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Abstract

The existing methods for machine vision translate the three-dimensional

objects in the real world into two-dimensional images. These methods

have achieved acceptable performances in recognising objects. However,

the recognition performance drops dramatically when objects are trans-

formed, for instance, the background, orientation, position in the image,

and scale. The human’s visual cortex has evolved to form an efficient

invariant representation of objects from within a scene. The superior

performance of human can be explained by the feed-forward multi-layer

hierarchical structure of human visual cortex, in addition to, the util-

isation of different fields of vision depending on the recognition task.

Therefore, the research community investigated building systems that

mimic the hierarchical architecture of the human visual cortex as an

ultimate objective.

The aim of this thesis can be summarised as developing hierarchical

models of the visual processing that tackle the remaining challenges of

object recognition. To enhance the existing models of object recognition

and to overcome the above-mentioned issues, three major contributions

are made that can be summarised as the followings

1. building a hierarchical model within an abstract architecture that

achieves good performances in challenging image object datasets;

2. investigating the contribution for each region of vision for object

and scene images in order to increase the recognition performance

and decrease the size of the processed data;

3. further enhance the performance of all existing models of object

recognition by introducing hierarchical topologies that utilise the

context in which the object is found to determine the identity of

the object.
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Chapter 1

Introduction

1.1 Introduction

Vision is the process of observing the world by interpreting the environment using

light reflected by the objects and accordingly extracting a meaningful interpretation

[1]. Researchers of computer vision are continuously attempting to write computer

programs to extract objects from images [2,3]. Some of the approaches are inspired

by the human visual system. To enable computers to infer the identity of the objects

in the images, a model that extract formative features from the images is required

in which each object has a unique signature [4].

1.2 Challenges Involved in Object Recognition

Object recognition is considered one of the main unsolved dilemmas in the field

of Machine vision [5]. It can be explained as recognising an object represented in

the form of an image captured from the real world. The objects in the real world

are labelled by humans. Object recognition involves associating these priory known

objects using a computer. Recognising an object in an image involves decoding the

object of interest from its background. The background may also contain other ob-

jects. However, it is still the task of the object recognition model to identify objects

of interest from its background. The model is expected to select the object true

label for each frame image. In the past decades, object recognition was massively

studied as will be explained thoroughly in this Chapter.

The task of recognising three-dimensional objects using two-dimensional images
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from a particular view is extremely complicated. Each three-dimensional object may

be represented in multiple images from different viewing angles.

Other difficulties include the variations in object scale, pose, illumination, loca-

tion in the image, viewing angle, geometry and occlusions. Also, incomplete data is

one of the most common problems in the field. However, in all the above cases, prior

knowledge about the objects is given to the model. The models need to generalise to

the known objects in novel transformative forms. Other challenges for object recog-

nition involve intra-class variabilities, where some objects within the same class may

vary dramatically as shown in Figure (1.1). This figure shows examples of objects

with self-occlusions, for instance, as a result of their geometrical properties.

The visual processing in the primates’ visual cortex was modelled using hier-

archical models. Informative representation of the objects is extracted through a

hierarchy of simple and complex cells of the developed models [2–4]. These mod-

els are based on hierarchical MAX operations, therefore, they are called hierarchical

models. Recently, these models have shown an increased performance for recognising

objects and solving the above dilemmas.

1.3 Applications of Object Recognition

Object recognition was recently used in several fields, due to the capabilities it offers

for image understanding. Below is a discussion of the main applications that it can

be utilised. However, it has potential applications in several different fields.

In robotics, object recognition can be developed to equip robots with a cogni-

tive capability in which they are able to identify the objects being conceived. The

robot can understand the environment by understanding the nature of objects in it,

for instance, in an office, it is likely to observe a notebook, laptop, coffee mug and

computer desk. This will enable robots to understand their surroundings and there-

fore become more equipped to handle the allocated task. In industrial applications,

object recognition is essential for robotics, for instance, in consumers good industry,

robots are required to handle different objects with different sizes and shapes. Re-

cently, robotic vision was applied to a bionic hand for grasp recognition [7]. In this

work, an artificial hand was equipped with a camera. The camera passes snapshots

of images which is then processed to determine the type of the grasp for each object.

For mobile applications, object recognition is increasingly becoming an essential
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a)

b)

c)

d)

e)

Figure 1.1: The real world scenarios for object recognition. a) Background clutter:
backgrounds can obstruct the vision to make correct decisions. b) Object loca-
tion: the location of the object within the image can alter the way that the model
conceives the object. c) Intra-class variability: objects with similar classes can be
extremely different in terms of structure and appearance. d) Orientation variance:
the manifestations of objects may differ depending on the pose the image is taken
from. e) Self-occlusion: objects may appear self-occluded due to their geometric
properties. Images were collected from Caltech 256 dataset [6]
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Figure 1.2: Estimated numbers of mobile phone users in the worldwide from 2013
to 2019 [8].

feature due to the availability of mobile phones with high computational capabilities.

In 2016, studies have found that 62.9% of the world population are mobile users [8].

As shown in Figure 1.2, this number is expected to dramatically increase to reach 5

billion mobile phone users in 2019, for instance, in India, around 142 million mobile

contracts were registered in 2011 [1]. This number is expected to reach 813.3 million

mobile contractors in 2019 [9]. Therefore, mobile applications that provide an easier

way to search the physical world is becoming more accessible, for instance, Google

Goggles [10] and CamFind [11]. These applications help users to identify objects

and scenes using the mobile camera and Cloud computing, for instance, identifying

a film poster in a street, or recognising a famous landmark when travelling abroad

without needing a text-based search.

Finally, object recognition models are being increasingly utilised in self-driving

cars. Equipping cars with such technologies enable them to process frequencies

beyond human capabilities, for instance, in order for the car to make the right

decision in an emergency situation, it needs to know whether an obstacle is a person

or not. Therefore, recognising objects in a moving vehicle is essential. While a

car is driving a software can provide labels of objects that the car is encountering.
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Figure 1.3: An estimation of the general public perspective regarding the safety of
driver-less or autonomous cars [12].

Driver-less cars are still in the testing phase and recently there have been fatalities

involving fully autonomous vehicles, for instance, one of the Uber autonomous cars

has been involved in a fatal accident in Arizona and Toyota has suspended tests of

self-driving cars on public roads [12]. This has changed the course of the general

public perspective of the extent of the safety of driver-less cars. Figure 1.3 shows the

perspective of the general public with respect to the safety of autonomous cars. The

study also categorised the results within different age bands. The polls have shown

that a majority of 43% thinks that self-driving cars are totally not safe. Therefore,

the technologies of self-driving vehicles require further development.

1.4 Problem Statement

The main problem that was addressed in this thesis involved recognising objects

under all form of transformations described in section (1.2) within a hierarchical

model such that

• it can be used for multi-class recognition, i.e., not designed for binary classifi-

cation;

• it is robust to the challenges mentioned in section (1.2);
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• it is formed within an abstract architecture where formative features are ex-

tracted within a reduced number of layers;

• it has similar mechanisms to the human visual cortex, i.e., the feed-forward

hierarchical architecture;

• it can achieve high recognition accuracy.

1.5 Aim and Objectives of this Thesis

The purpose of this thesis is to further the research on hierarchical architectures

inspired by the human visual cortex to achieve better performances.

The particular objectives of this thesis are:

• Objective 1: to build a hierarchical model inspired by the visual cortex that

address the issues discussed in section (1.2) and achieve higher accuracies and

efficiency.

• Objective 2: to investigate the effectiveness of each region of vision for object

and scene image dataset.

• Objective 3: to further enhance the recognition performance, a number of

hierarchical topologies were formed, such that the recognition task considers

the scene perspective for obtaining the identity of the objects.

1.6 Statement of Originality

The major contributions of this thesis can be summarised as follows:

• In Chapter 2, a comprehensive view is provided on the advantages and disad-

vantages of the available techniques of object recognition. These techniques

were categorised into hierarchical models, histogram-based models and deep

learning models. A survey was made to identify the problems and benefits of

each technique. Furthermore, a survey was made with regard to the effective

regions of vision on human subjects. It summarises the fact that human vision

has biases toward the peripheral vision to recognise scenes and the reverse is

true for objects.
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• In Chapter 3, a novel model of object recognition is proposed, namely, the

En-HMAX model. The En-HMAX model is hierarchical and feed-forward. It

summarises basic facts of the ventral stream of the primates visual cortex. The

En-HMAX model utilises the elastic-net regulariser for dictionary learning. It

also uses learned filters for feature extraction. The model was tested with

different datasets. The performance of the En-HMAX model was compared

with other hierarchical models from the literature.

• In Chapter 4, the effective regions of vision are investigated using the En-

HMAX model. The rationale of the experiments of this chapter was to quantify

the contribution of the peripheral image content and the central image content

to recognise scenes and objects using the En-HMAX model. To study the

biases of computational models for recognition, two datasets were utilised.

Also, along with the En-HMAX model, four computation models were used.

This includes the classic HMAX model and state of art neural networks, such

as GoogLeNet, AlexNet and VGG net. To quantify the contribution of each

region of vision, the experiments involved modelling two paradigms, namely,

scotoma and window.

• In Chapter 5, topologies that comprises shallow and deep models are formed.

In order to enhance the performance in object recognition, it is proposed to

change the order of the recognition process by using an initial stage to give

an indication of the nature of the objects. Three topologies were proposed for

this task. The topologies provide a trade-off between the decision sensitivity

and the computational complexity. In summary, a top-level stage is used to

categorise the nature of the scene that the object found, mainly formed using

a shallow network. Then, another deeper stage is used to recognise the object.

• The thesis provides a comprehensive evaluation of hierarchical architectures

for image processing and paves the way for future research to tackle issues

reported in this thesis.

1.7 Thesis Organization

This thesis is composed of seven chapters, where the main challenges linked to

hierarchical architectures for object recognition will be discussed in Chapter 3. While
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in Chapter 5, the effective regions of vision will be covered. Chapter 6 will discuss

optimised topologies for object recognition.

Chapter 1 “Introduction” presents the introduction, motivations, objectives and

structure of the thesis.

Chapter 2 “Background and Literature Review” provides comprehensive back-

ground knowledge on models of object recognition. In particular, hierarchical mod-

els. It reviews the literature of hierarchical architectures inspired by the visual

cortex in detail and presents datasets relevant to this thesis.

Chapter 3 “Object Recognition with an Elastic Net-regularised Hierarchical

MAX Model of the Visual Cortex” presents a novel hierarchical model of object

recognition. The newly developed model solve the problems of highly correlated

images. It utilises the same hierarchy of the visual cortex. Additionally, it utilises

techniques rooted in Neuroscience that help to provide better performances.

Chapter 4 “Objects and Scenes Classification with Selective Use of Central and

Peripheral Image Content” studies the effective regions of vision using the developed

model in Chapter 3. It highlights the significant difference in recognising object

images and scene images. It proposes foveation to reduce the size of image data. It

also discusses the potentials of using these techniques on Cloud processing.

Chapter 5 “Object Recognition Based on Understanding The Real World: Indoor

Versus Outdoor Environments” proposes three hierarchical topologies to reshape the

existing scheme of object recognition. It highlights the importance of understanding

the scene as part of the recognition process. Additionally, it provides a trade-off

between decision sensitivity and classification accuracy.

Chapter 6 “Conclusions and Future Work” summarises the advances achieved

in this study with regard to hierarchical models for image processing and object

recognition. It also shows the challenges that the available techniques still need to

address. Furthermore, this chapter lists potential future work which can further the

development of hierarchical architectures for object recognition.
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Chapter 2

Background Theory And

Literature Review

2.1 Introduction

Object recognition has been extensively studied and applied using many different

approaches [13,14]. It is becoming one of the most important fields in image process-

ing and computer vision [15]. It allows artificial intelligence programs to identify

objects from inputs such as still camera images and videos. In this chapter, the

main components of recent research methods of object recognition are covered. In

particular, feature-based methods such as feedforward hierarchical models, deep

learning models and histogram-based models. Feature-based methods are based on

extracting informative features from the appearance of the object in the form of

a two-dimensional image. These methods statistically describe the visual data in

the real world using numbers. An excellent model of object recognition is able to

represent different objects distinctively, for instance, bicycles and motorcycles. This

chapter will also discuss the common methods of feature extraction and classifica-

tion, for instance, principal component analysis, Independent component analysis,

dictionary learning, elastic net regulariser and support vector machine. It will also

show the advantages and the limitations of these approaches.
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2.2 Choice of Coordinate System

The initial stages of this research involved determining a suitable coordinate system

for object recognition. To perform object recognition, there are two approaches to

determine the coordinate system: object-centred approach and viewer-centred ap-

proach [16]. The object-centred approach can be defined as representing the object

as a three-dimensional entity. On the other hand, the viewer-centred approach is

simply defined as representing an object in a natural way from a viewer perspective

or a camera perspective. The rationale for selecting the appropriate approach was

to extract more unique features that efficiently represent the objects for recogni-

tion. The choice of the approach allows only certain techniques and methods to

be used at the cost of the others [17]. Therefore, the below subsections discuss the

characteristics of both approaches in more details.

2.2.1 The Object-Centred Approach

The object-centred approach represents the object using a specific three-dimensional

coordinate system [18]. This approach describes the object regardless of the cam-

era location [19]. It depends more on the description of the shape of the object.

However, to extract the object of complete data, sophisticated techniques are re-

quired for camera parametrisation and adjusting viewpoints [19]. Object-centred

representation is based on understanding the object geometry, i.e., the remaining

information when the object scale, orientation and position are removed from its

description. The object is retrieved using the non-overlapping regions of the object

from the three-dimensional space. Examples of these approaches are tetrahedral

decomposition [20], octree [21] and voxel representation [22].

2.2.2 The Viewer-Centred Approach

The alternative method to the object-centred is the viewer-centred, which describes

objects from a camera perspective. In the object-centred method, the three-dimensional

objects are described using two-dimensional images within specific viewpoints. This

approach is considered more accessible and computationally efficient than object-

centred approaches. The matching in this approach is also more efficient as the

comparison with the description is performed using only two dimensions.
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In this method, the projection process is not required when performing the

matching process [20]. Furthermore, this approach solves the problem of objects

located far away from the camera system that exists in the object-centred approach.

However, the viewer-centred approach has a number of drawbacks, for instance, to

represent one object in the two-dimensional space, a large number of views of the

same objects need to be stored for the matching process. Therefore, the object

matching process becomes more complicated as the number of features is increased

dramatically.

There is a strong evidence in neuroscience literature suggesting that the human

visual system utilises the viewer-centred representation to perform object recognition

[23–25]. Experiments have shown that the human visual system is able to recognise

objects accurately and rapidly from a single viewpoint. This shows that those views

of the object are already stored in the memory in its two-dimensional forms.

In the viewer-centred approach, the object appearance varies considerably from

one view to the other. One approach to solving this problem is extracting invariant

features from different viewpoints [26]. The relationship between angles, lines and

the ratio of the lengths of the lines can provide invariance over the viewpoint. An ef-

ficient use of the above techniques can minimise the number of the object viewpoints

required to solve the recognition task [26].

2.3 Methods for Object Recognition

There are two main methods to perform object recognition on images: image-based

method and feature-based method [19]. The image-based method uses a direct repre-

sentation of the images for recognition [27,28]. On the other hand, the feature-based

representation depends on the shape information [2, 29]. More detailed description

of each type of method is provided in the below subsections.

2.3.1 Image-Based Methods

The main characteristic of the image-based method for recognising objects is that

the stored images are compared directly with the new images using the intensity of

the images [19]. In this method, no features are extracted from the object. Only

the object appearance characteristics are learned. In the feature-based approach,
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however, the features of the images are used to describe the objects for recognition.

The image-based methods involve utilising a large image dataset that consists of

images of objects taken from many different poses and with different lighting con-

ditions. The similarity of images is calculated either by using low-level descriptors

or by a whole image-based similarity measure [30].

The recognition process can take other forms in the image-based method. These

processes can be categorised into rigid methods and flexible methods [30]. In the

rigid methods, a template of the target photometry (or shape) of the object is pri-

marily defined [19]. The template may be represented by an image. The image data

is then compared to the template using different metrics, for instance, dissimilar-

ity or the similarity measure [30]. The matching process is made when the metric

optimal point is reached, i.e., the shortest distance from an image to the template.

This approach is considered effective in restricted object search where the search

is limited to certain object types. These methods do not perform efficiently in the

following scenarios:

• when the exact object shape is not known;

• when multiple object shapes are involved at the same time;

• when an unknown object background is used.

When the above scenarios are met, the flexible methods can be more appropriate

for the recognition task. These methods are based on imposing many constraints

on the appearance of the object, for instance, the object symmetry, smoothness and

homogeneity. It also utilises a mathematical optimisation to determine the best

fit for the input image data. Other flexible methods allow more flexibility that

may cause the matching process to be computationally heavier [19]. Therefore, to

conduct these methods, the initialisation point may need to be reinforced to be close

to the correct solution.

The major drawback of the image-based approach is the variation of the ob-

ject background. It also has shown limited performance in recognising objects in

cluttered and partially occluded scenes [30]. It performs well when the objects are

segmented from their backgrounds [19]. In the literature, there are several attempts

to enhance these methods performance against occlusion, for instance, the small
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Eigen-windows [31, 32]. However, these methods are considered computationally

expensive in their search process [31].

In the image-based method, the performance is less influenced by the increasing

geometric complexity as a result of performing the recognition task directly in the

image domain [19].

2.3.2 Feature-Based Methods

This method for object recognition is based on understanding the object attributes

from its appearance. It utilises stored objects attributes and corresponds to them

when similar features are detected in the scene. This approach is successful when

the background of the object is unknown. It can extract only the important features

of an object within a background and accordingly create a code for this object for

recognition. The recognition process is generally bounded by an error function that

shows to what extent the newly observed features differ from the stored features [33].

The lack of scalability is one of the most common problems in object recogni-

tion, for instance, a large number of objects, or an extreme variation in objects

appearance. The feature-based method has moved forward in a purposeful way to

mitigate the lack of scalability. In particular, developing techniques that minimise

the number of features that correspond to an object [34]. Additionally, minimising

the possible number of matches [35,36]. Similarly, a method of indexing was devel-

oped to limit the inappropriate matches using a priori information of the recognition

task [37].

To achieve invariance to objects pose, several paradigms were developed to match

an object within a particular viewpoint with a reference viewpoint [19,38]. However,

this approach requires a huge amount of memory to understand the views of a large

number of objects. For the feature-based method, there are many aspects and

problems that will be discussed and addressed in this thesis. This includes the type

of object features, methods for extracting these features reliably, the classification

mechanisms and the computational complexity.

To summarise, the feature-based methods are considered more successful than

the image-based methods for object recognition, especially for the cluttered environ-

ment [30]. Therefore, feature-based methods for object recognition will be primarily

used for all tasks of object recognition in this thesis.
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Figure 2.1: Main approaches of feature-based methods for object recognition.

The below sections describe the main existing approaches of feature-based meth-

ods for object recognition. These approaches were categorised into histogram-based

approaches, deep learning approaches and feed-forward hierarchical approaches (as

shown in the diagram in Figure 2.1)

2.3.2.1 Histogram-Based Approach

Histogram-based approaches have proved successful to generate invariant features

for transformations, in particular, object translation [39]. The most common fea-

tures are the scale-invariant feature transformation (SIFT) features [29]. The SIFT

descriptor is based on converting the image into many feature vectors. These fea-

tures are invariant to object transformations, local geometric distortion and illumi-

nation changes. Only the dominant features are extracted, small edges along stone

edges features are discarded. This enables the SIFT descriptor to be robust to local

distortion.

The mechanism of the SIFT descriptors for extracting features from the input

images can be summarised as the following:

1. a set of key points are extracted from reference images of objects;

2. the extracted key points are then stored in a database;

3. a novel object in a new image is recognised by separately comparing each

14



2.3 Methods for Object Recognition

feature of this new image to the features stored in the database. The Euclidean

distance is used as metric to determine the matching between features;

4. a set of matches with the stored database is formed and stored;

5. the object is then identified depending on the number of matches scored with

the stored database.

Comparing to other histogram-based approaches [40, 41], the SIFT features are

considered the most robust to the transformations of objects. Many examples in

the literature are also based on such descriptors, for example, the speeded up robust

features (SURF) and Harris corner detector [40, 41]. However, experimental results

[42] have shown that such descriptors may not perform well on a generic object

recognition task, due to the limited degree of invariance they provide. Many other

histogram descriptors, such as the square patch of an image [43], are incapable of

capturing discrepancies after object transformation [44].

2.3.2.2 Deep Learning Approach

The deep learning is a class of machine learning algorithms. It has recently shown

excellent performance on object recognition [45–48]. Convolutional neural networks

(CNNs) were shown to function well especially for large object image dataset. Gen-

erally, deep learning methods comprise the following common elements [45]:

1. a series of non-linear layers of image feature processing. Each layer of the

cascade receives the input from the previous layer’s output;

2. a bank of filters in each layer are formed either using unsupervised learning

methods or supervised learning methods;

At each layer of the cascade, deep learning models learn a different type of

features. Advanced layers learn more complex patterns of the objects, while the

first layers learn simple features, such as edges and lines. Deep learning methods

attempt to use the same structure of artificial neural networks.

The ultimate aim of deep learning methods is to find the optimum representation

of the image data depending on the structure of the model [46]. The higher level fea-

tures of the deep model are defined based on the composition of low-level features in

the previous layers. Learning features in many stages of a model allow for utilisation
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of complex features essential for object recognition. It also allows the model to be

independent of human-crafted features. Deep learning methods are now considered

as one of the best platform to handle large datasets [48]. The performance of other

object recognition models, however, levels out at a certain point. This is due to the

finite size of other models where more data can cause such model to over-fit.

Deep networks depend massively on parameter optimization and tuning [49].

Additionally, training deep networks can be time-consuming. In order to avoid the

massive time-consuming training stage for CNNs, state of art pre-trained CNNs

were used in Chapter 6 of this thesis to form highly optimised topologies for object

recognition.

2.3.2.3 Feed-Forward Hierarchical Approach

Hierarchical feed-forward models are inspired by the visual cortex of the primates

[50]. In particular, the ventral stream pathway, a hierarchy of layers responsible for

rapid object categorisation, see Figure 2.2. Hierarchical models provide a robust

platform for object recognition using flexible and trainable features. The main

examples of hierarchical feed-forward models are the hierarchical-MAX model [2,3]

and Fukushimas multilayer perception (Neocognitron) [51].

Experimental experiments on human subjects showed that humans are able to

categorise objects in less than 150 ms [3]. Hierarchical feed-forward models utilise

the following mechanisms of the ventral visual stream of the primates visual cortex:

1. Inspired by the primary visual area (V1) simple cells, these models achieve

selectivity using excellent filters for feature extraction.

2. Inspired by V1 complex cells, invariance can be attained by down-sampling

the response using the pooling operation [52].

Hierarchical feed-forward models have an abstract structure. This means that

they can extract high-level features from the input images using few layers in their

hierarchy. However, they perform well in terms of classification accuracy, especially

in a cluttered environment. The neurons in the low areas are sensitive to low-level

features such as edges and lines. The activation of these neurons is reflected in the

next layer of the hierarchy, which extracts higher-level features. By the end of the

hierarchy (V4), these models become more selective to object’s shapes, regardless
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Figure 2.2: Illustration of the hierarchical architecture inspired by the visual cortex
(taken from [2]).

of the viewpoint of the observed object. The processing of these networks is feed-

forward, hierarchical and local in each layer. Furthermore, the processing in each

layer depends on the processing at the previous layer. These models do not involve

the mechanisms of perception and top-down processing of the mammal’s visual

system. Top-down processing is the cognitive process that flows down to lower-level

functions and accordingly making decisions [53].

Feed-forward hierarchical models have the following advantages over the previ-

ously explained approaches for object recognition:

1. They can learn formative , i.e., class-specific and rich hierarchical features

through their layers of hierarchy [3].

2. They perform the visual recognition task accurately with a high speed and
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using an abstract structure [2].

3. They operate with a reduced computational complexity [54].

4. They efficiently generalise to objects with different backgrounds, orientations,

scale and position [4].

In this thesis, the main tool that will be used for object recognition is hierarchical

feed-forward model.

2.4 Common Methods of Feature Extraction and

Classification

The main methods of feature extraction used in this thesis are explained in this

section. In particular, principal component analysis (PCA), independent compo-

nent analysis (ICA), dictionary learning, elastic net regulariser and support vector

machine (SVM).

2.4.1 Principal Component Analysis

The PCA algorithm is a statistical approach that attempts to convert a set of ob-

servations of correlated variables into uncorrelated variables. It uses orthogonal

transformation to extract the principal components for the input data. It can also

be used to shrink the input data. The number of principal components represents

the size of the output data. The first principal component corresponds to the highest

possible variance of the input data. The succeeding component has the largest vari-

ance with the condition that it is orthogonal to the previous components. Therefore,

the produced vectors are uncorrelated and orthogonal [55].

The PCA method is based on the eigenvector multivariate analyses. The internal

representation of the PCA data provides a good description of the variances of the

original data. Moreover, it provides a projection or view of the data from the most

instructive viewpoint using the first few principal components [56].

Whitening Transformation

PCA whitening transformation is based on scaled PCA. It is a linear transformation

of an input vector into new variables with a covariance of an identity matrix [57].
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Each of the new variables has a unity variance, therefore, uncorrelated with one

another [58]. The process transforms the input vector into a white noise vector, i.e.,

the components of the vector are statistically uncorrelated and have a probability

distribution with zero mean and finite variance. Therefore, it is named whitening.

In two-dimensional images framework, the whitening transformation includes the

following two steps:

1. Project the input data into the eigenvectors. As a result, the components of

the dataset become uncorrelated.

2. Normalise the dataset so that each component has a variance of 1. This is

achieved by dividing all the components by the square root of the eigenvalues.

For an input image data X ∈ Rm×n that contain m features and n data points,

the covariance matrix C ≈ E[XXT ] can be estimated from the data matrix as

follows:

CX ≈
XTX

n
. (2.1)

The covariance matrix (CX) has eigenvectors in the columns of E and eigenvalues

on the diagonal of D, as the following

CX = EDET . (2.2)

The desired PCA whitening transformation matrix WPCA is given by

WPCA = D−1/2ET (2.3)

The whitening transformation is considered as a decorrelation process, scaled by

the inverse of the square root of D−1/2. The covariance of the transformed input data

is the identity matrix, meaning that they are uncorrelated and each has variance 1.

2.4.2 Independent Component Analysis

Independent component analysis (ICA) is a well-known tool in signal and image

processing used to separate signals into subcomponents [59]. It is an important

statistical technique for extracting hidden variables from an observed random mea-

surement. It can be considered as an extension to the PCA method [60].
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The ICA method was applied in many fields, for instance, digital images, eco-

nomic indicators, psychometric and document databases. However, the main appli-

cation of the ICA method is the blind source separation. Blind source separation

can be explained as a mixture of signals recorded simultaneously. Then, the signals

are decomposed [59]. The input measurements of the ICA method are usually given

as a time series or a set of parallel signals.

The independent components of the ICA method are assumed to be statistically

independent [61]. The two random variables s1 and s2 are said to be statistically

independent if the information in s1 does not provide any information about s2

and the reverse is also true. Mathematically, however, the above two variables

are considered independent only if the joint probability density function (pdf) is

factorisable to the product of the marginal distribution as the following:

P (s1, s2) = p1(s1)p2(s2), (2.4)

where pj denotes the joint probability. In a compact form, the equation can be

rewritten as:

Pj(s) =
N∏
i=1

pi(si). (2.5)

The distribution of the independent components of the ICA method is generally

non-Gaussian. Also, it is assumed that both the independent components and the

mixture variables have zero mean. The blind source separation scenario is used

here to mathematically formulate the ICA method. The observed signal x (whose

elements are the linear mixture x1, ..., xn) can be decomposed using a vector of the

independent components s (whose elements are s1, ..., sn) and the mixture matrix

A. This can be formulated as the followings

x = As, (2.6)

where A and s are both unknown.

The task of the ICA method is to recover the signal of the original sources,

i.e., the independent components s. To further simplify the above formulation, the

number of voices are assumed to be similar to the number of the observed mixtures.

Therefore, the coefficient matrix A is always square. As a result, the matrix A
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is invertible, producing the unmixing matrix W. The signal s can, therefore, be

computed as follows

s = Wx. (2.7)

The ICA method describes how the observed measurements are generated by

the process of mixing the components of s. Therefore the ICA model is considered

as a generative model. In this thesis, the ICA method is used to generate filters

from natural scene images. Whitening transformation is first applied to random

patches of the natural scene images. Then, the ICA method is used to extract the

independent component of these patches, creating excellent filters used to extract

low level features from the input images.

2.4.3 Dictionary Learning

Dictionary learning is a method that aims to find a sparse representation to the input

data [62]. It is also known as sparse coding. The process involves generating a linear

combination of elements to reconstruct the input data [63]. The combination of these

elements form a dictionary and each element is called an atom. There are several

important features in dictionary atoms, for instance, they maybe over-complete set

(i.e., the dimension of the produced signal may be larger than the dimension of the

input signal) and unlike the ICA method, they are not necessarily orthogonal [64].

The above features allow dictionary learning to have multiple representations of the

input signal. It also provides more flexibility and sparsity in its representation.

The main rationale of dictionary learning is to reconstruct an input data using

a dictionary and a sparse code, i.e., an efficient representation that capture the pat-

tern and structure of the input data [62]. It can reproduce the input data with the

minimum possible number of atoms. Prior to dictionary learning, the common ap-

proach was using hand-crafted dictionaries, for instance, wavelet transformation and

Fourier. Ideally, when a dictionary fits the input data, the sparsity can efficiently

increase. This phenomenon has many applications in data compression, decompo-

sition, image de-noising, audio and video processing, image fusion, in-painting and

image analysis classification.

In this thesis, dictionary learning is used to process image data. Given an image

data X = [x1, ..., xk], xi ∈ Rd, the objective of the dictionary is to compute a dictio-
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nary D ∈ Rd×n . Both the dictionary matrix D = [d1, ..., dn] and the representation

matrix R = [r1, ..., dk], are minimised such that each representation vector ri ∈ Rn in

‖X−DR‖2F is sparse enough for reconstructing the images. This can be formulated

as follow

minimize
D,R

‖X−DR‖2F + λ1 ‖R‖0

subject to ‖di‖2 ≤ 1, i = 1, · · · , n,
(2.8)

where ‖.‖F denotes the Frobenius norm and λ1 is the regularization coefficient.

The constraints on di are introduced to prevent the atoms from extending into high

values for lower values of ri.

The above minimisation problem is non-convex due to the existence of the `0

norm. In other applications, the `1 norm regulariser or the least absolute shrinkage

and selection operator (LASSO) regulariser is used to introduce more sparsity [65].

As a result, the above minimisation problem becomes convex with respect to the

variables D and R individually, i.e., fixing D and solving for R. However, as a whole,

the minimisation problem is not jointly convex. Similar facts can be observed when

introducing the `2 norm regulariser or ridge regression.

In Chapter 3 of this thesis, a combination of both LASSO and ridge regres-

sion that form the elastic net regulariser is used to train dictionaries. The below

subsection will discuss the elastic net regulariser in more detail.

2.4.4 Elastic Net Regulariser

The elastic net regulariser is a hybrid of LASSO and ridge regression. In particular,

it combines both the `1 norm and the `2 norm penalties [66]. In-line with LASSO

regulariser, the elastic net regulariser can shrink the input data by introducing

zero-valued coefficients [67]. Research studies have suggested that the elastic net

regulariser can outperform the LASSO regulariser for processing highly correlated

predictors [68]. The Elastic net regulariser is also considered as a robust platform

that encourages the grouping effect. In particular, for highly correlated predictors.

Unlike the LASSO regulariser, the elastic net regulariser is robust when the number

of observations is considerably less than the number of predictors.

In image processing, the elastic net regulariser can be used in dictionary learning.

A dictionary D ∈ Rm×p and sparse weighting matrix S ∈ Rp×n can reconstruct an
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input image dataset X ∈ Rm×n. In the matrix notation, sparse coding is formulated

as X = DS. To learn the dictionary D and the sparse weighting matrix S, elastic-net

regularization can be formulated as the following:

minimize
D,S

‖X−DS‖2F + λ1 ‖S‖1 + λ2 ‖S‖2F

subject to ‖di‖2 ≤ 1, i = 1, · · · , p,
(2.9)

where ‖.‖F denotes the Frobenius norm and λ1, λ2 ∈ R≥0 are the regularization

coefficients that regulate the trade-off between sparsity and the sensitivity of basis

selection. When λ1 = 1 and λ2 = 0, equation (2.9) reduces to the `1 coding method

described in [4, 69], hereafter called the LASSO and when λ1 = 0 and λ2 = 1,

equatioin (2.9) reduces to another extreme case, called ridge regression.

Figure 2.3(a) illustrates the solutions of LASSO and ridge regression. It visualises

the solutions of them by plotting their loss function (sum of squares) equicontours

using the least square solution. It displays the points where the equicontour touches

the edge of the regularisers function [68]. For a large value of λ, the area of the

penalty constraint become larger. The example shown in Figure 2.3(a) is performed

using only two dimensions (β1 and β2). The optimum estimate of the model param-

eter occurs at the point where both contours intersect with each other. The LASSO

regulariser function is an `1-ball centred at the origin, while the ridge regression

function is an Euclidean `2-ball. As a result of the sharp corners of the function of

LASSO, the solution of the whole minimisation problem is likely to touch its func-

tion at an axis point. Therefore, one of the two dimensions will always be zero. For a

large dimensional scenario, the solution using the LASSO regulariser will, therefore,

be extremely sparse.

The penalty region of the elastic net regulariser is shown in Figure 2.3(b). It can

be observed that the elastic net penalty region is a mix between the `1 norm and the

`2 norm regularisers. The elastic net regulariser is more robust to multicollinearity

due to its curved constraint region. It shows sharp corners due to the utilisation

of the LASSO regulariser in its penalty function. Therefore, it is equipped with an

aggressive variable selection property.
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Figure 2.3: a) The visualisation of the two-dimensional solutions of the least square
problem for LASSO regulariser and ridge regression. b) The constraint region of the
elastic net regulariser.

2.4.5 Support Vector Machines

Support vector machines (SVM) is becoming more popular in many applications

including object recognition [70]. Here, for completeness, a brief description of the

SVM method mechanisms is mentioned. The SVM is a supervised learning method

for regression analysis and classification. For each set of training data within a

specific class, the SVM method can build a model that allocates the examples of

data to one class or the other [71]. The SVM model represents the examples as

mapped points in space, as such, the points of different categories are separated with

the largest possible gap. Therefore, the new predicted examples are converted to

the same space and a prediction take place to decide to which class they belong [70].

The SVM classifier utilises a hyperplane to linearly separate the training data in

order to reduce the error for classifying the unseen test data. The optimal hyperplane

is estimated using the training data by selecting a weighted combination called the

support vectors. In this thesis, a multi-class linear SVM [70, 72] implemented

within the LIBLINEAR library [72] was selected as the main classifier due to its

computational simplicity.

The SVM method was applied to efficiently process large-scale data to tackle
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problems regarding the face detection [73]. In the wavelet domain, the SVM method

was also used for detecting pedestrians faces [74]. In [26], the SVM method was used

to recognise the pose of a face image, this study involved a large image dataset of

faces, the face recognition process was performed using the eigenfaces method. The

SVM was widely used for object recognition. In [75], SVMs were used to recognise

objects without feature extraction. Furthermore, a combination of the HMAX model

and the SVM classifier was developed to recognise unseen images of objects [2].

2.5 Related Work

This section will present the literature on object and scene recognition. It will also

present a literature of the common challenges, such as the occlusion and the used

methods to overcome them. It will then present a thorough literature regarding

the importance of the different regions of vision for recognising objects and scenes.

Finally, it will provide a brief literature in reference to the environment of the object

and its importance in the recognition process.

Machine vision has become an essential component of many human-computer in-

teraction applications [15, 76]. By augmenting computers and robots with artificial

vision, they have become capable of observing and (partially) understanding sur-

rounding environments [77,78]. Yet, reliably distinguishing objects and animals in

arbitrary and cluttered backgrounds has remained challenging. This is because rep-

resentations can differ considerably depending on position, orientation and scale [79].

The recognition performance of many computer vision algorithms, however, declines

when the object is rotated or shifted excessively [40,80].

In contrast, biological systems can recognise an object with different positions,

orientations and scales following a single observation [29]. In addition, they can

generalize to identify new objects, within the same category. Machine vision systems

should, therefore, be able to similarly recognise and classify novel objects.

Neuroscience experiments in rodents, e.g. [81], non-human primates, e.g. [3] and

humans [82] support the hypothesis that the visual cortex can be approximated with

a feed-forward multi-layer structure. This architecture has inspired the multi-layer

hierarchical MAX (HMAX) model [3]. Recently, the HMAX model, shown in Figure

2.4 was implemented for use in real-time object classification applications [83,84].

The primary visual cortex of the brain uses sparse coding to encode input data
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Figure 2.4: The basic structure of the original HMAX model.

by strong activation of a relatively small set of neurons [79, 82, 85]. Whilst, this

method improved classification performance, the LASSO regulariser discarded the

grouping effect in the higher layers of the model [69].

Despite progress towards more accurate object recognition, partial occlusion re-

mains the main challenge even to state-of-the-art object recognition models. Recog-

nising partially occluded objects is an essential problem in visual processing. Re-

searchers have introduced different types of solutions to address this problem [86,87].

However, a common factor in their approaches was modelling the presence of oc-

clusion. Typically, these methods depend on the occluder, where the training data

comprises both the occluder and the occludee. The key limitation of these methods

is their limited generalisation capabilities as they are application specific.

For example, when recognising a car parked in a road, the visible part of the car

and the occluder form a pattern that continuously repeats itself. These patterns

were sufficient to achieve correct classification.

One other approach to handle occlusion was utilising the statistical inconsistency
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between occluder and occludee. Girshick et al. [88] developed a grammar model to

detect occlusions. It is based on representing objects using many segments within

a defined structure, to perform recognition. In [89], three-dimensional sensors have

been utilised to determine the depth inconsistency, whereby occlusions are located

and isolated. Similarly, In [90, 91], local similarity has been used to decorrelate

partial occlusions. However, the above approaches may not be practical in all classi-

fication scenarios. The performance decreases drastically whenever an image feature

does not match the ideal classification scenarios.

The human visual system processes the peripheral and central information of the

visual field using a sophisticated retinotopic mapping. The peripheral and central

representation of the visual scene can be found in low- and mid-level areas of the

visual cortex, for example, V1-V4 [92]. Recognising objects depends more on details

associated with central data while recognising buildings and scenes are associated

with peripheral data [93]. The fMRI records showed more brain activity in fusiform

face area (FFA) when recognising centre-based data such as faces [94] and words [95].

However, more activity was registered in the parahippocampal place area (PPA)

during the recognition of peripheral-based data, such as buildings [96, 97]. The

mid-fusiform sulcus (MFS) segregate the peripheral-biased pathway and the central-

biased pathway in order to enable parallel processing [98].

The human visual system provides a compromise between fields of vision and its

resolution [99]. It reduces the size of the processed visual data by using lower neural

resolution in peripheral vision [100]. The retina needs to compress information from

100 million photoreceptors to only 1 million ganglion cells, suggesting a compression

ratio of at least 100:1 [101]. The compression objective is presumably to reduce the

energy cost of both the transmission and subsequent processing. Much can be

learned from this hierarchy in the next generation of machine vision systems.

The angle formed by the two extremities of a viewed object is referred to as the

visual angle. Behavioural research shows that the highest level of recognising objects

in a particular form within a certain environment can be achieved within a range of

visual angle from 1◦ to 2◦ of the fixation point [102, 103]. Object perception drops

gradually as the eccentricity, that is anatomical segregation of peripheral versus

central visual field bias, increases. The concentration of both photoreceptors and

ganglion (communication) cells decreases with eccentricity from the fovea. As such,

resolution and perception decreases into the peripheral vision. Therefore, the highest
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visual acuity is perceived, when a human observer focuses on the central fovea [104].

However, the speed of visual processing is greater in the periphery [105].

Recently, several computer models of human vision have been developed [76,106–

108]. Such models are based on coding the real-world visual data into numerical

values, that enables the computer to meaningfully interact with the natural environ-

ment [77]. Despite progress towards a more accurate object and scene recognition,

machine-based vision still falls short of the human recognition capability. Develop-

ing systems which mimic the visual cortex is a challenging, yet possible, path to

achieving comparable performance.

In a similar context, studies have shown that models that function well in an

indoor environment, perform poorly in an outdoor environment and the reverse is

also true [109]. This is due to the stark difference in local and global properties of

both environments. The daily life environment, such as living-rooms and city streets,

comprises a large number of objects. The nature of these objects depends on the

context in which they can be found. Current algorithms of object recognition are

trained to recognise objects regardless of their context, dismissing all the information

in the backgrounds. This poses a great difficulty for these models to make logical

decisions.

Scene understanding is a necessary stage that provides important information

about the possible object’s identity. Identifying the scene can dramatically re-

duce the probabilities of the object identity and therefore increasing the recognition

chance level. For example, outside in a desert, it is more likely to expect a camel

than a microscope. Context-based recognition that depends on the environment

characterises the object recognition process.

2.5.1 Limitations and Challenges

Several issues and challenges remain untackled for the recent models of object recog-

nition which affect their performances. These are:

• The transformations of objects, for instance, orientation, scale, position and

surrounding background. The performance of current models of object recog-

nition decreases dramatically due to the introduction of the above factors.

• Recognising objects that are highly correlated, for instance, motorcycles and
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bicycles. Models of object recognition show decreased performance to classes

with a high degree of correlation. In particular, local features and backgrounds.

• Recognising objects under partial collisions because the performance of the

existing object recognition models drops dramatically in the presence of oc-

clusions.

• The increased number of layers in recently developed object recognition models

makes their implementation more complicated, computationally expensive and

slow to fine-tune.

2.6 Datasets

This section describes in detail the main datasets employed in this thesis. Also, it

explains their properties and challenges. There are also other smaller image datasets

used in this thesis. More description of these will be provided in separate sections

in the following chapters.

2.6.1 Caltech 101 Dataset

The Caltech-101 image dataset [110] is a well-known object image database. It is

considered as one of the main benchmarks in the field of machine vision. It comprises

9144 different images in 102 classes including the Google background category. The

Google background category consists of 468 images randomly selected from Google

images. Instead of forcing an object recognition model in making a wrong class label

in classification scenarios where the model cannot identify an object, this class is

added to the dataset to solve this problem. It corresponds to the uncertain decision

that a model might predict when trained with Caltech 101 dataset. The size of each

image is approximately 300×200 pixels. It has a wide range of classes, for instance,

bonsai, dolphin, leopards and accordion. In addition, It is considered diverse in

terms the shapes, sizes, scales and orientations of the objects. However, the number

of images per class is inconsistent, where some categories have 31 images per class

and other categories have up to 400 images per class. This dataset is tremendously

challenging because images are of different size, illumination, appearance, viewing

angle and orientation. Some of them are portrait and the others are landscape.
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Brain Crab

Dalmatian Euphonium

Barrel Leopard

Figure 2.5: Samples of the images in the Caltech 101 image dataset [110].

The Caltech 101 dataset was used in most of the experiments in this thesis, for

instance, in Chapter 3, Chapter 4 and Chapter 5. Some examples of Caltech 101

dataset are shown in Figure 2.5.

2.6.2 Fifteen Scene Categories Dataset

Fifteen scene categories [111] dataset is a well-known scene image dataset. It consists

of fifteen classes of scene images. The dataset was first collected by Fei-Fei and
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Suburb Kitchen

Living room Coast

O�ce Store

Figure 2.6: Examples of the images in fifteen scene categories dataset [111].

Perona [112]. It was then upgraded to include fifteen image classes in [111]. They

have collected the dataset from personal photographs, Google image search and

other datasets.

The dataset contains a plethora of scene images, for instance, natural scenes

(such as forest and beach), man-made indoor scenes (such as kitchen and store) and

man-made outdoor scenes (such as streets and buildings). Each class consists of 200

to 400 images, with an average image size of 300 × 250 pixels. The classes were:

bedroom, CAL suburb, industrial, kitchen, living room, MIT coast, MIT forest,
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MIT highway, MIT inside city, MIT mountain, MIT open country, MIT street, MIT

tall building, PAR office and store. This dataset is considered as one of the complete

scene category datasets in the literature thus far.

The dataset was used in Chapter 3, Chapter 4 and Chapter 5 of this thesis. Some

examples of fifteen scene category dataset are shown in Figure 2.6.

2.7 Chapter Summary

In this chapter, an introduction to the available methods of object recognition sys-

tems was presented. It has included the main coordinate systems used for recog-

nition, such as object-centred approach and viewer-centred approach. Then, an

overview of the available methods of the viewer-centred approach was given. This

has involved image-based methods and feature-based methods. Next, the main ap-

proximations of the feature-based methods were discussed, for instance, histogram-

based methods, deep learning method sand feed-forward hierarchical methods. The

main processes that were used in this thesis were also highlighted. The common

techniques for feature extraction were discussed. A relevant literature of the recent

methods was then provided. Also, the main unsolved limitations and challenges in

object recognition were highlighted. Finally, a synopsis of the datasets which will

be used in the proposed contributions in chapters 3, 4, 5 and 6 was introduced.

The next chapter will provide a developed feed-forward hierarchical model of the

visual cortex for object recognition. It will describe the limitations of the recently

developed hierarchical models. It will then discuss the main features of the newly

developed model. It will also show comparisons with other hierarchical models on

two image datasets.
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Chapter 3

Object Recognition with an Elastic

Net-regularised Hierarchical MAX

Model of the Visual Cortex

3.1 Introduction

This chapter focuses on object and scene recognition in applications where the envi-

ronment is cluttered, for instance, recognising a cup from a different point of view,

different colours and different scale and position. Therefore, a new machine vision

model for object recognition is introduced.

Since mammals achieve superior performances for observing the environment

and intelligently classify objects [2, 113], the designed model focuses on replicating

basic facts about the mammal’s visual cortex. In particular, the ventral visual

stream, a hierarchy of the visual cortex areas responsible for object recognition in

the brain [3]. In order to improve the performance of the currently available models

of object recognition, an elastic net-regularised dictionary learning approach was

developed for use in the HMAX model. The model was termed as the En-HMAX

model. The En-HMAX model developed in this chapter is designed to mitigate the

limitation points mentioned in section (1.4). Therefore, the major contributions of

this chapter are

• providing features invariant to transformations, for instance, object orienta-

tion, scale and rotation.

• learning formative features from the highly correlated data.
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• performing the recognition process using an abstract architecture.

This chapter discusses the steps and the methods used for designing the En-

HMAX model. This includes the architecture of the original HMAX model. Also,

the features and methods introduced in the En-HMAX model are explained. The

datasets used to test the En-HMAX model is presented. The results were then

presented and the statistical analysis was conducted. With the En-HMAX model,

the sparsity-grouping trade-off was exploited, such that correlated but informative

features are preserved for object classification. As a result, the developed model

was robust to the challenging daily-life environment, for instance, occlusions. A

comparison was made with other available models. Finally, a summary of the chapter

is provided.

3.2 The HMAX Model

The HMAX is a well-known object recognition model that attempts to mimic the

same mechanisms of the primates visual cortex, a hierarchy of visual areas that

mediate object recognition in the brain [2, 3]. It summarises the basic facts of the

ventral visual stream of the visual cortex with similar hierarchal structure [3]. It

was first developed to achieve invariances with similar shape tuning properties of the

neurons in the mammalian’s inferotemporal cortex, the highest visual area in the

hierarchy of the visual cortex [2,113]. The model has proved to be successful in many

datasets, also providing interesting perspectives. It provided a simple computational

platform that is physiologically plausible to explain the cognitive processing. The

below section explains the HMAX model with more explicit details.

3.2.1 Gabor Filter and Other Operators

In the standard HMAX model, Gabor filters [114] with different scales and ori-

entations were used to filter the input images in the first S1 layer. Gabor filters

have received significant consideration in image processing due to their excellent

capabilities for extracting features. The outline of simple-cell receptive fields in

the mammalian cortex can be modelled by implementing two-dimensional Gabor

function [114, 115]. The frequency and orientation illustrations of Gabor filters are

similar to those of the human visual system [116].
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  Input image

Orientation = 45° 

Orientation = 90°

Orientation = 135°

Orientation = 180°

Orientation = 225°

Orientation = 270°

Figure 3.1: Response of the input image above to Gabor filters with six orientations.

Gabor filters are able to obtain textures of the entities within the images [117].

Therefore, they are considered an excellent feature extraction platform for two-

dimensional images. The filters coefficients can be generated by multiplying the

Gaussian kernel function by a sinusoidal wave [118].

There are numerous applications that use Gabor filters, such as for fractal di-
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Input image

Sobel operator Prewitt operator Canny operator

Figure 3.2: Classic edge detection operators applied to an image.

mension management, image coding, image representation, texture representation,

target detection, edge detection, discrimination, retina identification and document

analysis [114–120]. Figure 3.1 shows the original image (above) and the correspond-

ing Gabor filter results of different orientations (below). The parameter values of

Gabor filters could be modified depending on the task. Figure 3.1 shows the results

of using Gabor filters with different orientations.

The first stages of mammalian vision system involve extraction of the edges and

local features [119]. Edges are considered as an important feature of the images.

Edge detection operators outline the surfaces and objects of the scene and disregard

unimportant details. The followings are other well-known operators that perform

edge detection: Sobel, Robert, Prewitt and Canny operator [121]. Figure 3.2 shows

examples of using the three of these operators applied on the above input image.

The main difference between these operators can be summarised by the kernel type

and the smoothing mechanism. The mechanism of computing the gradient in two-

dimensional images is different from one operators kernel to the other [120].

The features of the S1 layer of the HMAX model are found by a bank of Gabor

filters, resembling the cortical simple cell receptive fields which respond to the input

activation within a particular orientation, scale and position. These filters can be

represented with:
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 = 0  = 45

 = 90  = 135

Figure 3.3: Gabor filters with different combinations of orientation.

F (x, y) = exp

(
−(x20 + γ2y20)

2σ2

)
× cos

(
2π

λ
x0

)
(3.1)

where

x0 = x cos(φ) + y sin(φ),

y0 = −x sin(φ) + y cos(φ).

In equation (3.1), φ is the orientation of the stripes in a Gabor function, λ is the

wavelength of the sinusoidal factor, γ is the spatial aspect ratio and σ is the standard

deviation of the Gaussian envelope. Figure 3.3 shows examples of Gobor filters with

different combination of orientations.
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3.2.2 The HMAX Model Architecture

The feed-forward construct of the HMAX model can simulate the function of the

early stages of the visual cortex in recognising objects [2, 113]. In each stage of the

HMAX model, two distinct groups of cortical cells are modelled [3]:

1. Simple cells S, to achieve selectivity;

2. Complex cells C, to offer invariance.

Therefore, the original HMAX model (Figure3.4A) comprises two stages. A set of

Gabor filters [122] forms the first stage and the second is a template matching mech-

anism. Each stage of the HMAX model has two sub-stages containing simple and

complex cells, namely Simple 1 (S1), Complex 1 (C1), Simple 2 (S2) and Complex

2 (C2) [3].

The HMAX model uses the classic scheme of convolution/pooling as reported

in [3]. The convolutional layers generate selective feature maps and the pooling

layers provide invariance.

The input image is first filtered with the above Gabor filters. This results in S1

feature maps on which the MAX pooling operation is applied (Figure 3.4B). MAX

pooling is performed according to scale and orientation to achieve the sub-sampled

layer C1 feature maps. The complex C1 units obtain the maxima of neighbouring

square patches ui,j of S1 feature maps as follows:

C1(i, j)response = max ui,j. (3.2)

The S2 layer behaves as a redial basis function unit (RBF). To build the S2

layer, a set of prototype random patches is extracted from the C1 layer. All patches

from the C1 layer are then compared with these prototypes using a radial basis

function or a Euclidean distance metric. The response of the comparison is inversely

proportional to the distance. The response of S2 units rely on the Euclidean distance

between the stored prototypes and the new input image in a Gaussian fashion. That

is, for an image patch Y within the C1 layer, the distance r of the corresponding S2

unit is given by:

r = exp(−β ‖Y −Pi‖2), (3.3)

where β defines the sharpness of the metric and Pi is one of the N features at the
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Table 3.1: The selected parameters for the S1 and C1 layers of the HMAX model.

S1 layer C1 layer

Filter size s Gabor σ Gabor λ Scale band S
Spatial pooling grid

(NS ×NS)
Overlap ∆S

7 × 7

9 × 9

2.8

3.6

3.5

4.6
Band 1 8 × 8 4

11 × 11

13 × 13

4.5

5.4

5.6

6.8
Band 2 10 × 10 5

15 × 15

17 × 17

6.3

7.3

7.9

9.1
Band 3 12 × 12 6

19 × 19

21 × 21

8.2

9.2

10.3

11.5
Band 4 14 × 14 7

23 × 23

25 × 25

10.2

11.3

12.7

14.1
Band 5 16 × 16 8

27 × 27

29 × 29

12.3

13.4

15.4

16.8
Band 6 18 × 18 9

31 × 31

33 × 33

14.6

15.8

18.2

19.7
Band 7 20 × 20 10

35 × 35

37 × 37

17.0

18.2

21.2

22.8
Band 8 22 × 22 11

centre of the RBF units. For each of the eight scale bands and across all positions,

the S2 maps are calculated based on the above.

Finally, the C2 layer is generated by MAX pooling of S2 to obtain position- and

scale-invariant feature maps for classification. For more details, the reader is referred

to [2, 3].

The parameters that control the pooling operation were experimentally adjusted

to achieve matching between the units of S1 and the units of C1 (see Table3.1) [2].
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A) Original HMAX Model

B) MAX Pooling Operation
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π/4 π/2 3π/40 π/4

0+π/4

0

0+π/4
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Figure 3.4: A) Schematic of the HMAX model. The basic model consists of a
hierarchy of two stages each having S and C layers with S1 simple-cell like response
properties to the C2 layer with shape tuning and invariance properties [3]. B) MAX
pooling operation over non-overlapping windows.

3.3 The Proposed En-HMAX Model

In this section, the structure of the elastic-net regularised version of the HMAX

model which is called the Elastic-net HMAX (En-HMAX) is reviewed. The En-

HMAX model comprises three layers, each consisting of both simple S and complex

C units. Instead of a Gabor filter in S1, the independent component analysis (ICA)
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Example input images

Learned with 
ICA

Pooling PoolingPooling

Learned with
Elastic-net

Learned with 
Elastic-net

Layer 1: S1 Layer 2: C1 Layer 3: S2 Layer 4: C2 Layer 5: S3 Layer 6: C3

Simple Cells (S) Complex Cells (C)

.

..

Forest

Mountain

Building

Filters Dictionary Learning Dictionary Learning

Spatial Pyramid Pooling

Forest Mountain

Building

Feature Extraction 

Feature Vector Formation Classi�cation

Feature maps

A

B C

Figure 3.5: A) Schematic of the En-HMAX model with each block representing an
S or C layer of the model along with their function. B) Spatial pyramid pooling
layer with a grid resolution of {1, 2, 4}. C) The classification layer. Images shown
in the figure are extracted from a scene category dataset [111,112].

is used to generate filters that resemble the receptive fields of V1 simple cells in the

visual cortex [123–125]. Extracting filters from natural images using ICA is believed

to better model V1 receptive fields of the visual cortex. The S2 and S3 units of

the En-HMAX model utilises an elastic-net regularised dictionary learning [67] to

reinforce model sparsity and grouping effect, simultaneously.

The proposed En-HMAX model (Figure 3.5A) differs from the original HMAX

model in the following aspects:

3.3.1 Number of Stages

The original HMAX model has only two stages, each comprising a simple and a

complex layer, as shown in Figure 3.4A. However, Serre et al. [2], among others,

showed that an HMAX model with 3 stages is more appropriate to model rapid

categorization. Therefore, the designed En-HMAX model was designed with three

stages. Nevertheless for completeness, both 2- and 3-stage En-HMAX models were
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3.3 The Proposed En-HMAX Model

compared with the original 2-stage HMAX model. Adding a third stage can help the

model to learn abstract features from different levels of the hierarchy. Generally, the

first layer of the model extracts basic features, such as edges and lines. The second

layer recognises advanced features such as shapes from a collection of the edges in

the first layer. Therefore, adding a third layer to the classical HMAX model can

enhance the model generalisation.

3.3.2 Elastic-Net Regularisation for The HMAX Model

Hu et al. [4] proposed the use of sparse coding in the HMAX model to better repre-

sent the visual cortex. They adopted independent component analysis (ICA) [123]

in the first simple layer of HMAX (S1) followed by an `1-regularised dictionary learn-

ing structure in the following S layers. Here, the same approach was followed using

the ICA method in S1 layer. Inspired by [66], the dictionary learning approach in

S2 and S3 was augmented by using both `1 and `2 norms of the sparse coefficients

matrix as penalizing terms.

Let X ∈ Rm×n contain m-dimensional image patches x in the S2 or S3 layers

of the En-HMAX model, D ∈ Rm×p be a dictionary comprising p bases d, and

S ∈ Rp×n include n sparse vectors s in its columns. Then, in the matrix notation,

sparse coding is formulated as X = DS. To learn the dictionary D and the sparse

weighting matrix S, elastic-net regularisation was used as the following

minimize
D,S

‖X−DS‖2F + λ1 ‖S‖1 + λ2 ‖S‖2F

subject to ‖di‖2 ≤ 1, i = 1, · · · , p,
(3.4)

where ‖.‖F denotes the Frobenius norm and λ1, λ2 ∈ R≥0 are the regularisation

coefficients that regulate the trade-off between sparsity and the sensitivity of basis

selection. When λ1 = 1 and λ2 = 0, equation (3.4) reduces to the `1 coding method

described in [4, 69], hereafter called the LASSO-HMAX model and when λ1 = 0

and λ2 = 1, equation(3.4) reduces to another extreme case, which in this thesis

referred as the Ridge-HMAX model. The notions of LASSO and Ridge regressions

are borrowed from [69].

The En-HAMX structure is followed by a feature formation layer in which the

spatial pyramid pooling (SPP) technique is adopted [126]. With the SPP method,

with a grid resolution of {1, 2, 4}, each feature map in C3 is transformed into
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3.3 The Proposed En-HMAX Model

Table 3.2: Parameters of the proposed model

Model parameters Stage 1 Stage 2 Stage 3

Sparse coding ICA Elastic net Elastic net

No. of bases 8 256 1024

Patch size 8×8 4 × 4 × 8 2 × 2 × 256

Sample size 25× 104 25× 104 25× 104

regularisation - λ1 = 0.15, λ2 = 0.15 λ1 = 0.15, λ2 = 0.15

Pooling method (
∑n

r=1 |qr|)
1
2 (

∑n
r=1 |qr|)

1
2 Max spatial pyramid

Pooling size 2 × 2 1 × 1 {1, 2, 4}

a feature vector of length 21. Figure 3.5B illustrates the structure of the SPP

operation. Finally, as illustrated in Figure 3.5C, we used a linear multi-class classifier

to group the input images. Detailed information on classification and cross validation

are presented in the following.

3.3.3 Pooling Method

The C1 and C2 complex layers were partitioned into small non-overlapping square

patches, termed q in a vector form. The `1 pooling was then applied such that from

each patch the `1-norm, that is (
∑n

r=1 |qr|)
1/2

was extracted. In addition, for C3 the

spatial pyramid [126] pooling method was used.

A full description of the parameters of the proposed En-HMAX model is pre-

sented in Table 3.2. The same parameters and settings were used in both training

and testing stages in all En-HMAX, Ridge-HMAX and LASSO-HMAX model se-

tups.
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3.4 Software Implementation

All models were implemented in Matlab on a dual-core i5 processor (3.4 GHz) PC

with 32G RAM without GPU acceleration. The average time for one single-threaded

operate within the standard architecture of the En-HMAX model was about 90 min-

utes. The timing calculations include parameter initialization, training and testing

of the Caltech-101 image dataset. The dictionary learning stage of the proposed

En-HMAX model remains a challenge to run on-line, where the filters are updated

continuously depending on the type of the environment. The PC used for these

experiments was a dual-core i5 processor (3.4 GHz) with 16 G RAM and all timings

were calculated on a single thread.

3.5 Image Database

3.5.1 Object Dataset

Seven image classes from the Caltech 101 dataset [110] were selected. These classes

were: bass (54 images), binoculars (33 images), brontosaurus (50 images), camera

(50 images), chair (62 images), gerenuk (34 images, also known as Waller’s gazelle)

and grand piano (99 images). Figure 3.6 shows two examples in four classes of the

dataset to reflect the richness of this dataset in terms of object size, orientation,

position and background. The rationale for choosing these classes was that an

ample number of images per class was available, which allowed tuning the model

parameters effectively; whilst keeping the computations to a reasonable level. Some

of the images of the Caltech 101 dataset were collected from Google Image search to

include the highest number of images for each category. Minimum preprocessing was

introduced to the images of the dataset. Some images in the dataset were manually

flipped such that objects of the images face the same direction. Lastly, the images

of the dataset were scaled roughly to approximately 300 pixels wide.

3.5.2 Scene Dataset

After the success of the eighth-scene dataset [127], emerged a need for a larger

and more complete dataset. Researchers intended to enlarge the number of classes

and the degree of complexity of the above dataset. To meet this need, fifteen scene
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A) B)

C) D)

Figure 3.6: Example of 4 (of 7) image classes, A) bass, B) brontosaurus, C) binoc-
ulars and D) grand piano that were used in analysis. Samples illustrate the range
of image sizes, orientations (portrait and landscape) and backgrounds [110].

category dataset was introduced. The fifteen scene dataset inherited the same classes

of the eighth-scene dataset, including two more outdoor classes and five more indoor

classes. As such, forming an integrated platform for scene understanding tasks,

a mandatory benchmark in recent research. It is considered as one of most the

complete scene category datasets [111].

The scenes dataset included man-made as well as natural scenes. Scene images

were extracted from a scene categories dataset that was collated by Li and Perona

[112] and augmented by Lazebnik et al. [111]. The images of the scene dataset have

different dimensions but on average are of 300 × 250 pixels. All images of the fifteen

scene dataset are converted to grey scale. The classes in the Scenes dataset are:

bedroom (216 images), suburb (241 images), industrial (311 images), kitchen (210

images), living room (289 images), coast (360 images), forest (328 images), highway

(260 images), inside city (308 images), mountain (374 images), open country (410

images), street (292 images), tall building (356 images), office (215 images) and store

(315 images). Figure 3.7 shows three examples from each category.

3.6 Classification

Two classification scenarios were conducted of the object dataset: 15 or 30 images

were selected randomly from each class to train the classifier. The remaining sam-

ples in each class were used for testing the classifier. However, for the scene dataset
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Bed Room (2016) Suburb (241)

Industry (311)

Kitchen (210)

Coast (360)

Living Room (289)

Forest (328) Highway (260) 

Inside City (308)

Mountain (374) Open Country (410)

Street (292)

Tall Building (356)

Store (315)

Figure 3.7: Example images from the scene category database [111].

experiment, 100 images per class were used for training. The number of test images

in each class was different, therefore to avoid bias, classification scores were aver-

aged across all categories. Additionally, to ensure that the classification scores were

not biased by the random choice of training samples, the classification was repeated

for 20 independent runs in each condition (15 and 30 training samples). The av-

erage classification scores were reported together with the standard deviations. A
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Table 3.3: The average sparsity achieved with different models

LASSO-HMAX En-HMAX Ridge-HMAX

C2 C3 C2 C3 C2 C3

0.004 0.001 0.354 0.102 0.427 0.112

multi-class linear support vector machine (SVM) [70, 72] implemented within the

LIBLINEAR library [72] was selected as the classifier due to its computational sim-

plicity. The size of the output feature of the En-HMAX model is 21504 for each

image. These features are fed into the SVM classifier for classification purposes.

3.7 Statistical Analysis

To test the statistical significance of using the En-HMAX model in improving the

classification performance, a 3× 2× 2 analysis of variance (ANOVA) was performed

with repeated measures. The main factors were the choice of model (LASSO-, En-

and Ridge-HMAX), whether classification was carried out at C2 or C3 layers, and

finally the number of training samples, 15 versus 30. Following the main analysis,

post-hoc comparisons were performed. Multiple comparisons were adjusted using

Bonferroni correction. Furthermore, the F1-scores was calculated and reported to

measure the En-HMAX model test’s accuracy. The F1-score computes both the

recall and the precision of the test data. It then obtains the average of the recall

and the precision, where the maximum value that the F1-score can reach is 1.

3.7.1 Quantifying Sparsity

It was suggested that using two penalty terms in (3.4), `1 and `2-norms of S, would

lead to extraction of sparse C2- and C3-layer feature maps, which can retain second,

and potentially higher, order correlation features. To support this, representative

examples of C2- and C3-layer feature maps were provided. Feature maps were cal-

culated with the En-HMAX and LASSO-HMAX (λ2 = 0) model settings in Figure

3.8. In this figure, the responses of the C2- and C3-layers, calculated with the En-

HMAX model, have several areas with class-specific strong activations that resemble

the original image, e.g. the neck of the brontosaurus. The feature maps extracted
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 En-HMAX  LASSO-HMAX
C   layer2 C   layer3 C   layer2 C   layer3

A)

B)

Figure 3.8: Higher order correlation in representative feature maps extracted by
using the En-HMAX model from the two example images A and B. Feature maps
obtained by the En-HMAX model extract the neck of the brontosaurus very clearly.
On the other hand, feature maps calculated with the LASSO-HMAX model are too
sparse to reveal any determining feature of these image classes. Feature maps are
gray scale. For visualization only, color scaling was used and feature maps were
enlarged to counterbalance size shrinkage due to norm-pooling. Images are taken
from Caltech 101 dataset [110].

by the LASSO-HMAX model are, however, too sparse and although they can cor-

respond to some of the important features of the input images, many of the other

important details are missed.

Table 3.3 reports the average sparsity achieved when all images of all classes

were introduced to the En-, LASSO- and Ridge-HMAX models. As predicted, using

the En-HMAX model led to sparsity levels that fall between those achieved with the

LASSO- and Ridge-HMAX models in both C2 and C3 layers.
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Figure 3.9: Performance comparison of the En-, LASSO- and Ridge-HMAX models
with respect to the ROC and AUC measures; Top: Samples from images classes
with different sizes and orientations; Bottom: The corresponding ROCs curves and
the calculated AUC values for each image class. The highest AUC value is in a bold
font. The vertical and horizontal axes denote the true positive and false positive
rates, respectively.

3.8 Results

3.8.1 Object Classification Scores

A comparison was made between the En-, LASSO- and Ridge-HMAX models in

terms of classification accuracy. For completeness, the classification scores achieved

by the original 2-layer HMAX model [3] were included. Also, the results of the

recent models of deep learning algorithms are reported using pre-trained neural

network. Table 3.4 reports the classification results. Statistical analysis revealed

the main effect of the model (F2,18 = 266.59, p < 10−5), feature map selection

(F1,19 = 24.37, p < 10−5) and number of training data (F1,19 = 115.83, p < 10−5). In

both 2- and 3-layer structures and in both 15 and 30 training sample conditions, the

En-HMAX model outperformed all other algorithms (p < 10−5). The performance
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Table 3.4: Average classification accuracy ± standard deviation (SD).

HMAX model

configuration

2-layer Arrangement 3-layer Arrangement

No. of training images No. of training images

15 30 15 30

HMAX [3] 35.014±0.09 40.587±0.08 - -

LASSO-HMAX [4] 69.48±0.03 75.08±0.05 56.55 ±0.02 63.93±0.05

En-HMAX 75.14±0.02 80.37±0.04 78.71 ±0.01 82.72±0.04

Ridge-HMAX 66.14±0.02 71.45±0.05 67.27 ±0.02 73.30±0.06

Deep Learning Methods Higher Layers

AlexNet [47] - - 90.62±0.01 97.68±0.02

VGG19 [46] - - 95.37±0.01 97.87±0.01

GoogLeNet [48] - - 96.65±0.01 98.99±0.01

improvement in the 3-layer arrangement was considerably larger than that in the 2-

layer setup (p < 10−5). This is particularly interesting because in the experimental

neuroscience literature, a 3-layer HMAX model setup is deemed more appropriate

for modelling visual processing [2]. Finally, using 30 training images, instead of 15,

improved classification scores significantly (p < 10−5).

Theoretical analysis indicated that all forms of `p norm pooling can offer invari-

ance [128]. However, in practice, different pooling mechanisms could lead to stark

differences in recognition performance. It was found that the use of `1-norm pool-

ing in the C1 and C2 layers offers much better performance than MAX (`∞-norm)

pooling. The overall performance achieved by the use of `1- and `2-norm pooling in

C1 and C2 were comparable.

Figure 3.9 shows the receiver operating characteristic (ROC) curve [129] for

all of the classes used in this experiment using a 3-layer En-HMAX model (30

training images). The area under the curve (AUC) was used to characterize the

classification confidence in a specific binary classification task (e.g., camera versus

not-camera) with a unity value reflecting a 100% accuracy. In 4 out of 7 classes,

using the En-HMAX model led to the highest AUC. The performance of the En-

HMAX model was only marginally lower than the LASSO-HMAX model in 2 classes

and the Ridge-HMAX model in 1 class. Table 3.5 reports the F1-scores [130], and

the corresponding precisions and recalls, achieved with different models for a 3-layer

50



3.8 Results

Table 3.5: F1-scores for 3-layer Arrangement with 30 training images

HMAX model configuration F1-Score Precision Recall

LASSO-HMAX [4] 0.37 0.25 0.66

En-HMAX 0.63 0.51 0.83

Ridge-HMAX 0.49 0.39 0.66

Table 3.6: Classification results for the scene category database

Feature types / recognition model Classification performance

The En-HMAX model [135] 76.4 ± 0.5

BSC [131] 72.5 ± 0.3

Rasiwasia [132] 72.2 ± 0.2

Liu [133] 63.32

Bosch [134] 72.7

En-HMAX model (30 training images). Results reflect the higher performance of the

En-HMAX model when compared to the LASSO-HMAX and Ridge-HMAX models.

However, it performs less than deeper models of object recognition at the cost of

the efficiency and computational complexity.

3.8.2 Scene Classification Scores

Table 3.6 shows the complete results of the classification performance using 100 im-

ages per class for training and the rest for testing, the same set-up used in other

scene recognition methods [131–134]. Average classification results across 20 inde-

pendent runs and the standard deviations are reported. The classification rate is

76.4%, which is higher than the best results of 72.5 %, achieved in [131]. Although

recognising scene images is considered dramatically different than recognising ob-

ject images, i.e., locations of features, and characteristics of features, the En-HMAX

achieved high scores for scene image classifications. This indicates that the En-

HMAX model successful in recognising scene images alongside object images.
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3.9 Lateral Connections

Neuroscience studies have shown that there are two types of lateral connection in

the primates visual cortex: excitatory and inhibitory, where long-range horizontal

connectivity is intrinsic in the primary visual cortex (V1) [52, 136]. Inspired by

these studies, lateral connections of the En-HMAX model were investigated. The

connections showed in Figure 3.10 comprises all three C layers response. Extracting

the features from all layers through the visual hierarchy has allowed investigating the

features effectiveness of each layer separately. The importance of utilising different

levels of features through the hierarchy was studied. The impact of concatenating

low-and high-level features of the En-HMAX model was quantified. A structure

similar to that of the En-HMAX model was used, however, using an elastic net

regulariser for dictionary learning in all layers. The rationale was to quantify the

effectiveness of features in different layers with similar techniques in all layers. In

order to smoothly fine tune the parameters, a small number of bases in the S2

layer and S3 layer was selected. This helps to rapidly tune the parameters for an

enhanced performance. Models formed by the lateral connection comprised 50 S1

bases of dimensions 10× 10, 40 S2 bases of dimensions 12× 12× 50 and 36 S3 bases

of dimensions 13× 13× 40.

The bases were learned by elastic net regularisation with 50,000 patches arbi-

trarily extracted from images or C patches. Regularisation parameter λ1 ,λ2 were

0.15. All models were implemented in MATLAB; a softmax classifier [137] was used

to perform classification.

Several models were emerged using the lateral connections of the En-HMAX

model as the followings:

• model 1 which comprises the features of the first two layers, i.e., C1 and C2

responses;

• model 2 and model 3 comprising C2 and C3 and C1 and C3 features, respec-

tively;

• model 4 and model 5 were formed classically by using features from single

layers, C2 and C3, respectively;

• model 6 utilises low level, mid-level and high-level features of the hierarchy.
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Concatenating with SPPConcatenating with SPPConcatenating with SPP Concatenating with SPPConcatenating with SPPConcatenating with SPP

Model 6Model 3 Model 4 Model 5Model 2Model 1

C1 response

C2 response

C3  response

Figure 3.10: The lateral connections combining different layers of the proposed En-
HMAX. Different types of features are extracted using all possible combinations of
layers output. For instance, model 1 is formed using C1 layer response and C2 layer
response.

3.9.1 Cross Validation

In the lateral connections study, 12.2% of the image data was used for training,

and the remaining image data (87.8%) was used for testing. This training ratio is

considered small enough to quantify the model generalisation to the unseen image

data. Cross-validation was used to establish a more accurate platform to compare

the performance across different models constructed using the lateral connections.

Testing the accuracy of different independent images across many iterations produces

a valuable approximation of performances. The testing images were regarded as

new data on condition that data are independent and identically distributed (i.i.d.),

where all the image dataset have similar number of image samples across all the

categories. The classification accuracy is measured and averaged across 5 random

splits of train and test sampled images.

3.9.2 Chance Level Performance

To evaluate models of the lateral connections, an image dataset was formed using

images extracted from Caltech-101 dataset [110] was used. The classes of Caltech
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Figure 3.11: The dataset used for the lateral connections study [110].

101 image dataset contain an inconsistent number of images. Therefore, only four

of the classes with the higher number of images were selected. Accordingly, the

En-HMAX model generalisation capabilities were tested, to new images. These

categories (as shown in Figure 3.11 are bonsai, faces, airplanes and car-sides. For

the faces class of images, only eight different individuals were selected. The training

and testing of the model were done on those same eight individuals within the faces

category.

The performance was interpreted as how much the classification outcomes di-

verge from the rate accomplished by a random classification, for instance, in a

two-class and a four-class classification scenarios, the chance levels are 50% and

25%, respectively. On such conditions, the training image data is expected to be

equally distributed among all classes. For this particular study, the classification

performance was conducted over four object image classes. Each class consists of 15

images and 108 images for training and testing, respectively. As a result, the chance

level of this study is 25%

3.9.3 Scores of The Lateral Connection Experiment

Table 3.7 summarises the results of the models extracted from the full lateral con-

nection system. Interestingly, the features extracted using model 1 achieved the

highest performances. Model 6 that was formed using a combination of all the

available feature layers also achieved high performances, however, slightly less than

model 1. This indicates that using elastic-net regulariser in three consecutive lay-
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Table 3.7: Mean classification accuracy in percentage ∓ standard deviation (SD).

Model Architecture

Training Size

15 30

Model 1 82.6387 ∓3.7183 82.8496 ∓4.0386

Model 2 67.1295 ∓5.2277 74.1398 ∓10.0892

Model 3 76.7360 ∓2.6495 79.8386 ∓5.3964

Model 4 69.8372 ∓9.1673 74.0322 ∓9.9380

Model 5 62.2040 ∓3.8459 70.4838 ∓8.0494

Model 6 79.3402 ∓1.9766 82.3656 ∓4.0437

ers may sparsify some of the important features of the S3 layer. Therefore, in the

standard En-HMAX model, an ICA method was used in the first layer of the model

followed by two layers of the elastic net regulariser for dictionary learning.

Model 1 and model 4 share the same architecture of the original HMAX model.

However, model 1 shows better performances in both of the used training sizes. The

advantage of model 1 over the other models can be explained by the ample number

of bases selected in the lateral connection experiment. The standard En-HMAX

model comprises 1024 bases in the S3 layer, while the lateral connections system

comprises only 36 bases in the S3 layer.

Figure 3.12 displays the results using 15 and 30 images for training samples per

category, respectively. The classification accuracy of each model is represented by a

box plot. The wide spread of in the box plots of model 2 and model 4 shows that

these models were not as stable as the other models.

Figure 3.13 shows the classification accuracy of the individual categories when

using a training size of 15 and 30 images. Car-side category scores the highest
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Figure 3.12: The performance of the proposed models using both 15 and 30 training
images. From the plot, the following numeric values can be observed: the median
(in green), 25% quantile (lower edge of the blue box), 75 % quantile (upper edge of
the blue box), minimum value (lower black terminal) and maximum value (upper
black terminal). The average classification accuracy of the original HMAX model is
represented by the horizontal red line.

accuracies while planes categories attain the lowest even when the chance level used

in all experiments is even. This indicates that the success of recognising a class of

images is related to the class identity. Many factors within each class of images

determine the class recognition difficulty, for instance, the variation in object pose,

size, background and location in the image. These factors dramatically contribute to

the discrepancies between the different dataset in solving object recognition tasks.

3.10 Visualization of Higher-level Features

The En-HMAX model, among other object recognition models, extracts discrimi-

nant features of the objects in the images. Figure 3.14(a and b) shows an example

of visualising the strongest features of an object. Figure 3.14(c) shows examples

of patterns that represent strong activations in the used dataset. The bases were
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Figure 3.13: The classification accuracy of the individual categories of model 6 using
a training size fo 15 images and 30 images. From the plot, the following numeric
values can be observed: the median (in green), 25% quantile (lower edge of the
blue box), 75 % quantile (upper edge of the blue box), minimum value (lower black
terminal) and maximum value (upper black terminal).

activated by a particular syntactic subject. For example, the 22nd feature map,

as shown in Figure 3.14(b) bottom, is highly activated by a “>” shape; the 32nd

feature map, as shown in Figure 3.14(b) top, is highly activated by a “\” shape.

Similarly to [4], in order to visualise the bases of higher layers of HMAX model,

the bases were projected on the dataset. Bases from higher layers were combined

with that of the lower layers. Due to the shrinkage resulted from MAX pooling, the

patches of the higher layers were resized to counterbalance the sub-sampling. As

a result, the bases of higher layers were projected into the input domain. Figure

3.15 shows the visualised receptive fields of S1, S2 and S3. The given examples

demonstrate the bases of the following categories: car-side, faces-easy, bonsai and

airplanes. S1 bases resemble simple lines and edges, similar to that of Gabor filter.

The S2 bases, however, resemble basic parts of the objects, such as complex corners.
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spam erutaef )b(egami )a(

(c) stongest activations 

Figure 3.14: visualization of feature maps. (a) Input image from Caltech 101 data
set. (b) Some of the feature maps of the input image. The arrows specify the highest
responses and their equivalent locations in the images. (c) Some of the Caltech 101
images that have the strongest responses. The green squares mark the receptive
fields of the highest response.

However, some S3 bases resemble more complex parts of objects, such as noses of

faces and leafs of the bonsai.

3.11 Comparison With The Original HMAX Model

The En-HMAX was designed to improve the performance of the original HMAX

model. It was developed to preserve the same mechanism and structure of the

original model, however, with advanced computational methods that achieve similar

objectives. The designed En-HMAX differs from the previously developed HMAX

model [3] in different aspects. It can be summarised as the followings:

1. The filters of the En-HMAX model were learned from natural images. In

contrast to the original HMAX, in which a hand-crafted Gabor function with

different scales and orientations were applied to the input images.

2. Similarly to the original HMAX, the feature maps of the En-HMAX were
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Faces_easy BonsaiCar_side Airplanes

Figure 3.15: visualization of S1 bases (bottom), S2 bases (middle) and S3 bases (top)
learned from Caltech 101 dataset. The categories learned are: car-side, faces-easy,
bonsai and air-planes from left to right.

down-sampled using a pooling operation. However, in the En-HMAX, the `1-

norm pooling was adapted as the main pooling method in the C layers. The

`1-norm pooling provides more invariance to transformations and occlusion,

as it represents all data points in an image patch.

3. In the En-HMAX, the bases of S2 and S3 layers were learned by sparse coding

using an elastic net regulariser. In the original HMAX, however, a template

matching with a radial basis function was used to produce the S2 features.

4. The En-HMAX model can deal with input images of different sizes and ori-

entations, i.e., portrait and landscape, using a developed SPP method [138].

Only the distinctive data point from each view point is passed to the proceed-

ing layers using both the pooling layer and the SPP layer. The SPP layer

encourages the model invariance to position and scale, especially when it is

used in the higher layers of the model. Additionally, the SPP layer offers

more flexibility and scalability. The HMAX model, however, can only deal
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with images of fixed sizes. Images of different sizes were cropped [139], or

warped [80]. The cropping and warping approaches have few limitations, for

instance, the cropped area does not necessarily cover the whole object. Addi-

tionally, the warped part of the images could result in undesirable geometric

distortion. Content loss or distortion could compromise the recognition accu-

racy. Moreover, a pre-defined scale may not be appropriate when object scale

alternates.

3.12 Testing The En-HMAX Model with Occlu-

sions

A growing body of evidence supports the proposition that biological systems are

able to recognise an object under partial occlusion [29, 140]. As a result, the En-

HMAX was tested for occlusions. This section focuses on the capabilities of the

En-HMAX model to recognise object and scene images under partial occlusion, for

instance, recognising a coffee mug using only the partially available visual content,

as shown in Figure 3.16. The En-HMAX model was inspired by the human visual

cortex, a powerful platform to decode occlusion. Therefore, in this section, to tackle

occlusions, the En-HMAX was used to perform the task with no extra knowledge,

for instance, providing the En-HMAX model with three-dimensional images that

may show the inconsistency of the occludee, or training the En-HMAX model with

patterns of occlusion to better understand occlusions.

To conduct the experiments in this section, the following types of occlusion were

used:

• class-A occlusions: images of object and scene dataset artificially occluded

with different percentages of standard image distortions.

• class-B occlusions: images of geometrical shapes disordered with complex pat-

terns of occlusion.
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Figure 3.16: Example detection and recognition of a cup under partial occlusion.

3.12.1 Dataset

3.12.1.1 Object and Scene Dataset

To investigate the performance of the En-HMAX model under partial occlusion,

image categories from objects and scenes were used. Due to the stark differences

in the nature of each of the above datasets, class-A occlusions were applied to the

above datasets and the results for each dataset were reported individually.

For the object image dataset, the classes were collated from Caltech 101 dataset

[110] and Caltech 256 dataset [6]. Occlusions were then applied to both types of the

image dataset. The occlusions were applied to the images with different sizes and

shapes, as shown in Figure 3.17.

For the scene image dataset, the classes were collected from Fifteen scene cat-

egories [111] dataset. The rationale for using this dataset was to investigate the

En-HMAX model robustness against occlusions on scenes. The dataset contains a
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Input images

25% occlusion size

50% occlusion size

75% occlusion size

Figure 3.17: Samples of class-A occlusions applied to the images of the object and
the scene datasets

plethora of scene images that belong to 15 categories. Each category consists of 200

to 400 images, with an average image size of 300 × 250 pixels. Similarly, Class-A

occlusion type was applied, to evaluate the model robustness.

3.12.1.2 klab Dataset

A set of various partially occluded stimuli was created by the klab [141]. The dataset

comprises patterns rather than objects or scenes. Therefore, it is considered chal-

lenging. Sensitive parts of each pattern were occluded. The labels of this dataset

are based on human subjects decision. The recognition process is based on under-
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Occluded image 

Occluded image 

Occluded image 

Figure 3.18: Samples of class-B occlusions [141]. The patterns above are disordered
by other patterns. Images below are the potentials of the original image.

standing the original pattern to decode the occlusions, see Figure 3.18.
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3.12.2 Occlusions

Class-A Occlusions

To test the robustness of the En-HMAX model, artificial occlusions were applied

to the objects image dataset and the scene image dataset. Class-A occlusion is a

classical type of occlusions, in which the occluded part of the images is filled with

pixel values of 128. Different areas of the images were occluded using a variation of

occlusion size. Therefore, for each experiment, important parts of the objects and

scenes are blocked.

Class-B Occlusions

Class-B occlusions require sophisticated mechanisms to retrieve the original pat-

terns. Examples of Class-B occlusions are shown in Figure 3.18. Human subjects

were used to set the ground truth for this dataset. Experiments show that subjects

tend to choose the shapes with the red marker in the provided examples correspond-

ing to the original images. Therefore, to solve class-B occlusions, it was speculated

that mechanisms of attention and top-down processing for visual associations, sim-

ilar to that of the human visual cortex may be necessary.

3.12.3 Experimental Testing

Experiment 1 - Processing class-A occlusions

In this experiment, the En-HMAX model was tested with class-A occlusions of

different sizes. The object image dataset and the scene image dataset were used in

this experiment. As discussed earlier, the En-HMAX model was only used to process

the data and extract features, with no prior knowledge of the nature of the task. The

classical HMAX model was also used in this experiment using similar experimental

settings. A comparison of the performances of the two models was made. The

training samples were selected randomly from the original images. The testing

samples were images with class-A occlusion. Cross-validation was applied over 20

independent runs. This type of validation is generally used in Caltech 101 dataset.

The mean accuracy and the standard deviation were reported for each experiment

for both the En-HMAX model and the HMAX model. Refer to section(3.5), for

more information about the cross-validation used in this experiment.
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Experiment 2 - Processing class-B occlusions

In this experiment, the En-HMAX model was tested with class-B occlusions. The

feature maps for each image were extracted separately. To quantify performances,

the Euclidean distance was used to measure the similarity between the feature maps,

see Figure 3.19. For each feature map z, the distance r from the original image

feature map p is calculated as shown below:

r = ‖z− p‖ . (3.5)

The smaller distance from the occluded pattern is considered as the En-HMAX

model decision. The correct decisions were then aggregated over the whole image

dataset. The classification accuracy was calculated based on the dataset ground

truth.

 

30

0

Pattern 1 Pattern 2

15

Pattern 3 Pattern 4 Pattern 5

Euclidean distant

The shortest Euclidean distance 

Figure 3.19: An example that shows the method of quantifying the classification
accuracy of Experiment 2.
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3.12.4 Results

3.12.4.1 Experiments 1

The classification results of Experiment 1 are shown in Table (3.8, 3.9). Various

percentages of the occlusion size were used to test both versions of the HMAX

model. On some occasions, class-A occlusions prevent the models from encountering

implicit features in the images. The results show that the En-HMAX model is robust

to class-A occlusions. The results also show that the En-HMAX model outperforms

the original HMAX model by a large margin in all classification scenarios. It can

be noticed that the HMAX model exhibits robustness against occlusions applied to

both the object image dataset and the scene image dataset. In particular, when

an occlusion size of 25% is applied to the images. Table 3.10 shows the confusion

matrix for 50% occlusion percentage on the scene image dataset. It can be noticed

that when applying occlusions, the classifier tend to become more biased toward the

coast category. Yet, most classes included correct classifications. The ROC curve

was used to show the classifier performance as shown in Figure 3.20. Most classes

of the scene dataset have scored an AUC of 1. However, classes with the lowest

AUC were bedroom, industrial and store, suggesting that they are more sensitive to

Table 3.8: Classification accuracy in a percentage of different sizes of class-A occlu-
sions applied to the object dataset.

Objects

Occlusion size HMAX [3] En-HMAX [135]

∼25% 54.090 ± 0.17 99.818 ± 0.003

∼50% 43.272 ± 0.07 70.636 ± 0.05

∼75% 28.500 ± 0.04 29.000 ± 0.03
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Table 3.9: Classification accuracy in a percentage of different sizes of class-A occlu-
sions applied to the scene dataset.

Scenes

Occlusion size HMAX [3] En-HMAX [135]

∼25% 25.100 ± 0.13 99.166 ± 0.005

∼50% 17.466 ± 0.07 69.766 ± 0.13

∼75% 14.666 ± 0.03 20.833 ± 0.06

Table 3.10: Confusion matrix for the scene image dataset within an occlusion size
of 50%.
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Figure 3.20: The ROC curve that shows the performance of the classifier in recog-
nising the scene occluded images (size of 25%). All fifteen classes are included in this
analysis. Only classes with the lowest AUCs are denoted in the figure. The vertical
and horizontal axes denote the true positive and false positive rates, respectively.

3.12.4.2 Statistical Regularities

Applying class-A occlusions to the dataset has produced an overlapping between the

input images, see Figure 3.21. However, when using the En-HMAX model to process

the images, the overlapping has vanished. In particular, C3 layer feature maps. The

activations of C3 layer are normally distributed among the different values of the

spectrum.
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Figure 3.21: A histogram representation of class-A occlusion image dataset. First
column: a histogram representation of some object images with 50% class-A occlu-
sion. Second column: a histogram representation of the non-zero coefficients of the
En-HMAX model activations.

The norm pooling and dictionary learning using the elastic net regulariser have

enabled the En-HMAX model to overcome the overlapping caused by class-A occlu-

sions.

The learning in the S layers of the model is unsupervised and sequential, and

it develops through the hierarchy of the model. Therefore, the input images are

filtered through the hierarchy of the En-HMAX model. As a result, the redundant

data are removed from the images, and only the formative features are considered

for classification.
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Table 3.11: The classification accuracy in percentages for recognising klab dataset
[141].

Model Architecture Total performance in percentage

Our model 33.333 %

HMO [140] 30 %

GaborJet [142] 30 %

HMAX [3] 30 %

3.12.4.3 Experiments 2

In this experiment, the En-HMAX model was tested with class-B occlusions. The

results are displayed in Table 3.11. The En-HMAX model outperformed other mod-

els of object recognition with a performance of 33.333%. The performances of other

well-known models in the field were also reported in this experiment. In particular,

the HMO model [140] , Gabor Jet [142] and the HMAX model [3]. However, the

highest accuracy achieved was 30% as shown in Table 3.11.

With scenarios of low variation, the En-HMAX model showed acceptable per-

formance. However, in the high-variation stimuli, it has failed to match the human

performance by a large margin. It is not surprising that ”ventral stream pathway”

inspired models are not nearly as effective as human performance. The results shown

for this dataset were excepted due to the difficulty of the task. Although the En-

HMAX model has slightly outperformed other well-known models of object recogni-

tion to solve class-B occlusion, feed-forward models are still incapable of efficiently

decoding this type of occlusions. In order to solve class-B occlusions, methods that

mimic the mammal’s visual cortex capabilities of attention and top-down processing

are needed.
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3.13 Chapter Summary

In this chapter, the En-HMAX model of the visual cortex was presented. It was

compared with the original HMAX model, in addition to, other available states of

art enhanced versions of the HMAX model. The model performance and sparsity

were quantified. Details explanations of the structure of the En-HMAX model was

given. The En-HMAX model provides two essential elements for image classification:

selectivity and invariance. The main reason for using an elastic-net regulariser for the

HMAX model was to encourage the grouping effect when the atoms in the dictionary

are highly correlated. Results show that the En-HMAX model outperforms the

original HMAX model (by ∼40%) as well as the two special cases of the En-HMAX

model, i.e., the LASSO- and Ridge-HMAX models, by ∼19% and ∼9%, respectively.

Furthermore, in this chapter, the lateral connections experiment was presented.

Features with different degree of complexity were investigated for recognition. The

performances of different combinations of features were investigated and reported.

The En-HMAX model was then tested with two types of occlusions: class-A

occlusions and class-B occlusions. Class-A occlusions are classical occlusions, in

which different parts of the images were occluded artificially. Class-B occlusions,

however, are more complex occlusions that require complex methods for associating

the new patterns with the original images. Different sizes of class-A occlusions

were used to test the performance of the En-HMAX model. The original HMAX

model was tested under similar conditions. A comparison was made between the

two models. The analysis performed in this chapter showed the robustness of the

En-HMAX model to tackle different types of occlusions.

After developing and testing the En-HMAX model, a more intensive study of

the effective regions of vision that contribute to object and scene recognition will be

performed in the next chapter.

71



Chapter 4

Objects and Scenes Classification

with Selective Use of Central and

Peripheral Image Content

4.1 Introduction

In the previous two chapters, a novel object and scene recognition model inspired

by the visual cortex was proposed. The En-HMAX model was tested with images

of objects and scenes with a variety of conditions. The robustness of the model was

then tested with occlusion. In this chapter, a careful examination of the contribution

of various regions of vision in cortex-inspired models is explained. It is believed

that investing such mechanisms in artificial models could extremely enhance the

recognition speed of high-resolution images, due to the dramatic reduction of the

processed pixels of the images.

The developed En-HMAX model was used to investigate the classification scheme

of object and scene images. The importance of the peripheral and central image

content was investigated individually for each image dataset. In various conditions,

images were occluded by windows and scotomas of varying sizes. Furthermore,

inspired by the eccentricity in the human eye, the images were processed to match a

similar degree of foveation. Foveation has reduced the size of the images by a factor

of 1
2
.

In this chapter, the developed En-HMAX model was tested for the following

specific features of the human brain:
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1. flexible utilization of peripheral versus central vision to enhance scene and

object recognition performance;

2. central foveation to reduce the size of the processed visual data without com-

promising the scene recognition performance.

The En-HMAX model, alongside other well-known CNNs were used to perform

this analysis. By introducing a varying number of visual angles of scotoma and

window occlusions, the scene recognition process was investigated. Additionally, a

second experiment was conducted to focus on the contribution of parafoveal versus

peripheral areas of the images. The experiment included a larger number of visual

angles on both datasets.

This chapter will first briefly discuss the structure of hierarchical models and

CNNs. In addition, the image dataset and the applied window and scotoma con-

ditions will be introduced. The process of foveation will be discussed. Then, the

experimental testing settings will be explained in detail. This included introducing

the classification wiring, cross-validation and statistical analysis. The results will

later be discussed. Finally, a summary of the major contributions of this chapter is

provided.

4.2 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) have been developed from neural networks.

They have proven successful in machine vision and objects recognition. Similarly

to the HMAX model, CNNs have a similar structure that extracts the important

features of the input images. It takes advantages of stacking together layers of

learned filters and MAX pooling to achieve invariance. These layers are usually

followed by a fully connected layer where each neuron is connected to every other

neuron in the adjacent layer. Neurons in each layer operate independently from other

neurons and do not share any connections. In this chapter, well-known CNN models

are compared with the En-HMAX model. In particular, AlexNet [47], VGG19 [46]

and GoogLeNet [48].
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4.3 Scenes and Objects Image Datasets

Scene and object image datasets were utilised to test the En-HMAX model for

image classification. The scene image dataset included man-made as well as natural

scene images. Scene images were extracted from a scene categories dataset that was

collated by Li and Perona [112] and augmented by Lazebnik et al. [111]. This scene

image dataset is considered as one of the most complete scene category datasets [111].

The images of the scene dataset have different dimensions but on average are

of 300 × 250 pixels. The classes in the scene image dataset are: bedroom (216

images), suburb (241 images), industrial (311 images), kitchen (210 images), living

room (289 images), coast (360 images), forest (328 images), highway (260 images),

inside city (308 images), mountain (374 images), open country (410 images), street

(292 images), tall building (356 images), office (215 images) and store (315 images).

The object dataset includes 11 classes extracted from the Caltech 101 database [110].

The object dataset comprises the following classes: car sides (123 images), dollar

bills (52 images), faces easy (435 images), garfield (34 images), inline skates (31 im-

ages), motorbikes (798 images), pagodas (47 images), pandas (38 images), scissors

(39 images), trilobites (86 images) and windsor chairs (56 images).

4.4 Images With Scotoma and Window

Conventionally, the window and scotoma paradigms are used to study the basic

visual processes in reading [143]. In addition, they have been utilised to study the

perception within the first eye fixation on a scene, for recognising the gist [144–148].

To simulate the effectiveness of peripheral versus central information in an image,

the classic paradigms of scotoma and window was applied to the image dataset

[149]. The radii of scotoma and window were varied to test the performance of the

En-HMAX model in the classification of original and foveated images in the scene

image dataset as well as the object image dataset. Examples for applying window

and scotoma on an image in its original and foveated forms are shown in Figure

4.1(B, C). The scotoma and window were utilised in the experiments of Larson

and Loschky [149]. They were used on human subjects to demonstrate recognition

accuracy to investigate the contribution of peripheral versus central vision. The

term “window” is originated by the analogy of looking at a scene through a window,
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Figure 4.1: An example of pre-processing an image with Foveation, scotoma and
window conditions. Window condition is when a circular region blocks the periph-
eral. In the scotoma condition the central area is blocked and only the periphery
is shown. (A) Foveating an image using a 2D filter. (B) Examples of the scotoma
condition. (C) Examples of the window condition. The image shown in the figure
is extracted from a scene category dataset [111,112].

for example, a porthole. In the window paradigm, the visual information outside

the window is absent. The term “scotoma” is derived from an analogous medical

condition in which a certain part of the visual field is blocked. In the scotoma

paradigm, the information outside the scotoma is unaltered and the centre-based

information is blocked. In a similar fashion, scotoma and window paradigms were

used to investigate the role of peripheral and central vision in the En-HMAX model.

The rationale for using the window and scotoma paradigms was to introduce

disorder to the images on a selected region of vision to quantify the decline in

En-HMAX performance in recognising image categories. In line with the earlier

mentioned experiments [146, 149], scotoma and window have been generated using

the filters shown below:

hg(n1, n2) = exp

(
−(n2

1 + n2
2)

2σ2

)
h(n1, n2) =

(
hg(n1, n2)∑
n1

∑
n2
hg

) (4.1)

where σ denotes the standard deviation, hg(n1, n2) corresponds to the distribu-
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tion function, h(n1, n2) are the generated normalised multivariate Gaussian filters

and (n1, n2) represent the filter’s dimension. The mask was then discretised by

setting all pixel values inside/ outside the mask to 128 to form the scotoma and

window, respectively.

In the first experiment of this study, the distance between the model and the

images was assumed to be 26.6 inches. This assumption is, in line with the settings

in the experiment by Larson and Luaschy [149], where the number of pixels per

degree is calculated based on a trigonometric notation [150]. The value of σ in

equation (5) was adjusted accordingly. However, in the second experiment, in order

to allow the En-HMAX model to be more generalizable to various viewing settings,

a wider range of scotomas and windows was applied.

4.5 Foveation

The human visual system segments slower higher resolution acquisition and faster

lower resolution acquisition into the central and peripheral regions of the retina,

respectively. The retinal information decreases in resolution towards the periphery

without compromising performance in scene recognition [149]. Therefore, foveation

was introduced in the below experiments. The effect of introducing foveation to the

images was investigated with regard to the En-HMAX model.

The amount of information of the visual scene varies depending on the location of

the fixation point. The fixation point corresponds to the fovea, i.e., the centre of the

eye’s retina, and demonstrates the highest resolution in the scene. An example of

the fixation point is observing on the computer screen the computer mouse pointer.

The foveation in the human eye can be explained by the non-uniform distribution

of the ganglion cells and the photoreceptors in the retina. The eye quality of decoding

the visual scene depends immensely on the ganglion cells. The density of these cells

has a high value at the fovea and drops dramatically toward the periphery. When a

human observes the scene, images with different resolutions are transmitted to the

front visual channel, and accordingly to the early layers of the visual cortex of the

brain. Regions of vision around the fovea are perceived with the highest resolution

and sampled with the highest density.

To simulate human foveation, a pyramid of low pass filters was used [151]. Each

input image, e.g. Figure 4.2A, was passed through six repeated layers of filters
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cascaded with a down-sampling stage. Starting from the centre of each image, the

filtering and down-sampling parameters were set such that at each pyramid layer

the image resolution was halved [151]. A cross-section of the symmetrical resolution

maps used to generate eccentricities is shown in Figure 4.2A. The maximum relative

resolution was assigned to the centre. Relative resolution declined smoothly toward

the periphery. Foveation was applied to the input images such that the contrast c

is calculated with

c(f, e) = c0 exp

(
αf

e+ e2
e2

)
(4.2)

where f is the spatial frequency, c0 is the minimum contrast threshold, e is the

retinal eccentricity, e2 is the half-resolution eccentricity and α is the decay constant.

In computer vision, foveation can be considered as an image compression method

[152]. It reduces the size of the images, and the computational resources required

to process them, i.e., the speed of encoding and decoding. Figure 4.1A shows an

example of a foveated input image with a size reduction of ∼ 52%.

4.6 Experimental Testing

Two experiments were conducted to investigate the relative value of peripheral ver-

sus central data in rapid categorisation of scene and object images.

Experiment 1: The contributions of peripheral and central

image content to classification

The rationale of this experiment was to quantify the performance of the En-HMAX

model in the classification of various scene and object images data under window

and scotoma occlusion conditions. This experiment comprised two parts. In part

one, the original images of the scene and object datasets were classified. In part

two, all images were first foveated before repeating the analysis exactly as in part 1.

In both parts of Experiment 1, the En-HMAX model and the classifier were

trained with the full, original images. The En-HMAX model and the classifier were

then tested with the same images but overlaid with windows or scotomas of four

different visual angles, namely, 1◦, 5◦, 10.8◦ and 13.6◦. Figure 4.2A depicts fully the

arrangement of training and testing data in Experiment 1.
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Figure 4.2: The configuration of the experiments. Similar settings have been used
for Experiment 1 and Experiment 2. In Experiment 2, the number of testing images
varies, depending on the size of each class. The letters n and k represent the class
number and the image number in each class, respectively. Images shown in the figure
are extracted from Caltech 101 dataset [110] and scene category dataset [111,112].

These visual angles for the window and scotoma were selected following Larson

and Loschky [149]:

• the presence and absence of foveal information (1◦);

• the presence and absence of parafoveal and foveal vision against the peripheral

vision (5◦);

• the representation of approximately equal viewable area inside the window

and outside the scotoma (10.8◦). This is calculated on a per-pixel basis, and

averaged across the whole dataset; and finally
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• the presence and absence of peripheral information (13.6◦).

Experiment 2: Generalisation to Unseen Images

The motivation behind this experiment was to study the ability of the En-HMAX

model in generalisation to unseen images when trained with occluded images of

scenes and objects. The motivation was to explicitly measure the efficiency of each

region of vision in both datasets. A larger number of visual angles with a smaller

step size was used, for instance, blocking the central vision of the entire scene dataset

and observe how the model behaves with these changes.

The En-HMAX model and the classifier were trained with images of varying

visual occlusions, ranging from 1◦–19◦ with a fixed step size of 2◦. The En-HMAX

model and the classifier were then tested with unseen images for every visual oc-

clusion angle. An example of this classification design for the objects dataset with

a 9◦ window is shown in Fig.4.2B. This experiment can produce a more precise

measurement of the effective region of vision depending on the dataset.

4.7 Classification

A multi-class linear support vector machine [70,72] was used to classify the images.

In particular, the LIBLINEAR library [72] was utilised. To solve the multi-class

problem, the one-vs-the rest method was used, as implemented in LIBLINEAR.

The image data were divided into training and testing sets. In the two experiments,

there was a different number of testing images in each class. Therefore, to avoid bias,

the aggregated classification scores were normalised across categories. In addition,

the receiver operating characteristic curve (ROC) [129] was calculated for all of the

classes used in Experiment 1. Various thresholds were used for each class to perform

the binary classification. The classes which respond poorly against other classes

have an ROC curve close to the diagonal, while classes that respond selectively

against other classes have a curve far from the diagonal. Thus, the ROC curve was

considered as a quantitative analysis of the classifier selectivity and specificity.
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4.8 Cross-validation

4.8 Cross-validation

In both parts of Experiment 1, the following cross-validation approach was adopted.

A fixed number of images per category was used to report the overall error rates,

with the same number of test samples. The total number of images per category in

Experiment 1 was 15 images. Ten images per category were selected randomly to

train the En-HMAX model. The same number of images was used for testing.

In Experiment 2, a subset of 30 images per class was selected randomly to train

the En-HMAX model. The remaining images in each class were used for testing.

The number of test images varies depending on the overall number of images in

each class (31 images to 798 images). In both experiments, the classification for 20

independent runs was repeated. The average classification scores and the standard

deviations were reported for each classification scenario.

4.9 Statistical Analysis

To test the statistical significance of the main findings in the conducted experiments,

a paired t-test and a sign test were performed. For every sample of data, a statistical

test for normality was performed using the two numerical measures of shape: the

skewness and excess kurtosis. For normally distributed data, the paired t-test was

used, and for non-normal data, the non-parametric sign test was used. Following

the main analysis, posthoc comparisons were performed.

4.10 Results

4.10.1 Experiment 1

Figure 4.3 shows the results of Experiment 1 (both parts); in which the En-HMAX

model was trained with complete images and was tested on images with window

or scotoma occlusions. Results are reported for original and foveated images in

Fig. 4.3A and B, respectively.

In the scene classification, in the cases of 1◦ and 5◦ visual angle scotoma (Figure

4.3A), accuracies of approximately 89 ± 1% were achieved. A non-parametric sign

test, with a risk α = 0.05, shows that there was no significant difference in the scores
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Figure 4.3: Classification accuracy with the En-HMAX model as a function of visual
angle and viewing condition (scotoma and window) for scene (A) and object (B)
images with and without foveation. (C) Examples for the 10.8◦ scotoma condition for
both the original and the foveated data. (D) Examples for 13.6◦ scotoma condition
for both the original and the foveated data. Images shown in the figure are extracted
from Caltech 101 dataset [110] and scene category dataset [111,112].

for 1◦ scototma (M=89.2, SD = 5.6) and 5◦ scotoma (M= 88.9, SD = 4.2); z(19) =

0.8, p = 0.3.

This indicates that the En-HMAX model can achieve the maximum performance

even in the absence of parafoveal vision. Further increase in the size of scotoma led

to a considerable degradation of the classification scores, see Figure 4.3(C, D), for

instance, the accuracy at 13.6◦ scotoma reduced to 23 ± 6%. This level of accuracy

was however above the chance level accuracy (6.67%; 15 classes). Predictably, the

scene classification performance was poor at 1◦ and 5◦ visual angle window con-
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ditions. This score increased as the window became larger such that at the 13.6◦

window condition, the classification accuracy reached 57%.

In the 10.8◦ and 13.6◦ scotoma conditions, the classification scores for original

images were significantly higher than that for foveated images. A paired samples

t-test, with a risk α = 0.05, was used to quantify the significance of these results.

For scotoma 10.8◦, there was a significant difference in the scores for original images

(M = 37.1, SD = 12) and foveated images (M = 27.4, SD = 11.1); t(19) = 3.0, p

= 6.5× 10−3. Similarly, for scotoma 13.6◦, there was a significant difference in the

scores for original images (M = 21.6, SD = 7.9) and foveated images (M = 15.9, SD

= 4.8); t(19) = 2.6, p = 0.016.

In addition, in the window condition, irrespective of the window size, no signif-

icant difference was observed between the classification scores for the original and

the foveated images of scenes.

Figure 4.3B shows object classification results. Classification accuracies exhib-

ited the same trends as in Figure4.3A. However several interesting observations were

made:

• For object classification, the cross-over of window and scotoma conditions

occur at visual angles of 9.7◦ (original) and 9◦ (foveated). However, for scenes,

it shifted to right to 10.8◦ (original) and 10.8◦ (foveated). This indicates that

the En-HMAX model relies more on the central image content for recognising

objects.

• At window 13.6◦, a non-parametric sign test, with a risk α = 0.05, shows that

the classification performance of objects (M = 84.7, SD = 7.6) was significantly

higher than that of scenes (M = 57.1, SD = 25.5); z(19) = 2.6, p = 7.2×10−3.

This indicates that the peripheral region of the scene images is more effective

for the recognition process.

• At the 13.6◦ scotoma condition, a paired samples t-test shows that the objects

classification score achieved for the foveated images (M = 17, SD = 6.2) was

significantly lower than that observed for the original images (M = 31.1, SD

= 6); t(19) = 6.9, p = 1.32× 10−6.

Figure 4.4 shows the accuracies of individual classes in the scene dataset. The

scene images were categorised according to whether they were natural (green), man-
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Figure 4.4: Individual class accuracies for the scene dataset at an angle of 10.8◦

in the window and scotoma conditions. The classes are categorised according to
whether they are natural (green), man-made and out-door (blue) or man-made and
in-door (amber) scenes.

made and out-door (blue) or man-made and in-door (amber) scenes. Only the fol-

lowing viewing conditions were used to both the original and the foveated version of

the images: window 10.8◦ and scotoma 10.8◦. The rationale for selecting only these

two conditions was to observe how scene classification was affected when central

or peripheral image content was blocked. Interestingly, for this dataset, the per-

formance drop was not category-dependent, for instance, some of the classes, such

as the mountain and kitchen, retained good classification accuracy in all scenarios

whilst other classes did not. Another interesting observation was that out-door scene

images were least affected by the 10.8◦ window occlusion. However, it was observed

that classification accuracy dropped more when scene images were masked with a

10.8◦ scotoma than when they were masked with a 10.8◦ window. This highlights

the difference between outdoor images and natural images in terms of the location

of the features.

For completeness, the En-HMAX model was compared with the original HMAX

model in terms of the individual class accuracies. Figure 4.5 shows that the En-

HMAX model outperforms the HMAX model in recognising the datasets individual

accuracies. Markers below the diagonal indicate that the En-HMAX model outper-
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window conditions. Both the original and foveated dataset were used in this analysis.

forms the HMAX model, in recognising a certain class of the dataset. A visual angle

of 10.8◦ was used in both, scotoma and window conditions as a representative ex-

ample. There are 104 markers in Fig.4.5, of which 76 markers lie below the diagonal

line. Two markers located exactly at the diagonal line, and only 26 markers appear

above the diagonal line.

From the receiver operating characteristic (ROC) curve shown in Fig.4.6A, it

was observed that the En-HMAX model responded selectively for the majority of

the classes. A larger area under the curve (AUC) has been reported when the se-

lected visual angle is 5◦ scotoma. In Figure 4.6(B), the confusion matrix was used

to visualise the performance of the individual classes. Each class in the vertical axis

describes the instances in an actual class while each column describes the instances

in a predicted class. With a 5◦ scotoma, all the classes of the dataset were identified

successfully. The classification scores were high even when the foveation was intro-

duced to the images, as shown in Figure4.6(B). This is more visible in the scene

dataset. This indicates that the recognition process can be completed successfully

without relying on the parafoveal vision.
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Figure 4.6: Classification analysis of Experiment 1. (A) The ROC curves of our
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respectively. (B) Confusion matrices are for the 5◦ scotoma condition. The vertical
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Measuring the efficiency of each region of vision, the peripheral vision has proved

to be more efficient to achieve maximum recognition performance. Classification

accuracies of up to ∼90% for scenes and objects were possible. Window and scotoma
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analysis suggested that object and scene recognition were sensitive to the availability

of data in the centre and the periphery of the images, respectively. Similar to the

observations made in human studies, the experiments showed that the En-HMAX

model has utilised a relative order of importance depending on image category. The

obtained modelling results have matched the hypothesis that centre-based vision is

more important than the peripheral vision for recognising objects. Also, the results

showed that introducing foveation does not compromise the recognition performance

even when the parafoveal vision is blocked.

4.10.2 Convolutional Neural Networks

For completeness, three well-known CNN models were selected (AlexNet [47], VGG19

[46] and GoogLeNet [48]) to reproduce the results of Experiment 1. CNNs showed a

similar pattern to the En-HMAX model in object recognition tasks (Figure 4.7), for

instance, cross-over points locations. Similarly to the En-HMAX model, the cross-

over points in the object dataset are located to the left of that in the scene dataset.

This suggests that CNNs rely more on the central image content for recognising

objects. For the scene image dataset, similar prioritisation for the peripheral data

is observed as the followings:

1. The cross-over points of the peripheral and central vision for scene classification

are located to the right from that of object classification on the spectrum of

the visual angles;

2. the poor classification performance when the peripheral vision is blocked at

window 13.6◦ for scene image classification.

At the same time, the recognition pattern of CNNs showed differences from that

of the En-HMAX model recognition pattern, for instance, the drop in performance

has dramatically increased in the absence of the parafoveal vision at scotoma 5◦.

This shows that the En-HMAX model relies more on the peripheral image con-

tent for recognising scenes, due to its abstract architecture. The similarity in the

behaviour between the CNN models and the En-HMAX model suggests that they

both prioritise similar features in the images. The similarity might suggest that

both structures utilise sophisticated visual eccentricity biases, as the primate visual

system does.
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Figure 4.7: Replicating Experiment 1 using three well-known models of CNN,
namely, AlexNet [47], VGG19 [46] and GoogLeNet [48].

4.10.3 Experiment 2

In Experiment 2, the behaviour of the En-HMAX model was computationally tested

in classifying occluded scene and object images with windows and scotomas of vary-
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ing radii. Figure 4.8(A) shows that the recognition accuracy for recognising unseen

images of the scene dataset was stable to the point that more than 50% (a visual

angle of 10.8◦) of the image data was blocked by the scotoma. However, when the

scene dataset is peripherally blocked by the window conditions, the performance

starts dropping earlier from a visual angle of 13◦ and downward. In Fig.4.8(B), the

performance of object classification under the window condition is almost symmet-

rical. However, across the whole spectrum of visual angles, the performance under

the scotoma condition was lower than that of the window in a large margin. This

observation reaffirms that object recognition is more dependent on the central image

content.

The performance of object classification in the window condition declined dra-

matically from ∼ 80% to ∼ 58% in the range of 7◦ to 3◦. In the scene classification

and in the presence of scotoma, a similar decline in performance took place between

13◦ to 17◦. However, the reduction in correct classification from ∼ 75% to ∼ 60%

was less when compared to the reduction observed for object classification. When

normalised to the maximum score achieved in each condition, these reductions were

∼ 23% to ∼ 10% in the window versus scotoma, respectively. This dramatic decline

in the object classification trend occurred when the visual data around the parafoveal

vision was blocked. As a result, the En-HMAX model may behave differently at this

particular range of the visual angles.

The results have shown that higher performances in recognising unseen images

of objects and scenes can be achieved using only the more relevant image content,

i.e., peripheral vision for scene recognition and central vision for object recognition.

Results show that ∼50% of the visual field would be enough to achieve ∼96% of the

maximum accuracy in classification of unseen images. It was envisioned that this

method could be invested for a large scale categorisation by reducing the amount of

processed data.

4.11 Discussion and Concluding Remarks

Models of scene recognition [127, 153] show that rapid categorisation can be per-

formed at the early perceptual stages of the visual cortex hierarchy [154, 155]. Ex-

perimental results on human subjects have shown that with a stimulus of an exposure

time of 100ms, humans can categorise scenes at both: the super-ordinate level (e.g.
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Figure 4.8: The classification accuracy trend over percent of each of the shown visual
angles. The above scores have been calculated with respect to unseen images of both
the scene dataset and the object dataset. Images shown in the figure are extracted
from Caltech 101 dataset [110] and scene category dataset [111,112].

man-made versus natural) and the basic level (e.g. highway versus forest) [156].

This study showed that peripheral image content, that is beyond 5◦ eccentric-

ity, is more efficient in recognising the gist of a scene than central image content.
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Varying the scotoma size below that range did not reduce the model performance.

In Experiment 2, two types of datasets were tested, namely, object and scene im-

age dataset. Applying the same conditions to both datasets, a similar conclusion

was reached, that is, the peripheral vision for scene images are more important

than central vision and the reverse is also true for objects. Additionally, this study

showed that foveation has no significant impact on gist recognition in the absence

of parafoveal vision, that is 5◦ scotoma (Figure 4.3). This finding indicates that a

maximum performance of scene recognition can be achieved using only the foveated

peripheral image content.

The advantage of central vision in object recognition is mainly explained by the

fact that objects are generally located in the centre of the images. This indicates

that the model is performing recognition based on the objects within the images and

not their backgrounds. Also, when normalising performances in Experiment 2, the

decline in object recognition was 13% faster than the decline in scene recognition,

especially when occlusions block parafoveal vision in the range of 7◦ to 3◦. This

observation corroborated the importance of parafoveal vision for object recognition

[93].

Interestingly, outdoor man-made scene classes were less dependant on the pe-

ripheral image content. With a 10.8◦ window, these type of scenes scored relatively

higher performance. This is due to the alteration of the global properties of scene

categorisation schemes [157]. Scene recognition depends on local features settings

within each type of scenes [33]. Examples of local features are the presence of cars,

pedestrians, and bicyclists in a street in outdoor-man made scenes [14]. There-

fore, the En-HMAX model can extract local features across man-made scene images

without particularly relying on the peripheral vision.

In Experiment 2, this finding was further investigated using a larger scene and

object image datasets. the relative importance was inferred for each region of vision

for both datasets: peripheral image content for scene dataset and central image

content for object dataset. Blocking the less relevant image content produced the

same performance pattern in both scenarios. This finding can help reduce both the

computational and time requirements to perform classification.
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4.12 Chapter Summary

In this chapter, an investigation to the contributions of peripheral versus central

vision and its effect on the En-HMAX recognition process was performed. The pro-

posed approach can dramatically decrease the size of the required visual data for

scene and object recognition. State of art models of object recognition may be too

computationally expensive to run on a computer with modest specifications. Three

possibilities to overcome this problem: local processing, cloud processing and a mix-

ture of the two. Cloud processing remains an important tool especially for devices

with low processing capability. Most systems use a mixture of local processing and

cloud processing, given the increasing power of mobile graphics units. However,

transferring all image data to a remote cloud may be an unrealistic solution, due

to the band-width related issues [158]. This means that the foveation could be

performed locally to reduce information and the rest done in the cloud. As such,

significant data reduction can be particularly attractive. An important finding of

this chapter was that the maximum classification performance, equal to when the

whole image is available, can be achieved with only half of the input image content.

This observation sets Cloud computing as a viable option for this task. It can be an

important factor to solve the band-width dilemmas in real-time Cloud-based object

recognition applications [158].

After investigating the importance of the peripheral vision for scene recognition,

novel hierarchical topologies of object recognition that depends on the context of

the object are introduced in the next
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Chapter 5

Hierarchical Topologies for

Context-Based Object Recognition

5.1 Introduction

In the previous chapters, a novel method for enhancing the performance of object

recognition systems was developed. Then, to study the performance contributing

factors of object and scene recognition, different regions of vision were investigated.

In this chapter, topologies for context-based object recognition are introduced. They

perform the object recognition process based on the context in which the object is

located. The environment was detected before (or during) the process of recognising

the objects. It is shown that the environment of the object can give a great deal

of knowledge about the identity of the object, for instance, it is more likely to see

a camel in a desert and a computer monitor in an office. In this chapter, a combi-

nation of deep and shallow models for object and scene recognition is used. Three

novel topologies that provide a trade-off between classification accuracy and decision

sensitivity are developed. This chapter proposes the following novel contributions

to enhance the performance of the existing methods of object recognition:

• novel three topologies that provide a trade-off between the recognition accu-

racy and decision sensitivity;

• an enhanced object recognition performance outperforming a single GoogLeNet

by 13%;

• a high level of confidence in the decision making, where the final decision not
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only depends on the object feature for classification but also on the surrounding

peripheral environments. This is essential in highly sensitive applications of

object recognition such as driverless cars;

• a novel topology that recognises the object environment (whether indoor or

outdoor scenes) without a specific classifier and only by inference;

• novel decision-making mechanisms that provide a no-decision state for the low

confidence scenarios.

This chapter will first discuss the importance of understanding the environment

in which the objects are located. It will briefly discuss the architecture of the used

shallow and deep models for object recognition. It will then discuss the details for

utilising the posterior probability of the classifiers. Furthermore, a brief discussion

of the used image datasets will be provided. Then, the proposed topologies for

object recognition will be explained in detail. The classification scenarios will also be

provided. Moreover, a summary of all the active results with comparisons with other

models is provided in the results section. Finally, a chapter summary is provided

that discusses the main findings in this chapter of the thesis.

5.2 Shallow Models

In this chapter, the models that consist of five convolutional layers or less are consid-

ered shallow models, see Figure 5.1. Below is a brief description of the architecture

of the shallow models used in the experiments of this chapter. In particular, the

HMAX model, the En-HMAX model and AlexNet.

5.2.1 HMAX

The HMAX model [2–4] consists of four layers that comprise convolutional and

pooling layers. The alternation of convolution and pooling has proven efficient to

extract a high-level representation of objects. The HMAX model has attracted the

attention of many researchers in the field of machine vision because of its good

performance and abstract architecture.
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Models of object recognition
 used to form the topologies 

Deep learning methods Shallow learning methods

En-HMAX model AlexNet HMAX modelVGG19 and VGG16 networkGoogLeNet

Figure 5.1: The taxonomy of object recognition models used to form the hierarchical
topologies.

5.2.2 En-HMAX

The En-HMAX model [135, 159] has an increased number of layers. It comprised

three convolutional layers and three pooling layers. Similar to the HMAX model,

the En-HMAX model preserves the same architecture, however, using different tech-

niques. It has outperformed the original HMAX model in a large margin on many

datasets.

5.2.3 AlexNet

The AlexNet [47] is a convolutional neural network that consists of five convolu-

tional layers, three pooling layers and two fully connected layers. It comprises 60

million parameters to be fine-tuned. It transforms objects in the input images into

distinctive features. The AlexNet model operates in a similar fashion to the HMAX

model. They share similar hierarchal structure and the same classic alternation of

convolutional and pooling layers. Across shallow models, it achieved the highest

performances on many datasets [160]. The success of AlexNet has attracted the

attention of researchers of computer vision towards CNNs. Due to its simplicity and

good performance, in this chapter, the AlexNet is considered as the default model

for indoor versus outdoor categorisation task [47].
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5.3 Deep Models

Object recognition models that consist of more than five convolutional layers are

considered deep models. Below is a brief description of the architecture of well-

known deep models used in the experiments of this chapter. In particular, VGG16

network, VGG 19 network and GoogLeNet.

5.3.1 VGG16 and VGG19

The VGGNet architecture introduced in [46] is designed to significantly increase the

depth of the existing CNN architectures with 16 or 19 convolutional layers. The last

three layers of both versions, i.e., VGG16 and VGG19, are the following layers:

• Fully connected layer: in this layer, the input data is multiplied by the weight

matrix and then adds a bias vector. Neurons in a fully connected layer are

connected to all activations in the previous layer;

• softmax layer: in this layer, a softmax function is used for classification pur-

poses. It is considered as the multi-class generalisation of the logistic sigmoid

function, also known as the normalised exponential layer;

• classification layer: in this layer, the output predicted label is generated. It

is formed by cross-entropy loss function that defines the preexisted trained

classes.

5.3.2 GoogLeNet

The GoogLeNet model [48], also known as the inception model, is significantly

deeper than the previously explained CNN models. It comprises 57 convolution lay-

ers with 5 million parameters to fine-tune. A key feature in the design of GoogLeNet

is applying the network in network architecture introduced in [161], in the form of

inception modules. Inception module uses a set of parallel convolution layers with

a MAX pooling stage along each module. A concatenating layer is used to con-

catenate the responses of each individual module. In this work, the used version of

GoogLeNet comprises a total of 9 inception modules. A more detailed overview of

GoogLeNet architecture can be found in [48].
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5.4 Transfer Learning

Transfer learning is increasingly becoming a powerful tool in the field of machine

learning [162]. It involves utilising the stored knowledge of a model acquired for solv-

ing a particular task and applying it to solve a different problem. For instance, the

knowledge acquired while learning to distinguish between different types of trucks

could be utilised to recognise different types of cars.

Fine-tuning a network with randomly initialized weights is extremely compli-

cated and time-consuming task. Therefore, in this chapter, fine-tuned pre-trained

networks on 1000 class images of ImageNet dataset [160], were used as a starting

point to learn the new tasks of the experiments. The previous knowledge of the

selected well-known models of CNN was utilised to extract features. These models

were trained and fine-tuned to do a different task, which is recognising daily-life

objects.

5.5 Posterior Probability

The posterior probability is the conditional probability that is computed after an

occurrence of a relevant event. In the field of pattern recognition, the posterior

probability indicates the uncertainty of assessing a particular class of images. The

posterior probability is produced when a generative model makes a decision [163].

Higher posterior probabilities indicate higher confidence of the classifier’s decision.

Figure 5.2 shows an example of how an indoor classifier distributes posterior proba-

bilities for a given input image. Usually, the maximum posterior probability is used

to determine the class label. In this chapter, the maximum posterior probability was

utilised to indicate the confidence in the classifier. A threshold for each classifier

was set and accordingly, the classifiers made decisions based on their confidence.

The threshold was set based on the average posterior probability of all the testing

dataset.

5.6 Datasets

The image classes were collected from ImageNet dataset [160], Caltech 101 dataset

[110] and Caltech 256 dataset [6]. These classes were categorised into two uncorre-
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Figure 5.2: The distribution of posterior probabilities of an input image. It can
be seen that in this example, the classifier is 90% confident that the object in this
image is a chair.

lated set of images: outdoor and indoor. The outdoor image subset does not contain

classes of the indoor image subset and the reverse is also true.

Figure 5.3 shows six examples of the dataset, reflecting the richness of the dataset

in terms of the variety of objects and their backgrounds.

5.7 Classification

In this chapter, the classification settings are briefly explained. In this section,

for all classification scenarios, the extracted features were classified using a linear

support vector machine (SVM) [70]. In each of the experiments, 50% of the dataset

was allocated for testing the classifier. In addition, to ensure that the classification

scores were not biased by the random choice of training samples, the classification
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Figure 5.3: Selected indoor and outdoor images from our dataset.

was repeated for 20 runs where the random selection in each round is independent

from the other. The average classification score and the standard deviation are

reported.

5.8 Proposed Topologies

The hierarchical topologies developed in this section are designed to achieve an im-

proved classification performance over the existing methods of object recognition.

Additionally, providing higher confidence level and decision sensitivity. In this sec-

tion, a detailed description of the proposed topologies is provided. The method and

the architecture of each topology are explained. The designed topologies obtain the

environment in which the object is found as an essential component of the recog-

nition process. Furthermore, the designed topologies comprise a decision-making

stage that can be tuned to increase the confidence or the decision sensitivity for the

process of object recognition.
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Topology-A and topology-B consist of three different models for object recog-

nition. They comprise one shallow model for recognising the environment and two

deep models for object recognition. Topology-C, however, consists of only two mod-

els for object recognition. The environment type, whether indoor or outdoor, in

topology-C, is categorised by inference.

The architecture of topology-A was inspired by the human visual system, where

scenes are rapidly categorised in a small time of 50ms which give a clear information

about the identity of the objects within [164]. However, topology-B and topology-C

are purely computational with less relevance to biology. Topology-B was designed

to minimise the error chance in the first stage of topology-A, the scene recognition

stage. The scene recognition stage was designed in-parallel to other stages of object

recognition with a different mechanism in the decision-making stage. Topology-

C was designed to minimise the number of models in topology-A and topology-B.

Only two models for object recognition are used in topology-C for understanding the

environment and for identifying objects. Finally, each of the below topologies have

several advantages and disadvantages. The below subsections will discuss these in

more details.

5.8.1 Topology-A

Figure 5.4 shows the basic structure of topology-A. In the used dataset D = {Xi, qi, pi}Ni=1,

each image Xi has class label qi (for example: chair) and category label pi (for ex-

ample: indoor). The indoor category is denoted by using pi = 0 and the outdoor

category by using pi = 1. For a given image, qi∗ denotes the predicted class label

and pi∗ denotes the predicted category label. The confusion matrix of the indoor

versus outdoor classifier CM = {cij}2i,j=1 was used to calculate the ratio of the cor-

rectly classified images (see Fig.5.5). Using the total probability theorem, the overall

accuracy in topology-A can be claculated as shown below:

Accuracy(%) =
100∑
i,j cij

[
c11 P(q∗ = q | p∗ = p = 0) +

+ c22 P(q∗ = q | p∗ = p = 1) +

+ c12 P(q∗ = q | p∗ = 1, p = 0) +

+ c21 P(q∗ = q | p∗ = 0, p = 1)
]

(5.1)
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Figure 5.4: The structure of topology-A. The input image is first categorised (i.e.,
indoor and outdoor) then classified (i.e., chair, microscope).

5.8.2 Topology-B

In topology-B, shown in Figure 5.6, the three classifiers operate in parallel to identify

an object in an input image. The object identity depends on the decision of all

three classifiers. The three classifiers have an equal influence in making the final

decision. Making an incorrect decision in any of the stages does not guarantee an

incorrect class label in the final stage. The posterior probability is used to quantify

the reliability of the classifiers. Classifiers with higher confidence level have more

influence on making the final class label decision.

In the experiments performed in this chapter, the mean of the posterior proba-
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Figure 5.5: The confusion matrix of the indoor versus outdoor classifier. c11 and
c22 represent images that were classified correctly. c12 and c21 represent images that
were misclassified.
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Figure 5.6: The structure of topology-B. In topology-B, the classifier that categorises
indoor versus outdoor images operates in parallel with other classifiers.

bilities of the whole testing data D was set as a confidence threshold. However, an

optimal confidence threshold can be tuned differently depending on the classifica-

tion context. The final decision is based on the posterior probabilities of all three
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Table 5.1: The decision-making process of topology-B. The table shows only 2 possi-
ble scenarios of the 16th possible combinations. In all other scenarios, a no-decision
state will be produced. The Xmarker denotes higher confidence, X marker denotes
lower confidence and d denotes the “do not care status”.

Confidence

Indoor classifier (1) X X

Outdoor classifier (2) X X

Indoor versus

outdoor classifier

Indoor decision X d

Outdoor decision d X

Classifier selection 1 2

classifiers as shown in Table 5.1.

5.8.3 Topology-C

In this topology, shown in Figure 5.7, only two classifiers were used to predict the

class label and the category label. Table 5.2 shows the scenarios in which this

topology make the final decision.

In this chapter, the collected image dataset has two separate image subsets. The

image classes of the indoor subset do not correlate with the image classes of the

outdoor subset. This suggests that when an indoor classifier is used, classes from

the outdoor subset tend to give lower posterior probabilities than classes from the

indoor subset. Figure 5.8 shows an analysis of the average posterior probability for

both the indoor classifier and the outdoor classifier. In this analysis, GoogLeNet was

used to produce the figures. As expected, in both scenarios, i.e., indoor classifier and
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Figure 5.7: The structure of topology-C. In topology-C, no classifier is used to
categorise the environment (indoor and outdoor), however, it is able to categorise
the environment by inference.

outdoor classifier, testing a classifier with unseen images within the same training

categories produced a significantly higher posterior probability than testing it with

different image categories. For the indoor classifier, the Mann-Whitney U test, with

a risk α = 0.05, shows that the posterior probabilities for indoor test images (M=

87.6, SD = 18.9) were significantly higher than that of outdoor test images (M =

41.7, SD = 21.5); Z-score = 22.3, p-value < 0.05. Similarly, for the outdoor classifier,

the above test shows that the posterior probabilities of the outdoor test images (M =

74.0, SD = 26.4) were significantly higher than that of indoor test images (M= 31.2,

SD = 18.0); Z-score = 20.9, p-value < 0.05. The data above comprises unpaired
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Table 5.2: The decision-making process of topology-c. The Xmarker denotes higher
confidence and X marker denotes lower confidence

Confidence

Indoor classifier (1) X X X X

Outdoor classifier (2) X X X X

Classifier selection 1 2 No-decision

0 0.2 0.4 0.6 0.8 1

Indoor classi�er

Outdoor images

Indoor images

Outdoor classi�er

Indoor images

Outdoor images

Maximum posterior probability (MAP) 

(A)

(B)

Figure 5.8: An example of the average posterior probability of the indoor and the
outdoor classifiers using GoogLeNet. (A) Indoor classifier. (B) Outdoor classifier.
This chart illustrates the decorrelation in the average posterior probability between
the indoor classifier and the outdoor classifier of topology-C.

non-parametric samples. Therefore, we used Mann-Whitney U method to test for

significance. Therefore, we hypothesised that the posterior probability can give a
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Figure 5.9: Results of categorising indoor and outdoor images.

notion of the image category, i.e., indoor versus outdoor.

5.9 Results

The below subsections display the results for the discussed topologies in the previous

sections.

5.9.1 Indoor Versus Outdoor

Models of object recognition tend to produce higher performances in a binary clas-

sification scheme. The chance level in binary classification scenarios is 50%. In this

chapter, shallow models were utilised for categorising indoor and outdoor scenes.

Figure 5.9 shows a comparison in classification performance between these models.

It can be noticed that AlexNet outperforms other shallow models for the categori-

sation task, with a high accuracy of 99.46%. The En-HMAX model achieves higher

scores of 87.96%, however, it is still far less than the performance of AlexNet. This

is due to the large size of the image data, in which the En-HMAX model cannot

handle efficiently due to its abstract architecture. The same applies to the HMAX

model, where 75.03% of classification accuracy is achieved. Therefore, AlexNet was

elected as a default model with regard to all indoor versus outdoor categorisation

schemes, i.e., topology-A and topology-B.
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In topology-A, AlexNet spread the images to either the indoor classifier or the

outdoor classifier. Although AlexNet has a very high classification performance, the

few incorrect decisions it makes lead to failure in the output stage. This is due to

the uncorrelated image data used in both classifiers. In another word, the indoor

classifier knows nothing about the outdoor environment and the reverse is also true.

Therefore, when an outdoor image passes the indoor classifier, an incorrect class

label will be guaranteed.

In topology-B, the decision of AlexNet has less impact on the final class label

due to the structure of the topology. An incorrect decision at any stage does not

guarantee an incorrect class label. In topology-C, however, no shallow network is

used to categorise the scene type. The scene type is inferred from the indoor and

the outdoor classifier.

5.9.2 Classification Scores Using Topology-A

In Figure 5.10, AlexNet, VGG16, VGG19 and GoogLeNet were utilised as the main

platforms to quantify the performance of topology-A. To compute the classification

accuracy of the whole classification task, the above models were used individually.

In particular, all the image dataset was used without segregating it into an indoor

subset and an outdoor subset. This process was repeated for each of the above

models separately. As a result, the classification accuracy of each of the above

models was quantified for the comparison with topology-A. A similar process was

performed for topology-B a topology-C.

Finally, topology-A scores were compared with the above scores. For complete-

ness, the comparisons are only performed between a certain classification model

and the topology that is formed within the same model, for instance, the VGG19

network results are compared with topology-A that is formed by only the VGG19

models.

For all used models, topology-A outperformed the original models. For example,

in AlexNet, an increased classification performance of 7% is achieved. The difference

is constantly decreased for deeper models.

This is particularly interesting because deeper models are capable of understand-

ing large data. Therefore, using a bigger abject dataset is believed to increase the

above differences dramatically.
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Topology-A
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Figure 5.10: Results of topology-A. AlexNet is used as a default model for cate-
gorising indoor and outdoor images. The classification accuracies in the second-row
represent the performance of below models to individually classify the whole dataset.

Topology-A has the following advantages:

1. Advanced performance over using a single network.

2. Only two models can operate to recognise each input image.

The disadvantages of topology-A can be summarised as the followings:

1. It involves three different classifiers that require more memory in terms of

implementation.

2. An incorrect decision in the first stage guarantees an incorrect class label. The

first stage (indoor versus outdoor classifier) has more power in making the final

decision.

5.9.3 Classification Scores Using Topology-B

Figure 5.11 shows the classification scores of using topology-B. It also shows the

percentages of the no-decision state. In line with topology-A, similar models were

used in this experiment to form this topology. AlexNet was used to categorise the

indoor and outdoor images in all scenarios. In the above calculations, the no-decision

state is considered as a correct classification. It can be noticed that deeper models

such as GoogLeNet and VGG19 do not outperform other models when using this
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Figure 5.11: Results of topology-B. AlexNet is used as a default model for categoris-
ing indoor and outdoor images for all the below calculations.

topology. The performances are more balanced. However, the topology formed

by VGG19 tends to make more decisions than other models. The decision-making

conditions can be tuned using an optimised threshold. In this experiment, the mean

posterior probability of all the testing images was used as a threshold of confidence.

Topology-B has the following advantages:

1. The decision-making process depends equally on all three classifiers.

2. It achieves the highest performance among the other topologies.

3. It is designed to make no decisions when a lower confidence level is obtained.

The confidence threshold can be tuned depending on the allocated task. Ap-

plications with higher risks, for instance, autonomous cars, need higher con-

fidence threshold. The ”no-decision” state is an important measure in such

applications.

The disadvantages of topology-B can be summarised as the followings:

1. It requires more memory in terms of implementation because of the three

classifiers in its architecture.

2. It is more computationally expensive than the other topologies because it needs

all three classifiers to operate simultaneously.
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Topology-C
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Figure 5.12: The results of topology-C

5.9.4 Classification Scores Using Topology-C

In topology-C, the objects are classified using only two classifiers as shown in Figure

5.6. Similar to topology-A and topology-B, the same previously explained models

were used to form topology-C. Furthermore, the classification scores were reported in

a similar fashion. Unlike topology-B, there was no allocated classifier for categorising

the indoor and the outdoor environments. Instead, the category label was inferred

throughout the process of recognising an object. Figure 5.12 shows the categorisation

and classification scores of topology-C. A high categorisation accuracy of 95% was

achieved using VGG19. This is particularly interesting because this score is achieved

without using a specific classifier for the task. In this topology, the percentages of

the no-decision state are less than that of topology-B. However, the classification

accuracies are slightly decreased. Interestingly, VGG19 performs slightly better than

other models using this topology.

Topology-C has the following advantages:

1. It involves only two classifiers for the recognition process.

2. It infers the category label without using a specific classifier, i.e., indoor versus

outdoor classifier.
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Outdoor Environment Indoor Environment

Figure 5.13: Examples of the image dataset used for the indoor and outdoor envi-
ronment for real-time implementation.

3. It makes no decision when a lower confidence level is obtained.

The disadvantages of topology-C can be summarised as the followings:

1. It provides reduced performance comparing to the other topologies due to the

decreased number of the classifiers in its architecture.

2. It shows lower decision frequency than other topologies, due to the limited

number of input parameters in the decision-making stage.
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Indoor Indoor 

Indoor Outdoor 

Figure 5.14: Examples of the real-time implementation of the indoor and outdoor
classifier using AlexNet. This experiment has taken place in the research lab at
Newcastle University. The outdoor scene is the view from the window of the office.

5.10 Real-time Implementation

Models of object recognition comprise many layers of convolutions. Each layer

consists of many filters. Using an advanced number of layers can help to extract

high-level features that provide models with invariances. Accurate models of object

recognition require huge computational resources. Training and fine-tuning these

models consume a tremendous amount of time. Although training object recognition

models are computationally expensive, their implementation has been significantly

reduced due to the introduction of transfer learning. This is done using the following

two steps:

1. Using an optimised fine-tuned pre-trained network as a feature extractor.

2. Training a new classifier to learn the newly produced features.
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Figure 5.15: Computer-based results of the real-time experiment of the indoor and
outdoor classifier.

Using the above procedure of transfer learning, the real-time implementation of

the indoor and outdoor scheme was performed. More details about the implemen-

tation is provided below.

For the real-time implementation experiment of the indoor and outdoor classifier,

an image dataset was collected to train a pre-trained AlexNet model to learn both

schemes. The indoor image dataset consists of 2202 images, while the outdoor

image dataset consists of 2167 images. The images of the indoor dataset contain

different outdoor backgrounds. Furthermore, it comprises many different objects

that can be usually seen in an outdoor environment, for instance, wild animals such

as bears, airplanes and boats. Similarly, the images of the indoor dataset contain

indoor backgrounds and objects that are likely to be seen in an indoor context, for

instance, a computer keyboard, a computer mouse and microscope. Figure 5.13

shows examples of the indoor and the outdoor images used in this experiment.

A pre-trained (on 1000 objects from the ImageNet dataset) AlexNet network was

trained using the above dataset. The experiments were implemented in Matlab on a

dual-core i5 processor (3.4 GHz) PC with 32G RAM without GPU acceleration. The
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experiments were done using an average quality computer web-cam in the research

office. The results have shown a classification accuracy of 99.46% to classify new

environments. Figure 5.14 shows examples of the real-time implementation for this

experiment.

Figure 5.15 shows the individual accuracies for each class of images. It can be

noticed that the performances are balanced for each subset. Only four images were

misclassified from the indoor subset. Additionally, five images were misclassified

from the outdoor subset. The accuracies were 99.51% and 99.39% for the indoor

classifier and the outdoor classifier, respectively.
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5.11 Chapter Summary

This chapter has developed three topologies for object recognition. The introduced

topologies provide a trade-off between three essential elements for image classifi-

cation: classification accuracy, decision sensitivity and computational complexity.

This is important in applications with high risks such as the driver-less cars. A

no-decision state is an important measure for the least confident scenarios. Fur-

thermore, the decision sensitivity can be tuned depending on the used type of the

application. In topology-A, two models can operate to recognise an object for each

input image. The categorisation stage filters the input images to either the indoor

classifier or the outdoor classifier. This topology is less complex than other topolo-

gies. However, an incorrect decision at the first stage can cause an incorrect image

class label. In topology-B, the problems of topology-A were tackled by electing the

decision via all classifiers simultaneously. All three classifiers operate at the same

time and a voting procedure decides the final decision. This topology is compu-

tationally complex, as it needs three classifiers to operate simultaneously for each

input image. However, it provides higher classification accuracies, in addition to,

providing the capability of tuning its decision sensitivity. Topology-C provides the

advantages of topology-A and topology-B. The voting includes only two classifiers

to infer the image category and class. This topology also offers to control the sensi-

tivity of the decision making. Results show that with the proposed topologies, the

performance of GoogLeNet can be improved by 13%.

The evaluation process was performed using Caltech 101 dataset, Caltech 256

dataset and ImageNet dataset. This chapter extends the knowledge regarding the

techniques that could shape the object recognition process in the real world. In

particular, application specific scenarios and will serve as a base for future studies

in the field. The next chapter will draw the conclusion of the entire work on object

recognition and propose future works which will push the development of object

recognition system design even further.
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Chapter 6

Conclusions and Future Work

6.1 Summary and Conclusion

In this chapter, a brief summary of this thesis and a review of the main contributions

are provided. This thesis has provided novel methods for developing object recog-

nition technologies. In particular, a comprehensive survey on the improvement of

object recognition has been presented in Chapter 2. The research work was initiated

with the intention of examining a model to recognise three-dimensional objects us-

ing an ample number of two-dimensional images. More specifically, it was designed

from a feature-based system that extracts invariant features from two-dimensional

images that represents the real three-dimensional world. The recent hierarchical

object recognition methods have been listed and analysed. In addition, an overview

of recent publicly available datasets of object recognition has been listed with their

merits and characteristics.

Firstly, the objective was to select the feature-based approach to conduct the

research. Out of the available approaches, in this thesis, two main approaches were

used for object recognition: hierarchical feed-forward approaches and deep learning

approaches. Therefore, an examination was made to assess well-known models of

object recognition, such as the HMAX model, sparse HMAX model, AlexNet, VGG

net and GoogLeNet. As a result, a decision was made to develop on the above

models and use them in different stages over the course of this research.

In Chapter 3, in order to further enhance the recognition accuracy for both

objects and scenes, the En-HMAX model was proposed. The En-HMAX model

provides sparsity-grouping trade-off, such that informative features of objects and
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scenes are preserved for classification. The En-HMAX model was compared with

the original HMAX model and other hierarchical models for object recognition.

The model sparsity was quantified. The En-HMAX model provides two essential

elements for image classification: selectivity and invariance. The main reason for

using an elastic-net regulariser for the HMAX model was to encourage the grouping

effect when the atoms in the dictionary are highly correlated. Results show that

the En-HMAX model outperforms the original HMAX model (by ∼40%) as well as

the two special cases of the En-HMAX model, i.e., the LASSO- and Ridge-HMAX

models, by ∼19% and ∼9%, respectively. Furthermore, in Chapter 3, the lateral

connections experiment was presented. Features with different degree of complexity

were investigated for recognition. The performances of different combinations of

features were quantified and reported.

In Chapter 4, the developed En-HMAX model (in Chapter 3) was tested against

occlusions. All the occlusions generated in this chapter have a single location, shape

and pixel value. As a result, the dataset comprised occluded dataset that is highly

overlapped. Using an elastic-net dictionary learning in HMAX model scheme has en-

couraged the grouping effect when atoms in the dictionary are highly correlated. As

a result, the En-HMAX model showed outstanding performance when encountering

such a highly correlated data, such as that of class-A occlusions. The experimen-

tal results show that hierarchical structures such as the En-HMAX model allow

for substantial robustness in recognizing objects under partial occlusion. The En-

HMAX model provides two elements essential for image classification: selectivity

and invariance.

In Chapter 5, The recognition behaviour of the En-HMAX model that mimics

the basic structure of the ventral visual stream was further investigated. As a result,

a study that highlights the contribution of the peripheral versus central vision to

scene and object images was conducted. The En-HMAX model was tested with

object and scene image datasets with varying occlusion conditions to reaffirm that

peripheral image content, that is beyond 5◦ eccentricity, is more efficient in recog-

nising the gist of a scene than central image content. In addition, this study showed

that introducing foveation increases the object classification performance of the En-

HMAX model at 1◦ scotoma. However, it had no impact on recognising the gist of

the scene in the absence of parafoveal vision.

The advantage of central vision in object recognition is mainly explained by the
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fact that objects are generally located in the centre of the images. This indicates

that the Eh-HMAX model recognizes the objects within the images and not their

backgrounds. Also, when normalizing performances, the decline in object recogni-

tion was 13% faster than the decline in scene recognition, especially when occlusions

block parafoveal [3◦ − 7◦] section of the image. This observation corroborated the

importance of parafoveal vision for object recognition [93].

The prevailing advantage of the peripheral vision in scene recognition can be

explained by the characteristics of scenes. The formative information of the scene

is spread and compressed at the periphery of the images. Therefore, the En-HMAX

model intrinsically captures the usefulness of the peripheral image content when

recognising scenes. Interestingly, results suggested that outdoor man-made scene

classes were less dependant on the peripheral image content. With a 10.8◦ window,

these scene sub-types scored relatively higher performance. It was speculated that

the reason for this observation is that scene recognition depend on local features

within each type of scene [33]. Examples of local features are the presence of cars,

pedestrians, and bicyclists in a street in outdoor-man made scenes [14]. There-

fore, the En-HMAX model can extract local features across man-made scene images

without particularly relying on the peripheral vision. Further data and research are

required to test this hypothesis.

A further investigation was made to the relative importance of each region of

vision for both datasets, that is, peripheral image content for scene dataset and

central image content for object dataset. Blocking the less relevant image content

produced the same performance pattern in both scenarios. A key outcome of this

experiment may be this finding that by selectively blocking image regions, the com-

putational requirement of image classification can be reduced which is of significant

importance in real-time robotic vision applications.

The state of art models for object recognition may be too computationally expen-

sive to run on a computer with modest specifications. Three possibilities to overcome

this problem are: 1) local processing, 2) Cloud processing and 3) a combination of

the two. Cloud processing remains an important tool especially for devices with

low processing capability. Most future systems may use a combination of local and

Cloud processing, given the increasing power of mobile graphics units and mobile

connectivity. However, transferring all image data to a remote Cloud may be unre-

alistic, due to the band-width related issues [158]. This limitation may necessitate
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data is either reduced or compressed locally before transmission ideally without any

performance degradation. The results in Chapter 5 showed that foveation can be an

appropriate candidate for local data compression. Another important finding in the

study made in Chapter 5 was that the maximum classification performance, equal

to when the whole image is available, can be achieved with only half of the input

image content. This observation offers significant bandwidth saving and data reduc-

tion and can be an important factor to solve the band-width dilemmas in real-time

Cloud-based object recognition applications [158].

In Chapter 6, three topologies for object recognition were developed to further

optimise the previously discussed platforms for object recognition. The recognition

process in the developed topologies depends heavily on the environment in which

the object is found. The topologies presented in Chapter 6 provides three essen-

tial elements for image classification: classification accuracy, decision sensitivity

and computational complexity. In topology-A, two models can operate to recognise

objects for each input image. The categorisation stage filters the input images to

either the indoor classifier or the outdoor classifier. This topology is less complex

than other topologies. However, an incorrect decision at the first stage may guar-

antee an incorrect image class label. In topology-B, the problems of topology-A

were tackled by electing the decision via all classifiers. All three classifiers oper-

ate simultaneously and a voting stage decides the final decision. This topology is

computationally complex, as it needs three classifiers to operate simultaneously for

each input image. However, it provides higher classification accuracies, in addition

to, providing the capability of tuning its decision sensitivity. Topology-C provides

the advantages of both topology-A and topology-B. The voting includes only two

classifiers to infer the image category and class label. This topology also offers to

control the sensitivity of the decision making. Results show that with the proposed

topologies, the performance of GoogLeNet can be improved by 13%.

6.2 Future Work

The aspirations of this thesis involve presenting new research horizons in the future of

object recognition. However, there are some limitations which need to be considered

as future work in order to improve the performance of the biologically inspired

models of the visual cortex. Key issues are
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1. Most of the utilised datasets in recent object recognition systems are intended

to enable the developed object recognition models to generalise to new settings,

for instance, different object backgrounds, illumination, object orientation,

pose, position and scale. However, there are limited resources to image dataset

that target the top down processing and attention that the human brain can

solve. In this thesis, the klab dataset [141] was utilised for this purpose.

However, this dataset is limited in terms of variety of patterns and number of

images.

2. Although the developed techniques in this thesis for object recognition were

shown to perform efficiently, the processing time should reduce, especially

when the image resolution of modern cameras is dramatically increasing.

3. Although the developed models in this thesis are biologically inspired, they do

not provide techniques for attention and top-down processing that exist in the

human visual system. Introducing attention in object recognition models can

provide the following advantages:

(a) it can provide the capabilities of learning new sets of objects within a

single image and identifying the learned objects in different environments;

(b) it equips models with the capability of recognition in a highly cluttered

environment.

4. Due to the time requirement of learning a dictionary to generate optimised

filters, in the developed models for object recognition in this thesis, the dictio-

nary learning process takes place off-line. However, in order to build a general

model for object recognition for a new environment, the dictionary learning

process must take place online.

5. Employ recent mobile technologies to perform object recognition off-Cloud.

This requires the developed models to have a more abstract architecture. Deep

learning models can only be trained using Cloud computing. Providing a

more abstract model for object recognition can help to achieve that aim. At

the same time, implementing a highly optimised deep learning method on a

parallel chip such as field programmable gate arrays (FPGAs) can help to solve

that problem.
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6. Investing in different regions of vision for different recognition tasks, for in-

stance, high focus on the peripheral image content for tasks that involve scene

recognition. Similarly, focus the model processing on the central image content

for applications that involve object-based recognition.
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