range of advanced engineering applications (Mittal et al., 2015; Wang et al., 2016; Gkika 

et al., 2017), (see Figure 6 for further details). 

 

 

Graphene type 

Mechanical  properties 
Method  

measure 
References Tensile  strength 

(GPa) 

Elastic modulus 

(TPa) 

Monolayer  

graphene 
130±10 1±0.1 AFM 

Lee et al., 

(2008) 

Monolayer  

graphene 
130 1.02 

AFM 

 

Lee et al., 

(2009) 

Bilayer 

graphene 
126 1.04 

Trilayer  

graphene 
101 0.98 
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Figure 6 Schematic diagram showing the production methods of graphene nanosheets and their advanced 

applications in various industrial fields (Mittal et al., 2015). 

 

Therefore, graphene has recently attracted more attention from numerous researchers who wish 

to use it in advanced composites structures, instead of conventional carbon nanotubes (Li et al., 

2018; Bhattachaya et al., 2016). For these reasons, it has been selected to reinforce the 

mechanical properties of novel polymer composites in the current study.  
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2.3.1 GNP/polymer nanocomposites  

There is a high demand to create advanced composite materials that have optimum physical 

properties, which could be used in various engineering applications. The extraordinary 

mechanical properties of graphene have made it one of the most effective nanomaterials that can 

be used as reinforced nanofiller in polymer matrix for manufacturing novel nanocomposites with 

an improved performance and superior quality (Chandrasekaran et al., 2013; Du et al., 2017). 

However, many studies have been conducted by researchers to improve the mechanical 

properties of the graphene reinforced nanocomposites. These properties are tensile strength, 

stiffness, toughness, hardness, wear, buckling resistance and fatigue. They have been prepared 

by the use of different mechanical dispersion processes with or without chemical solvents as well 

as at various weight concentrations. These are completed in order to promote these mechanical 

properties for optimal performance, when used in industrial applications and moreover, to 

significantly reduce the synthesising cost as much as possible (Li et al., 2017; Hu et al., 2014; 

Qin et al., 2015; Chandrasekaran et al., 2014; Potts et al., 2011). The reported improvements in 

strength and stiffness properties of the graphene nanocomposites for previous studies are listed 

in Table 3. Regardless of the weight content of graphene, type of graphene used, polymer used 

and manufacturing process, significant improvements in the reported results are related to these 

two properties. The percentage of strength improvements reached 85%, while the stiffness 

improvement was 79% (Abdullah and Ansari, 2015). Certain reported results displayed a 

reduction in these properties, which may indicate the agglomeration of nanoparticles in the 

matrix (Yasmin et al., 2006; Shen et al., 2013) 
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Table 3 Strength and stiffness improvements of GNP/polymer nanocomposites. 

.Matrix 
Nano 

filler type 
Weight content Process 

Maximum 

strength (MPa), 

improvement (%) 

Maximum 

elastic (GPa), 

improvement (%) 

Test 

method 
Ref. 

Epoxy 

diglycidyl ether of 

bisphenol A 

 (DGEBA 

(GY6010)) 

EG 1 wt.% 

Sonication (-20%) (+8%) 

TS 
Yasmin et 

al., 2006 

Shear (-7%) (+11%) 

Sonication & shear (-6%) (+15%) 

Epoxy 

(not mentioned) 
GNP 

Base(0)  7 0.12 

TS 
Abdullah & 

Ansari, 2015 
1.5 vol.% Mechanical 

mixer 

13(+85%) 0.17(+45%) 

6 vol.% 8(+7%) 0.21(+79%) 

PA6-elastomer GNP 
Base(0)  73 1.62 

TS 
Thanh et al., 

2014 10 % Brabender 83(+13%) 1.89(+17%) 

Epoxy 

diglycidyl ether of 

bisphenol A 

DGEBA 

(GY6010)) 

Graphite 

platelets 

Base(0)  34 3 

TS 
Yasmin & 

Daniel, 2004 

2.5 % 
Magnetic 

stirrer 

41(+21%) 3.3(+10%) 

5 % 37(+9) 3.8(+25%) 

Poly (vinylalcoholl) 

PVA 

Graphene 

powder 

Base(0)  114 0.57 
TS 

Surudzic et 

al., 2016 0.01 % Solvent & sonication 178(+56%) 0.69(+21%) 

Epoxy 

(EPO-622) 

GNP 

Base(0)  54.9 - 

TS 
Shen et al., 

2013 

 

0.25 wt.% 
Solvent, mechanical 

stirring & sonication  
66(+20%) - 

GNP 

Base(0)  106 2.2 

FS 0.25 wt.% Solvent, mechanical 

stirring & sonication 

116(+9%) 2.5(+12%) 

1.5 wt.% 97(-9%) 2.6(+19%) 
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Epoxy 

(DER 331) 
GNP 0.2 vol.% Stirring & sonication (+40%) (+16%) FS 

Phua et al., 

2016 

Epoxy 

(Epon44) 

f-GNP 
Base(0)  49.5 1.5 

TS 
Zhang et al., 

2014 
0.3 wt.% Sonication and 

centrifugation 

72.4(+46%) 2.0(+31%) 

GNP 0.5 wt.% 56.9(+14%) 1.7(+14%) 

Epoxy 

(Araldite LY556) 
f-GNP 12 wt.% 

Sonication and 

calendaring technique 
(+11%) (+50%) FS 

Moriche et 

al., 2016 
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However, these improvements could be more efficient compared with nanocomposites 

reinforced with conventional carbon nanotubes (Li et al., 2018; Surudzic et al., 2016; Abdullah 

and Ansari, 2015; Moriche et al., 2016; Li et al., 2017; Thanh et al., 2014; Shen et al., 2013; 

Domun et al., 2015; Rafiee et al., 2009; Rafiee et al., 2010; Yavari et al., 2010; Yasmin and 

Daniel, 2004). For example, Rafiee et al. (2010), illustrated that the addition of 0.125wt.% from 

graphene into the epoxy resin is sufficient to enhance the mechanical properties of graphene 

nanocomposites, such as elastic modulus and tensile strength by approximately 50% and 45% 

respectively. Moreover, these improvements are more efficient compared with nanocomposites 

reinforced by conventional carbon nanotubes. 

In general, several factors could affect the alignment or dispersion process in the manufacture of 

graphene reinforced nanocomposites, for example type of graphene used, weight content, type 

and rheological properties of polymer resin (i.e. viscosity) and orientation of nanosheets into 

polymer. Hence, these can affect the performance of the interference region precisely, and the 

transmission of mechanical forces between the nanosheets and matrix into this region.  

Many studies have addressed these issues raised by researchers to investigate their effect on the 

mechanical properties of nanocomposites such as strength and stiffness (Costa et al., 2017; Lin 

et al., 2013; Yasmin and Daniel 2004; Potts et al., 2011; Ma et al., 2010; Thostenson et al., 2005; 

Phua et al., 2016; Moiche et al., 2016). 

Here are several examples: Costa et al. (2017), used multifunctional carbon nanomaterials, few-

layer graphene (FLG), graphene nanoplatelets (G-NPL), graphene oxide (GO), reduced 

graphene oxide (rGO) and single-walled carbon nanohorns (SWCNH) to produce NP. Their 

results illustrated that the type and weight of content fillers could substantially affect the 

performance of nanocomposites. Yasmin and Daniel (2004), used two levels of graphite weight 

content; 2.5 wt. % and 5 wt. % to enhance the mechanical properties of the epoxy resin. 

Moreover, the tensile strength increased by 21% and 9%, respectively. Liang et al. (2009), 

illustrated that the improvement in the interfacial adhesion of graphene/PVA nanocomposite 

leads to an increase in mechanical properties of the nanocomposite. Li et al. (2018), used 

multifunctional nanofillers to manufacture molecular models of polymer matrix (i.e. polymethyl 

methacrylate (PMMA)) nanocomposites reinforced with graphene and conventional carbon 

nanotubes at the same weight content. To conclude, the results indicated that mechanical 

properties of graphene/PMMA nanocomposites, such as strength and stiffness higher than that 

of CNT/PMMA nanocomposites. Lee et al. (2012), confirmed that functionalised graphene 

sheets/epoxy composites can be subjected to composite cry tank in industrial applications. The 

results of this work showed that there is a significant enhancement in the mechanical properties 
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of epoxy nanocomposite. Cho et al. (2007), demonstrated the mechanical properties of epoxy 

nanocomposite are modified with randomly distributed graphite nanoplatelets by using multi-

scale analysis, such as the Mori-Tanaka approach in conjunction with molecular mechanics. In 

conclusion, the results explained that the mechanical properties of nanocomposites, for instance 

modulus are exceptionally sensitive to variations in the direction of graphene nanosheets or plane 

into the polymer and nano-size (i.e. aspect ratio). 

Lin et al. (2015), used graphene oxide nanosheets (GONS) to improve the mechanical properties 

of cyanate ester resin, composited by using the solution intercalation method. Their experimental 

results explained that there are good improvements for both tribological properties such as 

friction and wear resistance, as well as mechanical properties such as flexural strength and they 

have an impact on the fracture strength and hardness at different concentration ratios ranging 

from 0.25 wt.% to 1.25 wt.%. Abdullah and Ansari (2015), illustrated the effect of the graphene 

oxide on the mechanical properties of epoxy resin. The outcome of their investigation revealed 

that there is promotion in mechanical properties, such as tensile and modulus at 1.5 vol. %. 

Phua et al. (2016), used graphene to prepare epoxy nanocomposites, with their results showing 

improved flexural strength of about 40% at 0.2 vol. %. Interestingly, Moriche et al. (2016), 

applied two types of mechanical dispersion processes, such as sonication and the calendaring 

technique to produce functionalised graphene reinforced epoxy nanocomposite at high weight 

concentration (i.e. 12wt.%) and moreover, to investigate the effect of modified matrix with 

graphene on the mechanical properties of fibre composites. To conclude, the nanocomposites 

were prepared successfully and their results showed, great improvement in flexural modulus and 

roughly in flexural strength and reduction in flexural strength after the addition of the modified 

matrix to the glass fibre reinforced polymer composites (GRP). The reason behind this reduction 

could be related to mechanical interfacial properties between the modified matrix and fillers. 

To date, very few researches have focused on optimising the dispersion degree of the GNP in the 

polymer resins, in order to create high interlocking between graphene and matrix even more, 

without the need to use additional chemicals or dispersant solvents as much as possible and to 

investigate the effect of these optimised nanocomposites on the mechanical properties of CFRP.   

 

2.4 Carbon nanofibers (CNF)  

Carbon nanofiber is one of the fundamental carbon nanomaterials, which has been newly 

developed for scientific research and advanced engineering applications. In general, carbon 

nanofibers have a diameter size ranging from 50-200 nm, whilst their mechanical properties, 

such as tensile and modulus were estimated experimentally to be 3.5 GPa and 172 GPa 
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respectively (Arshad et al., 2011; Thostenson et al., 2005). The strength and modulus of 

microscale fibre nanotubes are not constant, because each one depends on the manufacturing 

process of fibre nanotubes (i.e. chemical vapour deposition, electrospinning method, etc.) and 

their morphological properties (i.e. structure, nanoscale), besides mechanical measurement 

methods (Jeon et al., 2016; Ozkan et al., 2010). 

However, there are two types of carbon fibre nanotubes. The first type has an irregular structural 

build, like the bamboo-like structures, shown in Figure 7a (Merkulov et al., 2000). The second 

type is the one that possesses a high content of graphite layers and are nested within each other 

to create regular hollow shells which have a conical shape. As an example, Figures 7b and c 

show the geometric structures of cup-stacked nanotubes (Endo et al., 2002; Endo et al., 2003). 

 

 

Figure 7 TEM images showing the regular and irregular geometric structure of fibre nanotubes: (a) disordered 

structures (Mekulov et al., 2000), (b) cup-stacked carbon nanotubes (CSCNT) (Endo et al., 2002) and (c)   

bundles of stacked layers in CSCNT (Endo et al., 2003). 

There are the two principal techniques that are applied to prepare fibre nanotubes: catalytic 

thermal vapour deposition growth and electrospinning (Jeon et al., 2016; Shi-sheng et al., 2013; 

Feng et al., 2014; Zhang et al., 2014).  
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The first technique is predominantly used to produce vapour-grown carbon nanofibers (CNF) 

which are also known as cup-stacked carbon nanotubes (CSCNT). These nanofibers have 

excellent mechanical properties and distinctive morphologies that relate to uniform structural 

build, a conical geometric shape and the contents of graphite layers. These novel characteristics 

are desirable when such types are used in enhancing the mechanical properties of NP (Landani 

et al., 2015; Iwahori et al., 2005; Yokozeki et al., 2009; Feng et al., 2014)  

The fibre nanotubes synthesised by the electrospinning technique were used as the main 

reinforcements in the manufacture of electrode materials, such as battery or supercapacitor due 

to having high quality transport properties and good structural form. Furthermore, in most cases 

to improve the performance of fibre nanocomposites, additional thermal treatments are probably 

required (Ji et al., 2011).  

It is recognised that the quality of NP is highly dependent on the properties of fibre nanotubes. 

Many studies have been undertaken to produce fibre nanotubes with optimum morphological 

(i.e. superior geometric structure, nanoscale) and mechanical properties and moreover, to 

investigate the effect of these morphologies on the performance quality of fibre nanotubes 

experimentally and analytically. (Wei & Srivastava 2004; Sandler et al., 2003; Finnegan et al., 

2003; Shi-sheng et al., 2013; Lu et al., 2012; Ozkan et al., 2012; Gong et al., 2014).  

The following are some examples: Wei & Srivastava (2004), illustrated the effect of a change in 

morphologies on physical properties, by using numerical simulation software, for example 

molecular dynamics simulations. In addition, their study showed the change in mechanical 

properties of CSCNT, particularly the axial modulus of nanofiber depends on the tangential angle 

of the shell, where the large angle is measured from the axial direction. This demonstrated that 

there is an increase in this property compared to the one which has a small tangential angle. In 

addition, the scatter in the experimental results, particularly, the physical properties refers to the 

complete wide-ranging morphology of the carbon nanofibers, processing mechanism, 

characterisation, functionalisation and other aspects.  

Sandler et al. (2003), produced fibres from semi-crystalline enormous-performance poly (ether 

ketone) (PEEK) at different contents of weights of up to 10% from the carbon nanofibers. Their 

experimental results illustrated that evaluating performance depends on understanding both the 

degree of crystallinity of the matrix and crystal morphology structure of the nanocomposite after 

the addition of the fibre nanotubes into the matrix. Shi-sheng et al. (2013), demonstrated the 

processes of a carpet structure composed of long and roughly aligned as well as pure degree 

CSCNT by the catalyst chemical vapour deposition (CCVD) method.  
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Gong et al. (2014), demonstrated the effective process CSCNT via catalytic carbonisation of 

polypropylene (PP) under a combination of halogenated compound and Nickel oxide (NiO) at a 

temperature of 700⁰C. In addition, the effects of this approach on the physical properties, in 

particular thermal stability, besides morphologies, phase structure and microstructure was 

reported. The results revealed that low contents of halogenated compound made the surface-

smooth CSCNT with graphene nanosheets inclined to the axis of the nanotubes at angles ranging 

from 21˚ to 25˚. As a consequence of these facts, the mechanical properties of CSCNT are 

scalable. Furthermore, studies are still continuing to obtain optimum geometric structures with 

excellent mechanical properties to rival conventional carbon nanomaterials (i.e. CNTs), which 

can subsequently be used for advanced engineering applications, such as in the manufacture of 

nanocomposites with superior quality.   

2.4.1 CNF/polymer nanocomposites  

Carbon nanofiber has been utilised to enhance the mechanical properties of both types of polymer 

resins. Thermoplastic such as polypropylene, polyvinylpyrrolidone (PVP), poly (ether sulfone), 

poly (ethylene terephthalate), polymethyl methacrylate (acrylic) and thermosets, such as epoxy 

resin, melamine formaldehyde and polyester resin.  

Many experimental studies have been conducted by researchers to address the mechanical 

properties of nanocomposites reinforced with fibre nanotubes in terms of compressive, stiffness 

and strength, as well as the toughness properties and quality of performance (Iwahori et al., 2005; 

Zhou et al., 2008; Yokozeki et al., 2009; Bal, 2010; Sun et al., 2011; Bal & Saha, 2014; Barrena 

et al., 2014). Bal & Saha (2014), investigated the effect of multifunctional nanofillers, 

conventional carbon nanotubes and fibre nanotubes on mechanical properties of epoxy resin, for 

instance bending stress and hardness. In conclusion, the results indicated a significant 

enhancement in these properties of epoxy nanocomposites.  

Barrena et al. (2014), has used fibre nanotubes modified with chemical solvents to produce 

CSCNT/epoxy nanocomposites. The result showed high improvements in the tripological 

properties of nanocomposite, such as the wear resistance. Improvements in the reported results 

of the strength and stiffness properties of NP that are reinforced by fibre nanotubes in previous 

studies are listed in Table 4. Regardless of the synthesising process, weight content and type of 

polymer resin used, high improvements achieved 38% in strength property (Iwahori et al., 2005) 

and 60% in stiffness property (Bal, 2010). A number of these reported results illustrated a 

reduction in strength property, which may refer to the agglomerate of nanoparticles in the matrix 

(Sun et al., 2011).  
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To date, few studies have focused on the use of CSCNT in improving the strength and stiffness 

properties of NP. Therefore, further confirmation is required for the purposes of the design when 

it is used for advanced applications, particularly in the manufacture of HFRP.
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Table 4 Strength and stiffness improvements of CNF/polymer nanocomposites. 

Matrix 
Nano 

filler type 

Weight 

content 
Process 

Maximum 

strength (MPa), 

improvement (%) 

Maximum 

elastic (GPa), 

improvement (%) 

 

Test 

method 

Ref. 

Epoxy 

(EP827) 

 

CNF 

 

Base(0)  73 2.48 
TS 

Iwahori et al., 

2005 

10 wt.% 

Mechanical stirring 

89(+22%) 3.60(+45%) 

Base(0) 99 2.31 
FS 

10 wt.% 136(+38%) 3.3(+42%) 

Epoxy 

(SC-15 ) 
CNF 

Base(0)  59 2.78 

TS 
Zhou et al., 

2008 3 wt.% Sonication and Mechanical 

stirring 

64(+9%) 3.32(+19%) 

2 wt.% 69(+17%) 3.17(+14%) 

Epoxy 

(araldite 

LY-556 

based on 

Bisphenol 

A) 

CNF 

Base(0)  - 1.68 

FS Bal, 2010 

0.75 wt.% 
Sonication and Mechanical 

stirring 
- 2.69(+60%) 

Epoxy 

(Epon 862) 
CNF 

Base(0)  69 1.04 

TS 
Sun et al., 

2011 
1 wt.% Chemical solvents, Sonication 

and mechanical stirring 

74(+8%) 1.22(+17%) 

2 wt.% 62(-10%) 1.29(+24%) 
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2.5 Comparison of CNTs & CNF 

In general, carbon nanotubes (CNTs) and carbon nanofibers (CNF) are hollow structures. They 

have nanometres dimensions with different morphologies (i.e. geometric shape), physical 

properties and similar methods of production (Qian et al., 2002; Thostenson et al., 2005). In 

contrast, there are clear variables that essentially impact on their quality or performance and 

ability to be synthesised.  

Carbon nanofibers are also known as cup-stacked carbon nanotubes (CSCNT). As mentioned 

previously, they have an individual morphology in which graphite layers are inclined from the 

axis of the fibre. Moreover, this excellent structure of CSCNT suggests the characteristic in the 

mechanical loads transfer between fibre nanotubes and matrix because it prevents the graphene 

layers sliding during loading (Iwahori et al., 2005; Endo et al., 2003; Wei & Srivastava., 2004).  

There are several advantages to using CSCNT as enhanced fillers in polymer matrix; specifically, 

it is easier to disperse compared with other carbon nanomaterials (i.e. SWCNT or MWCNT) 

(Yokozeki et al., 2012), it is not complex in the processing stages, provides high physical 

properties, particularly mechanical properties, it is easier to employ in chemical treatments and 

to functionalise and furthermore, it is not expensive compared with other carbon nanomaterials 

in particular single-walled carbon nanotubes.  

However, CNTs normally feature fibre diameters ranging from 1-30 nm, whereas CSCNT feature 

fibre diameters of between 50-200 nm (Thostenson et al., 2005). Both of these nanotubes exist 

in varying lengths and are estimated to be more than a hundred micrometres, basing on the feed 

stages and production methods. The variations in diameter range and geometric structures 

between both types of nanotubes appear to be significant. In the CNTs, because the high aspect 

ratio is very large, van der Waals forces are too strong in the graphene network of the nanotube, 

which create them in a cluster form until they are dispersed. This is why they frequently require 

the use of chemical dispersants, such as chemical or physical functionalisation approaches or 

other technical processes to separate their tangled agglomerate (Sahoo et al., 2010; Ma et al., 

2010; Ma et al., 2009). Conversely, in the fibre nanotubes these forces are less influential, 

compared with CNTs. This specification which makes CSCNT is easier in relation to the 

dispersion process. Hence, it is inexpensive in regard to the manufacturing process (Yokozeki et 

al., 2012). 

Based on these facts, the CSCNT seem cheaper and easier in comparison with the conventional 

carbon nanotubes and more favourable structure in the manufacturing of nanocomposites. 

Therefore, fibre nanotubes were selected to reinforce the mechanical properties of polymer 

composites instead of conventional carbon nanotubes in the present study.  



 

29 

 

2.6 Hybrid polymer nanocomposites (HNP) 

A hybrid nanocomposite can be defined as a novel composite structure consisting of two or more 

types of nanoparticles in a common matrix. However, there are two reasons that researchers have 

been motivated to create such novel nanocomposites. 

The first reason is due to the high cost of CNTs particularly SWCNT in contrast with other carbon 

nanomaterials, such as graphite, graphene sheets, black carbon and fibre nanotubes (Gkika et al., 

2017). Consequently, this obstacle has limited their use in industrial applications, over the last 

decade. The second one is to promote the physical properties of NP (Ma et al., 2010).  

HNP modified with two nanoparticles, each with different geometrical structures, nano-

dimensions and physical and chemical properties was expected to be a good solution for these 

economic and engineering issues. Conversely, the combination of multifunctional carbon 

nanomaterials may induce the promotion of mechanical interfacial property between the polymer 

matrix and nanomaterials, resulting in their synergy properties within the matrix. Accordingly, 

this modern approach could increase the mechanical properties (i.e. strength and stiffness) of NP. 

Therefore, from then until today, the researchers still look for to find a good multifunctionality 

formula that can be used to develop the performance quality for novel nanocomposites (Liu et 

al., 2017; Al-Saleh, 2016; Chatterjee et al., 2012; Ma et al., 2009; Li et al., 2008).  

The following are some examples: Ma et al. (2009), successfully manufactured a novel 

nanocomposite modified with two carbon nanomaterials (black carbon and conventional carbon 

nanotubes) in the polymer resin. The results confirmed that the mechanical properties are stable 

in novel nanocomposites after the combination of these nanomaterials. In addition, the outcomes 

explained that the conventional carbon nanotubes to carbon black decreases the percolation 

threshold. Likewise, this phenomenon may affect the ductility and the toughness of HNP.  

Recently, a combination of graphene and conventional carbon nanotubes was used to reinforce 

the physical properties of polymer resins particularly mechanical properties (Liu et al., 2017; Al-

Saleh, 2016; Wang et al., 2015; Li et al., 2013). Table 5 shows the effect of the combination of 

these two carbon nanomaterials on the strength and stiffness properties of HNP. Additionally, by 

employing the functionality formula (i.e. graphene and conventional carbon nanotubes) in the 

manufacture of HNP, there were noticeable improvements in the strength and stiffness properties 

of most of these previous studies due to difficulty in dispersing them together in the polymer 

resins (Chatterjee et al., 2012). The reason for this is because they have a tendency to re-

agglomerate after they have been dispersed in the matrix. This undesirable phenomenon can 

affect the synergy property of carbon nanomaterials within the matrix. Furthermore, it affects the 

efficiency of loads transferred between matrix and hybrid nanoparticles into interface regions. 
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Accordingly, this behaviour diminishes the mechanical properties of the HNP. Therefore, use of 

alternative carbon nanomaterials, for example novel fibre nanotubes combined with graphene 

could be a good functionality formula in relation to reinforcing the strength and stiffness 

properties of HNP instead of conventional carbon nanotubes. It also can be more efficient at 

inducing the synergy property of combined nanomaterials within the matrix, which is applied in 

the present work.
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Table 5 Strength and stiffness improvements of HNP. 

Matrix 
Nano 

filler type 

Weight 

content 
Process 

Maximum 

strength (MPa), 

improvement (%) 

Maximum 

elastic (GPa), 

improvement (%) 

Test 

method 
Ref. 

50/50 PP/PE 
Hybrid 

GNP/CNTs 

Base(0)  25 
- TS 

Al-Saleh, 

2016 1:4 (ratio) Batch mixer (+20%) 

Epoxy 

(1080S) 

Hybrid 

CNTs/GNP 

 

Base(0)  50 2.2 

TS Li et al., 2013 
0.5 wt.% Roll milling 68(+36%) 3.1(+40%) 

Epoxy 

(EPIKOTE 

828LVEL) 

Hybrid 

CNTs/GNP 
9:1 (ratio) 

Solvent, 

Sonication, high 

pressure 

homogeniser, and 

3-roll milling 

- (+17%) FS 
Chatterjee et 

al., 2012 

Epoxy 

(EPO-622 ) 

Hybrid 

CNTs/GNP 

Base(0)  54.9 - 

TS 

Wang et al., 

2015 

5:5 (ratio) Solvent, 

homogeniser 

stirring, 

sonication, 

mechanical mixer 

73.4(+34%) - 

1:9 (ratio) 67.0(+22%) - 

Base(0)  106 2.2 

FS 

5:5 (ratio) Solvent, 

homogenizer 

stirring, 

sonication, 

mechanical mixer 

128(+21%) 2.7(+22%) 

1:9 (ratio) 134(+26%) 2.8(+24%) 
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2.7 Strengthening and toughening matrix 

Improvement of the micro-crack resistance and the mechanical properties of fibre polymer 

composites can be classified into two techniques; specifically, improving the material properties 

and tailoring the ply in construction (Kuwata & Hogg, 2011; Chan, 1991). The polymer matrix 

strengthening and toughening technique is the simplest method for enhancing the mechanical 

properties of polymer composites. However, strengthening and toughening the resin matrix with 

thermoplastic polymers frequently compromises the pristine in plane mechanical properties, 

under the static and dynamic loads (Greenhalgh et al., 2009).  

Epoxy resins are commonly employed in many advanced industrial applications and have been 

considered as alternative polymer resins to advanced strengthening polymers because of  the low 

cost and their generally good mechanical properties and environmental resistance. They have 

been increasingly used as they have high stiffness and strength, good chemical and corrosion 

resistance, low shrinkage in cure and high adhesion and dimensional stability. In spite of these 

premium properties, the epoxy resins in single phase suffer a weakness in their toughness and 

strength properties when using the matrix in the manufacture of advanced fibre composites. In 

promoting their performance via the addition of a second phase into the matrix, it became 

necessary to involve a wide range of advanced structural applications. Thus, rubber fillers have 

been used for this purpose (Greenhalgh et al., 2009; Tang et al., 2011). The drawbacks of such 

materials are a reduction in the stiffness properties of pristine epoxy resin, which hindered their 

use in industrial applications, in particular in the manufacture of advanced fibre polymer 

composites. A modern approach has been applied by engineers to solve such drawbacks, which 

include the use of rigid nanomaterials. Specifically, there has been interest in using conventional 

carbon nanotubes (i.e. SWCNT or MWCNT) over the past three decades (Gojny et al., 2005; 

Karapappas et al., 2009; Wichmann et al., 2006; Qin et al., 2007; Fan et al., 2008).  

Recently, graphene and carbon fibre nanotubes were used for this purpose. Both of these carbon 

nanomaterials have proved their success in developing the strength and toughness properties of 

epoxy resins. Here are some examples: Zaman et al. (2011), illustrated that the addition of 

graphene into the epoxy resin led to improvement in the fracture toughness properties of modified 

matrix in the NP by approximately 104% at 4 wt. %. Chandrasekaran et al. (2014), reviewed the 

comparison of toughness properties pertaining to previous studies on the epoxy resins modified 

with various types of nanomaterials, as shown in Figure 21. As a result of this comparison, it 

appears that graphene is more actively involved in reinforcing the fracture strength property of 

modified epoxy in nanocomposites than other nanomaterials, in particular conventional carbon 

nanotubes. 
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Figure 8 Comparison of fracture toughness property among different types of nanomaterials at various weight 

content (Chandrasekaran et al., 2014). 

 

In a further study, Chadrasekaran et al. (2014), investigated the effect of the addition of 

multifunctional carbon nanomaterials (i.e. TRGO, GNP, MWCNT) on mechanical properties of 

epoxy resin. To conclude, the results revealed that graphene is the best carbon nanomaterial in 

improving the toughness properties of nanocomposites compared with MWCNT.  

Furthermore, the study showed the fracture mechanism systems analytically, particularly in the 

graphene nanocomposite, such as crack pinning/bi-furcation mechanism of graphene through 

propagation crack, separation of graphitic sheets and shear failure, which are suggested as 

reasons for these improvements in the toughness properties of nanocomposites (see Figures 9 

and 10).  
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Figure 9 Schematic diagram shows the fracture toughness systems of GNP/TRGO polymer nanocomposite 

through crack propagation (Chandrasekaran et al., 2014). 

 

 

Figure 10 Schematic diagrams shows: the interactions mechanism of the crack tip with GNP/TRGO 

nanoplatelets (Chandrasekaran et al., 2014). 

 

Further experimental studies included the use of novel fibre nanotubes to modify the strength 

and toughness properties of polymer resins. For instance, Zhou et al. (2008), investigated the 

effect of fibre nanotubes on the mechanical properties of epoxy resin sequentially and the use of 

its modified epoxy matrix to reinforce the mechanical properties for conventional carbon fibre 

composites. In conclusion, their results illustrated high improvements in toughness and tensile 

strength at 2 wt. % of nanofibers under static and dynamic loads. More recently, Landani et al. 
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(2015), investigated whether the addition of novel fibre nanotubes into the epoxy resin improves 

the fracture toughness property of the epoxy matrix as well as the carbon fibre composites. The 

results demonstrated significant improvement in the toughness property of the composites 

modified with nanofibers.  

Therefore, the addition of graphene and carbon fibre nanotubes into the epoxy resins could be a 

practical solution for enhancing the strength and the toughness properties of these resins. It is 

also more efficient than conventional carbon nanomaterials. Sequentially, using this modified 

epoxy as reinforced matrix to improve the mechanical properties of conventional carbon fibre 

composites, where impregnation of the strengthened and toughened matrix into the fibre network 

would improve the degree of adhesion or the mechanical interfacial property between the fillers 

and the matrix. Hence, it may lead to an improvement in the mechanical properties of HFRP 

(Zhou et al., 2006; Yokozeki et al., 2007), (see Figure 11 for further details).  

 

 

Figure 11 Diagram of the reinforced the mechanical properties of the CFRP via impregnation of the 

nanocomposite route (Yokozeki et al., 2007). 

However, the previous approach has been promoted recently by researchers via a combination of 

two carbon nanomaterials (i.e. graphene and conventional carbon nanotubes) into the polymer 

resins. This approach indicated admirable improvements in the strength and toughness properties 

of epoxy polymers, resulting in the synergy property of two carbon nanomaterials within the 

matrix. For instance, Chatterjee et al. (2012), used a mixture of multifunctional carbon 

nanomaterials; GNP and CNTs to improve the strength and toughness properties of epoxy resin. 

The results illustrated excellent improvements, up to 77% in the toughness property of HNP. 

Moghadam and Taheri, (2014) investigated whether the combination of graphene and 

conventional carbon nanotubes into the epoxy resin increased the fracture toughness properties 

of modified epoxy in nanocomposites up to 75%. Nam et al. (2017), also used a mixture of two 
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carbon nanomaterials; namely, functionalised graphene oxide and conventional carbon 

nanotubes to manufacture HNP. The results showed high promotion in the mechanical properties 

of modified polymer in HNP, such as strength and toughness properties after the combination of 

0.9wt % of nanosheets and 0.1wt. % of nanotubes. Interestingly, Wang et al. (2015), used 

combined carbon nanomaterials (i.e. GNP and CNTs) to modify the strength properties of epoxy 

resin, sequentially. Moreover, Wang et al. (2015), used the modified epoxy in improving the 

strength and toughness properties of conventional carbon fibre composites. The results showed 

excellent improvements in strength and toughness properties of HCFRP. 

In general, the reasons which led to high improvements in the strength and toughness properties 

of these composites are possibly relevant to the fracture toughness behaviours of fillers into the 

matrix. For instance, peeling graphene nanosheet, bridging nanotube or nanosheet, crack 

distortion and crack pining had also been exhibited in the fracture morphology of graphene 

nanocomposites, which are basically similar to fracture mechanism systems in conventional 

carbon nanotubes. Furthermore, the combination of these multiple toughness systems concluded 

in hybrid polymer composites, such as pinning and pull-out nanofillers, crack pinning and bi-

furcation mechanisms (Chadrasekaran et al., 2014; Landani et al., 2015; Yokozeki et al., 2007; 

Yokozeki et al., 2009; Wang et al., 2015; Menna et al., 2016; Thostenson et al., 2005; Wetzel et 

al., 2006). These dissipation energy systems have been proposed as having toughening and 

strengthening effects on novel polymer composites. However, the fracture mechanism systems 

of hybrid nanocomposite modified with two carbon nanomaterials were not completely translated 

in the previous studies (Wang et al., 2015; Kostageiannakopoulou et al., 2017). Therefore, this 

study will offer additional details in relation to the fracture toughness behaviours of the combined 

nanomaterials into composites. 

To the best of my knowledge, the novel structure of fibre nanotubes was not combined with 

graphene to improve the strength and toughness properties of epoxy resin, which is expected to 

be more active than conventional carbon nanotubes. Thereafter, use of this novel matrix to 

promote the mechanical properties of CFRP in the present study.  

 

 2.8 Critical cases in manufacturing of NP 

2.8.1 Dispersion  

The dispersion of nanomaterials plays a key factor in influencing significant performance and 

the quality of NP. This critical issue was also considered as an immense challenge in the 

manufacture of NP. It is well-known that van der Waals forces are responsible for joining the 

graphite networks with each other, in nanotube or nanosheet layers. Therefore, such forces in the 
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atomic structure of nanoparticles require high quality techniques (i.e. extruder) to separate their 

tangled agglomerate into the matrix and in order to obtain optimum exfoliation and homogenous 

dispersion of the nanoparticles. In addition, chemical dispersants (i.e. BYK additives) may 

regularly be used for this purpose via the dispersion process of nanoparticles, particularly with 

MWCNT (Cho and Daniel, 2008; Sahoo et al., 2010; Hu et al., 2014). Further details about the 

dispersion of carbon nanomaterials will be discussed in this review.  

2.8.2 Alignment 

There are difficulties in controlling the distribution and orientation of nanoreinforcements into 

the polymer matrix, as a result of their nano-sized dimensions. Thus, this may affect the degree 

of their adhesion to the matrix. Furthermore, the mechanical interfacial properties are improved 

by modulating the properties of the interface regions, between matrix and fillers. Therefore, any 

weakness in this property could affect the performance of nanocomposites and their engineering 

applications. As a result, alignment of carbon nanomaterials (i.e. CNTs, CNF and GNP) with 

polymer matrix is too complex compared with micro-reinforcements, such as glass or carbon 

fibre (Thostenson et al., 2005). For these reasons, additional uses of chemical solvents are 

probably necessary to achieve the alignment between the reinforcements and the matrix (Punetha 

et al., 2017; Ma et al., 2010). 

2.8.3 Rate of production vs cost 

The rapid transformation in the manufacturing of structural composites from conventional fibre 

composites to advanced novel nanocomposites, is a clear demonstration of the evolution in 

science nanotechnology in terms of the conversion of size reinforcements from micro to 

nanoscale. This evolution is still continuous over time and indispensable. Therefore, the 

competition between companies has produced highly distinctive specifications of nanomaterials 

with the least cost possible (see Figure 12), which provides superior efficiency in advanced 

industrial applications (Gkika et al., 2017). While, the prices of raw nanomaterials are linked to 

their type and quality, and demand size and rate production increase, it is evident that the cost of 

nanomaterials may be expected to reduce dramatically with increased size applications. 
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Figure 12 Average price (in euro) per gram for various types of nanomaterials (Gkika et al., 2017). 
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2.9 Mechanical interfacial properties of NP 

Advanced polymer composites which transact with the behaviour of nanoparticles dispersion, 

thin sheets, fibres and other reinforcements are strongly affected by the properties of their 

interface. Furthermore, this region is sensitive to the morphological properties of these 

reinforcements, for instance sized dimensions and geometric design. Figure 13 reveals different 

designs and volumes in some reinforcement materials (Thostenson et al., 2005; Park and Seo, 

2011).  

 

 

Figure 13 Geometric shape and (surface area/volume) relationship to vary the structure of the reinforcement 

nanomaterial (Thostenson et al., 2005). 

 

In general, the performance quality in advanced polymer composites, such as NP s is relevant to 

the interfacial attraction between nanoparticles and polymer matrix. To achieve a high contact 

area or adhesion between matrix and nanoparticles, they need to disperse and separate their 

bundles uniformly in the matrix (see Figure 14). 
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Figure 14 Nanocomposite model showing the dispersion process of clay/nanocomposite completely; a) tangled 

layers (undispersed), b) partly dispersed and intercalated, c) complete dispersed and intercalated, d) completely 

exfoliated and dispersed ( Luo and Daniel, 2003). 

 

Furthermore, additional processes, such as chemical modifications are regularly used as a 

precondition to achieve better dispersion or alignment between the side-walls of the nanoparticles 

and the polymer matrix. However, the modifications on the side wall or the structure of the 

nanoparticles can be classified into two main effective functionalisation approaches; chemical 

functionalisation and physical functionalisation.  

Numerous studies have been conducted by researchers to address these issues concerning 

different carbon nanomaterials, such as conventional carbon nanotubes (Gojny et al., 2005; 

Sahoo et al., 2010; Ma et al., 2010), graphene (Moriche et al., 2016; Moriche et al., 2015; Hu et 

al., 2014; Bhattacharya, 2016; Tkaya et al., 2012) and novel fibre nanotubes (Barrena et al., 2014; 

Ji et al., 2011). Mechanical dispersion techniques, for instance the sonication technique was used 

for most of these chemical treatments.  The addition of the chemical modifications may improve 

the surface area of the nanoparticles. Additionally, the generation of covalent chemical bonds 

between the nanoparticles and matrix reinforce their interactions to present optimum interfacial 

shear strength, which is more than that of van der Waals bonds. Hence, this technique can 

increase the properties of NP (Mittal et al., 2015; Criado et al., 2015; Barrena et al., 2014; Layek 

& Nandi, 2013; Chua and Pumera, 2013; Thostenson et al., 2001; Wagner & Vaia, 2004). 

In spite of the additional chemical modifications, such as covalent or non-covalent, 

functionalisation is useful in maintaining the stability of nanoparticles (Sinnott, 2002; Fang et 

al., 2010). In contrast, the quantity of functionalisation, atomic structure and molecular weight 
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of the chemical function groups are sensitive variables that may have influenced the mechanical 

properties of the nanoparticles negatively. For example, Zheng et al. (2010), illustrated that the 

increase in the weight concentration of functional groups could significantly affect the elastic 

modulus of the graphene. Conversely, this property is not sensitive to their molecular weight. As 

a consequence, this method is not without flaws or complications because of the possibility of 

the re-agglomeration of nanoparticles as well as damage to the nanoparticles structure, which in 

most cases generates a weak interaction instead of a strong one between the matrix and 

nanoparticles (Esumi et al., 1996; Avila-Orta et al., 2009; Ma et al., 2010). 

The physical functionalisation method based on the functionalisation of nanoparticles using the 

covalent or non-covalent method may provide beneficial chemical groups on the side wall or the 

surface area of the nanoparticle. Nevertheless, this technique can also produce damage to and 

defects on the geometric structure of the nanoparticles (Geng et al., 2008; Hirsch, 2002; Ma et 

al., 2010; Mittal et al., 2015). That is why the use of other processes, for example advanced 

mechanical dispersion techniques particularly combined dispersive techniques are probably 

better than chemical processes to achieve optimum dispersion of the nanoparticles and high 

interlocking between the nanoparticles and the matrix. Therefore, the dispersion processes of 

graphene and novel fibre nanotubes were performed as much as possible without the use of 

additional chemical solvents, in the present study.  

 

2.10 Dispersion of carbon nanomaterials  

One of the great challenges which hinders the manufacture of NP and can have an influence on 

their engineering performance is the dispersion process of carbon nanomaterials in the polymer 

resins. Furthermore, the dispersion process for each type of carbon nanomaterials into the resin 

is not equivalent because the specifications for each one are different. As examples:  nanoscale, 

geometric structure, atomic structure, besides physical and chemical properties (Punetha et al., 

2017; Yokozeki et al., 2012). Therefore, there is difficulty in controlling their distributions or 

orientations into the matrix and in separating their agglomerates completely, as well as the 

homogeneous dispersion of very small size particles with high aspect ratio (i.e. CNTs) and 

without damage, remain challenging due to the issues relating to surface effects, electro-static 

interaction and van der Waals forces. Therefore, the dispersion drawbacks of carbon 

nanomaterials, such as SWCNT and MWCNT as well as GNP are more complex compared with 

other carbon nanomaterials such as fibre nanotubes. This is because of their tendency to create 

agglomeration in the nanocomposite as mentioned previously which negatively effects the 
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physical and mechanical properties of NP (Yokozeki et al., 2012; Thostenson et al., 2005; 

Coleman et al., 2006; Jin et al., 2007; Potts et al., 2011; Prolongo et al., 2014).  

The following are several clarifications: Hernandez et al. (2008), demonstrated only slight 

modifications in the elastic modulus and tensile strength of epoxy nanocomposites modified with 

two types of MWCNT, with a variety of aspect ratios. In this work, the results illustrated that 

there is a significant improvement for both the fracture toughness and impact resistance in 

specimens that have a high aspect ratio. However, the increase in the tensile strength and elastic 

modulus were limited to approximately 5% because of the weak bonds between the 

nanomaterials and polymer matrix in addition to the agglomeration phenomenon. 

Lin et al. (2015), used the graphene as the filler in the silicone resin to manufacture NP. Their 

study demonstrated a good dispersion of graphene sheets in the silicone matrix composite. 

Furthermore, rheological properties of polymers, for example degree of viscosity and 

temperature were suggested as further reasons that can affect the dispersion processes. Thus, this 

factor may promote the performance of NP. Interestingly, Yokozeki et al., (2012) used 

multifunctional carbon nanomaterials in order to prepare MWCNT/epoxy and CNF/epoxy 

suspension by using the shear mixing technique. The main aim of their study was to investigate 

the influence of steady-state viscosity on these two nanomaterials, under different shear rates 

ranging of 0.1-100 S-1 and at different thermal conditions (see Figure 15). To summarise, results 

reported that the viscosity of the polymer resin and the temperature of the mixture at a high shear 

rate, could possibly be a key factor in obtaining the optimal dispersion of nanoparticles into the 

polymer matrix. In addition, the dispersion degree of the novel fibre nanotube into the matrix is 

better than the CNTs. 
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Figure 15 Diagram with SEM images shows the dispersion of MWCNT and CNF in epoxy matrix at different 

shear rates and temperatures: a) 0.1 wt. % MWCNT 25 ⁰C, b) 0.1wt.%  MWCNT at a temperature of 60 ⁰C, c) 

0.5wt.% CNF at temperature 25 ⁰C, d) 0.5wt.% CNF at 60⁰C (Yokozeki et al., 2012). 
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Mechanical dispersion techniques were considered as a good practical approach to disperse the 

nanoparticles homogeneously in the matrix. In particular, there has been interest in the use of 

ultra-sonication, roll mill mixing, ball mill mixing and magnetic stirring (Tess et al., 1996; Breuer 

& Sundararaj, 2004; Xie et al., 2005; Ma et al., 2010; Lin et al., 2015; Bal & Saha, 2014; Iwahori 

et al., 2005; Yasmin et al., 2006). These techniques showed good dispersion of nanoparticles in 

the polymer resins. However, the challenges are continuous regarding these mechanical 

dispersion techniques because insufficient information has been provided about the use of such 

mechanical techniques. Moreover, there are principles or required procedures which should be 

followed by researchers when using these techniques, in order to achieve full dispersion 

of the nanoparticles. Therefore, further details are required to understand these issues.  

In general, the work mechanisms applied for most of these dispersion techniques is by means of 

generating three mechanical forces, such as shear, compressive and extension. Figure 16 depicts 

the behaviour of nanoparticles under the effect of these forces. 

 

 

Figure 16 The main mechanical forces applied on the nanoparticles. 

The improving dispersion quality of the nanoparticles into the matrix could significantly increase 

the mechanical properties of the NP. The modern approach of combined dispersive techniques is 

currently applied by researchers to obtain high level de-agglomeration and homogenous 

distribution of the nanoparticles in the polymer matrix. This approach has demonstrated success 

in the dispersion of various types of carbon nanomaterials (Tang et al., 2013; Lee et al., 2012; 

Chandrrasekaran et al., 2013; Morechi et al., 2015; Wang et al., 2015). 

Tang et al. (2013), used combined dispersive techniques, sonication and ball milling/mixing to 

disperse graphene nanomaterials in the epoxy resin. To conclude, the results illustrated that the 

combined techniques could highly improve the dispersion degree of graphene in 

nanocomposites, as shown in Figure 17. 
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Figure 17 The TOM images shows the dispersion process of graphene/epoxy nanocomposites at 0.2wt.%: a) and 

b) sonication and c), d) combined techniques (sonication and ball milling) (Tang et al., 2013). 

 

Lee et al. (2012), manufactured graphene/epoxy nanocomposites by combining two mechanical 

techniques; specifically, shearing mixer and ultra-sonication. In conclusion, their results 

observed that the modification of the dispersion degree of graphene into the epoxy matrix raises 

the mechanical properties of NP. Interestingly, Moriche et al. (2015), investigated the influence 

of dispersion processes on the morphological properties of GNP, particularly the structure. 

Mechanical combined techniques were used for this purpose. Their results showed that the 

dispersion processes can significantly affect the geometric structure of graphene. Moreover, the 

performance quality of graphene nanocomposite improved after combining sonication and a few 

cycles of the calendaring technique (see Figure 18). 
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Figure 18 TEM images show the effect of dispersion processes on the morphological properties of GNP (a) and 

(b) GNP dispersed by sonication technique, (c) and (d) GNP dispersed by calendaring, (e) GNP disposition 

diagram scheme(Moriche et al., 2015) 

Consequently, the combined dispersive techniques have high effectiveness in dispersing the 

carbon nanomaterials uniformly in polymer resins. To achieve high exfoliation of carbon 

nanomaterials and uniform dispersion, the combination of sonication and ball milling technique 

was suggested to disperse GNP, CSCNT and a combination of them in the polymer resin for the 

present study.   
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2.10.1 Mechanical dispersion 

The most common and practical mechanical dispersion techniques used currently in the 

preparation of NP are ultra-sonication, ball mill mixing and shear mixing (Breuer & Sundararaj, 

2004; Xie et al., 2005; Yasmin et al., 2006; Sun et al., 2011; Yokozeki et al., 2012). The two 

effective techniques used in this present study can be described as follows. 

2.10.1.1 Ultra-sonication technique 

Ultra-sonication is an active method used to disperse nanoparticles into the polymers. Its work 

mechanism depends on ultrasound energy to vibrate the particles in a solution or resin. The 

vibration energy generates pressure waves in the resin and the energy waves convert to 

mechanical forces on the agglomerated particles. Hence, contribute to separating nanoparticle 

agglomerates homogeneously in order to create a large contact area between the nanoparticles 

and the matrix. 

Furthermore, this technique is a highly effective method used to disperse the nanoparticles in 

liquids that have a low viscosity or volatile solvents, such as acetone, water and other liquids 

(Lee et al., 2012; Ma et al., 2010). 

Two sonication techniques are used for dispersing the nanoparticles in a matrix: ultrasonic bath 

and an ultrasonic probe/horn (see Figure 19). 

 

 

Figure 19 Two types of ultra-sonication techniques (A: a water bath sonicator; B: probe/horn sonicator) (Lu et 

al., 1996; Ma et al., 2010). 

In accordance with Standard laboratory syndicators, the ultrasonic bath technique can be run at 

vibration cycles ranging from 20 to 23 KHz and energy less than 100W in a water bath. In 

addition, the other sonicator is the ultrasonic probe that has changeable amplitudes with a range 

of 20% to 70% and energy of 100-1500W, (Moniruzzaman & Winey, 2006; Ma et al., 2010).  

The geometric structures of most probes are tapered. The diameter at the bottom tip range ranges 

between 1.6 to 12.7mm. The wide diameter probe is attached with a rule unit. Therefore, the 
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ultrasound energy is typically focused on the tip of the probe with high intensity energy. The 

consequence of this design is that a substantial amount of heat can be generated rapidly. Hence, 

in case the nanoparticles are dispersed in volatile solvents such as acetone, it may well be better 

to keep these solvents at a cold temperature (e.g. using pieces of ice as a bath). 

Further, using the sonication technique over a long period could cause damage in the 

nanoparticles. Therefore, this period must be brief to avoid this drawback. Such consequences 

has been confirmed by Raman spectroscopy, which reveals that the dispersion of conventional 

carbon nanotubes over a long time creates a significant rise in the intensity of the D band 

(appearing troubled sp3 carbon into carbon nanotube, as shown in Figure 20, (Lu et al., 1996). 

Moreover, in many cases, the graphene layers which forms the structure of the CNTs are crushed 

consequently, transformed to structure less or amorphous fibre nanotubes (Mukhopadhyay et al., 

2002). This results in the deterioration of the physical properties of the NP, such as electrical and 

mechanical properties. 

 

 

 

Figure 20 The influence of sonicated dispersion on the morphological construction of CNT before and after 

dispersion processing measured by Raman spectra (Lu et al., 1996). 

Therefore, a reasonable period of time is recommended for the dispersion process of carbon 

nanomaterials by means of the sonication technique, particularly at high amplitude, in order to 

avoid any damage to the structure of the nanomaterials. These recommendations have been 

applied in the current study. 
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2.10.1.2 Ball milling/mixing technique 

Ball milling/mixing technique is a practical and successful technique in dispersing nanoparticles 

in a matrix. A high level of dispersion for different types of nanoparticles has been achieved by 

applying this type of advanced technique (Guo & Chen 2014; Zhang et al., 2013; Inkyo et al., 

2008). Furthermore, high weight concentration of particles can be dispersed uniformly by this 

method. The ball milling/mixing techniques can be designed within two planes of rotational 

speed; specifically, horizontal or vertical design (see Figure 21). 

 

 

 

Figure 21 Schematic diagram of ball milling technique (horizontal design) b) container (Ma et al., 2010). 

 

Due to possible abrasion on the smooth surface of the milling balls during the mixing period, 

hard materials, such as ceramic and stainless steel have been used for manufacturing the milling 

balls to obtain high efficiency for the milling or mixing process and high quality with regard to 

the final mixture.  

The type and size of balls used for mixing or milling and their hardness could affect the quality 

of the dispersion process as well. Furthermore, the adjustment of the main parameters, for 

instance mixing or milling time, rotation speed and the diameter of the milling balls is necessary 

for optimal dispersion of the particles into the matrix (Ma et al., 2010). Therefore, processing 

optimisation of these controlling parameters for each type of particles is required, to avoid the 

possibility of them being crushed through the dispersion process.  

In both cases, this technique can be employed for dry milling and the wet mixing of particles into 

the polymer resins (Inkyo et al., 2008). The wet mixing method was considered the most common 

method used to disperse different types of nanomaterials, such as CNTs, CNF and GNP. The 

reasons for this is that they deliver better interlocking of nanoparticles and matrix and to maintain 

stabilisation of the particles in the polymer resins. Two mechanical forces are generated during 

the rotation of the mixture in the container: shear and compressive. The level of these forces 
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depend on the collision between the rigid balls and particles inside the rotational closed container, 

which signifies that a high pressure will be internally generated in the container, which may 

change the morphological structure in addition to reducing the size of the nanomaterials. 

Additionally, it subsequently increases their surface area (Yokozeki et al., 2008; Shin et al., 2009; 

Ma et al., 2009; Ma et al., 2008; Guo & Chen, 2014).  

The probability of a particle crash is expected during the high speed milling/mixing process with 

heavy or large balls, over an extended period. Therefore, lower collision energy with small balls 

or a short period of dispersion are recommended at high collision energy. 

The dispersion degree of carbon nanomaterials into the matrix can be affected by the chemical 

or physical cases of the polymer resins, which are represented as thermoplastic or thermoset 

materials, the morphological properties of the nanoparticles, for example geometric structure and 

the weight content of the nanomaterials. Numerous studies have been conducted by researchers 

to address these issues by using the ball milling technique.  

The following are some explanations: Yokozeki et al. (2008), confirmed the main conceptions to 

disperse CSCNT using the ball milling process to control the length of nanotubes required to 

obtain optimal dispersion without damage to the structure of the fibre nanotubes. Tang et al. 

(2013), illustrated the influence of graphene dispersion degree on the physical and mechanical 

properties (i.e. strength and toughness) of epoxy resin. The sonication technique was used for 

this purpose at the initial stage. Subsequently, the dispersion degree of the mixture has been 

improved by re-dispersing the graphene by using the ball milling technique. In this work, the 

results demonstrated uniform dispersion and good exfoliation of nanosheets in the matrix. 

Additionally, there were significant improvements in the level of mechanical properties of the 

NP. Guo & Chen (2014), prepared epoxy nanocomposite modified with a high level content of 

graphene, using the ball mill technique. Their results identified good quality dispersion of 

graphene sheets into the epoxy resin and improvement in physical properties (i.e. thermal 

conductivity) with high loading of graphene weight fractions ranging from 5wt. % to 25wt %. 

Zhang et al. (2014), used this technique to control the graphitization degree of carbon black 

nanomaterials at different milling periods. As a result, the milling time can have a significant 

effect on the structure of carbon black, nano-dimensions and the size of the defects, as depicted 

in Figure 22. 

As a consequence of this evidence, it appears that ball milling is an essential technique in relation 

to obtaining good dispersion of nanoparticles at various level loading of the nanoparticles. 

Therefore, it is used to disperse the graphene and novel fibre nanotubes in the polymer resin in 

current studies. 
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Figure 22 HRTEM images showing the structure of graphene carbon black (GCB) at various milling time a) 

The cross-section for milled GCB  b) 0.1 hr, c) 9 hr and d) 24hrs (Zhang et al., 2013). 

 

 2.11 Main concepts and evaluation of NP 

The key issues that assist with understanding the manufacture of NP and which contributes 

dramatically to their development in nanotechnology science can be described as fabrication 

methods, mechanism processing, usage of materials, functionalisation, characterisation, quality 

of devices and the control system on the dimension of nanoparticles. Each one of these concepts 

could significantly affect the quality performance of nanocomposites (Ji et al., 2016; Sahoo et 

al., 2010; Hu et al., 2015; Thostenson et al., 2005). 

Furthermore, several factors, such as dispersion processes, alignment and the weight 

concentration of the nanoparticles, aspect ratio and viscosity of the polymer resins appear 

essential concepts and keys in the manufacture of the NP. However, the concept of dispersion or 

alignment is not only related to creating a huge surface area and the best contact between the 

polymer and nanoparticles, it is also to prevent the aggregation phenomenon, which effects the 

mechanical interfacial property between the filler and matrix. Moreover, the improvements in 

the mechanical properties of the NP are dependent on this property which is controlled by the 

critical interface region.  



 

52 

 

Other issues relevant to the mechanical dispersion techniques used for this application still lack 

sufficient information. For instance, operational control keys to accomplish complete exfoliation 

and optimum dispersion of particles in the matrix and moreover, avoid re-agglomeration or 

crushing of the nanoparticles through the preparation stages for the nanocomposites (Ma et al., 

2010; Thostenson et al., 2005).  

There are other significant issues. Transforming the engineering dimensions and geometric 

designs of the reinforcements from micro to nanometres presents important methods and 

opportunities and innovative approaches in the processing mechanism and preparation of novel 

advanced composites, functionalisation, characterisation, as well as the simulation analysis of 

modern generation of composite materials. (Punetha et al., 2017; Ji et al., 2016; Koo, 2006). In 

addition, the most appropriate geometric shape and size of the particles, plus the multi-

functionality formula of the nanomaterials can be used to obtain the highest physical and 

mechanical novel composites (Wang et al., 2016; Zheng et al., 2012; Chatterjee et al., 2012). 

Thus, researchers and engineers continue to work with nano and micro-reinforcements to create 

novel composites with excellent engineering performance and less cost. 

 

2.12 Composites 

There are several drawbacks, in using glass or carbon fibre reinforced polymer composites. For 

engineering applications and advanced structural designs, there are poor resistance for 

compression loads, interlaminar shear and interlaminar toughness resistance. These mechanical 

characterisations are dominated by the polymer matrix and interface properties that are frequently 

degrees of proportion inferior to the fibre composites dominated properties. In other words, the 

grade of attraction between the matrix and filler at the interface region is dependent on the 

mechanical interfacial property. Moreover, it controls the amount of stress and strain energy 

transferred between them as mentioned previously (Kundalwal and Kumar, 2016).    

As a consequence, this makes fibre reinforced polymer composites vulnerable to unanticipated 

design failures, when stressed under compressive forces conditions or exposed to delamination 

damage in the engineering structure (Djabali et al., 2018). Using fibre composite materials in 

critical stress bearing structural designs therefore requires validation via extensive confirmation 

and mechanical engineering testing (Greenhalgh et al., 2006). 

Countless studies have been conducted to address these difficulties, in order to promote the 

performance of fibre reinforced polymer composites for optimal use in engineering and industrial 

applications. Conventional approaches used for this purpose over past decades via through-

thickness reinforcements, such as transverse stitching (Shu & Mai 1993; Chen et al., 2001), 
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tufting (Mourtiz et al., 2011) and pinning (Bianchi et al., 2012; Lenzi et al., 2007; Liu & Mai 

2003) have been comprehensively studied (Greenhalgh and Hiley, 2003) and demonstrated to 

significantly improve interlaminar shear strength, interlaminar fracture toughness and impact 

resistance (Greenhalgh et al., 2006; Mourtiz, 2007). However, these through-thickness 

reinforcements predominantly damage the parent fibre materials and, as a consequence, reduce 

the pristine in-plane mechanical properties of the composites.  

A further approach to enhancing the mechanical properties of HFRP includes the use of 

toughened and strengthened polymer matrix.  In particular, there has been interest in the use of 

elastomer or thermoplastic particles to dope the matrix (Scott and Phillips, 1975; Zulkifli et al., 

2002). A modern and alternative method to promote this conventional approach is by doping the 

fibre reinforced polymer composites with one rigid nanoreinforcement (i.e. CNTs, GNP, CNF) 

which possess extraordinary strength and stiffness properties (Godara et al., 2009; Kumar and 

Roy, 2018; Kostagiannakopoulou et al., 2015; Yokozeki et al., 2009). This modern practical 

technique has been shown to enhance delamination failure and damage tolerance in the structural 

design of composites, without any reduction in the pristine in-plane mechanical properties and 

will be debated further in this review. 

However, the previous modern approach has also been further developed by researchers recently 

by combining two rigid nanoreinforcements into the polymer resin and applying this in the 

manufacture of novel HFRP (i.e. combination of conventional carbon nanotubes and  graphene), 

(Kostagiannakopoulou et al., 2017; Rodriguez-Gonazalez et al., 2017; Wang et al., 2015). 

Although, the combination of graphene and conventional carbon nanotubes have achieved 

success in improving the mechanical properties of HFRP, only moderate improvements have 

been sensed in these properties (Rodrizguez-Gonazalez et al., 2017; Kostagiannakopoulou et al., 

2017). The main obstacle that impeded this approach is the difficulty in dispersing them 

uniformly and achieving high exfoliation of these two carbon nanomaterials in the polymer resins 

(Ma et al., 2010; Yu et al., 2000). Therefore, additions of chemical dispersants are often necessary 

to achieve uniform dispersions and alignment between the matrix and hybrid carbon 

nanomaterials (Wang et al., 2015; Ma et al., 2010).  

Alternative novel carbon nanomaterials called CSCNT are suggested as a good solution for this 

obstacle because they have excellent mechanical properties supported with unique geometric 

structure, as well as ease of dispersion (Iwahori et al., 2005; Yokozeki et al., 2009; Yokozeki et 

al., 2012). Therefore, the combination of GNP and CSCNT is expected to be more satisfactory 

than conventional carbon nanotubes, in improving the mechanical properties of conventional 

carbon fibre composites, which are adopted in the present work.  

  



 

54 

 

2.13 Hybrid fibre reinforced polymer composites (HFRP) 

The modified matrix dominated properties in traditional fibre composites can potentially benefit 

from the inclusion of multifunctional carbon nanomaterials: graphene, novel fibre nanotubes, 

conventional carbon nanotubes, and moreover, combined carbon nanomaterials (i.e. a 

combination of GNP and CNTs). These novel composites are currently known as hybrid 

composites. In spite of the constituents, the hybrid composites have been formed from fairly 

weak materials although they possess high mechanical properties (Mayer, 2005). 

2.13.1 Synthesis methods for HFRP 

The combination of multi-sized reinforcements; carbon nanomaterials (i.e. GNP, CNF and 

CNTs), fibre materials (i.e. carbon fibre, glass fibre) into the polymer resins to manufacture 

HFRP can be described via two main practical techniques: 

i) Growing the carbon nanomaterials onto the surfaces of fibre networks as the primary 

stage.  

ii) Dispersion of the carbon nanomaterials into the polymer matrix (Qian et al., 2010; Ma 

et al., 2010).  

Both techniques have exhibited high improvements with the addition of such carbon 

nanomaterials. As there is the possibility of damage occurring in the fibre network, it is more 

appropriate for the dispersion technique to be used instead of grafting nanoparticles onto the fibre 

network, whilst it is also a simple principle (Qian et al., 2008; Zhang et al., 2009). Therefore, for 

the current study, the dispersion of the carbon nanomaterials into the polymer matrix was chosen 

to manufacture the carbon fibre composites to avert such an obstacle. Furthermore, many 

experimental studies have been reported and are still continuing with novel nanoreinforcements 

and innovative modifications in all three main methods; specifically, the chemical treatment of 

carbon nanomaterials, surface treatment of carbon fibre network and chemical modulation of the 

polymer resins and physical optimisation of synthesising proceedings. 

Principally, NP can be prepared by different practical techniques as mentioned previously. 

However, the simplest technique would be by mixing and dispersing the nanoparticles in the 

polymer resins directly via mechanical dispersion (Feng et al., 2014; Chen et al., 2015; Qian et 

al., 2010). The manufacturing of NP by this method is considered a challenge, due to the tendency 

of the nanoparticles to aggregate into the matrix as a result of van der Waals forces or surface 

influence. Furthermore, excessive mechanical dispersion over a long time could damage the 

structure of the particles (Ma et al., 2010). 

Further techniques by means of chemical treatments: The main purpose of this procedure is to 

improve the surface properties of the nanoparticles to create high adhesion between the particles 
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and the matrix, despite the significant mechanical improvements that have been reported in 

relation to the nanocomposites modified with chemical treatment in comparison to the parent 

nanocomposites (Moghadam and Taheri, 2015; Davis and Whelan 2011; Barrena et al., 

2014).  This method also has challenge related to the chemical treatment of carbon nanomaterials 

without damage or defect in the structure of the nanomaterials, especially their side walls (Zheng 

et al., 2010; Avila-Orta et al., 2009; Esumi et al., 1996).  

Modern methods known as combined dispersive techniques were used to achieve high levels of 

dispersion mechanically (Tang et al., 2013; Liang et al., 2009). This mechanical dispersion 

method has the ability to disperse various weight contents of carbon nanomaterials with high 

exfoliation and uniform dispersion. Therefore, the combination of ball milling and ultra-

sonication are suggested to disperse the nanomaterials into the polymer resin in the present study, 

without the need to use additional dispersants as possible. 

Once the dispersion of nanoparticles in the polymer resin is accomplished, the resulting modified 

matrix was composited with carbon fibre composites via the impregnation of the matrix onto the 

carbon fibre network. Various classical techniques are available for this purpose including resin 

transfer moulding or infusion modelling (RTM), compression moulding or autoclave moulding, 

spray-up technique, etc (Kawasetu et al., 2004). Whilst, the conventional hand lay-up process is 

considered to be a good method in the industrial field, due to its an open moulding technique, 

which is appropriate for fabricating a large amount of fibre composite products ranging from 

small to large, it is useful for manufacturing substantial production quantities utilising various 

moulds. Hand lay-up is also a modest composites moulding technique, displaying low price 

tooling, a simple manufacturing processing and an enormous range of piece sizes. Moreover, 

design variations are easily made.  

However, the viscosity of polymer resin plays a significant role in manufacturing processes and 

resin flowing into the fibre network. In particular, after the addition of nanoparticles into the 

resin, choosing one of these techniques is not straightforward with regard to producing the HFRP, 

as the increase in the degree of viscosity is probable in the present work. Hence, this will 

significantly affect the resin flow used in the manufacturing of HFRP, in particular with high 

weight content of nanoparticles. Thus, the use of the RTM or spray-up technique undoubtedly 

will be challenging for manufacturing HFRP (Qian et al., 2010; Yokozeki et al., 2012; Gojny et 

al., 2005), as the high viscosity will hinder the flow of modified resin through the tubes used in 

these techniques, besides making its diffusion onto the ply surface and penetration into fibre 

networks more challenging (Fan et al., 2008; Wickmann et al., 2006). This is whilst the principle 

work of the hand lay-up technique is based on the impregnation of modified polymer resin 

directly onto the surface of the fibre network, even though the viscosity has showed relative 
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changes after the addition of the nanoparticles into the polymer resin. Additionally, this technique 

has been exhibited successfully in many engineering applications relevant to the creation of 

HFRP, in spite of the existence of several voids in the produced composites (Wicks et al., 2014). 

Furthermore, the modification of this simple technique was performed by vacuum bagging in the 

present work. The purpose of that was to reduce the volume fraction of voids and improve the 

quality of produced HFRP as much as possible. 

With regard to these valuable benefits and some modifications on the practical principles of the 

hand lay-up technique, this technique was used to construct the design structure for the HCFRP 

in the present work.  

2.13.2 Mechanical properties of HFRP 

Most of the experimental studies have reported that carbon and glass fibre composites dominated 

properties, such as tensile and flexural strength properties remain comparatively uninfluenced 

(Hadden et al., 2015; Zhang et al., 2009). The basic attention of HFRP were on the nanofilled 

matrix dominated properties. For example, interlaminar shear strength and interlaminar fracture 

toughness and in-plane compression. Enhancements in these mechanical properties were 

expected after the impregnation of the modified epoxy resins, with graphene, conventional 

carbon nanotubes, fibre nanotubes and combined carbon nanomaterials into the fibre composites, 

which are explained in detail in the subsequent sections (Kumar and Roy, 2018; Fan et al., 2008; 

Kostagiannakopoulou et al., 2017; Wang et al., 2015; Landani et al., 2015; Li et al., 2014). 

2.13.2.1 Interlaminar shear strength (ILSS) 

Interlaminar shear strength is one mechanical characterisation that had demonstrated significant 

enhancements after the inclusion of the multifunctional carbon nanomaterials with the fibre 

polymer composites at low and high weight content, even with the type variation of a fibre (Jia 

et al., 2015; Green et al., 2009; Tang et al., 2011; Li et al 2014; Yao et al., 2015; Li et al., 2013; 

Green et al., 2009; Qin et al., 2015; Wang et al., 2015). This mechanical characterisation is 

predominantly controlled by the interface performance between the polymer matrix and fibre 

network (Park and Seo, 2011; Greenhalgh, 2009). Consequently, any enhancement in the degree 

of adhesion or mechanical interfacial property between these two phases at this region would 

produce a gain in ILSS.  

The short beam shear (SBS) test is one of the most common methods based on classical beam 

theory (Bernoulli Euler), to estimate the value of interlaminar shear strength for laminated 

composites. Generally, the delamination failure shear occurs between the layers of enhancing 

fibres, particularly the mid-thickness of the laminated composite via tensile and compressive 

bending force subjected to the top and bottom fibre planes. 
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A strengthened and toughened interphase between the fibre network and the nanomaterials was 

suggested as a possible enhancement mechanism; thus, providing the increased shear strength 

(Gojny et al., 2005; Zhang et al., 2012). The direct improvement of the strength and stiffness 

properties of the polymer matrix by the inclusion of the carbon nanomaterials had increased the 

capacity of the strain and stress energy transfer between the nanofilled matrix and the fibre 

network.  

In spite of the utilisation of multiple conventional carbon nanotubes modified or unmodified by 

chemical solvents, even with various types of fibre composites, moderate enhancements were 

achieved in the interlaminar shear strength of the HFRP, as shown in Table 6. The level of shear 

property improvements in the reported results related to conventional carbon nanotubes dispersed 

into the polymer resin was (3-20%). The low proportion of increases may indicate that the grades 

of adhesion are relatively poor between the laminates of HFRP, particularly at interface regions. 

Furthermore, the efficiency of conventional carbon nanotubes in absorbing the stress energy 

probably was low, due to weak alignment between the matrix and the nanotubes and therefore 

have an effect on the level of mechanical properties improvements.  
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Table 6 The improvements in shear strength properties of HFRP (modified with conventional carbon 

nanotubes). 

Matrix 
Fibre 

(Type) 

Nano- 

filler type 

Weight 

content 

Maximum 

strength (MPa), 

improvement 

(%)  

 

Technique, 

(Lay-up) 

Test 

method 
Ref 

Epoxy 

(JC-02A ) 

CF 

(Not 

mentioned) 

CNTs 
Base(0) 66 

 

RTM 

(UD) SBS 
Yao et al., 

2015 

5 wt.% 75(+13%)  

Epoxy 

(L135i) 

GF 

(Non-

crimp 

fabrics ) 

DWCNT 

Base(0) 33.4 RTM 

SBS 
Wichmann 

et al., 2006 0.3 wt.% 38.7(+16%) 
 (Quasi-

isotropic) 

Epoxy 

(EPON 

862) 

GF 

(Prepreg) 
f-MWCNT 1 wt.% (+8%) 

VA RTM 

(UD) 
SBS 

Qiu et al., 

2007 

Epoxy 

(SC-15) 

GF 

(Woven 

fibre mats) 

MWCNT 

Base(0) 32.5 VA RTM 

SBS 
Fan et al., 

2008 
0.5 wt.% 33.5(+3%) (UD) 

1 wt.% 38.4(+18%)  

Epoxy 

(L135i) 

GF 

(Non-

crimp 

fabric) 

f-DWCNT 

Base(0) 31.8 

RTM 

(Quasi-

isotropic) SBS 
Gojny et 

al.,2005 
0.1 wt.% 36.8(+16%)  

0.3 wt.% 38.1(+20%)  

Epoxy 

(EPON 

862) 

CF 

(Fabric) 
Grafted/MWCNT 

0.25 

wt.% 
(+27%) 

VARTM 

 (Not 

mentioned) 

SBS 
Bekyarova 

et al., 2007 

 

The reported enhancement in the interlaminar shear strength of the fibre polymer and composites 

modified with graphene and novel fibre nanotubes at low and high weigh content is listed in 

Table 7. Although, most of these studies have not mentioned the weight content of the 

nanomaterials and complete details of the fibre composite used, significant improvements were 

reported in interlaminar shear strength after the addition of graphene and novel fibre nanotubes, 

which seems relatively more efficient than conventional carbon nanotubes (Jia et al., 2015; Khan 

and Kim, 2012). The range of improvements in the reported results related to graphene and novel 

fibre nanotubes dispersed into the polymer resins, regardless of the type of fibre composite used 

were (11-36%) and (8-31%) respectively. 
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Table 7 The improvements in shear strength properties of HFRP (modified with graphene and novel carbon 

fibre nanotubes). 

Matrix 
Fibre 

(Type) 

Nano- 

filler type 

Weight 

content 

Maximum 

strength (MPa), 

improvement (%)  

Technique, 

(Lay-up) Test 

method 
Ref 

Epoxy 

(E54) 

CF 

(Prepreg) 
GO 

Base(0) 105.8 

Hand lay-

up and hot 

press 

(UD) 
SBS 

Li et al., 

2016 

0.1 wt.% 117.5(+11%)  

Epoxy 

(E54) 

 CF 

(Prepreg) 
GO 

Base(0) 45.5 
Wet lay-up 

(UD) SBS 
Zhang et 

al., 2012 
5 wt.% 51.3(+13%)  

Epoxy 

(Araldite F) 

GF 

(Prepreg) 
3D GNP 

Base(0) 46.1 

Hot press 

molding 

(UD) SBS 
Jia et al., 

2015 

- 62.5(+36%)  

Epoxy 

(Epon 828) 

CF 

(Prepreg) 

Grafted/ 

GNP 
3 wt.% (+19%) 

Hand lay-

up and 

autoclave 

(UD) 

SBS 
Qin et al., 

2015 

Epoxy 

(EPON 

815C ) 

GF 

(Plain 

weave) 

CNF 

Base(0) 35.5  

SBS 
Green et 

al., 2009 
0.1 wt.% 43.9(+23%) 

VARTM 

(Not 

mentioned) 

1 wt.% 38.5(+8%)  

Epoxy 

(LY 1564) 

CF 

(Prepreg) 
CNF 

Base(0) 52 

Hand lay-

up 

(UD) SBS 

Khan and 

Kim,  

2012 
10 wt.% 68(+31%)  

 

However, exceptionally few studies involved a combination of multifunctional nanomaterials to 

promote the interlaminar shear strength properties of fibre composites. The level of 

improvements in the reported results are listed in Table 8. One of reported studies does not 

involve using graphene instead of aluminium oxide (Al2O3) powder combined with conventional 

carbon nanotubes (Li et al., 2014). Thus, the direct connection between the combined 

nanomaterials used and property improvement would not be deduced. Conversely, an additional 

study conducted by Wang et al., (2015), included using a mixture of graphene and conventional 

carbon nanotubes to improve the interlaminar shear strength property of carbon fibre (plain 

weave) by approximately 40%. Hence, the direct connection between property improvement and 

hybrid carbon nanomaterials probably would be deduced. Furthermore, the addition of these 

multifunctional carbon nanomaterials into the polymer resin had promoted the adhesion property 

between the filler and the resin and consequently, influenced the synergy property of the carbon 

nanomaterials within the matrix (Wang et al., 2015; Liu et al., 2017). Therefore, the combined 
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nanomaterials could be more effective than single nanomaterial in improving the shear property 

of conventional fibre composites. 

Table 8 The improvements in the shear strength properties of HFRP (modified with combined carbon 

nanomaterials). 

Matrix 
Fibre 

(Type) 

Nano- 

filler type 

Weight 

content 

Maximum 

strength (MPa), 

improvement (%)  

Technique, 

(Lay-up) Test 

method 
Ref 

Epoxy 

(EPO-622 ) 

CF 

(Fibre 

cloth) 

Hybrid 

CNTs/GNP 

Base(0) 54.6 

Hand lay-

up and Hot 

press 

molding 

(Not 

mentioned) 

 

SBS 
Wang et 

al., 2015 

1:9 (ratio) 76.5(+40%)  

Epoxy 

(1080S) 

GF 

(Plain 

woven 

fabric)  

Hybrids 

CNTs-Al2O3 

Base(0) 26.3 

Hand lay-

up  

(Not 

mentioned) 
SBS 

Li et al., 

2014 

0.5 wt.% 29.1(+11%)  

 

Generally, the characterisation of the interlaminar adhesion must be treated carefully, as most of 

the reported outcomes were dependent on the low and high loading of the nanomaterials. With 

high loading of nanomaterials content, agglomeration phenomenon could negatively affect the 

shear property given. This phenomenon prevents adhesion between the fibre and nanophase 

matrix, thus revising the trend, in shear strength property. Zhang et al. (2012), demonstrated that 

this phenomenon undoubtedly causes a reduction in the strength properties of the carbon fibre 

composite, in case the weight concentration of graphene oxide exceeds 5 wt. %. Therefore, high 

exfoliation of carbon nanomaterials in the resin is possibly required prior to the addition of 

modified matrix into the carbon fibre composites, to avoid such problem. 

Few experimental studies have been conducted using CSCNT and GNP dispersed uniformly into 

the matrix to enhance the shear property of the fibre composites. In addition to the effect of the 

combination of two carbon nanomaterials (i.e. GNP and CSCNT) on the interlaminar shear 

strength of carbon fibre composites (i.e. woven carbon fibre), to the best of my knowledge, this 

novel formula has not been applied until now. 

2.13.2.2 Flexural properties 

It is recognised that conventional fibre composites under static flexural load can exhibit three 

modes of failure; tensile, compression and delamination failure in mid-plane (i.e. interlaminar 

shear failure and interlaminar fracture toughness failure). Furthermore, the compressive failure 

and mid-plane delamination failure are influenced by the strength and toughness properties of 

the polymer matrix. In the meantime, the inclusion of carbon nanomaterials, such as graphene, 
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novel fibre nanotubes and conventional carbon nanotubes are expected to modify the flexural 

strength and stiffness properties of the fibre composite where such failure modes were illustrated 

in the HFRP. 

The reported flexural properties results of HFRP are modified with dispersed conventional 

carbon nanotubes in the polymer resins which are listed in Table 9. Although, different types of 

fibre composites were used (i.e. woven carbon fibre), the flexural modulus were not expected to 

be greatly affected by the inclusions of conventional carbon nanotubes for most of these previous 

studies (Zhou et al., 2008; Kepple et al., 2008). Moreover, modifications to the fibre network via 

depositing or nanoparticles growth, could damage the parent fibre. This could result in an inferior 

fibre composite compared to the original composite (Mathur et al., 2008).  

 

Table 9 The improvements in flexural properties of HFRP (modified with conventional carbon nanotubes). 

Matrix 
Fibre 

(Type) 

Nano-

filler type 

Weight 

content 

Maximum 

stiffness 

(GPa), 

improvement 

(%) 

Maximum 

strength 

(MPa), 

improvement 

(%) 

Technique, 

(lay-up) 
Test 

method 
Ref 

Phenolic 

CF 

(UD fibre) 

Grafted/ 

CNTs 

Base(0) 43.7 471  

3 pb 

Mathur 

et al., 

2008 

9.1 wt.% 56(+28%) 580(+20%) 
Hand lay-

up 

CF 

(2D  Plain 

weave) 

8.3 wt.% (+54%) (+75%) 

(Not 

mentioned) 

CF  

(3D felt) 
18.42 wt.% (+46%) (+66%) 

 

Epoxy 

(SC-15 ) 

CF 

(Satin 

weave 

fabric) 

MWCNT 

Base(0) 63 608 

VARTM 

(Not 

mentioned) 3 pb 

Zhou et 

al., 

2008 
0.3 wt.% 66.1(+5%) 626(+3%) 

 

Epoxy 

(MGS 

L285 ) 

CF 

(Plain 

weave 

fabric) 

Grafted/ 

f.CNTs 
- (+5%) - 

Hand lay 

up 

(Not 

mentioned) 

3 pb 

Kepple 

et al., 

2008 

Epoxy 

(JC-02A ) 

CF 

(Not 

mentioned) 

CNTs 

Base(0) - 800 

 

RTM 

 

(UD) 3 pb 

Yao et 

al., 

2015 

5 wt.% - 927(+20%) 
 

 

The effect of the addition of graphene and novel fibre nanotubes on flexural properties of HFRP 

for previous studies are listed in Table 10. Reported improvements in the flexural modulus of 

carbon fibre composites (i.e. woven carbon fibre) modified with graphene or novel fibre 

nanotubes were slight (Iwahori et al., 2005; Zhou et al., 2006). Furthermore and regardless of the 
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type of fibre that is used, the use of polymer resin modified with functionalised graphene, in 

improving the strength and stiffness property demonstrated no improvement (Moriche et al., 

2016). This case probably refers to the weak attraction between the fibre and modified matrix 

particularly at the interface regions. However, the improvements in strength property were more 

significant in most of the previous studies, after the addition of these carbon nanomaterials into 

the fibre composites, in particular woven carbon fibre. For example, the level of the improvement 

in strength property of woven carbon fibre composites was (14-22%) after the addition of novel 

fibre nanotubes to carbon fibre network (Iwahori et al., 2005; Zhou et al., 2006). 
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Table 10 The improvements in flexural properties of HFRP (modified with graphene and novel carbon fibre 

nanotubes). 

Matrix 
Fibre 

(Type) 

Nano-

filler 

type 

Weight 

content 

Maximum 

Stiffness 

(GPa), 

improvement 

(%) 

Maximum 

strength 

(MPa), 

improvement 

(%) 

Technique, 

 

(Lay-up) 
Test 

method 
Ref 

Epoxy 

(SC-15) 

GF 

(Plain 

weave) 

Grafted/ 

GNP 

Base(0) - 325 

RTM 

(Not 

mentioned) 
4 pb 

 

Kamar et  

al., 2015 

0.25 wt.% - 419(+29%)  

Epoxy 

(Epon 

828) 

CF 

(Prepreg) 

Grafted/ 

GNP 
3 wt.% - (+52%) 

Hand lay-

up and 

autoclave 

(UD) 

3 pb 

 

Qin et 

al., 2015 

Epoxy 

(Epon 

828) 

GF 

(Plain 

weave) 

GNP-

C750 
5 wt.% (+12%) - 

Hand lay-

up and 

autoclave 

(Not 

mentioned) 
3 pb 

Wang et 

al., 2016 

GNP-5 
5 wt.% (+26%) -  

3 wt.% - (+16%)  

Epoxy 

(Araldite 

LY556) 

GF  

(UD 

fabric) 

f-GNP 12 wt.% None  None  

Hand lay-

up 

(UD) 

3 pb 

Moriche 

et al., 

2016 

Epoxy 

(EP827) 

CF 

(Plain 

woven 

fabric) 

CNF 

Base(0) 51.4 667 

 

Not 

mentioned 

 3 pb 

Iwahori 

et al., 

2005 5 wt.% 54.7(+6%) 760(+14%)  

10 wt.% 53.5(+4%) 790(+18%)  

Epoxy 

(EP827) 

CF 

(Prepreg) 
CNF 

Base(0) 53 875 
Autoclave 

(UD) 
3 pb 

Yokozeki 

et al., 

2007 
5 wt.% 55.1(+4%) 912(+4%)  

10 wt.% 55.8(+5%) 888(+2%)  

Epoxy 

(SC-15) 

CF 

(Plain 

weave 

fabric) 

CNF 

Base(0) 48.9 488 

VARTM 

(Not 

mentioned) 3 pb 
Zhou et 

al., 2006 

2 wt.% 49.4(+2%) 597(+22%) 
 

Epoxy 

(EPON 

815C ) 

GF 

(Plain 

weave) 

CNF 

Base(0) 17 337 
 

3 pb 
Green et 

al., 2009 

0.1 wt.% 21(+23%) 393(+17%) 

VARTM 

(Not 

mentioned) 

1 wt.% 22(+26%) 404(+20%) 
 

5 wt.% - 927(+20%) 
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In general, the level of improvements in the strength and stiffness properties of the fibre 

composites seems relatively compatible among these three carbon nanomaterials; conventional 

carbon nanotubes, graphene and novel fibre nanotubes.  

In addition, the results illustrated that the surface grown carbon nanomaterials approach had 

provided the greatest flexural strength improvements, whereas the carbon nanomaterials 

dispersed in the matrix approach exhibited only modest improvements. 

Despite previous studies relating to the use of the combined nanomaterials to improve the flexural 

properties being limited, the few reported results in Table 11 revealed that the addition of the 

combination of both reinforcements could significantly contribute to improving the flexural 

strength and modulus properties of the fibre composite. This is regardless of the type of 

reinforcements used (Wang et al., 2015; Li et al., 2014). Interestingly, the improvements in 

flexural strength and stiffness properties of the carbon fibre composites, (i.e. carbon fabric cloth) 

modified with a combination of GNP and CNTs were significantly exciting, after the 

impregnation of hybrid nanophase matrix onto the surface of the fibre networks. Hence, this 

improvement is possibly the result of the high attraction between the hybrid matrix and the fibre 

tows, which has been gained from the synergistic effect of these multifunctional carbon 

nanomaterials within the matrix. 

Table 11 The improvements in flexural properties of HFRP (modified with combined carbon nanomaterials). 

Matrix 
Fibre 

(Type) 

Nano-filler 

type 

Weight 

content 

Maximum 

stiffness 

(GPa), 

improvement 

(%) 

Maximum 

strength 

(MPa), 

improvement 

(%) 

Technique, 

 

(lay-up) 
Test 

method 
Ref 

Epoxy 

(EPO-

622 ) 

CF 

(Fabric 

cloth) 

Hybrid 

CNTs/GNP 

Base(0) 31.3 580 Hand lay-up 

and Hot 

press 

molding 

 

(Not 

mentioned) 

 

- 

Wang 

et al., 

2015 
1:9 

(ratio) 
34.4(+10%) 682(+18%) 

Epoxy 

(1080S) 

GF 

(Plain 

woven 

fabric) 

Hybrids 

CNTs-Al2O3 

Base(0) 21.7 - Hand lay-up 

(Not 

mentioned) 
3 pb 

Li et 

al., 

2014 
0.5 

wt.% 
25.7(+19%) (+12%) 

 

However, the enhancement of mechanical properties in the carbon fibre composite by means of 

the impregnation route is subject to whether the uniform nanoparticles dispersion were 

completely achieved in the polymer resin, before using it as a reinforced matrix to impregnate 

the surface of the fibre networks. Therefore, any modification in the flexural properties of carbon 

fibre composite modified with carbon nanomaterials dispersed into the polymer resins, could be 
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obstructed by the agglomeration of the nanoparticles into the matrix and nonhomogeneous 

distribution of modified matrix onto surface of the fibre network. This is because these 

engineering problems which are related to the manufacturing processes, weaken the mechanical 

interfacial property between the modified matrix and fillers (Moriche et al., 2016; Iwahori et al., 

2005). Hence, this case may affect the flexural properties of the HFRP. 

In general, any modifications in the mechanical properties of HFRP are highly dependent on the 

strength and toughness properties of the modified polymer matrix (Veedu et al., 2006). 

Therefore, use of the optimum strength and toughness properties of the modified polymer with 

carbon nanomaterials would contribute to improving the flexural properties of the HFRP (Wang 

et al., 2015; Zhou et al., 2006). Moreover, the enhancement in this property is attributed to other 

mechanisms involved in the filler bridging and the mechanical interfacial properties between the 

matrix and fillers (Zhou et al., 2008; Ye et al., 2007; Park and Seo, 2011; Qin et al., 2015). 

Therefore, the addition of strengthened and toughened matrix modified by the combination of 

graphene and novel fibre nanotubes to the carbon fibre composites probably reinforce the 

strength and toughness properties around the fibre network, which contributes to improving the 

flexural properties of the HFRP. 
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2.13.2.3 Delamination fracture toughness 

A further indispensable mechanical characterisation that has illustrated significant enhancement 

with nanomaterials inclusion was the failure delamination resistance and the crack head arrest. 

Reported improvements in the fracture toughness properties Mode I and Mode II of the hybrid 

fibre composites modified with conventional carbon nanotubes are listed in Table 12. 

 

Table 12 Interlaminar fracture toughness improvements (propagation values only) of HFRP (modified with 

conventional carbon nanotubes). 

Matrix 
Fibre 

(Type) 

Nano 

filler type 

Weight 

content 

Maximum 

fracture 

toughness 

(KJ.m-2), 

improvement 

(%) 

 

 

Technique, 

(Lay-up) 

Test 

method 
Ref. 

Epoxy 

(Aradur-

5021) 

CF 

(Prepreg) 

DWCNT 0.5 wt.% (+55%) Drum-winder 

(UD) DCB 
Godara et al., 

2009 MWCNT 0.5 wt.% (+83%) 

Epoxy 

(Araldite 

LY564) 

CF 

(UD 

fabric) 

MWCNT 1 wt.% 

(+60%)  

Autoclave 

(UD) 

DCB 

Karapappas, 

2009 (+75%) ENF 

Epoxy 

(Bisphenol 

A) 

GF 

(Multi-

axial 
Woven) 

MWCNT 0.5 wt.% 
(+15%) 

Vacuum 

bagging  

(Quasi-

isotropic) 

DCB 
Silva et al., 

2014 

(+40%) ENF 

Epoxy 

(FM-20) 

CF 

(UD 

fabric) 

MWCNT 

0.1 wt.% (+4%)  

 

Hand lay-up 

(UD) 
DCB 

Romhany & 

Szebenyi, 

2009 

0.3 wt.% (+13%) 

0.5 wt.% (+9%) 

1 wt.% (+5%) 

Epoxy 

(Bisphenol 

A) 

CF 

(Prepreg) 
SWCNT 

Base(0) 0.343  

Autoclave 

(UD) 

DCB 
Ashrafi et al., 

2011 

0.1 wt.% 0.387(+13%) 

Base(0) 1.79 
ENF 

0.1 wt.% 2.01(+28%) 

Epoxy 

(L135i) 

GF 

(Non-

crimp 

fabrics ) 

DWCNT 
0.30 

wt.% 
(None)  

RTM 

(Quasi-

isotropic) 
DCB/ENF 

Wichmann et 

al., 2006 

Epoxy 

(EPON 862) 

 CF 

(weave 

fabric) 

f-CNTs 

Base(0) 0.191 
 

Heated  

VARTM 

(UD) 

ENF 
Davis & 

Whelan, 2011 
0.5 wt.% 0.242(+27%) 

Epoxy 

(L-930HT) 

CF 

(Prepreg) 
MWCNT 

1.32 

g/m2 (+32%) 
Spray 

(UD) 
DCB 

Joshi & 

Dikshit, 2012 

Epoxy 

(MGS 

L285 ) 

CF 

(Plain 

weave 

fabric) 

Grafted/ 

f.CNTs 
- (+50%) 

Hand lay-up 

 (Not 

mentioned) 

DCB 
Kepple et al., 

2008 
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Epoxy 

(BPA) 

Alumina 

Fabric 

(Alumina 

cloth) 

Grafted/ 

CNTs 

Base(0) 1.19 
Hand lay-up 

(Not 

mentioned) 
DCB 

Wicks et al., 

2014 
- 2.38(+100%) 

Epoxy 

(Araldite F) 

CF 

(Plain 

woven 

fabric) 

Grafted/ 

CNTs 

Base(0) 0.48  

Hand lay-up 

(Not 

mentioned) 

DCB 
Du et al., 

2014 

- 0.8(+67%) 

Base(0) 1.4 
ENF 

- 2.22(+60%) 

 

Although, the addition of multiple types of carbon nanotubes dispersed into the matrix to improve 

the toughness properties of fibre composites regardless of the type of fibre composites used, there 

were modest improvements in this property in comparison with the graphene and novel fibre 

nanotubes. The maximum range of this improvement was 83%, while the level of improvements 

in the carbon fibre composites (i.e. plain woven fabric) modified with functionalised carbon 

nanotubes dispersed into the polymer resins was 27% (Davis and Whelan, 2011).  

The improvement results after the addition of dispersed graphene and novel fibre nanotubes into 

the polymer resins to various types of fibre composites for previous studies are listed in Table 

13. Generally, this improvement appears more efficient than conventional carbon nanotubes. The 

percentage of improvements in the fracture toughness properties of multiple types of carbon or 

the glass fibre composites modified with dispersed novel fibre nanotubes, specifically Mode II 

was moderately better than graphene. The range of this improvement related to the novel fibre 

nanotubes is between 30%-209% approximately (Yokozeki et al., 2007; Yokozeki et al., 2009). 

However, the multiple types of graphene do not exceed 206% (Jia et al., 2015). Interestingly, one 

of these reported results included high improvement, after adding the dispersed graphene into 

epoxy resin to the woven carbon fibre composites, which was roughly 145% (Du et al., 2017).  

  



 

68 

 

Table 13 Interlaminar fracture toughness improvements (propagation values only) of HFRP (modified with 

graphene and novel carbon fibre nanotubes). 

Matrix 
Fibre 

(Type) 

Nano 

filler 

type 

Weight 

content 

Maximum 

fracture 

toughness 

(KJ.m-2), 

improvement 

(%) 

 

Technique, 

(Lay-up) Test 

method 
Ref. 

Epoxy 

(SC-15) 

 GF 

(Plain 

weave) 

Grafted/ 

GNP 

0.25 

wt.% 
(+25%) 

VARTM 

(Not 

mentioned) 

DCB Kamar et al., 2015 

Epoxy 

(Araldite 

F) 

GF 

(Prepreg) 
3D GNP 

Base(0) 0.95  

Hot press 

molding 

(UD) 

DCB 

Jia et al., 2015 
- 1.62(+70%) 

Base(0) 0.83 
ENF 

- 2.54(+206) 

Epoxy 

(JER806) 

CF 

(Prepreg) 
GO 

Base(0) 0.161 
Hand lay-up 

(UD) 

 
DCB Ning et al., 2015 

2 g/m2 0.436(+171%) 

Epoxy 

(Araldite 

F ) 

CF 

(Plain 

woven 

fabric) 

GO 

Base(0) 0.53 
Hand lay-up 

(Not 

mentioned) 
DCB Du et al., 2017 

1 wt.% 1.3(+145%) 

Epoxy 

(EPON 

862 ) 

CF 

(fibre mats) 

HP-

NGPs 

Base(0) 0.458 Hand lay-up 

and 

compression 

molding 

machine 

(UD) 

DCB Kumar and Roy, 2018 
0.5 

wt.% 
0.917(+100%) 

Epoxy 

(LY1564) 

GF 

(fabric 

cloth) 

GO 

0.5 

wt.% 

(+4%)  

VARTM 

 (UD) 

 

DCB 

Moghadam and 

Taheri, 2015 

G.NH2 (+39%) 

G.Si (+33%) 

GO (None)  

ENF G.NH2 (+12%) 

G.Si (+11%) 

Epoxy 

(Araldite 

LY 556) 

CF  

(Non-crimp 

fabric) 

 

GO 

Base(0) 0.49  

Hand lay-up 

and 

Autoclave 

(UD) 

DCB 
Kostagiannakopoulou 

et al., 2015 

0.5 

wt.% 
0.75(+53%) 

GNP 
0.5 

wt.% 
0.79(+61%) 

Epoxy 

(EP827) 

CF 

(Prepreg) 
CNF 

Base(0) 0.086  

Autoclave 

(UD) 

DCB 

Yokozeki et al., 2009 
5 wt.% 0.227(+164 %) 

Base(0) 0.57 
ENF 

5 wt.% 1.75(+209%) 

Epoxy 

(EP827) 

CF 

(Prepreg) 
CNF 

Base(0) 0.086  

Autoclave 

(UD) 

 

DCB 

Yokozeki et al., 2007 
5 wt.% 0.17(+98%) 

Base(0) 0.605 

ENF 
5 wt.% 0.786(+30%) 
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Epoxy 

(LY 

1564) 

CF 

(Prepreg) 
CNF 

10 

wt.% 
(+104%) 

Hand lay-up  

(UD) ENF Khan and Kim 2012 

Polyester 
GF 

(fibre mat) 
CNF 1 wt.% (+100%) 

VARTM 

 (Not 

mentioned) 

DCB Sadeghian et al., 2006 

 

In general, improvements in the fracture toughness properties of hybrid fibre composites 

fabricated by graphene and fibre nanotubes or the conventional carbon nanotubes grown/grafted 

technique exhibits modest improvements (Kamar et al., 2015; Kepple et al., 2008). Whilst the 

hybrid fibre composites fabricated by carbon nanomaterials (particularly graphene and fibre 

nanotubes) dispersed into the polymer matrix have illustrated excellent improvements in 

toughness properties, except for some results relevant to conventional carbon nanotubes, which 

offered slight improvements that may refer to the agglomeration phenomenon of carbon 

nanomaterials into the matrix (Wichmann et al., 2006). 

Improvement in results related to the addition of dispersed combined carbon nanomaterials into 

the polymer resins to carbon fibre composites for previous studies are listed in Table 14. There 

were modest improvements after the addition of graphene and conventional carbon nanotubes 

dispersed into the matrix onto the surface of unidirectional carbon fabric composites 

(Kostagiannakopoulou et al., 2017). 

Interestingly, one of the results in Table 14 demonstrated significant improvements in this 

property, after impregnation of the hybrid carbon nanomaterials (i.e. graphene and conventional 

carbon nanotubes) dispersed into the epoxy matrix onto the surface of fibre cloth composites by 

100% (Wang et al., 2015). 
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Table 14 Interlaminar fracture toughness improvements (initial or propagation values) of HFRP (modified with 

combined carbon nanomaterials). 

Matrix 
Fibre 

(Type) 

Nano 

filler type 

Weight 

content 

Maximum 

fracture 

toughness 

(KJ.m-2), 

improvement 

(%) 

Technique, 

(lay-up) 

Test 

method 
Ref. 

Epoxy 

(Araldite 

LY556) 

CF 

(UD 

fabric) 

Hybrid1 

GNP-

MWCNT 

Base(0) 
0.55 

(Propagation) 

 

 

Hand lay-

up and 

Autoclave 

(UD) 

DCB 

Kostagiannakop

oulou et al., 

2017 

Ratio 

(0.5wt.%/0.5

wt.%) 

0.76(+38%) 

(Propagation) 

Hybrid2 

GNP-

MWCNT 

Ratio 

(0.5wt.%/1 

wt.%) 

0.8(+45%) 

(Propagation) 

Hybrid1 

GNP-

MWCNT 

Base(0) 
1.57 

(Propagation) 

ENF 
Ratio 

(0.5wt.%/0.5

wt.%) 

1.88(+20%) 

(Propagation) 

Hybrid2 

GNP-

MWCNT 

Ratio 

(0.5wt.%/1 

wt.%) 

1.97(+25%) 

(Propagation) 

Epoxy 

(not 

mentioned) 

CF  

(Prepreg 

Hybrid 

MWCNT/

GO 

Base(0) 
0.552 

(Propagation) 

Spray, 

Vacuum 

bag and 

autoclave 

(UD) 

DCB 

Rodriguez-

Gonazalez et al., 

2017 

0.25 wt.% 
0.644(+17%) 

(Propagation) 

Base(0) 
1.76 

(Propagation) 
ENF 

0.25 wt.% 
2.01(+14%) 

(Propagation) 

Epoxy  

(EPO-622) 

CF 

(Fibre 

cloth) 

Hybrid 

CNTs/GN

P 

Base(0) 
469 

(Initial) 

Hand lay-

up and Hot 

press 

molding 

(Not 

mentioned) 

 

DCB 

 

Wang et al., 

2015 
1:9 (ratio) 

938(+100%) 

(Initial) 

 

However, the improvements in these fracture toughness properties for hybrid fibre composites 

modified by strengthened and toughened matrix must be handled carefully. For example, the 

modified matrix must be distributed uniformly onto the surface of the fibre network as well as 

fill all the gaps with this modified matrix because the inhomogeneous distribution of the 

modified matrix onto the surface ply and the existence of gaps in the produced composites could 

affect the micro crack resistance and toughness properties of the HFRP negatively. Hence, this 

may affect the fracture toughness results (Gouda et al., 2014; An et al., 2012). 
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Multiple fracture mechanism systems were suggested to address the dissipation systems of 

fracture energy, which caused the increase in the fracture toughness properties of conventional 

fibre composites (modified and unmodified) with nanofillers. Therefore, it is better to separate 

these two composites to understand the fracture systems in each one of them individually. The 

schematic diagrams as depicted in Figure 23 show the stages of the fracture into the matrix and 

fillers for the fibre composite unmodified in detail. It is evident in this model that when the 

laminated composites are damaged due to out-of-plane forces, the mode failure which is basically 

interlaminar delamination and resistant compression in-plane of these laminates decreases 

significantly. Consequently, the toughness mechanism systems to dissipate the strain energy will 

be generated through crack propagation stages in the fibre composites. 

 

 

Figure 23 Schematic diagram of toughening mechanisms in conventional fibre composite unmodified (Miki et 

al., 1997). 

 

The addition of rubber particles or liquid rubber was considered as one of toughening materials 

approaches, which could improve the resin toughness property and hence, would reinforce the 

delamination resistance of the fibre polymer composites (Ashrafi et al., 2011; Kim & Mai, 1998). 

Furthermore, strengthened and toughened fibre networks via impregnation of the modified 

polymer matrix into the fibre composite also restrict the plastic deformation regions and arrest 

the crack extension into the matrix. This is because of the existence of rigid nanomaterials 

contributing to the absorption of a part of the strain energy, before the possibility of its transfer 

to the basic fibre network. Hence, this improves the fracture toughness energy. 
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The fracture mechanism system of the modified polymer matrix and into nanocomposite is shown 

in Figure 24. These dissipation energy systems are also rather similar to counterparts in novel 

HFRP. Therefore, such fracture mechanism systems have been suggested to discuss the causes 

of improvement in the fracture toughness energy for HFRP. 

 

 

 

Figure 24 Keys for dissipation energy by means of fracture mechanisms in NP (modified) (Thostenson et al., 

2005). 

Yokozeki et al. (2009) and Godara et al. (2009), suggested that the principal reason of 

improvements in HFRP were as a result of rougher fracture surfaces. This   indicates that more 

energy had been required to foreword the crack head. Further studies have demonstrated that the 

geometric structure, size of the nanoparticle and weight content of nanoparticles into the matrix 

have a significant influence on the transfer load between the polymer matrix and the fibre 

network. The high capacity of transferred loads through the modified matrix means more energy 

absorption was gained in the HFRP. This mechanical behaviour would contribute to increasing 

the fracture toughness properties and moreover, pinning and pull-out nanofillers were suggested 

as toughening systems to dissipate the stress energy into the fracture surface of HFRP (Wicks et 

al., 2014; Romhany and Szebenyi, 2009). Furthermore, crack bridging by the nanotubes, crack 

pinning/bi-furcation could blunt the crack pathway during the propagation stage (Landani et al., 

2015; Chadrasekaran et al., 2014). The inclusion of carbon nanomaterials, for instance 

conventional carbon nanotubes was utilised to steer or deviate the crack pathway by adjusting 
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the reinforcement distribution or orientation generating zigzag path (Wicks et al., 2014; Ashrafi 

et al., 2011).  

Interestingly, Kostagiannakopoulou et al. (2017), used the combination of graphene and 

conventional carbon nanotubes to improve the mechanical properties of carbon fibre composites. 

The results showed that the existence of two carbon nanomaterials in the matrix causes the 

formation of multiple fracture mechanisms into HFRP, such as the pinning of crack head and bi-

furcation mechanisms of crack. These mechanical behaviours contributed to the additional 

improvement of the toughness properties for such novel HFRP in comparison with conventional 

HFRP (modified with one type of nanoparticles). 

However, the interactions between the multiple fracture mechanism systems are still obscure in 

novel HFRP, due to the existence of multi sized reinforcements particularly after the 

impregnation of the modified matrix with two carbon nanomaterials into fibre composites. 

Therefore, further clarifications are required regarding an interpretation of the interaction fracture 

mechanism systems in novel hybrid fibre composites modified with the combination of 

multifunctional carbon nanomaterials (Kostagiannakopoulou et al., 2017; Wang et al., 2015).    

 

2.14 Fibre/matrix adhesion 

The design structure of the FRP can predominantly fail in the interface region of the 

fibre/polymer matrix at the primary or early stage (Lee, 1992). The interface region in fibre 

laminated composites can be described as the three dimensional boundary between the fibre plies 

and polymer matrix.  

The interface region is critical to governing FRP properties, because of the interaction between 

the two materials occurred at this region. However, the interaction mechanisms can occur via 

three approaches: mechanical alignment or mechanical interlocking to fill the gap between 

micro-reinforcement, physical or chemical coupling which involves van der Waals forces or 

electrostatic attractions and covalent bonding between the fibre network and the polymer matrix 

(for further details see Figure 25), (Park and Seo, 2011; Bekyarova et al., 2007; Davis and 

Whelan, 2011; Li et al., 2013). 
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Figure 25 Schematic diagrams showing the various interaction mechanisms at the fibre/matrix interface 

regions: a) micromechanical interlocking, b) permanent interactions, c) chemical bonding, d) chain tangle, and 

e) trans-crystallinity (Park, and Seo, 2011). 

In general, the fibre/matrix interfaces are weaker than the polymer matrix. In addition, the 

fracture toughness properties of the fibre composites are extremely affected by the interfacial 

region of the matrix and fibres, as well as the strength and toughness properties of the polymer 

matrix surrounding fibre networks. Therefore, the weakness in interfacial bonding of the 

fibre/matrix or toughness properties produces a deterioration in the mechanical properties of 

structural composites. For this reason, the modification of the interfacial region for the 

composites is necessary to create the strong bond between the fibre network and polymer matrix. 

It is well known that the addition of nanoreinforcements into the polymer matrix could improve 

the interfacial bonding region in the fibre/polymer matrix (Qian et al., 2010; Gojny et al., 2005). 

In particular, there has been an interest recently in using the combined carbon nanomaterials to 

induce the mechanical interfacial properties of polymer composites (Liu et al., 2017). Additional 

uses can also be carried out on fibre networks or nanomaterials, such as chemical treatments 

which are regularly used the fibre surface to modify the interface regions (Wang et al, 2015;Qian 

et al, 2010; Du et al., 2017; Zhang et al., 2014). 

The bridging and pull-out of filler, bi-furcation mechanisms, pinning of the crack head besides 

the combination of these fracture mechanisms (i.e. pinning of crack head and bi-furcation 

mechanisms), often occur in novel hybrid fibre composites modified with two carbon 

nanomaterials (Kostagiannakopoulou et al., 2017). These mechanisms are quite significant 

energy dissipation systems, regarding the interlaminar shear strength and interlaminar fracture 

toughness of the novel composites. Furthermore, the mechanical fracture mechanisms of these 
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cases occur when fibres or fillers are pulled-out of the delamination plane at the region of failure. 

Therefore, any modification of the fracture systems would improve the mechanical properties of 

HFRP. 

 

2.15 Fibre orientation in laminated composites 

The mechanical properties of the carbon fibre composites can be affected by the geometric 

structure of the composites and the orientation (Chou, 1998). It has been acknowledged that the 

shear strength and fracture toughness properties of the carbon fibre composites are highly 

dependent on the direction of the stacking sequence. As an example, unidirectional or quasi-

isotropic and other distributions are one of them (Pereira & Morais, 2004; Shekar et al., 2014). 

Therefore, distribution and orientation are significant factors in relation to laminate composite 

designing.  

The modes of failure in the structure design of fibre composites are also significantly based on 

the stacking sequence and orientation of the fibre network (Herakovich, 1989). In general, there 

are three modes of load-deformation curves relating to fracture toughness testing of the fibre 

composites; zigzag or jagged mode, bow mode and triangle mode, as shown in Figure 26.  

Further cases may affect the behaviour of failure mode, such as the geometric design of fibre 

material and dimensions of testing samples, conditions of tests and fracture mechanism systems 

(Kuwata & Hogg, 2011; Hwang et al., 2001; Morais and Pereira, 2007; Landani et al., 2015; 

Fenner and Daniel, 2014; Gill et al., 2009). 

 

 

Figure 26 Typical load-displacement curves for DCB and 4ENF tests divided into three modes of deformations: 

a) zigzag, b) bow, and c) triangle (Kuwata and Hogg, 2011). 

Here are some explanations: the symmetric stack between the woven plies could minimise the 

jumping crack during the propagation stage (Hunston, 1983). Moreover, the crack propagation 

could be effected by the presence of 90 and 0 plies at the mid plane orientation or in the 

interlaminar region (Robinson & Song, 1992; Yokozeki et al., 2009). Numerous experimental 
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and analytical studies for altering the fibre distribution and orientation have been conducted by 

researchers (Robinson and Song, 1992; Chou, 1998). Morais et al. (2002), reported the fracture 

toughness properties of two types of asymmetric stacking sequences: [0/90]12 samples and [0/0]24 

samples. They exhibited a zigzag crack behaviour mechanism between two neighbouring plies 

[0/90] at their interface regions for plain weave fibre composite, as shown in Figure 27. 

 

 

 

Figure 27 Schematic diagram shows the behaviour mechanism of crack propagation in [0/90]12 (Morais et al., 

2002). 

As a consequence, modes of load-deformation curves of conventional carbon fibre composites 

(i.e. woven carbon fabric) probably are affected by the orientation of fibres, fracture mechanisms 

and other factors. Therefore, symmetric stacking sequences were applied to construct the 

structure of laminated composites with the aim of avoiding these problems as much as possible 

in the present study.  
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Chapter 3. Experimental work 

  

The goal of this chapter was to undertake optimisation of three nanocomposites; specifically, 

GNP/epoxy nanocomposite, CSCNT/epoxy nanocomposite, hybrid GNP-CSCNT/epoxy 

nanocomposite. The reason for that is to obtain the optimum strength and toughness properties 

of the modified matrix in each one of the novel nanocomposites and thereafter, to use this in the 

manufacture of HCFRP. Therefore, this chapter characterises the experimental procedures 

employed for optimisation of these nanocomposites, as well as the mechanical dispersion 

techniques used for this purpose. In addition, it describes the manufacture of hybrid composites 

modified with optimum modified matrix during the course of this experimental research. The 

selection of ingredients are justified and their mechanical properties are listed. 

 

3.1 Materials 

3.1.1 The thermoset resin 

The resin used in this study was (RS-L135 epoxy and RS-H137 hardener), supplied by a PRF 

composite material company in the UK. It was chosen because of its low viscosity and the ability 

to achieve a room temperature cure. The mixing ratio for the resin and hardener is 100:35 and 

density 1.18 g/cm3, whilst the gelling time is 12 hours at 25⁰C with a mixed viscosity of 1000 

mPa s at 25⁰C. Glass transition temperature as given by the resin supplier is between 60 to 65℃. 

3.1.2 Graphene nanoplatelets (GNP) 

Nano-graphene xGnP®-Grade C was supplied by XG Sciences, Inc. (Lansing, USA). The 

average diameter was 1-50 µm, the thickness amounted to 20 nm, whereas the surface area was 

500m2/g. Figure 28 presents the configuration of the nano-graphene xGnP®-Grade C structure. 

 

 

Figure 28 The geometric structure in nanoscale for graphene grade C taken by TEM. 

Graphene was considered as an alternative carbon nanomaterial recently in modifying functional 

and structured polymer composites and conventional fibre composites instead of conventional 
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carbon nanotubes (i.e. SWCNT or MWCNT), due to its low cost. Furthermore, it has a platelet 

shape (i.e. single sheets with high specific area) and excellent mechanical properties, such as 

stiffness and strength properties (Gkika et al., 2017; Mittal et al., 2015; Bhattachaya et al., 2016; 

Li et al., 2018).  

3.1.3 Cup-stacked carbon nanotubes (CSCNT) 

Cup-stacked carbon nanotubes (CSCNT) were purchased from CARBERE® (GSI Croes 

Corporation) in Japan. Figure 29 exhibits the novel geometric structure of this type of fibre 

nanotube. Table 15 provides the physical properties of the CSCNT as supplied by the 

manufacturer. CSCNT have an individual morphology in which graphite layers are inclined from 

the axis of the fibre. As a result of this novel structure, graphene layers emanate from edge planes 

on both the interior and exterior surfaces of the fibre. These characteristics conduct nanofiber 

length adjustment and high dispersion into the polymer resin that provides better performance in 

many types of industrial applications. 

 

 

Figure 29 The geometric structure of a CSCNT. 

 

Table 15 Physical properties and nanometre size of CSCNT. 

Properties Unit Value 

Diameter nm 70 ᷉ 80 

Length µm 5 

Specific Surface Area m2/g 50 

 

 

3.1.4 Carbon fibre (CF) 

Carbon fibres used for this experimental study were Pyrofill TR30S 3L (Figure 30) supplied by 

the Easy Composite Company in the UK. This carbon fibre comprised woven fabric in a 3k plain 

weave, which was balanced, bi-directional with orientation [0̊,90 ̊], continuous and had a fibre 

weight of 200 gsm with a thickness of 0.3mm, besides high strength and stiffness properties, as 
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listed in Table 16. The selection of the fibre was based on the hypothesis; ‘which sized carbon 

fibre would create excellent bonding with the epoxy resin and better handling characteristics. 

Therefore, it is appropriate for application in wet-lay, vacuum bagging and resin impregnation 

manufacture. Furthermore, due to the high flexibility of carbon woven fabric for the layup of 

convoluted shapes in comparison with unidirectional carbon fibre, it is applied in most fabric 

constructions engineering (i.e. aerospace structures). Additionally, it has strength and stiffness 

in two directions in each ply, whereas the unidirectional carbon fibre has these properties in one 

direction only. As a consequence, it was selected in the manufacture of HCFRP in the present 

work. 

 

 

Figure 30 Pyrofill TR30S 3L carbon fibre composite. 

 

Table 16 Properties of Pyrofil TR30S 3L. 

Property Unit Value 

Tensile Strength MPa 4120 

Tensile Modulus GPa 234 

Ultimate Elongation at Failure % 1.8 

Filament Diameter µm 7 

Density g/cm3 1.79 

 

 

3.2 Preparation of optimised NP 

3.2.1 Weight content in NP formulations 

The weight concentration of GNP, CSCNT, and hybrid GNP-CSCNT nanofillers were prepared 

as shown in Table 17. Pure epoxy samples (base tests) were also manufactured, in order to assess 

any property enhancement compared with the three types of NP developed in this work (i.e. 
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GNP/epoxy nanocomposites, CSCNT/epoxy nanocomposites and hybrid GNP-CSCNT/epoxy 

nanocomposites). 

 

Table 17 Formulations of prepared nanocomposites 

Sample 
GNP 

Concentration wt. % 

CSCNT 

Concentration wt.% 

Pure Epoxy 0 0 

GNP/epoxy nanocomposite 

2.5 0 

4 0 

5 0 

6 0 

7 0 

CSCNT/epoxy nanocomposite 

0 2.5 

0 4 

0 5 

0 6 

0 7 

Hybrid GNP-CSCNT/ 

epoxy nanocomposite 

1.25 1.25 

2 2 

2.5 2.5 

3 3 

3.5 3.5 

 

3.2.2 Sonication mixing 

Three types of NP were manufactured at different weight concentrations ranging from 0 wt.% to 

7 wt.%; specifically, GNP/epoxy nanocomposites, CSCNT/epoxy nanocomposites as well as 

hybrid GNP-CSCNT/epoxy nanocomposites. As the sonication technique is effective in 

dispersing various types of nanoparticles, it has been employed to disperse graphene and fibre 

nanotubes in resin (Guo and Chen, 2014). The preparation stages of these NP are shown in Figure 

31. The initial processing stages included dispersing the nanofillers in acetone (13% weight of 

epoxy resin), (Guo and Chen, 2014) and applying ultrasonic vibration to the mixture for 15 min 

by means of the ultra-sonication technique. A UP200S sonicator (Figure 32a) supplied by Medical 

Products Ltd was used. Then, the mixture was added to the epoxy resin and further ultrasonic 

dispersion was performed for 15, 30 and 45 min as the secondary stage. The purpose of these 

intervals is to optimise the nanofilled matrix and moreover, to investigate the effect of sonication 

mixing time on the strength and stiffness properties of the nanocomposites at critical weight 
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concentration. After that, the mixture was heated to a temperature of 65⁰C in a vacuum oven to 

dry the mixture of acetone completely. Subsequently, hardener was added to the mixture, which 

was blended together using mechanical stirring (Klarstein) for 10 min at 2000 rpm, (Figure 32b). 

The final stages involved further evacuation to remove all the bubbles from the mixture, which 

was then poured into moulds. The samples were thermally cured by utilising the following curing 

processes: 48 hrs at 26⁰C for the initial curing, followed by 15 hrs at 50⁰C for the post curing. 

Next, the cured samples were removed from the mould for mechanical strength testing. 

 

 

 

Figure 31 Nanofiller dispersion process in the epoxy resin by means of the sonication technique. 
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Figure 32 a) UP200S sonication technique, b) High mechanical stirring. 

 

3.2.3 Ball mill mixing 

Owing to the superior efficiency of the milling technique in dispersing various quantities of 

nanoparticles in the resin, it has been used to achieve high exfoliation of graphene and fibre 

nanotubes in the matrix (Guo and Chen, 2014). Hence, this contributes to improving the 

mechanical interfacial properties between the nanoparticles and the matrix and consequently, 

improves the strength and toughness properties of the nanocomposites. However, in the 

preparation sequence, Figure 33, GNP, CSCNT and hybrid GNP-CSCNT nanofillers, as well as 

RS-L135 epoxy resin, were weighed and mixed together before being placed in the ball mill 

(FRITSCH, Germany, see Figure 34) containing 350 balls 5 mm in diameter. The rotation speed 

of the closed container was 400 rpm and the milling periods were 15, 30, 45 and 60 min. The 

purpose of these periods of ball mill mixing time is to optimise the nanofilled mixture and 

moreover, to investigate the effect of milling time on the strength and stiffness properties of the 

nanocomposites at critical weight concentration. Subsequently, the RS-H137 hardener was added 

and blended by mechanical stirring for 2 min at 2,000 rpm. The resin was then vacuum de-gassed 

and poured into moulds. The specimens were cured for 48 hrs at 26⁰C, followed by 15 hrs at 

50⁰C. The cured specimens were removed from the mould for mechanical strength testing. 
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Figure 33 Nanofiller dispersion process in the epoxy resin by means of the ball milling technique. 

 

 

Figure 34 a) FRITSCH ball milling technique b) the container for mixing and milling balls. 

 

3.2.4 Combined techniques mixing 

Combined sonication and ball milling techniques were used to improve the degree of 

nanoparticles dispersion in the epoxy resin and moreover, to obtain high exfoliation of 

nanoparticles into the matrix. Hence, this increases the grade of attractions between the 

nanoparticles and the matrix which contributes to the promotion of strength and toughness 



 

84 

 

properties of the nanocomposites (Tang et al., 2013). The novel procedure for these combined 

techniques which has been applied in the present work is dispersion of graphene and fibre 

nanotubes into the epoxy resin over a reasonable period of time without the need to use chemical 

dispersants. To achieve that, a high shear force, compressive force, and extension force were 

applied to the nanoparticles to break up all the clusters into the resin via two main dispersion 

processes.  

The preparation sequence is described in Figure 35. The initial stage included dispensing the 

nanoparticles into epoxy resin by means of the ball milling technique (FRITSCH, Germany) for 

45 min at high speed of 400 rpm. The mixing container consisted of 350 balls each with a 

diameter of 5 mm. Subsequently, the suspension was transferred to the ultra-sonication technique 

(Ultrasound Technology, UP200S) to re-disperse it for 8 min at high amplitude (100%) as the 

secondary stage. Hardener was added to the resin which was mixed together using high 

mechanical stirring for 2 min at 2000 rpm to ensure that the mixture blended well. The final 

process involved robust vacuuming to remove the bubbles from the blend. Afterwards, the resin 

blend was poured into moulds. Subsequently, two stages of thermal curing were performed on 

the nanocomposite specimens: initial curing for 48 hrs at 26⁰C, followed by the post curing stage 

for 15 hrs at 50⁰C. The specimens were then released from the mould for further mechanical 

strength and toughness tests. 

 

 

Figure 35 Nanofiller dispersion process in the epoxy resin by means of combined techniques. 
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3.3 Manufacturing of HCFRP 

The optimum modified matrix in each one of the novel NP that is processed by combined 

techniques mixing was chosen to fabricate the design of the HCFRP as it showed the highest 

improvement in strength and toughness properties (Wang et al., 2015; Zhou et al., 2006). Hybrid 

laminated composites were fabricated by using woven fabric carbon fibre, 5wt.% GNP, 6 wt.% 

CSCNT and 4 wt.% GNP-CSCNT (hybrid nanofillers). The hand lay-up technique was used to 

fabricate four types of laminated composites modified and unmodified by nanofillers, (i.e. 

GNP/CF/epoxy nanocomposite, CSCNT/CF/epoxy nanocomposite, hybrid GNP-

CSCNT/CF/epoxy nanocomposite and CF/epoxy composite unmodified, as guidance to check 

for any enhancement in mechanical properties after adding the nanoparticles to the carbon fibre 

composites. Schematic diagrams of this fabricating process are illustrated in Figure 36.  

The modified epoxy matrix was sufficiently impregnated into the woven fabric carbon. A 

laminate of peel ply was laid down on the flat glass mould to avoid adhesion of the laminated 

composites and to remove it easily after the curing stage. The layer of woven fabric was laid 

down on the peel ply. Next, the nanophase matrix was infused on both sides of each laminate 

uniformly by using suitable tools, such as a brush and roller. Subsequently, another sheet of peel 

ply was used to cover the upper surface of laminated composites. Two strips of steel plates were 

inserted as spacers to maintain the stability of pressure on the laminated composites and a 

homogeneous laminate thickness. The stacked laminates were then compressed using a steel 

plate inside the vacuum bagging, (Wicks et al., 2014). A nylon layer was used as an insulator to 

surround the steel plates. Then, a coat of breather cloth was laid down to absorb excessive resin 

and to secure a sufficient path for the vacuum pressure process. The vacuum bag film was laid 

down and plaster surrounds the laminated composites to insulate the composite from the effect 

of environmental conditions. A valve connected to a vacuum bag was attached to the plastered 

part. The primary purpose of this vacuum pressure is to generate an internal pressure force to 

improve the adhesion between the laminated composites and to remove the air completely from 

the vacuum bag.  

Two stages of thermal curing were performed for the panels of the hybrid composite as follows: 

the initial stage lasted for 48 hrs at 26⁰C under vacuum bagging pressure conditions, the 

laminated composites were then released from the vacuum bagging and followed by post curing 

for 15 hrs at 50⁰C as the secondary stage. The curing stages and vacuum pressure are shown in 

Figure 37. The cured panel composites were machined and cut into suitable specimens with 

standard required dimensions to undertake the mechanical tests. The neat weight concentration 

of the nanofilled matrix was estimated to be between 37-39 wt.% in each laminated composite. 
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The orientation of the produced hybrid composites balanced the symmetric stacking sequences 

of the woven carbon plies with direction [0̊,90̊]. The nominal composites thickness for the 

samples was approximately 2 mm for shear and flexural tests and 4 mm for fracture toughness 

tests, as shown in Table 18. 

 

Table 18 Experimental set up of the four formulation composites produced. 

Sample 
Weight nanofillers 

(wt.%) 
Stacking sequence 

Thickness 

(mm) 

CF/epoxy composite 

unmodified 

 

0 
Symmetric [(90̊,0̊)4/(0̊,90̊)4] 2.00±0.10 

Symmetric [(90̊,0̊)8/(0̊,90̊)8] 3.98±0.15 

GNP/CF/epoxy 

nanocomposite 
5 

Symmetric [(90̊,0̊)4/(0̊,90̊)4] 1.97±0.13 

Symmetric [(90̊,0̊)8/(0̊,90̊)8] 3.90±0.10 

CSCNT/CF/epoxy 

nanocomposite 
6 

Symmetric [(90̊,0̊)4/(0̊,90̊)4] 2.00±0.10 

Symmetric [(90̊,0̊)8/(0̊,90̊)8] 4.00±0.08 

Hybrid GNP-

CSCNT/CF/epoxy 

nanocomposite 

4 
Symmetric [(90̊,0̊)4/(0̊,90̊)4] 1.98±0.11 

Symmetric [(90̊,0̊)8/(0̊,90̊)8] 3.98±0.12 
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Figure 36 Manufacturing HCFRP and the experimental setup for vacuum curing: 1, glass plate (base); 2, peel 

ply; 3, spacers; 4, carbon fibre fabric; 5, peel ply; 6, steel plate; 7, breather materials; 8, vacuum bag film; 9, 

valve; 10 sealant tape. 
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Figure 37 Curing stages for the HCFRP with temperature and vacuum shown. 

 

   

  

 

 

 

 

 

 

   

  

 



 

89 

 

Chapter 4. Characterisation 

 

This chapter describes the characterisation methods used to assess the mechanical properties of 

the NP besides the HCFRP. The quality of the dispersion process of the carbon nanomaterials 

into the matrix was evaluated to ensure that the optimum dispersion was achieved in the 

nanocomposites. The tensile strength and flexural strength at different weight concentrations as 

well as fracture strength at critical weight concentration were measured to check for any 

improvement in the mechanical properties of the modified matrix in the nanocomposites. Short 

beam shear strength, flexural strength properties as well as Mode I and Mode II interlaminar 

fracture toughness were also measured to quantify the improvement in mechanical properties of 

the carbon fibre composites modified with optimum modified matrix. 

 

4.1 Mechanical characterisation of NP  

 4.1.1 Tensile properties 

Tensile loading was applied on the three types of NP by means of a Shimadzu Universal Test 

Machine with load capacity of 100 KN at a cross head speed of 5mm/min maximum tensile 

strength, while the modulus and maximum strain were estimated according to the ASTM D638 

standard. The test specimens were “dogbone” shape with a gauge length of 25 mm, a width of 6 

mm and thickness of 4 mm. All specimens’ tests were performed at room temperature and the 

average value of samples was recorded. 

4.1.2 Flexural properties 

Three-point bend tests were conducted using a Shimadzu Universal Test Machine with a load 

capacity of 100 KN. The geometric dimensions of the specimens tested had a length of 88 mm, 

width of 20 mm and a thickness of 5 mm. The maximum flexural strength, flexural modulus and 

maximum strain were calculated according to ASTM D790 standard. All tests were performed 

at a constant cross head speed of 2 mm/min and room temperature. The average stress properties 

of the samples were recorded. 

4.1.3 Quasi-static fracture toughness properties 

Single-edge-notched bending specimens were prepared according to the ASTM D5045 standard. 

Figure 38 illustrates the configuration of the SENB specimen test with standard dimensions. First 

a notch was created using a sawing cutter machine of approximately 4 mm depth (d), the initial 

crack tip was created by a sharp razor blade throughout the notch root. The pre-crack length in 
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the specimens was measured by using an optical microscope with a 5x objective lens to determine 

the actual crack length (ɑ). It was found to range from 4.6 mm to 4.9 mm. 

 

 

Figure 38 Configuration of SENB specimen. 

 

A three point bend method was applied to all test specimens by using a Shimadzu Universal Test 

Machine equipped with a 100 KN load capacity. The bending load was applied with a rate of 1 

mm/min test speed. The value of critical stress-intensity factor,  𝐾𝐼𝐶  (plane strain fracture 

toughness) was calculated by applying Equation 1 and the average value of samples was 

recorded. 

 

𝐾𝐼𝐶 =
𝑃𝑚𝑎𝑥

ℎ 𝑊1/2
 𝑓(𝑥)                                                                            𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 1 

𝑓(𝑥) = 6𝑥1/2
[1.99 − 𝑥(1 − 𝑥)(2.15 − 3.93𝑥 + 2.7𝑥2)]

(1 + 2𝑥)(1 − 𝑥)3/2
        𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2 

 

Where 𝑃𝑚𝑎𝑥  is the maximum load, 𝑊 is the depth of specimen, ℎ is the thickness of specimen, ɑ 

is the actual crack length and x is the ratio (ɑ/𝑊) which can be calculated by Equation 2. 

 

4.2 Weight and volume fraction measurement of laminated composites 

While the weight fraction of the fibre and the matrix content in the HCFRP was easily estimated 

by simply weighing, the volume fraction is relatively difficult to estimate. However, 

determination of the fibre weight fraction and volume fraction were measured in accordance with 

ASTM D 3171. The analytical approach was applied in the present work to calculate the 

following two physical parameters: the fibre weight content in the laminated composite is based 

on its actual weight measured. Moreover, the weight of laminated composite is known and 

measured during the manufacturing process. The real weight of the nanofilled matrix (𝑊𝑚𝑎𝑡𝑟𝑖𝑥) 
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in the composite involves the weights of the epoxy resin and the nanoparticles. Additionally, the 

amount of this nanofilled matrix is the difference between the weight content of the laminated 

composite (𝑊𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒) and the actual weight of the fibre content (𝑊𝑓𝑖𝑏𝑟𝑒) used in the 

manufactured composite, as shown in Equation 3. 

𝑊𝑚𝑎𝑡𝑟𝑖𝑥 = 𝑊𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒 −  𝑊𝑓𝑖𝑏𝑟𝑒                                         𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3 

The neat weight of the matrix content (𝑊𝑚)was calculated in accordance with Equation 4 

𝑊𝑚 =
𝑊𝑚𝑎𝑡𝑟𝑖𝑥

𝑊𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒
 × 100                                                       𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 4 

The weight of the fibre content (𝑊𝑓)was calculated in accordance with Equation 5 

𝑊𝑓 =
𝑊𝑓𝑖𝑏𝑟𝑒

𝑊𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒
× 100                                                        𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 5 

To calculate the volume fraction of the matrix and the fibre content in each composite requires 

calculating the actual density of the composites after addition of the nanoparticles to the resin. It 

is assumed that the density of the nanocomposites is not affected too much after the addition of 

the nanoparticles to the pure epoxy resin, (Yasmin and Daniel, 2004). Thus, the value of the 

density in each nanocomposite for the present work was assumed constant and equalised to the 

density of the pure epoxy composite. 

The volume fraction of the matrix (𝑉𝑚) in hybrid composites was estimated by applying the 

following Equation 6 

 

𝑉𝑚 = (
𝑊𝑚𝑎𝑡𝑟𝑖𝑥

𝑊𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒
) × 100 ×   (

𝜌𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒

𝜌𝑚𝑎𝑡𝑟𝑖𝑥
)             𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 6 

 

The volume fraction of the fibre content (𝑉𝑓)in hybrid composites was calculated by applying 

the following Equation 7. 

 

𝑉𝑓 = (
𝑊𝑓𝑖𝑏𝑟𝑒

𝑊𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒
) × 100 ×   (

𝜌𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒

𝜌𝑓𝑖𝑏𝑟𝑒
)                𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 7 

 

 

In accordance with this standard method, the volume fraction of the voids was assumed equal to 

zero. 
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4.3 Mechanical properties of HCFRP 

4.3.1 Interlaminar shear strength (ILSS) 

Short beam specimens were prepared in standard dimensions with lengths of 20 mm, widths of 

10 mm and thicknesses of 2 mm, as shown in Figure 39, (British Standard). The tests were 

performed using the three point bend flexure test using a Shimadzu Universal Test Machine; AG-

X Plus with a load capacity of 100 KN at a cross head speed of 1mm/min. The maximum load 

was recorded and the interlaminar shear strength (ILSS) was calculated by applying Equation 8 

as follows. The specimens were tested at room temperature and the average value was recorded. 

 

𝜏𝐼𝐿𝑆𝑆 =
3 𝑃𝑚𝑎𝑥

4 𝑏ℎ
                                                    𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 8 

Where, 𝑃𝑚𝑎𝑥 is the maximum force,  𝑏 is the width of the specimen and ℎ is a thickness 

 

Figure 39 Schematic diagram shows the short beam shear (SBS) testing. 

 

 

4.3.2 Flexural strength testing of laminate composites 

Flexural tests were performed on the standard samples to determine the strength of the HCFRP 

using the three-point bend flexure test (Shimadzu Universal Test Machine with load capacity of 

100 KN) at a cross head speed of 1 mm/min at room temperature. The standard dimensions of 

the samples are 56 mm long, 25 mm wide with a thickness of 2 mm. The flexural strength, 

flexural modulus and elongation at failure were calculated according to ASTM D790 standard. 
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4.3.3 Interlaminar fracture toughness testing (Mode I) of laminate composites  

A double cantilever beam test was applied to measure the values of fracture toughness energy in 

Mode I. The mould design of the DCB samples is revealed in Figure 40. The DCB of the samples 

were rectangular in geometric shape, prepared into standard dimensions with lengths of 143 mm, 

widths of 25 mm and a thickness of 4 mm (ASTM D5528). A 12 µm thick aluminium film was 

inserted at one end of the sample to generate a crack length of 63 mm in the mid-plane for each 

sample. Both sides of the DCB samples were marked from the end edge of the film insert 

vertically every 1 mm up to 60 mm. 

 

 

Figure 40 The geometric structure and dimensions of the DCB sample. 

 

The DCB tests were performed by using a Shimadzu Universal Test Machine with load capacity 

of 10 KN. Travelling optical microscope with a 10x objective lens was used to monitor and 

record any extension in crack length during period of loading, as shown in Figure 41. The DCB 

samples were loaded in tension to create an initial crack in Mode I at a rate of 1mm/min test 

speed. After pre-cracking, the DCB samples were unloaded into the initial location at a rate of 

10 mm/min. Thereafter, the testing was restarted at a cross head speed of 1 mm/min until the 50 

mm crack length had been extended. 
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Figure 41 The DCB sample test under load conditions. 

 

The modified beam theory (MBT) was applied to estimate the values of the interlaminar fracture 

toughness energy (𝐺𝐼) as shown in Equation 9. 

𝐺𝐼 =
3𝑃𝛿

2𝑏(𝑎 + |∆|)
                                                            𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 9 

 

Where 𝑃 is the tensile force, δ is the deflection, 𝑏 is the width of the sample, ɑ is the crack length 

and Δ is estimated experimentally by creating a least square plot of the cube root of compliance, 

𝐶1/3, as a function of the crack length, as shown in Figure 42. The value of compliance (𝐶) can 

be calculated from Equation 10. 

𝐶 =
𝛿

𝑃
                                                                               𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 10 
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Figure 42 Typical linear fit curve used to measure Δ (mm) via experimental data related to the compliance 

calibration. 

The initial values were estimated by means of three different techniques; specifically, optical 

vision at the onset crack (VIS) and the nonlinear point (NL) which could be recognised on the 

deflection curve (deviation of linearity), whereas, the 5%/MAX offset of this value was 

calculated by determining the intersection point of the line compliance (Co + 5%) with the load-

deflection curve. In case this value exceeded the maximum load, this maximum load should be 

taken to calculate it. The propagation toughness energy is the average of the total values 

excluding the initial values, as revealed in Figure 43. 

 

 

Figure 43 The analytical criteria to determine the values of initial and propagation fracture toughness energy 

(David et al., 2001). 
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4.3.4 Interlaminar fracture toughness testing (Mode II) of laminate composites  

The most common method used to measure the value of GII fracture toughness energy Mode II 

is the three end notched flexure test (3ENF). This type of test is applied less in the design structure 

than the opening tensile system Mode I. The geometric design of the 3ENF samples is similar to 

the DCB samples. The interlaminar fracture toughness test (Mode II) remains debatable because 

of friction influences, as well as the instability of the crack during the propagation stage.  

The ratio (a/L˃0.7) for actual crack length could be the solution for the instability of the crack 

through load conditions, which has been suggested by many researchers (Davies et al., 1998). 

Therefore, the ratio (a/L) of 3ENF samples for the present study was designed to be roughly 0.74. 

The 3ENF test samples were rectangular in geometric shape, 178 mm (in length), 25 mm (in 

width) and 4 mm (in thickness), as shown in Figure 44 (Toland et al., 2010). A 12 µm thick 

aluminium film was inserted at one end of the sample to create a crack length of 76 mm in the 

mid plane for each sample. Both sides of the 3ENF samples were painted using white paint and 

marked form the end of the film insert every 1 mm up to 100 mm. The span between the two 

support rollers is 100 mm. 

 

Figure 44 The geometric structure and dimensions of the 3ENF sample. 

 

Figure 45 illustrates the configuration of the 3ENF test. The 3ENF samples were loaded in A 

Shimadzu Universal Test Machine with a 100 KN load capacity, as shown in Figure 46. An Initial 
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crack in Mode II was created at a constant cross head speed of 1mm/min. After generating the 

initial crack at the insert film, the samples were then unloaded at a rate of speed of 10mm/min. 

Thereafter, the load was restarted on the specimen at the same cross head speed of 1mm/min. 

The force and deflection were recorded for every 1 mm during the extension of the crack if 

possible. The extension in crack length was recorded until samples failure. If the bending failure 

started in the sample, the extension of crack would not be developed and the 3ENF test was 

stopped. 

 

 

Figure 45 Schematic of the 3ENF test. 

 

 

Figure 46 Jig setup for Mode II 3ENF testing. 

 

The following experimental analysis was applied to determine the fracture toughness energy: 

The values of initial and propagation fracture energy in Mode II were calculated in accordance 

with direct beam theory (DBT) using Equation 11 (Silva et al., 2014; Khan and Kim, 2012). 

 



 

98 

 

𝐺𝐼𝐼 =
9𝑃𝑎2𝛿

2𝑏(2𝐿3 + 3𝑎3)
                                                         𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 11 

 

Where 𝑃 is the bending force, 𝑎 is the crack length, 𝛿 is the deflection, 𝑏 is the width of sample, 

and  𝐿 is the half span of simply supported sample. 

 

4.4 Fractography 

4.4.1 Optical Microscopy 

The microstructural details of HCFRP samples were described using bright field imaging on a 

Brunel Optical Microscope LTD, the UK. The objective magnification of 5x, 10x, 20x and 40x 

using reflective illumination. The test samples were cut from the end edges of the un-fractured 

region of the HCFRP samples. A diamond saw was used for this purpose. After that the samples 

were mounted onto the epoxy matrix and subsequently, left to cure. After the curing stage, the 

samples were polished with a Buehler EcoMet 300 Pro grinder-polisher, as illustrated in Figure 

47. The polishing sequence for the samples is described in Table 19 followed at 40N pressure 

force per specimen at a head rotational speed of 150 rpm. In addition, the samples were washed 

in bath water by using VWR Ultrasonic cleaner machine between each stage of the polishing 

processes. The purpose of using the optical microscopy was to check the quality of samples, for 

instance the distribution of nanofilled matrix among the plies, the mechanical bonding between 

the nanofilled matrix and the fibre networks, and the defects such as voids. 

 

 

 

Figure 47 a) Fibre composite in epoxy matrix; and b) Optical micrograph illustrating cross-sectional 

homogenous distribution of carbon fibres network in the epoxy matrix. 
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Table 19 Polishing process sequentially for the HCFRP. 

Grit/Cloth Medium Time Cycles 

120 Grit SiC Water 3 minutes 1 

240 Grit SiC Water 3 minutes 1 

240 Grit SiC Water 3 minutes 1 

Buehler MicroFloc 
9µm  diamond 

suspensions 
3 minutes 2 

Buehler MicroFloc 
3µm  diamond 

suspensions 
3 minutes 2 

Buehler MicroFloc 
1µm  diamond 

suspensions 
3 minutes 2 

 

 

4.4.2 Scanning Electron Microscopy (SEM) 

An environmental scanning electron microscope (ESEM), (XL Series, PHLIPS) was used to 

provide high resolution images and a range of analytical techniques to investigate the network of 

nanofillers and their fracture morphology in composites, on the nanoscale. The surface of 

fractured NP and HCFRP samples were scanned with additional conductive coating, such as 

gold, so as to improve the conductivity and to create a charge contrast imaging between the GNP 

or CSCNT and the electrically insulating epoxy matrix. Additionally, 20KV was used for ultra-

high resolution on the surface of the samples. A secondary electron detector was utilised to obtain 

images of the network of nanofillers in the matrix. 

Fracture morphology for each type of the NP and the HCFRP at critical weight concentration 

were tested to check the fracture toughness systems and mechanical bonding between the 

modified matrix and fibre networks. 

4.4.3 Transmission Electron Microscopy (TEM) 

A transmission electron microscope (Philips CM100 Compustage FEI) was used to investigate 

the dispersion extent, such as the exfoliation of nanoparticles, their orientation and distribution 

into the epoxy resin at critical weight concentrations and defects in the structure of nanoparticles. 

Micro-sections of 0.5µm are cut from the top surface of the nanocomposites samples by using a 

diamond knife. The micro-sections are then stretched on copper grids for inspection. The digital 

images are collected by using an AMT CCD camera (Deben). 
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Chapter 5. Evaluation of mechanical properties of NP: Results and 

discussion 

 

This chapter presents the experimental results with discussion on the characterisation methods of 

the NP, as described in chapter 4. The evaluation of mechanical properties characterised involve 

the tensile strength, flexural strength and fracture toughness of the NP. The degree of 

nanoparticles dispersion was assessed by transmission electrons microscopy TEM for the NP at 

critical weight concentrations. Furthermore, evaluation of mechanical dispersion processes was 

assessed based on the quality of nanoparticles dispersion in the matrix. Analysed fractography 

details using scanning electron microscopy SEM spotlighted distinguished surface fracture 

morphologies which were employed to interpret the illustrated mechanical interfacial behaviour 

and fracture mechanism systems. 

  

5.1 Mechanical characterisation of optimised NP 

5.1.1 Microstructural details of NP processed by sonication mixing 

The TEM and SEM images of the GNP /epoxy nanocomposite illustrate the dispersion degree of 

nanoparticles in the epoxy resin and the fracture morphology of nanocomposite at critical weight 

concentration (5 wt.%), as shown in Figure 48. The TEM image of the GNP/epoxy 

nanocomposites demonstrate a relatively inhomogeneous distribution of the nanoplatelets and 

poor dispersion with lesser exfoliation in the matrix. This is probably as a result of strong van der 

Waals forces in the network of graphene (see Figure 48a). In addition, it can be seen in Figure 

48b that the surface of the GNP is rough and it is challenging to recognise the individual layers in 

the matrix due to the existence of agglomeration phenomenon between the graphene layers. Figure 

48b also shows the folded or wrinkled structure of the graphene layers in the matrix and clusters. 

These undesirable behaviours may lead to poor interlocking between the areas of layered graphene 

and the matrix. Furthermore, the existence of such defects in the nanocomposites may also 

generate high residual stresses after curing the samples of nanocomposites (Moriche et al., 2015). 

Thus, any defect in the structure of nanosheets could be a negative factor affecting the 

performance of the nanocomposite and its mechanical properties.  

As a consequence, using the sonication technique to disperse the GNP undoubtedly is not enough 

to obtain optimum dispersion and high exfoliation of the graphene in the epoxy resin.  
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Figure 48 a) TEM image shows the dispersion degree of GNP in the matrix prepared by the sonication 

technique. b) SEM image shows the fracture surface morphology of GNP/epoxy nanocomposite at critical 

weight concentration (5 wt. %). 

The TEM image of the CSCNT/epoxy nanocomposite demonstrates a good dispersion of the fibre 

nanotubes in the epoxy resin at the critical weight concentration (6 wt.%). It can be observed that 

there is uniform dispersion and good exfoliation of the fibre nanotubes with a uniform gap 

between the nanotubes, as shown in Figure 49a. In addition, it is apparent from the SEM image 

that the CSCNT morphology is tubular without damage in geometric structure. Moreover, it can 

recognise the individual fibre nanotubes in the matrix (see Figure 49b). Hence, the interlocking 
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of the fibre nanotubes and the matrix appears to be good. Based on the fractographic analysis, this 

technique appears suitable for dispersing the CSCNT into the epoxy resin.  

 

 

 

Figure 49 a) TEM image shows the dispersion degree of fibre nanotubes in the matrix prepared by the 

sonication technique. b) SEM image shows the fracture surface morphology of CSCNT/epoxy nanocomposite at 

critical weight concentration (6 wt. %). 

Within the TEM image of the hybrid GNP-CSCNT/epoxy nanocomposite, at critical weight 

concentration (4 wt.%), were some vast agglomerated areas found in the matrix after combining 

the GNP and CSCNT. Additionally, clusters were found in several cross sectional areas of the 

hybrid nanocomposite, in particular the graphene as well as the agglomeration phenomenon and 



 

103 

 

heterogeneous distribution of the combined nanofillers within the epoxy resin, as shown in Figure 

50a. Furthermore, Figure 50b shows there are pull-out mechanisms for some fibre nanotubes and 

the sharp, rough surface of the nanofilled matrix, suggesting a toughening influence. 

The result of the fractography analysis suggest that for graphene as well as the combination of 

nanofillers, other dispersion methods such as ball milling, or a combination of techniques may be 

necessary to improve the dispersion degree of nanoparticles in the epoxy resin. Furthermore, such 

a procedure may contribute to the increase in synergy property of the hybrid nanoparticles into 

the matrix which improves the mechanical properties of the nanocomposites and their 

performance (Tang et al., 2013; Yue et al., 2014). 
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Figure 50 a) TEM image shows the dispersion degree of hybrid nanofillers in the matrix prepared by sonication 

technique. b) SEM image shows the fracture surface morphology of hybrid GNP-CSCNT/epoxy nanocomposite 

at critical weight concentration (4 wt. %). 

5.1.2 Tensile properties of NP processed by sonication mixing 

The typical tensile stress-strain curves of three NP (i.e. GNP/epoxy nanocomposite, 

CSCNT/epoxy nanocomposite and hybrid GNP-CSCNT/ nanocomposite) at various weight 

contents is shown in Figure 51. Table 20 reveals the data calculated from the tensile curves for 

the three classes of NP, in addition to pure epoxy composite as the reference.  
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Figure 51 Typical tensile stress-strain curves at different weight concentrations; a) GNP/epoxy nanocomposite, 

b) CSCNT/epoxy nanocomposite, c) hybrid GNP-CSCNT/ epoxy nanocomposite, processed by the sonication 

technique. 

 

Table 20 Maximum tensile strength and tensile modulus of the NP processed by the sonication technique 

during 55 min of dispersing and mixing time as a function of nanofiller content. 

Sample 

Number 

of 

samples 

Weight 

content 

(wt.%) 

Tensile 

strength 

(MPa) 

Improvement 

(%) 

Tensile 

modulus 

(GPa) 

Improvement 

(%) 

Pure epoxy 4  0.0 67.64±0.92     00.0 1.34±0.03     00.0 

GNP/epoxy 

nanocomposite 

4 2.5 69.26±3.11 +2.4 1.21±0.04 -9.7 

4 4 72.40±2.60 +7.0 1.32±0.02 -1.5 

4 5 77.10±2.30 +13.9 1.48±0.03 +10.8 

4 6 72.30±1.24 +6.8 1.22±0.05 -8.9 

4 7 69.20±0.50 +2.3 1.29±0.02    -3.7 

CSCNT/epoxy 

nanocomposite 

4 2.5 68.90±1.65 +1.8 1.30±0.03    -2.9 

3 4 73.50±1.65 +8.6 1.49±0.02 +11.2 

4 5 75.91±1.73 +12.2 1.52±0.02 +13.4 

4 6 78.21±1.33 +15.6 1.53±0.01  +14.2 

4 7 69.40±1.76 +2.6 1.30±0.02      -2.9 

Hybrid GNP-

CSCNT/epoxy 

nanocomposite 

4 2.5 74.70±1.85 +10.4 1.31±0.02  -2.2 

4 4 76.14±1.18 +12.6 1.29±0.03  -3.7 

3 5 68.50±2.26 +1.3 1.32±0.02  -1.5 

3 6 71.30±1.27 +5.4 1.54±0.04   +14.9 

3 7 68.70±1.58 +1.5 1.33±0.02  -0.7 

 



 

107 

 

A comparison of the tensile properties of three types of NP is shown in Figure 52.  It can be 

concluded that the tensile strength increases after adding the graphene to the epoxy resin, as shown 

in Figure 52a. This improvements was compatible with previous reported studies (Thanh et al., 

2014; Shen et al., 2013; Moriche et al., 2016).  

The present results show that there is an optimum weight content resulting in a maximum increase 

in tensile properties of GNP/epoxy nanocomposites regardless of dispersion degree, for the tensile 

strength and elastic modulus which increased by approximately 14% and 11% respectively at a 5 

wt. % weight content. Incremental improvements with regard to these mechanical properties may 

be a result of the large surface area as well as the good orientation of nanofillers in the matrix 

(Zhao et al., 2010). In spite of the existence of defects such as folded nanosheets and agglomerated 

nanosheets and poor dispersion of graphene, there is a relatively good interfacial interaction 

between GNP and the epoxy matrix, as shown in Figure 53. In contrast, there is a decrease in the 

elastic modulus of roughly 10% and 9% at low GNP loading (i.e. 2.5 wt. %) and high GNP loading 

(i.e. 6 wt.%), respectively as shown in Figure 52 (b). Thus, the proportional weight of 

nanoparticles have significant influence on the mechanical properties of nanocomposites (Zaman 

et al., 2011). 

The influence of novel fibre nanotubes loading on the tensile strength and modulus of the epoxy 

composite is portrayed in Figure 52. The tensile strength increases after adding the fibre nanotubes 

to the epoxy resin (Choi et al., 2005; Iwahori et al., 2005; Sun et al., 2011).  

The highest increase in tensile strength and modulus of CSCNT/epoxy nanocomposites was found 

at approximately 16% and 14% at a critical weight concentration of 6 wt.%. Furthermore, when 

the amount of fibre nanotubes reaches this critical content (6 wt. %), the distance between the two 

nanotubes refers to good exfoliation and dispersion of the fibre nanotubes into the matrix. Pull-

out of fibre nanotubes in the fracture surface was also observed by fractographic analysis, as 

shown in Figure 54. Therefore, the uniform distribution may be suitable for attaining good quality 

adhesion of nanotubes into the epoxy matrix, owing to the superior dispersion of nanotubes and 

moreover, the alignment (Ma et al., 2010). Conversely, the 2.5wt % of CSCNT loading indicates 

that the enhanced influence is limited because the amount of nanofiller may not be satisfactory. 

For example, there is a small increase in tensile strength and decrease in elastic modulus of 

approximately 2% and 3 %, respectively. Although, there is a slight increase in tensile strength 

by 3% at a high concentration (7 wt. %), the tensile modulus also starts decreasing at the same 

content, which may refer to the agglomeration phenomenon in the nanocomposite.  

The objective of incorporating both nanofillers; graphene and novel fibre nanotubes into the epoxy 

matrix was to create a hybrid GNP-CSCNT/epoxy nanocomposite with high mechanical 

properties. The effect of the combination of these carbon nanomaterials on the mechanical tensile 
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properties is also shown in Figure 52. It appears that there is a moderate increase in the tensile 

properties of the HNP in comparison with other NP.  

To explain, any increase in the level of improvements for strength and stiffness properties of the 

HNP are largely linked to the degree of exfoliation of combined carbon nanomaterials in the 

matrix, orientation of each one of nanomaterials and homogenous distribution (Zhao et al., 2010). 

These mechanical factors could influence the mechanical interfacial properties of HNP. In 

addition, these mechanical properties depend on the synergy property of combined nanomaterials 

within the matrix. Moreover, the degree of this property is relevant to the uniform dispersion and 

exfoliation of nanofillers in the matrix (Yue et al., 2014). Therefore, any improvements in these 

mechanical properties of the HNP probably are the result of the synergetic effect of combined 

nanomaterials within the matrix. This desirable behaviour induces the adhesion between the 

fillers and the matrix. In contrast, the inhomogeneous dispersion and poor exfoliation of the 

nanofillers in the matrix possibly indicates that the weakness of the synergy property and the 

adhesion between the nanofillers and the matrix is simple. Furthermore, existence of various 

defects for combined nanomaterials in the matrix (i.e. wrinkled nanosheets) could affect the level 

of improvements in mechanical properties of the HNP (Moriche et al., 2015). The fractographic 

analysis indicated that there is poor dispersion and simple exfoliation of the combined nanofillers, 

especially GNP into the epoxy matrix. Moreover, it shows the rough surface with inhomogeneous 

conglomerates of nanoparticles and agglomeration of nanosheets, as shown in Figure 55. Hence, 

these issues could weaken the synergy properties and mechanical interfacial properties of the 

combined nanofillers within the matrix. 

However, the optimum improvements of hybrid GNP-CSCNT/epoxy nanocomposites in tensile 

strength is found to be by approximately 10% and 13% at weight concentrations 2.5 wt. % and 4 

wt. %, respectively. These improvements probably result from the existence of some synergetic 

properties of the combined nanofillers into the matrix. Moreover, the addition of both nanofillers 

into the epoxy resin increases relatively, the size of the contact area between the matrix and the 

nanofillers particularly the graphene which has a high surface area. In contrast, there is a slight 

decrement in tensile modulus at these weight concentrations, whilst there is a good increase in the 

elastic modulus of approximately 15% and a small improvement in tensile strength of 5% at a 

weight concentration of 6 wt. %. In contrast, at high loading (i.e. 7 wt. %), both the tensile and 

elastic values are unaffected. This may be due to the existence of particles agglomerates and 

inhomogeneous distribution in the matrix.  

As a consequence, the combination of the graphene and fibre nanotube could improve the tensile 

strength. Furthermore, the combination of the nanofillers could decrease somewhat the weight 

content (i.e. 2.5wt.% and 4wt.%) in comparison to GNP and CSCNT incorporated in the matrix 
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individually. In addition, the combination of such nanoparticles contributes to inducing their 

synergy property into the matrix, which has a significant influence on the level of improvements 

in the mechanical properties of HNP (Al-Salaeh et al., 2016; Wang et al., 2015; Li et al., 2013; 

Chatterjee et al., 2012). 
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Figure 52 Comparison and evaluation of the optimised matrix in the NP processed by the sonication technique 

at different weight concentrations a) Maximum tensile strength, b) Tensile modulus. 

 

 

Figure 53 The SEM image shows the defects, such as folds in the network of graphene layers at critical weight 

concentration 5 wt. % by means of the sonication technique. 
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Figure 54 The SEM clearly shows the exfoliated fibre nanotubes with a good gap at the fractured area in 

CSCNT/epoxy nanocomposite processed by the sonication technique. 

 

 

Figure 55 The SEM image illustrates fracture surface morphology of hybrid GNP-CSCNT/epoxy 

nanocomposite processed by the sonication technique at critical weight concentration (4 wt. %). 

 

5.1.3 Flexural properties of NP processed by sonication mixing 

Figure 56 shows the flexural stress-strain curves for the three types of NP at different nanoparticle 

loadings. Table 21 illustrates the experimental data of flexural properties which were derived from 

theses curves.  
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Figure 56 Typical flexural stress-strain curves of three NP at different weight concentrations; a) GNP/epoxy 

nanocomposite, b) CSCNT/epoxy nanocomposite, c) hybrid GNP-CSCNT/epoxy nanocomposite, processed by 

the sonication technique. 

 

Table 21 Maximum flexural strength and flexural modulus of the NP processed by the sonication technique 

during 55 min of dispersing and mixing time as a function of nanofiller content. 

Sample 

Number 

of 

samples 

Weight 

content 

(wt.%) 

Flexural 

strength 

(MPa) 

Improvement 

(%) 

Flexural 

modulus  

(GPa) 

Improvement 

(%) 

Pure epoxy 4 0  101.21±1.52      00.0 2.80±0.13      00.0 

GNP/epoxy 

nanocomposite 

4 2.5 100.03±1.78 -1.2 2.20±0.18  -21.4 

4 4 104.43±2.57 +3.2 2.50±0.05 -10.7 

4 5 107.75±3.34 +6.5 2.60±0.08 -7.1 

4 6 097.86±1.79 -3.3 2.10±0.09 -25.0 

3 7 103.12±1.70 +1.9 2.65±0.02   -5.3 

CSCNT/epoxy 

nanocomposite 

4 2.5 108.87±3.37 +7.5 2.49±0.09 -11.1 

3 4  112.84±0.17 +11.5 2.85±0.02  +1.7 

4 5  114.70±2.86 +13.3 2.87±0.04  +2.5 

3 6     130.10±1.90 +28.5 3.50±0.11  +25.0 

4 7 105.96±4.00 +4.7 2.68±0.12  -4.2 

Hybrid GNP-

CSCNT/epoxy 

nanocomposite 

4 2.5 121.60±2.64 +20.1 3.10±0.12   +10.7 

3 4 123.00±1.27 +21.5 3.15±0.03  +12.5 

4 5 115.26±3.60 +13.8 3.00±0.10   +7.1 

3 6 093.94±1.03 -7.2 2.07±0.03       -26.0 

3 7 111.13±2.14 +9.8 2.87±0.09   +2.6 
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The comparison of flexural properties of the three NP are illustrated in Figure 57. The flexural 

strength and flexural modulus of GNP/epoxy nanocomposites with different graphene 

concentrations show there is a small improvement in flexural strength by approximately 6% at 5 

wt. % weight concentration (see Figure 57a), while there is no improvement in flexural modulus 

at the same weight content (see Figure 57b). In contrast, a marked decrease in the flexural modulus 

was observed with an increase in GNP loading, particularly at a 6 wt. %. This decrease is in the 

region of 25%, in addition to the small decrease in flexural strength of approximately 3% at the 

same graphene loading. 

The maximum flexural strength and flexural modulus of the CSCNT/epoxy nanocomposite with 

various fibre nanotubes contents are also explained in Figures 57a and 57b. It is well known that 

the uniformity of the NP, level of dispersion, orientation of the enhancements and the strong 

adhesion between nanofillers and the epoxy matrix should have a significant effect on the 

mechanical properties. Undoubtedly, an increase in fibre nanotubes loading produces significant 

improvement in the flexural strength and modulus. Such improvements in flexural properties were 

also confirmed by previous reported studies (Iwahori et al., 2005; Bal, 2010). The highest values 

for these properties at maximum strain failure are observed to be approximately 29% and 25% 

respectively at a 6 wt. % CSCNT loading ratio. Conversely, a higher CSCNT content (i.e. 7 wt. 

%) produces an evident decrease in elastic modulus, in addition to a small increase in flexural 

strength of approximately 5 %.  

The effect of adding a mixture of the graphene and fibre nanotubes dispersed together in the matrix 

on the flexural mechanical properties of the epoxy resin, such as flexural strength and flexural 

modulus is shown in Figures 57a and 57b. The highest improvement pertaining to these two 

properties is observed to be approximately 22% and 13% at weight content 4 wt. %, respectively. 

Subsequently, there is a decrease in the flexural properties, principally the elastic modulus of 

approximately 26% at 6 wt. % weight concentration. In addition, there is a small improvement in 

flexural strength and modulus of approximately 10% and 3%, respectively at high loadings of 

hybrid nanofillers (i.e. 7 wt. %).  

As a consequence of these results, the combination of such carbon nanomaterials is promising in 

enhancing the flexural properties of the epoxy composite (Wang et al., 2015; Chatterjee et al., 

2012) and for a relatively low percentage of weight content loading in the nanocomposites. 

Furthermore, mixing the fibre nanotubes with the graphene promotes the performance of 

nanocomposites in comparison to graphene incorporated in the matrix individually (i.e. 

GNP/epoxy nanocomposites).  
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Figure 57 Comparison and evaluation of the optimised matrix in the NP processed by the sonication technique 

at different weight concentrations a) Maximum flexural strength, b) Flexural modulus. 

5.1.4 Microstructural details of NP processed by ball milling/mixing  

The TEM and SEM images of the cross-sections of GNP/epoxy nanocomposite at 5wt.% are 

shown in Figure 58. The images show moderately good dispersion and exfoliation of the GNP as 
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well as homogenous distribution. This could be clear evidence of an improvement in the 

mechanical dispersion of the NP by using the ball milling technique.  

However, several defects can also be seen in the cross-section of nanocomposites. For example, 

some graphene agglomeration can be seen in Figure 58a and there is evidence of incomplete 

graphene exfoliation. Pull-out of nanosheets and bi-furcation mechanisms could be seen in the 

micro-section view of the fracture surface (see Figure 58b) (Chandrasekaran et al., 2014). These 

toughness mechanisms could contribute to reinforcing the mechanical properties of the 

GNP/epoxy nanocomposites.  

 

 

 

Figure 58 a) TEM image shows the dispersion degree of nanoplatelets in the matrix processed by the ball 

milling technique, b) SEM image shows the fracture surface morphology of GNP/epoxy nanocomposite at 

critical weight concentration (5 wt.%). 
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The TEM image of the CSCNT/epoxy nanocomposites at critical weight concentration shows 

good exfoliation and uniform dispersion of the fibre nanotubes in the epoxy resin (see Figure 59a). 

The SEM image shows a rough surface of nanocomposite at the fracture surface area and good 

interlocking of the fibre nanotubes and the epoxy resin as shown in Figure 59b. 

 

 

 

Figure 59 a) TEM image shows the dispersion degree of fibre nanotubes in the matrix processed by the ball 

milling technique, b) SEM image shows the roughness of fracture surface morphology in the CSCNT/epoxy 

nanocomposite at critical weight concentration (6 wt. %). 

The TEM image of the hybrid GNP-CSCNT/epoxy nanocomposite shows undispersed 

agglomerations of graphene, whilst wrinkled nanosheets can also be seen in the hybrid matrix as 

shown in Figure 60a. In addition, the graphene agglomerates cause flaws in the hybrid matrix 

which may affect the performance of the nanocomposites. The difficulty with regards to 



 

118 

 

dispersing GNP with CSCNT together into the epoxy resin is due to the reason that van der Waals 

forces in the graphene network are probably stronger than that of the fibre nanotube network. The 

TEM image also reveals breakages in several nanotubes from the milling process (see Figure 60b). 

This was also reported by Konya et al., 2004. Figure 60c illustrates the fractographic analysis of 

the fracture surfaces of the hybrid nanocomposite sample after testing. Agglomeration in graphene 

nanosheets can be seen in the fractured area. Moreover, the SEM image shows some pull-out of 

the nanofillers and bi-furcation mechanisms, suggesting a toughening effect.  
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Figure 60 a) TEM images show the dispersion degree of hybrid nanofillers in the matrix processed by the ball 

milling technique, and b) the nanotube breakage, c) SEM image shows the fracture surface morphology of 

hybrid GNP-CSCNT/epoxy nanocomposite at critical weight concentration (4 wt.%) 

 

As a result of the fractographic analysis, other mechanical dispersion techniques and new 

methods, such as the combination of dispersion techniques may be required to achieve a greater 

dispersion of the nanofillers uniformly with less defect on the structure of nanoparticles (Moriche 

et al., 2015; Tang et al., 2013; Liang et al., 2009). Therefore, the combination of sonication and 

ball milling techniques may be preferred to improve the quality of dispersion and to achieve high 

exfoliation of the hybrid nanofillers in the epoxy resin (Guo & Chen, 2014; Tang et al., 2013). 

Furthermore, excellent dispersion induces the synergy property between the graphene and fibre 

nanotubes, which is responsible for the improvements in the mechanical properties of the HNP 

(Yue et al., 2014). 
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5.1.5 Tensile properties of NP processed by ball milling/mixing 

The typical stress-strain curves for GNP/epoxy nanocomposite, CSCNT/epoxy nanocomposite 

and hybrid GNP-CSCNT/epoxy nanocomposite is shown in Figure 61. Table 22 shows the 

summary of tensile properties for the three NP. 
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Figure 61 Typical tensile stress-strain curves at different weight concentrations a) GNP/epoxy nanocomposite, 

b) CSCNT/epoxy nanocomposite, c) Hybrid GNP-CSCNT/ epoxy nanocomposite, processed by the ball milling 

technique. 

 

Table 22 Maximum tensile strength and tensile modulus of the NP processed by the ball milling technique 

during 47 min of mixing time as a function of nanofiller content. 

 

Sample 

Number 

of 

samples 

Weight 

content 

(wt.%) 

Tensile 

strength 

(MPa) 

Improvement 

(%) 

Tensile 

modulus 

(GPa) 

Improvement 

(%) 

Pure epoxy 4 0 67.64±0.92   00.0 1.34±0.03  00.0 

 

GNP/epoxy 

nanocomposite 

3 2.5 75.00±3.76 +10.8 1.37±0.01 +2.2 

3 4 75.50±0.45 +11.6 1.42±0.06 +8.2 

4 5 78.90±0.49 +16.6 1.50±0.06 +11.9 

3 6 74.00±1.14 +9.4 1.31±0.01 -2.2 

3 7 73.30±0.36 +8.3 1.40±0.03 +4.4 

CSCNT/epoxy 

nanocomposite 

3 2.5 74.10±4.25 +9.5 1.40±0.08 +4.4 

3 4 76.10±2.20 +12.5 1.49±0.05 +11.1 

3 5 77.98±2.80 +15.2 1.50±0.03 +11.9 

3 6  80.20 ±1.34 +18.5 1.58±0.01 +17.9 

3 7 70.10±1.15 +3.6 1.29±0.02 -3.7 

Hybrid GNP-

CSCNT/epoxy 

nanocomposite 

3 2.5 74.40±0.65 +9.9 1.40±0.02 +4.4 

3 4 74.60±3.97 +10.2 1.41±0.04 +5.2 

3 5 71.10±1.86 +5.1 1.35±0.04 +0.7 

3 6 74.30±0.65 +9.8 1.53±0.02 +14.1 

3 7 73.03±0.83 +7.9 1.42±0.07 +5.9 
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The tensile strength of the three classes of NP increases with the increase in graphene, fibre 

nanotubes and hybrid nanofillers weight content, as shown in Figure 62a. A maximum 

improvement of approximately 17% in tensile strength was illustrated with the addition of 5wt.% 

of graphene, roughly 19% with the addition 6 w.% of fibre nanotubes and 10% after the 

hybridisation of  4 wt.% of GNP and CSCNT into the epoxy resin.  

The improvement in elastic modulus for the graphene reinforced nanocomposites fluctuated with 

load level content. In contrast, the best improvement in elastic modulus was showed with about 

12% after adding 5wt. % of graphene. The tensile modulus of the modified epoxy gradually 

increases the fibre nanotube content, except for high load content (i.e. 7wt. %). 

The highest increase was recorded of approximately 18% at 6wt. % in fibre nanotubes reinforced 

nanocomposite. In addition, continuously increasing the tensile modulus of the hybrid GNP-

CSCNT/epoxy nanocomposites by increasing the load level content. This behaviour illustrates 

that the hybridisation of the nanoparticles, such as graphene and fibre nanotube can have a 

significant effect on the tensile properties of the epoxy resin with level loads contents. Moreover, 

the highest modulus of hybrid nanofillers was observed by approximately 14% at 6wt. %. In 

addition, there was a slight improvement in this value at 4 wt. % by approximately 5% (see Figure 

62b). 

The reasons for the enhancements in mechanical properties in relation to the three epoxy 

nanocomposites particularly HNP were perhaps due to the improvements in dispersion degree of 

the nanofillers in the epoxy resin (Yasmin et al., 2006; Tang et al., 2013).  
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Figure 62 Comparison and evaluation of the optimised matrix in the NP processed by the ball milling technique 

at different weight concentrations a) Maximum tensile strength, b) Tensile modulus. 

5.1.6 Flexural properties of NP processed by ball milling/mixing 

Figure 63 shows typical flexural stress-strains curves of the three NP at various weight content. 

Table 23 reveals the summary of the flexural properties results for the NP.  
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Figure 63 Typical flexural stress-strain curves at different weight concentrations, a) GNP/epoxy 

nanocomposite, b) CSCNT/epoxy nanocomposite, c) Hybrid GNP-CSCNT/epoxy nanocomposite processed by 

the ball milling technique. 

 

Table 23 Maximum flexural strength and flexural modulus of the NP processed by the ball milling technique 

during 47 min of mixing time as a function of nanofiller content. 

Sample 

Number 

of 

samples 

Weight 

content 

(wt.%) 

Flexural 

strength  

(MPa) 

Improvement 

(%) 

Flexural 

modulus 

(GPa) 

Improvement 

(%) 

Pure epoxy 4 0 101.21±1.52   00.0 2.80±0.13 00.0 

GNP/epoxy 

nanocomposite 

3 2.5 108.30±5.10 +7.0 2.78±0.02 -0.7 

3 4 111.10±1.19 +9.7 2.83±0.06 +1.1 

3 5 123.30±3.34 +21.8 3.20±0.20 +14.3 

4 6 111.30±0.81 +9.9 2.76±0.06 -1.4 

3 7 112.00±1.50 +10.6 2.81±0.05 +0.3 

CSCNT/epoxy 

nanocomposite 

3 2.5 105.00±1.71 +3.7 2.65±0.13 -5.3 

3 4 110.90±5.64 +9.5 2.90±0.17 +3.5 

3 5 118..00±3.14 +16.6 3.40±0.14 +21.4 

3 6 128.20±0.85 +26.6 3.80±0.14 +35.7 

3 7 104.00±2.15 +2.7 2.74±0.02 -2.1 

Hybrid GNP-

CSCNT/epoxy 

nanocomposite 

3 2.5 115.15±0.78 +13.8 2.90±0.12 +3.6 

3 4 118.30±1.38 +16.9 3.20±0.10 +14.3 

3 5 110.00±3.81 +8.7 3.00±0.26 +7.1 

3 6 117.10±3.40 +15.7 3.00±0.10 +7.1 

3 7 115.20±1.51 +13.8 2.82±0.02 +0.7 
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The flexural properties of the three NP exhibit a continuous increase in flexural strength after 

adding GNP, CSCNT and hybrid nanofillers to the epoxy resin after improving their dispersion 

extent in the matrix, as revealed in Figure 64a. The highest improvement, 27% was recorded in 

the CSCNT/epoxy nanocomposite with the addition of 6wt. % of the fibre nanotubes, 22% in the 

GNP/epoxy nanocomposite at 5wt. % and 17% after hybridisation with 4wt.% from graphene and 

novel fibre nanotube into the epoxy resin.  

In contrast, the flexural modulus fluctuated in the three types of NP, as shown in Figure 64b. The 

highest increase showed approximately 14% after adding 5wt. % of the GNP, roughly 36% in the 

CSCNT/epoxy nanocomposite at 6wt. % and 14% after the addition of 4wt. % hybrid nanofillers. 

Generally, the highest increase in modulus pointed to a good dispersion and orientation of the 

nanofillers (Yasmin et al., 2006) and good adhesion between the surface area of the nanofiller and 

matrix (Zhao et al., 2010). Although there was an increase in flexural strength regarding the hybrid 

GNP-CSCNT/epoxy nanocomposites, poor dispersion was evident in certain regions of the 

matrix. Conversely, the improvements in flexural strength properties of the hybrid nanocomposite 

were possibly due to the existence of some synergy between the graphene and fibre nanotube 

(Chatterjee et al., 2012; Moghadam and Taheri, 2014). 

The reasonable causes of the minor differences in level of flexural strength improvements for the 

hybrid GNP-CSCNT nanocomposites and CSCNT/epoxy nanocomposites compared with those 

prepared by sonication mixing may be due to the existence of various defects and damages in 

geometric structure of some nanoparticles resulting from the dispersion process (i.e. tortuosity or 

cleavage in fibre nanotubes, wrinkled and agglomeration in graphene layers) during the dispersion 

process (Li et al., 2013). It is well known that maintaining the geometric structure of the 

nanoparticles without damage is highly necessary to reinforce the mechanical properties and the 

performance of nanocomposites (Yokozeki et al., 2008; Moriche et al., 2015). 
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Figure 64 Comparison and evaluation of the optimised matrix in the NP processed by the ball milling technique 

at different weight concentrations, a) Maximum flexural strength, b) Flexural modulus. 

5.1.7 Microstructural details of NP processed by combined techniques mixing 

In spite of the TEM image of the GNP/epoxy nanocomposites at critical weight concentration 

shows optimum uniform dispersion and high exfoliation of the GNP in the epoxy resin, some 

defects such as wrinkled nanosheets are still present in the matrix, as shown in Figure 65a. The 

SEM image illustrates a rough surface in the GNP/epoxy nanocomposites as well as bi-furcation 
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mechanisms (see Figure 65b) and smooth fractures on the surface area of the epoxy composite 

unmodified (see Figure 65c).  
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Figure 65 a) TEM image shows the optimum dispersion of nanoplatelets in the matrix processed by combined 

techniques. b) SEM image shows the rough fracture surface morphology of GNP/epoxy nanocomposite at 

critical weight concentration (5 wt. %), c) smooth fracture surface of unmodified epoxy. 

The TEMs image of CSCNT/epoxy nanocomposite shows high exfoliation of the fibre nanotubes 

and uniform distribution in the epoxy resin, as shown in Figure 66a. The SEM image 

demonstrates that many pull-out fibre nanotubes were seen at the fractured area, as shown in 

Figure 66b.  
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Figure 66 a) TEM image shows high exfoliation of the fibre nanotubes in the matrix processed by combined 

techniques, b) SEM image shows the fibre nanotubes pull-out of the fracture surface in the CSCNT/epoxy 

nanocomposite at critical weight concentration (6 wt.%) 

The TEM image shows optimum dispersion of the hybrid nanofillers (GNP-CSCNT), high 

exfoliation and homogenous distribution in the epoxy resin, as revealed in Figure 67a. In contrast, 

there were still some wrinkled nanosheets in the matrix. Meanwhile, the SEM image shows the 

pull-out of fibre nanotubes at the fractured area of the hybrid nanocomposite besides the difficulty 

in recognising the fracture mechanism of nanoplatelets in the nanofilled matrix, as shown in 

Figure 67b. 

Based on this fractographic evidence, using the combined techniques could improve the dispersion 

degree of the nanofillers and obtain high exfoliation of the nanofillers, particularly the combined 

nanofillers in the matrix, which appears better in comparison to individual mechanical dispersion 

processes (i.e. sonication or ball milling). 
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Figure 67 a) TEM image shows the optimum exfoliation and dispersion of the hybrid GNP-CSCNT nanofillers 

in the matrix processed by combined techniques. b) SEM image shows many fibre nanotubes pull-out at the 

fracture surface in the hybrid GNP-CSCNT/epoxy nanocomposite at critical weight concentration (4 wt.%) 

  

5.1.8 Tensile properties of NP processed by combined techniques mixing 

The typical tensile stress-strain curves mechanism of the three NP at different weight 

concentrations is illustrated in Figure 68. In addition, Table 24 shows the total statements with 

regard to the mechanical tensile behaviour of the three types of NP (i.e. GNP/epoxy 

nanocomposite, CSCNT/epoxy nanocomposite and hybrid GNP-CSCNT/epoxy nanocomposite. 
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Figure 68 Typical tensile stress-strain curves at different weight concentrations: a) GNP/epoxy nanocomposite, 

b) CSCNT/epoxy nanocomposite, c) Hybrid GNP-CSCNT/epoxy nanocomposite processed by combined 

techniques. 
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Table 24 Maximum tensile strength and tensile modulus of the NP processed by combined techniques during 55 

min of mixing and dispersing time as a function of nanofiller content. 

Sample 

Number 

of 

samples 

Weight 

content 

(wt.%) 

Tensile 

strength 

(MPa) 

Improvement 

(%) 

Tensile 

modulus 

(GPa) 

Improvement 

(%) 

Pure epoxy 4 0 67.64±0.92  00.0     1.34±0.03  00.0 

GNP/epoxy 

nanocomposite 

4 2.5 70.80±1.29 +4.7 1.53±0.03 +14.2 

4 4 76.13±2.23 +12.5 1.53±0.02 +14.2 

4 5 79.38±1.84 +17.3 1.56±0.03 +16.4 

4 6 74.09±2.02 +9.5 1.52±0.01 +13.4 

3 7 73.40±0.62 +8.5 1.55±0.14 +15.7 

 

CSCNT/epoxy 

nanocomposite 

4 2.5 74.93±1.80 +10.8 1.38±0.03 +2.9 

4 4 78.65±0.43 +16.3 1.42±0.05 +5.9 

3 5 80.72±2.62 +19.3 1.40±0.10 +4.4 

3 6 82.03±3.02 +21.3 1.70±0.19 +26.8 

3 7 74.04±0.99 +9.4 1.46±0.04 +8.9 

Hybrid GNP-

CSCNT/epoxy 

nanocomposite 

4 2.5 74.83±0.33 +10.6 1.45±0.02 +8.2 

4 4 77.60±0.81 +14.7 1.63±0.08 +21.6 

4 5 74.14±0.91 +9.6 1.40±0.02 +4.5 

3 6 73.50±0.40 +8.6 1.50±0.01 +11.9 

3 7 72.57±1.30 +7.3 1.50±0.03 +11.9 

   

The effect of the addition of nanofillers on tensile properties of the epoxy resin is shown in Figure 

69. The maximum tensile strength and elastic modulus increase with the increase in the weight 

content of graphene from 2.5 wt. % to 7 wt. % (see Figures 69a and 69b). The critical increase 

in relation to the tensile strength and elastic modulus was 17% and 16%, respectively at a weight 

concentration of 5 wt. %.  

The tensile strength and modulus increase dramatically with the increase in the loading levels 

with regard to the CSCNT (see Figures 69a and 69b). The maximum improvement in tensile 

strength and elastic modulus was approximately 21% and 27% respectively at a weight 

concentration of 6 wt. %.   

The novel type of nanocomposites produced is the hybrid GNP-CSCNT/epoxy nanocomposite. 

In relation to the two combined nanomaterials, each one has different morphological properties, 

whilst there is a significant improvement in tensile properties of hybrid nanocomposites. For 

example, Figures 69a and 69b illustrate that there is a significant improvement in tensile strength 

and modulus with loads level concentrations from 2.5 wt.% to 7 wt.%. The highest increase in 

the tensile strength and elastic modulus of approximately 15% and 22% respectively at weight 

concentration (i.e. 4 wt. %). Thus, this behaviour explains that the tensile properties could 
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essentially increase after combining two nanoparticles, as each one has substantial strength 

properties and geometric structures and improves the dispersion degree of the hybrid nanofillers 

in the matrix. However, the optimum tensile strength and elastic properties of the three NP were 

calculated to be 17%, and 16% of 5wt.% GNP, 21%, and 27% of 6 wt.% CSCNT and 15%, and 

22% of 4 wt.% hybrid nanofillers (GNP-CSCNT) respectively. These improvements are better 

than those prepared by sonication mixing and ball milling/mixing.   

The difference in these improvements for each one of NP depends on the type of nanofiller, given 

that each nanoparticle has different morphological and mechanical properties, such as geometric 

shape, nano-size and strength and stiffness properties (Li et al., 2018; Domun et al., 2015; Bal 

and Saha, 2014). In addition, the quality of dispersion could affect the level of increase in the 

mechanical properties of the NP, (Tang et al., 2013). This is because the extent of dispersion in 

each type of nanofiller may relate to van der Waals forces as mentioned previously. For instance, 

these forces in the graphene network are probably stronger than that of the fibre nanotube 

network (Chen et al., 2015; Li et al., 2013). Furthermore, the high exfoliation of nanofillers 

contributes to increasing their contact area with the matrix, which promotes the mechanical 

interfacial properties. Hence, this was expected to improve the performance of the 

nanocomposite (Yue et al., 2014; Liu et al., 2017). 
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Figure 69 Comparison and evaluation of the optimised matrix in the NP processed by combined techniques at 

different weight concentrations: a) Maximum tensile strength, b) Tensile modulus. 
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5.1.9 Flexural properties of NP processed by combined techniques mixing 

Typical stress-strain curves in Figure 70 demonstrate the behaviour of flexural properties tests 

for three classes of the three NP, under static conditions. Table 25 explains the data derived from 

these curves.  
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Figure 70 Comparison and evaluation of the optimised matrix in the NP processed by combined techniques at 

different weight concentrations: a) Maximum tensile strength, b) Tensile modulus. 

 

 

Table 25 Maximum flexural strength and flexural modulus of the NP processed by combined techniques during 

55 min of mixing and dispersing time as a function of nanofiller content. 

Sample 

Number 

of 

samples 

Weight 

content 

(wt.%) 

Flexural 

strength   

(MPa) 

Improvement 

(%) 

Flexural 

modulus 

(GPa) 

Improvement 

(%) 

Pure epoxy 4 0 101.21±1.52  00.0 2.80±0.13  00.0 

GNP/epoxy 

nanocomposite 

4 2.5 108.40±2.45 +7.1 2.85±0.08 +1.8 

4 4 109.49±3.69 +8.2 2.88±0.11 +2.8 

3 5 118.60±3.06 +17.2 3.10±0.20 +10.7 

3 6 110.98±0.30 +9.6 2.90±0.04 +3.6 

4 7 115.24±2.68 +13.8 2.82±0.02 +0.7 

CSCNT/epoxy 

nanocomposite 

 

4 2.5 116.73±2.56 +15.3 2.95±0.11 +5.3 

3 4 117.49±0.48 +16.1 3.20±0.20 +14.3 

3 5 127.20±1.01 +25.6 3.35±0.08 +19.6 

4 6 130.70±4.49 +29.1 3.70±0.29 +32.1 

4 7 104.00±2.05 +2.7 2.83±0.05 +1.1 

Hybrid 

GNP-

CSCNT/epoxy 

nanocomposite 

4 2.5 116.56±1.89 +15.1 3.23±0.19 +15.3 

4 4 141.50±6.87 +39.8 4.50±0.18 +60.7 

3 5 110.46±0.85 +9.1 3.00±0.08 +7.1 

3 6 118.25±2.10 +16.8 3.21±0.12 +14.6 

3 7  117.10±2.05 +15.7 2.90±0.05 +3.6 
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Figure 71a distinguishes the comparison in flexural strength regarding the GNP/epoxy 

nanocomposite with various weight contents after improving the dispersion level by using 

combined techniques. Furthermore, it is illustrated that there is a rough improvement in flexural 

strength, and moreover, that the critical increase was approximately 17% at a weight 

concentration of 5 wt.%. In contrast, Figure 71b reveals that there is a rough increase in flexural 

modulus at the same loading levels by approximately 11%.  

The maximum flexural strength and modulus increase dramatically when the contents loading is 

less than 7 wt. % in CSCNT/epoxy nanocomposites, as shown in Figures 71a and 71b. 

Subsequently, the flexural properties start to drop significantly in relation to percentage increase, 

which is expected due to the increase in loading levels. The best improvements in maximum 

strength and elastic were approximately 29% and 32% respectively at 6 wt. %. 

The novel hybrid GNP-CSCNT/epoxy nanocomposite displays a significant increase in flexural 

properties. It can be observed that the combined nanoparticles in the epoxy composite produce 

an important rise in flexural properties at low loading levels, as shown in Figures 71a and 71b. 

The critical increase in both flexural strength and modulus was approximately 40% and 61% 

respectively at a 4 wt.% weight concentration in relation to the combined nanoparticles. 

Afterwards, these properties gradually decrease, although their reduction remains positive at high 

weight contents (i.e. 7 wt.%). This increase in flexural strength properties after the combination 

of the nanoparticles shows that high uniform dispersion increases the synergy property of the 

graphene and fibre nanotube in the epoxy resin, which significantly increases the mechanical 

properties of the HNP (Yue et al., 2014). 
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Figure 71 Comparison and evaluation of the optimised matrix in the NP processed by combined techniques at 

different weight concentrations: a) Maximum flexural strength, b) Flexural modulus. 
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5.2 The effect of sonication mixing time on strength and modulus properties of the NP 

It is well known that there are numerous challenges during the dispersion process of nanoparticles 

using the ultra-sonication technique. These include amplitude and period of dispersion that have 

an effect on the dispersion degree of the nanoparticle in the nanocomposite. Hence, this may 

affect their mechanical properties and the performance of NP (Gkikas et al., 2012). Furthermore, 

the high exfoliation of the nanofillers increases the level of mechanical properties of the 

nanocomposites. However, Table 26 shows the values of tensile strength and flexural strength 

for various periods of dispersion; 15 min, 30 min, 45 min and 60 min, for three formulations of 

the NP; GNP/epoxy nanocomposite, CSCNT/epoxy nanocomposite and hybrid GNP-

CSCNT/epoxy nanocomposite. All the dispersion processes for these NP were accomplished at 

an amplitude of 75%. 

 

Table 26 Tensile and flexural properties of the NP at critical weight concentrations and at various periods of 

nanoparticles dispersion processed by sonication technique. 

Sample 
Time 

(min) 

Sonication mixing 

Tensile 

strength 

(MPa) 

Tensile 

modulus  

(GPa) 

Flexural 

strength  

(MPa) 

Flexural 

modulus  

(GPa) 

Pure epoxy - 67.64±0.92 1.34±0.03 101.21±1.52 2.80±0.13 

GNP/epoxy 

nanocomposite 

at 5 wt.% 

15 60.00±1.50 1.20±0.10 076.00±2.90 2.20±0.10 

30 71.80±2.90 1.37±0.09 093.94±3.10 2.40±0.08 

45 77.10±2.30 1.49±0.03 107.75±3.34 2.60±0.08 

60 73.30±1.90 1.52±0.08 106.40±2.70 2.90±0.12 

CSCNT/epoxy 

nanocomposite 

at 6 wt.% 

15 63.00±3.70 1.30±0.08 086.00±2.60 2.67±0.09 

30 71.50±1.50 1.40±0.11 105.10±2.40 2.87±0.06 

45 78.21±1.33 1.53±0.01 130.10±1.90 3.50±0.11 

60 75.10±2.70 1.55±0.07 119.50±2.80 3.63±0.07 

Hybrid GNP-

CSCNT/epoxy 

nanocomposite 

at 4 wt.% 

15 55.00±1.60 1.13±0.06 072.00±2.30 2.78±0.06 

30 69.00±3.20 1.20±0.07 114.26±1.70 2.89±0.02 

45 76.14±1.18 1.29±0.03 123.00±1.27 3.15±0.03 

   60 75.71±1.65 1.36±0.05 120.10±2.10 3.10±0.05 
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Figure 72 illustrates the influence of the sonication mixing time on the strength and modulus 

properties of the modified matrix in each nanocomposite. 
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Figure 72 The influence of sonication mixing time on strength and modulus properties of the three NP at 

critical weight concentration; a) Tensile strength, b) Flexural strength, c) Tensile modulus, d) Flexural 

modulus. 
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Figures 73a and 73b also show that there is significant difference of tensile and flexural strength 

between 15 and 60 min. In general, the existence of the nanoparticle clusters in the 

nanocomposite lead to cracks being formed in the sample. This analysis could prove the main 

reason for the reduction in the mechanical properties of the three NP with poorly dispersed 

nanofillers in the matrix at 15 min (Zaman et al., 2012). The TEM images show the poor 

dispersion of the nanoparticles and existence of the clusters phenomenon besides the percolation 

phenomenon in the micro-cross sectional of NP particularly the novel HNP (Chandrasekaran et 

al., 2013), as shown in Figure 73c. 
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Figure 73 The TEM images show the poor dispersion of the nanofillers in each nanocomposite prepared by the 

sonication technique; a) GNP/epoxy nanocomposite, b) CSCNT/epoxy nanocomposite c) Hybrid GNP-

CSCNT/epoxy nanocomposite. 

 

The optimum period to reinforce the strength properties in NP was at 45 min. After this optimum 

period, the strength properties showed little effect on the tensile and flexural strength of the three 

NP, whereas there is a continuous and slight increase in elastic modulus for each sample after 

increasing the interval time of dispersion to 60 min for the mixture by using sonication mixing, 

as shown in Figures 72c and 72d, (Yasmin et al., 2006; Wang et al., 2012; Zaman et al., 2012; 

Tang et al., 2013). Comparatively, the good dispersion degree for the nanofillers in resin 

contributes to increasing the mechanical properties of the NP due to the high efficiency in 

transferring the mechanical forces between the nanoparticles and the matrix in the nanocomposite 

(Rafiee et al., 2010). In contrast, the dispersion process and type of nanofiller used could 

significantly affect the mechanical properties of the NP. Yasmin et al. (2006), reported that use 

of sonication mixing for a long period may degrade the strength and stiffness properties of the 

NP.  
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5.3 The effect of ball milling time on strength and modulus properties of the NP 

Table 27 shows the level of increase in the strength and stiffness properties of the three NP at 

various periods of the dispersion process. The three NP were dispersed at the critical weight 

concentration for each sample by using the ball milling technique for the mixing periods; 15 min, 

30 min, 45 min and 60 min and a mixing speed of 400rpm.  

 

Table 27 Tensile and flexural properties of the NP at critical weight concentrations and at various period of 

nanoparticles dispersion processed by the ball milling technique. 

Sample 
Time 

(min) 

Ball milling/mixing 

Tensile 

strength 

(MPa) 

Tensile 

modulus (GPa) 

Flexural 

strength (MPa) 

Flexural 

modulus (GPa) 

Pure epoxy - 67.64±0.92 1.34±0.03 101.21±1.52 2.80±0.13 

GNP/epoxy 

nanocomposite 

at 5 wt.% 

15 64.10±3.20 1.12±0.10 096.10±5.10 2.20±0.13 

30 70.10±1.70 1.35±0.03 104.40±2.70 2.80±0.09 

45 78.90±0.49 1.50±0.06 123.30±3.34 3.20±0.20 

60 76.30±2.30 1.58±0.09 118.10±2.14 3.40±0.17 

CSCNT/epoxy 

nanocomposite 

at 6 wt.% 

15 70.10±4.10 1.30±0.15 097.10±3.54 2.50±0.18 

30 75.10±1.75 1.45±0.07 107.10±1.76 2.90±0.01 

45 80.20±1.34 1.58±0.01 128.20±0.85 3.80±0.13 

60 78.10±2.23 1.62±0.08 118.90±2.80 3.86±0.07 

Hybrid GNP-

CSCNT/epoxy 

nanocomposite 

at 4 wt.% 

15 54.10±2.62 1.10±0.13 070.30±1.98 2.03±0.17 

30 69.60±1.63 1.30±0.07 114.20±2.90 2.79±0.18 

45 74.60±3.97 1.41±0.04 118.30±1.38 3.20±0.10 

60 74.10±2.12 1.43±0.09 118.10±2.33 3.80±0.20 
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Figure 74 shows the effect of mixing time on the strength and modulus properties of GNP/epoxy 

nanocomposite, CSCNT/epoxy nanocomposite and hybrid GNP-CSCNT/epoxy nanocomposite.  
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Figure 74 The influence of milling/mixing time on strength and modulus properties of the three NP at critical 

weight concentration; a) Tensile strength, b) Flexural strength, c) Tensile modulus, d) Flexural modulus. 
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Strength and modulus properties were affected significantly by the dispersion time of 

nanoparticles in the three NP by using the ball milling technique between the periods of 15 min 

to 60 min. The short period of dispersion was not sufficient to obtain a reasonable dispersion to 

improve the mechanical properties of the NP by using the ball milling technique particularly at 

15 min. A massive of agglomeration of particles were seen in the micro-section areas of the NP, 

as shown in fractographic images (see Figures 75a and 75c).  

After this short period, the strength properties showed a significant difference between 30 min 

and 60 min. The optimum period was at 45 min. After this period (60 min), the improvement in 

strength showed a somewhat low difference compared with the optimum period. This may be 

due to some damage occurring in the geometric structure and a reduction in size dimensions of 

the nanoparticles, particularly the length of the fibre nanotubes, as a result of increasing the 

period of milling and mixing time (see Figure 75b), besides the high shear and compressive 

forces generated in the closed container (Yokozeki et al., 2008; Konya et al., 2004). Additionally, 

the elastic modulus values showed a slight increase with the increasing time period, as shown in 

Figures 74c and 74d. 
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Figure 75 The TEM images show the poor dispersion and defect of the nanoparticles for each nanocomposite 

processed by the ball milling technique; a) GNP/epoxy nanocomposite, b) CSCNT/epoxy nanocomposite, c) 

Hybrid GNP-CSCNT/epoxy nanocomposite. 
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5.4 Assessment of mechanical properties of the NP 

The evaluation of mechanical properties for the three NP processed by the sonication technique, 

ball milling technique and combined techniques based on the level of increase in the strength and 

modulus properties at critical weight concentration (see Tables 28 and 29). 

Figure 76 shows the critical increase and the variation in strength and modulus properties of the 

three NP processed by three practical mechanical dispersion techniques. The variation of 

improvement in strength and elastic modulus of the three NP could be related to dispersion 

processes in each stage. Furthermore, using the ball milling technique contributed to increasing 

the mechanical properties of the NP. This improvement was relatively better than the sonication 

mixing results, particularly the values of elastic modules. The reason for this could be attributed 

to additional mechanical forces (i.e. shear and compressive forces) created in the ball milling 

container, which may promote the dispersion degree of the nanoparticles and the orientation in 

the matrix (Tang et al., 2013; Zao et al., 2010).  

Furthermore, the increased level of these properties for the novel NP processed by using 

combined techniques was better than those prepared by the sonication and ball milling technique 

specially HNP. Thus, this practical method was valuable to disperse and exfoliate the nanofillers 

into the epoxy resin, particularly hybrid nanofillers. The reason for this high increase difference 

could also be related to the additional mechanical dispersion forces generated after the 

combination of ball milling and sonication mixing, shear, compressive and extension. These 

dispersion forces may primarily induce high exfoliation of nanoparticles in the matrix. Moreover, 

they improve the performance of NP via additional shear forces which may reduce the strains 

and residual stresses on the structure of the nanofillers (Moriche et al., 2015). Hence, this may 

significantly contribute the promotion of mechanical properties for the NP. Based on these facts, 

the combination of the sonication and ball milling technique is valuable in promoting the 

mechanical properties of NP.  
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Table 28 Level of increase in the strength of the three NP processed by sonication, ball milling and combined techniques at critical weight concentrations. 

Sample 

Dispersion processes 

Sonication method Ball milling method Combined method 

Tensile 

strength 

(MPa) 

Incr. 

(%) 

Flexural 

strength 

(MPa) 

Incr. 

(%) 

Tensile 

strength 

(MPa) 

Incr. 

(%) 

Flexural 

strength 

(MPa) 

Incr. 

(%) 

Tensile 

strength 

(MPa) 

Incr. 

(%) 

Flexural 

strength 

MPa 

Incr. 

(%) 

GNP/epoxy 

nanocomposites 

at 5 wt.% 

77.10±2.30 +13.9 107.75±3.34 +6.4 78.9±0.49 +16.6 123.3±3.34 +21.8 79.38±1.84 +17.3 118.6±3.06 +17.2 

CSCNT/epoxy 

nanocomposite 

at 6 wt.% 

78.21±1.33 +15.6 130.10±1.90 +28.5 80.2±1.34 +18.5 128.2±0.85 +26.6 82.03±3.02 +21.3 130.7±4.49 +29.1 

Hybrid GNP-

CSCNT/epoxy 

nanocomposite 

at 4 wt.% 

76.14±1.18 +12.5 123.00±1.27 +21.5 74.6±3.97 +10.2 118.3±1.38 +16.9 77.60±0.81 +14.7 141.5±6.87 +39.8 
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Table 29  Level of increase in stiffness of the three NP processed by sonication, ball milling and combined techniques at critical weight concentrations. 

Sample 

Dispersion processes 

Sonication method Ball milling method Combined method 

Tensile 

modulus 

GPa 

Incr. 

(%) 

Flexural 

modulus 

(GPa) 

Incr. 

(%) 

Tensile 

modulus 

(GPa) 

Incr. 

(%) 

Flexural 

modulus 

(GPa) 

Incr. 

(%) 

Tensile 

modulus 

(GPa) 

Incr. 

(%) 

Flexural 

modulus 

(GPa) 

Incr. 

(%) 

GNP/epoxy 

nanocomposites 

at 5 wt.% 

1.48±0.03 +10.8 2.60±0.08 -7.1 1.50±0.06 +11.9 3.20±0.20 +14.3 1.56±0.04 +16.4 3.10±0.20 +10.7 

CSCNT/epoxy 

nanocomposite 

at 6 wt.% 

1.53±0.01 +14.2 3.50±0.11 +25.0 1.58±0.01 +17.9 3.80±0.14 +35.7 1.70±0.19 +26.8 3.70±0.29 +32.1 

Hybrid GNP-

CSCNT/epoxy 

nanocomposite 

at 4 wt.% 

1.29±0.03 -3.7 3.15±0.03 +12.5 1.41±0.04 +5.2 3.20±0.10 +14.3 1.63±0.08 +21.6 4.50±0.17 +60.7 
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Figure 76 The increased levels of mechanical properties in the NP processed by three methods at critical weight 

concentration; 4wt.% of hybrid GNP-CSCNT, 5wt. % of GNP, 6wt.% of CSCNT a) Tensile strength, b) Flexural 

strength, c) Tensile modulus, d) Flexural modulus. 
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5.5 Fracture toughness properties of the NP processed by combined techniques 

5.5.1 Fracture surface morphology   

The surface morphologies of pure epoxy composite and three NP are presented in Figure 77. It 

can be seen that the surface morphology at the fracture area of the pure epoxy composite is 

smooth (see Figure 77a). This could be evidence of weak resistance to the crack extension. 

Conversely, rough surface was seen in the three NP (see Figures 77b, 77c and 77d). In addition, 

several other fracture mechanism techniques were seen on the fracture surface morphologies of 

the NP, such as tortuous, hackles, riverlines and ribbons. These fracture mechanism systems 

increase the energy dissipation in the nanocomposite which reflects the causes of the increase in 

fracture energy of the three NP (Tang et al., 2013). Furthermore, the pinning and pull-out of 

nanoparticles were seen in the fractured area of the nanocomposites which are considered the 

keys for energy absorption systems in nanocomposites (Chadrasekaran et al., 2014). In addition, 

the SEM images also show the bi-furcation mechanism of the crack when it encounters the 

carbon nanomaterials after the combination of graphene and fibre nanotubes. Moreover, the 

existence of such GNP that have large specific areas contributes to the deviation in the cracks in 

the nanocomposite. This may also improve the fracture energy in the nanocomposites.   
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Figure 77 SEM images show the fracture surface morphology for each nanocomposites at critical weight 

concentration compared with pure epoxy composite; a) Pure epoxy, b) GNP/epoxy nanocomposite, c) 

CSCNT/epoxy nanocomposite, d) hybrid GNP-CSCNT/epoxy nanocomposite 

 

5.5.2 Fracture strength properties 

The purpose of this fracture toughness measurements is to check the fracture strength of the 

modified matrix in each nanocomposite processed by the combined techniques at optimum 

weight concentration. 

The mechanical fracture toughness criterion for fractured material based on the work of Griffith 

and Irwin (Griffith, 1920; Irwin, 1964) is that the fracture mechanism occurs when there is 

sufficient work energy for the crack extension at the instant of loading. The stresses concentration 

criteria at the crack tip relevant to the subjected stress is determined by the critical stress intensity 

factor (KIC) and is periodically called the fracture strength. 

Figure 78 shows the typical force-deflection curves for SENB testing for each sample at optimum 

weight concentration. Table 30 shows the statement which is derived from these curves.  
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Figure 78 Typical force-deflection curves as a function of optimum nanofillers content. 

 

Table 30 The fracture toughness (KIC) as a function of optimum nanofiller content. 

Sample 

Number 

of 

samples 

Optimum 

weight 

(wt.%) 

Maximum 

force         

(N) 

Critical stress 

intensity factor, 

KIC (MPa.m1/2) 

Toughness 

improvement 

(%) 

Pure epoxy 5 0 50.50±8.90 0.96±0.17   00.0 

GNP/epoxy 

nanocomposite 
5 5 77.65±6.52 1.46±0.12 +52.0 

CSCNT/epoxy 

nanocomposite 
5 6 110.60±5.70 2.08±0.12 +116.7 

Hybrid GNP- 

CSCNT/epoxy 

nanocomposite 

5 4 94.60±6.20 1.78±0.10 +85.4 
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The critical stress intensity factor KIC was calculated by using the maximum force. The 

comparison of KIC values among the three nanocomposites are plotted in Figure 79.  

 

 

Figure 79 The fracture toughness of epoxy composite as a function of GNP, CSCNT and hybrid GNP-CSCNT 

content. 

It illustrates that KIC, is increasingly significant with the addition of GNP, CSCNT and hybrid 

GNP-CSCNT at critical weight concentration. These improvements were compatible with 

previous reported studies (Nam et al., 2017; Chadrasekaran et al., 2014; Zaman et al., 2011; Zhou 

et al., 2007; Moghadam and Taheri, 2014; Chatterjee et al., 2012). Due to the difference in 

nanoscale size for GNP and CSCNT, each one has a different aspect ratio. Hence, this property 

could affect the path of the crack head and amount of energy absorption in each nanocomposite. 

When extending, the crack encounters rigid nanosheets or nanotubes, particularly with optimum 

strengthened and toughened matrix. The larger crack propagation should tilt or deviate in larger 

angles in order to cross the nanosheets or nanotubes. In addition, crack deflection results in 

greater fracture surface regions than those generated by undeflected regions. The amount of 

released energy is a function of the fracture regions in the composite. Therefore, surface 

roughness is one of the characteristics which can be considered as an assessment of the plastic 

regions of the fractured areas in each nanocomposite. Therefore, the addition of nanoparticles to 

the polymer could increase the surface roughness, hence, this improves the weak zones in the 

composite (Moghadam and Taheri, 2014; Tang et al., 2013). 
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The SEM images of the fracture surface of the three NP nanocomposites reported previously at 

optimum weight concentration, within a cross-sectional area close to the crack head (see Figure 

77). The fractographic analysis reveals evidence of several nanosheets and nanotubes that have 

been pulled-out of the side of the fractured area, proposing toughening and strengthening effects.   

Furthermore, the mechanical forces (i.e. pull-out forces) in the fibre nanotubes reinforced 

nanocomposite possibly have greater efficiency to resist the extension of the crack and absorb 

the fracture energy in the nanocomposites than that of the nanosheets. This is probably due to the 

characteristics of the geometric structure of fibre nanotubes compared with GNP which have a 

weak structure. Therefore, this analytical explanation may show one of the reasons that led to the 

high difference in the values of the fracture energy in fibre nanotubes reinforced epoxy 

nanocomposites in comparison with graphene reinforced nanocomposite.  

Extra fracture mechanisms such as bi-furcation and pinning of the crack head in nanocomposites 

could be the other important reason for the improvement in the fracture strength in HNP. In 

addition, existence of graphene with fibre nanotubes together in the matrix contributes to 

increasing their contact areas in the HNP, interfacial friction energy and corrugation mechanism 

which may promote the fracture toughness property (Kostagiannakopoulou et al., 2017; Wang et 

al., 2015). 

Moreover, the orientation of the nanofillers could be additional evidence which may have an 

effect on the level of the increase in the fracture energy of the NP (Menna et al., 2016). 

Furthermore, the different grades of graphene and fibre nanotubes in terms of morphological 

properties (i.e. nanoscale, geometric structure), mechanical properties (i.e. strength, stiffness) 

and their manufacturing processes could have an influence on the level of interfacial shear forces 

increase. Hence, this changes the amount of released energy and resistance in each 

nanocomposite (Ozkan et al., 2012; Zaman et al., 2011; Chatterjee et al., 2012). 

Furthermore, the combination of graphene and fibre nanotubes could increase the pull-out forces 

resulting from synergetic influence between the nanosheets and nanotubes (Liu et al., 2017).  

This behaviour may demonstrate the reason for the optimal increase in fracture energy in HNP 

in comparison with NP (i.e. graphene reinforced nanocomposites). 
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Chapter 6. Evaluation of mechanical properties of HCFRP: Results and 

discussion 

This chapter offers the experimental results with discussion of the characterisation methods on 

the HCFRP as described in chapter 4. The evaluation of mechanical properties characterised 

involve interlaminar shear strength, flexural strength and Mode I and Mode II interlaminar 

fracture toughness for the HCFRP at optimum weight concentrations. Analysed fractography 

details using optical microscopy and scanning electron microscopy SEM spotlighted notable 

surface fracture morphologies, which were utilised to translate the depicted mechanical 

interfacial behaviour and fracture mechanism systems for hybrid composites. 

 

6.1 The constituent weight and volume fractions of HCFRP produced 

As shown in Table 31, the fibre weight and matrix weight fractions of the HCFRP samples were 

calculated to be between 60-62% and 38-39% respectively, whilst the fibre volume and matrix 

volume fractions were estimated to be between 47 to 49% and 46 to 48% respectively. The 

possibility of inaccuracy is expected in these results because the actual density of the composite 

was not applied to determine the actual volume fractions of the samples in the present work (see 

section 4.2) besides the volume fraction of the voids in each sample has been neglected in 

accordance with ASTM D 3171. Therefore, the values of weight and volume fractions could be 

affected by these engineering issues and assumptions in each sample.  

Table 31 Weight fraction and volume fraction for HCFRP. 

 

Sample 

Thickness 

of laminate 

(mm) 

Weight fraction Volume fraction 

Fibre 

weight (%) 

Matrix 

weight (%) 

Fibre 

volume (%) 

Matrix 

volume (%) 

CF/epoxy 

composite 

unmodified 

at 0 wt.% 

2.00±0.11 61.44±0.55 38.55±0.37 49.41±0.41 47.96±0.31 

3.98±0.14 61.74±0.70 38.25±0.41 49.53±0.46 46.48±0.44 

GNP/CF/epoxy 

nanocomposite 

at 5 wt.% 

1.97±0.13 61.47±0.37 38.41±0.44 49.57±0.30 46.44±0.62 

3.91±0.11 61.00±1.10 38.96±0.71 49.38±0.72 47.96±0.42 

CSCNT/CF/epoxy 

nanocomposite 

at 6 wt. % 

2.00±0.01 61.30±0.91 38.58±0.46 49.43±0.21 48.13±0.32 

4.00±0.09 61.00±1.32 38.98±0.82 47.39±0.57 48.58±0.74 

Hybrid GNP-

CSCNT/CF/epoxy 

nanocomposite 

at 4 wt. % 

1.99±0.12 60.49±0.50 39.19±0.27 49.36±0.33 47.43±0.33 

3.98±0.12 62.00±0.93 37.96±0.83 49.41±0.67 46.21±0.41 
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6.2 Shear testing of short beam sample 

6.2.1 Modes of failure  

The modes of failure in hybrid composites were checked by an optical microscope, as shown in 

Figure 80. Several modes of failure were seen in the samples, such as single or multiple shear, 

which were considered as acceptable failure in accordance with standard measurements, whilst 

the samples that had shown mixed modes of failure, such as shear and tension or compressive 

bending failure were neglected from the test results (see Figure 80a1). 

 

 

Figure 80 a) Schematic diagrams shows the acceptable and unacceptable shear failure in short beam testing 

samples; b) Optical micrograph showing cross-sectional shear failure  in the samples (5x); a1) CF/epoxy 

composite unmodified , b1) GNP/CF/epoxy nanocomposite, c1) CSCNT/CF/epoxy nanocomposite, d1) Hybrid 

GNP-CSCNT/epoxy nanocomposite. 
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6.2.2 Microstructural details of shear failure 

To explain the morphologies and bonding quality of the synthesised hybrid laminated composites 

(i.e. HCFRP), particularly the interfacial bonding and fracture mechanism systems, a cross-section 

of the fractured area views was assessed using SEM, as shown in Figure 81. The images reveal 

that massive cracks were evident in the matrix film at the regions of failure after applying the 

bending load on the specimens of CF/epoxy composite unmodified. 

The reason for these microstructural cracks is the low resistance of the CF/epoxy composite 

unmodified, smooth surface and the weak adhesion between the carbon fibre filaments and the 

epoxy matrix. Conversely, the lack of these cracks in the modified matrix of hybrid composites 

indicates the high strength and toughness of the modified matrix and surface roughness of the 

nanofilled matrix, which reinforces the adhesion between the nanofilled matrix and carbon fibre 

network (Zhang et al., 2009; Yokozeki et al., 2007; Li et al., 2014).  

The optimum extent of dispersion of nanomaterials improves the adhesion between the matrix and 

fibre networks. Furthermore, the improvement in mechanical interfacial properties is probably 

attributed to the high interlocking of fillers, enhancing the loads transfer between the fibre and 

matrix (Zhang et al., 2009). 

 

 

Figure 81 The SEM images show the fracture surface morphology of composites at the failure regions for shear 

beam samples: (a) CF/epoxy composite unmodified (b) GNP/CF/epoxy nanocomposite, (c) CSCNT/CF/epoxy 

nanocomposite, (d) Hybrid GNP-CSCNT/CF/epoxy nanocomposite. 
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6.2.3 Interlaminar shear strength properties 

The influence of the addition of GNP, CSCNT and the combination of them on the interlaminar 

shear force of the carbon fibre reinforced epoxy composites is shown in Figure 82. Table 32 shows 

the summary of the SBS test results.  

 

 

Figure 82 Typical force-deflection curves for short beam samples of the HCFRP at optimum weight 

concentration. 

 

 

Table 32 The interlaminar shear strength (ILSS) of HCFRP measured by short beam shear (SBS). 

Sample 

Number of 

samples 

Weight 

content 

(wt.%) 

ILSS 

(MPa) 

Incr. 

(%) 

CF/epoxy composite unmodified 8 0 28.50±2.31   00.0 

GNP/CF/epoxy nanocomposite 6 5 37.45±0.88 +31.4 

CSCNT/CF/epoxy nanocomposite 6 6 39.24±0.64 +37.7 

Hybrid GNP-CSCNT/CF/epoxy 

nanocomposite 
6 4 39.04±1.72 +36.9 
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A comparison of the interlaminar shear strength (ILSS) of three types of HCFRP is revealed in 

Figure 83.  

 

Figure 83 Comparison among three types of HCFRP at optimum weight concentrations. 

The experimental results demonstrate that there is an optimum weight content resulting in a 

maximum increase in shear strength of approximately 31% in GNP/CF/epoxy nanocomposite, 

38% in CSCNT/CF/epoxy nanocomposite and 37% after impregnation of the hybrid nanofillers 

(GNP and CSCNT) onto the surface of the carbon fibre network. Therefore, the addition of such 

nanofillers had improved the mechanical interfacial properties between the fibre network and the 

matrix. These enhancements agree with previously reported experimental studies that the addition 

of carbon nanomaterials could significantly increase the interlaminar shear strength properties of 

the fibre composites (Jia et al., 2015; Khan and Kim, 2012; Qin et al., 2015; Green et al., 2009; 

Li et al., 2014). 

The reasons for the increase in the interlaminar shear strength are probably due to the good 

strength and toughness properties of the modified matrix, which induce the adhesion between the 

fibre networks and the nanophase matrix. In addition, the hybridisation of GNP and CSCNT 

enhances their synergy in the epoxy matrix which may increase the strength properties and 

toughness of the interface areas surrounding the fibre networks, (Nam et al., 2017; Liu et al., 2017; 

Kandare et al., 2015; Li et al., 2014; Zhang 2012). Furthermore, the SEM image in Figure 84 

reveals the fracture mechanism of the carbon fibre modified with combined nanofillers such as 
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pull-out, pinning/bi-furcation and fracture nanofillers at interlaminar regions, which reflect the 

percentage of increase in the shear strength property (Chandrasekaran et al., 2014; 

Kostagiannakopoulou et al., 2017; Fenner and Daniel, 2014). 

 

 

Figure 84 SEM image shows the fracture mechanisms systems into the hybrid GNP-CSCNT nanofilled matrix. 

 

Furthermore, the hybrid nanofillers exhibit a significant increase in shear strength properties of 

carbon fibre composite at the lowest load level content (i.e. 4wt. %) compared with 

GNP/CF/epoxy nanocomposite at 5wt.% and CSCNT/CF/epoxy nanocomposite at 6wt.%. This 

indicates that the hybrid nanofillers have a positive effect on the mechanical properties of the 

carbon fibre composites. 
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6.3 Flexural properties of HCFRP 

6.3.1 Fractography analysis 

In general, several types of fracture mechanism systems, such as debonding mechanism of filler, 

bi-furcation mechanisms, bridging the micro-crack and pull-out fillers as well as deformation 

matrix were suggested to dissipate the stress and strain energy in the composites modified with 

nanofiller and unmodified, as shown in Figure 85. 

The sample of CF/epoxy composite illustrates weak bonding between the unmodified matrix and 

the fillers, deboning failure was seen in the fracture surface of the sample as shown in Figure 

85a. The sample of GNP/CF/epoxy nanocomposite demonstrates good bonding between the fibre 

and the modified matrix. Moreover, deformation matrix, bi-furcation mechanisms, pull-out 

nanosheets toughening mechanisms were seen in the nanofilled matrix at the fracture surface 

morphology of the sample, as revealed in the SEM image (Figure 85b). The sample of 

CSCNT/epoxy nanocomposites illustrates strong adhesion between the fillers and the modified 

matrix, plus pull-out nanotubes, bridging crack fracture toughening and strengthening 

mechanisms were observed on the fracture area of the sample, as shown in Figure 85c. 

The sample of hybrid GNP-CSCNT/epoxy nanocomposite shows great bonding between the 

fibre network and the hybrid matrix. Moreover, pull-out nanotubes, bi-furcation mechanisms 

were seen into the hybrid nanofilled matrix at the fracture area of the sample, as shown in Figure 

85d. Furthermore, the hybrid nanofillers can also generate an anchoring influence against 

cracking in the matrix structure. This behaviour may improve the strength and stiffness properties 

around the fibre networks of hybrid composites (Li et al., 2014). 
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Figure 85 The SEM images show the fracture behaviour of carbon fibre composites. a) CF/epoxy composite 

unmodified, b) GNP/CF/epoxy nanocomposite, c) CSCNT/CF/epoxy nanocomposite, d) Hybrid GNP-

CSCNT/CF/epoxy nanocomposite. 
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6.3.2 Flexural strength and stiffness properties  

The flexural properties of the HCFRP provide clarification and concepts regarding that force 

energy applied, in order to rupture the sample. However, the effect of the impregnation of the 

optimum modified matrix into the carbon fibre network on the flexural stress-strain curves for 

three types of hybrid fibre composites; GNP/CF/epoxy nanocomposite, CSCNT/CF/epoxy 

nanocomposite and hybrid GNP-CSCNT/CF/epoxy nanocomposite in addition to CF/epoxy 

composite unmodified is shown in Figure 86. Table 33 shows the summary of the flexural 

properties results. The results have been estimated from these flexural stress-strain curves for 

each sample. The stress-strain curves for some samples relating to modified and unmodified with 

nanofiller explain the linear deformation and the regularities in the curves were attributed to 

uniform filament breakage during the period of loading. These samples failed rapidly after 

reaching the peak load, while the curves of the other samples detect nonlinear deformation before 

the failure of the samples. This behaviour may refer to random filament breakage during interval 

loading and some defects (i.e. voids), (Zhou et al., 2006). In addition, some noise was observed 

when the single filament failed or the inter-ply delaminated.  

 

 

Figure 86 Typical stress-strain curves of three types of HCFRP and CF/epoxy composite unmodified. 
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Table 33 The maximum flexural strength and flexural modulus as a function of optimum weight content. 

Sample 

Number 

of 

samples 

Weight 

content 

(wt. %) 

Flexural 

strength 

(MPa) 

Improvement  

in flexural 

strength 

(%) 

Flexural 

modulus 

(GPa) 

Improvement 

 in flexural 

modulus 

(%) 

Elongation 

 at failure 

(%) 

Improvements  

in elongation 

(%) 

CF/epoxy composite 5 0 508.30±49.30   00.0 33.50±0.80   00.0 1.51±0.14 0.00 

GNP/CF/epoxy 

nanocomposite 
5 5 612.00±15.12 +20.4 42.50±1. 58 +26.8 1.51±0.12 0.00 

CSCNT/CF/epoxy 

nanocomposite 
5 6 635.50±20.49 +25.0 41.30±1.19 +23.3 1.62±0.10 +7.3 

Hybrid GNP-

CSCNT/CF/epoxy 

nanocomposite 

 

4 

 
4 597.90±53.28 +17.6 42.90±0.84 +28.1 1.54±0.14 +1.9 
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However, the evaluation of flexural properties for the three types of hybrid fibre composites are 

presented in Figure 87. The figure shows significant improvements in flexural strength and 

flexural modulus after impregnation of the optimum modified matrix into the carbon fibre 

composite. Generally, the homogeneity of the composites, orientation of the reinforcements and 

the excellent adhesion between the ply and matrix should have a clear effect on the flexural 

properties of the HCFRP.  

The improvements concluded in three HCFRP indicate that the optimum strengthened and 

toughened matrix induces the adhesion between the fibre network and the matrix. Hence, it 

increases the strength and stiffness properties of the fibre composite. Interestingly, the 

combination of multifunctional carbon nanomaterials; graphene and novel fibre nanotube in the 

matrix improves the strength and toughness of the interfacial areas surrounding the fibre network, 

moreover, it creates an anchoring effect against the extension of cracks into the matrix (Li et al., 

2014). This behaviour may justify the reason for significant improvements in the strength and 

stiffness properties of the hybrid fibre composites modified with combined nanomaterials (Wang 

et al., 2015).  

However, the present improvements for the three types of hybrid composites were compatible to 

previous reported experimental studies (Wang et al., 2015; Zhuo et al., 2008; Iwahori et al., 2005; 

Qin et al., 2015; Wang et al., 2016; Li et al., 2014). The relatively small difference in the value 

of the increase for each type of the HCFRP could be attributed to the type of nanomaterial used 

in the matrix (Rodriguez-Gonzalez et al., 2017) and their manufacturing processes (Wang et al., 

2016; Jia et al., 2016; Feng et al., 2014).  
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Figure 87 Comparison and evaluation of flexural properties among three productions of HCFRP: a) Flexural 

strength, b) Flexural modulus. 

 

6.4 Fracture toughness tests results 

6.4.1 Micrographs of DCB and ENF samples  

To check the interface regions, defects (i.e. voids) and ply waviness of the tested samples, an 

optical microscope was used for this purpose. Photographic image analysis of the polished DCB 
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samples in Figure 88 and ENF samples in Figure 89 illustrates the distribution of the resin in 

each type of HCFRP besides the reference (CF/epoxy composite unmodified). As seen from the 

fractographic view there was inhomogeneous distribution of the resin for some samples (i.e. rich 

and poor regions with nanofilled matrix at the mid plane).  

The adjacent fibre layers for DCB samples and 3ENF samples were noted to have nested with 

each other, with an average lay-up of [+2º,-2º] and [+3º,-3º] respectively at the mid-plane of the 

samples. The micrograph of the samples demonstrated clear voids away from the critical mid-

plane interface regions except for a few samples that showed some voids that were relatively 

close to the mid plane region, which may affect the performance of the fibre composites.   

 

 

Figure 88 The micrograph images illustrate the distribution of the matrix into the polymer composites: a) 

CF/epoxy composite unmodified, b) GNP/CF/epoxy nanocomposite, c) CSCNT/CF/epoxy nanocomposite, d) 

Hybrid GNP-CSCNT/CF/epoxy nanocomposite [20x]. 
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Figure 89 The micrograph images show the distribution of the matrix into the polymer composites: a) CF/epoxy 

composite unmodified, b) GNP/CF/epoxy nanocomposite, c) CSCNT/CF/epoxy nanocomposite, d) Hybrid 

GNP-CSCNT/CF/epoxy nanocomposite [20x]. 

6.4.2 Micrograph of optimal nanofilled matrix in DCB samples 

Scanning electron microscope was used to examine the fracture surface morphology of optimum 

nanofilled matrix in the fibre surface of the hybrid composites. It also shows the distribution of 

carbon nanomaterials in the matrix and the types of fracture mechanisms (see Figure 90). The 

fractographic analysis showed that the cracks clearly penetrated and extended into the nanofilled 

matrix. This confirms that the nanofillers absorbed an amount of fracture energy before reaching 

the pristine fibres network (see Figure 90c).   

However, several of the dissipation energy systems were seen in the fracture area of nanofilled 

matrix for each type of HCFRP, such as pinning and pull-out of nanofillers, bi-furcation 

mechanisms and pinning of cracks, debonding fillers, in addition to shear failure of the nanofilled 

matrix, suggesting toughening mechanisms.   
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Figure 90 The SEM images exhibit the fracture behaviour systems of the optimal nanofilled matrix penetrated 

onto the surface of HCFRP, in addition to the quality of particles dispersion: a) GNP/CF/epoxy nanocomposite, 

b) CSCNT/CF/epoxy nanocomposite, c) Hybrid GNP-CSCNT/CF/epoxy nanocomposite. 

 

The quality of nanoparticles dispersion, the mechanical bonding between the matrix and fibre 

networks, the fracture mechanisms systems were also predicted by SEMs, as shown in Figure 91. 

The micrograph of the CF/epoxy composite unmodified that had completely impregnated the 

fibre network is shown in Figure 91a. Furthermore, as seen from this image, no interfacial voids 

are visible.  

The existence of riverline mechanisms with several clean fibre surfaces (Figures 91a and 91c) 

after the crack extension illustrates that the crack had started at the interface regions (fibre/matrix) 

and subsequently, extended into the matrix. However, in most regions the fracture surface of 

hybrid fibre composites illustrated a tortuous path of cracks and rougher surface than the 

CF/epoxy composite unmodified. 

Further checking of the interfacial bonding at the interface regions, as highlighted by Figure 92, 

suggests that the interface strength was relatively good. However, Figure 93 illustrates that the 

crack head was driven into the nanofilled matrix from the interface region at the end of the crack 

extension during the propagation stage. In addition, there were clear broken fibres in the interface 

region which were reflected in the nesting of the fibre network at the mid plane of the DCB 

sample. Furthermore, the peeling and pull-out of nanofillers, bridging nanofillers, pinning of the 

crack tip and bi-furcation mechanisms crack driven into the nanofilled matrix and shear failure, 

suggest failure mechanisms of HCFRP.    
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Figure 91 The SEM images illustrate the fracture behaviour systems of the composites and the quality of 

particles dispersions in HCFRP: a) CF/epoxy composite unmodified, b) GNP/CF/epoxy nanocomposite, c) 

CSCNT/CF/epoxy nanocomposite, d) Hybrid GNP-CSCNT/CF/epoxy nanocomposite. The crack extension was 

from left to right [1000x]. 
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Figure 92 The SEM image illustrates the bonding of hybrid GNP-CSCNT nanofilled matrix with fibre. 

 

 

Figure 93 The SEM image illustrates the broken fibres at the interface regions of hybrid GNP-

CSCNT/CF/epoxy nanocomposite. The crack extended from left to right [1000x]. 
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6.4.3 Micrograph of optimal nanofilled matrix in 3ENF samples 

The quality of nanofillers dispersion, distribution of the nanofilled matrix onto the fibre networks, 

bonding mechanism between the nanofilled matrix and fibre network and the keys for the 

dissipation fracture energy systems in the fractured area were discovered via SEM, as shown in 

Figure 94. The images illustrated good bonding between the nanofilled and fibres. Moreover, 

there were no interfacial voids noticed, although riverlines behaviour with some smooth surface 

fibre was seen on the surface of the fracture area in hybrid fibre composites after crack expansion 

shows that the crack had begun at the interface zones and subsequently, propagated into the 

nanophase matrix.  

However, the fracture surface morphology for HCFRP samples were rougher than the CF/epoxy 

composite unmodified and exhibited interfacial debonding, as shown in Figure 95. Additionally, 

the crack tip had clearly propagated into the nanofilled matrix from the interface zones at the end 

of the crack expansion, as revealed in Figure 96. This behaviour contributes to generating 

multiple fracture mechanisms into the nanofilled matrix, which absorb the stress energy before 

it reaches the fibre network.  

Several fracture dissipation energy systems were seen in the micro-section area of the 3ENF 

samples. The fracture mechanisms systems (i.e. pullout nanotubes, bi-furcation mechanisms, 

etc) in the ENF sample are similar to the DCB sample. 
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Figure 94 The SEM images illustrate the fracture behaviour systems of the composites and the quality of 

particles dispersions in HCFRP: a) CF/epoxy composite unmodified, b) GNP/CF/epoxy nanocomposite, c) 

CSCNT/CF/epoxy nanocomposite, d) Hybrid GNP-CSCNT/CF/epoxy nanocomposite. The crack extension was 

from left to right [1000x]. 

 

Figure 95 The SEM image illustrates the interfacial debonding between the hybrid GNP-CSCNT nanofilled 

matrix and fibre network. The crack extension from left to right [1000x]. 
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Figure 96 The SEM image illustrates the driven and extended crack into the hybrid GNP-CSCNT nanofilled 

matrix over the interface region [15000x]. 
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6.4.4 Interlaminar fracture toughness properties Mode I and Mode II 

The fracture toughness of the three HCFRP was characterised by double cantilever beam (DCB) 

tests and three end notched flexural (3ENF) tests. The experimental results for both tests were 

analysed by graphing the load-deflection curves and the toughness resistance curves (R-curves). 

The graphs characterise the fracture toughness behaviour of the hybrid fibre composites, 

particularly the stability of the crack. 

   

6.4.4.1 Load versus deflection curves for toughness testing (Mode I) 

Representative load-deflection curves for the three types of HCFRP under DCB testing in which 

the crack tip has extended by approximately 50 mm from the pre-crack is illustrated in Figure 

97. 

 

 

Figure 97 Typical load-deflection curves for the three types of HCFRP as well as CF/epoxy composite 

unmodified. 
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The GNP/CF/epoxy nanocomposite had exhibited relatively shorter deflection and less load to 

extend the same crack length in comparison to the CSCNT/CF/epoxy nanocomposite and hybrid 

GNP-CSCNT/CF/epoxy nanocomposite, in addition to CF/epoxy nanocomposite unmodified. 

Conversely, the load-deflection curves for each sample could also be affected by the stiffer 

delaminated arm, besides several differences in the actual geometric dimensions of the tested 

samples, such as thickness and initial crack length. These engineering issues could be one of the 

reasonable reasons to justify this mechanical behaviour in the GNP/CF/epoxy nanocomposite.   

However, the crack head also started earlier in the CF/epoxy composite unmodified in 

comparison to the three HCFRP. In addition, the crack head at initial points for some samples of 

hybrid fibre composites (i.e. hybrid GNP-CSCNT/CF/epoxy nanocomposites) also appeared 

earlier in comparison to the other composites. This behaviour could be relevant to insert film at 

this elastic and sensitive area (i.e. the actual length of the crack or the real distance from edge of 

insert film to the crack tip after an initial delamination pre-crack growth) as well as some defects 

relating to the manufacturing process, for instance the plane waviness of the fibre networks, 

which may negatively affect the modulus mismatch and the efficiency of mechanical forces 

transferred between the nanofilled matrix and the fibre networks. Hence, this could reflect the 

percentage of data errors resulting from tests of the samples. 

In contrast, the visual crack point was crossed with the nonlinear point in some samples of the 

fibre composites (David et al., 2001). Zig zag mode of deflection was illustrated for all fibre 

composites. Therefore, the transition of the force after the initial stage is fluctuated with 

extension of crack in the samples tested. Several of the samples showed sharp downs in the force 

during the extension of the crack, which is a characteristic of slip-stick growth, as observed in 

Figure 97. Most of the force-deflection curves in the samples had exhibited slight differences in 

the compliance of the elastic zone. These differences were probably attributed to various stiffness 

properties among the three HCFRP, the inequivalent and inhomogeneous distribution of the 

modified matrix onto the fibre network as well as the fibre network waviness, resulting from the 

manufacturing process of the laminated fibre composites (Zhu et al., 2015; Morais and Pereira, 

2007). 

6.4.4.2 Mode I initial and propagation fracture toughness energy 

It should be reported that the displacements of the micro-insert film in the samples during the 

manufacturing process by means of the hand lay-up method created a slight difference in the 

inert lengths among the samples. A value of 66 mm was calculated as the guidance point, seeing 

as this value was commonly participated between the samples of the fibre composites and the 

crack head had sufficiently extended through the ply to have arrived at a steady stage.  
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 It is well known that Mode I fracture toughness is linked to the process region forward of the 

crack head propagating into the fibre plies adjacent to the interface area (Bradley and Cohen, 

1985; Crews et al., 1988). Therefore, the poorer the fibre/matrix interface, the larger the 

sensibility to fibre bridging in open system testing (DCB). 

 

The typical fracture toughness energy vs crack length for all samples are shown in Figure 98. 

These graphs mostly demonstrated stable crack growth except in some cases which have 

localised short slip stick behaviour. The main reasons for this mechanism behaviour may be 

reflected in the severe fibre bridging within some specimens, besides the formation of minor 

delamination planes. At those points of jumping, the planes of crack converged after collapsing 

the bridging fibre networks and therefore, released the load energy. Another reason could be 

relevant to the defects (i.e. voids) in the specimens in particular at the mid plane regions. 

Existence of such defects means that the nanofilled matrix is absent from the restriction of the 

crack extension. Hence, occurrence of crack jumping is rapidly expected. 

Principally, the stability of the crack extension was calculated by the slope of the resistance 

curves from the initial crack stage until the crack had extended. Most of the resistance curves are 

virtually unstable regarding the level of fracture toughness vs crack extension, however, the 

resistance curves for the hybrid GNP-CSCNT/CF/epoxy nanocomposites and CF/epoxy 

composite unmodified continuously increased over the delamination crack.  

 

 

Figure 98 Typical Resistance curves of the three types of HCFRP as well as CF/epoxy composite unmodified. 
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The results of the initial fracture toughness energy and propagation toughness energy for the fibre 

composites were tabulated in Table 34, which also demonstrates the evaluation of the fracture 

toughness of the three types of HCFRP. 
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Table 34 The evaluation of fracture toughness energy (Mode I). 

 Sample 

 

Number 

of 

samples 

Weight   

content 

(wt.%) 

Initial propagation toughness (J.m-2) 
Propagation 

toughness 

(J.m-2) 

Inc. (%) 
Visual onset 

(VIS) 
Inc. (%) 

Non-linear 

(NL) 
Inc. (%) 

Offset/ 

MAX5% 
Inc. (%) 

CF/epoxy 

composite 
4 0 301.30±9.0 00.0 314.20±9.0   00.0 321.20±8.0   00.0 405.00±5.0 00.0 

GNP/CF/epoxy 

nanocomposite 
4 5 399.60±9.0 +32.6 324.50±4.0 +3.2 337.60±7.0 +5.1 465.50±8.0 +14.9 

CSCNT/CF/epoxy 

nanocomposite 
5 6 567.7±16.0 +88.4  579.90±17.0 +84.5 591.10±16.0 +84.0 826.20±18.0 +103.9 

Hybrid GNP-

CSCNT/CF/epoxy 

nanocomposite 

4 4 285.10±2.0 -5.3 314.10±6.0 -0.1 358.30±10.0 +11.5 700.00±13.0 +72.8 
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Figure 99 demonstrates the significant improvements in interlaminar fracture toughness Mode I. 

These improvements were compatible with previous experimental studies relating to fibre 

composited reinforced by carbon nanomaterials (Moghadam and Taheri, 2015; 

Kostagiannakopoulou et al., 2015; Yokozeki et al., 2009; Kostagiannakopoulou et al., 2017). 

 

 

Figure 99 The evaluation of initial and propagation fracture toughness energy among three types of HCFRP in 

comparison with CF/epoxy composite unmodified. 

 

The highest improvement regarding initial fracture energy (i.e. 5%/MAX) and propagation 

fracture energy was achieved after addition of fibre nanotubes to the fibre composite by 

approximately 84% and 104% respectively. This may explain the improved effectiveness of the 

morphological properties of fibre nanotubes, particularly the premium geometric structure 

compared with other carbon nanomaterials. This has a significant effect on reinforcing the 

strength and toughness properties around the fibre network and hence, this may improve the 

adhesion between the fibre network and the matrix (Landani, 2015). 

The combination of GNP and CSCNT improves the toughness energy, particularly the 

propagation toughness energy by approximately 73%. In addition, there was a gradual increase 

in the initial toughness energy (i.e. 5%/MAX) approximately 12%. The lowest improvement in 

the propagation energy was achieved in the GNP/CF/epoxy nanocomposite. This may explain 

that the morphological properties of graphene, predominantly the weak geometric structure are 
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less effective than that of the fibre nanotube, which may also have an effect on the mechanical 

interfacial properties (i.e. bonding strength) between the particles and the matrix. Moreover, the 

structure morphology of graphene is affected by the dispersion process which may refer to the 

existence of several defects in the graphene structure (i.e. wrinkled nanosheets) before its 

impregnation process onto the surface of the fibre networks (Li et al., 2016; Moriche et al., 2015; 

Domun et al., 2015). In contrast, there was a slight improvement in the initial fracture energy 

(i.e. 5%/MAX) and propagation fracture energy after the addition of the GNP optimum nanofiller 

into the carbon fibre composite by approximately 5% and 15% respectively. 

In general, the variance in these increases between the initial and propagation fracture energy 

could be conducted with the type of nanofiller, the quality of nanoparticles dispersion into the 

matrix and the behaviour of the fracture mechanisms in the composite in dissipating the 

mechanical fracture energy during the expansion stage of the cracks (Silva et al., 2014; 

Thostenson et al., 2005).  

These three cases have been illustrated by further fractographic analysis via SEM, as shown in 

Figure 100. The images showed a uniform dispersion of the nanoparticles, principally the hybrid 

nanofillers (GNP-CSCNT), which may have contributed to increasing the synergetic strength 

between the graphene and fibre nanotube into the matrix; hence, promoting composite resistance 

against the cracks during the propagation stage. The SEM images also reveal the rough surface 

of the nanofilled matrix and good bond with carbon fibre network in the three types of HCFRP 

(see Figure 100). 
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Figure 100 The SEM images illustrate the fracture behaviour systems at the initial and propagation stage for 

fractured areas, in addition to the quality of dispersions in HCFRP; a) CF/epoxy composite unmodified, b) 

GNP/CF/epoxy nanocomposite, c) CSCNT/CF/epoxy nanocomposite, d) Hybrid GNP-CSCNT/CF/epoxy 

nanocomposite, (images on left (initial stage), on the right (propagation stage). 
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Additionally, Table 34 shows that the initial fracture toughness values of the interlaminar fracture 

toughness (Mode I) were lower than the values of propagation toughness energy in the 

CSCNT/CF/epoxy nanocomposite and hybrid GNP-CSCNT/CF/epoxy nanocomposite. The 

reason for this variance probably depends on the fracture mechanism systems for the fillers in 

the matrix at the interlaminar area. For instance, in the initial propagation stage, the increasing 

delamination starts from the edge of the film insert (initial crack), where the fracture mechanism 

system in this fractured area is suggested. Only one mechanism, bridging or peeling of the filler 

is indicated, after the extension of the crack into the CSCNT or hybrid GNP-CSCNT nanofilled 

matrix (Seyan et al., 2008).  

Conversely, in the propagation stage of the crack, two or more fracture mechanism systems were 

proposed to increase the propagation fracture energy. For instance, the images reveal that the 

carbon fibre nanotubes in the carbon fibre network indicate micro-scale alterations on the fracture 

surface. The fracture surfaces are dominated by rough nanofilled regions with a micro-fibre 

network. The fracture surface of the long fibre network show rougher fracture regions compared 

with the unmodified fracture surface. The fracture behaviour of the rough matrix is the fibre 

nanotubes that were a combination of bridging and pull-out of nanofibers from the matrix 

during the extension crack. These fracture mechanisms were clearly illustrated by SEM, as 

shown in Figure 101. 

 

 

Figure 101 The SEM image shows nanofiber bridging and pull out of nanotubes into the nanofilled matrix at 

the mid plane for HCFRP. The crack extension was from left to right [10000x]. 
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Moreover, there is a unique fracture mechanism, such as bridging which could be the cause of 

the significant increase in fracture toughness energy, suggesting fibre nanotube bridging, or a 

combination of bridging and pull-out as a mechanism for toughening energy in the nanofilled 

matrix, as shown in Figures 102a and 102b. In addition, a combination of peeling sheets and pull-

out of nanotubes, plus bi-furcation and pinning of the crack tip were suggested to increase 

propagation fracture energy in the hybrid composite after crack extension into the matrix, as 

shown in Figure 102c. In contrast, peeling or pull-out of the sheet or a combination of them, plus 

bi-furcation mechanism were suggested to increase the initial fracture energy and the propagation 

fracture energy in the carbon fibre composite modified with graphene nanofiller, as described in 

Figure 102.d.     

 

 

Figure 102 The SEM images illustrate the fracture behaviour systems in hybrid fibre composites at the initial 

and propagation stage in relation to the fractured areas: a) and b) CSCNT/CF/epoxy nanocomposite, c) Hybrid 

GNP-CSCNT/CF/epoxy nanocomposite, d) GNP/CF/epoxy nanocomposite. 

 

More expected possibilities could affect the initial and propagation fracture energy; the 

orientation of the fillers into the matrix may affect the deviation and direction of the cracks into 
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the matrix, which could influence the dissipation of fracture energy in the composite (Hwang et 

al., 2001; Menna et al., 2016). This case has also been clearly confirmed by the TEM image, as 

illustrated in Figure 103. In addition, the quantity of the nanoparticles diffused into the matrix in 

the interlaminar regions could affect the expansion of cracks in the composite as illustrated in 

Figure 104, the mechanism of adhesion at rich regions of nanofilled matrix are probably stronger 

and more adhesive than that of poor to resist extension cracks in the matrix (Gouda et al., 2014; 

Ashrafi et al., 2011). 

 

 

Figure 103 TEM image shows the orientation of fibre nanotubes in the matrix. 

 

 

Figure 104 A microscope image shows the distribution of nanofilled matrix at mid plane [20x]. 
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6.4.4.3 Load versus deflection curves for toughness testing (Mode II) 

Representative load-deflection curves for the three HCFRP under 3ENF testing, in which the 

crack front has propagated approximately 16 mm from the pre-crack is shown in Figure 105.  

 

Figure 105 Typical load-deflection curves for the three types of HCFRP as well as CF/epoxy composite 

unmodified. 

The CSCNT/CF/epoxy nanocomposite had exhibited a longer deflection and higher resistance 

load to extend the same crack length compared with the CF/epoxy composite unmodified and 

HCFRP. Its crack head also started later in comparison to these composites. In contrast, the load-

deflection curves for each sample could also be affected by the actual engineering dimensions of 

the tested samples, for instance the initial crack length and thickness. However, the initial critical 

load for hybrid GNP-CSCNT/CF/epoxy nanocomposite was higher than that of the CF/epoxy 

composite unmodified and GNP/CF/epoxy nanocomposite. Bow mode of deformation was 

illustrated for all fibre composites without sharp drops in the force during the crack extension. 

Moreover, the force-deflection curves showed stable propagation during crack expansion in the 

composites. 

6.4.4.4 Mode II initial and propagation fracture toughness energy 

The influence of the addition of optimum modified matrix on Mode II interlaminar fracture 

toughness is shown in typical resistance curves (R-curves), as observed in Figure 106. These 

curves demonstrated stable crack growth and the experimental results are tabulated in Table 29. 
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Most of the resistance curves are nearly level, however, the resistance curves for the CF/epoxy 

composite unmodified and hybrid GNP-CSCNT/CF/epoxy nanocomposite continuously 

increased over the delamination crack.  

 

Figure 106 Typical Resistance curves for the three types of HCFRP as well as CF/epoxy composite unmodified. 

 

The initial fracture toughness energy and the average propagation toughness energy were 

measured from the 3ENF tests as shown in Table 35. 

Table 35 also demonstrates the comparison and assessments of three values of the initial fracture 

toughness which were measured by applying three techniques (i.e. VIS, NL, 5%/MAX) similar 

to DCB tests as previously described, and the average fracture toughness energy for the three 

HCFRP and CF/epoxy composite unmodified. The three types show a significant increase in 

Mode II interlaminar fracture toughness energy. This increase is compatible with previous 

research (Jia et al., 2015; Yokozeki et al., 2009; Rodriguez-Gonzalez et al., 2017; 

Kostagiannakopoulou et al., 2017). 

Figure 107 shows the evaluation of initial and propagation fracture energy for the three HCFRP 

in comparison with CF/epoxy composite unmodified. The highest increase regarding initial (i.e. 

VIS) and propagation toughness energy was accomplished after impregnation of the modified 

matrix with fibre nanotubes onto fibre networks by approximately (179%), (151%) respectively. 

This showed an excellent increase in both properties after the combination of graphene and novel 

fibre nanotubes by approximately (155%), (132%). 
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Addition of the modified matrix with graphene into the fibre reinforced composite shows less 

enhancement compared with the two other types; CSCNT/CF/epoxy nanocomposites and Hybrid 

GNP-CSCNT/CF/epoxy nanocomposite. These improvements were by approximately 33% in 

initial fracture energy (i.e. VIS) and 84% in propagation fracture energy.
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Table 35 The experimental results of Mode II interlaminar fracture toughness energy. 

Sample 

Number 

of 

samples 

Weight   

content 

(wt.%) 

Initial propagation toughness (J.m-2) 
Propagation 

toughness 

(J.m-2) 

Inc. 

(%) Visual onset 

(VIS) 
Inc. (%) 

Non-linear 

(NL) 
Inc. (%) 

Offset 

/MAX5% 
Inc. (%) 

CF/epoxy 

composite 
5 0 659.70±5.0 00.0 742.80±7.0 00.0 776.60±6.0 00.0 1143.10±12.0 00.0 

GNP/CF/epoxy 

nanocomposite 
4 5 878.20±7.0 +33.1 1469.70±9.0 +97.8 1523.20 ±11.0 +96.1 2098.00±29.0 +83.5 

CSCNT/CF/epoxy 

nanocomposite 
5 6 1843.20±25.0 +179.4 2148.60±43.0 +189.2 2227.00±46.0 +186.7 2866.60±24.0 +150.7 

Hybrid GNP-

CSCNT/CF/epoxy 

nanocomposite 

5 4 1683.90±26.0 +155.2 2016.20±21.0 +171.4 2086.60±24.0 +168.7 2655.20±29.0 +132.3 
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Figure 107 The evaluation of initial and propagation fracture toughness energy among three types of HCFRP in 

comparison with CF/epoxy composite unmodified. 

The addition of fibre nanotubes to the epoxy matrix enhances the performance of fibre 

composites, which confirms its superiority in comparison to other carbon nanomaterials. 

Furthermore, there was high increase in the toughness property after the combination of fibre 

nanotubes and graphene which was greater than that of the carbon fibre reinforced by graphene 

only. This shows that mixing the fibre nanotubes with graphene shows good functionality to 

promote the mechanical properties of fibre composites through their positive synergetic property 

in the matrix. 

However, the SEM in Figure 107 demonstrate the hybrid failure mechanism in the fracture area 

of hybrid GNP-CSCNT/CF/epoxy nanocomposites. The images revealed the same dissipation 

energy systems that were seen in Mode I hybrid failure mechanisms. Extra toughening 

mechanisms of the hybrid nanofillers that are responsible for the significant increase in fracture 

toughness energy involve pinning of the crack and bi-furcation, bridging and pull-out of fillers, 

in addition to debonding shear. The images prove the existence of both carbon nanomaterials 

within the polymer matrix. Multiple types of fracture mechanisms are detected on the surface 

morphology which prove the synergetic influence of graphene and novel fibre nanotubes. More 
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precisely, the bi-furcation mechanism was seen in the fractured area. Furthermore, the existence 

of fibre nanotubes in the resin resist the extension of the crack, whilst the GNP prevent the 

creation of huge cracks as much as possible. Hence, under their combination, the fracture 

toughness energy of hybrid composites is improved.     

       

    

Figure 108 The SEM image showing the hybrid failure mechanisms [1000x]. 
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Chapter 7. Conclusion and outlook  

  

This chapter reveals the summary of the experimental results and discussion from chapter 5. The 

common trends presented by the NP and the HCFRP in the strength, stiffness and toughness are 

highlighted. Suggestions for potential future work are shown in line with the reported results. 

 

7.1 Concluding remarks 

Three types of NP with the following formulations; GNP/epoxy nanocomposites, CSCNT/epoxy 

nanocomposites and hybrid GNP-CSCNT/epoxy nanocomposites were successfully prepared and 

optimised by using the mechanical dispersion techniques (i.e. combination of sonication and ball 

milling technique). Moreover, these NP containing GNP and CSCNT in a thermosetting resin 

system have been promoted by the novel combination of these multifunctional carbon 

nanomaterials into the matrix in this study.  

Multiple mechanical properties were investigated with regard to the influence of these 

multifunctional carbon nanomaterials on the strength, stiffness and toughness properties of the 

epoxy resin. The optimum mechanical properties of the novel HNP was achieved after using the 

combined dispersive techniques, where the hybrid GNP-CSCNT/epoxy nanocomposites showed 

the highest improvement in flexural strength and flexural modulus by approximately 40% and 

61% respectively at 4 wt.%. In addition to a significant improvement in toughness property by 

85% at the same weight concentration. This significant influence shows the significant synergetic 

behaviour resulting from the combination of graphene and novel fibre nanotubes within the 

matrix. The CSCNT/epoxy nanocomposites showed improvements in the flexural strength, 

flexural modulus and toughness properties by approximately 29%, 32% and 117% respectively 

at 6 wt.%, whilst the GNP/epoxy nanocomposites observed only 17%, 11% and 52% respectively 

at 5 wt.%. As a consequence, the CSCNT are more efficient for the reinforcement of the strength, 

stiffness and toughness properties of the epoxy resin in comparison with the GNP. This is perhaps 

attributable to the premium geometric structure of the CSCNT in comparison with the GNP 

which have weak structures. In addition, the dispersion process of the CSCNT in the resin was 

easier than that of GNP. 

Subsequently, the effect of the optimum strength and toughness properties of the modified matrix 

in each one of these novel NP on the mechanical properties of CFRP were also investigated in 

this study. This included investigating the interlaminar shear strength properties, flexural strength 

properties, and Mode I and Mode II fracture toughness properties.  
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The optimum strengthened and toughened matrices for these NP improved these mechanical 

properties for three types of HCFRP produced; specifically, GNP/CF/epoxy nanocomposites, 

CSCNT/CF/epoxy nanocomposites and hybrid GNP-CSCNT/CF/epoxy nanocomposites. The 

addition of the CSCNT and GNP to the fibre composites improved the shear property by 38% 

and 31% respectively, flexural strength by 25% and 20% respectively, and the flexural modulus 

by 23% and 27% respectively. In addition to significant improvements in interlaminar fracture 

toughness (Mode I) by 104% and 15% respectively and (Mode II) by 151% and 84% 

respectively. Consequently, the novel fibre nanotubes were also more superior in improving most 

of these mechanical properties, whereas the graphene displayed less improvement in Mode I and 

Mode II interlaminar fracture toughness.  

The novel combination of GNP and CSCNT in the matrix contributes to improving the 

mechanical interfacial properties of carbon fibre composites. Hence, this led to an improvement 

in flexural strength and flexural modulus by 18% and 28% respectively, interlaminar shear 

strength by 37% and Mode I and Mode II fracture toughness properties by 73% and 132% 

respectively. These improvements were better in comparison to individual graphene reinforced 

carbon fibre polymer composites (GNP/CF/epoxy nanocomposites). The synergetic influence of 

these multifunctional carbon nanomaterials within the matrix led to the introduction of further 

strengthening/toughening mechanisms, such as the combination of the fracture mechanism 

systems, the pull-out and bridging of the nanofillers, bi-furcation mechanisms and the pinning of 

the crack head. Hence, this is probably responsible for the enhanced mechanical properties of the 

HCFRP.  

In conclusion, this study illustrates that the inclusion of novel CSCNT is better than GNP in 

improving the mechanical properties of polymer composites. In addition, the inclusion of the 

combined multifunctional carbon nanomaterials; GNP and novel CSCNT is beneficial in 

enhancing the strength, stiffness and fracture toughness over the parent HNP and HCFRP. 

Furthermore, in comparison to the inclusion of the carbon nanomaterials, the mechanical 

properties improvements from the inclusion of the combination of GNP and novel CSCNT is 

expected to be non-deleterious to the pristine mechanical properties of epoxy resin and in plane 

properties of the fibre composites. Moreover, this multifunctionality formula is expected to be 

more efficient in reinforcing the mechanical properties of the polymer composites than 

conventional carbon nanotubes. Additionally, the optimum modified matrix with combined 

carbon nanomaterials in the fibre composites was illustrated to be a viable route in developing 

the fracture surface morphology to accomplish better fracture mechanisms in comparison to that 

of the modified matrix with individual carbon nanomaterial.   
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7.2 Recommendation for future work 

7.2.1 Manufacturing process 

The quality of the manufacturing methods of hybrid fibre laminate composites can be developed 

via the use of advanced methods to reduce the defects and voids. Thus, any reduction in these 

problems should significantly increase the carbon fibre dominated properties, such as tensile, 

stiffness and flexural strength (Kalantari et al., 2017; Sutcliffe et al., 2012). 

 

7.2.2 Optimisation of HNP 

A further experimental study changing the proportional weight content or the ratio of hybrid 

nanofillers (graphene and fibre nanotubes) could shed more light on the influence of hybrid 

content ratio on the strength, stiffness and toughness properties of the composites. 

  

7.2.3 Mechanical characterisations 

Further characterisation could be employed to discover the influence of hybrid nanofillers, 

graphene and fibre nanotubes on the wear resistance of nanocomposites, where this property was 

expected to improve after adding these carbon nanomaterials to the polymer matrix (Barrena et 

al., 2014; Shen et al., 2014).  

Additional important characteristics can be measured to explore the influence of the carbon 

nanomaterials inclusion on the in plane compression property of the fibre composites, where this 

property was expected to benefit from the inclusion of graphene, fibre nanotubes and a 

combination of them (Kamar et al., 2015; Yokozeki et al., 2007). 

Beyond static loading, other properties such as fatigue resistance could also disclose the dynamic 

loading. It is well known that traditional fibre reinforced composites primarily possess good 

fatigue properties (Liao et al., 1998). However, the inclusion of carbon nanomaterials is often 

expected to modify the dynamic performance level of fibre composites and nanocomposites 

(Fenner and Daniel, 2014; Shen et al., 2013). Although, the inclusion of carbon nanomaterials 

could actually promote the topical stress concentration that could cause failures. Damage 

resistance (after damage has started) under dynamic loading is frequently weak, consequently 

the carbon nanomaterials (i.e. graphene, novel fibre nanotubes and conventional carbon 

nanotubes) and a combination of them could be engineered to address this mechanical 

performance. 
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7.2.4 Physical characterisations 

Thermal and electrical conductivity would be anticipated to improve after the addition of 

graphene, fibre nanotubes and hybrid GNP-CSCNT nanofillers to the polymer with successful 

dispersion. Excellent impregnation and homogenous distribution of the nanofilled matrix onto 

the fibre surface (Moosa et al., 2016; Al-Saleh, 2016; Bal, 2010; Bose, 2017). 

Further influence on the physical properties includes chemical resistance and moisture absorption 

which can be studied to confirm the inclusion of graphene, fibre nanotubes and a combination of 

them and it could be beneficial to compare them with the parent composites.  

   

7.2.5 Finite element modelling and analytical simulation 

The experimental results can be predicted through finite element modelling. The finite element 

modelling could be applied to predict the inhomogeneous distribution of the nanofilled matrix 

onto the fibre networks (i.e. rich and poor regions with nanofilled matrix) and the orientation of 

fillers and defects (i.e. voids) (Hadden et al., 2015; Dong, 2016).  

To understand the synergetic effect of hybrid nanofillers (graphene and fibre nanotubes) in 

enhancing the interfacial mechanical properties of the epoxy polymer composites, molecular 

dynamics simulation can be used (Liu et al., 2017). 
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 Appendix A. Tensile Properties  

Appendix A.1. Typical tensile stress-strain curves for the pure epoxy composite (base (0)) as well 

as three epoxy nanocomposites modified with carbon nanomaterials at various weight 

concentrations processed by sonication technique. 

 

 

 

 

 



 

227 

 

 

 

 



 

228 

 

 

 

 

Figure A.1.1. The typical tensile stress-strain curves for the GNP/epoxy nanocomposites at 

various weight concentrations. 



 

229 

 

Table A.1.1. Summary of tensile tests results for the GNP/epoxy nanocomposites specimens at various weight concentrations. 

GNP/epoxy nanocomposites processed by sonication method 

 

 

Specimen 

Number 

 

Maximum Tensile Strength 

(MPa) 

Tensile Modulus 

(GPa) 

Maximum Strain 

(%) 

0 wt. % 2.5  wt.% 4 wt.% 5  wt.% 6  wt.% 7   wt.% 0 wt. % 2.5 wt.% 4  wt.% 5  wt.% 6  wt.% 7   wt.% 0 wt. % 2.5 wt.% 4 wt.% 5 wt.% 6  wt.% 7  wt.% 

1 67.63 69.20 72.39 77.07 74.01 69.20 1.33 1.18 1.30 1.54 1.22 1.27 8.16 7.85 6.47 6.48 9.13 7.90 

2 66.53 72.10 75.60 79.50 72.29 68.70 1.38 1.16 1.31 1.50 1.29 1.31 6.34 8.34 6.43 7.44 8.01 7.82 

3 67.60 70.80 69.20 74.00 71.10 69.70 1.30 1.20 1.35 1.46 1.20 1.29 8.16 8.45 6.38 6.47 8.08 8.38 

4 68.80 64.95 72.41 77.84 71.80 - 1.35 1.30 1.32 1.44 1.17 - 8.18 9.20 5.95 7.39 9.91 - 

Average 67.64 69.26 72.40 77.10 72.30 69.20 1.34 1.21 1.32 1.48 1.22 1.29 7.71 8.46 6.30 6.94 8.78 8.02 

S.D 

C.V 

±0.92 

1.37% 

±3.11 

  4.49% 

±2.60 

 3.60% 

±2.30 

   2.98% 

±1.24 

  1.72% 

±0.50 

0.72% 

±0.03 

   2.51% 

±0.04 

   3.69% 

±0.02 

   1.63% 

±0.03 

  2.46% 

±0.05 

  4.17% 

±0.02 

  1.55% 

±0.91 

  11.80% 

±0.55 

  6.50% 

±0.24 

  3.83% 

±0.54 

   7.82% 

±0.90 

  10.3% 

±0.30 

   3.78% 

Incr.% base (0) +2.4 +7.0 +13.9 +6.8 +2.3 base (0) -9.7 -1.5 +10.8 -8.9 -3.7 base (0) +9.7 -18.3 -9.9 +13.8 +4.0 
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Figure A.1.2. The typical tensile stress-strain curves for the CSCNT/epoxy nanocomposites at 

various weight concentrations. 
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Table A.1.2. Summary of tensile tests results for the CSCNT/epoxy nanocomposites specimens at various weight concentrations in comparison with pure 

epoxy composites (base (0)). 

CSCNT/epoxy nanocomposites  processed by sonication method 

 

 

Specimen 

Number 

 

Maximum Tensile Strength 

 (MPa) 

Tensile Modulus  

(GPa) 

Maximum Strain 

(%) 

0 wt. % 2.5wt.% 4wt.% 

 

5 wt.% 6wt.% 

 

7 wt.% 0 wt. % 2.5wt.% 4wt.% 

 

5 wt.% 6 wt.% 7 wt.% 0  

wt.% 

2.5 wt.% 4wt.% 5 

wt.% 

6wt.% 7 

wt.% 

1 67.63 68.80 73.40 75.90 78.20 69.10 1.33 1.33 1.51 1.55 1.53 1.33 8.16 8.58 6.96 7.38 6.80 6.90 

2 66.53 66.95 75.20 75.10 77.17 70.10 1.38 1.32 1.48 1.54 1.54 1.27 6.34 6.50 6.98 6.50 7.09 6.20 

3 67.60 68.85 71.90 74.60 77.40 68.80 1.30 1.25 1.47 1.50 1.53 1.29 8.16 7.16 6.42 7.01 7.67 7.38 

4 68.80 71.00 - 78.05 80.10 72.30 1.35 1.30 - 1.54 1.52 1.31 8.18 8.12 - 7.10 6.60 7.34 

Average  67.64 68.90 73.50 75.91 78.21 69.40 1.34 1.30 1.49 1.52 1.53 1.30 7.71 7.59 6.78 7.00 7.04 6.95 

S.D 

C.V 

±0.92 

 1.37% 

±1.65 

 2.40% 

±1.65 

2.24% 

±1.73 

 2.28% 

±1.33 

 1.70% 

±1.76 

 2.54% 

±0.03 

 2.51% 

±0.03 

 2.73% 

±0.02 

 1.16% 

±0.02 

 1.74% 

±0.01 

0.55% 

±0.02 

 1.98% 

±0.91 

11.80% 

±0.93 

  

12.30% 

±0.32 

4.80% 

±0.36 

5.20% 

±0.21 

3% 

±0.54 

7.80% 

Incr.% base(0) +1.8 +8.6 +12.2 +15.6 +2.6 base(0) -2.9 +11.2 +13.4 +14.2 -2.9 base(0 -1.5 -12.0 -9.2 -8.7 -9.8 
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Figure A.1.3. The typical tensile stress-strain curves for the hybrid GNP-CSCNT/epoxy 

nanocomposites at various weight concentrations. 
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Table A.1.3. Summary of tensile tests results for the hybrid GNP-CSCNT/epoxy nanocomposites specimens at various weight concentrations in 

comparison with pure epoxy composites (base (0)). 

Hybrid GNP-CSCNT/ epoxy nanocomposites processed by sonication method 

 

 

Specimen 

Number 

 

Maximum Tensile Strength 

 (MPa) 

Tensile Modulus  

(GPa) 

Maximum Strain 

(%) 

0 wt. % 2.5wt.% 

 

4wt.% 

 

5 

wt.% 

6wt.% 

 

7 

wt.% 

0 wt. % 2.5wt.% 

 

4wt.% 

 

5 wt.% 6 wt.% 

 

7 

wt.% 

0 wt. % 2.5wt.% 

 

4wt.% 

 

5 wt.% 6wt.% 

 

7 

wt.% 

1 67.63 74.40 76.11 67.40 70.18 69.70 1.33 1.28 1.33 1.34 1.53 1.35 8.16 8.46 8.54 6.45 6.12 7.38 

2 66.53 72.19 74.74 71.10 71.10 69.71 1.38 1.30 1.28 1.31 1.51 1.33 6.34 8.98 7.89 8.40 5.88 7.50 

3 67.60 76.00 77.64 67.00 72.70 66.70 1.30 1.34 1.28 1.30 1.58 1.31 8.16 7.96 8.84 7.50 7.00 7.68 

4 68.8 76.20 76.09 - - - 1.35 1.32 1.27 - - - 8.18 7.60 8.85 - - - 

Average  67.64 74.70 76.14 68.50 71.30 68.70 1.34 1.31 1.29 1.32 1.54 1.33 7.71 8.25 8.53 7.45 6.30 7.52 

S.D 

C.V 

±0.92 

 1.37% 

±1.85 

   2.48% 

±1.18 

 1.55% 

±2.26 

3.30% 

±1.27 

 1.79% 

±1.58 

2.30% 

±0.03 

2.51% 

±0.02 

1.97% 

±0.03 

2.10% 

±0.02 

 1.59% 

±0.04 

 2.40% 

±0.02 

1.50% 

±0.91 

11.80% 

±0.47 

5.70% 

±0.45 

 5.20% 

±0.97 

13.00% 

±0.59 

9.30% 

±0.15 

2.00% 

Incr.% base(0) +10.4 +12.6 +1.3 +5.4 +1.5 base(0) -2.2 -3.7 -1.5 +14.9 -0.7 base 0) +7.0 +10.6 -3.3 -18.2 -2.4 
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Appendix A.2. Typical tensile stress-strain curves for the pure epoxy composite (base (0)) as well 

as three epoxy nanocomposites modified with carbon nanomaterials at various weight 

concentrations processed by ball milling technique. 
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Figure A.2.1. The typical tensile stress-strain curves for the GNP/epoxy nanocomposites at 

various weight concentrations. 
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Table A.2.1. Summary of tensile tests results for the GNP/epoxy nanocomposites specimens at various weight concentrations in comparison to the pure 

epoxy composites (base (0)). 

GNP/epoxy nanocomposites  processed by ball milling method 

 

Specimen 

Number 

 

Maximum Tensile Strength 

 (MPa) 

Tensile Modulus  

(GPa) 

Maximum Strain 

(%) 

0 wt. % 2.5wt.% 

 

4wt.% 

 

5 wt.% 6wt.% 

 

7 wt.% 0 wt. % 2.5wt.% 

 

4wt.% 

 

5 wt.% 6 wt.% 

 

7 

wt.% 

0 wt. % 2.5wt.% 

 

4wt.% 

 

5 

wt.% 

6wt.% 

 

7 wt.% 

1 67.63 76.10 75.90 79.19 74.09 73.40 1.33 1.38 1.37 1.52 1.30 1.40 8.16 6.60 9.08 6.50 8.05 5.88 

2 66.53 70.81 75.50 79.30 75.10 73.60 1.38 1.37 1.45 1.41 1.32 1.43 6.34 5.40 7.80 7.80 7.20 6.90 

3 67.60 78.09 75.10 78.91 72.81 72.90 1.30 1.36 1.44 1.56 1.31 1.37 8.16 7.02 8.40 6.48 7.30 6.80 

4 68.80 - - 78.20 - - 1.35 - - 1.51 - - 8.18 - - 6.46 - - 

Average  67.64 75.00 75.50 78.90 74.00 73.30 1.34 1.37 1.42 1.50 1.31 1.40 7.71 6.34 8.42 6.81 7.51 6.52 

S.D 

C.V 

±0.92 

1.37% 

±3.76 

5.00% 

±0.45 

0.59% 

±0.49 

0.62% 

±1.14 

1.55% 

±0.36 

0.49% 

±0.03 

2.51% 

±0.01 

0.73% 

±0.06 

3.93% 

±0.06 

4.25% 

±0.01 

0.76% 

±0.03 

2.1% 

±0.91 

11.80% 

±0.84 

13.20% 

±0.64 

7.60% 

±0.65 

9.60% 

±0.46 

6.18% 

±0.56 

8.62% 

Incr.% base(0) +10.8 +11.6 +16.6 +9.4 +8.3 base(0) +2.2 +8.2 +11.9 -2.2 +4.4 base(0) -17.7 +9.2 -11.6 -2.6 -15.4 



 

242 

 

 

 

 

 

 



 

243 

 

 

 

 

 



 

244 

 

 

Figure A.2.2. The typical tensile stress-strain curves for the CSCNT/epoxy nanocomposites at 

various weight concentrations. 
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Table A.2.2. Summary of tensile tests results for the CSCNT/epoxy nanocomposites specimens at various weight concentrations in comparison with pure 

epoxy composites (base (0)). 

CSCNT/epoxy nanocomposites processed by ball milling method 

 

Specimen 

Number 

 

Maximum Tensile Strength 

 (MPa) 

Tensile Modulus  

(GPa) 

Maximum Strain 

(%) 

0 wt. % 2.5wt.% 

 

4wt.% 

 

5 wt.% 6wt.% 

 

7 

wt.% 

0 wt. % 2.5wt.% 

 

4wt.% 

 

5 wt.% 6 wt.% 

 

7 wt.% 0 wt. % 2.5wt.% 

 

4wt.% 

 

5 wt.% 6wt.% 

 

7 

wt.% 

1 67.63 74.90 78.65 80.72 81.22 70.50 1.33 1.45 1.54 1.53 1.59 1.31 8.16 5.89 7.12 7.70 7.10 6.86 

2 66.53 77.90 74.90 75.11 80.70 71.00 1.38 1.45 1.5 1.51 1.58 1.30 6.34 7.18 6.40 7.01 8.60 8.40 

3 67.60 69.50 74.75 78.11 78.68 68.80 1.30 1.30 1.43 1.46 1.57 1.26 8.16 7.12 6.74 8.03 7.18 8.38 

4 68.80 - - - - - 1.35 - - - - - 8.18 - - - - - 

Average 67.64 74.10 76.10 77.98 80.20 70.10 1.34 1.40 1.49 1.5 1.58 1.29 7.71 6.73 6.75 7.58 7.62 7.88 

S.D 

C.V 

±0.92 

1.37% 

±4.25 

5.74% 

±2.20 

2.90% 

±2.80 

3.59% 

±1.34 

1.67% 

±1.15 

1.64% 

±0.03 

2.51% 

±0.08 

6.18% 

±0.05 

3.73% 

±0.036 

2.40% 

±0.01 

0.63% 

±0.02 

2.05% 

±0.91 

11.80% 

±0.72 

10.80% 

±0.36 

5.30% 

±0.51 

6.70% 

±0.84 

11.07% 

±0.88 

11.2% 

Incr.% base(0) +9.5 +12.5 +15.2 +18.5 +3.6 base(0) +4.4 +11.1 +11.9 +17.9 -3.7 base(0) -12.7 -12.4 -1.7 -1.1 +2.2 
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Figure A.2.3. The typical tensile stress-strain curves for the hybrid GNP-CSCNT/epoxy 

nanocomposites at various weight concentrations. 
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Table A.2.3. Summary of tensile tests results for the hybrid GNP-CSCNT/epoxy nanocomposites specimens at various weight concentrations in 

comparison with the pure epoxy composites (base (0)). 

 
Hybrid GNP-CSCNT/epoxy nanocomposites processed by ball milling method  

 

Specimen 

Number 

 

Maximum Tensile Strength 

 (MPa) 

Tensile Modulus  

(GPa) 

Maximum Strain 

(%) 

0 wt. % 2.5wt.% 

 

4wt.% 

 

5 

wt.% 

6wt.% 

 

7 wt.% 0 wt. % 2.5wt.% 

 

4wt.% 

 

5 wt.% 6 wt.% 

 

7 

wt.% 

0 wt. % 2.5wt.% 

 

4wt.% 

 

5 wt.% 6wt.% 

 

7 

wt.% 

1 67.63 74.50 77.60 71.40 74.90 72.50 1.33 1.43 1.43 1.30 1.52 1.50 8.16 7.06 8.30 7.02 7.20 6.40 

2 66.53 75.00 76.10 72.80 73.60 72.60 1.38 1.39 1.44 1.39 1.51 1.40 6.34 6.70 8.01 7.55 6.44 7.10 

3 67.60 73.70 70.10 69.10 74.20 73.99 1.30 1.38 1.36 1.36 1.56 1.36 8.16 6.01 7.74 5.98 7.54 6.34 

4 68.80 -  - - - 1.35 - - - - - 8.18 - - - - - 

Average  67.64 74.40 74.60 71.10 74.30 73.03 1.34 1.40 1.41 1.35 1.53 1.42 7.71 6.59 8.01 6.85 7.06 6.61 

S.D 

C.V 

±0.92 

1.37% 

±0.65 

0.88% 

±3.97 

5.31% 

±1.86 

2.62% 

±0.65 

0.88% 

±0.83 

1.14% 

±0.03 

2.51% 

±0.026 

1.88% 

±0.04 

3.09% 

±0.04 

3.39% 

±0.02 

1.73% 

±0.07 

5.00% 

±0.91 

11.80% 

±0.53 

8.00% 

±0.28 

3.50% 

±0.79 

11.60% 

±0.56 

7.97% 

±0.42 

6.40% 

Incr.% base(0) +9.9 +10.2 +5.1 +9.8 +7.9 base(0) +4.4 +5.2 +0.7 +14.1 +5.9 base(0) -14.5 +3.9 -11.1 -8.4 -14.2 
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Appendix A.3. Typical tensile stress-strain curves for the pure epoxy composite (base (0)) as well 

as three epoxy nanocomposites modified with carbon nanomaterials at various weight 

concentrations processed by combined techniques. 
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Figure A.3.1. The typical tensile stress-strain curves for the GNP/epoxy nanocomposites at 

various weight concentrations. 
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Table A.3.1. Summary of tensile tests results for the GNP/epoxy nanocomposites specimens at various weight concentrations in comparison with the 

pure epoxy composites (base (0)). 

GNP/epoxy nanocomposites processed by combined techniques method 

 

Specimen 

Number 

 

Maximum Tensile Strength 

 (MPa) 

Tensile Modulus  

(GPa) 

Maximum Strain 

(%) 

0 wt. % 2.5wt.% 

 

4wt.% 

 

5 wt.% 6wt.% 

 

7 

wt.% 

0 wt. % 2.5wt.% 

 

4wt.% 

 

5 wt.% 6 wt.% 

 

7 wt.% 0 wt. % 2.5wt.% 

 

4wt.% 

 

5 wt.% 6wt.% 

 

7 wt.% 

1 67.63 71.90 75.10 78.76 76.80 73.10 1.33 1.52 1.50 1.50 1.53 1.35 8.16 5.40 8.10 6.84 7.89 6.50 

2 66.53 70.50 79.20 77.96 72.60 74.12 1.38 1.57 1.52 1.56 1.53 1.64 6.34 5.60 8.90 8.80 7.78 6.20 

3 67.60 69.10 74.04 82.10 72.49 72.98 1.30 1.50 1.56 1.61 1.52 1.66 8.16 6.20 8.40 7.02 7.80 6.10 

4 68.80 71.10 76.18 78.70 74.47 - 1.35 1.53 1.54 1.57 1.50 - 8.18 6.40 7.88 7.10 8.10 - 

Average 67.64 70.80 76.13 79.38 74.09 73.40 1.34 1.53 1.53 1.56 1.52 1.55 7.71 5.90 8.32 7.44 7.89 6.26 

S.D 

C.V 

±0.92 

1.37% 

±1.29 

1.82% 

±2.22 

2.92% 

±1.84 

2.32% 

±2.02 

2.72% 

±0.62 

0.85% 

±0.03 

2.51% 

±0.03 

1.92% 

±0.02 

1.46% 

±0.04 

2.91% 

±0.01 

0.75% 

±0.14 

9.10% 

±0.91 

11.80% 

±0.47 

8.00% 

±0.44 

5.30% 

±0.91 

12.24% 

±0.14 

1.85% 

±0.21 

3.32% 

Incr.% base(0) +4.7 +12.5 +17.3 +9.5 +8.5 base(0) +14.2 +14.2 +16.4 +13.4 +15.7 base(0) -23.4 +7.9 -3.5 -2.3 -18.8 
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Figure A.3.2. The typical tensile stress-strain curves for the CSCNT/epoxy nanocomposites at 

various weight concentrations. 
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Table A.3.2. Summary of tensile tests results for the CSCNT/epoxy nanocomposites specimens at various weight concentrations in comparison with the 

pure epoxy composites (base (0)). 

CSCNT/epoxy nanocomposites by combined techniques method 

 

Specimen 

Number 

 

Maximum Tensile Strength 

 (MPa) 

Tensile Modulus  

(GPa) 

Maximum Strain 

(%) 

0 wt. % 2.5wt.% 

 

4wt.% 

 

5 wt.% 6wt.% 

 

7 

wt.% 

0 wt. % 2.5wt.% 

 

4wt.% 

 

5 

wt.% 

6 wt.% 

 

7 

wt.% 

0 wt. % 2.5wt.% 

 

4wt.% 

 

5 wt.% 6wt.% 

 

7 wt.% 

1 67.63 77.50 79.00 83.70 79.40 72.90 1.33 1.38 1.49 1.29 1.78 1.42 8.16 7.52 8.04 9.20 9.36 7.80 

2 66.53 74.00 78.30 79.70 82.50 74.70 1.38 1.38 1.44 1.41 1.80 1.46 6.34 6.90 8.36 8.90 7.80 7.60 

3 67.60 73.42 78.70 78.76 86.10 74.53 1.30 1.42 1.40 1.50 1.81 1.50 8.16 6.40 8.01 9.02 9.40 6.10 

4 68.80 74.80 78.60 - - - 1.35 1.34 1.36 - 1.41 - 8.18 8.50 9.02 - 8.80 - 

Average  67.64 74.93 78.65 80.72 82.03 74.04 1.34 1.38 1.42 1.40 1.70 1.46 7.71 7.33 8.35 9.04 8.84 7.16 

S.D 

C.V 

±0.92 

1.37% 

±1.80 

2.40% 

±0.43 

0.54% 

±2.62 

3.24% 

±3.02 

3.68% 

±0.99 

1.34% 

±0.03 

2.51% 

±0.03 

3.14% 

±0.05 

3.92% 

±0.10 

7.50% 

±0.19 

11.40% 

±0.04 

2.70% 

±0.913 

11.80% 

±0.90 

12.3% 

±0.47 

5.61% 

±0.24 

2.70% 

±0.74 

8.4% 

±0.92 

12.9% 

Incr.% base(0) +10.8 +16.3 +19.3 +21.3 +9.4 base(0) +2.9 +5.9 +4.4 +26.8 +8.9 base(0) -4.9 -8.3 +17.2 +14.6 -7.1 
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Figure A.3.3. The typical tensile stress-strain curves for the hybrid GNP-CSCNT/epoxy 

nanocomposites at various weight concentrations. 
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Table A.3.3. Summary of tensile tests results for the hybrid GNP-CSCNT/epoxy nanocomposites specimens at various weight concentrations in 

comparison with the pure epoxy composites (base (0)). 

 
Hybrid GNP-CSCNT/ epoxy nanocomposites processed by combined techniques method   

 

Specimen 

Number 

 

Maximum Tensile Strength 

 (MPa) 

Tensile Modulus  

(GPa) 

Maximum Strain 

(%) 

0 wt. % 2.5wt.% 

 

4wt.% 

 

5 wt.% 6wt.% 

 

7 wt.% 0 wt. % 2.5 

wt.% 

 

4wt.% 

 

5 wt.% 6 wt.% 

 

7 

wt.% 

0 wt. % 2.5 

wt.% 

 

4wt.% 

 

5 wt.% 6 

wt.% 

 

7 

wt.% 

1 67.63 74.90 78.40 74.05 73.50 73.80 1.33 1.47 1.53 1.38 1.51 1.54 8.16 6.90 7.20 7.20 6.36 6.40 

2 66.53 75.20 78.10 75.12 73.90 71.20 1.38 1.46 1.61 1.42 1.49 1.47 6.34 6.68 7.01 6.90 6.80 6.01 

3 67.60 74.40 77.30 74.15 73.10 72.70 1.30 1.45 1.73 1.40 1.50 1.48 8.16 6.06 6.40 7.40 6.54 6.13 

4 68.80 74.82 76.60 72.89 - - 1.35 1.42 1.65 1.41 - - 8.18 7.16 7.10 7.90 - - 

Average  67.64 74.83 77.60 74.14 73.50 72.57 1.34 1.45 1.63 1.40 1.50 1.50 7.71 6.70 6.92 7.10 6.56 6.18 

S.D 

C.V 

±0.92 

1.37% 

±0.33 

0.44% 

±0.81 

1.00% 

±0.91 

1.23% 

±0.40 

0.54% 

±1.30 

1.79% 

±0.03 

2.51% 

±0.02 

1.48% 

±0.08 

5.10% 

±0.02 

1.23% 

±0.01 

0.66% 

±0.03 

2.50% 

±0.91 

11.8% 

±0.47 

7.00% 

±0.36 

5.20% 

±0.50 

7.18% 

±0.22 

3.30% 

±0.19 

3.20% 

Incr.% base(0) +10.6 +14.7 +9.6 +8.6 +7.3 base(0) +8.2 +21.6 +4.5 +11.9 +11.9 base(0) -13.1 -10.2 -7.9 -14.9 -19.8 
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1 Appendix B. Flexural Properties 

Appendix B.1. Typical flexural stress-strain curves for the pure epoxy composite (base (0)) and 

three epoxy nanocomposites modified with carbon nanomaterials at various weight concentrations 

processed by sonication technique. 
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Figure B.1.1. Typical flexural stress-strain curves for the GNP/epoxy nanocomposites at various 

weight concentrations. 
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Table B.1.1. Summary of flexural tests results for the GNP/epoxy nanocomposites specimens at various weight concentrations in comparison with the 

pure epoxy composites (base (0)). 

GNP/epoxy nanocomposites processed by sonication method 

 

 

Specimen 

Number 

 

Maximum Flexural Strength 

 (MPa) 

Flexural Modulus  

(GPa) 

Maximum Strain 

(%) 

0 wt. % 2.5wt.% 

 

4wt.% 

 

5 wt.% 6wt.% 

 

7 wt.% 0 wt. % 2.5wt.% 

 

4wt.% 

 

5 

wt.% 

6 wt.% 

 

7 wt.% 0 wt. % 2.5wt.% 

 

4wt.% 

 

5 

wt.% 

6wt.% 

 

7 

wt.% 

1 102.14 102.00 104.40 107.70 97.80 103.30 2.99 2.30 2.55 2.66 2.00 2.66 5.60 5.98 5.80 5.60 6.08 5.40 

2 102.48 97.73 108.04 110.80 95.80 103.10 2.75 2.00 2.45 2.67 2.15 2.66 5.72 5.64 5.60 5.52 6.00 5.50 

3 101.15 103.01 103.12 103.10 97.70 102.96 2.75 2.01 2.46 2.57 2.10 2.63 5.68 5.20 4.88 5.40 5.78 5.24 

4 99.10 97.39 102.15 109.40 100.17 - 2.71 2.10 2.54 2.50 2.22 - 5.88 5.44 5.82 5.10 5.76 - 

Average  101.21 100.03 104.43 107.75 97.86 103.12 2.80 2.20 2.50 2.60 2.10 2.65 5.72 5.56 5.52 5.40 5.90 5.38 

S.D 

C.V 

±1.52 

1.50% 

±1.78 

2.88% 

±2.57 

2.46% 

±3.34 

3.10% 

±1.79 

1.83% 

±1.70 

1.65% 

±0.13 

4.56% 

±0.18 

1.82% 

±0.05 

2.09% 

±0.08 

3.09% 

±0.09 

4.50% 

±0.02 

0.65% 

±0.11 

2.05% 

±0.33 

5.90% 

±0.44 

7.97% 

±0.21 

4.00% 

±0.16 

2.70% 

±0.13 

2.43% 

Incr.% base(0) -1.2 +3.2 +6.5 -3.3 +1.9 base(0) -21.4 -10.7 -7.1 -25.0 -5.3 base(0) -2.8 -3.5 -5.6 +3.1 -5.9 
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Figure B.1.2. The typical flexural stress-strain curves for the CSCNT/epoxy nanocomposites at 

various weight concentrations. 
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Table B.1.2. Summary of flexural tests results for the CSCNT/epoxy nanocomposites specimens at various weight concentrations in comparison to the 

pure epoxy composites (base (0)). 

CSCNT/epoxy nanocomposites processed by sonication method 

 

 

Specimen 

Number 

 

Maximum Flexural Strength 

 (MPa) 

Flexural Modulus  

(GPa) 

Maximum Strain 

(%) 

0 wt. % 2.5 

wt.% 

 

4 wt.% 

 

5 wt.% 6wt.% 

 

7 wt.% 0 wt. % 2.5 

wt.% 

 

4 

wt.% 

 

5 wt.% 6 

wt.% 

 

7 

wt.% 

0 wt. % 2.5 

wt.% 

 

4 

wt.% 

 

5 

wt.% 

6wt.% 

 

7 

wt.% 

1 102.14 107.68 112.70 114.71 130.10 105.91 2.99 2.41 2.83 2.90 3.50 2.80 5.60 5.90 5.44 5.24 4.90 5.10 

2 102.48 112.80 112.81 111.79 132.00 109.85 2.75 2.47 2.85 2.90 3.61 2.70 5.72 5.76 5.38 5.38 5.04 5.02 

3 101.15 104.90 113.03 113.87 128.20 99.17 2.75 2.36 2.87 2.86 3.39 2.51 5.68 5.82 5.42 5.18 4.40 5.40 

4 99.10 110.10 - 118.64 - 108.10 2.71 2.46 - 2.82 - 2.71 5.88 5.62 - 5.80 - 5.01 

Average  101.21 108.87 112.84 114.70 130.10 105.96 2.80 2.49 2.85 2.87 3.50 2.68 5.72 5.78 5.41 5.40 4.78 5.13 

S.D 

C.V 

±1.52 

1.50% 

±3.37 

3.1% 

±0.17 

0.15% 

±2.86 

2.49% 

±1.90 

1.46% 

±4.00 

3.82% 

±0.13 

4.56% 

±0.09 

3.63% 

±0.02 

0.70% 

±0.04 

1.33% 

±0.11 

4.50% 

±0.12 

4.52% 

±0.11 

2.05% 

±0.12 

2.00% 

±0.03 

0.56% 

±0.28 

5.10% 

±0.33 

6.90% 

±0.18 

3.56% 

Incr.% base(0) +7.5 +11.5 +13.3 +28.5 +4.7 base(0) -11.1 +1.7 +2.5 +25.0 -4.2 base(0) +1.0 -5.4 -5.6 -16.4 -10.3 
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Figure B.1.3. The typical flexural stress-strain curves for the hybrid GNP-CSCNT/epoxy 

nanocomposites at various weight concentrations. 
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Table B.1.3. Summary of flexural tests results for the hybrid GNP-CSCNT/epoxy nanocomposites specimens at various weight concentrations in 

comparison with the pure epoxy composites (base (0)). 

Hybrid GNP-CSCNT/epoxy nanocomposites processed by sonication method 

 

 

Specimen 

Number 

 

Maximum Flexural Strength 

 (MPa) 

Flexural Modulus  

(GPa) 

Maximum Strain 

(%) 

0 wt. % 2.5 

wt.% 

 

4 wt.% 

 

5 wt.% 6wt.% 

 

7 wt.% 0 wt. % 2.5wt.% 

 

4 wt.% 

 

5 wt.% 6 wt.% 

 

7 

wt.% 

0 wt. 

% 

2.5 

wt.% 

 

4 

wt.% 

 

5 

wt.% 

6 

wt.% 

 

7 

wt.% 

1 102.14 124.10 123.56 116.76 92.84 111.10 2.99 3.23 3.12 3.00 2.10 2.87 5.60 5.40 5.60 5.46 5.82 5.50 

2 102.48 121.10 124.20 118.40 94.90 109.53 2.75 3.07 3.20 3.11 2.08 2.78 5.72 5.00 5.04 5.02 5.60 5.62 

3 101.15 123.00 121.24 115.90 94.09 112.76 2.75 3.06 3.13 3.10 2.03 2.97 5.68 5.45 5.70 5.50 5.84 5.70 

4 99.10 118.10 - 110.00 - - 2.71 2.94 - 2.89 - - 5.88 5.28 - 5.48 -  

Average  101.21 121.60 123.00 115.26 93.94 111.13 2.80 3.10 3.15 3.00 2.07 2.87 5.72 5.28 5.44 5.36 5.75 5.60 

S.D 

C.V 

±1.52 

1.50% 

±2.64 

2.17% 

±1.27 

1.03% 

±3.66 

3.17% 

±1.03 

1.10% 

±2.14 

1.93% 

±0.13 

4.56% 

±0.12 

3.95% 

±0.03 

1.13% 

±0.10 

3.56% 

±0.03 

1.63% 

±0.09 

3.30% 

±0.11 

2.05% 

±0.20 

3.80% 

±0.35 

6.50% 

±0.23 

4.30% 

±0.13 

2.30% 

±0.10 

1.80% 

Incr.% base(0) +20.1 +21.5 +13.8 -7.2 +9.8 base(0) +10.7 +12.5 +7.1 -26.0 +2.6 base(0) -7.7 -4.9 -6.3 +0.5 -2.1 
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Appendix B.2. Typical flexural stress-strain curves for the pure epoxy composite (base (0)) as 

well as three epoxy nanocomposites modified with carbon nanomaterials at various weight 

concentrations processed by ball milling technique. 
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Figure B.2.1. The typical flexural stress-strain curves for the GNP/epoxy nanocomposites at 

various weight concentrations. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

277 

 

Table B.2.1. Summary of flexural tests results for the GNP/epoxy nanocomposites specimens at various weight concentrations in comparison to the pure 

epoxy composites (base (0)). 

GNP/epoxy nanocomposites processed by ball milling method 

 

Specimen 

Number 

 

Maximum Flexural Strength 

 (MPa) 

Flexural Modulus  

(GPa) 

Maximum Strain 

(%) 

0 wt. % 2.5 

wt.% 

 

4 wt.% 

 

5 wt.% 6 wt.% 

 

7 wt.% 0 wt. % 2.5 

wt.% 

 

4 wt.% 

 

5 wt.% 6 wt.% 

 

7 

wt.% 

0 wt. 

% 

2.5 

wt.% 

 

4 

wt.% 

 

5 

wt.% 

6 wt.% 

 

7 wt.% 

1 102.14 108.40 109.80 126.33 110.90 115.20 2.99 2.80 2.90 3.40 2.71 2.76 5.60 5.10 5.48 5.32 5.32 5.72 

2 102.48 113.30 111.35 118.60 110.71 111.80 2.75 2.79 2.78 3.00 2.70 2.84 5.72 5.38 5.70 5.30 5.70 5.38 

3 101.15 103.10 112.15 124.97 111.10 109.00 2.75 2.75 2.81 3.20 2.80 2.86 5.68 6.10 5.80 5.68 5.30 5.48 

4 99.10 - - - 112.49 - 2.71 - - - 2.83 - 5.88 - - - - - 

Average  101.21 108.30 111.10 123.30 111.30 112.00 2.80 2.78 2.83 3.20 2.76 2.81 5.72 5.52 5.66 5.43 5.44 5.52 

S.D 

C.V 

±1.52 

1.50% 

±5.10 

4.71% 

±1.19 

1.07% 

±3.34 

3.10% 

±0.81 

0.72% 

±1.50 

1.31% 

±0.13 

4.56% 

±0.02 

0.80% 

±0.061 

2.16% 

±0.20 

6.25% 

±0.064 

2.35% 

±0.05 

1.80% 

±0.11 

2.05% 

±0.51 

9.30% 

±0.16 

2.90% 

±0.21 

3.93% 

±0.225 

4.10% 

±0.17 

3.16% 

Incr.% base(0) +7.0 +9.7 +21.8 +9.9 +10.6 base(0) -0.7 +1.1 +14.3 -1.4 +0.3 base(0 -3.5 -1.0 -5.0 -4.9 -3.5 
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Figure B.2.2. The typical flexural stress-strain curves for the CSCNT/epoxy nanocomposites at 

various weight concentrations. 
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Table B.2.2. Summary of flexural tests results for the CSCNT/epoxy nanocomposites specimens at various weight concentrations in comparison with 

pure epoxy composites (base (0)). 

CSCNT/epoxy nanocomposites processed by ball milling method 

 

Specimen 

Number 

 

Maximum Flexural Strength 

 (MPa) 

Flexural Modulus  

(GPa) 

Maximum Strain 

(%) 

0 wt. 

% 

2.5 

wt.% 

 

4 

wt.% 

 

5 

wt.% 

6 wt.% 

 

7 wt.% 0 wt. 

% 

2.5 

wt.% 

 

4 wt.% 

 

5 

wt.% 

6 

wt.% 

 

7 

wt.% 

0 wt. % 2.5 

wt.% 

 

4 wt.% 

 

5 wt.% 6 wt.% 

 

7 wt.% 

1 102.14 104.30 107.30 121.40 127.30 104.10 2.99 2.60 2.80 3.46 3.71 2.77 5.60 5.60 5.48 5.40 5.28 5.49 

2 102.48 106.95 117.40 115.20 128.30 106.10 2.75 2.80 3.10 3.24 3.73 2.73 5.72 5.68 5.38 5.01 5.06 5.42 

3 101.15 103.75 108.00 117.40 129.00 101.80 2.75 2.55 2.80 3.50 3.96 2.72 5.68 5.48 5.32 5.00 4.42 4.98 

4 99.10 - - - - - 2.71 - - - - - 5.88 - - - - - 

Average  101.21 105.00 110.90 118.00 128.20 104.00 2.80 2.65 2.90 3.40 3.80 2.74 5.72 5.58 5.39 5.13 4.92 5.29 

S.D 

C.V 

±1.52 

1.50% 

±1.71 

1.62% 

±5.64 

5.08% 

±3.14 

2.66% 

±0.85 

0.66% 

±2.15 

2.06% 

±0.13 

4.56% 

±0.13 

4.99% 

±0.17 

5.97% 

±0.14 

4.12% 

±0.14 

3.65% 

±0.02 

0.96% 

±0.11 

2.05% 

±0.10 

1.80% 

±0.08 

1.50% 

±0.22 

4.40% 

±0.44 

9.00% 

±0.27 

5.20% 

Incr.% base(0) +3.7 +9.5 +16.6 +26.6 +2.7 base(0) -5.3 +3.5 +21.4 +35.7 -2.1 base(0) -2.4 -5.7 -10.3 -13.9 -7.5 
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Figure B.2.3. The typical flexural stress-strain curves for the hybrid GNP-CSCNT/epoxy 

nanocomposites at various weight concentrations. 
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Table B.2.3. Summary of flexural tests results for the hybrid GNP-CSCNT/epoxy nanocomposites specimens at various weight concentrations in 

comparison with the pure epoxy composites (base (0)). 

Hybrid GNP-CSCNT/ epoxy nanocomposites processed by ball milling method   

 

Specimen 

Number 

 

Maximum Flexural Strength 

 (MPa) 

Flexural Modulus  

(GPa) 

Maximum Strain 

(%) 

0 wt. 

% 

2.5 

wt.% 

 

4 

wt.% 

 

5 wt.% 6 wt.% 

 

7 wt.% 0 wt. 

% 

2.5 

wt.% 

 

4 wt.% 

 

5 

wt.% 

6 

wt.% 

 

7 

wt.% 

0 wt. % 2.5 

wt.% 

 

4 wt.% 

 

5 wt.% 6 wt.% 

 

7 wt.% 

1 102.14 115.30 116.83 110.40 118.23 116.80 2.99 2.77 3.30 2.84 3.00 2.84 5.60 4.50 5.48 5.80 5.81 5.20 

2 102.48 114.30 118.50 106.00 119.80 113.80 2.75 2.93 3.20 2.86 3.10 2.82 5.72 4.58 5.50 5.50 5.72 5.00 

3 101.15 115.85 119.57 113.60 113.27 115.00 2.75 3.00 3.10 3.30 2.90 2.80 5.68 4.64 6.08 5.46 5.36 5.78 

4 99.10 - - - - - 2.71 - - - - - 5.88 - - - - - 

Average  101.21 115.15 118.30 110.00 117.10 115.20 2.80 2.90 3.20 3.00 3.00 2.82 5.72 4.57 5.68 5.58 5.63 5.32 

S.D 

C.V 

±1.52 

1.50% 

±0.78 

0.68% 

±1.38 

1.16% 

±3.81 

3.46% 

±3.40 

2.91% 

±1.51 

1.31% 

±0.12 

4.56% 

±0.12 

4.00% 

±0.10 

3.12% 

±0.26 

8.66% 

±0.10 

3.35% 

±0.02 

0.70% 

±0.11 

2.05% 

±0.07 

1.53% 

±0.34 

6.00% 

±0.18 

3.30% 

±0.23 

4.20% 

±0.40 

7.60% 

Incr.% base(0) +13.8 +16.9 +8.7 +15.7 +13.8 base(0) +3.6 +14.3 +7.1 +7.1 +0.7 base 0) -20.1 -0.7 -2.4 -1.5 -6.9 
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Appendix B.3. Typical flexural stress-strain curves for the pure epoxy composite (base (0)) as 

well as three epoxy nanocomposites modified with carbon nanomaterials at various weight 

concentrations processed by combined techniques. 
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Figure B.3.1. The typical flexural stress-strain curves for the GNP/epoxy nanocomposites at 

various weight concentrations. 
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Table B.3.1. Summary of flexural tests results for the GNP/epoxy nanocomposites specimens at various weight concentrations in comparison with the 

pure epoxy composites (base (0)). 

GNP/epoxy nanocomposites processed by combined techniques method 

 

Specimen 

Number 

Maximum Flexural Strength 

 (MPa) 

Flexural Modulus  

(GPa) 

Maximum Strain 

(%) 

0 wt. % 2.5 

wt.% 

 

4 wt.% 

 

5 wt.% 6 wt.% 

 

7 wt.% 0 wt. % 2.5 

wt.% 

 

4 

wt.% 

 

5 wt.% 6 wt.% 

 

7 

wt.% 

0 wt. % 2.5 

wt.% 

 

4 

wt.% 

 

5 

wt.% 

6 wt.% 

 

7 wt.% 

1 102.14 110.10 110.50 122.10 111.40 115.10 2.99 2.95 2.72 3.30 2.85 2.81 5.60 5.40 5.06 4.80 5.41 5.68 

2 102.48 105.00 112.30 117.30 111.10 113.56 2.75 2.85 2.90 3.10 2.91 2.80 5.72 5.36 5.00 5.18 5.46 5.41 

3 101.15 110.30 111.10 116.40 110.63 114.10 2.75 2.84 2.93 2.90 2.95 2.85 5.68 5.46 5.40 5.24 5.37 5.43 

4 99.10 108.20 104.06 - - 118.20 2.71 2.76 2.97 - - 2.82 5.88 5.96 5.48 - - 5.52 

Average  101.21 108.40 109.49 118.60 110.98 115.24 2.8 2.85 2.88 3.10 2.90 2.82 5.72 5.54 5.23 5.07 5.41 5.51 

S.D 

C.V 

±1.52 

1.50% 

±2.45 

2.26% 

±3.69 

3.37% 

±3.06 

2.58% 

±0.30 

0.27% 

±2.68 

2.30% 

±0.12 

4.56% 

±0.08 

2.73% 

±0.11 

3.83% 

±0.20 

6.40% 

±0.04 

1.41% 

±0.02 

0.76% 

±0.11 

2.05% 

±0.28 

5.00% 

±0.24 

4.60% 

±0.23 

4.70% 

±0.04 

0.84% 

±0.12 

2.23% 

Incr.% base(0) +7.1 +8.2 +17.2 +9.6 +13.8 base(0) +1.8 +2.8 +10.7 +3.6 +0.7 base(0) -3.1 -8.5 -11.3 -5.4 -3.6 
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Figure B.3.2. The typical flexural stress-strain curves for the CSCNT/epoxy nanocomposites at 

various weight concentrations. 
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Table B.3.2. Summary of flexural tests results for the CSCNT/epoxy nanocomposites specimens at various weight concentrations in comparison with 

pure epoxy composites (base (0)). 

CSCNT/epoxy nanocomposites processed by combined techniques method 

 

 

Specimen 

Number 

 

Maximum Flexural Strength 

 (MPa) 

Flexural Modulus  

(GPa) 

Maximum Strain 

(%) 

0 wt. % 2.5 

wt.% 

 

4 wt.% 

 

5 wt.% 6 wt.% 

 

7 

wt.% 

0 wt. % 2.5 

wt.% 

 

4 wt.% 

 

5 wt.% 6 wt.% 

 

7 wt.% 0 wt. % 2.5 

wt.% 

 

4 wt.% 

 

5 

wt.% 

6 

wt.% 

 

7 wt.% 

1 102.14 115.20 117.00 127.40 128.90 105.10 2.90 2.70 3.40 3.31 3.40 2.81 5.60 5.78 5.56 5.62 4.80 4.60 

2 102.48 114.20 117.50 126.10 128.70 106.80 2.75 3.00 3.00 3.38 3.60 2.91 5.72 5.68 5.48 5.20 4.98 4.68 

3 101.15 117.20 117.97 128.10 137.40 104.00 2.75 3.00 3.20 3.36 4.10 2.82 5.68 5.30 5.59 5.10 4.64 4.54 

4 99.10 120.02 - - 127.80 100.10 2.71 3.10 - - 3.70 2.78 5.88 5.22 - - 4.86 4.58 

Average  101.21 116.73 117.49 127.20 130.70 104.00 2.80 2.95 3.20 3.35 3.70 2.83 5.72 5.49 5.54 5.30 4.82 4.60 

S.D 

C.V 

±1.52 

1.50% 

±2.56 

2.20% 

±0.48 

4.13% 

±1.01 

0.80% 

±4.49 

3.40% 

±2.05 

1.97% 

±0.13 

4.56% 

±0.11 

3.60% 

±0.20 

6.25% 

±0.08 

2.35% 

±0.29 

7.95% 

±0.05 

1.98% 

±0.11 

2.05% 

±0.27 

5.00% 

±0.06 

1.00% 

±0.27 

5.20% 

±0.14 

2.93% 

±0.06 

1.28% 

Incr.% base(0) +15.3 +16.1 +25.6 +29.1 +2.7 base(0) +5.3 +14.3 +19.6 +32.1 +1.1 base(0) -4.0 -3.1 -7.3 -15.7 -19.6 
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Figure B.3.3. The typical flexural stress-strain curves for the hybrid GNP-CSCNT/epoxy 

nanocomposites at various weight concentrations. 
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Table B.3.3. Summary of flexural tests results for the hybrid GNP-CSCNT/epoxy nanocomposites specimens at various weight concentrations in 

comparison with pure epoxy composites (base (0)). 

  Hybrid GNP-CSCNT/ epoxy nanocomposites processed by combined techniques method 

 

 

Specimen 

Number 

 

Maximum Flexural Strength 

 (MPa) 

Flexural Modulus  

(GPa) 

Maximum Strain 

(%) 

0 wt. % 2.5 

wt.% 

 

4 wt.% 

 

5 wt.% 6 wt.% 

 

7 wt.% 0 wt. % 2.5 

wt.% 

 

4wt.% 

 

5 

wt.% 

6 wt.% 

 

7 

wt.% 

0 wt. 

% 

2.5 

wt.% 

 

4 wt.% 

 

5 

wt.% 

6 wt.% 

 

7 wt.% 

1 102.14 116.82 149.20 110.80 119.10 115.00 2.99 3.32 4.70 3.10 3.31 2.86 5.60 5.41 4.38 5.36 5.8 5.56 

2 102.48 116.80 132.83 111.10 119.80 119.10 2.75 3.31 4.27 2.93 3.33 2.88 5.72 5.43 4.48 5.38 4.3 5.49 

3 101.15 118.60 140.12 109.48 115.85 117.20 2.75 3.34 4.52 2.97 2.99 2.96 5.68 4.20 4.42 5.32 5.7 5.30 

4 99.10 114.02 143.85 - - - 2.71 2.95 4.51 - - - 5.88 4.47 4.44 - - - 

Average  101.21 116.56 141.50 110.46 118.25 117.10 2.80 3.23 4.50 3.00 3.21 2.90 5.72 4.87 4.43 5.35 5.26 5.45 

S.D 

 

C.V 

±1.52 

 

1.50% 

±1.89 

 

1.62% 

±6.87 

 

4.85% 

±0.85 

 

0.77% 

±2.10 

 

1.78% 

±2.05 

 

1.75% 

±0.13 

 

4.56% 

±0.19 

 

5.79% 

±0.18 

 

3.91% 

±0.08 

 

2.96% 

±0.12 

 

3.73% 

±0.05 

 

1.80% 

±0.11 

 

2.05% 

±0.63 

 

13.00% 

±0.04 

 

0.93% 

±0.03 

 

0.57% 

±0.83 

 

15.90% 

±0.13 

 

2.38% 

Incr.% base(0) +15.1 +39.1 +9.1 +16.8 +15.7 base(0) +15.3 +60.7 +7.1 +14.6 +3.6 base(0) -14.8 -22.5 -6.4 -8.0 -4.7 
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2 Appendix C. Fracture Toughness Properties 

Appendix C.1. Typical force-deflection curves for the pure epoxy composite (base (0)) as well 

as three epoxy nanocomposites modified with carbon nanomaterials at optimum weight 

concentrations. 
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Figure C.1. The typical force deflection curves for the the pure epoxy composites as well as the 

GNP, CSCNT, and hybrid GNP-CSCNT/epoxy nanocomposites at optimum weight 

concentration.  

 

Table C.1. Summary of SENB tests results for the three nanocomposites at optimum weight 

concentration as well as pure epoxy composites (base (0)) 

 

 

 

Specimen 

No 

Pure epoxy 

composites 

at 0 wt.% 

GNP/epoxy 

nanocomposites 

at 5 wt.% 

CSCNT/epoxy 

nanocomposites 

at 6 wt.% 

Hybrid GNP-

CSCNT/epoxy 

nanocomposites 

at 4 wt.% 

Pmax 

(N) 

KIC 

MPa.m1/2 

Pmax 

(N) 

KIC 

MPa.m1/2 

Pmax 

(N) 

KIC 

MPa.m1/2 

Pmax 

(N) 

KIC 

MPa.m1/2 

1 57.71 1.10 72.36 1.36 107.19 2.02 96.00 1.80 

2 41.11 0.78 80.61 1.52 119.29 2.24 103.00 1.92 

3 40.80 0.77 86.35 1.63 116.76 2.20 95.80 1.81 

4 53.82 1.02 78.83 1.48 107.68 2.00 92.61 1.74 

5 59.10 1.14 70.10 1.32 102.10 1.93 85.70 1.62 

Average 

value 

50.50 0.96 77.65 1.46 110.60 2.08 94.60 1.78 

S.D 

 

C.V 

±8.90 

 

17.60% 

±0.17 

 

18.30% 

±6.52 

 

8.39% 

±0.12 

 

8.56% 

±5.70 

 

5.16% 

±0.12 

 

5.95% 

±6.20 

 

6.60% 

±0.10 

 

  5.60% 

Incr.% base(0) base(0) +53.7 +52.0 +119.0 +116.7 +87.3 +85.4 
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3 Appendix D. Interlaminar Shear Strength Properties 

Appendix D.1. Typical force-deflection curves of short beam specimens for the CF/epoxy 

composite unmodified and three types of HCFRP at optimum weight concentrations.  

 

 

 

Figure D.1.1. The typical force-deflection curves of short beam specimens for the CF/epoxy 

composites and GNP/CF/epoxy nanocomposites and CF/epoxy composites unmodified. 
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Table D.1.1. Summary of SBS tests results for GNP/CF/epoxy nanocomposites specimens 

compared with CF/epoxy composites unmodified. 

GNP/CF/epoxy nanocomposites 

 

Specimen No 

ILSS (MPa) 

CF/epoxy composite 

unmodified at 0 wt.% 

GNP/CF/epoxy 

nanocomposite at 5 wt.% 

1 26.02 38.34 

2 28.95 37.02 

3 25.57 37.53 

4 26.78 36.96 

5 30.75 36.28 

6 27.75 38.61 

7 31.40 - 

8 30.86 - 

Average value 

ILSS 

28.50 37.45 

S.D 

 

C.V 

±2.31 

 

8.12% 

 

±0.88 

 

2.36% 

Incr.% base(0) +31.4 

 

 

 

Figure D.1.2. The typical force-deflection curves of short beam specimens for the 

CSCNT/CF/epoxy nanocomposites.  

 



 

303 

 

Table D.1.2. Summary of SBS tests results for the CSCNT/CF/epoxy nanocomposites 

specimens compared with CF/epoxy composites unmodified. 

 

Specimen No 

ILSS (MPa) 

CF/epoxy composite 

unmodified at 0 wt.% 

CSCNT/CF/epoxy 

nanocomposite at 6 wt.% 

1 26.02 39.80 

2 28.95 39.21 

3 25.57 38.36 

4 26.78 38.93 

5 30.75 39.00 

6 27.75 40.16 

7 31.40 - 

8 30.86 - 

Average value 

ILSS 

28.50 39.24 

S.D 

 

C.V 

±2.31 

 

8.12% 

 

±0.64 

 

1.64% 

Incr.% base(0) +37.7 

 

 

Figure D.1.3. The typical force-deflection curves of short beam specimens for the hybrid GNP-

CSCNT/CF/epoxy nanocomposites. 
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Table D.1.3. Summary of SBS tests results for the hybrid GNP-CSCNT/CF/epoxy 

nanocomposites specimens compared with CF/epoxy composites unmodified. 

 

Specimen No 

ILSS (MPa) 

CF/epoxy composite 

unmodified at 0 wt.% 

Hybrid GNP-

CSCNT/CF/epoxy 

nanocomposite at 4 wt.% 

1 26.02 40.18 

2 28.95 41.51 

3 25.57 39.42 

4 26.78 38.47 

5 30.75 38.09 

6 27.75 36.57 

7 31.40 - 

8 30.86 - 

Average value 

ILSS 

28.50 39.04 

S.D 

 

C.V 

±2.31 

 

8.12% 

 

±1.72 

 

4.41% 

Incr.% base(0) +36.9 
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4 Appendix E. Flexural Properties 

Appendix E.1.  Typical flexural stress-strain curves of the CF/epoxy composite unmodified and 

three types of HCFRP at optimum weight concentrations. 

 

 

 

Figure E.1.1. The typical stress-strain curves for GNP/CF/epoxy nanocomposites at optimum 

weight concentration as well as CF/epoxy composite unmodified. 
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Table E.1.1. Summary of flexural strength and modulus results for GNP/CF/epoxy 

nanocomposites at optimum weight concentration in comparison to the CF/epoxy composites 

unmodified. 

GNP/CF/epoxy nanocomposite 

Specimen 

No 

Flexural strength 

(MPa) 

Flexural modulus 

(GPa) 

Elongation at failure 

(%) 

0 wt% 5 wt. %  0 wt% 5 wt. %   0 wt% 5 wt. % 

1 427.00 617.06 33.30 40.85 1.26 1.51 

2 531.45 632.46 34.40 43.70 1.52 1.65 

3 523.00 595.16 32.10 43.77 1.56 1.38 

4 503.10 599.26 33.70 43.37 1.60 1.40 

5 556.95 616.06 34.00 40.80 1.62 1.60 

Average  508.30 612.00 33.50 42.50 1.51 1.51 

S.D 

 

C.V 

±49.30 

 

9.71% 

±15.10 

 

2.46% 

±0.88 

 

2.62% 

±1.58 

 

3.72% 

±0.14 

 

9.65% 

±0.12 

 

7.87% 

Incr.% base(0) +20.4 base(0) +26.8 base(0) 00.0 

 

 

Figure E.1.2. The typical flexural stress-strain curves for the CSCN/CF/epoxy nanocomposites 

at optimum weight concentration. 
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Table E.1.2. Summary of flexural strength and modulus results for CSCNT/CF/epoxy 

nanocomposites at optimum weight concentration in comparison to the CF/epoxy composites 

unmodified. 

CSCNT/CF/epoxy nanocomposite  

Specimen 

No 

Flexural strength 

(MPa) 

Flexural modulus 

(GPa) 

Elongation at failure 

(%) 

0 wt% 6 wt. %  0 wt%   6 wt. %  0 wt%   6 wt. % 

1 427.00 645.00 33.30 42.10 1.26 1.66 

2 531.45 607.50 34.40 41.10 1.52 1.52 

3 523.00 641.40 32.10 43.48 1.56 1.57 

4 503.10 631.40 33.70 40.50 1.60 1.55 

5 556.95 661.73 34.00 39.40 1.62 1.78 

Average  508.30 635.50 33.50 41.30 1.51 1.62 

S.D 

 

C.V 

±49.30 

 

9.71% 

±20.49 

 

3.22% 

±0.88 

 

2.63% 

±1.90 

 

4.60% 

±0.14 

 

9.65% 

±0.10 

 

6.52% 

Incr.% base(0) +25.0 base(0) +23.3 base(0) +7.3 

  

 

 

 
 

Figure E.1.3.The typical flexural stress-strain curves for the hybrid GNP-CSCN/CF/epoxy 

nanocomposites at optimum weight concentration. 
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Table E.1.2. Summary of flexural strength and modulus results for the hybrid GNP-

CSCNT/CF/epoxy nanocomposites at optimum weight concentration in comparison to the 

CF/epoxy composites unmodified. 

Hybrid GNP-CSCNT/CF/epoxy nanocomposite 

Specimen 

No 

Flexural strength 

(MPa) 

Flexural modulus 

(GPa) 

Elongation at failure 

(%) 

0 wt% 4 wt. % 0 wt% 4 wt. % 0 wt% 4 wt. % 

1 427.00 627.70 33.30 42.70 1.26 1.60 

2 531.45 557.00 34.40 41.82 1.52 1.39 

3 523.00 633.93 32.10 43.30 1.56 1.70 

4 503.10 572.97 33.70 43.78 1.60 1.45 

5 556.95 - 34.00 - 1.62 - 

Average  508.30 597.90 33.50 42.9 1.51 1.54 

S.D 

 

C.V 

±49.30 

 

9.71% 

±53.28 

 

8.91% 

±0.88 

 

2.63% 

±0.844 

 

1.96% 

±0.14 

 

9.65% 

±0.14 

 

9.18% 

Incr.% base(0) +17.6 base(0) +28.1 base(0) +1.9 
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5 Appendix F. Interlaminar Fracture Toughness (Mode I) 

Appendix F.1. Typical force-deflection curves of DCB specimens for the CF/epoxy composite 

unmodified as well as three types of HCFRP at optimum weight concentrations. 

 

 

 

Figure F.1.1. The typical force-deflection curves for the CF/epoxy composites unmodified as 

well as GNP/CF/epoxy nanocomposites at 5 wt. %.  
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Table F.1.1. Summary of DCB tests results for GNP/CF/epoxy nanocomposites in comparison 

with CF/epoxy composites unmodified. 

CF/epoxy composites unmodified at 0 wt.% 
 

GNP/CF/epoxy nanocomposites at 5 wt. % 
 

 

No 

Initial propagation 

toughness (J.m-2) 

 

 

Propagation 

toughness 

(J.m-2) 

 

Fracture 

toughness 

at Max 

load (J.m-

2) 

Initial propagation 

toughness(J.m-2) 

 

 

Propagation 

toughness 

(J.m-2) 

 

Fracture 

toughness 

at Max 

load  

(J.m-2) 

 

Visual 

onset 

 

Non 

linear 

 

5% 

offset 

Visual 

onset 

 

Non 

linear 

 

5% 

offset 

1 210.00 303.00 258.00 395.80 437.60 312.40 308.57 328.80 359.60 333.80 

2 433.50 432.70 434.70 487.00 455.30 433.20 350.00 410.00 501.22 474.00 

3 280.20 220.20 281.40 363.30 403.00 330.90 276.30 362.00 445.10 362.11 

4 281.40 301.10 310.80 372.80    423.40 522.00 363.40 249.60 556.20 568.60 

Average 

toughness 

(J.m-2) 

 

301.30 

 

314.25 

 

321.23 

 

405.05 

 

429.82 

 

399.60 

 

324.50 

 

337.60 

 

465.50 

 

435.60 

      S.D 

 

C.V 

±9.00 

 

30.00% 

±8.77 

 

27.94% 

±7.80 

 

24.28% 

±5.60 

 

13.82% 

±2.20 

 

5.13% 

±9.00 

 

23.31% 

±3.94 

 

12.15% 

 

±6.70 

 

19.98% 

±8.38 

 

18.00% 

±10.70 

 

24.60% 

Incr.% base(0) +32.6 +3.2 +5.1 +14.9 +1.3 

 

 

 

Figure F.1.2. The typical force-deflection curves for the CSCNT/CF/epoxy nanocomposites at 6 

wt. %.  
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Table F.1.2. Summary of DCB tests results for CSCNT/CF/epoxy nanocomposites in 

comparison with CF/epoxy composites unmodified. 

 

 

 

 

 

Figure F.1.3. The typical force-deflection curves for the hybrid GNP-CSCNT/CF/epoxy 

nanocomposites at 4 wt. %.  

CF/epoxy composites unmodified at 0 wt.% 
 

CSCNT/CF/epoxy nanocomposites at 6 wt. %  
 

 

No 

Initial propagation 

toughness (J.m-2) 

 

 

Propagation 

toughness 

(J.m-2) 

 

Fracture 

toughness 

at Max 

load (J.m-

2) 

Initial propagation 

toughness(J.m-2) 

 

 

Propagation 

toughness 

(J.m-2) 

 

Fracture 

toughness 

at Max 

load  

(J.m-2) 

 

Visual 

onset 

 

Non 

linear 

 

5% 

offset 

 

Visual 

onset 

 

Non 

linear 

 

5% 

offset 

1 210.00 303.00 258.00 395.80 437.60 540.00 480.00 551.70 663.10 702.00 

2 433.50 432.70 434.70 487.00 455.30 610.80 845.00 622.30 980.00 1097.00 

3 280.20 220.20 281.40 363.30 403.00 348.00   81.00 376.00 585.00 613.10 

4 281.40 301.10 310.80 372.80    423.40 801.60 628.70 806.20 961.30 1160.00 

5 - - - - - 538.10 565.00 599.70 941.90 968.40 

Average 

toughness 

(J.m-2) 

 

301.30 

 

314.25 

 

321.23 

 

405.05 

 

429.82 

 

567.7 

 

579.94 

 

591.18 

 

826.26 

 

908.10 

      S.D 

 

C.V 

±9.00 

 

30.00% 

±8.77 

 

27.94% 

±7.80 

 

24.28% 

±5.60 

 

13.82% 

±2.20 

 

5.13% 

±16.3 

 

28.72% 

±17.48 

 

30.14% 

±16.51 

 

27.92% 

±18.27 

 

22.11% 

±24.08 

 

26.52% 

Incr.% base(0) +88.4 +84.5 +84.0 +103.9 +111.2 
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Table F.1.3. Summary of DCB tests results for hybrid GNP-CSCNT/CF/epoxy 

nanocomposites in comparison with CF/epoxy composites unmodified. 

 

CF/epoxy composites unmodified at 0 wt.% 

 
Hybrid GNP-CSCNT/CF/epoxy nanocomposites at 

4 wt.% 

 

 

No 

Initial propagation 

toughness (J.m-2) 

 

 

Propagation 

toughness 

(J.m-2) 

 

Fracture 

toughness 

at Max 

load (J.m-

2) 

Initial propagation 

toughness(J.m-2) 

 

 

Propagati

on 

toughness 

(J.m-2) 

 

Fracture 

toughness 

at Max 

load 

 (J.m-2) 

 

Visual 

onset 

 

Non 

linear 

 

5% 

offset 

 

Visual 

onset 

 

Non 

linear 

 

5% 

offset 

1 433.50 432.70 434.70 487.00 455.30 306.70  377.60 434.70 835.90 1335.90 

2 280.20 220.20 281.40 363.30 403.00 285.00  358.90 436.40 647.18 714.20 

3 281.40 301.10 310.80 372.80    423.40 280.80 280.00 348.20 616.30 608.00 

4 433.50 432.70 434.70 487.00 455.30 267.90  240.00 214.00 706.70 960.00 

Average 

toughness 

(J.m-2) 

 

301.30 

 

314.25 

 

321.23 

 

405.05 

 

429.82 

 

285.10 

 

314.10 

 

358.30 

 

700.00 

 

904.50 

 S.D 

 

C.V 

±9.00 

 

30.00% 

±8.77 

 

27.94% 

±7.80 

 

24.28% 

±5.60 

 

13.82% 

±2.20 

 

5.13% 

±1.6 

 

5.60% 

±6.5 

 

20.68% 

±10.4 

 

29.18

% 

±13.39 

 

19.13% 

±33.03 

 

36.50% 

Incr.% base(0) -5.3 -0.1 +11.5 +72.8 +110.4 
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Appendix F.2. Typical resistance curves (R-curves) for the CF/epoxy composite unmodified as 

well as three types of HCFRP at optimum weight concentrations. 

 

 

Figure F.2.1. Typical resistance curves (R-curves) for the CF/epoxy composites unmodified as 

well as GNP/CF/epoxy nanocomposites at 5 wt. %.  
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Figure F.2.2. Typical resistance curves (R-curves) for the CF/epoxy composites unmodified as 

well as CSCNT/CF/epoxy nanocomposites at 6 wt. %. 

  

 

Figure F.2.3. Typical resistance curves (R-curves) for the CF/epoxy composites unmodified as 

well as hybrid GNP- CSCNT/CF/epoxy nanocomposites at 4 wt. %.  
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6 Appendix G. Interlaminar Fracture Toughness (Mode II) 

Appendix G.1. Typical force-deflection curves of 3ENF specimens for the CF/epoxy composite 

unmodified as well as three types of HCFRP at optimum weight concentrations. 

 

 

 

Figure G.1.1. The typical force-deflection curves for the CF/epoxy composites unmodified as 

well as GNP/CF/epoxy nanocomposites at 5 wt. %. 
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Table G.1.1. Summary of 3ENF tests results for GNP/CF/epoxy nanocomposites in comparison 

with CF/epoxy composites unmodified. 

CF/epoxy composites unmodified at 0 wt.% 

 
GNP/CF/epoxy nanocomposites at 5 wt. % 

 

 

No 

Initial propagation 

toughness (J.m-2) 

 

 

Propagation 

toughness 

(J.m-2) 

 

Fracture 

toughness 

at Max 

load (J.m-

2) 

Initial propagation 

toughness(J.m-2) 

 

 

Propagation 

toughness 

(J.m-2) 

 

Fracture 

toughness 

at Max 

load 

 (J.m-2) 

 

Visual 

onset 

 

Non 

linear 

 

5% 

offset 

 

Visual 

onset 

 

Non 

linear 

 

5% 

offset 

1 611.00 670.00 723.00 1232.00 1143.20 800.00 1381.00 1402.00 1801.00 1757.80 

2 699.10 771.00 810.00 1021.00 938.10 913.00 1598.00 1630.00 2510.00 2695.00 

3 665.40 761.20 780.00 1010.50 781.20 910.00 1490.00 1550.00 2071.00 1936.00 

4 602.00 681.00 710.00 1180.00 880.00 890.00 1410.00 1511.00 2011.00 2011.90 

5 721.00 831.00 861.00 1272.00 1345.50 - - - - - 

Average 

toughness 

(J.m-2) 

 

659.70 

 

742.80 

 

776.60 

 

1143.10 

 

1017.60 

 

878.20 

 

1469.70 

 

1523.20 

 

2098.00 

 

2100.00 

     S.D 

 

C.V 

±5.20 

 

7.96% 

±6.70 

 

9% 

±6.20 

 

8% 

±12.00 

 

  10.77% 

±22.00 

 

22.20% 

±7.00 

 

8.68% 

±9.6 

 

6.60% 

±11.00 

 

7.57% 

±29.00 

 

 14.18% 

±41.00 

 

19.50% 

Incr.% base(0) +33.1 +97.8 +96.1 +83.5 +106.3 

 

 

 

Figure G.1.2. The typical force-deflection curves for CSCNT/CF/epoxy nanocomposites at 6 wt. 

%.  

  



 

317 

 

Table G.1.2. Summary of 3ENF tests results for CSCNT/CF/epoxy nanocomposites in 

comparison with CF/epoxy composites unmodified. 

CF/epoxy composites unmodified at 0 wt.% 

 
CSCNT/CF/epoxy nanocomposites at 6 wt. % 

 

No 

Initial propagation 

toughness (J.m-2) 

 

 

Propagation 

toughness 

(J.m-2) 

 

Fracture 

toughness 

at Max 

load (J.m-

2) 

Initial propagation 

toughness(J.m-2) 

 

 

Propagation 

toughness 

(J.m-2) 

 

Fracture 

toughness 

at Max 

load  

(J.m-2) 

 

Visual 

onset 

 

Non 

linear 

 

5% 

offset 

 

Visual 

onset 

 

Non 

linear 

 

5% 

offset 

1 611.00 670.00 723.00 1232.00 1143.20 1975.00 2162.20 2290.00 2881.00 2980.00 

2 699.10 771.00 810.00 1021.00 938.10 1880.00 2166.00 2216.00 2741.00 2730.00 

3 665.40 761.20 780.00 1010.50 781.20 2010.00 2700.00 2810.00 3271.00 3720.00 

4 602.00 681.00 710.00 1180.00 880.00 1953.00 2230.00 2311.00 2811.00 2700.00 

5 721.00 831.00 861.00 1272.00 1345.50 1398.00 1485.00 1510.00 2629.00 2570.00 

Average 

toughness 

(J.m-2) 

 

659.70 

 

742.80 

 

776.60 

 

1143.10 

 

1017.60 

 

1843.20 

 

2148.60 

 

2227.00 

 

2866.60 

 

2940.00 

     S.D 

 

C.V 

±5.20 

 

7.96% 

±6.70 

 

9.00% 

±6.20 

 

8.00% 

±12.00 

 

10.77% 

±22.00 

 

22.20% 

±25.00 

 

13.70% 

±43.00 

 

20.17% 

±46.00 

 

20.80% 

±24.00 

 

8.50% 

±46.00 

 

15.66% 

Incr.% base(0) +179.4 +189.2 +186.7 +150.7 +188.9 

 

 

 

 Figure G.1.3. The typical force-deflection curves for hybrid GNP-CSCNT/CF/epoxy 

nanocomposites at 4 wt. %.  
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Table G.1.3. Summary of 3ENF tests results for hybrid GNP-CSCNT/CF/epoxy 

nanocomposites in comparison with CF/epoxy composites unmodified. 

CF/epoxy composites unmodified at 0 wt.% 

 

Hybrid GNP-CSCNT/CF/epoxy nanocomposites at 4 

wt. % 

 

 

No 

Initial propagation 

toughness (J.m-2) 

 

 

Propagation 

toughness 

(J.m-2) 

 

Fracture 

toughness 

at Max 

load (J.m-

2) 

Initial propagation 

toughness(J.m-2) 

 

 

Propagation 

toughness 

(J.m-2) 

 

Fracture 

toughness 

at Max 

load  

(J.m-2) 

 

Visual 

onset 

 

Non 

linear 

 

5% 

offset 

 

Visual 

onset 

 

Non 

linear 

 

5% 

offset 

1 611.00 670.00 723.00 1232.00 1143.20 1395.90 1810.00 1860.00 2576.40 2630.00 

2 699.10 771.00 810.00 1021.00 938.10 1930.00 2146.00 2200.00 2912.00 2725.00 

3 665.40 761.20 780.00 1010.50 781.20 1440.00 1781.00 1811.00 2194.00 1891.00 

4 602.00 681.00 710.00 1180.00 880.00 1690.00 2280.00 2381.00 2710.00 2570.00 

5 721.00 831.00 861.00 1272.00 1345.50 1964.00 2064.00 2181.00 2884.00 2400.00 

Average 

toughness 

(J.m-2) 

 

659.70 

 

742.80 

 

776.60 

 

1143.10 

 

1017.60 

 

1683.90 

 

2016.20 

 

2086.60 

 

2655.20 

 

2443.20 

     S.D 

 

C.V 

±5.20 

 

7.96% 

±6.70 

 

9.00% 

±6.20 

 

8.00% 

±12.00 

 

10.77% 

±22.00 

 

22.20% 

±26.50 

 

15.76% 

±21.50 

 

10.70% 

±24.00 

 

11.62% 

±29.00 

 

10.97% 

±32.00 

 

13.46% 

Incr.% base(0) +155.2 +171.4 +168.7 +132.3 +140.1 
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Appendix G.2. Typical resistance curves (R-curves) for the CF/epoxy composite unmodified as 

well as three types of HCFRP at optimum weight concentrations. 

 

 

 

Figure G.2.1. Typical resistance curves (R-curves) for the CF/epoxy composites unmodified as 

well as GNP/CF/epoxy nanocomposites at 5 wt. %.  
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Figure G.2.2. Typical resistance curves (R-curves) for CSCNT/CF/epoxy nanocomposites at 6 

wt. %.  

 

Figure G.2.3. Typical resistance curves (R-curves) for hybrid GNP-CSCNT/CF/epoxy 

nanocomposites at 4 wt. %.  

 

     


