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Abstract 

Monoclonal antibodies (mAbs) and related therapeutics are highly desirable from a 

biopharmaceutical perspective as they are highly target specific and well tolerated within the 

human system.  Nevertheless, several mAbs have been discontinued or withdrawn based either 

on their inability to demonstrate efficacy and/or due to adverse effects. With nearly 80% of 

drugs failing in clinical development mainly due to lack of efficacy and safety there arises an 

urgent need for better understanding of biological activity, affinity, pharmacology, toxicity, 

immunogenicity etc. thus leading to early prediction of success/failure. In this study a hybrid 

modelling framework was developed that enabled early stage screening of mAbs. The 

applicability of the experimental methods was first tested on chemical compounds to assess the 

assay quality following which they were used to assess potential off target adverse effects of 

mAbs.  Furthermore, hypersensitivity reactions were assessed using Skimune™, a non-artificial 

human skin explants based assay for safety and efficacy assessment of novel compounds and 

drugs, developed by Alcyomics Ltd. The suitability of Skimune™ for assessing the immune 

related adverse effects of aggregated mAbs was studied where aggregation was induced using 

a heat stress protocol. The aggregates were characterised by protein analysis techniques such 

as analytical ultra-centrifugation following which the immunogenicity tested using Skimune™ 

assay. Numerical features (descriptors) of mAbs were identified and generated using ProtDCal, 

EMBOSS Pepstat software as well as amino acid scales for different. Five independent and 

novel X block datasets consisting of these descriptors were generated based on the 

physicochemical, electronic, thermodynamic, electronic and topological properties of amino 

acids: Domain, Window, Substructure, Single Amino Acid, and Running Sum. This study 

describes the development of a hybrid QSAR based model with a structured workflow and clear 

evaluation metrics, with several optimisation steps, that could be beneficial for broader and 

more generic PLS modelling. Based on the results and observation from this study, it was 

demonstrated incremental improvement via selection of datasets and variables help in further 

optimisation of these hybrid models. Furthermore, using hypersensitivity and cross reactivity 

as responses and physicochemical characteristics of mAbs as descriptors, the QSAR models 

generated for different applicability domains allow for rapid early stage screening and 

developability. These models were validated with external test set comprising of proprietary 

compounds from industrial partners, thus paving way for enhanced developability that tackles 

manufacturing failures as well as attrition rates.  
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Figure 1.1 Generic monoclonal antibody derived therapeutic structures as adapted 
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Chapter 1. Applicability of predictive toxicology methods for monoclonal 
antibody therapeutics: Status Quo and Scope 

The pharmaceutical market is currently valued at $830 billion and is expected to reach $1.2 

trillion by 2024 (EvaluatePharma®, 2018). Biopharmaceuticals play a very important role in 

this increase and the contribution will increase from 49% to 52% of the world pharmaceutical 

sales and will dominate the oncology and anti-rheumatics market till 2024 both in sales and 

R&D (EvaluatePharma®, 2018). Biological drugs are associated to living entities (cells and 

tissues) and/or their product such as recombinant therapeutic proteins and vaccines to name a 

few. Based on historical data, a shift towards biologics seems imminent owing to increasing 

profits and lower attrition rates when compared to small molecule drugs. Biological drugs 

comprised 70% of the top ten selling products of the world in 2017 and the percentage sales of 

biotechnology products within the top 100 was 49% (EvaluatePharma®, 2018). Twenty new 

biologicals were approved by FDA in 2014 compared to the 11 that were approved in 2009. 

Monoclonal antibodies have higher approval rates of 26% in the biopharmaceutical sector than 

that of conventional small molecule drugs (10%) (Hay et al., 2014; Sewell et al., 2017). Based 

on the area of therapy, the largest segments of oncology and anti-rheumatoid drugs, which 

contribute to a combined compound annual growth rate of 13%, continue to be dominated by 

biological drugs. Although the trends seem to be in favour of biopharmaceutical development, 

the growth rates have not yet reached their full potential due to financial and technical 

complexities involved in early stages of research and development, bioprocess development 

and preclinical testing. Compared to the 21 biologicals approved by FDA in 2015 only 19 were 

approved in 2017 indicating a scarcity in innovativeness, lack of progress in bioprocess 

development strategies mainly in early stage screen and manufacturability. This coupled with 

the second patent expiration cliff around the corner leading to the biosimilar boom, there is a 

pressing need for rapid bioprocess development strategies to be put into place as well as push 

for faster commercialisation. The aforementioned challenges are estimated to put around $251 

billion of sales at risk (EvaluatePharma®, 2018). Tackling these challenges will allow for 

redirection of resources into more innovation within the industry as well as focus on drugs for 

rare and neglected diseases.  

Even though the therapeutic efficiency of immunoglobulin molecules was demonstrated in 

1890, it was only after Kohler and Milstein elucidated the murine hybridoma technology for in 

vitro production of mAbs (see Figure 1.1 for generic mAb structures) that the market for mAbs 

grew and expanded to different therapy areas, such as haematology, oncology, immunology, 
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cardiology, infectiology and ophthalmology as well as diagnostics and imaging (Köhler and 

Milstein, 1975). The shift from murine mAbs to chimeric (human Fc region with murine Fv 

region) was mainly to increase titres as well as decrease immunogenic effects (Zhu, 2012). To 

further decrease the murine composition and enhance Fc functionality, humanized mAbs were 

first developed in 1986 (Jones et al., 1985). The production systems routinely used for chimeric 

and humanized mAbs are Chinese hamster ovary (CHO) cells, NS0 and Sp2/0 myeloma cell 

line. To fully eliminate the immunogenic potential of murine epitopes while maintaining 

optimal Fc region functionality, fully human mAbs were developed by phage display 

technology and commercially produced by CHO system (Lai et al., 2013). Human Embryonic 

Kidney (HEK) and human retinal cell derived (Per.C6) cell lines are the new potential 

candidates for biopharmaceutical production (Zhu, 2012). In addition to being stable and 

producing high titres, the fully human cell lines offer the advantage of proper post translation 

modification and glycosylation as they incorporate human biosynthetic pathways. Plant 

expression systems, such as recombinant Agrobacterium tumefaciens, and microbial systems, 

such as Escherichia coli, are gaining popularity for production of monoclonal antibodies against 

viruses (Ma et al., 2003; Berlec and Štrukelj, 2013; Rosenberg et al., 2013). Transfected HEK 

cells have already been used to produce recombinant coagulation factors which have been 

approved by FDA (Food and Drug Administration), however full length mAbs produced by 

them are still awaiting approval (Berlec and Štrukelj, 2013; Lai et al., 2013). Furthermore 

proprietary technologies, such as VelocImmune®, POTELLIGENT™, UltiMAb® and 

XenoMouse®, are used for production of monoclonal antibodies (Jakobovits et al., 2007; 

Murphy, 2009; Shitara, 2009; Sheridan, 2010; Nelson and Paulos, 2015; Hurrell, 2018; 

Kennedy et al., 2018). The mAb derived products include fusion proteins, antigen binding 

fragments as well as composite proteins (Povey et al., 2001; Lefranc et al., 2009; Li and Zhu, 

2010; Ecker et al., 2015; Hurrell, 2018; Kennedy et al., 2018).  
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Figure 1.1 Generic monoclonal antibody derived therapeutic structures as adapted from IMGT 
(World Health, 2006; Lefranc et al., 2009). Fc: Constant region which contributes to effector 
function, immune response and increased half-life, Fv: Variable region that contains 
Complementarity Determining Regions (CDRs)facilitating antigen binding, Fab: Antigen 
Binding Fragment which lack Fc Region, scFv: Single chain Fragment variable, FP: Fc Fusion 
Proteins that contain Fc region for effector functionality (e.g. Abatacept), CP: Composite 
protein that contain Fc region for increasing half-life and not for effector functionality (e.g 
Strensiq™)(World Health, 2006).   

1.1. Aims and objectives of the research  

The main aim of this research was to facilitate QSAR model development framework for early 

stage screening of mAbs candidates that would allow for their rapid developability. 

Advancements in early stage screening of mAb candidates would reduce the number of lead 

candidates entering the bioprocess pipeline that are associated with adverse effects thereby 

reducing attrition rates. The research objectives of this study are as follows: 

a) To assess the utility of traditional toxicity assays for assessing the different toxicity 

endpoints of chemical compounds. 

b) To investigate the applicability of traditional toxicity assays for assessing the adverse 

effects associated with mAb therapeutics. 

c) To assess the utility of novel assays for assessing immune related adverse effects of 

mAbs and/or their aggregates.  

d) To identify and generate numerical features from the primary sequence and 3D structure 

of mAbs. 

e) To use multivariate data analysis techniques to identify any potential correlation 

between the numerical features and biological responses (adverse effects) elicited by 

mAbs. 
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f) To develop a hybrid QSAR based model with a structured workflow and clear 

evaluation metrics, with several optimisation steps, that could be beneficial for broader 

and more generic modelling. 

1.2. MAbs: Safety pharmacology and side effects  

MAbs and related therapeutics are highly desirable from a biopharmaceutical perspective as 

they are highly target specific and well tolerated within the human system (Shepard et al., 

2017).  Nevertheless several mAbs have been discontinued or withdrawn based either on their 

inability to demonstrate efficacy and/or due to adverse effect, for example efalizumab, 

biciromab and fanelesomab while others were discontinued due to high manufacturing costs, 

for example imciromab and arcitumomab (Lefranc et al., 2009). Approved monoclonal 

antibodies as well as derived products have been associated with adverse effects and these 

effects have been classified into categories of specialised toxicity as indicated in Table 1.1. The 

adverse effects associated with these toxicities are outline in Box 1.1 (Hansel et al., 2010; 

Peluso et al., 2013).The reporting of these adverse effects is to be treated with caution as there 

are several factors that influence them, such as underlying conditions, drug combinations, 

reporting practices and clinical practice involved in the clinical trials.  
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Table 1.1 List of approved monoclonal antibody derived therapeutics and associated toxicity. 

Generic name 
Trade name 

Type Antigen a Species Therapy area Production  Therapy associated adverse 
effect  

Abatacept 
ORENCIA® 

FP CD80, 
CD86 

Homo 
sapiens 

Immunology CHO Occular toxicity, 
Immunotoxicity, Dermal 
toxicity, Infection 

Abciximab 
REOPRO® 

Fab 
IgG1κ 

ITGA2B_
ITGB3 

Chimeric  Cardiology Sp2/0 Immunotoxicity, 
Haemotoxicity 

Adalimumab 
HUMIRA® 

IgG1κ TNF Homo 
sapiens 

Immunology CHO Immunotoxicity 
Cardiotoxicity, Infection, 
Hepatoxicity Haemotoxicity, 
Others 

Aflibercept 
ZALTRAP® 
EYLEA® 

FP VEGFA Homo 
sapiens 

Ophthalmolog
y, oncology 

CHO K-1 Occular toxicity 
Haemotoxcity Cardiotoxicity 

Alemtuzamab 
CAMPATH-
1H®, 
LEMTRADA® 

IgG1κ CD52 Humanized Haematology, 
oncology, 
immunology 

CHO Immunotoxicity, 
Haemotoxicity Cardiotoxicity 
Others 

Alirocumab 
PRALUENT® 

IgG1κ PCSK9 Homo 
sapiens 

Cardiology VelocImmu
ne® 

Neurotoxicity, Dermal 
toxicity Occular toxicity 
Cardiotoxicity 

Asfotase alpha 
STRENSIQ™ 

CP  Homo 
sapiens 

Hypophosphat
as-ia 

CHO Immunotoxicity, Dermal 
toxicity, Renal toxicity, 
Occular toxicity Others 

Basiliximab 
SIMULECT® 

IgG1κ IL2RA Chimeric  Immunology Sp2/0 Immunotoxicity Dermal 
toxicity 

Belatacept 
NULOJIX® 

FP CD80, 
CD86 

Homo 
sapiens 

Immunology CHO Renal toxicity, Infection, 
Others 

Belimumab 
BENLYSTA® 

IgG1λ TNFSF13
B 

Homo 
sapiens 

Immunology NS0 (serum 
free) 

Immunotoxicity Infection, 
Others 

Besilesomab 
SCINTIMUN® 

IgG1κ CEACAM
8 

Mus 
musculus 

Osteology 
(diagnostic) 

Hybridoma 
technology*  

Cardiotoxicity 
Immunotoxicity 

Bevacizumab 
AVASTIN ® 

IgG1κ VEGFA Humanized Oncology  CHO Cardiotoxicity, Infection, 
Haemotoxicity, 
Gastrointestinal, Others 

Blinatumomab 
BLINCYTO® 

scFv 
κH - 
scFv 
κH 

CD19, 
CD3E 

Mus 
musculus 

Haematology, 
oncology 

CHO  Immunotoxicity, 
Neurotoxicity  

Brentuximab 
ADCETRIS™ 

IgG1κ TNFRSF8 Chimeric  Oncology CHO Cardiotoxicity, Infection, 
Pulmonary toxicity 

Canakinumab 
ILARIS® 

IgG1κ IL1B Homo 
sapiens 

Hereditary 
inflammatory 
diseases; 
Immunology 

UltiMAb®  Infection, Others 

Capromab 
PROSTASCIN
T® 

IgG1κ FOLH1 Mus 
musculus 

Oncology Hybridoma 
technology*

* 

NR 

Catumaxomab 
REMOVABT® 

IgG2a
κ/G2b
λ 

CD3E, 
EPCAM 

Mus 
musculus  
Rattus sp.  
Hybrid 

Oncology  Quadroma 
technology+  

Haemotoxicity, 
Immunotoxicity, Others 

Certolizumab 
CIMZIA® 

Fab´-
G1κ 

TNF Humanized Immunology Escherichia 
coli 

Immunotoxicity 
Cardiotoxicity, Infection, 
Hepatoxicity Haemotoxicity 

Cetuximab 
ERBITUX® 

IgG1κ EGFR Chimeric Oncology Sp2/0 Immunotoxicity, Dermal 
toxicity, pulmonary Toxicity 
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Daclizumab*** 

ZENAPAX® 
IgG1κ IL2RA Humanized   Immunology NS0 Immunotoxicity, Dermal 

toxicity 
Daratumumab 
DARZALEX™ 

IgG1κ CD38 Homo 
sapiens 

Haematology, 
oncology, 
immunology 

UltiMAb®  Haemotoxicity, 
Immunotoxicity, Pulmonary 
toxicity 

Denosumab 
PROLIAS® 
XGEVAS® 

IgG2 TNSF11 Homo 
sapiens 

Osteology XenoMouse
®  

Haemotoxicity, Infection 

Eculizumab 
SOLIRIS™ 

IgG2/
G4κ 

C5 Humanized Haematology NS0 Haemotoxicity, Infection 

Edrecolomab 
PANOREX® 

IgG2a
κ 

EPCAM Mus 
musculus 

Oncology Sp2/0 Immunotoxicity, Others 

Elotuzumab 
EMPLICITI™ 

IgG1κ SLAMF7 Humanized Haematology, 
oncology, 
immunology 

NS0(Varma 
et al., 2014) 

Haemotoxicity, 
Gastrointestinal, Others 

Etanercept 
ENBREL® 

FP TNF Homo 
sapiens 

Immunology CHO Infection, Cardiotoxicity, 
Hepatotoxicity, 
Immunotoxicity 

Evolocumab 
REPATHA™ 

IgG2λ PCSK9 Homo 
sapiens 

Cardiovascula
r diseases 

XenoMouse
®  

Immunotoxicity, 
Haemotoxicity, Infection, 
Others 

Factor IX  Fc 
FP 
ALPROLIX® 

CP NA Homo 
sapiens 

Haematology  Transfected 
HEK cell 
line 

NR 

Factor VIII Fc 
FP 
ELOCTATE® 

CP NA Homo 
sapiens 

Haematology Transfected 
HEK cell 
line. 

NR 

Golimumab 
SIMPONI® 
ARIA®  

IgG1κ TNF Homo 
sapiens 

Immunology UltiMAb®  Dermal toxicity 

Ibritumomab 
ZEVALIN® 

IgG1κ MS4A1 Mus 
musculus 

Oncology CHO Haemotoxcity, Dermal 
toxicity, Others 

Idarucizumab 
PRAXBIND® 

Fab-
G1κ 

Pradaxa®: 
Dabigatra
n etexilate 
mesylate  

Humanized Reversal of 
drug overdose 

CHO Dermal toxicity, 
Gastrointestinal, Infection, 
Others 

Infliximab 
REMICADE® 

IgG1κ TNF Chimeric Immunology Sp2/0 Immunotoxicity 
Cardiotoxicity, Infection, 
Hepatoxicity Haemotoxicity, 
Others 

Ipilimumab 
YERVOY ® 

IgG1κ CTLA4 Homo 
sapiens 

Oncology UltiMAb®  Hepatotoxicity, 
Neurotoxicity, Pulmonary 
toxicity, Gastrointestinal 
toxicity 

Mepolizumab 
NUCALA® 

IgG1κ IL5 Humanized Immunology CHO Infection, Cardiotoxicity, 
Others 

Mogamulizum
ab 
POTELIGEO® 

IgG1κ CCR4 Humanized Haematology, 
oncology 

POTELLIG
ENT® 

Immunotoxicity, Dermal 
toxicity 

Muromonab-
CD3 
ORTHOCLON
E OKT3® 

IgG2a
κ 

CD3E Mus 
musculus 

Immunology Hybridoma 
murine 
ascites 

Immunotoxicity, 
Hepatotoxicity, 
Cardiotoxicity 

Natalizumab 
TYSABRI® 

IgG4  ITGA4 Humanized Immunology NS0 Immunotoxicity, 
Hepatotoxicity, Infection 

Necitumumab 
PORTRAZZA
™ 

IgG1κ EGFR Homo 
sapiens 

Oncology UltiMAb®  Haemotoxicity, 
Immunotoxicity, Pulmonary 
toxicity, Hepatotoxicity  

Nimotuzumab IgG1κ EGFR Humanized  Oncology NS0 Dermal Toxicity 
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THERACIM® 

Nivolumab 
OPDIVO® 

IgG4κ PDCD1 Homo 
sapiens 

Oncology  UltiMAb®  Immunotoxicity, 
Hepatotoxicity, 
Gastrointestinal Toxicity, 
Pulmonary toxicity,  
Renal toxicity 

Obinutuzumab 
GAZYVA® 

IgG1κ MS4A1 Humanized Haematology, 
oncology 

GlycoMAb
® 

Infection 

Ofatumumab 
ARZERRA® 

IgG1κ MS4A1 Homo 
sapiens 

Haematology, 
oncology 

UltiMAb®, 
NS0 

Infection, Gastrointestinal 
Toxicity 

Omalizumab 
XOLAIR® 

IgG1κ IGHE Humanized  Immunology CHO Immunotoxicity, Dermal 
Toxicity, Infection 

Palivizumab 
SYNAGIS 

IgG1κ RSV 
glycoprote
in F 

Humanized Infectiology NS0 Immunotoxicity, Others 

Panitumumab 
VECTIBIX® 

IgG2κ EGFR Homo 
sapiens 

Oncology XenoMouse
® CHO 

Immunotoxicity, Pulmonary 
Toxicity, Dermal Toxicity 

Pembrolizuma
b 
KEYTRUDA® 

IgG4κ PDCD1 Humanized Oncology  CHO Immunotoxicity, Pulmonary, 
Others 

Pertuzumab 
PERJETA® 

IgG1κ ERBB2 Humanized Oncology  CHO++ Reproductive and 
developmental toxicity, 
Dermal toxicity, 
Haemotoxicity, 
Immunotoxicity, 
Cardiotoxicity 

Ramucirumab  
CYRAMZA® 

IgG1κ KDR Homo 
sapiens 

Oncology NS0 Haemotoxicity, 
Cardiotoxicity, 
Gastrointestinal, Others 

Ranibizumab 
LUCENTISO® 

Fab 
G1κ 

VEGFA Humanized Ophthalmolog
y, 
immunology  

Escherichia 
coli 

Cardiotoxicity, 
Haemotoxicity, Occular 
toxicity 

Raxibacumab 
ABTHRAX® 

IgG1λ anthrax 
protective 
antigen 

Homo 
sapiens 

Infectiology  CHO Haemotoxicity, Infection, 
Dermal toxicity, 
Others 

Rilonacept 
ARCALYSTF® 

FP IL1A Homo 
sapiens 

Immunology CHO Dermal toxicity, 
Immunotoxicity 

Rituximab 
MABTHERA® 
, RITUXAN® 

IgG1κ MS4A1 Chimeric Haematology, 
oncology, 
immunology 

CHO-MR Immunotoxicity, 
Cardiotoxicity, Infection, 
Others 

Romiplostim 
NPLATE® 

CP MPL Homo 
sapiens 

Immunology Escherichia 
coli 

Haemotoxicity, Infection, 
Others 

Secukinumab 
COSENTYX® 

IgG1κ IL17A Homo 
sapiens 

Immunology XenoMouse
®  

Infection, Haemotoxicity, 
Cardiotoxicity 

Siltuximab 
SYLVANT® 

IgG1κ IL6 Chimeric Haematology, 
oncology, 
immunology 

CHO Immunotoxicity, 
Gastrointestinal toxicity, 
Infection 

Tocilizumab 
ACTEMRA® 
RoACTEMRA
® 

IgG1κ IL6R Humanized Oncology, 
immunology 

CHO-DR  Immunotoxicity, Infection, 
Hepatotoxicity, 
Others 

Trastuzumab 
TRASTUZUM
AB® 

IgG1κ ERBB2 Humanized Oncology CHO-MR  Immunotoxicity, 
Hepatotoxicity, 
Cardiotoxicity, Pulmonary 
Toxicity, Dermal toxicity 

Ado-
trastuzumab 
(emantsine) 
KADCYLAN® 

IgG1κ ERBB2 Humanized Oncology CHO Reproductive and 
Developmental Toxicity, 
Dermal Toxicity, 
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Hepatotoxicity, 
Cardiotoxicity 

Ustekinumab 
STELARA® 

IgG1κ IL12B Homo 
sapiens 

Immunology UltiMAb®  Neurotoxicity, Cardiotoxicity 
Others 

Vedolizumab 
ENTYVIO® 

IgG1κ ITGA4 
ITGB7 

Humanized Immunology CHO Infection, Pulmonary 
Toxicity, Other 

aNomenclature derived from HUGO Gene nomenclature Committee resources (Povey et al., 
2001) * X63Ag8.653 and spleen cells from Balb/c mice previously immunised with CEA 
antigen (from human liver metastasis) ** fusing P3x63Ag8.653 myeloma cells with spleen 
cells from BALB/c mice immunized with whole cells and membrane extracts of the human 
prostate adenocarcinoma cell line LNCaP. + Consists of mouse IgG2a and rat IgG2b;++Fed-
batch process using a suspension-adapted CHO cell line ***EC withdrawal; FP: Fusion Protein, 
CP: Composite Protein, Fab: Antigen binding Fragment, IgG: Immunoglobulin G, CHO: 
Chinese Hamster ovary cells, CHO-DR: Chines Hamster ovary cells dihydrofolate reductase; 
CHO-MR: Chines Hamster ovary cells methotrexate resistant; NS0+NS1: Nonsecreting 
Murine myeloma cells, Sp2/0: Hybridoma B lymphocyte, NA: Not Applicable, HEK: Human 
embryonic Kidney Cell line HEK293.  
 

 



 
9 

 

 

Box 1.1 Adverse effects of mAbs categorised into specialised toxicities. 

Immunotoxicity:  

Infusion reactions (acute, severe) hypersensitivity, Immunogenicity, anaphylaxis (0.1%), Churg-Strauss 

syndrome, acute infusion reactions, cytokine release syndrome, immunosuppression, IgE against 

oligosaccharide and HAMA, immune haemolytic anaemia, Immune thrombocytopenia, Serum Sickness. 

Infection:  

Upper respiratory tract infections Progressive multifocal leukoencephalopathy Hepatitis B reactivation, 

serious opportunistic viral and/or bacterial infection, Meningococcal and Neisseria infection, 

tuberculosis reactivation, osteomyelitis.  

Haemotoxicity: 

Intravascular haemolysis, haemolytic anaemia, thrombocytopenia, haemorrhage, arterial and venous 

thromboembolic events, pancytopenia, lymphopenia, leukopenia, neutropenia, increased risk of 

bleeding, osteonecrosis, arterial thromboembolism, epistaxis.  

Cardiotoxicity: 

Transient hypotension, cardiac arrhythmias, severe hypertension, congestive heart failure, 

cardiomyopathy, pericarditis, myocardial infarction, ischaemic attack.  

Hepatotoxicity: 

 Elevated liver transamines, abnormal liver function, lipid deregulation, neutropenia.  

Gastrointestinal Toxicity: 

Diarrhoea nausea vomiting, gastrointestinal perforation, bowel obstruction, enterocolitis.  

Pulmonary toxicity: 

Bronchospasm, interstitial lung disease, pulmonary fibrosis, pneumonitis, pulmonary embolism, 

pneumothorax.  

Ocular Toxicity: 

Conjunctival haemorrhage, intraocular inflammation, increased intraocular pressure, retinal detachment, 

endophthalmitis, uveitis. 

Dermal toxicity:  

Injection site reaction, severe mucocutaneous reactions, skin rashes and reactions, urticarial, angioedema. 

Renal Toxicity: 

Nephritis, proteinuria, tubular damage, hypophosphatemia, hypomagnesemia, renal failure, 

pyelonephritis.  

Neurotoxicity: 

Guillain–Barré syndrome, encephalitis, meningitis, neuropathy, neurocognitive disorders.  

Reproductive/Developmental Toxicity:  

Birth defects, embryo/foetal mortality. 

Others:  

Fever, headache, cough, secondary malignancies, wound dehiscence, thyroid disorders, 
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The catastrophic TGN1412 clinical trial that resulted in multiple organ failure of six healthy 

volunteers reiterated the need for more appropriate preclinical safety testing. The underlying 

problems that were subsequently identified in this trial were mainly the lack of appropriate 

preclinical testing and model organisms chosen for study of adverse effects. The standard in 

vitro assays failed to capture the in vivo adverse effects in humans (Stebbings et al., 2013). In 

vivo toxicity studies using rodent or primate models are not always representative of the human 

system. Human therapeutics such as monoclonal antibodies are highly specific and targeted and 

there is therefore a higher likelihood of false positive efficacy or false negative toxicity if such 

entities are tested in non-human models, both outcomes being highly undesirable (Sewell et al., 

2017).   

Eloctate showed haemotoxicity and hepatotoxicity in animal studies (mice and monkeys) but 

none have been reported in human clinical trials (Lower, 2015). TGN1412 did not show the 

pro-inflammatory cytokine storm in in vivo tests (cynomolgus macaques) due to the absence of 

CD28 on its CD4+ effector memory T cells as well as in in vitro tests (human lymphocytes) due 

to the lack of localisation of cell receptor (Stebbings et al., 2013).  There are different factors 

which can influence the safety and efficacy of mAbs. Binding affinity, glycoforms, valency and 

density of antigens as well as antibodies, cell surface receptor and binding interface are some 

of the factors that contribute to the biological activity of mAbs and, if suboptimal, could lead 

to reduction of efficacy or an increase in toxicity (Stebbings et al., 2013; Jefferis, 2014). 

nimotuzumab exhibits lower dermal toxicity due to optimal binding affinity to EFGR that 

ensures its binding below toxic levels (Boland and Bebb, 2009) 

Effector functions of mAbs and related products, such as antibody dependent cell phagocytosis 

(ADCP), antibody dependent cytotoxicity (ADCC), complement dependent cytotoxicity 

(CDC), complement dependent cellular cytotoxicity (CDCC) as well as evoking other cell 

mediated immune responses, are modulated via the Fc region by interaction with FcγR receptors 

on different  immune responsive cells (Figure 1.2 (a)) (Carter, 2006) . This also regulates the 

pharmacokinetics, transcytosis, catabolism and placental transfer of antibodies via the FcRn 

(neonatal Fc Receptor) as summarised in Table 1.2 (Roopenian and Akilesh, 2007). 

Glycosylation at the Fc region occurs at N297 and consists of a core hepatasaccharide region 

comprising mostly N-Acetylglucosamine and mannose residues as well as the variable region 

as seen in Figure 1.2 (b) (Carter, 2006). Modifying the Fc region either via amino acid 

substitution or by a change in glycosylation pattern has shown to change effector functionality. 

IgG1 based therapeutic antibodies have shown increased ADCC and ADCP activity with 
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substitution at amino acid positions 298,333 and 334 whereas otelixizumab has shown reduced 

ADCP and ADCC activity with an N297A substitutions (Bolt et al., 1993; Shields et al., 

2001) .The mammalian cell production systems could alter the glycoform and this could either 

change the effector function mediated therapeutic activity or induce immunogenic effects of 

mAbs (Jefferis, 2009). Afucosylation and bisecting N acetylglucosamine were reported for 

antibodies produced in CHO cells and they were associated with increased ADCC activity 

(Umaña et al., 1999; Shields et al., 2002). Galactosylation levels are important for different 

functions, such as transport of IgG molecules across placenta and complement activation. 

Mammalian cell lines generally produce hypogalactosylated products however if this 

hypogalactosylation is unintended, it could impact effector function. This has been 

demonstrated with alemtuzumab and rituximab where the removal of galactose residues 

reduced complement activation (Boyd et al., 1995; Raju and Jordan, 2012). Mammalian 

production systems can also add oligosaccharides not present in human system, such as addition 

of N-glycolylneuraminic acid by CHO, NS0 and Sp2/0 systems, which can be immunogenic 

(Jefferis, 2014). Differing glycation patterns can also alter antigen binding and this has been 

quantitatively determined in a recent study (Mo et al., 2018). These modification on engineered 

mAbs, when intentional, can alter effector functionality to enhance the therapeutic profile of 

mAbs (Wang et al., 2018). However, when accidental it could lead to potential adverse effects.  

From Table 1.1 it can be observed that following immunotoxicicty, hepatoxicity and dermal 

toxicity constitute majority of the adverse effects elicited by mAbs. These could be either a 

consequence of the exaggerated immune response elicited by mAbs or a potential off target 

effect wherein the mAb bind to an off-target tissue and elicits a response. In vitro systems 

traditionally used for assessing hepatoxicity, such as HepG2 cells, and dermal toxicity, such as 

HDFn cells, of small molecules and chemical compounds may provide an insight into these 

potential off target effects of mAbs. These aspects have been explored in Chapter 3.  
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Table 1.2 IgG receptors and effector functions. 

 Function Binding affinity  Expression  Important 
AA residues 

Impact of 
Glycosylationb 

  IgG 
subclass 

Ka(106M-1)    

C1q CDC 

** 
* 
*** 
- 

NA 
NA 
NA 
NA 

Present in serum 
L235,D265,D
270,K322,P32
9,P331,H433 

Galactose: ↑ CDC; 
Mannose: ↓ CDC 

FcγRI  Activation 

*** 
- 
**** 
** 

65 
- 
61 
34 

Monocytes, 
macrophages 
Dendritic Cells 
Neutrophils I 
Mast Cells I 

E233, L235, 
G236 

Unclear 

FcγRIIA 
(H131)  

Activation 

*** 
** 
**** 
**

5.2 
0.45 
0.89 
0.17 

Monocytes, 
macrophages 
Dendritic Cells 
Neutrophils  
Mast Cells 
Basophils 
Eosinophils 

L234,L235,G
236, A327 

Unclear 

FcγRIIA 
(R131) 

*** 
* 
**** 
**

3.5 
0.10 
0.91 
0.21 

FcγRIIB/
C 

Inhibition 

* 
- 
** 
* 

0.12 
0.02 
0.17 
0.20 

B cells 
Dendritic cells 
Basophils 
Monocytes a 

Macrophages a 

Neutrophils a  

Unclear Unclear 

FcγRIIIA 
(F158) 

Activation 

** 
- 
**** 
- 

1.2 
0.03 
7.7 
0.20 

Natural Killer Cells 
Monocytes 
Macrophages 

E233,L234,L2
35G236 

Mannose, Bisecting 
GlcNac: ↑ ADCC; 
Sialic acid, fucose: 
↓ADCC 
 FcγRIIIA 

(V158)  

*** 
* 
**** 
**

2.0 
0.07 
9.8 
0.25 

FcγRIIIB Unclear 

*** 
- 
**** 
- 

0.2 
- 
1.1 
- 

Neutrophils 
Basophils 

L234,L235G2
36,G237,P238 

Unclear 

FcRn 

Transcytosis 
Catabolism 
Antigen 
uptake 

*** 
*** 
**/**** 
*** 

80 
NA 
NA 
NA  

Monocytes, 
macrophages, 
Dendritic Cells 
Neutrophils 
Endothelium 
Syncytiotrophoblast 

H433,N434,H
435,Y436 

Galactose, 
Mannose, GlcNAc: 
↑ Clearance 

● IgG1, ● IgG2, ● IgG3, ● IgG4; **** very high affinity; ***high affinity; ** moderate 
affinity; * low affinity; - no binding; I Inducible expression a low percentages; b (Liu, 2015);  
NA: Not applicable; AA: Amino acid; 
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Figure 1.2 (a) Monoclonal antibody structure with binding site for antigen, FcγR and FcRn 
receptor as well as glycosylation sites (Glycan); Ag: Antigen; CDC: Complement Dependent 
Cytotoxicity; ADCC: Antibody Dependent Cell Cytotoxicity; ADCP: Antibody Dependent 
Cell Phagocytosis (b) Glycosylation profile at N297 residue of the Fc region of antibodies.  The 
bold line indicates core structures and dotted line indicates variable structures. Gal: Galactose; 
SA: Sialic Acid; Man: Mannose; GlcNAc: N-Acetylglucosamine Fuc: Fucose; Asn: Asparagine 
(N297). 

Although the trends seem to be in favour of biopharmaceutical development, the growth rates 

have not yet reached their full potential due to financial and technical complexities involved in 

early stages of research and development and preclinical testing as described in the following 

sections. The comprehensive costs of developing a new drug amount to $2.8 billion (Pharma, 

2014). Studies done over the past decade show that nearly 90% of drugs failed in clinical 

development (30% in Phase I and 33% in Phase II) and this high attrition rate is the major 

contributing factor to the exorbitant cost of new drug development (Hay et al., 2014; Kola and 

Landis, 2004; Paul et al., 2010). Thus, it is more beneficial to address attrition, as a 10-15% 

decrease in attrition rate could reduce the cost of drug development by nearly 35% (Paul et al., 

2010).  Recent studies reported that toxicity and lack of efficacy were the most important factors 

for high attrition rates in small molecule drug development (Waring et al., 2015)(Pellicciari, 

2017). Unlike conventional drugs which mainly revolve around small molecule chemistry, 

biological drugs are far more complex to produce and characterise as they are 200-1000 times 
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larger, structurally more complex and highly sensitive to their manufacturing conditions. The 

costs involved in development and production of biopharmaceutical entities is 1.5-2.5 times 

higher than that of small molecule drugs (Blackstone and Fuhr, 2007). With nearly 80% of 

biological drugs failing in clinical development mainly due to lack of efficacy and safety there 

arises an urgent need for smarter preclinical development. This requires better product 

understanding i.e. examining characteristics which contribute to product quality such as 

biological activity, affinity, pharmacology, toxicity, immunogenicity etc. thus leading to early 

prediction of success/failure.  Improved product understanding and rapid screening of potential 

drug candidates by utilising different in vitro and in silico methods to predict efficacy and safety 

techniques would lead to better preclinical design. 

1.3. Quality by Design in mAb developability  

The need for Quality by Design (QbD) arose in early 2000s as the traditional approach to 

biopharmaceutical drug development was primarily empirical. This, combined with limited 

emphasis being placed on process understanding, led to manufacturing failures and 

consequently increase in product wastage. Furthermore, limited attention was being given to 

the analysis of the root causes of these failures as well as to the prediction of scale up effects 

on the final product quality and yield.  

The concept of QbD was incorporated into the pharmaceutical manufacturing control review 

process in 2004 following the pharmaceutical cGMP for the 21st century initiative (Figure 1.3). 

The main aim of the initiative was to harmonise and modernise product, process and regulatory 

aspects of pharmaceutical manufacturing. The QbD paradigm urges industries put in place the 

following principles into their own process: identify and have a better understanding of their 

product profile in terms of safety and efficacy; identify physical, chemical or microbiological 

properties that can affect safety and efficacy and thus should be controlled within a 

predetermined range; design the process so as to deliver the required quality product 

consistently and controlling it by putting in place a robust control strategy; validate, document 

and continuously monitor the process to make sure the system/bioprocess performs robustly  

over the product life cycle (Rathore, 2009; Rathore and Winkle, 2009). 
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Figure 1.3 A schematic for Quality by design in biopharmaceutical industry; RA: Risk 
assessment, PC: Process characterisation (Rathore and Winkle, 2009). 

Recent studies reported that toxicity and lack of efficacy were the most important factors for 

high attrition rates in small molecule drug development (Waring et al., 2015). With nearly 80% 

of biological drugs failing in clinical development mainly due to lack of efficacy and safety 

there arises an urgent need for smarter preclinical development using quality by design-based 

approaches. This requires better product understanding i.e. examining characteristics which 

contribute to product quality such as biological activity, affinity, pharmacology, toxicity, 

immunogenicity etc. thus leading to early prediction of success/failure.  From a QbD point of 

view, this encompasses the principles of Quality Target Product Profile (QTTP) and Critical 

Quality Attributes (CQA). QTPP includes dosage form and strength, route of administration, 

intended use, release/delivery of therapeutic moiety, pharmacokinetics as well as drug product 

criteria required for intended market (stability and purity). Following the identification of 

QTPP, CQAs are then defined based on risk assessments. The rationale for identifying CQAs 

and relating them to product safety and efficacy arises from QTPP, prior product/process 

knowledge, literature, clinical data, non-clinical data including platform based, in vivo as well 

as in vitro assays and relevant data from similar products. The main CQAs for biological drugs 

would fall into the categories of size, charge, primary structure, post translation modifications 

and higher order structure.  For monoclonal antibodies, examples of product related CQAs are 

fragmentation, aggregation, inadvertent glycosylation and conformation whereas process 

related CQAs are host cell proteins, formulation buffer components, culture media residues to 

name a few (Group, 2009).  

QbD offers a plethora of advantages to the biopharmaceutical industry as well as regulatory 

agencies. It allows for easy implementation of innovative technologies, technical and scientific 
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harmonisation of regulations, minimisation of manufacturing failures, reduction of attrition 

rates and it ensures consistent production of high quality products by continuously monitoring 

and updating bioprocesses. However, for the full potential of QbD to be exploited, there are 

still many challenges to be overcome like filing terminology, training, fitting existing legacy 

products into the QbD frameworks, conflict of opinions amongst regulatory agencies across the 

world and most importantly, a limited understanding of how CQAs impact the quality and 

efficacy of a product. A possible solution could be to increase the use of non-clinical studies as 

well as in silico tools to augment knowledge about the impact of CQAs on the clinical potency 

and safety of biological drugs (Kizhedath et al., 2016). These rapid screening methods can be 

seamlessly integrated into a Quality by design approach when linked with the target product 

profile as well.  

Implementation of QbD and PAT could indeed revolutionise the way biopharma industries 

operate by cutting down their attrition rates and this could drastically change their business 

model enabling them to save time, money and resources. Historical data in this context from 

approved products can be used to power pattern recognition models that would allow for early 

stage screening of lead candidates thereby reducing the load on the bioprocess pipeline and 

allowing for better product and consequently process design i.e. by narrowing the design space. 

This could lead to reduction of prices for biologic drugs as well as more focus on medicines for 

rare diseases thus proving beneficial to society.  

1.4. In vitro systems for toxicity testing 

The general in vitro toxicity testing panel includes cellular, biochemical and molecular assays 

to study cytotoxicity, reactive oxygen species production as well as specialised toxicity effects 

including genotoxicity, hepatotoxicity, immunotoxicity to name a few. They are assessed via 

standard, specialised or target organ cell-based assays. Techniques such as WST, MTT, MTS, 

BrDu and Alamar blue are commonly used to assess basal cytotoxic or direct effect on cell 

proliferation, whereas Annexin V/Propidium iodide staining can help distinguish between 

necrotic and apoptotic events. Mitochondrial damage can be assessed by mitochondrial 

membrane potential assays and luminescent cell viability assays that quantify ATP. Protein 

marker-based techniques, such as assessing caspase cleavage via flow cytometry or western 

blotting techniques, can also be used to understand the mode of action of particular compounds. 

Reactive oxygen species production leads to oxidative stress and this can also lead to cellular 

damage. There are different dyes, such as fluorescent and bioluminescent dyes, that can be 

utilised to study this effect. For gauging specialised toxicity effects, different types of 
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biochemical, molecular and mode of action-based endpoints can be utilised. In vitro 

experimental data when combined with physicochemical properties and Absorption, 

Distribution, Metabolism and Elimination (ADME) characteristics help establish 

Physiologically Based PharmacoKinetic (PBPK) and partitioning models (based on 

fundamental thermodynamic principles). Metabolism of parent compound, toxicity and 

likelihood of metabolites also allow for a more robust model to be developed as they help to 

take into account biotransformation and bioavailability. The above information helps to identify 

the doses and the class of compounds that have to be further tested in in vivo tests as specified 

by OECD guidelines for toxicity testing. 

Monoclonal antibodies evoke an effector response mainly via antibody dependent cytotoxicity, 

phagocytosis and complement dependent cytotoxicity for eliminating tumour target cells (Kindt 

et al., 2007). For testing the biological activity of mAb based therapeutics in vitro, the target 

cell line is cocultured with the molecule as well as effector cells derived either from PBMCs in 

human blood or cultured effector cells in a defined target to effector ratio (Golay et al., 2013). 

These effects can be studied by techniques which involve loading target cells with fluorescent 

membrane permeable dyes that are released upon target cell lysis. To assess mast cell 

degranulation, in vitro systems are incubated with drug of interest and endpoints like histamine 

are then measured via spectroscopy or flow cytometry (Demo et al., 1999). Alternatively 

specific biomarkers like complement fragments can be used to detect specific events such as 

complement activation (Golay and Introna, 2012). Cytokine release assays provide information 

about the extent and the kind of pro inflammatory cytokine release. This is often assessed by 

introducing the monoclonal antibody to human lymphocytes and then assessing the supernatant 

for different types of cytokines and this assay can often be performed in a multiplex format with 

flow cytometer analysis (Lash et al., 2006). A cytokine storm is a life threatening adverse effect 

induced by monoclonal antibodies such as in the case of TGN1412 (Suntharalingam et al., 

2006). Animal models utilised for assessing immunotoxicity involve lymph node proliferation 

assay, local lymph node assay and more recently the mouse drug allergy model though the 

predictive ability of these in vivo models haven’t been well characterised or validated 

(Whritenour et al., 2016). For assessing specialised toxicity assays specific endpoints or 

biomarkers can be studied. Drug induced liver injury, liver enzyme inhibition or induction 

(particularly cytochromes 450, flavin monooxygenases and numerous others), change in human 

pregnane X Receptor activity as well as drug transporter activities for hepatotoxicity; Ames test 

for mutagenicity, in vitro single cell electrophoresis (comet) assay and DNA based dyes for 

genotoxicity; human ether-related à-gogo gene related (hERG) assays, prolongation of QT 
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interval, patch clamp assay, embryonic stem cell differentiation assay for cardiotoxicity and so 

on are examples used in small molecule drug development (Ekins, 2014). 

These issues regarding pharmacodynamics, selection of model organism, route of 

administration, dose, metabolism, toxicity studies have been addressed by the ICH Safety 

Pharmacology guideline S6 (R1) Preclinical Safety Evaluation of Biotechnology-Derived 

Pharmaceuticals. The safety pharmacology of mAbs however cannot be optimally assessed by 

standard toxicological assays alone (Guideline, 1997; Cavagnaro, 2002). 

1.5. In silico tools for predictive toxicology 

Computational toxicology tools could substantially aid in safety pharmacology testing of 

monoclonal antibody derived therapeutics as they impart elements of automation, consistency 

and reliability to standard toxicological assays. There are a multitude of advantages offered by 

computational toxicology methods. They help to realise the 3R principle i.e. Replacement, 

Reduction and Refinement, by reducing the number of experimental animals used in drug safety 

testing. They also address the practical and economical concern of industries by providing a 

rapid and cost effective way for safety testing of novel drug molecules. This in turn helps to cut 

down attrition rates and thus reduce the financial burden on the discovery and the development 

of new drugs. Furthermore, computational toxicology methods help to prioritise testing of those 

compounds which could be associated with toxic hazards by virtue of a problematic chemical 

space. This could be by means of structural similarity, indiscriminate interaction with closely 

related pharmacological targets and/or off target effect or other molecular events which are 

adaptable to in silico methods. Computational toxicology methods also prove useful when 

animal studies do not adequately represent the fate of drugs in humans (Cronin and Madden, 

2010; Wilson, 2011; Ekins, 2014; Greene and Pennie, 2015).  Though these in vitro and in silico 

methods, such as physiologically based pharmacokinetic (PBPK) modelling and 

qualitative/quantitative structure activity relationships (QSAR), are extensively used for 

predicting biological activity as well as toxicity during small molecule drug development (Table 

1.3), their full potential has not been utilised for biologic drug development.  
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Table 1.3 A comprehensive overview of in silico prediction tools for assessing toxicology. 

Name Particulars  Accessibility Owned by 

ACD ToxSuite Molecular Fragment QSAR and 

knowledge expert system, (Perceptra 

platform) employing machine learning 

a,,h,i,j,k,l,m,r,s, 

Commercial ACD Labs, Pharma 

Algorithms 

Admensa interactive™ QSAR based system h,k,l Commercial Inpharmatica Ltd 

ADMET ™ predictor QSAR based expert system and machine 

learning b,c,d,e,f,j,k 

Commercial Stimulation Plus Inc.  

ADMEWORKS Predictor  QSAR,QSPR based expert system a,b,l Commercial Fujitsu, Poland 

AIM Category formation and read across Free US EPA 

BfR decision support system SAR and physicochemical exclusion 

rule-based system. Employs concordance 

decision tree approach d,i,o 

Free German Federal Institute for 

Risk Assessment 

BioEpisteme Molecular descriptor QSARb,h,k,n Commercial Prous Institute for 

Biomedical Research, Spain 

Bio-loom QSAR database CLOGP,CMRh,j Commercial  Biobyte 

CAESAR QSAR based expert systems based on 

Dragon descriptors and Multivariate 

approaches a,b,d,e 

Free EU 

CaseUltra (MC4PC)  Molecular fragment QSAR based expert 

System using machine learning a,b,c,d,I,j,k 

Commercial MultiCASE Inc.  

Cerius2/Material Studio Molecular modelling software k,l Commercial Accelrys Inc.  

COMPACT SAR and knowledge based system 

Employs Molecular orbital descriptors. 

a,b,c,k 

Free US NTP 

CSgenoTOX QSAR based system and machine 

learning(ANN)a 

Commercial ChemSilico 

DEREK NEXUS SAR Knowledge based expert system 

a,b,c,d,e, 

Commercial Lhasa Ltd 

HazardExpert (ToxAlert)  QSAR Knowledge based expert system 

a,b,d,e,n,o,p 

Commercial Compudrug Inc.  

Insilicofirst Common User Interface Expert System Commercial Lhasa Ltd., Leadscope, 

Multicase, MN GmbH 

KNIME® QSAR workflow tool Open KNIME.com 

LAZAR KNN approach (machine learning) a,b,k Open source In silico toxicology GmbH 

Leadscope Model Applier QSAR and Expert rule based knowledge 

system b,c,e,g,h,k,n 

Commercial Leadscope Inc.  

MDL QSAR Molecular descriptor QSAR, QSPR, 

multivariate approachesa,b,h,j 

Commercial Symyx - MDL, Inc.  

Molcode Toolbox QSAR based prediction tool a,b,d,i,j Commercial Molcode Ltd.  

OECD QSAR Toolbox Category formation and read across, 

QSAR for multiple endpoints 

Free OECD 
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Oncologic™ SAR rule based expert system. Employs 

hierarchical decision tree approach b 

Free US EPA 

PASS SAR based expert system using 

Biological Activity spectra and 

MNAb,j,o,r 

Free geneXplain GmbH 

Pre ADMET QSAR based System and machine 

learning a,b,l 

Commercial BMDRC Korea 

QikProp QSAR based expert system h,l Commercial Schrödinger Inc.  

q-TOX Knowledge based expert system f,h,j,k,m,n Commercial Quantum Pharmaceuticals 

Sarah Nexus Statistical software toola Commercial  Lhasa Ltd 

StarDrop QSAR based expert system h Commercial Optibrium Ltd. 

(StarDrop)(StarDrop)(Star

Drop)(StarDrop)(StarDrop)

(StarDrop)(StarDrop)(Star

Drop)(StarDrop)(StarDrop)

(StarDrop)(StarDrop)(Star

Drop)(StarDrop)(StarDrop)

58(StarDrop)(StarDrop)(Sta

rDrop)(StarDrop) 

T.E.S.T QSAR based expert system and machine 

learning g,j 

Free US EPA 

TerraQSAR Molecular Fragment QSAR based expert 

system. Employs Probabilistic neural 

networks. d,g,j,o 

Commercial TerraBase Inc.  

TIMES Structural alerts and COREPA software 

based Hybrid expert system a,d,g 

Commercial Bourgas University, 

Bulgaria 

TOPKAT QSAR, SAR, QSTR based expert system 

using Bayesian classification and partial 

least square regression models b,c,d,e,i,j,k,q, 

Commercial BIOVIA Discovery 

Studio® 

ToxMatch Category formation and read across d Free  Ideaconsult Ltd.  

ToxTree Category formation and read across 

a,b,c,d,i,l 

Free  Ideaconsult Ltd.  

ToxWiz Knowledge base expert system Commercial Cambridge cell 

networks(ToxWiz)(ToxWiz)(

ToxWiz)(ToxWiz)(ToxWiz)(

ToxWiz)(ToxWiz)(ToxWiz)(

ToxWiz)(ToxWiz)(ToxWiz)(

ToxWiz)(ToxWiz)(ToxWiz)(

ToxWiz)59 

a Mutagenicity, b Carcinogenicity, c Genotoxicity, d Dermal toxicity,  e Developmental toxicity, f 

Pulmonary toxicity, g Reproductive toxicity, h Cardiotoxicity,  I Ocular toxicity, j Acute toxicity, 
k Hepatotoxicity, l Absorption Distribution Metabolism Excretion, m Renal Toxicity, n 

Neurotoxicity,  o Immunotoxicity, p Cytotoxicity, q Chronic toxicity, r Haemotoxicity, s 

Gastrointestinal toxicity,  AIM: Analog Identification Methodology US EPA: United States 
Environmental Protection Agency, FDA: Food and Drugs Administration, NTP: National 
Toxicology Program EU: European Union, QSAR: Quantitative Structure Activity 
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Relationships, QSPR: Quantitative Structure Property Relationship, QSTR: quantitative 
Structure toxicity relationship, TOPKAT: Toxicity Prediction by Komputer Assisted 
Technology, PASS: Prediction of biological Activity Spectra for Substances, CAESAR: 
computer Assisted, Evaluation, of industrial chemical Substances According to Regulations, 
T.E.S.T: Toxicity Estimation Software Tool, COMPACT: Computer-optimised Parametric 
Analysis of Chemical Toxicity,  LAZAR: Lazy Structure Activity Relationships, TIMES: 
Tissue Metabolism Simulator, ADMET: Absorption Distribution Metabolism Excretion 
Toxicity, MNA: Multilevel Neighbourhood of Atoms, COREPA: Common Reactivity Pattern 
Approach, ANN: Artificial neural networks 

1.6. Predictive Model Development  

From the different in silico tools listed in Table 1.3, a summarised workflow for predictive 

toxicology model development is depicted in Figure 1.4a. The main question to consider while 

developing a computational model is what can be modelled that is of use to facilitate existing 

or new processes i.e. value addition? The starting point of model development is data which 

can be of different types such as numeric, categorical, discrete or continuous and can be 

acquired from different sources like experiments, structures, physicochemical properties and so 

on. Algorithms are then required to pre-process this data as well as for feature extraction. This 

is mainly for selecting the inputs and outputs of models as well as to convert raw data into 

parameters that can be modelled mathematically i.e. profilers or descriptors. Different linear 

and nonlinear mathematical techniques can be used for associating these descriptors to an 

adverse effect or toxicity by means of statistics, rules, multivariate data analysis and/or expert 

knowledge thus leading to development of a predictive model as shown in Figure 3b. The 

resulting model must be validated to ensure non-discriminatory comparison with other existing 

models. Several factors would have to be taken into consideration while selecting a software 

platform/tool such as availability, accessibility, user expertise levels, transparency of algorithm 

and knowledge base, choice and complexity of methodology and inclusion of mechanistic 

elucidation. Performance would depend on choice of measures for robustness and goodness of 

fit as well as validation parameters and methods chosen. Some of these aspects are described in 

detail in the following sections keeping in mind the proteinaceous nature of mAbs. 
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Figure 1.4 a) Computational toxicology model development workflow b) Techniques involved 
in different types of predictive models. 

1.5.1. Databases  

A number of databases have been utilised for developing predictive toxicology models during 

small molecule development such  as Open TG GATEs, Pharmapendium, Drugmatrix® and 

(a) 
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ToxFX® (Greene and Pennie, 2015). Databases containing information about mAbs and 

derived therapeutics are being developed extensively and the IMGT mAb database is 

particularly noteworthy in this regard as it provides comprehensive information on structure, 

primary sequences, developmental status, targets as well as documents relating to approval for 

more than 589 entities (Lefranc et al., 2015). Sources like Drug Bank, patents, FDA documents 

and UniProt could yield useful information regarding sequences of mAbs whereas Protein Data 

Bank (PDB) could provide structural information. The choice of a dataset for training model 

impacts its performance as studies have frequently indicated the discrepancies between public 

and proprietary datasets i.e. performance of a model developed on public datasets is lower when 

applied on a proprietary dataset (Greene and Pennie, 2015). 

1.5.2. Descriptor Generation and model development:  

Multivariate and statistical data analysis techniques have further allowed for rapid and easier 

descriptor calculation and model development. For proteins, the primary amino acid sequence 

and in some cases the 3D structure form the basis of generating different physicochemical, 

thermodynamic and topographic indices where the physicochemical and structural 

characteristics of amino acids are utilised to derive descriptors. These include Principal 

Component Analysis derived descriptors such as z scales and T-scales; 3D structure based ones 

such as Isotropic Surface Area and Electronic Charge Index; Atomic Charge density derived 

ones such as Transferable Atomic Equivalent, to name a few (van Westen et al., 2013b). Several 

machine learning and statistical methodologies, such as support vector machines (SVM), 

artificial neural networks (ANNs), k-nearest neighbour approach (kNN), decision forest 

approach, Naïve Bayes, C4.5 decision tree, Bayesian models, random forest approaches,  

recursive partitioning, multiple linear regression (MLR), discriminant analysis (DA) and self-

organising maps (SOM), have been used to predict hepatotoxicity, genotoxicity, cardiotoxicity, 

and renal toxicity of small molecules (Hardy et al., 2010; Wilson, 2011; Ekins, 2014; Greene 

and Pennie, 2015). They can be used to build standalone inference-based models or combined 

with Quantitative Structure activity relationship modelling.  

1.5.3. Models 

Quantitative structure activity relationships (QSAR) approach is based on connecting an 

activity, in particular toxicity (QSTR) or any other property (QSPR), to descriptors which can 

be derived from physicochemical, structural, electronic or steric parameters (Hansch et al., 

1995). QSAR methodology works best when the biological activity in question is based on a 

single endpoint or a simplistic mechanism of action. The development of QSAR models has 
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been supported extensively by workflow tools, QSAR databases as well as uniform reporting 

and summarising formats. Expert/Hybrid systems are extension of QSAR models and they can 

be based on rules, knowledge or statistics as well as a combination of two or more approaches. 

The multivariate techniques used can either be linear, such as principal component analysis 

(PCA) or partial least square regression (PLS) used in TOPKAT, or non-linear techniques, such 

as ANNs, used in CSgenoTox (Cronin and Madden, 2010). Knowledge based expert systems 

have incorporated a more mechanistic basis to their predictive tools (Cronin and Madden, 

2010). QSAM (Quantitative Sequence Activity Modelling) is another paradigm of QSAR 

modelling which is being used extensively for protein based predictive models. Angiotensin-

converting enzyme- (ACE-) inhibitory peptides were screened based on models generated using 

PLS, MLR and most recently ANN (Zhou et al., 2008). PLS, SVM and HM based models have 

been used with smaller peptides (9 amino acids residues) for predicting binding affinity with 

Class I Major Histocompatibility Complex (Zhao et al., 2007). Proteochemometric modeling is 

an extension of QSAR that uses Multiplication of Ligand and Protein Descriptors (MLPD) to 

include interaction space information in addition to protein and ligand descriptors (Qiu et al., 

2016). 

The advantages of QSAR based expert systems are that they are rapid, well developed and 

regularly updated. The disadvantages are that the datasets, algorithms and knowledge base are 

usually not transparent. Most of the tools are commercial and use proprietary datasets. Due to 

the high level of automation there is a possibility of losing the mechanistic understanding of 

action.  

In addition to the models mentioned above, significant advances have been made with regard 

to ADME models as understanding the ADME characteristics of molecules is very important 

in assessing their bioavailability. A target mediate drug disposition based pharmacokinetic 

model has been developed from preclinical data for predicting pharmacokinetics of mAbs 

within the human system which could aid in clinical designs (Luu et al., 2012). There have been 

several machine learning techniques that have been employed in skin absorption and 

metabolising studies which enable to predict the extent of toxicity caused by compounds 

(Moore et al., 2014; Ashrafi et al., 2015). It is also worthwhile to mention that the latest 

techniques seem to revolve around consensus modelling where the outputs from different 

predictive models are averaged or inferred by several approaches, for example leverage-

weighted means (Cronin and Madden, 2010). The success of these models however has been 



 
25 

 

debatable as some report better predictivity while others report no significant benefits when 

compared to single models (Hewitt et al., 2007). 

1.5.4. Validation 

Models are assessed for specificity, sensitivity and concordance based on either a different 

dataset typically referred to as the test set or by other appropriate means of validation. Internal 

validation procedures implemented include cross validation (leave out one and/or leave out 

many) and bootstrapping. External and independent validation strategies can also be used such 

as testing the model with new experimental data. The predictive ability can be quantified using 

different parameters like root mean square error (RMSE), determination coefficient (R2) and 

predictive squared correlation coefficient (Q2) for QSAR model and these have been evaluated 

in previous studies (Abshear et al., 2006; Consonni et al., 2009).  

1.6. Scope of the study 

This study focused on developing a QSAR model for early stage screening of monoclonal 

antibody therapeutics to facilitate rapid developability. Considering that hepatotoxicity and 

dermal toxicity constitute a major portion of adverse effects elicited by mAbs, the applicability 

of the experimental methods was first tested on chemical compounds to assess the assay quality 

following which they were used to assess potential off target adverse effects of mAbs (Chapter 

2 and Chapter 3).  Furthermore, hypersensitivity reactions were assessed using Skimune™, a 

non-artificial human skin explants-based assay for safety and efficacy assessment of novel 

compounds and drugs, developed by Alcyomics Ltd. The suitability of Skimune for assessing 

the immunogenic adverse effects of aggregated mAbs was studies where aggregation was 

induced using a heat stress protocol following which the aggregates were characterised and 

immunogenicity tested using Skimune™ assay (Chapter 4). Identification and creation of data 

blocks from the primary sequence of mAbs is described in Chapter 5 wherein the influence of 

intrinsic properties on these descriptors have been described. Multivariate regression models 

were developed to assess correlations between the biological activities of mAbs, which was 

expressed in terms of cross reactivity, with structural and primary sequence-based descriptors 

individually (Chapter 6 and Chapter 7). The models, datasets and responses were benchmarked 

using various performance metrics. The effect of using a combination of sequence based and 

structural features was assessed in Chapter8. Finally, the applicability of the best descriptor set 

was assessed for developing a QSAR model with Skimune™. Unless otherwise stated, the work 

reported below was personally carried out by the author of this thesis. 
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Chapter 2. Assessment of hepatotoxicity and dermal toxicity of butyl 
paraben and methyl paraben using HepG2 and HDFn in vitro models 

As discussed in the previous chapter, in vitro toxicity testing panels are prevalent for assessing 

the different toxicity endpoints of chemical compounds. In this chapter these toxicity tests have 

been used to assess various toxic endpoints elicited by parabens in hepatocarcinoma (HepG2) 

and dermal fibroblast (HDFn) cell line (Kizhedath et al., 2018b).  

Parabens, esters of parahydroxybenzoic acid, are widely used in cosmetic, food and 

pharmaceutical industries mainly for their antibacterial and fungicidal properties. Stability over 

a wide pH range, low cost, broad spectrum activity and low toxicity were some of the reasons 

for the popularity of paraben as preservatives (Soni et al., 2005). p-Hydroxybenzoic acid is 

esterified at C-4 position and the paraben series mainly include methyl-, ethyl-, propyl-, butyl-, 

heptyl- and benzyl-paraben (Figure 2.1). Of these, methyl paraben has shown least toxicity in 

a wide range of in vitro and animal tests (acute and chronic studies) and is the most widely used 

paraben. Butyl paraben is routinely used as a preservative in some foods, cosmetics, drug 

formulations and baby products. Humans are also exposed to parabens from the environment 

(soil, air, biota and water) via inhalation, skin contact and ingestion (Ma et al., 2014). Even 

though parabens are rapidly hydrolysed by carboxylesterases, biomonitoring of butyl paraben 

based on their concentrations in urine (free/conjugated) showed presence of the parent 

compound in  50 – 70% (US), 80% (Denmark)  and 36% (Germany) of the test population (Ye 

et al., 2006; Calafat et al., 2010; Moos et al., 2014). 

 

Figure 2.1 Chemical structures of methyl paraben(CSID:7176) butyl paraben(CSID:6916) and 

4-Hydroxybenzoic acid (CSID:132) (Source ChemSpider, Royal Society of Chemistry). 
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In vitro studies have shown that the effects of parabens   on a number of endpoints increases 

with an increase in the alkyl chain length (Tavares et al., 2009; Błędzka et al., 2014; Uramaru 

et al., 2014). The mode of action of parabens is thought to be the disruption of membrane 

transport and inhibition of mitochondrial function (Porceddu et al., 2012). Propyl paraben 

associated cytotoxicity was observed in rat primary hepatocytes as well as in in vitro studies 

using HepG2 cells (Nakagawa and Moldéus, 1998; Szeląg et al., 2016). Parabens are deemed 

to be mildly estrogenic and reproductive toxicity has been reported in several studies(Soni et 

al., 2005; Tavares et al., 2009). Several in vitro and in vivo studies have been conducted to 

ascertain the endocrine disrupting activity of parabens with special emphasis on the presence 

of methyl paraben being reported in breast cancer tissues (Golden et al., 2005; Darbre and 

Harvey, 2008). Butyl paraben and isobutyl paraben, are classified as allergens and have been 

shown to induce male reproductive disorders, male sexual developmental toxicity as well as 

multiple endocrine disrupting effects (Kang et al., 2002; Oishi, 2002; Uramaru et al., 2014; 

Boberg et al., 2016; Zhang et al., 2016; Guerra et al., 2017).  Methyl paraben was shown to 

accelerate cellular aging in NHEK cells as well as  produce oxidative stress in HaCat cells upon 

exposure to ultraviolet light-B (Handa et al., 2006; Ishiwatari et al., 2007).  

As parabens are approved preservatives in cosmetics there has been considerable interest in the 

permeation and metabolism of parabens in skin. Multiple studies have been conducted in 

different in vitro, in vivo and ex vivo systems to assess these factors wherein the permeation 

ability as well as the permeation flux appeared to be related to the lipophilicity and molecular 

weight of parabens (Soni et al., 2005; Pedersen et al., 2007; Caon et al., 2010; Moos et al., 

2016; Hatami et al., 2017). 

The concentration of butyl paraben considered safe, as stated by the European Union, is below 

0.19% (w/v) (SSC/1514/13). However, these limits are still subject to scientific scrutiny due to 

the following factors: lack of human studies; metabolic differences in rats and humans for 

parabens leading to difficulties in extrapolation; limited information on the systemic availability 

of free parabens and their metabolites as well as differential dermal absorption and metabolism 

in in vivo studies when compared to humans (Harville et al., 2007; Ulrike Bernauer et al., 2013). 

The permissible levels of parabens correspond to 5mM in solution. Taking into consideration 

the increasing exposure of humans to butyl parabens via multiple routes, including the 

environment, the goal of this study was to measure the harmful effects of exposure to methyl 

or butyl paraben in an immortalised hepatocyte cell line and human neonatal dermal fibroblasts 

using an extended in vitro toxicity assay panel. These cells lines were considered as their 
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usefulness in assessing hepatotoxicity and dermal toxicity has been well documents for small 

molecules. Furthermore, they do not present the antigens required for mAbs binding and 

therefore could potentially aid in detecting off target effect of mAbs as shown in Chapter 3. The 

concentrations used in this study have been formulated based on a range below this (highest 

concentration is 1mM. In vitro studies on human cell lines can contribute to filling in the gap 

between animal studies and deriving limits for human exposure. The results obtained in this 

study could supplement existing in vivo toxicity data for defining more robust limits for human 

exposure. 

2.1. Materials and Methods 

2.1.1. Cell lines and reagents 

Hepg2  (ATCC® HB-8065™)  and HDFn (ATCC® PCS-201-010™) cells were obtained from 

Newcastle Central Biobank maintained on the ATCC cultures, Dulbecco's Modified Eagle 

Medium (DMEM, high glucose, with bicarbonates), Fetal Bovine Serum (FBS), Pencillin-

Streptomycin (10,000 units penicillin and 10 mg streptomycin/mL) , Phosphate Buffered Saline 

(PBS), Trypsin EDTA solution, MEM non-essential amino acids , L glutamine solutions 

200mM, Sodium Pyruvate Solution, Methyl paraben (CAS No: 99-76-3), butyl paraben (CAS 

No: 94-26-8), WST-1 (Cat. No: 05015944001), 2', 7’–dichlorofluorescin diacetate (DCFDA; 

CAS No: 4091-99-0), Dihydrorhodamine 123 (DHR123 CAS No: 109244-58-8), Hydrogen 

peroxide (CAS No: 7722-84-1) were purchased from Sigma Aldrich, UK. CellTiter-Glo® and 

GSH-Glo™ Reagent was purchased from Promega, UK and TMRE-Mitochondrial Membrane 

Potential Assay Kit was purchased from abcam, UK. The 96 well F bottom plates were 

purchased from GreinerBioOne. 

2.1.2. Cell culture and maintenance 

HepG2 and HDFn cells were grown as an adherent culture in complete growth media 

(Dulbecco’s Modified Eagle’s Media supplemented with 10% Fetal Bovine Serum, 1% 

Penicillin/Streptomycin, 1% Non-Essential Amino Acids, 1% L-Glutamic acid and 1% Sodium 

Pyruvate) in T75 tissue culture flasks. The cells were subcultured 3 times a week using the 

following procedure: the spent media was removed, and the cells were given a Phosphate 

Buffered Saline wash following which 1x diluted Trypsin was added to gently lift the cells. The 

cells were then re-suspended in 1:15 dilution in T75 tissue culture flasks. The cells were 

maintained up to passage 20. Two vials of cells were maintained so as to take into account batch 

variability. 
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2.1.3. Cell seeding and treatment 

The HepG2 and HDFn cells were seeded at a density of 10000cells/well onto a Greiner 96-well 

F bottom tissue culture plate. The cells were then exposed to concentrations ranging between 

5-1000μM of the compounds: Methyl paraben or Butyl paraben and further incubated at 37°C 

5% CO2 for 24 hours(h).  Each assay contained a control, positive control and solvent control. 

The control were cells in media, solvent control contained the volume of solvent used for the 

highest concentrations used and the positive control was dependent on the assay and endpoint 

measured.  

2.1.4. WST-1 cell proliferation Assay 

Following the exposure of cells to the test compounds for 24 h, 10μl of WST-1 reagent was 

added per well and the plates were incubated for an additional 4 h. Endpoint measurements of 

absorbance were taken at 480nm and 600nm (background) on FLUOstar® Omega multimode 

microplate reader. Cell viability was expressed as a percentage of the control. Absorbance was 

also measured for solvent control.  

2.1.5. CellTiter-Glo® Luminescent Cell Viability Assay 

Following the exposure of cells to the test compounds for 24 h, the plate and its contents were 

equilibrated at room temperature for approximately 30 minutes. Volume of Cell Titer-Glo® 

Reagent equal to the volume of cell culture medium present in each well (e.g., 100µl of reagent 

to 100µl of medium containing cells for a 96-well plate) was added. Contents were mixed for 

2 minutes on an orbital shaker to induce cell lysis. The plate was allowed to incubate at room 

temperature for 10 minutes to stabilise luminescent signal. Luminescence was recorded in 

FLUOStar Omega multiplate reader. 

2.1.6. GSH-Glo™ Glutathione Assay  

Following the exposure of cells, seeded in 96 well plates, to the test compounds for 24 h, culture 

media was removed from the plates. GSH-Glo™ reagent (100μl Luciferein-NT, 100μl of 

Glutathione S-Transferase and 10 ml of GSH-Glo™ reaction buffer) was added (100μl per well) 

and mixed briefly on a plate shaker followed by further incubation for 30 minutes at room 

temperature. Reconstituted Luciferin Detection reagent (100μl) was added to each well of the 

96 well plate. The contents of each plate were then mixed and incubated for 15 minutes at room 

temperature to stabilise luminescent signal. Luminescence was recorded in FLUOStar Omega 

multiplate reader. 
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2.1.7. Detection of Reactive oxygen species 

Following the exposure of cells to the test compounds for 24 h, DCFDA was added to all wells 

at a final concentration of 10μM in well and the plates were incubated for an additional 30 

minutes. The media was removed from plates and the wells were washed once with PBS. The 

cells were resuspended in 200μl of PBS. Endpoint measurements of fluorescence were taken at 

480nm (excitation maximum) and 520nm (emission maximum) on FLUOstar ® Omega 

multimode microplate reader. Reactive oxygen species (ROS) levels were expressed as a 

percentage of the control. Absorbance measurements were also read for solvent control as well 

as positive control (20μM-5mM final concentration of H2O2). A similar protocol was used for 

the Dihydrorhodamine 123 assay reagent. 

2.1.8. Cell cycle Analysis 

HepG2 cells were seeded in 24 well plates at a density of 2 x106 cells/ml. Following the 

exposure to the test compounds for 24h, the cells were gently lifted with 1X trypsin and cells 

washed once with Phosphate buffered saline (PBS). The cells were then fixed in 70% ethanol, 

added dropwise to avoid clumping. The samples were then washed twice in PBS and treated 

with 50μl of 100μg/ml ribonuclease followed by 50μl of 50μg/ml Propidium iodide (PI). The 

samples were then analysed by flow cytometry. Forward and side scatter was measured to 

identify various cell populations. Pulse processing was used to exclude cell doublets from 

analysis. PI has an emission maximum of 636 nm and it was measured in the FL2 channel 

(585/42bp filter) on Caliburs (pulse area vs pulse width). Typical voltage for PI in mammalian 

cells is around 400V on the Calibur. The data was analysed using FlowJo software where 

Gaussian curves were fit to obtain G1, S and G2/M % for each cell cycle distribution. The 

analysis was performed by the Flow Cytometry Core Facility, at Newcastle University. 

2.1.9. Mitochondrial Membrane Potential Assay 

Following the exposure of cells to the test compounds for 24 h, the plate and its contents was 

equilibrated at room temperature for approximately 30 minutes. After removing the media, to 

eliminate background fluorescence, working solution of tetramethylrhodamine, ethyl ester 

(TMRE) solution prepared in media (final concentration 200nM) was added to cells. The plates 

were incubated for 30 minutes with subsequent media removal and replacement with 100µl of 

PBS. Endpoint measurements of fluorescence were taken at 549nm (excitation maximum) and 

575nm (emission maximum) on FLUOstar ® Omega multimode microplate reader. Final 
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concentration of 20µM (carbonyl cyaninde 4-(trifluoromethoxy) phenylhydrazone) was used 

as a positive control. 

2.1.10. Statistical analysis 

Statistical analysis was carried out using Minitab 17 software. Statistically significant results 

were reported based on one way Analysis of variance (ANOVA) test followed by post hoc tests 

(Tukey’s/Fishers/Dunnett’s) (Ruxton and Beauchamp, 2008) Graphpad Prism V.6.0 (Prism, 

2014) was used for curve fitting and computing IC50 values. 

2.2. Results 

2.2.1. Paraben induced cytotoxicity 

HepG2 and HDFn cells were treated with varying concentrations of butyl and methyl parabens. 

WST-1 is a tetrazolium salt that is converted by mitochondrial dehydrogenase enzymes into a 

water-soluble coloured formazan compound which is a measure of the metabolic activity of 

cells (Riss et al., 2016). Cell proliferation was expressed as a percentage of the control. A 

concentration dependent decrease in cell viability can be observed for HepG2 cells exposed to 

butyl paraben with a logIC50 of 2.81± 0.04 (IC50 643.7μM) (Figure 2.2a). For HDFn cells the 

logIC50 for butyl paraben was 2.70 ± 0.04 (IC50 502.5μM) (Figure 2.3a).  No statistically 

significant decrease in cell viability was observed in either of the cell lines for the entire 

concentration range of methyl paraben tested (Figure 2.2a, 2.3a).  A significant decrease in cell 

viability was measured for butyl paraben concentrations >300μM in both cell lines (Figure 2.2b, 

2.3b) (p<0.05, one-way ANOVA).  

2.2.2. Paraben induced reduction in ATP levels 

HepG2 and HDFn cells were treated with varying concentrations of butyl and methyl parabens. 

Cell Titer-Glo® Luminescent Cell Viability Assay allows for detection of metabolically active 

cells through the quantification of Adenosine triphosphate (ATP). Luciferin emits light upon 

interaction with ATP in a reaction catalysed by firefly luciferase and this can be measured by 

recording the luminescence. For HepG2 cells a concentration dependent decrease in 

luminescence was measured for butyl paraben with a logIC50 of 2.69 ± 0.03 (IC50 483.7μM) 

(Figure 2.2c). For HDFn a similar concentration dependent decrease was observed for butyl 

paraben with a logIC50 of 2.63 ± 0.03 (IC50 425.2μM) (Figure 2.3c).  No reduction in ATP 

levels was measured in either of the cell lines for the entire concentration range of methyl 

paraben tested (Figure 2.2c, 2.3c). A significant reduction (p<0.05, one-way ANOVA) in ATP 
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levels was measured for butyl paraben concentrations >300μM in both cell lines (Figure 2.2d, 

2.3d). 

2.2.3. Paraben induced reduction in glutathione levels 

HepG2 and HDFn cells were treated with varying concentrations of butyl and methyl parabens.   

GSH-Glo™ assay allows for luminescence-based detection and quantification of glutathione in 

cells. Glutathione transferase catalyses the conversion of a luciferin derivative into luciferin 

when GSH is present and this luciferin is detected using Ultra-Glo™ recombinant luciferase. 

The luminescence generated is proportional to the glutathione levels present in cells. As in the 

previous tests, for HepG2 cells a concentration dependent decrease in GSH levels was observed 

for butyl paraben with a logIC50 of 2.65 ± 0.15 (IC50 448.9μM) (Figure 2.2e). For HDFn a 

similar concentration dependent decrease in GSH levels was observed for butyl paraben with a 

logIC50 of 2.64 ± 0.06 (IC50 438.1μM) (Figure 2.3e). Again, no reduction in GSH levels was 

observed in either of the cell lines for the concentration range of methyl paraben tested (Figure 

2.2e, 2.3e). Results were considered to be significant at p<0.05 based on one-way ANOVA test. 

A significant decrease in GSH levels can be observed for butyl paraben concentrations >300μM 

in both cell lines (Figure 2.2f, 2.3f). 
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Figure 2.2 Results of the different in vitro tests performed on HepG2 cell after treatment with 
Butyl paraben and Methyl paraben for 24 h. Cell viability assay using WST-1 reagent (a) Dose 
response curve (b) concentration vs percentage of the control response. ATP reduction assay 
using CellTiter-Glo® (c) Dose response curve (d) concentration vs percentage of the control 
response. GSH reduction using GSH-Glo™ (e) Dose response curve (f) concentration vs 
percentage of the control response. All values are expressed as a percentage of the control and 
mean ± standard error of the mean (SEM) for n=3. Statistical differences were assessed with 
one way ANOVA. Dunnett’s post hoc test was used for multiple comparisons to control. ** 
indicates p<0.05, *** indicates p<0.001 
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Figure 2.3 Results of the different in vitro tests performed on HDFN cell after treatment with 
Butyl paraben and Methyl paraben. Cell viability assay using WST-1 reagent (a) Dose response 
curve (b) concentration vs percentage of control response. ATP reduction assay using CellTiter-
Glo® (c) Dose response curve (d) concentration vs percentage of control response. GSH 
reduction using GSH-Glo™ (e) Dose response curve (f) concentration vs percentage of control 
response. All values are expressed as percentage of control and mean ± standard error of the 
mean (SEM) for n=3.  Statistical differences were assessed with one way ANOVA. Dunnett’s 
post hoc test was used for multiple comparisons to control. ** indicates p<0.05, *** indicates 
p<0.001. 
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2.2.4. Paraben induced time dependent decrease in ATP levels 

Concentration and time dependent decrease of ATP was observed for butyl paraben in both cell 

lines (Figure 2.4). The percentage of ATP was measured at time intervals of 1, 4, 8, 12 and 24 

h and this was used to derive logIC50 and IC50 values as shown in Table 2.1. In HepG2 cells 

a 50% in ATP levels  and in HDFn cells approximately 97% decrease in ATP levels was  

observed based on the IC50 values calculated at 1h and 24h (Figure 2.4c, 2.4a).  Additionally, 

the time dependent decrease in ATP levels was faster for HDFn when compared to HepG2. As 

seen in Figure 4a, ATP levels fall to about 50% of control at 1000 μM with HDFn after 1 h 

incubation whereas the decrease in HepG2 cells after 1 h is much lower (only to about 70%) as 

seen in Figure4c. Similarly, ATP levels fall to 30% of control at 4 h in HDFn cells compared 

to the 50% of control in HepG2 cells (Figure 2.4a and 2.4c). This indicates that the HDFn cell 

line is more sensitive to butyl paraben. Methyl paraben did not show any decrease in ATP levels 

in response to concentration or time in either cell line. Indeed, ATP levels increased with methyl 

paraben concentrations with respect to the control for exposure durations of 4 h and 8 h (Figure 

2.4b, 2.4d). 

Table 2.1 Time dependent butyl paraben induced decrease in ATP levels expressed in term of 
logIC50, IC50 and standard error (SE) in HepG2 and HDFn cells. 

Duration of exposure 
(hrs) 

HepG2 HDFn 

logIC50 SE IC50 (μM) logIC50 SE IC50 (μM) 

1 2.99 ± 0.04 991.5 4.16 ± 0.26 14517 

4 2.85 ± 0.02 708.6 3.02 ± 0.06 1044 

8 2.95 ± 0.03 891.1 2.94 ± 0.02 870.2 

12 2.81 ± 0.03 647.7 2.81 ± 0.02 649.9 

24 2.63 ± 0.03 425.2 2.68 ± 0.02 484.1 
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Figure 2.4 Dose response curves of the reduction in ATP levels measured over time after the 
exposure of cells to different concentrations of parabens for 1, 4, 8, 12 and 24 h using CellTiter-
Glo®. Dose response curves for HDFN after treatment with (a) Butyl Paraben (b) Methyl 
Paraben. Dose response curves for HepG2 after treatment with (c) Butyl Paraben (d) Methyl 
Paraben All values are expressed as percentage of control and mean ± standard error of the 
mean (SEM) for n=3. 

2.2.5. Cell cycle analysis to assess genotoxicity of parabens 

Propidium iodide, an intercalating DNA dye, is widely used for quantification of total DNA 

content by flow cytometry analysis (Krishan, 1975). Cell cycle arrest compared to the control 

could be indicative of DNA damage and thus potential genotoxicity of compounds.  Compared 

to the control there was a small increase in HepG2 G1 cell population as well as a decrease in 

G2 and S for the highest concentration of Butyl paraben i.e. 200μM (Figure 2.5a). An increase 

in the cell population in G1 and G2 phases, as well as a concomitant decrease in the proportion 

of cells is S phase, was measured for methyl paraben when compared to the control cells for 

the highest concentration of methyl paraben i.e. 200μM (Figure 2.5b).  This cell cycle arrest in 

G1 phase was also measured with the positive control (50mM H2O2). For HDFn, due to the 
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sensitivity of these cells the protocol used here was perhaps not best suited (freeze thaw cycle) 

and there the results are not of the highest quality owing to methodological issues.  

 
(a) 

 
(b) 

Figure 2.5 Graphical representation of cell cycle phase proportions following cell fixing, 
Propidium Iodide staining and analysis by flow cytometry for (a) HepG2 cells treated with butyl 
paraben (BP) (b) HepG2 cells treated with methyl paraben (MP). All values are expressed as a 
percentage of the control and mean ± standard error of the mean (SEM) for n=3. Statistical 
differences were assessed with one way ANOVA. Dunnett’s post hoc test was used for multiple 
comparisons to control. ** indicates p<0.05. 



 
38 

 

 

Figure 2.6 Graphical representation of cell cycle phase proportions following cell fixing, 
Propidium Iodide staining and analysis by flow cytometry for (a) HDFn cells treated with butyl 
paraben (b) HDFn cells treated with methyl paraben. 

2.2.6. Paraben induced Oxidative stress and mitochondrial dysfunction 

HepG2 cells and HDFn cells were treated with varying concentrations of butyl or methyl 

paraben. DCFDA is a cell permeant fluorogenic dye that, upon deacetylation by cellular 

esterases, can be converted to a fluorescent compound in the presence of reactive oxygen 

species (ROS). The higher the fluorescence detected, the greater the amount of free radicals and 

thus higher oxidative stress (Liu et al., 2014a). The positive control (hydrogen peroxide, 5mM 

at 24h) showed a high level of fluorescence compared to the control, however no concentration 

dependent increase in ROS was observed for either of the parabens (Figure 2.7a,2.7b).  Similar 

results were obtained using DHR123, a fluorogenic ROS indicator, for both HepG2 and HDFn 

cells exposed to varying concentrations of parabens (Possel et al., 1997). No concentration 

dependent increase in fluorescence signal was observed for either of the parabens but a high 

level was observed for the positive control (Figure 2.8a, 2.8b). No changes in mitochondrial 

membrane potential were observed in HepG2 cells for either of the parabens over the 

concentration range 0 to 1000 μM. (Figure 2.8c). 
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Figure 2.7 Results of the DCFDA assay to measure ROS production in HepG2 cells after 
treatments with (a) butyl paraben and (b) methyl paraben. All values are expressed as 
percentage of control and mean ± standard error of the mean (SEM) for n=3.  
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Figure 2.8 Results of the DHR 123 assay to measure oxidative stress in (a) HepG2 and (b) 
HDFN cell lines after treatment with Butyl paraben and Methyl paraben. Results of the TMRE 
assay to measure mitochondrial membrane potential in (c) HepG2 cells after treatments with 
parabens. All values are expressed as percentage of control and mean ± standard error of the 
mean (SEM) for n=3.  
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2.3. Discussion 

Parabens are widely used in pharmaceutical, cosmetic and food sector applications as 

preservatives. However, they have been shown to induce hepatotoxic and dermal toxic effects 

in several studies (Nakagawa and Moore, 1999; Harville et al., 2007; Shah and Verma, 2011; 

Porceddu et al., 2012).  

In our studies, butyl paraben was observed to cause a significant concentration dependent 

decrease in cell viability for HepG2 cells (IC50 643.7μM when incubated with cells for 24 h. 

Besides being in agreement with previous in vivo studies, we have also demonstrated 

cytotoxicity at concentrations many times lower than those reported in primary rat hepatocytes 

and mice (Nakagawa and Moldéus, 1998; Shah and Verma, 2011). The toxicity of butyl paraben 

observed appears to be accompanied by a significant dose dependent reduction in ATP (IC50 

483.7μM).  ATP is a sensitive marker for cell viability since as the cells lose membrane 

integrity, they fail to synthesise ATP and any remaining ATP in the cytoplasm is rapidly 

depleted by ATPases (Riss et al., 2016). This can also be reflective of mitochondrial 

dysfunction. This has been previously reported in HepG2 cells on exposure to propyl paraben 

as well as mice and rat primary hepatocytes upon exposure to butyl paraben (Nakagawa and 

Moldéus, 1998; Shah and Verma, 2011; Szeląg et al., 2016). A significant dose dependent 

depletion of glutathione (GSH) levels was also observed for higher concentrations (IC50 

448.9μM) of butyl paraben which may indicate an oxidative stress mechanism via GSH 

depletion. Dose dependent oxidative stress mediated hepatotoxicity has been observed in in 

vivo studies upon oral exposure to butyl paraben where significant dose dependent increase in 

lipid peroxidation (a consequence of oxidative stress) and decrease in glutathione levels were 

observed for higher concentrations (1000mM) (Shah and Verma, 2011).  

The decrease in ATP content of cells in response to butyl paraben was found to be time-sensitive 

as well as concentration dependent.  A significant time and dose dependent decrease in ATP 

was also observed in HepG2 cells with 50% decrease in IC50 values based on ATP levels over 

a 24 h period. Butyl paraben was observed to cause a significant dose dependent cytotoxicity 

(IC50 502.5M) in HDFn cells which was accompanied by a corresponding significant dose 

dependent decrease in ATP levels (IC50 425.2μM) as well as GSH levels (IC50 438.1μM). A 

significant time and dose dependent decrease in ATP was also observed for HDFn cells with 

97% decrease in cell viability over a 24-hr period.  At shorter exposure times, HDFn cells 

appeared to be more sensitive to butyl paraben than HepG2 cells.  After 1 h exposure, HDFn 

cells showed almost complete depletion of cellular ATP compared to controls, whilst HepG2 
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cells showed only a 50% reduction in ATP content.  This may be clinically significant, as liver 

cells are more likely to be exposed to the metabolite than the parent compound (either as a result 

of hydrolysis during absorption in the GI tract, in the plasma or by hepatic metabolism, whilst 

fibroblasts are more likely to be exposed to the parent compound.  Cutaneous tissues are well 

understood to possess lower activities of hydrolytic enzymes than hepatic tissues.    

Methyl paraben did not show any significant decrease in cell viability, reduction in ATP or 

glutathione levels in HepG2 and HDFn cell lines at the concentrations tested. Cell proliferation 

was observed for higher concentration of methyl paraben in both cell lines. IC50 values could 

not be derived for methyl paraben as there was no apparent concentration dependent toxicity at 

the concentrations tested. Low concentrations of methyl paraben (200μM) showed accelerated 

cell aging in skin keratinocytes, however the incubation time was 32 days (Ishiwatari et al., 

2007).  

There appeared to be no ROS mediated effect of either methyl or butyl paraben on cell viability 

as demonstrated by the DCFDA assay and DHR123 assay, a finding supported by research in 

previous studies (Soni et al., 2005). Some previous studies have reported ROS production as 

well as mitochondrial damage in response to paraben exposure, although the concentration 

range tested was far higher in those reports (Nakagawa and Moldéus, 1998; Shah and Verma, 

2011) than those tested in the present study. The potential to induce hepatotoxicity in isolated 

mouse liver mitochondria via damage to mitochondrial respiration has been reported for 

parabens (Porceddu et al., 2012). Butyl paraben induced mitochondrial permeation transition-

mediated mitochondrial swelling was reported in the presence of 50μM calcium ions in isolated 

rat hepatocytes at a concentration of 0.25mM (Nakagawa and Moore, 1999). In the present 

study the TMRE assay was not able to detect any changes in mitochondrial membrane 

permeability for the highest concentration of parabens tested. This could be due to a lack of 

ions required to facilitate detection of increased membrane permeation via increased ion influx.   

Cell cycle analysis using propidium iodide staining methods has been used to study cell cycle 

arrest at different phases to provide an indirect measure of genotoxicity (Krishan, 1975; 

Esmaeelian et al., 2013). A dose dependent cell cycle arrest in the G1 phase and decrease in S 

phase was observed for HepG2 cells exposed to the highest non-cytotoxic concentration of 

butyl paraben (200μM). These results are comparable to a previous study which showed a 

significant dose dependent decrease in mitotic cells as well as cycle arrest in G1 phase observed 

in Vero cells exposed to 500μM propyl paraben (Martín et al., 2010). Chromosomal aberrations 

and an increase in polyploid cells were observed in an in vitro genotoxicity assays of butyl 
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paraben at a dose of 308 μM (Ishidate Jr et al., 1978). Further analysis such as gene mutation 

in mammalian cells systems, γ-H2AX assay (test for DNA damage) as well as chromosomal 

aberrations tests would be required to provide clarity on the mechanism of potential 

genotoxicity (Knight et al., 2009; Ivashkevich et al., 2012). 

Considering the two main routes for paraben exposure, oral and/or topical, two main aspects 

must be taken into consideration while interpreting and setting toxicity limits: hydrolysis and 

permeation, which is in turn influence by the alkyl chain length of parabens. Permeation of 

parabens into skin layers upon topical application has been demonstrated by different studies 

and this is influenced by the lipophilicity and molecular weight of parabens in different in vivo 

and ex vivo models (Pedersen et al., 2007; Caon et al., 2010).  Previous reports have shown that 

parabens with increased chain length exhibit increased potency (Prusakiewicz et al., 2007) and 

this could be the reason for the toxicity of butyl paraben in this study while methyl paraben 

showed no effects. Elimination rate via urine decreases with increasing length of alkyl chain as 

this increases the lipophilicity of paraben as reflected in previous studies (Moos et al., 2016). 

Butyl parabens have shown rapid biotransformation in terms of glucuronidation and hydrolysis 

when compared to methyl paraben in human liver microsomes and plasma respectively, further 

studies have to be conducted to distinguish the effect of the butyl or methyl parabens from its 

primary metabolite which is p-hydroxybenzoic acid (Abbas et al., 2010).  

Human exposure to parabens has become extensive due to their presence in consumer products 

as well as via environmental routes. In conclusion our results have demonstrated the potential 

hepatotoxic and dermal toxic effect of butyl paraben which appears to be accompanied by ATP 

and GSH depletion reflective of mitochondrial dysfunction and oxidative stress respectively 

using HepG2 and HDFn as in vitro models. Our findings also indicate a time dependent 

decrease in ATP levels which provides a useful basis for further toxicokinetic studies. An 

insight has also been provided into the potential cell cycle arresting tendency of butyl paraben. 

Due to a lack of data from human studies as well as difference in 

pharmacokinetic/pharmacodynamics behaviour of animal model studies when compared to 

humans, a scientifically sound conclusion cannot be reached by regulatory authorities on the 

safe usable limits of parabens. Whilst additional factors such as absorption and metabolism 

must be taken into account, it has been established that methyl paraben and butyl paraben are 

extensively and rapidly absorbed through the skin and that metabolism of parabens in cutaneous 

tissues is not extensive. Whilst the resemblance of HepG2 cells to human liver cells may be 

limited, the dermal fibroblasts used in this study were indeed primary human cells.  Given the 
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accumulated evidence for the effects of parabens (and the potential interaction with other 

environmental stressors) such as UV radiation, the case could be made to re-examine 

permissible limits. These in vitro studies could form the preliminary step at bridging the gap 

between in vivo data and extrapolation to set safe use limits in pharmaceutical, cosmetics and 

food products.  

2.4. Chapter Summary 

In the present study the effects of exposure to methyl or butyl paraben (5-1000μM) on 

cytotoxicity, oxidative stress, mitochondrial dysfunction and genotoxicity were measured in a 

hepatocarcinoma cell line (HepG2) and human dermal fibroblasts neonatal (HDFn). Butyl 

paraben caused a concentration dependent decrease (above 400μM) in cell viability for both 

cell lines. Toxicity of butyl paraben observed appeared to be mediated via ATP depletion as 

seen from luminescence assays. Depletion of glutathione was also observed for higher 

concentrations of butyl paraben, which may indicate the involvement of oxidative stress. 

Methyl paraben, however, did not show any significant decrease in cell viability, reduction in 

ATP or glutathione levels in HepG2 and HDFn cell lines at the concentrations tested. In vitro 

studies based on human cell lines can provide information in the early stages of multitier 

paraben toxicity studies and can be combined with in vivo and ex vivo studies to build more 

comprehensive, scientifically sound strategies for paraben safety testing. 

As evident from the results obtained from the above study, in vitro toxicity assays were able to 

assess the potential hepatoxicity and dermal toxicity of parabens. Complexity of mAbs 

compared to small molecules, co incubation with effectors cells (PBMCs), exposure times and 

donor variability are factors that could influence the ability of traditional toxicity assays to 

assess adverse effects of mAbs. The next chapter discusses the applicability of some of these 

assays to detect any potential off target effects of mAbs. 
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Chapter 3 Applicability of traditional and novel in vitro toxicity tests for 
assessing adverse effects of monoclonal antibodies: A case study of 

rituximab and trastuzumab. 

Previous studies indicate that following immunogenicity, hepatotoxicity and dermal toxicity 

are the two main adverse effect categories associated with mAbs and this has been outlined in 

Chapter 1 Table 1.1. As outlined in the previous chapter, different in vitro tests were used to 

assess the hepatotoxicity and dermal toxicity of parabens wherein the methodology and 

endpoints were discussed in detail. This chapter aims to assess the suitability of those traditional 

toxicity assays to investigate potential organ/system related adverse effects of mAbs that could 

lead to hepatotoxicity and dermal toxicity (as outlined in Table 1.1 and Box 1.1. in Chapter 1) 

using hepatocarcinoma cell line (HepG2) and human dermal fibroblasts neonatal (HDFn), 

respectively. These cells lines were chosen also based on them not expressing the antigens 

necessary for either of the two mAbs chosen in this study. This would thus allow for detection 

of any potential of target effect. Furthermore, the potential immunogenicity of mAbs was 

assessed using the novel Skimune™ skin explant assay. 

The mAbs used in this case study are rituximab and trastuzumab both of which were 

commercially purchased. Rituximab is an AntiCD20 chimeric monoclonal antibody, with an 

IgG1 heavy chain and kappa light chain, used for therapeutic indications such as Non-

Hodgkin’s lymphoma, chronic lymphocytic leukaemia, rheumatoid arthritis, granulomatosis 

with polyangiitis and microscopic polyangiitis.  It has been shown to elicit hepatobiliary and 

skin related adverse effects in addition to immunogenicity and hypersensitivity (MabThera, 

INN-rituximab - European Medicines Agency - Europa EU). Trastuzumab is an AntiHER2 

humanised monoclonal antibody, with an IgG1 heavy chain and kappa lights chain, indicated 

for breast cancer and gastric cancer. It has shown to cause infusion related reactions, 

hypersensitivity as well as hepatobiliary and skin related adverse effects (Herceptin - European 

Medicines Agency - Europa EU). 

Effector functions of mAbs such as phagocytosis, antibody dependent cytotoxicity (ADCC), 

complement dependent cytotoxicity (CDC) via complement activation, complement dependent 

cellular cytotoxicity (CDCC) as well as evoking other cell mediated immune responses, are 

modulated via the Fc region by interaction with FcγR receptors on different  immune responsive 

cells (Table 1.2)(Carter, 2006; Meyer et al., 2014).This requires the co culture of target cells 

with immune responsive cells, such as Peripheral Blood Mononuclear Cells(PBMCs) , to elicit 

the immune response pre requisite for causing adverse effects that could lead to off-target 
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toxicity. PBMCs comprise of B cells, T cells, monocytes, dendritic cells and natural killer cells 

and these cells express various FcγR receptors which bind to the Fc region of IgG mAbs and 

induce effector functions like ADCC, phagocytosis, transport and catabolism (Vidarsson et al., 

2014b). For complement activation and CDC, exposure to human serum containing 

complement proteins is required  (Bologna et al., 2011). A combination of PBMCs and 

complement protein is used to assess potential CDCC where a primary binding to complement 

protein is followed by engaging with complement receptors on natural killer cells or 

macrophages(Meyer et al., 2014). 

Different in vitro toxicity assays are in place for assessing toxicity endpoints as described in 

Chapter 1 Section 1.1.3. Of these assays, WST1 assay is routinely used for assessing 

cytotoxicity of compounds. WST-1 is a tetrazolium salt that is converted by mitochondrial 

dehydrogenase enzymes into a soluble coloured formazan compound which can be quantified 

using absorbance endpoint measured using a spectrophotometer. The absorbance values are 

reflective of mitochondrial enzyme activity which is a measure of the metabolic activity of 

cells. Another sensitive marker for cell viability is by measuring the adenosine tri phosphate 

(ATP). As the cells lose membrane integrity, they fail to synthesise ATP and any remaining 

ATP in the cytoplasm is rapidly depleted by ATPases (Riss et al., 2016).  Cell Titer-Glo® 

Luminescent Cell Viability Assay allows for detection of metabolically active cells through 

quantification of Adenosine triphosphate (ATP). Luciferin upon interaction with ATP emits 

light in a reaction catalysed by firefly luciferase and this can be measured by recording the 

luminescence. Potential cytotoxicity and reduction in ATP levels of HepG2 and HDFn cells 

following exposure to mAbs were investigated using the methodology described in Figure 3.1. 
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Figure 3.1 General Methodology for an in vitro assay to detect toxicity of mAb based 
therapeutics. 

To assess the potential hypersensitivity and immunogenicity of mAbs, a novel human Skin 

explant assay, Skimune™, was used. Skimune™ ® is an autologous system for preclinical in 

vitro screening of drugs and other chemical compounds developed by Alcyomics (patent 

EP2524227). It provides a predictive readout of skin damage which also correlates with 

inflammatory cytokine release and T cell proliferation responses. It can be used in risk 

assessment to predict the hypersensitivity responses of novel drugs. It is a first-line tool for the 

assessment of adverse immune reactions. Originally developed for graph-versus-host disease 

(Vogelsang et al., 1985; Dickinson et al., 1998; Sviland and Dickinson, 1999), a systemic post-

transplant complication, it was afterwards modified to become an autologous skin explant 

model(Ahmed et al., 2016). Skimune™ ® relies, in an initial step, in priming of dendritic cells 

with consequent T cell activation. Afterwards, these activated cells are co-cultured with a skin 

biopsy from the same donor (hence an autologous system) to induce tissue damage (Figure 3.2).  

 

Figure 3.2. Skimune™ ® assay. This autologous model consists in priming of immune cells 
and co-culture with skin biopsy from the same donor to induce tissue damage. Histopathological 
assessment of damage is done according to a scoring grade (I-IV).  

This system allows for an in situ histopathological characterisation according to Lerner’s 

grading system(Lerner et al., 1974) (Figure 3.3). While Skimune™ ® is not a 3D model, it can 

be used as a first-line tool to safely predict adverse immune reactions (hypersensitivity and 

immunogenicity), screening of dose-response compounds or even to comparative studies with 

other biomolecules. Moreover, Skimune™ ® can be used during the different stages of a 
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product development pipeline, either in the initial stages of product screening, during product 

optimisation, as well as the final stage of approval for human testing. Overall, Skimune™ ® is 

an improvement since it reduces development costs and time, by providing a safe in vitro 

screening tool for assessment of sensitisation.  

 

Figure 3.3 Grading the reactivity of a test therapeutic. Assessment of the histopathological 
damage caused by a test therapeutic according to Lerner score grading (I to IV). 

3.1. Materials and Methods 

3.1.1. Materials and reagents 

Freshly isolated peripheral blood mononuclear cells (PBMC), human universal AB serum, 

rituximab (stock 100mg/ml) and trastuzumab (600mg/ml) were kindly provided by Alcyomics 

Ltd. Dulbecco's Modified Eagle Medium (DMEM, high glucose, with bicarbonates), Fetal 

Bovine Serum (FBS), Pencillin-Streptomycin (10,000 units penicillin and 10 mg 

streptomycin/mL), Phosphate Buffered Saline (PBS), Trypsin EDTA solution, MEM non-

essential Amino acids , L glutamine solutions 200mM and Sodium Pyruvate Solution, tissue 

culture flask , 96 well F-bottom plates and WST-1 (Cat. No: 05015944001) were purchased 

from Sigma Aldrich. CellTiter-Glo® Luminescent Cell Viability Assay was purchased from 

Promega. All kits will be used as per manufacturers’ instructions. 

3.1.2. Cell culture and maintenance 

HepG2 and HDFn cells were grown as an adherent culture in complete growth media 

(Dulbecco’s Modified Eagle’s Media supplemented with 10% Fetal Bovine Serum, 1% 

Penicillin/Streptomycin, 1% Non-Essential Amino Acids, 1% L-Glutamic acid and 1% Sodium 

Pyruvate) in T75 tissue culture flasks at 37°C with 5% CO2. The cells were subcultured 3 times 

a week using the following procedure: The spent medium was removed, and the cells were 

given a Phosphate Buffered Saline wash following which 1x diluted Trypsin was added to 
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gently lift the cells. The cells were then re-suspended in 1:15 dilution in T75 tissue culture 

flasks.  

3.1.3. Cell seeding and exposure to mAbs 

The HepG2 and HDFn cells were seeded at a density of 5000cells/well onto a Greiner 96-well 

F bottom tissue culture plate. 50µl of rituximab (R) and trastuzumab (H) were added to the test 

wells at final concentration of 0.1, 1 and 10μg/ml upon which the plates were incubated for a 

further 3 hours at 37°C with 5% CO2. Details of the final mAb concentration and volumes 

associated are shown in Appendix A Table A.1.  Appropriate volumes of media were added to 

the control wells to compensate for volume differences arising due to addition of mAbs and 

effector cells/serum. A final concentration of 10μg/ml of human IgG was used as isotype 

control. 5% (v/v) of ethanol was used as the positive. Target control refers to the target cells 

(HDFn or HepG2) in media.  

3.1.4. Complement dependent cytotoxicity (CDC) 

Following incubation with varying concentrations of rituximab and trastuzumab, 50μl of human 

universal AB serum were added to the test wells. The plate was incubated overnight at 37°C 

with 5% CO2 (Harjunpaa et al., 2000; Wang et al., 2004). The layout of the 96-well plate for 

CDC experiment is outlined in Appendix A Figure A.1c 

3.1.5. Antibody dependent cellular cytotoxicity (ADCC) 

Following incubation with varying concentrations of rituximab and trastuzumab, 50μl of 

PBMCS at a density of 50000 cells per well were added to the test wells to achieve an effector 

to target ratio of 10:1. The plate was incubated overnight at 37°C with 5% CO2 (Harjunpaa et 

al., 2000; Wang et al., 2004). The layout of the 96-well plate for ADCC experiment is outlined 

in Appendix A Figure A.1a 

3.1.6. Complement dependent cellular cytotoxicity (CDCC) 

Following incubation with varying concentrations of rituximab and trastuzumab, 50μl of human 

universal AB serum and 50μl of PBMCS at a density of 50000 cells per well were added to the 

test wells to achieve an effector to target ratio of 10:1. The plate was incubated overnight at 

37°C with 5% CO2 (Harjunpaa et al., 2000; Wang et al., 2004). The layout of the 96-well plate 

for CDCC experiment is outlined in Appendix A Figure A.1b 

3.1.7. WST-1 cell proliferation assay 
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Following exposure of cells to the test compounds for 24 hours, 10μl of WST-1 reagent were 

added per well and the plates were incubated for an additional 4 hours at 37°C with 5% CO2. 

Endpoint measurements of absorbance were taken at 480nm and 600nm (background) on 

FLUOstar® Omega multimode microplate reader. Cell viability was expressed as a percentage 

of the target control.  

3.1.8. CellTiter-Glo® Luminescent Cell Viability Assay 

Following exposure of cells to test compounds for 24 hours, the plate and its contents were 

equilibrated at room temperature for approximately 30 minutes. Volume of Cell Titer-Glo® 

Reagent equal to the volume of cell culture medium present in each well (e.g. 100µl of reagent 

to 100µl of medium containing cells for a 96-well plate) was added. Contents were mixed for 

2 minutes on an orbital shaker to induce cell lysis. The plate was allowed to incubate at room 

temperature for 10 minutes to stabilise luminescent signal. Luminescence was recorded in 

FLUOStar® Omega multiplate reader. 

3.1.9. Skimune™ analysis 

The mAbs, at a final concentration of 1μg/ml were incubated with (PBMCs) and matching skin 

explant from healthy donors (n=10 for rituximab and n=5 for trastuzumab) for the Skimune® 

mAb assay. The endpoint is a grading score of histopathological damage, ranging from 1 to 4. 

The analysis was performed in collaboration with Alcyomics Ltd (Ahmed et al., 2016). 

3.1.10. Statistical analysis 

Statistical analysis was carried out using Minitab 17 software(Minitab, 2014). Statistically 

significant results were reported based on a one way analysis of variance (ANOVA) test 

followed by post hoc tests (Tukey’s/Fishers/Dunnett’s) (Keppel and Wickens, 2004; Ruxton 

and Beauchamp, 2008). All values are expressed as percentage of target control with mean ± 

standard error (SE). 

3.2. Results 

3.2.1. MAb induced effect on in cell viability 

 HepG2 cells were treated with varying concentrations of rituximab and trastuzumab. As stated 

in section 3.1, cell viability was expressed as percentage of Target control which are wells 

containing only HepG2 cells. Effector cells/serum blank refer to those wells which contain only 

PBMCs for ADCC, serum for CDC and PBMCs+serum for CDCC assays to measure 

background absorbance for the effector cells and/or serum for the respective endpoint. Neither 
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a concentration dependent effect on cell viability nor an effector/serum dependent response 

were observed for either of the tested mAbs as shown in Figure 3.4. 5% (v/v) of ethanol (final 

concentration) was used as the positive control. Figure 3.4 represents the pooled responses from 

4 donors for ADCC, CDC and CDCC tests.  

 

Figure 3.4 (a) Control conditions without effector cells/serum (b) CDC (c) CDCC and (d) 
ADCC assay results of rituximab and trastuzumab based on the WST assay. Results represent 
pooled responses from four donors (n=4). All values are expressed as Relative Absorbance 
Units (RAU) of control (mean±SEM). R: Rituximab and H: Trastuzumab. Positive control is 
5% (v/v) of absolute ethanol.  

3.2.2. MAb induced effect in ATP levels    

HepG2 and HDFn cells were treated with varying concentrations of rituximab and trastuzumab. 

ATP content was expressed as percentage of target control which are wells containing only 

HepG2 cells or HDFn cells. 5% (v/v) of ethanol (final concentration) was used as the positive 

control. Effector cells/serum blank refer to those wells which contain only PBMCs for ADCC, 

serum for CDC and PBMCs+serum for CDCC assays to measure background absorbance for 
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the effector cells and/or serum for the respective endpoint. Figure 3.5 and 3.6 represent pooled 

responses from 4 donors for ADCC, CDC and CDCC tests. Neither a concentration dependent 

effect on ATP content nor an effector/serum dependent response were observed for either of 

the tested mAbs on HepG2 cells (Figure 3.5). 

 

Figure 3.5 (a) Control conditions without effector cells/serum, (b) CDC (b) CDCC and (d) 
ADCC assay results of rituximab and trastuzumab based on the ATP content compared to 
control in HepG2 cells exposed to mAbs. Results represent pooled responses from four donors 
(n=4). All values expressed as Relative fluorescence units (RFU) compared to control 
(mean±SEM). R: Rituximab and H: Trastuzumab. Positive control is 5% (v/v) of absolute 
ethanol. 

The HDFN cells seem to be slightly more sensitive to the responses evoked by mAbs when 

compared to HepG2 cells. Figure 3.6a depicts the response elicited by mAbs without the 

influence of PBMCs and/or serum. The response is generally lower than the target control, 

which contains only HDFn cells. When assessing responses resulting from CDC (Figure 3.6b), 

all concentrations of trastuzumab tested have lower responses when compared to the control. A 

similar trend can be observed for rituximab; however, the variation is higher when compared 
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to trastuzumab (Figure 3.6b). Neither a concentration dependent effect on ATP content nor an 

effector/serum dependent response were observed for either of the tested mAbs resulting from 

ADCC and CDCC (Figure 3.6c and 3.6d). HDFn cells seem to be more sensitive to responses 

elicited by mAbs and this was observed in the previous chapter where the toxicity of parabens 

was assessed. 

 

Figure 3.6 (a) Control conditions without effector cells/serum, (b) CDC (b) CDCC and (d) 
ADCC assay results of rituximab and trastuzumab based on the ATP content compared to 
control in HDFn cells exposed to mAbs. Results represent pooled responses from four donors 
(n=4). All values expressed as Relative fluorescence units (RFU) compared to control 
(mean±SEM). R: Rituximab and H: Trastuzumab. Positive control is 5% (v/v) of absolute 
ethanol. 
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3.2.3. Effect of donor variability and intrinsic variation 

The PBMCs used in the assay were obtained from four different donors and the corresponding 

responses were varied and non-specific both in terms of the mAb used as well as dose. Figure 

3.7 shows the intrinsic variability in the ADCC and CDCC assays owing to donor variability.   

This variability could be due the specificity of the immune response evoked by each individual 

which depends on many factors such as genetic make-up and environmental exposure. This 

intrinsic variation in the assay could potentially confound the outcome of any adverse effect 

elicited by mAbs.  

Figure 3.7 Intrinsic variation in responses owing to donor variability in ADCC and CDCC 
assay (a) results of rituximab and trastuzumab based on the ATP content compared to control 
in HepG2 cells exposed to mAbs. Results represent pooled responses from four donors (n=4). 
All values expressed as Relative fluorescence units (RFU) compared to control (mean±SE). R: 
Rituximab and H: Trastuzumab. Positive control is 5% (v/v) of absolute ethanol. 
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3.2.4.  Immunogenicity of mAbs assessed by Skimune™ assay 

Immunogenicity of rituximab and trastuzumab were assessed via a novel skin explant assay 

Skimune™.  The results of the Skimune tests are shown in Figure 3.8 where the number of 

Grade I, II and III responses are expressed as percentage of total number of donors. Both 

rituximab and trastuzumab did not elicit any Grade IV response in any of the donors. The 

clinical immunogenicity associated with rituximab and trastuzumab are between 1-23% and 1% 

respectively as reported from clinical trials. (Joubert et al., 2016). Based on the Skimune test 

classification both trastuzumab and rituximab are deemed weak positives i.e. the testing 

compound, while known to be a sensitizer, fails to induce an adverse immune reaction in all 

tested donors. This means that the degree of variability present in clinical trials can be captured 

up to a certain extent by novel assays such as Skimune™. 

 

Figure 3.8 Skimune™ assay results with the percentage response based on the different 
histopathological damage grades induced by rituximab and trastuzumab based on 10 and 5 
donors respectively. 

3.3. Discussion 

The in vitro systems selected in this study were based on the two main adverse effects associated 

with mAb based therapeutics: hepatotoxicity and dermal toxicity. Rituximab and trastuzumab 

elicit an immune mediated reaction to neutralize tumour cells via ADCC, CDC and/or CDCC 

(Harjunpaa et al., 2000; Bologna et al., 2011). The traditional toxicity tests used here are 
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routinely used for assessing safety and toxicity of compounds in multitier toxicological 

assessment studies (Eisenbrand et al., 2002). The objective of the assay used here was to 

observe any adverse effects of mAbs on HepG2 and HDFn cells upon exposure to naïve PBMCs 

i.e. detection of any off-target toxicity elicited by mAbs. Both Rituximab and trastuzumab have 

shown hepatobiliary and skin/infusion related adverse effects in clinical trials (MabThera, INN-

rituximab - European Medicines Agency - Europa EU; Herceptin - European Medicines Agency 

- Europa EU) .  

However as seen from the results shown in Figure 3.4 and 3.5, no dose dependent effect on cell 

viability or ATP levels were observed for either of the mAbs for HepG2 cells. The antigens for 

rituximab and trastuzumab are CD20 and HER2 respectively. As the potential off target effects 

were investigated, both cell lines were chosen such that they do not possess these antigens as 

surface markers. As HepG2 and HDFn cells do not express the antigen for either rituximab or 

trastuzumab ADCC and CDCC modes of decrease in cell viability were not observed owing to 

lack of direct cross target binding associated toxicity. While rituximab has shown to elicit 

higher CDC mediated responses, the CDC mediated effect of trastuzumab is comparatively 

lower (Harjunpaa et al., 2000). This has shown to be due to the influence of membrane-bound 

complement regulatory proteins such as CD46, CD55 and CD59 which are overexpressed in 

tumour cells (Liu et al., 2014b). CD46 is indeed overexpressed in HepG2 cells and this could 

be an additional reason why CDC mediated effect was not observed in HepG2 as compared to 

HDFn cells (Lu et al., 2014). For HDFn cells a decrease in ATP compared to control was 

observed for all concentrations of trastuzumab tested and a similar trend was observed for 

rituximab but with higher variability, for CDC mediated response (Figure 3.6b). 

Variability in donor responses will be a confounding factor affecting the potential to detect any 

off target adverse effects, as intra donor variability is quite high owing to the specificity of 

immune responses elicited (Figure 3.7). The clinical immunogenicity associated with rituximab 

and trastuzumab are between 1-23% and 1% respectively and this variation is reflective of 

clinical trials. (Joubert et al., 2016). 

Exposure time is another possible reason for the lack of response for these assays. Immune 

specific reaction could take 5-7 days to develop and this could lead to depletion in the target 

cell number and hence wouldn’t be feasible in this context without a continuous culture in place. 

This has been shown in T cell proliferation assays for monoclonal antibodies wherein the early 

phase effects were identified at 20h and late phase effects at 7 days (Joubert et al., 2016). 
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However, this requires additional measures in place for continuous maintenance of the PBMCs 

to maintain them at atleast a minimum 90% viability. In the case of traditional toxicity tests 

used to assess off target effects, a continuous maintenance of PBMCs would confound the 

ability of the test to detect any decrease in cell viability.  The percentage viability of PBMCs 

compared to control at the end of the 72 hours testing period was below 40% as seen from 

Figure 3.4c,d and 3.5c,d for HepG2 based testing and this distorts the effector target ratio 

essential for achieving a response. The percentage viability of PBMCs compared to control was 

around 70% for ADCC and around 85% for CDCC as seen in Figure 3.6c and 3.6d for HDFn 

cells. 

Different approaches have to be adopted for safety evaluation of  monoclonal antibody derived 

therapeutics when compared to small molecule drugs owing to innate differences, such as 

species specificity, degradation, increased half-life, complex dose response relationship, 

interaction, lack of generic testing material, pleotropic and synergistic mechanisms to name a 

few (Cavagnaro, 2002). The main bottleneck in using in vitro systems for assessing the toxicity 

of mAbs is that the effector cells must be co-incubated or co cultured with the cell line of 

interest. The sensitivity and specificity of these assays depends on several factors which must 

be optimised, such as cell density, incubation times as well as the choice of system and assay 

endpoint. The innate complexity, diversity and size of mAbs based therapeutic as well as their 

diverse mechanisms of actions that involve many pathways exacerbate the need for carefully 

designed in vitro systems that consider all the above factors.  

New generation preclinical safety testing tools would have to be high throughput, rapid and 

cost effective to meet the accelerated growth of the biopharmaceutical market. They also need 

to be highly reproducible and be sufficiently predictive to allow for rapid screening facilitating 

reliable selection of new compounds at initial stages thus saving time and money. They would 

also provide an alternative to animal testing considering the various drawbacks of in vivo 

systems as seen in the case of TGN1412 (Stebbings et al., 2007). In vitro systems have now 

evolved from 2D co-cultures to 3D spheroidal co-cultures, organs on chips as well as whole 

blood systems to better mimic the responses that could be produced in a human system 

(Whritenour et al., 2016). Receptor binding studies are also considered to be indicative of 

biological activity of mAbs as binding to different FcγR receptors elicit different effector 

functions (Gillis et al., 2014). These studies can either be cell based or conjugated beads based 

such as αscreen™ technology (Wojtal et al., 2012; Kim et al., 2017). Immunogenicity testing 

of mAb based therapeutics using T cell proliferation and cytokine assay have been reported 
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previously for rituximab and trastuzumab (Joubert et al., 2016).  Hypersensitivity reactions 

have been assessed using Skimune™, a non-artificial human skin explants based assay for 

safety and efficacy assessment of novel compounds and drugs, developed by Alcyomics Ltd 

(Ahmed et al., 2016). Immunotoxicogenomics and expression profiling of both in vivo and in 

vitro systems are being used to identify pathways, mechanism of action as well as biomarkers 

for study of delayed hypersensitivity reactions (Shao et al., 2014). These advancements may 

contribute to better designed pre-clinical testing strategies for monoclonal antibody derived 

therapeutics 

3.4. Chapter summary 

This study explores the applicability of traditional in vitro toxicity tests for detecting any off-

target adverse effect elicited by mAbs on specific organ systems using hepatocarcinoma cell 

line (HepG2) and human dermal fibroblasts neonatal (HDFn), respectively. The mechanism of 

antibody dependent cytotoxicity (ADCC), complement dependent cytotoxicity (CDC) via 

complement activation, complement dependent cellular cytotoxicity (CDCC) were assessed. 

The rationale behind use of these particular cells lines were that they do not possess the antigens 

required by either of the mAbs and would therefore allow for observing off target effects if any. 

Major results: No apparent ADCC, CDCC or CDC mediated decrease in cell viability was 

measured for HepG2 cells. For HDFn cells, though ADCC or CDCC mediated decrease in cell 

viability wasn’t detected, a CDC mediated decrease in cell viability was observed. Several 

considerations have been elucidated for development of in vitro assays better suited to detect 

off target toxicity of mAbs (Kizhedath et al., 2018a). The immunogenicity of rituximab and 

trastuzumab were assessed using the novel Skimune™ skin explant assay which showed a weak 

positive test classification for both mAbs tested. Therefore, novel assays such as Skimune™ 

deemed to be more suitable for detecting potential immune related adverse effect elicited by 

mAbs. The different Skimune™ ® classes reflect the likelihood of an adverse immune reaction 

to occur during a stage IV clinical trial.  The subsequent chapter will assess the suitability of 

the Skimune assay to assess the immunogenicity of mAbs aggregates formed at physiological 

conditions (temperature and pH) during administration or in storage. 
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Chapter 4: Aggregation of mAbs at physiological pH and temperature and 
detection of immunogenicity using Skimune™ assay 

The previous chapter explored the applicability of traditional toxicity assays for detecting 

adverse effects elicited by mAbs. It also described the novel Skimune™ skin explant assay and 

its potential to detect immunogenicity of mAbs. This chapter describes the heat stress induced 

aggregation of mAbs under physiological conditions and their detection using analytical 

techniques such as Analytical ultracentrifugation (AUC) followed by detection of 

immunogenicity using Skimune™ assay. Although multiple studies describe aggregation 

potentials at longer periods of time and elevated temperatures, this study was designed to assess 

the potential of commercial mAbs to form aggregates and induce an immunological response 

at physiological conditions. Increased aggregation potential can prove detrimental to the 

monoclonal antibody production process and lead to manufacturing failures (Rathore et al., 

2013). It is also a critical quality parameter during patient administration as aggregated forms 

of mAbs have been shown to elicit immunogenic responses (Ahmadi et al., 2015). Therefore, 

during the development of mAb based therapeutics suitable analytical techniques are required 

to characterise these aggregates.  Analytical ultracentrifugation (AUC) is an analytical 

technique that allows for investigation of molecular weight of biological molecules and is 

regaining popularity in biopharmaceutical development (Berkowitz and Philo, 2015; Liu et al., 

2015). AUC allows for the quantitative description of protein aggregation and the formation of 

large supramolecular complexes based on their sedimentation properties (Berkowitz, 2006).  

AUC experiments can be carried out in two modes which are highly complementary (Cole et 

al., 2008). Sedimentation velocity analytical ultracentrifugation is a hydrodynamic approach 

which provides details of particle mass and shape and is particularly useful for studying 

multicomponent irreversible and reversible mixtures of species. Sedimentation equilibrium 

analytical ultracentrifugation on the other hand is a thermodynamic approach which provides 

insights into equilibrium constants of the process and stoichiometry and is useful for studying 

reversible self- and hetero- association.  

In this study a sedimentation velocity experiment for mAbs in buffered solution was performed 

to explore the formation of stable and metastable oligomers, irreversible aggregates and 

degradation products appearing as a result of storage and thermal stress. The appearance of 

mAb aggregates and their breakdown products in solution as result of time (storage) and 

temperature (thermal) stress was explored. The potential of these mAbs to cause 

hypersensitivity was subsequently investigated using Skimune® (Skimune) as described in 
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Chapter 3. (Ahmed et al., 2016). Furthermore, the potential aggregation propensities of mAbs 

based on their primary sequence and 3D structure were explored. The overall methodology is 

outlined in Figure 4.1. 

 

Figure 4.1 Overview of experimental methodology to assess thermal-stress induced 
aggregation and associated immunogenicity. 

4.1. Materials and Methods 

4.1.1. Thermal stress of antibodies 

Rituximab (chimeric IgG1) and trastuzumab (humanized IgG1) were subjected to thermal stress 

for different durations at physiological pH based on a full factorial design of experiment (DOE) 

as shown in Appendix B (Table B.1). The samples of rituximab and trastuzumab were prepared 

in Dulbecco buffer at concentrations of 1 mg/ml and 10 mg/ml treated initially at 4°C, 37°C, 

40°C for time periods of 0, 3, 6, 12, 24, 48 hrs. Heat treated rituximab samples were also stored 

for several weeks at 4°C. At the end of the storage period, samples were heated at 65°C for 2 

hours. A positive control for aggregation was also prepared for each mAb, by leaving the 

samples at 65ᵒC for one hour in an acidic buffer (pH=3). For the purposes of this study 

trastuzumab and Herceptin has been used interchangeably.  

4.1.2. AUC analysis 

The treated 1mg/ml samples were subjected to Analytical ultracentrifugation (AUC) to further 

characterise the aggregates. Sedimentation velocity experiments were carried out using 

ProteomeLab XL-I analytical ultracentrifuge (Beckman Coulter, Palo Alto, USA) at the 

temperature of 20°C and rotation speed of 40,000 rpm. Scanning protocol started 

simultaneously as the rotation began. The density and viscosity of the buffer at experimental 
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temperature (20°C) was calculated using program SEDNTERP (Laue et al., 1992). 

Sedimentation velocity profiles (65 scans taken 1 second apart) were treated using size-

distribution c(s) model implemented in the program SEDFIT with consecutive refining using 

Bayesian statistics to obtain cP(s) (Schuck, 1998; Brown et al., 2008). In order to determine the 

mass of each species, the c(s) distribution was converted to c(M) distribution. Each peak on the 

distribution plot was integrated in order to obtain the weight-averaged values for sedimentation 

coefficient and molecular mass. Integrated values of sedimentation coefficient (s) obtained at 

experimental conditions were converted to the standard conditions (s20, w) (which is the value 

of sedimentation coefficient in water at 20°C).  The analysis was performed by the Newcastle 

University Protein Purification and Analysis Unit (NUPPA).  

4.1.3. Immunogenicity of aggregated mAbs  

Heat-stressed samples of trastuzumab and Rituximab (1 and 10µg/mL) were incubated with 

Peripheral blood mononuclear cells (PBMCs) and matching skin explant from healthy donors 

(n=5) for the Skimune® mAb assay. The endpoint is a grading score of histopathological 

damage, ranging from 1 to 4. The analysis was performed in collaboration with Alcyomics Ltd. 

Samples were stored immediately after the heat shock protocol at 4ᵒC until further analysis.  

They were further analysed in T cell proliferation assay, cytokine analysis as well as 

immunofluorescence labelling for cell death protein such as heat shock Protein 70 and caspase 

3 (data has not been presented here as it is in preparation for publication by Alcyomics Ltd.). 

4.1.4. Analysis of protein sequence and aggregation propensities  

The primary sequence of rituximab and trastuzumab were obtained from IMGT/mAb-DB 

(Lefranc et al., 2009). Multiple sequence alignment was performed using MSA tool of T Coffee 

server (Notredame et al., 2000). Physicochemical properties as well as composition of amino 

acids present in the primary sequence of mAbs were assessed using EMBOSS Pepstat (Rice et 

al., 2000). To predict the potential aggregation propensity the primary sequence was input into 

an online platform called Zyggregator which analyses the tendency of protein aggregation based 

on parameters such as hydrophobicity, β sheet - α helical propensities as well as charge of amino 

acids present in the primary sequence (Tartaglia and Vendruscolo, 2008). The surface activity 

of dissimilar residues were assesses using BepiPred 2.0 (Jespersen et al., 2017). Additionally 

the 3D structures of the fab regions of both rituximab and trastuzumab were studies using Swiss 

PDB viewer to further explore the position of these residues within the mAbs structure (Guex 

and Peitsch, 1997; Schwede et al., 2003). 
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4.2. Results 

4.2.1. AUC analysis of mAb aggregation 

Interference data show presence of small species, which is not detected by absorbance at 280 

nm; this implies that these species have non-proteinaceous nature. The presence of very large 

aggregates can be detected by distortion of early scan above the plateau region for monomer. 

Summarised results of the integrated sedimentation parameters were used to represent 

percentage of species measured at different temperature and time points.  Overall, the loss of 

monomers by heat stress was found to be very low, with less than 5% aggregation of the total 

protein content (Table 4.1).  

Table 4.1 Quantification of aggregated content of heat-stressed mAb samples by analytical 
ultra-centrifugation.  

 

  
  

  
  

Absorbance data  

monomer dimer 
Heavier 
species 

RMSD

  
 Temp 
(ᵒC) 

time 
 (h) 

sedimentation 
 (S) 

Mass  
(kDa) 

% 
sedimentation
 (S) 

Mass  
(kDa) 

% % 
 

R
it

u
xi

m
ab

 

4 
0 6.412 152.1 97.92 9.250 263.653 1.14 0.93 0.015 

48 6.415 138.3 97.72 9.715 257.707 1.70 0.58 0.017 

37 

0 6.411 153.4 96.16 9.089 258.781 2.69 1.15 0.014 

3 6.411 149.9 97.41 9.270 274.930 1.68 0.91 0.013 

6 6.408 152.5 96.88 9.190 261.938 2.07 1.05 0.011 

12 6.413 149.3 96.69 9.522 270.064 2.28 1.11 0.010 

24 6.426 146.8 99.00 - - - 1.00 0.018 

 48 6.424 148.3 97.38 8.340 229.272 1.61 1.48 0.014 

40 

0 6.415 153.0 97.26 9.042 262.435 2.23 1.24 0.016 

3 6.407 147.4 98.34 8.997 262.004 1.18 1.30 0.017 

6 6.399 149.5 98.16 8.768 249.582 1.15 1.04 0.017 

12 6.397 155.3 98.40 - - - 1.60 0.017 

24 6.425 150.3 97.38 9.461 281.061 1.32 1.42 0.018 

48 6.420 147.6 97.73 9.649 281.750 1.15 1.44 0.016 

65 1 1.587 13.1 0.71 6.503 108.750 2.54 73.01 - 

T
ra

st
u

zu
m

a 4 0 6.441 149.0 97.96 9.432 263.977 1.70 0.47 0.010 

37 48 6.427 148.1 94.80 9.109 249.839 2.85 2.65 0.010 

40 48 6.421 148.1 95.51 9.235 255.364 2.61 1.93 0.011 
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65 1 6.346 132.6 2.66 9.862 256.928 6.11 69.25 0.010 

Quantification of monomers, dimers, and heavier species in Rituximab and Trastuzumab monoclonal antibodies (at 1 mg/mL) 
after exposure to a heat-stress protocol (4, 37 and 40ᵒC for 0, 3, 6, 12, 24 and 48 hours). Quantification by sedimentation 
velocity (S), mass (kDa) and percentage in overall mAb sample (%). Missing values (-). RMSD : Root mean square deviation 
determines the model fit. 

For rituximab, despite the significant temperature stress (65°C for 2 hours), more than 50% of 

the monomer remains in solution. AUC obtained size-distribution shows the majority of 

monomeric species (sedimenting at 6.3 S, with the molecular weight of 152 kDa) present in 

solution and accompanied by the appearance of some dimeric species. These dimeric species 

could have different stoichiometry: more elongated (sedimenting close to 8 S) and more 

globular configuration (sedimenting just below 10 S) (Schuck et al., 2002; Aziz et al., 2007; 

Chou et al., 2011). The presence of heavier oligomers was rather insignificant even despite of 

prolonged storage time. Moderate temperature stress (40°C) result in appearance of some light-

weight degradation products such as isolated heavy chain (sedimenting at about 5S). A 

substantial amount of aggregates in MDa range was observed only after treatment at 65°C 

where monomeric species were reduced to 50%. Sedimentation coefficient distributions of 

rituximab (Mabthera) species for all experimental conditions are shown in Figure 4.2. 

Furthermore, TEM analysis, the heat stressed samples of both rituximab and trastuzumab 

showed presence of small aggregates. The amount of detectable aggregates was higher for the 

samples at 65°C.  

As observed in Table 4.1, the total mass percentages do not add up to 100%. This could be 

owing to the presence of fragments and could not be detected by AUC. Methods such as LC 

MS would have been more suited to the detection of fragments and this analysis have not been 

performed in the current study.  The missing values were due to non-availability of data owing 

to non-suitability of sample.    
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Figure 4.2  Sedimentation coefficient distribution of rituximab (Mabthera) species for different durations and storage times at temperatures of (a) 
4°C, (b)37°C, and (c)40°C and (d)65°C (black line). The results fit the Bayesian prediction model (red dotted line) based on optimally low 
RMSD .Monomer species are seen around 6S with elongated dimers appearing at 8S and globular dimers appearing at 10s.   



 
65 

 

Sedimentation coefficient distributions of trastuzumab species generated based on treatment 

are shown in Figure 4.3 where different peaks can be identified representing monomeric and 

dimeric species. It is possible to see different oligomer structures for the three temperature 

conditions tested, with trimers and tetramers reported at 37ᵒC. In heavily aggregated samples, 

at pH3, the amount of the monomer drops dramatically, the main species in solution are dimers, 

trimers, tetramers and so on up to 10-15mers (Figure 4.3). The aggregated species are hard 

globular particles (frictional ratio+hydration is 1.3) compared with elongated monomeric form 

(frictional ratio+hydration is 1.6) (Siegel and Monty, 1966; Lebowitz et al., 2002).  

 

Figure 4.3 Sedimentation coefficient distribution of trastuzumab (Herceptin) species for 
different duration at temperatures of 4°C, 37°C, 40°C, 65 (black line). The results fit the 
Bayesian prediction model (red dotted line) based on optimally low RMSD. Monomer species 
are seen around 6S with elongated dimers appearing at 8S and globular dimers appearing at 
10s.  

4.2.2. Immunogenicity of mAb aggregates 

The mAb samples subjected to heat stress were tested in the Skimune assay as describe in 

section 4.2.3. Skimune responses were calculated on number of grade 2 responses and above 

from 5 donors and are presented in Figure 4.4. The threshold was set at 40% above which the 

potential to cause an adverse effect is likely. Human IgG1 was used as the control and 



 
66 

 

Muromona-CD3 (OKT3) as the positive control. For trastuzumab, even at normal storage 

temperatures (4°C) there seems to be a response greater than that of the control (human IgG1) 

for both concentrations. There seems to be an increased response for the highest temperature 

of 40°C over time for higher concentrations of trastuzumab. Most combinations of the 

concentrations, temperature and storage times appear to elicit a Skimune response of 40% and 

above, indicating the likelihood of an adverse effect. The highest Skimune responses were 

comparable to those elicited by a known positive mAb - OKT3 (Muromonab-CD3). For 

rituximab, responses were observed to increase for longer storage times. Only three conditions 

of concentration, temperature and storage were above the 40% Skimune threshold. trastuzumab 

appears to show a slightly higher tendency to cause hypersensitivity when compared to 

rituximab for both heat treated and control samples. 

Figure 4.4 Percentage Skimune® responses for heat-stressed samples of trastuzumab and 
Rituximab (1 and 10µg/mL) based on responses from 5 donors. The red dotted line indicates 
the 40 % threshold. Samples have been given a 3 index code name for easier naming purposes, 
with the first index representing the mAb tested (Rituximab, R or Trastuzumab, H), the second 
index representing the temperature conditions (4, 37 or 40ᵒC) and the third index representing 
the duration of exposure (0, 3, 6, 12, 24 or 48 hours). OKT3 : Muromonab-CD3. Med+Skin: 
Only medium and skin , Med+Skin+PBMCs: Medium, skin and PBMCs, ctrl IgG1: Isotype 
IgG1 control, ctrl pH3: Control of mAb treated at pH 3.  
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Additional tests for immunogenicity such as T cell proliferation, multiplex cytokine analysis 

and immunofluorescence labelling of cell death protein such as Hsp70 and Csp3 were 

performed to further understand the mechanism of immunogenicity. No significant increase of 

T cell proliferation was observed for any of the temperature and storage conditions tested. An 

increase in IL-10 and IFN-γ was observed for 10μg/ml concentrations for the 37°C and 40°C 

conditions in both rituximab and trastuzumab. Positive staining Hsp70 and negative staining 

of Csp3 was observed for the 37°C and 40°C conditions in both rituximab and trastuzumab 

which indicated mild apoptotic damage that wasn’t strong enough to cause cell death (data has 

not been presented here as it is in preparation for publication by Alcyomics Ltd.). 

4.2.3. Prediction of aggregation propensities based on primary sequence. 

Multiple sequence alignment (MSA) of rituximab, trastuzumab (Herceptin) and human IgG1 

heavy chain shows that the CH1, CH2 and CH3 region are mostly identical whereas the VH 

region has considerable differences in amino acid compositions for residue indices 1-120 

(Figure 4.5). MSA of light chain regions of rituximab and Trastuzumab shows difference in 

amino acid composition in the VL region whereas the CL regions remain fairly similar (Figure 

5b). This could explain the increased response of trastuzumab in Skimune™ assay when 

compared to rituximab owing to differences in physicochemical, electronic and topological 

properties due to difference in primary sequences (Figure 4.4). These properties have been 

calculated using EMBOSS Pepstats and are shown in Appendix B (Table B.3 and B.4). The 

number of hydrophobic and positive residues is lower for rituximab than trastuzumab and this 

could explain the increased response of trastuzumab (Table 4.2). The amino acid composition 

of the heavy and light chain of rituximab and trastuzumab are shown in Appendix B (Table B.2 

and B.4). 

Table 4.2 Results of amino acid composition following EMBOSS Pepstats analysis of 
rituximab and trastuzumab primary sequences. 

Residue type Chain Number of residues 
Rituximab Trastuzumab 

Hydrophobic residues Heavy Chain 232 235 
Light Chain 103 100 

Charged residues Heavy chain 91 95 
Light Chain 39 42 
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(a) 

(b) 

Figure 4.5  Multiple Sequence alignment of (a) heavy chain of rituximab, herceptin and human Igg1 and (b) light chain of rituximab and 
Herceptin performed by T-coffee web server (Notredame et al., 2000). 
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The primary sequences of rituximab and trastuzumab were assessed for aggregation 

propensities by using the Zyggregator software developed at the Vendruscolo Lab, University 

of Cambridge (Tartaglia and Vendruscolo, 2008). Individual aggregation propensities of amino 

acids were calculated based on amino acid scales for hydrophobicity, α helix/βsheet formation 

and charge, at physiological pH. Additional terms for capturing information about hydrophobic 

patterns were also included. These individual scores were then normalised by considering the 

mean and standard deviation of the aggregation propensities of random sequences generated 

from the SWISS PROT database. The aggregation propensity at a particular residue is 

represented as the Zygg score at a particular residue index is 0 if the aggregation propensities 

is equivalent to that of a random sequence and 1 if it is one standard deviation higher than those 

of random sequences (DuBay et al., 2004; Pawar et al., 2005; Tartaglia et al., 2008; Tartaglia 

and Vendruscolo, 2008). 

Figure 4.6 show Zygg scores of those amino acids which are dissimilar at a particular residue 

index following the MSA of rituximab and trastuzumab primary sequences. Residue indices 

with a Zygg score>1 have higher aggregation propensities. Figure 4.7 depicts the normalised 

overall values over the different parameters such as hydrophobicity, charge, β sheet propensity, 

α helical propensity as well as aggregation propensity for the whole sequence. Both the light 

chain and heavy chain of trastuzumab shows higher hydrophobicity as well as overall 

aggregation propensity. For the heavy chain, trastuzumab has higher values for all parameters 

expect charge when compared to trastuzumab. For the light chain, even though rituximab has 

higher overall charge, β sheet and α helical propensity, trastuzumab shows higher 

hydrophobicity which may contribute to the higher aggregation propensity. 
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Figure 4.6 Zygg residue scores reflective of potential intrinsic aggregation propensities of dissimilar amino acid residues of rituximab and  
trastuzumab (a) heavy chain and (b) light chain.  



 
71 

 

 
Figure 4.7 Normalised overall aggregation propensity descriptors for rituximab and 
trastuzumab (Herceptin) (a) heavy chain and (b) light chain. 

4.2.4. Accessibility of aggregation prone regions in globular structures  

For globular proteins like mAbs, accessibility is a prerequisite for increased aggregation 

propensity for those polypeptide regions which shows a higher intrinsic aggregation 

propensity. This stems from the fact that if the aggregation prone regions are deep in the core 

of the globular protein there is much less chance that they would be unstructured or unstable 

to promote intermolecular interactions that could cause aggregations (Tartaglia and 

Vendruscolo, 2008). Surface accessibility is thus an important feature that could contribute to 

potential aggregation tendencies. The relative surface accessibility of exposed dissimilar amino 

acids with a Zygg score>1 is shown for both heavy and light chain of rituximab and 

trastuzumab in Figure 4.8. trastuzumab has relatively more residues which have a higher 

surface accessibility when compared to rituximab especially for the light chain. This could 

contribute to explaining the higher aggregation tendency of trastuzumab when compared to 

rituximab.  
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Figure 4.8 Relative surface accessibility of exposed dissimilar amino acid residues with a Zygg 
score>1 in rituximab and trastuzumab (Herceptin) (a) heavy and (b) light chain. 

Three dimensional structures for both trastuzumab (PDB ID: 1N8Z) and rituximab (PDB ID: 

2OSL) were sourced from RCSB PDB database (Cho et al., 2003; Du et al., 2007). These were 

then input into Swiss-Pdb viewer for further exploration as shown in Figure 4.8 (Guex and 

Peitsch, 1997; Schwede et al., 2003). Once the relevant regions were visualised for the dimer 

containing both the heavy and light chain (VH and VL domains) (1-120 residue index). The 

structures were assessed based on residues having an accessible surface of greater >30% which 

were then cross checked with amino acids which showed a Zygg score of >1. ‘E’ refers to 

exposed residues whereas ‘B’ refers to buried residues. For trastuzumab, the following amino 

acids were identified in the VL domain: Gln 3 (E), Arg 18 (E), Ser 52(B), His 91 (E) and in the 

VH domain: Arg 19 (E), Lys 30 (E), ASP 31 (E), Asp 102 (E) (coloured in yellow) as shown 

in Figure 4.9. For rituximab the following amino acids were identified in the VL domain: Arg 

76 (E), Thr 91 (E) in VL and in the VH domain: Lys 19 (E), Thr 28 (E), Ser 31 (E), Tyr 101 

(B), Tyr 102 (B), Ala 113 (E).  
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Figure 4.9 3D structures rituximab and trastuzumab VH and VL regions generated by SWISS-
Pdb viewer (Guex and Peitsch, 1997). The blue are shows the accessible residues (>30%). The 
amino acids coloured in yellow are those accessible residues which have a high intrinsic 
aggregation propensity. 

4.3. Discussion  

Aggregated forms of mAbs have been shown to elicit immunogenic reactions (Gaza-Bulseco 

and Liu, 2008; Joubert et al., 2012). In this study, temperatures for mAb aggregation analysis 

were chosen based on stipulated storage temperature (4°C), normal physiological temperature 

(37°C) and elevated body temperature during an immune response (40°C). The results reported 

here indicate some level of protein unfolding and consequent rearrangement of the mAb 

structural conformation by evidence of some heavier species being present in the sample. 

Though overall aggregated species contributed to only 5% of the total protein content at these 

temperatures or storage conditions (see Figure 4.2 and 4.3) there appears to be more extensive 

aggregation at 65°C with a 50% reduction in monomeric species (see Figure 4.2 and 4.3). This 

is in concordance with earlier studies, where a low level (<3%) of total protein content was 

reported as aggregated (Ahmadi et al., 2015).  Aggregation of mAbs is dependent on factors 

such as type of monoclonal antibody, type of stress (sheer vs temperature induced, pH induced) 

and the duration of stress (Rathore et al., 2013; Joubert et al., 2016). Rituximab and 

trastuzumab have been shown to aggregate when exposed to stirring induced sheer stress for 

20 hours (Joubert et al., 2011; Joubert et al., 2012). Elevated temperatures, sheer stress and 

longer storage times however are factors more prevalent during processing, formulation and 

shipping rather than during drug administration (Joubert et al., 2011; Joubert et al., 2012; 

Joubert et al., 2016).  
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Taking into consideration the size of protein aggregates, their characterization becomes quite 

complex. Even though AUC is a powerful and useful method for detection of aggregates in the 

biopharmaceutical industry it has some drawbacks. AUC does not provide insight into the 

mechanism of aggregation and has reduced accuracy for low level aggregate detection (Liu et 

al., 2006; Gómez de la Cuesta et al., 2014). Furthermore, the performance and detection limits 

of SEDFIT, AUCs data analysis software, are affected by random noise as well as non-ideal 

thermodynamic conditions of the sample (Liu et al., 2006). Therefore, a multi-technique 

analysis or a combination of a number of approaches may provide more information. 

Techniques such as size exclusion chromatography-multi angle light scattering (SEC-MALS); 

asymmetric flow field-flow fractionation multi-angle light scattering (AF4-MALS) and Raman 

spectroscopy have shown to very useful in monitoring antibody aggregation profiles and can 

thus be used to supplement AUC data (Fraunhofer and Winter, 2004; Ye, 2006; Gómez de la 

Cuesta et al., 2014) 

Different in vitro assays were used to study the potential immunogenicity of aggregated mAbs. 

Previous reports indicate that mechanically stressed trastuzumab samples showed higher 

number of aggregates and higher immunogenic response when compared to mechanically 

stressed rituximab (Joubert et al., 2016). In vitro human explant-based assays are also an 

important tool for assessing immunogenic potential of mAb aggregates. Skimune® is one such 

platform which was used to assess the potential immunogenic profile of the above aggregated 

mAbs and it was able to detect the immunogenicity in a small population (Ahmed et al., 2016). 

Skimune® results showed that aggregated trastuzumab and rituximab caused a mild apoptotic 

damage, by evident histopathological damage (scores 2 and 3 of Lerner’s score system) and 

positive staining for HSP70, but not for casp3 (data not shown). These results indicate that, at 

these specific temperatures, aggregated mAb samples cause a mild apoptotic damage that is 

repairable.  No increased proliferation of T cells or release of IFN-γ was reported (data has not 

been presented here as it is in preparation for publication by Alcyomics Ltd.). 

The differences observed in the responses of heat stressed rituximab and trastuzumab samples 

may be due to the differences in amino acid composition. Trastuzumab is a humanized IgG1 

kappa mAb whereas rituximab is a chimeric IgG1 kappa mAb. The difference in amino acid 

composition owing to difference in species as well as those in the heavy and light chain may 

lead to differences in physicochemical properties such as hydrophobicity, α helical and β sheet  

propensities as well as charge could lead to varying aggregation tendencies (Obrezanova et al., 

2015).  This has been shown in potential aggregation propensity prediction analysis where 
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trastuzumab has shown higher hydrophobicity and corresponding overall aggregation 

propensities for both light chain and heavy chain over rituximab (Figure 4.7). Apart from 

intrinsic aggregation propensities of amino acid residues in protein, environmental parameters 

such as solvents, pH and temperature conditions along with physiological, cellular and 

molecular interaction in in vivo and in vitro experimental conditions influence aggregation of 

mAbs (Joubert et al., 2011; Joubert et al., 2012; Gómez de la Cuesta et al., 2014; Joubert et 

al., 2016). Additionally, the location of aggregation prone regions within the globular structure 

of proteins, their accessibility and stability also play an important role in determining the 

overall aggregation of proteins (DuBay et al., 2004; Pawar et al., 2005; Tartaglia et al., 2008). 

4.4. Chapter summary 

To summarise, the heat stress induced aggregation of mAbs at physiological conditions was 

assessed using AUC analysis revealing a small percentage of dimeric species in the heat 

stressed trastuzumab samples. Furthermore, TEM analysis showed presence of small 

aggregated species in both heat-treated trastuzumab and rituximab. The immune related 

adverse effects elicited by these heats stressed samples were assessed using Skimune™ assay 

which showed an elevated response for heat treated trastuzumab samples. Although the T cell 

proliferation assay was inconclusive, the cytokine analysis showed a general increase in pro-

inflammatory cytokines such as IL10 and IFN γ.  The cell death marker immunofluorescence 

labelling showed a positive staining for Hsp70 and not Csp 3 indicating mild reversible 

apoptotic damage (data has not been presented here as it is in preparation for publication by 

Alcyomics Ltd.). The primary sequence and 3D structure of rituximab and trastuzumab were 

assessed for aggregation propensities based on physicochemical, structural and surface 

properties wherein trastuzumab was shown to have slightly higher aggregation tendencies. In 

conclusion this chapter outlines the potential aggregation of mAbs that may occur during 

administration or storage at physiologically and storage relevant temperatures and how 

Skimune™ as an in vitro assay could be particularly useful to detect immune related adverse 

effects of aggregated mAbs. Although multiple studies describe aggregation potentials at 

longer periods of time and elevated temperatures, this study was designed to assess the potential 

of commercial mAbs to form aggregates and induce an immunological response at 

physiological conditions. 
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The following chapters describe the identification and generation of numerical features from 

mAbs that were utilised for developing a modelling framework that would allow for predicting 

responses elicited by mAbs such as immunogenicity and/or cross reactivity.   
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Chapter 5: QSAR development using novel descriptors sets for mAbs: 
Influence of intrinsic properties. 

Based on the QSAR development workflow mentioned in Chapter 1 both responses elicited by 

mAbs as well as numerical representation of their properties, descriptors, are critical for model 

development. While the previous chapter focused on the different experimental methodologies 

for assessing the adverse effects of mAbs, this chapter focusses on the generation of descriptors 

from mAbs based on their primary sequences.  

Monoclonal antibody therapeutics represent a rapidly growing market which dominates the 

biopharmaceutical sector with combined EU prescription sales of more than €9 billion 

(EvaluatePharma®, 2017). This creates a need for rapid bioprocess development strategies to 

be put in place to support this expansion as well as to further reduce attrition and processing 

failures. This has been facilitated by the Quality by design paradigm where quality is built in 

by design by not only designing products to meet their intended performance, clinically, but 

also designing bioprocesses to deliver the required product quality consistently (Rathore et al., 

2014). Thus, better understanding of the monoclonal antibody therapeutic profile would not 

only allow for early stage screening of potential candidates, but also allow for better design of 

processes for their production. 

Predictive models in developability assessment are proving to be of increasing importance in 

early risk assessment studies for lead selections in the area of mAb based therapeutics. 

Generating sensible descriptors is the first step of building protein predictive models and they 

have been used for proteins in general but not for mAb based therapeutics. These descriptors 

are based on the structural, physicochemical, topological and electrostatic properties of the 

constituent amino acids in the primary sequence of proteins. Furthermore, descriptor sets called 

amino acid scales have been generated by principal component analysis (PCA) of these 

properties (van Westen et al., 2013a; van Westen et al., 2013b). Additionally there are many 

software packages which can be utilised for generating these descriptors such as ProtDCal, 

eMBOSS Pepstat and ProFEAT (Ruiz-Blanco et al., 2015). Primary sequence based 

descriptors have been used extensively for developing predictive models using multivariate 

data analysis techniques as well as machine learning methods such as protein function family 

prediction using SVM, k-NN and probabilistic neural networks (pNN) (Ong et al., 2007; Li et 

al., 2016);  quantitative structure activity relationship (QSAR) models for prediction of peptide 

binding affinity to the human major histocompatibility complex using SVM and  GA PLS; 

QSAR models for bioactive peptide derived from food proteins (Nongonierma and FitzGerald, 
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2016); proteochemometric models for antibody-antigen interactions using SVM regression to 

name a few(Qiu et al., 2015).  

As mAb based therapeutics are primarily glycosylated proteins, their primary sequence 

contains a wealth of information. This information could be translated into descriptors which 

can essentially be used for developing predictive models for predicting safety or behaviour at 

a particular process step e.g. the heavy chain and light chain substructure of monoclonal 

antibodies can have an impact on mode of action as well as their behaviour during production 

(Rathore et al., 2014; Alt et al., 2016). The heavy chain isotype influences the effector function 

of monoclonal antibodies as the amino acid residues on the Fc region dictate the binding 

affinity to the different Fcɣ Receptors. This has been utilised for engineering monoclonal 

antibodies for increased/decreased effector function (Shields et al., 2001; Strohl, 2009). For 

the light chain isotype, differences in the physicochemical properties can have effects in 

production and processing as well as in antigen binding (Townsend et al., 2016). Finally with 

regard to species, the evolution of mAbs from mouse to chimeric to humanized and finally 

fully human occurred in response to the high risk of hypersensitivity, reduced efficacy, rapid 

clearance and production of  human anti-mouse antibodies elicited by mouse antibodies owing 

to the species dependent difference of the immune system (Yamashita et al., 2007; Catapano 

and Papadopoulos, 2013).  

In this study, the identification and creation of data blocks from the primary sequence of mAbs 

is described. These were used for descriptor generation using eMBOSS Pepstat, ProtDCal and 

amino acid scales. Five data blocks namely, Domain based, Window based, Substructure based, 

Single Amino Acid based and Running sum based were generated from the primary sequences 

of 285 mAbs. Descriptor sets containing 5, 120 and 11 features were generated by using 

eMBOSS, ProtDCal and amino acid scales respectively.  These descriptors capture the 

physicochemical properties of mAbs with varying degrees of resolution (local to global; 

singular to cluster). These descriptors from different data blocks were subjected to an 

exploratory analysis to study any separation based on intrinsic properties such as light and 

heavy chain isotypes as well as species type of mAbs that would then allow for selection of 

descriptor sets that could be used for QSAR model development. Exploratory analysis of the 

descriptor data was carried out using unsupervised pattern recognition methods such as 

Principal Component Analysis (PCA). PCA is a dimensionality reduction method which 

generates new variables (principal components) which best capture the variations within a 
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dataset (Bro and Smilde, 2014). Preliminary groupings within the data can also be visualised 

using PCA scores.  

The overall methodology is illustrated in Figure 5.1. The distribution of 285 mAbs used in this 

study based on heavy chain isotype (igG1, IgG2 and IgG4), light chain isotype (kappa and 

lambda) as well as species (Chimeric, human, humanized and hybrid) have been shown in 

Figure 5.2. 

 
Figure 5.1 Overview of methodology for generating descriptors from primary sequence of 
antibodies. 

 

Figure 5.2 Distribution of 285 mAbs based on intrinsic properties (a) heavy chain isotype, (b) 
light chain isotype and (c) species.  
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5.1. Materials and methods 

5.1.1. Data collection 

Primary sequences of mAb based therapeutics were collected from different databases such as 

IMGT, patents, Drug Bank and PDB as well as literature sources. These sequences were stored 

in a database along with key information pertaining to the mAbs such as heavy and light chain 

substructure, target antigen, and species as shown in Appendix C Table C.1.  

5.1.2. Multiple sequence alignment 

The primary sequence of 285 mAbs was subject to Multiple Sequence Analysis (MSA) using 

the Clustal Omega Version 1.2.4 tool from EMBL to assess the degree of sequence 

similarity(Sievers et al., 2011). Sequences were input in FASTA format and MSA was 

performed using the clustalo program. This tool is a part of the EMBL-EBI bioinformatics web 

and programmatic tools framework (McWilliam et al., 2013; Li et al., 2015).  

5.1.3. Descriptor generation 

Descriptor generating software such as eMBOSS Pepstat and ProtDCal was used calculate 

descriptors for the Domain, Window and Substructure data blocks (Rice et al., 2000; Ruiz-

Blanco et al., 2015). Local version of the Pepstat and ProtDCal could be run directly in 

MATLAB by using Java runtime environment 8. Thus, automatic generation of descriptors 

could be performed. 5 descriptors were generated from Pepstat and 120 from ProtDCal. These 

descriptors were calculated to be averages based on all contributing residues in the provided 

sequence. Three amino acid scales; Z-scale (Sandberg et al., 1998), T-scale (Tian et al., 2007b) 

and MS-WHIM (Bravi et al., 1997) were used to convert each individual residue in the 

sequences into 11 numerical descriptors; 3 from the Z-scale, 5 from the T-scale and 3 from the 

MS-WHIM scale. In the Domain, Window and Substructure data blocks each amino acid scale 

component was average based on all residues, which generated 11 descriptors per sequence 

domain, split and substructure. In the Single amino and Running sum data blocks, only the 

amino acid scales were used to generate the descriptors were each residue was generated into 

11 numerical descriptors. Details for the individual descriptors are listed in Table 5.1. The 

automation of descriptor and dataset generation was done by MATLAB codes written by 

Micael Karlberg, Newcastle University.   
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Table 5.1 Protein descriptor sets generated using different software for predicting different 
mAb isotypes. 

Source Descriptor information 
eMBOSS 
Pepstat  

1. Molecular weight (Mw) 
2. Average Residue Weight (ARw) 
3. Isoelectric point (Ip)  
4. The net charge of the sequence (Charge) 
5. Number of residues in sequence (Residues) 

ProtDCal  1. Index of the contribution to the free energy from the entropy of the first 
shell of water molecules in an unfolded state (Gw(U)) 

2. Index of the interfacial free energy of an unfolded state (Gs(U)) 
3. Number of water molecules close to a residue in an unfolded state (W(U)) 
4. Molecular weight (Mw) 
5. Hydrophobicity by the Kyte-Doolitle Scale (HP) 
6. Isoelectric point (Ip) 
7. Electronic charge index (ESI) 
8. Heat of formation (DHf) 
9. Isotropic surface area (ISA) 
10. Polar area for each amino acid in unfolded state (AP) 

ProtDCal also allows to generate descriptors/variables based on amino acid 
groups. 12 such groups were used to generate this data set: 

11. Group of the most common residues in reverse turn structure: ASN, ASP, 
GLY, PRO and SER. (RTR) 

12. Group of the most common residues in Beta Sheet structure: ILE, PHE, 
THR, TRP, TYR and VAL. (BSR) 

13. Group of the most common residues in Alfa Helix structures: ALA, CYS, 
GLN, GLU, HIS, LEU, LYS and MET. (AHR) 

14. Group of all aliphatic residues contained in the protein. (ALR) 
15. Group of all non-polar residues: ALA, GLY, ILE, LEU, MET, PHE, PRO, 

TRP and VAL. (NPR) 
16. Group of all aromatic residues: HIS, PHE, TRP and TYR. (ARM) 
17. Group of all polar residues: ARG, ASN, ASP, CYS, GLN, GLU, HIS, LYS, 

SER, THR and TYR. (PLR) 
18. Group of all positive charged residues: ARG, HIS and LYS. (PCR) 
19. Group of all negative charged residues: ASP and GLU. (NCR) 
20. Group of all uncharged (neutral) residues: ASN, CYS, GLN, SER, THR, 

TYR. (UCR) 
21. Group of all unfolding residues: GLY and PRO. (UFR) 
22. All residues in the sequence (protein). (PRT) 

Amino acid 
scales 

1. Z-scale (Physiochemical)  
a. Z1 – Captures the hydrophilicity of the residue 
b. Z2 – Captures the steric properties of the residue 
c. Z3 – Captures the polarity and charge properties of the residue 

2. T-Scale (Topological) 
a. T1,T2,T3,T4,T5  

3. MSWHIM (Electrostatic) 
a. C1 – Captures the molecular electrostatic potential and size of 

residue 
b. C2 – Captures differences of positive molecular electrostatic 

potential between residues 
c. C3 – Captures differences between positively charged residues 
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5.1.4. Dataset generation 

The primary sequences of the antibodies were imported into MATLAB 2015a. A custom script 

was used to split the full sequences into either domain sized sequences or into smaller 

sequences based on a specified window size. For the latter, multiple sequence alignment (MSA) 

of all sequences was first performed to align the conserved regions. This was done using the 

MATLAB function multialign with BLOSUM80 as scoring matrix before splitting the 

sequences. While the domain data block used the fully sized domain sequences, the 

substructure data block used the CDRs and Fr regions. The Window, Single amino and 

Running sum data blocks were generated with the MSA step and split into smaller sequence 

according to a specified window size (see details on each individual data block below).  

Domain based 

Descriptors/variables generated from sequences belonging to the following domains: variable 

region of the heavy chain, around 110 residues (VH) and around 110 residues (VL). Each 

domain sequence was used to generate descriptors as described above where each descriptor 

was calculated as an average value based on all the residues present in each domain.  

Window based 

A multiple alignment of all sequences was performed to align the conserved region of the 

mAbs. From the sequence alignment, the length of the longest consecutive gap present between 

all sequences was determined to be 23 residues. One residue was added to each side of the gap 

length and was used as a final window size to split the full sequence into equally sized sequence 

segments of 25 residues each. Descriptors were generated in the same fashion for these 

segments as was done for the different domains in the domain-based data block described 

above.  

Substructure based 

These datasets are based on the Complementarity-determining regions (CDRs) and Framework 

regions (FRs) of the hypervariable regions of mAbs. The CDRs and FR regions were identified 

based on the unique IMGT numbering system (Lefranc, 1997; Lefranc et al., 2003) which relies 

on anchor residues i.e. highly conserved such as Cys_23 Trp_41, a hydrophobic amino acid at 

position 89, Cys_104), Phe/Trp_118 and so on. A standardised delimitation of the framework 

regions and of the complementarity determining regions based on sequence lengths is also 

provided by IMGT numbering systems. The sequences were input into Matlab following which 

algorithms were used to identify the CDR and FR regions based on the rules specified. Further 
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alignment for substructure sequences was carried out based on additional rules formulated on 

conserved sequences.  

Single Amino Acid based 

A multiple alignment of all sequences was performed to align the conserved region of the 

mAbs. Position in the alignment where amino acids were not conserved and showed high amino 

acid variability was selected and numerically converted using the Z-scale, T-scale and MS-

WHIM. Similar to the window approach, an average of each component in the amino acid 

scales was calculated based on the residues in a window when gaps were present. To avoid null 

values, the window was extended with +1 residues to each side of the gap.  

Running Sum based 

Similar to the single amino acid approach a multiple alignment of all sequences was performed 

to align the conserved region of the mAbs. A window of 13 residues was selected and all 

residues present in this window were numerically converted using the amino acid scales and 

each scale component was summed together. All descriptors were generated by sliding the 

window in the forward direction in the sequence one residue at the time. As the longest 

consecutive gap in the multiple sequence alignment of mAbs contained 23 residues, the 

window size was chosen in a way keeping 2 cases in mind. In the first case, for mAbs that have 

no residues in that RD window containing the longest gap, descriptors would be encoded as -

999 in the Running sum data block due to no numerical conversion being possible. In the 

second case, for those mAbs that do contain residues in long gap regions, loss of information 

was minimised as considering the following possibilities; multiple representation of the same 

residues within the long gap regions are avoided as well as ensuring they are represented atleast 

once in the windows that start at the outer boundaries of the longest gap. For example, let the 

longest gap be numbered from 2-24. This means that the RD window 1-13 and 12-25 would 

contain all the information contained in that region. The other windows starting between 2 till 

12 (+13) would return null values and be discarded in the data analysis. 

5.1.5. Data pre-treatment and variable reduction 

All columns containing null values, coded as -999 in the data blocks were removed. Columns 

with a standard deviation below 0.0001 were also removed with the assumption of not 

containing sufficient deviation for the model. All data blocks were auto-scaled before being 

used in modelling in order to centre the data on zero as well as to scale all descriptors to unit 

variance. Following descriptor generation, the datasets were curated by removing variables 
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with null values as well as zero variance variables i.e. descriptors with standard deviation < 

0.0001. This is referred to as the ‘Original dataset’. The original datasets were then subjected 

to V-WSP reduction, an unsupervised variable reduction method which allows for the 

elimination of a variable based on multicollinearity (Ballabio et al., 2014). This was performed 

via a grid search to find the correlation coefficient threshold for the descriptors for which the 

Procrustes index was lower than 0.2. Procrustes index is a statistical measure that allows for 

the assessment of the degree of comparability between the original and reduced datasets based 

on informational content. A Procrustes value of 1 indicates complete dissimilarity and 0 

indicates that both datasets are identical (Ballabio et al., 2014). The grid search was carried out 

separately for the descriptors of different domains to avoid removing chance correlations due 

to the presence of similar amino acids in different domains of the variable regions i.e. VH and 

VL domains. This dataset is referred to as ‘V-WSP reduced’. 

5.1.6. Principal component analysis (PCA) 

PCA is a decomposition technique for dimensionality reduction for multivariate data. PCA 

identifies linear combinations of the variables or so called principal components which align 

with the directions of the highest variance within the data block. All components are calculated 

perpendicular to each other (Bro and Smilde, 2014). The analysis was performed using the PLS 

Toolbox from Eigenvector Research.  

5.2. Results 

5.2.1. Multiple sequence alignment (MSA) 

The whole heavy and light chain primary sequence of mAbs were subject to MSA. The 

percentage identity matrix is derived from percentage sequence similarity of all mAbs 

sequence. The whole heavy chain sequence was subject to MSA followed by its respective 

domains: VH, CH1, CH2, Hinge and CH3 (Figure 5.3). The CH1, CH2 and CH3 domains are 

fairly similar with 89, 86, 91% minimum sequence similarity respectively (Figure 5.3c, d and 

f). The Hinge region on the other hand has some differences and this is due to the differing 

lengths between isotypes (Vidarsson et al., 2014b). The major points of dissimilarity between 

the constant domains for mAbs arises from FC engineering for enhancing their effector 

function as well as clearance rates based on the therapeutic indication (Kim et al., 2005; Strohl, 

2009). Despite Fc engineering, as seen from Figure 5.3c, d and f), the constant domain remains 

fairly similar. The VH region has a fair degree of dissimilarity as these sequences contain the 
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hypervariable region for antigen binding i.e. the complementarity determining regions (CDR) 

and framework regions (FR). 

For the light chain sequence, similarly sequence analysis was performed on the complete light 

chain sequence as well as its constituent domains: VL and CL. The CL region of mAbs seem 

to have two distinct bands (Figure 5.4c) and this could mainly be from the light chain isotypes, 

kappa and lambda (Vidarsson et al., 2014b). The VL region is fairly dissimilar as it contains 

the FR and CDR regions and is involved in antigen binding.  



 
86 

 

 

Figure 5.3 Percentage identity matrix of complete heavy chain sequence and respective 
domains of 285 mAbs for (a) heavy chain (HC), (b) VH, (c) CH1, (d) CH2, (e) Hinge, (f) CH3. 
Colour gradient indicates percentage similarity between sequences. 



 
87 

 

 

 

Figure 5.4 Percentage identity matrix of complete light chain sequence and respective domains 
of 285 mAbs for (a) light chain (LC), (b) VL and (c) CL, Colour gradient indicates percentage 
similarity between sequences. 
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5.2.2. Domain specific influence of intrinsic properties 

PCA was performed initially using descriptors generated from the primary sequence of the full 

light chain of mAbs (Figure 5.5).  As shown in Figure 5.5a, there is a clear separation of mAbs 

based on light chain isotypes along PC1 capturing 51.75% of variance depicted in the scores 

plot. This separation seems to be influenced mostly by CL domain as can be seen from the 

loading plot (Figure 5.5b). The descriptors from the VL domain influences the separation as 

well but to a lesser extent when compared to CL. However, from the second PC onwards the 

loadings of CL descriptors were mostly centred around zero wherein these PCs captured 

between 2-6% of variance. (Figure 5.5b).  

 
Figure 5.5 (a) Scores plots and (b) loadings plot following PCA analysis of Domain datablock 
generated from light chain of mAbs. VL: variable region of the Light Chain; CL: constant 
region of the Light Chain. 

PCA of the heavy chain descriptors of mAbs revealed that there is a clear separation of mAbs 

based on heavy chain isotype (Figure5.6a). This separation along PC1, capturing 37.82% 

variance, is most pronounced for IgG1 from the others. IgG2 and IgG4 are separated as well 

but to a lesser extent compared to their separation from IgG1 (Figure 5.6a). The separation is 

most influenced by descriptors of the CH1, Hinge and CH2 domains followed by CH3 domain 

(Figure 5.6b). VH domain does not appear to influence the separation of mAbs based on heavy 

chain as the loadings were mainly centred on zero for the PC1 and PC2 (Figure 5.6d). However, 

from PC3 onwards, while the loadings of all other domains centre around zero, loadings of the 

VH domain influenced the separation wherein the PC captured only 7% of the variance.  
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Figure 5.6 (a) Scores plots and (b) loadings plot following PCA analysis of Domain datablock 
generated from heavy chain of mAbs. VH: variable region of the heavy chain; CH1: first 
constant region of Heavy chain; Hinge: hinge region of Heavy Chain; CH2: second constant 
region of Heavy Chain and CH3: third constant region of Heavy Chain. 

No apparent separation between different species of mAbs was observed when descriptors of 

the heavy or light chain were subjected to PCA (Figure 5.7). As the maximum variance for 

light chain-based descriptors leads to separation based on light chain isotype and for heavy 

chain descriptors maximum variance leads to separation based on heavy chain isotype, any 

species based difference is overshadowed.  

 



 
90 

 

Figure 5.7 Scores plot generated following PCA analysis of Domain datablock descriptors 
generated from (a) light chain and (b) heavy chain of mAbs. 

5.2.3. Influence of intrinsic properties in hypervariable regions  

An important aspect of developing QSAR models is defining the applicability domain that will 

allow for the prediction of new compounds.  It is therefore important to identify any potential 

separation or clustering of samples that could later influence model development. In the case 

of mAbs, clustering based on intrinsic properties such as light chain substructure, heavy chain 

substructure and species were observed. Principal component analysis was performed to 

visualise the separation of mAbs based on their intrinsic properties. As an unsupervised pattern 

recognition method, PCA allows for the decomposition of the X-block i.e. the primary 

sequence-based descriptors without the influence of the dependent variables or responses on 

such a separation. This helps visualise any potential clustering/grouping that might influence 

the QSAR model at a later stage. 

As shown in Figure 5.8a separation based on light chain isotype can be seen for all the data 

blocks with resolution of the separation increasing with the resolution of the data. The Domain 

data block is the most global of all the data block and shows the least separation with a 

dispersion on both PC1 and PC2 (Figure 5.8A). For the Window datablock, the separation of 

samples based on light chain isotypes appears to be more on PC 2 (Figure 5.8C). Separation 

based on light chain substructures can also be seen on other PCs however to a lesser extent 

although these PCs captured <10% variance. All the other data blocks, which are based on 

either locally clustered amino acids or singular amino acid differences, show more resolution 

in the separation. The separation is most pronounced for the Substructure datablock with the 

first two principal component (PC) capturing 19% variance and contribution is mainly form 

PC1 (Figure 5.8E). For the Single amino acid datablock the separation can be seen on PC2 

(Figure5.8G) whereas for Running Sum it is on PC1 (Figure 5.8I). As seen from Figure 5.8 

there is an influence of light chain substructure on the descriptors generated from the primary 

sequence. As shown in the loadings of the corresponding data block, the variables that 

influence this separation arises from the VL region. The number samples corresponding to the 

respective light chain substructure can also influence the analysis as there are greater number 

of kappa samples than lambda. Based on these observation, the samples were separated and 

only the Kappa samples (N=253) were retained for further analysis to check for any influence 

of other intrinsic properties such as species. As all of the Lambda samples were humanized 

mAbs they were left out of further analysis.  
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A slightly less apparent separation can be observed based on species of mAbs (Figure5.9). The 

coloured ellipses indicate the 95% confidence limits of the corresponding species class and 

helps in better visualisation of the class behaviour. For the Domain datablock, there is a 

separation of the chimeric, human and humanized mAbs along PC2. The dispersion is higher 

for the human from the humanized and chimeric (Figure 5.9A). There seems to be a more 

mixed influence form the descriptors of both VH and VL domain (Figure 5.9B). The chimeric 

mAbs are separated farther from the human and humanized mAbs with the separation along 

PC4 for the Window datablock (Figure 5.9C). This separation is mainly due to the contribution 

from the descriptors of the VL domain (Figure 5.9D). In the substructure datablock the 

chimeric is separated from the rest on PC2 and the human mAbs on PC3 (Figure5.9E). The 

contribution for this dispersion in the substructure datablock is mixed from descriptors from 

both VH and VL domain (Figure 5.9F). There is clearer separation of the three species classes 

in the Single Amino datablock wherein the chimeric, humanized and human mAbs are 

separated on PC4 (Figure 5.9G). The separation mainly arises from contributions of the VL 

descriptors (Figure 5.9H). For the Running Sum datablock the resolution of the separation is a 

bit lower with the human mAbs separated on PC2(Figure 5.9I). The contributions from the VL 

and VH descriptors are quite mixed for the Running Sum datablock (Figure 5.9J).  No apparent 

separation of mAbs based on heavy chain isotype was observed from descriptors generated 

form the hypervariable regions of mAbs (Figure5.10). This can be seen from the scores plots 

generated following PCA of VH and VL region descriptors of mAbs (Figure 5.10), the 

confidence ellipses set at 95% confidence limits mostly overlap among the different isotypes.  
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Figure 5.8 Scores plots of (A) Domain, (C) Window, (E) Substructure, (G) Single Amino and 
(I) Running Sum datablocks and loadings plot of (B) Domain, (D) Window, (F) Substructure, 
(H) Single Amino and (J) Running Sum generated after performing PCA on data blocks 
containing only hypervariable region sequences of 285 mAbs. X axis represents Principal 
Component (PC) 1 and Y axis represents PC2. The percentage values indicate the percentage 
variance captured by the respective PC. 
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Figure 5.9 Scores plots of (A) Domain, (C) Window, (E) Substructure, (G) Single Amino and 
(I) Running Sum datablocks and loadings plot of (B) Domain, (D) Window, (F) Substructure, 
(H) Single Amino and (J) Running Sum generated after performing PCA on data blocks 
containing only hypervariable region sequences of 253 mAbs.  Coloured ellipses indicate the 
95% confidence limits of the corresponding class.  X axis represents Principal Component (PC) 
1 and Y axis represents PC2. The percentage values indicate the percentage variance captured 
by the respective PC. 
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Figure 5.10 Scores plots of (a) Domain, (b) Window, (c) Substructure, (d) Single Amino and 
(e) Running Sum generated after performing PCA on data blocks containing only hypervariable 
region sequences of 253 mAbs. Coloured ellipses indicate the 95% confidence limits of the 
corresponding class.  X axis represents Principal Component (PC) 1 and Y axis represents PC2. 
The percentage values indicate the percentage variance captured by the respective PC. 
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5.3. Discussion 

This study mainly focused on the generation of descriptors derived from the primary sequence 

of monoclonal antibodies. These descriptors were then analysed using unsupervised pattern 

recognition method, PCA, to assess the influence of intrinsic properties such as light and heavy 

chain isotypes as well as species on these descriptors. This could affect QSAR model 

development as any apparent grouping or clustering descriptors based on intrinsic properties 

could confound the model. Additionally this could also affect defining the applicability domain 

of QSAR models i.e. the scope of models to make reliable predictions (Roy et al., 2015). A 

well-defined applicability domain has an optimum level of generalisation as well as restriction 

allowing for better understanding of the compound space and better predictions (Netzeva et al., 

2005). 

The MSA of primary sequences of mAbs reveals a high degree of similarity between constant 

domains of both heavy and light chain (Figure 5.3, 5.4).  The main differences arise from the 

different heavy chain isotype (CH1, CH2 Hinge and CH3) as well as the light chain isotype 

(CL) of mAb samples. Thus, the descriptors generated from these domains would capture 

information that contributes to the difference in isotype and confound any correlation with the 

actual output during predictive model development. This was further examined by assessing 

descriptors generated from the Domain datablock for the whole heavy and light chain as well 

as their constituent domains (Figure 5.5 and 5.6). For the light chain the first PC always 

captured the variance between the light chain isotype and the main contribution for this arose 

from the CL domain followed by VL (Figure 5.5). A similar trend was observed for the heavy 

chain descriptors wherein the first PC captured the difference between different heavy chain 

isotypes and this was influence mainly form descriptors in the CH1, CH2, hinge and Ch3 

domains (Figure 5.6). The VH region had very little influence in the separation based on heavy 

chain isotype. The separation was highest for IgG1 mAbs when compared to IgG2/IgG4 

(Figure 5.6).  Due to the high structural similarity between IgG2 and IgG4 monoclonal 

antibodies, only a few residues contribute to the structural difference when comparing the 

isotypes (Vidarsson et al., 2014a). Based on these preliminary investigations it can be 

concluded that the descriptors generated from the constant domain will always be influenced 

by intrinsic properties and this becomes an issue in multivariate data driven regression models 

such as Partial least squares which works on maximising the covariance between descriptors 

and response. This has led to many QSAR studies in the area of mAb development to utilise 
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only the hypervariable regions for further model development (Yadav et al., 2011; Hötzel et 

al., 2012; Sharma et al., 2014; Robinson et al., 2017). 

The descriptors generated from the hypervariable regions of mAbs for all datablocks (Domain, 

Window, Substructure, Single amino and Running sum) were further explored to assess the 

influence of any intrinsic properties. The VL region descriptors indeed influenced the 

separation in light chain isotypes for all datablocks with separation increasing with data 

resolution (Figure 5.8). The contribution from the VH region had minimal influence on light 

isotype based separation. The hypervariable descriptors were further assessed for influence of 

species following the removal of Lambda mAbs. The hypervariable region descriptors were 

influence by the species type as well (Figure 5.9) to a slightly lesser extent than light chain 

isotype. This makes sense as the constant domains in all the antibodies that were investigated 

were of human origin, while the actual species conformation/properties is only present in the 

variable domains (Kim et al., 2005). The heavy chain isotype did not influence the descriptors 

generated form the VH and VL region (Figure 5.10). Thus, it would be prudent to separate 

mAbs based on light chain isotype as well as species before predictive model development as 

they have a clear influence on the descriptors generated. This has two advantages as it removes 

any influence of intrinsic properties as well as allowing for a development of a predictive model 

with a well-defined applicability domain that facilitates better prediction and interpretability.  

Aspects which contribute to isotype separation might be different from those that contribute to 

bioactivity. Thus, selection of domains as well as descriptor sets has to be performed in such 

cases to improve the performance of the regression/classification models which will allow for 

better prediction by removing the influence of redundant or noisy data. Different machine 

learning based predictive models have already been developed for predicting aggregation 

tendencies of mAbs in manufacturing as well as for epitope mapping studies (Singh et al., 

2013; Obrezanova et al., 2015). 

Evaluations of safety, manufacturability and efficacy allow for early risk assessment for 

developing and improving mAb based therapeutics. The main advantages of this methodology 

are that it is high throughput, requires only the primary sequence; translatable to all mAbs based 

therapeutics. The main challenges for further development of such predictive tools would be 

to capture the structural information such as hydrophobic and hydrophilic patches, solvent 

accessible surface area, ligand binding pockets which could greatly aid not only in better 

selection of lead candidates but also aid in better design of the process in accordance with the 
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QbD paradigm. 3D structures of approved mAbs are not readily available due to the highly 

competitive nature of the biopharmaceutical industry. Homology modelling and molecular 

dynamics techniques can be utilised to overcome this challenge. This has been previously used 

for the development of QSAR models for chromatographic techniques using the surface 

properties of fab variants (Robinson et al., 2017). This methodology has also been used to 

predict the critical product properties of mAb based therapeutics such as clearance, viscosity 

and chemical stability (Agrawal et al., 2016). These techniques can be further extended to 

predict the safety or adverse effect profile of mAbs using docking studies.  This has been 

previously demonstrated for smaller peptide-based QSAR models (Lin et al., 2017).  

Development of such in silico tools will have a significant impact on all stages of the mAb 

production including ascertaining the critical quality attributes of product and process which 

leads to better product and process design. These methods also allow for seamless integration 

into existing processes for better profiling of the product, thereby reducing attrition, as well as 

reducing manufacturing failures owing to the complexities of the mAb based therapeutics.  

5.4. Chapter summary 

In conclusion, this chapter elucidates the development of five novel descriptor datablocks: 

Domain, Window, Substructure, Single Amino and Running sum datasets, generated from the 

primary sequence of mAbs that could be used for QSAR model development of mAbs. 

Unsupervised pattern recognition via PCA was performed on the descriptor sets to visualise 

any intrinsic property-based separation or clustering. As the method is unsupervised it 

facilitates detection of any intrinsic groupings or clusters. The descriptor sets were assessed for 

the influence of intrinsic properties that could hamper with predictive model development that 

facilitates mAb developability. Based on the results, the descriptors of the hypervariable region 

were chosen for further model development. Furthermore, the samples were divided into 

appropriate heavy chain, light chain and species type for developing models that have a better-

defined applicability domain. 
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Chapter 6: Cross interaction chromatography based QSAR model for early stage 
screening to facilitate enhanced developability of monoclonal antibody 

therapeutics. 

The growth in the area of monoclonal antibody-based therapeutics, is impeded by 

developability issues regarding the biophysical properties of mAbs that cause them to fail either 

at the manufacturing stage or in clinical trials. With more mAbs being administered 

subcutaneously, higher concentration formulations of mAbs are required so as to administer 

higher amounts in smaller volumes (Pindrus et al., 2015). The two main problems associated 

with high concentration mAb formulations are 1) increased aggregation propensities that could 

lead to immune related adverse effects and 2) poor solubility causing problems during 

administration (Yadav et al., 2011; Pindrus et al., 2015; Joubert et al., 2016).   

Thus, it is beneficial to screen mAbs for developability attributes such as aggregation 

propensity and solubility issues at the discovery stage. There exists a battery of assays to 

measure these biophysical properties which usually assess the potential of mAb interactions 

with itself (self-associate) and/or with other antibodies (cross interaction) (Xu et al., 2013; Jain 

et al., 2017). One such assay is Cross interaction chromatography (CIC), an early stage 

screening technique utilised during affinity and activity characterisation of mAbs. It assesses 

weak cross interaction of mAbs with polyclonal antibodies when eluting through a column 

coupled with human serum polyclonal antibodies (Jacobs et al., 2010; Kelly et al., 2015). 

Longer retention times indicate increased tendencies of nonspecific interactions. This could 

lead to issues in developability such as polyspecificity, low solubility and higher clearance 

rates (Jacobs et al., 2010; Kelly et al., 2015). CIC has multiple advantages over other 

techniques that estimate protein solubility and polyspecificity (Jacobs et al., 2010). As 

demonstrated in previous studies it requires very low amount of protein for analysis and allows 

for rapid high throughput screening of mAbs at their discovery stage which could help in 

minimising cost and time of analysis (Jacobs et al., 2010; Jain et al., 2017). However, 

considering the scale and number of mAbs in development and the costs involved, there is an 

urgent need for in silico tools that could allow for the prediction of protein behaviour that would 

allow for prioritisation of lead candidates to be tested in predictive assays. 

Quantitative sequence activity/property relationship (QSAR/QSPR) models are powerful in 

silico tools that allow for the prediction of mAb behaviour where the descriptors (based on 

structure, sequence and/or interaction) are modelled against a biological activity (response) 

using multivariate data analysis approach for approved mAbs. This is an extension of 
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Quantitative structure activity/property relationship models which are routinely used for the 

development of predictive models in biopharmaceutical development and toxicological 

applications (Zhao et al., 2007; Zhou et al., 2008; Matthews et al., 2009; Nongonierma and 

FitzGerald, 2016). QSAR models have been developed for a number of chromatographic 

applications for a myriad of proteins at different developmental stages (Song et al., 2002; Woo 

et al., 2015). Descriptors for protein molecules can be generated by different software, such as 

EMBOSS and ProtDCal, both of which are freely available with a friendly graphical user 

interface and the capacity to generate a higher number of molecular descriptors for proteins 

from FASTA or PDB files (Ruiz-Blanco et al., 2015). Different sets of protein descriptors have 

been utilised in studies to distinguish between protein functional families where  models were 

developed based on machine learning methods such as Support vector machines and artificial 

neural networks (Ong et al., 2007; Li et al., 2016). Among these methods is Partial least square 

(PLS) regression, a combination of principal component analysis and multiple linear 

regression. In this method a linear combination of new predictor variables is created from the 

original variable dataset, which has a large covariance with the response variable. It takes into 

consideration the correlations and variances of the responses and predictors (Geladi and 

Kowalski, 1986; Ng, 2013).  

In this study, development of a robust QSAR model was extended using five novel datasets 

generated from the primary sequence of mAbs and they were modelled against corresponding 

CIC retention time based on the data recently published by Jain et al.,(Jain et al., 2017). As the 

mAbs tested in their study had different variable domains but the same IgG1 constant domain 

descriptors were generated only for the variable domains of mAbs i.e. for the VH and VL 

regions (Veerasamy et al., 2011). In this study descriptors were generated using ProtDCal, 

EMBOSS Pepstat software as well as amino acid scales for variable regions of mAbs, the 

details of which are outlined in Table S1. Five independent and novel X block datasets 

consisting of these descriptors were generated based on the physicochemical, electronic, 

thermodynamic, electronic and topological properties of amino acids: Domain based, Window 

based, Substructure based, Single Amino Acid based, and Running Sum based. The 

relationship between the descriptors and the responses was captured by Partial Least Squares 

based models and the datasets as well as models were benchmarked based on metrics as 

outlined in QSAR validation guidelines (Roy et al., 2015). Furthermore, the models were 

validated with an external test of mAbs and the corresponding model performance metrics were 

benchmarked for the different datasets. The overall methodology is outlined in Figure 6.1. 
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Figure 6.1 Hybrid model development workflow outlining the different steps involved in 
descriptor generation, pre-treatment ad variable reduction; model development followed by 
model evaluation and optimisation. MSA: Multiple Sequence Alignment.  



 
101 

 

6.1. Materials and Methods 

6.1.1. Data collection 

Sequence information, substructure, species and phase of development of 137 mAbs have been 

collected from IMGT, literature, patents as well as from industrial partners (Apweiler et al., 

2004; Lefranc et al., 2009). An overview of these 137 mAbs have been provided in Appendix 

D Table D.1. The FASTA format sequences of mAbs were read into Matlab and were subjected 

to multiple sequence alignment. The sequences were then split into domains and the variable 

region domains VH and VL were selected for further descriptor generation.  

6.1.2. Descriptor generation 

The primary sequences of the antibodies were imported into MATLAB 2015a. The details of 

descriptor generation have been outlined in Chapter 5, Section 5.1.3 and the data block 

generation has been described in Chapter 5, Section 5.1.4.  The automation of descriptor and 

dataset generation was done by MATLAB codes written by Micael Karlberg, Newcastle 

University.   

6.1.3. Data curation and Variable reduction 

Following descriptor generation, the datasets were curated by removing variables with null 

values as well as zero variance variables i.e. descriptors with standard deviation < 0.0001. This 

is referred to as the ‘Original dataset’. The original datasets were then subjected to V-WSP 

reduction, an unsupervised variable reduction method which allows for the elimination of 

variable based on multicollinearity (Ballabio et al., 2014). This was performed via a grid search 

to find the correlation coefficient threshold for the descriptors for which the Procrustes index 

was lower than 0.2. Procrustes index is a statistical measure that allows for the assessment of 

the degree of comparability between the original and reduced datasets based on informational 

content. A Procrustes value of 1 indicates complete dissimilarity and 0 indicates that both 

datasets are identical (Ballabio et al., 2014). The grid search was carried out separately for the 

descriptors of different domains to avoid removing chance correlations due to the presence of 

similar amino acids in different domains of the variable regions i.e. VH and VL domains. This 

dataset is referred to as ‘V-WSP reduced’. 

6.1.4. Exploratory Analysis 

Principal component analysis, an unsupervised pattern recognition method, was performed on 

the reduced datasets: Domain, Window, Single amino and Running Sum using the PLS 
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Toolbox from Eigenvector Research (Bro and Smilde, 2014). The data was auto scaled (each 

descriptor was mean centred and scaled with its individual standard deviation) prior to analysis. 

Corresponding score plots were then assessed to visualise the separation, if any, of mAbs based 

on their intrinsic properties, such as heavy chain substructure, light chain substructure as well 

as species. 

6.1.5. Cross Interaction chromatography data 

The cross interaction chromatography data for 137 mAbs were obtained from a previous study 

performed by Jain et al., where 30 mg of human serum polyclonal antibodies was coupled to a 

column followed by testing approximately 5 μg of each antibody at a flow rate of 0.1 mL/min 

using PBS as a mobile phase on an HPLC system (Jain et al., 2017). This data was auto scaled 

prior to modelling.  

6.1.6. Model development 

The data was divided into a training and test set via Kennard Stone algorithm, maintaining and 

80%-20% split of data (Galvao et al., 2005). This division was based on the small size of the 

dataset i.e. to retain sufficient samples in the training set whilst having a small dataset. The 

mAbs with the most dissimilarity in Euclidean space are placed into the training set. CIC 

retention times were modelled against the descriptors generated using the PLS Toolbox from 

Eigenvector Research. Both the descriptors and responses of the training set were entered into 

Matlab, auto scaled separately i.e. for the training set the mean and standard deviation of the 

training set was used and for the test set the mean and standard deviation of the test set was 

used. The datasets were consequently subjected to PLS analysis. The cross-validation method 

used was a random subset cross validation with 5 splits and 20 iterations (Minitab, 2014; Hahn 

and Valentine, 2016). A maximum of 10 latent variables were tested for each developed model 

and used to investigate the model error to choose an appropriate model complexity, i.e. number 

of latent variables. Models were developed first for the original datasets followed by the V-

WSP reduced datasets. Models were further optimised by Genetic Algorithm-Partial least 

squares (GA-PLS) based supervised variable selection method. The parameters were set as 

follows: population size of 100; maximum generations of 100; mutation rate of 0.005, window 

width of 1; convergence rate of 80%; 30 initial terms, cross over of 2; random subset 5 fold 

cross validation with 10 iterations and data retreatment set for autoscaling (Hasegawa et al., 

1997; Andersen and Bro, 2010). For each stage of model development and improvement i.e. 

Original, V-WSP and GA-Selected, the model was assessed with the test set. 
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6.1.7. Model Performance metrics 

The datasets, models and outputs were benchmarked based on the following metrics for the 

multivariate regression analysis: R2 values based on Pearson correlation coefficient between 

observed and predicted values (Equation 6.1); Q2 values based on goodness of fit (Equation 

6.2): Root mean square error of cross validation (RMSECV) (Equation 6.3) and cross 

validation bias (Equation 6.4) (Alexander et al., 2015).  The model metrics were further 

assesses against the OECD guidelines for the Calibration, internally validated (Cross 

validation) and externally validate models (test set predictions) (Veerasamy et al., 2011; 

Organisation for Economic and Development, 2014). For a dataset with n samples containing 

observations y1 to yn, each associated with a predicted /modelled value f1 to fn wherein yi is a 

sample within the dataset and fi is its associated predicted/modelled value. SS refers to Sum of 

squares for the estimated (SSE) and true values (SST) and summation is denoted by Σ. 
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6.1.8. Y randomisation  

The developed models were further evaluated by performing Y randomisation (Y scrambling) 

to investigate whether the models did indeed capture the underlying relationships in the data 

rather than capturing chance correlation between the independent descriptors and dependent 

response data (Rücker et al., 2007). This was done by randomly rearranging the order of the 

response data while keeping the original order in the descriptor set, thus creating a mismatch 

between the input and output data. A model was then developed according to specifications 

given above in the Model Development section. The procedure was repeated 50 times to test 

different random permutations of the response values and averages of R2 and Q2 from the cross-

validation results from all repetitions were calculated. In addition, statistical tests based on 

Wilcoxon Signed Rank test, Sign test and Student t-test were performed by pairwise 

comparison of the predictions of the randomised model to that of the non-randomised model 
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(Thomas, 2003). A significance level of 0.05 was used to reject or accept the null hypothesis 

of predictions from the randomised model being significantly different from the predictions of 

the non-randomised model (below 0.05). 

6.2. Results 
6.2.1. Exploratory analysis 

An important aspect of developing QSAR models is defining the applicability domain that will 

allow for the prediction of new compounds.  It is therefore important to identify any potential 

separation or clustering of samples that could later influence model development. In the case 

of mAbs, clustering based on intrinsic properties such as light chain substructure, heavy chain 

substructure and species were observed. Principal component analysis was performed to 

visualise the separation of mAbs based on their intrinsic properties. Being an unsupervised 

pattern recognition method, PCA allows for the decomposition of the X-block i.e. the primary 

sequence based descriptors without the influence of the dependent variable or response.  

A clear separation between samples containing kappa and lambda chain based on primary 

sequence descriptors can be observed in Figure 6.2. This is evident in all datasets: Domain, 

Window, Single and Running Sum. The separation is in the first PC as the highest amount of 

variance is between kappa and lambda light chain substructures. At this stage only those mAbs 

with a kappa light chain were selected (n=124) and lambda light chain mAbs were removed 

from the datasets (n=13).  
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Figure 6.2 Score plots generated after performing PCA on (a) Domain, (b) Window, (c) 
Substructure, (d) Single Amino acid and (e) Running Sum datasets for 137 mAbs. X axis 
represent Principal Component (PC) 1 and Y axis represents PC2. The percentage values 
indicate the percentage variance captures by the respective PC. Coloured ellipses indicate the 
95% Confidence limits of the corresponding class. 
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A slightly less apparent separation can be observed based on species of mAbs (Figure 6.3). The 

coloured ellipses indicate the 95% Confidence limits of the corresponding species class and 

helps in better visualisation of the class behaviour. This is particularly pronounced for chimeric 

mAbs when compared to Homo sapiens (human) and humanized. As reflected in the influence 

plot (Appendix D Figure D.1) the chimeric species has higher Q residuals, a lack-of-fit statistic, 

than the rest. Another factor influencing this could be the sample sizes which are 67, 46 and 11 

samples for humanized, Homo sapiens and chimeric species respectively. As PLS models are 

based on covariance matrix, the variance in the X block which attributes to the difference in in 

intrinsic properties, influences the model development. Only the humanized mAbs were chosen 

at this stage (n=67).  
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Figure 6.3 Score plots generated after performing PCA on (a) Domain, (b) Window, (c) 
Substructure, (d) Single Amino acid and (e) Running Sum datasets for 67 mAbs. Coloured 
ellipses indicate the 95% Confidence limits of the corresponding class. X axis represent 
Principal Component (PC) 1 and Y axis represents PC2. The percentage values indicate the 
percentage variance captures by the respective PC. 



 
108 

 

Most of the residues attributing for the difference of IgG heavy chain substructures are present 

in the constant region. The number of samples for IgG2, IgG4 and IgG1 are 7, 13 and 46 

samples respectively and this would influence the spread as sample descriptor spaces are 

sparsely and varying populated based on species Based on the above results, IgG1-Kappa-

Humanized mAbs were chosen for further model development (n=46) such that the QSAR 

model developed is for a homologous set of mAbs which has been seen in previous studies as 

well (Robinson et al., 2017). Furthermore, the other species of mAbs have too little samples in 

them to develop an applicability domain around chimeric or human mAb. The details of the 

mAbs chosen are shown in Appendix D Table D.2. 

6.2.2. Variable Reduction and variable Selection 

Considering the dimensionality of the data with many variables and the limited number of 

observations, variable reduction and variable selection methods were used prior to model 

building. There was a 78%, 31%, 87% and 95% reduction in variables of the domain, window, 

single amino acid and running sum datasets, respectively, following V-WSP reduction. The 

associated correlation coefficient threshold as well as Procrustes indices are reported in 

Appendix D Table D.3. The V-WSP reduced datasets were then divided into training (80%) 

and test set (20%). Furthermore, GA-PLS based variable selection led to a further reduction of 

variables resulting in approximately 4%, 14%, 25 and 1% of the variables from the original 

dataset being retained in the GA selected dataset for domain, window, single amino acid and 

running sum datasets, respectively. The number of unique models generated, the average 

RMSE values of these models as well as the number of generations required to reach 

convergence are reported in Appendix D Table D.4. The total number of variables retained 

following variable reduction and variable selection is shown in Table 6.1. 

Table 6.1 Dimensionality reduction by variable reduction and selection 

Dataset Original  V-WSP reduced GA selected 
Domain 272 61 11 
Window 1336 921 191 
Substructure 639 193 43 
Single amino 1474 191 36 
Running sum 2596 140 29 
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6.2.3. Model performance evaluation 

Domain dataset 

Figure 6.4 shows the overall model summary for the GA variable selected PLS model (5 LVs) 

for the domain dataset. There is more dispersion of the samples from the parity line in the lower 

extreme of the data i.e. for lower retention times and this is where most samples lie due to the 

skewed nature of the data distribution (Figure 6.4a). Duligotuzumab was removed from the test 

set as it had a high Y residual (Appendix D Figure D.2a). This indicates that the Y value for 

this sample is different for the group of samples for which duligotuzumab shares a high degree 

of sequence similarity and thus possessing similar values for descriptors. Most of the test set 

predictions fall within 30 seconds of the experimental value i.e. within a 5% range of the 

measure values (Figure 6.4b). Palivizumab and efalizumab however have been overestimated 

by 36 seconds and 32 seconds respectively (Figure 6.4b). Figure 6.5 shows the regression 

coefficients for the variables chosen in the model following GA based variable selection. In 

VH region the highest absolute values for regression coefficients are those of electronic 

properties of the residues in β sheet structure and the size associated electrostatic potential of 

VH domain (Figure 6.5a). In the VL region the number of water molecules close to residues in 

unfolded state and the isoelectric point of alpha helix structures have the highest absolute 

regression coefficients (Figure 6.5b).  

 

Figure 6.4 Model summary of Domain dataset model developed following GA-PLS selection 
of variables. (a)Measured vs predicted values for training and test set model. (b) Test set 
predictions. 
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Figure 6.5 Regression coefficients of GA selected variables for domain dataset model (a) VH 
domain and (b) VL domain 

Window Dataset 

Figure 6.6 provides an overview of the GA-selected variables based PLS model (5 LVs) for 

the window dataset. A good model fit can be observed throughout the data distribution for the 

calibration model (Figure 6.6a). For the test set prediction, as seen from Figure 6.6b, all the 

predicted values are within 30 seconds of the experimentally determined retention times. 

Atezolizumab and duligotuzumab have been removed from the test set due to abnormally high 

Y residuals (Appendix D Figure D.2b). This could be due to an artefact or a measurement error. 

Alternately the descriptors were not able to capture this information.  

Figure 6.6 Model summary of Window dataset model developed following GA-PLS selection 
of variables. (a)Measured vs predicted values for training and test set model. (b) Test set 
predictions. 
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As the Window, Single Amino and Running Sum datasets were generated following multiple 

sequence alignment, the relative positions of residues of the complementary determine region 

(CDR) and framework region (FR) that constitute the hypervariable region of mAbs needed to 

be identified. This has been shown in Table 6.2. 

Table 6.2 Relative positions of CDR and Fr regions for heavy and light chain following 
sequence alignment. 

Heavy  Indices Light Indices 
FR1 1-21 FR1 1-23 
Start 22-26 Start 24 
CDRH1 27-38 CDRL1 25-40 
End 39-40 End 41-43 
FR2 41-47 FR2 44-53 
Start 48-52 Start 54-55 
CDRH2 53-71 CDRL2 56-62 
End 72-74 End - 
FR3 75-100 FR3 63-95 
Start 101-103 Start 96 
CDRH3 104-124 CDRL3 97-111 
End 125-128 End 112-115 
FR4 129-135 FR4 116-121 

 

GA-Selected variables with regression coefficients >0.001 are shown in Figure 6.7. In the VH 

domain, descriptors pertaining to electronic charge index, topological properties and the 

electrostatic potential based properties of residues in CDRH2 as well as electrostatic potential 

based and topological properties of residues in the FR3 showcase the highest contributions 

(Figure 6.7a). Additionally, size based molecular electrostatic potential of residues in the FR4 

contribute to the model. For the VL region, clear contribution can be seen from the residues in 

the CDRL2-FR3 regions, arising from the electronic charge indices of the aliphatic residues 

and unfolding residues as well as electronic charge indices of aliphatic residues as well as that 

of unfolding residues (Figure 6.7b). Furthermore, topological properties of residues in the 

CDRL3-FR3 region as well as electronic charge index of the residues in the CDRL3-FR4 

region contribute to the model.  
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Figure 6.7 Regression coefficients of GA selected variables for Window dataset model (a)VH 
domain and (b) VL domain. 
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Substructure dataset 

Figure 6.8 provides an overview of the GA-selected variables based PLS model (5 LVs) for 

the substructure dataset. A good model fit can be observed throughout the data distribution for 

the calibration model (Figure 6.8a). For the test set prediction, as seen from Figure 6.8b, all the 

predicted values are within 30 seconds of the experimentally determined retention times. 

Atezolizumab and duligotuzumab have been removed from the test set due to abnormally high 

Y residuals (Appendix D Figure D.2c). This could be due to an artefact or a measurement error. 

Alternately the descriptors were not able to capture this information.  

 

Figure 6.8 Model summary of Substructure dataset model developed following GA-PLS 
selection of variables. (a)Measured vs predicted values for training and test set model. (b) Test 
set predictions.  

GA-Selected variables with regression coefficients >0.001 are shown in Figure 6.9. In the VH 

domain, descriptors pertaining to isoelectric point in CDRH1, topological properties of 

residues in FR2 as well as molecular electrostatic potential based of residues in the FR4 

showcase the highest contributions (Figure 6.9a). Additionally, size based molecular 

electrostatic potential of residues in the FR4 contribute to the model. For the VL region, clear 

contribution can be seen from the isoelectric potential and molecular electrostatic potential of  

residues in the FR3 region (Figure 6.9b).  
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Figure 6.9 Regression coefficients of GA selected variables for Substructure dataset model 
(a)VH domain and (b) VL domain. 

Single Amino Acid Dataset 

Figure 6.10 provides an overview of the GA-selected variables based PLS model (2 LVs) for 

the single amino dataset. Figure 6.10a depicts the model fit where dispersion can be observed 

for the samples on the lower end of the retention times form the parity line. Atezolizumab and 

duligotuzumab have been removed from the test set due to abnormally high Y residuals 
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(Appendix D Figure D.2d) For the test set prediction, as seen from Figure 6.10b, all the 

predicted values are within 30 seconds of the experimentally determined retention time except 

for codrituzumab which is overestimated by 42 seconds.  

 

Figure 6.10 Model summary of Single Amino dataset model developed following GA-PLS 
selection of variables. (a)Measured vs predicted values for training and test set model. (b) Test 
set predictions.  

Position numbers in the Single amino acid dataset refer to the residue indices following MSA 

as shown in Table 6.2. The properties of residues in the CDRH2 region as well as FR3 have 

shown to influence the model. In the VH domain the size based molecular electrostatic potential 

of Pos 52 and the difference between positively charged residues at Pos 71 of the CDRH2 

region show most contribution to the model (Figure 6.11a). For Pos 52 the residues are either 

Alanine or Glycine, wherein samples with Alanine, the retention times are towards the lower 

end of the range with the exception of atezolizumab, which had the highest retention time of 

all samples. This could explain why atezolizumab has a higher Y residual and its unusual 

behaviour in the model. Pos 71 is Serine for all samples except ozanezumab, where it is 

replaced by Glycine. This could be indicative of the model trying to fit the sample (overfitting) 

rather than capturing information that contributes to the correlation between descriptors and 

response (pattern recognition). Additionally, the topological properties of Pos 81 and 82 in the 

FR3 region contributed to the model (Figure 6.11a). Asparagine, Threonine or Serine are 

possible amino acids at Pos 82 and their topological properties influence the model, with 

Asparagine and Threonine being bulkier than Serine and this could indeed influence the local 
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conformation of the protein (Zimmerman et al., 1968; Cho et al., 2007). For the VL domain, 

the electrostatic potential base properties of Pos 61 and Pos 56 have shown to have most 

contribution. Topological properties of residues in CRL1 and CDRL3 (Pos 104.5) regions as 

well as charge base properties of FR2 region contribute to the model the model (Figure 6.11b).  

Since most of these residues are in the CDR region or adjacent to it, the amino acid composition 

at each residue will vary from sample to sample.  

 

Figure 6.11 Regression coefficients of GA selected variables for Single amino dataset model 
(a)VH domain and (b) VL domain 

Running Sum dataset 

The GA selected variable based PLS model (7 LVs) summary for the running sum dataset is 

shown in Figure 6.12.  Figure 6.12a depicts that the model fit is best throughout the distribution, 

especially the higher extreme. For the test set predictions, the predicted values of retention 

times are within 20 seconds of experimental values (Figure 6.12b). Ocrelizumab and 

elotuzumab were removed from the test set as it had unusually high Y residuals (Appendix D 

Figure D.2e). Even when these samples were in the training set the model performance was 

quite poor. This could be due to the fact they have very similar descriptors to other mAbs in 

the dataset but very dissimilar responses. A larger dataset could provide more information 

regarding the discrepancy of these data points. 



 
117 

 

 

Figure 6.12 Model summary of Running Sum dataset model developed following GA-PLS 
selection of variables. (a)Measured vs predicted values for training and test set model. (b) Test 
set predictions. 

Running sum descriptor calculations consider 13 residues around a central/ pivotal residue 

(indicated by Pos numbers) and the values are summed over this 13-residue segment. Position 

numbers in the Running Sum acid dataset refers to the residue indices following MSA as shown 

in Table 6.2. For the VH region, size based Electrostatic potential of residues in FR3 region 

showed maximum contribution to the model followed by topological properties of residues in 

CDRH3-FR3 region. Electrostatic potential based properties of residue in CDRH3 as well as 

FR4 have shown to influence the model (Figure 6.13a). The topological properties of the 

CDRL3-FR4 and FR3 regions as well as the electrostatic potential based properties at the 

CDRL2-FR2 and CDRL3-FR4 regions contribute to the model from the VL region (Figure 

6.13b).  
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Figure 6.13 Regression coefficients of GA selected variables for Running sum dataset model 
(a) VH domain and (b) VL domain. 

6.2.4. Benchmarking of model performance metrics 

All the models generated for the different datasets were benchmarked based on the OECD 

guidelines for QSAR model Validation (Veerasamy et al., 2011; Organisation for Economic 

and Development, 2014). The models were considered acceptable for the model fit if 

Calibration R2>0.6, Cross validation R2>0.6 and Q2>0.5 and finally External test prediction 

R2>0.6. The models were further benchmarked for numerical accuracy wherein a RMSE<0.3 

is usually recommended. However previous studies have shown that an RMSE < 10% of the 

output range is considered acceptable if accompanied by external validation especially for 

QSAR models developed for early stage screening (Alexander et al., 2015).  The above values 

are more of an indicative measure about the model performance rather than hard and fast rules 

especially for earl stage screening applications. The performance metrics for the original, V-

WSP reduced and GA selected Cross validated PLS models are reported in Appendix D Table 

D.5. 

Calibration 

The performance metrics of the Calibration models are shown in Figure 6.14. For Domain 

dataset the models after variable selection perform better than the original and reduced dataset. 

For Window, Substructure and Running Sum there is improvement in model performance after 

each step of model optimisation, with GA-Selected models performing the best. Window, 

Substructure and Running sum have the high calibration R2 following variable selection 

(Figure 6.14a). Among the best performing datasets, the window dataset has a higher number 
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of variables compared to the Substructure and Running sum (191, 43 and 29 respectively) 

making model interpretability an issue. For the Single amino acid dataset, the reduced dataset 

has better performance than the original dataset and GA selected variable model. In general, 

the original dataset performs worst, and this is since this large dataset contains redundant and 

noisy variables as confirmed by the superior performance of the reduced dataset that address 

the problem of collinearity and redundancies whereas the GA-PLS selection further addresses 

the issue of noisy variables. The Root mean square error is not only below the 10% output 

range for all the calibration models but adheres to the OECD guidelines of RMSE<0.3 as well 

(Figure 6.14b). For Domain based dataset the RMSE is reflective of model performance with 

GA selected models having only slightly lower error than the original and reduced dataset. For 

both Window, Substructure and Running Sum dataset with model optimisation and variable 

selection the RMSE values show marked decrease with nearly 90% reduction. The RMSE 

values for the Single amino acid have a slightly different trend which is reflective of the R2 

coefficients with reduced dataset having lower RMSE than GA selected.  

 

 

Figure 6.14 Performance based on (a) R2 and (b) for PLS Calibration models generated from 
the four data blocks: Domain, Window, Single amino, and Running sum modelled against CIC. 
The models were generated using the original dataset, V-WSP reduced dataset as well as after 
variable selection (GA selected). Red dashed lines indicate values at 0.6 for R2 and 0.5 for 
RMSE. Black dashed line indicates RMSE=0.3. 

Cross validation 

Internal validation of the models was performed via 5-fold random subset cross validation with 

10 iterations and the corresponding performance metrics are shown in Figure 6.15. The GA 
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Selected models have superior performance with respect to both R2 and Q2 for all datasets when 

compared with their respective original and reduced datasets (Figure 6.15a, 6.15b). The RMSE 

values follow the same trend as the GA models of all datasets with RMSE less than 0.5 (Figure 

6.15c). The original and reduced models for the domain dataset along with the reduced model 

for running sum dataset also reported an RMSE>0.5. For the RMSE of the GA-selected datasets 

were ranked as followed:  Domain>Single>window>Running>Substructure. The GA selected 

models pass the criteria with regard to both R2 as well as for RMSE with Domain have the 

lowest performance and the Running Sum performing the best. 

 

Figure 6.15 Performance based on (a) R2 (b) Q2 and (c) RMSE for PLS cross validation models 
generated from the four data blocks: Domain, Window, Single amino, and running sum 
modelled against CIC. The models were generated using the original dataset, V-WSP reduced 
dataset as well as after variable selection (GA selected). Red dashed lines indicate values at 0.5 
for R2, Q2 and 0.5 for RMSE. Black dashed line indicates RMSE=0.3. 

External test set prediction 

Distance based method of Kennard Stone was used to split the dataset after variable reduction 

(80% training and 20% test). All GA-selected models performed well for prediction of the 

external dataset with the following ranking for prediction R2: Running 

Sum>Substructure>Domain>Window>Single amino (Figure 6.16a). The reduced dataset for 

running sum also passed the OECD criteria for prediction. RMSE values were lower than 0.5 

for all GA-selected models with Running Sum<Substructure<Window<Single 

Amino<Domain (Figure 6.16b). The RMSE values for Original as well as V-WSP reduced 

models for Running Sum were below 0.5 as well. Furthermore, the RMSE of Window, 

Substructure and Running sum datasets were below 0.3 making them acceptable as per OECD 

guidelines. 
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Figure 6.16 Performance based on (a) R2 and (b) RMSE for PLS prediction models generated 
from the four data blocks: Domain, Window, Single amino, and Running sum modelled against 
CIC. The models were generated using the original dataset, V-WSP reduced dataset as well as 
after variable selection (GA selected). Red dashed lines indicate values at 0.6 for R2 and 0.5 
for RMSE. Black dashed line indicates RMSE=0.3. 

6.2.5. Y randomisation 

When dealing with a smaller dataset it is essential to check for overfitting of the models. When 

a model is overfitting the data, it means that the current model works well for the data at hand 

but may have poor predictive performance for new samples. (Roy, 2007). Table 6.3                        

indicates the R2 and Q2 values of the five datasets following y randomisation. As seen from the 

calibration and cross validation metrics of the Y scrambled model, they perform poorly. This 

reinforces the fact that the model performance was not just based on chance correlation but due 

to an underlying causal relationship between descriptors and response as all the R2 and Q2 

values are below 0.5 (Guha and Jurs, 2005). Apart from the Domain dataset all the GA models 

for Window, Substructure, Single amino and Running sum datasets show a significant 

difference between the original models and those generated followed by Y scrambling (within 

the same range of output values). The null hypothesis of the test is that there is no significant 

difference between the GA selected dataset and the Y randomised dataset, both built under the 

same conditions. The permutation analysis reports the results of non-parametric statistical 

hypothesis tests as shown in Table 6.2 for both the calibration (self-prediction) as well as cross 

validation model comparison. Values lower than 0.05 indicate that the models based on GA 

variable selection are significantly different from the Y randomised models at 95% confidence 
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level. This indicates that the models generated in this study are capturing an underlying 

relationship between the descriptors and the response and not a chance/random correlation.    

Table 6.3 Results of y randomisation and permutations tests for GA selected datasets. 

Datasets Self-prediction Cross Validation CV 
Wilcoxon Sign Test Rand t-test Wilcoxon Sign Test Rand t-test R2 Q2 

Domain 0.01 0.058 0.019 0.010 0.051 0.014 0.04 -0.30 
Window 0.000 0.001 0.005 0.000 0.005 0.005 0.05 -0.38 
Substructure 0.000 0.001 0.005 0.000 0.000 0.005 0.04 -0.37 
Single Amino 0.003 0.020 0.006 0.005 0.03 0.017 0.05 -0.49 
Running sum 0.000 0.000 0.005 0.000 0.000 0.005 0.04 -0.40 

 

6.3. Discussion 

Early stage screening of mAbs during the discovery phase, based on the potential to cause 

developability issues, such as aggregation propensity and solubility problems that arise from 

non-specific interactions, would aid in reducing manufacturing failures and attrition rates. 

QSAR models can serve as important in silico tools that allow for prediction of mAb behaviour 

with respect to non-specific interaction. When the main objective of the model is to correctly 

identify the trends and rank molecules based on their activity/property in question, the metrics 

that capture the correlation between observed and predicted values of the test set i.e. prediction 

R2, maybe more reflective and relevant when compared to RMSE, accuracy and error of the 

models (Alexander et al., 2015). With respect to mAbs, models that allow for early stage 

screening based on safety and efficacy may lead to effective reduction of the number of lead 

candidates that progress through process development into manufacturing and thus reduce costs 

associated to process development failures and attrition.  The results of these studies could 

contribute to early stage screening and better design of mAbs for increased efficacy and 

decreased polyspecificity. 

This study presents a hybrid modelling framework employing five novel descriptor sets: 

Domain, Window, Substructure, Single amino and Running Sum, extracted from the primary 

sequence of mAbs with increasing resolution of information and decreasing level of 

confounding of information. The datasets also look at the difference between the global and 

local perspectives with the Domain set consisting of global descriptors and single amino 

consisting of more local descriptors. Overall the Window, Substructure and Running sum 

datasets perform the best, based on the Calibration, Cross validation and Prediction metrics 

(Figure 13,14 and 15) and TableS5 (Supplementary File SF1). The reason behind it could be 



 
123 

 

that these datasets consider segment-based properties of the amino acid sequence which 

highlights the influence of adjacent amino acids as well. This could be particularly important 

with charge based and hydrophobicity based properties at the CDR and FR region wherein the 

physicochemical, electronic and topological properties are better represented by cluster and/or 

lower volume localised descriptors rather than averaged values (Sharma et al., 2014; Robinson 

et al., 2017). This is also supported by the slightly superior performance of the Running sum 

dataset wherein the descriptors are summed over smaller segments whereas the Window data 

and Substructure are averaged over segments. The Domain dataset is highly global and thus 

specific information could be confounded whereas the Single amino acid descriptor is highly 

local, and this could lead to higher variation owing to specific residue difference. Descriptors 

that have been highlighted by the various datasets revolve around hydrophobicity and charge-

based properties which is reflected by the regression vectors of the descriptors selected. This 

is in consensus with previously shown experimental as well as QSAR based studies (Sharma 

et al., 2014; Robinson et al., 2017). Primary descriptors based multivariate models have been 

previously described for biophysical properties of mAbs wherein the electrostatic interactions 

and charge asymmetry of VH and VL regions play an import role in viscosity, hydrophobicity 

and charge for in vivo clearance (Sharma et al., 2014). 

Biophysical properties such as viscosity and in vivo clearance are vastly different for mAbs 

that possess the same Fc region but different variables domain, indicative of the fact that the 

hypervariable regions consisting of the CDR and FR and their corresponding physicochemical 

and charge based properties are responsible for these differences (Hötzel et al., 2012). This is 

reflective of the current dataset used as well, since the variable regions have been grafted on to 

the same IgG1 Fc region for all mAbs and still display different CIC retention profiles. The 

descriptors generated in this study thus involve only those for the VH and VL regions. The 

exposed charged residues in the VH and VL regions have been identified to influence the extent 

of nonspecific interactions of mAbs (Yadav et al., 2011). It also reflects the involvement of the 

hypervariable region, consisting of CDR and FR regions, in nonspecific interactions that could 

lead to interactions and aggregation propensities (Bethea et al., 2012). Weak electrostatic 

interactions between mAb domains have also been identified to induce mAb interactions 

(Kanai et al., 2008; Nishi et al., 2011). 

Previous studies show correlation of CIC with accelerated stability slope and increased 

clearance rates in mice which is indicative of increased aggregation propensities as well as poor 

solubility respectively, both of which are potent developability issues (Kelly et al., 2015). 
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Higher polyspecificity profile, both cross reactivity or self-interaction, leads to faster clearance 

rates and this could lead to inadequate dosing making it difficult to achieve the requisite 

therapeutic response (Tessier et al., 2014). Furthermore, increased non-specific interaction 

could alter the pharmacokinetics of the mAbs. Negative correlation between IgG-FcRn 

interaction and half-life has been observed in previous studies for mAbs with identical Fc 

region and different variable regions leading to differing pharmacokinetic outcomes (Wang et 

al., 2011; Kelly et al., 2016). 

Increased number of variables in the dataset could lead to issues of noise, redundancy and 

chance correlation which can ultimately affect the results of QSAR model development which 

relies on finding the correlation between the descriptors and response. Unsupervised variable 

reduction techniques would be the first step to tackle the problem wherein V-WSP has shown 

superior performance to other data reduction techniques, especially in QSAR model 

development and was thus used in this study (Ballabio et al., 2014). V-WSP data reduction 

also facilitates subsequent supervised variable selection method as the latter suffers if there is 

high degree of correlation present between variables, leading to overfitting (Hawkins, 2004). 

The second step in tackling the above problem and to further optimise the model is supervised 

variable selection using methods such as which have been detailed in previous studies 

(Andersen and Bro, 2010). GA-PLS was chosen here as there is no requirement for the initial 

model to be perform well, works with many noisy/irrelevant variables and allows for repeated 

application (Hasegawa et al., 1997; Andersen and Bro, 2010). However, the main caveat of 

GA is overfitting and this can be addressed by strict cross validation regimes such as random 

subsets with multiple iterations, as performed in this study (Gao et al., 2002). This can also be 

checked for using a test set for external validation of the model. For the modelling techniques 

used here, PLS is quite common for protein and peptide based QSAR studies (Zhao et al., 2007; 

Nongonierma and FitzGerald, 2016). Other studies have been carried out using techniques such 

Support Vector Regression (SVR), Artificial Neural Networks (ANN), Principal Component 

Regression (PCR) and Decision Tree based techniques which could be a potential next step in 

this study (Zhou et al., 2008; Sharma et al., 2014; Robinson et al., 2017). However, PLS 

models have shown comparable performance to SVR in a previous QSAR model development 

for predicting mAb retention behaviour (Robinson et al., 2017). Further advances would be 

developing 3D descriptors based on homology modelling and molecular dynamic simulations 

which would allow for better understanding of surface properties that would allow for better 

mechanistic understanding of nonspecific interactions. Primary sequence based descriptors 
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have been successfully used in previous studies to develop QSAR models for mAb 

developability and the key advantages are that they are easier to use, rapid, less computationally 

intensive and provide a reasonable performance for predicting mAb behaviour (Sharma et al., 

2014).  Primary sequence based descriptors have also been used in bioprocess route selection 

via machine learning models (O’Malley et al., 2012).  Extension to this study would be to 

involve higher sample sizes as well as modelling other mAb isotypes provided there are 

sufficient samples to allow development of an applicability domain. Furthermore, this 

framework can also be extended for application in bispecific mAbs.  

6.4. Chapter summary 

This chapter discussed the development of a predictive model based on the CIC retention times 

as an output which could thus contribute to and facilitate the early stage screening and 

characterisation of mAbs during the developability phase. This framework uses four novel 

datasets: Domain, Window, Substructure, Single Amino and Running Sum, derived from the 

primary sequences of homologous mAbs (IgG1-kappa-Humanized) with varying degrees of 

resolutions. Unsupervised pattern recognition was first performed on the descriptor sets to 

visualise any intrinsic property-based separation or clustering following which the descriptors 

were regressed against reported Cross Interaction chromatography retention times. Model 

optimisation was performed via unsupervised variable reduction followed by supervised 

variable selection. Finally, the models and datasets were benchmarked based on regression 

model performance metrics such as R2, Q2 and RMSE for the calibration, cross validation as 

well as external validation using a test set.  To check whether the model is capturing only 

chance correlations, output (Y) randomisation and permutation test was performed. Datasets 

that contain information pertaining to a cluster of amino acids represented by localised 

descriptors rather than averaged value over the entire protein had better predictive performance 

of CIC retention behaviour with R2>0.8 and RMSE<0.3. Furthermore, the results indicate the 

physicochemical, electronic and topological properties of hypervariable regions of antibodies 

contribute most to the CIC retention times.  

The next chapter focusses on 3D structure-based descriptors of mAbs for QSAR model 

development with CIC as an output so as to capture the functional characterisation aspect 

provided by structural information.  
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Chapter 7: QSAR model development using 3D descriptors of mAbs generated 
via homology modelling and molecular dynamics simulation. 

The previous chapter described the application of primary sequence-based descriptor datasets 

in QSAR model development. Even though models developed using all the datasets performed 

satisfactorily based on the performance evaluation metrics, the aspect of functional 

characterisation is slightly diminished due to the absence of the 3D information. This chapter 

describes the generation of descriptors from 3D structures of mAbs based on homology 

modelling and molecular dynamic simulations which allows for better understanding of surface 

properties that would facilitate better mechanistic understanding of nonspecific interactions. 

As the mAbs tested in their study had different variable domains but the same IgG1 constant 

domain, only the Fab region of mAbs were utilised in this study. Furthermore, it was 

computationally advantageous as it speeds ups the process since pruning of whole molecules 

is not required. The first step was to generate the 3D structures from the primary sequence of 

mAbs which was achieved via homology modelling and molecular dynamics simulation. 

Homology modelling is a technique that enables the prediction of 3D structure via comparative 

protein modelling of target protein sequences with a template protein structure that shares a 

high sequence similarity with the target protein (Eswar et al., 2006). These structures 

developed were then subjected to energy minimisation and loop refinement so as to achieve a 

stable 3D structure (Fiser and Šali, 2003). Once homology models have been developed they 

were then subjected to molecular dynamic simulations that further simulate the atoms and their 

interactions within a dynamically evolving system; in this case mAbs in aqueous solutions 

(Hospital et al., 2015).  Following the generation of Fab structures of mAbs, the development 

of a robust QSAR model was extended using three novel datasets generated from the 3D 

structure of mAbs and they were modelled against corresponding CIC retention time based on 

the data recently published by Jain et al.,(Jain et al., 2017).. Three independent and novel X 

block datasets consisting of these descriptors were generated based on the physicochemical, 

electronic, thermodynamic, electronic and topological properties of amino acids: Chain based, 

Domain based, and Substructure based. The relationship between the descriptors and the 

responses was captured by Partial Least Squares based models and the datasets as well as 

models were benchmarked based on metrics as outlined in QSAR validation guidelines (Roy 

et al., 2015). Furthermore, the models were validated with an external set of mAbs and the 

corresponding model performance metrics were benchmarked for the different datasets. The 

overall methodology is outlined in Figure 7.1. 
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(a) 

 

(b) 

Figure 7.1: Overview of methodology for generating (a) 3D structures from primary sequence 
of antibodies followed by descriptor generation (b) Workflow for generating 3D structures 
from mAbs useful for generating structural descriptors as well as docking studies. 
 

7.1. Materials and Methods 
7.1.1. Data collection 

Sequence information, substructure, species and phase of development of 134 mAbs have been 

collected from IMGT, literature, patents as well as from industrial partners (Apweiler et al., 

2004; Lefranc et al., 2009).  The FASTA format sequences of mAbs were used for building 

3D structures as described in Section 7.1.2. Only the Fab regions of mAbs were utilised in this 

study and for further model development as explained above.  
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7.1.2. Generation of mAb structures 

Homology Modelling: Fab sequences of mAbs were first put through a BLAST search (NCBI) 

so as to identify sequences that share the highest similarity and have an experimentally verified 

3D structure within the database. These structures can then be used as templates. In the case of 

the mAbs used in this study a single template molecule was chosen with 70 % similarly to the 

starting set of sequences. An advantage of using single template is that automation is possible 

via means of BASH scripting once the initial parameters are set for alignment of mAbs to the 

template structure. Parameters initially set were identifying cysteine residues, specifying the 

Sulphur-Sulphur bond distance of 2Å and to identify the disulphide bond residues. 

Furthermore, alignment of residues was also checked. and the endpoint is to model against non-

specific binding. 2fgw was chosen based on correct positioning of C terminal and all di-

sulphide bonds being in place (Figure 7.2). Modeller 9.19 was used with Python library-based 

scripts for generating the homology models (Šali et al., 1995; Fiser and Šali, 2003; Eswar et 

al., 2006). Once the parameters were set all 133 mAbs were modelled using a BASH script 

wherein five disulphide bonds were set as restraints (4 intra domain and one inter chain). For 

mAbs with more than 10 Cysteine residues the homology models were developed and refined 

individually (as in the case of TGN1412). Once the homology models were generated, the 

selection of good models were based on Modeller assigned scores based on energy wherein the 

criteria of acceptance were values <10000 for good models. Apart from being computational 

advantageous, a single template approach was used in this case taking into consideration the 

preliminary and explorative nature of the study where the endpoint was to develop a model to 

predict nonspecific interaction. MAb Fab structures were generated by João Victor de Souza 

Cunha and  Dr Agnieszka, School of Natural and Environmental Sciences, Newcastle 

University. 
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Figure 7.2 3D structure of mAb 2fgw with the coloured spheres representing the disulphide 
bridges between the fixed Cysteine residues. 

Molecular Dynamic Simulation: Molecular dynamics simulation was carried out using 

GROMACS 5-37 for a run of 50 ns using AMBER99SB-ILDN forcefield. The forcefield was 

reassigned along with water molecules (T1P3P). A box (system) was assigned around the 

protein with the edge of the box 9Å away from protein. 9-10Å distance is needed to surround 

the molecule with three layers of water molecules (Hospital et al., 2015). Ions were added to 

mimic biological physiological conditions of protein (0.1M NaCl). This starting set up was 

followed by energy minimisation wherein the potential energy of this system i.e. 

structural/system energy was minimised. For each energy minimisation step the atom was 

allowed to move 0 .002Å and this was run for 10000 steps. The temperature and pressure 

equilibration steps followed energy minimisation. The first equilibration step was NVT 

(Number of atoms, Volume inside box, Temperature). Keeping NV constant, the temperature 

was increased from 0-300K and the simulation was run for 100ps and this added Kinetic energy 

to the system. During this step pressure of the system was allowed to change whereas the 

temperature stayed constant at 300K. Positional constraints were placed on the backbone 

during this step. The next equilibration step was NPT (Number of atoms, Pressure, 

Temperature) where pressure was kept constant at 1 bar, but volume was allowed to change. 

The density of water was also inputted. Finally, the simulation proceeded to the production run 

i.e. 50ns in NPT configuration with no structural restraints. MAb Fab structures were generated 
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by João Victor de Souza Cunha and Dr Agnieszka, School of Natural and Environmental 

Sciences, Newcastle University.  

7.1.3. Descriptor generation 

The PDB structures of mAbs fab regions were inputted into ProtDCal software for descriptor 

generation. The details of descriptors generated from the 3D structures are outlined in Table 

7.1. Three different datasets were generated from the PDB structures of mAb Fab regions with 

varying degrees of resolution as well as localisation. Chain dataset: The chain dataset 

consisted of descriptors summed over the entire chain i.e. Heavy chain (VH+CH1) and light 

chain (VL+CL) with 53 descriptors generated for each chain resulting in a total of 106 

descriptors. The chain dataset was the most global of all datasets. Domain Dataset: The 

Domain dataset consisted of descriptors summed over each domain i.e. VH, CH1, VL and CL 

with 53 descriptors generated for each domain resulting in a total of 212 descriptors. 

Substructure dataset: For the generation of substructure dataset, the positions of the CDR 

and FR for the variable region as well as strands for the constant domains were identified. This 

resulted in 14 substructures per chain of the mAb Fab region. Thus 53 descriptors were 

generated for each of the 28 substructures defined resulting in the total of 1484 descriptors. 

The automation of descriptor and dataset generation was done by MATLAB codes written by 

Micael Karlberg, Newcastle University.   

Table 7.1 List of descriptors generated from 3D descriptors of mAbs used subsequently for 
model development. 

Descriptor Type Descriptors Description 
Thermodynamic 
properties 

Gc(F) Free energy from the conformational entropy in a 
folded state 

Gw(F) Free energy from the entropy of the first shell of 
water molecules in a folded state 

Gs(F) Interfacial free energy of a folded state 
W (F)  Number of water molecules close to a residue in a 

folded state 
Hbd Number of hydrogen bond in the backbone of the 

protein 
DGw(F) Folding free energy of the first shell off water 

molecules 
DGs Variation of the interfacial free energy between 

folded and unfolded states 
DGel Free energy contribution of the charge distribution 

within the protein 
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DGLJ Van der Wals interaction to the folding free energy 
DGtor Dihedral torsion potential to the folding free energy 

Topological 
properties 

A Solvent accessible surface area 
DA Difference of the Solvent accessible surface area 
DAnp Difference of the Solvent accessible surface area 
Psi & Phi Torsion angles Psi and Phi 
lnFD Logarithms of the Folding Degree 

Physicochemical 
properties 

Mw Molecular weight 
HP Hydrophobicity by the Kyte-Doolitle Scale 
Ip Isoelectric point 
AP Polar area for each amino acid in unfolded state 
ECI Electronic charge index 
ISA Isotropic surface area 

Transferable 
Atom 
Equivalent 
(TAE) 

Energy Energy based 
VOLTAE Volume based 
Surface Surface based 
Population Population based 
Rho derived SIDel(Rho)N, Del(Rho)Min, Del(Rho)Max, 

Del(Rho)NIA 
K derived SIDel(K)N, Del(K)Min, Del(K)Max, Del(K)IA SIK, 

SIKMin , SIKMax, SIKIA  
G derived SIDel(G)N, Del(G)NMin, Del(G)NMax, Del(G)NIA, 

SIG, SIGMin, SIGMax, SIGIA  
EP derived SIEP, SIEPMin, SIEPMax, SIEPIA 
PIP PIPMin, PIPMax, PIPAvg 

 

7.1.4. Data curation and variable reduction 

Following descriptor generation, the datasets were curated by removing variables with null 

values as well as zero variance variables i.e. descriptors with standard deviation < 0.0001. This 

set is referred to throughout the Chapter as the ‘Original dataset’. The original datasets were 

then subjected to V-WSP reduction, an unsupervised variable reduction method which allows 

for the elimination of variable based on multicollinearity (Ballabio et al., 2014). This was 

performed via a grid search to find the correlation coefficient threshold for the descriptors for 

which the Procrustes index was lower than 0.2. Procrustes index is a statistical measure that 

allows for the assessment of the degree of comparability between the original and reduced 

datasets based on informational content. A Procrustes value of 1 indicates complete 

dissimilarity and 0 indicates that both datasets are identical (Ballabio et al., 2014). For the 

Chain and Domain datasets, a grid search was carried out separately for the descriptors of 
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different domains to avoid removing chance correlations due to the presence of similar amino 

acids in different domains of the variable regions i.e. VH and VL domains. For the Substructure 

dataset, a similar grid search was performed on separate substructures however. This dataset is 

referred to as ‘V-WSP reduced’. 

7.1.5. Exploratory	Analysis	

Principal component analysis, an unsupervised pattern recognition method, was performed on 

the reduced datasets: Domain, Window, Single amino and Running Sum using the PLS 

Toolbox from Eigenvector Research. The data was auto scaled (each descriptor was mean 

centred and scaled with its individual standard deviation) prior to analysis. Corresponding score 

plots were then assessed to visualise the separation, if any, of mAbs based on their intrinsic 

properties such as heavy chain substructure, light chain substructure as well as species. 

7.1.6. Cross Interaction chromatography data 

The cross interaction chromatography data for 137 mAbs were obtained from a previous study 

performed by Jain et al., where 30 mg of human serum polyclonal antibodies was coupled to a 

column followed by testing approximately 5 μg of each antibody at a flow rate of 0.1 mL/min 

using PBS as a mobile phase on an HPLC system(Jain et al., 2017). This data was auto scaled 

prior to modelling.  

7.1.7. Model development 

The data was divided into a training and test set via Kennard stone algorithm, maintaining and 

80%-20% split of data(Galvao et al., 2005). The mAbs with the most dissimilarity in Euclidean 

space are placed into the training set. CIC retention times were modelled against the descriptors 

generated using the PLS Toolbox from Eigenvector Research. Both the descriptors and 

responses of the training set were entered into Matlab, auto scaled separately i.e. for the training 

set the mean and standard deviation of the training set was used and for the test set the mean 

and standard deviation of the test set was used. The datasets were consequently subjected to 

PLS analysis. The cross-validation method used was a random subset cross validation with 5 

splits and 20 iterations (Minitab, 2014; Hahn and Valentine, 2016). A maximum of 10 latent 

variables were tested for each developed model and used to investigate the model error in order 

to choose the appropriate model complexity, i.e. number of latent variables. Models were 

developed first for the original datasets followed by the V-WSP reduced datasets. Models were 

further optimised by Genetic Algorithm-Partial least squares (GA-PLS) based supervised 
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variable selection method. The parameters were set as follows: population size of 100; 

maximum generations of 100; mutation rate of 0.005, window width of 1; convergence rate of 

80%; 30 initial terms, cross over of 2; random subset 5 fold cross validation with 10 iterations 

and data retreatment set for auto scaling (Hasegawa et al., 1997; Andersen and Bro, 2010). For 

each stage of model development and improvement i.e. Original, V-WSP and GA-Selected, 

the model was assessed with the test set. 

7.1.8. Model Performance metrics 

The datasets, models and outputs were benchmarked based on the following metrics for the 

multivariate regression analysis: R2 values based on Pearson correlation coefficient between 

observed and predicted values; Q2 values based on goodness of fit; Root mean square error of 

cross validation (RMSECV) and cross validation bias (Alexander et al., 2015). These have 

been described previously in Chapter 6, Section 6.1.7. The model metrics were further assessed 

against the OECD guidelines for the Calibration, internally validated (Cross validation) and 

externally validate models (test set predictions) (Veerasamy et al., 2011; Organisation for 

Economic and Development, 2014). 

7.1.9. Y randomisation  

The developed models were further evaluated by performing Y randomisation/Y scrambling to 

investigate whether the models did indeed capture the underlying relationships in the data 

rather than capturing chance correlation between the independent descriptors and dependent 

response data (Rücker et al., 2007) as described in Chapter 6 Section 6.1.8. 

7.2. Results 

7.2.1. Exploratory Analysis 

Similar to the exploratory analysis performed on the primary sequence dataset explained in the 

previous chapter, PCA was performed on the 3D structure-based datasets. As shown in Figure 

7.3 an increased separation between mAbs based on light chain isotype can be observed with 

increasing resolution of the dataset, chain being most global and substructure being most local. . 

At this stage only those mAbs with a kappa light chain were selected (n=121) and lambda light 

chain mAbs were removed from the datasets (n=13).  
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Figure 7.3 Score plots generated after performing PCA on (a) Chain, (b) Domain and (c) 
Substructure datasets for 134 mAbs. X axis represents Principal Component (PC) 1 and Y axis 
represents PC2. The percentage values indicate the percentage variance captures by the 
respective PC. Coloured ellipses indicate the 95% Confidence limits of the corresponding class. 

Grouping based on species was not as discernible for the 3D structure-based descriptors when 

compared to primary sequence descriptors (Chapter 6 Figure 6.3) as shown in Figure 7.4. As 

the output data was based on mAbs with their respective Fab regions grafted onto an IgG1 

constant domains IgG1-Kappa-Humanized mAbs were chosen for further model development 

(n=44). This was also done for keeping the methodology consistent with that developed for 

primary sequence-based descriptors. 

 

 

Figure 7.4 Score plots generated after performing PCA on (a) Chain, (b) Domain and (c) 
Substructure datasets for 121 mAbs. X axis represents Principal Component (PC) 1 and Y axis 
represents PC2. The percentage values indicate the percentage variance captures by the 
respective PC. Coloured ellipses indicate the 95% confidence limits of the corresponding class. 
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7.2.2. Variable reduction and selection 

 An approximate 50% reduction in variables was observed for both Chain and Domain dataset 

following V-WSP reduction whereas for the substructure dataset there was a 40% reduction in 

the number of variables. The associated correlation coefficient threshold as well as overall 

Procrustes indices are reported in Table 7.2. The V-WSP reduced datasets were then divided 

into training (80%) and test set (20%) using Kennard Stone Algorithm. Furthermore, GA-PLS 

based variable selection led to a further reduction of variables resulting in approximately 20%, 

13% and 9% of the variables from the original dataset being retained in the GA selected dataset 

for Chain, Domain and Substructure datasets respectively. The number of unique models 

generated, the average RMSE values of these models as well as the number of generations 

required to reach convergence are reported in Table 7.3. 

Table 7.2 Variable reduction based on the V-WSP reduction algorithm indicating the selected 
thresholds and corresponding Procrustes index as well as the final number of descriptors in the 
reduced dataset 

Threshold 
Chain Domain Substructure 

HC VH FW1 

0.9 

0.9 

0.56 
CDR1 0.77 
FW2 0.51 
CDR2 0.76 
FW3 0.51 
CDR3 0.96 
FW4 0.63 

CH1 A 

0.5 

0.73 
B 0.63 
C 0.55 
D 0.59 
E 0.5 
F 0.54 
G 0.66 

LC VL FW1 

0.94 

0.94 

0.74 
CDR1 0.5 
FW2 0.6 
CDR2 0.55 
FW3 0.75 
CDR3 0.77 
FW4 0.51 

CL A 

0.53 

0.57 
B 0.5 
C 0.61 
D 0.5 
E 0.58 
F 0.57 
G 0.62 
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Number of descriptors 102 134 886 
Number of reduced descriptors 51 66 348 
Overall Procrustes Index 0.0935 0.0976 0.14 
 

Table 7.3 Results of GA-PLS based variable selection method. 

Datasets No. of unique 
models 

Best fit of 
models 
(RMSE_CV) 

No. of 
descriptors 
selected 

No. of 
generations

Chain 53 0.266098 14 21 
Domain 70 0.273 18 21 
Substructure 89 0.168 76 50 

 

7.2.3. Model performance 

Figure 7.5 shows the overall model summary for the GA variable selected PLS model (3 LVs) 

for the domain dataset. There is more dispersion of the samples from the parity line throughout 

the data distribution with slightly more dispersion in the lower extreme of the data i.e. for lower 

retention times and this is where most samples lie due to the skewed nature of the data 

distribution (Figure 7.5a). Efalizumab and olertuzumab in particular had larger differences 

between their measured and predicted values (Figure 7.5b). Removing these samples however 

did not result in improvement of the model based on the model performance criteria such as R2 

and RMSE. 

 

Figure 7.5 Model summary of Chain dataset model developed following GA-PLS selection of 
variables. (a) Measured vs predicted values for training and test set model. (b) Test set 
predictions. 
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A similar trend was observed for the domain dataset (PLS models with 3LVs) where the data 

was dispersed from the parity line, however to a slightly lesser extent than for the chain dataset 

(Figure 7.6a). Efalizumab and olertuzumab in particular had larger differences between their 

measured and predicted values in the domain dataset as well (Figure 7.6b). Removing these 

samples however did not result in improvement of the model. 

 

Figure 7.6 Model summary of Domain dataset model developed following GA-PLS selection 
of variables. (a) Measured vs predicted values for training and test set model. (b) Test set 
predictions. 

The GA selected variable based PLS model (8 LVs) summary for the Substructure dataset is 

shown in Figure 7.7.  Figure 7.7a depicts that the model fit was best throughout the distribution, 

especially the higher extreme. For the test set predictions, the predicted values of retention 

times were within 20 seconds of experimental values (7.7b). Elotuzumab was removed from 

the test set as it had unusually high Y residuals (Figure 7.8).  
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Figure 7.7 Model summary of Substructure dataset model developed following GA-PLS 
selection of variables. (a) Measured vs predicted values for training and test set model. (b) Test 
set predictions. 

 

Figure 7.8 PLS model-based Y residuals of test set samples of mAbs based on GA-selected 
variables substructure datasets. 

The regression coefficients of variables >0.1 are shown in Figure 7.9. The variables of the 

constant domains (CH1 and CL regions) do not have a major influence on the model. The 

maximum contribution arises from the TAE variables of the VH region followed by the VL 

region. Del(Rho)N descriptor fields distinguish between loose regions of polarizable electron 

density from more tightly held regions. These values are much smaller over electron-rich pi 
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systems and aromatic rings than over polarised or electron deficient alkyl carbons. The 

Del(K)N and Del(G)N descriptors describe the difference in polarizability and hydrophobicity 

of molecular regions i.e. more negative ranges indicate that the regions are more hydrophobic 

and less susceptible to electrophilic attack. In the VH domain the TAE properties FW2, CDR2, 

FW3 and CDR3 regions have the highest regression coefficients. In the VL region FW1 and 

FW2 have the highest contributions.  

 

Figure 7.9 Regression coefficients of GA selected variables for Substructure dataset model. 
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7.2.4. Benchmarking of datasets and models. 

All the models generated for the different datasets were benchmarked based on the OECD 

guidelines for QSAR model validation (Veerasamy et al., 2011; Organisation for Economic 

and Development, 2014). The models were considered acceptable for the model fit if 

Calibration R2>0.6, Cross validation R2>0.6 and Q2>0.5 and finally External test prediction 

R2>0.6. The models were further benchmarked for numerical accuracy wherein a RMSE<0.3 

is usually recommended. However previous studies have shown that an RMSE < 10% of the 

output range is considered acceptable if accompanied by external validation especially for 

QSAR models developed for early stage screening(Alexander et al., 2015). The performance 

metrics for the original, V-WSP reduced and GA selected Cross validated PLS models are 

reported in Table 7.4. 
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Table 7.4 Benchmarking of datasets based on Calibration, Cross validation and external test 
set prediction metrics. Models that have passed QSAR validation criteria are shown in green, 
those with moderate performance are indicated in Yellow and those that have failed the QSAR 
validation criteria are indicated in red. 

  

 
Chain  Domain  Substructure 

C
al
ib
ra
ti
o
n
 

O
ri
gi
n
al
  R2  0.42  0.46  0.99 

RMSE  0.27  0.26  0.01 

Bias  0.00  0.00  0.00 
V
‐W

SP
 

re
d
u
ce
d
  R2  0.72  0.41  0.91 

RMSE  0.22  0.31  0.11 

Bias  0.00  0.00  0.00 

G
A
 

se
le
ct
e
d
  R2  0.77  0.78  0.99 

RMSE  0.19  0.19  0.02 

Bias  0.00  0.00  0.00 

C
ro
ss
 v
al
id
at
io
n
 

O
ri
gi
n
al
  R2  0.01  0.02  0.09 

Q2  ‐0.59  ‐0.68  ‐0.03 

RMSE  0.44  0.46  0.36 

Bias  0.01  0.01  0.02 

V
‐W

SP
 

re
d
u
ce
d
  R2  0.22  0.14  0.05 

Q2  0.02  0.06  ‐0.14 

RMSE  0.41  0.39  0.42 

Bias  ‐0.02  0.00  0.01 

G
A
 s
e
le
ct
e
d
  R2  0.62  0.61  0.89 

Q2  0.59  0.57  0.79 

RMSE  0.26  0.26  0.18 

Bias  ‐0.01  0.01  ‐0.01 

Te
st
 

O
ri
gi
n
al
  R2  0.00  0.17  0.54 

RMSE  0.57  0.49  0.34 

Bias  0.11  0.01  0.03 

V
‐W

SP
 

re
d
u
ce
d
  R2  0.23  0.19  0.32 

RMSE  0.49  0.48  0.39 

Bias  0.27  0.22  0.15 

G
A
 

se
le
ct
e
d
  R2  0.35  0.19  0.65 

RMSE  0.62  0.54  0.32 

Bias  0.35  0.36  0.16 

 

7.2.5. Y randomisation 

As the GA-PLS selected substructure dataset-based model passed the OECD criteria for model 

performance Y randomisation and permutation test was performed on this model. The R2 and 

Q2 values of the substructure dataset following y randomisation was 0.043 and -0.343. This 
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reinforces the fact that the model performance was not just based on chance correlation but due 

to an underlying causal relationship between descriptors and response as the R2 and Q2 values 

are below 0.5 (Guha and Jurs, 2005). There is a significant difference between the original 

models and those generated followed by Y scrambling (within the same range of output values) 

as well. The permutation analysis reports the results of non-parametric statistical hypothesis 

tests as shown in Table 7.5 for both the calibration (self-prediction) as well as cross validation 

model comparison. Values lower than 0.05 indicate that the models based on GA variable 

selection are significantly different from the Y randomised models at 95% confidence level. 

This indicates that the models generated in this study are capturing an underlying relationship 

between the descriptors and the response and not a chance/random correlation.    

Table 7.5 Results of permutations tests for GA selected substructure datasets. 

 Wilcoxon Sign test Rand t-test 

Self-Prediction 0.000 0.001 0.005 

Cross-Validated 0.000 0.001 0.005 

 

7.3. Discussion 

In this particular study development of a QSAR model was attempted using 3D structure-based 

descriptors of Fab regions of mAbs with CIC as response. 3D structures were first generated 

for the mAbs using homology modelling followed by molecular dynamic simulation, the details 

for which are described in section 7.1.2. As elucidated in section 7.1.3, three different datasets 

with varying nature of localisation and resolution were generated from the PDB structures of 

the Fab fragments of 134 mAbs.  

A similar trend to that seen from the behaviour of primary sequence-based descriptors was 

observed for the 3D structure-based ones with regards to resolution. The descriptors that were 

most global and had least resolution, chain dataset in this case, performed poorly when 

compared to ore local and clustered descriptor dataset such as the substructure-based ones 

(Table 7.5). This has been observed previously in QSAR studies involving Fab variants 

(Robinson et al., 2017) wherein the local and cluster based descriptors were identified to be 

more important than global ones. Within the substructure-based descriptors, the electronic and 

charge-based properties of both framework and CDR regions were highlighted mainly for the 

VH and VL domain (Figure 7.8). This is consistent with results from the previous chapter 
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where descriptors describing similar electronic and charge-based properties where selected. 

This is also consistent with previous studies where QSAR model developed on mAb 3D 

structures based descriptors using chromatographic behaviour and retention times as responses 

(Chung et al., 2010; Robinson et al., 2017). There was a greater influence of TAE descriptors 

on the model, as reflected by their respective regression coefficients (Figure 7.5). This has also 

been shown in previous studies wherein machine learning based models where developed to 

predict chromatographic retention times (Song et al., 2002; Ladiwala et al., 2006). QSAR 

models have also been developing for understating how orientation affects behaviour of mAbs 

in ion exchange chromatography (Kittelmann et al., 2017). 

However, when comparing the model performance metric between the best performing primary 

sequence-based descriptors and 3D structure-based descriptors, the former had better 

performance compared to the latter. This could be due to the fact that the primary sequence-

based descriptors offered more resolution than the 3D structure-based ones. There is increased 

complexity in developing 3D structure using homology modelling and molecular dynamics 

simulation. For homology modelling the framework chosen for assembly of the protein 

structures is important. While in the case of mAbs this is relatively straight forward due to the 

high degree of similarity between mAbs, further studies should be conducted for looking at the 

effect of different framework structures chosen for homology modelling, however, this would 

then hinder the high throughputness of structure development for further QSAR applications 

(Šali et al., 1995; Fiser and Šali, 2003; Eswar et al., 2006). For molecular dynamic simulations 

additional factors must be taken into consideration such as the properties of the aqueous 

solution including pH, ion concentration, temperature etc (Van Der Spoel et al., 2005). These 

will have to be optimised on a case to case basis with respect to the conditions of the 

bioprocessing step in question and opens avenues for a multitude of predictive models to be 

developed per unit step. There is also the additional caveat of the time scales involved in the 

generation of these 3D structures using molecular dynamic solutions , however advancements 

such as coarse grain simulations as well as advanced Graphics Processing Unit (GPU) could 

speed up the process considerably (Hospital et al., 2015). 

 Characterising antibody cross reactivity from docking or cavity mapping studies could be 

potential next steps in this study. Indeed antibody-antigen interaction characterisation using 

molecular dynamics simulation has been reported in previous studies (Heymann and 

Grubmüller, 2001; Castellanos et al., 2017). This would also allow for development of 
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descriptors which are more cluster based and have higher resolution than the current 

substructure dataset (Robinson et al., 2017).  

7.4. Chapter summary 

To summarise, this chapter described generation of mAb structural descriptors which were 

extracted from 3D Fab structures generated via homology modelling and molecular dynamics 

simulation. These structural descriptors were generated for three data blocks: Chain, Domain 

and Substructure and they were modelled against CIC retention times. As seen in the case of 

primary descriptors resolution and type of descriptors selected were similar i.e. local and 

cluster-based Substructure dataset with electronic and charge-based descriptors were identified 

to be important. Most of these descriptors of importance arise from the hypervariable regions 

of mAbs similar to primary sequence-based descriptors.  

The next chapter looks at the effect of combination the best primary based descriptor dataset 

(running sum) and the best 3D structure-based dataset (substructure). Two different data 

augmentation methods will be explored, and the models developed on the each of these new 

combined datasets will be assessed with CIC as the response variable.   
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Chapter 8: QSAR model development based on a combination of primary 
and 3D descriptors. 

The previous chapters examined the QSAR model development for mAb developability using 

primary sequence-based descriptors and 3D structure-based descriptors separately. This 

chapter looks at the combination of descriptors from the best primary sequence-based 

descriptor i.e. Running sum dataset and the best 3D structure-based descriptor set: Substructure 

dataset. Furthermore, two different methods of descriptor combination were also examined. 

Model performance was assessed using the same benchmarking metrics used in previous 

methods.  

A combination of sequence and structural based features have been used in studies for 

achieving better accuracy and predictability of prediction models particularly in protein-RNA 

binding studies, recognition of native-like protein structures, identifying coreceptor usage for 

HIV-1 cell entry  as well as for in silico design of antimicrobial peptides  (Sander et al., 2007; 

Jenssen et al., 2008; Liu et al., 2010; Dybowski et al., 2011; Bozek et al., 2013). Within the 

bioprocessing sector combination of feature sets have been used for developing machine 

learning models that predict chromatographic behaviour as well as microbial production of 

secreted proteins (Ladiwala et al., 2006; van den Berg et al., 2012).  

8.1. Materials and Methods 

8.1.1. Data distribution 

As explained in Chapter 7, the 3D structure of some mAb samples could not be generated due 

to their structure being different from the reference framework. Thus, to make both running 

sum and substructure datasets similar, ateliozumab and teplizumab were removed. Thus 42 

IgG1-Kappa-Humanized samples were used in this study. The distribution of samples into 

training and test set was done using Kennard stone algorithm applied to the Y dataset instead 

i.e. distance based splitting based on the CIC response values. This is shown in Table 8.1. 

Table 8.1 Data distribution of mAb samples into training and test set based on response dataset. 

Training Test 
alemtuzumab 
bapineuzumab 
benralizumab 
bevacizumab 
certolizumab 

duligotuzumab 
efalizumab 
elotuzumab 
enokizumab 
epratuzumab 

mepolizumab 
mogamulizumab 

motavizumab 
nimotuzumab 
obinutuzumab 

palivizumab 
parsatuzumab 
polatuzumab 
ranibizumab 
tigatuzumab 

dalotuzumab 
etrolizumab 
ficlatuzumab 
lintuzumab 

onartuzumab 
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clazakizumab 
codrituzumab 
dacetuzumab 
daclizumab 

 

farletuzumab 
imgatuzumab 
lampalizumab 

matuzumab 
 

ocrelizumab 
omalizumab 
otlertuzumab 
ozanezumab 

 

tildrakizumab 
tocilizumab 
vedolizumab 
veltuzumab 

pertuzumab 
pinatuzumab 
trastuzumab 

 

Two different methods were subsequently utilised for combining the descriptors from the 

running sum and substructure dataset. These methods are explained in detail along with model 

performance assessment in the following sections. 

8.1.2. Data augmentation methodology 

Apart from the data combination method, explained in detail in their respective subsections 

below, the rest of the modelling methodology is the same as that described in previous chapters. 

The overall methodology of data augmentation is shown in Figure 8.1. 

 

Figure 8.1 Overall methodology describing the two data augmentation methods. 

8.1.3. Combination Method I  

In the first method of dataset augmentation the reduced primary sequence based running sum 

dataset and 3D structure-based substructure dataset were combined and then subjected to GA-

PLS based variable selection as described in Chapter 6, Section 6.1.6. The cross-validation 
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method used was a random subset cross validation with 5 splits and 50 iterations (Minitab, 

2014; Hahn and Valentine, 2016).  A maximum of 10 latent variables were tested for each 

developed model and used to investigate the model error in order to choose an appropriate 

model complexity, i.e. number of latent variables. Models were further optimised by Genetic 

Algorithm-Partial least squares (GA-PLS) based supervised variable selection method. The 

parameters were set as follows: population size of 100; maximum generations of 100; mutation 

rate of 0.005, window width of 1; convergence rate of 80%; 30 initial terms, cross over of 2; 

random subset 5 fold cross validation with 10 iterations and data retreatment set for autoscaling 

(Hasegawa et al., 1997; Andersen and Bro, 2010). The algorithm is terminated upon reaching 

convergence or reaching max generations as a starting point for variable selection. The model 

with the best fitness i.e. the lowest RMSE is chosen and subsequently the variables from that 

model is selected for further PLS analysis.  

8.1.4. Combination method II 

In the second method of data augmentation the GA-PLS selected descriptors of the primary 

sequence based running sum dataset and the 3 D structure-based substructure dataset were 

combined and later subjected to PLS modelling.  The cross-validation method used was a 

random subset cross validation with 5 splits and 50 iterations (Minitab, 2014; Hahn and 

Valentine, 2016).  A maximum of 10 latent variables were tested for each developed model 

and used to investigate the model error in order to choose an appropriate model complexity, i.e 

number of latent variables. 

8.2. Results 

8.2.1. Combination Method I - Model performance  

The GA-PLS based variable selection was terminated at generation 50. resulting in 94 unique 

models with the best fitness being 0.18 and the average fitness being 0.19. A total of 113 

descriptors were selected following GA-PLS based variable selection. The summary of PLS 

model (3LVs) generated from the descriptors selected via the first data augmentation method 

is shown in Figure 8.4. A good model fit can be observed throughout the data distribution for 

the calibration model (Figure 8.4a). All the test set predictions fall within 30 seconds of the 

experimental values i.e. within a 5% range of the measure values (Figure 8.4b) however the 

prediction performance is relatively poor as indicated by prediction R2. Figure 8.5 shows the 

regression coefficients for the variables chosen in the model. The major contributions for this 
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model arise from the 3D structure-based descriptors mainly from the Framework 2 (FW2), 

CDR2 and CDR3 substructures of the VH region as well as FW1 and CDR3 of the VL domain.  

 

Figure 8.2 Model summary of model developed using combination method I. (a)Measured vs 
predicted values for training and test set model. (b) Test set predictions. 

 

Figure 8.3 Regression coefficients of variables present in model from running sum and 
substructure dataset for all Fab domains. 

The results of the permutation test are given in Table 8.2. The augmented dataset in this case 

does not show a significant difference between the original models and those generated 

followed by Y scrambling (within the same range of output values). Values greater than 0.05 
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indicate that the models based on GA variable selection are not significantly different from the 

Y randomised models at 95% confidence level. 

Table 8.2 Results of permutations tests for Combination method I dataset. 

 Wilcoxon Sign Test       Rand t-test 

Self-Prediction:    0.061         0.172           0.076 

Cross-Validated: 0.042         0.076             0.040 

 

8.2.2. Combination Method II - Model Performance 

A total of 216 descriptors were present in this combined dataset, 140 from Running sum and 

76 from the substructure-based dataset. Figure 8.2 shows the overall model summary of the 

PLS model developed following combination method II. There is more dispersion of the 

samples from the parity line in the lower extreme of the data i.e. for lower retention times and 

this is where most of the samples lie due to the skewed nature of the data distribution (Figure 

8.2a). All the test set predictions fall within 30 seconds of the experimental value i.e. within a 

5% range of the measure values (Figure 2.3b). Figure 8.3 shows the regression coefficients for 

the variables chosen in the model. The major contributions for this model arise from the 3D 

structure-based descriptors mainly from the Framework 2 (FW2), CDR2 and CDR3 

substructures of the VH region.  

 



 
150 

 

Figure 8.4 Model summary of model developed using combination method II. (a)Measured vs 
predicted values for training and test set model. (b) Test set predictions. 

 

Figure 8.5 Regression coefficients of variables present in model from running sum and 
substructure dataset for all Fab domains. 

The results of the permutation test are given in Table 8.3. The augmented dataset shows a 

significant difference between the original models and those generated followed by Y 

scrambling (within the same range of output values). The null hypothesis of the test is that there 

is no significant difference between the GA selected dataset and the Y randomised dataset, both 

built under the same conditions. The permutation analysis reports the results of non-parametric 

statistical hypothesis tests as shown in Table 8.3 for both the calibration (self-prediction) as 

well as cross validation model comparison. Values lower than 0.05 indicate that the models 

based on GA variable selection are significantly different from the Y randomised models at 

95% confidence level. 

Table 8.3 Results of permutations tests for Combination method II dataset. 

 Wilcoxon Sign Test       Rand t-test 

Self-Prediction:    0.000         0.002           0.005 

Cross-Validated: 0.000         0.002           0.005 
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8.3. Discussion 

The aim of the above study was to assess the effect of using a combined dataset that contains 

both primary sequence and 3D structure-based descriptors for developing a QSAR model with 

CIC retention time as response. As seen from the above results the combined datasets, 

irrespective of the method of combination, do not perform as well as the individual primary 

sequence-based or 3D Structure based descriptors sets (Figure 8.2 and 8.4). Of the two 

combination methods tested, combining the best descriptors from the GA selected running sum 

dataset and GA selected substructure dataset performed slightly better than the other (Figure 

8.4). Neither of the datasets satisfies the criteria set down for QSAR model validation 

guidelines set by OECD (Organisation for Economic and Development, 2014). This has been 

shown in previous studies pertaining to other protein studies, wherein a combination of 

structural and sequence based descriptors did not yield an improvement in prediction 

performance when compared to the models developed separately (Bozek et al., 2013). 

Another interesting factor that emerged from the above data augmentation study was that the 

3D descriptors appear to outweigh the primary sequence-based descriptors in terms of the 

contribution to the model predictive capacity (Figure 8.3 and 8.5). The TAE descriptors in 

particular have higher regression coefficients compared to other descriptors and this type of 

descriptors has been used extensively in 3D QSAR docking studies as they describe molecular 

electron densities and allow for assessing electrostatic interactions (Kharkar et al., 2008; Xu et 

al., 2012; Lorca et al., 2018). Therefore, interpretability of these descriptors could be 

accentuated in molecular docking studies of mAbs.  However larger datasets would be required 

to accentuate the above findings. 3D descriptors, even at substructure level, capture more 

global and holistic properties that differ between mAbs, but these may not correlate to a 

response. Furthermore, this could potentially lead to confounding of information that could be 

relevant for the response. Previous studies, wherein QSAR models have been successfully 

developed using the Fab 3D structure based descriptors, reflect the superior performance of 

localised and cluster descriptors over global descriptors (Robinson et al., 2017). Another 

complexity arises from the nature of the environmental setting where the 3D structure was 

developed via molecular dynamics simulation as explained in the previous chapter (Castellanos 

et al., 2017). Primary descriptors, such as Running Sum dataset, on the other hand are local 

and/or clustered, which allows the model to capture any potential correlation between the 

descriptors and response. This has been reflected in previous studies where QSAR models have 
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been successfully developed for assessing potential aggregation propensities of mAbs based 

on primary sequence-based descriptors (Obrezanova et al., 2015). Studies that use a 

combination of 3D and primary descriptors are rare in the field of mAbs and therefore further 

preselection methods would have to be employed prior to data augmentation method. A larger 

sample size would be required to adequately model and understand the effect of different 

descriptors, sequence or structure based, with respect to a particular response. 

8.4. Chapter summary 

In this chapter a combination of primary and structural descriptors was used for developing a 

QSAR model with CIC retention time as response. Different data augmentation methods were 

used wherein the combination of best primary and structural descriptors from individual 

models performed better compared to combining all primary and structural descriptors and 

performing model optimisation steps. The descriptors selected were related to electronic and 

charge-based properties. The structural descriptors outweighed the primary sequence-based 

ones however, the overall model performance was less than that of the models developed 

individually using primary sequence-based descriptors and structural descriptors respectively 

as seen from previous chapters. This implies that careful selection of variables based on expert 

knowledge should be performed such that the descriptors selected capture both structural and 

sequence-based aspects of functional characterisation.   
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Chapter 9: A human skin explant (Skimune™) based QSAR model for 
early adverse effect prediction of monoclonal antibody therapeutics. 

Based on the results observed in the previous chapters the primary sequence-based descriptors 

showed better performance when compared to that of 3D structure-based descriptors. 

Additionally, 3D structures could not be generated for some samples resulting in further 

reduction of the sample size for generating the substructure-based descriptors. Thus, the best 

performing primary sequence-based dataset, running sum, was selected for developing a QSAR 

model with a human skin explant assay results as the response variable. 

From a clinical perspective mAbs are highly desirable owing to their high target specificity and 

tolerance within the human system. The principles for pharmacological and safety testing of 

mAbs are derived from International Council for Harmonisation of Technical Requirements 

for Pharmaceuticals for Human Use (ICH) safety guidelines S8, S9 and S6 which lay down the 

minimum requirements for immunotoxicology studies, non-clinical evaluation for anticancer 

pharmaceuticals and biotechnological product testing respectively (Guideline, 1997; 

Guideline, 2005; Ich, 2008). However, the current paradigm has limitations as seen in the case 

of adverse effects elicited following the administration of mAb based therapeutics such as a 

cytokine storm induced by TGN1412 as well as formation of anti-mAb antibodies during 

clinical trials (Stebbings et al., 2007). Clinical toxicities associated with mAbs are usually 

immune related adverse effect such as cytokine storms, immunogenicity, anaphylactic release 

etc (Kizhedath et al., 2016).   

For nonclinical safety testing there are challenges, such as regulatory requirements, around in 

vitro testing and cross reactivity of mAbs only to non-human primates (Sewell et al., 2017). 

This is again selective as seen in the case of the TGN412, which caused no undesired reaction 

in cynomolgus monkeys but elicited a cytokine storm in healthy volunteers. This reiterates the 

need for a fully functional immune system to be in places in safety testing models of mAbs. 

With the advent of minimum anticipated biological effect level (MABEL) dosing there is the 

advantage of reducing an adverse effect but a disadvantage of not reaching a pharmacologically 

effective dosage for humans (Muller et al., 2009). Additionally, species cross reactivity, anti-

mAb antibody formation, time frame of testing for eliciting these responses remain areas of 

concern (Baumann et al., 2014). 

Thus, there is a need for more complex, hybrid and comprehensive testing strategies that 

include in vitro, in vivo and in silico aspects to fill the gaps in non-clinical pharmacology and 
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safety testing of mAbs especially since the age of biosimilars is just around the corner 

(Baumann et al., 2014). Effective, high-throughput rapid screening of candidates based on 

adverse effect detection is required at an early stage to eliminate unsuitable candidates from 

proceeding to clinical trials. Appropriate and relevant experimental studies are of paramount 

importance in nonclinical safety testing as they also contribute to good datasets which can then 

be modelled. Computational toxicology tools like expert/hybrid systems provide a powerful 

complement to in vitro systems as they may allow for development of automated and reliable 

models for predicting toxicity or adverse effect of monoclonal antibody therapeutics. This 

study has focused on the development of Skimune™ based QSAR model development for early 

stage screening of mAbs based on descriptors derived from the primary sequence. 

In this study the running sum dataset was generated using for variable regions of 15 mAbs the 

details of which are outlined in Table 9.1 (Ruiz-Blanco et al., 2015). Skimune™ assay 

responses were used as a measure of hypersensitivity and this constituted the dependent 

variable or the y block (Ahmed et al., 2016; Jain et al., 2017). The relationship between the 

descriptors and the responses was captured by PLS and the datasets as well as models were 

benchmarked based on metrics relevant for the endpoint of the model i.e. early stage screening 

and identifying trends. The overall methodology is outlined in Figure 9.1. 

Table 9.1 Details of mAbs used and sample distribution for model development. 

Name HC LC Species Antigen Skimune™  
response  (%) 

Clinical 
incidence 
(%)+ 

IMGT 
mAb* ID 

adalimumab IgG1 κ Homo sapiens TNF 70 10 165 
alemtuzumab IgG1 κ Humanized CD52 70 10 11 
basiliximab IgG1 κ Chimeric IL2RA 54 1 148 
bevacizumab IgG1 κ Humanized VEGFA 50 10 24 
certolizumab IgG1 κ Humanized TNF 30 0.1 242 
cetuximab IgG1 κ Chimeric EGFR 50 10 151 
golimumab IgG1 κ Homo sapiens TNF 40 0.1 175 
infliximab IgG1 κ Chimeric TNF 30 0.1 156 
muromonab IgG2 κ Chimeric CD3E 90 10 132 
natalizumab IgG4 κ Humanized ITGA4 20 0.1 75 
ofatumumab IgG1 κ Homo sapiens MS4A1 CD20 50 10 194 
panitumumab IgG1 κ Homo sapiens EGFR 30 0.1 196 
rituximab IgG1 κ Chimeric MS4A1 50 10 161 
trastuzumab IgG1 κ Humanized ERBB2 CD340 60 10 97 
TGN1412 IgG4 κ Humanized CD28 90 10 -b, **

bSequence was sourced from patent., HC = Heavy chain isotype, LC = Light chain isotype + Upper limits taken from label 

information. *(Lefranc et al., 2009; Lefranc et al., 2015), **(Hanke et al., 2014). 
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Figure 9.1 Hybrid model development workflow outlining the different steps involved in pre-
treatment and variable reduction; model development followed by model evaluation and 
optimisation.  

9.1. Materials and methods 

9.1.1. Data collection and descriptor generation 

Sequence information, substructure, species and phase of development of 15 mAbs have been 

collected from IMGT, literature, patents as well as from industrial partners (Apweiler et al., 
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2004; Lefranc et al., 2009).  The FASTA format sequences of mAbs were read into Matlab and 

were subjected to multiple sequence alignment. The sequences were then split into domains 

and the variable region domains VH and VL were selected for further descriptor generation. 

2530 features for Running Sum based dataset was generated as described in Chapter 5. The 

descriptors based on primary sequences provide information about the physicochemical 

properties of amino acids and these are outlined (Zaliani and Gancia, 1999; Tian et al., 2007a). 

The automation of descriptor and dataset generation was done by MATLAB codes written by 

Micael Karlberg, Newcastle University.   

9.1.2. Data curation and Variable reduction 

Following descriptor generation, the datasets were curated by and V-WSP reduction was 

performed as described in Chapter 6, Section 6.1.3. These datasets are referred to as ‘Original 

dataset’ and “V-WSP reduced’ dataset respectively.  

9.1.3. Biological response data 

Hypersensitivity reactions were assessed using Skimune™, a non-artificial human skin 

explants based assay for safety and efficacy assessment of novel compounds and drugs, 

developed by Alcyomics Ltd (Ahmed et al., 2016). For the Skimune™ assay, a percentage 

response was attributed based on number of grade 2 and above responses for all donors (n=10). 

The details of the responses used for regression analysis used is shown in Table 9.1. 

9.1.4. Model development 

Responses ascertaining hypersensitivity were modelled against the descriptors generated using 

the PLS Toolbox from Eigenvector Research. Both the descriptors and responses were entered 

into Matlab, auto scaled (each descriptor was mean centred and scaled with its individual 

standard deviation) and subsequently subjected to PLS analysis. Both the descriptors and 

responses of the training set were inputted into Matlab and auto scaled separately i.e. for the 

training set the mean and standard deviation of the training set was used and for the test set the 

mean and standard deviation of the test set was used. The cross-validation method used was a 

random subset cross validation with 5 splits and 50 iterations (Minitab, 2014; Hahn and 

Valentine, 2016).  A maximum of 10 latent variables were tested for each developed model 

and used to investigate the model error in order to choose an appropriate model complexity, 

i.e. number of latent variables. Models were further optimised by Genetic Algorithm-Partial 

least squares (GA-PLS) based variable selection method. The parameters were set as follows: 

population size of 100; maximum generations of 50; mutation rate of 0.005, window width of 
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1; convergence rate of 25; 30 initial terms, cross over of 2; random subset 5 fold cross validation 

with 50 iterations and data retreatment set for autoscaling (Hasegawa et al., 1997; Andersen 

and Bro, 2010). The algorithm is terminated upon reaching convergence or reaching max 

generations. The model with the best fitness i.e. the lowest RMSE is chosen and subsequently 

the variables from that model is selected for further PLS analysis. 

9.1.5. Model Performance metrics 

The datasets, models and outputs were benchmarked based on the following metrics for the 

multivariate regression analysis: R2 values based on Pearson correlation coefficient between 

observed and predicted values; Q2 values based on goodness of fit; Root mean square error of 

cross validation (RMSECV) and cross validation bias (Alexander et al., 2015). These have 

been described previously in Chapter 6, Section 6.1.7. The model metrics were further assessed 

against the OECD guidelines for the Calibration, internally validated (Cross validation) and 

externally validate models (test set predictions) (Veerasamy et al., 2011; Organisation for 

Economic and Development, 2014). 

9.1.6. Y randomisation  

The developed models were further evaluated by performing Y randomisation and Permutation 

tests as described in Chapter 6, Section 6.1.8 to investigate whether the models did indeed 

capture the underlying relationships in the data rather than capturing chance correlation 

between the independent descriptors and dependent response data (Rücker et al., 2007).  

9.2. Results 
9.2.1. Variable reduction and variable selection 

Considering the dimensionality of the data with a large number of variables and a limited 

number of observations, variable reduction and variable selection methods were used prior to 

model building. There was a 98% reduction in variables of the running sum dataset following 

V-WSP reduction. The correlation coefficient thresholds of VH and VL were both 0.50 and the 

overall Procrustes index was 0.09 resulting in 72 descriptors. Furthermore, GA-PLS based 

variable selection led to a further reduction of variables resulting in 1% of the variables from 

the original dataset being retained in the GA selected dataset for running sum dataset. The 

number of unique models generated was 61, the average RMSE values of these models was 

0.82 and the number of generations required to reach convergence was 18. A final set of 21 

descriptors was retained in the final GA selected running sum dataset.  
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9.2.2. Model performance evaluation 

Figure 9.2 shows the predicted vs measured response plots for the calibration model of the 

running sum dataset for the GA selected set of variables. The model has a good fit as most 

points are close to the parity line. The test set predictions are within 3% of the measured 

Skimune™ responses.  

 

Figure 9.2 Model summary of Running Sum dataset model developed following GA-PLS 

selection of variables. (a) Measured vs predicted values for training and test set model. (b) Test 

set predictions 

As the Running Sum datasets were generated following multiple sequence alignment, the 

relative positions of residues of the complementary determine region (CDR) and framework 

region (FR) that constitute the hypervariable region of mAbs needed to be identified. This has 

been shown in Table 9.2. 

Table 9.2 Relative positions of CDR and FR regions for heavy and light chain following 
sequence alignment. 

Heavy  Indices Light Indices 
FR1 1-21 FR1 1-22  
Start 22-25 Start 23 
CDRH1 27-37 CDRL1 24-34 
End 38-39 End 35-37 
FR2 40-46 FR2 38-47 



 
159 

 

Start 47-51 Start 48-49 
CDRH2 52-70 CDRL2 50-56 
End 71-73 End - 
FR3 74-99 FR3 57-87 
Start 100-102 Start 88 
CDRH3 103-119 CDRL3 89-98 
End 120-123 End 99-102 
FR4 124-130 FR4 103-110 

The highest correlation coefficients from the VH region arise from the topological properties 

of CDRH2 as well as electrostatic potential based properties of FR1 and CDRH1. In the VL 

region the highest correlation coefficients arise from the topological properties of the FR3 

region followed by electrostatic potential properties residues in CDR2-FR2 and CDRL3 

regions. 

 

Figure 9.3 Regression coefficients of GA selected variables for Running Sum dataset model 

9.2.3. Benchmarking of model performance metrics  

The performance of calibration models was evaluated based on R2 and RMSE as shown in 

Table 9.3. The model performance acceptance criteria have been discussed in the previous 

chapters. The range for Skimune™ responses is 70 which means for the model to have high 

accuracy an RMSE of less than 7 would be preferred. The R2 and RMSE values of calibration 

model show marked improvement following V-WSP reduction and GA-PLS based variable 

selection (Table 9.3).  

Table 9.3 Model performance metrics of Calibration, Cross validation and external test set 
prediction. Models that have passes QSAR validation criteria are shown in green, those with 
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moderate performance are indicated in Yellow and those that have failed the QSAR validation 
criteria are indicated in red. 

 Running Sum 

Original 

Calibration 

R2 0.58
RMSE 13.21
Bias 0.00

Cross validation 

R2 0.15
Q2 -0.99
RMSE 28.70
Bias -0.30

Test 
RMSE 10.90
Bias 8.89

V-WSP reduced 

Calibration 

R2 0.98
RMSE 2.65
Bias 0.00

Cross validation 

R2 0.04
Q2 -0.36
RMSE 23.76
Bias -1.81

Test 
RMSE 0.99
Bias -0.98

GA selected 

Calibration 

R2 0.99
RMSE 1.36
Bias 0.00

Cross validation 

R2 0.84
Q2 0.80
RMSE 8.93
Bias -1.50

Test 
RMSE 2.11
Bias 1.88

 

The performance of the models generated was evaluated using R2, Q2, RMSE and Bias for the 

cross-validation models as shown in Table 9.3. Confidence intervals were calculated over the 

50 cross validation iterations to give a measure of the model uncertainty i.e. the probability of 

the measured metric falling between the upper and lower confidence limits (97.5% and 2.5%) 

respectively).  

Table 9.4 Benchmarking of PLS model performance metrics for the original, V-WSP 
reduced and GA selected Cross validated models. CI: Confidence limits. 

Metrics GA 
Selected 

Lower 
CI 

Upper 
CI 

V-WSP 
Reduced

Lower 
CI 

Upper 
CI 

Original Lower 
CI 

Upper 
CI 

R2 0.84 0.83 0.86 0.03 0.02 0.04 0.15 0.12 0.18 
Q2 0.80 0.78 0.82 -0.31 -0.36 -0.27 -0.99 -1.05 -0.92 
RMSE 8.93 8.46 9.39 23.34 22.95 23.73 28.7 28.22 29.18 
Bias -1.40 -1.87 -1.14 -1.20 -1.51 -0.90 -0.3 -0.77 0.17 
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Both R2 and Q2 show a marked increase following GA selection of variables Table 9.4. 

Following variable selection using GA the model performance improves.  As shown in Table 

9.4 the models have a cross validation R2 greater than 0.6 which shows that the models are 

generally able to predict the trend of the responses. The RMSE values are close to the 10% cut 

off for the GA selected variable based model which indicates that the numerical accuracy of 

this model is considerably higher compared to the original and V-WSP reduced dataset. 

Correspondingly, the absolute cross validation bias is very low compared the original and V-

WSP reduced datasets.  This indicates that the model has relatively good cross validation R2, 

Q2 values and low RMSE, bias making them useful in predicting the trends and for ranking 

mAbs according to hypersensitivity. Owing to the objective of the modelling framework, i.e. 

early stage screening, the trend capturing R2 metric would be more relevant than RMSE which 

reflects the accurate numerical representation. This was also tested by PLSDA models for the 

datasets above (data not shown) wherein the models had very poor performance as the data was 

imbalanced (more negatives than positives). Therefore, PLS models were better at predicting 

the trends of responses and placing the extreme data points correctly. 

9.2.4. Model Robustness 

Table 9.5 indicates the R2 and Q2 values of the Running Sum dataset following y 

randomisation. As seen from the metrics the y randomised models perform poorly. 

Additionally, permutation test was performed where the prediction residuals of the unperturbed 

and y-block shuffled data are compared (van der Voet, 1994; Thomas, 2003). The permutation 

analysis reports the results of non-parametric statistical hypothesis tests as shown in Table 9.5 

for both the calibration (self-prediction) as well as cross validation model comparison. This 

indicates that the model generated in this study is capturing an underlying relationship between 

the descriptors and the response and not a chance/random correlation.    

Table 9.5 results of y randomisation and permutations tests for GA selected datasets.  

Datasets Self-prediction Cross Validation R2 CV Q2 CV 
Wilcoxon Sign 

Test 
Rand 
t-test 

Wilcoxon Sign 
Test 

Rand 
t-test 

Mean Mean 

Running sum 0.009 0.035 0.011 0.003 0.021 0.006 0.1003 -0.535 
 

9.2.5. Correlation with Clinical incidence rates 

The advantage of Skimune over other immunogenicity assay is the autologous nature of the 

assay as the results would be representative of clinical trials assay. This can already be seen 
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from the results of TGN1412 assays which passes in vivo testing and causes a cytokine storm 

in clinical trial patients (healthy volunteers). The clinical incidence of hypersensitivity 

associated adverse effects elicited by the mAbs in this study were retrieved from labels as 

accessed from the European Medicine Agency (EMA).  Correlation analysis of Skimune 

response with upper limit of clinical incidence rates were analysed using both Pearson and 

Spearman rho analyses. This yielded an R2 of 0.74 and 0.79 as well as p-value of 0.002 and 

0.005 respectively. This indicates that responses used in this assay are reflective of clinical 

incidence rates and the QSAR model can thus be extended to include more mAbs. This can 

also be seen from the score plot of the PLS model (4 LVs) generated for Running Sum dataset 

wherein the classes correspond to the clinical classes, as defined by the incidence rates within 

the EMA labels, and separation between positives and negatives can be observed on the first 

latent variable of the model (Figure 9.4). The only exception to this is infliximab which is 

classified by the model as a weak positive. However, these immune related adverse events have 

ben categorised as rare (<1%) based on clinical trial information (EMA). This separation or 

clustering wasn’t observed on the other LVs. 

 

Figure 9.4 Score plot of GA selected variables based PLS model built on Running Sum dataset.  
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9.3. Discussion 

Predictive models could substantially aid in safety pharmacology testing of mAb monoclonal 

antibody derived therapeutics as they impart elements of automation, consistency and 

reliability to standard toxicological assays. There are a multitude of advantages offered by 

computational toxicology methods. They help to realise the 3R principle i.e. Replacement, 

Reduction and Refinement, by reducing the number of experimental animals used in drug 

safety testing. However, as with most predictive model strategies, the availability of data 

pertaining to mAbs is relatively limited by the cost of testing and the restrictions on access to 

information owing to the highly competitive nature of the biopharmaceutical industry. 

Criteria for characterising the predictive ability of a model are based on the objective of the 

model. When the main objective of the model is to correctly identify the trends and rank 

molecules based on their activity/property in question, the metrics that capture the correlation 

between observed and predicted values of the test set i.e. prediction R2, maybe more reflective 

and relevant when compared to RMSE, accuracy and error of the models(Alexander et al., 

2015). With respect to mAbs, models that allow for early stage screening based on safety and 

efficacy may lead to effective reduction of the number of lead candidates that progress through 

process development into manufacturing and thus reduce costs associated to process 

development failures and attrition. To that end these models based on the tendency of mAbs to 

cause hypersensitivity show relatively good prediction R2 values and thus will be useful for 

identifying trends in mAb therapeutics developability.   

Due to the limited sample size caution must be exercised while interpreting the predictive 

ability of the models. Even though the models show the general trend of responses, more 

samples have to be included to increase the robustness and the predictive ability of all the 

models as overfitting becomes an important problem.  Model performance can also be 

increased by bootstrapping and iterative resampling methods, however it would still present 

the dangers of an overly optimistic model due to a limited sample size as well as the influence 

of the training set on predictions (Kohavi, 1995; Consonni et al., 2009). Model optimisation 

can also be carried out by reducing the number of variables used in a model. To this end 

unsupervised variable reduction method, V-WSP, was used to address the challenge of the 

number variables being greater than the number of samples. Subsequently, GA-PLS based 

supervised variable selection was used to further optimise the model.  
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The rationale for the Skimune™ ® grading is based on its correlation with the clinical 

occurrence of adverse events during clinical trials. The different Skimune™ ® classes reflect 

the likelihood of an adverse immune reaction to occur during a stage IV clinical trial. 

Furthermore, donor variability is also accounted for, especially for the “weak positive” class 

of Skimune™ ® grading score. This refers to cases where the testing compound, while known 

to be a sensitizer, fails to induce an adverse immune reaction in all tested donors. The same 

logic can be applied in the opposite situation, where a negative sensitizer can induce an adverse 

immune response in a small percentage of donors. Thus, as an in vitro assay system for safety 

testing of mAb based therapeutics, the Skimune™ assay captures the variability associated 

with clinical testing in terms of patient variability. This has also been reflected in the high 

correlation of Skimune™ responses with clinical immunogenicity incidence rates (Figure 9.4). 

However, this variability also increases the intrinsic variance when used as a biological 

response in QSAR studies.  

As shown in Figure 9.3 the electronic and topological properties of VH and VL substructures, 

both framework and CDR, have shown to influence the model. As the framework regions 

contain sequences pertaining to species information this could be one of the potential reasons 

for the influence of these regions on Skimune™ response prediction since immunogenic 

responses can be elicited by presence of non-human sequences in mAbs (Harding et al., 2010). 

For the regression models, inclusion of constant region descriptors as well as glycoform 

information together with increased number of samples would allow for better prediction of 

the response range (Umaña et al., 1999). Primary sequence-based descriptors do not consider 

either the interactions between amino acid residues or the antibody-antigen and antibody-

receptor interaction space. This could be addressed by using the 3D structures of mAbs  

generated via homology modelling and molecular dynamics simulations so as to extract useful 

3D structural descriptors provide energy minimised 3D structures which can be used for in 

silico receptor binding studies resulting in effector function related descriptors (using docking) 

(Pettersen et al., 2004; Phillips et al., 2005). 

9.4. Chapter summary 

To summarise this chapter looked at the applicability of the modelling framework developed 

with Skimune™ as response. There is plenty of scope for application of this methodology for 

other studies involving different biological activities as output. Extension could possibly 

include reducing number of lead candidates and providing more information to in vitro studies 
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when requisite in vivo species is not available. Supplementing existing safety strategies by 

providing a hybrid approach to safety and efficacy testing of biotherapeutics would be 

particularly useful while exploring the combined mAb chemical space for combination 

therapies. In conclusion this study could be translated to developing QSAR models for mAbs 

using larger developability or adverse effects datasets to allow for early stage screening, thus 

reducing manufacturing failures and attrition rates. 
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Chapter 10: Conclusions and recommendations 

Monoclonal antibodies (mAbs) and related therapeutics are highly desirable from a 

biopharmaceutical perspective as they are highly target specific and well tolerated within the 

human system. Advancements in early stage screening of mAb candidates would reduce the 

number of lead candidates entering the bioprocess pipeline that are associated with adverse 

effects thereby reducing attrition rates. As defined in the objectives, the toxicity of parabens 

was assessed via traditional toxicity assays wherein the hepatoxicity and dermal toxicity of 

butyl paraben was observed. These traditional toxicity assays were then used to assess potential 

off target adverse effects of mAbs. No apparent ADCC, CDCC or CDC mediated decrease in 

cell viability was measured for either of the two cells lines tested except for a CDC mediated 

decrease in cell viability in HDFn cells. Several considerations have been elucidated for 

development of in vitro assays better suited to detect off target toxicity of mAbs. Furthermore, 

hypersensitivity reactions of mAbs and their aggregates were assessed using the novel 

Skimune™ assay indicating the utility of these assays for detection of immune related adverse 

effects of mAbs. The development of a hybrid QSAR based model with a structured workflow 

and clear evaluation metrics, with several optimisation steps, was also described that could be 

beneficial for broader and more generic PLS modelling. Based on the results and observation 

from this study, it was demonstrated incremental improvement via selection of datasets and 

variables help in further optimisation of these hybrid models. Furthermore, using 

hypersensitivity and cross reactivity as responses and physicochemical characteristics of mAbs 

as descriptors, the QSAR models generated for different applicability domains allow for rapid 

early stage screening and developability. 

Whether it is for assessing preclinical safety or for rapid screening, in vivo systems are not the 

most suitable models for studying the effects of monoclonal antibody-based therapeutics. The 

rationale behind using in vivo studies in preclinical safety testing is that the indirect immune 

mediated response induced by the antibody as well as the magnitude of the effect cannot be 

gauged via standard in vitro tests. However, species specificity remains the main obstacle 

(Brennan et al., 2018). Studying the effector function becomes difficult due to differences in 

the FcγR receptors structure and affinity, complement system response and absence of target 

antigen (Golay and Introna, 2012). Presence, number, interactions as well as distribution of 

target antigen also plays an important role in assessing the biological activity of monoclonal 

antibodies (Golay et al., 2001). Attempts have been made to solve this problem by different 

strategies, such as knockout mice that lack mouse FcγR, transgenic mice expressing human 
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FcγR, generating xenografts with human antigen in mouse cell lines, using completely mouse 

systems and using primate models such as rhesus monkey (Golay and Introna, 2012; Barouch 

et al., 2013; Strasser et al., 2013; Bournazos et al., 2014). Animal testing is also expensive, 

sample size dependent and resource intensive.  

In vitro systems have been routinely used for assessing the adverse effect of chemical 

compounds. This has been illustrated during the assessment of hepatotoxicity and dermal 

toxicity of butyl paraben and methyl paraben using HepG2 and HDFn in vitro models as shown 

in Chapter 2.  However, applying traditional toxicity tests for assessing adverse effects of 

mAbs was not as straightforward as evident from the results in Chapter 3. The innate 

complexity, diversity and size of mAbs based therapeutic as well as their diverse mechanisms 

of actions that involve many pathways exacerbate the need for carefully designed in vitro 

systems that consider all of the above factors (Brennan and Kiessling, 2017). In standard 

cytokine release assays, the mAbs bind to receptors all over the cell which is not an accurate 

representation of the human systems where cytokine release is sometimes dependent on 

localised receptor interaction (Stebbings et al., 2007). Sophisticated analytical techniques used 

in studying the endpoints of these assays have to be carefully assessed for resolution as well as 

sensitivity in detecting events as they can be prone to artefacts owing to nature of assay in 

question as well as the size of biological molecules. Artefacts can arise while using flow 

cytometry techniques due to homotypic adhesion as demonstrated with anti CD20 antibodies 

monoclonal antibodies (Golay et al., 2010). New generation preclinical safety testing tools 

would have to be high throughput, rapid and cost effective to meet the accelerated growth of 

the biopharmaceutical market. They also need to be highly reproducible and be fairly predictive 

to allow for rapid screening facilitating reliable selection of new compounds at initial stages 

thus saving time and money to allow more focus on drug development for rare diseases. They 

would also provide an alternative to animal testing considering the various drawbacks of in 

vivo systems as seen in the case of TGN1412. Hypersensitivity reactions have been assessed 

using Skimune™, a non-artificial human skin explants based assay for safety and efficacy 

assessment of novel compounds and drugs, developed by Alcyomics Ltd (Ahmed et al., 2016). 

The applicability of the Skimune™ assay have been demonstrated in Chapter 4 for assessing 

the immunogenicity of mAb aggregates.  

Appropriate and relevant experimental studies are of paramount importance in nonclinical 

safety testing as they also contribute to good datasets which can then be modelled. Most of the 

models are developed based on public data sets and fail to perform adequately when tested with 
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proprietary datasets. The highly competitive nature of the biopharmaceutical industry makes 

information access very difficult. There are also difficulties in feature extraction for biological 

molecules owing to their complexity and size. The applicability of such modelling techniques 

in rapid screening depends on the experimental set up as well as on identifying and forming 

sensible profilers and descriptors.  

Identification and generation of descriptors from the primary sequence of mAbs as well as the 

influence intrinsic properties exert on the descriptors was shown in Chapter 5. These 

descriptors were then used for developing a QSAR model for prediction of cross interaction 

chromatographic retention times, the results of which was elucidated in Chapter 6. Primary 

sequence-based descriptors do not take into account interactions between amino acid residues 

or the antibody-antigen and antibody-receptor interaction space. To address this, 3D structures 

of mAbs were first generated via homology modelling and molecular dynamics simulation 

upon which structural descriptors were generated for QSAR model development (Chapter 7). 

A combination of sequence based, and structural descriptors were also utilised for model 

development (Chapter 8) followed by testing their applicability to predict Skimune™ 

responses elicited by mAbs (Chapter 9). 

Advances made in PCM techniques include a new descriptor for antigen-antibody interaction 

called Epitope-Paratope Interaction Fingerprint (EPIF) which tries to addresses the higher time-

complexity of MLPD, thus allowing for simplification the antigen-antibody interaction term 

(Qiu et al., 2015; Qiu et al., 2016). Platforms like proABC, ABangle and LYRA allow for 

modelling antigen-antibody interactions, orientation of variable chain and lymphocyte receptor 

respectively (Dunbar et al., 2013; Olimpieri et al., 2013; Klausen et al., 2015). 

Physicochemical characteristics of mAbs will influence PK/PD properties (increased binding 

to serum proteins and increased half-life) which affects ADME characteristics thus impacting 

bioavailability and biological activity (Dostalek et al., 2017). Glycosylation is another aspect 

that has to be taken into consideration as change in glycosylation pattern could affect 

functionality as well as impact PK/PD characteristics of mAbs (Liu, 2015). Successful attempts 

have been made from a bioengineering point of view to investigate the effects of the production 

process on glycosylation profiles of monoclonal antibodies by using multivariate techniques, 

such as principal component analysis, partial least squares and parallel factor analysis (Green 

and Glassey, 2015), (Glassey, 2012). Glycoengineered antibodies were produced by CHO cells 

with higher glycosyltransferase which enabled the production of engineered antibodies with 

the N acteylglucosamine profiles required to achieve higher neutrophil mediated phagocytosis 
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activity and thus greater efficacy in killing tumour cells (Umaña et al., 1999; Golay et al., 

2013). Indeed, engineered glycoforms of anti CD20 antibodies, such as obinutuzumab and 

Rituximab, have sevenfold higher binding affinity to neutrophils and thus an increased 

neutrophil mediated phagocytosis based killing of tumour cells (Golay et al., 2013). The 

challenge would then be to associate these attributes to potential adverse effects which will 

then allow for development of predictive toxicology models. Intricate algorithms would also 

be required for associating profilers and descriptors with synergistic endpoints of toxicity. 

Along with carefully designed experimental procedures, extensive expert knowledge would be 

required for such model development. 

Future work pertaining to the studies done in this thesis would be to use nonlinear modelling 

techniques, applying the modelling framework on larger and/or more industrial datasets as well 

as newer types of mAbs such as bispecifics, developing QSAR models around other 

substructural and species related applicability domains of MAbs, including glycoform 

conformation as a feature for model development to name a few. Modelling techniques such 

as those that use categorical responses (Partial Least Squares Discriminant Analysis, PLS-DA) 

as well as nonlinear modelling methods such as Support Vector Machines (SVM) were also 

briefly investigated in this project (data not shown). The performance of PLS-DA models was 

poor mainly due to class imbalance. Furthermore, the influence of expert knowledge is greater 

for these models as defining the classes is arbitrary. With regard to the SVM based models, the 

increase in model complexity only led to similar model performance as that of the PLS models. 

Interpretability is lower for complex models such as those generated by SVM for similar model 

performance. Thus, further investigation is required to ascertain the applicability of complex 

modelling techniques such as Artificial neural networks, Random forests, Bayesian models etc 

for early stage screening of mAb therapeutics. Model predictability and utility can be further 

improved with the inclusion of better mAb features such as glycoform conformation and 

distribution which are linked to mAb efficacy and safety. Increasing the sample sizes within 

each substructure and specifies applicability domain could expand the applicability of this 

QSAR modelling framework. Furthermore, this methodology could then extend to different 

therapeutic types such as fusion proteins, bispecifics, single chain fragment variables and other 

novel mAb based therapeutics.   

Biopharmaceuticals have positively impacted the lives of millions. They have paved the way 

for personalised medicines, improve prognosis of cancer, genetic and immune disorders as well 

as breakthroughs in rare disease management (Dostalek et al., 2017; Shepard et al., 2017; 
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Kennedy et al., 2018). The advances made are however impeded by a lack of progress in 

bioprocess development strategies as well as increasing costs owing to attrition, wherein the 

lack of efficacy and safety accounts for nearly 60% of all factors contributing to attrition (Kola 

and Landis, 2004). This reiterates the need for carefully designed predictive models to assess 

the efficacy as well as toxicity of potential drug candidates at an early stage. A more effective, 

high-throughput rapid screening of candidates based on adverse effects is required at an early 

stage to filter out the number of candidates proceeding to clinical trials. A choice of appropriate 

in vivo systems should be in place along with better proof of concept studies as animal models 

are not representative of human systems for assessing the efficacy and safety of 

biopharmaceuticals in specialised therapy areas like oncology and immunology.  Alternative 

approaches such as specialised in vitro toxicology tests, better biomarkers and omics 

approaches can be utilised for this purpose. In this regard, computational toxicology tools like 

expert/hybrid systems provide a powerful complement to in vitro systems as they will allow 

for development of automated and reliable models for predicting toxicity or adverse effect of 

monoclonal antibody therapeutics. To make these predictive platforms more robust, descriptor 

calculation, feature extraction, inclusion of pharmacokinetics and bioavailability 

characteristics, mechanistic understanding and multidisciplinary expert knowledge will be of 

paramount importance. This could aid in reducing the number of lead candidates that could go 

forward into the bioprocessing /manufacturing pipeline. Thus, this would tackle two of the 

main setbacks biopharmaceutical industries face today: manufacturing failure and attrition. 

This will pave way for the development of rapid bioprocess development strategies for faster 

development of effective and safe biopharmaceuticals and may in fact change the face of 

biopharmaceutical manufacturing as we see today.     
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Appendix A 

Table A.1 Details of the final mAb concentration and associated dilutions. 

Working 
concentrati
ons 

Concentrati
on in well 
(µg/ml) 

Volume of 
mAb 
(µl) 

Volume of 
DMEM 
(µl) 

Source Final 
Volume in 
well (µl) 

Volume 
added/well 
(µl) 

40 10 48 1152 1mg/ml 200 50 
4 1 120 1080 40 200 50 
10.4 0.1 120 1080 4 200 50 

Working concentration= Concentration in well x dilution factor (4 as total volume in cell is 200µl) Rituximab stock is 
100mg/ml; Working stock of 10mg/ml : 100µl in 900µl of PBS): Stock solution of 1mg/ml. Trastuzumab stock is 600mg/ml; 
working stock of 10mg/ml; 16.5 µl in 984 µl of PBS): Stock Solution of 1mg/ml 

 

 1 2 3 4 5 6 7 8 9 10 11 12 
A             
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Figure A.1 Layout of (a) ADCC, (b) CDCC and (c) CDC experiment. ADCC: Antibody 
Dependent Cellular Cytotoxicity, CDCC: Complement Dependent Cellular Cytotoxicity, CDC: 
Complement Dependent Cytotoxicity, AICC: Antibody independent cytotoxicity, NC: 
Negative/target Control, PC: Positive Control, IC: Isotype Control, EC: Effector Control. The 
coloured cells indicate wells that contain PBMCs, PBMCs+Serum and Serum respectively. 
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Appendix B 

Table B.1 Full factorial Design of Experiments for mAb aggregation 

StdOrder RunOrder Blocks Temperature (°C) TIME (Hours) 
1 1 1 4 0 
2 2 1 4 3 
3 3 1 4 6 
4 4 1 4 12 
5 5 1 4 24 
6 6 1 4 48 
7 7 1 37 0 
8 8 1 37 3 
9 9 1 37 6 
10 10 1 37 12 
11 11 1 37 24 
12 12 1 37 48 
13 13 1 40 0 
14 14 1 40 3 
15 15 1 40 6 
16 16 1 40 12 
17 17 1 40 24 
18 18 1 40 48 
19 19 1 4 0 
20 20 1 4 3 
21 21 1 4 6 
22 22 1 4 12 
23 23 1 4 24 
24 24 1 4 48 
25 25 1 37 0 
26 26 1 37 3 
27 27 1 37 6 
28 28 1 37 12 
29 29 1 37 24 
30 30 1 37 48 
31 31 1 40 0 
32 32 1 40 3 
33 33 1 40 6 
34 34 1 40 12 
35 35 1 40 24 
36 36 1 40 48 
37 37 1 4 0 
38 38 1 4 3 
39 39 1 4 6 
40 40 1 4 12 
41 41 1 4 24 
42 42 1 4 48 
43 43 1 37 0 
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44 44 1 37 3 
45 45 1 37 6 
46 46 1 37 12 
47 47 1 37 24 
48 48 1 37 48 
49 49 1 40 0 
50 50 1 40 3 
51 51 1 40 6 
52 52 1 40 12 
53 53 1 40 24 
54 54 1 40 48 

Table B.2 Heavy chain amino acid composition of rituximab and Trastuzumab 

Number Mole% DayhoffStat 

Residue Rituxima

b 

Trastuzuma

b 

Rituxima

b 

Trastuzuma

b 

Rituxima

b 

Trastuzumab 

A = Ala 24 23 5.322 5.111 0.619 0.594 

B = Asx 0 0 0 0 0 0 

C = Cys 11 11 2.439 2.444 0.841 0.843 

D = Asp 17 18 3.769 4 0.685 0.727 

E = Glu 20 22 4.435 4.889 0.739 0.815 

F = Phe 13 13 2.882 2.889 0.801 0.802 

G = Gly 31 33 6.874 7.333 0.818 0.873 

H = His 10 10 2.217 2.222 1.109 1.111 

I = Ile 7 9 1.552 2 0.345 0.444 

K = Lys 36 32 7.982 7.111 1.209 1.077 

L = Leu 32 33 7.095 7.333 0.959 0.991 

M = 

Met 

5 5 1.109 1.111 0.652 0.654 

N = Asn 19 19 4.213 4.222 0.98 0.982 

P = Pro 35 34 7.761 7.556 1.492 1.453 

Q = Gln 18 16 3.991 3.556 1.023 0.912 

R = Arg 8 13 1.774 2.889 0.362 0.59 

S = Ser 53 50 11.752 11.111 1.679 1.587 

T = Thr 38 35 8.426 7.778 1.381 1.275 

V = Val 43 44 9.534 9.778 1.445 1.481 
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W = Trp 9 9 1.996 2 1.535 1.538 

X = Xaa 0 0 0 0 0 0 

Y = Tyr 22 21 4.878 4.667 1.435 1.373 

Table B.3 Properties of amino acid composition of rituximab and Trastuzumab (heavy chain).  

  
Number Mole% 

Property Residues Rituxim

ab 

Trastuzum

ab 

Rituxim

ab 

Trastuzum

ab 

Tiny (A+C+G+S+T) 157 152 34.812 33.778 

Small (A+B+C+D+G+N+P+S+T+

V) 

271 267 60.089 59.333 

Aliphatic (A+I+L+V) 106 109 23.503 24.222 

Aromatic (F+H+W+Y) 54 53 11.973 11.778 

Non-

polar 

(A+C+F+G+I+L+M+P+V+

W+Y) 

232 235 51.441 52.222 

Polar (D+E+H+K+N+Q+R+S+T+

Z) 

219 215 48.559 47.778 

Charged (B+D+E+H+K+R+Z) 91 95 20.177 21.111 

Basic (H+K+R) 54 55 11.973 12.222 

Acidic (B+D+E+Z) 37 40 8.204 8.889 

Table B.4 Light chain amino acid composition of rituximab and trastuzumab 

Number Mole% DayhoffStat 

Residue Rituximab Trastuzumab Rituximab Trastuzumab Rituximab Trastuzumab 

A = Ala 15 14 7.042 6.542 0.819 0.761 

C = Cys 5 5 2.347 2.336 0.809 0.806 

D = Asp 6 10 2.817 4.673 0.512 0.85 

E = Glu 11 9 5.164 4.206 0.861 0.701 

F = Phe 7 9 3.286 4.206 0.913 1.168 

G = Gly 13 11 6.103 5.14 0.727 0.612 

H = His 3 3 1.408 1.402 0.704 0.701 

I = Ile 7 6 3.286 2.804 0.73 0.623 
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K = Lys 13 13 6.103 6.075 0.925 0.92 

L = Leu 13 14 6.103 6.542 0.825 0.884 

M = Met 1 1 0.469 0.467 0.276 0.275 

N = Asn 7 6 3.286 2.804 0.764 0.652 

P = Pro 13 12 6.103 5.607 1.174 1.078 

Q = Gln 12 15 5.634 7.009 1.445 1.797 

R = Arg 6 7 2.817 3.271 0.575 0.668 

S = Ser 35 31 16.432 14.486 2.347 2.069 

T = Thr 17 20 7.981 9.346 1.308 1.532 

V = Val 16 16 7.512 7.477 1.138 1.133 

W = Trp 4 2 1.878 0.935 1.445 0.719 

Y = Tyr 9 10 4.225 4.673 1.243 1.374 

Table B.5 Properties of amino acid composition of rituximab and Trastuzumab (heavy chain).  

Number Mole% 
Propert
y 

Residues Rituxima
b 

Trastuzum
ab 

Rituxima
b 

Trastuzum
ab 

Tiny (A+C+G+S+T) 85 81 39.906 37.85 
Small (A+B+C+D+G+N+P+S+T+V

) 
127 125 59.624 58.411 

Aliphati
c 

(A+I+L+V) 51 50 23.944 23.364 

Aromati
c 

(F+H+W+Y) 23 24 10.798 11.215 

Non-
polar 

(A+C+F+G+I+L+M+P+V+W
+Y) 

103 100 48.357 46.729 

Polar (D+E+H+K+N+Q+R+S+T+Z
) 

110 114 51.643 53.271 

Charge
d 

(B+D+E+H+K+R+Z) 39 42 18.31 19.626 

Basic (H+K+R) 22 23 10.329 10.748 
Acidic (B+D+E+Z) 17 19 7.981 8.879 
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Appendix C 

Table C.1 Information of the mAbs used in the study and the primary sequence sources. 

Antibody  Heavy 
chain  

Light 
Chain 

Species  Target  

TGN1412 IgG4 Kappa Humanized CD28 
abrilumab IgG2 Kappa Homo sapiens ITGA4_ITGB7 

D49d 
actoxumab IgG1 Kappa Homo sapiens Toxin A 
adalimumab IgG1 Kappa Homo sapiens TNF 
aducanumab IgG1 Kappa Homo sapiens APP 
afasevikumab IgG1 Kappa Homo sapiens IL17A IL17F 
alemtuzumab IgG1 Kappa Humanized CD52 
alirocumab IgG1 Kappa Homo sapiens PCSK9 
amatuximab IgG1 Kappa Chimeric MSLN 
andecaliximab IgG4 Kappa Chimeric MMP9 
anifrolumab IgG1 Kappa Homo sapiens IFNAR1 
anrukinzumab IgG1 Kappa Humanized IL13 
aprutumab IgG1 Lambda Homo sapiens FGFR2 
ascrinvacumab IgG2 Kappa Homo sapiens ACVRL1 
atezolizumab IgG1 Kappa Humanized CD274 
atinumab IgG4 Kappa Homo sapiens RTN4 
avelumab IgG1 Lambda Homo sapiens CD274 
azintuxizumab vedotin IgG1 Kappa Chimeric Humanized SLAMF7 
azintuxizumab IgG1 Kappa Chimeric Humanized SLAMF7 
bapineuzumab IgG1 Kappa Humanized APP 
basiliximab IgG1 Kappa Chimeric IL2RA 
bavituximab IgG1 Kappa Chimeric phosphatidylserine 
benralizumab IgG1 Kappa Humanized IL5RA CD125 
bevacizumab beta IgG1 Kappa Humanized VEGFA 
bevacizumab IgG1 Kappa Humanized VEGFA 
bezlotoxumab IgG1 Kappa Homo sapiens Toxin B 
bimagrumab IgG1 Lambda Homo sapiens ACVR12B/A 
bimekizumab IgG1 Kappa Humanized IL17A IL17F 
bleselumab IgG4 Kappa Homo sapiens CD40 
blosozumab IgG4 Kappa Humanized SOST 
bococizumab IgG2 Kappa Humanized PCSK9 
brazikumab IgG2 Lambda Homo sapiens IL23A 
brentuximab vedotin IgG1 Kappa Chimeric TNFRSF8 
briakinumab IgG1 Lambda Homo sapiens IL12B 
brodalumab IgG2 Kappa Homo sapiens 1L17RA 
brontictuzumab IgG2 Lambda Humanized NOTCH1 
burosumab IgG1 Kappa Homo sapiens FGF23 
cabiralizumab IgG4 Kappa Humanized CSF1R 
camrelizumab IgG4 Kappa Humanized PDCD1 
canakinumab IgG1 Kappa Homo sapiens IL1B 
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cantuzumab ravtansine IgG1 Kappa Humanized MUC1 
carlumab IgG1 Kappa Homo sapiens CCl2 
carotuximab IgG1 Kappa Chimeric ENG CD105 
cergutuzumab amunaleukin IgG1 Kappa Humanized CEACAM5 CD66e 
cetuximab IgG1 Kappa Chimeric EGFR 
cixutumumab IgG1 Lambda lambda IGF1R 
clazakizumab IgG1 Kappa Humanized IL6 
clivatuzumab tetraxetan IgG1 Kappa Humanized MUC1 
codrituzumab IgG1 Kappa Humanized GPC3 
coltuximab ravtansine IgG1 Kappa Chimeric CD19 
conatumumab IgG1 Kappa Homo sapiens TNFRSF10B 
concizumab IgG4 Kappa Humanized TFPI 
cosfroviximab IgG1 Kappa Chimeric EBOV 
crenezumab IgG4 Kappa Humanized APP 
crizanlizumab IgG2 Kappa Humanized SELP 
crotedumab IgG4 Kappa Homo sapiens GCGR 
dacetuzumab IgG1 Kappa Humanized CD40 
daclizumab IgG1 Kappa Humanized IL2RA 
dalotuzumab IgG1 Kappa Humanized IGF1R 
daratumumab IgG1 Kappa Homo sapiens CD38 
dectrekumab IgG1 Kappa Homo sapiens IL13 
demcizumab IgG2 Kappa Humanized DLL4 
denintuzumab mafodotin IgG1 Kappa Homo sapiens TNSF11 CD254 
denosumab IgG2 Kappa Humanized CD19 
depatuxizumab mafodotin IgG1 Kappa Chimeric Humanized EGFR 
depatuxizumab IgG1 Kappa Chimeric Humanized EGFR 
dezamizumab IgG1 Kappa Humanized APCS 
dinutiximab beta IgG1 Kappa Chimeric GD2 
dinutuximab IgG1 Kappa Chimeric GD2 
diridavumab IgG1 Lambda Homo sapiens Influenza A virus 
domagrozumab IgG1 Kappa Humanized MSTN 
drozitumab IgG1 Lambda Homo sapiens TNFRSF10B 
duligotuzumab IgG1 Kappa Humanized ERBB3 
dupilumab IgG4 Kappa Homo sapiens IL4R 
durvalumab IgG1 Kappa Homo sapiens CD274 
dusigitumab IgG2 Lambda Homo sapiens IGF2 
efalizumab IgG1 Kappa Humanized ITGAL 
eldelumab IgG1 Kappa Homo sapiens CXCL10 
elezanumab IgG1 Lambda Homo sapiens RGMA 
elgemtumab IgG1 Kappa Homo sapiens ERBB3 
elotuzumab IgG1 Kappa Humanized SLAMF7 
emactuzumab IgG1 Kappa Humanized CSF1R 
emapalumab IgG1 Lambda Homo sapiens IFNG 
emibetuzumab IgG4 Kappa Humanized MET 
emicizumab IgG4 Kappa Humanized F9 
enavatuzumab IgG1 Kappa Humanized TNFRSF12A 
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enfortumab vedotin IgG1 Kappa Homo sapiens PVRL4 
enoblituzumab IgG1 Kappa Humanized CD276 
enokizumab IgG1 Kappa Humanized IL9 
enoticumab IgG1 Kappa Homo sapiens DLL4 
ensituximab IgG1 Kappa Chimeric MUC5AC 
eptinezumab IgG1 Kappa Humanized CALCA/B 
erenumab IgG2 Lambda Homo sapiens CRCP 
etaracizumab IgG1 Kappa Humanized ITGAV ITGB3 
etrolizumab IgG1 Kappa Humanized ITGA4 ITGB7 
evinacumab IgG4 Kappa Homo sapiens ANGPTL3 
evolocumab IgG2 Lambda Homo sapiens PCSK9 
farletuzumab IgG1 Kappa Humanized FOLR1 
fasinumab IgG4 Kappa Homo sapiens NGF 
fezakinumab, IgG1 Lambda Homo sapiens IL22 
ficlatuzumab IgG1 Kappa Humanized HGF 
figitumumab IgG2 Kappa Homo sapiens IGF1R 
firivumab IgG1 Kappa Homo sapiens Influenza A virus 
flanvotumab IgG1 Kappa Homo sapiens TYRP1 
fletikumab IgG4 Kappa Homo sapiens IL20 
foralumab IgG1 Kappa Homo sapiens CD3E 
foravirumab IgG1 Kappa Homo sapiens RV 
fremanezumab IgG2 Kappa Humanized CALCA/B 
fresolimumab IgG4 Kappa Homo sapiens TGFB 
fulranumab IgG2 Kappa Homo sapiens NGF 
futuximab IgG1 Kappa Chimeric EGFR 
galcanezumab IgG4 Kappa Humanized CALCA/B 
ganitumab IgG1 Kappa Homo sapiens IGF1R 
gantenerumab IgG1 Kappa Homo sapiens APP 
gatipotuzumab IgG1 Kappa Humanized MUC1 
gedivumab IgG1 Kappa Homo sapiens Influenza A virus 
gemtuzumab ozogamicin  IgG4 Kappa Humanized CD33 
gevokizumab IgG2 Kappa Humanized 1L1B 
girentuximab IgG1 Kappa Chimeric CA9 
glembatumumab vedotin IgG2 Kappa Homo sapiens GPNMB 
glembatumumab IgG2 Kappa Homo sapiens GPNMB 
guselkumab IgG1 Lambda Homo sapiens IL23A 
ibalizumab IgG4 Kappa Humanized CD4 
icrucumab IgG1 Kappa Homo sapiens FLT1 
ifabotuzumab IgG1 Kappa Humanized EPHA3 
imalumab IgG1 Kappa Homo sapiens MIF 
imgatuzumab IgG1 Kappa Humanized EGFR 
inclacumab IgG4 Kappa Homo sapiens SELP 
indatuximab ravtansine IgG4 Kappa Chimeric SDC1 
indusatumab vedotin IgG1 Kappa Homo sapiens GUCY2C 
indusatumab IgG1 Kappa Homo sapiens GUCY2C 
inebilizumab IgG1 Kappa Humanized CD19 
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infliximab IgG1 Kappa Chimeric TNF 
intetumumab IgG1 Kappa Homo sapiens ITGAV ITGB3 
ipilimumab IgG1 Kappa Homo sapiens CTLA4 
iratumumab IgG1 Kappa Homo sapiens TNFR TNFRSF8 

CD30 
isatuximab IgG1 Kappa Chimeric CD38 
itolizumab IgG1 Kappa Humanized CD6 
ixekizumab IgG4 Kappa Humanized IL17A 
labetuzumab govitecan IgG1 Kappa Humanized CEACAM5 CD66e 
lacnotuzumab IgG1 Kappa Humanized CSF1 
lanadelumab IgG1 Kappa Homo sapiens KLKB1 
landogrozumab IgG4 Kappa Humanized MSTN 
laprituximab emtansine IgG1 Kappa Chimeric EGFR 
laprituximab IgG1 Kappa Chimeric EGFR 
larcaviximab IgG1 Kappa Chimeric EBOV Zaire Ebola 

Virus 
lebrikizumab IgG4 Kappa Humanized IL13 
lenzilumab IgG1 Kappa Homo sapiens CSF2 
lesofavumab IgG1 Kappa Homo sapiens influenze B virus 

hemagglutinin 
lexatumumab IgG1 Lambda Homo sapiens TNFR TNFRSF10B 

CD262 
lifastuzumab vedotin IgG1 Kappa Humanized SLC34A2 
ligelizumab IgG1 Kappa Humanized IGHE 
lirilumab IgG4 Kappa Homo sapiens KIRD2 subgroup 
lodelcizumab IgG1 Kappa Humanized PCSK9 
lorvotuzumab mertansine IgG1 Kappa Humanized NCAM1 
losatuxizumab vedotin IgG1 Kappa Chimeric Humanized EGFR 
losatuxizumab IgG1 Kappa Chimeric Humanized EGFR 
lucatumumab IgG1 Kappa Homo sapiens CD40 
lumretuzumab IgG1 Kappa Humanized ERBB3 
lupartumab amadotin IgG1 Lambda Homo sapiens LYPD3 
lupartumab IgG1 Lambda Homo sapiens LYPD3 
margetuximab IgG1 Kappa Chimeric ERBB2 CD340 
mavrilimumab IgG4 Lambda Homo sapiens CSF2RA 
milatuzumab doxorubicin IgG1 Kappa Humanized CD74 
mirvetuximab soravtansine IgG1 Kappa Chimeric FOLR1 
mirvetuximab IgG1 Kappa Chimeric FOLR1 
modotuximab IgG1 Kappa Chimeric EGFR 
mogamulizumab IgG1 Kappa Humanized CCR4 
monalizumab IgG4 Kappa Humanized KLRC1 
motavizumab IgG1 Kappa Humanized RSV glycoprotein F 
namilumab IgG1 Kappa Homo sapiens CSF2 
naratuximab IgG1 Kappa Chimeric CD37 
narnatumab IgG1 Kappa Homo sapiens MST1R 
natalizumab IgG4 Kappa Humanized ITGA4 
navicixizumab IgG2 Kappa Chimeric Humanized VEGFA 
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navivumab IgG1 Kappa Homo sapiens influenze A virus 
hemagglutinin HA 

necitumumab IgG1 Kappa Homo sapiens EGFR 
nemolizumab IgG2 Kappa Humanized IL31RA 
nesvacumab IgG1 Kappa Homo sapiens ANGPT2 
nimotuzumab IgG1 Kappa Humanized EGFR 
nivolumab IgG4 Kappa Homo sapiens PDCD1 
obiltoxaximab IgG1 Kappa Chimeric anthrax protective 

antigen 
obinutuzumab IgG1 Kappa Humanized MS4A1 CD20 
ocaratuzumab IgG1 Kappa Humanized MS4A1 CD20 
olaratumab IgG1 Kappa Homo sapiens PDGFRA 
oleclumab IgG1 Lambda Homo sapiens NT5E CD73 
olendalizumab IgG2 Kappa Humanized C5 
olokizumab IgG4 Kappa Humanized IL6 
omalizumab IgG1 Kappa Humanized IGHE 
onartuzumab IgG1 Kappa Humanized MET 
ontuxizumab IgG1 Kappa Chimeric humanized CD248 
opicinumab IgG1 Kappa Homo sapiens LINGO1 
orticumab IgG1 Lambda Homo sapiens oxLDL 
otelixizumab IgG1 Lambda ChimericHumanizedb CD3E 
oxelumab IgG1 Kappa Homo sapiens TNFSF4 CD252 
ozanezumab IgG1 Kappa Humanized RTN4 
pamrevlumab IgG1 Kappa Homo sapiens CTGF 
parsatuzumab IgG1 Kappa Humanized EGFL7 
pateclizumab IgG1 Kappa Humanized LTA TNFSF1 
patritumab IgG1 Kappa Homo sapiens ERBB3 
pembrolizumab IgG4 Kappa Humanized PDCD1 
perakizumab IgG1 Kappa Humanized IL17A 
pidilizumab IgG1 Kappa Humanized PDCD1 CD279 
pinatuzumab vedotin IgG1 Kappa Humanized CD22 
plozalizumab IgG1 Kappa Humanized CCR2 
polatuzumab vedotin IgG1 Kappa Humanized CD79B 
ponezumab IgG2 Kappa Humanized APP 
porgaviximab IgG1 Kappa Chimeric EBOV Zaire Ebola 

Virus 
prezalumab IgG2 Kappa Homo sapiens ICOSLG CD275 
pritoxaximab IgG1 Kappa Chimeric Shiga toxin type 1 
quilizumab IgG1 Kappa Humanized IGHE 
rafivirumab IgG1 Lambda Homo sapiens RV 
ralpancizumab IgG2 Kappa Humanized PCSK9 
ramucirumab IgG1 Kappa Homo sapiens KDR 
refanezumab IgG1 Kappa Humanized MAG 
rilotumumab IgG2 Kappa Homo sapiens HGF 
rinucumab IgG4 Kappa Homo sapiens PDGFRB CD140b 
risankizumab IgG1 Kappa Humanized IL23A 
rituximab IgG1 Kappa Chimeric MS4A1 
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robatumumab IgG1 Kappa Homo sapiens IGF1R 
roledumab IgG1 Kappa Homo sapiens RHD CD240D 
romosozumab IgG2 Kappa Humanized SOST 
rontalizumab IgG1 Kappa Humanized IFNA1 
rosmantuzumab IgG1 Kappa Humanized RSPO3 
rovalpituzumab IgG1 Kappa Humanized DLL3 
rozanolixizumab IgG4 Kappa Chimeric Humanized FCGRT 
sacituzumab govitecan IgG1 Kappa Humanized TACSTD2 
sacituzumab IgG1 Kappa Humanized TACSTD2 
samalizumab IgG2 Kappa Humanized CD200 
sarilumab IgG1 Kappa Homo sapiens IL6R 
satralizumab IgG2 Kappa Humanized IL6R 
secukinumab IgG1 Kappa Homo sapiens IL17A 
selicrelumab IgG2 Kappa Homo sapiens TNFR TNFRSF5 

CD40 
seribantumab IgG2 Lambda Homo sapiens ERBB3 
setoxaximab IgG1 Kappa Chimeric Shiga toxin type 2 
sifalimumab IgG1 Kappa Homo sapiens IFNA1 
siltuximab IgG1 Kappa Chimeric IL6 
simtuzumab IgG4 Kappa Humanized LOXL2 
sirukumab IgG1 Kappa Homo sapiens IL6 
solanezumab IgG1 Kappa Humanized APP 
suptavumab IgG1 Kappa Homo sapiens RSV glycoprotein F 
suvizumab IgG1 Kappa Humanized HIV-1 
suvratoxumab IgG1 Kappa Homo sapiens AT (alpha toxin) 
tabalumab IgG4 Kappa Homo sapiens TNFSF13B 
tanezumab IgG2 Kappa Humanized NGF 
tarextumab IgG2 Kappa Homo sapiens NOTCH2 NOTCH3 
tavolixizumab IgG1 Kappa Chimeric Humanized TNFSF4 CD252 
telisotuzumab IgG1 Kappa Humanized MET 
teplizumab IgG1 Kappa Humanized CD3E 
teprotumumab IgG1 Kappa Homo sapiens IGF1R 
tesidolumab IgG1 Lambda Homo sapiens C5 
tezepelumab IgG2 Lambda Homo sapiens TSLP 
tigatuzumab IgG1 Kappa Humanized TNFR TNFRSF10B 

CD262 
tildrakizumab IgG1 Kappa Humanized IL23A 
timigutuzumab IgG1 Kappa Humanized ERBB2 CD340 
timolumab IgG4 Kappa Homo sapiens AOC3 
tisotumab IgG1 Kappa Homo sapiens F3 CD142 
tocilizumab IgG1 Kappa Humanized IL6R 
tomuzotuximab IgG1 Kappa Chimeric EGFR 
tosatoxumab IgG1 Lambda Homo sapiens AT (alpha toxin) 
tovetumab IgG2 Kappa Homo sapiens PDGFRA CD140a 
tralokinumab IgG4 Lambda Homo sapiens IL13 
trastuzumab emtansine IgG1 Kappa Humanized ERBB2 CD340 
trastuzumab IgG1 Kappa Humanized ERBB2 CD340 
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tregalizumab IgG1 Kappa Humanized CD4 
tremelimumab IgG2 Kappa Homo sapiens CTLA4 CD152 
trevogrumab IgG4 Kappa Homo sapiens MSTN 
ublituximab IgG1 Kappa Chimeric MS4A1 CD20 
ulocuplumab IgG4 Kappa Homo sapiens CXCR4 CD184 
urelumab IgG4 Kappa Homo sapiens TNFR TNFRSF9 

CD137 
ustekinumab IgG1 Kappa Homo sapiens IL12B 
utomilumab IgG2 Lambda Homo sapiens TNFR TNFRSF9 

CD137 
vadastuximab talirine IgG1 Kappa Chimeric CD33 
vadastuximab IgG1 Kappa Chimeric CD33 
vantictumab IgG2 Lambda Homo sapiens FZD 
varisacumab IgG1 Kappa Homo sapiens VEGFA 
varlilumab IgG1 Kappa Homo sapiens TNFR TNFRSF7 

CD27 
vatelizumab IgG4 Kappa Humanized ITGA2 CD49b 
vedolizumab IgG1 Kappa Humanized ITGA4 ITGB7 
veltuzumab IgG1 Kappa Humanized MS4A1 
vesencumab IgG1 Kappa Homo sapiens NRP1 CD304 
vonlerolizumab IgG1 Kappa Humanized TNFR TNFRSF4 

CD134 
vorsetuzumab IgG1 Kappa Humanized TNFSF7 CD70 
vunakizumab IgG1 Kappa Humanized IL7A 
xentuzumab IgG1 Lambda Homo sapiens IGF1 IGF2 
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Appendix D 

Table D.1 Overview of 137 mAbs used in preliminary analysis  

Name HC LC Species Antigen 
abituzumab IgG2 Kappa Humanized ITGAV CD51 
abrilumab IgG2 Kappa Homo sapiens ITGA4_ITGB7 D49d 
adalimumab IgG1 Kappa Homo sapiens TNF 
alemtuzumab IgG1 Kappa Humanized CD52 
alirocumab IgG1 Kappa Homo sapiens PCSK9 
anifrolumab IgG1 Kappa Homo sapiens IFNAR1 
atezolizumab IgG1 Kappa Humanized CD274 
bapineuzumab IgG1 Kappa Humanized APP 
basiliximab IgG1 Kappa Chimeric IL2RA 
bavituximab IgG1 Kappa Chimeric phosphatidylserine 
belimumab IgG1 Lambda Homo sapiens TNFSF13B CD257 
benralizumab IgG1 Kappa Humanized IL5RA CD125 
bevacizumab IgG1 Kappa Humanized VEGFA 
bimagrumab IgG1 Lambda Homo sapiens ACVR12B/A 
blosozumab IgG4 Kappa Humanized SOST 
bococizumab IgG2 Kappa Humanized PCSK9 
brentuximab IgG1 Kappa Chimeric TNFRSF8 
briakinumab IgG1 Lambda Homo sapiens IL12B 
brodalumab IgG2 Kappa Homo sapiens 1L17RA 
canakinumab IgG1 Kappa Homo sapiens IL1B 
carlumab IgG1 Kappa Homo sapiens CCl2 
certolizumab IgG1 Kappa Humanized TNF 
cetuximab IgG1 Kappa Chimeric EGFR 
cixutumumab IgG1 Lambda Homo sapiens IGF1R 
clazakizumab IgG1 Kappa Humanized IL6 
codrituzumab IgG1 Kappa Humanized GPC3 
crenezumab IgG4 Kappa Humanized APP 
dacetuzumab IgG1 Kappa Humanized CD40 
daclizumab IgG1 Kappa Humanized IL2RA 
dalotuzumab IgG1 Kappa Humanized IGF1R 
daratumumab IgG1 Kappa Homo sapiens CD38 
denosumab IgG2 Kappa Homo sapiens TNSF11 CD254 
dinutuximab IgG1 Kappa Chimeric GD2 
drozitumab IgG1 Lambda Homo sapiens TNFRSF10B 
duligotuzumab IgG1 Kappa Humanized ERBB3 
dupilumab IgG4 Kappa Homo sapiens IL4R 
eculizumab IgG2/G

4 
Kappa Humanized C5 

efalizumab IgG1 Kappa Humanized ITGAL 
eldelumab IgG1 Kappa Homo sapiens CXCL10 
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elotuzumab IgG1 Kappa Humanized SLAMF7 
emibetuzumab IgG4 Kappa Humanized MET 
enokizumab IgG1 Kappa Humanized IL9 
epratuzumab IgG1 Kappa Humanized CD22 
etrolizumab IgG1 Kappa Humanized ITGA4 ITGB7 
evolocumab IgG2 Lambda Homo sapiens PCSK9 
farletuzumab IgG1 Kappa Humanized FOLR1 
fasinumab IgG4 Kappa Homo sapiens NGF 
fezakinumab IgG1 Lambda Homo sapiens IL22 
ficlatuzumab IgG1 Kappa Humanized HGF 
figitumumab IgG2 Kappa Homo sapiens IGF1R 
fletikumab IgG4 Kappa Homo sapiens IL20 
foralumab IgG1 Kappa Homo sapiens CD3E 
fresolimumab IgG4 Kappa Homo sapiens TGFB 
fulranumab IgG2 Kappa Homo sapiens NGF 
galiximab IgG1 Lambda Chimeric CD80 
ganitumab IgG1 Kappa Homo sapiens IGF1R 
gantenerumab IgG1 Kappa Homo sapiens APP 
gemtuzumab IgG4 Kappa Humanized CD33 
gevokizumab IgG2 Kappa Humanized 1L1B 
girentuximab IgG1 Kappa Chimeric CA9 
glembatumuma
b 

IgG2 Kappa Homo sapiens GPNMB 

golimumab IgG1 Kappa Homo sapiens TNF 
guselkumab IgG1 Lambda Homo sapiens IL23A 
ibalizumab IgG4 Kappa Humanized CD4 
imgatuzumab IgG1 Kappa Humanized EGFR 
infliximab IgG1 Kappa Chimeric TNF 
inotuzumab IgG4 Kappa Humanized CD22 
ipilimumab IgG1 Kappa Homo sapiens CTLA4 
ixekizumab IgG4 Kappa Humanized IL17A 
lampalizumab IgG1 Kappa Humanized CFD 
lebrikizumab IgG4 Kappa Humanized IL13 
lenzilumab IgG1 Kappa Homo sapiens CSF2 
lintuzumab IgG1 Kappa Humanized CD33 
lirilumab IgG4 Kappa Homo sapiens KIRD2 subgroup 
lumiliximab IgG1 Kappa Chimeric FCER2 CD23 
matuzumab IgG1 Kappa Humanized EGFR 
mavrilimumab IgG4 Lambda Homo sapiens CSF2RA 
mepolizumab IgG1 Kappa Humanized IL5 
mogamulizuma
b 

IgG1 Kappa Humanized CCR4 

motavizumab IgG1 Kappa Humanized RSV glycoprotein F 
muromonab IgG2 Kappa Chimeric CD3E 
natalizumab IgG4 Kappa Humanized ITGA4 
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necitumumab IgG1 Kappa Homo sapiens EGFR 
nimotuzumab IgG1 Kappa Humanized EGFR 
nivolumab IgG4 Kappa Homo sapiens PDCD1 
obinutuzumab IgG1 Kappa Humanized MS4A1 CD20 
ocrelizumab IgG1 Kappa Humanized MS4A1 CD20 
ofatumumab IgG1 Kappa Homo sapiens MS4A1 CD20 
olaratumab IgG1 Kappa Homo sapiens PDGFRA 
olokizumab IgG4 Kappa Humanized IL6 
omalizumab IgG1 Kappa Humanized IGHE 
onartuzumab IgG1 Kappa Humanized MET 
otelixizumab IgG1 Lambda Chimeric Humanized CD3E 
otlertuzumab IgG1 Kappa Humanized CD37 
ozanezumab IgG1 Kappa Humanized RTN4 
palivizumab IgG1 Kappa Humanized RSV glycoprotein F 
panitumumab IgG2 Kappa Homo sapiens EGFR 
panobacumab IgM Kappa Homo sapiens serotype IATS O11 
parsatuzumab IgG1 Kappa Humanized EGFL7 
patritumab IgG1 Kappa Homo sapiens ERBB3 
pembrolizumab IgG4 Kappa Humanized PDCD1 
pertuzumab IgG1 Kappa Humanized ERBB2 CD340 
pinatuzumab IgG1 Kappa Humanized CD22 
polatuzumab IgG1 Kappa Humanized CD79B 
ponezumab IgG2 Kappa Humanized APP 
radretumab IgE Kappa Homo sapiens FN 
ramucirumab IgG1 Kappa Homo sapiens KDR 
ranibizumab IgG1 Kappa Humanized VEGFA 
reslizumab IgG4 Kappa Humanized IL5 
rilotumumab IgG2 Kappa Homo sapiens HGF 
rituximab IgG1 Kappa Chimeric MS4A1 
robatumumab IgG1 Kappa Homo sapiens IGF1R 
romosozumab IgG2 Kappa Humanized SOST 
sarilumab IgG1 Kappa Homo sapiens IL6R 
secukinumab IgG1 Kappa Homo sapiens IL17A 
seribantumab IgG2 Lambda Homo sapiens ERBB3 
sifalimumab IgG1 Kappa Homo sapiens IFNA1 
siltuximab IgG1 Kappa Chimeric IL6 
simtuzumab IgG4 Kappa Humanized LOXL2 
sirukumab IgG1 Kappa Homo sapiens IL6 
tabalumab IgG4 Kappa Homo sapiens TNFSF13B 
tanezumab IgG2 Kappa Humanized NGF 
teplizumab IgG1 Kappa Humanized CD3E 
tigatuzumab IgG1 Kappa Humanized TNFR TNFRSF10B 

CD262 
tildrakizumab IgG1 Kappa Humanized IL23A 
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tocilizumab IgG1 Kappa Humanized IL6R 
tovetumab IgG2 Kappa Homo sapiens PDGFRA CD140a 
tralokinumab IgG4 Lambda Homo sapiens IL13 
trastuzumab IgG1 Kappa Humanized ERBB2 CD340 
tremelimumab IgG2 Kappa Homo sapiens CTLA4 CD152 
urelumab IgG4 Kappa Homo sapiens TNFR TNFRSF9 

CD137 
ustekinumab IgG1 Kappa Homo sapiens IL12B 
vedolizumab IgG1 Kappa Humanized ITGA4 ITGB7 
veltuzumab IgG1 Kappa Humanized MS4A1 
visilizumab IgG2 Kappa Humanized CD3E 
zalutumumab IgG1 Kappa Homo sapiens EGFR 
zanolimumab IgG1 Kappa Homo sapiens CD4 

 

 

Figure D.1 Influence plots generated after performing PCA on (a) Domain, (b) Window, (c) 
Substructure, (d) Single Amino acid and (e) Running Sum datasets for 67 mAbs. Coloured 
ellipses indicate the 95% Confidence limits of the corresponding class. X axis represent 
Hotelling T2 distribution and Y axis represents Q residuals. The percentage values indicate the 
percentage X variance captured. 
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Table D.2 Details of mAbs selected for model development 

Name Antigen3 CIC Retention 
Time (Min) 

Clinical Status Phage c 

atezolizumab CD274 10.8 Approved Yes  
ranibizumab VEGFA 10.1 Approved Yes 
bevacizumab VEGFA 9.8 Approved No 
benralizumab IL5RA CD125 9.6 Phase 3 No 
duligotuzumab ERBB3 9.5 Phase 2 Yes 
ocrelizumab MS4A1 CD20 9.5 Phase 3 No 
otlertuzumab CD37 9.5 Phase 2 No 
teplizumab CD3E 9.4 Phase 3 No 
certolizumab TNF 9.3 Approved No 
dalotuzumab IGF1R 9.1 Phase 2 No 
enokizumab IL9 9.0 Phase 2 Yes 
imgatuzumab EGFR 9.0 Phase 2 No 
ozanezumab RTN4 9.0 Phase 2 No 
vedolizumab ITGA4 ITGB7 9.0 Approved No 
lintuzumab CD33 8.9 Phase 3 No 
onartuzumab MET 8.9 Phase 3 No 
tocilizumab IL6R 8.9 Approved No 
etrolizumab ITGA4 ITGB7 8.8 Phase 2 Yes 
obinutuzumab MS4A1 CD20 8.8 Approved No 
pinatuzumab CD22 8.8 Phase 2 No 
trastuzumab ERBB2 CD340 8.8 Approved No 
veltuzumab MS4A1 8.8 Phase 2 No 
clazakizumab IL6 8.7 Phase 2 No 
epratuzumab CD22 8.7 Phase 3 No 
farletuzumab FOLR1 8.7 Phase 3 No 
motavizumab RSV 

glycoprotein F 
8.7 Phase 3 Yes 

parsatuzumab EGFL7 8.7 Phase 2 Yes 
tigatuzumab TNFR 

TNFRSF10B 
CD262 

8.7 Phase 2 No 

tildrakizumab IL23A 8.7 Phase 3 No 
bapineuzumab APP 8.6 Phase 3 No 
matuzumab EGFR 8.6 Phase 2 No 
mogamulizumab CCR4 8.6 Approved No 
pertuzumab ERBB2 CD340 8.6 Approved No 
alemtuzumab CD52 8.5 Approved No 
codrituzumab GPC3 8.5 Phase 2 No 
dacetuzumab CD40 8.5 Phase 2 No 
daclizumab IL2RA 8.5 Approved No 
efalizumab ITGAL 8.5 Approved No 
elotuzumab SLAMF7 8.5 Approved No 
ficlatuzumab HGF 8.5 Phase 2 No 
lampalizumab CFD 8.5 Phase 3 No 
nimotuzumab EGFR 8.5 Approved No 
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omalizumab IGHE 8.5 Approved No 
palivizumab RSV 

glycoprotein F 
8.5 Approved No 

mepolizumab IL5 8.4 Approved No 
polatuzumab CD79B 8.3 Phase 2 Yes 

 

Table D.3 Results of GA based variable selection method 

Datasets No. of unique 
models 

Best fit of 
models 
(RMSE_CV) 

No. of 
descriptors 
selected 

No. of 
generations 

Domain 14 0.35 11 25 
Window 96 0.17 191 100 
Substructure 73 0.11 43 100 
Single amino 2 0.087619 36 98 
Running sum 2 0.153 29 69 

 

Table D.4 Variable reduction based on the V-WSP reduction algorithm indicating the selected 
thresholds and corresponding Procrustes index as well as the final number of descriptors in the 
reduced dataset 

Dataset VH 
Threshold 

VL 
Threshold

Procrustes 
index 

Number of 
descriptors 
(original) 

Number of 
descriptors 
(reduced) 

Domain 0.64 0.53 0.175 272 61 
Window 0.92 0.94 0.137 1336 921 
Substructure NA NA 0.139 639 193 
Single amino 0.62 0.56 0.145 1474 191 
Running sum 0.5 0.51 0.137 2596 140 

NA: not applicable as the thresholds were set for each substructure of each domain.  
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Figure D.2 PLS model-based Y residuals of test set samples of mAbs based on GA-selected 
variables of (a) Domain, (b) Window, (c) Substructure, (d) Single Amino and (e) Running 
Sum datasets. 
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Table D.5 Benchmarking of datasets based on Calibration, Cross validation and external test 
set prediction metrics. Models that have passes QSAR validation criteria are shown in green, 
those with moderate performance are indicated in Yellow and those that have failed the QSAR 
validation criteria are indicated in red. 

   Domain Window Substructure 
Single 
amino  

Running 
sum 

C
al

ib
ra

ti
on

 O
ri

gi
n

al
 

R2 0.68 0.54 0.52 0.69 0.50

RMSE 0.28 0.24 0.23 0.21 0.26

Bias 0.00 0.00 0.00 0.00 0.00

V
-W

S
P

 
re

d
u

ce
d

 

R2 0.68 0.93 0.53 0.99 0.83

RMSE 0.27 0.10 0.23 0.03 0.20

Bias 0.00 0.00 0.00 0.00 0.00

G
A

 
se

le
ct

ed
 

R2 0.77 0.99 0.99 0.89 0.99

RMSE 0.22 0.01 0.03 0.12 0.03

Bias 0.00 0.00 0.00 0.00 0.00

C
os

s 
va

li
d

at
io

n
 O

ri
gi

n
al

 R2 0.07 0.04 0.08 0.07 0.00

Q2 -0.28 -0.30 -0.57 -0.50 -0.28

RMSE 0.55 0.42 0.40 0.47 0.42

Bias 0.01 0.02 0.02 0.00 0.01

V
-W

S
P

 
re

d
u

ce
d

 R2 0.05 0.03 0.09 0.01 0.02

Q2 -0.67 -0.18 -0.63 -0.28 -0.68

RMSE 0.62 0.41 0.43 0.43 0.61

Bias 0.01 0.00 0.03 0.02 -0.02

G
A

 s
el

ec
te

d
 

R2 0.55 0.89 0.83 0.62 0.93

Q2 0.46 0.77 0.74 0.48 0.84

RMSE 0.35 0.18 0.17 0.28 0.19

Bias 0.00 0.00 0.02 0.00 0.01

T
es

t 

O
ri

gi
n

al
 

R2 0.50 0.00 0.10 0.17 0.18

RMSE 0.35 0.85 0.87 0.80 0.77

Bias 0.05 -0.25 -0.51 -0.39 -0.13

V
-W

S
P

 
re

d
u

ce
d

 

R2 0.16 0.02 0.05 0.11 0.71

RMSE 0.50 0.81 0.88 0.89 0.26

Bias 0.10 -0.20 -0.37 -0.34 0.00

G
A

 
se

le
ct

ed
 

R2 0.83 0.82 0.88 0.69 0.99

RMSE 0.39 0.26 0.25 0.39 0.13

Bias 0.32 0.17 0.01 0.24 0.09
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