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ABSTRACT 

Gestational diabetes (GDM) affects 3-5% of  pregnancies and is associated with stillbirth, 

accelerated fetal growth and fetal growth restriction, birth trauma, increased risk of  

caesarean section and third degree tear. Many mothers with GDM go on to develop type 2 

diabetes (T2DM) in later life. T2DM is associated with increased fat deposition in the 

muscle, liver and pancreas leading to insulin resistance, impaired insulin secretion and 

hyperglycaemia. Muscle insulin resistance and its association with raised intramyocellular lipid 

is one of  the first detectable changes in T2DM. Low calorie dieting causes reversal of  T2DM 

and removal of  intra-organ fat. The pathophysiology of  GDM is poorly understood, but fat 

deposition may play a similarly important role. Low calorie dieting is poorly studied and 

viewed with caution in pregnancy. This work explores the nature of  physiological insulin 

resistance in pregnancy and the clinical and metabolic outcomes of  reducing calorie intake to 

1,200kcal/day in pregnancy affected by GDM (WELLBABE – WEight Loss Looking for 

Babe and mother BEtter outcomes study). 

The LIPIDPREG study used magnetic resonance spectroscopy (MRS), a non-invasive 

technique that has not been previously used in pregnancy, to quantify intramyocellular lipid 

within the soleus muscle in women with normal glucose tolerance. A standardised meal test 

was used to calculate insulin sensitivity and secretion. Studies were done at 34 weeks 

gestation and 12 weeks postpartum. Eleven primiparous healthy pregnant women (age: 27-39 

years, body mass index 24.0±3.1 kg/m2) and no personal or family history of  diabetes 

underwent magnetic resonance studies to quantify intramyocellular lipid, plasma lipid 

fractions, and insulin sensitivity. The meal-related insulin sensitivity index was considerably 

lower in pregnancy (45.6±9.9 vs. 193.0±26.1; 10-4 dl/kg/min per pmol/l, p=0.0002). Fasting 

plasma triglyceride levels were elevated 3-fold during pregnancy (2.3±0.2 vs. 0.8±0.1 mmol/l, 

p<0.01) and the low-density density lipoprotein fraction, responsible for fatty acid delivery to 

muscle and other tissues, was 6-fold elevated (0.75±0.43 vs. 0.12±0.09 mmol/l; p=0.001). 

However, mean intramyocellular lipid concentrations of  the soleus muscle were not different 

during pregnancy (20.0±2.3 vs. 19.1±3.2 mmol/l, p=0.64). In conclusion, the pregnancy 

effect on muscle insulin resistance is distinct from that underlying type 2 diabetes. 

The WELLBABE study recruited women with an abnormal oral glucose tolerance test from 

21 to 34 weeks (mean 27 weeks) gestation. MRS quantification of  liver fat, a standardised 

meal test and plasma lipid profiles were performed before and after a 1,200kcal/day diet. 

Participants food diary and glycaemic control were reviewed on a daily basis for 4 weeks, 
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through the use of  smartphone technology. Fourteen women, who completed the study, 

achieved a weight loss of  1.6±1.7 kg over the 4 week dietary period. Mean weight change 

was -0.4 kg/week in the study group vs +0.3 kg/week in the comparator group (p=0.002). 

Liver triacylglycerol level was normal but decreased following diet (3.7% [interquartile range, 

IQR 1.2-6.1%] vs 1.8% [IQR 0.7-3.1%], p=0.004). There was no change in insulin sensitivity 

or production. Insulin was required in six comparator women vs none in the study group 

(eight vs two required metformin). Blood glucose control was similar for both groups. The 

hypo-energetic diet was well accepted. Liver triacylglycerol in women with GDM was not 

elevated, unlike observations in non-pregnant women with a history of  GDM. A 4 week 

hypo-energetic diet resulted in weight loss, reduced liver triacylglycerol and minimised 

pharmacotherapy. The underlying pathophysiology of  glucose metabolism appeared 

unchanged. 

The results of  these two studies are presented in this thesis and from this work a 

hypothetical model of  insulin resistance in pregnancy and GDM is presented. It is 

demonstrated that reduced calorie dietary intervention is both acceptable and feasible in 

pregnancy and reduced the need for medication in women with GDM. Further studies are 

needed in this area to unravel the true pathophysiology of  GDM and to develop a reduced 

calorie dietary intervention that could be used in routine clinical practice. 
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CHAPTER 1 BACKGROUND AND INTRODUCTION 

1.1 Normal Pregnancy 

1.1.1 Prioritizing the Fetal Environment 

Pregnancy is a state of metabolic flux in which the delicate balance of metabolic homeostasis 

is disturbed from its status quo to one in which the needs of the fetus become paramount. 

The fetus needs the building blocks of life in the form of glucose, amino acids and fatty 

acids. To meet the potential requirements for lactation the mother needs to increase energy 

stores as fat. 

Maternal energy requirements in pregnancy are thus increased in order to allow the placenta, 

membranes, amniotic fluid and fetus to grow together with increasing maternal adipose 

deposition requires approximately 80,000kcal (Hytten and Leitch, 1971). Human pregnancy, 

compared to other animal species, is marked by slow fetal growth over a long period in order 

to allow for the development of a complex human brain (Payne and Wheeler, 1967). 

Additionally, compared to other species, the human fetus is relatively small in relation to the 

adult. This means that on a day-to-day basis, only a small increase in energy intake is required 

for pregnancy to be sustained. This is advantageous in an environment where food is not 

always readily available as energy savings can be made to divert the small amount of energy 

required by the fetus (Prentice and Goldberg, 2000). It is this plasticity in maternal 

metabolism that allows for reproduction, even under conditions of extreme food scarcity. 

Total energy expenditure for pregnancy varies according to food availability as is shown in 

Figure 1. 
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From a series of studies across different socioeconomic profiles, it has been established that 

the energy required to produce the fetus is constant and does not change much between high 

and low income groups (Prentice and Goldberg, 2000). However, there is a marked 

difference in maternal basal metabolic rate (BMR) in a well-nourished countries (such as the 

UK) compared to a countries where food is less readily available for example, The Gambia 

(Lawrence et al., 1987; Prentice et al., 1989; Prentice and Goldberg, 2000). In the UK BMR 

increases substantially from about 20 weeks gestation onwards. Conversely, Gambian women 

reduce their BMR, particularly during the rainy season when food is scarce, below pre-

pregnancy levels, increasing it only slightly from around 30 weeks gestation as shown in 

Figure 2 (Lawrence et al., 1987). 

Figure 1 Total energy costs of pregnancy: conceptus (including fetal fat), fat deposition and 

maintenance in women from affluent and poor countries. The energy cost of the conceptus 

was estimated pro rata according to birth weight. The supplemented women from The 

Gambia received balanced protein-energy supplements (Prentice and Goldberg, 2000). 
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These studies show that it is possible to adapt maternal BMR in order to maintain adequate 

energy delivery to the fetus. This is a useful adaptation, and has been well studied in times of 

famine, but in developed countries we live in an environment of nutritional excess. How 

does maternal metabolism cope with energy saturation? 

Total energy costs of pregnancy are positively correlated with pre-pregnancy fat and 

pregnancy weight gain, as Figure 3 demonstrates, suggesting that there is a mechanism 

through which the mother can adapt her energy expenditure in pregnancy according to her 

nutritional status. The studies from which this data has been derived were published over 20 

to 30 years ago and the average body mass index (BMI) of the women studied was 22 

(Durnin et al., 1987; Thongprasert et al., 1987; Tuazon et al., 1987; van Raaij et al., 1987; 

Forsum et al., 1988; Goldberg et al., 1993). Since then, there has been a steady increase in the 

number of overweight and obese pregnant women (National Audit Office, 2001). The 

metabolic effect of this, in terms of the proportionality of energy expenditure dedicated to 

BMR, fat deposition and fetal weight has yet to be investigated. However, the increased 

frequency of gestational diabetes, fetal macrosomia and caesarean section would imply that 

metabolism is unable to cope with surplus energy intake in a proportion of the population. 

Figure 2 Basal metabolic rate during pregnancy in women from England and The Gambia 

(Prentice and Goldberg, 2000) 
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Homeostasis is ‘the physiological process by which the internal systems of the body are 

maintained at equilibrium despite variations in external conditions’ (Oxford Conscise Medical 

Dictionary, 2010). Homeostasis is therefore responsible for diversion of energy into three 

components: the conceptus, maternal fat storage and additional metabolism. Understanding 

the hormonal control of metabolism is therefore essential to understanding the processes 

underlying pregnancy adaptation. 

1.1.2 Overview of Metabolism 

The human diet typically consists of three main food groups: carbohydrate  which, in the 

UK, represents approximately 50% of dietary intake, protein 15% and fat 35% (Henderson et 

al., 2003). Carbohydrates are digested and absorbed as monosaccharides. Monosaccharides 

are five or six carbon molecules, the most significant of which is glucose. Glucose is used by 

almost all tissues to produce energy and some tissues (for example the brain) are entirely 

glucose dependent in everyday life. The rapid decline in consciousness secondary to 

hypoglycaemia is a reminder that glucose is a constant requirement. Glucose is highly soluble 

and easily transported via the bloodstream. Its uptake into cells is regulated by glucose 

transporter proteins (GLUT). Glucose is readily metabolised through glycolysis (into 

pyruvate), releasing adenosine triphosphate (ATP) and can yield further energy through 

Figure 3 Intercountry correlations of the total energy cost of pregnancy with pre-pregnancy 

maternal fatness in women from Sweden (), England (), the Netherlands ( and ), 

Scotland (), Thailand (), the Philippines (), The Gambia ( supplemented with 

balanced protein-energy supplements,  unsupplemented) and The Gambia ( different 

data set). 

(Prentice and Goldberg, 2000) 
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aerobic respiration on the mitochondrial membrane through the tricarboxylic acid (TCA) 

cycle. 

In the well-fed state surplus glucose can be stored as glycogen, a polysaccharide molecule 

that is stored within the cell cytoplasm. Glycogen stores are particularly abundant in the liver 

and muscle. Within the liver, glucose can be released from glycogen in times of glucose 

shortage. Muscle lacks glucose-6-phosphatase  and so therefore cannot directly convert glycogen 

into glucose; “new” glucose can be manufactured from lactate (produced by the muscle) 

through gluconeogenesis in the liver. 

Glucose is a useful energy substrate, it is easily digested and taken up into cells and yields 

good ATP production. However, it is quickly metabolised and glycogen reserves can decline 

rapidly. The rate at which glycogen stores become deplete depends on activity. On a day-to-

day basis they will last approximately 24 hours, however, under endurance training e.g. 

marathon running they can become deplete in under two hours or less (Frayn, 2003; 

Rapoport, 2010). Glucose can be seen as the ‘cash’ of the metabolism monetary system: it is 

globally accepted and can be kept in a ‘current’ account in the form of glycogen for easy 

draw down later. 

Fat, on the other hand, is the ‘savings account’ for energy storage. Fat is digested and 

absorbed as fatty acids and glycerol. It is then either metabolised, stored or re-packaged by 

the liver and transported via the bloodstream to other tissues. Fat is an efficient means of 

storing or mobilizing energy since lots of energy can be stored in relatively little space. 

Glycogen, by comparison is a large molecule stored as a colloid in water, and so is a relatively 

heavy and space-occupying to store. Energy from fat is obtained through beta oxidation, 

which typically supplies energy for most tissues in the overnight fasted state when glucose is 

less available. 

Protein is digested and absorbed as amino acids. Amino acids are the building blocks for 

protein synthesis. Some amino acids can be manufactured by the liver, however there are a 

number of amino acids that cannot be created de novo, these are termed ‘essential amino 

acids’. Amino acids that are not converted into protein cannot be stored. They are 

deaminated by the liver into urea, which in turn is excreted through the kidneys. The carbon 

backbone of the amino acid molecule can be converted into glucose through 
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gluconeogenesis or into ketone bodies for oxidative metabolism. Thus, in terms of energy 

production and storage, the two most important substrates are glucose and fat. 

1.1.3 Glucose Metabolism 

The digestion of carbohydrate begins in the mouth with the enzyme amylase. This enzyme 

acts to break down the bonds splitting polysaccharides into mono- and disaccharides. 

Pancreatic juice contains further amylase. Absorption of monosaccharide occurs on the brush 

border of the villi within the small bowel. Monosaccharides are absorbed through glucose 

transporters within the brush border and transported to capillaries in order to enter the 

bloodstream. Disaccharides (such as sucrose) are also broken down on the brush border into 

their monosaccharide constituents. 

From the gut, blood is transferred via the hepatic portal vein to the liver where glucose can 

be either released into the blood stream, metabolized, converted into glycogen or other 

molecules (for example lipid). 

Glucose is taken into cells via glucose transporter proteins present on the cellular surface 

membrane. There are two different type of transport protein: glucose transporter protein 

(GLUT) and sodium-dependent glucose transporter protein (SGLT). Different GLUT 

transporter proteins have varying affinity for glucose and are passive (non-energy requiring) 

transporters: they transport glucose along a concentration gradient. SGLT proteins require 

energy (in the form of ATP) to transport glucose against a concentration gradient. They are 

found in the epithelial cells of the gut, renal tubules and choroid plexus. There are fourteen 

types of GLUT protein; different tissues express differing GLUT proteins on their cell 

surfaces. For example, GLUT-3 is found on neurons, GLUT-1 on erythrocytes and the 

blood brain barrier, GLUT-4 is present on muscle and adipose tissue and GLUT-2 is present 

on the cell membranes of the liver, kidney and beta-cells of the pancreas. GLUT-4 can be 

up-regulated through hormonal influence, for example insulin will increase the number of 

GLUT-4 transporter proteins, thus increasing glucose uptake in the muscle and adipose 

tissues.  

Glucose, once inside cells can be: 

1. Stored as glycogen 

2. Metabolised into energy (ATP) 
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3. Converted into other molecules (e.g. fat, amino acids, nucleic acids) 

1.1.3.1 Glycogen Storage 

In well-nourished individuals, glycogen forms approximately 1-2% of muscle mass and 10% 

of liver mass (Frayn, 2003). The purpose of glycogen in the liver is to produce glucose 

relatively quickly if needed (due to fasting conditions) and in the muscle its purpose is to 

provide glucose for rapid anaerobic metabolism during strenuous exercise. 

Glycogen is synthesised by glycogen synthase in the cell cytoplasm. Glucose is phosphorylated 

to glucose 6-phosphate and then converted to glycose 1-phosphate. It is then bound to 

uridine diphosphate (UDP) to form UDP-glucose, see Figure 4a. UDP-glucose binds onto 

growing glycogen molecules through glycogen synthase. Most bonds are α(1:4) linkages, but 

some are α(1:6) linkages – creating the branching or tree like structure of the glycogen 

molecule, see Figure 4b. The branches increase the number of ends from which glucose can 

be enzyme-released. 



8 
 

 

To release glucose from glycogen glycogen phosphorylase cleaves the α(1:4) carbon bonds at the  

ends of the glycogen chain producing glucose 1-phosphate. Glucose 1-phoshate, in turn is 

converted to glucose 6-phosphate, which in muscle is directly metabolised by glycolysis 

(described below). In the liver, glucose 6-phosphate can be metabolised or the phosphate can 

removed to release glucose into the bloodstream. 

1.1.3.2  Glycolysis 

The metabolism of glucose to yield energy begins with glycolysis. Glycolysis describes the 

steps required to convert glucose into pyruvate. There are multiple steps in this process, 

however the three main steps are summarised in Figure 5 below: 

Figure 4 Glycogen synthesis – adapted from Ferrier, DR Lippincott’s Illustrated Reviews: 

Biochemistry. 6th Edition p.127  
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The three main steps in glycolysis are: 

1. Conversion of glucose into glucose 6-phosphate 

2. Conversion of glucose 6-phosphate into fructose 1,6-bisphosphate 

3. Conversion phophoenolpyruvate (PEP) into pyruvate 

The first two steps require energy (in the form of ATP). The final step is energy yielding 

(producing ATP). 

1. Conversion of glucose into glucose 6-phosphate 

Phosphorylation of glucose to form glucose-6-phosphate is the first step in glycolysis. 

Through the addition of a phosphate group to the glucose molecule it becomes 

Figure 5 Glycolysis adapted from Ferrier, DR Lippincott’s Illustrated Reviews: Biochemistry. 6th 

Edition p.105 



10 
 

polarised and therefore ‘trapped’ within the cell cytoplasm. Hexokinase, an enzyme 

found in most tissues, is responsible for this initial step. Hexokinase has a high affinity 

for glucose and is inhibited by glucose 6-phosphate. In the liver and pancreas a 

different enzyme, glucokinase, phosphorylates glucose. Glucokinase has a lower affinity 

for glucose than hexokinase , this means that it requires higher glucose concentrations 

to work. Additionally, it has a higher rate of activity (Vmax) than hexokinase. Thus, in 

the liver, glucokinase operates only when the intracellular glucose concentration is high, 

such as after a meal, and is able to eliminate glucose quickly from the circulation. 

There is no rate limiting step of glucose uptake into hepatocytes, and the intracellular 

concentration is similar to the extracellular concentration, and hence glucokinase 

activity is rate limiting for glucose metabolism in the liver. Glucokinase is regulated by 

glucokinase regulatory protein (GKRP) which binds reversibly to glucokinase inhibiting 

its action by holding the enzyme in the nucleus of the cell. Fructose 6-phosphate (a 

product of glucokinase) promotes the production of GKRP, thus with normal glucose 

turnover glucokinase is inhibited. However, once glucose levels reach a threshold, 

glucokinase is released from GKRP and is able to act on (and begin to eliminate) the 

increased intracellular glucose concentration. Glucokinase acts as a glucose ‘thermostat’ 

within the liver and pancreas, switching on when glucose levels are high and switching 

off when low. 

2. Conversion of glucose 6-phosphate into fructose  1,6-bisphosphonate 

Glucose 6-phosphate is converted into fructose 6-phosphate then phosphorylated to 

fructose 1,6-bisphosphate by phosphofructokinase-1. This is an irreversible reaction and is 

a rate limiting step in terms of glycolysis control. Phosphofructokinase-1 is inhibited by 

ATP and citrate within the cell cytoplasm (i.e. glycolysis is inhibited in the presence of 

abundant energy within the cell), with resultant inhibition of glycolysis and promotion 

of glycogen storage instead. Phosphofructokinase-1 is activated by adenosine 

monophosphate and fructose 2,6-bisphosphonate. Fructose 1,6-bisphosphonate is 

divided into two three-carbon molecules which are further metabolised into pyruvate. 

3.  Conversion phophoenolpyruvate (PEP) into pyruvate 

Pyruvate kinase converts PEP to pyruvate in an energy yielding step, producing ATP. 

Pyruvate can be either metabolised through the TCA cycle (see below) or reduced to 

lactate by lactate dehyrdrogenase. The conversion into lactate occurs within the cell 

cytoplasm in the absence of oxygen (anaerobic respiration). This commonly occurs in 

the muscle cells during exercise. Lactate is then transported from the muscle to the 
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liver where it can either be converted back into glucose or metabolised via the TCA 

cycle. 

  

Glycolysis produces a net gain of two ATP molecules for each glucose molecule converted 

into two molecules of lactate. Under aerobic conditions glycolysis yields further ATP 

through the oxidation of NADH through the electron transport chain (approximately eight 

molecules of ATP are created per molecule of glucose converted to pyruvate). 

Pyruvate can be further metabolised into acetyl CoA, a major substrate for the TCA cycle, or 

converted into oxaloacetate (a TCA intermediate) or in some organisms it can be converted 

into ethanol. 

1.1.3.3 Tricarboxylic acid (TCA) cycle 

The tricarboxylic acid or Krebs cycle is the final pathway for carbohydrate, fat and protein 

metabolism. It occurs exclusively in the mitochondria as it requires the electron transport 

chain within the mitochondrial membrane to oxidise, thereby releasing energy from the 

reduced forms of the intermediate coenzymes nicotinamide adenine dinucleotide (NADH) 

and flavin adenine dinucleotide (FADH2). 

Acetyl CoA is a two carbon substrate for the TCA cycle. Acetyl CoA can come from glucose, 

fatty acid or amino acid metabolism pathways, see Figure 6. The decarboxylation of 

pyruvate produces acetyl CoA which feeds into the TCA cycle. 
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Citrate synthase brings together acetyl CoA and oxaloacetate (a four carbon intermediate 

substrate). Citrate is then isomerized and converted into α-ketoglutarate, in the process 

producing carbon dioxide (CO2) and NADH. α-ketoglutarate is metabolised to succinyl CoA, 

producing  further CO2 and NADH. Succinyl CoA is then sequentially converted into 

succinate, fumarate, malate and finally, oxaloacetate. The cycle is then complete, ready for 

acetyl CoA to enter the cycle again. 

Each molecule of acetyl CoA yields 12 molecules of ATP. 

Figure 6 Acetyl CoA 
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1.1.3.4 Glucose Production 

Organs and tissues such as the brain, red blood cells and structures within the eye can only 

metabolise glucose. Additionally, in pregnancy the fetoplacental unit is ordinarily dependent 

upon a constant glucose supply. Gluconeogenesis is the biochemical mechanism through 

which glucose can be made de novo from lactate, pyruvate, glycerol and amino acids. The 

pathway shares many of the reversible steps of glycolysis, however there are four steps, 

summarised in Figure 7, which are specific to gluconeogenesis. 

Error! No topic specified. 

1. Conversion of pyruvate to oxaloacetate 

In order to produce phosphenolpyruvate (PEP) from pyruvate (a three carbon 

molecule), pyruvate needs to be carboxylated into oxaloacetate (four carbon) by the 

enzyme pyruvate kinase. This involves the addition of carbon dioxide and the co-

enzyme biotin is required to catalyse this step. The formation of oxaloacetate is useful, 

not only for gluconeogenesis, but also to replenish supplies needed for the TCA 

cycle. 

2. Conversion of oxaloacetate into PEP 

Oxaloacetate is converted into PEP through the enzyme PEP carboxylase. This 

requires energy in the form of guanosine triphosphate and a carbon atom is removed 

in the form of CO2. 

3. Dephosphorylation of fructose 1,6-bis-phosphate 

Fructose 1,6-bisphosphatase removes a phosphate group from F 1,6-bisP (this bypasses 

the enzyme phosphofructokinase 1 which works in the opposite direction, catalysing 

glycolysis). Fructose 1,6-bisphosphatase is inhibited by high levels of AMP. High levels of 

intracellular fructose 2,6-bis-phosphate (secondary to insulin) also inhibit  Fructose 1,6-

bisphosphatase, favouring glycolysis (via activation of phosphofructokinase 1) over 

gluconeogenesis. 

4. Dephosphorylation of glucose 6-phosphate 

Glucose 6-phosphatase removes a phosphate group from glucose 6-phosphate, thereby 

releasing glucose. This enzyme bypasses the irreversible phosphorylation of glucose 

by glucokinase or hexokinase (glycolysis); it is found exclusively in the liver and kidney. 

Figure 7 Gluconeogenesis 
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GLUT transporters are then responsible for moving glucose into the extracellular 

fluid space and finally into the blood. 

The inhibition of hepatic glucose production (glycogenolysis and gluconeogenesis) by insulin 

is critically important in understanding the pathophysiology of type 2 diabetes (T2DM) and 

gestational diabetes. This will be discussed in greater detail later.  

1.1.4 Fat 

Fat is absorbed in the small bowel. It is digested through enzymes gastric lipase in the stomach, 

emulsified through bile salts produced by the liver and further broken down by enzymes 

from the pancreas. Bile salts are detergent-like molecules which convert fat into fine droplets 

called micelles. Pancreatic lipase acts on triglyceride molecules – breaking down the links 

between the fatty acid and glycerol. In fact, the lipase acts specifically on the 1,3 positions of 

the triglyceride molecule, releasing fatty acids and 2-monoacyglycerol, see Figure 8. Both 

fatty acids and 2-monoacyglycerol molecules have amphipathic properties, that is to say that 

they are both hydrophilic and hydrophobic. This, in conjunction with bile acids, helps to 

further emulsify fat. Eventually mixed micelles are formed which have a diameter 4-6nm and 

bring the products of triglyceride hydrolysis (fatty acids and monoacylglycerols) to the 

intestinal brush border. 

 

Fatty acids are absorbed through fatty acid transporter proteins (FAT and FATP). 

Monoacylglycerols are either absorbed through transport proteins or cross the cellular 

membrane through passive diffusion. Within the enterocytes triglycerides are re-formed and 

packaged into chylomicrons. Chylomicrons enter the lymphatic system and flow into 

progressively proximal branches until they enter the systemic circulation at the thoracic duct. 

Some fatty acids, those with short-to-medium (12-16) carbon chains are not re-esterified and 

Figure 8 Conversion of triacylglycerols into fatty acids and 2-monoacylglycerol 
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enter the circulatory system (capillary blood) as non-esterified fatty acids (NEFA). However, 

most dietary fatty acids are re-packaged as chylomicrons. 

Lipoprotein lipase is an extracellular enzyme bound to the capillary walls. As the chylomicrons 

circulate their outer lipoprotein surface binds to tissue specific receptors (for example 

through the apo C-II receptor). The binding of lipoprotein to receptor activates lipoprotein 

lipase which metabolises the triglyceride core of the chylomicron, converting triglyceride into 

its fatty acid and glycerol components. Fatty acids can be absorbed into the cell and either 

metabolised or stored. If they are not taken up by the cell they are bound to albumin and 

circulate in the blood stream until required. Glycerol is metabolised in the liver, either to 

produce energy or for gluconeogenesis. 

 

Beta-oxidation is the process through which fatty acids are metabolised and occurs within 

mitochondria. On entering the cell cytoplasm the fatty acid is activated by coenzyme-A this 

is facilitated by acyl-CoA synthase (ACS) to produce acyl-CoA, as shown in Figure 9. In order 

to get the fatty acid into the mitochondria a transport protein, carnitine, is required. The acyl 

group is transferred to the carnitine molecule, catalysed through the enzyme carnitine-palmitoyl 

transferase-1 (CPT-1). CPT-1 is an important regulatory enzyme. It is inhibited by malonyl-

CoA (an intermediate molecule in de novo lipogenesis). This inhibitory mechanism is critical 

Figure 9 Transport of Fatty Acids into Mitochondria 

Carnitine is a highly charged molecule and there is a specific translocase to move it across the 

mitochondrial membranes. Acyl-Co synthase (ACS); carnitine-palmitoyl transferase (CPT). 

Adapted from Metabolic Regulation 
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since it stops the cyclical production and breakdown of fatty acids that could otherwise 

occur. Insulin inhibits the breakdown of fatty acids through increasing the intracellular 

concentration of malonyl-CoA and stimulating fatty acid esterification (back into 

triglycerides). Once inside the mitochondria, fatty acyl-CoA can be metabolised through β-

oxidation. β-oxidation summarises the metabolic process through which two-carbon 

molecules are removed from the long fatty acid chain producing acetyl-CoA. Acetyl-CoA can 

then be metabolised through the TCA cycle (described above) to produce ATP. In the liver 

acetyl-CoA can alternatively be converted into ketone bodies (acetoacetate and 3-

hydroxybutyrate). Ketone bodies are an important fuel and in most cases can be utilized 

instead of glucose. Ketone bodies are soluble, therefore do not require any transport 

proteins. Ketone bodies are produced when acetyl-CoA production exceeds the oxidative 

capacity of the liver. In the fasted state the liver is flooded with acetyl-CoA from β-oxidation 

and the breakdown of fatty acids. This inhibits pyruvate dehydrogenase and activates pyruvate 

carboxylase to produce oxaloacetate. The majority of oxaloacetate is used for gluconeogenesis 

(given that the body is in a fasted state and requires additional glucose). The excess acetyl-

CoA is therefore channelled into ketone body production rather than metabolised in the 

TCA cycle. 

1.1.4.1 Fat Synthesis and Storage 

Excess carbohydrate and protein can be converted into fatty acids and glycerol to be stored 

as fat (predominantly in the adipose tissue). The process requires energy (in the form of ATP 

and reduced coenzymes NADPH) and an abundant source of acetyl CoA (obtained through 

glycolysis or the metabolism of amino acids). Acetyl CoA must first be converted to citrate in 

order for it to leave the mitochondria and enter the cell cytoplasm. Citrate synthase catalyses 

the formation of citrate from oxaloacetate and acetyl CoA. Once in the cell cytoplasm  acetyl 

CoA is re-released by the enzyme ATP:citrate lysase.  

Acetyl CoA is converted into malonyl-CoA, catalysed by the enzyme acetyl-CoA carboxylase. As 

previously mentioned, malonyl-CoA is an important inhibitor of the β-oxidation pathway 

(through inhibition of CPT1). Acetyl-CoA carboxylase is inhibited by long chain fatty acyl-CoA. 

An abundance of citrate (implying excessive free energy within the cell cytoplasm) and 

insulin promote the action of acetyl-CoA carboxylase thereby, inhibiting β-oxidation and 

promoting lipid storage. Excessive calorie intake over a prolonged period also up-regulates 
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the genetic expression of acetyl-CoA carboxylase enzyme, again promoting the conversion of 

carbohydrate into lipid. 

Malonyl-CoA is a three carbon molecule. Fatty acid synthase (FAS) catalyses the process 

through which malonyl-CoA loses a carbon (as carbon dioxide) and is added as a two-carbon 

molecule to a growing fatty acid chain. The process is complex and involves numerous steps. 

Finally, fatty acids combine with glycerol to produce triglycerides and phospholipid. 

1.1.5 The glucose-fatty acid cycle 

The metabolism of glucose and fatty acids are not separate entities, rather the two metabolic 

pathways are closely related. In 1963, Randle et al. proposed a mechanism through which 

fatty acids compete against glucose for mitochondrial oxidation, resulting in reduced glucose 

uptake and metabolism, see Figure 10 (Randle et al., 1963). 

 

Figure 10 The Randle Hypothesis adapted from (Randle et al., 1963) 



18 
 

Increased fatty acid oxidation leads to increased acetyl CoA and citrate formation. 

NADH/NAD+ and ATP/ADP ratios are increased. Increased intracellular concentrations of 

NADH, ATP and acetyl CoA inhibit pyruvate dehydrogenase, thus the oxidation of pyruvate is 

suppressed. Increased citrate is an inhibitor of phosphofructokinase. Fructose 6-phophate 

and glucose 6-phosphate build up. Glucose 6-phosphate inhibits hexokinase thus glucose 

breakdown and oxidation is prevented. As a result, increased intracellular glucose 

concentrations prevents further glucose uptake by the cell. 

This process occurs independent to insulin, in effect increasing fatty acid concentrations 

induces a state of insulin resistance, however it is not insulin signalling that is impaired, 

rather the presence of abundant fatty acids exerting a change in metabolic flux at the 

mitochondrial level. 

Metabolic studies utilizing nuclear magnetic resonance (NMR) spectroscopy (a technique that 

allows measurement of metabolites and metabolic intermediates in vivo) have confirmed 

much of Randle’s work. However, NMR evidence would suggest fatty acids directly suppress 

glucose transportation into muscle, rather than accumulation of glucose 6-phosphate and 

allosteric inhibition of hexokinase (Roden, 2004). The mechanism for this is still under 

investigation. 

1.1.6 Summary of energy provision and substrate storage 

The metabolism of glucose, fat and amino acids has been described. The common fate for all 

substrates is acetyl CoA. Acetyl CoA can be metabolised via the TCA cycle to produce ATP, 

CO2 and water. In the liver, acetyl CoA can be converted into ketone bodies. 

The fate of excess glucose has been discussed in terms of glycogen synthesis and in the 

conversion of glucose to fat (through polymerisation of acetyl CoA). 

The regulation of these pathways, and specifically the regulation during pregnancy, is 

important in understanding the physiological metabolic changes that accompany pregnancy 

and the pathophysiological changes that occur in gestational diabetes. 
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1.1.7 Hormonal control of Metabolism 

1.1.7.1 Insulin 

Insulin is an anabolic hormone produced by the beta cell of the pancreas. The hormone acts 

on many tissues, but principally liver, muscle and adipose tissue via the insulin receptor 

present on the cell surface. 

Insulin is a peptide that consists of two polypeptide chains, linked together by sulphide 

bridges. There are two precursor molecules to insulin: pre-proinsulin and proinsulin. Insulin 

is formed when the C-peptide molecule is removed within the Golgi apparatus of the beta 

cell. Although C-peptide has no biological function, it acts as a marker of insulin production 

and secretion. Insulin is stored in granules within the cell; there are several stimuli for insulin 

release: 

1. Increased glucose concentration. The glucose concentration in the blood rises 

following a meal. The beta cell is adapted to be able to ‘sense’ glucose. The GLUT2 

receptor expressed on the pancreatic cells only lets glucose into the cell beyond a 

certain concentration gradient. Additionally, glucokinase, found within the pancreatic 

cells, has a higher affinity for glucose than hexokinase enzymes found in other cells. 

This means that glucose is only metabolised when the glucose concentration has 

reached a certain threshold. 

2. Amnio acid and fatty acids. Elevated amino acids, for example arginine, stimulate 

insulin release as do fatty acids. 

3. Gastrointestinal peptides. Glucagon-like peptide-1 is produced in the cells of the 

intestinal wall in response to food. It acts on the beta cells to amplify the glucose-

stimulated response. 

Stimulation of the beta cell depends on depolarisation of its membrane, the actual release of 

insulin being dependent on calcium ion (Ca2+) influx into the cell. Glucose within the beta 

cell is metabolised to produce ATP. The increase in ATP closes energy dependent potassium 

ion (K+) transporters on the cell membrane, thus polarising the cell membrane. Ca2+ ions 

open as a result allowing Ca2+ into the cell. Ca2+ stimulates the vesicles containing insulin to 

merge with the cell membrane, releasing insulin into the circulation via the hepatic portal 

vein. 
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Insulin production is inhibited through low blood glucose levels. Catecholamines (adrenaline 

and noradrenaline) released at times of stress also inhibit insulin release and can directly 

counteract the effect of insulin on cell metabolism (promoting the easy availability of glucose 

and other metabolites for increased energy production over storage). 

Insulin acts on many tissues, but principally liver, muscle and adipose tissue via the insulin 

receptor present on the cells of these organs. The binding of insulin to its receptor triggers 

multiple downstream intracellular pathways. Initially the insulin receptor is phosphorylated 

and activates insulin receptor substrate-1 (IRS-1), leading to: 

a) glucose uptake; 

b) storage of glycogen, fat and protein; 

c) inhibition of glucose, amino acid and fatty acid production; 

Insulin can have its effect almost immediately (for example its effect on the expression of 

GLUT4 and the uptake of glucose into the cell), or over hours or days (for example the up-

regulation of metabolic enzymes, reflecting gene expression and transcription). 

1.1.7.2 Glucagon 

Glucagon is produced by the alpha cells of the pancreas. It acts to oppose the effects of 

insulin, chiefly to prevent hypoglycaemia. Glucagon stimulates glycogenolysis and 

gluconeogenesis in the liver, thus increasing the availability of glucose to the circulation. 

Release of glucagon is stimulated by low blood glucose levels. Elevated amino acid levels (for 

example following a high protein meal) also stimulate glucagon in order to counteract 

hypoglycaemia from too much insulin release. Adrenaline and noradrenaline, produced by 

the adrenal medulla in response to the central nervous system also increase glucagon 

production, thereby increasing glucose availability in times of stress/anxiety. 

Glucagon acts to increase glucose production in the liver and to inhibit glycogen storage. 

Fatty acid synthesis is inhibited through deactivation of acetyl-CoA carboxylase and decreased 

malonyl CoA levels. In turn, reduced malonyl CoA levels encourage fatty acid oxidation, 

increasing acetyl CoA for energy or ketone body production. Glucagon facilitates the 

breakdown of free amino acids into three-carbon molecules for gluconeogenesis by the liver. 
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Glucagon binds to its cellular receptor, which in turns increases the intracellular production 

of cyclic adenosine monophosphate (cAMP). This then acts on protein kinases to upregulate 

or downregulate metabolic processes favouring glucose and substrate availability for 

metabolism over storage. 

1.1.7.3 Other pregnancy-related hormones  

Maternal storage of glucose, amino acids and fatty acids is not necessarily beneficial to the 

fetus as it removes the substrate’s availability for fetal growth. The fetus, placenta or both 

induce a state of maternal insulin resistance and this inhibits maternal substrate storage. The 

mechanism through which this comes about is unclear, however many additional hormones 

are created in pregnancy, several of these affect cell metabolism and will be discussed in 

further detail below: 

 Cortisol 

Oestrogen increases cortisol binding globulin production in the liver. As oestrogen 

concentrations increase during pregnancy, so too does the level of cortisol binding globulin. 

Proportionally more cortisol is bound in plasma and therefore not eliminated: total cortisol 

levels are elevated as a result. Cortisol increases two- to three-fold from 12 weeks until 26 

weeks, thereafter the level plateaus until labour and delivery (Campbell et al., 1987). 

Corticosteroids have a number of metabolic effects on tissue metabolism, namely: 

a) Stimulation of fat mobilization in adipose tissue, by increased activity of hormone 

sensitive lipase. 

b) Increased production of hormone sensitive lipase. 

c) Stimulation of gluconeogenesis through activation of key enzymes (phosphoenolpyruvate 

carboxykinage, glucose-6-phosphatase). 

d) Inhibition of muscle glucose uptake. 

e) Increase in muscle protein breakdown. 

The effects of corticosteroids serve to reduce insulin sensitivity at a cellular level. This 

becomes apparent, for example, in diabetic patients in whom glycaemic control is often 

severely disturbed following administration of corticosteroids. 
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 Human Placental Lactogen (hPL) 

hPL is closely related to growth hormone and prolactin in terms of its molecular structure. 

hPL is produced by the placenta and its concentration is directly proportional to placental 

mass. Figure 11 demonstrates the steady increase in hPL until 34 weeks, after which  

production plateaus. hPL has affinity to both growth hormone and prolactin receptors and is 

important for fetal growth through enhanced protein synthesis, elevated insulin-like growth 

factor 1 (IGF-1) and increased glycogen synthesis (Handwerger and Freemark, 2000). hPL 

causes beta cell hypertrophy, increasing both basal and postprandial insulin secretion from 

the pancreas (Grumbach et al., 1968; Martin and Friesen, 1969). hPL increases lipolysis 

(Grumbach et al., 1966), allowing the mother to metabolise free fatty acids, thus preserving 

glucose, amino acids and ketone body transfer via the placenta to the fetus and contributing 

to pregnancy-related insulin resistance (Randle et al., 1963). 

 

 Placental Growth Hormone (pGH) 

Growth hormone (GH) is produced by the anterior pituitary gland. In pregnancy, the 

placenta takes over production of GH. Unlike pituitary GH, which is secreted in a pulsatile 

manner and is regulated by GH releasing hormone, placental GH is secreted constantly and 

is not regulated. The actions of GH are antagonistic to insulin; GH is typically released in 

response to hypoglycaemia and GH excess (acromegaly) is associated with glucose 

intolerance and diabetes. GH is capable of stimulating hepatic glucose production 

independent to insulin and glucagon control (Press et al., 1984). Its mechanism of action is 

similar to hPL: it promotes lipogenesis, making glycerol available for gluconeogenesis, 

Figure 11 Placental weight (Pl. wt.) and maternal serum concentration of human placental 

lactogen (hPL) during pregnancy (Larsen, 2003).   
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promoting fatty acid oxidation and ketogenesis and favouring glucose release into the 

circulation. 

1.1.8 Insulin Sensitivity and Insulin Resistance in Normal Pregnancy 

Figure 12 shows the change in insulin sensitivity during pregnancy. There is a reduction in 

insulin sensitivity from approximately 18 weeks to 28 weeks gestation after which it plateaus 

until term. Following delivery, insulin sensitivity quickly returns to pre-pregnancy levels. It is 

unclear how insulin resistance is acquired during pregnancy. It is known that the changes in 

pro-insulin production, insulin binding to its receptor and insulin bound to white blood cells 

do not explain the insulin resistance seen (Kuhl et al., 1985). Insulin resistance has been 

shown to be acquired through post-receptor modulation of the cell signalling pathway 

(Kirwan et al., 2004). How this comes about is uncertain, however several factors have been 

postulated to play contributory roles: 

 

Figure 12 The time course of change in insulin sensitivity during pregnancy is reflected by 

the change in exogenous insulin dose to maintain glucose control in type 1 diabetes (Taylor et 

al., 2002). 
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a) Hormone signalling: Sensitivity to insulin decreases progressively during pregnancy 

and swiftly returns to normal following delivery, strongly suggesting a hormonal 

association. Human placental lactogen, human placental growth hormone, 

progesterone, cortisol and prolactin are known to counteract the effects of insulin 

(Ryan and Enns, 1988). The relationship between reproductive hormones and insulin 

action is complex one. No single hormone has been identified as directly responsible 

for reducing insulin sensitivity. Reproductive hormone concentrations vary 

throughout pregnancy and it is likely that insulin sensitivity results from an 

interaction between many different hormones. 

b) Adipose-derived hormones: Adiponectin is a globular protein synthesized by 

adipose tissue. It belongs to a group of hormones, including leptin and resistin, that 

control local storage and distribution of fat. Low adiponectin concentrations 

correlate with insulin resistant states (Ziemke and Mantzoros, 2010). Adiponectin 

stimulates glucose uptake in skeletal muscle and inhibits hepatic glucose production. 

Studies have shown that adiponectin levels decline with advancing gestation in 

normal pregnancy and are further reduced in gestational diabetes (Cseh et al., 2004; 

Catalano et al., 2006).  

c) Inflammation: Normal pregnancy is a proinflammatory state. Tumour necrosis 

factor alpha (TNF-α), an adipo-cytokine, has been shown to promote insulin 

resistance through its prohibitive action on the insulin receptor. Elevation of TNF-α 

in pregnancy correlates with progressive insulin resistance (Kirwan et al., 2002). 

Additionally, elevated levels of TNF-α have been found in conditions associated with 

hyperinsulinaemia such as obesity and T2DM (Hotamisligil and Spiegelman, 1994). 

However, the degree of increase of TNF-α levels is small in comparison with that 

seen in infection or after major trauma, and neutralization of TNF-α with 

monoclonal antibodies has no effect on insulin resistance in people with T2DM, 

implying that while TNF-α may contribute to insulin resistance, it is by no means the 

single causative factor (Ofei et al., 1996). 

Insulin resistance in pregnancy is likely to be multifactorial in origin: hormonal, subclinical 

inflammation and reduced adiponectin concentrations combine to modify the insulin 

response. The net result is a shift to lipolysis and the breakdown of fat; free fatty acids act as 
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a fuel for maternal metabolism (through β-oxidation). The inhibition of carbohydrate storage 

and decline in glucose uptake by muscle and adipose tissue, combined with promotion of 

glycogenolysis and gluconeogenesis in the liver favour increased blood glucose levels and fuel 

availability for the fetus. 
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1.2 Gestational Diabetes 

1.2.1 A Historical Perspective 

GDM is defined as ‘glucose intolerance with onset or first recognition in pregnancy’ 

(Buchanan et al., 2007). Whilst this is a relatively straightforward definition, there has been, 

and still is, much controversy and confusion as to what constitutes ‘glucose intolerance’. 

Prior to 1998 the thresholds used to diagnose GDM were the same as those used to diagnose 

diabetes in the general population (a fasting plasma glucose ≥ 7.8mmol/l and 2 hour post 

75g oral glucose tolerance test ≥11.1mmol/l) (World Health Organization, 1985). Obstetric 

and neonatal outcomes were poor for these women, in fact they were worse than those with 

type 1 diabetes, possibly because hyperglycaemia went undiagnosed and untreated (Widness 

et al., 1985; Heckbert et al., 1988; Hod et al., 1991). Women with blood glucose levels between 

normal and diabetic range were deemed to have ‘impaired glucose tolerance’. Obstetric 

outcomes for this group were variable, with some studies showing small but increased risks, 

in particular: fetal macrosomia, shoulder dystocia and nerve injury (Langer et al., 1987; 

Sermer et al., 1995; Vambergue et al., 2000; Jensen et al., 2001; Yang et al., 2002). However, 

the study sizes were small, outcomes were inconsistent and obesity, advanced maternal age 

and other medical complications were potential confounding factors. There was controversy 

as to whether impaired glucose tolerance was indeed pathological or whether it simply 

represented an exaggeration of the physiological insulin resistance of pregnancy. 

Nevertheless, in 1998 the WHO changed its guidelines for the diagnosis of GDM to include 

all women with glucose intolerance (from mildly deranged to frankly diabetic) (Alberti and 

Zimmet, 1998). 

Studying obstetric outcome is made difficult by the fact that major adverse events are 

relatively rare (for example stillbirth). Large sample sizes are often required in order to 

establish statistical significance. Between 2000 and 2006 the Hyperglycaemia and Adverse 

Pregnancy Outcomes (HAPO) study recruited over 25,000 women with impaired glucose 

tolerance from a diverse multicultural background from 15 centres in nine countries 

(Metzger et al., 2008). The study showed a positive correlation between higher maternal 

glucose and adverse perinatal outcome, although because there was no clear level of 

glycaemia at which outcomes became markedly worse, defining a threshold for diagnosis and 

treatment remained controversial (Metzger et al.). 
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At the same time as the HAPO study, two randomised controlled trials were conducted to 

answer the question whether there is benefit in treating GDM. The Australian Carbohydrate 

Intolerance Study in Pregnant Women (ACHOIS) showed that the treatment of GDM 

resulted in improved perinatal morbidity (Crowther et al., 2005). Landon et al. demonstrated 

treatment reduced the incidence of large for gestational age babies with consequential 

reductions in shoulder dystocia and caesarean section rate (Landon et al., 2009b). 

Taking HAPO and the two randomised control trials together there is little doubt that GDM 

is associated with worsening perinatal outcome and that treatment is beneficial in reducing 

these risks. The question remains at what level of hyperglycaemia is it necessary to treat? And 

whether the effects of overzealous treatment could be harmful? 

1.2.2 Impact of Gestational Diabetes 

Estimates of the prevalence of GDM in the United Kingdom vary from between 1 to 24% 

(Farrar et al., 2016). The prevalence depends on a number of factors: 

a) The population studied (inner-city populations with higher proportion of black and 

South Asian ethnicity have higher prevalence of GDM). 

b) The criteria used to diagnose GDM (the IADPSG criteria, following the HAPO 

study are more stringent than the WHO criteria (World Health Organization, 1985; 

International Association of et al., 2010)). 

c) Screening and testing stategy. Universal screening results in a greater number of 

women identified as GDM, compared to ‘selective’ or ‘high-risk’ screening strategies. 

Figure 13 demonstrates the variation in prevalence of GDM from various cohort studies 

between 1988 and 2013 and the effect of different diagnostic thresholds. There is an 

increasing prevalence of GDM with maternal age and ethnicity. 
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1.2.3 Risks to the baby 

Pedersen hypothesised that elevated maternal blood glucose levels leads to fetal 

hyperinsulinaemia (Pedersen et al., 1954). This in turn promotes storage of carbohydrate as 

fat leading to fetal macrosomia. The term ‘macrosomia’ literally means ‘large body’ and 

describes the appearance of a baby that has excessive growth both in terms of its extremities 

but also has organomegaly (increased liver, heart and muscle mass). Various parameters have 

been proposed for macrosomia including: a birth weight greater than 3500g, a birth weight 

between 4000-4500g, or a birth weight greater than 90th percentile for gestational age. Large 

for gestational age (LGA) is a birth weight greater than 90th centile or greater than 2SD (97th 

centile) for gestational age. This is a better descriptor than arbitrary birth weight ‘cut offs’ 

because gestational age is taken into consideration, identifying babies that are large even if 

delivered prematurely. The HAPO study, some 50-60 years after Pedersen’s original 

hypothesis, clearly demonstrates the linear relationship between percentage newborn body 

fat, maternal glycaemia and fetal insulin, see Figure 14 (Metzger et al., 2008). Furthermore, 

treating high glucose levels reduces the rates of LGA by approximately 50% (Horvath et al., 

2010). 

Figure 13 Prevalence of GDM by year the study was undertaken and GDM criteria used. 

https://www.ncbi.nlm.nih.gov/books/n/ukhta2086/g1/def-item/g1-term23/
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The problems with LGA babies are: 

1. Birth injury and shoulder dystocia. The main risk of fetal macrosomia is that of birth 

injury secondary to shoulder dystocia (where, during delivery, the anterior fetal 

shoulder becomes stuck as it descends through the maternal pelvis). This can result 

in two complications: neonatal hypoxia (and consequently hypoxic brain injury) and 

bone/nerve/brachial plexus injuries. The risk of birth injury is highest for infants 

with birth weight between 4500 and 4999g and > 5000g, (odds ratio (OR) 2.4(2.2-

2.5) and 3.5 (3.0-4.2), respectively) (Zhang et al., 2008). 

2. Stillbirth/neonatal death. The risk of stillbirth increases by approximately 3-fold for 

birth weights between 4500-4999g and 13-fold for birth weights greater than 5000g 

Figure 14 Frequency of outcomes according to glucose category. Adapted from HAPO 

(Metzger et al., 2008). Fasting glucose categorised into seven groups: range 4.2 to 5.6mmol/l 

or more. 2-hour range 5.0 to 9.9mmol/l or more. Note substantial increase in birthweight, 

caesarean section, neonatal hypoglycaemia and cord C-peptide (reflective of neonatal insulin 

production) with increasing glucose. 
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(Zhang et al., 2008). It should be noted that the absolute risk for stillbirth is still low 

even in the greater than 5000g group (0.67% vs background risk of 0.05%). 

3. Respiratory distress. Macrosomic babies are at a 2- to 4-fold increased risk of 

respiratory distress following delivery compared to normal controls (Zhang et al., 

2008). Babies born to mothers with diabetes are at greater risk of respiratory distress 

due to the negative effect of hyperinsulinaemia on surfactant production (Piper et al., 

1998). 

4. Hypoglycaemia. Hypoglycaemia following delivery is not uncommon (affecting 

between 6-7% of macrosomic infants compared to a background risk of 1.6% 

(Weissmann-Brenner et al., 2012)). It occurs as the constant glucose supply from the 

placenta is no longer present following cord clamping. Fetal insulin is unopposed and 

hypoglycaemia results. Although transient, this often requiring intravenous glucose 

and admission to a neonatal unit for a 24-48 hour observation period. 

1.2.3.1 Risks to the Mother 

Risks to the mother from gestational diabetes can be divided into risks during pregnancy, 

risks during delivery and long term health risks. 

Risks during the pregnancy include an increased risk of pre-eclampsia and spontaneous pre-

term labour (Sermer et al., 1995; Hedderson et al., 2003; Metzger et al., 2008). Risks associated 

with delivery are primarily related to delivery of a large for gestational age baby including: 

increased risk of instrumental or caesarean delivery, anal sphincter tears, shoulder dystocia 

and postpartum haemorrhage (Sermer et al., 1995; Jolly et al., 2003; Metzger et al., 2008; 

Baghestan et al., 2010). 

The long-term risk to the mother is well documented. There is a 7 to 12-fold increase risk of 

developing T2DM in later life; depending on the length of follow up and the population 

studied, the cumulative risk may be as high as 70% (Kim et al., 2002; Bellamy et al., 2009). 

There is some evidence to suggest that pregnancy itself accelerates the development of 

T2DM in susceptible women (a Latin American population with previous GDM) (Peters et 

al., 1996). Even if women revert to normal glucose control following delivery, changes in 

lipid profile, blood pressure, micro and macrovascular changes adversely modify their 

cardiovascular risk profile increasing the likelihood of ischaemic heart disease and stroke in 

later life (Meyers-Seifer and Vohr, 1996; Hu et al., 1998). 
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1.2.4 Similarities between gestational and T2DM 

Gestational diabetes and T2DM share many features. Risk factors for the development of 

T2DM (ethnicity, family history, body mass index) are very similar to the risk factors for 

GDM. The hallmark of both conditions is progressive insulin resistance, accompanied by an 

inability of the pancreatic beta cells to up-regulate insulin secretion, leading to 

hyperglycaemia. Finally, many women with GDM will progress to T2DM in later life. 

It is reasonable to conclude that the pathological processes underlying GDM and T2DM are 

similar, if not the same. The use of magnetic resonance to study T2DM in vivo has 

revolutionised our understanding of its pathophysiology and reversibility. A brief summary 

of the progress made in T2DM is summarised below. 

1.2.5 Advances in understanding of type 2 diabetes 

1.2.5.1 Muscle Insulin Resistance 

One of the earliest detectable changes in T2DM is a decline in peripheral insulin sensitivity. 

Magnetic resonance spectctroscopy (MRS) studies have demonstrated reduced levels of 

glucose 6-phospate (G-6-P), secondary to defects in glucose transport and uptake, resulting 

in a deficit of muscle glycogen (Rothman et al., 1992; Cline et al., 1999). There is a strong 

correlation between intramyocellular lipid (IMCL) and muscle insulin sensitivity in non-

diabetic subjects (Jacob et al., 1999; Krssak et al., 1999), with elevated levels of IMCL 

observed in those with reduced insulin sensitivity. Non-diabetic offspring from patients with 

T2DM (chosen as they are high risk for developing T2DM and are therefore suitable for 

investigating early metabolic changes) have shown that IMCL can be reduced by 

approximately 30% following a 1,200kcal diet for 9 weeks (Petersen et al., 2012). This results 

in an improvement in insulin sensitivity of 60% that is independent of changes in other 

inflammatory and metabolic markers (tumour necrosis factor-α, interleukin 6, adiponectin, 

C-reactive protein, acylcarnitines and branched chained amino-acids). This suggests that the 

improvement in muscle insulin sensitivity is due to reduction in IMCL. This is an important 

finding since it demonstrates improvement in peripheral insulin sensitivity with modest 

weight loss (of around 5kg or 6% of body mass) in subjects with normal BMI (average BMI 

24.2±0.6 kg/m2 at the beginning of the study and 22.8±0.5 kg/m2 at the end) who are at risk 

of diabetes, but do not have diabetes yet. 

These findings lead to three important questions: 
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1. Where does the excess IMCL come from? 

2. How does excess IMCL impair insulin sensitivity? 

3. Do women with GDM have higher levels of IMCL? 

Excess IMCL comes from an imbalance between fatty acid delivery and fatty acid oxidation. 

During periods of calorie excess the liver synthesises and exports triglycerides in the form of 

very light density lipoprotein (VLDL). This is delivered to the muscle and the triglycerides are 

broken down by lipoprotein lipase into fatty acids and 2-monoacylglycerol. Myocyte accumulation 

of long chain fatty acyl-CoA (a precursor of triglyceride) occurs if the fatty acids are not 

oxidised. The regulation of IMCL is not fully understood. Whilst calorie excess provides an 

abundance of circulating lipid metabolites, not everyone exposed to these are capable of storing 

them. Factors leading to greater IMCL accumulation are: male gender, older age, ethnicity 

(particularly South Asian) or a family history of T2DM. Genetic susceptibility must therefore 

play a role in this process. However, regardless of age, gender or genetics the consistent 

observation that negative calorie balance has the potential to reverse lipid accumulation, 

restoring insulin sensitivity, suggests calorie excess is the common and modifiable factor. 

The mechanism through which elevated IMCL may induce insulin resistance in muscle is not 

fully understood and still the subject of on-going studies. Three mechanisms have been 

proposed: impairment of insulin signalling, reduced mitochondria (both in terms of a reduction 

in mitochondrial number and function) and modified metabolic flux secondary to excess fatty 

acid metabolism. In rodents, the build-up of diacylglycerol and ceramides activate PKCθ, 

thereby increasing insulin receptor substrate serine-1101 phosphorylation, decreasing insulin-

stimulated IRS-1 tyrosine phosphorylation, ultimately resulting in reduced glucose uptake 

Figure 15 (Petersen et al., 2012). Human studies have been less consistent, with some studies 

supporting similar findings to rodents, and others not (Itani et al., 2002; Hoeg et al., 2011). 

Reduced density of mitochondria has been noted in muscle of insulin resistant offspring of 

T2DM patients. Whether the reduction in mitochondria is a cause or effect of elevated IMCL is 

unclear. However, following dietary intervention, mitochondria number remained similar, 

despite reduction in IMCL and improvements in insulin resistance were noted. This suggests 

that it is mitochondrial function, rather than number, that contributes to insulin resistance 

(Petersen et al., 2012). The abundance of fatty acids within the cell cytoplasm (reflected in IMCL 

concentrations), compete against glucose for metabolism. High levels of acetyl-CoA saturate the 

TCA cycle leading to a build-up of metabolic intermediates (citrate, glucose-6-phosphate). 

Hence glucose breakdown and oxidation is inhibited and glucose uptake decreased in favour of 
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fatty acid metabolism. Insulin resistance results as the pathway through which insulin exerts its 

effects are effectively blocked. Lower mitochondrial numbers and impaired cell signalling 

further complicate an already saturated metabolic pathway. 

 

At the time of commencing this work, no studies of IMCL or intrahepatic lipid had been 

conducted during pregnancy. However, Kautzky-Willer et al., in the postpartum period (4-6 

months following delivery) demonstrated that women with previous gestational diabetes 

(pGDM) had a 35% reduction in insulin sensitivity and a 55% higher concentration of IMCL 

in soleus and tibialis-anterior muscles compared to matched controls with normal glucose 

tolerance (Kautzky-Willer et al., 2003). This study supports the concept that insulin resistance 

in gestational diabetes is likely to be secondary to excess intra-organ lipid deposition, as is the 

case for T2DM. 

Figure 15 Mechanism of interaction between excess amounts of fatty acids, diacylglycerol 

and ceramide and insulin action within the hepatocyte (Taylor, 2013). Fatty acids are 

converted into ceramides which have a direct inhibitory effect on Akt2 gene expression, 

reducing downstream insulin signalling. DAG has an inhibitory effect on IRS-1 via PKCε, 

thus further reducing the effect of insulin signalling. 
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1.2.5.2 Liver Insulin resistance 

An essential function of liver metabolism is the production of glucose from glycogen or 

through gluconeogenesis during the fasting state. Fasting plasma glucose levels depend 

entirely on hepatic glucose production. This is tightly regulated by insulin which switches off 

hepatic glucose production through cell signalling pathways.  

Storage of liver fat occurs when energy intake is greater than energy expenditure and there is 

good evidence that over-feeding leads to increase in hepatic fat content (Sevastianova et al., 

2012). Higher insulin levels within the hepatic portal vein (in response to both excess 

substrate intake and increased peripheral insulin resistance) in subjects with T2DM leads to 

increased rates of de novo lipogenesis and fatty acid production (due the need to convert of 

excess carbohydrate into fat) (Petersen et al., 2012){Schwarz, 2003 #203}. New 

triacylglycerol in the liver is mainly diverted into export (as VLDL) or fat storage (since fatty 

acid oxidation in the mitochondria is inhibited by mayonyl coA, a by-product of de novo 

lipogenesis). Excess fatty acids within the hepatocyte are converted into mono-, di- or tri-

acylglycerol. Diacylglycerol activates protein kinase C epsilon type within the insulin receptor, 

thereby inhibiting activation signalling from the insulin receptor to IRS-1. Thus, under 

conditions of chronic energy excess, DAG further inhibits insulin action. Additionally, excess 

free fatty acids within the hepatocyte increase ceramide production. Ceramides have an 

inhibitory action on Akt2 expression (an important gene which codes for critical enzymes 

within the insulin pathway), thereby further lessening the effect of insulin signalling 

{Pagadala, 2012 #204}. The net result is that increased hepatocyte lipid has a negative 

impact on insulin signalling as summarised in Figure 15.   A fundamental feature of T2DM 

is the inability of insulin to switch off hepatic glucose production. Several factors contribute 

to this including increased supply of glucose precursors to the liver through excess calorie 

intake (glycerol, fatty acids, amino acids), increased liver fat and impaired insulin signalling in 

the hepatocyte (Lin and Accili, 2011). Hepatic insulin resistance typically occurs later on in 

the disease process (the earlier changes are of muscle insulin resistance). In combination with 

the pancreas’ inability to secrete enough insulin, hyperglycaemia and hence T2DM results. 

There is a clear association between intrahepatic lipid concentrations and hepatic insulin 

resistance and accumulating evidence to suggest that this may be causal (Savage et al., 2007; 

Sattar and Gill, 2014). The study of patients with T2DM who have lost significant amounts 

of weight, either through diet or surgical means, have shown a substantial reduction in liver 

fat concentration within days of reduced calorie intake, Figure 16. Hepatic insulin resistance 
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and the ability of insulin to suppress hepatic glucose production is improved, resulting in 

normalisation of fasting glucose levels. After four weeks of calorie restriction, liver fat and 

hepatic insulin sensitivity levels are normal (in fact, the latter is supra-normal, but this is 

secondary to hypocalorific dieting) (Lim et al., 2011b). The relationship between hepatic lipid 

levels, improvement of hepatic insulin sensitivity and normalisation of fasting plasma glucose 

over time following calorie restriction is remarkable and suggests a likely causal relationship 

between hepatic lipid and insulin resistance (Taylor, 2008).

 

Figure 16 Effect of a very low calorie diet in T2DM on fasting plasma glucose level (A), 

basal hepatic glucose production (HGP) (B), and hepatic triacylglycerol content (C). For 

comparison, data for a matched non-diabetic control group are shown as open circles. Figure 

taken from Taylor R (Taylor, 2013) (Reproduced with permission from Lim et al (Lim et al., 

2011b)). 
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Akin to intramyocellular fat, the accumulation of intrahepatic fat results from an increased 

calorie intake over a protracted period. It is interesting to note that insulin is responsible for 

causing fat deposition within the liver. Insulin within the portal circulation effects this 

change, promoting lipogenesis and lipid storage. Patients with type 1 diabetes do not have 

elevated liver fat levels, and paradoxically they may have fat levels lower than the general 

population (Perseghin et al., 2005). This is because exogenous insulin enters the systemic, 

rather than the hepatic portal, circulation, whereas endogenously secreted insulin produces 

around 3-fold higher levels in the portal compared with systemic circulation. Similarly, 

intrahepatic fat levels decline in those patients with T2DM who require subcutaneous insulin 

(Juurinen et al., 2007). Reducing insulin levels within the hepatic portal circulation, either 

through diet, exercise, subcutaneous insulin or hyperglycaemic medication decreases liver fat 

content. Clearly hyperinsulinaemia plays a critical role in liver fat accumulation. 

The mechanism through which fat accumulation in the liver results in impaired insulin 

suppression of hepatic glucose production is unclear. It is postulated that triglyceride 

metabolites (ceramides and diacyl glycerol) interact with the cell signalling pathway, 

specifically, the interaction of the insulin receptor with the insulin receptor substrate. 

Diacylglycerol activates protein kinase C epsilon type which inhibits the activation of the 

insulin receptor substrate (Taylor, 2013). This is a fundamental step in insulin action. 

Ceramides cause sequestration of Akt2 by and activation of gluconeogenesis enzymes. In 

combination, the net effect of insulin binding to its hepatocellular receptor is diminished. 

1.2.5.3 Pancreatic Dysfunction 

The pancreas, when initially exposed to hyperglycaemia, increases insulin production through 

increased beta cell mass and function. With progressive insulin resistance, the metabolic 

demands on the pancreas increase. Eventually, the pancreas can no longer cope and begins 

to fail. Quite why this happens is unexplained, but the process is thought to be driven 

through apoptosis, possibly related to toxic metabolic intermediates of the lipid pathway. At 

diagnosis of T2DM, beta cell function is typically 50% that of normal and autopsy studies 

have shown that the beta cell mass is 40 to 60% that of non-diabetic controls (Butler et al., 

2003). 

The pancreas is a difficult organ to study. Not only is it located deep within the abdomen, 

making biopsies difficult, but it is also relatively difficult to image due to its consistency and 

similarity in appearance to bowel. Additionally, beta cells make up only 1-2% of the pancreas 
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and are scattered throughout the organ. It is therefore difficult to differentiate between 

processes affecting the pancreas as to those specifically affecting the beta cells. None the less, 

there is accumulating evidence from magnetic resonance studies that fat may contribute to 

beta cell dysfunction not only is there more fat within the parenchyma of the pancreas in 

T2DM compared to normal, but also an improvement in beta cell function follows removal 

of fat from the pancreas through low calorie dieting or bariatric surgery (Lim et al., 2011b; 

Gaborit et al., 2015). 

GDM is different to T2DM in that the insulin resistance occurs in a much more acute time 

frame (over a period of about 28 weeks). It is possible that the increase in insulin resistance 

“unleashes” the beta cell deficit that has slowly been accumulating over the years prior to 

pregnancy. Alternatively, there could be an acute elevation in pancreatic fat (secondary to the 

hypertriglyceridaemia associated with pregnancy). Imaging studies of the pancreas are 

required to establish the precise pancreatic deficit specific to gestational diabetes. 

1.2.5.4 Time course to type 2 diabetes  

Tabak et al prospectively studied the onset of T2DM in a group of civil servants (Tabak et al., 

2009). Through serial oral glucose tolerance tests, insulin sensitivity and beta cell function 

were mapped over a 15 year time frame, comparing those who develop diabetes to those 

who do not. Insulin sensitivity was lower in the diabetic group compared to the controls, but 

that the rate of decline in insulin sensitivity was similar in both groups until 5 years prior to 

the diagnosis of T2DM when the diabetic group had an increased rate of decline. At this 

point, there was a noticeable difference in both fasting and 2-hour post prandial glucose 

concentrations between those who went on to develop T2DM and controls. At 2 years prior 

to diagnosis, the difference in glucose concentrations is marked; Figure 17 A and B. This 

observation is consistent with a gradual increase in muscle insulin resistance; followed by a 

later change in hepatic insulin resistance and loss of hepatic glucose production inhibition, at 

which point insulin sensitivity rapidly declines and hyperglycaemia prevails. The changes seen 

in beta cell function at four-years prior to diagnosis: an initial increase in insulin production 

followed by a rapid decline (Figure 17C) is consistent with the notion that the pancreas tries 

to cope with increasing hyperglycaemic demands (through up-regulation of insulin and 

increased beta cell mass); but ultimately fails. 
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The development of T2DM can therefore be explained considering muscle, liver and 

pancreas. Excessive calorie intake leads to IMCL accumulation and increased peripheral 

insulin resistance. As a result, more insulin is secreted into the hepatic portal circulation. 

Together with on-going excessive calorie intake, this results in fat storage within the liver. 

Figure 17 Change in fasting plasma glucose (A), 2h post-oral glucose tolerance test (B) and 

homeostasis model assessment (HOMA-B) insulin secretion (C) during 16 year follow up in 

the Whitehall II study. Figure taken from Taylor R (Taylor, 2013)(redrawn with permission 

from Tabak et al. (Tabak et al., 2009)) 
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Increased insulin resistance leading to increased insulin secretion and increased hepatic liver 

fat deposition continues as a cycle which ultimately fails, as the pancreas cannot keep up with 

demand. 

1.2.6 Pathophysiology of Gestational Diabetes 

Understanding of GDM has been principally derived from the postnatal study of women 

who had GDM during their pregnancies. Whilst this may reflect the underlying changes that 

pre-dispose to GDM there are a number of issues with retrospective studies: 

1. It assumes that the metabolic disturbance pre-dates the pregnancy and that 

pregnancy per se does not cause the changes in metabolism. 

2. The metabolic effects of pregnancy, a state of significant metabolic adaptation, are 

unknown.  

3. Lactation may influence the observed changes (depending on time postpartum). 

Despite these limitations, women who have had previous GDM (pGDM) have impaired 

insulin sensitivity and similarly elevated visceral fat deposits, similar to those observed in 

T2DM. To date, three magnetic resonance observational studies have been undertaken in 

women with pGDM: 

(Kautzky-Willer et al., 2003) recruited 39 women with pGDM and 22 control subjects 

between four and six months postpartum. The pGDM group had a 35% reduction in insulin 

sensitivity compared to controls and a 40-55% increase in intramyocellular lipid content 

(adjusted for BMI). 

(Prikoszovich et al., 2011) recruited 23 women with pGDM and 8 control subjects studied 

four to five years following delivery. The women with pGDM had a 36% increase in fat mass 

and a 12% decrease in insulin sensitivity (2.5-fold increase in liver fat 3.7 ± 3.5% in women 

with pGDM vs 1.5 ± 0.9% in controls; p<0.05). Intramyocellular lipid concentrations were 

similar (0.73 ± 0.32% vs 0.69 ± 0.5%; p=0.08) in pGDM vs controls respectively. However, 

there was a difference in IMCL concentrations in those with insulin resistance compared 

those who had normal insulin sensitivity (0.9 ± 0.3% vs 0.54 ± 0.32%; p<0.003). 

(Forbes et al., 2013) studied 36 women with pGDM seven years following pregnancy. 

Compared to controls, women with pGDM had a 2.4-fold increased liver fat concentration. 
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pGDM was also associated with diminished insulin secretion and a three-fold increase in 

VLDL apo B pool size. 

These studies support the theory that GDM and T2DM may share similar aeitiological 

mechanisms: namely an impairment in insulin sensitivity and secretion and increased 

intramyocellular and intrahepatic fat stores. Whether these changes occur during pregnancy 

and similarly, whether they are responsible for causing GDM is unknown. 

1.2.7 Dietary Intervention for the Prevention of Gestational Diabetes 

Lifestyle intervention, through healthy diet and exercise, is the cornerstone of treatment for 

GDM. Metformin and insulin can be added if glycaemic control is not maintained through 

diet. National Institute of Clinical Excellence (NICE) dietary advice consists of advising 

women to “eat a healthy diet, to emphasise that foods with a low glycaemic index should 

replace those with a high glycaemic index, to take regular exercise (for example walking for 

30 minutes after a meal) and to refer the woman to a dietitian” (National Institute of Clinical 

Excellence (NICE), 2015).  

The Cochrane Collaboration have recently evaluated the benefit of both diet and exercise in 

preventing GDM (rather than for treatment) (Bain et al., 2015). Their conclusion was that the is 

“no clear difference in the risk of developing GDM for women receiving a combined diet 

and exercise intervention compared with women receiving no intervention”. Taking this 

conclusion at face value, it could be concluded that diet and exercise are of no benefit in 

GDM. However, this is contrary to studies in the 1990s that showed dietary intervention 

both cured GDM and furthermore was not detrimental to fetal wellbeing (in fact rates of 

fetal macrosomia were reduced through diet). Additionally, dietary intervention has been 

shown to successfully reverse T2DM. A closer inspection of the studies included in the 

Cochrane meta-analysis reveals that the level of ‘dietary intervention’ was markedly different 

between the trials and there was no consistency with regards to recommended energy intake. 

Fundamentally, in order to lose weight, energy intake must be less than expenditure. It is 

difficult to achieve a negative energy balance through exercise alone, particularly during 

pregnancy (Poston et al., 2013). Therefore, the only way is to reduce calorie intake. Many 

studies included in the Cochrane meta-analysis neither stated the recommended calorie goal 

nor described whether women were advised to ‘calorie count’. Some studies made calorie 

intake recommendations based on the woman’s weight (eg Korpi-Hyovalti – 30kcal/kg). 

However, given an average weight of 70kg, the recommended calorie intake would be 
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2100kcal which is not substantially different to the recommended NICE calorie goal of 

2200kcal/day (National Institute of clinical Excellence (NICE), 2010). It is no surprise then 

that the outcome of the meta-analysis is negative, since in most studies included within the 

analysis, calorie intake is either not stated or had been inadequately reduced. Reducing calorie 

intake during pregnancy is traditionally met with apprehension from women, their families 

and healthcare providers. There is a misconception that women should be ‘eating for two’ 

when in reality the fetus requires only a small additional calorie intake (200kcal/day in the 

third trimester). Only two trials included in the meta-analysis recommend a more substantial 

reduction in energy intake. Petrella 2013, recommended a reduction to 1700kcal for 

overweight and 1800kcal for obese women. Although this trial was small (33 women in the 

intervention group vs 28 controls) it was one of the only trials included in the review that 

showed a reduction in GDM through intervention (GDM was reduced from 57.1% in the 

control group to 23% in the intervention arm, p=0.01). None of the other trials showed 

reduction in GDM rates, although several showed a modest reduction in maternal gestational 

weight gain and rates of fetal macrosomia. However, given the fact that calorie intake in the 

intervention arm of most studies was minimal, these findings are perhaps not surprising. 

Phelan used a “Fit for Delivery” intervention programme that included dietary advice to 

reduce calorie intake to 20kcal/kg (equivalent to 1,500kcal per day for a 75kg woman). The 

study reported no difference in rates of GDM, but showed that Institute of Medicine 

guidelines (IOM) regarding weight gain were better adhered to with the intervention than 

without. Perhaps the relatively modest benefits of this study are related to the low-intensity 

nature of the intervention: the calorie intake of the women was neither recorded nor 

estimated. 

1.2.8 Dietary Intervention for the Treatment of Gestational Diabetes 

In the late 1980s and early 1990s several metabolic studies established that reduced calorie 

intake was successful for the treatment of gestational diabetes. 

Knopp performed basic metabolic tests in obese women with GDM (Knopp et al., 1991). 

Women were admitted for two weeks. During the first week they were given a diet consisting 

of 2400kcal/day. Insulin secretion and sensitivity were measured on day 7. During the 

second week women were randomised to either continue on 2400kcal/day or to reduce 

calorie intake to 1200kcal/day. In the calorie restricted group fasting plasma glucose fell by 

17% (from 5.9 to 4.9mmol/l) compared to a 4% fall in the controls (5.4 to 5.2mmol/l). This 

fall in fasting glucose of 1mmol/l is clinically significant and represents a substantial 
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reduction in risk (Metzger et al., 2008). Similarly, there was an improvement in mean plasma 

glucose over a 24 hour period from 6.8 to 5.4 mmol/l in the restricted group with no change 

in the control arm. Insulin secretion was reduced by 45% in the restricted group, reflecting a 

reduction in insulin requirements secondary to reduced glucose/carbohydrate intake. 

Maresh studied 20 women with GDM, randomising them into diet or insulin treatment 

(Maresh et al., 1985). The insulin group were advised to take their calorie intake to 2100kcal 

per day (1800kcal if obese) and insulin titrated according to their glycaemic control. The 

dietary group were advised to reduce calorie intake to 1800kcal per day (1500kcal if obese). 

The subjects were admitted along with 10 non-diabetic pregnant controls for 24 hour 

metabolic profile glucose sampling. The women were re-studied four weeks following 

intervention. Before treatment women with GDM had higher plasma glucose and 3-

hydroxybutyrate levels (reflecting diabetes). Glycaemic control on diet alone was comparable 

to non-diabetic controls (although tended towards the upper limit of normal). The diet group 

lost a mean weight of 0.7kg/week compared to those on insulin who gained on average 

1.5kg/week and non-diabetic controls who gained 1.1kg/week. As to be expected, 3-

hydroxybutyrate levels were increased in women who dieted compared to those on insulin. 

Neonatal outcomes were good for all babies. This study showed that glycaemic control is 

achievable through dietary intervention alone with less weight gain acquired during 

pregnancy compared to insulin. 

1.2.9 Ketones 

One of the concerns about hypocalorific dieting during pregnancy is that ketone production 

may be detrimental to fetal development. There is no doubt that ketogenesis in the context 

of diabetic ketoacidosis (DKA) can be harmful to the fetus and commonly leads to 

intrauterine death if untreated. However, DKA represents not only ketosis but also a 

dramatic change in biochemical homeostasis (electrolyte abnormalities and acidaemia) which 

are more likely to cause fetal death than ketones per se. Ketosis is a physiological biochemical 

response to glucose depletion allowing glucose-dependent organs such as the brain to 

function in the fasted state. Ketosis during hypocalorific dieting represents an entirely 

different situation to DKA. 

Nevertheless, the possibility that ketones may be harmful to fetal development has been 

investigated. The most influential paper by Rizzo in 1991 investigated the effect of ketones 

(plasma and urinary) in a population of 223 women (35 had normal glucose tolerance, 99 had 
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GDM and 89 had diabetes that pre-dated the pregnancy) (Rizzo et al., 1991). They found an 

inverse correlation between maternal plasma β-hydroxybutyrate and plasma free fatty acid 

concentrations in the third trimester of pregnancy and the offspring’s intelligence at two 

(Mental-development index) and three to five years (Stanford-Binet test). The correlations 

were independent to the effects of patient group (pre-gestational diabetes, GDM or normal 

glucose tolerance) and were independent to neonatal complications including prematurity, 

acidaemia and hypoglycaemia. It should be noted that the confidence intervals for the 

correlations are wide and that the r-values are relatively low (although statistically significant) 

implying a relatively weak correlation. Not only this, but the fact that the absolute difference 

in terms of IQ points between children born to mothers with high ketone levels versus low 

ketone levels is not stated therefore, it is not possible to make an assessment on whether the 

difference has any clinical significance. Furthermore, there was no correlation between 

urinary acetonuria and IQ which is contrary to the hypothesis. The findings of this study 

have not been replicated by others (Coetzee et al., 1980; Naeye and Chez, 1981; Jovanovic et 

al., 1998). 

Studies of women in areas of famine have shown that calorie restriction results in lighter 

babies with less subcutaneous fat and that growth retardation typically only occurs with 

calorie intake of less than 600kcal/day. Dutch army recruits born during the Dutch potato 

famine had no impairment of intellectual function compared with recruits not born during 

the famine (Stein and Susser, 1975). 

In summary, there are no substantial data to show that ketones, in the context of dieting 

during pregnancy, have any adverse effect on fetal and long term outcome for the child. 
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1.3 Use Of Magnetic Resonance Spectroscopy in Metabolism 

1.3.1 History of Nuclear Magnetic Resonance Spectroscopy 

Although the use of magnetic resonance spectroscopy (MRS) to quantify metabolic 

processes in vivo is a relatively recent innovation, the concept of nuclear magnetic resonance 

spectroscopy dates back to 1945, soon after the end of World War II. In 1952 Nobel Prizes 

were awarded to Edward Purcell (Harvard) and Felix Bloch (Stanford) for the “development 

of new methods for nuclear magnetic precision measurements and discoveries in connection 

therewith”. These researchers discovered that it is possible to detect a signal (a voltage in a 

coil) when a sample is placed within a magnetic field and irradiated with radiofrequency 

energy of a certain frequency: the “resonant” or Larmor frequency. The signal is produced by 

the interaction of the sample nuclei with the magnetic field (McRobbie et al., 2003). In 1971, 

some 25 years later, the use of this principle to demonstrate contrast between healthy tissue 

and disease was discovered by Raymond Damadian and magnetic resonance imaging, as we 

know it today, was born. 

1.3.2 Physics of NMR 

Angular momentum is the measure of the amount of rotation an object has taking into 

account its mass, shape and speed. Examples of angular momentum in practice include the 

gyroscope (which stands up when spinning due to the downwards angular momentum force 

exerted through the ‘spike’) or the stability of a bicycle as it travels forwards (and relative 

instability as it slows down). Atoms with magnetic properties (for example: 1H, 13C, 31P) are 

aligned according to their angular momentum. They can be thought of as mini-bar magnets 

with a north and south pole. Under normal circumstances their alignment is related to the 

weak magnetic force of the earth (and therefore their orientation is random). When the 

nuclei are placed in a strong magnetic field they become aligned in one of two orientations 

(Figure 18): 

1. α-orientation, low energy state: the nuclei are arranged along the external magnetic 

field – i.e. north pole of the nucleus is aligned to the south pole of the magnet. 

2. β-orientation, high energy state: the nuclei are arranged against the external 

magnetic field – i.e. north pole of the nucleus is aligned to the north pole of the 

magnet. 
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Figure 18 Principles of NMR spectroscopy 
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It is worth noting that nuclei are constantly ‘flipping’ between the alpha and beta 

orientations, but on average when a strong static magnetic field is applied most nuclei will be 

in the alpha orientation at any given moment in time. 

Radio waves, at a specific frequency, are absorbed by the nucleus causing it to change 

orientation and change from a low to high energy state. This frequency is termed the Larmor 

frequency. When the radiofrequency stops the nuclei flip back emitting energy as a 

fluctuating magnetic field. This can be detected through a coil, in turn producing an electric 

current or signal. 

1.3.3 Fourier Transformation 

The Fourier transformation is a mathematical function which converts signals in time (or 

spacial) domain into a frequency domain. Fourier transformation is used in NMR to convert 

the different radio frequencies detected from various nuclei and compounds into a series of 

frequencies with different amplitudes (figure xx). Each frequency is characteristic of a certain 

nucleus or compound and the area under the peak corresponds to the concentration of that 

nucleus/compound. 
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The frequency of the peak is plotted on the x-axis and the amplitude of the peak on the y-

axis. Different external magnetic fields have different strengths, measured in Tesla. The 

stronger the external magnetic field, the greater the frequency required to excite protons. For 

example, the frequency needed at 1.5T to excite 1H protons is 64MHz, at 3T the frequency is 

128MHz. Spectra cannot be compared from different scanners if expressed in frequency 

units, therefore parts per million (ppm) are used. 

Every magnetically active nucleus within a molecule will form a peak provided it is stimulated 

by the range of radiofrequencies applied. The peak varies slightly according to the structure 

in which the nucleus is contained. The bonds joining atoms together as molecules are 

surrounded by electrons. The electron configuration depends upon the type of bond. These 

surrounding electrons distort the static magnetic field, reducing it slightly by varying degrees. 

The reduction in magnetic field strength changes the resonant frequency slightly and hence 

Figure 19 Fourier Transformation: conversion of a signal in the time domain into its 

constituent frequencies and amplitudes. Over the time period in the diagram above, three 

different signals are converted into three separate frequencies and amplitude (as shown by 

the three peaks in the frequency domain graph) (Wikipedia contributors, 2018)  
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the peak is ‘seen’ at a slightly different frequency. In this manner it is possible to identify 

different chemicals and compounds (because the hydrogen atoms within the compound of 

interest resonate at a different frequency to say, hydrogen atoms in fat or water). 

1.3.4 Safety of Magnetic Resonance in Pregnancy 

Magnetic resonance imaging (MRI) has been used extensively in pregnancy and there are no 

reports of significant adverse events. MRI is now a standard investigation for certain 

suspected fetal anomalies such as brain or skeletal malformations. A 3−year follow−up of 

twenty children examined in−utero with magnetic resonance during the second or third 

trimester showed no unexpected outcomes (Baker et al., 1994). Other studies with longer 

follow−up periods have had similar findings (Kok et al., 2004). Recent research using 

magnetic resonance spectroscopy to measure neurotransmitter levels in the developing fetal 

brain of women with normal pregnancies raised no safety concerns (Girard et al., 2006). 

For this research project a Philips 3 Tesla Achieva scanner was used which has a stronger 

static magnetic field than the majority of scanners used for routine clinical diagnosis. This 

higher magnetic field strength gives improved data quality, which allows us to perform scans 

to measure muscle and hepatic lipid content that would not be possible at lower magnetic 

field strengths. Although widely used in clinical diagnosis and research, 3 Tesla scanners have 

not been used extensively in pregnancy. Theoretical risks to the fetus from MR studies are 

noise and energy/heat deposition. 

1.3.5 Noise 

Acoustic noise is generated from the MR scanner when current is passed through the 

gradient coils. The outward force generated within the coil when current is switched on 

creates a loud clicking sound. Sound levels of up to 126 to 131dB have been recorded using 

3T MRI (Hattori et al., 2007). Exposure to loud noise over a period of time can result in long 

term hearing loss. Whilst hearing loss from MR is unlikely due to the relatively short duration 

of scanning, ear protection and modification of the scan protocol to minimise noise; the 

impact of noise to the developing fetal cochlear is a theoretical concern. 

The fetus is relatively protected from noise due to the cushioning effect of maternal tissues 

and amniotic fluid. Reeves et al. followed the neonatal hearing test results of 103 neonates 

exposed to MR in the second and third trimester and found no evidence of substantial 

hearing impairment (Reeves et al., 2010). 
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Our studies were specifically designed to minimise noise. Spectroscopy techniques are the 

least noisy scans and the scanning protocol was modified to reduce noise further. Sound 

levels were checked during phantom scanning and the maximum noise recorded was around 

80-85dB, the equivalent of travelling on an underground rail network. At this noise level 

there is no perceived affect to the fetus. 

1.3.6 Specific Absorption Rate (SAR) 

Radiofrequency fields used in MR can induce tissue heating, potentially leading to burns and 

tissue damage. Specific absorption rate (SAR) is a measure of the rate at which energy is 

absorbed by the body and is expressed in watts per kilogram (W/kg). In most cases, heat 

acquired during MR scanning is dissipated quickly through dilatation of local blood vessels, 

increased blood flow and removal of heat through the skin. 

In theory it may be possible to increase fetal temperature and this could potentially have 

adverse (teratogenic) effects, particularly in the first trimester. However, in practice, the SAR 

from magnetic spectroscopy is minimal, the field of interest well away from the fetus and the 

uteroplacental unit effectively regulates fetal temperature. 

MR scan protocols in this project adhere to Medicines and Healthcare products Regulation 

Agency (MHRA) recommendations: minimising duration of radiofrequency exposure and 

utilizing ‘normal operation level’ as recommended by ICNIRP 2004 (International 

Commission on Non-Ionising Radiation (ICNIRP), 2004). 

1.3.7 Advantages 

The main advantage of MRS is the fact that it is non-invasive and does not involve ionising 

radiation. This is of great importance during pregnancy where the developing fetus is 

sensitive to the effects of radiation. It also means that tissues can be analysed for their 

metabolic content without the need for invasive biopsies. Biopsies are not only painful and 

potentially harmful to the patient, but the process of extracting and analysing biopsy material 

may be inaccurate, due to degradation of metabolites. Through MRS it is possible to 

accurately study metabolic processes in vivo using a safe, non-invasive technique. 

1.3.8 Disadvantages 

The main disadvantage of MRS is the relative insensitivity of the method. The human body 

is approximately 70% water and thus relatively large signals can be obtained from the 1H 



50 
 

nucleus. Other nuclei, such as 31P and 13C are at much lower concentrations and have a lower 

sensitivity for NMR detection than 1H. These substances are therefore harder to quantify 

with MRS, indeed it may not be possible if the concentration of molecules containing these 

atoms are very low. The stronger the static magnetic field strength, the more nuclei will align 

with the magnetic field and a larger signal can be generated. Hence, greater field strength 

enables detection of molecules in lower concentration. 

Although MRS does not involve ionising radiation, the large magnetic field can be potentially 

harmful, mainly from any ferromagnetic object that may be forcefully drawn to the magnet 

and become a missile. Magnetic fields may also interfere with pacemakers, implantable 

defibrillators and other medical devices, these are contraindications to MR scanning. 

Most MR techniques are sensitive to motion. This can be a particular problem when 

studying, for example the heart. However, for the purposes of the methods involved in these 

studies, it was possible to eliminate movement by asking the patient to stay still or to hold 

their breath, for example when studying the liver. 

1.3.9 Magnetic Resonance methods used in the studies 

In both studies, subjects were transported to the Newcastle Magnetic Resonance Centre by 

taxi. They then underwent screening to ensure that there was no contraindication to MR 

scanning. MRS studies were performed using a Philips 3 Tesla Achieva scanner (Philips 

Medical Systems, Best, The Netherlands). Participants were scanned in the left lateral 

position (to relieve pressure on the inferior vena cava). A description of the MR protocol for 

each study follows below. 

1.3.9.1 Intramyocellular Lipid Concentration 

A pair of receive-only surface coils (Philips Flex-M coils) were placed around the right calf 

and the scanner bed positioned so that the calf was in the centre of the scanner. Scout 

images of the calf were acquired to guide identification of the volume of interest within the 

soleus muscle. 

PRESS (Point RESolved Spectroscopy) was the technique used to obtain spectral data. This 

involves using frequencies in different orientations (90○-180○-180○) so that the atoms spin in 

the yx-plane, the xz-plane and the xy-plane. The spin echo received back from these three 

orthogonal planes allows acquisition of the signal from a voxel. 
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In order to remove the signal from water (which may otherwise ‘drown out’ spectra from 

other metabolites), spectra were acquired with and without water proton suppression. 

Spectroscopy data was analysed using jMRUI software (van den Boogaart et al., 1996). Signal 

amplitudes from intra- and extra-myocellular lipids were separated by peak fitting, and 

quantified by comparison to the water proton signal from non-water suppressed spectra. 

1.3.9.2 Intrahepatic Lipid Concentration 

Studies were performed using a Philips 3 Tesla Achieva whole body scanner using a Philips 

multi-channel flex coil for 1H imaging and spectroscopy. To avoid pressure on the inferior 

vena cava subjects were positioned with a left pelvic tilt. Scout images of the maternal 

abdomen were acquired and used to guide identification of the volume of interest within the 

liver. 

1H spectroscopy comprised acquisition of PRESS-localised spectra at six echo times (TR = 

2.8 s, TE = 36, 50, 75, 100, 125, and 150 ms, spectral width = 2 kHz, 2k data points) from a 

3 x 3 x 3 cm voxel positioned in the liver to avoid large vessels. 

Spectra were processed using the Java-based magnetic resonance user interface (jMRUI 

version 3.0) (Naressi et al., 2001a; Naressi et al., 2001b) using the AMARES non-linear least 

square fitting algorithm to determine peak areas (Longo et al., 1995). Resonances of water at 

4.7 ppm and the CH2 methylene peak at 1.3 ppm in 1H spectra were quantified. The mean T2 

was determined for each peak by fitting a mono-exponential to the data. Signal amplitude at 

an effective echo time of zero was determined, and these amplitudes used to obtain the liver 

triglyceride fraction value. The upper limit of normal for a US population of mixed gender, 

multi-ethnic subjects between 30-65yrs of age has been defined as 5.5% (Szczepaniak et al., 

2005).  

Liver triglyceride content was assessed at baseline and just after the 4 week hypocaloric diet. 

Subjects continued on the diet until the second assessment. 

1.3.9.3 Validation 

MRS methods to determine intramyocellular and intrahepatic lipid have been validated in 

both human and animal studies (Boesch et al., 1997; Szczepaniak et al., 1999; van Werven et 

al., 2009). 
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Boesch et al showed that IMCL can be determined in tibialis anterior. For inter-individual 

reproducibility, seven subjects (31.4 +/- 6.6 years, 3 female) were compared and each subject 

measured in triplicate. For intra-individual variability, one subject (24 years, female) was 

studied on five different days, one week apart and also in triplicate on each day. Inter-

individual co-efficient of variance was 6.7% and intra-individual co-efficient of variance was 

6.1%. The crucial point for quantification of IMCL in human muscle is the separation of the 

methyl and methylene signals of extra- (EMCL) and intramyocellular lipid. This is better 

achieved with a stronger static magnetic field. Boesch used a 1.5 Tesla magnet, whereas this 

project used a 3 Tesla magnet and hence is likely to be more precise. 

The reproducibility of hepatic triglyceride content using 1H-MRS at 3T has been established  

(van Werven et al., 2009). 24 subjects were assessed at baseline and after four weeks. The data 

was analysed for a subgroup (n=8) of subjects with fatty liver disease (as defined as hepatic 

triglyceride content greater than 5.6%). Each subject was studied twice on the same day to 

determine ‘within day’ reproducibility. The data are summarised in Table 1 below. 

 

 CV RC ICC 

Between weeks 

(n=24) 

9.5% 1.3% 0.998 

Fatty liver (n=8) 4.1% 1.3% 0.997 

Within day 4.5% 0.4% 0.999 

 

 

 Table 1 Summary of Reproducibility Statistics. CV = coefficient of variation; RC= 

repeatability coefficient; ICC=intraclass correlation coefficient 

Reproduced from (van Werven et al., 2009) 
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1.4 Measuring Insulin Sensitivity and Production 

Insulin sensitivity is the ability of the body to react to insulin. A person with high insulin 

sensitivity will require less insulin in order to lower blood glucose than those with low insulin 

sensitivity. Insulin sensitivity can be measured by a variety of tests. 

1.4.1 Homeostatic Model Assessment (HOMA) 

The homeostatic model assessment (HOMA) estimates beta cell function (%B) and insulin 

sensitivity (%S) as a percentage of the normal reference population. HOMA is calculated on 

fasting plasma insulin and glucose measurements. The calculation is based on the assumption 

that fasting hyperglycaemia results from a combination of insulin sensitivity and beta cell 

deficit and that these variables change to a greater or lesser degree. HOMA uses computer 

mathematical modelling to calculate an array of potential fasting plasma glucose and insulin 

concentrations at any given degree of insulin resistance and beta-cell deficit. The model can 

then be used to estimate insulin resistance (HOMA-IR), which is the reciprocal of insulin 

sensitivity (HOMA-%S), and beta cell function (HOMA-%B). The values HOMA-%S and 

HOMA-%B are given as percentages compared to the reference population. 

HOMA-IR correlates well with the euglycaemic-hyperinsulinaemic clamp and the 

hyperglycaemic clamp. HOMA-%B correlates with measures of insulin production (for 

example the hyperglycaemic clamp and the frequently sampled intravenous glucose tolerance 

test). The main advantage of HOMA is that it is cheap and simple to perform as it relies on a 

single fasting blood sample and does not require infusions of glucose or insulin. It is useful 

for epidemiological studies, particularly as large populations can be screened quickly and 

effectively. However, due to the fact that it tests fasting conditions only, it is not sensitive at 

detecting postprandial abnormalities of glycaemic control. The main limitation of  HOMA is 

that it reflects hepatic rather than peripheral insulin sensitivity and, as has been demonstrated 

through clamp studies, the two can be very different. 

1.4.2 Oral Glucose Tolerance Test (OGTT) 

The oral glucose tolerance test (OGTT) is a dynamic test of insulin sensitivity, most 

commonly used to screen for diabetes (in the general population) and gestational diabetes (in 

pregnancy) (Alberti and Zimmet, 1998). The test consists of a fasting plasma glucose (at time 

0) followed by ingestion of 75g of glucose (commonly given as a drink, such as Lucozade). A 

second blood sample is taken 120 minutes after glucose ingestion. 
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Although traditionally only glucose is measured at 0 and 120 minutes the test can be adapted 

to measure insulin and glucose at various time points following glucose ingestion (Matsuda 

and DeFronzo, 1999). It is then possible to calculate an insulin sensitivity index (ISI) which 

has been validated against the euglycaemic-hyperinsulinaemic clamp. The advantage of ISI is 

that it tests both hepatic and peripheral insulin sensitivity and for that reason is more 

comprehensive than HOMA. In addition the ratio of change in insulin to change in glucose 

concentrations over the first 30 minutes of the test can be used to calculate insulin secretion 

(Haffner et al., 1995). 

The OGTT has limitations both for assessment of glycaemic and insulin sensitivity indices. 

Different rates of gastric emptying mean that the results can be influenced by glucose 

absorption rather than glucose handling. There is a large variation in gastric emptying not 

only within the population, but within the same individual making the repeatability of the test 

unreliable. It should also be noted that although insulin sensitivity can be calculated through 

various methods based on the OGTT, few of these have been validated against the gold 

standard of a euglycaemic-hyperinsulinaemic clamp. 

1.4.3  Intravenous Glucose Tolerance Test (IVGTT) 

The intravenous glucose tolerance test (IVGTT) is similar to the oral glucose tolerance test 

in that a bolus of glucose is administered, although this is given IV rather than orally. This 

eliminates the effects of gastrointestinal factors which may affect the absorption and 

therefore the appearance of glucose to the bloodstream. The test requires two intravenous 

lines, one to administer glucose (and sometimes insulin/arginine) and another to draw 

samples (Bergman et al., 1979). Blood samples are taken at various time intervals following 

bolus glucose administration to track insulin secretion and the disappearance of glucose from 

the circulation. The minimal model computes insulin sensitivity (Si) based on the 

disappearance of glucose per unit of insulin over time. 

Advantages of the IVGTT are that it is reliable and reproducible (more so than the OGTT). 

It has been validated against the euglycaemic-hyperinsulinaemic clamp (Beard et al., 1986; 

Bergman et al., 1987), although is more straightforward and less expensive and demanding to 

administer. It is possible to study insulin resistance and insulin secretion independently 

(which is not possible through the OGTT). The disadvantages of the IVGTT are that it still 

involves invasive intravenous catheter, is expensive and requires multiple blood draws. 
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Additionally, artificially increasing glucose concentrations to high levels in the context of 

pregnancy may have some (albeit likely minor) effect on the fetus. 

1.4.4 Hyperinsulinaemic-euglycaemic Clamp (HIEC) 

The hyperinsulinaemic-euglycaemic clamp (HIEC) remains the gold standard for assessing 

insulin sensitivity and was first described by DeFronzo et al in 1979 (DeFronzo et al., 1979). 

The test is a direct assessment (in that it involves infusing insulin at a constant rate). The aim 

is to increase plasma insulin concentrations to greater than 100µU/ml over the basal level 

and to maintain these elevated insulin concentrations over a 2-4 hour period. 20% glucose is 

infused at a variable rate and is titrated to maintain glucose levels between 5.0-5.5mmol/L. 

Once steady state (as defined by a period of greater than 30 minutes of the clamp during 

which the coefficients for variation in blood glucose, plasma insulin and glucose infusion are 

less than 5%) has been reached then the rate of glucose infusion is equivalent to peripheral 

glucose disposal (assuming complete suppression of hepatic glucose production). Individuals 

who are insulin sensitive will require greater rates of glucose infusion compared to those who 

are insulin resistant. Insulin sensitivity (SI) is the expression of glucose clearance per unit 

change in plasma insulin concentration: 

𝑆𝑆𝑆𝑆 =
𝑀𝑀

𝐺𝐺 × ∆𝐼𝐼
 

M = glucose disposal rate 

G = steady state blood glucose concentration 

ΔI = difference between fasting and steady state insulin concentrations 

The euglycaemic-hyperinsulinaemic clamp test measures whole body glucose disposal under 

steady state conditions from which insulin sensitivity can be accurately calculated. 

Additionally radioisotopes allow the tracing of endogenous glucose production and 

disappearance from which hepatic and peripheral insulin resistance can be determined. The 

test is reproducible and comparable between subjects. 

Disadvantages of the HIEC are that it assumes complete suppression of hepatic glucose 

production. Particularly in individuals with impaired glucose tolerance, this may not be true.  

The HIEC is time consuming and labour intensive and requires an experienced doctor to 
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manage technical complications that may arise from the test. Additionally, the test is 

performed in supra-physiological conditions (for example the peripheral concentration of 

insulin in the clamp is much higher than the portal concentration). Si is only measured in the 

steady state and neither the pulsitility of normal insulin release nor the postprandial 

modification of insulin action are factored in the clamp test, as they would in physiological 

conditions of the postprandial state. 

Whilst the test can be performed in pregnancy, it is restrictive and does not allow the 

pregnant woman to move about. Additionally, one is keen to avoid hypoglycaemia and 

invasive tests during pregnancy. 

1.4.5 Standardised Meal Test 

An oral glucose tolerance test or meal test is a method of determining insulin resistance and 

insulin secretion under normal physiological conditions. However, in contrast to the 

intravenous glucose tests, the rate of glucose appearance (Ra) into plasma has to be 

estimated, Figure 20. This is done through a mathematical model (the minimal model) 

which estimates glucose disposal according to two differential equations. The first equation 

describes glucose kinetics assuming a single compartment. The second equation describes 

the effect of insulin on glucose levels in a compartment outside plasma. The difference 

between measured glucose and predicted glucose represents insulin sensitivity. This model 

has been validated against the euglycaemic clamp (Dalla Man et al., 2002). Whilst this model 

has not been validated in pregnancy, there is no concern that the model may be inaccurate. 

Oral glucose uptake and appearance are generally slower during pregnancy due to delayed 

stomach emptying and transit time. The model does not assume that glucose appearance is a 

standardised constant, rather the model derives glucose appearance from multiple sampling 

of plasma glucose, insulin and c-peptide over a two-to-three hour time period following oral 

glucose intake. Separate analysis of three systems: the oral glucose minimal model, the c-

peptide minimal model and the insulin minimal model mean that insulin sensitivity, beta cell 

responsiveness and hepatic excretion are calculated independently to each other, minimising 

the likelihood that pregnancy will affect the modelling exercise (Cobelli et al., 2014). 
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The c-peptide minimal model estimates insulin secretion, Figure 21. This includes a dynamic 

component which relates to secretion of promptly releasable insulin and is proportional to 

the rate in increase in glucose concentration through a constant (Φd). A static component 

relates to new insulin formation to a releasable pool (Φs). The c-peptide model has been 

validated against HEIC and fasting IVGTT (Basu et al., 2003; Steil et al., 2004). 

Dalla Man and Cobelli have combined the minimal model and c peptide models to produce a 

meal test protocol that estimates both insulin sensitivity and beta-cell response to a 

standardized meal test (Dalla Man et al., 2005). The advantage of this protocol is that it can 

be completed over two-hours with only seven blood samples (for glucose, insulin and c-

peptide) required. This reduced protocol has excellent correlation with results from the 

longer 5-hour OGTT or 7-hour meal tests. 

Figure 20 Glucose Minimal Model Glucose with its key indexes: insulin sensitivity (Si) and 

rate of appearance of ingested glucose (Ra); I, plasma insulin concentration; X, insulin action. 

Figure reproduced from (Dalla Man et al., 2005)    
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The advantages of the standardised meal test are that it is a physiological test, reflective of 

everyday metabolism in comparison to HOMA (which represents the fasted state) and HIEC 

tests which are done under non-physiological parameters. The test is easy to perform and 

does not require a medically qualified practitioner. The results are reproducible and have 

been validated against the HIEC (Dalla Man et al., 2005). Disadvantages to the test are that it 

is relatively time consuming (between 2-3 hours in duration), participants have to be fasted 

for the test and have to consume a relatively large breakfast. Additionally, mathematical 

modelling is required in order to obtain the results. For the purposes of the LIPIDPREG 

and WELLBABE studies, this was done by Chiara Della Man, University of Padua, Italy. 

Figure 21 C-peptide Oral Minimal Model with its key indexes and signals: dynamic (Φd) and 

static (Φs) β-cell responsivity, delay of provision of new insulin (T), and insulin secretion (SR) 

with its dynamic (SRd) and static (SRs) components. Reproduced from (Dalla Man et al., 

2005) 
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1.5 Hypothesis, aims and objectives 

1.5.1 Hypothesis 

• The physiological insulin resistance of pregnancy is secondary to accumulation of 

intramyocellular lipid, and this is exaggerated in women who develop gestational 

diabetes (GDM). 

• Women with GDM have higher concentrations of liver fat and muscle fat than 

pregnant women without GDM. 

• Calorie restriction to 1,200kcal/day reduces liver fat concentration and improves 

insulin sensitivity in women with GDM. 

• Calorie restriction is acceptable, safe and possible in pregnant women with GDM. 

1.5.2 Aims and Objectives 

• To develop magnetic resonance techniques to study maternal muscle and liver fat 

concentration during pregnancy and the postpartum period. 

• To study the relationship between intramyocellular lipid concentration and insulin 

sensitivity in pregnancy and post-partum. 

• To determine the effects of an energy restricted diet on maternal liver fat 

metabolism. 

• To study the feasibility and acceptability of dietary intervention in pregnancy. 
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CHAPTER 2 METHODS 

2.1 LIPIDPREG study: Muscle Lipid Metabolism in Normal Pregnancy 

2.1.1 Research Subjects 

Healthy pregnant women were recruited from the antenatal classes at the Royal Victoria 

Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust. Exclusion criteria 

included a past history of diabetes or gestational diabetes, family history of diabetes or 

gestational diabetes, family ethnic origin with a high prevalence of diabetes, current steroid 

medication or a contraindication to magnetic resonance imaging such as pacemaker, 

ferromagnetic implant or fragments or claustrophobia. 

The study was discussed with the women during the class in an informal manner and a 

patient information sheet (Appendix A) was given to those women who expressed an 

interest in participating. The women were given the opportunity to discuss the study with the 

researcher (KH) through telephone or email correspondence.  

2.1.2 Anthropometry 

Body weight was measured to the nearest 0.1kg with the subject in normal clothing (shoes 

removed) on digital scale (Seca Ltd., Birmingham, UK). Height was measured to the nearest 

0.5cm using a stadiometer (Seca Ltd., Birmingham, UK). Body mass index was calculated 

from weight and height (BMI= weight (in kg) divided by height (in meters) squared). 

2.1.3 Intravenous cannulation and blood sampling 

An 18 gauge intravenous cannula (Vasofix; B. Braun Medical Ltd., Sheffield, UK) was 

inserted in a distal forearm vein (typically in the hand). Anaesthetic cream was available if 

required. Baseline blood samples (fasting) were taken for: urea & electrolytes, liver function 

tests, HbA1c, fasting glucose, insulin, c-peptide, non-esterified fatty acids (NEFA) and full 

blood count. The cannula was flushed with normal saline between blood draws to ensure 

patency. Consequently, the first 3ml of each blood draw was discarded prior to obtaining a 

sample in a fresh syringe for analysis. 
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During the meal test the hand was warmed using microwavable hand warming packs in order 

to obtain arterialised blood samples. This method of arterialisation has not been validated in 

pregnancy. These were replaced at 30 minute intervals throughout the study. 

Blood glucose samples were immediately analysed at the bedside using a calibrated YSI 

glucose analyser. Blood samples for insulin, c-peptide and NEFA were put onto ice. 

Following collection of all the samples, they were spun down in a centrifuge and the plasma 

separated before being frozen at -40ºC and stored at the Newcastle Magnetic Resonance 

Centre. Batched samples were then taken to the Diabetes Research Lab for analysis. Other 

blood samples were taken to the laboratory at the Royal Victoria Infirmary for analysis. 

2.1.4 Metabolites and Hormone Assays 

Plasma glucose levels were measured by the glucose oxidase method (YSI glucose analyser; 

Yellow Springs Inc., Ohio, USA) (CV for measurement [control (10 mmol/l)]: 2.8%). Plasma 

insulin and C-peptide levels were both measured using ELISA kits (DAKO; Ely, 

Cambridgeshire, UK) (CV for measurement [insulin range 400-500 pmol/l]: 5.5% and [C-

peptide range 1.20-2.00 nmol/l]: 7.1%). Plasma NEFA concentration was measured on a 

Roche Cobas centrifugal analyser using an enzymatic colorimetric Wako kit (Wako 

Chemicals, Neuss, Germany) (CV for measurement [range 1.02-1.25 µmol/l]: 3.2%). HbA1c 

was measured by Biorad HPLC (TOSOH Corporation, Tokyo, Japan). 

2.1.5 Magnetic Resonance Spectroscopy 

MRS studies were performed using a Philips 3 Tesla Achieva scanner. Participants were 

scanned supine with a left lateral pelvic tilt (to relieve pressure on the inferior vena cava). A 

pair of receive-only surface coils (Philips Flex-M coils) were placed around the right calf and 

the scanner bed positioned so that the calf was in the centre of the scanner. Scout images of 

the calf were acquired to guide identification of the volume of interest within the soleus 

muscle. 

A volume-localised 1H spectrum was acquired from this volume of interest (PRESS 

localisation, TR=4sec, TE=35msec, 64 repetitions, total acquisition time=4 minutes). Spectra 

were acquired with and without suppression of signal from water protons. Spectroscopy data 

was analysed using jMRUI software (van den Boogaart et al., 1996). Signal amplitudes from 

intra- and extra-myocellular lipids were separated by peak fitting, and quantified by 

comparison to the water proton signal from non-water suppressed spectra. 
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2.1.6 Standardised Meal Test 

The participant was given a standardized breakfast comprising two Weetabix, 200ml semi-

skimmed milk, 200ml orange juice, a white bread roll, 20g jam and 10g margarine this 

provided 575kcal (72% carbohydrate, 15% protein, 13% fat). They were asked to eat the 

breakfast as quickly as they could. Timing of samples commenced from the time that eating 

began. Blood samples for glucose, insulin and C-peptide were taken via an intravenous 

cannula at 10, 20, 30, 60, 90 and 120 minutes after the meal (Dalla Man et al., 2002; Dalla 

Man et al., 2005). 

2.1.7 Calculations 

Fasting insulin sensitivity was calculated from plasma insulin and glucose using the HOMA 

index (Matthews et al., 1985). 

Meal test data was sent to collaborators Dalla Man and Cobelli, University of Padua, Italy for 

calculation of insulin sensitivity and beta-cell responsivity indices. The oral glucose minimal 

model was used to calculate insulin sensitivity (SI) during the meal test, which measures the 

overall effect of insulin to stimulate glucose disposal and inhibit glucose production (Dalla 

Man et al., 2002). Beta-cell responsivity indexes were estimated using the oral C-peptide 

minimal model (Breda et al., 2001; Dalla Man et al., 2005), incorporating age-associated 

changes in C-peptide kinetics (Van Cauter et al., 1992). Φtotal describes the insulin response to 

a given increment in glucose and is a composite of the dynamic component (Φdynamic), 

representing release of immediately available insulin, and the static component (Φstatic), 

representing production of new insulin into a releasable pool. Disposition indices (DI) were 

calculated by multiplying Φtotal, Φdynamic and Φstatic, by SI . 

2.1.8 Obstetric and neonatal outcomes 

Pregnancy outcome data was collected for each participant. This included: 

• Gestation at delivery 

• Mode of delivery 

• Complications during pregnancy/labour 

• Breastfeeding 

• Neonatal birth weight 

• Neonatal complications (admission to Special Care Baby Unit, SCBU) 
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2.2 WELLBABE Study: the effect of dietary intervention on liver fat metabolism in 
women with gestational diabetes 

2.2.1 Research subjects 

Between January and August 2015, 16 women with a singleton pregnancy and greater than 

26 weeks gestation were recruited from the antenatal clinic at the Royal Victoria Infirmary, 

Newcastle upon Tyne following a diagnosis of GDM based on a positive 75g oral glucose 

tolerance test (fasting glucose greater than or equal to 5.5mmol/l, 2-hour glucose greater or 

equal to 7.8mmol/l) (World Health Organization, 1985). Women were seen in the clinic by 

KH following the diagnosis of GDM to discuss the management of diabetes, but also to 

discuss the study. Women were given a patient information sheet (Appendix C) and given 

the researcher’s contact details in order to obtain further information if needed. 

In order to compare the study group to routine care, each participant was matched (by age, 

BMI, parity and ethnicity) to two women from the Royal Victoria Infirmary maternity 

database who underwent standard antenatal care for GDM. 

2.2.2 Anthropometry 

Subjects were weighed at each visit to the Newcastle Magnetic Resonance Centre – using the 

same equipment as in the LIPIDPREG study described above. In particular, weight loss or 

gain during the four-week diet period and in the postpartum period was recorded.  

Comparator subjects had been weighed in the antenatal clinic at the Royal Victoria Infirmary. 

These weights were obtained from the case notes. 

2.2.3 Fetal Growth 

Fetal growth was measured by ultrasound (Voluson E8, General Electric Company, USA) at 

28, 32 and 36 weeks gestation by a trained obstetric ultrasonographer. The Hadlock formula 

(Hadlock et al., 1985) was used to calculate fetal weight through abdominal circumference 

and femur length measurements (Chitty et al., 1994). 

2.2.4 Magnetic Resonance Spectroscopy (MRS) 

Studies were performed using a Philips 3 Tesla Achieva whole body scanner (Philips Medical 

Systems, Best, The Netherlands) using a Philips multi-channel flex coil for 1H imaging and 

spectroscopy. To avoid pressure on the inferior vena cava subjects were positioned with a 
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left pelvic tilt. Scout images of the maternal abdomen were acquired and used to guide 

identification of the volume of interest within the liver. 

1H spectroscopy comprised acquisition of PRESS-localised spectra at six echo  times (TR = 

2.8 s, TE = 36, 50, 75, 100, 125, and 150 ms, spectral width = 2 kHz, 2k data points) from a 

3 x 3 x 3 cm voxel positioned in the liver to avoid large vessels. 

Spectra were processed using the Java-based magnetic resonance user interface (jMRUI 

version 3.0) (Naressi et al., 2001a; Naressi et al., 2001b) using the AMARES non-linear least 

square fitting algorithm to determine peak areas (Longo et al., 1995). Resonances of water at 

4.7 ppm and the CH2 methylene peak at 1.3 ppm in 1H spectra were quantified. The mean T2 

was determined for each peak by fitting a mono-exponential to the data. Signal amplitude at 

an effective echo time of zero was determined, and these amplitudes used to obtain the liver 

triglyceride fraction value. The upper limit of normal for a US population of mixed gender, 

multi-ethnic subjects between 30-65yrs of age has been defined as 5.5% (Szczepaniak et al., 

2005).  

Liver triglyceride content was assessed at baseline, just after the 4 week hypocaloric diet and 

postnatally (between 12 and 28 weeks postpartum in a subset of the study group). Subjects 

continued on the diet until the second assessment. 

2.2.5 Meal test 

A standardised meal test followed MR scanning using the same protocol as the first study 

(described above), with the addition of a further blood sample at 180 minutes (for glucose, 

insulin and c-peptide). 

Standardised meal testing was performed before commencing the diet (visit 1) and after four-

weeks of dietary intervention (visit 2). 

2.2.6 Dietary Review 

Participants were given an individualised 1,200kcal/day diet plan. This is described in detail 

in Chapter 4. 

2.2.7 Home blood glucose monitoring/Dietary compliance 

Women were supplied with a Bayer Contour meter as part of routine care. They were asked 

to measure glucose levels daily before breakfast (fasting) and one-hour after their main meal. 
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Data were relayed to KH daily either through MyFitnessPal or by telephone. The need for 

metformin and/or insulin was assessed as part of routine management. 

Participants were encouraged to maintain the 1,200kcal/day diet through regular contact 

with the research team. In most cases this was through MyFitnessPal and/or text messaging. 

Each participant was telephoned on a weekly basis during the dietary period to check 

whether there were any problems or issues.  

2.2.8 Semi Structured Interview 

Semi-structured interviews were conducted by an independent research midwife (CMcP) 

experienced in qualitative methodology. An interview schedule was developed using the 

Theory Domain Framework (Michie et al., 2005) to explore motivation to engage in the diet, 

beliefs about consequences, emotions (e.g. fears) amongst other domains. 

2.3 Statistics 

Data were analysed in SPSS V21.0. Continuous variables are expressed as mean ± standard 

error of the mean. Continuous data were compared using the two-tailed, paired Student t-test 

and ANOVA when there were multiple groups. Categorical data were compared using 

Wilcoxon signed−rank test. Significance was set at <0.05. 

Normality of data was assessed using the Shapiro-Wilk test. In both studies: glucose, insulin, 

C peptide, total cholesterol, HOMA, Si, NEFA, maternal weight and height, and neonatal 

birth weight were normally distributed. Liver fat and disposition index were not normally 

distributed. 

2.4 Power Calculation 

Sample size was planned for each study to maximize the likelihood of demonstrating a 

statistically significant and true difference in the primary outcome parameter. 

In the LIPIDPREG study a power calculation was not possible on the primary outcome 

measure of intramyocellular lipid concentration because, due to the novel nature of the 

technique in pregnancy, there were no studies on which to base an estimate of the perceived 

difference. We based the sample size on previous magnetic resonance metabolic studies in 

non-pregnant subjects that had similar aims. 
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For the WELLBABE study, a power calculation was undertaken centered on expected 

change in liver triglyceride. This was based on a previous study from our institution in 

subjects with T2DM as there is no published data on liver triglyceride in human pregnancy 

(Lim et al., 2011b). In our previous study liver triacylglycerol fell from 12.8±2.4% to 

4.8±4.2% over a 4 week period. Given that the degree of energy restriction in the present 

study was 60% less than in the previous study, and that fall in liver triacylglycerol is 

proportionate to reduction in energy intake, we assumed that the reduction in liver 

triacylglycerol would be 60% of that previously reported. Thirteen participants would be 

required to demonstrate an absolute fall in liver triacylglycerol of 4.8% (assuming SD of 4.2 

and baseline level of 12%) with 95% power at the 5% significance level. 
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CHAPTER 3 INVESTIGATING INTRAMYOCELLULAR 
TRIGLYCERIDE AND INSULIN RESISTANCE IN 

NORMAL PREGNANCY 

3.1 Background 

Normal pregnancy is associated with progressive insulin resistance, although the mechanisms 

underlying this remain unclear (Catalano et al., 1991). In T2DM and obesity, insulin 

resistance is closely linked to accumulation of triglycerides in muscle (Krssak et al., 1999; 

Ravikumar et al., 2005). Insulin resistance within muscle is one of the earliest detectable 

changes in T2DM and this deficit is found in high prevalence in the offspring of patients 

with T2DM (Warram et al., 1990). Pregnancy is associated with increased plasma triglyceride 

concentrations, particularly low-density lipoprotein (LDL-TG), which is the lipid fraction 

responsible for delivery of triglyceride to muscle and other tissues Kousta et al., 2003. 

Previous studies have shown that intramyocellular lipid (IMCL) concentrations are between 

66-88% higher (depending upon which calf muscle is studied) in women who had gestational 

diabetes during their pregnancy, compared to normal controls (Kautzky-Willer et al., 2003; 

Kousta et al., 2003). 

It was hypothesised that the physiological insulin resistance of pregnancy is secondary to 

accumulation of IMCL, and that this is exaggerated in women who go on to develop 

gestational diabetes. No studies to date have investigated IMCL during pregnancy. 

3.2 Research design and methods 

3.2.1 Study Population 

Women were recruited from antenatal classes at the Royal Victoria Infirmary, Newcastle 

upon Tyne NHS Foundation Trust at approximately 28 weeks gestation. Exclusion criteria 

included a past history of diabetes or gestational diabetes, family history of diabetes or 

gestational diabetes, family ethnic origin with a high prevalence of diabetes, current steroid 

medication or a contraindication to magnetic resonance imaging such as pacemaker, 

ferromagnetic implant or fragments or claustrophobia. All women gave written, informed 

consent prior to participation in the study (Appendix A). The study protocol and 

documentation was reviewed by Newcastle upon Tyne and North Tyneside Local Research 

Ethics Committee 2 (09/H0907/16). 
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3.2.2 Schedule of metabolic testing 

Each subject was studied at 34 weeks gestation and again at 12 weeks postpartum (Visit 1 & 

2, Figure 22). Prior to each visit, participants were advised to avoid vigorous exercise and 

were fasted from midnight. They were advised to drink water only on the morning of the 

study. A taxi was arranged to bring the participants to the research centre. 

On arrival participants were weighed (as described in Chapter 2) and an intravenous cannula 

was inserted in the distal forearm. Baseline bloods were taken for glucose, insulin, C-peptide, 

full blood count, urea & electrolytes, liver function tests, HbA1C and lipid profile. In order to 

quantify IMCL, the participant then underwent a MRS scan of the soleus leg muscle 

(Chapter 2). Following the scan, a standardised meal test was performed. The participants 

remained in the department for the duration of the meal test (2 hours) during which timed 

blood samples were taken at 10, 20, 30, 60 and 120 minutes following consumption of the 

supplied breakfast. The cannulated hand was warmed using microwavable hand-warmers in 

order to arterialise the sample. Glucose was analysed on-site using a YSI analyser. Insulin and 

C-peptide samples were taken in a plain tube, allowed to clot and spun down. Serum was 

decanted from the spun sample and frozen at -40○C for later analysis at the Diabetes 

Research Lab, Newcastle University. Participants were given feedback regarding their glucose 

profile during the meal test. 

 

 

3.2.3 Participant Demographics 

Eleven primiparous women (mean age: 31±3 years, mean BMI: 22±4) underwent MRS and 

standard meal testing at 34 (range 33-35) weeks gestation and 12 weeks postpartum (Table 

2). One woman was excluded as her MRS data was technically unsatisfactory. All women had 

singleton pregnancies, delivered at term and mean birth weight was 3.29kg.  

Figure 22 Schedule of visits for investigating muscle metabolism in normal pregnancy 
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 Age 
(years) 

Weight 
(kg) 

Height 
(cm) 

BMI Parity Breast or 
Bottle 
Feeding 

Mode of 
Delivery 

Birth weight 
(kg) 

1 32 63 170 22 0 Bottle Instrumental 3.30 

2 27 62 168 22 0 Breast Normal 3.54 

3 29 56 157 22 0 Breast Instrumental 3.25 

4 32 71 165 26 0 Breast Caesarean 3.54 

5 32 60 172 20 0 Breast Instrumental 2.92 

6 29 75 168 26 0 Breast Normal 3.80 

7 34 72 178 22 0 Bottle Normal 2.94 

8 39 62 171 21 0 Breast Caesarean 3.42 

9 31 69 170 23 0 Bottle Caesarean 2.76 

10 31 84 165 30 0 Breast Instrumental 3.45 

11 30 72 158 26 0 Breast Normal 3.28 

 

3.3 RESULTS 

3.3.1 Plasma glucose 

Fasting plasma glucose was lower in pregnancy compared to the post partum (3.8 ± 0.1 vs. 4.0 

± 0.1 mmol/l; p=0.16). Although, in this study, it was not statistically significant, this 

observation has previously been described by others. Two hour post-meal plasma glucose was 

higher during pregnancy (5.9 ± 1.0 vs. 5.0 ± 0.7 mmol/l ; p<0.01) as was area under curve 

(AUC) glucose (585 ± 22 vs 496 ± 26 mmol/l, p=0.05; Figure 23).C 

3.3.2 Insulin and C-peptide 

During pregnancy substantially higher plasma insulin levels were required to achieve glucose 

control, and at 30 minutes post-meal, plasma insulin levels were almost two-fold higher; 

Table 2 Participant Characteristics  
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510 ± 63 vs 273 ± 30 pmol/l for pregnant and postpartum groups respectively (p=0.01; 

Figure 23). 

Plasma insulin levels peaked at 30 minutes during pregnancy and at 60 minutes postpartum. 

Again, this may reflect the delayed appearance of glucose in the circulation due to delayed 

gastric emptying in pregnancy. There was a 2.7-fold increase in total insulin production during 

the standardized meal tests (area under curve 57336 ± 4890 vs 20922 ± 2245 pmol/l; 

p=0.0001).  

C-peptide concentrations followed a similar profile to insulin secretion in both the pregnant 

and non-pregnant state. It should be noted that C-peptide is excreted by the kidneys, whilst 

insulin is excreted through the liver, this may explain the slightly higher C-peptide to insulin 

levels in the postpartum state (insulin more rapidly metabolised than C-peptide excreted). 

  



71 
 

 

 

 

Figure 23 Mean +/- SEM plasma glucose, insulin and C-peptide concentration following a 

standardised meal test during pregnancy (open circles, dashed line) and postpartum (solid 

circles, solid line); (SEM – standard error of the mean). Student’s T-test: *p>0.05 

Area under curve (AUC) glucose pregnant vs postpartum (718 vs 673 respectively), AUC 

insulin (9531 vs 3488 respectively), AUC C-peptide (351 vs 258 respectively). 
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3.3.3 Insulin sensitivity 

Insulin resistance in the fasting state, as measured by HOMA was almost two-fold higher in 

pregnancy (1.3 ± 0.6 vs 0.7 ± 0.3, p=0.009; Figure 24). After the meal, the difference in insulin 

sensitivity was even more marked. Calculated insulin sensitivity (SI) was approximately four-

fold lower in pregnancy compared to postpartum (45.6 ± 9.9 vs 193.0± 26.1; 104 dl/kg/min 

per pmol/l, p=0.0002). As the beta-cell response to a given increment in glucose (Φtotal) did 

not change in pregnancy compared to postpartum (90.3 ± 8.2 vs 111.6 ± 21.8; 10-9/min, 

p=0.26), the total disposition index (DItotal) increased during the transition from pregnancy to 

postpartum (7301 ± 1990 vs 39682 ± 10657; 10−4dl/kg/min per pmol/l,  p=0.01). 
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Figure 24 Homeostatic Model of Insulin Resistance during pregnancy and postpartum (top 

graph). Insulin sensitivity index (Si) as measured by a standardised meal test (bottom graph). 

Error bars are mean±SEM. Student’s T test, p=0.009 for HOMA and p=0.0002 for Si  
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Figure 25 Disposition index (DI) at 34 weeks pregnant and postpartum. Bar indicates 

median DI. Wilcoxon signed rank test; p=0.024  
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3.3.4 Intramyocellular lipid 

Figure 26 shows the individual data on IMCL concentration for each subject. The mean 

IMCL concentration of the soleus muscle was normal during pregnancy and did not 

significantly change postpartum (20.0±2.3mmol/l vs 19.1±3.2mmol/l, p=0.64). 

 

 

3.3.5 Lipid profile 

Fasting plasma triglyceride levels were elevated three-fold during pregnancy (2.3 ± 0.2 vs 0.8 

± 0.1 mmol/l, p<0.01). However, LDL-TG, responsible for fatty acid delivery to muscle and 

other tissues, was six-fold elevated (0.75 ± 0.43 vs. 0.12 ± 0.09 mmol/l; p=0.001) (Figure 

27). Fasting plasma NEFA concentrations were similar during pregnancy compared to 

postpartum (0.40 ± 0.03 vs 0.41 ± 0.03 mmol/l, p=0.91). There was a modest increase in 

plasma total cholesterol, including low-density lipoprotein and very low-density lipoprotein 

components during pregnancy (Table 3). 

Figure 26 Intramyocellular lipid concentrations during pregnancy () and postpartum (). 

Line indicates mean lipid concentration during pregnancy and postpartum. Student’s T test 

p=0.64 
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 1st MR 
(34 weeks 
pregnant) 

2nd MR  
(12 weeks 

postpartum) 

p-value 

Fasting Glucose (mmol/l) 3.8 ± 0.1 4.1 ± 0.1 0.14 
Fasting Insulin (pmol/l) 46.2 ± 6.0 24.0 ± 2.6 <0.01 
HOMA 1.3 ± 0.2 0.7 ± 0.1 <0.01 
Total Cholesterol (mmol/l) 7.3 ± 0.2 5.5 ± 0.3 <0.01 
HDL-C (mmol/l) 1.8 ± 0.2 2.1 ± 0.2 0.4 
LDL-C (mmol/l) 4.8 ± 0.4 3.5 ± 0.3 0.02 
VLDL-C (mmol/l) 0.6 ± 0.1 0.1 ± 0.06 <0.01 
Total Triglyceride (mmol/l) 2.3 ± 0.2 0.8 ± 0.06 <0.01 
LDL-TG (mmol/l) 0.8 ± 0.1 0.1 ± 0.03 <0.01 
VLDL-TG (mmol/l) 0.9 ± 0.1 0.3 ± 0.03 <0.01 
FFA (mmol/l) 0.4 ± 0.03 0.4 ± 0.03 0.90 
HbA1C (%) 5.3 ± 0.2 5.4 ± 0.3 0.18 
    
Insulin Sensitivity Index (SI) 
(10-4 dl/kg/min per pmol/l) 

1.27 ± 0.27 5.36 ± 0.73 <0.01 

    
Muscle triglyceride (mmol/l) 20.0 ± 2.3 19.1 ± 3.2 0.64 

Figure 27 Mean ± SEM plasma cholesterol and triglyceride lipoproteins in healthy women 
during pregnancy (black bars) and in the postpartum period (grey bars) 

Table 3 Baseline Indices (mean ± SEM), Insulin Sensitivity from the Standardised Meal Test 
and Muscle Triglyceride on Magnetic Resonance Spectroscopy (HOMA: homeostatic model 
assessment, NEFA: Non-esterified fatty acids, HDL: high density lipoprotein, LDL: low 
density lipoprotein, VLDL: Very low density lipoprotein, C: cholesterol, TG: Triglyceride) 
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3.4 Discussion 

This study shows that pregnancy does not appear to affect IMCL concentrations even 

though there is a four-fold increase in insulin resistance during pregnancy compared to 

postpartum. A three-fold increase in plasma triglycerides was observed as was a small 

increase in postprandial glucose concentrations, consistent with the insulin resistant state. In 

addition, the feasibility of MRS at 3 Tesla during pregnancy was demonstrated with the 

technique well tolerated by all the participants. 

These results differ from observations in other insulin resistant states, in particular T2DM 

where IMCL levels are often elevated and mark the beginning of the pathophysiological 

process (Perseghin et al., 1999; Virkamaki et al., 2001; Ravikumar et al., 2005). Intracellular 

fatty acids are metabolised within the cell to intermediaries, especially diacylglycerol and 

ceramides, which directly cause insulin resistance through preventing translocation of the 

GLUT4 glucose channel thereby preventing glucose uptake (Roden, 2004). This is the first 

step in the uptake and metabolism of postprandial glucose, as described in detail in 

Chapter 1. The present study indicates that there must be alternative pathways of inducing 

insulin resistance in pregnancy resulting in equally profound changes. Kirwan et al studied 

the reversal of insulin resistance in a similar group of normal, non-obese pregnant women, 

only using muscle biopsy as opposed to MRS (Kirwan et al., 2004). Insulin sensitivity 

improved by 74% in the postpartum period and this was accompanied by a 42% increase in 

insulin receptor expression, a 69% increase in IRS-1 protein and a reduction in the p85a 

alpha regulatory subunit of phosphatidylinositol 3-kinase. These changes allow a greater 

response to insulin-receptor binding through expression of downstream signalling 

mechanisms and increased numbers of insulin receptors. Pregnancy regulation of cellular 

mechanisms and gene expression is thus likely to be hormonal in origin (possibly a 

combination of corticosteroid and placental e.g. human placental lactogen). 

This study investigated the relationship between insulin resistance and IMCL deposition in a 

group of normoglycaemic, non-obese pregnant women. Although no change in IMCL was 

noted in this group, evidence from postpartum studies in women with prior GDM would 

suggest that elevated muscle lipid may contribute to the ‘additional’ insulin resistance seen in 

these women during pregnancy (Kautzky-Willer et al., 2003). A longitudinal study comparing 

muscle fat and measuring insulin resistance in women with and without GDM is necessary to 

test this hypothesis further. 
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This study utilised noninvasive techniques (MRS) under normal conditions (meal test) to 

evaluate everyday metabolic physiology. It is one of the first studies to utilize 3 Tesla 

magnetic resonance in pregnancy in a research setting. The procedure was well tolerated by 

all the women and no adverse fetal effects were noted. Scanning protocols were modified to 

reduce noise and energy deposition. MRS is superior to muscle biopsy as it is noninvasive 

and less susceptible to contamination and processing artefact (Szczepaniak et al., 1999; 

Howald et al., 2002). 

Meal testing was utilized in this and the subsequent study, and was performed following an 

overnight fast. This was well accepted by the participants and ketone levels were not unduly 

high as a result. The breakfast itself was substantial (575kcal) and was not always fully eaten. 

In order to be able to compare the results from paired samples, the amount of food eaten 

was noted and repeated on subsequent testing. The standardised meal test is a dynamic test 

of insulin secretion and glucose uptake in the context of physiological conditions (i.e. it 

reflects day-to-day parameters of glucose uptake, exposure and disposal). By contrast, 

HOMA is a non-dynamic estimation of insulin resistance under fasting conditions whilst 

clamp tests operate under extreme conditions of hyperinsulinaemia or hyperglycaemia. The 

meal test was advantageous for pregnant women as it is relatively non-invasive (requiring an 

intravenous cannula, but not drug infusions), avoids hypoglycaemia and allows freedom of 

movement. However, the study was relatively prolonged (between 2 and 3 hours duration) 

and this may have an impact on the design of future studies. A quicker assessment of beta 

cell function (e.g. OGTT or HOMA) and insulin sensitivity may make participation easier. 

Limitations of the study must be considered. A small sample size was necessary to make 

detailed magnetic resonance possible and to perform more extensive metabolic testing than 

would be feasible with a larger sample size. Secondly, the population studied (white British, 

non-obese, nulliparous) is not representative of the general pregnant population. Strict 

inclusion criteria were used in order to obtain as homogeneous a sample as possible to avoid 

confounding factors such as body mass index and ethnicity. Finally, MRS was limited to the 

soleus muscle. Although some studies have shown relationships between insulin sensitivity 

and IMCL in tibialis anterior only (Kautzky-Willer et al., 2003), IMCL in the soleus is most 

widely used as an indicative muscle and has been shown to reflect whole body insulin 

sensitivity (Krssak et al., 1999). To scan more than one muscle would have prolonged 

scanning time, which was not felt reasonable given women were in the third trimester of 

pregnancy. 
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In conclusion, this study demonstrates that the insulin resistance of healthy pregnancy does 

not appear to be associated with IMCL deposition, in contrast to other insulin resistant 

states. The insulin resistance of muscle that characterises late pregnancy must be caused by a 

distinct, gestation-mediated mechanism.   



80 
 

CHAPTER 4 LIVER TRIGLYCERIDE CONTENT AND 
GESTATIONAL DIABETES: EFFECTS OF MODERATE 

CALORIE RESTRICTION 

4.1 Background 

GDM has long been recognised to be an early manifestation of T2DM, with many shared 

pathogenic features (Prentki and Nolan, 2006). It has been demonstrated that individuals 

with T2DM can durably be returned to non-diabetic glucose control by substantial weight 

loss and that this depends initially upon a reduction in liver triglyceride content (Taylor, 

2013; Steven et al., 2016b). However, information on liver triglyceride content in GDM is 

lacking even in animal models.  

In T2DM, both liver triglyceride and fasting plasma glucose are normalised within 7 days of a 

substantial reduction in calorie intake (Lim et al., 2011a). Over a period of weeks, a more 

moderate reduction to 1200kcal/day decreases liver triglyceride content and plasma glucose 

(Petersen et al., 2005). High levels of liver triglyceride are known to be present years before 

the diagnosis of T2DM (Shibata et al., 2007) and women with previous GDM have been 

shown to have markedly elevated liver triglyceride levels (Tiikkainen et al., 2002; Forbes et al., 

2011). As normal pregnancy is associated with a greater than two-fold increase in plasma 

triglyceride levels (Barrett et al., 2014) a physiological rise in liver triglyceride would be 

expected during pregnancy as these parameters are usually closely associated (Hwang et al., 

2007). This may be exaggerated in pregnancies complicated by GDM.  

Food restriction in pregnancy as a possible way to improve adverse metabolic factors 

understandably raises concerns. Many concerns are unfounded (Dornhorst et al., 1991), and 

conversely both obesity and gestational diabetes are known to confer substantial risks 

(Crowther et al., 2005; Metzger et al., 2008). Meta-analysis has shown that weight loss in 

pregnancy in otherwise healthy women reduces not only the incidence of GDM but also that 

of pre-eclampsia, gestational hypertension, and preterm birth, with no effect on fetal growth 

(Thangaratinam et al., 2012). However, weight loss during pregnancy is not recommended in  

current guidelines (National Institute of Clinical Excellence, 2008). Further, there is no 

objective information on how specific advice to decrease calorie intake would be accepted by 

women with GDM. 
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Whilst a hypocaloric dietary intervention may prove to be an effective treatment for GDM, 

the key question is whether it can be delivered and be successful in a clinical setting. Akin to 

any intervention that involves behavioural change, careful analysis of the current behaviour 

and the possible facilitators and barriers to change are essential prior to developing any 

interventional package (Medical Research Council, 2008). 

The primary aims of this study were therefore to define both the extent of liver triglyceride 

accumulation during pregnancy in women diagnosed with GDM and the effect upon this of 

modest calorie restriction. The metabolic effects and acceptability of calorie restriction in 

GDM were also examined. 

4.2 Methods 

4.2.1 Study Population 

Between January and August 2015, 16 women with a singleton pregnancy and greater than 

26 weeks gestation were recruited from the antenatal clinic at the Royal Victoria Infirmary, 

Newcastle upon Tyne following a positive 75g plasma oral glucose tolerance test (fasting 

glucose greater than or equal to 5.5mmol/l, 2-hour glucose greater or equal to 7.8mmol/l) 

(World Health Organization, 1985). Women undergoing a OGTT had been screened 

according to NICE guideline: BMI above 30kg/m2, previous baby weighing 4.5kg or more, 

previous GDM, first-degree relative with diabetes, ethnic origin with a high prevalence of 

diabetes (National Institute of Clinical Excellence, 2008). Women with multiple pregnancy or 

any contraindication to MRI (ferromagnetic implant/claustrophobia/ abdominal 

circumference >102cm) were excluded.  

To compare weight change and pregnancy outcomes each subject was matched with two 

comparators with gestational diabetes on the basis of parity, age, ethnic origin and body mass 

index. The comparators were identified from the Caldicott approved hospital maternity 

database.  

The WELLBABE (WEight Loss Looking for Baby and mother’s Better Outcomes) study 

was approved by the Newcastle and North Tyneside Ethics Committee (14/NE/1085) and 

all women gave written informed consent. The study was registered with the ISRCTN 

Registry (17505466). 

 



82 
 

4.2.2 Schedule of metabolic testing 

Women were invited to participate at the first clinic visit after diagnosis of GDM. A MRS 

scan and a standardised meal test was measured before and after the 4-week hypocaloric diet.  

Fetal growth scans, measuring abdominal circumference as described by Chitty (Chitty et al., 

1994), were conducted at 28, 32 and 36 weeks gestation and data on weight and home blood 

glucose monitoring were collected.  In the light of the data obtained during the study, further 

ethical permission was obtained to carry out post-partum liver triglyceride measurements and 

fasting blood tests between 12 and 28 weeks after delivery. 

 

4.2.3 Dietary Intervention 

The 1200kcal/day diet (50% carbohydrate, 25% protein, 25% fat) was designed to limit 

calorie intake whilst ensuring nutritional adequacy (food portion plan plus a calcium-

containing pregnancy multivitamin) during pregnancy. Specific advice about the diet plan was 

provided in a face-to-face consultation, delivered by trained team members, after following 

the standardised meal test at visit 1. A consultation checklist was used to ensure all aspects of 

the dietary intervention were addressed. KH or AB (dietitian) outlined the rationale for the 

diet, and participant’s individual motivation, facilitators and barriers to the implementation of 

the dietary changes were explored. The diet portion plan was fully explained and a 

supporting booklet provided (Appendix C) along with a sample 7 day meal plan and 

suggested recipes. Each participant’s usual intake was reviewed and a plan agreed to modify 

this in order to match the 1200kcal portion plan. Where necessary the portion plan could be 

Figure 28 WELLBABE schedule. Pregnancy is represented by the yellow line between 12 

and 40 weeks. Women were recruited at 26 weeks following a positive oral glucose tolerance 

test (OGTT). Metabolic testing (MR liver, standardised meal test) occurred at visit 1. Women 

underwent a 4 week 1,200kcal diet before repeat metabolic testing at visit 2. Women had 

further metabolic testing (MR liver and HOMA) at 3-6months postpartum (visit 3). (OGTT 

– oral glucose tolerance test). 
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modified at this stage to reflect individual food preferences. To facilitate portion control and 

reduce participant burden a portion cup marked to measure appropriate portions of 

breakfast cereals, rice and pasta was provided. Additionally, to aid timely feedback, 

MyFitness Pal™ (MFP), a smartphone application, was used to record dietary intake. 

Women consented to sharing their dietary and glycaemic control data with the research team 

(KH and AB) so that their progress could be monitored daily and support and advice given 

via MFP messaging or via telephone call accordingly (initiated on request by participants or 

based on the assessment of the MFP data by the study team). Following completion of the 

diet KH provided dietary advice and a revised portion plan for the remainder of the 

pregnancy term. In most cases the women were advised to avoid weight gain and continue 

on ~1500kcal/day, although this was individualised according to weight loss and glycaemic 

control. 

4.2.4 Qualitatative Study 

An interview schedule (Appendix E) was constructed using the domains of the Theory 

Domain Framework (Michie et al., 2005). This was done in collaboration with Catherine 

McParlin (Research Midwife) and Dr Vera Araujo-Soares (Senior Lecturer in Health 

Psychology, Institute of Health and Society, Newcastle University). 

Semi-structured interviews were completed between one and four weeks following the 

dietary intervention period (in most cases whilst the women were still pregnant). Catherine 

McParlin conducted the interview and with participant consent, interviews were recorded 

and transcribed. The content was then analysed using Nvivo software (QSR International, 

2014). 

4.3 Results 

4.3.1 Patient Demographics 

Sixteen women were recruited. Two women dropped out (during weeks 1 and 2) citing 

pressure of time and social circumstances. One subject was unable to undergo magnetic 

resonance studies (claustrophobia) but underwent all other aspects of the protocol. In order 

to compare the clinical effect of the hypocaloric diet with that of standard management, 

matched comparators with GDM were identified from the maternity database (n=28; 

complete data available on 26) (Table 4). Subjects were matched for age, height, parity and 

had similar hyperglycaemia on the diagnostic 28 week oral glucose tolerance test. 
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 Participants Controls p 

N 14 26 - 

Age (years) 32.2±4.3 30.9±4.4 0.409 

Ethnicity – White British 14 26 NS 

Weight (kilograms) 93.1±13.9 82.5±20.8 0.119 

Height (centimetres) 1.64±0.06 1.64±0.05 0.943 

Body Mass Index 34.6±5.0 31.0±8.2 0.206 

Nulliparous (n) 8 (57%) 15 (58%) NS 

FH of GDM/T2DM (n) 12 (86%) N/A - 

OGTT – 0 min (mmol/l) 5.0±0.8 5.2±0.9 0.997 

OGTT – 120 min (mmol/l) 8.5±0.6 9.0±1.8 0.881 

4.3.2 Weight change 

During the hypocaloric diet, subjects lost a mean of 0.4 ± 0.1 kg (n=14) per week during the 

intervention compared to a weight gain of 0.3 ± 0.1 kg (n=26) per week in the comparator 

group (p=0.002). Total weight loss amongst subjects was 1.6 ± 0.4 kg compared with 

1.2±0.3 kg weight gain in comparators. Six subjects lost more than 2 kg (2.1 - 5.6 kg), five 

lost between 0.3-1.2 kg and three subjects put on weight (0.2 - 0.5 kg). 

4.3.3 Dietary compliance, weight loss and blood glucose control 

Dietary data from MyFitness Pal, blood glucose control, weight loss and treatment are 

documented in Table 5 below. Food diary completion rates varied from 11-100%. Average 

reported calorie intake was 1137±30 kcal/day. Participants with 100% food diary compliance 

had greater weight loss compared to those with lower compliance (3.0±0.75 kg vs. 0.9±0.4 

kg; p=0.05).  Two participants required metformin for high blood glucose readings 

(participants 2 and 3). Despite participant 3 having lost 1.2 kg and beingn compliant with her 

food diary, her fasting glucose readings remained elevated and for this reason she required 

metformin treatment.  

Table 4 WELLBABE Study Participant Characteristics 
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Participant 
number 

Average 
fasting 
glucose 
(mmol/L) 

Average 
postprandial 
glucose 
(mmol/L) 

No. of 
readings 
outside 
range 

Average 
kcal/day 

% diary 
complete 

Weight 
loss (kg) 

Treatment 

1 4.9 7.2 7 1023 100 3.5  

2 6.0 6.7 27 1172 11 0.3 Metformin 

3 5.5 5.7 15 1170 100 1.2 Metformin 

4 5.1 6.9 7 1208 100 5.6  

5 5.0 6.2 9 1145 94 3.3  

6 5.1 7.3 12 1254 90 -0.4  

7 5.0 8.6 11 1210 85 -0.5  

8 4.1 5.5 1 917 61 2.5  

9 4.4 5.5 1 964 96 1.1  

10 4.4 6.3 4 1066 100 2.6  

11 4.8 6.5 1 1280 100 2.1  

12 5.5 7.1 7 1047 46 -0.2  

13 4.4 5.9 2 1237 93 1.1  

14 4.0 6.4 0 1221 61 1.2  

4.3.4 Liver Triglyceride 

Before dietary intervention, at gestational age ranging from 26 to 34 weeks, median liver 

triglyceride was 3.7% (IQR 1.2 - 6.1%). After four weeks of dietary intervention the median 

liver triglyceride decreased by 51% to 1.8% (IQR 0.7-3.1%; p=0.021, Wilcoxon Signed 

Rank). Individual data are shown in Figure 29. One women had very high pre-diet liver 

triglyceride levels (>20%); repeat analysis excluding this individual did not change the 

statistical significance (3.4% (IQR 1.1-4.1%) pre-diet, 1.4% (IQR 0.7-2.9%) post-diet; 

p=0.006). This woman had obstetric cholestasis which explains the high liver triglyceride 

Table 5 Summary of blood glucose, dietary compliance, weight loss and treatment during 

the 1,200 kcal/day dietary period of the WELLBABE study 



86 
 

levels, she also had deranged liver function tests (ALT 62 and 78 before and after dietary 

intervention respectively). 

Measurement of liver triglyceride was repeated between 12 and 28 weeks postpartum; 

median levels were similar to pre-diet (pre-diet 2.8±1.1%, postpartum 3.2±1.4%, p=0.48). 

 

  

Figure 29 Percentage liver fat before (circles) and after (squares) dietary intervention and 

postpartum (triangles). The bar shows the median change in percentage liver fat. The upper 

limit of normal range and mean percentage fat content in T2DM are shown. Difference 

between before and after diet (Wilcoxon Signed Rank) p=0.021. Difference between pre-diet 

and postpartum p=0.48. 
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Figure 30 Liver fat percentage before and after a 1,200kcal dietary intervention and 

postpartum. Lines link the same subject before diet, after diet and postpartum. 
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4.3.5 Standardised meal test 

Fasting plasma glucose remained unchanged after the dietary period (4.3 ± 0.2 mmol/l vs 

4.3 ± 0.1 mmol/l, p=0.49). HOMA2, a reflection of insulin resistance in the fasted state, was 

similar before and after dietary intervention (1.3 ± 0.1 vs 1.4 ± 0.1, p=0.47), however 

HOMA2 was lower postnatally 1.1 ± 0.1 (p<0.01). The postprandial glucose concentration 

curve was similar before and after dietary intervention (Figure 32). Before intervention, 

glucose concentrations peaked at 60 mins 8.1 ± 0.3mmol/l before the diet and 

8.4 ± 0.4mmol/l after diet. There was no statistically significant difference between fasting 

insulin and C peptide before and after the diet (insulin: 38.4 ± 5.2 vs. 48.3 ± 6.2pmol/l, 

p=0.12; C peptide: 0.61 ± 0.05 vs. 0.65 ± 0.05nmol/l, p=0.36). Acute insulin secretion did 

not change during the standard meal test after the diet (Φtotal 62.1 ± 4.9 vs 58.4 ± 3.4; x10-

9/min, p=0.51). Insulin concentrations peaked at 60 mins (before diet 493 ± 41 pmol/l vs 

after diet 495 ± 63 pmol/l). C peptide levels peaked at 90 minutes before diet 

3.0 ± 0.2 nmol/l and at 120mins after the diet 3.7 ± 0.2 nmol/l. There was no change in 

post-meal insulin sensitivity (SI) before and after diet (9.9 ± 1.1 vs 9.3 ± 1.4 x10-4dl/kg/min 

per uU/ml, p=0.54). 
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Figure 31 Homeostatic model of insulin resistance 2 demonstrating insulin resistance before 

and after diet. Bars represent mean values. Student’s T-test; difference between before and 

after diet (p=0.47); difference between before diet and postpartum (p=0.1). 
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Figure 32 Glucose, insulin and C peptide curves following a standardised meal test. All 

points non-significant except *p<0.05 (Student’s T test). 
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4.3.6 Lipid Profile 

Lipid profiles before and after the diet and during the postnatal period are shown in Figure 

33. The raised plasma triglyceride of pregnancy was not changed by the hypocaloric diet. 

Similarly, there was no difference in high density lipoprotein (HDL) and non-HDL 

cholesterol levels before and after the diet during pregnancy. Mean triglyceride and 

cholesterol levels fell after delivery (p<0.02 for both). 

 

 

4.3.7 Glucose control 

None of the hypocaloric diet group required insulin therapy compared with 6 of the 26 

women in the comparator arm. Two of the diet group required metformin therapy (weight 

loss 0.3kg and 1.2kg) compared with a total of 8 of the comparators (Table 6), six women 

requiring both metformin and insulin in the comparator population.  

Despite the pharmacotherapy, home blood glucose monitoring during the 4 week 

intervention period showed identical mean levels for diet and comparator groups (fasting 

Figure 33 Lipid profile before (light grey bars), after (dark grey bars) and postpartum (black 

bars). ** and ✝✝ indicate p<0.01 pre- and post-diet vs postpartum (Student’s T test). 
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 4.9 ± 0.6 vs. 4.9 ± 1.0; post-prandial 6.6 ± 0.8 vs. 6.6 ± 0.9 mmol/l). Mean HbA1C did not 

change (5.2 ± 0.1% [34 ± 1.0mmol/mol] vs 5.3 ± 1.1% [34 ± 1.3mmol/mol], p=0.89). 

4.3.8 Maternal and Fetal Outcomes 

All of the dietary intervention group women expressed positive thoughts about the 

experience of decreasing calorie intake during pregnancy. There was no difference between 

mode of delivery between subjects and comparators. No women had shoulder dystocia or 

third degree tear. No difference in the rate of increase in fetal abdominal circumference was 

observed between diet and comparator groups; Figure 34. There was also no difference in 

the rate of fetal abdominal growth between subjects with greater than 2kg weight loss 

(11.3 ± 0.4 mm/wk), subjects with less than 2kg weight loss (10.4 ± 0.2 mm/wk) and 

comparators (10.9 ± 0.2 mm/wk). One subject and four comparators had a fetus with an 

abdominal circumference greater than 97th centile after 34 weeks of pregnancy. There was no 

difference in birthweight between subjects and comparators; Table 6. One baby in the study 

group was admitted to SCBU for chylothorax, detected at 36 weeks gestation. No babies had 

neonatal hypoglycaemia. 
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 Age Weight 
(kg) 

Height 

(cm) 

BMI Wt 
loss 
(kg) 

Parity MOD Birth 
weight 

(kg) 

Treatment 

1 34 94 162 36 2.8 2 ElLSCS 3.355  

2 25 94.7 156 39 0.3 1 ElLSCS 3.100 Metformin 

3 31 94.7 165 35 1.2 0 EmLSCS 3.330 Metformin 

4 37 109.7 172 37 5.6 2 SVD 3.740  

5 31 112.6 168 40 3.3 0 EmLSCS 2.970  

6 32 114.1 166 41 +0.4 0 SVD 3.570  

7 24 82.5 155 34 +0.5 0 SVD 3.570  

8 24 105.6 169.5 37 2.5 0 Forceps 3.660  

9 30 76 168 27 1.1 1 SVD 2.920  

10 39 81.6 168 29 2.6 1 SVD 3240  

11 34 77.1 154 33 2.1 0 SVD 3.500  

12 34 96.8 171 33 +0.2 1 SVD 3.600  

13 36 72.3 155.5 30 1.1 0 ElLSCS 3.290  

14 31 91.3 162.5 35 1.2 0 Forceps 3.595  

 

 

Table 6 Maternal and fetal outcomes from dietary intervention study 
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4.3.9 Qualitative Study 

Dietary intervention was well accepted by the participants, many of whom felt the diet was 

something they “had to do” for the health of their baby. 

“I just thought right this is what I’ve got to do and even, I think it’s more of an incentive because I was doing 

it for the health of my baby, I wasn’t just doing it for me.” 

“I had to do it for, for my baby. You know. So I think that helped a lot as well” 

They had no concerns about calorie restriction causing harm, all anxieties surrounded the 

possible impact of GDM on the fetus. 

 

Figure 34 Fetal abdominal circumference 
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“when KH was talking about the effects of gestational diabetes on the baby, I was like, do you know what, if 

I can reduce the effects of that and stop that from happening I would much rather do a study like this to 

prevent it”. 

Women felt a responsibility to try to reduce risks. Other motivating factors included 

medication avoidance, controlling weight, and cutting down future T2D risk. Being 

monitored and wanting to provide reliable results also provided incentives. 

“I’ve got diabetes, you know, it’s a bit disappointing and then as soon as I got the plan and I got into it and I 

got used to like the food and the portions and things like that I was just like oh yeah I’ve lost another three 

pounds this week you know, I felt, I felt great”. 

The women felt well supported by the research team. Social support from family and friends 

was also important; involvement in the diet by partners was especially helpful. 

“taking part in the study getting the extra scans, getting the extra blood tests, having the phone calls all the 

time, them checking up on us, so that, that’s been a good thing, so.  I would, if someone said to us would you 

do it again, I would say yes, I would.  Though it was tough I would still probably do it again”. 

Women reported having more energy, better sleep and feeling fitter. They were glad they had 

participated and reported learning valuable lessons that they would continue to use. 

“I actually felt quite positive about it.  I felt I was doing a really good job and that it was just helping my 

baby, so I was really pleased.  I didn’t feel down at all”. 

In conclusion, women with GDM recruited into the WELLBABE study were willing and 

able to reduce calorie intake if provided with adequate information, support, monitoring and 

reassurance. 

4.4 Discussion 

This study shows that GDM is not characterised by supra-normal liver triglyceride levels. 

Dietary intervention did bring about weight loss of 0.4 kg/week, in comparison to weight 

gain of 0.3 kg/week in controls and was associated with a halving of liver triglyceride 

content. Surprisingly, there was no change in insulin sensitivity following dietary 

intervention, nor was there any significant change in insulin secretion. Glycaemic control on 
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the diet was similar to the control group despite less medication and no insulin therapy to 

maintain glucose within the range 4-8 mmol/l. 

The observation of normal liver triglyceride levels was unanticipated from review of the 

literature. Previous studies have demonstrated that non-pregnant women with a prior history 

of GDM have elevated liver triglycerides (Tiikkainen et al., 2002; Forbes et al., 2013) and a 

greater risk of non-alcoholic liver disease in later life (Ajmera et al., 2016). Given that excess 

intrahepatic triglyceride is an important underlying factor in the development of T2DM, with 

average levels of 12 ± 2.4% (Shibata et al., 2007; Taylor, 2013), it was anticipated that 

increased fat would be observed in women with newly diagnosed GDM. Furthermore, raised 

liver triglycerides are associated with elevated plasma triglycerides in T2DM, and plasma 

triglyceride levels are increased in GDM pregnancy (Forbes et al., 2013). Abnormal lipid 

metabolism appears to have a key role in GDM (Barrett et al., 2014). 

The present data are the first in vivo magnetic resonance liver triglyceride readings to be 

reported in human pregnancy. The observation that liver triglyceride is apparently normal in 

the majority of participants raises the possibility that liver triglyceride may in fact decrease in 

pregnancy, despite the well-recognised increase in plasma triglyceride. Levels that are 

otherwise normal in the non-pregnant state may be associated with GDM. It is interesting to 

note that liver triglyceride, but not plasma triglyceride, decreased following dietary 

intervention. This is likely to reflect the physiological increase in plasma triglyceride after the 

first trimester and change in nutritional status is unlikely to change this requirement. It is 

possible that liver fat levels fall reciprocally with elevation in plasma triglyceride. This is 

consistent with the observed association between liver steatosis (as determined by liver 

ultrasound) in the first trimester and subsequent risk of GDM (De Souza et al., 2016) and the 

association between raised alanine transaminase (ALT) and GDM (Yarrington et al., 2016). In 

contrast to this study, De Souza et al showed an association between increased liver fat and 

GDM. However, women were scanned at an early gestation between 11 and 14 weeks, 

before the onset of either raised plasma triglycerides or significant insulin resistance. We 

scanned later in pregnancy when liver fat may have been mobilised as plasma triglyceride. 

This is further substantiated by the fact that liver triglyceride fell after dietary intervention, 

but plasma triglyceride remained the same. The present study did not observe any marked 

change in liver triglyceride after pregnancy, although it is not known how long it may take for 

liver triglyceride levels to return to pre-pregnant levels. This would need to be evaluated in a 

further study. 
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A criticism of the study may be that the level of dysglycaemia was relatively low, although the 

baseline tests were necessarily carried out several days after diagnosis and it was not feasible 

to withhold advice to decrease sugar consumption, which could have decreased baseline 

levels.  The study population does not represent the wider GDM population given the 

predominantly Caucasian population of the North East of England and the selection criteria 

for nulliparous women. Age and BMI were similar to those of participants in other larger 

studies (Crowther et al., 2005; Landon et al., 2009a). HbA1c levels at the time of diagnosis of 

GDM are not expected to be elevated due to the relatively recent rise in blood glucose levels. 

Indeed, HbA1c levels at diagnosis in the study group were the same as those seen in the 

Newcastle GDM database (5.4 ± 0.1% [36 ± 0.1 mmol/mol] vs 5.4 ± 0.1% 

[36 ± 0.4 mmol/mol]).  

The time course of return of normal first phase insulin secretion for people with T2DM  

during a very low calorie diet has been defined (Lim et al., 2011a). Even at a lower intake of 

2.5-3.3 MJ (600-800 kcal)/day, eight weeks was required for normal insulin secretion to be 

restored, and at four weeks the improvement was modest. The present study necessarily used 

a less severely restricted diet of 5 MJ (1200 kcal)/day, and as a first step this was advised for 

four weeks only. The lack of change in insulin secretion following the test meal is therefore 

not unexpected. Further work is required to establish whether the insulin secretory 

abnormality in GDM (Saisho et al., 2010), being of short duration, is more readily reversed 

than that of T2DM. 

Dietary weight loss during pregnancy is viewed with caution by many obstetricians, even 

though obesity is a major risk factor for macrosomia and associated adverse outcomes. The 

benefits of minimising weight gain during pregnancy in the present era of steady weight gain 

during adult life were first reported several years ago (Bain et al., 2015). This is especially 

relevant in GDM (Garner et al., 1997; Crowther et al., 2005; Landon et al., 2009a). A clear 

decrease in calorie intake has been achieved on a whole clinic basis by Asbjornsdottir and 

colleagues who achieved decrease in median weight gain during pregnancy from 12.1 to 

3.7kg  (Asbjornsdottir et al., 2013). This was associated with decrease in large for gestational 

age infants (39% to 12%) and perinatal morbidity (71 to 35%). At the time when GDM is 

diagnosed there is likely to be increased motivation to decrease calorie intake. All 14 women 

who completed the study reported that they were comfortable with the explanation of likely 

benefit for their baby. The present study is unique in demonstrating effectiveness and 

acceptability of advising modest weight loss at the time of diagnosis of GDM. It lays the 
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foundation for a prospective randomised study of dietary weight loss from the time of 

diagnosis of GDM. 

The limitations of this study must be considered. Although small numbers of women were 

studied, their characteristics were similar to that of other larger studies of GDM. The study 

was large enough to demonstrate a statistically significant difference in weight loss/gain 

between intervention and comparator groups. As women were advised of the diagnosis of 

GDM and the aims of the study at a clinic visit several days before the baseline 

measurements for the study, the baseline necessarily reflects an initial dietary intervention. It 

was noted that mean fasting glucose fell from 5.0 to 4.3 mmol/l in the short time period 

between OGTT and baseline measurements. Avoidance of insulin therapy is associated with 

major benefit in simplifying peri-partum obstetric management as well as minimising weight 

gain, personal inconvenience and use of healthcare resources. Even so, most women were in 

the lower range of plasma glucose for diagnosis of GDM and it will be important to study 

women with higher presenting blood glucose levels. 

The present study defines an important question of liver triglyceride physiology in normal 

and GDM pregnancy, and provides data to inform design of further studies. Additionally, 

there is a need for a prospective randomised therapeutic study of dietary weight loss from 

the time of diagnosis of GDM. 
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CHAPTER 5 COMPARISON BETWEEN NORMAL 
PREGNANCY AND GDM 

As the meal test component of the LIPIDPREG and WELLBABE studies use the same 

methodology, it is possible to compare the glycaemic profile of women with GDM and those 

with normal glucose tolerance (NGT). It is important to acknowledge that there are 

differences between the two groups beyond the presence or absence of GDM (such as BMI 

and differences in gestation between the two studies) and so the first group of women are 

not a true control group for the second. However, there are interesting observations that can 

be made when the two groups are compared and these are worthy of further discussion. 

5.1 Glucose metabolism 

The postprandial glucose curve is shown in Figure 35. Fasting blood glucose was higher in 

women with GDM compared to the NGT group (4.3±0.1 vs 3.8±0.1mmol/l; p=0.03). The 

non-pregnant group have the lowest postprandial glucose concentration curve. After 30 

minutes plasma glucose concentrations are, on average, 1.5mmol/l higher in the GDM 

compared to the normal pregnant group (p<0.02 for all values beyond 30 minutes). 

 

Figure 35 Postprandial glucose curve following standardized meal test. Non-pregnant vs 

NGT vs GDM. 
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5.2 Insulin Resistance 

5.2.1 Homeostatic Model of Insulin Resistance (HOMA) 

There was a significant difference between fasting insulin resistance (HOMA-IR) in the non-

pregnant and the NGT and GDM groups (Figure 36). There was no difference in HOMA-

IR between the GDM and the NGT groups (1.3 ± 0.2 vs 1.1 ± 0.2; p=0.8). 

5.2.2 Insulin Sensitivity (Standardised meal test) 

There was a four-fold increase in insulin sensitivity in the non-pregnant state. The GDM 

group at 27 weeks gestation, had comparable insulin sensitivity to the NGT group at 34 

weeks gestation (1.3±0.3 vs 1.6±0.18; p=0.25) (Figure 36). 

 

  

Figure 36 Differences in HOMA (left graph) and Si (right graph) between non-pregnant 

women, pregnant women (34 weeks with no GDM) and women with GDM (at 

approximately 27 weeks). Bar represents mean values.  
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5.3 Insulin secretion 

Plasma insulin levels were lowest in the non-pregnant group, where insulin concentrations 

peaked at 30 minutes. In both pregnant groups (GDM and NGT), insulin peaked later at 60 

minutes. Insulin secretion was higher in the NGT group compared to the GDM group and 

this was statistically significant at 30 and 60 minutes (p<0.05)(Figure 37). Total insulin 

secretion during the meal test was (area under curve): non-pregnant 23,752, pregnant with 

NGT 65,409 and GDM 50,196. Women with GDM had a 23% reduction in insulin secretion 

during the meal test compared to pregnant women with NGT. 

 

Following dietary intervention the area under the insulin secretion curve increased, but was 

not significantly greater (approximately 8%) this is particularly noticeable from 90 minutes 

onwards (Figure 38 – grey line). 

Figure 37 Insulin secretion curve following a standardised meal. Non-pregnant vs. NGT vs 

GDM. 
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5.4 Discussion 

At the earlier gestation of 27 weeks, blood glucose levels in women with GDM were 

approximately 1.5mmol/L higher than those with NGT at 34 weeks. Despite higher blood 

glucose levels, measures of insulin resistance between GDM and NGT women were similar. 

However, women with NGT had higher insulin secretion than those with GDM and this 

may explain the difference in blood glucose levels between the two groups. 

Although it might be anticipated that women with GDM would be more insulin resistant 

than those with NGT, in actual fact there appeared to be no difference in insulin sensitivity 

between GDM and NGT groups; despite higher levels of blood glucose in the GDM group 

during the meal test. Although previous studies have shown that women with GDM have 

greater insulin resistance compared to matched controls with NGT, there is evidence that the 

difference may not be as great as perhaps anticipated. Catalano performed clamp studies in 

two groups of BMI matched women (lean and obese) with and without GDM (Catalano et 

Figure 38 Insulin secretion curve following a standardised meal. Non-pregnant vs. NGT vs. 

GDM (before diet) vs. GDM (after diet – light grey line). 
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al., 1993; Catalano et al., 1999). During pre-pregnancy and early pregnancy, insulin sensitivity 

varied considerably between NGT and GDM groups (Figure 39). However, by late 

pregnancy the difference was less marked and in the lean population there was hardly any 

difference in insulin sensitivity at all (Figure 39, blue arrow). 

 

In the WELLBABE study, women with GDM secreted 23% less insulin during the meal test 

compared to women with NGT in the LIPIDPREG study. The first phase insulin response 

(the insulin response from fasted to 10mins following food ingestion) were similar for both 

groups (insulin increased by approximately 200pmol/l). However, second phase insulin 

release was relatively impaired in GDM compared to NGT groups. This corresponds with 

Figure 39 Longitudinal changes in peripheral insulin sensitivity in (a)lean women and 

(b)obese women as indicated by infusion of glucose required to maintain euglycaemia (90 

mg/dl) + endogenous glucose production during insulin infusion (mean ± SD). Blue arrow 

shows the difference in insulin sensitivity in late gestation. 

Reproduced from (Catalano, 2014) 
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Catalano’s work, who observed that first phase insulin responses in both NGT and GDM 

groups were similar, however his observation was of greater insulin secretion in GDM 

although this was still inadequate to meet the demands of insulin resistance imposed 

(Catalano et al., 1999). 

In the WELLBABE study the second phase insulin response was dampened in comparison 

to women with NGT in the LIPIDPREG study. Although this may reflect the difference in 

gestation between the two groups, it may also be a genuine observation. GDM has been 

described as a ‘relative beta-cell deficit’ (Buchanan, 2001). Women with GDM are unable 

mount the same insulin response to a given reduction in insulin sensitivity as women with 

NGT, as summarised in Figure 40. This is in keeping with the observation from the 

WELLBABE study where a fall in insulin sensitivity was accompanied by a seemingly 

inadequate rise in insulin secretion.  

.  

 

T2DM only occurs when beta function becomes impaired (Ferrannini et al., 2004; Cali et al., 

2009; Tabak et al., 2009). Increased fat storage within the pancreas and the resultant effect of 

chronic excessive fatty acids on the beta cells inhibits the insulin response to glucose 

(Carpentier et al., 2003; Kashyap et al., 2003). Previous work from Newcastle University has 

shown that low calorie dieting and substantial weight loss results in mobilisation of fat from 

Figure 40 Beta-cell response to insulin resistance in pregnant women with normal glucose 

tolerance and GDM. As insulin sensitivity falls in pregnancy (open circle to black circle), 

insulin secretion increases proportionally. In GDM the beta cell response is less than NGT 

(lower curve) for any given change in insulin resistance (Buchanan, 2001).  
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the pancreas and resolution of first-phase insulin secretion to normal (Lim et al., 2011b; 

Steven et al., 2016a). In the WELLBABE study, dietary intervention resulted in a small 

improvement in insulin secretion in women with GDM. Given that the dietary intervention 

was less extreme (1,200kcal as opposed to 800kcal/day for the Lim et al study) and for a 

shorter time period (4 weeks vs. 8 weeks) any improvement in insulin secretion is likely to be 

less dramatic and may not have been seen with the small number of participants included in 

the WELLBABE study. Further studies are needed to examine the pancreas in pregnancy. 

Specifically, these studies should determine pancreatic function and the relationship between 

its size and composition (fat content) in normal pregnancy and GDM. 
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CHAPTER 6 DISCUSSION  

6.1 Introduction 

These studies take forward knowledge of the physiology of insulin resistance in normal 

pregnancy and introduce novel data on intramyocellular lipid and hepatic fat deposition. 

There was a four-fold decrease in insulin sensitivity during normal pregnancy and a two-fold 

increase in serum triglycerides. However, this was not secondary to changes in 

intramyocellular lipid concentrations. In other insulin resistance states changes in muscle fat 

stores with decreased muscle uptake of glucose is the first detectable change to occur 

(Warram et al., 1990). This effect was not observed in normal pregnancy and leads to the 

conclusion that the insulin resistance of pregnancy is mediated through a different 

mechanism. It appears likely that hormonal factors are causative. 

In GDM, insulin sensitivity was reduced as expected, however median liver fat stores were 

within the normal (non-pregnant) range. Given the similarities between GDM and T2DM it 

was expected that liver fat levels would be elevated as they are in T2DM (mean liver fat 

content is approximately 13% (Lim et al., 2011b; Steven et al., 2016b)). It is interesting to note 

that, despite third trimester liver fat levels within the normal range, hypocaloric dieting was 

associated with a further reduction in liver fat. The lack of control group prevents distinction 

between the effect of dietary intervention and the effect of progressive gestation on liver fat. 

Although the diet had little effect in terms of glucose disposal, insulin sensitivity and insulin 

secretion, dietary intervention did result in a reduced need for metformin and/or insulin 

treatment when compared to a ‘standard antenatal care’ group who had standard dietary 

intervention (one consultation with an NHS dietitian and a leaflet). This is an interesting 

observation and requires to be followed up in larger randomised controlled trials of 

hypocaloric dieting after diagnosis of GDM. 

Both studies are novel in their use of 3 Tesla magnetic resonance techniques to study 

metabolism in vivo during pregnancy. These studies were well tolerated by the participants 

and no adverse effects were reported.  

Calorie restriction during pregnancy is considered controversial. For this reason, dieting to 

the level of 1,200 kcal/day or below has not previously been extensively studied, most 
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studies employ either a very modest reduction in calorie intake or are very general in terms of 

simply recommending ‘healthy eating’ and/or exercise. Our dietary intervention was more 

engaging than most, with full explanation of the reasons for the hypocaloric diet and 

employing smartphone technology and social media to maintain enthusiasm and adherence 

to the diet. Clearly, the delivery of health/diet plans is a key feature to their success. 

From this work we gain better understanding of the practicalities of studying metabolism in 

pregnancy, new insights into the metabolism of normal and GDM pregnancy, a better 

understanding of the delivery of calorie reduction in pregnancy and experience in delivering 

calorie restriction/dietary intervention to pregnant women with GDM. 

6.2 Studying Metabolism During Pregnancy 

6.2.1 Recruitment 

Pregnant women are notoriously under-represented in research (Baylis, 2010). This is often 

through fear of doing harm to the baby, or that it is somehow ‘wrong’ to use an experimental 

research design on pregnant women. Yet this approach means that as a society we lack good, 

effective, evidence-based treatments for diseases such as gestational diabetes that affect a 

significant proportion of women and cause a substantial amount of maternal and neonatal 

morbidity. 

This research project has been planned with the pregnant woman at the focus. Both studies 

were carefully designed in order to make recruitment and participation in the study as easy as 

possible. For example, in the recruitment phase of both studies, KH spoke with women 

directly. For the LIPIDPREG study, this was done during antenatal classes and in the dietary 

study this was done at first clinic visit following the diagnosis of GDM. Meeting a member 

of the research team personally meant that the women could gain better and more detailed 

information about the study and also gave them an opportunity to build a relationship with 

the researcher from an early stage, helping to build trust and confidence. 

As a result, recruiting for the LIPIDPREG study was easier than anticipated and occurred 

over approximately four cycles of antenatal classes. Recruitment into the WELLBABE study 

was harder, but still achievable within an eight-month period. Approximately one in four 

women approached for WELLBABE were recruited. Reasons for non-participation included 

a perceived difficulty in maintaining 1,200kcal diet, time pressures and family/work 
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commitments. Interestingly, fear that dieting or magnetic resonance may harm the baby was 

not cited as a reason for non-participation. Both studies involved at least two morning 

sessions at the Newcastle Magnetic Resonance Centre, which is a relatively substantial time 

commitment. Once recruited, drop-out rates from the studies were low (no-one dropped out 

of the muscle study and only two women dropped out of the dietary study) reflecting the 

good relationship between the researcher and the participant. 

If hypocaloric dieting is confirmed as an effective management for GDM both the provision 

of information and the way in which it is delivered will be critical to its success as an 

intervention. The benefits of weight loss in pregnancy have been established to include: a 

reduction in the incidence of GDM, pre-eclampsia, gestational hypertension and pre-term 

birth with no effect on fetal growth (Thangaratinam et al., 2012). A change in public health 

message is required in order to promote weight loss and dietary intervention during 

pregnancy and to educate women that it is both safe and beneficial to them and their baby. 

6.2.2 Magnetic Resonance 

Prior to the LIPIDPREG study, published in 2013, there were very few studies utilizing 

magnetic resonance at 3 Tesla. Almost all magnetic resonance for clinical and research 

purposes was reported at 1.5 Tesla. Whilst there is no known biological effect of scanning, 

even up to very high magnetic field strengths (Schenck, 2000; Shellock and Crues, 2004), 

using 3 Tesla in pregnancy was novel. Scan protocols were developed and modified by the 

magnetic resonance physicists at the Newcastle Magnetic Resonance Centre. Women were 

scanned at a slight pelvic tilt (to offset the weight of the gravid uterus, enabling venous 

return) and to minimise noise. Care was taken to avoid local power deposition (SAR) which 

could theoretically cause a rise in temperature. The radiographers were sympathetic to the 

need for extra reassurance and time to complete the magnetic resonance studies. 

Magnetic resonance was well tolerated by the participants, as indicated by the low drop-out 

rates and positive comments received from the participants following the scans. Only one 

subject developed claustrophobia in the scanner and could not complete the study. All babies 

were born in good condition without any evident congenital abnormality, except one baby 

born with a chylothorax. It is unlikely that this was related to magnetic resonance since the 

baby had an increased nuchal translucency at 11 weeks gestation and prior to magnetic 

resonance scanning. The increased nuchal translucency (with normal karyotype) reflects 
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abnormal lymphatic drainage at an early stage which became more apparent as the pregnancy 

progressed. All babies passed their neonatal hearing tests. 

These two studies, whilst small in size, add to the previously absent literature of the safety 

and acceptability of 3 Tesla magnetic resonance in pregnancy. 

6.2.3 Dietary Intervention  

The 1,200kcal/day diet required careful explanation both at the recruitment stage and during 

delivery of the intervention. The ability of the body to mobilise fat and carbohydrate in order 

to prioritise fuel delivery to the fetus was explained. It was explained that, despite being low 

in calories, the diet would contain all the micronutrients that are essential for pregnancy and 

the developing fetus. Women were encouraged to discuss the diet with their partner and 

family, since it is known that peer-support can have a significant effect on dietary compliance 

(Gruber, 2008; Balantekin et al., 2014; Pratt et al., 2015). Several women brought their 

partners along to the study and in two cases the partners were also overweight and 

participated in the 1,200kcal/day diet. These women lost the most amount of weight. 

“My husband was with us and we both instantly said that we both wanted to do it and I said I was more 

than happy to try it if it helped me and if the research helped other people then I was more than happy to do 

it.” 

The input from an experienced dietitian was crucial to the development of the diet and to 

give women the reassurance that the diet was safe. Through putting a sample diet through 

software (WinDiets version 8, Aberdeen UK), the macro and micronutrient breakdown of a 

‘typical’ 1,200kcal diet was analysed to ensure that it was nutritionally balanced and contained 

all the necessary trace elements (Appendix D). As a result, the diet was modified slightly for 

pregnancy to increase calcium intake through a greater number of dairy food portions. 

Regular communication through MyFitnessPal, text messaging and telephone calls were an 

essential component of the dietary intervention. This received positive feedback from 

participants during the semi-structured interviews. 

“Taking part in the study getting the extra scans, getting the extra blood tests, having the phone calls all the 

time, them checking up on us, so that, that’s been a good thing, so.  I would, if someone said to us would you 

do it again, I would say yes, I would.  Though it was tough I would still probably do it again”. 
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The dietary plan was successful in most participants. Only two put on weight and in both 

cases this was less than 0.5kg. Given that weight gain at this stage in pregnancy is 0.5kg/week 

(Butte et al., 2003), even this small amount of weight actually represents a net weight loss, 

compared with the average gain, of 1.5kg over the four-week dietary period. Those women 

most engaged in inputting their food diaries into MyFitnessPal lost the most weight. In 

randomised controlled trials, the use of smartphone apps has been associated with better 

dietary compliance, higher physical activity levels and greater weight loss (Coughlin et al., 

2015). 

A criticism of the study is that the level of dietary input maybe unachievable in routine NHS 

care. However, it could also be argued that the current dietary input for women with GDM 

is inadequate and has little effect on changing eating behaviour. It is possible that the 

disappointing results from other dietary studies reviewed by the Cochrane Collaboration 

(Bain et al., 2015) are as a result of inadequate dietary intervention and an inability to engage 

women into the dietary process. Most dietary interventions included in this review 

concentrated on dietary composition rather than reduction in energy intake. Additionally 

many studies have tried to combine diet and exercise. The UK Pregnancies Better Eating and 

Activity Trial (UPBEAT) is a recent phase two pilot study to investigate the application of 

diet and exercise intervention to obese pregnant women (Poston et al., 2013). Specifically this 

exploratory trial was to determine whether these interventions achieved a change in dietary 

and exercise behaviour. Dietary intervention consisted of a recommendation to change diet 

to low-GI and to reduce saturated fat; however, energy intake was not discussed. The 

intervention was delivered by health trainers over an eight week period. 24 hour food recall 

was used to assess diet: energy intake decreased from 1,850kcal (controls) to 1600kcal 

(intervention; p=0.016) and there was a substantial decrease in GI and saturated fat intake. 

Physical activity did not increase. Disappointingly, despite a reported reduction in calorie 

intake there was no difference in maternal weight gain, gestational diabetes or large for 

gestational age babies.  The WELLBABE study demonstrated that maternal weight loss was 

achievable through a more stringent calorie goal of 1,200kcal/day, with calorie intake being 

the focus of the intervention. Dietary compliance was assessed through food diaries (via 

MyFitness Pal) and weight loss, again this is more time-consuming for participants than a 24-

hour food recall, but is perhaps associated with better accuracy and provides instantaneous 

feedback. Keeping a food diary has been shown to be an effective means to weight loss, with 

more data input into the diary being associated with greater weight loss (Hollis et al., 2008).  

It is surprising that there was no benefit in the dietary intervention with regard to maternal 
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weight gain and gestational diabetes in the UPBEAT trial. UPBEAT did show that dietary 

intervention was more achievable in pregnancy than exercise, which was not adopted by the 

participants. Other studies have confirmed the difficulties in achieving physical exercise in 

pregnancy. The FitFor2 study, a randomised controlled trial of exercise training programme 

in pregnancy, showed no benefit of exercise on blood glucose, insulin sensitivity and 

birthweight in pregnant women who were overweight and at risk of gestational diabetes 

compared to controls (Oostdam et al., 2012). Studies outside of pregnancy confirm that 

weight loss through diet is easier to achieve (Janssen et al., 2002; Yoshimura et al., 2014). 

Although the combination of weight loss and exercise is beneficial outside of pregnancy 

(Miller et al., 2013), focusing on intensive dietary intervention for those motivated to lose 

weight during pregnancy may be a better use of resources. 

6.3 Metabolism in Normal Pregnancy & GDM 

6.3.1 Muscle fat 

“Pregnancy is an insulin resistant state”, however the mechanism through which insulin 

resistance is acquired is not fully understood. We hypothesised that, because gestational 

diabetes shares many features with T2DM and because gestational diabetes appears to be an 

extension of the physiological insulin resistance of pregnancy (Metzger et al., 2008), the 

mechanism through which insulin resistance is acquired in pregnancy would be the same as 

in T2DM. One of the earliest detectable changes in T2DM is an alteration in muscle insulin 

resistance (Warram et al., 1990) and observational studies would suggested that increased 

muscle fat deposition is contributory to this process (Jacob et al., 1999). Indeed, on reversing 

the process through a 1,200kcal diet, muscle lipid is seen to decrease at the same time as 

insulin sensitivity improves (Petersen et al., 2012). Yet, results from the LIPIDPREG study 

suggest that intramyocellular lipid concentrations does not change in pregnancy. Other 

studies have demonstrated increased intramyocellular lipid in women with previous GDM 

and on-going insulin resistance (Kautzky-Willer et al., 2003; Prikoszovich et al., 2011). A 

different mechanism must account for the physiological decrease in insulin sensitivity in 

pregnancy, it is most likely that this is hormonal in origin given the rapid improvement in 

insulin sensitivity following delivery and the abruption of the placental circulation. This is 

still to be established. 
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6.3.2 Liver fat 

An inability to suppress hepatic glucose production is a feature of progression from impaired 

glucose tolerance to T2DM (Weyer et al., 1999). Pregnancy is associated with an increase in 

basal endogenous glucose production of approximately 30% by late pregnancy in both lean 

and obese women (Catalano et al., 1993). Insulin suppression of hepatic glucose production 

was reduced (80%) in women with gestational diabetes compared to normal glucose 

tolerance (95%) in late pregnancy. Metabolic studies in participants with T2DM have shown 

that hepatic insulin resistance is related to intrahepatic fat content. Greater levels of liver fat 

contribute to greater insulin resistance and failure of insulin to suppress hepatic glucose 

production (Ravikumar et al., 2005; Perseghin et al., 2006; Gastaldelli et al., 2007). Again, 

reversal of the liver fat process promotes suppression of hepatic glucose production (Lim et 

al., 2011b; Steven et al., 2016a). 

In type 2 diabetes liver fat averages approximately 13% at diagnosis (Lim et al., 2011b; Steven 

et al., 2016b). The WELLBABE study showed that liver fat was not elevated in pregnancy 

affected by gestational diabetes. This is remarkable given that the population were obese and 

had insulin resistance, two factors that are known to be associated with elevated liver fat 

levels outside of pregnancy (Caiazzo et al., 2014). Studies in postnatal women with prior 

gestational diabetes have shown elevation of liver fat (Forbes et al., 2011; Forbes et al., 2013) 

and that higher levels of liver fat are associated with increased insulin resistance (Tiikkainen et 

al., 2002) and increased risk of type 2 diabetes in later life (Bozkurt et al., 2012). Closer 

evaluation of the studies in which liver fat was determined by MR, however, reveals that 

there is a diverse distribution of liver fat within the prior GDM population. Tiikainen et al 

studied 27 obese non-diabetic women with prior gestational diabetes (pGDM) with magnetic 

resonance spectroscopy of the liver to measure intrahepatic liver fat. Liver fat ranged from 

between 1.5 to 23%. Forbes et al studied 110 women with pGDM and 113 control women 

with NGT. Both groups had similar BMI. The pGDM group had a higher prevalence of 

non-acute fatty liver disease (NAFLD) 37% compared to controls 17% as determined by 

ultrasound. Forbes went on to study a subgroup (n=36) with MR spectroscopy to find, again 

a wide range of liver fat levels ranging between 0.11 to 24.3%, the NGT without NAFLD 

had very low liver fat (median 0.22% IQR 0.11-1.23) as compared to the pGDM group 

without NAFLD (median 0.53% IQR 0.15-2.11). However, despite a significant proportional 

difference, actual liver fat levels are low in both groups. Prikoszovich used MR spectroscopy 

to determine liver fat in 23 glucose tolerant non-obese women with pGDM against 8 



113 
 

controls with NGT. Liver fat was elevated in those with pGDM although again, the actual 

levels are not high: pGDM 3.7 ± 3.5 vs. 1.5 ± 0.9% (p<0.05). 

 

The liver fat levels in these studies are comparable to the findings from the WELLBABE 

study. Certainly the wide variance of liver fat in both normal and pGDM are to be 

considered in informing a power calculation for any further studies of liver fat in pregnancy. 

The longitudinal effect of pregnancy on liver fat levels is unknown, neither human nor 

animal models having examined this specific issue. It is known that plasma triglyceride more 

than doubles in pregnancy and it could be speculated that the increase in VLDL-TG 

originates from mobilization of fat from the liver and adipose tissue. Mobilisation of fat 

stores may also account for the physiological reduction in liver enzymes typically seen in the 

third trimester of pregnancy (perinatology.com, 2016). ALT rise is typically seen in patients 

with NAFLD, particularly those with insulin resistance and its elevation is an indirect marker 

of liver fat (Maximos et al., 2015). As liver fat decreases with diet, so too does ALT (Lim et 

al., 2011b; Copaci et al., 2015; Steven et al., 2016b). It can be hypothesised that prioritisation 

of triglyceride to the fetus is achieved in pregnancy through mobilisation of fat stores in the 

liver, in turn explaining the observed reduction in ALT by the third trimester (Figure 41 

shows a conceptual representation of the hypothesised changes). The effect of GDM within 

this process is uncertain, but both elevated liver fat (De Souza et al., 2016) and elevated ALT 

(Yarrington et al., 2016) in the first trimester are associated with an increased risk of GDM in 

later pregnancy. A longitudinal study is now needed to explore the relationship between liver 

fat, plasma lipids, liver enzymes and hepatic insulin resistance in normal and GDM 

pregnancy. 
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Figure 41 Postulated change in liver fat during pregnancy in relation to changes in plasma 

ALT and triglyceride. ALT and triglyceride values taken from (perinatology.com, 2016). Liver 

fat values are taken from the WELLBABE study (postpartum and pre-diet values used for 

pre-pregnancy and late pregnancy respectively), bar with dotted outline represents estimated 

(yet to be established) change in liver fat. 
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6.3.3 Pancreatic fat 

To date, much of the focus of GDM research has been on insulin resistance, although 

Buchannan recognised the concept of a ‘beta-cell deficit relative to the degree of insulin 

resistance’ (Buchanan, 2001). He observed that, although there was a difference in insulin 

sensitivity between women with GDM and those with NGT, this difference was small during 

the third trimester of pregnancy. Insulin sensitivity in the LIPIDPREG and WELLBABE 

studies were very similar, despite there being an obvious difference in blood glucose during 

the meal test. Hyperglycaemia, the hallmark of GDM, arises when insulin secretion cannot 

overcome the degree of insulin resistance, clearly reflecting a problem with beta-cell 

function.  

Type 2 diabetes is often viewed as an inevitably progressive condition with worsening of beta 

cell function and mass over time (Turner et al., 1999; Butler et al., 2003). Excessive pancreatic 

fat is thought to play a pivotal role in the pathophysiology of beta cell deficit (Lim et al., 

2011b; Taylor, 2013). Whether the pancreatic defect seen in GDM is also associated with 

excess pancreatic fat is unstudied. However, women with GDM at five year follow up had a 

4.8-fold increased risk of having prediabetes. The main contributing factor was impaired beta 

cell dysfunction over insulin resistance/sensitivity and worsening beta cell function 

correlated with increased visceral fat (measured with DEXA) (Lekva et al., 2015). 

Interestingly, the rapid deterioration of both insulin sensitivity and beta cell function seen in 

women with prior GDM (as compared to women with normal glucose tolerance) is not 

explained by differences in adiposity, rather the existing fat and/or beta-cell robustness 

potentially play a more important role (Xiang et al., 2013). 

Pancreatic MR studies are relatively new in the field of type 2 diabetes, as such no MR 

studies have been done in pregnancy. The relationship between pancreatic function and 

GDM has not been extensively studied, although the presence of a rapid decline in beta cell 

function has been demonstrated in Japanese women, just prior to developing GDM (Saisho 

et al., 2013). There is clearly a need to define pancreatic morphology, composition and 

function in normal pregnancy and GDM using best possible methodology for the 

quantification of pancreatic fat (Al-Mrabeh et al., 2017). 
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6.3.4 Effects of GDM on the fetus and potential for magnetic resonance 
spectroscopy 

Gestational diabetes not only affects the growth of the fetus in utero, predisposing to either 

fetal macrosomia or intrauterine growth restriction, but also has an impact on the future 

child and adolescent metabolic profile. The EPOCH study (Exploring Perinatal Outcomes 

amongst Children) demonstrated higher BMI, greater waist circumference, increased 

subcutaneous abdominal fat and increased skin fold thickness in 6- to 13-year olds born to 

mothers with GDM after adjusting for socioeconomic and other potential confounding 

factors (Crume et al., 2011b).  There are strong links with GDM and offspring obesity and 

metabolic syndrome (Pettitt et al., 1993; Crume et al., 2011a). Epigenetics describes the 

heritable changes in gene expression that occur without changes in the DNA. It is postulated 

that the abnormal metabolic uterine environment affects fetal development through 

epigenetic mechanisms (for example DNA methylation and histone modification). Target 

organs include the liver, pancreas, adipose tissue and muscle (McMillen and Robinson, 2005). 

This leads to transgeneration transmission; a vicious cycle of mothers with GDM giving birth 

to offspring who are pre-disposed to metabolic syndrome, leading to a new generation of 

mothers with GDM. Whether it is possible to break this cycle through treating GDM is still 

under investigation. Interestingly, following up the children born from the ACHOIS study 

(Crowther et al., 2005) suggests that although treatment reduced macrosomia at birth, it did 

not result in a change in BMI at age 4- to 5-years old (Gillman et al., 2010). However, further 

research is necessary and likely to take many years to collate. 

In view of the fact that derangement in the maternal metabolic profile has such an impact, 

both in the fetus and in the longer term metabolic health of the child and future adult, it 

would be interesting to examine fetal metabolism using MR techniques. In particular to 

define the physiology of in utero exposure to hyperglycaemia in relation to development of 

the liver, pancreas, adipose tissue and muscle. Magnetic resonance spectroscopy has been 

used in utero in relation to neurological development and neurotransmitter concentrations, 

however its widespread use is limited. There are several technical problems in scanning the 

fetus that need to be overcome. These include fetal movement, the relatively small fetal size, 

the difficulty in obtaining good spectra due to signal to noise ratio and the potential distance 

the tissue of interest is away from the receive coil. Despite these difficulties, it has been 

possible to obtain spectra from the fetal liver, heart and brain (Fenton et al., 2001). Fetal 

MRS is still at an early stage in its use and development, but is clearly an important avenue of 

exploration for future work. 
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6.4 Future Work 

This project has successfully provided novel MR data on some of the changes in maternal 

liver and muscle fat that occur during pregnancy and GDM. Ideally such a project would 

have taken a more thorough and systematic approach to understanding, firstly the physiology 

of normal pregnancy and then secondly to use the same techniques to unravel the 

pathophysiology of GDM. However, the project has been constrained by difficulty in 

obtaining funding, the main obstacle being the concern by grant committee members over 

whether women would be willing to reduce calorie intake during pregnancy. In order to 

move forwards step-by-step small charitable funds were secured to fund the WELLBABE 

proof of concept study. Now that the acceptability and feasibility of reducing calorie intake 

during pregnancy has been established, funding can be sought for a much larger project. 

One of the first studies to be done was to try to unravel the cause of insulin resistance in 

normal, non-diabetic pregnancy. From the LIPIDPREG study it has been established that, 

unlike other insulin resistant states, muscle lipid deposition is not the cause. The fact that 

insulin resistance is reversed almost immediately following delivery implicates a pregnancy or 

hormonal factor (Taylor and Davison, 2007). A simple study would be to measure various 

hormone concentrations (e.g. hPL) in pregnant women in the third trimester and then to 

take timed samples every few hours following delivery. Through measuring hormone profiles 

in the immediate postpartum period and comparing the levels to those during pregnancy it 

should be possible to determine the cause of insulin resistance. 

The next step would be to determine the physiology of normal pregnancy in women with 

normal glucose tolerance in relation to muscle, liver and pancreatic fat and insulin sensitivity 

and secretion and glycaemic control and compare this to women with GDM. A longitudinal 

study would be most appropriate in order to determine the changes that occur in early, mid 

and late gestation and to compare this to the postpartum state. Establishing the pre-pregnant 

state would be ideal, however, this is difficult to achieve as it would involve scanning an 

unknown quantity of healthy women, some of whom may not become pregnant, or may 

become pregnant out with the time scales of the study. Studying women in the postpartum 

period is arguably equivalent to the ‘pre-pregnant’ state. Depending on resources, studies 

could be made at various different times postnatally to see the effect of ‘pregnancy reversal’ 

on organ fat deposition. Additionally, the effect of breastfeeding and lactation on fat 

deposition could be studied. 
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In order to compare women with GDM against those with NGT four groups would need to 

be recruited: 

1. NGT, normal BMI 

2. NGT, overweight/obese BMI 

3. GDM, normal BMI 

4. GDM, overweight/obese BMI 

It is important to recruit women with GDM and normal BMI since they represent 

approximately 25% of the GDM population in Newcastle (KH audit data from Royal 

Victoria Infirmary, 2011) and obesity may act as a confounding factor in terms of organ fat 

deposition. Since the variance of organ fat in pregnancy is unknown (although we can 

speculate from WELLBABE and other studies that the variance of liver fat is likely to be 

wide), a rule-of-thumb would be to recruit at least 35 participants into each group (Lancaster 

et al., 2004). This would provide important background data in order to be able to perform a 

power calculation for the subsequent intervention study. 

Fetal MRS of the liver and muscle could be developed in collaboration with the MR 

physicists at the Newcastle Magnetic Resonance centre. Studies could be done, perhaps in a 

subgroup of the participants of the longitudinal study described above. This would serve to 

obtain some initial data and to develop the technique further. 

Having established the physiology of fat deposition in liver, muscle and pancreas in normal 

pregnancy and GDM in relation to insulin sensitivity, insulin secretion and glycaemic control 

a randomised controlled trial (RCT) of dietary intervention versus standard antenatal care 

can be designed along MRC: Developing and Evaluating Complex Interventions guidance. The first 

phase of this would be a small pilot RCT to establish: 

• Likely effect change in clinical outcomes (improvement in glycaemic control, need 

for medication, reduction in macrosomia) 

• Likely effect change in physiological outcomes (organ fat deposition, insulin 

sensitivity/secretion) 

• Success of diet (in terms of weight loss) 

• Acceptability of diet and study protocol (dropout rates/compliance/etc) 

• Best method to achieve dietetic input (telephone/SMS/MyFitnessPal/face-to-face) 
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• Ease of recruitment 

• Randomisation – is it possible? 

• Economic evaluation 

For this intervention, it may not be possible to randomise treatment: there will be women 

willing to diet and those not. Since compliance with the diet is important in order to get a 

meaningful result a different approach may be that for each woman recruited who is willing 

to diet, a matched control (for approximate BMI and ethnicity) who undergoes standard 

antenatal care, but is unwilling to diet is also recruited. In recruiting for the WELLBABE 

study, there were a number of women who were willing to be studied, but declined as they 

felt unable to do the dietary intervention component. 

The results and experience of this pilot study would inform a much larger RCT of dietary 

intervention for GDM. The focus of this RCT would be to improve clinical outcome 

(improve glycaemic control, reduce fetal macrosomia), but more intensive metabolic studies 

may also be done in a small subgroup. 

Much has been gained from long term population cohort studies in terms of studying health 

and wellbeing throughout the life course (Medical Research Council, 2014). Clearly, given the 

transgeneration transmission hypothesis there is value in following up the children born to 

women included in these proposed studies. Both the longitudinal and intervention study 

would provide valuable information regarding the outcome of GDM pregnancy both treated 

and untreated with dietary intervention. A long term research strategy should include 

biophysical, metabolic and magnetic resonance analysis of these children as they develop into 

adults and parents of the future generation. 
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APPENDIX A PATIENT INFORMATION SHEET  

 

Lipid Metabolism in Normal Pregnancy 

A Magnetic Resonance Pilot Study 

Professor R. Taylor, Professor S. Robson, Dr K. Hodson 
 
1. Introduction 
You are being invited to take part in a research study.  It is important for you to 
understand why the research is being done and what it will involve before you 
decide whether to take part. Please take time to read the following information 
carefully and discuss it with others if you wish. Ask us if there is anything that is 
not clear or if you would like more information. 

2. What is the purpose of the study? 
During pregnancy, some women develop high sugar levels (gestational diabetes). 
They can be at risk of having large babies, difficult deliveries and sometimes 
stillbirth. At the moment, we do not fully understand why some women develop 
gestational diabetes and others do not and what the best sugar level should be 
during pregnancy. To try to understand this better, we would like to study how the 
body deals with sugar during normal pregnancy, using a new imaging technique 
(magnetic resonance spectroscopy [MRS]) that does not involve any X rays. This 
will show us, through pictures, how the muscle uses sugar and fat to produce 
energy. In the future, we will compare these results with those from women with 
gestational diabetes. This may help us to improve their treatment during 
pregnancy and reduce their risk of problems. 

3. Why have I been chosen and do I have to take part? 
You have been chosen because you are healthy and your pregnancy is 
progressing normally. It is up to you to decide whether or not to take part.  If you 
do decide to take part you will be asked to sign a consent form; a copy of your 
consent and this information sheet will be given to you to keep. If you decide to 
take part you are still free to withdraw at any time and without giving a reason.  A 
decision to withdraw, or a decision not to take part, will not affect the standard of 
the care you receive. 

4. What will happen to me if I take part? 
If you agree to take part, you will be invited to attend the Newcastle Magnetic 
Resonance Centre for two sessions. Each session will last approximately four 
hours. One will be when you are 34 weeks pregnant; the other session will be 12 
weeks after your baby has been born. We will ask you to avoid vigorous exercise 
and alcohol the day before the study. You will also be asked not to eat from 
midnight. At each session, a drip will be sited in your hand so that we can take 
blood from you. This will only be done once and all blood tests will be taken from 
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this drip. A MRS scan of your leg muscle will be then be done. The scan will take 
10-15 minutes and will involve lying on your side whilst your leg is inside the 
scanner (a large and sometimes noisy tube). You will be given ear protectors to 
wear. After the scan, you will be given breakfast which may include yoghurt, 
cereal, toast and fruit juice. We will try and accommodate any dietary 
requirements. We will take some more blood tests from the drip over the next two 
hours. During this time you will be encouraged to relax and can walk around if 
you wish. We will provide a taxi to take you (and your baby) to and from the 
research centre. We will also have a midwife present who will be able to help you 
with your baby during the second session. 

5. What are the risks and benefits of taking part? 
An experienced doctor will place a drip in your arm; this may be slightly 
uncomfortable, but it will allow us to take several blood samples without further 
needles. You can have local anaesthetic cream if you want. The study will involve 
an MRS scan. The scan can be noisy but should not cause any other discomfort. 
Only your leg will be scanned. Magnetic resonance is a safe imaging method that 
does not use X-rays. Although the specific scanner (3 Tesla) we are using for this 
study has not been used widely in pregnancy, this will not expose your baby to 
any extra risk. You will be helping us to improve our understanding of gestational 
diabetes. In the future, the results of this study may help prevent and treat this 
condition. 

6. Will my taking part in this study be kept confidential? 
All information collected about you during this study will be strictly confidential. It 
will be stored on computers approved by the NHS and University of Newcastle.  If 
for any reason, information about you needs to leave these computers, your 
name and address and other identifiable information will be removed so that you 
cannot be recognised from it. Only the researchers and the representative of the 
Research and Ethics committee will have access to the data collected during the 
study. Your GP will be informed of your involvement in this study. 

7. What will happen to the results of the research study? 
It will take us about one year to complete the study. Once the study stops, no 
further involvement will be expected on your part. We anticipate the results will be 
published in a medical journal. You will not be identified in any report or 
publication. We may also use the results from this study for further research. If 
you indicate that you are interested, we can write to you with results from this 
study 

8. What will happen if I don’t want to carry on with the study? 
If you withdraw from the study, we will destroy all your identifiable samples, but 
we will need to use the data collected up to your withdrawal. 

9.  What if there is a problem? 
In the event that something does go wrong and you are harmed during the 
research and this is due to someone’s negligence then you may have grounds for 
legal action for compensation against the Newcastle upon Tyne NHS Foundation 
Trust but you may have to pay your legal costs. If you have a concern about any 
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aspect of this study, you should ask to speak to the researchers who will do their 
best to answer your questions. If you remain unhappy and wish to complain 
formally, you can do this through the NHS Complaints Procedure (or Private 
Institution). Details can be obtained from the hospital.   

10.  Who is funding and organising the research and who has reviewed 
it? 
The study is funded by Newcastle University. It is being carried out by a team of 
researchers at Newcastle University. The study has been approved by the 
Newcastle & North Tyneside Research Ethics Committee. 

11. Contact for further information 
If you have any questions about the study please contact: Professor R. Taylor 
(Tel: 0191 xxx xxxx) or Professor S. Robson (Tel: 0191 xxx xxxx)  

Thank you for reading this information sheet. 
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Centre Number:  
Study Number:  
Patient Identification Number for this trial: 
 

Lipid Metabolism in Normal Pregnancy – A Magnetic Resonance Pilot Study 

Professor R. Taylor, Professor S. Robson, Dr K. Hodson 

          Please Initial Box 
 
1. I confirm that I have read and understood the information sheet 
dated 26/01/2009 (version 2.0) for the above study and have had 
the opportunity to consider the information, to ask questions and 
have had these answered satisfactorily. 
 
2. I understand that my participation is voluntary and that I am 
free to withdraw at any time without giving any reason, without my 
medical care or legal rights being affected. 
 
3. I understand that relevant sections of my medical notes and 
data collected during the study may be looked at by responsible 
individuals from regulatory authorities or from the NHS Trust, where 
it is relevant to my taking part in this research. I give permission for 
these individuals to have access to my records. 
 
4. I agree to my GP being informed of my participation in the 
study 
 
 
5. I agree to take part in the above study. 
 
 
            
 
_______________________     _________________ ________ 
Name of patient    Signature   Date  
   
 
_______________________          _________________ ________ 
Name of person taking consent  Signature   Date  
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APPENDIX B PATIENT INFORMATION SHEET 

 
 
 

Dietary Intervention for the Treatment of Gestational Diabetes: 
A Magnetic Resonance Study 

Professor Roy Taylor, Professor Stephen Robson, Dr Vera Araujo-Soares, 

Dr Ken Hodson 

 
1. Introduction 
You are invited to take part in a research study.  It is important for you to 
understand why the research is being done and what it will involve before you 
decide whether to take part. Please take time to read the following information 
carefully and discuss it with others if you wish. Do ask us if there is anything that 
is not clear or if you would like more information 

2. What is the purpose of the study? 
During pregnancy, some women develop high blood sugar levels (gestational 
diabetes). This can increase the risk of having larger babies, more difficult 
deliveries and the need for baby to be looked after in the Special Care Baby Unit 
after birth. It is thought that gestational diabetes occurs due to excessive calorie 
intake over a period of time, leading to excessive storage of fat in the liver. Eating 
less in pregnancy (through a calorie controlled, fully balanced diet) in pregnancy 
has been used as treatment for gestational diabetes. The advantage of this 
approach is that tablets and insulin may not be necessary and the decrease in 
weight may be associated with better outcome for mother and baby. However, we 
need to understand how this affects the body and how successful it is in avoiding 
need for drug treatments.  

In particular we need to study the effect of reduced calorie intake on the amount 
of fat within the liver. This is done using a magnetic scanner (similar to an MRI). 
This is safe during pregnancy. This will show us how the body changes over a 
four-week period of eating less. Additionally, we would like to find out how women 
with gestational diabetes feel about making such a change to food intake. 
3. Why have I been chosen and do I have to take part? 
You have been chosen because you have recently been diagnosed with 
gestational diabetes. It is up to you to decide whether or not to take part.  If you 
do decide to take part you will be asked to sign a consent form; a copy of your 
consent and this information sheet will be given to you to keep. You are, of 
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course, still free to withdraw at any time and without giving a reason.  A decision 
to withdraw, or a decision not to take part, will not affect the standard of the care 
you receive. 

4. What will happen to me if I take part? 
If you agree to take part, you will be invited to attend the Newcastle Magnetic 
Resonance Centre for three sessions. The first session will be around 28 weeks 
of pregnancy. It is done as soon as possible to measure your liver fat and test 
how your body handles food ‘at baseline’. We will then do a detailed analysis of 
your current dietary intake and advise you about how to plan your meals to 
decrease calorie intake whilst maintaining all micronutrients and vitamins that 
your body requires during pregnancy. We will ask you to record all your food 
intake over a four week period using the smartphone app MyFitnessPal and can 
provide you with a smartphone if needed. You will be seen at two weekly 
intervals in the antenatal clinic and a member of the research team will be 
available by telephone at all times should you need help or advice during the 
study period. During the study period we will check baby’s growth with an 
ultrasound scan every two weeks (instead of every four weeks as usual). After 
four-weeks of the diet, we will invite you back to repeat the liver scan and body 
metabolism tests. 

 
The first two sessions at the Newcastle Magnetic Resonance Centre will last 
approximately four hours. We will ask you to avoid vigorous exercise and alcohol 
the day before the study. You will also be asked not to eat from midnight, 
although you can drink water as you wish. At each session, your weight, height, 
blood pressure and a dip test of your urine will be recorded. A special scan of 
your liver will be then be done. The scan will take 10-15 minutes and will involve 
lying on your side whilst you are inside the scanner (a large tube). You will be 
given ear protectors to wear. After the scan, a small plastic tube (a cannula) will 
be sited in your hand so that we can take blood samples painlessly. There is a 
possibility that some people may experience a little localised bruising following 
the insertion of a cannula; this is a completely normal reaction. You will be asked 
to eat a full breakfast (to include cereal, milk, bread roll, butter/spread and jam 
and orange juice; we will accommodate any dietary requirements). Blood tests 
will be taken over the next two hours. During this time you will be encouraged to 
relax and can walk around if you wish. We will provide a taxi to take you to and 
from the research centre. 
 
You will be invited to attend the Newcastle Magnetic  Resonance Centre around 
12 weeks following delivery of your baby. A scan of your liver and a single blood 
sample will be taken and this visit lasts approximately 30 minutes. 
 
Following the study a research midwife will contact you to invite you participate in 
a short interview (of approximately 45 minutes duration). This is to explore your 
feelings towards the diet and the impact that it has had on your day-to-day life. 
This can be arranged at a time that is convenient to you and can be combined 
with an antenatal clinic appointment. With your permission, the interview may be 
recorded. 
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5. What are the risks and benefits of taking part? 
Women are often reluctant to reduce their calorie intake during pregnancy for fear 
that they may harm their baby. However, gestational diabetes and high blood 
sugar levels are known to be harmful and there is evidence that baby will be 
helped by eating less. There is no evidence at all that reducing calorie intake 
harms the baby. Overall, preventing complications through dietary means is likely 
to be beneficial.  

During your visit to the Newcastle Magnetic Resonance Centre an experienced 
doctor will place the small plastic tube in your hand using local anaesthetic cream 
if you wish. This will allow us to take several blood samples without further 
needles. The study will involve a magnetic resonance scan. The scan makes a 
noise, but much less than a normal MRI scan. It should not cause any other 
discomfort. Magnetic resonance scanning is a safe test that does not use X-rays.  
 
You will benefit from extra care and support during your pregnancy. You will get 
direct feedback from the study with regards to the effects of the diet on your 
sugar control and liver fat. You will be able to ask detailed questions about your 
future risk of diabetes and are likely to find out useful information. In addition, you 
will be helping us to improve our understanding of gestational diabetes. In the 
future, the results of this study may simplify and improve treatment of this 
condition.  
6. Will my taking part in this study be kept confidential? 
All information collected about you during this study will be strictly confidential. It 
will be stored on computers approved by the NHS and Newcastle University.  If 
for any reason, information about you needs to leave these computers, your 
name and address and other identifiable information will be removed so that you 
cannot be recognised from it. Only the researchers and the representative of the 
Research and Ethics committee will have access to the data collected during the 
study. Your GP will be informed of your involvement in this study. 

7. What will happen to the results of the research study? 
It will take us about one year to complete the study. Once the study stops, no 
further involvement will be expected on your part. We anticipate the results will be 
published in a medical journal. You will not be identified in any report or 
publication. We may also use the results from this study for further research. If 
you indicate that you are interested, we can write to you with results from this 
study 

8. What will happen if I don’t want to carry on with the study? 
If you withdraw from the study, we will destroy all your identifiable samples, but 
we will need to use the data collected up to your withdrawal. 

9.  What if there is a problem? 
In the event that something does go wrong and you are harmed during the 
research and this is due to someone’s negligence then you may have grounds for 
legal action for compensation against the Newcastle upon Tyne NHS Foundation 
Trust but you may have to pay your legal costs. If you have a concern about any 
aspect of this study, you should ask to speak to the researchers who will do their 
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best to answer your questions. If you remain unhappy and wish to complain 
formally, you can do this through the NHS Complaints Procedure (or Private 
Institution). Details can be obtained from the hospital.   

10.  Who is funding and organising the research and who has reviewed 
it? 
The study is funded by the North East Diabetes Trust. It is being carried out by a 
team of researchers at Newcastle University. The study has been approved by 
the Newcastle & North Tyneside Research Ethics Committee 2. 

11. Contact for further information 

If you have any questions about the study please contact: Professor Roy Taylor 
(Tel: 0191 xxx xxxx) or Professor Stephen Robson (Tel: 0191 xxx xxxx)  
Thank you for reading this information sheet. 
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Centre Number:  
Study Number:  
Patient Identification Number for this trial: 
 

Dietary Intervention for the Treatment of Gestational Diabetes: 
A Magnetic Resonance Study 

Professor Roy Taylor, Professor Steven Robson, Dr Vera Araujo-Soares, 
Dr Ken Hodson 

 
          Please Initial Box 
 
1. I confirm that I have read and understood the information sheet 
dated 05/11/2014 (version 2.0) for the above study and have had 
the opportunity to consider the information, to ask questions and 
have had these answered satisfactorily. 
 
2. I understand that my participation is voluntary and that I am 
free to withdraw at any time without giving any reason, without my 
medical care or legal rights being affected. 
 
3. I understand that relevant sections of my medical notes and 
data collected during the study may be looked at by responsible 
individuals from regulatory authorities or from the NHS Trust, where 
it is relevant to my taking part in this research. I give permission for 
these individuals to have access to my records. 
 
4. I agree to my GP being informed of my participation in the 
study 

 
 
 
5. I agree that my interview can be audio recorded. 
 
 
6. I agree to take part in the above study 
 
          
_______________________     _________________ ________ 
Name of patient    Signature   Date  
   
 
_______________________          _________________ ________ 
Name of person taking consent  Signature   Date  
 
When completed, 1 for patient; 1 for researcher site file; 1 (original) to be kept in medical notes.    
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APPENDIX C WELLBABE DIET PLAN 

 
 
 

WELLBABE Study 
1200 Kcal Diet Plan 
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Gestational Diabetes and Food 
Your doctor or diabetes midwife will have explained the importance of 
regulating your blood glucose levels when you have gestational diabetes. 
This can often be achieved by making dietary changes, with additional 
medications if required. 
 
Most foods are a combination of protein, fat and carbohydrate in different 
proportions. It is the carbohydrate in foods which has the most effect on 
blood glucose levels. This is because carbohydrate is broken down into 
glucose during digestion. The glucose then enters the blood. 
 
Carbohydrates include starchy foods such as bread, rice, potatoes, pasta 
and cereals (including flours), added sugars (e.g. sucrose), and also natural 
sugars found in fruit and milk. They do not need to be avoided completely; 
however it is important to eliminate foods and drinks which contain lots of 
added sugar: 
 

1. Cut out sugary pop, squashes and juices. Swap to diet/zero/slimline 
pop and no added sugar squashes, as these do not raise blood 
glucose levels. Most flavoured waters are also a good choice, but 
check the ingredients list and labels, as a few do contain added sugar. 

2. Limit fruit juice to 1 small glass (150ml) per day and have this with 
food. Avoid smoothies and milkshakes which contain lots of sugar. 

3. Use a low calorie sweetener in place of added sugar in hot drinks and 
on cereals e.g. Canderel, Splenda, Hermesetas, Stevia. 

4. Jelly contains lots of added sugar (31 sugar cubes in a block of jelly). 
Swap to sugar free jelly which contains no sugar at all. No Added 
Sugar Angel Delight is also available. 

5. Choose tinned fruit in natural juice rather than in syrup or light syrup. 
6.  Buy reduced sugar jam and marmalade. 
7. Diet/light fruit yogurts use sweetener instead of sugar.  
8. Avoid sweets (jellies, boiled sweets, toffees etc.) and ice lollies. Sugar 

free mints and chewing gum are fine to have (in moderate amounts 
as the sweeteners used can have a laxative effect) 
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How else can I keep my blood glucose levels in target? 

 
• Spread your food (especially your carbohydrates) across the 

day, eating little and often 
 

• Try to be as active as you can within your limitations. A 20 
minute walk after a meal can help to reduce blood glucose 
levels more quickly. 
 

• Manage your weight during and after pregnancy – this is the 
aim of the WELLBABE study you are participating in. 
 

How will weight loss help me and my baby? 

 

• Weight loss helps insulin to work more efficiently to remove 
glucose from your blood. By improving your blood glucose 
levels your baby is less likely to grow bigger than expected, 
making delivery easier. It is also less likely that your baby will 
have a low blood sugar (hypo) after delivery if your blood 
glucose is well controlled. 
 

• At a lower weight you are less likely to develop Type 2 
Diabetes in the future, or develop gestational diabetes again 
in future pregnancies.  
 

• Continuing the healthy changes you have made after 
pregnancy can help the whole family to eat a healthy diet 
and maintain a healthy weight – this is important as Type 2 
Diabetes does run in families. 
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Before you Begin 
 
It is helpful to think about what you hope to gain (what it would mean to you) 
from following the diet plan/losing weight, and also what challenges might 
arise during the 4 weeks of the diet. 
 

Benefits  Difficulties 
E.g. able to fit into clothes better, will be less 
breathless when climbing the stairs  

E.g. I tend to eat when I’m 
stressed/bored/upset, there are always 
cakes/biscuits around at work, I have a 
birthday in 2 weeks time 

 
For each difficulty you have identified, think about how you could manage 
this in a different way i.e. without resulting in eating more than planned. 
 

Difficulty Plan 
E.g.  I eat when I am stressed 
 
 

Manage the stress by talking to a friend or letting it 
out in another way (punchbag/a good shout in the 
garden)  
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What will I eat on the 1200 kcal diet? 
 
The diet plan consists of set quantities of foods from 6 different food 
groups. This will provide you with a varied and balanced low calorie diet 
which is designed to provide maximum nutrition for you and your baby. You 
will also be taking a pregnancy multivitamin while following the diet to 
supplement the nutrition from foods. 

Food Group Number of Portions Daily 

Starchy Foods 4 

Protein 2 

Milk and Dairy 2 

Fruit 1 

Vegetables 4 

Fats & Oils 2 

 

You can distribute these foods as you wish across the day to suit your 
preferred eating pattern. The lists on the following pages give portion sizes 
for the different food groups. 

Other Factors 

• Drink 2 litres of sugar/calorie free fluids per day while following the 
diet plan. This includes water, diet fizzy pop, no added sugar squash, 
decaffeinated tea and coffee, herbal teas. Limit caffeinated 
tea/coffee to 2 mugs (4 cups) per day. 

• Avoid calorie containing drinks (sugary pop and squash, smoothies, 
milkshakes, lattes etc.). Alcohol should be avoided as per standard 
advice for pregnancy. 

• You will need to avoid many higher calorie snacks to remain within 
the 1200 calorie limit. This includes sweets, chocolate, biscuits, crisps 
and cakes. There are snack ideas on page 9 of this booklet. 
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Portion Sizes 

Starchy Foods (Allowance 4 portions per day) 

100kcal per portion 
 

1 Portion: 

1 medium slice of bread or toast 30g uncooked rice, pasta or 
bulgur wheat 

1 sandwich thin 75g cooked rice or pasta 

1 mini pitta bread 4 new potatoes in skins (150g) 

1 small chapatti/1 flour tortilla 2 egg-sized old potatoes (boiled 
or mashed) 

1 ½ Weetabix 100g cooked sweet potato 

1 shredded wheat 8 oven chips 

1 crumpet or scotch pancake 2 crispbreads 

30g porridge oats (uncooked) 3 plain crackers 

25g breakfast cereal (3 tblspns) 2 small Yorkshire puddings 

2 Portions: 
45g muesli (not granola) 

1 full size pitta bread  
1 bagel or English muffin 

1 medium bread bun (50g) 
1 nest of noodles 

1 medium jacket potato (200g cooked weight) 

1 individual packet (110g) couscous 

Choose these starchy foods to help keep you fuller for longer: 

Wholegrain breakfast cereals, porridge oats (not instant), 
wholegrain/granary bread, sourdough bread, sweet potato, new 

potatoes in skins, basmati rice, pasta, noodles. 
Note: Pulses also contain slow release carbohydrate and are a good 

choice to fill you up without adding lots of calories. 
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Protein Foods – Meat, Fish, Eggs, Beans & other non-dairy 
sources of protein (Allowance 2 portions per day) 
150kcal per portion 

 
Avoid processed meat products (burgers, sausages, pies, chicken kiev etc.) 

while following the diet plan. 
 

1 Portion: 

 
2 medium eggs 3 rashers grilled back bacon 

1 small grilled chicken breast 
(100g) 

 
2 small slices corned beef (70g) 

1 fillet of baked/steamed cod 
(150g) 

 

4 sandwich-sized slices roast ham 
(120g) 

1 small grilled lamb chop or lamb 
steak (60g) 

 
150g Quorn / Soya / Tofu 

 
2 thin slices roast meat (75g) 

 
150g cooked prawns 

½ tin baked beans in tomato sauce 
(150g) 

 
100g smoked salmon 

 
1 tin tuna in brine or spring water 

 
45g (1 fillet) smoked mackerel 

½ tin salmon in brine 
200g cooked/tinned kidney 
beans, chickpeas, lentils etc. 

 

1 small grilled tuna/salmon steak 
(100g) 

1 tin sardines in brine or tomato 
sauce 

 
1/3 small pack lean beef mince 

(75g) 
 

3 grilled fish fingers 
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Milk & Dairy Foods (Allowance 3 portions per day) 

100kcal per portion 
 

1 Portion: 

200ml semi skimmed milk 
allowance for cereal and 

tea/coffee (or unsweetened 
soya milk) 

300ml skimmed milk or 
unsweetened rice milk 

150g (small pot) diet/light 
yogurt or fromage frais 

50g low fat cheese spread (2 
matchboxes) 

Small matchbox size piece of 
cheese (25g full fat, 35g reduced 

fat) 

75g cottage cheese/100g 
reduced fat cottage cheese* 

125g natural yogurt/ 160g low fat natural yogurt/190g fat free 
natural yogurt 

*Should be made with pasteurise milk 
 

Vegetables (Allowance 4 portions per day) 

30kcal per portion 
 

1 PORTION: 

3 heaped tablespoons (80g) raw 
or cooked vegetables (fresh, 

frozen or tinned) Use a wide variety of vegetables, 
choosing different colours to 

give a range of nutrients. 
 

Avoid avocados while following 
the diet plan. 

 
Note: potatoes and sweet 

potatoes count as starchy foods 
rather than vegetables 

2 heaped tablespoons peas, 
sweetcorn or broad beans 
1 dessert bowl fresh salad 

200ml tomato juice 

100g (1/4 tin) tinned tomatoes 

80g tomato salsa 

8 olives 
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Fruit (Allowance 1 portion per day) 

60kcal per portion 
 

1 PORTION: 

1 medium piece of fruit (e.g. 
apple, pear, orange etc.) 

1 slice of large fruit (melon, 
pineapple) 

1 small banana Small handful grapes, cherries or 
berries 

2 small fruits (e.g. plums, 
satsumas etc.) 

3 tablespoons fruit salad (fresh 
or tinned in juice) 

4 dried prunes or apricots 1 ½ tablespoons raisins 

150ml pure unsweetened fruit juice can count as a maximum of one 
portion of fruit per day, however fresh/tinned/frozen whole fruits are 
preferable as they are higher in fibre. 

Fats, Oils & Spreads (allowance 2 portions per day) 

60kcal per portion 

1 PORTION: 

2 tspn (10g) marg/spread 1 ½ tspn salad dressing (fat free 
dressing is not counted) 

4 tspn (20g) light marg/spread 3 tspn soured cream (30g) or 6 
tspn if reduced fat 

2 tspn vegetable/olive oil (low 
calorie spray oil not counted) 

2 tspn crème fraiche (20g) or 4 
tspn if reduced fat 

4 tspn salad cream or light mayo 
(20g) 

3 tspn double cream (12g) or 8 
tspn single cream (30g) 

2 tspn mayonnaise (10g) 175ml gravy (made with 
granules, no fat added) 

10g nuts e.g. 10 
peanuts/almonds, 6 cashews 

(avoid honey roasted) 

40g (4tspn) houmous or 8 tspn 
reduced fat houmous 

10g (1 tspn) low fat peanut 
butter 45ml ketchup or brown sauce 

1 1/2 tspn jam or marmalade 
(20g) 

4 tspn reduced sugar jam or 
marmalade 
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Snacks 

The following are snack ideas for between meals. Remember that snacks 
still count towards your overall calorie allowance so should be part of your 
meal plan, not added as extras. 

• Vegetable sticks and tomato salsa dip (1 veg portion) 
• 1 crumpet with 2 tspn spread (1 starchy, 1 fat portion) 
• 2 crispbreads or oatcakes with 50g low fat cottage cheese (1 starchy, 

½ dairy portion) 
• 1 piece of fruit (1 fruit portion) 
• 1 small slice of malt loaf (35g) (1 starchy portion) 
• Diet/light yogurt (125 - 150g pot) (1 dairy portion) 
• 1 matchbox-sized piece of cheese (chopped into cubes) and 8-10 

pickles e.g. pickled onions, gherkins (1 dairy portion, 1 veg portion) 
• 1 mini pitta bread or 5 breadsticks with houmous (1 starchy, 1 fat 

portion) 
• 1 cup (25g) plain or salted Popcorn (1 starchy portion) 
• 1 low calorie packet of crisps (<100kcal/bag) e.g. Quavers, Skips, 

French Fries etc. (1 starchy portion) 
• 2 biscuits (<50kcal each) e.g. ginger biscuit, nice, malted milk, rich 

tea, shortcake, iced ring, small cookie, pink wafer, jaffa cake (1 
starchy portion)  

• Sugar free jelly (not counted) 
• Low calorie hot chocolate e.g. options/highlights made with milk 

(reduce milk portion by 50ml) 1 dairy portion) 
• 10g nuts (e.g. 10 peanuts) + 1 raisin snack box (1 fat, 1 fruit)  
•  8 olives (1 protein, 1 veg) 

 

Family Meals and Recipes 

 
You may be cooking for others in the family, so it’s helpful to be able to 
work out the number of portions from each food group in the whole recipe 
using the portion lists on pages 3-6. You can then work out how many 
portions are in one serving. 
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 Here is an example: 

 

Chilli con Carne (serves 4) 

Recipe Ingredient Food Group 
Portions in 

recipe 
Portions per 

person 

Vegetables (1 large 
onion, 1 red 

pepper) 
Vegetables 2 0.5 

450g lean minced 
beef 

Protein 6 1.5 

400g tin chopped 
tomatoes 

Vegetables 2 0.5 

400g tin red kidney 
beans 

Protein 2 0.5 

600g cooked rice Starchy foods 8 2 

Not counted: 2 garlic cloves, 1 tspn chilli 
powder, tomato puree, black pepper 

  

 
Per serving, this meal provides 1 portion of vegetables, 2 portions of 

protein and 2 portions from the starchy foods group. 

 

 

Shop-Bought Meals (Ready Meals, Sandwiches etc.) 
1. Note that processed foods tend to be less filling, so try to cook your 

own meals wherever possible, or add extra vegetables to fill you up. 
2. As a guide, choose products which contain under 400kcal per portion. 

3. Look out for healthy option ranges as these tend to be lower in 
calories, fat and salt. 



154 
 

4.  Compare front of pack Traffic Light labelling, and choose options 
with fewer reds and more greens, especially for saturated fat. This 
type of fat increases insulin resistance, making it more difficult for 
your insulin to control your blood glucose levels. 

As an example: 

Meal 1 (Shepherd’s Pie)   Meal 2 (Chicken & Veg Sizzler) 

     

Both meals are under 400kcal, but meal 1 is high in saturated fat and salt 

(2 reds), whereas meal 2 is low in saturated fat and medium in salt 

content – more greens. You might choose meal 1 occasionally and meal 

2 more often. 

5. Work out the number of portions in the meal 
This can be done by eye (e.g. estimating the number of slices of bread 

and amount of filling in a sandwich), or can be worked out more 

accurately from the ingredients list on the pack. To do this: 

i. Find the ingredients list on the pack. Ingredients are listed in 
descending order, so the first ingredient makes up most of the 
weight of the product and the last ingredient on the list makes 
up the smallest amount. 

ii. The list will give you the proportions of the key ingredients.  
For example: 
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iii.  Work out the weight of each of the main ingredients (ignore 
herbs, spices, preservatives etc.). This product weighs 400g. 
From the label: 

 Mash (starchy food) = 50% of the whole product which is 200g 
 Lamb (protein food) is 30% of the whole product which is 

about 65g 
 Carrot and onion (veg) make up 4% of the product. Working 

out 10% (40g) and halving this (20g) will give about 5% 
(accurate enough!) So 20g is veg. 

iii. Compare these to the portion sizes on pages 5-8: 
1 portion potato = 150g, so there are about 1.5 portions in the 
meal (200g). 
1 portion lamb = 60g, so there is 1 portion in the meal. 
1 portion veg = 80g, so there is only ¼ portion in the meal. 

iv. Use my fitness pal for any foods not in the tables.  You can 
work out the number of portions from the kcal (1 starchy = 
100kcal etc). 

Managing Hunger 
 
You may worry that you will feel hungry while following the diet plan. The 
following tips will help you reduce and manage hunger: 

1. If you feel hungry, try drinking a pint of water 
2. Make sure you are eating all of your food portion allowances each 

day.  

Ignore ingredients in brackets, as these just tell you what is in each of the main 

ingredients. For example, Mashed Potato (50%) (Potato, Butter (Milk), Salt, White 

Pepper) tells you that the mash is made up of the ingredients in brackets.  
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3. A bowl of soup or salad before a meal helps to fill you up and is low 
in calories. 

4. Choose fewer refined carbohydrates (made from processed white 
flour and sugars) and more of the starchy foods which keep you fuller 
for longer – see the box on the bottom of page 3 for suggestions. 

5. Use a smaller bowl and plate. Your plate will look fuller and you will 
feel more satisfied after a meal.  

6. Eat slowly to give ‘fullness’ signals a chance to reach your brain. If you 
eat quickly or on the go, you won’t start to feel full until 20 minutes 
after you have finished. 

7. Focus on what you are eating. If you are doing other things like 
watching TV, working or reading you won’t appreciate what you 
have eaten and won’t feel so satisfied. 

8. Hunger is often confused with cravings. If you have eaten a meal in 
the last 2 hours, you are unlikely to be experiencing true hunger. Try 
distraction techniques like going for a walk, reading or having a bath 
– anything that will occupy you and take your mind off food. 
Acknowledge that you could eat but you aren’t going to this time. 
Cravings will eventually die away, so persevere and delay responding 
to them. 

9. If you are still hungry, try the snack ideas on page 9 
10. Remember, hunger is a positive sign that the diet plan is working! 

 

Plan a day’s intake 

 

 

FOOD & DRINKS 
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Breakfast 
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WELLBABE Study Contacts: 

 

Dr Ken Hodson 

Email: kenneth.hodson@ncl.ac.uk 

 

Alison Barnes (study dietitian) 

Email: alison.barnes@ncl.ac.uk 

Mid-Morning 

 

      

Lunch 

 

 

      

Mid Afternoon 

 

      

Evening Meal 

 

 

      

Evening Snacks/Supper 

 

      

(Portions in Plan) 

TOTAL PORTIONS: 

(4) (2) (2) (1) (4) (2) 

mailto:kenneth.hodson@ncl.ac.uk
mailto:alison.barnes@ncl.ac.uk
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APPENDIX D NUTRITIONAL ANALYSIS OF 
1,200KCAL/DAY DIET 

An example 7 days of the 1,200kcal/day diet was entered into WinDiets (see below). The 

calorie content, macro- and micro-nutrient content of a typical diet are summarised in the 

table below, together with the recommended intake for pregnancy. All participants were told 

to take a multivitamin in order to ensure that the micronutrient content of the diet was 

complete. Several vitamin tablets are available and the table gives the range of micronutrient 

content for the common ones that were consumed (Sanatogen Pregnancy Mum to Be, 

Centrum Pregnancy Care, Sanatogen Mother to Be, Seven Seas Pregnancy Multivit,Tesco 

Multiplus Pregnancy, Sainsburys Pregnancy Plus, Pregnacare Original). 

Macronutrient Amount 

Energy (kcal) 1178 

Fat (g) 33.6 

Saturated fat (g) 11.5 

Polyunsaturated fat(g) 5.6 

Monosaturated fat (g) 11.2 

Protein (g) 76.8 

Carbohydrate (g) 151.2 

Sugars (g) 50.3 

Starch (g) 94.5 

Non-milk Extrinsic 
Sugars 

12.4 

NSP 17.4 

Water 924.9 
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 Amount Multivitamin Total Recommended Daily Intake 

Vitamin A (µg) 1085 0 1085 700- (<3300) 

Thiamin B1 (mg) 1.43 1.2-1.4 2.63-2.83 0.48 

Riboflavin (mg) 1.41 1.4-1.8 2.8-3.2 1.4 

Niacin (mg) 33.3 14-19 47.3-52.3 8 

Vitamin B6 (mg) 1.72 1.6-2.6 3.3-4.3 1.15 

Vitamin B12 (µg) 4.22 2.5-3 6.7-7.2 1.5 

Folate (3rd 

trimester) (µg) 

250 400 650 300 

Pantothenic Acid 

(mg) 

4.2 6-8.7 10-12.9 3-7* 

(*No RNI) 

Biotin (µg) 25.5 50-200 75-225 10-200* 

Vitamin C (mg) 113.5 70-110 183-233 50 

Vitamin D (µg) 1.72 5-10 6.7-11.7 10 

Vitamin E (mg) 6.46 8.5-12 14.9-16.4 3.8-6.2* 

Calcium (mg) 723 0-170 723-893 700 

Magnesium (mg) 270 239 60-100 299-339 
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Phosphorus 

(mmol) 

40.1 0-4.3 40.1-44.4 10.9 

Sodium (mmol) 105.7 0 105.7 70 

Potassium 

(mmol) 

71.13 0-7.7 71.13-

78.83 

90 

Chloride (mmol) 99.4 0 99.4 70 

Iron (mg) 9.6 14-17 23-26 14.8 

Zinc (mg) 9 7-15 15-23 7 

Copper (mg) 0.92 1 1.92 1.2 

Selenium (µg) 56 0-75 56-131 60 

Manganese (mg) 2.07 0-2 2.07-4.07 1.4 

Iodine (µg) 145 14-200 159-345 140 
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APPENDIX E INTERVIEW SCHEDULE 
 

 

 

Exploring adherence to a reduced calorie diet in gestational diabetes  

Interview Topic Guide  

 

Interviewer`s protocol 
 

a) Hello NAME, my name is NAME and I am a member of the research team 
carrying out the Dietary Intervention in GDM study. We are meeting to see what 
your experience of the diet is and how you are doing overall.  

b) Everything we talk about is confidential and anonymous and only very few 
members of the team will be able to look at the content of the interviews for the 
purposes of analysis. 

c) I will use a recorder so that I can go back to what we will have talked about, but 
please try to ignore the recorder if possible and make yourself comfortable, this 
will be a very informal conversation and we just want to hear your thoughts.   

d) You can stop the interview or withdraw from participation completely at any 
time.  

e) Feel free to interrupt me with questions if you have any. Should we start with the 
interview? 

 

Interview questions 
 

1 What were your thoughts when you were asked to cut down 
on the amount of food? 

Beliefs about 
consequences 
Beliefs about 
capabilities 
Knowledge 

Prompts: Advantages? Disadvantages?  Will I be capable of 
doing it?  
Have you thought about the consequences to the 
baby? 
Have you thought about the consequences for 
you? (e.g. help controlling GDM; help control sugar 
levels; feeling better; feeling more energetic) 

2 What were your feelings when you were asked to cut down on 
the amount of food? 

Emotion 
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What are your feelings now that you have carried out this 
reduced calorie diet in pregnancy? 

3 Could you tell me if you had some doubts about engaging in 
this diet? 

Knowledge 
Beliefs about 
capabilities 
Beliefs about 
consequences 

Prompts:                   Were you concerned about: 
Not knowing how to do it 
Not having the skills/ability 
Consequences 
Failing to achieve goals? 

4 How difficult did you imagine it would be to eat less and lose 
some weight during pregnancy? 

Skills 

5 How difficult did you actually find it to eat less and lose some 
weight during pregnancy? 

Skills  

6 At the beginning of the diet how confident did you feel about 
being able to stick to it? 

Optimism 

7 Over 4 weeks have now passed since you started the reduced 
calorie diet (RCD). Could you please tell me about your overall 
experience of it so far? 

Behaviour 
regulation, 
Intentions, 
Emotions, 
Environment, 
context, resources 

Prompts:                   Did you have any cravings? 
Were you disappointed by the reduced choice of 
food? 
Were you tempted to break the diet? 
Did your mood or motivation change? 
Did anything help or hinder you when sticking to 
the diet? 
Did you lose any weight?                   

8 Did you have any strategies that helped you to continue with 
the diet? 

Social influence 

Prompts: Any Support from friends/family/partners 
9 How satisfied are you with the RCD and with the outcomes you 

have achieved so far? 
Reinforcement, 
Environment, 
context, resources Prompts:  

                   
Have you lost any weight? 
Did you find it easy to follow the diet? 
Were you satisfied with the food you were 
allowed/quantity? 
Were your energy levels affected? 

10 Have you noticed any week-to-week changes? Reinforcement 
Prompts: Were there any other rewards associated with the 

RCD? 
11 How much effort did you spend planning your meals on the 

RCD? 
Memory, attention, 
decision process 

Prompts: Did the RCD just become part of your usual 
routine? 

12 How easy did you find it to plan what you would eat? Skills 
13 Were there any times when you didn’t stick to the RCD if so 

was it a conscious decision? 
Memory, attention, 
decision process 
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Prompts: Did you forget or was it inconvenient? 
14 Have you experienced any lapse(s) during the diet period?  Behaviour 

regulation, 
Goals, 
Intentions, 
Emotion, 
Social influences 

If yes 
Prompts: 

Can you tell me more about specific situation/s 
when this happened?  
What did it feel like after you lapsed?  
Has anything changed since the lapse? (for 
example did you put any measures in place to 
reduce the chance of it happening again?) 

If not 
Prompts: 

What helped you successfully continue with the 
regime/ overcome your temptations?  
Did you have a strategy from the start?  
If so would you mind describing it?  
How did you feel like after you resisted possible 
temptations? Has anything changed since then? 

15 Whilst doing the diet did you know how to access the 
information you needed to meet the diet targets? 

Skills 

Prompts: Were you able to get recopies, did you know how 
to access nutritional information? 

16 What kind of support (if any) would you have appreciated 
during this phase of the RCD? 

Environment, 
context, resources 

Prompts: To help overcome the problems and temptations 
To access more information/ideas 

17 Do you feel that carrying out/taking part in the diet was an 
appropriate part of your life? 

Social professional 
role and identity 

Prompts: Did you feel taking part was the right thing to do? 
Did you feel a responsibility to try to do the diet? 

18 Was taking part in the diet important to you at this time? Social professional 
role and identity Prompts: Please expand on the reasons why 

19 Would you feel capable of continuing on this diet? 
 

Beliefs about 
capabilities 

 
  

 
 

 
 

 

 

 

Thank the participant! 
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