
 
 

 

 

 

Age-dependent hippocampal 

network dysfunction in a mouse 

model of alpha-synucleinopathy 

 

Clare Tweedy 

 

Thesis submitted for the degree of Doctor of Philosophy at Newcastle University 

September 2018 

 

 

 

Supervisors:  

Dr Fiona LeBeau, Dr Gavin Clowry, 

Dr Amy Reeve, Dr John-Paul Taylor 

 

Industrial Supervisors:  

Dr Fiona Randall and Dr Peter Atkinson 

 

 

       



ii 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iii 
 

Abstract 

Aggregation of the protein alpha-synuclein (ASYN) is a key pathological feature 

of the alpha-synucleinopathies, a group of diseases including Lewy body dementia and 

Parkinson’s disease. A common symptom of alpha-synucleinopathy is cognitive 

dysfunction, and impairment in hippocampal gamma-frequency oscillations may 

underlie some of the cognitive deficits associated with ASYN pathology. The Thy-1 

A30P mouse model overexpresses human mutant ASYN, with mice developing 

hippocampal spatial memory impairment by 12 months (Freichel et al. 2007). The aim 

of this thesis was to explore age-related hippocampal network changes in 2-4 month 

(A30P2+) mice and 10-13 month (A30P10+) mice to assess the effect of 

overexpression of mutant ASYN on hippocampal network activity in vitro. Using acute 

brain slice preparations of isolated hippocampi, A30P2+ mouse slices were found to 

exhibit excitatory/inhibitory network changes in region CA3 in the form of increased 

spontaneous sharp wave amplitude, increased frequency and amplitude of inhibitory 

postsynaptic potentials, and increased power of kainate-induced gamma-frequency 

oscillations. Immunohistochemistry revealed an increase in the density of parvalbumin-

positive interneurons alongside a decrease in calbindin-positive interneurons. This 

change was accompanied by a more depolarised resting membrane potential in 

A30P2+ mouse CA3 pyramidal cells, and a sensitivity to interictal discharges in 

response to either kainate receptor agonism or GABAA receptor antagonism. With 

ageing, levels of excitability in A30P10+ mice were comparable to WT10+ mice. 

A30P10+ mice instead exhibited an impairment in cholinergic-induced, but not kainate-

induced or spontaneous, gamma-frequency network oscillations. While mitochondrial 

dysfunction was not detectable with COX/SDH histochemistry until 15+ months in 

A30P mice, A30P10+ mice did show increased immunoreactivity for Iba1+ microglia. 

An environment of inflammation and excitotoxicity may be present in older A30P mice 

as a result of early network hyperexcitability, and this thesis explores early network 

changes in A30P mice and the wider dysfunction that follows. 
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1.1 Alpha-synucleinopathy 

The Lewy body dementias (LBD) are the second most common 

neurodegenerative dementia, making up 15-20% of neuropathologically defined cases 

(Savica et al., 2013). The LBDs consist of dementia with Lewy bodies (DLB) and 

Parkinson’s disease dementia (PDD), diseases which show considerable overlap. A 

diagnosis of PDD may be made if dementia occurs in a patient with well-established 

Parkinson’s disease (PD) of at least one year (McKeith et al., 2017). Recent criteria 

highlights progressive cognitive decline as an essential feature for DLB diagnosis, 

occurring before or concurrently with Parkinsonism, though not all DLB patients 

develop Parkinsonism (McKeith et al., 2017). Fluctuating cognition, visual 

hallucinations, and sleep disorder are also core features of DLB but many patients may 

only exhibit one or two core symptoms (Marui et al., 2004; McKeith et al., 2017).  

LBD is marked by deficits in dopaminergic and cholinergic neurotransmitter 

systems (Perry et al., 1990). This is reminiscent of the neurotransmitter deficits 

observed in PD and Alzheimer’s disease (AD), respectively. The cholinergic deficits in 

DLB were, however, found to be greater than in AD, and directly correlate to the degree 

of cognitive impairment (Duda, 2004). Currently, no effective treatments exist to 

alleviate or reverse the cognitive deficits of LBD, though modest success has been 

achieved with the use of the acetylcholinesterase inhibitors donepezil or rivastigmine, 

or the NMDA-receptor antagonist memantine in some patients (Stinton et al., 2015). 

LBD is more common in males and sporadic forms occur on average between 

the ages of 50 to 83 (McKeith, 2004). A number of family studies have revealed rare 

familial forms associated with specific mutations in the SNCA gene (Rossor et al., 

2010). Diagnosis is typically confirmed post-mortem by appearance of Lewy bodies, 

which are intracellular, cytoplasmic inclusions containing the protein alpha-synuclein 

(ASYN) (Spillantini et al., 1997). Pathology is proposed to first appear in PD within the 

lower brainstem and olfactory bulb, before progressing further through the brainstem 

to reach the substantia nigra and later reaching cortical areas (Braak et al., 2003).  

While patients with PDD and DLB exhibit similar pathology, it has been 

proposed that patients with DLB exhibit a higher burden of cortical Lewy body 

pathology than in PDD (Ruffmann et al., 2016). Furthermore, PDD and DLB may both 

involve amyloid and tau co-pathology, proteins that misfold and form plaques and 

tangles respectively in AD (McKeith et al., 2017). Amyloid plaque deposition has been 

linked to an accelerated progression to dementia in LBD (Ruffmann et al., 2016), and 
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mice exhibiting both AD and DLB pathology showed an accelerated cognitive decline 

and spread of neuropathology (Clinton et al., 2010). 

ASYN is a small, soluble 140 amino acid protein (Figure 1.1) encoded by the 

SNCA gene and present throughout the brain (Norris et al., 2004). At the presynaptic 

terminal, ASYN is proposed to play a role in regulating neurotransmitter release by 

facilitating SNARE complex assembly (Chandra et al., 2005; Bendor et al., 2013) and 

in the process of synaptic plasticity through modulation of neurotransmitter release (Liu 

et al., 2004). Within dopaminergic neurons, ASYN is involved in the regulation of 

neurotransmission (Butler et al., 2017) and has been shown to reduce the recycling 

rate of vesicles (Jenco et al., 1998). Furthermore, ASYN has been shown to negatively 

modulate neurotransmitter release in cultured glutamatergic hippocampal neurons 

through inhibition of synaptic vesicle clustering following exocytosis (Nemani et al., 

2010). ASYN has also been reported to be involved in neurotransmitter reuptake in 

cultured dopaminergic neurons through interaction with the dopamine transporter (Lee 

et al., 2001), and a similar mechanism is proposed in both serotonergic and 

noradrenergic neurons (Wersinger et al., 2006a; Wersinger et al., 2006b). 

ASYN is a natively unstructured protein with no stable secondary structure until 

bound to a phospholipid membrane (Davidson et al., 1998; Sahay et al., 2015). ASYN 

monomers are capable of dynamic transition to form oligomers, which may then 

aggregate to form insoluble fibrils (El-Agnaf et al., 1998). Post-translational 

modifications of ASYN further enrich the diversity of functions that ASYN carries out 

but may also promote or prevent ASYN aggregation (Beyer, 2006). 

A pathological accumulation of aggregated ASYN is referred to as alpha-

synucleinopathy, a group of diseases encompassing PD, LBD, and multiple system 

atrophy (MSA). Multiple system atrophy is a sporadic and rare form of alpha-

synucleinopathy, marked by Parkinsonism, cerebellar ataxia, and autonomic failure 

(for review see Krismer and Wenning, 2017). Unlike the primarily intraneuronal ASYN+ 

inclusions of LBD, ASYN+ inclusions in MSA are frequently found in glia (for review 

see Savica et al., 2018). The ASYN found in glial cytoplasmic inclusions in MSA has 

recently been shown to be structurally and biochemically distinct from the ASYN found 

in Lewy bodies, and is more potent at seeding ASYN aggregation (Peng et al., 2018). 

Interestingly, MSA does not typically present with dementia (Wenning et al., 1997), and 

so this makes it distinct from LBD despite the presence of ASYN+ inclusions. 
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Much remains to be understood about the complex interactions and 

mechanisms of ASYN pathology though studies involving familial forms of alpha-

synucleinopathy have helped develop our understanding. To explore the role of ASYN 

in the pathogenesis of alpha-synucleinopathy, and its ultimate contribution to cognitive 

deficits, a number of rodent models are frequently used. Models most commonly 

consist of a human gene insert into the rodent genome, either in wild type (WT) form, 

or with various mutations isolated from patients with familial alpha-synucleinopathy 

(Figure 1.1; including A30P and A53T). Rodent models may also involve the viral 

expression of human ASYN, injection of preformed ASYN fibrils to targeted regions, or 

toxin-induced neurodegeneration (Sommer et al., 2000). 

A variety of promoters can be used to control the expression of the human 

ASYN gene insert in mice, including the Thy-1 promoter. The Thy-1 promoter is 

commonly used in mice to optogenetically control populations of Thy-1 expressing 

neurons. An early study of mice expressing a fluorescent protein under the Thy-1 

promoter demonstrated fluorescence in hippocampal pyramidal neurons (Feng et al., 

2000). The Thy-1 promoter reaches the highest expression levels within the 

hippocampus and striatum (Kemshead et al., 1982), and low levels within the 

substantia nigra (Neumann et al., 2002). This allows examination of some of the 

cognitive and motor deficits associated with alpha-synucleinopathy. 

 

Figure 1.1 Alpha-synuclein protein domain structure. Location of common 

mutations including A30P marked on the 140 amino acid sequence, in addition to the 

location of the Ser129 phosphorylation site. Adapted from: Interaction between 

Neuronmelanin and Alpha-Synuclein in Parkinson’s Disease (Xu and Chan, 2015). 

 

Overexpression of A30P or A53T mutant ASYN lead to a more severe 

neurodegenerative phenotype than overexpression of WT ASYN (Chandra et al., 

2005). This may be due to A30P and A53T ASYN forming oligomers at accelerated 

rates compared to WT ASYN (Sommer et al., 2000). On the other hand, A30P ASYN 

forms fibrils more slowly than WT ASYN while A53T ASYN forms fibrils more quickly 

than WT ASYN (Sommer et al., 2000). All mutated forms of ASYN are capable of self-

aggregation into structures sharing a number of ultrastructural properties with human 
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Lewy bodies (Sommer et al., 2000). ASYN+ inclusions in transgenic mice have been 

noted to appear as fine granular deposits, as opposed to the fibrillar structure of ASYN 

within human Lewy bodies (for review see Sommer et al., 2000). 

Interestingly, structures sharing more similarities with human Lewy bodies can 

be formed in mice lacking endogenous murine ASYN but overexpressing human WT 

ASYN (Fares et al., 2016). The authors describe the ASYN+ inclusions to be similar to 

Lewy bodies in their solubility, immunoreactivity, fibrillisation process, and sensitivity 

to pharmacological inhibitors of aggregation (Fares et al., 2016). Despite the possible 

advantages of human ASYN expression on a rodent ASYN null background, most 

models used to study alpha-synucleinopathy also express endogenous murine ASYN. 

1.1.1 Thy-1 A30P mouse model 

First reported in a patient with familial PD (Kruger et al., 1998), the autosomal 

dominant A30P missense mutation in the SNCA gene constitutes a G → C substitution 

at nucleotide position 88. This, in turn, leads to an alanine → proline exchange at amino 

acid position 30. Under control of the Thy-1 promoter, an A30P mouse model was first 

used to investigate the transport of mutant ASYN to synapses. While A30P ASYN was 

present in the synapse at normal levels, the protein was found accumulated in neuronal 

cell bodies upon overexpression (Kahle et al., 2000) and appeared to show a reduced 

tendency to bind to vesicles (Jensen et al., 1998).  

The Thy-1 A30P mouse model was further employed to study alpha-

synucleinopathy across several systems, and a summary of the existing literature can 

be found in Table 1.1. A30P mice exhibit up to 3 fold higher expression of human ASYN 

than endogenous murine ASYN (Kahle et al., 2001). The same group found that 

endogenous murine ASYN does not aggregate like human ASYN, and maintains 

normal staining patterns when human ASYN is over-expressed (Kahle et al., 2001). 

Many of the physiological functions of ASYN are reduced or altered by the A30P 

mutation both in vitro and in vivo, including decreased interactions with the 

cytoskeleton (Esposito et al., 2007; Sousa et al., 2009), reduced or absent membrane 

binding (for review see Snead and Eliezer, 2014), and abnormal interactions with 

proteins regulating synaptic vesicle trafficking (Dalfo et al., 2004). The A30P mutation 

leads to a reduced capacity of the dopaminergic storage pool (Yavich et al., 2004). 

While this does not impact basal neurotransmission, the authors predicted an 

impairment in prolonged bursting of dopaminergic neurons (Yavich et al., 2004). 
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Phenotypically, A30P mice exhibit fine motor impairment from the first few 

months of life (Ekmark-Lewen et al., 2018), with hippocampal spatial memory 

performance in the Morris water maze declining by 12 months (Freichel et al., 2007). 

More recently, work from our lab has highlighted a reduction in the power of in vitro 

carbachol-induced gamma-frequency oscillations and mitochondrial dysfunction by 9+ 

months of age (Robson et al., 2018) in A30P mice. Severe motor dysfunction has been 

reported in A30P mice from around 16 months of age (Freichel et al., 2007). Prior to 

this, A30P mice have been reported to exhibit unsteady gait, a weakening of the 

extremities, and abnormal tail posture and movement (Neumann et al., 2002). Mice 

then develop paralysis and die prematurely at 17-18 months (Freichel et al., 2007). 

The motor deficits exhibited by A30P mice are not strictly Parkinsonian in 

nature, which is defined by bradykinesia, rigidity, rest tremor, and postural instability 

(for review see Keener and Bordelon, 2016). Interestingly, when human ASYN is virally 

expressed within the rat substantia nigra, WT ASYN results in Parkinsonian 

impairment whilst A30P ASYN expression does not (Gaugler et al., 2012). The authors 

proposed that this may be due to impaired binding of A30P ASYN to the presynaptic 

membrane in dopaminergic neurons (Gaugler et al., 2012). As a result, the Thy-1 A30P 

mouse model appears more useful for investigation in to cortical-hippocampal network 

changes associated with the overexpression of human A30P ASYN.  

The exact time course of neuronal dysfunction has not yet been elucidated in 

A30P mice, nor have the underlying cellular causes leading to the reported cognitive 

dysfunction. This thesis will focus particularly on hippocampal function, especially 

given evidence of hippocampal spatial memory impairment on the Morris water maze 

in ageing A30P mice (Freichel et al., 2007). Whilst alpha-synucleinopathy in patients 

tends to present with cognitive deficits associated with prefrontal rather than 

hippocampal dysfunction, hippocampal pathology has indeed been shown to 

contribute to cognitive impairment in DLB (Adamowicz et al., 2017). 
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 Months Pathology Motor Cognition 

1-4  

months 

• Insoluble ASYN in whole brain 

extracts, swollen ASYN+ neurites 

(Kahle et al., 2001) 

• No loss of septal cholinergic 

neurons until mice were treated 

with mitochondrial Complex I 

toxin MPTP (Szego et al., 2013). 

• Fine motor impairment 

on beam test (Ekmark-

Lewen et al., 2018) 

 

6-8  

months 

• Loss of serotonin in striatum of 

males, increase in females. 

Increase in serotonin in frontal 

cortex (Neumann et al., 2002). 

• Accumulation of oligomers in 

neuronal cell bodies (Ekmark-

Lewen et al., 2018). 

• Decreased locomotor 

activity on open field test 

over 20 minutes and fine 

motor impairment on 

beam test (Ekmark-

Lewen et al., 2018). 

 

10-14 

months 

• Biochemically defined ASYN 

aggregates in the subthalamus, 

midbrain, and other regions. 

Histochemically defined ASYN 

aggregates in the brainstem 

(Neumann et al., 2002).  

• Somal and neuritic ASYN 

pathology in the amygdala 

(Freichel et al., 2007). 

• Modest reduction of GABA in the 

caudate putamen and forebrain 

(Keane, 2013). 

• Accumulation of oligomers in the 

brainstem, midbrain, and 

hippocampus. Increased GFAP+ 

astrocytes in areas with high 

ASYN e.g. the brainstem. No 

evidence of microglial activation 

and no change in cytokines 

(Ekmark-Lewen et al., 2018). 

• No change on rotarod, 

stride length gait, or grip 

strength. Exploratory 

behaviour was reduced 

(Keane, 2013) 

• Fine motor impairment 

on beam test (Ekmark-

Lewen et al., 2018) 

• Hyperlocomotion on 

open field test over 120 

minutes (Freichel et al., 

2007), conflicting no 

change in distance 

travelled in open field 

test over 20 minutes 

(Ekmark-Lewen et al., 

2018) 

• Hippocampal 

spatial 

memory 

impairment 

on the Morris 

water maze 

(Freichel et 

al., 2007) but 

no Barnes 

maze 

impairment 

(Keane, 

2013) 

16-18 

months 

• Accumulation of ASYN in the 

cytoplasm of neurons. CA3/1 

hippocampal regions positive for 

ASYN in dot-like structures 

(Schell et al., 2012). 

• Severe motor 

dysfunction on rotarod, 

paralysis (Freichel et al., 

2007) 

• Impaired 

fear 

conditioning 

(Schell et al., 

2012).  

Table 1.1 Summary of literature surrounding Thy-1 A30P mice. Sub-divided by age 

groups and nature of deficits: pathology, motor dysfunction, and cognitive dysfunction. 
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1.2 The hippocampus 

1.2.1 Hippocampal structure and function 

When a bilateral temporal lobe resection left patient H.M. with anterograde 

amnesia, declarative memory was first attributed to the temporal lobe, in particular the 

hippocampal formation (for review see Augustinack et al., 2014). To explore the 

cellular mechanisms underpinning memory, studies were moved to rodents where 

hippocampal structure and function are relatively conserved. In the years that followed, 

the hippocampus was implicated in spatial memory and navigation through place cells 

(O'Keefe and Dostrovsky, 1971), and sequencing the past, present, and future events 

of episodic memory (Suzuki and Eichenbaum, 2000). This association is supported by 

hippocampal atrophy visualised with magnetic resonance imaging (MRI) in 

pathological states associated with episodic and spatial memory impairment, including 

AD and post-traumatic stress disorder (McEwen and Magarinos, 1997).  

Existing as a bilateral structure in the temporal lobe of the human and rodent 

brain, the hippocampal formation is composed of the dentate gyrus (DG) and cornu 

ammonis (CA) regions (Figure 1.2). From the DG, the hippocampus proceeds through 

CA3 to CA1, before reaching the subiculum and extending to the cortex. 

 

Figure 1.2 Cytoarchitecture of mouse hippocampus. Nuclear (DAPI) stained mouse 

hippocampal slice at x4 magnification showing the dentate gyrus (DG) and cornu 

ammonis (CA) regions CA3, CA2, and CA1 (A) and the defined layers across the 

hippocampus within the highlighted box (B): stratum oriens (SO), stratum pyramidale 

(SP), stratum radiatum (SR), stratum lacunosum-moleculare (SLM), molecular layer 

(ML), granule cell layer (GL), and the dentate gyrus hilus (H). Image inverted and 

presented in greyscale. Scale bar 100 µm.  
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Pathways within the hippocampus were once believed to flow unilaterally from 

the entorhinal cortex (EC) to the DG and through regions CA3 and CA1 then back to 

the EC. However, it is now accepted that the EC is capable of projecting to both CA3 

and CA1 (Witter et al., 2000). The hippocampus is further divided along the anterior 

and posterior axis (the ventral and dorsal axis in rodents, respectively), with 

differentiation in connectivity and cognitive functions along the hippocampal axis 

(Moser and Moser, 1998; Fanselow and Dong, 2010).  

Two main populations of neurons exist within the hippocampus. The principal 

cells of the CA regions are the glutamatergic pyramidal cells which provide excitation 

to the network. GABAergic interneurons make up ~10% of the network and provide 

effective inhibition due to their extensive arbors (for review see Freund and Buzsaki, 

1996). Both pyramidal cells and interneurons are further innervated and modulated by 

a variety of cholinergic, dopaminergic, serotonergic and noradrenergic inputs (for 

review see Avery and Krichmar, 2017).  

Pyramidal cells, so named for the shape of their somata, are concentrated in 

the eponymous stratum pyramidale. They possess both apical and basal dendrites and 

receive on average 30,000 excitatory inputs and 1700 inhibitory inputs per cell (Megias 

et al., 2001). Basal dendrites extend from stratum pyramidale into the stratum oriens, 

while apical dendrites extend through stratum radiatum and stratum lacunosum-

moleculare. Schaffer collateral fibres project from CA3 to CA1, and a cell-free sulcus 

divides the DG and CA1 (for review see Miles et al., 1996).  

The cell bodies of interneurons are typically present in or near stratum 

pyramidale, though some are found in stratum oriens or stratum radiatum (Kosaka et 

al., 1987). Whilst interneurons primarily innervate pyramidal cells, it is estimated that 

5-15% of synaptic contacts from interneurons are to other GABAergic cells (Cobb et 

al., 1997). Following the first reports of electrical coupling between cells by gap 

junctions (Brightman and Reese, 1969), their presence between inhibitory interneurons 

of the same type was reported and proposed to function independently from chemical 

transmission (Gibson et al., 1999). A complex network of excitatory and inhibitory 

connectivity is further enriched by a subset of interneurons known to specifically target 

other interneurons within the hippocampus (Urban et al., 2002). 
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1.2.2 Inhibitory interneurons 

Hippocampal interneurons can be characterised by a number of methods 

including cellular morphology, innervation of pyramidal cells, expression of calcium 

(Ca2+) binding proteins, expression of neuropeptides, receptor subtype expression, 

and electrophysiology (for review see Freund and Buzsaki, 1996). This section will 

briefly cover characterisation by expression of the Ca2+ binding proteins parvalbumin 

(PV), calbindin (CB), and calretinin (CR) as this method has been shown to largely 

differentiate GABAergic interneurons without overlap (for review see Freund and 

Buzsaki, 1996). Ca2+ plays a critical role in cellular signalling and associated aspects 

of neurotransmitter release and plasticity (for review see Clapham, 2007). While all 

three Ca2+ binding proteins have been found in the hippocampus, their expression 

varies between regions and cell types.  

PV expression is restricted to a subpopulation of GABAergic interneurons within 

the hippocampus and constitute approximately 20-24% of hippocampal GABAergic 

interneurons (Celio, 1986; Kosaka et al., 1987). Over 50% of PV+ cell bodies are 

located in or near stratum pyramidale, with 30-40% in stratum oriens and a small 

proportion in stratum radiatum (Kosaka et al., 1987). All PV+ interneurons can be 

classified as either basket cells or chandelier cells (also known as axo-axonic cells) 

within the hippocampus, though not all basket cells and chandelier cells express PV 

(Ribak et al., 1990). A single basket cell innervates the somata and proximal dendrites 

of 1500-2500 pyramidal cells (Kosaka et al., 1987), whilst a single chandelier cell 

innervates the axon initial segment of at least 1200 pyramidal cells (Li et al., 1992; 

Somogyi and Klausberger, 2005). Both cell types also innervate other interneurons. 

PV+ interneurons are noted to show weak GABA immunoreactivity compared 

to other interneurons, and this is proposed to be a result of the high firing rate of PV+ 

interneurons meaning a fast turnover and release of GABA (Kosaka et al., 1987). The 

majority of PV+ interneurons are fast-spiking, which is defined by a short action 

potential duration and a high frequency of firing without adaptation (Povysheva et al., 

2013). The fast-spiking property is proposed to be conveyed by expression of the 

voltage-gated potassium Kv3.1 channel (Du et al., 1996), and the majority of PV+ cells 

express Kv3.1 (Chow et al., 1999). However, a proportion of PV+ interneurons express 

channels such as Kv3.2, which possess a slower deactivation time than Kv3.1 channels 

(Hernandez-Pineda et al., 1999). It can therefore be inferred that while the majority of 

PV+ cells are also fast-spiking, this is not always the case. 
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Unlike PV, CB+ and CR+ cells show a more varied pattern of expression and 

are not specific to GABAergic interneurons (Sloviter et al., 1991). Expression is found 

in granule cells of the DG and in pyramidal cells of the CA1 region, in addition to 

inhibitory interneurons throughout the hippocampus (Freund and Buzsaki, 1996). CR+ 

interneurons are capable of innervating pyramidal cells, though preferentially target 

other interneurons, particularly CB+ or other CR+ cells (Yamaguchi et al., 1991). CR+ 

cells are present throughout all layers and subfields of the hippocampus and can be 

further classified by the presence or absence of spines (Yamaguchi et al., 1991). 

CB+ interneurons constitute only around 10-12% of GABAergic interneurons 

within the hippocampus and many CB+ cell bodies are located within stratum radiatum 

(Toth and Freund, 1992). CB+ interneurons tend to innervate pyramidal cell dendrites 

and are often classified as oriens-lacunosum moleculare (O-LM) cells, bistratified cells, 

or radial trilaminar cells. CR+ and CB+ interneurons do not possess the fast-spiking 

property that the majority of PV+ interneurons possess but are crucial for providing 

inhibition and maintaining the balance of excitation and inhibition within the 

hippocampal network (Puig et al., 2008). 

1.2.3 Excitatory/inhibitory neurotransmission 

The most abundant excitatory neurotransmitter in the mammalian brain is 

glutamate (for review see Petroff, 2002). There are two types of glutamate receptors: 

ionotropic (ligand-gated ion channels) and metabotropic (G-protein coupled receptors). 

Ionotropic receptors act directly to open an ion channel in the cell membrane, while 

metabotropic receptors act indirectly through an intracellular signalling mechanism (for 

review see Willard and Koochekpour, 2013). Subsets of ionotropic glutamate receptors 

are named after compounds that selectively bind to each: AMPA, Kainate, and NMDA 

(Table 1.2). Metabotropic glutamate receptors are subdivided into three groups: Group 

I (mGluR1, mGluR5), Group II (mGluR2, mGluR3), and Group III (mGluR4, mGluR6, 

mGluR7, mGluR8). Each receptor subtype is further modulated by differential subunit 

expression. The diversity of glutamate receptors allows a diversity of responses to one 

abundantly used neurotransmitter (for review see Willard and Koochekpour, 2013). 

The AMPA receptor is crucially involved in the process of synaptic plasticity, a 

process which is important for the formation of memories and the process of learning 

(Morris et al., 1986; Whitlock et al., 2006). Synaptic plasticity can be either short-term 

(milliseconds to minutes) or long-term (minutes to hours), with the latter including long-

term potentiation (LTP) and long-term depression (LTD) (for review see Bear et al., 
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2015). Synaptic plasticity can be dependent on, or independent of, the NMDA receptor 

though both mechanisms require an influx of Ca2+ and pathways leading to AMPA-

receptor insertion (Wang et al., 1997). NMDA-independent plasticity may involve 

kainate receptors (Lauri et al., 2001) or mGluRs (Hunt and Castillo, 2012), for example. 

 

 NMDA-R AMPA-R KA-R 

Properties Voltage-dependent, 

depolarisation to 

remove Mg2+ block. 

Requires co-agonist 

glycine. Permeable 

to Na+, Ca2+, and K+. 

Fast synaptic 

transmission. 

Permeable to Na+ 

and K+, can be either 

Ca2+ impermeable or 

permeable. 

Transmission slower 

than AMPA-R. 

Permeable to Na+ and 

K+, sometimes Ca2+ 

permeable depending 

on subunits. 

Key Agonists Glutamate or NMDA 

and glycine and 

depolarisation 

Glutamate or AMPA Glutamate or kainate  

Key Antagonists D-AP5, MK-801, 

Ketamine, PCP, 

Memantine 

CNQX, NBQX, 

DCPG, GYKI53655, 

Perampanel 

CNQX, NBQX, UBP-

310, NS102 (many 

also target AMPA-R) 

Most common 

clinical relevance 

Anaesthetics, 

schizophrenia, 

dementia. 

Seizures Seizures 

Table 1.2 Summary of ionotropic glutamate receptor properties and 

pharmacology. NMDA-R, AMPA-R, KA-R properties, key agonists and antagonists, 

and clinical relevance. Adapted from (Golan et al., 2011) and (Bear et al., 2015). 

 

NMDA-dependent LTP can occur due to the removal of the voltage-dependent 

magnesium block of the NMDA-receptor upon high-frequency stimulation. The influx 

of Ca2+ into the cell acts upon Ca2+/calmodulin-dependent protein kinase II (CaMKII) 

and protein kinase A/C (PKA/C). This leads to the insertion of fast-acting AMPA 

receptors into the synaptic membrane and potentiation of excitatory postsynaptic 

potentials (EPSPs). Changes in membrane AMPA-receptor composition are short-

lived, and maintenance requires protein synthesis and gene expression (Taube and 

Schwartzkroin, 1988). LTD occurs following low frequency stimulation whereby protein 

phosphatase 1/2A (PP1/2) leads to removal of AMPA-receptors from the synaptic 

membrane. As a result, EPSPs are depressed (Mauna et al., 2011). Interestingly, it 

has also been suggested that ASYN may play a complex role in synaptic plasticity 
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(Marxreiter et al., 2013). ASYN oligomers applied to rat hippocampal slices oppose 

LTP by increasing basal synaptic transmission through NMDA receptor activation, thus 

preventing EPSP potentiation by high-frequency stimuli (Diogenes et al., 2012). 

The main inhibitory neurotransmitter in the mammalian brain is GABA (Roberts 

and Frankel, 1950; for review see Petroff, 2002). The role of GABAergic 

neurotransmission in synaptic plasticity should not be overlooked. High frequency 

stimulation of excitatory neurons in the hippocampus induces both LTP in other 

excitatory neurons, and LTD in inhibitory neurons (McMahon and Kauer, 1997). 

Connectivity of excitatory and inhibitory neurons is therefore crucial. GABA is 

synthesised from glutamate (Golan et al., 2011), and acts on two types of GABA 

receptors: the ligand-gated ion channel ionotropic GABA receptors (GABAA and 

GABAC) and a G-protein coupled metabotropic GABA receptor (GABAB). As with 

glutamatergic receptors, further diversity occurs with differential subunit expression. 

By far the most abundant GABAergic receptor in the mammalian brain is the GABAA 

receptor (Golan et al., 2011). Agonists of the GABAA receptor include muscimol, while 

antagonists include gabazine, bicuculline, and picrotoxin. 

Dysfunction in excitatory/inhibitory neurotransmission is implicated in a number 

of diseases and disorders. Excess glutamatergic activity is involved in the process of 

excitotoxicity, which can lead to cell death due to high levels of intracellular Ca2+ 

(Manev et al., 1989). This mechanism is proposed to occur in AD and PD (Hynd et al., 

2004; Dong et al., 2009), as well as in epilepsy (for review see Barker-Haliski and 

White, 2015). Excitotoxicity is the targeted mechanism of the NMDA-receptor 

antagonist memantine, which shows some effectiveness in treating cognitive deficits 

in LBD (Aarsland et al., 2009). Conversely, NMDA receptor hypofunction has been 

proposed to underpin schizophrenia (Olney et al., 1999), implicating a glutamatergic 

deficit (Bitanihirwe et al., 2009). 

Changes in GABAergic neurotransmission have long been explored in 

psychiatric disorders and epilepsy, the latter of which can involve a marked reduction 

in GABAergic inhibition leading to seizure activity (Wong et al., 2003). However, it is 

only in more recent years that evidence of a GABAergic deficit in AD has been explored 

following earlier studies of post-mortem tissue showing a loss of GABA within the 

hippocampus (Rossor et al., 1984) whilst other studies found a less significant 

reduction (Ellison et al., 1986). Conversely, excess GABA can cause sleep 

disturbances and even lead to absence seizures (Arnulf et al., 2005; Cope et al., 2009). 
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1.3 Neuroglia 

Neuroglia were first named in 1859 by Rudolf Virchow, and so named for their 

supposed function as the “glue” of the brain holding neurons in place (for reviews see 

Hof et al., 2009; Bear et al., 2015). Knowledge of glia has advanced greatly since then, 

and their active role and importance in brain functions is now known to be just as 

important as that of neurons. Glia express ion channels and receptors for 

neurotransmitters, cytokines, and chemokines, though expression of each varies at 

different stages of development and in different regions of the brain (Verkhratsky and 

Butt, 2007). Astrocytes and microglia may be pro-inflammatory or anti-inflammatory 

(Figure 1.3), which has important implications for disease pathology and therapeutics 

(Crotti and Ransohoff, 2016; Liddelow et al., 2017). 

 

 

Figure 1.3 Neuroprotective and neurotoxic states of microglia and astrocytes. 

Adapted from (Jha et al., 2015) with microglia/astrocyte outlines taken with permission 

with Riken Center for Brain Science: Laboratory for Neuron-Glia Circuitry: Creative 

Commons Public Domain [accessed July 2018]. 
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1.3.1 Astrocytes 

 Astrocytes are star-shaped glia making up anywhere from 20 to 50% of brain 

volume and surrounding neuronal synapses, dendrites, and somata with their 

processes (for review see Hof et al., 2009). Astrocytes can be broadly subdivided into 

protoplasmic astrocytes of the grey matter, and fibrous astrocytes of the white matter. 

Protoplasmic and fibrous astrocytes both make contact with blood vessels, but differ 

in where they contact neurons (Verkhratsky and Butt, 2007).  

The role that astrocytes play is diverse and includes the control of neuronal 

migration during development and functional modulation of mature synapses (for 

review see Vesce et al., 1999). Astrocytes form a tripartite synapse with the 

presynaptic and postsynaptic terminal of a neuron (Sofroniew and Vinters, 2010). The 

electrical connection between astrocytes through gap junctions allows coordination of 

responses and aids in the spread of calcium waves throughout the astrocytic network 

(Bennett et al., 2003). Astrocytes respond to most neurotransmitters, which evoke an 

increase in astrocytic intracellular calcium levels and modulation of synaptic 

transmission within the tripartite synapse (Vesce et al., 1999). Furthermore, astrocytes 

can synchronously activate groups of pyramidal cells (Haydon and Carmignoto, 2006), 

thus allowing wider control of network activity. 

Astrocytes have further been shown to release neurotransmitters such as 

glutamate and GABA to modulate both excitatory and inhibitory neuronal activity (for 

review see Verkhratsky and Butt, 2007), and are also closely associated with memory 

formation due to their role in synaptic remodelling and plasticity (Zorec et al., 2015). 

Neuronal excitability is regulated by the astrocytic network through its critical role in 

maintaining the concentration of extracellular glutamate at physiologically low levels 

by clearance of synaptically released glutamate (for review see Vesce et al., 1999), in 

addition to buffering extracellular potassium to control neuronal excitability (Wallraff et 

al., 2006). Furthermore, astrocytes provide metabolic support to neurons through 

neurovascular coupling (Viswanathan and Freeman, 2007).  

 In response to injury, infection or disease, a reactive change occurs in astrocyte 

number, morphology, or molecular expression pattern to protect or repair nearby 

neurons (for review see Sofroniew and Vinters, 2010). While astrogliosis typically ends 

in scar formation, a cascade of changes occur before this point which are often 

reversible, including upregulation of glial fibrillary acid protein (GFAP) and vimentin, 

both intermediate filaments forming the astrocytic cytoskeleton (for review see 
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Verkhratsky and Butt, 2007; Anderson et al., 2014). GFAP upregulation has been 

reported in a number of pathological conditions, including an increase following 

seizures in rats to support increased neuronal activity (Steward et al., 1992) and post-

mortem in AD patients (Bignami et al., 1972; Kamphuis et al., 2014). 

 Activated astrocytes have more recently been classified as two distinct forms: 

A1 and A2 astrocytes. A1 astrocytes are pro-inflammatory, lose their ability to perform 

normal physiological functions, and secrete neurotoxic factors to remove neurons and 

synapses (Liddelow et al., 2017). Conversely, A2 astrocytes are anti-inflammatory and 

participate in the process of neuroprotection and repair (for review see Sofroniew and 

Vinters, 2010). The number of A1 astrocytes are increased in physiological ageing and 

may therefore infer a vulnerability to neurodegeneration (Clarke et al., 2018). 

1.3.2 Microglia 

Due to the role of the blood-brain barrier in excluding immune cells from the 

brain, the brain’s native microglial cells act as immune regulators (for review see Hof 

et al., 2009) and make up around 10–15% of cells within the brain (Lawson et al., 

1992). The so-called “resting” microglia are incorrectly named, given their active role 

in surveillance of their microenvironment and maintaining homeostasis (Davis et al., 

1994). Instead, resting microglia are preferentially referred to as ramified microglia due 

to their small somata and long processes (for review see Hof et al., 2009).  

Potassium (K+) channels on microglia respond to small disturbances in 

extracellular K+, often caused by damaged or ruptured cells (Gehrmann et al., 1995). 

Microglia also recognise and respond to immune threats and misfolded proteins (for 

review see Verkhratsky and Butt, 2007). The response of microglia is to become 

activated or “reactive” (Davis et al., 1994), and upregulation of the ionised calcium-

binding adapter molecule 1 (Iba1) can be used to detect this change (Ito et al., 1998). 

Reactive microglia are marked by a change in morphology, with a larger somata and 

shorter processes (for review see Verkhratsky and Butt, 2007). Reactive microglia 

carry out a number of roles including the release of mediators (for review see Hof et 

al., 2009) and activation of astrocytes (Liddelow et al., 2017).  

Microglia also play a role in synaptic pruning in network development (Paolicelli 

et al., 2011) through phagocytosis (for review see Miyamoto et al., 2013). 

Consequently, microglia are implicated in synaptic plasticity through phagocytosis of 

weaker synapses and maturation of postsynaptic responses (for review see Miyamoto 
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et al., 2013). Microglia make brief connections with neurons and astrocytes, and it has 

been shown that following contact neuronal activity is reduced (for review see 

Miyamoto et al., 2013). Microglia may also indirectly modulate neuronal excitability 

through activation of astrocytes (for review see Miyamoto et al., 2013). It is unsurprising 

therefore that like astrocytes, microglia are implicated in the pathogenesis of epilepsy 

(Devinsky et al., 2013). There is also growing evidence of neuroinflammation in AD 

and PD, which may be a result of misfolded proteins inducing microglial reactivity (Mrak 

and Griffin, 2005; Barnum and Tansey, 2012; Meraz-Rios et al., 2013).  

Similarly to the A1/A2 phenotype of reactive astrocytes, reactive microglia have 

also been proposed to occupy two distinct states of neurotoxicity (M1) and 

neuroprotection (M2), marked by the differential release of pro-inflammatory or anti-

inflammatory factors, respectively (for review see Bolos et al., 2017). While both 

phenotypes of microglia are marked by Iba1 upregulation, specific markers can be 

used to differentiate between each state (for review see Bolos et al., 2017). Conversion 

of microglia from M2 to M1 can occur as a result of physiological ageing or in 

neurodegenerative disease (Tang and Le, 2016). Conversion back to the 

neuroprotective M2 form has been shown to be promoted by non-steroidal anti-

inflammatory drugs (Moehle and West, 2015). 
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1.4 Oxidative Stress 

1.4.1 Mitochondria 

The brain is a highly energy-demanding organ and must replenish levels of 

adenosine triphosphate (ATP) through oxidative phosphorylation in mitochondria or 

glycolysis in the cytosol (Erecinska and Silver, 2001; Distelmaier et al., 2009). The 

importance of mitochondria in the brain cannot be understated, for in addition to their 

role in energy production they have also been linked to metabolism, cell death through 

apoptosis, cell signalling pathways, control of the cell cycle, and calcium signalling 

(Green, 1998; McBride et al., 2006).  

Mitochondria consist of highly folded inner membranes known as cristae, and 

within these spaces is the matrix (for review see Bear et al., 2015). It is within the matrix 

that the Krebs cycle occurs, where acetyl coenzyme A derived from pyruvate enters a 

series of redox reactions and ultimately produces ATP, NADH, and FADH2 (for review 

see Bear et al., 2015). NADH and FADH2 then participate in a series of redox reactions 

along a series of protein complexes imbedded in the inner membrane of the 

mitochondria (Figure 1.4). Briefly, NADH and FADH2 enter the electron transport chain 

at Complex I (NADH dehydrogenase) or II (succinate dehydrogenase, SDH), 

respectively, and donate electrons. As a result, protons are pumped across the 

membrane from the matrix to the intermembrane space at Complex I (for reviews see 

Lodish et al., 2000; Berg et al., 2002). This establishes a proton gradient, further 

contributed to as electrons pass through Complex III (cytochrome C reductase).  

 

Figure 1.4 The process of oxidative phosphorylation. Movement of electrons (e-) 

in blue and protons (H+) in red through Complexes I to V. NADH/NAD+ nicotinamide 

adenine dinucleotide. FADH2/FAD+ flavin adenine dinucleotide. ADP adenosine 

diphosphate. Pi inorganic phosphate. ATP adenosine triphosphate. Adapted from 

OpenStax CNX, Rice University [Accessed July 2018] 

https://cnx.org/contents/GFy_h8cu@10.87:7oTVAgrZ@7/Oxidative-Phosphorylation. 
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When electrons reach Complex IV (cytochrome C oxidase, COX), they are 

transferred to oxygen and reduced to form water (H2O). As a result of the established 

proton gradient, protons flow through Complex V (ATP synthase) down their 

concentration gradient and this movement is coupled with the formation of ATP and 

H2O from ADP and phosphate (Boyer, 1997; Lodish et al., 2000). 

The majority of ATP production within a cell comes from oxidative 

phosphorylation (Rich, 2003) and it is estimated that around 28-30 ATP molecules are 

produced from one molecule of glucose. This number takes into account the leak of 

electrons from Complex I and Complex III (Cadenas et al., 1977), a physiological 

occurrence leading to the production of reactive oxygen species (ROS). ROS can act 

as signalling molecules, but their excess production can occur as a result of 

dysfunction of the electron transport chain (ETC), as demonstrated by Complex I 

inhibition with rotenone increasing ROS production (Turrens and Boveris, 1980). 

 Beyond their crucial role in energy production, mitochondria also play important 

roles as calcium buffers to maintain homeostasis (Pozzan et al., 1994; Berridge et al., 

2000) and as a result can regulate the excitability of cells. Reciprocal interplay between 

ROS and calcium also means that excess calcium can increase ROS levels, whilst 

excess ROS production can affect calcium influx (for review see Görlach et al., 2015). 

1.4.2 Mechanisms of oxidative stress 

The process of oxidative stress describes excess production of ROS such as 

superoxide and hydroxyl radicals, and the associated damage they cause. ROS are 

primarily produced by the ETC in mitochondria and excess ROS can lead to the 

damage of lipids, proteins, and DNA (Frisard and Ravussin, 2006). Mitochondria are 

protected under physiological conditions from oxidative damage by antioxidants such 

as superoxide dismutase, but an increase in ROS production or a reduction in 

antioxidant defences can lead to oxidative stress (Ceriello, 2000).  

Oxidative stress is associated with the mechanisms of physiological ageing 

(Harman, 1956). A decline in the activity of mitochondrial ETC Complexes I, III and IV 

has been reported in aged mice (Desai et al., 1996) and is proposed to lead to 

increased ROS production. Interestingly, the overexpression of antioxidant genes in 

Drosophila reduce oxidative damage and increase lifespan (Orr and Sohal, 1994). 

Oxidative stress has further been reported in pathological states including 

inflammation (Furukawa et al., 2004; Sofroniew and Vinters, 2010), Alzheimer’s 
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disease (Mecocci et al., 1994; Milton, 2004), and schizophrenia (Nishioka and Arnold, 

2004). A deficiency in mitochondrial Complex I has also been reported in PD (Schapira 

et al., 1990), and the import of over-expressed or aggregated ASYN into mitochondria 

has been suggested as a mechanism for Complex I inhibition (Devi et al., 2008; Reeve 

et al., 2015). Whilst mitochondrial dysfunction may in itself lead to the production of 

ROS through the leak of electrons, this may generate a cycle whereby ROS causes 

further mitochondrial dysfunction (Lee and Wei, 2005).  

Interestingly, Thy-1 A30P mice have shown a possible increased sensitivity to 

mitochondrial Complex I toxin MPTP, indicating a deficiency in Complex I function 

(Nieto et al., 2006). Furthermore, mitochondrial proteins have been reported to be 

oxidised in A30P mice (Poon et al., 2005), suggesting an interaction between oxidative 

stress and ASYN. Physiologically, ASYN has been shown to play a role in the 

modulation of mitochondrial morphology and function under conditions of stress by 

colocalising with mitochondria (Li et al., 2007; Guardia-Laguarta et al., 2014). As a 

result, the protective role of ASYN may be altered by the presence of the A30P 

mutation and may lead to inhibition of ETC complexes. 

The interneuron energy hypothesis proposes that due to the high metabolic 

demands of fast-spiking PV+ interneurons, they are more vulnerable to dysfunction  

due to metabolic or oxidative stress (Kann, 2016). PV+ interneurons have been shown 

to be highly enriched with mitochondria and express high levels of cytochrome c (Inan 

et al., 2016; Kann, 2016), a mitochondrial protein that transfers electrons between 

Complex III and Complex IV. Conversely, CB+ interneurons express a moderate 

amount of cytochrome c, and CR+ interneurons express very little (Gulyas et al., 2006). 

Due to the fast-spiking property of the majority of PV+ interneurons, they are selectively 

vulnerable to oxidative stress whilst CB+ and CR+ interneurons are not (Cabungcal et 

al., 2013b). This highlights the importance of mitochondrial function to fast-spiking 

interneurons, in addition to their enhanced vulnerability to mitochondrial dysfunction. 

1.4.3 Perineuronal nets 

Vulnerable subpopulations of neurons with high energy demands are afforded 

some protection against oxidative stress and excitotoxicity in the form of perineuronal 

nets (PNNs) (Morawski et al., 2004; Suttkus et al., 2012). The PNN is a highly 

specialised extracellular matrix of proteins surrounding neurons, of which the primary 

components are hyaluronan, chrondroitin sulfate proteoglycans, tenascins, and link 

proteins (Zimmermann and Dours-Zimmermann, 2008; Lau et al., 2013). Highly 
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metabolically active neurons are preferentially surrounded by PNNs, and they are 

therefore proposed to play a role in ion homeostasis by buffering ions including excess 

K+, Na+, and Ca2+ (Bruckner et al., 1993; Hartig et al., 1999; Morawski et al., 2004). In 

addition, PNNs chelate iron and transition metals involved in ROS formation 

(Cabungcal et al., 2013b). The relationship between PNNs and oxidative stress is 

complex; while PNNs can induce the expression of anti-oxidants (Canas et al., 2007), 

ROS degrade hyaluronan and chrondoitin sulfates in PNNs (Rees et al., 2004). 

PNNs surround the majority of fast-spiking PV+ interneurons and a small 

number of PV- interneurons (Hartig et al., 1992; Lensjo et al., 2017). The majority of 

PV+ interneurons with a PNN also express Kv3.1, associated with the fast-spiking 

property of PV+ interneurons (Hartig et al., 1999). Interestingly, the presence of the 

PNN has been shown to enhance the excitability of fast-spiking interneurons (Balmer, 

2016). A subpopulation of hippocampal PV+ interneurons lack a PNN (Yamada and 

Jinno, 2015), and it can be inferred that this may be the non-fast spiking population.  

Beyond their role in neuroprotection and enhancing excitability, PNNs also play 

a role in the closure of the critical period in development and synaptic plasticity 

(Bruckner et al., 2000; Friauf, 2000; Bukalo et al., 2001). It is unsurprising therefore 

that PNN changes have been reported in various pathological states associated with 

memory deficits, though the exact nature of the change varies depending on the region 

studied and the specific marker measured. While one study found a loss of the N-

acetylgalactosamine sugar in AD post-mortem tissue (Baig et al., 2005), another study 

using a mouse model of AD with early life memory deficits found an increase in 

hyaluronan, neurocan, brevican, and tenascin-R (Vegh et al., 2014). The authors also 

found that memory deficits could be reversed by PNN degradation (Vegh et al., 2014).  

Interestingly, the PNN component aggrecan was found to be increased 

following a single seizure early in life in rats (McRae et al., 2010). The authors propose 

that this occurs directly due to increased neuronal activity and highlights the plastic 

nature of PNN expression (McRae et al., 2010). It could be inferred that the increase 

in PNN expression may be a compensatory attempt to control seizure activity by 

increasing the excitability of fast-spiking interneurons (Balmer, 2016). Conversely, 

prolonged seizure activity in the adult rat hippocampus led to a decrease in aggrecan 

expression for at least 2 months (McRae et al., 2012). It is suggested that this leaves 

inhibitory interneurons capable of synaptic reorganisation and plasticity. 
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1.5 Hippocampal network activity 

1.5.1 The electroencephalogram (EEG) 

First described by Hans Berger in 1929, the mammalian electroencephalogram 

(EEG) is a well-established, non-invasive method of recording electrical activity. 

Recordings can be taken in humans via electrodes on the surface of the scalp during 

various states of rest, sleep, and activity. The measurable activity on EEG is generated 

by synchronous firing of populations of neurons, with precise timing of activity 

important for information processing across brain regions. For the purpose of this 

thesis, frequencies up to 80 Hz are briefly summarised in Table 1.3.  

Abnormal EEG burst-pattern activity has been reported in the frontal region of 

patients with DLB (Crystal et al., 1990), which could well underpin fluctuating cognition. 

Whilst the cognitive dysfunction associated with LBD is more prefrontal than 

hippocampal in nature, a general slowing of EEG activity to lower frequency bands has 

been observed in DLB patients (Bonanni et al., 2008; Andersson et al., 2010; Morris 

et al., 2015; Stylianou et al., 2018). A precise interplay between prefrontal and 

hippocampal activity orchestrates complex cognitive processes such as memory 

(Preston and Eichenbaum, 2013; Sigurdsson and Duvarci, 2015), and therefore the 

effect of ASYN expression on hippocampal function should not be understated. 

 

Pattern Frequency Associated states 

Delta 0.5 – 4 Hz Slow-wave sleep and periods of unconsciousness (Bonanni 

et al., 2012). 

Theta 4 – 12 Hz Active exploration (Buzsaki, 2005), and REM sleep 

(Grosmark et al., 2012). Often seen with superimposed 

gamma activity in the hippocampus. 

Alpha 8 - 10 Hz Relaxed wakefulness with closed eyes (Niedermeyer, 1997). 

 

Beta I: 15 – 20 Hz 

II: 20 – 30 Hz 

Relaxed wakefulness with open eyes (Niedermeyer, 1997). 

Role in motor control, e.g. planning and suppression of 

movement (Zhang et al., 2008). 

Gamma 30 – 80 Hz Exploration, navigation, conscious perception, cognitive 

processing, learning and memory (Lu et al. 2012). 

Table 1.3 Patterns of activity between 0.5 and 80 Hz. The frequency ranges and 

associated states of activity bands from delta to gamma frequency.  
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Suggested to be a potential solution to the binding problem, gamma activity is 

theorised to play a role in segregating and combining sensory inputs to allow the brain 

to process multimodal stimuli (Uhlhaas and Singer, 2006). It is proposed that high 

frequency oscillations allow the rapid and precise transfer of information across regions 

of the brain. In addition to their role in navigation (likely due to superimposition on theta 

activity), gamma waves are frequently implicated in cognitive processing, learning and 

memory (Lu et al., 2012b). Furthermore, gamma activity has been observed in the 

temporal lobe of rodents both in vivo (Bragin et al., 1995) and in vitro (Fisahn et al., 

1998), allowing for exploration of the mechanisms of network activity over the years.  

Since the first recordings of electrical activity in an acute brain slice preparation 

using a chemically defined artificial media (Yamamoto and McIlwain, 1966), a wealth 

of work has been performed within the hippocampus to understand the physiology and 

pharmacology of the region. It is widely understood that a single neuron is not capable 

of orchestrating higher cognitive functions alone, and instead acts in synchrony with 

other neurons (Quiroga, 2013) to produce detectable fluctuations in the local field 

potential (LFP) which can be recorded from a brain slice.  

1.5.2 Generation of in vitro network oscillations 

As gamma-frequency oscillations occur above the frequency of pyramidal cell 

firing (1 – 3 Hz), their generation in vitro was not fully understood until GABAergic 

interneurons were implicated, which fire at up to 40 Hz (Whittington et al., 1995). 

Indeed, the frequency of network oscillations is dependent on the decay kinetics of 

GABA (Otis and Mody, 1992; Heistek et al., 2010; Lee and Jones, 2013). As inhibitory 

GABAergic interneurons project to both excitatory pyramidal cells and other inhibitory 

cells, two models incorporating these cell types have been proposed. 

The interneuron network gamma (ING) model was first elucidated in vitro in the 

rat hippocampus (Whittington et al., 1995). Upon application of antagonists for the 

ionotropic glutamate receptors NMDA, AMPA and kainate, a metabotropic glutamate 

agonist was added to a slice and induced gamma activity. With only inhibitory circuits 

intact, it was suggested that gamma-frequency activity can be generated locally by 

interneurons, with gap junctions proposed to form an axonal plexus and help stabilise 

the oscillatory cycle through fast, electrical transmission (Traub et al., 1999). The ING 

model, however, did not explain the projection of gamma-frequency activity over large 

distances both within the hippocampus and beyond. The principal-cell interneuron 



25 
 

network gamma model (PING) (Borgers and Kopell, 2005) compensates for this 

distance by the incorporation of excitatory principal cell transmission (Figure 1.5). 

A network of connected interneurons and pyramidal cells are proposed to exist 

in the PING model, with pyramidal cells firing earlier than interneurons in a cycle (for 

review see Hajos and Paulsen, 2009). The resultant EPSPs generated in interneurons 

generate an inhibitory feedback mechanism upon excitatory cells. Rhythmic trains of 

inhibitory postsynaptic potentials (IPSPs) occur in excitatory cells and end the cycle. 

Once the IPSP has dissipated, pyramidal cells are able to fire again and start the next 

cycle. Thus, interneurons are required for precise spike timing in pyramidal cells.  

Interest in fast-spiking PV+ interneurons has grown due to their involvement in 

gamma-frequency network oscillations in rodents in vivo, as demonstrated in mice by 

optogenetically silencing or driving fast-spiking PV+ interneurons (Sohal et al., 2009). 

CA3 region gamma-frequency oscillations in slices from rodents in vitro are also 

dependent upon functional fast-spiking PV+ interneurons (Traub et al., 2000; Fuchs et 

al., 2007; Ferando and Mody, 2015). In turn, this has led to PV+ interneuron 

dysfunction serving as a possible explanation for cognitive deficits (Fuchs et al., 2007) 

and lost network connectivity in a number of disorders, including schizophrenia 

(Nakazawa et al., 2012) and AD (Brady and Mufson, 1997) 

 

  
 

Figure 1.5 Pyramidal cell-interneuron circuitry in the hippocampal CA3 region. 

PC pyramidal cell. BC basket cell. AAC axo-axonic cell. OLM oriens lacunosum 

moleculare cell. RC stratum radiatum cell. IS interneuron-selective interneurons. LFP 

local field potential. IN inhibitory neuron. Modified and used with permission from 

Network mechanisms of gamma oscillations in the CA3 region of the hippocampus 

(Hajos and Paulsen, 2009) Neural Networks, 22 (8), pp. 1113-9. 
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The generation and investigation of oscillations in vitro allows investigation of 

the association between network oscillations and underlying cellular activity in an 

isolated region of the brain. While in some rodent hippocampal slice preparations 

spontaneous gamma-frequency activity can be observed, this activity relies on 

increased preservation of cell viability during the preparation of slices (Skrobot, 2008; 

Pietersen et al., 2009; Modebadze, 2014). Therefore, methods to more reliably induce 

persistent hippocampal gamma-frequency oscillations using interface chamber 

recordings can be achieved pharmacologically by providing excitation to the network 

through use of carbachol (Traub et al., 1992; Fisahn et al., 1998) or kainate (Hajos et 

al., 2000; Hormuzdi et al., 2001). Carbachol (CCH) is a cholinergic agonist that 

activates both muscarinic and nicotinic acetylcholine receptors, whilst kainate (KA) is 

an agonist for the ionotropic glutamatergic kainate receptor.  

The three models of hippocampal gamma-frequency oscillations in rodents 

(spontaneous, CCH, and KA) can possess different peak frequencies and maximal 

powers depending on the region and layer of the hippocampus investigated (Palhalmi 

et al., 2004; Vreugdenhil and Toescu, 2005; Modebadze, 2014), as well as recruiting 

distinct interneuron types as a result of differential expression of receptors. 

1.5.3 Spontaneous sharp waves 

Another form of hippocampal activity detectable through LFP recordings are 

slow shifts (2-4 Hz) in the field potential known as sharp waves, which are often 

associated with fast (200 Hz) ripple oscillations (Buzsaki, 1986; Buzsaki et al., 1992). 

The presence of fast ripple oscillations has long been investigated due to their 

association with epilepsy (Bragin et al., 1999) as they represent a hyper-synchronous 

state of excitatory cell firing. As the work in this thesis focuses on LFP recordings from 

the stratum radiatum, and ripples are mostly found within stratum pyramidale (Ylinen 

et al., 1995), the sharp wave component of sharp wave-ripples will be discussed in 

more detail in the context of rodent in vitro hippocampal slice preparations. 

 Sharp waves (SPWs) have been shown to be generated within the 

hippocampus and are involved in memory consolidation, particularly during slow wave 

sleep (Ego-Stengel and Wilson, 2010). As a result, their disruption can lead to deficits 

in forming new spatial memories within the hippocampus (Girardeau et al., 2009). 

Spontaneous SPWs have been detected in rodent hippocampal slices (Schneiderman, 

1986; Papatheodoropoulos and Kostopoulos, 2002b; Wu et al., 2002; Kubota et al., 
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2003) but were also reported in non-human primate tissue, where they were described 

to be physiological and non-epileptic in nature (Schwartzkroin and Haglund, 1986). 

A specific model of spontaneous SPWs has been elucidated by Wu et al. (2002) 

in mouse hippocampal slices and were noted to comprise the summation of GABAA 

receptor-dependent IPSPs from a population of pyramidal cells. Synchronised EPSPs 

were also observed in interneurons within the same region, whilst no rhythmicity 

occurred in presumed glial cells during the recording period, indicating that SPWs are 

synaptic in origin. Like gamma-frequency oscillations, spontaneous SPWs depend on 

both excitation and inhibition. The authors found that the CA3 region was capable of 

generating spontaneous SPWs that propagate to CA1, whilst the isolated CA1 region 

only generated SPWs when stimulated. Since the initial study, further mechanisms of 

spontaneous SPWs have been explored in rodent hippocampal slices and indicate that 

SPWs are dependent on the thickness of the slice (Wu et al., 2005b) and the 

temperature of the recording chamber (Maier et al., 2009). 

For the purpose of this thesis, persistent in vitro gamma-frequency oscillations 

and spontaneous SPWs are summarised in Table 1.4. 

Effect of 

antagonist 

Spontaneous 

sharp waves 

Gamma-frequency oscillations 

Spontaneous Carbachol Kainate 

LFP 
 

 

 

 

 

 

 

 

GABAA-R Abolished 
 

Abolished Abolished Abolished 

NMDA-R   or no effect No effect  power or 
no effect 

 power or no 
effect 

KA/AMPA-R 
(CNQX) 

Abolished 
 

 power or 
no effect 

 power  power 

Cholinergic 
(atropine) 

 or no effect 
 

 power or 
no effect 

Abolished No effect 

Gap junctions  or no effect 
 

 power  power  power 

mGluR5 Unknown 
 

 power  power or 
no effect 

 power or no 
effect 

mGluR2/3  or no effect 
 

No effect No effect No effect 

Table 1.4. Effect of antagonists on sharp waves and gamma-frequency 

oscillations. Example LFP with scale bar presented under each activity. Information 

assembled from (Fisahn et al., 1998; Maier et al., 2003; Colgin et al., 2005; Wu et al., 

2005a; Skrobot, 2008; Pietersen et al., 2009; Modebadze, 2014; Hofer et al., 2015). 
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1.6 Neurodegeneration in alpha-synucleinopathy 

The process of neurodegeneration encompasses both neuronal loss and 

neuronal dysfunction, and can impair molecules, synapses, neurons, local circuits and 

even entire networks (Palop et al., 2006). Whilst the traditional view of alpha-

synucleinopathy encompassed a focus on ASYN aggregates with age, in recent years 

it is the oligomeric and sometimes protofibril form of ASYN that has been implicated in 

cytotoxicity and mechanisms of neurodegeneration (Lindstrom et al., 2014). It is even 

proposed that the aggregation of ASYN may be a protective mechanism to sequester 

oligomers (Wan and Chung, 2012). In vitro, oxidative stress, nitrative stress and acidity 

induce oligomerisation of ASYN (Unal-Cevik et al., 2011). A contributing factor to the 

accumulation of oligomers, fibrils, and aggregates may also be failure of the 

proteasome to degrade misfolded ASYN (Song et al., 2009).  

A prion-like spread has been suggested to underlie the progressive spread of 

alpha-synucleinopathy through the brain to higher cortical areas (Masuda-Suzukake et 

al., 2014). ASYN monomers can pass through the cell membrane by diffusion, whereas 

oligomers and aggregates can be secreted by exocytosis (Grozdanov and Danzer, 

2018). Once in the extracellular space, ASYN can be taken up by either by diffusion if 

in the monomeric form, or by a type of endocytosis called pinocytosis if not monomeric 

(Grozdanov and Danzer, 2018). ASYN may also be taken up by reactive astrocytes 

and microglia through phagocytosis (Zhang et al., 2005).  

If the cell fails to degrade ASYN, ASYN is released into the cytoplasm and can 

induce natively folded ASYN to misfold and become phosphorylated at residue Serine 

129 (Foulds et al., 2013; Lee et al., 2014a). Phosphorylated ASYN has been shown to 

misfold and form fibrils at accelerated rates (Samuel et al., 2016). Whilst WT ASYN 

binding to presynaptic membranes was unaffected by phosphorylation, A30P ASYN 

binding was increased when phosphorylated, and this was proposed by the authors to 

contribute to intracellular accumulation of A30P ASYN following increased 

internalisation of membrane bound A30P ASYN (Samuel et al., 2016). 

It has been suggested that ASYN may induce cell death by a number of 

mechanisms, including the formation of pores to disrupt ion homeostasis (Danzer et 

al., 2007; Ying et al., 2011), endoplasmic reticulum stress (Smith et al., 2005), induction 

of mitochondrial dysfunction (Braidy et al., 2013), excess influx of calcium (Adamczyk 

and Strosznajder, 2006; Hettiarachchi et al., 2009), and excitotoxicity (Huls et al., 

2011). Interestingly, the aforementioned mechanisms may lead to further ASYN 
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aggregation due to the production of ROS and the activity-dependent release of ASYN 

from dysfunctional neurons (Yamada and Iwatsubo, 2018). 

Deficits within a mitochondrion’s ETC can occur in both normal ageing (Lenaz 

et al., 1997) and PD (Schapira et al., 1990). Chronic treatment with Complex I toxin 

MPTP causes aggregation of ASYN in dopaminergic neurons of the substantia nigra 

in mice (Vila et al., 2000). High-frequency oscillations are heavily dependent upon 

mitochondria, particularly within fast-spiking PV+ interneurons, due to the metabolic 

demands of sustained high-frequency firing (Kann et al., 2011; Kann, 2016). This is 

highlighted by a blockade of Complex I leading to impaired hippocampal gamma-

frequency oscillations via fast-spiking interneuron dysfunction (Whittaker et al., 2011). 

Fast-spiking PV+ interneurons, are particularly vulnerable to oxidative stress 

(Cabungcal et al., 2013b) and indeed are noted post-mortem to be reduced in the 

dentate gyrus and hippocampal region CA1 of LBD patients (Bernstein et al., 2011). 

Interestingly, interneurons expressing PV have been reported to either be free from 

Lewy bodies (Gomez-Tortosa et al., 2001), or possessing abnormal ASYN 

accumulation in only 2% of hippocampal PV+ interneurons (Bernstein et al., 2011). 

Recently, a loss of excitatory CB+ cells in the dentate gyrus was found in post-mortem 

tissue from DLB patients, and in mice overexpressing human WT ASYN under the Thy-

1 promoter (Morris et al., 2015). However, changes in CB+ interneurons specifically 

have not been extensively examined in mouse models of alpha-synucleinopathy.  

The fact that one interneuron can innervate thousands of pyramidal cells could 

explain why small changes can affect an entire network (Kosaka et al., 1987; Li et al., 

1992; Somogyi and Klausberger, 2005). While the existing literature often only 

accounts for interneuron cell loss and does not take interneuron function in to account, 

this thesis aims to explore cellular dysfunction and hippocampal network changes in a 

mouse model of alpha-synucleinopathy. 
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1.7 Aims of thesis 

The aims of this thesis are briefly summarised below: 

• Elucidate the time-course of changes in A30P mice leading to later life 

hippocampal network dysfunction 

▪ Utilising in vitro electrophysiology and immunohistochemistry, 

with particular focus on changes in excitatory/inhibitory balance 

 

• Explore evidence of early changes preceding later life hippocampal network 

dysfunction that could be used as potential biomarkers or therapeutic targets 
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Chapter 2. General Methods
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2.1 Animal provision 

The following procedures were performed in accordance with the UK Animals 

(Scientific Procedures) Act 1986, and the European Union Directive 2010/63/EU under 

the provision of appropriate personal and project licenses. All animals were maintained 

on a 12 hour light/dark cycle with access to food and water ad libitum and 

environmental enrichment in same-sex groups no larger than 6 mice. Wherever 

possible, animals were not housed alone for longer than 24 hours.  

(Thy-1)-h[A30P]αSYN mice on a C57BL/6 background (henceforth referred to 

as A30P mice) were kindly provided by Prof. Philipp Kahle (University of Tübingen, 

Germany) and a colony was established at internal animal facilities in Newcastle 

University. Homozygous mice were crossed with C57BL/6 mice to produce the F1 

generation. Mice were ear notched following weaning (~21 days) and samples were 

genotyped externally (Transnetyx Inc., Tennessee, USA) before two separate lines 

were generated for wild type and homozygous A30P mice. Heterozygous mice were 

used for preliminary electrophysiological recordings. Lines were maintained 

separately, with the potential to cross again as needed. 

A30P mice present with severe motor deficits from ~16 months onwards, with 

premature death occurring in homozygous mice from around 17-18 months (Freichel 

et al., 2007). Therefore, all mice used in this thesis were between the ages of 2 months 

and 17 months and separated into four distinct groups: 2-4 months (WT/A30P2+), 6-8 

months (WT/A30P6+), 10-13 months (WT/A30P10+), and 15-17 months 

(WT/A30P15+). It was decided to compare data within each age group as the same 

mice were not used longitudinally. Some C57BL/6 mice were purchased from external 

sources within the 15+ month age group when availability of WT mice was low. 

(PDGF)-h[WT]αSYN mice on a C57BL/6 background (Masliah et al., 2000), and 

corresponding wild type littermates previously genotyped, were kindly provided by Dr 

Chris Morris from internal animal facilities in Newcastle University. Mice were used at 

2-6 months of age only, due to an insufficient number available to age. 
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2.2 Preparation of acute brain slices 

Animals were anaesthetised with inhaled isoflurane (IsoFlo 100% w/w; Zoetis, 

UK) prior to an intramuscular injection of ketamine (Narketan-10 100 mg/ml; 

Vetoquinol, UK; used at 0.25 ml >100 mg/kg) and xylazine (Xylacare 20 mg/ml; 

AnimalCare, UK; used at 0.25 ml >10 mg/kg). Reflexes were checked via pedal 

withdrawal and eye blink. Once all reflexes ceased, the abdominal cavity and ribcage 

were opened to expose the heart and the left ventricle of the heart was pierced with a 

needle. An incision was made in the right atrium and a transcardial perfusion of chilled, 

carbogenated (95% O2 / 5% CO2) sucrose artificial cerebrospinal fluid (sucrose aCSF) 

was performed with 30 ml solution at an approximate rate of 0.5 ml/sec. 

Sucrose aCSF was prepared using distilled water by dilution of: 252 mM 

sucrose, 3 mM KCl, 1.25 mM NaH2PO4, 24 mM NaHCO3, 2 mM MgSO4, 2 mM CaCl2 

and 10 mM glucose. Regular aCSF was prepared by use of 126 mM NaCl instead of 

252 mM sucrose. Chemicals were stored according to supplier recommendations, with 

full details of each chemical provided in Table 2.1. Stock solutions were maintained for 

2 weeks to allow daily preparation of regular or sucrose aCSF. aCSF was prepared 

fresh daily, whilst sucrose aCSF was kept refrigerated for no longer than 48 hours.  

Perfusion of animals with high sucrose aCSF prior to acute brain slice 

preparation has been shown to preserve the cytoarchitecture of the brain, particularly 

the viability of fast-spiking interneurons (Aghajanian and Rasmussen, 1989). 

 

Chemical name Formula Vendor 

Sucrose • C12H22O11 Sigma-Aldrich (16104) 

Potassium chloride KCl VWR International (101985M) 

Sodium dihyrogen orthophosphate NaH2PO4 VWR International (307164T) 

Sodium bicarbonate NaHCO3 Tocris (3152) 

Magnesium sulphate MgSO4 Sigma-Aldrich (M7506-M) 

Calcium chloride CaCl2 VWR International (275844L) 

Glucose C6H12O6 VWR International (101176K) 

Sodium chloride NaCl Sigma-Aldrich (S7653) 

Table 2.1 List of chemicals used in preparation of artificial CSF solutions. Note 

that sucrose is used only in sucrose artificial CSF, and sodium chloride used only in 

regular artificial CSF. Chemical name, formula, and vendor with stock number. 
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Following perfusion, the animal’s spinal cord was cut and the skull was exposed 

by incision. Further dissection of the skull revealed the brain, which was excised into a 

petri dish of chilled, carbogenated sucrose aCSF. The brain was trimmed with a razor 

blade to remove the brainstem and prefrontal area. The dorsal portion of the brain was 

then glued to the chuck of a Leica VT1000 microtome (Leica Microsystems, Germany) 

and the entire brain covered in chilled, carbogenated sucrose aCSF. After sectioning 

the most ventral region of the brain until the hippocampus was visible, 450 µm 

transverse slices were collected in a petri dish of chilled, carbogenated sucrose aCSF 

then the hippocampus was trimmed away from the rest of the slice.  

Slices were noted for being either dorsal or ventral for further analysis (Figure 

2.1). The dorsal portion of the mouse hippocampus is marked by an elongated 

structure and the “V” shape of the dentate gyrus, while ventral hippocampal slices are 

defined by a more rounded structure and the “C” shape of the dentate gyrus (Peng and 

Houser, 2005; Amaral et al., 2007). 

 

Figure 2.1 Classification of mouse dorsal and ventral slices. Note the elongated 

structure of the mouse dorsal hippocampus (including cornu ammonis regions CA3 

and CA1) and the distinctive “V” shape of the dentate gyrus (DG), compared to the 

rounded structure of ventral slices with a “C” shaped DG. 
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2.3 Slice maintenance 

Immediately following slice preparation, hippocampal slices were transferred to 

an interface holding chamber maintained at room temperature in carbogenated aCSF 

(126 mM NaCl instead of sucrose). The chamber was covered with parafilm and left 

for 1 hour for slices to recover and allow sufficient time for water soluble anaesthetics 

(isoflurane, ketamine, and xylazine) to wash away (Dickinson et al., 2003). 

Following this, 2 slices were transferred to an interface recording chamber, 

supplied with a continuous flow (~ 1.2 ml/min) of carbogenated aCSF through a Gilson 

Minipuls3 pump. The chamber was maintained at a temperature of 30 – 31 °C using a 

heater (FH16-D; Grant Instruments Ltd, UK), with temperature measurements taken 

by infrared thermometer throughout the experimental day.  

Wherever possible to maximise slice use, multiple rigs with one recording 

chamber and two electrodes on each were used simultaneously. It has previously been 

reported that thin (150 – 180 µm) hippocampal slices prepared without sucrose aCSF 

perfusion remained viable in a submerged holding chamber for at least 4 hours before 

significant cell loss occurred (Fukuda et al., 1995). As transcardial perfusion with 

sucrose aCSF is neuroprotective (Aghajanian and Rasmussen, 1989), the 

experimental design within this thesis is proposed to extend the viability of acute brain 

slices though all experiments were performed within 6 hours of slice preparation.  
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2.4 Pharmacological compounds 

All compounds were stored according to manufacturer’s recommendations. 

Water soluble compounds were constituted in distilled water, and water insoluble drugs 

prepared in dimethylsulfoxide (DMSO; Sigma-Aldrich, UK). Stock solutions were kept 

frozen (-20°C) or refrigerated (4°C), depending on manufacturer instructions and 

frequency of use. All drugs (Table 2.2) were bath applied by addition to circulating 

carbogenated aCSF to reach slices in the chamber within minutes. 

 

 

Table 2.2 List of drugs used in this thesis. Each drug name is expanded by chemical 

name, intended action, and supplier with product code. 

 

  

Name Chemical name Action Supplier 

Carbachol Carbamylcholine chloride Cholinergic agonist Sigma-

Aldrich 

(C4382) 

D-AP5 D-(-)-2-Amino-5-

phosphonopentanoic acid 

Selective, competitive 

NMDA receptor 

antagonist 

HelloBio 

(HB0225) 

Gabazine 

(SR95531) 

2-(3-carboxypropyl)-6-(4-

methoxyphenyl)-2,3-

dihydropyridazin-3-iminium 

bromide 

Selective, competitive 

GABAA receptor 

antagonist 

Abcam 

(ab120042) 

Kainic acid 

(referred to 

as kainate) 

(2S,3S,4S)-3-(Carboxymethyl)-

4-prop-1-en-2-ylpyrrolidine-2-

carboxylic acid 

Kainate receptor 

agonist, partial AMPA 

receptor agonist 

Sigma-

Aldrich 

(K0250) 
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2.5 Data Acquisition 

For local field potential recordings, glass microelectrodes (1.2 mm OD, 0.94 mm 

ID, 100 mm L; 30-0050 G120TF-10, Harvard Apparatus Ltd., UK) were pulled using a 

P-97 Flamming/Brown puller (Sutter Instrument Co., USA). This produced electrodes 

with a resistance of approximately 2 - 5 mΩ. For sharp intracellular recordings, sharper 

glass microelectrodes (1.2 mm OD, 0.69 mm ID, 100 mm L; 30-0044 GC120F, Harvard 

Apparatus Ltd., UK) were prepared to a resistance of 70 - 140 mΩ.  

Field electrodes were filled with aCSF. Intracellular electrodes were filled with 

2M chilled potassium acetate. All electrodes were placed in a holder attached to a 

headstage preamplifier held in place by a micromanipulator. Each rig contained 2 

micromanipulators, and therefore 2 channels. Microelectrodes were positioned using 

the micromanipulator and inserted into the desired region of the hippocampus – CA3 

or CA1, stratum radiatum (st. radiatum) or stratum pyramidale (st. pyramidale). Each 

of the two electrodes could be placed either in separate slices or the same slice.  

Data were recorded with an Axoclamp-2B amplifier (Axon Instruments Inc., UK) 

and activity was band-pass filtered with Neurolog external filters at 0.001 kHz high pass 

and 0.4 kHz low pass. Intracellular signals were low-pass filtered at 2 kHz. Data were 

re-digitised at 10 kHz using an ITC-16 interface (Digitimer, UK). A HumBug (Digitimer, 

UK) was used to remove 50 Hz electrical mains noise. Recordings were made using 

AxoGraph software (Version X, Axon Instruments Inc., USA) and analysed offline. 
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2.6 Data Analysis 

Power spectral density analysis was undertaken using AxoGraph’s Fast Fourier 

Transform algorithms. Using 8192 frequency bins, data were represented by frequency 

(Hz) and power (µV2 / Hz). For each trace, the area under the curve (area power; µV2) 

and peak frequency (Hz) were measured between 15 and 45 Hz. Area power 

represents the strength of the oscillation within the 15 – 45 Hz frequency band.  

Gamma-frequency oscillations in mouse hippocampal slices are often classified 

in the literature as occurring between 20 - 80 Hz and at a slower frequency than 

oscillations in rat slices (Vreugdenhil and Toescu, 2005). Furthermore, gamma-

frequency oscillations in acute hippocampal slice preparations are temperature-

dependent, and recordings in this thesis are performed at  a relatively low 30 – 31 °C 

(Dickinson et al., 2003). As a result, a 15 – 45 Hz gamma-frequency band was selected 

for recordings in this thesis to accurately detect all gamma-frequency activity. 

Auto-correlation analysis of a 1 second epoch of data was performed to 

compute a rhythmicity index (RI) value. The original signal is shifted in time to compare 

how similar the signal is to the time shifted version. The amplitude of the first side peak 

gives a normalised RI value with a maximum of 1. Cross-correlation analysis of a 1 

second epoch of data was performed to compute the time delay in milliseconds 

between regions CA3 and CA1. The time delay of the maximum peak amplitude (the 

central peak) represents the time delay between the two signals. 

Measurements of resting membrane potential (RMP) and firing threshold were 

made at the time of intracellular recordings by comparing the voltage when the 

electrode was inside the cell to when the electrode was outside the cell. Intracellular 

spikes recorded at firing threshold were defined as a positive deflection in voltage 

greater than 5 * the standard deviation of baseline. Measurements of spike frequency 

and amplitude were performed using MATLAB (MathWorks, USA) peak detect 

functions and results were visually confirmed to correlate with spiking events.  

IPSPs were recorded at –30 mV in current-clamp conditions and defined as a 

negative deflection in voltage larger than 1 mV. IPSP frequency was calculated in 

MATLAB using a peak detect function. IPSP amplitude was computed by the difference 

between the trough and the average peak amplitude on either side of the trough. 
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2.7 Free-floating immunohistochemistry 

Hippocampal sections (450 µm) used in electrophysiology were stored in 

buffered (4%) paraformaldehyde (PFA powder; Sigma-Aldrich P-6148) for at least 2 

days before being transferred to a solution of 30% sucrose phosphate buffered saline 

(PBS tablets; Sigma-Aldrich P4417) for 2-3 days. Slices were then re-sectioned to 40 

µm using a freezing stage microtome and collected in a well plate containing 0.3% 

Triton–PBS (TPBS; Triton X-100 from Sigma-Aldrich T-8787). 

To each well, a solution containing TPBS, 3% serum (species depending on 

which species the secondary antibody is raised in), and the appropriate concentration 

of biotinylated lectin or primary antibody was added (Table 2.3). 

 

Target Host Concentration Vendor Serum used 

Biotinylated Wisteria 

Floribunda Lectin; N-

acetylgalactosamine 

sugar (PNNs) 

N/A 1:500 for IP Vector Labs 

(B1355) 

N/A 

Calbindin D-28k (CB) Rabbit 1:10,000 for IP 

1:10,000 for IF 

SWANT 

(CB38) 

Goat (S-1000, 

Vector 

Laboratories) 

GFAP (astrocytes) Mouse 1:1000 for IP Abcam 

(ab10062) 

Horse (S-2000, 

Vector 

Laboratories) 

Human ASYN (15G7) Rat 1:1000 for IP 

1:500 for IF 

Abcam 

(ab195561) 

Goat (S-1000, 

Vector 

Laboratories) 

Iba1 (microglia) Goat 1:500 for IP Abcam 

(ab5076) 

Horse (S-2000, 

Vector 

Laboratories) 

Parvalbumin (PV) Mouse 1:5000 for IP 

1:2000 for IF 

Sigma-

Aldrich 

(P3088) 

Horse (S-2000, 

Vector 

Laboratories) 

Table 2.3 List of primary antibodies and lectin used in this thesis. Detailed by the 

intended target, host species, concentration used for immunoperoxidase (IP) and 

immunofluorescence (IF), vendor, and blocking serum used. 
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Slices were incubated in primary antibody or lectin overnight (18-20 hours) on 

a rotating platform with gentle agitation in a cold room (4°C). The following day, slices 

were removed from the cold room and the primary antibody solution was carefully 

removed from the wells and replaced with TPBS. The well plates were placed on a 

rotating platform with gentle agitation for 10 minutes. This wash step was then repeated 

two more times for 5 minutes each time. At this point, slices were processed with either 

DAB immunoperoxidase or immunofluorescence staining techniques. 

2.7.1 DAB Immunoperoxidase 

A solution containing the secondary antibody was assembled according to the 

primary antibody host species, with the exception of lectin which is already biotinylated 

(Table 2.4). The solution was added to the appropriate wells and left on a rotating 

platform with gentle agitation for 2 hours at room temperature. The solution was then 

removed carefully, and 3 x 5 minute washes with TPBS were carried out. 

Target Concentration Vendor 

Anti-goat biotinylated IgG 

secondary antibody,  

raised in horse 

1:200 Vector Laboratories (BA9500) 

Anti-mouse biotinylated IgG 

secondary antibody,  

raised in horse 

1:200 Vector Laboratories (BA2000) 

Anti-rabbit biotinylated IgG 

secondary antibody,  

raised in goat 

1:200 Vector Laboratories (BA1000) 

Anti-rat biotinylated IgG 

secondary antibody,  

raised in goat 

1:200 Vector Laboratories (BA9400) 

Table 2.4 List of biotinylated secondary antibodies used in this thesis. Detailed 

by the intended target and host species, concentration used, and vendor. 

 

Each well was filled with horseradish peroxidase (HRP) conjugated streptavidin 

(1:200; Vector Laboratories, SA5004) and incubated for 1 hour at room temperature 

on a rotating platform. Following this, 3 x 5 minute washes were carried out with TPBS. 

To prepare the Diaminobenzidine (DAB) substrate, a DAB peroxidase substrate kit 

(Vector Laboratories, SK4100) was used and made up in distilled water. The solution 
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was added to wells after the final wash and left for 3 minutes. The reaction was stopped 

by removal of the solution. Slices were then washed for 2 x 5 minutes with TPBS.  

Slices were mounted on to gelatin-subbed microscope slides (Fisher Scientific, 

SuperFrost slides 26 x 76 x 1 mm) and left to dry. Once completely dried, slides were 

washed with distilled water for 30 seconds before being moved through an ethanol 

dehydration series (70%, 95%, 100%, 100%) with 5 minutes in each concentration. 

Slides were then cleared for 10 minutes in HistoChoice Clearing Agent (National 

Diagnostics, HS200) and left in this solution while slides were coverslipped (VWR 

coverglass 22 x 50 mm, 631-0137) using ImmunoHistoMount (AgarSci, HS103) 

mounting solution. Slides were left to dry for at least 2 days under a fumehood. 

A summary of DAB peroxidase techniques for conventional stains and with 

biotinylated Lectin for perineuronal nets is illustrated in Figure 2.2. 

 

Figure 2.2 Schematic of DAB peroxidase immunohistochemistry. Conventional 

DAB peroxidase stain with biotinylated secondary antibodies (A), and biotinylated 

lectin stain (B). Both result in formation of a brown deposit at site of detected antigen. 

 

Images were taken on an Olympus BX51 stereology microscope with an 

Olympus U-TV1X-2 T2 Camera using PictureFrame software (Softonic, Spain). Cells 

in regions CA3/1 were counted using the meander scan function in StereoInvestigator 

at x40 magnification (MBF Bioscience, USA), as has previously been described (Pitts 

et al., 2012; Chan, 2017). The count was then divided by the defined area in mm to 

give a normalised measure of cell density (cells/mm2). Only clearly defined cell bodies 

of the correct size were counted as a cell, with consistency maintained between slices. 

Slices were counted with investigator blinded to genotype whenever possible. 
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Optical density measures were made in regions CA3/1 using ImageJ (NIH). 

There is a linear relationship between time and optical density for 6 minutes following 

DAB incubation (H. Benno et al., 1985). All slices used in this thesis were incubated 

with DAB for 3 minutes. Images were deconvoluted to leave only the brown DAB stain 

with pixel density measured on a scale from 0 to 255. 255 represents white and the 

absence of a stain, which when converted to optical density would give a value of 0.  

 

Wherever possible, 2-5 slices from each mouse were averaged to give a value 

per mouse, then averaged again to give a value for that age/genotype. When 

hippocampal regions CA3 and CA1 were examined, this was done in the same slice. 

2.7.2 Immunofluorescence 

Following overnight incubation with two primary antibodies, slices were washed 

for 3 x 5 mins with TPBS. Biotinylated goat anti-rat IgG antibody (Vector Laboratories, 

BA-9400; 1:200) was added to wells for 2 hours at room temperature to detect the anti-

human ASYN rat primary antibody. 3 x 5 min washes with TPBS were performed, 

before a solution containing two fluorescent secondary antibodies was added (Table 

2.5). Slices were left on a rotating platform in the dark for 2 hours at room temperature.  

Target Concentration Vendor 

Texas Red 594 Streptavidin to detect 

biotinylated goat anti-rat IgG antibody 

1:200 Vector Laboratories 

(SA-5006) 

And Chicken anti-mouse IgG (H+L) Cross-

Adsorbed Secondary, Alexa Fluor 488 

1:200 ThermoFisher 

Invitrogen (A-21200) 

Or Goat anti-rabbit IgG (H+L) Cross-

Adsorbed Secondary, Alexa Fluor 488 

1:200 ThermoFisher 

Invitrogen (A-11008) 

Table 2.5 List of fluorescent secondary antibodies used in this thesis. Detailed by 

the intended target and host species, concentration used, and vendor. 

 

A solution of DAPI (1:10,000, Sigma-Aldrich, D9542) was added and incubated 

for 10 minutes in the dark to stain all nuclei. The solution was removed, and 3 x 5 min 

washes with TPBS carried out. Slices were mounted on to gelatin-subbed microscope 

slides and left to dry for 5 mins before being coverslipped using Fluoroshield (Sigma-

Aldrich, F6182) mounting media. Imaging was performed using the epifluorescence 

Axio Imager M1 (Zeiss) microscope with an AxioCam MrM camera. 
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2.8 Open field test for locomotor activity 

All behavioural experiments were conducted between the hours of 8am and 

12pm, to control for circadian variation throughout the day. In a room with dimmed 

lights, four locomotor boxes (42 cm x 42 cm) were cleaned and a small amount of 

sawdust was scattered at the bottom of each locomotor box. A balanced experimental 

design was achieved by alternating which mouse genotype was placed in which box, 

and mice of the same sex were tested in a single session to avoid any effect of mixing 

sexes. A cohort of 2-4 month old mice were tested over a period of 3 days, and a 

separate cohort of 10-13 month old mice over a period of 2 days.  

Mice were placed in the centre of the locomotor box and recordings started 

immediately. Experimenters then left the room for the duration of the 90 minute 

recording period to allow mice to explore undisturbed. Locomotor activity was 

measured by beam breaks using the Auto-Track System for the Opto-Varimex 

(Columbus Instruments, USA). A measure of distance travelled (cm) was made at each 

minute and later grouped into 5 minute blocks. At each minute of recording, the number 

of seconds mice spent ambulatory was measured and averaged over the entire 90 

minute recording period to give an average measure of ambulatory time (seconds).  
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2.9 COX/SDH histochemistry 

COX/SDH histochemistry is an effective technique to identify mitochondrial 

dysfunction (Ross, 2011). Mice were anaesthetised with inhaled isoflurane before an 

intramuscular injection of ketamine and xylazine, as described in Chapter 2.2. Once 

eye blink and pedal withdrawal reflexes ceased, the brain was quickly removed and 

snap frozen using isopentane immersed in liquid nitrogen. Brains were stored at -80°C 

until ready to cryosection. Snap frozen whole brains were sectioned at 10 µm using a 

cryostat at -20°C and collected on to slides (Plus+ Frost positively charged microslides, 

Fisher Scientific). Three slices were collected per slide, each containing at least one 

hippocampus, and slides were then stored at -80°C. 

Slides were removed from the freezer and dried at room temperature for 1 hour 

before histochemistry. Individual slices were highlighted with a hydrophobic marker, 

and wherever possible slides were processed in large batches to maintain consistency 

in enzymatic reactions. The first slice of every slide was used as a control to ensure 

consistency of incubation media. Half of the controls received COX incubation media 

only, and the other half received SDH incubation media only. All other slices received 

both media sequentially. Mitochondrial Complex IV (COX) is encoded by mitochondrial 

DNA, whereas Complex II (SDH) is encoded by nuclear DNA (Ross, 2011).  

The COX incubation media was prepared by adding 100 µM Cytochrome c to 

1X DAB and mixed with a few crystals of catalase. 50 µL of COX media was applied 

to each slice, and all slides were incubated for 40 minutes at 37°C. The brown DAB 

product saturates cells with functional Complex IV (COX) activity. COX media was then 

removed carefully from each slide and 2 x 5 min washes with 0.1 M PBS were 

performed. After the final wash, excess PBS was removed from the slides. Sequential 

staining with SDH incubation media was then performed. 

The SDH incubation media was prepared by mixing together 1.5 mM nitroblue 

tetrazolium (NBT), 130 mM sodium succinate, 0.2 mM phenazine methosulfate (PMS), 

and 1.0 mM sodium azide. Care was taken to protect the PMS (and resultant final 

media) from light. 50 µL of SDH media was applied to each slice, and all slices were 

incubated for 40 minutes at 37°C. The blue product formed by NBT visualises Complex 

II (SDH) activity, and saturates cells not already saturated by the brown DAB product. 

SDH media was removed and 2 x 5 minute washes with 0.1 M PBS were carried out.  
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All techniques were carried out as previously described by the Mitochondrial 

Research Group at Newcastle University and reagents used are identical to those 

published previously (Betts et al., 2006; Robson et al., 2018). 

Slides were dehydrated through an ethanol concentration gradient (70%, 95%, 

100%, 100%) with 5 minutes at each concentration and 10 minutes in the final 100% 

concentration. Slides were then transferred to two consecutive pots of HistoClear for 5 

minutes of clearing in each. Slides were left in the final pot of HistoClear until 

coverslipped. Slides were mounted with DPX (Fisher Scientific, #15538321) and then 

coverslipped, before being left to dry overnight before imaging took place. A summary 

of the COX/SDH histochemical technique can be seen in Figure 2.3. 

 

Figure 2.3 Summary of COX/SDH histochemistry. A) Schematic of the electron 

transport chain complexes I to IV, showing Complex II (SDH) and Complex IV (COX). 

B) Diagram of individual cells staining brown with functional COX, or blue without 

functional COX in the case of mitochondrial dysfunction. 

 

Using an Olympus BX51 stereology microscope with an Olympus U-TV1X-2 T2 

camera, images were taken at x10 magnification of the CA3 region of the 

hippocampus. All slides were assigned a random numerical value to blind the imaging 

and quantification processes. Using ImageJ’s histogram tool, a freehand selected area 

of the CA3 pyramidal layer was analysed for mean RGB (red, green, blue) values from 

0 to 255. All values were noted, but the mean blue value was compared as a measure 

of mitochondrial dysfunction. Multiple slices (2-7) per mouse were averaged per 

animal, and then animals were compared by group. 
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2.10 Statistical Analysis 

All statistical analysis was performed using SigmaPlot (Systat Software Inc., 

USA). Graphs were produced using Prism (GraphPad Software, USA). Significance 

was defined as p < 0.05. All sample sizes (n) are presented in figure legends.  

Data were tested for normality (Shapiro-Wilk test) and equal variance (Brown-

Forsythe test). If data were found to follow a normal (Gaussian) distribution then 

parametric tests were applied. Data were always treated as non-parametric if the group 

overall did not follow a normal distribution, including the area power of oscillations, the 

frequency of sharp waves and interictal discharges, and measures of optical density. 

Parametric data were presented as mean ± standard error of the mean (SEM) and 

plotted as bar charts or line graphs with error bars representing SEM. Non-parametric 

data were presented as median with interquartile range (IQR, Q1 – Q3) and plotted as 

boxplots with individual data values marked with “o”. 

To compare two independent samples, unpaired t tests were used if data were 

parametric or the Mann-Whitney rank sum test was used if data were non-parametric. 

To compare the effect of two independent variables on one dependent variable, a 2-

way ANOVA was used if data were parametric or a 2-way ANOVA on ranks if data 

were non-parametric. If comparisons were made over the same set of slices, the test 

incorporated repeated measures (RM). If significance was found, multiple comparisons 

were performed post-hoc using the Holm-Sidak test. Holm-Sidak allows for multiple 

comparisons with more power than the Bonferroni or Tukey methods, while not being 

restricted to use following ANOVA as the Tukey method is (Seaman et al., 1991).  

A post-hoc power analysis was performed using G*Power 3.1.9.2 software 

(University of Düsseldorf, Germany) to estimate the observed power of each 

experiment, incorporating both effect size and sample size (Faul et al., 2007). Power 

is inversely correlated to the obtained p value, and therefore non-significant effects will 

always compute a low observed power (Hoenig and Heisey, 2002). As a result, post-

hoc power analysis was only carried out when p < 0.05 as a measure of the power to 

detect a difference as statistically significant when a true difference exists. The 

probability of making a type I error (α) was set at 5%. The probability of making a type 

II error (β) was set at 20%. Power is inversely related to β and is defined as 1 – β. 

Adequate statistical power is generally defined as ≥ 0.8 (80%). 
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A chi-square test (χ2) was used to compare observed proportions against 

expected proportions, with the assumption that data should be equally distributed 

between groups. The following equation was used to compute a χ2 value, where o is 

observed data and e is expected data. A χ2 value of 0 would represent that the 

observed and expected data were equal. 

 

The null hypothesis of the chi-square test is that there is no significant difference 

between variables. Hypothesis testing was carried out by examining a χ2 distribution 

table to obtain a χ2 value for the level of significance desired (p < 0.05) using the 

degrees of freedom (df = groups – 1). If the computed χ2 value is larger than the χ2 

value for p < 0.05, then the null hypothesis can be rejected.  
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Chapter 3. Spontaneous Hippocampal Network Activity  
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3.1 Introduction 

ASYN is proposed to play a role in neurotransmitter release and vesicle 

trafficking. The A30P mutation can alter ASYN’s role in neurotransmitter release, with 

evidence suggesting that the A30P mutation leads to ASYN losing vesicle-binding 

properties (Jensen et al., 1998). The effect that such factors may have on spontaneous 

network activity in acute hippocampal slice preparations has not yet been explored in 

mouse models of alpha-synucleinopathy.  

Hippocampal network activity is dependent on contributions from both excitatory 

pyramidal cells and inhibitory interneurons. Notably, fast-spiking PV+ interneurons play 

a variety of roles within the hippocampus including synchronising IPSPs in fast network 

oscillations (Buzsaki et al., 1983) and driving spontaneous sharp waves (SPWs) in 

rodent slices (Hajos et al., 2013; Schlingloff and Kali, 2014). SPWs are physiological 

events proposed to play a role in memory consolidation (Buzsaki, 1998; Siapas and 

Wilson, 1998). The mechanisms of SPWs have been explored over the years, where 

SPWs have been shown to be inhibitory events correlating with the arrival of IPSPs in 

pyramidal cells following synchronous activity of interneurons (Maier et al., 2002; 

Papatheodoropoulos and Kostopoulos, 2002a; Wu et al., 2002; Kubota et al., 2003; 

Colgin et al., 2004; Wu et al., 2005a; Wu et al., 2006a; Hajos et al., 2013). 

More recently, SPWs have been reported at a higher incidence in a double 

transgenic amyloid precursor protein (APP)/presenilin-1 (PS1) mouse model of AD 

(Reyes-Marin and Nunez, 2017), though no difference in SPWs was found in mice 

overexpressing APP alone (Hermann et al., 2009). Reduced inhibitory control of SPWs 

was observed in a mouse model of tauopathy with no effect on SPW frequency (Witton 

et al., 2016). To our knowledge, spontaneous SPWs have not yet been examined in 

acute brain slice preparations in mouse models of alpha-synucleinopathy. 

Spontaneous gamma-frequency oscillations have been explored using rodent 

slices with respect to their mechanisms, where their appearance has been shown to 

be dependent on the preservation of cell viability and contribution from both excitatory 

and inhibitory network components (Skrobot, 2008; Pietersen et al., 2009; Modebadze, 

2014). Despite this, there has been little progress in exploring changes in spontaneous 

oscillations in mouse models of neurodegeneration beyond a reduction in the 

frequency of spontaneous theta oscillations established in a mouse model of AD 

expressing a double mutant form of human APP (Goutagny et al., 2013). 
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Given the importance of inhibitory interneurons in the generation of both SPWs 

and spontaneous oscillations, it is of interest to note that lower expression of ASYN is 

found in inhibitory interneurons compared to pyramidal cells in a mouse cell culture 

model expressing human WT ASYN (Taguchi et al., 2014). A similar finding of low 

expression levels was found post-mortem in DLB patients (Bernstein et al., 2011), 

where ASYN was found to infrequently colocalise with PV+ interneurons though a 

partial loss of PV+ cells had occurred. A loss of fast-spiking PV+ interneurons is of 

particular interest given their role in cognitively relevant gamma-frequency oscillations. 

Indeed, a leftward shift in spectral power and slowing of EEG rhythms has been noted 

in both DLB patients (Andersson et al., 2008; Bonanni et al., 2008; Stylianou et al., 

2018) and mice over-expressing human WT ASYN (McDowell et al., 2014; Morris et 

al., 2015), which may be a consequence of altered interneuron function. 

Fast-spiking PV+ interneurons are particularly vulnerable to oxidative stress 

(Steullet et al., 2010; Cabungcal et al., 2013b) and mitochondrial dysfunction (Kann, 

2016) as a result of their increased metabolic demands and high density of 

mitochondria (Inan et al., 2016; Kann, 2016). The presence of PNNs surrounding fast-

spiking interneurons afford them with some protection against oxidative stress and 

excitotoxicity (Morawski et al., 2004). Changes in resistance to oxidative stress and 

excitotoxicity may therefore underpin PV+ interneuron loss in human post-mortem 

tissue (Bernstein et al., 2011; Morris et al., 2015), despite low expression of ASYN in 

vulnerable fast-spiking interneurons (Gomez-Tortosa et al., 2001). 

Another consequence of altered inhibition was reported by Morris et al. (2015) 

in the form of epileptiform EEG activity in mice overexpressing human WT ASYN under 

the Thy-1 promoter. The authors further found that network excitability was associated 

with a loss of excitatory CB+ granule cells in the dentate gyrus. Recent evidence 

suggests that a direct epigenetic downregulation of CB expression in dentate gyrus 

granule cells can occur through proteins activated by increased neuronal activity (You 

et al., 2017). While CA3 region CB+ interneurons specifically have not yet been 

examined in A30P mice, CB knockout mice do exhibit a deficit in hippocampal 

dependent memory processes and so their role should be considered with relevance 

to cognitive dysfunction (Moreno et al., 2012). The hippocampus is a dynamic network 

capable of compensatory changes and mechanisms of neurodegeneration can be 

explored through changes within the excitatory/inhibitory (E/I) network.  
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3.2 Aims 

• To assess the incidence and characteristics of spontaneous hippocampal 

activity in vitro in the form of spontaneous oscillations and spontaneous SPWs 

in A30P and age-matched wild type mice from 2 to 13 months of age. 

 

• Explore changes in GABAergic interneuron populations and associated 

perineuronal nets through immunohistochemical staining.  
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3.3 Methods 

Acute hippocampal slice preparations were made following perfusion of sucrose 

artificial CSF according to methods described in Chapter 2.2. Slices were transferred 

from a holding chamber after 1 hour and placed into the recording chamber. Field 

electrodes were immediately inserted into various regions of the hippocampus (CA3 

and CA1 stratum radiatum) to map spontaneous SPW activity.  

Spontaneous SPWs were detected and quantified using AxoGraph’s peak 

detect function following a measure of standard deviation of baseline. Peaks were 

defined as a negative event 5* the standard deviation of baseline. Peaks detected were 

visually confirmed to be spontaneous SPWs rather than electrical mains noise (noise 

is generally > 1 mV and occurring on both channels at same time). The frequency (Hz) 

and average amplitude (µV) of detected peaks over 60 seconds were measured. 

Measurements were repeated after 45 minutes in the CA3 st. radiatum to 

monitor SPWs over time and check for the emergence of spontaneous network 

oscillations. Spontaneous oscillations were defined by the presence of a discernible 

peak between 15 and 45 Hz. This was then quantified in AxoGraph to give the peak 

frequency (Hz) and area power (µV2). Sharp electrode intracellular recordings were 

carried out in CA3 st. pyramidale as outlined in Chapter 2.5, with a field electrode 

placed in the adjacent CA3 st. radiatum to confirm the presence of SPWs in a slice. 

For pharmacological experiments with spontaneous SPWs, baseline recordings 

were made 45 minutes after slices were placed in the recording chamber, and D-AP5 

(100 µM), gabazine (100 nM), or CCH (10 µM) were bath applied. A measure of SPW 

frequency (Hz) and amplitude (µV) was made before and after drug exposure. 

Following electrophysiological recordings, slices were fixed in 4% PFA as 

described in Chapter 2.7. No slices used for immunohistochemistry exhibited interictal 

activity, to control for the effect that this may have on the network. Free-floating 

immunohistochemistry was carried out using an anti-human ASYN antibody, anti-PV 

antibody, WFA lectin, or anti-CB antibody as detailed in Chapter 2.7.  Cells positive for 

each antigen were counted using StereoInvestigator and normalised to mm2. ImageJ 

was used for a measure of optical density. Finally, double immunofluorescence was 

used to examine colocalisation of human ASYN with PV+ or CB+ cells. 
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3.4 Results 

3.4.1 Expression of human ASYN within the A30P mouse hippocampus 

To justify the study of the hippocampus within the Thy-1 A30P mouse model it 

is important to first confirm and quantify the levels of human ASYN within this region. 

Whilst mice were initially genotyped to establish a homozygous breeding colony, DAB 

peroxidase staining was utilised to confirm the presence of human ASYN within the 

mouse hippocampus specifically, given that a number of reports in the literature have 

implicated region-specific expression of human ASYN according to which promoter 

and line is used (Kollias et al., 1987; Rockenstein et al., 2002).  

Slices from WT mice were not immunoreactive due to a lack of expression of 

the human ASYN antigen (Figure 3.1A). On the other hand, slices from A30P2+ and 

A30P10+ mice showed human ASYN expression in hippocampal regions CA3 and 

CA1 (Figure 3.1B). Immunoreactivity was largely confined to the pyramidal layer and 

human ASYN appeared to be present in a large number of pyramidal cells (identified 

by their pyramid shaped soma concentrated in stratum pyramidale).  

 Interestingly, slices from young A30P mice tended to exhibit a pattern of 

immunoreactivity more confined to deep pyramidal cells than superficial pyramidal 

cells. There is growing interest in the deep and superficial separation of the 

hippocampal pyramidal cell layer, though physiological differences in connectivity and 

expression patterns must be elucidated before investigation in to changes in alpha-

synucleinopathy can be fully explored (Slomianka et al., 2011). Deep pyramidal cells 

are defined by a cell body close to stratum oriens and the basal dendrites, whilst 

superficial pyramidal cells are defined by a cell body close to stratum radiatum and the 

apical dendrites (Slomianka et al., 2011). Ageing A30P mice tended to show 

immunoreactivity across both deep and superficial pyramidal cells.  

CA3 and CA1 region human ASYN+ cells were next quantified, without 

differentiating between cell types. As age-matched WT mice do not express human 

ASYN, A30P mice were directly compared between 2+ months and 10+ months of age, 

and between regions CA3 and CA1. No difference was found in the density of ASYN+ 

cells between slices from A30P2+ and A30P10+ mice within regions CA3 or CA1 

(Figure 3.1C), though there was overall a higher density of human ASYN+ cells within 

region CA1 compared to region CA3, regardless of the age of A30P mice (A30P2+ 

CA3 223.8 cells/mm2 ± 32.0, CA1 414.0 cells/mm2 ± 43.3; A30P10+ CA3 233.8 
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cells/mm2 ± 13.5, CA1 395.7 cells/mm2 ± 58.0; mouse age p > 0.05, region p < 0.05, 

interaction p > 0.05; 2-way ANOVA; effect size = 16.94, power (1 − β) = 0.99).  

 

Figure 3.1 Expression of human ASYN in the A30P mouse hippocampus. (A) 

Representative greyscale images at x10 magnification show lack of immunoreactivity 

in WT mouse slices (n = 6 slices from 3 mice) in region CA3 (A), and predominantly 

pyramidal layer expression of ASYN in A30P2+ and A30P10+ mouse CA3 and CA1 

regions (B). A number of slices from A30P2+ mice showed deep pyramidal cell 

immunoreactivity, compared to slices from A30P10+ mice which showed 

immunoreactivity in both deep and superficial pyramidal cells. Scale bars represent 

100 µm. (C) Line graph to show ASYN+ cells/mm2 in slices from A30P2+ (n = 12 slices 

from 6 mice) and A30P10+ mice (n = 17 slices from 7 mice) in regions CA3 and CA1. 
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The overall increased density of cells in region CA1 compared to region CA3 

has been reported to be a physiological difference in mice (Coulin et al., 2001; Jinno 

and Kosaka, 2010), rather than regional variation in human ASYN expression. The 

findings so far are consistent with reports in the literature that human ASYN expression 

in A30P mice plateaus at 3 - 4 weeks postnatal, and only changes in ASYN 

aggregation, oligomerisation, and phosphorylation occur with ageing (Neumann et al., 

2002; Schell et al., 2009; Ekmark-Lewen et al., 2018). Furthermore, changes in which 

pyramidal cells express human ASYN may be impacted by the extracellular spread of 

ASYN (Lee et al., 2014a) and should be examined more closely in future work. 

Whilst expression of human ASYN within hippocampal pyramidal cells has been 

established in this thesis and also previously in A30P mice (Szego et al., 2013), it is a 

contentious matter in the literature as to how highly ASYN is expressed within inhibitory 

interneuron populations. Examination of post-mortem DLB tissue has previously 

reported a loss of PV+ interneurons, particularly within the dentate gyrus and region 

CA1, as well as a loss of CB+ granule cells from the dentate gyrus (Bernstein et al., 

2011; Morris et al., 2015). As this chapter focuses on interneuron changes in alpha-

synucleinopathy, I decided to examine human ASYN expression within PV+ and CB+ 

interneurons in regions CA3 and CA1 of the A30P mouse hippocampus. 

Human ASYN was found in hippocampal CA3 and CA1 region PV+ interneurons 

in A30P2+ mice and A30P10+ mice (Figure 3.2; A30P10+ mouse slices not shown). 

Conversely, CB+ interneurons in region CA3 did not colocalise with human ASYN in 

any slice examined at either age. In region CA1, CB is found in both pyramidal cells 

and interneurons (Freund and Buzsaki, 1996). Evidence of colocalisation with human 

ASYN was found in a number of what are presumed to be CA1 pyramidal cells. 
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Figure 3.2 Differential expression of human ASYN in CA3 interneurons. Double 

immunofluorescence for DAPI (grey, 405), PV+ interneurons or CB+ cells (green, 488) 

and human ASYN (red, Texas Red 594) shows colocalisation in A30P2+ mice 

compared to the lack of immunoreactivity in no primary control sections (NPC). Images 

taken at x40 magnification in region CA3 or CA1 (note that pyramidal cell expression 

of CB in region CA1 means that CB is not restricted to interneurons in this region). 

Scale bar represents 10 µm. White arrowheads indicate examples of co-localisation 

(yellow due to the overlap of red and green). A30P2+ n = 3 slices from 3 mice and 

A30P10+ n = 3 slices from 3 mice for each antibody and NPC. 
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3.4.2 No change in spontaneous network oscillations in A30P2+ mice 

It has been reported that the acute preparation of rodent hippocampal slices 

can lead to the appearance of spontaneous network oscillations in drug-free conditions 

of standard artificial CSF (Skrobot, 2008; Pietersen et al., 2009). Spontaneous gamma-

frequency oscillations have been shown to occur more frequently in slices from 

sucrose-perfused animals as this step is neuroprotective (Modebadze, 2014), 

particularly to inhibitory interneurons (Aghajanian and Rasmussen, 1989). It was 

therefore interesting to first examine spontaneous oscillations in A30P mice, as an 

indicator of the state of the hippocampal excitatory/inhibitory network. Extracellular 

field recordings from st. radiatum in the hippocampal CA3 region were classified as 

either showing a discernible peak within the defined 15 – 45 Hz gamma-frequency 

range (Figure 3.3A) or showing no discernible peak (Figure 3.3B).  

Upon comparing the proportion of spontaneously oscillating slices (Figure 3.3C) 

in WT2+ mice (20.8%; 5/24 slices) and A30P2+ mice (22.7%; 5/22 slices), no 

significant difference was found (χ2 (df 1) = 0.02, p > 0.05, chi-square test). Despite a 

slightly smaller sample size of 6 - 8 month old mice, the same proportion of slices were 

spontaneously oscillating in WT6+ mice (16.7%; 2/12 slices) and A30P6+ mice (16.7%; 

2/12 slices) (χ2 (df 1) = 0, p > 0.05, chi-square test). Likewise, a similar proportion of 

slices were spontaneously oscillating in WT10+ mice (20.0%; 4/20 slices) and 

A30P10+ mice (33.3%; 8/24 slices) (χ2 (df 1) = 0.98, p > 0.05, chi-square test). This 

indicates that sucrose perfusion led to a similar incidence of spontaneous oscillations 

in all age groups of WT and A30P mice.  

Spontaneous gamma-frequency oscillations were of a low amplitude overall, 

however the area power (Figure 3.3D) was not significantly different in age-matched 

WT control mice compared to slices from A30P2+ mice (29 µV2 [IQR 11 – 93] versus 

23 µV2 [IQR 12 – 83] respectively; p > 0.05, Mann-Whitney rank sum test), slices from 

A30P6+ mice (58 µV2 [IQR 53 – 63] versus 28 µV2 IQR [11 – 44] respectively; p > 0.05, 

Mann-Whitney rank sum test), or slices from A30P10+ mice (73 µV2 [IQR 26 – 190] 

versus 56 µV2 [IQR 16 – 140] respectively; p > 0.05, Mann-Whitney rank sum test).  

The peak frequency of spontaneous oscillations (Figure 3.3E) ranged from 17.8 

Hz to 42.1 Hz. Given this level of variability, no significant difference was found in peak 

frequency in age-matched WT control mice compared to slices from A30P2+ mice 

(26.4 Hz ± 2.6 versus 24.4 Hz ± 2.4 respectively; p > 0.05, unpaired t test), slices from  
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A30P6+ mice (27.2 Hz ± 8.8 versus 39.1 Hz ± 3.1 respectively; p > 0.05, unpaired t 

test), or slices from A30P10+ mice (26.6 Hz ± 1.5 versus 24.4 Hz ± 1.6 respectively; p 

> 0.05, unpaired t test). Therefore, in addition to a similar rate of occurrence, 

spontaneous oscillations were also similar in A30P mice in area power and frequency.  

Despite no statistically significant difference in spontaneous oscillation 

occurrence, area power, or frequency, it is possible that changes in the rhythmicity of 

observed activity had occurred in A30P mice. A value of rhythmicity index (RI) was 

computed in slices with spontaneous oscillations (Figure 3.4) and it was noted that 

spontaneous activity was not very rhythmic overall. Regardless, comparisons between 

WT and A30P mice revealed no significant difference in rhythmicity between age-

matched WT control mice and slices from A30P2+ mice (0.12 ± 0.06 versus 0.19 ± 

0.11 respectively; p > 0.05, unpaired t test), slices from A30P6+ mice (0.10 ± 0.03 

versus 0.15 ± 0.05 respectively; p > 0.05, unpaired t test), or slices from A30P10+ mice 

(0.11 ± 0.02 versus 0.11 ± 0.04 respectively; p > 0.05, unpaired t test).  

This indicates that all parameters of spontaneous gamma-frequency oscillations 

examined are likely similar in A30P mice. However, due to a low number of slices with 

spontaneous oscillations in our conditions a difference may not be detectable without 

a larger sample size. This could be achieved in future by modification of aCSF with 

neuroprotective compounds to further improve cell viability (Modebadze, 2014). 
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Figure 3.3 No difference in spontaneous 15 – 45 Hz oscillations in A30P mice. 

Representative power spectra and inset LFP traces show baseline activity with (A) and 

without (B) oscillations; 15 – 45 Hz range indicated. (C) % of slices oscillating in WT2+ 

(n = 24 slices from 12 mice), A30P2+ (n = 22 slices from 11 mice), WT6+ (n = 12 slices 

from 6 mice), A30P6+ (n = 12 slices from 6 mice), WT10+ (n = 20 slices from 9 mice), 

and A30P10+ mice (n = 24 slices from 8 mice). Boxplots showing area power (D) of 

spontaneous oscillations at each age in subset of slices spontaneously oscillating. Bar 

charts showing peak frequency (E) of spontaneous oscillations at each age. 
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Figure 3.4 No difference in rhythmicity of spontaneous oscillations in A30P mice. 

(A) Representative auto-correlations of spontaneous oscillations with RI values inset. 

(B) Bar charts to show RI in slices from WT2+ (n = 5 slices from 5 mice), A30P2+ (n = 

5 slices from 4 mice), WT6+ (n = 2 slices from 2 mice), A30P6+ (n = 2 slices from 2 

mice), WT10+ (n = 4 slices from 3 mice), and A30P10+ mice (n = 8 slices from 5 mice). 
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3.4.3 Presence of spontaneous SPWs in hippocampal slice preparations 

Another form of spontaneous network activity reported in rodent acute 

hippocampal slice preparations are spontaneous sharp waves (SPWs). In slices not 

spontaneously oscillating within the 15 – 45 Hz range, spontaneous SPWs were 

observed in a proportion of slices from all genotypes and ages of mice immediately 

after a slice was placed in the recording chamber (Figure 3.5A).  

No significant difference was found in the proportion of slices exhibiting SPWs 

(Figure 3.5B) between WT2+ mice (35.0%; 7/20 slices) and A30P2+ mice (31.8%; 7/22 

slices) (χ2 (df 1) = 0.04, p > 0.05, chi-square test). The same proportion of slices 

exhibited SPWs in WT6+ mice (22.2%; 2/9 slices) compared to A30P6+ mice (22.2%; 

2/9 slices), despite a smaller sample size in this age group (χ2 (df 1) = 0, p > 0.05, chi-

square test). Likewise, a similar proportion of slices exhibited SPWs in WT10+ mice 

(38.5%; 10/26 slices) compared to A30P10+ mice (26.7%; 4/15 slices) (χ2 (df 1) = 0.59, 

p > 0.05, chi-square test).  

SPWs were monitored for a further 45 minutes, at which point all groups showed 

a greater proportion of slices with SPWs (Figure 3.5C). This is likely due to slices 

adapting to the recording chamber environment over time. The proportion of slices 

exhibiting SPWs after 45 minutes was still not significantly different between WT2+ 

mice (60.0%; 12/20 slices) and A30P2+ mice (72.7%; 16/22 slices) (χ2 (df 1) = 0.76, p 

> 0.05, chi-square test). Equally, a similar proportion of slices exhibited SPWs in 

WT10+ mice (65.4%; 17/26 slices) and A30P10+ mice (66.7%; 10/15 slices) (χ2 (df 1) 

= 0.01, p > 0.05, chi-square test).  

Surprisingly, significantly more SPWs were seen in slices from A30P6+ mice 

(77.8%; 7/9 slices) compared to WT6+ mice (55.6%; 5/9 slices) following 45 minutes 

in the recording chamber (χ2 (df 1) = 3.84, p < 0.05, chi-square test). It is possible that 

this result may be due to an inadequate sample size to detect such a small effect, given 

that the observed power was only 25% (effect size = 0.48, power (1 − β) = 0.25). Due 

to the uncertainty about the reliability of this result, I decided to further explore SPW 

parameters using data recorded immediately after slices were placed in the recording 

chamber. This would allow a more accurate comparison of SPW parameters given a 

similar proportion of slices exhibiting SPWs at this immediate time-point. 



64 
 

 

Figure 3.5 Proportion of slices with SPWs upon immediate recording. (A) 

Representative traces showing baseline activity and spontaneous SPW activity in the 

CA3 st. radiatum in A30P and WT mice. % of slices with (black) and without (grey) 

SPWs immediately after being placed in the recording chamber (B) and following 45 

minutes in the recording chamber (C) in WT2+ (n = 20 slices from 10 mice), A30P2+ 

(n = 22 slices from 15 mice), WT6+ (n = 9 slices from 5 mice), A30P6+ (n = 9 slices 

from 5 mice), WT10+ (n = 26 slices from 10 mice), and A30P10+ mice (n = 15 slices 

from 8 mice). * indicates significance at p < 0.05.
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3.4.4 Increased SPW amplitude but not frequency in A30P2+ mouse CA3 region 

SPW activity is generated in CA3 and propagates to CA1 (Wu et al., 2005a; 

Bazelot et al., 2016), and so SPW frequency and amplitude in both regions were 

investigated in slices from WT and A30P mice immediately after slices were placed in 

the recording chamber. SPW number varied considerably between slices as some 

slices did not exhibit SPWs. As a result, SPW frequency (Figure 3.6A) was not 

significantly different in region CA3 between age-matched WT control mice and slices 

from A30P2+ mice (0 Hz [IQR 0 – 0.02] versus 0 Hz [IQR 0 – 0.02] respectively; p > 

0.05, Mann-Whitney rank sum test), slices from A30P6+ mice (0 Hz [IQR 0 – 0.02] 

versus 0 Hz [IQR 0 – 0.01] respectively; p > 0.05, Mann-Whitney rank sum test), or 

slices from A30P10+ mice (0 Hz [IQR 0 – 0.12] versus 0 Hz [IQR 0 – 0.02] respectively; 

p > 0.05, Mann-Whitney rank sum test). 

Similarly, no significant difference was found in region CA1 (Figure 3.6B) 

between age-matched WT control mice and slices from A30P2+ mice (0.02 Hz [IQR 0 

– 0.03] versus 0 Hz [IQR 0 – 0.02] respectively; p > 0.05, Mann-Whitney rank sum test) 

or slices from A30P10+ mice (0 Hz [IQR 0 – 0.05] versus 0 Hz [IQR 0 – 0.01] 

respectively; p > 0.05, Mann-Whitney rank sum test). No data were available for slices 

from A30P6+ mice within region CA1, though it is reasonable to assume that SPW 

frequency would not differ in this intermediate age group. 

Slices that did exhibit SPWs were next compared by SPW amplitude. 

Interestingly, SPWs in slices from A30P2+ mice were of a significantly greater 

amplitude in region CA3 (Figure 3.7A) compared to WT2+ mice (-69.49 µV ± 8.79 

versus -28.43 µV ± 3.92 respectively; p < 0.05, unpaired t test; effect size = 2.30, power 

(1 − β) = 0.98). This finding appeared to persist in slices from A30P6+ mice compared 

to WT6+ mice though statistical significance was not found (-65.98 µV ± 14.63 versus 

-23.14 µV ± 2.36 respectively; p > 0.05, unpaired t test). By 10+ months, slices from 

A30P mice showed no significant difference in SPW amplitude compared to WT10+ 

mice (-34.56 µV ± 2.78 versus -33.52 µV ± 4.35 respectively; p > 0.05, unpaired t test).  

Conversely, no significant difference in SPW amplitude was found in region CA1 

(Figure 3.7B) between WT mice and slices from A30P2+ mice (-47.98 µV ± 9.14 versus 

-58.52 µV ± 15.67 respectively; p > 0.05, unpaired t test) or A30P10+ mice (-53.35 µV 

± 12.39 versus -75.79 µV ± 36.69 respectively; p > 0.05, unpaired t test). This indicates 

a CA3-specific increase in spontaneous SPW amplitude in slices from A30P2+ mice. 
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Figure 3.6 No difference in SPW frequency in A30P mice. Boxplots to show SPW 

frequency in region CA3 (A) and CA1 (B) of slices from WT2+ (n = 21 slices from 10 

mice), A30P2+ (n = 23 slices from 15 mice), WT6+ (n = 9 slices from 5 mice), A30P6+ 

(n = 9 slices from 5 mice), WT10+ (n = 17 slices from 7 mice), and A30P10+ mice (n 

= 15 slices from 8 mice). (C) Schematic of mouse hippocampus showing electrode 

placement in CA3/1 st. radiatum. 
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Figure 3.7 Increased amplitude of SPWs in the A30P2+ mouse CA3 region. Bar 

charts to show SPW amplitude in region CA3 (A) and CA1 (B) in WT2+ (n = 7 slices 

from 6 mice), A30P2+ (n = 7 slices from 6 mice), WT6+ (n = 2 slices from 1 mouse), 

A30P6+ (n = 2 slices from 2 mice), WT10+ (n = 10 slices from 5 mice), and A30P10+ 

mice (n = 4 slices from 3 mice). * indicates significance at p < 0.05. (C) Schematic of 

mouse hippocampus showing electrode placement in CA3/1 st. radiatum.  
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It has previously been reported that the ventral hippocampus is more likely to 

exhibit SPWs in mouse hippocampal slices (Papatheodoropoulos and Kostopoulos, 

2002b; Papatheodoropoulos and Kostopoulos, 2002a; Wu et al., 2006a). Given the 

difference along the hippocampal dorsal/ventral axis in functionality and expression of 

receptors, dorsal/ventral differences in SPWs were next explored. 

Surprisingly, SPWs were found at a similar ratio (Figure 3.8A) between the 

dorsal (37.5%; 3/8 slices) and ventral (33.3%; 4/12 slices) hippocampus in WT2+ mice 

(χ2 (df 1) = 0.04, p > 0.05; chi-square test). A similar proportion of SPWs were also 

exhibited in dorsal (30.8%; 4/13 slices) and ventral (33.3%; 3/9 slices) slices in A30P2+ 

mice (χ2 (df 1) = 0.02, p > 0.05; chi-square test). Likewise, SPWs were found at a 

similar proportion between the dorsal (45.5%; 4/11 slices) and ventral (50.0%; 3/6 

slices) hippocampus in WT10+ mice (χ2 (df 1) = 0.30, p > 0.05; chi-square test), and at 

a similar proportion between dorsal (25.0%; 3/12 slices) and ventral (33.3%; 1/3 slices) 

slices in A30P10+ mice (χ2 (df 1) = 0.09, p > 0.05; chi-square test). Given the smaller 

number of slices from WT6+ and A30P6+ mice, it was not possible to explore 

dorsal/ventral differences.  

To explore SPW changes in A30P2+ mice further, data were separated by 

dorsal/ventral location in slices from WT2+ and A30P2+ mice. SPW frequency (Figure 

3.8B) was not dependent on dorsal/ventral slice location in WT2+ or A30P2+ mice 

(WT2+ dorsal 0 Hz [IQR 0 – 0.03]; WT2+ ventral 0 Hz [IQR 0 – 0.02]; A30P2+ dorsal 

0 Hz [IQR 0 – 0.02]; A30P2+ ventral 0 Hz [IQR 0 – 0.02]; mouse p > 0.05, location p > 

0.05, interaction p > 0.05; 2 way ANOVA on ranks). Similarly, SPW amplitude (Figure 

3.8C) was not dependent on dorsal/ventral slice location in WT2+ and A30P2+ mice 

(WT2+ dorsal -34.40 µV ± 3.15; WT2+ ventral -23.95 µV ± 5.76; A30P2+ dorsal -70.19 

µV ± 12.87; A30P2+ ventral -68.56 µV ± 14.49; genotype p < 0.05, location p > 0.05, 

interaction p > 0.05; 2-way ANOVA). This confirms that the increase in SPW amplitude 

in A30P2+ mice is present throughout the hippocampal axis.  

It was finally confirmed that the observed increase in SPW amplitude in slices 

from A30P2+ mice was likely not dependent on sex, as the increased SPW amplitude 

in A30P2+ mice persisted when data were separated by sex (WT2+ male -21.87 µV ± 

4.01 [n = 4 slices]; WT2+ female -37.17 µV ± 2.93 [n = 3 slices]; A30P2+ male -71.42 

µV ± 10.30 [n = 5 slices]; A30P2+ female -64.67 µV ± 23.07 [n = 2 slices]; genotype p 

< 0.05, sex p > 0.05, interaction p > 0.05; 2-way ANOVA, data not shown). 
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Figure 3.8 No difference in SPWs between dorsal/ventral slices. (A) % of 

dorsal/ventral hippocampal slices with (black) and without (grey) SPWs in WT2+ 

(dorsal n = 8 slices from 5 mice; ventral n = 12 slices from 8 mice), A30P2+ (dorsal n 

= 13 slices from 11 mice; ventral n = 9 slices from 8 mice), WT10+ (dorsal n = 11 slices 

from 8 mice; ventral n = 6 slices from 5 mice), and A30P10+ mice (dorsal n = 12 slices 

from 7 mice; ventral n = 3 slices from 3 mice). Boxplot to show SPW frequency (B) in 

dorsal and ventral hippocampal slices. Line graph to show SPW amplitude (C) in dorsal 

and ventral hippocampal slices. * indicates significance at p < 0.05. 
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3.4.5 IPSPs correlate with SPWs in A30P2+ mice 

To explore the intracellular correlate of SPWs, sharp intracellular recordings 

were performed in CA3 pyramidal cells with simultaneous LFP recording in st. radiatum 

in baseline conditions (Figure 3.9A). A subset of slices explored in section 3.4.4 were 

used for this experiment. SPWs were visually confirmed to correlate with the arrival of 

IPSPs in pyramidal cells. However, as SPWs are population events, more IPSPs were 

recorded within pyramidal cells than SPWs in the extracellular field. To achieve an 

overall comparison of the properties of IPSPs arriving in CA3 pyramidal cells, total 

IPSPs were compared regardless of whether they correlated to field SPWs. 

Slices from A30P2+ mice showed a significant increase in IPSP frequency 

recorded from CA3 pyramidal cells (Figure 3.9B) compared to slices from WT2+ mice 

(19.6 Hz ± 2.0 versus 7.3 Hz ± 2.0 respectively; p < 0.05, unpaired t test; effect size = 

4.05, power (1 − β) = 0.99). IPSP frequency in the absence of any drugs was noted to 

be significantly faster than the SPW frequency reported in the LFP in section 3.4.4. 

This is once again explained by the fact that SPWs are population events, and 

therefore not all IPSPs will contribute to SPW activity within the field.  

Spontaneous IPSP amplitude recorded from CA3 pyramidal cells (Figure 3.9C) 

was also significantly increased in slices from A30P2+ mice compared to slices from 

WT2+ mice (5.73 mV ± 0.53 versus 4.27 mV ± 0.20 respectively, p < 0.05, unpaired t 

test; effect size = 2.34, power (1 − β) = 0.76). Post-hoc power analysis revealed this 

experiment to be slightly underpowered at 76% observed power. This is likely due to 

the detected difference being marginal. Measurements of IPSP amplitude could benefit 

from a larger sample size in future experiments to detect such small changes. 

Regardless, this supports an increase in CA3 region IPSP frequency and amplitude at 

the same age that an increase in field SPW amplitude is observed in A30P2+ mice. 
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Figure 3.9 SPWs in the field correlate to the arrival of IPSPs in pyramidal cells. 

(A) CA3 region st. radiatum LFP and CA3 pyramidal cell intracellular (IC) recordings in 

slices from WT2+ (n = 4 cells from 3 mice) and A30P2+ mice (n = 3 cells from 3 mice). 

Bar charts of IPSP frequency (B) and amplitude (C) recorded from CA3 pyramidal cells 

in WT2+ and A30P2+ mice. * indicates significance at p < 0.05. 
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3.4.6 Pharmacological manipulation of spontaneous SPWs 

SPWs have been reported to be sensitive to GABAA receptor antagonism but 

not to NMDA receptor antagonism (Wu et al., 2006a). It has also been previously 

reported that application of choline suppresses SPWs and induces gamma-frequency 

oscillations in hippocampal slices (Fischer et al., 2014). The effect of each compound 

on CA3 region SPWs was therefore assessed in slices from WT2+ and A30P2+ mice 

to confirm that the underlying mechanisms of SPWs were similar in A30P2+ mice.  

It was first important to establish a measure of how SPWs changed over time 

before any experiments with pharmacological compounds could be carried out. This 

chapter previously established an increase in the proportion of slices with SPWs after 

45 minutes in the recording chamber. This 45 minute time-point is henceforth referred 

to as “baseline”, and SPW frequency and amplitude within CA3 st. radiatum were 

measured for a further hour by extracellular field recordings (Figure 3.10A). Only slices 

with SPWs present from baseline were included in pharmacological experiments. 

There was no significant change over one hour from baseline in SPW frequency 

(Figure 3.10B) in slices from either WT2+ or A30P2+ mice (WT2+ baseline 0.36 Hz 

[IQR 0.22 – 0.60] to WT2+ plus one hour 0.30 Hz [IQR 0.12 – 0.80]; A30P2+ baseline 

0.27 Hz [IQR 0.12 – 0.37] to A30P2+ plus one hour 0.22 Hz [IQR 0.08 – 0.32]; genotype 

p > 0.05, time p > 0.05, interaction p > 0.05, RM 2-way ANOVA on ranks).  

Similarly, there was no change over one hour in SPW amplitude (Figure 3.10C) 

in slices from either WT2+ or A30P2+ mice (WT2+ baseline -69.26 µV ± 20.31 to WT2+ 

plus one hour -80.25 µV ± 25.54; A30P2+ baseline -123.53 µV ± 24.50 to A30P2+ plus 

one hour -126.31 µV ± 34.48; genotype p > 0.05, time p > 0.05, interaction p > 0.05; 

RM 2-way ANOVA). This indicates that following 45 minutes in the recording chamber, 

SPWs reach a stable period over 1 hour with respect to SPW frequency and amplitude, 

allowing for reliable pharmacological manipulation. 
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Figure 3.10 SPWs remain stable for 1 hour in control conditions once 

established. (A) Representative traces after 45 minutes in recording chamber 

(“baseline”) versus 1 hour later in slices from WT2+ (n = 4 slices from 1 mouse) and 

A30P2+ mice (n = 3 slices from 2 mice). Boxplot to show SPW frequency (B) at 

baseline and 1 hour later in WT2+ and A30P2+ mice. Line graph to show SPW 

amplitude (C) at baseline and 1 hour later in WT2+ and A30P2+ mice. 
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3.4.6.1 SPW amplitude is reduced by GABAA receptor antagonism 

SPWs have previously been shown to be abolished by GABAA receptor 

antagonism (Wu et al., 2006a) and I first wanted to examine this mechanism in slices 

from A30P2+ mice. At low concentrations, gabazine has been shown to effectively 

antagonise the GABAA receptor (Heaulme et al., 1986; Wermuth et al., 1987) before 

leading to increased excitability and interictal discharges at higher concentrations 

(Behrens et al., 2007; Mann et al., 2009; Kolbaev et al., 2012). Therefore, a 

concentration of 100 nM was selected, and no interictal activity was observed at this 

concentration following extracellular field recordings for 1 hour in CA3 st. radiatum. 

The effect of GABAA receptor antagonism on SPW frequency and amplitude was 

therefore assessed in slices from WT2+ and A30P2+ mice (Figure 3.11A). 

Application of gabazine for 1 hour led to no significant change in SPW frequency 

despite a trend towards a decrease (Figure 3.11B) in slices from WT2+ and A30P2+ 

mice (WT2+ baseline 0.13 Hz [IQR 0.03 – 0.37] to WT2+ drug 0.07 Hz [IQR 0 – 0.17]; 

A30P2+ baseline 0.16 Hz [IQR 0.05 – 0.52] to A30P2+ drug 0.03 Hz [IQR 0 – 0.45]; 

genotype p > 0.05, drug condition p > 0.05, interaction p > 0.05; RM 2-way ANOVA on 

ranks). It should be noted that one slice in each group showed no SPWs after 1 hour 

of gabazine exposure, an effect that did not occur in control conditions. 

On the other hand, SPW amplitude (Figure 3.11C) was significantly reduced 

following bath application of gabazine in slices from both WT2+ and A30P2+ mice 

(WT2+ baseline -106.77 µV ± 43.94 to WT2+ drug -58.15 µV ± 32.52; A30P2+ baseline 

-131.45 µV ± 24.56 to A30P2+ drug -34.49 µV ± 12.69; genotype p > 0.05, drug 

condition p < 0.05, interaction p > 0.05; RM 2-way ANOVA; effect size = 4.61, power 

(1 − β) = 0.88). Despite a reduction in amplitude, SPWs were not abolished at this 

concentration of gabazine. 
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Figure 3.11 GABAA receptor antagonism significantly decreases SPW amplitude. 

(A) Representative traces before and after 1 hour of gabazine (100 nM) in slices from 

WT2+ (n = 3 slices from 2 mice) and A30P2+ mice (n = 4 slices from 2 mice). Boxplot 

to show SPW frequency (B) following gabazine application in WT2+ and A30P2+ mice. 

Line graph to show SPW amplitude (C) following gabazine application in WT2+ and 

A30P2+ mice. * indicates significance at p < 0.05.  
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3.4.6.2 SPWs are not sensitive to NMDA receptor antagonism 

SPW induction has previously been shown to be dependent on NMDA receptors 

(Behrens et al., 2005). Once established, SPWs are not dependent on NMDA 

receptors (Behrens et al., 2005; Wu et al., 2006b) and NMDA receptor antagonists 

may even increase SPW amplitude in rat hippocampal slices (Colgin et al., 2005). To 

investigate the role of NMDA receptors in SPW frequency and amplitude in slices from 

WT2+ and A30P2+ mice (Figure 3.12A), the NMDA receptor antagonist D-AP5 was 

applied at a concentration of 100 µM (Morris, 1989; Davis et al., 1992) for 1 hour. 

Application of D-AP5 had no significant effect on SPW frequency in the CA3 st. 

radiatum (Figure 3.12B) in slices from WT2+ or A30P2+ mice (WT2+ baseline 0.18 Hz 

[IQR 0.07 – 0.58] to WT2+ drug 0.20 Hz, [IQR 0 – 1.28]; A30P2+ baseline 0.10 Hz 

[IQR 0.03 – 0.37] to A30P2+ drug 0.28 Hz, [IQR 0.03 – 0.53]; genotype p > 0.05, drug 

condition > 0.05, interaction p > 0.05; RM 2-way ANOVA on ranks).  

Despite a trend towards an increase in SPW amplitude (Figure 3.12C) following 

D-AP5 application, especially in slices from A30P2+ mice, no significant change in 

SPW amplitude was found in slices from WT2+ or A30P2+ mice likely due to variability 

between slices (WT2+ baseline -76.37 µV ± 15.60 to WT2+ drug -91.26 µV ± 28.40; 

A30P2+ baseline -101.85 µV ± 20.81 to A30P2+ drug -161.50 µV ± 49.26; genotype p 

> 0.05, drug condition > 0.05, interaction p > 0.05; RM 2-way ANOVA). This confirms 

that SPWs are not sensitive to NMDA receptor antagonism in WT2+ or A30P2+ mice. 
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Figure 3.12 No effect of NMDA receptor antagonism on SPWs. (A) Representative 

traces before and after 1 hour of D-AP5 (100 µM) in slices from WT2+ (n = 8 slices 

from 5 mice) and A30P2+ mice (n = 6 slices from 6 mice). Boxplot to show SPW 

frequency (B) following D-AP5 application in WT2+ and A30P2+ mice. Line graph to 

show SPW amplitude (C) following D-AP5 application in WT2+ and A30P2+ mice. 
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3.4.6.3 Cholinergic receptor agonism 

SPWs have previously been shown to be reduced and later abolished upon 

induction of fast network oscillations through cholinergic drive (Fischer et al., 2014). 

The effect of the cholinergic agonist CCH (10 µM) on CA3 st. radiatum SPW frequency 

and amplitude was therefore explored in slices from WT2+ and A30P2+ mice in the 

first 15 minutes of CCH bath application (Figure 3.13A).  

SPW frequency decreased within the first 5 minutes of CCH exposure and 

SPWs were abolished by 15 minutes in slices from both WT2+ and A30P2+ mice 

(WT2+ baseline 0.07 Hz [IQR 0.02 – 0.25] to WT2+ fifteen minutes 0 Hz [IQR 0 – 0]; 

A30P2+ baseline 0.07 Hz [IQR 0.02 – 0.35] to A30P2+ fifteen minutes 0 Hz [IQR 0 – 

0]; genotype p > 0.05, time p < 0.05, interaction p > 0.05, RM 2-way ANOVA on ranks; 

effect size = 1.57, power (1 − β) = 0.87). 

Equally, SPW amplitude decreased over 15 minutes until SPWs were abolished 

in slices from both WT2+ and A30P2+ mice (WT2+ baseline -78.42 µV ± 17.01 to 

WT2+ fifteen minutes 0 µV ± 0; A30P2+ baseline -89.80 µV ± 27.45 to A30P2+ fifteen 

minutes 0 µV ± 0; genotype p > 0.05, time p < 0.05, interaction p > 0.05, RM 2-way 

ANOVA; effect size = 2.26, power (1 − β) = 0.99). By 15 minutes, no slices showed 

SPWs and instead gamma-frequency oscillations started to emerge as previously 

described (Traub et al., 1992; Fisahn et al., 1998). This suggests that the underlying 

circuitry required for the initial generation of CCH-induced gamma-frequency 

oscillations is intact in slices from A30P2+ mice. 
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Figure 3.13 Induction of fast network oscillations with CCH abolishes SPWs. 

Representative traces of SPW activity over 15 minutes of CCH (A) in slices from WT2+ 

(n = 7 slices from 7 mice) and A30P2+ mice (n = 7 slices from 5 mice). Boxplot to show 

SPW frequency (B) over 15 minutes of CCH exposure in WT2+ and A30P2+ mice. 

Line graph to show SPW amplitude (C) over 15 minutes of CCH exposure in WT2+ 

and A30P2+ mice. * indicates significance at p < 0.05. 
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3.4.7 Increase in PV+ interneurons in the CA3 region of A30P2+ mice 

So far, this thesis has reported an increase in the frequency and amplitude of 

IPSPs arriving in CA3 pyramidal cells, and an increase in the amplitude of CA3 region 

GABAA receptor dependent SPWs in slices from A30P2+ mice. This chapter has also 

demonstrated the expression of human ASYN in PV+ interneurons within the CA3 and 

CA1 regions of the hippocampus. As the expression of PV in interneurons is plastic 

and can be modulated by activity (Donato et al., 2013), I therefore decided to explore 

PV+ interneurons in the CA3 and CA1 regions in A30P mice (Figure 3.14A). 

Interestingly, in region CA3 (Figure 3.14B) there was a significantly higher 

density of PV+ cells in slices from A30P2+ mice compared to WT2+ mice (33.5 

cells/mm2 ± 1.8 versus 26.8 cells/mm2 ± 1.6 respectively, p < 0.05, unpaired t test; 

effect size = 1.59, power (1 − β) = 0.82). Conversely, no difference was found between 

WT10+ and A30P10+ mice, indicating that PV+ cell density had decreased to similar 

levels as WT mice with ageing (28.2 cells/mm2 ± 5.3 versus 24.4 cells/mm2 ± 1.0 

respectively, p > 0.05, unpaired t test). 

No significant difference was found in PV+ cell density in region CA1 (Figure 

3.14C) in slices from WT2+ and A30P2+ mice, despite a trend towards an increase 

(55.9 cells/mm2 ± 15.0 versus 80.5 cells/mm2 ± 8.5 respectively, p > 0.05, unpaired t 

test). Similarly, no difference was found between slices from WT10+ and A30P10+ 

mice in region CA1 (57.9 cells/mm2 ± 14.3 versus 66.6 cells/mm2 ± 4.3 respectively, p 

> 0.05, unpaired t test). This indicates that there is a higher density of PV+ interneurons 

in slices from A30P2+ mice in the CA3, but not the CA1, region.  

Increased CA3 PV+ interneuron density in slices from A30P2+ mice was likely 

not dependent on dorsal/ventral hippocampal location (WT2+ dorsal 27.7 cells/mm2 ± 

4.9 [n = 3 slices]; WT2+ ventral 27.7 cells/mm2 ± 1.5 [n = 7 slices]; A30P2+ dorsal 38.0 

cells/mm2 ± 2.8 [n = 4 slices]; A30P2+ ventral 31.6 cells/mm2 ± 1.6, [n = 5 slices]; 

genotype p < 0.05, location p > 0.05, interaction p > 0.05, 2-way ANOVA; data not 

shown). Increased CA3 PV+ interneuron density in slices from A30P2+ mice was also 

likely not dependent on sex (WT2+ male 24.2 cells/mm2 ± 2.4 [n = 3 slices]; WT2+ 

female 29.5 cells/mm2 ± 2.4 [n = 3 slices]; A30P2+ male 33.4 cells/mm2 ± 1.9 [n = 5 

slices]; A30P2+ female 34.0 cells/mm2 ± 4.1 [n = 2 slices]; genotype p < 0.05, sex p > 

0.05, interaction p > 0.05; 2-way ANOVA; data not shown). 
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Figure 3.14 Increase in PV+ cells in the A30P2+ mouse CA3 region. Representative 

greyscale images at x4 magnification from WT and A30P mice in CA3/1 (A). White 

arrows indicate example PV+ cell. A plexus of PV+ axon terminals can be seen within 

st. pyramidale, with PV+ neurites extending through st. radiatum. Scale bar 100 µm. 

Bar charts show PV+ cells/mm2 in CA3 (B) and CA1 (C) in WT2+ (n = 10 slices from 6 

mice), A30P2+ (n = 9 slices from 6 mice), WT10+ (n = 6 slices from 3 mice), and 

A30P10+ mice (n = 9 slices from 5 mice). * represents significance at p < 0.05. 
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Another method to quantify immunohistochemistry previously used in the 

literature is a measure of optical density (OD) within a slice (Taylor and Levenson, 

2006; van der Loos, 2008; Helps et al., 2012; Bejnordi et al., 2016). OD was measured 

by selecting a region incorporating both the cell bodies of PV+ interneurons within st. 

pyramidale, as well as PV+ neurites throughout st. radiatum and st. lacunosum 

moleculare. An area encompassing PV+ neurites was selected due to the observation 

that slices from young mice of both genotypes appeared to show more PV+ neurite 

immunoreactivity than ageing mice and it was expected that OD may reflect this. 

Despite increased variance in the OD of slices from A30P2+ mice compared to 

WT2+ mice (Figure 3.15A), no significant difference was found in region CA3 or CA1 

(WT2+ CA3 0.28 [IQR 0.18 – 0.38]; WT2+ CA1 0.28 [IQR 0.19 – 0.42]; A30P2+ CA3 

0.17 [IQR 0.15 – 0.87]; A30P2+ CA1 0.17 [IQR 0.16 – 0.87]; mouse p > 0.05, region p 

> 0.05, interaction p > 0.05; 2-way ANOVA on ranks). Similarly, no difference was 

found in slices from A30P10+ mice compared to WT10+ mice (Figure 3.15B) in regions 

CA3 or CA1 (WT10+ CA3 0.23 [IQR 0.19 – 0.36]; WT10+ CA1 0.25 [IQR 0.24 – 0.41]; 

A30P10+ CA3 0.22 [IQR 0.20 – 0.30]; A30P10+ CA1 0.23 [IQR 0.20 – 0.32]; mouse p 

> 0.05, region p > 0.05, interaction p > 0.05; 2-way ANOVA on ranks).  

The use of OD to quantify DAB peroxidase staining is controversial given that 

the amount of DAB product is not directly proportional to the amount of antigen present 

(van der Loos, 2008). As OD data were not normally distributed, and some slices were 

noted to stain notably darker than others within the same batch, I decided to measure 

density (cells/mm2) henceforth for DAB peroxidase staining within this thesis. 

 

Figure 3.15 No change in optical density of PV+ slices in A30P mice. Boxplots to 

show optical density (OD) in regions CA3 and CA1 of (A) WT2+ (n = 10 slices from 6 

mice) and A30P2+ mice (n = 9 slices from 6 mice), and in regions CA3 and CA1 of (B) 

WT10+ (n = 6 slices from 3 mice) and A30P10+ mice (n = 9 slices from 5 mice). 
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3.4.8 Increase in PNN+ cells in the CA3 region of A30P2+ mice 

To further explore the increase in PV+ interneuron density in the A30P2+ mouse 

hippocampal CA3 region, the density of cells surrounded by a perineuronal net (PNN) 

was measured. As PNNs preferentially surround fast-spiking PV+ interneurons and 

afford them with protection against excitotoxicity (Morawski et al., 2004; Cabungcal et 

al., 2013a; Cabungcal et al., 2013b), I expected to find an increase in CA3 region PNN+ 

cells to correlate with the increase in PV+ interneuron density. 

Following immunohistochemistry for PNNs using lectin (Figure 3.16A), a mixture 

of CA3 region PNN+ cells with and without processes were observed as has been 

shown previously (Seeger et al., 1994). Consistent with the increase in PV+ cells in 

the CA3 region, slices from A30P2+ mice showed an increase in CA3 region PNN+ 

cell density (Figure 3.16B) compared to WT2+ mice (53.4 cells/mm2 ± 3.9 versus 41.6 

cells/mm2 ± 2.7 respectively; p < 0.05; unpaired t test; effect size = 1.71, power (1 − β) 

= 0.74). Post-hoc power analysis revealed that this experiment was slightly 

underpowered. This study could therefore benefit in future from an increased sample 

size as the change in PNN+ cell density was marginal. Conversely, the density of 

PNN+ cells in slices from A30P10+ mice was similar to slices from WT10+ mice (37.8 

cells/mm2 ± 4.5 versus 41.3 cells/mm2 ± 3.3 respectively; p > 0.05, unpaired t test). 

The increased density of CA3 region PNN+ cells in slices from A30P2+ mice 

was not dependent on dorsal/ventral hippocampal location (WT2+ dorsal 38.7 

cells/mm2 ± 6.0 [n = 3 slices]; WT2+ ventral 42.8 cells/mm2 ± 4.0 [n = 7 slices]; A30P2+ 

dorsal 50.8 cells/mm2 ± 4.3 [n = 6 slices]; A30P2+ ventral 54.2 cells/mm2 ± 5.2 [n = 4 

slices]; genotype p < 0.05, region p > 0.05, interaction p > 0.05; 2-way ANOVA, data 

not shown).  Furthermore, the increase in CA3 region PNN+ cell density in slices from 

A30P2+ mice was likely not dependent on sex (WT2+ male 42.3 cells/mm2 ± 4.5 [n = 

3 slices]; WT2+ female 40.4 cells/mm2 ± 2.5 [n = 2 slices]; A30P2+ male 55.6 cells/mm2 

± 4.6 [n = 3 slices]; A30P2+ female 47.6 cells/mm2 ± 0.4 [n = 2 slices]; genotype p < 

0.05, region p > 0.05, interaction p > 0.05; 2-way ANOVA, data not shown). 
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Figure 3.16 Increased PNN+ cells in the A30P2+ mouse CA3 region. (A) 

Representative greyscale images at x10 magnification of PNN expression in the CA3 

region of the hippocampus in WT and A30P mice. (B) Bar charts showing PNN+ 

cells/mm2 in the CA3 region of WT and A30P mice. WT2+ n = 10 slices from 5 mice, 

A30P2+ n = 10 slices from 4 mice, WT10+ n = 6 slices from 3 mice, A30P10+ n = 11 

slices from 4 mice. * indicates significance at p < 0.05. 
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3.4.9 Decrease in CB+ interneurons in the CA3 region of A30P2+ mice 

Whilst the majority of PNN+ cells within the hippocampus have previously been 

reported to be fast-spiking PV+ interneurons, a small proportion of CB+ cells with a 

PNN have been reported within the mouse medial entorhinal cortex (Lensjo et al., 

2017) and dentate gyrus (Yamada et al., 2015). A reduction of CB+ cells has been 

observed throughout the hippocampus in a rodent model of epilepsy (Carter et al., 

2008), and within the dentate gyrus of post-mortem DLB tissue and Thy-1 WT ASYN 

mice (Morris et al., 2015). As this chapter focuses on interneuron changes in A30P 

mice, I decided to explore changes in CB+ interneurons in region CA3 of A30P mice.  

The density of CB+ interneurons was measured within the A30P mouse CA3 

region (Figure 3.17A). This chapter has established that CB+ interneurons of region 

CA3 did not express human ASYN at detectable levels in A30P mice. It was surprising 

therefore that the density of CB+ interneurons in region CA3 (Figure 3.17B) was 

decreased in slices from A30P2+ mice compared to WT2+ mice (56.9 cells/mm2 ± 9.1 

versus 92.5 cells/mm2 ± 7.1 respectively; p < 0.05, unpaired t test; effect size = 2.52, 

power (1 − β) = 0.81). Despite a low sample size, this experiment was found to have 

an adequate observed power of 81% likely due to the magnitude of the effect size. 

CB+ interneurons are not as vulnerable to stress as fast-spiking interneurons 

(Kann, 2016), and as no loss of PV+ cells was found in A30P10+ mice, I expected to 

find no change in CA3 CB+ cell density in A30P10+ mice. Indeed, CB+ cell density in 

slices from A30P10+ mice was similar to WT10+ mice (77.6 cells/mm2 ± 3.4 versus 

66.5 cells/mm2 ± 10.6 respectively; p > 0.05; unpaired t test). There appeared to be a 

decrease in CB+ cell density with physiological ageing in WT mice, a finding previously 

reported in the rodent hippocampus and correlated to age-related cognitive decline 

(Potier et al., 1994; Soontornniyomkij et al., 2012; Flores-Cuadrado et al., 2016). 

The decrease in CA3 CB+ interneuron density in slices from A30P2+ mice was 

not dependent on dorsal/ventral hippocampal location (WT2+ dorsal 80.1 cells/mm2 ± 

10.7 [n = 3 slices]; WT2+ ventral 99.9 cells/mm2 ± 9.4 [n = 5 slices]; A30P2+ dorsal 

49.3 cells/mm2 ± 7.7 [n = 6 slices]; A30P2+ ventral 72.1 cells/mm2 ± 14.1 [n = 3 slices]; 

genotype p < 0.05, region p > 0.05, interaction p > 0.05; 2-way ANOVA, data not 

shown). Furthermore, the decrease in CA3 CB+ interneuron density in slices from 

A30P2+ mice was likely not dependent on sex (WT2+ male 92.6 cells/mm2 ± 18.0 [n = 

2 slices]; WT2+ female 92.5 cells/mm2 ± 9.2 [n = 6 slices]; A30P2+ male 56.3 cells/mm2 
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± 10.1 [n = 6 slices]; A30P2+ female 58.0 cells/mm2 ± 12.7 [n = 3 slices]; genotype p 

< 0.05, sex p > 0.05, interaction p > 0.05; 2-way ANOVA, data not shown). 

 

Figure 3.17 Decreased CB+ cells in the A30P2+ mouse CA3 region. (A) 

Representative greyscale images at x4 magnification from WT and A30P mice; CB+ 

interneurons of region CA3 and CB+ pyramidal cells of region CA1 can be seen. White 

arrows indicate example CA3 region CB+ interneuron. Scale bar 100 µm. (B) Bar 

charts to show CB+ cells/mm2 in the CA3 region in WT and A30P mice. WT2+ n = 8 

slices from 3 mice, A30P2+ n = 9 slices from 3 mice, WT10+ n = 8 slices from 3 mice, 

A30P10+ n = 5 slices from 2 mice. * represents significance at p < 0.05. 
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3.5 Discussion 

A summary of the key findings from Chapter 3 is presented below: 

• Expression of human ASYN in pyramidal cells and PV+ interneurons in 

A30P mice, but not in CB+ interneurons of the CA3 region. Overall 

density of human ASYN+ cells in A30P mice unchanged from 2-4 months 

to 10-13 months in both CA3 and CA1 regions. 

• No change in CA3 st. radiatum spontaneous network oscillations in slices 

from A30P mice with respect to the proportion of slices showing 

spontaneous activity, area power, peak frequency, or rhythmicity. 

• Increased amplitude of CA3 st. radiatum spontaneous SPWs in slices 

from A30P2+ mice but no change in SPW frequency or prevalence. 

• Increased amplitude and frequency of spontaneous IPSPs in A30P2+ 

mouse CA3 region pyramidal cells under drug-free conditions. 

• Increased density of CA3 region PV+ interneurons and PNN+ cells, and 

decreased density of CB+ interneurons in slices from A30P2+ mice. 

3.5.1 Differential vulnerability of CA3 region interneurons in A30P mice  

Earlier reports have shown that human ASYN is expressed within the 

hippocampus of Thy-1 A30P mice, though the cell types where expression occurs have 

not previously been explored (Rockenstein et al., 2002). This thesis set out to explore 

the presence of human ASYN within the A30P mouse hippocampus and confirmed 

previous findings that human ASYN is expressed within CA3/1 pyramidal cells (Szego 

et al., 2013).  For the first time, however, this thesis has demonstrated evidence of the 

differential presence of human ASYN in PV+ and CB+ interneurons in A30P mice. 

Previous optogenetic studies within the amygdala have found the Thy-1 

promoter to lead to expression of channelrhodopsins in glutamatergic neurons, but not 

PV+ or CB+ interneurons (Jasnow et al., 2013). Expression of human ASYN under the 

Thy-1 promoter in mice is entirely artificial rather than physiological. Murine ASYN has 

been shown to be present in glutamatergic, GABAergic, cholinergic, and 

catecholaminergic neurons (Vivacqua et al., 2011) and so a more effective model to 

consider for future use may be to remove and replace expression of murine ASYN with 

human ASYN expression. It is important to note, however, that the same promoter may 

express in different cells and regions of the brain due to random insertion of the 

transcript (Feng et al., 2000). This could result in different lines of the Thy-1 A30P 
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mouse expressing human ASYN in different cell types, and ensuring that the same line 

of A30P mice is used in future experiments based on this thesis is therefore crucial.  

Despite this, it is possible that human ASYN expression begins in glutamatergic 

pyramidal cells in the line of Thy-1 A30P mice described in this thesis, and spreads 

through extracellular ASYN release (Diogenes et al., 2012; Pacheco et al., 2015; 

Yamada and Iwatsubo, 2018). The presence of human ASYN in PV+ interneurons but 

not CB+ interneurons could be a result of the fast-spiking property of PV+ interneurons 

increasing uptake of extracellular human ASYN, or a failure of PV+ interneurons to 

degrade internalised human ASYN. To fully confirm the time-course of Thy-1 

expression however, it would be important to examine mice in the immediate postnatal 

period or generate a line that also express green fluorescent protein under the Thy-1 

promoter to identify which cells initially express human ASYN. 

Confirming the presence of human ASYN within neuronal subtypes based on 

immunohistochemistry alone is limited by the fact that human ASYN may be expressed 

in some cells below detectable levels. This may be improved by quantitative analysis 

of colocalisation using pixel intensity measures, as opposed to the qualitative analysis 

of colocalisation used in this thesis. Regardless, evidence of changes in human ASYN 

expression with ageing were demonstrated in this chapter by the changing pattern of 

ASYN expression in deep and superficial pyramidal cells. This somewhat anecdotal 

observation warrants further investigation, though such investigation would require the 

literature to advance considerably in reporting the physiological differences between 

deep and superficial pyramidal cells (Slomianka et al., 2011).  

This chapter has demonstrated that the presence of human ASYN within a 

certain neuronal population does not necessarily exclude changes from occurring in 

populations of neurons free from human ASYN. The surprising finding that young A30P 

mice exhibited a reduction in CA3 CB+ interneuron density despite the lack of human 

ASYN expression demonstrates this fact. It can be inferred that a reduction in cell 

density correlates with a decreased number of cells, though other possible 

explanations for this change exist including an increase in the size of cell bodies or a 

decrease in hippocampal size. However, it is proposed that changes in cell density 

throughout this chapter largely represent changes in cell number, rather than changes 

in hippocampal morphology, due to the altered density of PV+ interneurons, PNN+ 

cells and CB+ interneurons returning to levels comparable to WT mice with ageing.  
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Interpretation of cell density results presented in this chapter must be made with 

a degree of caution due to differences in cell density along the dorsal ventral 

hippocampal axis in mice (for review see Fanselow and Dong, 2010). Despite a similar 

number of sampled slices being taken from the dorsal and ventral hippocampus, the 

results do not necessarily represent changes throughout the entire hippocampal 

structure and may introduce bias in the form of pseudoreplication. Instead, stereology 

following serial sectioning of the entire hippocampal structure should be used in future 

to confirm the results obtained in this thesis (Golub et al., 2015). In addition, 

examination of the enzymes involved in the synthesis of GABA (GAD65/67) would help 

to reveal whether changes in PV and CB cell density are related to changes in cell 

number, or changes in expression of the calcium binding proteins. 

A transient decrease in CB expression within the dentate gyrus followed by 

normalisation has previously been reported in rats exposed to electroconvulsive 

shocks (Tonder et al., 1994), and a decrease in CB expression in the dentate gyrus 

was recently reported as an epigenetic response to increased neuronal activity (You 

et al., 2017). Despite both studies examining CB+ excitatory dentate gyrus granule 

cells, they demonstrate that CB is capable of adaptation and plasticity, particularly in 

response to neuronal activity. As this thesis has so far demonstrated increased 

GABAergic activity in young A30P mice, the decrease in CA3 region CB+ interneuron 

density in young A30P mice may be a compensatory response to increased 

GABAergic neuronal activity rather than a response to ASYN-induced cell death. 

Previous studies have found a decrease in hippocampal CB+ interneurons with 

physiological ageing in rodents, but no change in PV+ interneurons (Potier et al., 1994; 

Soontornniyomkij et al., 2012; Flores-Cuadrado et al., 2016). While a number of 

studies did not find physiological changes in CB+ interneurons until 24 – 26 months of 

age in rodents (Potier et al., 1994; Soontornniyomkij et al., 2012), one group monitored 

the change in CB+ interneurons at an earlier age and found a significant decrease by 

11 months of age (Flores-Cuadrado et al., 2016). This chapter therefore compliments 

existing literature in this respect though the literature does not explain the slight 

increase in CB+ interneuron density observed with ageing in A30P mice. 

The decrease in CB+ interneurons with physiological ageing is associated with 

a decline in recognition memory (Soontornniyomkij et al., 2012). Interestingly, the 

physiological decrease in CB+ interneurons does not occur in humans (Stefanits et al., 

2014), and as a result should be studied with some caution in mice. The fact that CA3 
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region CB+ interneuron density is significantly lower in slices from A30P2+ mice 

compared to slices from WT2+ mice may suggest an accelerated “ageing” process in 

A30P2+ mice where CB+ cell density is already reduced to the level of a 10-13 month 

old WT mouse. This is consistent with the lower density of CB+ cells found in a mouse 

over-expressing human A53T ASYN under the pan-neuronal prion protein promoter 

(Flores-Cuadrado et al., 2016), though the authors did find expression of human ASYN 

in some CB+ interneurons within this mouse model unlike in our A30P mice. 

It is interesting to note that both hippocampal PV+ and CB+ interneurons are 

reported to be mostly free from ASYN aggregates in DLB cases (Bernstein et al., 2011; 

Rcom-H'cheo-Gauthier et al., 2016) though both have also been found to be decreased 

in patients with DLB (Bernstein et al., 2011; Morris et al., 2015). It could therefore be 

proposed that the cells lost in DLB cases were those with ASYN aggregates, leaving 

only a surviving population of PV+ and CB+ cells with low ASYN expression or a lack 

of ASYN aggregates. ASYN was found to colocalise mainly within PV+ cells in the 

hippocampi of PD patients over other interneuron types (Flores-Cuadrado et al., 2016), 

so evidence in this thesis of human ASYN colocalisation with PV+ interneurons 

compliments findings in patients with alpha-synucleinopathy.  

Levels of total human ASYN+ cells in regions CA3 and CA1 were found to be 

unchanged between 2-4 months and 10-13 months of age in A30P mice. This 

compliments a previous finding in A30P mice in the brainstem and spinal cord (Ekmark-

Lewen et al., 2018), as well as the fact that Thy-1 promoter expression remains stable 

from 3-4 weeks of age (Kollias et al., 1987). The tendency for human ASYN expression 

to occur more in deep pyramidal cells than superficial pyramidal cells in A30P2+ mice 

was noted as an anecdotal finding to be explored in future work. This is particularly 

interesting given that deep pyramidal cells in region CA1 have lower CB expression 

compared to superficial pyramidal cells (Baimbridge and Miller, 1982). Young Thy-1 

A30P mice did, however, appear to show at least some co-localisation of human ASYN 

with CB+ pyramidal cells in region CA1. 

The selective increase in CA3 PV+ interneuron density in young A30P mice may 

be explained, in part, by the presence of human ASYN within PV+ cells. As PV+ 

interneurons are fast-spiking, their high energy demands make them more vulnerable 

to the effects of excitotoxicity (Kann, 2016). However, the presence of the PNN 

preferentially surrounding fast-spiking PV+ interneurons provides some protection 

against excitotoxic cell death (Cabungcal et al., 2013a). Whilst methods used in this 
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thesis did not differentiate between PV+ interneurons that were or were not fast-

spiking, the associated increase in PNNs may infer that the increase in PV+ cell density 

specifically impacts fast-spiking interneurons. Future work should utilise Kv3.1 channel 

markers and patch clamping of interneurons to explore this further. 

The proposal that fast-spiking PV+ interneurons are particularly vulnerable to 

changes in alpha-synucleinopathy is not entirely supported by the finding in this thesis 

that only CA3 PV+ interneuron density increased in A30P2+ mice, and not CA1 PV+ 

interneuron density. Whilst there was a trend towards a higher density of PV+ 

interneurons in this region in A30P2+ mice, this discrepancy can be reconciled by the 

fact that the CA3/2 region of the hippocampus is noted to be particularly vulnerable to 

the formation of Lewy bodies in human alpha-synucleinopathy (Churchyard and Lees, 

1997), and so the rate at which pathology occurs in this region may be accelerated. 

This chapter further found that slices from young A30P mice showed evidence 

of increased GABAergic interneuron activity in region CA3, but not region CA1, in the 

form of increased amplitude spontaneous SPWs and increased IPSP parameters. The 

observed increase in the density of PV+ interneurons within region CA3 in slices from 

A30P2+ mice correlated with the time-course of increased GABAergic activity. It can 

therefore be inferred that PV expression may either be causing the increase in 

GABAergic activity, or that excess GABAergic activity may be causing the increase in 

PV+ and PNN+ cell density. It has been reported that PV expression is upregulated in 

the substantia nigra of patients with PD post-mortem, compared to healthy controls 

and patients with AD (Soos et al., 2004). While the authors did not examine CB+ or 

CR+ interneurons, a more recent study found a selective increase in the density of 

CA3 region PV+ interneurons, but not CB+ or CR+ interneurons, in post-mortem tissue 

from cases with autism (Lawrence et al., 2010). The authors proposed that this may 

directly impact on information processing pathways within the hippocampus, as well 

as altering GABA receptor distribution (Lawrence et al., 2010). 

Beyond changes in GABAergic activity affecting SPWs and IPSP parameters, 

the consequences of increased PV+ interneuron activity may manifest as synaptic 

impairment with respect to LTP, for increased inhibition has been shown to impair LTP 

(Kleschevnikov et al., 2004). In addition, a decrease in CB has also been shown to 

lead to LTP impairment (Molinari et al., 1996) and this would be worth investigating in 

young and aged A30P mice especially given that human ASYN oligomers applied to 

hippocampal slices has been shown to oppose LTP (Diogenes et al., 2012). 
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Both PV+ interneuron density and the increase in GABAergic interneuron 

activity “normalised” with ageing in A30P mice. This is not to assume that values 

obtained in 10-13 month old mice are “normal”, but that A30P10+ mouse values were 

now comparable to WT10+ mouse values. Notably, the increase in PV+ interneurons 

in A30P2+ mice appears to decrease with ageing to become comparable to WT10+ 

mice. As PV+ interneuron density did not decrease below WT levels, this likely does 

not explain the age-dependent impairment in CCH gamma-frequency oscillations in 

A30P mouse slices reported by our group (Robson et al., 2018). However, this does 

not necessarily mean that PV+ interneurons are entirely functional. 

Finally, it should be noted that the recognition of calcium binding proteins such 

as PV and CB by antibodies is dependent on the Ca2+ binding status of the protein at 

the time of fixation (Winsky and Kuznicki, 1996; Zimmermann and Dours-

Zimmermann, 2008). Whilst care was taken to ensure that all slices examined for 

immunohistochemistry experienced a similar length of time in the recording chamber 

and were exposed to the same drugs, the change in PV+ and CB+ interneuron density 

observed in this thesis should be confirmed using tissue prepared by PFA perfusion of 

mice without electrophysiology, or by analysis of mRNA expression levels. 

3.5.2 Spontaneous network oscillations are intact in A30P mice 

Spontaneous gamma-frequency activity in acute hippocampal brain slice 

preparations possesses different pharmacological mechanisms to both KA and CCH-

induced gamma-frequency rhythms, though all are dependent on the 

excitatory/inhibitory network and GABAA receptors (Fisahn et al., 1998; Traub et al., 

2000; Pietersen et al., 2009). It has been proposed that spontaneous activity is a more 

physiologically relevant representation of the excitatory/inhibitory network within an 

acute hippocampal brain slice than KA or CCH-induced oscillations (Skrobot, 2008; 

Pietersen et al., 2009; Modebadze, 2014) and thus it was explored in the A30P model. 

It has been shown in this thesis that spontaneous gamma-frequency oscillations 

did not differ between WT and A30P mice at any age tested. This would appear to 

suggest that the excitatory/inhibitory network in A30P mice is capable of generating 

spontaneous network activity, and the changes in PV+ and CB+ interneurons, or the 

increased frequency and amplitude of IPSPs arriving in pyramidal cells, do not result 

in changes to spontaneous oscillations. The increased density and activity of 

interneurons does not always equate to more efficient inhibition within a network, 
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however, given that the precise timing of spikes and synchrony between neurons is 

also required to generate fast network oscillations.  

Fast-spiking PV+ interneurons play a critical role in the synchrony of fast 

network oscillations (Klausberger et al., 2005), whilst the role of CB+ interneurons is 

less clear. It could be inferred that the increase in CA3 region PV+ interneuron density 

led to the increase in IPSP frequency and amplitude recorded from CA3 pyramidal 

cells. As each model of gamma-frequency oscillations discussed in this thesis is 

dependent on different receptors, it follows that different subpopulations of 

interneurons may be employed in each type of activity. Therefore, despite PV+ 

interneurons being important for spontaneous, CCH-induced and KA-induced gamma-

frequency oscillations, further differentiation of PV+ interneurons by cell type (basket 

cell versus chandelier cell), expression of other markers such as neuropeptides, 

receptor subunit compositions, and electrophysiological properties could help to 

explore the consequence of increased PV+ interneuron density in young A30P mice. 

The possibility that the increase in IPSP parameters is a result of intrinsic PV+ 

interneuron excitability, as opposed to an enhanced postsynaptic response to GABA 

in pyramidal cells or an increase in pyramidal cell drive of interneurons (Palop et al., 

2007), can only be explored fully through patch clamping of interneurons. Future work 

should also measure the density of cells expressing the calcium binding protein 

calretinin. Though there is less evidence of changes in CR+ cells in alpha-

synucleinopathy, this thesis has proposed a spread of human ASYN throughout the 

hippocampal network and therefore all neuronal cell types should be explored. 

3.5.3 Altered spontaneous hippocampal SPWs in young A30P mice 

The mouse hippocampus has long been studied for its ability to generate 

spontaneous SPW activity (Wu et al., 2002). SPW incidence and frequency were found 

to be lower in this thesis compared to most studies on SPWs in the literature, and this 

is theorised to either be a result of the sucrose perfusion performed in this thesis or the 

fact that thicker slices are often employed in the literature to increase the appearance 

of SPWs through greater preservation of the network (Wu et al., 2005b). Furthermore, 

SPWs were observed in both dorsal and ventral slices in this thesis, whereas in the  

literature they have largely been reported in the ventral hippocampus 

(Papatheodoropoulos and Kostopoulos, 2002a). It is possible that the equal distribution 

of SPWs in dorsal and ventral slices in this thesis is a result of sucrose perfusion 

maintaining sufficient inhibition throughout the hippocampus. It has previously been 
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established that it is difficult to evoke LTP in slices from sucrose-perfused animals due 

to the preservation of GABAergic inhibition (Kuenzi et al., 2000) and that, interestingly, 

LTP is weak or absent in slices with SPWs (Colgin et al., 2004). The increase in SPW 

amplitude in slices from A30P2+ mice may therefore have a detrimental effect on LTP. 

The majority of the work in this thesis was carried out within the st. radiatum 

layer of the CA3 region and exploration into the fast ripple component of SPW ripples 

requires future recordings within st. pyramidale (Schonberger et al., 2014). The 

increase in SPW amplitude in the st. radiatum of slices from A30P2+ mice is interesting 

given that in a rodent model of temporal lobe epilepsy, spontaneous GABAergic 

inhibition of pyramidal cells was increased in st. pyramidale, but not st. radiatum 

(Cossart et al., 2001). This suggests that increased somatic inhibition of pyramidal cells 

is a compensatory response to prevent epileptiform activity from occurring. This is of 

particular interest to future work in classifying subtypes of PV+ interneurons in A30P2+ 

mice to deduce where the increase in PV+ interneuron activity is occurring specifically 

and what consequences this may have for excitability. 

The increase in SPW amplitude observed in A30P2+ mice normalised with age 

in a similar way to the increase in PV+ interneuron density. An increase in the 

amplitude but not the frequency of SPWs is proposed to represent either increased 

GABA release from interneurons, increased synchrony between interneurons, or an 

increased sensitivity of GABA receptors on pyramidal cells. However, increased PV+ 

interneuron density in A30P2+ mice suggests that the mechanism likely involves 

changes in either GABA release or synchrony. Despite an increase in both IPSP 

amplitude and frequency in CA3 pyramidal cells, SPWs are population events that 

require the synchronous action of a number of cells to occur. This explains the 

inconsistency between increased IPSP frequency and no change in extracellular SPW 

frequency, and may provide further support to changes in the synchrony between 

interneurons being an underlying mechanism of dysfunction in A30P mice. 

Spontaneous SPWs first appear from around postnatal day 10, stabilise after 

day 15, and persist into adulthood (Wong et al., 2005). This initial period coincides with 

the sharp increase in expression of human ASYN from week 1 to weeks 3-4 under the 

Thy-1 promoter in A30P mice. Human ASYN expression during postnatal development 

is therefore important to explore in future work. Furthermore, this time period also 

coincides with the development of the inhibitory network, particularly of PV+ 

interneurons (Schlosser et al., 1999). Conversely, CB+ interneuron density is highest 



95 
 

during embryogenesis and then decreases postnatally (Davila et al., 2005), also 

lending support to the decrease observed in CB+ interneurons in A30P2+ mice being 

an acceleration of the physiological decrease observed in WT mice with ageing.  

Due to their role in memory consolidation, SPWs have been explored in recent 

years in the context of diseases such as dementia (Ego-Stengel and Wilson, 2010). 

SPWs are impaired in both physiologically aged rats (Gerrard et al., 2008), and through 

reduced inhibitory control in a mouse model of tauopathy (Witton et al., 2016). It has 

previously been shown in the literature that SPWs are GABAA receptor dependent, 

NMDA-receptor independent (Wu et al., 2006a) and do not exist at the same time as 

network oscillations, which reflect a state of high IPSP synchrony (Fischer et al., 2014; 

Vandecasteele et al., 2014). This chapter confirmed this to be the case also in A30P2+ 

mice, indicating that the physiological mechanisms of SPWs are intact in A30P mice 

and the alteration comes only in the form of increased amplitude.  

Whilst the GABAA receptor antagonist gabazine had no significant effect on 

SPW frequency, the reduction in SPW amplitude is consistent with previous reports in 

which a higher concentration of gabazine was used to eliminate stimulus-induced 

SPWs prior to transformation into interictal discharges (Behrens et al., 2007). SPWs 

have been shown to be NMDA-receptor independent events once established (Colgin 

et al., 2005; Wu et al., 2006a), and this was confirmed in both WT and A30P mice. 

However, the increase in SPW amplitude due to NMDA receptor antagonism reported 

by Colgin et. al (2005) in rat hippocampal slices was not observed in this thesis. This 

may be the result of a higher density of neurons within the mouse brain (DeFelipe et 

al., 2002) altering vulnerability of SPWs to NMDA-receptor antagonism. 

While this chapter demonstrated evidence of an increase in SPW amplitude in 

slices from young A30P mice, no change was found in SPWs in slices from A30P10+ 

mice compared to WT10+ mice. This is interesting given that SPWs play a role in 

memory consolidation (Buzsaki, 1998; Siapas and Wilson, 1998) and yet previous 

evidence indicates an age-dependent hippocampal spatial memory impairment in 

A30P mice (Freichel et al., 2007). It is possible that in vivo recordings may elicit a more 

reliable measure of SPW activity and its role in cognition. 

3.5.4 Perineuronal net changes may be a neuroprotective adaptation 

One final component of the inhibitory interneuron network explored in this 

chapter is the expression of perineuronal nets. PNN expression has been found to 
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correlate closely to cells expressing higher levels of PV (Yamada et al., 2015). This 

could explain the increase in PNN+ cell density in young A30P mice if cells are 

upregulating PV expression. Interestingly, an increase in hippocampal PNN+ cells has 

been described previously in a mouse model of AD, though this was not accompanied 

by a change in the density of PV+ interneurons (Vegh et al., 2014). It is important to 

note, however, that evidence in the literature of PNN changes are often not specific to 

the N-acetylgalactosamine sugar measured in this thesis. The use of WFA lectin in this 

thesis to bind to N-acetylgalactosamine sugars in PNNs leads to the conclusion that 

the number of PNN-surrounded cells expressing this particular sugar is increased in 

young A30P mice, but changes in other residues remain to be explored. 

In this thesis, a higher density of PNN+ cells than PV+ interneurons was 

reported in region CA3. It was expected that the remaining PNN+ cells may have been 

compensated for by CB+ interneurons in region CA3, but I surprisingly found a lower 

density of CB+ interneurons in young A30P mice. It can therefore be inferred that the 

increased density of PNN+ cells may not reflect the number of cells, but rather an 

increase in the size of the PNN. This should be explored further in future work, though 

the age-dependent changes in PNN+ cell density and PV+ interneuron density appear 

to correlate by increasing, then decreasing, at the same ages in A30P mice. 

Interestingly, expression of the protein aggrecan in PNNs increases during 

postnatal days 10-28 and reaches a plateau around postnatal day 42 (Ye and Miao, 

2013). The PV+ interneuron network undergoes a vast amount of change during this 

postnatal period, and concurrent increases in human ASYN expression in the first 3-4 

weeks of life in A30P mice could disrupt this (Freichel et al., 2007). As a result, it is 

possible that the increase in PV+ and PNN+ cells could occur as a direct result of early 

ASYN disruption. However, the normalisation of SPW amplitude, PV+ interneuron 

density, and PNN+ cell density with age in A30P10+ mice appears to support that it 

may be a transient, compensatory response. Degradation of PNNs has been proposed 

to reduce fast-spiking interneuron excitability (Balmer, 2016). This indicates that the 

increase in PNN+ cells may increase the excitability of fast-spiking interneurons and 

lead to increased GABAergic activity, or that conversely, the increase in PNN+ cells 

could be a compensatory protective response to the increased GABAergic activity.  

 

 



97 
 

3.6 Conclusion 

So far, this work has shown that there are early changes in the GABAergic 

network in A30P mice, notably with respect to increased GABAergic activity in region 

CA3. This activity normalises with age in A30P mice to similar levels seen in WT mice. 

The A30P2+ mouse hippocampal CA3 region exhibits excess spontaneous inhibition, 

though no evidence of excess excitation in the form of spontaneous interictal or ictal 

activity was observed likely due to the increase in PV+ interneurons and PNNs.  

The increase in PV+ interneuron density and associated PNNs may be caused 

by the presence of human ASYN in PV+ interneurons. This, in turn, may be causing 

the increase in GABAergic activity. Alternatively, the increase in PV+ interneuron 

density may simply reflect the increased activity of fast-spiking interneurons rather than 

cause it. Conversely, a reduction in CA3 region CB+ interneurons was observed in 

A30P2+ mice compared to age-matched WT mice, which also normalised with ageing. 

It is proposed that this may be a compensatory change to increased fast-spiking 

interneuron activity, due to the lack of ASYN within CB+ interneurons. 

Despite the interneuron changes highlighted in this chapter, young A30P mice 

were not found in previous reports to show a hippocampal spatial memory impairment 

(Freichel et al., 2007), and this may be due to compensatory changes within the E/I 

network to maintain balance. The possibility of changes within the excitatory pyramidal 

cell network will therefore be explored in Chapter 4. 
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Chapter 4. Early Hippocampal Hyperexcitability in A30P mice 
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4.1 Introduction 

So far in this thesis, evidence has been found for altered CA3 region GABAergic 

activity in the CA3 region of young A30P mice in the form of increased PV+ interneuron 

density, increased PNN+ cell density, decreased CB+ interneuron density, increased 

IPSP frequency and amplitude, and increased amplitude of GABAA receptor 

dependent SPWs. All may impact on excitability within the hippocampus and/or be 

compensatory changes to excess neuronal activity. As no change in spontaneous 

network oscillations were reported in this thesis as a result of GABAergic changes, it 

follows that induced network oscillations should next be investigated. 

Work from our group has previously shown an age-dependent reduction in 

CCH-induced gamma-frequency oscillations in A30P mice by 9+ months of age 

(Robson et al., 2018), and so it follows that an alternate model of gamma-frequency 

oscillations acting through different mechanisms and induced with the kainate receptor 

agonist KA should be explored. KA is used to model seizure activity at high 

concentrations (Ben-Ari and Cossart, 2000), though at low concentrations KA induces 

fast network oscillations in acute brain slice preparations (Buhl et al., 1998; Hajos et 

al., 2000; Cunningham et al., 2003). Interestingly, it has previously been shown that 

KA-induced, but not spontaneous, gamma-frequency oscillations are reduced with 

physiological ageing in mice by 22-25 months of age (Lu et al., 2011). 

Kainate receptor agonism is proposed to drive the excitatory/inhibitory network 

in a similar way to spontaneous and CCH-induced gamma-frequency oscillations 

though differences in receptor contribution and subpopulations of interneurons have 

been reported (Skrobot, 2008; Pietersen et al., 2009; Modebadze, 2014). Whilst all 

three models of network oscillations are dependent on GABAA receptors, differences 

in response to pharmacological agonists and antagonists exist (Skrobot, 2008; 

Pietersen et al., 2009; Modebadze, 2014). As a result, the selective decrease in power 

of CCH-induced gamma-frequency oscillations (Robson et al., 2018) but no 

impairment in spontaneous oscillations as explored in Chapter 3 may begin to reveal 

the intricacies of receptor and interneuron population differences in A30P mice. 

As this thesis has reported an increase in PV+ interneurons in the CA3 region 

of slices from A30P2+ mice and a decrease in CB+ interneurons at the same age, I 

wanted to explore the consequence of altered GABAergic activity on KA-induced 

oscillations. KA-induced gamma-frequency oscillations have been shown to be 

reduced by disruption of fast-spiking PV+ interneurons and their synchrony (Fuchs et 
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al., 2007; Huang et al., 2016), however less is known about the role of CB+ 

interneurons in gamma-frequency oscillations.  

Given evidence of inhibitory network changes in A30P2+ mice, it was also 

decided to explore the role of astrocytes within the A30P mouse hippocampus. 

Astrocytes are specialised glial cells which play a variety of roles within a network, 

including but not limited to removal of excess neurotransmitters and control of network 

excitability through release of GABA (Heja et al., 2012), or conversely by converting 

inhibition to excitation (Perea et al., 2016). It was therefore proposed that astrocytes 

may play a role in conserving network balance by reducing excess inhibition in A30P2+ 

mice, or that they may even be responsible for the increase in inhibition.  

It has been shown that increased neuronal activity can alter astrocyte gene 

expression and function, leading to increased glucose metabolism by astrocytes, a 

process that is impaired in both physiological ageing and neurodegeneration (Hasel 

and Dando, 2017). Indeed, human WT ASYN has been shown to activate rodent 

astrocytes in culture (Lee et al., 2010) and an increase in GFAP immunoreactivity in 

astrocytes has been found in regions with more human A30P ASYN immunoreactivity 

in 8-11 month A30P mice (Ekmark-Lewen et al., 2018). As a result, evidence of 

astrocytic changes due to human ASYN expression will be explored in this chapter in 

the context of excitatory/inhibitory network disturbances in A30P mice. 

Imbalance in the excitatory/inhibitory network may manifest as hyperexcitability 

and epileptiform interictal or ictal activity. Indeed, a mouse model overexpressing 

human WT ASYN under the Thy-1 promoter recently showed evidence of in vivo EEG 

epileptiform activity associated with a loss of CB+ cells from the dentate gyrus (Morris 

et al., 2015). It has previously been reported that 21.7% of DLB patients exhibit 

myoclonic jerks (Morris et al., 2015), and the rates at which DLB patients experience 

myoclonus is greater than in AD with a recent estimate of a cumulative probability of 

58.1% (Beagle et al., 2017). More recently, a 14.7% cumulative probability of 

developing seizures after disease onset was reported in DLB patients, comparable to 

the probability of seizures in AD (Beagle et al., 2017). Evidence of excitatory/inhibitory 

network imbalance will be explored in more detail in A30P mice within this chapter. 
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4.2 Aims 

• Explore KA-induced gamma-frequency oscillations in the CA3 region of the 

hippocampus in A30P mice. 

 

• To investigate changes in astrocyte GFAP immunoreactivity, as a possible 

mechanism by which excitatory/inhibitory network balance changes.  
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4.3 Methods 

Once spontaneous baseline activity had been recorded, slices were left for 45 

minutes in the recording chamber to fully acclimatise to the new conditions and allow 

consistent extracellular local field potential recordings over a long period of time. KA 

was bath applied at a concentration of 50 nM to induce gamma-frequency oscillations. 

As not all slices oscillated at this concentration in preliminary experiments, the 

concentration was increased to 100 nM and it was at this concentration that 15 – 45 

Hz area power (µV2) and peak frequency (Hz) were compared in A30P mice. 

At a higher concentration of 150 nM KA, oscillations were classified to occur 

with or without “spikes”. Oscillations were first classified visually and later confirmed 

using AxoGraph’s peak detect function to detect peaks greater than 5 * standard 

deviation of baseline. The presence of interictal discharges (IIDs) were confirmed 

visually and analysed offline using peak detect functions in MATLAB to compute IID 

frequency (Hz) and IID peak-to-peak amplitude (mV): the difference between the 

maximum positive peak and the minimum negative peak. 

In a separate set of slices, sharp intracellular recordings were made of CA3 

pyramidal cells to explore changes in the intrinsic cell properties of resting membrane 

potential (mV), firing threshold (mV), spike frequency (Hz), and spike amplitude (mV). 

Spike parameters were computed by MATLAB as described in Chapter 2.6. 

Locomotor activity was measured by open field test as described in Chapter 2.8. 

Mice were compared by distance travelled (cm) over time blocked in to 5 minute 

intervals, and average ambulatory time (sec) at each minute averaged over the entire 

90 minute recording period. Mice using for locomotor testing were a separate cohort of 

mice from those used for in vitro experiments throughout this thesis. 

Immunohistochemistry for GFAP+ astrocytes was performed by free-floating 

immunohistochemistry, as described in Chapter 2.7, and quantified in region CA3 of 

WT and A30P mouse slices by density of GFAP+ cells per mm2. Slices used for 

immunohistochemistry did not exhibit interictal activity. 
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4.4 Results 

4.4.1 Increased power of KA-induced network oscillations in A30P2+ mice 

Whilst it has previously been shown by our group that CCH-induced gamma-

frequency oscillations exhibit an age-dependent reduction in power (Robson et al., 

2018), this thesis has so far demonstrated no change in spontaneous gamma-

frequency oscillations in slices from A30P mice. As each type of oscillation works 

through different mechanisms, I next set out to explore a third model of gamma-

frequency oscillations using low concentrations of the kainate receptor agonist KA. 

Following bath application of 50 nM KA, extracellular field recordings were 

performed in the st. radiatum of the CA3 region. The same proportion of slices 

exhibited gamma-frequency oscillations within 30 minutes from WT2+ mice (77.8%; 

7/9 slices) and A30P2+ mice (77.8%; 7/9 slices). Likewise, a similar proportion of slices 

exhibited gamma oscillations at 50nM KA from WT10+ mice (92.3%; 12/13 slices) and 

A30P10+ mice (100%; 13/13 slices). To reliably evoke gamma-frequency activity in all 

slices, the concentration of KA was increased to 100 nM in the same set of slices and 

a comparison of area power and frequency were made after 30 minutes. 

Slices from A30P2+ mice exhibited a significantly larger gamma-frequency area 

power at 100 nM KA (Figure 4.1A/B) compared to slices from WT2+ mice (5790 µV2 

[IQR 3220 – 29740] versus 1940 µV2 [IQR 1310 – 3520] respectively; p < 0.05, Mann-

Whitney rank sum test; effect size = 1.46, power (1 − β) = 0.75). Post-hoc power 

analysis revealed that this experiment was slightly underpowered, likely due to the 

increased variance of values in slices from A30P2+ mice limiting the magnitude of the 

effect size. It is unlikely that increasing the sample size would be beneficial, and instead 

attention should be turned to the fact that the largest area power values seen in 

A30P2+ mice were never seen in slices from WT2+ mice. 

Conversely, peak frequency at 100 nM KA (Figure 4.1C) was not significantly 

different between slices from A30P2+ and WT2+ mice (29.9 Hz ± 1.7 versus 30.0 Hz 

± 0.8 respectively, p > 0.05; unpaired t test). This indicates that slices from A30P2+ 

mice are more sensitive to the oscillogenic effects of KA. 
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Figure 4.1 Increased power of KA-induced oscillations in A30P2+ mice. 

Representative power spectra and LFP traces (inset) with scale bars in (A) WT2+ (n = 

9 slices from 5 mice) and A30P2+ mice (n = 9 slices from 7 mice). Boxplot to show 

area power (B) and bar chart to show peak frequency (C) in WT2+ and A30P2+ mice. 

Representative power spectra and LFP traces in (D) WT10+ (n = 13 slices from 4 mice) 

and A30P10+ mice (n = 10 slices from 3 mice). Boxplot to show area power (E) and 

bar chart to show peak frequency (F) in WT10+ and A30P10+ mice. 
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Upon comparing slices from A30P10+ and WT10+ mice at 100 nM KA (Figure 

4.1D/E), the dramatic increase in the area power of KA-induced oscillations observed 

in A30P2+ mice had decreased and no significant difference was found between slices 

from A30P10+ and WT10+ mice (1650 µV2 [IQR 360 – 3540] versus 830 µV2 [IQR 220 

– 3730] respectively; p > 0.05; Mann-Whitney rank sum test). Likewise, no difference 

was found in the peak frequency of oscillations (Figure 4.1F) between slices from 

A30P10+ and WT10+ mice (32.2 Hz ± 1.1 versus 29.3 Hz ± 6.3 respectively, p > 0.05; 

unpaired t test). This indicates that no gamma-frequency oscillation deficit occurs in 

A30P10+ mice when oscillations are induced with low concentrations of KA, unlike the 

deficits reported with CCH-induced oscillations (Robson et al., 2018). 

The increase in KA-induced gamma-frequency oscillation area power in slices 

from A30P2+ mice was confirmed not to be dependent on dorsal/ventral hippocampal 

slice location (WT2+ dorsal 1760 µV2 [IQR 920 – 3070] n = 6 slices; WT2+ ventral 3520 

µV2 [IQR 1930 – 5890] n =  4 slices; A30P2+ dorsal 5790 µV2 [IQR 520 – 29740] n = 

5 slices; A30P2+ ventral 5020 µV2 [IQR 1600 – 20640] n = 6 slices; genotype p < 0.05, 

location p > 0.05, interaction p > 0.05; 2-way ANOVA on ranks; data not shown). Due 

to a small number of slices from WT2+ female mice, it was not possible to explore the 

effect of sex on the area power of KA-induced gamma-frequency oscillations. 

The rhythmicity of an oscillation can give further indications as to how 

synchronous excitatory and inhibitory network components are, and this was also 

compared following 30 minutes of 100 nM KA (Figure 4.2). No significant difference 

was found between slices from WT2+ and A30P2+ mice (0.37 ± 0.05 versus 0.44 ± 

0.05 respectively; p > 0.05, unpaired t test) or between slices from WT10+ and 

A30P10+ mice (0.37 ± 0.05 versus 0.33 ± 0.05 respectively; p > 0.05, unpaired t test). 

Therefore, despite an increase in KA-induced oscillation area power in slices from 

A30P2+ mice, the rhythmicity of the oscillation was unchanged. Furthermore, the 

rhythmicity of KA-induced oscillations was not impaired in A30P10+ mice. 
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Figure 4.2 No change in rhythmicity of KA-induced oscillations in A30P mice. (A) 

Representative autocorrelations with associated rhythmicity index (RI) values in WT 

and A30P mice. (B) Bar charts to show computed RI values in slices from WT and 

A30P mice. WT2+ n = 9 slices from 5 mice, A30P2+ n = 9 slices from 7 mice, WT10+ 

n = 9 slices from 4 mice, A30P10+ n = 10 slices from 3 mice. 
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4.4.2 Interictal discharges in A30P2+ mice at low concentrations of KA 

To explore if 100 nM KA was the concentration that produced maximal gamma-

frequency oscillation power, the concentration of KA was further increased by 50 nM 

to 150 nM KA. At this concentration, 92.9% of slices from WT2+ mice (13/14 slices) 

exhibited a gamma frequency oscillation. The remaining 7.1% of slices from WT2+ 

mice (1/14 slices) exhibited a gamma-frequency oscillation with spikes, representative 

of a network with excess excitation (Figure 4.3). In contrast, 20.0% of slices from 

A30P2+ mice (3/15 slices) exhibited oscillations with spikes and a further 40.0% of 

slices (6/15 slices) surprisingly exhibited interictal discharges (IIDs) at 150 nM KA. 

As interictal activity was never seen in slices from WT2+ mice at 150 nM KA, I 

decided to examine network excitability in response to KA in another mouse model of 

alpha-synucleinopathy to explore if hyperexcitability is a common early occurrence. A 

cohort of mice over-expressing human WT ASYN under the PDGF promoter were 

included in this experiment at 2-6 months of age (henceforth referred to as PDGF2+ 

mice, see Chapter 2.1). Slices from PDGF2+ mice exhibited oscillations with spikes in 

38.1% of slices (8/21 slices), and IIDs in a further 14.3% of slices (3/21 slices).  

A comparison within the 2+ month age cohort confirmed a significant increase 

in the proportion of slices showing oscillations with spikes in PDGF2+ mice compared 

to both WT2+ and A30P2+ mice (χ2 (df 2) = 12.37, p < 0.05; chi-square test; effect size 

= 1.03, power (1 − β) = 0.90), as well as a significant increase in the proportion of slices 

with IIDs in both A30P2+ and PDGF2+ mice compared to WT2+ mice (χ2 (df 2) = 15.66, 

p < 0.05; chi-square test; effect size = 1.01, power (1 − β) = 0.89). This suggests that 

network excitability in response to KA may be a common early occurrence in mouse 

models of alpha-synucleinopathy. 

Next, I wanted to explore the effect of ageing on A30P mouse network 

excitability in greater detail by examining a cohort of 6-8 month WT and A30P mice. 

Slices from WT6+ mice exhibited oscillations with spikes in 20.0% of slices (2/10 slices) 

but still did not exhibit IIDs. Conversely, slices from A30P6+ mice exhibited oscillations 

with spikes in 31.3% of slices (5/16 slices) and IIDs in a further 31.3% (5/16 slices). 

Whilst the number of slices exhibiting oscillations with spikes was not significantly 

different between WT6+ and A30P6+ mice (χ2 (df 1) = 0.40, p > 0.05; chi-square test), 

the proportion of slices exhibiting IIDs was significantly larger in A30P6+ mice 

compared to WT6+ mice, indicating that excitability persists to at least 6-8 months (χ2 

(df 1) = 3.87, p < 0.05; chi-square test; effect size = 1.11, power (1 − β) = 0.85). 
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Figure 4.3 A30P2+ mouse slices exhibit IIDs in low concentrations of KA. Types 

of activity observed at 150 nM KA (A): gamma-frequency oscillations (red), gamma-

frequency oscillations with spikes (yellow), and interictal discharges (black). Proportion 

of slices showing each type of activity at 150 nM KA (B) in WT2+ (n = 14 slices from 9 

mice), A30P2+ (n = 15 slices from 10 mice), PDGF2+ (n = 21 slices from 12 mice), 

WT6+ (n = 10 slices from 6 mice), A30P6+ (n = 16 slices from 9 mice), WT10+ (n =  

16 slices from 10 mice), and A30P10+ mice (n = 14 slices from 9 mice). 
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With physiological ageing, slices from WT10+ mice started to exhibit IIDs in 

response to 150 nM KA. IIDs were observed in 12.5% of slices from WT10+ mice (2/16 

slices), and oscillations with spikes were observed in 6.3% of slices (1/16 slices). In 

contrast, slices from A30P10+ mice exhibited IIDs in 7.1% of slices (1/14 slices) and 

oscillations with spikes in 35.7% of slices (5/14 slices). This shows that the appearance 

of IIDs was now comparable to age-matched WT mice in slices from A30P10+ mice 

(χ2 (df 1) = 0.24, p > 0.05; chi-square test), but that a greater proportion of slices 

exhibited oscillations with spikes in A30P10+ mice compared to WT10+ mice (χ2 (df 1) 

= 4.05, p < 0.05; chi-square test; effect size = 0.74, power (1 − β) = 0.63). Post-hoc 

power analysis revealed that this experiment was underpowered. This is likely due to 

the marginal difference in the proportion of slices showing oscillations with spikes. 

Increasing the sample size for future experiments could be beneficial to improve the 

observed power and confirm that the effect is indeed significant. 

 Interestingly, 100% of slices with IIDs from A30P2+ and A30P6+ mice were 

from the dorsal hippocampus (A30P2+ IIDs in 6/15 slices, A30P6+ IIDs in 5/16 slices; 

data not shown). In 10-13 month old mice, slices with IIDs appeared more often in the 

dorsal hippocampus in both WT and A30P mice, but due to a low number of slices in 

each group with IIDs this could not be statistically confirmed. Furthermore, there was 

a possible trend towards more slices with IIDs being from male mice (data not shown). 

However, as this is based on a low number of slices, only a tentative conclusion 

regarding a sex difference should be drawn from this data. 

Sharp intracellular recordings were next performed in CA3 pyramidal cells whilst 

recording from the CA3 st. radiatum concurrently, to explore the intracellular correlate 

of IIDs. In 3 cells from A30P2+ mice, a large depolarising event was observed in CA3 

pyramidal cells at the same time as IIDs in the local field potential (Figure 4.4). IIDs 

were preceded by gamma-frequency oscillations before oscillations were briefly 

silenced after the discharge and then gradually increased in amplitude until the next 

IID. Whilst enough cells were collected to observe the intracellular correlate of KA-

induced IIDs, the sample size was not large enough to quantify activity beyond this. 
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Figure 4.4 KA-induced interictal discharges in A30P2+ mice. Representative traces 

of intracellular recordings at resting membrane potential (IC), and LFP recordings with 

scale bars showing gamma-frequency oscillations interrupted by interictal discharges 

(IIDs, red) (A) and expanded view of IID event (B). A30P2+ n = 3 cells from 3 mice. 
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4.4.3 Concentration-dependent changes in KA-induced gamma oscillations 

This chapter has so far demonstrated that slices from A30P2+ mice are more 

sensitive to the oscillogenic and epileptogenic effects of low concentrations of KA. I 

therefore decided to perform a more detailed KA concentration response in a subset 

of slices without IIDs to explore differences in KA-induced network oscillations in A30P 

mice. The concentration of KA was increased by 50 nM every 30 minutes until 200 nM, 

at which point KA concentration was increased by 200 nM every 30 minutes. Gamma-

frequency oscillations persisted through increasing concentrations of KA, until higher 

concentrations when oscillations began to collapse. In all slices from WT2+ (6/6 slices) 

and WT10+ mice (12/12 slices), oscillations had collapsed by 1000 nM KA. 

Surprisingly, a small peak of activity persisted at 1000 nM KA in 40.0% (2/5 slices) of 

slices from A30P2+ mice, and in 80.0% of slices (8/10 slices) from A30P10+ mice. 

Consistent with the previous finding of an increased sensitivity to the 

oscillogenic effects of KA, the area power over increasing concentrations of KA (Figure 

4.5A) was significantly larger overall in slices from A30P2+ mice compared to WT2+ 

mice (1420 µV2 [IQR 470 – 11760] versus 730 µV2 [IQR 140 – 1770] respectively; 

mouse p < 0.05, concentration p > 0.05, interaction p > 0.05; RM 2-way ANOVA on 

ranks). No difference in area power was detected at any specific concentration. 

Unexpectedly, slices from A30P10+ mice (Figure 5.4B) also exhibited a 

significantly larger power overall than WT10+ mice (2090 µV2 [IQR 780 – 4830] versus 

330 µV2 [IQR 130 – 2660] respectively; mouse p < 0.05, concentration p < 0.05, 

interaction p > 0.05; RM 2-way ANOVA on ranks; effect size = 0.78, power (1 − β) = 

0.55). This was surprising as no difference was detected previously in this chapter at 

100 nM KA. Post-hoc power analysis revealed that this experiment was underpowered 

and so the significance of the effect should be considered. The effect may instead be 

due to a number of slices from A30P10+ mice oscillating up to 1000 nM KA rather than 

collapsing at a lower concentration of KA. Increasing the sample size to improve the 

observed power may be beneficial in future experiments to confirm this finding. 

The peak frequency of KA-induced oscillations between 50 nM and 200 nM was 

analysed prior to oscillations collapsing (Figure 4.5C/D). Slices from A30P2+ mice 

oscillated at an overall faster frequency compared to slices from WT2+ mice (29.6 Hz 

± 0.8 versus 27.4 Hz ± 0.4; mouse p < 0.05, concentration p > 0.05, interaction p > 

0.05; 2-way ANOVA; effect size = 1.89, power (1 − β) = 0.89). Although the specific 

concentration this occurred at was not detected, the faster frequency appeared most 
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prominently at 50 nM KA. As this experiment was adequately powered at an observed 

power of 89%, it is possible that this finding may be due to inadequacy of the Holm-

Sidak post-hoc test in detecting a difference at a specific concentration of KA. 

No significant difference in frequency was found between slices from WT10+ 

mice and slices from A30P10+ mice across increasing concentrations of KA (32.0 Hz 

± 1.0 versus 30.1 Hz ± 0.3; mouse p > 0.05, concentration p > 0.05, interaction p > 

0.05; 2-way ANOVA), though here there appeared to be a trend towards a slower peak 

frequency in slices from A30P10+ mice at 50 nM KA. 
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Figure 4.5 Increased KA oscillation power over increasing concentrations in 

A30P mice. Boxplots to show area power over increasing concentrations of KA in 

slices from A30P2+ (A) and A30P10+ (B) mice compared to age-matched WT control 

mice. Line graphs to show peak frequency over increasing concentrations of KA in 

slices from A30P2+ (C) and A30P10+ (D) mice compared to age-matched WT control 

mice. WT2+ n = 6 slices from 3 mice, A30P2+ n = 5 slices from 3 mice, WT10+ n = 12 

slices from 4 mice, A30P10+ n = 10 slices from 3 mice. 
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4.4.4 Increased sensitivity to GABAA receptor antagonism in A30P2+ mice 

Having shown that low concentrations of KA causes IIDs in slices from A30P2+ 

mice, I next decided to investigate the inhibitory component of the network in more 

detail.  GABAA receptor antagonism has been shown to induce IIDs and even seizure 

activity (Behrens et al., 2007; Kilb et al., 2007). An increased sensitivity to interictal and 

ictal activity in response to GABAA receptor antagonism has been reported in a mouse 

model of AD (Palop et al., 2007), and so I wanted to explore this in A30P mice for the 

first time. Through exposure to increasing concentrations of GABAA receptor 

antagonist gabazine, I expected to find that the altered GABAergic activity explored in 

Chapter 3 may impact gabazine-induced IID threshold in slices from A30P2+ mice. 

A starting concentration of 50 nM gabazine was selected in order to elucidate 

subtle differences in A30P2+ mice. gabazine concentration was increased 

incrementally by 50 nM every 20 minutes, and no IIDs were seen in slices from WT2+ 

or A30P2+ mice until at least 250 nM (Figure 4.6A). At 250 nM gabazine, 16.7% of 

WT2+ and A30P2+ slices (1/6 slices) showed IIDs (Figure 4.6B), indicating that there 

was no difference in gabazine sensitivity regarding the lowest concentration at which 

interictal activity could occur (χ2 (df 1) = 0, p > 0.05; chi-square test).  

When 500 nM gabazine was reached however, 83.3% of slices from A30P2+ 

mice (5/6 slices) exhibited IIDs compared to 33.3% of WT2+ slices (2/6 slices), which 

was a significantly greater proportion (χ2 (df 1) = 3.88, p < 0.05; chi-square test; effect 

size = 1.54, power (1 − β) = 0.80). As the majority of slices from A30P2+ mice now 

exhibited IIDs, the concentration of gabazine was increased by 100 nM every 20 

minutes to see if the proportion of WT2+ slices with IIDs would increase. By 1000 nM 

gabazine, the same 33.3% of WT2+ slices (2/6 slices) showed IIDs as at 500 nM. 

However, 100% of slices (6/6 slices) from A30P2+ mice now exhibited IIDs. Thus, 

slices from A30P2+ mice were more sensitive to the generation of IIDs in response to 

higher concentrations of GABAA receptor antagonism (χ2 (df 1) = 6.0, p < 0.05; chi-

square test; effect size = 1.72, power (1 − β) = 0.87).  

It was noted that a large proportion of slices from WT2+ mice did not exhibit IIDs 

even at 1000 nM gabazine, so in 3 slices from WT2+ mice the concentration was 

increased to 10 µM for 20 minutes. IIDs began to appear within 10 minutes of 10 µM 

gabazine (data not shown). This indicates that some slices from WT2+ mice are simply 

resistant to interictal activity at lower concentrations of gabazine but that the slices 

remained viable and capable of such activity at high concentrations of gabazine. 
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Figure 4.6 A30P2+ mice more sensitive to GABAA-R antagonism. (A) 

Representative traces of interictal discharges over increasing concentrations of 

gabazine in slices from WT2+ (n = 6 slices from 3 mice) and A30P2+ mice (n = 6 slices 

from 3 mice). Proportion of slices exhibiting interictal activity (B) at each concentration 

of gabazine. Boxplot to show IID frequency (C) at each gabazine concentration. Line 

graph to show IID amplitude (D) at each gabazine concentration. 
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Furthermore, there was a significantly higher IID frequency (Figure 4.6C) in 

slices from A30P2+ mice compared to WT2+ mice overall (0.12 Hz [IQR 0.02 – 0.13] 

versus 0.02 Hz [IQR 0.01 – 0.03] respectively; genotype p < 0.05, concentration p > 

0.05, interaction p > 0.05; RM 2-way ANOVA on ranks; effect size = 1.69, power (1 − 

β) = 0.86). The increase in IID frequency could not be detected at any specific 

concentration despite this experiment achieving an adequate observed power of 86%. 

This indicates that, in addition to appearing in a greater proportion of slices from 

A30P2+ mice, IIDs also occurred at a greater frequency in A30P2+ mice across 

increasing concentrations of gabazine. 

Conversely, the amplitude of IIDs (Figure 4.6D) was not significantly different 

overall between slices from WT2+ and A30P2+ mice at any concentration of gabazine, 

potentially due to the low sample size of slices from WT2+ mice exhibiting IIDs in this 

experiment (0.76 µV ± 0.28 versus 0.61 µV ± 0.12 respectively; genotype p > 0.05, 

concentration p > 0.05, interaction p > 0.05; RM 2-way ANOVA). 

It was further confirmed that the increase in IID frequency in slices from A30P2+ 

mice was not dependent on dorsal/ventral hippocampal location by separating data at 

1000 nM gabazine (WT2+ dorsal 0 Hz [IQR 0 – 0.05] n = 3 slices; WT2+ ventral 0 Hz 

[IQR 0 – 0.13] n = 3 slices; A30P2+ dorsal 0.07 Hz [IQR 0.05 – 0.20] n = 3 slices; 

A30P2+ ventral 0.18 Hz [IQR 0.03 – 0.22] n = 3 slices; genotype p < 0.05, location p > 

0.05, interaction p > 0.05; 2-way ANOVA on ranks, data not shown).  

The effect of sex on IID frequency could not be explored due to a lack of slices 

from female mice within the A30P2+ mouse group. 
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4.4.5 CA3 pyramidal cells intrinsically more excitable in A30P2+ mice 

This thesis so far presents evidence of excitability in both inhibitory and 

excitatory networks in slices from A30P2+ mice that normalises with ageing. The 

intrinsic properties of CA3 pyramidal cells were therefore next assessed to determine 

whether excitability originates from changes to pyramidal cell excitability, or whether it 

arises indirectly through the excitatory/inhibitory hippocampal network. 

Intracellular recordings revealed that the resting membrane potential (RMP) of 

CA3 pyramidal cells (Figure 4.7A) was more depolarised in A30P2+ mice compared to 

WT2+ mice (-48.4 mV ± 4.1 versus -61.0 mV ± 2.3 respectively, p < 0.05, unpaired t 

test; effect size = 1.77, power (1 − β) = 0.93). No significant difference was found in 

the RMP of CA3 pyramidal cells in WT10+ and A30P10+ mice (-56.4 mV ± 5.0 versus 

-50.3 mV ± 0.7 respectively, p > 0.05, unpaired t test), despite a trend to cells from 

A30P10+ mice being more depolarised. 

CA3 pyramidal cells were next depolarised to firing threshold (Figure 4.7B). 

There was no significant difference in the firing threshold of A30P2+ mouse CA3 

pyramidal cells compared to WT2+ mice (-49.8 mV ± 5.3 versus -50.0 mV ± 4.5 

respectively, p > 0.05, unpaired t test). This indicates that despite a more depolarised 

resting membrane potential, CA3 pyramidal cells from A30P2+ mice are almost at firing 

threshold so need little depolarisation to fire. Furthermore, no difference was found in 

the firing threshold of A30P10+ mouse CA3 pyramidal cells compared to WT10+ mice 

(-51.0 mV ± 3.2 versus -48.0 mV ± 4.6 respectively, p > 0.05, unpaired t test). 

The average firing rate and spike amplitude at firing threshold were next 

compared (Figure 4.8A). Despite a strong trend to higher firing rates in A30P2+ mouse 

CA3 pyramidal cells compared to WT2+ mice (Figure 4.8B), no significant difference 

was found (8.0 Hz ± 2.9 versus 2.2 Hz ± 0.6 respectively; p = 0.08, unpaired t test). 

This was likely due to variability between A30P2+ mouse cells. Furthermore, no 

significant difference was found between WT10+ and A30P10+ mice in pyramidal cell 

firing rate (1.1 Hz ± 0.4 versus 3.9 Hz ± 1.3 respectively, p > 0.05, unpaired t test). 

With respect to spike amplitude (Figure 4.8C), no significant differences were found in 

A30P2+ mouse CA3 pyramidal cells compared to WT2+ mice (42.6 mV ± 2.8 versus 

43.8 mV ± 4.5 respectively, p > 0.05, unpaired t test), or in A30P10+ mice compared 

to WT10+ mice (51.1 mV ± 1.8 versus 57.7 mV ± 4.4 respectively, p > 0.05, unpaired 

t test). Taken together, these results suggest an intrinsic A30P2+ pyramidal cell 

excitability with a significantly more depolarised resting membrane potential.  
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Figure 4.7 More depolarised RMP of CA3 pyramidal cells of A30P2+ mice. Bar 

charts showing (A) resting membrane potential (RMP) and (B) firing threshold in CA3 

pyramidal cells measured by sharp intracellular recordings from WT2+ (n = 7 cells from 

7 mice), A30P2+ (n = 7 cells from 7 mice), WT10+ (n = 4 cells from 4 mice) and 

A30P10+ mice (n = 3 cells from 2 mice). * indicates significance at p < 0.05. 
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Figure 4.8 No difference in spiking parameters at firing threshold in A30P mice. 

(A) Representative traces of CA3 pyramidal cell firing measured by sharp intracellular 

recordings from WT2+ (n = 5 cells from 4 mice), A30P2+, (n = 5 cells from 5 mice), 

WT10+ (n = 5 cells from 4 mice), and A30P10+ mice (n = 5 cells from 5 mice). Bar 

charts to show firing rate (B) and spike amplitude (C) at firing threshold. 
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4.4.6 Hyperlocomotion in A30P mice 

It has been reported previously that excess activity within cortical networks can 

lead to hyperlocomotion in rodents (Procaccini et al., 2013). Given evidence so far of 

both interneuron and pyramidal cell excitability in A30P2+ mice, I expected to find 

increased locomotor activity in young, but not ageing, A30P mice. WT and A30P mice 

were tested in an open field test over 90 minutes for evidence of hyperlocomotion. 

Distance travelled was blocked into 5 minute intervals and then compared 

between WT2+ and A30P2+ mice (Figure 4.9A). A30P2+ mice were found to travel a 

greater distance overall compared to WT2+ mice (367.90 cm ± 18.52 versus 263.46 

cm ± 20.05 respectively; mouse p < 0.05, time p < 0.05, interaction p > 0.05; RM 2-

way ANOVA; effect size = 1.29, power (1 − β) = 0.92). Both WT2+ and A30P2+ mice 

decreased in distance travelled over time as a result of habituation to the novel 

environment. A further measure of average ambulatory time was made to confirm that 

increased locomotor activity was indeed occurring (Figure 4.9B). On average, A30P2+ 

mice spent more time ambulatory at each minute than WT2+ mice (16.47 sec ± 1.54 

versus 12.30 sec ± 1.23 respectively, p < 0.05, unpaired t test; effect size = 2.99, power 

(1 − β) = 0.99), thus confirming hyperlocomotion in A30P2+ mice. 

A separate cohort of aged mice were tested and hyperlocomotion was found to 

persist in A30P10+ mice compared to WT10+ mice (Figure 4.9C) with a greater 

distance travelled overall (321.54 cm ± 15.08 versus 172.86 cm ± 10.24 respectively; 

mouse p < 0.05, time p < 0.05, interaction p > 0.05; RM 2-way ANOVA; effect size = 

2.71, power (1 − β) = 0.99). A reduction in distance travelled over time occurred in both 

WT10+ and A30P10+ mice, once again confirming that habituation occurred. This is 

despite WT10+ and A30P10+ mice appearing to travel different distances within the 

first 5 minutes, unlike in WT2+ and A30P2+ mice. A comparison of average ambulatory 

time (Figure 4.9D) confirmed that A30P10+ mice showed increased locomotor activity 

compared to WT10+ mice (15.14 sec ± 1.43 versus 8.62 sec ± 1.08 respectively, p < 

0.05, unpaired t test; effect size = 5.15, power (1 − β) = 0.99). 

As ambulatory time appears to provide a reliable yet simple comparison of 

locomotor activity, I decided to compare this value after separating data by sex. Young 

female mice spent a greater portion of time ambulatory compared to young male mice, 

regardless of mouse genotype (overall male 13.21 sec ± 0.52 [n = 8 mice] versus 

overall female 17.10 sec ± 0.70 [n = 16 mice]; mouse p < 0.05 sex p < 0.05, interaction 

p > 0.05, 2-way ANOVA, data not shown). Though the increase in locomotor activity in 
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A30P2+ mice was present in both male and female A30P2+ mice, this highlights the 

importance of separating mice by sex in behavioural testing. Conversely, no significant 

difference was found between male and female mice at 10-13 months of age (overall 

male 10.74 sec ± 1.14 [n = 6 mice] versus overall female 13.40 sec ± 1.31 [n = 8 mice]; 

mouse p < 0.05, sex p > 0.05, interaction p > 0.05, 2-way ANOVA, data not shown). 

This indicates that in addition to the increased locomotor activity in A30P10+ mice, 

male and female mice displayed similar levels of locomotor activity overall. 

 

 

Figure 4.9 Hyperlocomotion in A30P mice. (A) Line graph to show distance travelled 

in WT2+ and A30P2+ mice over 90 minutes. (B) Bar chart to show average ambulatory 

time in seconds in WT2+ (n = 12 mice) and A30P2+ mice (n = 12 mice). (C) Line graph 

to show distance travelled in WT10+ and A30P10+ mice over 90 minutes. (D) Bar chart 

to show average ambulatory time in seconds in WT10+ (n = 7 mice) and A30P10+ 

mice (n = 7 mice). * indicates significance at p < 0.05. 
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4.4.7 Decrease in GFAP+ astrocytes in the A30P2+ mouse CA3 region 

Given evidence of excitability in the A30P2+ mouse hippocampus, it was 

decided to next explore possible mechanisms of excitability. Astrocytes within the 

hippocampus play a role in regulating excitability (Heja et al., 2012). It has also been 

shown that mouse astrocytes in culture take up ASYN released from neurons and this 

induces an inflammatory response in astrocytes (Rannikko et al., 2015). As a result, 

astrocytic function may be affected by human ASYN overexpression and I therefore 

decided to explore GFAP immunoreactivity in astrocytes in A30P mice (Figure 4.10A). 

GFAP expression is upregulated as astrocytes become reactive (Pekny and 

Pekna, 2004). It was noted by qualitative assessment that a number of slices from 

A30P2+ mice displayed little GFAP immunoreactivity in the CA3 region but were 

immunoreactive elsewhere in the slice. This was reflected through quantitative 

assessment of GFAP+ cells, where a significant reduction in GFAP+ cell density within 

region CA3 was found in slices from A30P2+ mice (Figure 4.10B) compared to WT2+ 

mice (106.3 cells/mm2 ± 36.9 versus 205.9 cells/mm2 ± 16.3 respectively, p < 0.05, 

unpaired t test; effect size = 3.22, power (1 − β) = 0.99).  

Conversely, no significant difference was found in GFAP+ cell density in slices 

from A30P10+ mice compared to WT10+ mice (154.4 cells/mm2 ± 49.2 versus 164.5 

cells/mm2 ± 64.3 respectively, p > 0.05, unpaired t test). It was noted that GFAP+ 

astrocytes presented with dense somata and processes in ageing mice of both 

genotypes, though no scar formation was observed. While this may represent an 

ageing astrocyte phenotype, the change in morphology did not appear to affect 

quantification as the highest density of cells/mm2 was in slices from WT2+ mice. 

The decrease in GFAP+ cell density in A30P2+ mice was not dependent on 

dorsal/ventral slice location, however there were significantly more GFAP+ cells in the 

dorsal hippocampus of young mice compared to the ventral hippocampus, regardless 

of genotype (197.8 cells/mm2 ± 18.0 [n = 6 slices] versus 131.1 cells/mm2 ± 13.9 [n = 

10 slices] respectively; mouse p < 0.05, region p < 0.05, interaction p > 0.05, 2-way 

ANOVA; data not shown). This suggests a physiological difference in GFAP+ astrocyte 

distribution along the hippocampal axis. Finally, the decrease in GFAP+ cells in 

A30P2+ mice was likely not dependent on sex (WT2+ male 205.5 cells/mm2 ± 39.1 [n 

= 2 mice]; WT2+ female 206.2 cells/mm2 ± 8.1 [n = 2 mice]; A30P2+ male 149.9 

cells/mm2 ± 32.8 [n = 2 mice]; A30P2+ female 62.6 cells/mm2 ± 57.3 [n = 2 mice]; 

mouse p < 0.05, sex p > 0.05, interaction p > 0.05, 2-way ANOVA; data not shown).  
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Figure 4.10 Decreased GFAP+ astrocytes in the A30P2+ mouse CA3 region. (A) 

Representative images of the CA3 region at x10 magnification. Scale bar 100 µm. (B) 

Bar charts to show GFAP+ cells per mm2 in the CA3 region of WT and A30P mice. 

WT2+ n = 8 slices from 4 mice, A30P2+ n = 8 slices from 4 mice. WT10+ n = 4 slices 

from 2 mice, A30P10+ n = 8 slices from 4 mice. * indicates significance at p < 0.05. 
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4.5 Discussion 

A summary of key findings in Chapter 4 are as follows: 

• A30P2+ mouse slices show CA3 region gamma-frequency 

oscillations of a greater power, but not frequency, in response to 

kainate receptor agonism with KA across a range of concentrations. 

• No impairment in CA3 region KA oscillations in A30P10+ mice, unlike 

previously reported with CCH oscillations (Robson et al., 2018). 

• A30P2+ mouse slices progress from oscillations to IIDs at low 

concentrations of KA, indicating a sensitivity to the epileptogenic 

effects of KA in young A30P mice that decreases with age. 

• A30P2+ mouse slices are more sensitive to GABAA receptor 

antagonist-induced IIDs due to disinhibition. IIDs in A30P2+ mouse 

slices are also of a greater frequency. 

• A30P2+ mouse CA3 pyramidal cells have a more depolarised resting 

membrane potential and trend towards a higher firing rate. 

• Both A30P2+ and A30P10+ mice exhibit hyperlocomotion. 

• A30P2+ mice present with decreased CA3 region GFAP+ astrocyte 

density in the hippocampus, but normalised levels with age. 

4.5.1 Hyperexcitability in young A30P mice normalises with ageing 

There have been reports for a number of years of increased network excitability 

in mouse models of AD (Palop et al., 2007) and an increased incidence of seizures in 

patients with AD (Amatniek et al., 2006). It is only recently emerging that 

hyperexcitability also exists in mouse models of alpha-synucleinopathy, with a recent 

study describing EEG epileptiform activity in mice over-expressing human WT ASYN 

under the Thy-1 promoter (Morris et al., 2015). Whilst there is evidence of myoclonus 

in a proportion of patients with DLB, clinical seizures were not thought to be common 

compared to in AD (Caviness et al., 2003; Puschmann et al., 2009; Morris et al., 2015). 

However, more recent evidence has suggested a similar cumulative probability of 

seizures in DLB compared to AD following disease onset (Beagle et al., 2017).  

Despite this, evidence of subclinical seizures has not yet been investigated in 

LBD as they are not easily detectable non-invasively through EEG recordings. 

However, there is increasing evidence that hippocampal network excitability can lead 

to changes in molecular expression patterns of receptors, neuropeptides and even CB 
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(Marksteiner et al., 1990; Tonder et al., 1994; Vezzani et al., 1999; You et al., 2017). 

Therefore, even if a patient does not present with seizures clinically, increased 

neuronal activity still has extensive consequences in a network. 

An increase in ASYN levels in patients with intractable epilepsy was observed 

in the serum and CSF (Rong et al., 2015), potentially providing a link between the 

physiological function of ASYN and the regulation of excitability within a network. As 

ASYN interacts with vesicles (Jensen et al., 1998), it follows that ASYN’s role in 

neurotransmitter release could modulate excitability. Hyperexcitability in response to 

human ASYN has been reported previously in cell culture models, whereby 

hippocampal cells transfected with either WT or A53T ASYN expressed non-selective 

cation channels and increased in excitability (Mironov, 2015). Conversely, when 

oligomers but not monomers of human ASYN were injected into pyramidal cells, 

reduced excitability has been reported (Kaufmann et al., 2016). This provides evidence 

that human ASYN can increase excitability in certain structural forms, and may explain 

why, with ageing in A30P mice as oligomer formation increases (Ekmark-Lewen et al., 

2018), excitability appears to reduce and normalise. This information is complicated, 

however, by the finding that the A30P mutation in ASYN may confer a loss of vesicle 

binding ability (Jensen et al., 1998). The effect that this may have on neurotransmitter 

release and neuronal excitability is complex and should be explored further through 

patch clamping and calcium imaging techniques.  

The mechanism by which over-expression of human A30P ASYN could lead to 

increased neuronal excitability was not elucidated in this thesis, though future work 

should examine such pathways. However, it is proposed that the intrinsic 

hyperexcitability of pyramidal cells in young A30P mice is likely to be a direct result of 

the presence of human ASYN in pyramidal cells. Hyperexcitable pyramidal cells could, 

in turn, drive interneuron hyperexcitability. As a result, the expression of human ASYN 

within interneurons is not necessarily essential for generating the GABAergic 

interneuron hyperexcitability reported in Chapter 3, though the extracellular spread of 

ASYN to interneurons may exacerbate aberrant network activity. 

The question of whether the altered interneuron activity shown in Chapter 3 is 

accompanied by evidence of general hyperexcitability was explored in this chapter.  

Slices from A30P2+ mice exhibit increased sensitivity to low concentrations of KA 

receptor agonism in the form of increased power gamma-frequency oscillations, and 

the appearance of interictal activity never seen in WT2+ mice.  
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Previous work using the KA model of epilepsy have reported that vulnerability 

to seizures increases with physiological ageing following KA injection in rats (Albala et 

al., 1984; Dawson and Wallace, 1992; Sarkisian et al., 1997). Despite our cohort of 

WT10+ mice only spanning 10 - 13 months of age, this may explain why low 

concentrations of KA induce IIDs in a small proportion of slices never seen in slices 

from WT2+ mice. Conversely, the A30P2+ mouse network is more vulnerable to KA-

induced interictal activity, and this may be the result of A30P2+ CA3 pyramidal cells 

exhibiting a more depolarised resting membrane potential and as a result requiring less 

depolarisation to reach firing threshold.  

In drug-free conditions, pyramidal cell hyperexcitability in A30P2+ mice is likely 

balanced by increased GABAergic activity, and as a result spontaneous interictal or 

ictal activity is not observed in slices. In turn, this may explain why spontaneous 

network oscillations were unchanged in A30P2+ mice in Chapter 3, despite evidence 

of increased IPSP parameters and PV+ interneuron density. Furthermore, despite both 

being GABAA receptor dependent, KA oscillations may depend more on PV+ 

interneurons than spontaneous oscillations as both PV+ interneuron density and the 

increase in KA oscillation power follow the same pattern of change in A30P mice; KA 

sensitivity normalises with ageing to a level of excitability similar to WT10+ mice, as 

pyramidal cell excitability and PV+ cell density normalise too. 

The reason for an increase in oscillation power with KA but not with CCH in 

A30P2+ mice remains to be explored (Robson et al., 2018). However, it is likely due to 

the populations of neurons targeted by KA and the receptors that these subtypes 

possess. It is of note that in addition to the increased power of KA-induced oscillations 

in A30P2+ mice, they also tended to oscillate at a faster frequency. Indeed, in different 

strains of laboratory mice different frequencies of oscillations have been found to 

occur, and differences in the subunits of GABAA receptors has been suggested to 

explain this (Heistek et al., 2010). As A30P2+ mice have been shown in this thesis to 

exhibit a higher IPSP frequency recorded in CA3 pyramidal cells, it follows that GABA 

decay kinetics may be faster and as a result a faster frequency could occur (Otis and 

Mody, 1992; Heistek et al., 2010; Lee and Jones, 2013). 

Interestingly, in A30P2+ mice only slices from the dorsal hippocampus exhibited 

IIDs in response to KA, whereas in human epilepsy cases it is the anterior (ventral) 

hippocampus that is specifically more vulnerable to bursting and seizure initiation 

(Strange et al., 2014). Whilst no differences in the dorsal/ventral hippocampus were 
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found elsewhere in this thesis, including in PV+ interneuron density, it is possible that 

KA receptors may differ along the hippocampal axis in mice. This is supported by the 

finding in this chapter that the GABAA receptor antagonist gabazine produced IIDs 

equally in dorsal and ventral hippocampal slices in A30P2+ mice. 

It is noteworthy that not every slice exhibited IIDs in response to KA, even when 

originating from the same animal. Care was taken in this thesis to only perform 

immunohistochemistry on slices that did not exhibit IIDs. However, further 

immunohistochemical investigations into interneuron density and kainate receptor 

distributions in slices that exhibited IIDs in response to KA should be explored to 

elucidate what confers sensitivity or vulnerability to KA-induced excitability. 

A small cohort of slices from young PDGF WT ASYN mice also exhibited IIDs, 

though in a lower proportion of slices than in A30P2+ mice. While this supports the 

finding that excitability may be common to models of alpha-synucleinopathy, the lower 

proportion of slices with IIDs in PDGF WT ASYN mice may be due to human WT ASYN 

over-expression often leading to a slower onset of symptoms and pathology than 

human mutant ASYN mice (Jensen et al., 1998; Nielsen et al., 2013; Sahay et al., 

2015; Flagmeier et al., 2016). Whilst PDGF WT ASYN mice have previously been 

shown to express human ASYN in hippocampal pyramidal cells and a subset of 

unspecified GABAergic interneurons (Amschl et al., 2013), the differential presence of 

human ASYN in different interneuron subtypes has not yet been explored. 

Furthermore, the extent to which human ASYN expression is a result of the 

extracellular spread of ASYN as opposed to what is expressed under the PDGF 

promoter can only be explored by further characterisation of the PDGF promoter. 

4.5.2 Increased sensitivity to GABAA receptor antagonism in A30P2+ mice 

It has long been reported that disinhibition leads to epileptiform events (Martin 

and Sloviter, 2001; Kanamori, 2015) and this thesis demonstrated evidence of 

underlying network hyperexcitability in slices from A30P2+ mice in response to GABAA 

receptor antagonist gabazine. While slices from A30P2+ mice showed IIDs at the same 

concentration as WT2+ mice for the first time, by the time the concentration of gabazine 

reached 500 nM it was clear that slices from A30P2+ mice were more sensitive to 

gabazine’s effects. This was somewhat surprising, given that A30P2+ mice show 

increased GABAergic activity in Chapter 3 of this thesis. Instead, it was expected that 

slices might be more resistant to the effects of gabazine if the increase in GABAergic 

activity was truly a compensatory network change to increase inhibition.  
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Whilst it was expected that the increased GABAergic inhibition would be 

sufficient to prevent IIDs in A30P2+ mice, it is possible that inhibition in A30P2+ mice 

is increased but dysfunctional. There is evidence that excess inhibition can also lead 

to excitability in absence epilepsy (Cope et al., 2009), though the exact mechanisms 

by which this occurs are still unknown. A study exploring temporal lobe epilepsy in rats 

found that reduced dendritic inhibition of pyramidal cells may decrease seizure 

threshold, whereas increased somatic inhibition of pyramidal cells may prevent 

seizures (Cossart et al., 2001). CB+ interneurons primarily target the dendrites of 

pyramidal cells, and as this thesis found evidence of decreased CB+ interneuron 

density in slices from young A30P mice this may be a mechanism by which seizure 

threshold is decreased. An increase in PV+ interneuron density may therefore be a 

compensatory attempt to increase somatic inhibition and prevent seizures. 

Excess inhibition can be further modulated by astrocytes removing excess 

GABA and releasing glutamate (Perea et al., 2016), thereby decreasing inhibition and 

increasing excitation. Interestingly, aggregates of ASYN are found in astrocytes in both 

patients and mouse models of alpha-synucleinopathy (Gu et al., 2010). Dysregulation 

in the astrocytic regulation of excitability could therefore be a factor influencing 

hyperexcitability within the hippocampal network.  

It was somewhat surprising to find that the density of CA3 region GFAP+ 

astrocytes was reduced in slices from young A30P mice compared to young WT mice. 

This finding is complicated by the fact that GFAP+ cell density appears to decrease 

with ageing in WT mice and to slightly increase with ageing in A30P mice.  A deficiency 

in GFAP immunoreactivity is a phenotype not commonly reported, and this is certainly 

the first time it has been reported in A30P mice. There is evidence of reduced GFAP+ 

cell density in the anterior cingulate cortex of sheep following a high dose of 

lipopolysaccharide in utero (Gantert et al., 2012). Lipopolysaccharide is used to 

activate an immune response and interestingly the authors also found a reduction in 

CB+ and PV+ cell density. This is proposed to model glutamatergic dysfunction in 

schizophrenia, including a reduction in GFAP reactivity (Gantert et al., 2012). 

GFAP+ astrocyte density normalised with ageing in A30P mice, and this could 

be a result of increased excitability in young A30P mice leading to activation of 

astrocytes through increased metabolic requirements, or the activity-dependent 

release of extracellular ASYN stimulating astrocyte reactivity (Paillusson et al., 2013). 

The Thy-1 promoter does not express in glial cells (Feng et al., 2000; Porrero et al., 
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2010), and therefore any future work exploring the presence of human ASYN in 

astrocytes in A30P mice must consider the mechanism by which ASYN appears there. 

The finding of normalised GFAP+ astrocyte density in A30P10+ mice 

compliments  a previous study which found no overall changes in GFAP+ cell density 

in A30P mice at 11 months of age, though the authors did observe an increase in 

GFAP immunoreactivity in regions with higher human A30P ASYN expression 

(Ekmark-Lewen et al., 2018). The group that generated the Thy-1 A30P mouse found 

an increase in GFAP+ astrocytes in A30P mice that survived to 20 months of age, and 

interestingly obesity caused by a high fat diet led to an accelerated increase in GFAP+ 

astrocytes by 16 months of age (Rotermund et al., 2014). Importantly, it has previously 

been confirmed that the body weight of A30P mice was not different to age-matched 

WT control mice (Ekmark-Lewen et al., 2018). 

A change in GFAP immunoreactivity is suggested to represent a change in 

protein expression as opposed to changes in the number of astrocytes (Serrano-Pozo 

et al., 2013). The fact that healthy human tissue is at times not immunoreactive for 

GFAP at all (Sofroniew and Vinters, 2010) emphasises the need for additional markers 

of astrocytic function in future studies to avoid the limitations of this study in 

determining what change is actually occurring with age. It is possible that a reduction 

in GFAP in slices from A30P2+ mice could therefore represent either a deficiency in 

the astrocytic response, or neuroprotection in response to early hyperexcitability. 

4.5.3 Functional output of cortical hyperexcitability in vivo 

One functional consequence of hyperactivity and excess excitability within the 

hippocampus has been reported previously in the form of increased locomotor activity 

(Procaccini et al., 2013). Evidence of increased hippocampal excitability presented so 

far in this thesis could explain why young A30P mice showed increased locomotor 

activity in the open field test compared to young WT mice. However, it was surprising 

to find that A30P mice exhibited increased locomotor activity with ageing, given 

evidence in this thesis of normalised excitability with age. Two possibilities exist for 

this: that hyperlocomotion is a result of hyperexcitability spreading beyond the 

hippocampus with ageing, or that the underlying cause of the hyperlocomotion differs 

from the cause in A30P2+ mice. This is supported by the finding that the distance 

travelled in the first 5 minutes of the open field test appeared to differ between WT10+ 

and A30P10+ mice. This was not seen in WT2+ and A30P2+ mice and may suggest 

that the nature of the hyperlocomotion differs in young and ageing A30P mice. 
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Increased neuronal activity in the hippocampus as measured by c-fos has been 

linked to hyperlocomotion in rodents (Procaccini et al., 2013), though a number of other 

underlying causes have been reported and this thesis did not investigate the source of 

the hyperlocomotion in A30P mice. The possibility that hyperlocomotion is associated 

with changes in the basal ganglia should not be ignored, though may still be associated 

with a similar mechanism of hyperexcitability. NMDA-receptor antagonism (Ma et al., 

2012), hippocampal lesion and altered GABA transmission (Francois et al., 2009), and 

dopamine receptor agonism (O'Neill and Shaw, 1999) have also been shown to 

increase locomotor activity in rodents. Indeed, in slices exposed to human WT ASYN 

oligomers, a reduction in LTP occurs through activation of NMDA receptors (Diogenes 

et al., 2012), and a possible NMDA-receptor dysfunction should be explored further.  

Whilst the results presented in this thesis complimented a previous study using 

A30P mice in which increased locomotor activity was observed at 12 months of age 

prior to severe motor dysfunction (Freichel et al., 2007), the same study did not find 

increased locomotor activity at 4 months. A more recent study using a larger cohort of 

A30P mice described reduced locomotor activity at 8 months that was then similar to 

control mice by 11 months of age (Ekmark-Lewen et al., 2018). Discrepancies in the 

literature can be reconciled by the fact that behavioural testing is subject to much 

variability (room conditions, experimenters present etc.) and it is therefore important to 

report all details of the experimental procedure. In this thesis, care was taken to ensure 

animals were left undisturbed during the testing process and that all experiments were 

carried out over the same 4 hour period in the morning over 2-3 days to control for the 

circadian effect on locomotor activity (Eckel-Mahan and Sassone-Corsi, 2015).  

While Freichel et al. (2007) examined locomotor activity over a period of 120 

minutes, Ekmark-Lewen et al. (2018) did so for only 20 minutes, though the study did 

benefit from the use of a larger cohort of mice. The period of time spent in the open 

field arena is important to consider. In this thesis, distance travelled decreases over 

time with habituation until a plateau is reached at around 60 minutes in the open field 

arena. Therefore, use of a shorter testing time of 20 minutes may instead represent 

the initial habituation period and the exploratory response to a novel environment in 

A30P mice. As aged A30P mice have been reported to exhibit reduced exploratory 

behaviour (Keane, 2013), comparison beyond the initial habituation period may be 

more appropriate than comparison during habituation. Discrepancies in the literature 

may further be explained by physiological differences in locomotion between different 
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strains of C57BL/6 mice. It is therefore important to consider for future experiments 

based on this thesis that the strain and source of control mice remains consistent. 

Other studies do not mention the time of day that testing was carried out, and 

whether mice were alone in the room during this time, so even with a smaller sample 

size than Ekmark-Lewen et al. (2018), I am confident that confounding factors were 

controlled for in this thesis. Future investigations should employ a video tracking 

system to monitor anxiety and exploratory behaviour, given evidence of amygdala 

pathology, impairment in fear conditioning (Freichel et al., 2007), and reduced 

exploratory behaviour in aged A30P mice (Keane, 2013).  
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4.6 Conclusion 

This chapter has demonstrated an intrinsic pyramidal cell and hippocampal 

network excitability in slices from A30P2+ mice, which may lead to compensatory 

changes in inhibition or drive the increase in GABAergic activity reported in Chapter 3. 

Hyperexcitability of excitatory cells was revealed through KA-receptor agonism to drive 

excitation beyond what inhibition can control, and through GABAA receptor antagonism 

to remove inhibition and expose the more excitable excitatory network. It is proposed 

that changes in seizure threshold may be a result of CB+ interneuron loss in young 

A30P mice, with an attempt to compensate for this by the increase in PV+ interneurons. 

However, an increase in inhibition is not always effective inhibition. 

Excitability may be underpinned by changes in GFAP+ astrocytes as a result of 

ASYN uptake in glial cells, with fewer activated astrocytes in the CA3 region of slices 

from A30P2+ mice compared to WT2+ mice. Furthermore, astrocytes have the ability 

to convert inhibition to excitation, or excitation to inhibition, and this regulation of 

excitability is crucial for network balance. It is proposed that astrocytes may either 

occupy a neuroprotective state in young A30P mice, or possess a deficient response, 

and their phenotype should be explored in future. In Chapter 5, changes in A30P10+ 

mice as a consequence of early excitability and excitotoxicity will be explored. 
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Chapter 5. Age-Dependent Network Deficits in A30P mice 
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5.1 Introduction 

Network hyperexcitability can lead to a number of consequences as a result of 

excitotoxicity, most notably cellular dysfunction or even cell death. Hippocampal 

rhythms relevant to cognition depend heavily on the function and interplay between 

pyramidal cells and interneurons and as a result, fast network oscillations will be 

explored in this chapter. While it has been shown so far in this thesis that no difference 

in spontaneous or KA-induced gamma-frequency oscillations exist in A30P10+ mice, 

a third model of carbachol (CCH)-induced network oscillations was previously shown 

to be impaired in 9+ month old A30P mice by our group (Robson et al., 2018). 

CCH drives oscillations through the cholinergic network and given that both AD 

and alpha-synucleinopathy present with cholinergic deficits underpinning cognitive 

dysfunction, this is perhaps the most interesting network oscillation inducer to consider 

in A30P10+ mice. Whilst A30P mice do not show a cholinergic deficit at 2-3 months of 

age, they have been shown to exhibit a loss of septal cholinergic neurons when treated 

with mitochondrial Complex I toxin MPTP (Szego et al., 2013). Evidence of a 

cholinergic deficit in aged A30P mice has not been explored, though the association 

between mitochondrial function and neuronal survival is interesting to consider. 

Hippocampal gamma-frequency oscillations have been reported to decrease in 

power as a result of physiological ageing in mice between 16 months (Driver et al., 

2007) and 22 months of age (Vreugdenhil and Toescu, 2005). As our group found an 

age-dependent reduction in gamma-frequency oscillation power in A30P mice, it was 

of interest to explore this deficit in greater detail using age-matched WT mice. 

Furthermore, this chapter will expand upon published findings by using a narrower 10-

13 month age group, as well as a WT control bred directly from the A30P line. 

It is apparent so far in this thesis that hyperexcitability has decreased in A30P 

mice by the time they are 10-13 months of age. Whilst no loss of PV+ or CB+ 

interneurons were found in A30P10+ mice in Chapter 3, it is possible that cellular 

dysfunction may instead occur with ageing in A30P mice. Notably, it is proposed that 

deficits may be underpinned by mitochondrial dysfunction, and indeed functional 

mitochondria have been shown to be essential for fast network oscillations (Kann et 

al., 2011; Whittaker et al., 2011; Robson et al., 2018). Mitochondrial dysfunction can 

occur as the result of mutations within components of the ETC, and mitochondrial 

mutations have further been linked to increased ROS production in PD (Hwang, 2013).  
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Indeed, ASYN has been shown to accumulate in mitochondria under conditions 

of stress in dopaminergic neurons of both PD patients and A53T mutated ASYN mouse 

models (Devi et al., 2008; Chinta et al., 2010), suggesting that physiologically ASYN is 

protective to mitochondria. However, pathological accumulation of ASYN or 

aggregated ASYN has been reported to lead to mitochondrial Complex I inhibition 

(Devi et al., 2008; Reeve et al., 2015). Recently, I have shown an increase in 

mitochondrial dysfunction with ageing in A30P mice (Robson et al., 2018) and this 

dysfunction will be explored in greater detail in this chapter. 

One final factor to be explored is based on evidence of low-grade inflammation 

and microglial activation in post-mortem tissue in DLB (Mackenzie, 2000; Mackenzie, 

2001). Furthermore, Chapter 4 of this thesis described evidence of a decrease in 

GFAP+ astrocyte density in A30P2+ mice. A decrease in GFAP immunoreactivity has 

previously been described following lipopolysaccharide injection to sheep in utero 

(Gantert et al., 2012). Exposure to lipopolysaccharide triggers an immune response, 

and this highlights the important association between astrocytes and inflammation.  

As with astrocytes, microglia can occupy both pro-inflammatory and anti-

inflammatory states, and occupying the correct inflammatory state is just as important 

as the timing at which it occurs. Pro-inflammatory microglia are essential for the 

clearance of misfolded and aggregated ASYN (Codolo et al., 2013), and this would 

explain their increase in patient tissue at the end-stage of disease. However, microglial 

immunoreactivity at this stage would appear to be too little too late in the clearance of 

aggregated ASYN and prevention of network dysfunction. Therefore, the 

immunoreactivity of Iba1 in microglia will be examined in young and ageing A30P mice 

to establish the neuroprotective steps taken by microglia in alpha-synucleinopathy and 

at which stage this might fail. 
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5.2 Aims 

• Explore age-related network deficits in A30P10+ mice compared to age-

matched WT controls. 

 

• Expand on the finding of an age-dependent impairment in CCH-induced 

gamma-frequency oscillation power and mitochondrial dysfunction published in 

(Robson et al., 2018).  
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5.3 Methods 

A proportion of slices were pre-incubated in the recording chamber with 

circulating D-AP5 (100 µM) in aCSF for 1 hour. Control slices without D-AP5 were left 

for 1 hour in drug-free conditions. Following this, gamma-frequency oscillations were 

induced using 10 µM Carbachol (CCH) with extracellular local field potential recordings 

made from region CA3 in the st. radiatum. The induction of oscillations occurred within 

the first 30 minutes of CCH application. As a result, 30 minutes was the first time point 

at which 15 – 45 Hz area power (µV2), peak frequency (Hz), and rhythmicity index (RI) 

were compared as if a slice were to oscillate it would be oscillating by this point. 

The time-dependent build-up in the area power of CCH gamma-frequency 

oscillations was recorded only in CA3 st. radiatum and occurred over 2-4 hours 

following CCH application. The majority of slices reach a stable endpoint where the 

area power fluctuates < 10% over time. Recordings were continued to 4 hours as more 

than 80% of slices from WT mice stabilised within this time. 

When data were normalised for build-up analysis, area power or peak frequency 

were normalised to the stable endpoint of 100%. Small fluctuations occur following 

stability up to 4 hours. Recordings were performed throughout the entire build-up 

period, but data were presented over a 1 minute epoch every 30 minutes in this thesis.  

Following stability, a second electrode was moved to the CA1 st. radiatum to 

monitor the propagation of CCH-induced oscillations from region CA3 to CA1. A cross-

correlation to measure the time delay (ms) of signal propagation between regions CA3 

and CA1 was performed as described in Chapter 2.6. 

Free-floating DAB peroxidase immunohistochemistry for the density of Iba1+ 

microglia was carried out as described in Chapter 2.7 and measured by Iba1+ cells per 

mm2. Slices used for immunohistochemistry did not exhibit IIDs. 

COX/SDH histochemistry as a measure of mitochondrial dysfunction was 

performed according to Chapter 2.9, based on previous work from the Mitochondrial 

Research Group at Newcastle University (Betts et al., 2006; Robson et al., 2018).  
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5.4 Results 

5.4.1 Build-up of hippocampal CCH-induced oscillations 

Following bath application of the cholinergic agonist CCH (10 µM), extracellular 

field recordings were performed in the CA3 st. radiatum. The majority of slices 

presented with a discernible peak within the 15 – 45 Hz range within 30 minutes of 

CCH application (“induction”). Following this initial induction period, the area power of 

CCH-induced gamma-frequency oscillations increased over 2-4 hours (“build-up”) 

before reaching a plateau of “stability” (Figure 5.1A), as defined in Chapter 5.3. 

A similar proportion (Figure 5.1B) of slices from WT2+ mice (86.6%; 13/15 

slices) stabilised within 4 hours compared to slices from A30P2+ mice (94.1%; 16/17 

slices) (χ2 (df 1) = 0.52, p > 0.05, chi-square test). Conversely, significantly fewer slices 

from A30P10+ mice (60.0%; 12/20 slices) reached stability within 4 hours, compared 

to slices from WT10+ mice (80.0%; 12/15 slices) (χ2 (df 1) = 3.86, p < 0.05, chi-square 

test; effect size = 0.63, power (1 − β) = 0.56). Post-hoc power analysis revealed that 

this experiment was underpowered. Future experiments could incorporate a larger 

sample size, which would improve the observed power and detect small differences in 

the number of slices reaching stability with greater confidence. 

Of the slices that did not reach stability, two patterns of activity emerged: 

oscillations that continued to increase in power, and oscillations that decreased in 

power and collapsed. A similar proportion of slices from WT2+ mice (6.7%; 1/15 slices) 

and A30P2+ mice (5.9%; 1/17 slices) exhibited oscillations that continued to rise in 

power (χ2 (df 1) = 0.01, p > 0.05, chi-square test). In comparison, slices from A30P10+ 

mice never showed this pattern of activity (0/20 slices) whereas 6.7% of slices from 

WT10+ mice did (1/15 slices) (χ2 (df 1) = 1.37, p > 0.05, chi-square test).  

Instead, 40.0% of slices from A30P10+ mice (8/20 slices) exhibited a collapse 

in oscillation power, compared to just 13.3% of slices from WT10+ mice (2/15 slices). 

This was a statistically significant difference (χ2 (df 1) = 3.90, p < 0.05, chi-square test; 

effect size = 0.83, power (1 − β) = 0.77). Post-hoc power analysis revealed that this 

comparison was slightly underpowered, likely due to a marginal difference in the 

proportion of slices exhibiting a collapse in oscillations. Increasing the sample size in 

future experiments could increase confidence that the observed effect was significant. 

Conversely, collapsing oscillations were never seen in slices from A30P2+ mice 

(0/17 slices) and in only 6.7% of slices from WT2+ mice (1/15 slices) (χ2 (df 1) = 1.17, 
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p > 0.05, chi-square test). It should be noted that though several collapsing oscillations 

reached a high area power value before collapsing as illustrated in Figure 5.1A, several 

oscillations were of a low power before collapse. It can therefore be inferred that 

collapse does not always follow an unsustainable increase in oscillation power. 

To further explore the increased number of slices from A30P10+ mice that did 

not stabilise within 4 hours and instead collapsed in CCH, it was confirmed that this 

difference was not dependent on dorsal/ventral hippocampal slice location when data 

were separated (χ2 (df 1) = 0.55, p > 0.05, data not shown, A30P10+ dorsal n = 14 

slices, A30P10+ ventral n = 11 slices; chi-square test).  

Interestingly, the difference in stability was potentially dependent on sex, as 

none of the 4 slices from male A30P10+ mice reached stability within 4 hours 

compared to 75.0% of slices from female A30P10+ mice (12/16 slices). This was 

confirmed as statistically significant (χ2 (df 1) = 7.5, p < 0.05, data not shown, chi-

square test), though a low sample size of male A30P10+ mice means this should be 

investigated further. Regardless, in this thesis all subsequent analysis of stable CCH-

induced oscillations will only include slices from female A30P10+ mice. 



143 
 

 

Figure 5.1 Time-dependent changes in CCH-induced oscillations. Representative 

examples from WT2+ mice (A) showing a gradual time-dependent build-up in area 

power that stabilises within 4 hours (black), a rising build-up (green), and a collapsing 

build-up (red). Proportion of slices exhibiting each type of build-up (B) in slices from 

WT2+ (n = 15 slices from 9 mice), A30P2+ (n = 17 slices from 9 mice), WT10+ (n = 15 

slices from 9 mice), and A30P10+ mice (n = 20 slices from 7 mice).  
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5.4.2 The time-dependent build-up of CCH-induced gamma-frequency 

oscillations is an NMDA-receptor dependent process 

The mechanisms underlying the time-dependent build-up in power of persistent 

CCH gamma-frequency oscillations have not yet been elucidated in the literature. 

Given differences in the number of slices reaching stability in A30P mice, I decided to 

explore the mechanisms underlying the time-dependent build-up of CCH oscillations 

in WT mice. As CCH has been shown in the literature to induce LTD in acute 

hippocampal slices (Kumar, 2010), we theorised that the time-dependent build-up may 

encompass an NMDA-receptor mediated process of plasticity under physiological 

conditions. Once established, persistent CCH oscillations are not sensitive to 

application of the NMDA receptor antagonist D-AP5 (Fisahn et al., 1998). I therefore 

decided to pre-incubate WT2+ mouse slices for 1 hour with D-AP5 (100 µM) prior to 

the addition of 10 µM CCH to explore the role of NMDA receptors in the build-up of 

CCH oscillations. Oscillations still emerged within 30 minutes of CCH application in the 

presence of D-AP5. Only slices that reached stability within 4 hours were analysed. 

Interestingly, gamma-frequency oscillation area power was significantly larger 

in slices pre-incubated with D-AP5 (Figure 5.2A) over the entire recording period (pre-

incubated 3140 µV2 [IQR 2690 – 3200] versus control 1350 µV2 [IQR 730 – 1690]; 

condition p < 0.05, time p < 0.05, interaction p > 0.05; RM 2-way ANOVA on ranks; 

effect size = 2.03, power (1 − β) = 0.99). Despite this, the area power of CCH-induced 

gamma-frequency oscillations still increased significantly over time. An accelerated 

build-up was confirmed by normalising all values to the stable endpoint (100%). 

Normalised data revealed a significantly accelerated build-up of CCH oscillations in D-

AP5 pre-incubated slices, specifically between 30 and 90 minutes. By 90 minutes post-

CCH, the D-AP5 pre-incubated slices appeared to have reached ~100% of the stable 

endpoint on average, while control slices did not reach this point until 180 minutes 

post-CCH (pre-incubated slices at 90 minutes 102.4% [IQR 25.1 – 264.3] versus 

control slices at 90 minutes 69.1% [IQR 37.3 – 100.6]; condition p < 0.05, time p < 

0.05, interaction p < 0.05; RM 2-way ANOVA on ranks). 

The peak frequency of CCH oscillations (Figure 5.2B) was significantly slower 

in D-AP5 preincubated slices than control conditions overall (26.8 Hz ± 0.5 versus 28.3 

Hz ± 0.2 respectively; condition p < 0.05, time p > 0.05, interaction p > 0.05; 2-way 

ANOVA; effect size = 1.55, power (1 − β) = 0.92). No specific time points were 

significantly different despite the experiment achieving an observed power of 92%. 
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Figure 5.2 NMDA-R antagonism accelerates CCH oscillation build-up in WT mice. 

(A) Boxplots to show raw area power and % change normalised to stable endpoint with 

and without D-AP5 pre-incubation. (B) Line graphs to show raw peak frequency and 

normalised % change. (C) Representative LFP traces with scale bars inset at 30 mins 

post-CCH and stability. (D) Boxplot to show area power at stable endpoint. (E) Bar 

chart to show peak frequency at stable endpoint. WT2+ CCH control n = 13 slices from 

9 mice; D-AP5 + CCH n = 14 slices from 8 mice. * indicates significance at p < 0.05. 
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When data were normalised to the stable endpoint of 100%, the peak frequency 

was found to start at a higher frequency then decrease over time regardless of the 

presence of D-AP5 (control 30 minutes 104.3% ± 3.9 to 240 minutes 99.8% ± 0.2; pre-

incubated 30 minutes 111.9% ± 2.9 to 240 minutes 97.8% ± 1.4; condition p > 0.05, 

time p < 0.05, interaction p > 0.05; 2-way ANOVA). Frequency changes over time 

inversely correlate with area power changes over time; as area power values increase 

during the build-up period, the peak frequency of the oscillation decreases. 

Within 4 hours of CCH application, 73.7% of WT2+ mouse slices pre-incubated 

with D-AP5 (14/19 slices) had reached stability, compared to 86.6% of slices exposed 

to CCH alone (13/15 slices). This was not found to be statistically significant (χ2 (df 1) 

= 0.86, p > 0.05, data not shown; chi-square test). A comparison of area power at the 

stable endpoint (Figure 5.2D) confirmed that D-AP5 pre-incubation did not affect stable 

area power despite a trend towards larger values and more variability in D-AP5 pre-

incubated slices (control 630 µV2 [IQR 400 – 2640] versus pre-incubated 1920 µV2 

[IQR 780 – 4860]; p > 0.05, Mann-Whitney rank sum test).   

Furthermore, the peak frequency of stable oscillations was not significantly 

different between control and D-AP5 pre-incubated conditions despite a trend to slower 

oscillations in D-AP5 pre-incubated slices (control 27.6 Hz [IQR 26.6 – 29.6] versus 

pre-incubated 26.3 Hz [IQR 21.5 – 27.4]; p > 0.05, unpaired t test). It can therefore be 

concluded that it is the time-dependent build-up of CCH oscillations that is NMDA 

receptor dependent and not the mechanisms leading to stability. 
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5.4.3 Reduced power stable CCH-induced gamma oscillations in A30P10+ mice 

This chapter has so far shown that the time-dependent build-up in area power 

of CCH-induced oscillations is an NMDA-receptor dependent process. As a result, I 

decided to compare the build-up and stability of CCH-induced oscillations with respect 

to area power and peak frequency in the CA3 st. radiatum of A30P mice. Only slices 

that stabilised within 4 hours of CCH application were included in this section. 

There was no significant difference in overall area power (Figure 5.3A) in slices 

from WT2+ and A30P2+ mice, though both increased in power over time during the 

build-up period (overall 1350 µV2 [IQR 730 – 1690] versus 1360 µV2 [IQR 870 – 1700] 

respectively; genotype p > 0.05, time p < 0.05, interaction p > 0.05; RM 2-way ANOVA 

on ranks). To confirm that the time-dependent build-up was not altered in A30P2+ 

mice, a comparison was made with data normalised to the stable endpoint (100%), 

where there was a significant build-up over time irrespective of mouse genotype (WT2+ 

baseline 4.9% [IQR 1.0 – 18.8] to 240 minutes 100% [IQR 99.8 – 100.5]; A30P2+ 

baseline 3.8% [IQR 0.5 – 33.8] to 240 minutes 100% [IQR 100 – 104.1]; genotype p > 

0.05, time p < 0.05, interaction p > 0.05; RM 2-way ANOVA on ranks). 

Following the initial induction period, the frequency of CCH oscillations in young 

mice decreased within the 15 – 45 Hz gamma-frequency range from 30 minutes until 

stability was reached (Figure 5.3B). This was a pattern seen regardless of mouse 

genotype (WT2+ 30 minutes 29.5 Hz ± 0.9 to 240 minutes 27.9 Hz ± 0.7; A30P2+ 30 

minutes 29.6 Hz ± 0.7 to 240 minutes 27.3 Hz ± 0.5; genotype p > 0.05, time p < 0.05, 

interaction p > 0.05; 2-way ANOVA). This pattern persisted when data were normalised 

to the stable endpoint of 100% (WT2+ 30 minutes 104.4% ± 3.7 to 240 minutes 100.4% 

± 0.4; A30P2+ 30 minutes 108.5% ± 1.9 to 240 minutes 99.9% ± 0.4; genotype p > 

0.05, time p < 0.05, interaction p > 0.05; 2-way ANOVA). 

Once slices had reached stability (Figure 5.3C), a further comparison was made 

of the stable area power and peak frequency (Figure 5.3D). There was no significant 

difference in stable area power between slices from WT2+ and A30P2+ mice (630 µV2 

[IQR 400 – 2640] versus 1100 µV2 [IQR 730 – 2340] respectively; p > 0.05, Mann-

Whitney rank sum test) nor was there a difference in frequency between slices from 

WT2+ and A30P2+ mice (27.9 Hz ± 0.7 versus 27.3 Hz ± 0.5 respectively, p > 0.05, 

unpaired t test). This data indicates that the NMDA-receptor dependent build-up in 

gamma-frequency oscillations is intact in slices from A30P2+ mice. 
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Figure 5.3 No difference in CCH-induced oscillations in A30P2+ mice. (A) Boxplots 

to show raw area power and normalised area power as % of stable endpoint in WT2+ 

and A30P2+ mice. (B) Line graphs to show raw frequency and normalised frequency 

as % of stable endpoint in WT2+ and A30P2+ mice. (C) Representative power spectra 

of stable endpoint with LFP inset with scale bar. (D) Boxplot to show stable area power 

and bar chart to show frequency of CCH-induced oscillations in WT2+ and A30P2+ 

mice. WT2+ n = 13 slices from 9 mice, A30P2+ n = 16 slices from 10 mice. 
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Work from our group has previously shown a reduction in CCH-induced gamma-

frequency oscillation power in A30P mice at 9-16 months compared to 2-5 months 

(Robson et al., 2018). For the purpose of this thesis, a narrower age group of 10-13 

months was utilised and directly compared with age-matched WT controls, in addition 

to exploration of the time-dependent build-up of oscillation power. Once again, only 

slices reaching stability within 4 hours of CCH application were included in this section. 

In slices from A30P10+ mice (Figure 5.4A), the area power of CCH induced 

oscillations was significantly smaller overall than in slices from WT10+ mice, though 

both increased in power over time during the build-up period (overall 600 µV2 [IQR 310 

– 690] versus 1570 µV2 [IQR 1110 – 1860] respectively; genotype p < 0.05, time p < 

0.05, interaction p > 0.05; RM 2-way ANOVA on ranks; effect size = 1.67, power (1 − 

β) = 0.99). No specific time-point was identified as significantly different, despite the 

experiment achieving an observed power of 99%. An unimpaired gamma-frequency 

oscillation build-up was confirmed through analysis of data normalised to the stable 

endpoint (100%), where a significant increase over time was observed regardless of 

mouse genotype (WT10+ baseline 6.0% [IQR 0.8 – 43.0] to 240 minutes 100% [IQR 

72.2 – 100]; A30P10+ baseline 11.5% [IQR 1.3 – 100] to 240 minutes 100% [IQR 89.0 

– 122.7]; genotype p > 0.05, time p < 0.05, interaction p > 0.05; RM 2-way ANOVA on 

ranks. This indicates that the NMDA-receptor dependent build-up in power still occurs 

in slices from A30P10+ mice, despite oscillations being smaller. 

Slices from A30P10+ mice were found to oscillate at a significantly faster 

frequency (Figure 5.4B) compared to slices from WT10+ mice overall (28.6 Hz ± 0.3 

versus 26.7 Hz ± 0.3 respectively; mouse p < 0.05, time p > 0.05, interaction p > 0.05; 

2-way ANOVA; effect size = 1.56, power (1 − β) = 0.98). No specific time-point could 

be identified as significantly different, however, despite the experiment achieving an 

observed power of 98%. However, unlike in slices from A30P2+ and WT2+ mice, no 

change in frequency occurred during the build-up period and this was confirmed 

through analysis of data normalised to the stable endpoint (WT10+ 30 minutes 100.8% 

± 4.9 to 240 minutes 99.9 ± 0.5; A30P10+ 30 minutes 101.7% ± 4.7 to 240 minutes 

100% ± 0; genotype p > 0.05, time p > 0.05, interaction p > 0.05; 2-way ANOVA).  

A comparison between stable endpoint values in slices from WT10+ and 

A30P10+ mice was next performed (Figure 5.4C) for stable area power and frequency 

(Figure 5.4D). There was a significant reduction in stable area power in slices from 

A30P10+ mice compared to WT10+ mice (300 µV2 [IQR 120 – 1190] versus 1040 µV2 
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[IQR 700 – 2850] respectively; p < 0.05, Mann-Whitney rank sum test; effect size = 

0.98, power (1 − β) = 0.75). This indicates that in addition to smaller area power values 

throughout the CCH build-up period, slices from A30P10+ mice stabilise at a smaller 

power compared to WT10+ mice. Post-hoc power analysis revealed that this 

experiment was slightly underpowered. This is likely due to a small detected effect 

size, and increasing the sample size in future experiments could increase the observed 

power and as a result the certainty of obtaining a significant effect. 

With respect to the peak frequency of stable CCH oscillations, no significant 

difference was found between slices from WT10+ and A30P10+ mice (26.7 Hz ± 0.6 

versus 28.8 Hz ± 1.4 respectively, p > 0.05, unpaired t test), despite a trend to a faster 

frequency in slices from A30P10+ mice. It can be concluded that despite slices from 

A30P10+ mice oscillating at a significantly faster frequency throughout the build-up of 

CCH-induced gamma-frequency oscillations, when stability was reached only a trend 

to a faster peak frequency was observed in slices from A30P10+ mice. 

It was finally confirmed that the observed reduction in A30P10+ gamma-

frequency oscillation area power was not dependent on dorsal/ventral slice location by 

separating stable endpoint data (WT10+ dorsal 1120 µV2 [IQR 710 – 2890] n = 7 slices; 

WT10+ ventral 950 µV2 [IQR 370 – 2780] n = 5 slices; A30P10+ dorsal 320 µV2 [IQR 

100 – 1360] n = 7 slices; A30P10+ ventral 280 µV2 [IQR 90 – 1500] n = 5 slices; mouse 

p < 0.05, location p > 0.05, interaction p > 0.05; 2-way ANOVA on ranks). 

The effect of sex on the age-dependent reduction in CCH-induced oscillation 

power could not be explored in this thesis as no slices from male A30P10+ mice 

reached stability within 4 hours. Previous work published by our group used a larger 

cohort of mice and as a result achieved similar amounts of data in male and female 

A30P10+ mice (Robson et al., 2018). Our group concluded that the age-dependent 

reduction in CCH-induced oscillations was independent of sex, and as a result it is 

expected that data presented in this thesis might support a similar conclusion. 
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Figure 5.4 Reduced power of CCH-induced oscillations in A30P10+ mice. (A) 

Boxplots to show raw area power and normalised area power as % of stable endpoint 

in WT10+ and A30P10+ mice. (B) Line graphs to show raw frequency and normalised 

frequency as % of stable endpoint in WT10+ and A30P10+ mice. (C) Representative 

power spectra of stable endpoint with LFP inset with scale bar. (D) Boxplot to show 

stable area power and bar chart to show frequency of CCH-induced gamma 

oscillations in WT10+ and A30P10+ mice. WT10+ n = 12 slices from 9 mice, A30P10+ 

n = 12 slices from 5 mice. * indicates significance at p < 0.05. 
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5.4.4 No difference in CCH oscillation rhythmicity in A30P mice 

The rhythmicity of an oscillation reflects the degree of synchrony within the 

excitatory/inhibitory network. Due to the reduction in the power of CCH-induced 

oscillations in slices from A30P10+ mice, I therefore went on to assess whether there 

were any differences in the rhythmicity of CCH-induced oscillations in slices from A30P 

mice. The induction of CCH-induced gamma-frequency oscillations generally occurred 

within the first 30 minutes following bath application, so a measure of rhythmicity index 

(RI) was taken at 30 minutes and compared to a measure when an oscillation was 

stable using AxoGraph’s autocorrelation feature (Figure 5.5A-D).  

Slices from WT2+ and A30P2+ mice (Figure 5.5E) showed a significant 

increase in rhythmicity from 30 minutes to the stable endpoint, regardless of mouse 

genotype. This indicates a time-dependent increase not only in the power of CCH-

induced oscillations, but also in the rhythmicity of CCH oscillations. No difference was 

found in rhythmicity between slices from WT2+ and A30P2+ mice at either time-point 

examined (WT2+ 30 minutes 0.33 ± 0.06 to stable 0.57 ± 0.06; A30P2+ 30 minutes 

0.38 ± 0.06 to stable 0.60 ± 0.04; genotype p > 0.05, time p < 0.05, interaction p > 0.05; 

2-way ANOVA). This was somewhat surprising given evidence so far in this thesis of 

changes in the excitatory/inhibitory network of young A30P mice. 

The same pattern was found in slices from WT10+ and A30P10+ mice (Figure 

5.5F), with an increase in rhythmicity as oscillations stabilise regardless of genotype. 

No difference was found between slices from WT10+ and A30P10+ mice in rhythmicity 

at either time-point (WT10+ 30 minutes 0.28 ± 0.07 to stable 0.44 ± 0.06; A30P10+ 30 

minutes 0.31 ± 0.07 to stable 0.39 ± 0.09; genotype p > 0.05, time p < 0.05, interaction 

p > 0.05; 2-way ANOVA). Interestingly, it was noted that RI tended to be smaller at 

stability in slices from 10-13 month old mice than in slices from 2-4 month old mice, 

regardless of genotype. As this appeared to be an effect of physiological ageing, this 

finding was not explored further in this thesis. It can be concluded that despite a 

reduction in the power of CCH oscillations in A30P10+ mouse slices, no change in the 

rhythmicity of CCH oscillations was found at either 30 minutes post-CCH, or at stability. 
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Figure 5.5 No difference in rhythmicity of CCH-induced oscillations in A30P mice. 

Representative autocorrelations with computed RI values at 30 minutes post-CCH and 

at the stable endpoint in slices from WT2+ mice (A), WT10+ mice (B), A30P2+ mice 

(C), and A30P10+ mice (D). Line graphs to show RI values in slices from WT2+ and 

A30P2+ mice (E), and in slices from WT10+ and A30P10+ (F) mice. WT2+ n = 13 

slices from 9 mice, A30P2+ n = 16 slices from 9 mice, WT10+ n = 12 slices from 9 

mice, A30P10+ n = 10 slices from 5 mice. * indicates significance at p < 0.05. 
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5.4.5 Propagation from CA3 to CA1 is intact in A30P mice 

It has previously been shown that gamma-frequency oscillations are generated 

in the CA3 region in vitro and propagate to CA1 (Hajos and Paulsen, 2009). As this 

chapter has demonstrated evidence of a reduction in gamma-frequency oscillation 

power in A30P10+ mice, propagation to region CA1 may be affected. I was also 

interested to explore whether the deficit in region CA3 is also present in region CA1.  

Recordings were made after an oscillation was stable in region CA3 by leaving 

one electrode in the CA3 st. radiatum and moving a second electrode to the CA1 st. 

radiatum. A cross-correlation was then performed (Figure 5.6A) between areas CA3 

and CA1 to compute the time delay of propagation (Figure 5.6B). In slices from WT2+ 

and A30P2+ mice, no significant difference was found in CA3 to CA1 time delay (2.0 

ms ± 0.5 versus 1.7 ms ± 0.5 respectively, p > 0.05, unpaired t test). Likewise, slices 

from A30P10+ mice showed no significant difference in time delay compared to WT10+ 

mice (2.5 ms ± 0.9 versus 2.2 ms ± 0.6 respectively, p > 0.05, unpaired t test), indicating 

that mechanisms of CA3 to CA1 propagation are intact.  

I next compared the area power and peak frequency of CCH-induced 

oscillations in regions CA3 and CA1. Though the area power of CCH oscillations 

tended to be larger in the CA3 region of both WT2+ and A30P2+ mice (Figure 5.7A), 

no significant difference was found between regions nor between WT2+ and A30P2+ 

mice (WT2+ CA3 780 µV2 [IQR 92 – 3530]; WT2+ CA1 620 µV2 [IQR 200 – 1340]; 

A30P2+ CA3 1490 µV2 [IQR 240 – 5380]; A30P2+ CA1 540 µV2 [IQR 130 – 5070]; 

genotype p > 0.05, region p > 0.05, interaction p > 0.05, 2-way ANOVA on ranks).  

In 10-13 month old mice, there once again appeared to be a trend to larger 

power values in the CA3 region compared to the CA1 region. Furthermore, the 

reduction in the power of CCH oscillations in slices from A30P10+ mice compared to 

WT10+ mice was found to occur in both the CA3 and CA1 region (WT10+ CA3 1120 

µV2 [IQR 190 – 3070]; WT10+ CA1 650 µV2 [IQR 86 – 2540]; A30P10+ CA3 280 µV2 

[IQR 95 – 2510]; A30P10+ CA1 270 µV2 [IQR 19 – 1250]; genotype p < 0.05, region p 

> 0.05, interaction p > 0.05; 2-way ANOVA on ranks). This could indicate that the power 

deficit in the CA3 region of slices from A30P10+ mice also leads to a power deficit in 

the CA1 region due to the propagation of CCH-induced oscillations. 
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Figure 5.6 CA3 to CA1 propagation time of CCH oscillations. Representative time 

delay with values computed by cross-correlation of region CA3 to region CA1 in WT 

and A30P mice (A) with central peak highlighted in red and 0 ms as dotted line. Scale 

modified from 1000 ms to 400 ms to allow visualisation of central peak delay. (B) Bar 

charts to show average time delay from region CA3 to region CA1 in WT and A30P 

mice. WT2+ n = 4 slices from 4 mice, A30P2+ n = 4 slices from 4 mice, WT10+ n = 4 

slices from 4 mice, A30P10+ n = 5 slices from 4 mice. 

 

 

 

 

 

 

 



156 
 

The peak frequency of CCH-induced oscillations within CA3 and CA1 (Figure 

5.7B) was not significantly different compared to age-matched WT control mice in 

slices from A30P2+ mice (WT2+ CA3 28.5 Hz ± 1.1; WT2+ CA1 28.3 Hz ± 1.2; A30P2+ 

CA3 27.0 Hz ± 0.5; A30P2+ CA1 27.0 Hz ± 0.4; genotype p > 0.05, region p > 0.05, 

interaction p > 0.05; 2-way ANOVA) or in slices from A30P10+ mice (WT10+ CA3 29.0 

Hz ± 1.6; WT10+ CA1 28.9 ± 1.6; A30P10+ CA3 30.1 ± 1.2; A30P10+ CA1 30.1 Hz ± 

1.2; genotype p > 0.05, region p > 0.05, interaction p > 0.05; 2-way ANOVA). This 

indicates that despite the power deficit propagating from region CA3 to region CA1 in 

A30P10+ mice, the peak frequency of CCH oscillations remained similar. 

 

Figure 5.7 CCH-induced oscillations propagate from CA3 to CA1 in A30P mice. 

(A) Boxplots to show 15- 45 Hz area power between regions CA3 and CA1 in WT and 

A30P mice. (B) Line graphs to show peak frequency between regions CA3 and CA1 in 

WT and A30P mice. WT2+ n = 10 slices from 7 mice, A30P2+ n = 8 slices from 5 mice, 

WT10+ n = 9 slices from 5 mice, A30P10+ n = 8 slices from 5 mice. 
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5.4.6 Mitochondrial dysfunction in A30P15+ mice 

As this chapter has so far demonstrated an age-dependent impairment in CCH-

induced oscillation power and stability in A30P10+ mice, it was decided to next explore 

what may be causing such changes to occur. It can be hypothesised that although no 

loss of fast-spiking PV+ interneurons was found in Chapter 3, their function may still 

be impaired. One possible mechanism for fast-spiking interneuron dysfunction is 

mitochondrial dysfunction, and indeed I have previously shown a general increase in 

mitochondrial dysfunction between 2-5 and 9-16 months in A30P mice using COX/SDH 

histochemistry in work published by our group (Robson et al., 2018).  

I decided to explore mitochondrial function in the 10-13 month age group, in 

addition to a separate cohort of 15-17 month mice (A30P15+ mice), compared to age-

matched WT mice (Figure 5.8A). COX/SDH histochemistry was selected as a simple 

technique to assess mitochondrial function, and a region including the CA3 pyramidal 

layer was analysed as this encompasses a large proportion of neuronal cell bodies. An 

increase in blue pixel density (Figure 5.8B) indicates mitochondrial dysfunction, as 

cells with dysfunctional Complex IV (COX) activity will stain blue rather than brown. 

There was no significant difference in mitochondrial function throughout the CA3 

pyramidal layer in slices from A30P2+ mice compared to WT2+ mice as measured by 

blue pixel density (45.4 ± 1.5 versus 45.3 ± 2.8 respectively, p > 0.05, unpaired t test), 

nor in slices from A30P10+ mice compared to WT10+ mice (46.7 ± 5.0 versus 46.5 ± 

1.6 respectively, p > 0.05, unpaired t test). Interestingly, mitochondrial dysfunction in 

region CA3 was detected at 15-17 months of age, where A30P15+ mice exhibited a 

significantly higher mean blue count compared to WT15+ mice (57.3 ± 2.1 versus 48.6 

± 3.1 respectively, p < 0.05, unpaired t test; effect size = 2.01, power (1 − β) = 0.73). 

Post-hoc power analysis revealed that this experiment was slightly underpowered, 

likely due to the marginal change in blue pixel density. Increasing the sample size in 

future experiments could be beneficial to confirm the validity of the observed effect. 

This data indicates that mitochondrial dysfunction is not yet detectable with our 

methods at 10-13 months in A30P mice but is detectable by 15-17 months. Conversely, 

WT mice do not exhibit an age-dependent change in mitochondrial function. This 

expands on the data published in Robson et al. (2018), where I compared a cohort of 

2 month A30P mice to a cohort of 9+ month A30P mice and found a significant increase 

in mitochondrial dysfunction with age. In this thesis I have benefitted from narrower 

age groups to specifically detect a subtle mitochondrial dysfunction at 15-17 months. 
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Figure 5.8 Increased mitochondrial dysfunction in A30P15+ mice. (A) 

Representative images of COX/SDH histochemistry at x10 magnification within the 

CA3 region, including COX and SDH only controls. Histogram from image inset with 

value indicating mean blue pixel count. Scalebars represent 100 µm. (B) Bar charts to 

show mean blue values in the CA3 region in WT and A30P mice. WT2+ n = 20 slices 

from 5 mice; A30P2+ n = 23 slices from 5 mice; WT10+ n = 15 slices from 4 mice; 

A30P10+ n = 27 slices from 6 mice; WT15+ n = 9 slices from 3 mice; A30P15+ n = 11 

slices from 4 mice; * indicates significance at p < 0.05. 
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5.4.7 Increase in Iba1+ microglia in A30P10+ mice 

Microglia play a critical role in neuroinflammation and have also been shown to 

both influence, and be influenced by, excitability (Ferrini and De Koninck, 2013). 

Furthermore, microglia have been shown to be key regulators of the ASYN aggregation 

process by engulfing both extracellular ASYN and dysfunctional cells in humans 

(Sanchez-Guajardo et al., 2013). Expression of the calcium-binding protein Iba1 is 

increased in activated microglia (Ito et al., 1998), and therefore a measure of Iba1+ 

cell density may indicate levels of reactive microglia within the CA3 region . 

Qualitative assessment of sections stained for Iba1 showed no clear regions of 

microgliosis (Streit et al., 1999). Representative images from WT and A30P mouse 

slices (Figure 5.9A) indicate a similar shape of microglia, though slices from A30P10+ 

mice appeared to present with larger cell bodies. All Iba1+ cells were counted for the 

purpose of this thesis (Figure 5.9B). There was a significant decrease in Iba1+ cell 

density in slices from A30P2+ mice compared to WT2+ mice (91.6 cells/mm2 ± 10.3 

versus 138.3 cells/mm2 ± 14.7 respectively, p < 0.05, unpaired t test; effect size = 2.29, 

power (1 − β) = 0.82), and a significant increase in Iba1+ cell density in slices from 

A30P10+ mice compared to WT10+ mice (201.6 cells/mm2 ± 22.3 versus 133.3 

cells/mm2 ± 6.5 respectively, p < 0.05, unpaired t test; effect size = 1.63, power (1 − β) 

= 0.85). Notably, the density of Iba1+ cells in WT mice at both ages were comparable. 

Qualitative observation of Iba1+ microglia in slices from A30P10+ mice suggested 

larger cell bodies, which may increase the probability of cells being counted. This could 

explain the increased density of Iba1+ microglia in A30P10+ mice, though it should be 

noted that both Iba1 expression and increased cell size indicate microglial activation. 

The decrease in Iba1+ cells in slices from A30P2+ mice was not dependent on 

dorsal/ventral hippocampal slice location (WT2+ dorsal 149.4 cells/mm2 ± 16.0 [n = 7 

slices]; WT2+ ventral 143.8 cells/mm2 ± 16.0 [n = 7 slices]; A30P2+ dorsal 100.7 

cells/mm2 ± 14.9 [n = 8 slices]; A30P2+ ventral 87.91 cells/mm2 ± 17.2 [n = 6 slices]; 

genotype p < 0.05, region p > 0.05, interaction p > 0.05; 2-way ANOVA, data not 

shown). Likewise, the increase in Iba1+ cell density in slices from A30P10+ mice was 

not dependent on dorsal/ventral hippocampal slice location, though there was a 

significantly higher density of Iba1+ microglia in dorsal hippocampal slices regardless 

of mouse genotype (dorsal overall 192.40 cells/mm2 ± 12.74 [n = 14 slices] versus 

ventral overall 136.42 cells/mm2 ± 11.8 [n = 16 slices]; genotype p < 0.05, region p < 

0.05, interaction p > 0.05; 2-way ANOVA, data not shown). 
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Whilst the decrease in Iba1+ cell density in slices from A30P2+ mice was likely 

not dependent on sex (WT2+ female 113.8 cells/mm2 ± 12.4 [n = 3 slices]; WT2+ male 

156.7 cells/mm2 ± 20.5 [n = 4 slices]; A30P2+ female 86.8 cells/mm2 ± 7.7 [n = 2 slices]; 

A30P2+ male 93.5 cells/mm2 ± 14.7 [n = 5 slices]; genotype p < 0.05, region p > 0.05, 

interaction p > 0.05; 2-way ANOVA, data not shown), the effect of sex on the increase 

in Iba1+ cell density in A30P10+ mice could not be explored due to a low sample size. 

 

Figure 5.9 Decreased Iba1+ cells in A30P2+ mice increased in A30P10+ mice. (A) 

Representative greyscale images in region CA3 at x10 magnification. Scale bar 100 

µm. (B) Bar charts show Iba1+ cells/mm2 in CA3 region of WT and A30P mice. WT2+ 

n = 7 slices from 4 mice, A30P2+ n = 7 slices from 3 mice. WT10+ n = 16 slices from 

5 mice, A30P10+ n = 14 slices from 8 mice. * indicates significance at p < 0.05. 
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5.5 Discussion 

A summary of key findings in Chapter 5 are as follows: 

• The gradual time-dependent build-up of CA3 CCH gamma-frequency 

oscillations in mice is an NMDA-receptor dependent process. 

• A30P10+ mice show reduced power of CA3 CCH-induced gamma-

frequency oscillations which propagate to CA1 and collapse more 

often. No differences in the NMDA-receptor dependent build-up, 

oscillation rhythmicity, stable frequency, or CA1 propagation time. 

• A30P15+ mice exhibit mitochondrial dysfunction, not detectable with 

COX/SDH histochemistry at 10-13 months of age. 

• A30P10+ mice show an increase in the density of Iba1+ microglia 

whilst A30P2+ mice show reduced Iba1+ immunoreactivity. 

5.5.1 Cholinergic-induced network oscillation deficit in A30P10+ mice 

Cognitive dysfunction may be underpinned by cholinergic deficits, which have 

been observed with some spatial and temporal differences in DLB (Perry et al., 1990; 

Tiraboschi et al., 2000) and in AD (Davies and Maloney, 1976). No septal cholinergic 

neuron loss was found in A30P mice when examined at 2-3 months of age (Szego et 

al., 2013), but so far no studies have examined it with respect to the age-dependent 

decline in cognition. As cholinergic neurons innervate the hippocampus, it is proposed 

that changes in the cholinergic system may have an effect here.  

Despite no change in spontaneous or KA-induced oscillations in slices from 

A30P10+ mice, this chapter found that slices from A30P10+ mice show a deficit in the 

power of CCH-induced oscillations. Interestingly, KA oscillations have been reported 

to be more susceptible to the effects of physiological ageing than CCH oscillations, 

showing a larger reduction in power in mice 22 months of age and older (Vreugdenhil 

and Toescu, 2005). This could indicate that physiological ageing leads to changes in 

different receptors and interneurons compared to the process of neurodegeneration. 

Indeed, a reduction in CCH oscillation power could indicate changes in the cholinergic 

receptors within the hippocampus, making them less capable of synchronising a 

network response required for high power network oscillations. The implications for 

hippocampal function as a result of the propagation of smaller power CCH-induced 

oscillations to region CA1 from region CA3 also remains to be explored. 
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The CCH oscillation deficit found in slices from A30P10+ mice could be specific 

to alterations in fast-spiking interneurons, for even though no loss of PV+ or CB+ 

interneurons were found in A30P10+ mice in Chapter 3, this does not mean that they 

are entirely functional. It is possible that CCH oscillation impairment may be in part 

explained by mitochondrial dysfunction in ageing A30P mice, particularly in the subset 

of neurons involved in CCH oscillations. Interestingly, MPTP is a Complex I antagonist 

and was shown to induce Parkinsonism in humans (Langston et al., 1983). More 

recently, evidence has emerged in rodent models of PD that chronic MPTP treatment 

induces hyperlocomotion (Luchtman et al., 2009; Moraes et al., 2016). Therefore, 

hyperlocomotion in A30P10+ mice as discussed in Chapter 4 could be the result of 

mitochondrial dysfunction as opposed to hyperexcitability. 

COX/SDH histochemistry was used to elucidate mitochondrial function 

throughout the pyramidal layer of region CA3, a region which encompasses the cell 

bodies of both pyramidal cells and many interneurons. It would therefore be interesting 

to examine mitochondrial dysfunction within certain cell types using quadruple 

immunofluorescence. Different populations of inhibitory interneurons express different 

levels of mitochondrial ETC protein cytochrome C (Gulyas et al., 2006), and so it is 

assumed that fast-spiking PV+ interneurons with their high level of cytochrome C 

expression may be selectively vulnerable to mitochondrial dysfunction. 

 Gamma-frequency oscillations are heavily dependent upon mitochondrial 

function (Kann et al., 2011; Whittaker et al., 2011; Robson et al., 2018) and 

interestingly, mitochondrial blockade abolishes network oscillations through an effect 

on fast-spiking interneurons (Whittaker et al., 2011). However, this thesis found no 

evidence of mitochondrial dysfunction at 10-13 months of age in A30P mice, despite 

this being the age at which oscillation power was reduced. Furthermore, WT mice 

begin to show a decrease in gamma oscillation power from as early as 15 months 

(Vreugdenhil and Toescu, 2005; Driver et al., 2007), and yet no decrease in 

mitochondrial function was found in WT mice at 15-17 months in this thesis.  It could 

be concluded that mitochondrial dysfunction is therefore not an underlying cause of 

the CCH oscillation deficit in A30P10+ mice, however COX/SDH histochemistry may 

not be the most sensitive method to detect changes given that it does not distinguish 

between different neuronal sub-types. More precise methods to detect mitochondrial 

dysfunction should be utilised in future, including measuring the mitochondrial 

membrane potential, and measuring respiratory rates of individual ETC complexes. 
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CCH-induced gamma-frequency oscillations in slices from A30P10+ mice were 

noted to collapse more frequently than any other group examined. Interestingly, all four 

slices from male A30P10+ mice collapsed in CCH. This effect was not explored in work 

published by our group previously, as a larger cohort of mice resulted in an equal 

number of stable oscillations from male and female mice (Robson et al., 2018). CCH 

oscillations that collapsed were not always significantly larger than oscillations that did 

not, and so this does not entirely explain the collapse in A30P10+ mice. Instead, the 

collapse may be due to difficulty in slices from A30P10+ mice in sustaining the high 

energy demands of gamma-frequency oscillations, including the requirement of 

functional mitochondria (Kann et al., 2011; Kann et al., 2016). 

The time-dependent build-up in power of network oscillations in slices has 

previously been reported in the literature with respect to KA-induced oscillations (Lu et 

al., 2012a; Haggerty et al., 2013), but has been explored in detail using CCH in mice 

during this thesis for the first time. We proposed that the time-dependent build-up of 

CCH oscillations may involve mechanisms of plasticity, given that CCH has been 

shown to induce LTD in rat hippocampal slices for at least 90 minutes through 

cholinergic receptors (Kumar, 2010). As CCH-induced oscillations take 2-4 hours on 

average to reach stability, this may reflect the time for CCH-induced depression to 

fade. Indeed, this thesis showed that preincubation with the NMDA receptor antagonist 

D-AP5 in WT2+ mouse slices caused an accelerated build-up and time to stability, 

though a similar number of slices reached stability. This was proposed to be the result 

of inhibition of NMDA receptor-dependent synaptic plasticity. Despite the reduction in 

CCH-induced oscillation power in A30P10+ mice, the NMDA-receptor dependent 

build-up was not altered in any age or genotype examined. This would suggest that 

A30P mice do not show any obvious changes in NMDA receptors, specifically NMDA 

receptor hypofunction, at either age examined, and that indeed mechanisms of long-

term plasticity such as LTD may be intact (Kumar, 2010).  

It should furthermore be noted that slices from A30P2+ mice did not show any 

difference in CCH oscillations, compared to the increased power observed upon 

induction of rhythms with KA. This would indicate that the increase in KA-induced 

oscillation power in slices from A30P2+ mice is not a direct result of intrinsic pyramidal 

cell hyperexcitability, but instead is dependent on the method of excitation through 

glutamatergic (KA and AMPA) receptors versus cholinergic receptors, and the various 

interneuron subtypes that possess differential levels of each receptor. 
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5.5.2 Changes in microglia in both young and ageing A30P mice 

The effect of early hyperexcitability on later deficits in A30P mice was further 

explored with respect to changes in microglia in A30P mice, given their role in the 

clearance of ASYN and also in regulating excitability within the brain (Ferrini and De 

Koninck, 2013). A previous study found no change in expression of Mac-2, a marker 

of activated microglia, in 11 month A30P mice (Ekmark-Lewen et al., 2018). It follows 

that the microglial phenotype with respect to the expression of various markers should 

be explored in greater detail in future. Regardless, this thesis has found evidence of 

an increase in the density of Iba1+ microglia in 10-13 month A30P mice compared to 

both 10-13 month WT mice, and also seemingly compared to 2-4 month A30P mice.  

Interestingly, Iba1+ microglia cell density was unchanged between 2-4 and 10-

13 months of age in WT mice. This could either reflect an increase in the number of 

microglia, an increase in Iba1 expression, or an increase in the size of microglial cell 

bodies with ageing in A30P mice. It was noted that slices from A30P10+ mice tended 

to present with microglia of a larger cell body. Regardless, both Iba1 expression and 

an increase in microglial cell body size are associated with reactive changes in 

microglia. Phagocytosis by microglia has been shown to be inhibited by aggregated 

ASYN but enhanced by monomeric ASYN (Park et al., 2008). An increase in 

aggregated ASYN with ageing in A30P mice (Schell et al., 2012) may therefore be 

associated with the increase in Iba1 microglial reactivity, though their effectiveness at 

clearing aggregated ASYN by phagocytosis may be impaired.  

An increase in Iba1+ microglia density could have further devastating effects on 

the hippocampal network as astrocyte activation has been shown to occur as a result 

of microglia activation (Liddelow et al., 2017). Indeed, Thy-1 A30P mice have 

previously been reported to show an increase in GFAP+ astrocytes within the 

brainstem by 20 months of age (Rotermund et al., 2014). It could be expected that if 

our cohort of A30P mice were examined at a later age, an increase in GFAP+ 

astrocytes might be found as a result of the increase in Iba1+ microglia reported in this 

chapter. Astrocytes play a role in network oscillations and recognition memory (Lee et 

al., 2014b; Perea et al., 2016), in addition to their role in excitability (Heja et al., 2012), 

and so their importance to network function should not be understated. 

Interestingly, the PDGF WT ASYN mouse model utilised in Chapter 4 of this 

thesis has previously been investigated for changes in microglia (Amschl et al., 2013). 

The authors found no human ASYN in microglia, which may suggest effective 
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clearance through phagocytosis (Amschl et al., 2013). It would therefore be beneficial 

to examine the age-dependent change in human ASYN expression in glial cells of the 

A30P mouse hippocampus. Though the Thy-1 promoter does not express in glial cells 

(Porrero et al., 2010), the extracellular spread of ASYN and phagocytosis of ASYN by 

microglia means that accumulation of human ASYN may occur in glial cells. 

The observed decrease in Iba1+ cell density in A30P2+ mice was unexpected 

but occurs at the same time as the decrease in GFAP+ astrocyte density explored in 

Chapter 4. A decrease in both Iba1+ and GFAP+ immunoreactivity at 2-4 months in 

A30P mice could represent an altered glial anti-inflammatory state as opposed to a 

pro-inflammatory state, but further investigation of microglial and astrocytic markers is 

required to draw any definitive conclusions. The possibly also remains that 

hippocampal slices from young A30P mice may exhibit a deficiency in basal microglial 

cell density and/or Iba1 reactivity, compared to the density of microglia and reactivity 

levels seen in young WT mice. It follows that any early intervention of treatment in 

A30P mice must be considered carefully with respect to the timing of microglia and 

astrocyte activation to prevent exacerbation of existing pathology.  
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5.6 Conclusion 

In this chapter I have explored age-dependent deficits occurring in A30P10+ 

and A30P15+ mice, building on what has been published in Robson et al. (2018). A 

CCH-induced oscillation deficit was found in slices from A30P10+ mice with respect to 

a reduction in area power in region CA3. The power deficit was confirmed to propagate 

to region CA1. However, no explicit changes in CCH-induced oscillation frequency, 

rhythmicity, or propagation time to region CA1 were found. This would appear to 

indicate changes in the subpopulation of interneurons recruited by CCH, or changes 

in cholinergic receptors within the A30P10+ hippocampus, as no changes were found 

in either spontaneous network oscillations or in KA-induced oscillations at this age. 

Secondly, mitochondrial dysfunction was explored further from work published 

in Robson et al. (2018) to show that this occurred in 15-17 month A30P mice and not 

in 10-13 month mice, though limitations exist as to how sensitive the technique used 

was. Finally, a decrease in Iba1+ microglia was reported in A30P2+ mice, in addition 

to an increase in A30P10+ mice. This could be a possible underlying mechanism to 

connect early hyperexcitability with later network dysfunction as a result of 

inflammation in response to the accumulation of human ASYN in A30P mice. 

This chapter confirms that network dysfunction occurs in A30P mice at the same 

time that hippocampal spatial memory impairment was previously reported. Due to the 

nature of deficits being mitochondrial and potentially inflammatory by this point, it would 

be worthwhile to in future turn attention to the period of early hyperexcitability preceding 

this that may be causative of these later life deficits. 
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Chapter 6. General Discussion 
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6.1 Summary of changes in A30P mice 

A summary of findings reported in this thesis is presented in Table 6.1, organised 

by chapter and the age of A30P mice. 

 2-4 months 10-13 months 
Chapter 3 

Spontaneous CA3 gamma 

Spontaneous CA3 SPWs 

CA3 pyramidal cell IPSPs 

CA3 SPW pharmacology 

CA3 PV+ interneurons 

CA3 PNN+ cells 

CA3 CB+ interneurons 

 

Comparable to WT 

Amplitude  

Amplitude/Freq  

Comparable to WT 

Density  

Density  

Density  

 

Comparable to WT 

Comparable to WT 

N/A 

N/A 

Comparable to WT 

Comparable to WT 

Comparable to WT 

Chapter 4 

CA3 KA oscillation power 

CA3 KA oscillation freq. 

IIDs at 150 nM KA 

gabazine IID response 

gabazine IID frequency 

CA3 pyramidal cell RMP 

CA3 pyramidal cell firing 

Locomotor activity 

CA3 GFAP+ astrocytes 

 

Area power  

Low conc. only  

Present, never in WT 

More common 

Frequency  

More depolarised 

Comparable to WT 

Locomotion  

Density  

 

Comparable to WT 

Comparable to WT 

Present, comparable to WT 

N/A 

N/A 

Comparable to WT 

Comparable to WT 

Locomotion  

Comparable to WT 

Chapter 5 

CA3 CCH collapse 

CA3 CCH build-up 

CA3 CCH stable power 

CA3 CCH stable frequency 

CA3 mitochondrial function 

CA3 Iba1+ microglia 

 

Comparable to WT 

Comparable to WT 

Comparable to WT 

Comparable to WT 

Comparable to WT 

Density  

 

More likely to collapse 

Comparable to WT 

Area power  

Comparable to WT 

Comparable to WT* 

Density  

Table 6.1. Summary of changes in A30P mice. Comparison of A30P mice at 2-4 

months (A30P2+) and 10-13 months (A30P10+) over three chapters. *Mitochondrial 

dysfunction detected with COX/SDH histochemistry at 15-17 months in A30P mice. 
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6.2 Early hyperexcitability affects the E/I network in A30P mice 

 There is growing evidence in the literature that subclinical epileptic activity exists 

in patients with early AD (Vossel et al., 2016; Lam et al., 2017). As this has not been 

extensively explored in patients with alpha-synucleinopathy, it is entirely possible that 

a similar mechanism occurs in this disease. Seizure activity and excitability can cause 

lasting hippocampal damage (Lado et al., 2002) as well as changes on a cellular level 

due to network remodelling (Swann et al., 2001). It is proposed in this thesis that the 

expression of human A30P ASYN within the hippocampus itself leads to excitability of 

pyramidal cells and at least some populations of interneurons.  

Overexpression of human WT ASYN in hippocampal glutamatergic cells in 

culture leads to impaired neurotransmitter release through inhibition of synaptic vesicle 

reclustering (Nemani et al., 2010). It could therefore be inferred that due to A30P 

mutant ASYN showing reduced membrane interactions (for review see Snead and 

Eliezer, 2014) the release of glutamate in hippocampal pyramidal cells may either be  

unaffected by A30P ASYN overexpression, or increased. The impact that A30P ASYN 

has on neurotransmission in GABAergic neurons is also unknown.  

While a number of studies have investigated the effect of the A30P mutation on 

the physiological function of ASYN, a significant majority of the work has been 

performed in cell culture models rather than in transgenic mouse models (for review 

see Snead and Eliezer, 2014). In young A30P mice, this thesis reported evidence of 

intrinsic pyramidal cell excitability in the form of a more depolarised resting membrane 

potential, and also of interneuron excitability in the form of increased IPSP frequency 

and amplitude. Whether excitability starts in pyramidal cells and drives interneurons, 

or is intrinsic to both pyramidal cells and interneurons as a result of intracellular human 

A30P ASYN, remains to be explored at an earlier time-point in A30P mice. 

 Despite normal hippocampal spatial memory performance previously reported 

on the Morris water maze at this age (Freichel et al., 2007), this thesis found evidence 

of hyperexcitability within both excitatory and inhibitory networks in young A30P mice. 

A full battery of behavioural and cognitive tests would indicate whether this subtle 

change has an impact on in vivo performance. Furthermore, it would be interesting to 

perform awake behaving in vivo recordings in young A30P mice to explore the 

possibility of subclinical seizures within hyperexcitable cortical networks. Before this 

could be performed, however, it was important to explore the hippocampus and 

mechanisms of hyperexcitability in isolation through in vitro electrophysiology.  
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Hyperexcitability was further explored in mice overexpressing human WT ASYN 

under the PDGF promoter within this thesis. Human WT ASYN mice exhibited a less 

severe hyperexcitability than A30P mice. This is consistent with reports that human 

mutant ASYN produces a more severe phenotype in mice than WT ASYN (Chandra et 

al., 2005). Regardless, this thesis proposes that hyperexcitability may be a common 

early occurrence in mouse models of alpha-synucleinopathy. Transgenic mouse 

models allow exploration of early synaptic changes preceding cognitive dysfunction, 

unlike the more acute effects of toxin treatment and viral expression of ASYN.  

Overexpression of human WT ASYN in mice has been shown to lead to  SNARE 

protein redistribution within the striatum leading to a reduction in dopaminergic 

neurotransmission (Garcia-Reitbock et al., 2010). Conversely, an increase in 

hippocampal excitability has been reported in mice overexpressing human WT ASYN 

(Morris et al., 2015), in addition to a reported increase in expression of the 

glutamatergic receptor mGluR5 within region CA3 (Price et al., 2010; Overk et al., 

2014). The differential effect of WT ASYN to excitability levels in different brain regions 

and neurotransmitter systems highlights the complexity of animal model studies. The 

work described in this thesis compliments the existing literature relating to the mouse 

hippocampus following overexpression of human WT ASYN, though the effect that the 

A30P mutation may have on levels of excitability remain to be explored.  

The use of in vitro slice electrophysiology is a powerful technique used for the 

first time in this thesis to explore early changes within the Thy-1 A30P mouse network. 

Three models of network oscillations were studied in this thesis: spontaneous, CCH-

induced, and KA-induced. Whilst much has been reported over the years on the 

mechanisms of oscillation generation in each model (Skrobot, 2008; Pietersen et al., 

2009; Modebadze, 2014), all rely on reciprocal communication between the excitatory 

and inhibitory networks, particularly PV+ fast-spiking interneurons (Klausberger et al., 

2005). Less is known about the contribution of CB+ cells to network oscillations, though 

given that CB is expressed in interneurons within CA3 and CA1, as well as excitatory 

CA1 pyramidal cells and granule cells of the dentate gyrus (Jouvenceau et al., 1999), 

the role of CB+ cells is likely more complex than simply providing inhibition. 

A comparison of the three oscillation types is difficult to make given the different 

experimental conditions that each recording was made in, though the data presented 

in this thesis does appear to follow the trend reported in the literature for spontaneous 

oscillations to be smaller in power and slower in frequency than hippocampal KA and 
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CCH oscillations (Pietersen et al., 2009; Modebadze, 2014). The difference between 

KA and CCH-induced oscillation power and frequency is less well defined. Though KA 

oscillations appeared to be of a larger power and faster frequency than CCH and 

spontaneous oscillations in this thesis, other studies recorded in CA3 st. radiatum 

reported no difference within this region and layer (Vreugdenhil and Toescu, 2005).  

The fact that increased gamma power in slices from A30P2+ mice is only 

observed in oscillations induced by KA suggests that the specific subpopulation of 

pyramidal cells and interneurons targeted by KA are driven more powerfully than with 

CCH, or perhaps are more vulnerable to changes caused by human A30P ASYN. It is 

proposed in this thesis that PV+ interneurons may be more involved in KA oscillations 

than in spontaneous or CCH oscillations, as the increased power of KA oscillations 

occurs at the same time as the increase in PV+ interneurons in A30P2+ mice.  

One possible factor impacting on oscillation power could be the role of electrical 

gap junctions between inhibitory interneurons. Mice lacking connexin-36, a component 

of gap junctions, have previously shown a decrease in gamma-frequency oscillation 

power (Hormuzdi et al., 2001; Buhl et al., 2003), and it is possible that hypersynchrony 

between interneurons could be responsible for the increase in power observed after 

KA exposure. However, as gap junctions have been shown to increase synchrony of 

gamma oscillations (Traub et al., 2001) and the rhythmicity of oscillations in A30P mice 

was unaffected, it is likely that the increased power of KA induced oscillations is more 

closely linked with the increase in PV+ interneurons in young A30P mice. 

Previous optogenetic experiments in vivo demonstrated that depolarisation of 

cortical inhibitory cells increased gamma oscillation power, whilst hyperpolarisation 

decreased power (Sohal et al., 2009). Furthermore, whilst a loss of PV has been 

explored in the context of schizophrenia, cells lacking PV also showed decreased 

excitation due to asynchronous GABA release, and as a result this led to a reduction 

in gamma-frequency activity (Volman et al., 2011). The role of PV+ interneurons in 

network oscillations is complicated by the fact that a decrease in GABA synthesis in 

PV+ interneurons has been shown to lead to a compensatory increase in GABA 

transmission (Lewis et al., 2005). Despite this, the authors still report impairment in 

working memory due to gamma-frequency oscillation disturbances (Lewis et al., 2005). 

The expression of PV has previously been proposed to be neuroprotective 

following excitotoxicity (Soos et al., 2004), and injury (Dekkers et al., 2004). This is 
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proposed to be due to the role of PV as a calcium buffer within the cell, which helps to 

prevent DNA damage and apoptosis (Soos et al., 2004). However, ectopic PV 

expression in cells that do not express PV under physiological conditions has been 

shown to induce accelerated neurodegeneration, astrocyte immunoreactivity, and 

decreased mitochondrial volume in response to excitotoxic injury in mouse forebrain 

neurons (Maetzler et al., 2004). Therefore, despite the increase of PV+ interneuron 

density potentially being to compensate for increased network activity, this mechanism 

may be more detrimental than beneficial and paradoxically lead to a vulnerability to 

excitotoxicity with ageing. Whether increased PV+ interneuron density is a cause or 

consequence of increased GABAergic activity also remains to be explored. 

A consequence of increased PV+ interneuron density further manifests in the 

form of an increased amplitude of GABAA receptor-dependent SPWs, and increased 

PNN+ cell density in young A30P mice. Of particular interest was the increase in PNN+ 

cell density, given the neuroprotective role of PNNs to fast-spiking interneurons 

(Cabungcal et al., 2013b). Neuroprotection by increased PNN+ cell density may be 

why, despite evidence of excitability in young A30P mice, mitochondrial dysfunction is 

not detectable by COX/SDH histochemistry at this age.  

There is evidence that due to an increase in deltaFosB following neuronal 

activity, the density of CB+ granule cells within the dentate gyrus decreases and 

cognitive impairment occurs (You et al., 2017). It is further suggested that 

downregulation of CB could be a homeostatic mechanism in CA1 pyramidal cells to 

protect against excitotoxicity (Klapstein et al., 1998). The association of CB+ cell loss 

with network excitability was explored by Morris et al. (2015), with evidence of CB+ 

granule cell loss in the dentate gyrus of both DLB patients and mice overexpressing 

human WT ASYN. Furthermore, in a mouse model of AD a loss of CB+ expression in 

the dentate gyrus is associated with excitability and a compensatory increase in 

inhibition occurs (Palop et al., 2007). While the literature typically explores CB in the 

context of excitatory cells of the dentate gyrus and CA1, this thesis set out to explore 

changes in CB+ interneurons within region CA3.  

Evidence of the association between CB and excitability should not be ignored 

simply because it was collected from excitatory rather than inhibitory cells. The 

literature highlights that CB is capable of compensatory changes in response to 

excitation and alpha-synucleinopathy. This is complicated by the finding that human 

ASYN is not present in CA3 CB+ interneurons in A30P mice, and so it is proposed that 
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cells expressing human ASYN were either those already lost by 2 months, or that 

changes in CB+ interneurons occur as a result of compensatory mechanisms. 

Upregulation of PV expression in rodents has previously been described 

following sensory deprivation in the first week of life (Watanabe et al., 2012), and 

following periods of low intensity exercise (Arida et al., 2004; Nguyen et al., 2013). 

Indeed, in cultured cells from the rat visual cortex the expression of PV was shown to 

be activity dependent, with an increase in PV expression proposed to represent 

hyperactivity of PV cells (Patz et al., 2004). It is therefore proposed that increased 

network excitability may lead to an increase in PV to buffer excess calcium within fast-

spiking interneurons. This is possibly due to PV+ interneurons being surrounded by a 

PNN, which allows for plastic remodelling of the network and has been associated 

closely with the levels of PV within the cell (Yamada et al., 2015; Favuzzi et al., 2017). 

A similar mechanism has been proposed to occur within the substantia nigra of 

patients with PD, but not in control subjects or patients with AD (Soos et al., 2004). 

The authors propose that due to excitotoxicity and oxidative damage, levels of 

intracellular calcium were raised and an upregulation of PV occurred in response (Soos 

et al., 2004). In cells that did not upregulate PV expression, upregulated components 

of the DNA damage response were reported instead (Soos et al., 2004). 

One final effect of network excitability discussed in this thesis is a decrease in 

the density of both Iba1+ microglia and GFAP+ astrocytes in young A30P mice. A 

reduction in the reactivity of microglia and astrocytes may have on the hippocampal 

network in the form of hyperexcitability. Microglia play a crucial role in synaptic pruning 

during development (Paolicelli et al., 2011), and if this process is disturbed in A30P 

mice then the balance of the excitatory/inhibitory network may be impacted as a result. 

Furthermore, astrocytes function to maintain physiological levels of glutamate and 

GABA (Verkhratsky and Butt, 2007) and therefore dysfunction may also impact on the 

balance between excitation and inhibition. 

To explore the mechanisms of altered glial reactivity in young A30P mice, it 

would be necessary to look at mice postnatally to determine if this phenotype is 

developmental. However, it is proposed that the increase in neuronal activity seen in 

young A30P mice leads to an increase in extracellular ASYN (Paillusson et al., 2013), 

oxidative damage through increased ROS (Poon et al., 2005) leading to mitochondrial 

dysfunction, and as a result an increase in human A30P ASYN aggregation and 
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oligomerisation with ageing (Ekmark-Lewen et al., 2018). Microglia and astrocytes 

should function to mitigate damage caused by hyperexcitability, and it is possible that 

the lack of GFAP and Iba1 immunoreactivity is a result of a neuroprotective phenotype 

of glia that could be explored with the use of additional markers, or a deficiency in the 

glial response as a result of human ASYN over-expression. 

This is interesting given that healthy human tissue is often not immunoreactive 

for GFAP (Sofroniew and Vinters, 2010). Following lipopolysaccharide injection to 

induce inflammation in mice, activation of microglia and astrocytes were detected 

through morphological changes despite a decrease in Iba1 mRNA (Silverman et al., 

2014). The authors of this study propose that this is an attempt to prevent further 

activation of microglia (Silverman et al., 2014), and therefore careful examination into 

glial morphology, mRNA expression patterns, and postnatal phenotypes should be 

explored in A30P mice to elucidate the complex mechanism of glial reactivity. 

6.3 Age-dependent network deficits in A30P mice 

In direct contrast to the young A30P hyperexcitable network, the ageing A30P 

mouse network instead presents with normalised levels of excitability but the 

appearance of deficits in the power of CCH gamma-frequency oscillations and the 

presence of mitochondrial dysfunction. It is proposed that early hyperexcitability in fact 

contributes to later age-dependent network deficits, though as a cohort of 6-8 month 

old A30P mice also show some evidence of excitability in response to kainate 

exposure, it is unclear at what age the switch between the two phenotypes occurs. 

The exception to normal excitability with ageing in A30P mice was seen in the 

persistence of hyperlocomotion with age. However, it has been proposed in this thesis 

that this may be the result of either excitability spreading from the hippocampus to 

elsewhere in the brain, or else it may be the result of other mechanisms including 

NMDA receptor dysfunction (Ma et al., 2012) or even disruptions in circadian rhythms 

(Arble et al., 2010). One major limitation in this study is the inability to follow the same 

mouse longitudinally, and therefore future work should move towards awake behaving 

in vivo electrode implants where locomotor activity and excitability could be monitored 

over time and in response to pharmacological interventions.  

Ageing A30P mice exhibited a specific reduction in the power, but not frequency 

or rhythmicity, of CCH-induced gamma oscillations, but not KA or spontaneous 

oscillations. The reason for this may be either due to changes in cholinergic receptors 
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within the hippocampus, or else due to dysfunction in the interneuron population 

specifically recruited during CCH oscillations. Connexin-36 gap junction knockout mice 

exhibit a reduction in the power, but not the frequency, of gamma oscillations (Buhl et 

al., 2003) and this could indicate an impairment in synchrony between interneurons. 

However, no impairment in oscillation rhythmicity was found using our techniques. 

Whilst it has previously been shown that exposure of slices to acute application 

of human WT ASYN oligomers impairs LTP through NMDA receptor activation 

(Diogenes et al., 2012), the NMDA-receptor dependent build-up in power of CCH-

induced oscillations was unimpaired in ageing A30P mice. It is possible that changes 

may be detected in an even older cohort of mice in the build-up of oscillations, but once 

again this implicates changes in the mechanisms specifically influencing oscillation 

power. As previously discussed, downregulation of PV+ interneurons leads to a 

reduction in gamma-frequency oscillation power (Sohal et al., 2009; Volman et al., 

2011), though in this thesis no loss of PV+ interneuron density was found in slices from 

A30P10+ mice compared to age-matched WT mice. 

Synaptic dysfunction in the absence of cell loss has been reported in both 

transgenic and non-transgenic rodent models of PD. Rats overexpressing human WT 

ASYN following viral injection to the midbrain develop synaptic dysfunction and early 

pathology despite no loss of cells (Phan et al., 2017). Furthermore, a novel model of 

early PD generated by injection of the mitochondrial stressor aminochrome to the rat 

striatum led to dopaminergic cell dysfunction, mitochondrial dysfunction, and an 

increase in GABA release within the local area. As a result, attention turned in this 

thesis to neuronal dysfunction as opposed to neuronal cell loss.  

Fast-spiking PV+ interneurons are incredibly energy demanding and are 

enriched in mitochondria as a result (Kann, 2016), with fast network oscillations heavily 

dependent on effective energy metabolism and functional mitochondria 

(Huchzermeyer et al., 2008; Kann et al., 2011). Whilst mitochondrial dysfunction was 

not yet detected in A30P mice until 15-17 months of age, it is possible that more 

sensitive measures of metabolic and mitochondrial function may reveal differences. 

Therefore, this thesis proposes that early hyperexcitability may lead to later 

mitochondrial dysfunction, and as a result neuronal dysfunction, through mechanisms 

of excitotoxicity following excessive neuronal activity.  
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It is entirely possible that the increase in human ASYN aggregates with ageing 

in A30P mice is exacerbated by early hyperexcitability. Neuronal activity exacerbates 

the release of extracellular ASYN, which contributes to the spread of pathology 

between cells and even between brain regions with age (Paillusson et al., 2013). 

Furthermore, cell culture models highlight that oxidative stress accelerates the 

aggregation of WT ASYN (Hashimoto et al., 1999; Paxinou et al., 2001), and the very 

presence of either the A30P or A53T mutation in ASYN leads to an increased 

propensity to aggregate (Flagmeier et al., 2016). This may account for the fact that the 

cohort of young PDGF WT ASYN mice described in Chapter 4 also showed IIDs in 

response to low concentrations of KA but not to as great an extent as young Thy-1 

A30P mice did, due to the presence of WT rather than mutant ASYN. 

Network excitability normalises with ageing in A30P mice and is accompanied 

by normalised GFAP+ astrocyte density and increased Iba1+ microglia density. The 

normalisation of GFAP+ astrocyte density in A30P mice with ageing may explain why 

hyperexcitability does not persist to this age, given the role of astrocytes in maintaining 

the balance of excitation and inhibition with the hippocampal network (Verkhratsky and 

Butt, 2007). The increase in GFAP and Iba1 reactivity with ageing in A30P mice may 

therefore be a response to the increase in human ASYN aggregates with ageing, and 

an attempt to clear misfolded human ASYN and dysfunctional cells. However, as mice 

die prematurely due to severe motor deficits from around 18 months, the microglial 

response is occurring too late in the disease process. Instead, the increase in Iba1+ 

cell density may play a role in the age-dependent reduction in gamma-frequency 

oscillation power observed in A30P mice. It is therefore important to consider the 

balance between glial cells attempting to reduce excitability and levels of misfolded 

and aggregated human ASYN, and the neuronal dysfunction that may occur due to 

excess or prolonged pro-inflammatory states. 
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6.4 Therapeutic implications 

Overall, this thesis has presented evidence of an early hyperexcitability 

preceding cognitive dysfunction and network oscillation impairment in a mouse 

overexpressing human A30P ASYN. As hyperexcitability persists for some months 

after first detection, the potential to intervene and either delay or prevent later cognitive 

deficits is of therapeutic interest. Whilst no mouse model fully recapitulates the 

pathology and symptoms of the alpha-synucleinopathy, this thesis has demonstrated 

that similar mechanisms of hyperexcitability likely exist in mice expressing either A30P 

or WT human ASYN. It would be worthwhile to examine the pan-neuronal over-

expression of human ASYN in comparison to mice only over-expressing human ASYN 

in certain neuronal subtypes. This could help to elucidate mechanisms of extracellular 

ASYN propagation, and the factors that may lead to differential disease progression. 

Despite the differences in symptoms, regions affected, and time course of 

disease, a number of mechanistic similarities exist between AD and alpha-

synucleinopathy. Whilst AD research is seemingly decades ahead of research into 

alpha-synucleinopathy, this thesis highlights the need to explore evidence of 

subclinical seizures in patients with alpha-synucleinopathy given the wealth of 

evidence of hyperexcitability in patients and rodent models of AD (Amatniek et al., 

2006; Minkeviciene et al., 2009; Lam et al., 2017).  

Treating mice with chronic anti-inflammatory drugs has proven effective in some 

models of neurodegeneration (Eriksen et al., 2003) but should be considered with 

caution given the reduced immunoreactivity of astrocytes and microglia in the early 

stages of disease in the Thy-1 A30P mouse model. Instead, it is possible that a 

stimulus to trigger the pro-inflammatory response may instead prove useful to stimulate 

microglia to clear misfolded human ASYN before aggregates can form. Furthermore, 

the possibility of treatment with anti-epileptics and anti-oxidants as soon as 

hyperexcitability is detected is promising in this model, as this thesis has proposed that 

excitotoxicity and oxidative stress occurring through excess neuronal activity is likely a 

key pathological process leading to the later life deficits in A30P mice.  
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6.5 Future Work 

This thesis presents evidence for the first time of early network hyperexcitability in 

the Thy-1 A30P mouse model through electrophysiological and immunohistochemical 

techniques. The thesis benefits from the use of a range of techniques to examine 

network dysfunction, in addition to the inclusion of numerous age groups, examination 

in to the effect of sex, and the effect of dorsal/ventral hippocampal location to 

strengthen the findings presented in this thesis. The following areas have been 

identified as areas of future work to advance the findings of this thesis: 

• Examination of A30P mice at 3-4 weeks of age as soon as animals are weaned. 

Mice would be explored for early changes in pyramidal cells and interneurons, 

as well as astrocytes and microglia, to confirm whether changes occur at this 

point or even earlier in development. Changes in human ASYN structure and 

phosphorylation states will also be monitored from an early age. 

 

• Quadruple immunofluorescence for: Complex I of the ETC, Porin as a marker 

of mitochondrial mass, human ASYN, and either PV as a marker of interneurons 

or CaMKII as a marker of pyramidal cells. This would allow localisation of 

mitochondrial deficits to PV+ or CaMKII+ cells. Further exploration of 

mitochondrial function in A30P mice of all ages through recording of activity in 

each complex of the ETC, and measures such as mitochondrial membrane 

potential in different cell types. 

 

• Dosing of A30P mice from 3-4 weeks of age as soon as animals are weaned 

with existing anti-epileptics or antioxidants. A functional output of 

hyperlocomotion could be measured by performing the open field test before 

and after treatment. Mice could be treated and then left till they reach 12 months 

of age at which point hippocampal spatial memory in vivo and CCH-induced 

network oscillations in vitro could be examined. 

 

• Random transgene integration is used to produce the majority of transgenic 

mouse models, and an important limitation of this work is the possibility that this 

may impact other sections of the genome (Jacobsen et al., 2017). Recent work 

has described elucidation of the site of genomic integration in mice using next-

generation sequencing methods, and this would be important to confirm that the 

observed phenotype is due to the transgene itself. 
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