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ABSTRACT 

The advancement of IoT, cloud services and technologies have prompted heighten 

IT access security. Many products and solutions have implemented biometric solution 

to address the security concern. Heartwave as biometric mode offers the potential due 

to the inability to falsify the signal and ease of signal acquisition from fingers. However 

the highly variated heartrate signal, due to heartrate has imposed much headwinds in 

the development of heartwave based biometric authentications.  

The thesis first review the state-of-the-arts in the domains of heartwave 

segmentation and feature extraction, and identifying discriminating features and 

classifications. In particular this thesis proposed a methodology of Discrete Wavelet 

Transformation integrated with heartrate dependent parameters to extract 

discriminating features reliably and accurately. 

In addition, statistical methodology using Gaussian Mixture Model-Hidden 

Markov Model integrated with user specific threshold and heartrate have been proposed 

and developed to provide classification of individual under varying heartrates. This 

investigation has led to the understanding that individual discriminating feature is a 

variable against heartrate.  

Similarly, the neural network based methodology leverages on ensemble-Deep 

Belief Network (DBN) with stacked DBN coded using Multiview Spectral Embedding 

has been explored and achieved good performance in classification. Importantly, the 

amount of data required for training is significantly reduced.  
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CHAPTER  1  

 

INTRODUCTION TO HEARTWAVE BASED 

BIOMETRIC CLASSIFCATION 

 

This chapter introduces the advantages and the needs of using heartwave signal as 

a biometric mode. Conversely, it highlights the difficulty in using heartwave signal as 

a biometric mode in particular to elevating heartrate. The chapter will elaborate on the 

states of heartwave components: P-Wave, QRS-Complex and T-Wave under varying 

heartrates. Chapter 1 will also establish the objectives of this research and a brief 

overview of each chapter.   

 

1.1 Heartwave based Biometric Authentication 

1.1.1 Potential Heartwave based Biometric Application 

The use of individual heartwave signal as biometric mode to perform identification 

present many opportunities. With increasing evolution of digital technology, IoT 

solutions, cloud services and big data services, the need for secured data protection is 

univocal and many have implemented 2-Factor Authentication (2FA) similar to the 

security adopted by ebanking.  

In E-health management, heartwave as a biometric mode has great potential to 

fulfil the security demands and ensuring access integrity [1]. With increasing elderly 

population and longer life expectancy, elderly suffering from worn-out fingerprint and 
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poor eyesight are facing challenges to use security system such as Digital Key Token 

and fingerprint biometric system comfortably. Equally, it is tormenting for elderly to 

setup password with periodic renewal and adhering to unique password characters 

combination. Heartwave as biometric mode has great potential to complement existing 

2FA infrastructure for secured access to services and products through the means of 

wearable devices embedded with electrodes for heartwave signal acquisition. In 

addition, it eliminates risks involving retrieval of wrong medical records due to similar 

names.  

In transportation, heartwave signal as biometric mode can be used to enhance 

transportation safety such as authenticated access to vehicle with continuous 

monitoring of driver fatigue due to prolong driving [2, 3].  

In healthcare, there are intense developments in tele-health solutions to provide 

continuously monitoring on the well-being of the elderly [3]. Biometric authentication 

for access to services enables medical personnel to respond to elderly needs reliably, 

securely and promptly. See Figure 1.1 for illustration. 

 
Figure 1.1: Applications of heartwave as biometric mode 

1.1.2 Review of Current Biometric Modes 

Reviews of various biometric techniques that have been explored [4-10]. Biometric 

can be broadly classified under biological biometric and behavioral biometric. 
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Behavioral biometrics deals with the patterns and gaits of human movement that 

includes, voice, handwriting and signature. Biological biometric deals with individual 

anatomy and detailed physiology.  

This review examines the characteristic of the current biometric modes, the 

disadvantages and advantages relative to this research tenet of heartwave signal as 

biometric mode. Table 1.1 summarizes the characteristics of the reviewed biometric 

modes.  

 

Table 1.1: Comparison of biometric modes 

 

 Biometric Mode: Face 

In face recognition, features consisting of eyes, eyebrow, noise, mouth and inter-

feature relatives distances are used as the discriminating factors in authentication. 

Approaches used in facial recognition include Principal Component Analysis (PCA) 

and Linear Discriminant Analysis (LDA). The implementation of facial recognition 

requires camera vision to capture the facial of individual. Extraction requirements also 

include the ability to extract foreground feature from background image. As image 

recognition is employed, the acquisition process can be affected by the lighting 

condition, spectacles, ageing effects, facial expression and position of the user during 

Biometric 

Mode 

Accept 

Ratio 

Reject 

Ratio 
Accuracy Cost 

Device 

Required 

Iris 66% 34% High High Camera 

Retina 75% 25% High High Camera 

Vein 92% 8% High Medium Camera 

Facial 85% 15% 
Medium-

Low 
Medium Camera 

Fingerprint 80% 20% High Medium Scanner 

Heartwave 95% 5% High Low Electrodes [11] 
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acquisition. In the early formative years, individual facial experiences craniofacial 

growth where face becomes larger. In the transition to elderly, individual facial 

experiences deformation of the skin such as texture, thinner, darker, less elastic, more 

wrinkles and blemishes. However texture transformation information are not use as 

discriminative feature. Conversely, minus the mentioned constraints, facial recognition 

is non-invasive and can be easily implemented due to low capital requirement and easily 

available implementable code.  

 

 Biometric Mode: Fingerprint 

Fingerprint as biometric mode has been most widely used [12]. Fingerprint is a 

unique characteristic traits that exist in all individual including twins. Fingerprint 

contains patterns of ridges and valleys that form the uniqueness among individuals. The 

unique traits are also known as minutiae. Typically a fingerprint consists of forty 

minutiae and similar minutiae between two individuals are less than eight.  

This technology is most widely adopted, due to the availability of fingerprint sensor 

at an extremely affordable price. In addition, code to develop a fingerprint 

authentication module are readily shared at community level. Fingerprint biometric 

mode however has seen reports of attempt falsifications [13] [14]. More apparently, 

fingerprint is not permanence as the size and shape changes as the finger grows. In 

addition, fingerprint degrades over time. Elderly has difficulty in using fingerprint as 

the biometric mode due to worn out ridges on the fingers. Individual with sweaty palms 

suffered from using fingerprint biometric system efficiently. Hence, in elderly and 

individual with sweaty palms, using fingerprint biometric system is more of the chore 

rather than an ease of access to them. 
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 Biometric Mode: Iris 

In iris biometric system, the recognition consists of acquiring the image of the iris 

for authentication. Iris is a muscular tissue that regulates the size of the pupil. The 

formation of the muscle is structurally distinct that allows for authentication purposes.   

Iris pattern is unique between individuals and the pattern achieves permanence 

characteristic before the age of one which is a highly desirable biometric trait. One of 

the challenges of iris as the biometric mode is image acquisition. The ability to 

authenticate an individual accurately is highly dependent on the image quality without 

causing discomfort to users. Accurate it may be, iris imaging can be affected by 

eyelashes and reflection. More worrying, its uses infrared light to illuminate the iris 

which many view as invasive.  

 

 Biometric Mode: Retina 

Similar to iris, retina is another biometric mode. In retina scanning, the network of 

blood vessel is use as a unique characteristic traits to authenticate user. It has been 

reported the network of blood vessel is unique even in twins. In the acquisition of the 

retina for authentication, the acquisition system has to be placed five to eight 

centimeters from the eyes for the image to be captured reliably. More importantly, retina 

scanning uses infrared signal that is projected into the eye where it is absorbed by the 

blood vessel in the retina. This absorption causes illumination of the retina and which 

can be captured for authentication. As the mode of acquisition uses infrared, it is 

conveniently classified as an invasive authentication. Similarly to iris based 

authentication, accuracy highly dependent on the image quality without causing 

discomfort to users. Although extremely accurate, the method can be affect by 

individual with eye related medical conditions and diseases such as cataract and 

glaucoma.  
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 Biometric Mode: Palm Veins 

In palm vein biometric mode, it relies on the network of blood vessels on the palm 

as a discriminating feature. The network of blood vessel is acquired by passing near 

infrared light through the body and the reflected image is captured. Results are highly 

accurate, unlike fingerprint, it is not affected by dry or sweaty palm. However, the 

equipment required to capture the palm vein is bulky and not suitable to be implemented 

in wearable device. 

 

 Heartwave as Biometric Mode 

Heartwave is a biological signal generated by the rhythmic electrical activity of the 

heart. It also represents the liveliness of an individual. Apart from possessing the 

essential biometric characteristic traits, the impossibility to falsify and mimic the 

biological signal makes heartwave signal an ideal candidate as the biometric mode [15, 

16]. Concurrently, heartwave signal can also be used to provide addition information 

pertaining to psychological, physiological and clinical status of an individual [17].  

The uniqueness of heartwave signal is supported by 2 primary factors: 

physiological (structural construction of heart) condition of the heart and the 

geometrical (chest geometry) location of the heart. The two primary factors manifested 

a heartwave signal that is unique between individuals [18].  

Many attempts have been made to introduce heartwave as a form of human 

identification mode due to the pertinent fact that the biological activity and geometrical 

features of the heart have resulted a unique signature in all individuals. The challenges 

faced are wide and varying. Heartwave based biometric is a multi-stage process that 

involves signal acquisition from individual under non-clinical setup condition, signal 

conditioning where interfering noises are eliminated or reduced while maintaining data 

integrity, extraction of key distinctive data that are repeatable yet unique for 

discriminating process, recognition and matching where high dimensional data are 
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analyzed, matched and making informed decision to either grant or deny entry to an 

individual[12, 18]. 

 Individual heartrate is variable and the impetus of variations can be contributed by 

many factors such physiological activities, psychological related and pathological 

related issues. The heartrate variation of individual can vary as much as 400%. Even in 

resting, variation of the heartwave signal exists due to movement of the respiratory cage 

[19, 20]. Heartwave morphology which is dependent on heart rate, suffers from minimal 

to signification variations. Every individual has its own resting heartrate and maximum 

heartwave. At resting state, heart rate variation is at minimal and the heart rate of an 

individual can range from 50 bpm to as much as 180 bpm in accordance to the 

maximum heart rate equation of “220 bpm – age of an individual”. Hence, since 

heartwave morphology varies according to heartrate and as a biometric mode, reliable 

extraction of heartwave features is utmost critical to enable reliable identification and 

verification.  

The use of heartwave signal as biometric mode has aroused many research works 

with approaches such as KNN classifiers [18, 21, 22], LDA classifier [23], Support 

Vector Machine, Match Score Classifier [24] and Generative Model Classifier [25-27]. 

Unfortunately, all of the above works use ECG data that are obtained under resting 

condition where individual heartrate is not under physical duress. As mentioned, the 

morphology of an individual heartwave changes under different heartrate. One reported 

work [28] uses data comprises of heartwave signal under varied conditions of heart 

wellness. The work uses auto-correlation method to discard anomaly waveform of 

Premature Ventricular Contraction (PVC). PVC is a heart anomaly signal that occurs 

sporadically unlike the repetitive heartwave signal. Linear Discriminant Analysis is 

subsequently used to perform classification. Although categorized under varied 

conditions, the work does not use signals that are acquired under physical duress. In 

medical related fields, the works [25, 27, 29] use signal processing tools and Hidden 

Markov Model (HMM) to detect heartwave anomaly on individual with cardiac related 

problem. In those works, heartwaves of multiple individuals of different anomalies are 
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concatenated and input to HMM model for anomaly detection. The HMM model is thus 

not appropriate for individual classification since individual heartwave morphologies 

varies across individual heart rate. 

 

1.2 Heartwave Signal and the Effects of Varying Heartrate 

Heartwave signal comprises of 3 main wave complexes that are important in 

heartwave base authentication and identification. The three waves are namely P-Wave, 

QRS-Complex and T-Wave. In a single heartwave signal, it starts off with the 

contraction of the atrium muscle tissue which results in the formation of the P-Wave. 

Upon contraction, the excited electrical pulse travels to the ventricular muscle causing 

contraction which produces the QRS-Wave complex. QRS-Wave complex is the most 

recognizable peak and is caused by the large muscular tissue mass at the ventricular 

segment. Following the ventricular contraction is relaxation of the ventricular which 

causes the formation of the T-Wave. See Figure 1.2 for illustration.  

Though rhythmic and continuous in nature, the depolarization of the atrial is known 

as the start of the cardiac cycle. 

 

 

Figure 1.2: Traces of heartwave signal 
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Medically, it has been proven that individual heartwave experiences persistent 

variations. Numerous studies have been done to conclude that heartwave morphology 

varies regardless of individual state of health, gender sex and age. In the medical 

practice, individual heartwave signals are analyzed in a multi-stage exercise also known 

as ECG treadmill where individual will be subject to increasing exercise duress till the 

individual maximum heart rate is breached. The analysis includes the direction and 

magnitudes of heartwave components consisting of P-Wave, QRS-Complex and T-

Wave. Heartwave morphological variations cannot be understated [30-36]. Figure 1.3 

shows the variation of heartwave at different stages of the heartrate in particular to the 

variations of T-Wave. At resting heartrate, it exhibits an inverted T-Wave. However at 

elevated heartrate, T-Wave actually slops upward into the positive region. Incidentally, 

it also illustrates an almost conjoint P-Wave and T-Wave.  

 

  

Figure 1.3: Changes of an individual heartwave morphology variations under different heart rates from 

a resting heart rate of 63 bpm:  a. 77 bpm at 120%, b. 88 bpm at 140%, c. 100 bpm at 160%, d. 113 

bpm at 180%, e. 126 bpm at 200%, f. 138 bpm at 220%, g. 150 bpm at 240%, h. 164 bpm at 260% and 

i. 177 bpm at 280%  
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1.2.1 P-Wave 

P-Wave typically refers to the PR interval that spans from the onset of P-Wave 

characteristic point to the peak of R-Wave characteristic point. Medically, PR interval 

is the time taken from the activation of the atrium to the Purkinje Conduction System 

by the transmission of electrical stimulation. PR interval is reversely and linearly 

correlated to the heart rate that ranges from 55bpm to 155bpm. During strenuous 

exercise, P-Wave morphology changes and is inversely proportional to the change in 

heartrate in which the PR interval shorten with increasing magnitude [37] [38]. In 

summary, the interval between the spatial maximum between P-Wave and the onset of 

the QRS-Complex of the P-Wave decreases while the magnitude of the P-Wave 

increased. It is also to note that while the interval and magnitude change, the direction 

of the P-Wave vector remains unchanged. Using a mean vector to quantify the P-Wave, 

the P-Wave vector magnitude increases approximately by 68% [38]. In another studies, 

the PR interval can be quantified at 5 milliseconds reduction for every increases of 10 

heart rates per minute [39].  

In addition to heartwave morphology variation during exercise, heart activity 

undergoes a recovery period immediately after an intense exercise. During the recovery 

period, P-Wave magnitude increases remarkably during the first minute of the recovery 

with lengthening of PR temporal period before recovering to resting state condition [39] 

[33] [37]. Currently none has studied into P wave uniqueness to support authentication. 

No study has been conducted on the effects of P wave variation on heartwave based 

biometric authentication [24].  

 

1.2.2 QRS-Complex 

QRS-Complex component is most distinctive segment of the heartwave signal as 

it contains the most prominent R-Wave peak. QRS-Complex is relatively stable with 



Chapter 1   

1-11 

 

minimal variation during resting condition. During strenuous exercise, the QRS period 

is shorten similarly to P-Wave. However the variation occurs in the segment of RS 

while segment of QR exhibits minimal variation during exercise [32]. In addition to the 

temporal variation, magnitude of the QRS complex also varies. R-Wave actually 

decreases in magnitude while S-Peak increases. In some situation, the S-Peak can be 

higher than R-Peak [33] [30].While QRS-Complex exhibits unique variation during 

exercise, the unique variation is also observe during the recovery stage. During recovery, 

QR interval actually lengthen during recovery. The variation ceases and morphology 

stabilizes once heartrate returns to resting condition [33].  

 

1.2.3 T-Wave 

T-Wave exhibits the most significant variation. Medically, it is known as the QT 

interval. The QT interval initiates from the onset of Q-Wave to the offset of T-Wave. 

Medically, QT interval has been used to deduce pathological causes of heart related 

ailments and widely tracked to determine the efficacy of cardiac related drugs [40] [41] 

[42].  

Signal profile is highly dependent on the Lead position where the signal is acquired. 

Signal acquired from Lead III often exhibits signal in negative domain. During exercise, 

the QT interval will shorten with decrease in T-Wave magnitude due to increase heart 

rate. In short, the QT interval is reversely linear to the change in heart rate [36]. During 

recovery from exercise, the QT interval will lengthen due to decrease of the heart rate 

[33] [37]. A unique observation is the spike of the T-Wave peak during the first minute 

of the recovery [33]. Hence while the QT period is reversely linear to change in heart 

rate, the vector change is independent of heart rate [37].  

As mentioned on the use of QT interval as a prognosis and diagnosis for heart 

anomaly, various methods such as Framingham Method have been developed to correct 

QT variations and the signal is reconstructed in 60bpm interval [43, 44] [45]. However 

the correction technique does not address the spatial magnitude variation.  
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1.3 Aim of Thesis 

The objective of this research focuses on investigating and developing a machine 

learning methodology and architecture to address individual heartwave morphological 

variations and performing a biometric classification that is invariant of heartrate and 

heartwave variations. The variations of heartwave signal contributed by physical 

activities and varying heartrates have caused current reported authentication and 

classification methodologies to deteriorate significantly in intra-person and inter-person 

authentication.  

 

The objectives of the research are as follows: 

 

1. To present a unified perspective of the commonly adopted methods to support 

heartwave segmentation and extraction, and methods of determining 

discriminating feature and classification.  

 

2. To develop a novel approach that is capable to perform heartwave segmentation 

and feature extraction reliably and accurately under variable varying heartrate 

conditions.  

 

3. To develop a statistical modelling architecture that is able to identify individual 

unique and varying discriminating features due to varying heartrate and perform 

individual classification accurately and reliably based on the developed model.  

 

4. To develop a deep neural network based architecture that is able to harness and 

accommodate individual varying heartwave signal and perform feature 

extraction to produces a high performance biometric classification methodology.  
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5. To analyze the proposed approaches and evaluate the classification performance 

with other state-of-the-art approaches.   

 

1.4 Thesis Outline 

This thesis focuses on two aspects. The first aspects focuses on the heartwave 

segmentation and extraction to extract heartwave characteristic features under extreme 

heartwave morphological variations. The second aspect focuses on discriminative data 

clustering and classification using two different domains: generative modeling 

methodology and deep neural network methodology. The theoretical concepts of each 

algorithm and architecture will be introduced in details. All the experiments, 

simulations and validations are conducted on Matlab using Databases from Physionet. 

Results are compared with state-of-the-art methodology and discussed. The outline of 

the thesis is as follows: 

Chapter 2 provides a comprehensive review of the current state-of-the-art 

methodologies in the domains of heartwave signal segmentation and extraction, and the 

classification. Each of the methods is described and the appropriateness to support the 

scopes of the research will be discussed. Reported works based on the methodology 

will be represented with the merits and issues discussed.  

Chapter 3 focuses on the proposed novel methodology of Discrete Waveform 

Transformation integrated with heartrate dependent parameters: PR-Interval and QT-

Interval to perform specific waves’ components delineation and extraction. The 

proposed methodology is able to perform segmentation and extraction of heartwave 

features regardless of heartrate.  

Chapter 4 features a novel statistical methodology that leverages on the 

characteristic strength of Gaussian Mixture Model (GMM) and Hidden Markov Model 

(HMM). The proposed architecture comprises of GMM-HMM coupled with user 
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specific parameters of thresholding criteria from loglikelihood score and heartrate are 

used to perform user classification. Each of the user dataset is modelled by GMM and 

subsequent remodel under HMM to provide discriminating features for individual 

classification. As heartwave morphology is closely tied to the heartrate and each user 

has a determined range of heartrate, these parameters become unique features for 

classification. 

Chapter 5 features a novel architecture that uses an ensemble of Deep Belief 

Networks (DBN) to perform heartwave extraction under different configurations. 

Thereafter, a method of Multiview Spectra Embedding (MSE) is adopted to combine 

the output of the ensemble-DBN into a single structure of data. Importantly, the MSE 

identify key significant feature from each of the views and combined the views as 

complimentary property. The output of the MSE is further input into a stack DBN to 

perform classification of individual.  

Chapter 6 concludes the research work of this thesis followed by recommendation 

of future works that are necessary to conceptualize the heartwave based classification 

for future deployment.  
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CHAPTER  2  

 

OVERVIEW OF HEARTWAVE BASED 

AUTHENTICATION 

 

2.1 Introduction 

In this chapter, the current state of the art in heartwave based authentication is 

introduced in details. In heartwave based biometric authentication, the solution 

typically comprises of two domains. The domains are heartwave segmentation with 

feature extraction and classification techniques. The two domains are important and 

critical. A low quality segmentation and extraction process have the consequences of 

affecting the classification outcome. This chapter comprises of three sections. Section 

1 presents the current state-of-the-art solution to perform classification under cardiac 

irregularity and under exercise duress. Section 2 elaborates on the methodologies that 

have been reported to support heartwave signal segmentation and extraction. Section 3 

elaborates on the current methodologies to support feature identification and 

classification.  

 

2.2 Heartwave Biometric Solution for Cardia Irregularities 

and under Exercise Duress 

Reported work on the heartwave biometric solution for cardiac irregularities and 

under exercise duress are far and few. To-date, to the best of author’s knowledge, work 
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in the mentioned context is only a hand full. There are unfortunately, more work on 

identifying and discriminating different variants of anomaly heartwave signal to 

support medical intervention. [22, 46-51] have reported work on the biometric 

classification involving individuals with anomaly heartwave signal. 

[52] reported a work on heartwave based identification on individuals with normal 

and cardiac anomalies. The work uses analytical approach to segment the peaks and 

valleys around R-Peak. The window for peaks and valleys detection is limited at 25-

sample length about R-Peak. Thereafter, a commercial software Kubios is used to 

remove artifact signal. Random Forest methodology is used to determine discriminating 

feature and perform classification. The work is performed on the databases containing 

normal signal and arrhythmia signal and reported an accuracy of 95.85%. While 

commendable, a few key essentials are not covered. For each record, only 25 heartbeat 

samples are used for testing which suggests that significant amount of data has been 

used for training. Secondly, although testing has been conducted on arrhythmia 

database with anomaly heartwave, the anomaly heartwave signal is under resting state. 

Thirdly, with a fixed window of 25-sample for peak and valley detection, it is not 

possible to detect heartwave at elevated heartrate. At elevated heartrate, the profile of 

the T-Wave has a tendency to exhibit an upslope morphology to render the peak and 

valley detection function inappropriate.  

 In the work of [53], classification testing is performed on database that contains 

arrhythmia heartwave signal. The classification focus on QRS-Complex as the 

discriminating features. In the 44 individuals, there are 26 individuals with arrhythmia 

with sporadic occurrence of anomaly QRS-Complex. Upon extraction, the QRS-

Complex is used as a template. Each healthy individual has 8 templates and 16 

templates for individuals with anomaly QRS-Complex. Correlation Coefficient is used 

as the criteria to classify individual. Author reported an accuracy of 100%. It is however 

to note although testing has been conducted on arrhythmia database, the author did not 

investigate heartwave morphological variation under elevated heartrate. The heartwave 

morphological variation is highly dependent on heartrate, which leads to a contentious 
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agreement on the number of templates that are required for each individual.  

 In the rare work of [54], the effect of heartwave signal variation under exercise 

duress is investigated. It is reported that 26 individual signals are acquired from a 

bicycle exercise for a period of 5 minutes and the intensity of the exercise it capped at 

35% of the Target Heart Rate (THR) where it is defined as (Peak HR – Resting HR) 

x intensity% + Resting HR. Peak HR is defined as (220-age). The work uses chaotic 

theory methodology in the extraction of heartwave feature. To support classification, 

nonlinear Support Vector Machine with polynomial kernel is used to perform user 

classification. This work achieved a classification accuracy of approximately 81%. The 

work is commendable but it is unfortunate that the work is not conducted under the full 

spectrum of heartwave morphological changes. Under extreme physical duress, the 

intensity of the heartrate can double and triple from resting heartrate. 

 

2.3 Heartwave Segmentation and Feature Extraction 

Techniques  

Heartwave segmentation and feature extraction refers to the delineation of 

heartwave signal and the extraction of the characteristic features that can be used to 

perform classification and authentication. The features to be extracted can be broadly 

grouped into two categories. The two categories are fiducial based and non-fiducial 

based. In fiducial extraction, characteristic points are located on the profile of the 

heartwave signals. The characteristic points can include components of P-Wave, QRS-

Wave Complex, T-Wave, time difference between various characteristics points and R-

R interval. The components refer to the local maxima or local minima. Non-fiducial 

features include heartbeat segmentation to extract discriminative information without 

the need to determine the fiducial points. Generally, non-fiducial feature method uses 

the global pattern that comprises of a finite length of signal with a few heartwave signal 

rather than a single heartwave signal.  
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 Over the years, various methods and techniques have been introduced to perform 

heartwave segmentation and feature extraction. Broadly, the techniques can be 

categorized into Wavelet Transformation, Auto Correlation, Chaos Theory and Auto-

Regression. In addition to the mentioned methods, it is appropriate to be aware of the 

operating conditions of the methods which are either frequency domain, time domain 

or a combination of time-frequency domain. A brief description for each for the 

methods will be provided together with the characteristic and limitations of the methods. 

This is to note that the extraction techniques mentioned in the subsequent subsection 

are based on commonly cited approaches and by no mean exhaustive. In addition, there 

are also reported works that use a combination of various methods to extract fiducial 

and non-fiducial data for classification.  

 

2.3.1 Wavelet Transformation 

Wavelet Transformation has been the most commonly adopted technique [55-64] 

and has been proven to be effective against non-stationary waveform to provide good 

temporal localization of the heartwave components such as the onset and offset of P-

Wave, QRS-Complex and T-Wave. The accuracy of the temporal localization is critical 

in extraction of heartwave data.  

Wavelet Transform is a time scale representation and uses a linear operation that 

decomposes the signal into different scales (half the scale to be exact) in relation to the 

frequency component. The scaling identifies the low and high frequencies in the 

heartwave signal. In the family of wavelets used for the detection of the heartwave 

component, Daubechies of different orders have been chosen to perform heartwave 

extraction due to the close resemblance to the heartwave signal. The advantage of the 

DWT is the capability of reconstructing the signal from the decomposed wavelet. The 

Wavelet Transform of a signal is simply the summation of the signals which have been 

multiplied by the scaled, shifted version of wavelet function. The Wavelet Transform 
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can be represented by  

𝑊 (𝑎, 𝑏) =  ∫ 𝑓(𝑡)Ψ𝑎,𝑏(𝑡)𝑑𝑡
∞

−∞
 (2.1) 

Ψ𝑎,𝑏(𝑡) =
1

√𝑎
𝜓 ∗ (

𝑡−𝑏

𝑎
) (2.2) 

 

where * represents the complex conjugation, Ψ𝑎,𝑏(𝑡)  represents the window 

function aka mother wavelet which in this research focus is the Daubechies wavelet. ‘a’ 

is the scale factor and ‘b’ is the translation factor. (
𝑡−𝑏

𝑎
) performs a shift and scale of 

the mother wavelet base on dyalic grid for decomposition of the input signal. Each level 

of decomposition decomposes the signal into different frequency resolution and more 

importantly allows spatial determination of heartwave characteristic points. 

 [56] reported an impressive 99.8% for detection of QRS-Complex. However the 

results for the components of P-Wave and T-Wave are not reported. The author however 

did mention on imposing empirical width to contain the profile of P-Wave and T-Wave 

to allow peaks and valleys detection. It is to note that the recommendation is not 

appropriate under elevated heartrate. Under elevated heartrate, the morphological 

variations in particular to P-Wave and T-Wave change significantly in particular to the 

sloping components of the wave.  

[55] uses a Continuous Wavelet Transformation and achieved an accuracy results 

of approximately 95% and the size of the database contains only 4 individual. Although 

the accuracy is impressive, the results are not conclusive due to limited users.  

While Wavelet Transformation has been adopted and reported by many, it is 

unfortunate the proposed methodology has been tested on dataset where the heartwave 

signals are under resting condition. Heartwave signal morphology is highly dependent 

on heartrate and a fixed window, adopted by many, leads to false detection of P-Wave 

and T-Wave components under elevated heartrate. Chapter 3 will elaborate in details 

the incorporation of heartrate dependent parameters that will enable successful and 

reliable detection of P-Wave and T-Wave components.  
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2.3.2  Auto Correlation with Discrete Cosine Transformation 

In addition to Wavelet Transform method, another popular method performs 

heartwave extraction without the requirement of fiducial point detection. [51, 65-68] 

have reported work on using the method of Auto Correlation with Discrete Cosine 

Transformation (AC/DCT) to perform heartwave extraction. The concept of AC/DCT 

method involves defining a window of length N, where the heartwave signal is trace 

into a non-overlapping windows which is wider than an average heartbeat length 

(resting heartrate). The window is of fixed length and under variable heartrates, 

multiple heartwave can exist inside the window. AC is applied to blend all the sequences 

of signal within the window through the summation of the products expressed in (2.3). 

With summation of product, location of the fiducials need not be explicitly determined.  

 

            𝑅𝑥𝑥̂[𝑚] =
∑ 𝑥[𝑖]𝑥[𝑖 + 𝑚]𝑁−|𝑚|−1
𝑖=0

𝑅𝑥𝑥̂[0]
                  (2.3) 

             

where 𝑥[𝑖]  is the windowed heartwave signal and 𝑥[𝑖 + 𝑚]  is the time shifted 

version of the windowed heartwave signal with a time lag of 𝑚 = 0,1,… , (𝑀 −

1);  𝑀 ≪ 𝑁. M is the dimensionality of autocorrelation. The output is normalized with 

the 𝑅𝑥𝑥̂[0] which cancels out the biasing factor.  

Since a heartwave signal contains prominent waves complexes of P-Wave, QRS-

Complex and T-Wave, the wave complexes shall be the main contributors to the sum 

from expression (2.3) and the similar features coefficient from the moving window will 

be embedded. The drawback of AC is high dimensionality. Hence after the computation 

via AC, an energy compaction process is initiated through the application of Discrete 

Cosine Transform (DCT). DCT is applied to the AC coefficients for dimensionality 

reduction.  

               𝑌[𝑢] = 𝐺[𝑢]∑ 𝑦[𝑖]

𝑁−1

𝑖=0

𝜋 cos(2𝑖 + 𝑢) 𝑢

2𝑁
            (2.4) 
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where N is the length of the signal 𝑦[𝑖] for 𝑖 = 0,1, … , ( 𝑁 − |𝑚| − 1). 𝑦[𝑖] is the 

auto-correlated heartwave signal obtain from 2.4. 𝐺[𝑢] is expressed as the form 

 

                  𝐺[𝑘] =

{
 

 √
1

𝑁
, 𝑘 = 0,

  √
2

𝑁
 ,1 ≤ 𝑘 ≤ 𝑁 − 1

                         (2.5) 

 

This allows the representation of coefficients to be presented in lower dimension 

and near zero component of the frequency representation to be omitted. K will contain 

all the significant features of the heartwave signal. Based on the reported work of [67], 

the features extracted using AC/DCT achieved a 94.47% accuracy in classification of 

users. This method however does not resolve the impact of heartrate variations. As it 

uses coefficients of the Auto Correlation, the coefficient will deteriorate at increasing  

heartrate as the heartwave waveform becomes more and more dissimilar from the 

resting heartwave waveform.   

 

2.3.3 Chaos Theory Extraction  

[69-72] have proposed the use of Chaos Theory to extract heartwave feature which 

is a non-fiducial based extraction. The concept of Chaos Theory in particular to the 

Lorenz Chaos System is to transform the heartwave signal into a chaos error distribution 

diagram which will generate a two centroid points known as chaotic eyes. This pair of 

chaotic eyes are subsequently use as a characteristic detection features. See Figure 2.1 

for illustration. The advantage of this concept in comparison the neural network is the 

minimal amount of training data required for prediction. 

 Accordingly, the Lorenz Chaos System consists of a master (𝐿𝑚𝑎𝑠𝑡𝑒𝑟) and a slave 

(𝐿𝑠𝑙𝑎𝑣𝑒) and are expressed in (2.6) and (2.7) respectively.  
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𝐿𝑚𝑎𝑠𝑡𝑒𝑟 = {

𝑥1 = 𝛼(𝑥2 − 𝑥1)
𝑥2 = 𝛽𝑥1 − 𝑥1𝑥3 − 𝑥2)
𝑥3 = 𝑥1𝑥2 − 𝛾𝑥3)

 (2.6) 

 

𝐿𝑠𝑙𝑎𝑣𝑒 = {

𝑦1 = 𝛼(𝑦2 − 𝑦1)
𝑦2 = 𝛽𝑦1 − 𝑦1𝑦3 − 𝑦2)
𝑦3 = 𝑦1𝑦2 − 𝛾𝑦3)

 (2.7) 

 

Subtracting expression (2.6) and (2.7), the chaotic dynamic function of Lorenz 

Chaos System can be expressed as shown: 

 

[

𝑒1
𝑒2
𝑒3
] = [

−𝛼 𝛼 0
𝛽 −1 0
0 0 −𝛾

] [

𝑒1
𝑒2
𝑒3
] − [

𝑦2𝑦3 − 𝑥2𝑥3
−𝑦1𝑦3 + 𝑥1𝑥3
𝑦1𝑦2 − 𝑥1𝑥2

]  (2.8) 

 

x is the master system with initial value of zero and y is the slave system can contains 

the heartwave signal values. 𝛼, 𝛽 𝑎𝑛𝑑 𝛾 are adjusted error coefficients which require 

fine tuning and optimization. 𝑒1 𝑎𝑛𝑑 𝑒2 are used to generate the dynamical map of 

chaotic dynamic error. The coordinates of the two centers of gravity in the map are 

termed as the chaos eyes. The chaos eyes is unique and is used as a feature to support 

classification and identification. Therefore, each pair of eyes is unique to an individual. 

In the reported work of [70], the author subsequently use correlation function to 

perform classification of individual. 

The work was tested on 35 healthy individuals and achieved an accuracy of 94.3% 

within a signal period of 2 seconds. Similarly, to the previous method, the work is 

conducted on the heartwave signal acquired under resting condition. At elevated 

heartrate, the features of the chaotic eyes has the tendency to become under fit to 

accommodate the variations of the heartwave morphological variation which leads to 

misclassification.  
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Figure 2.1: Dynamical map of chaotic dynamic error and the chaos eyes  

 

2.3.4 Auto Regression 

[73-76] has reported the use of Auto Regression (AR) to perform heartwave feature 

extraction. AR has been used in various applications, including classification of 

physiological signals like ECG, EEG, heart rate etc. The advantage of AR modeling is 

its simplicity and is suitable for real-time classification at the ICU or ambulatory 

monitoring. AR models are popular due to the linear form of the system, simultaneous 

equations involving the unknown AR model parameters and the availability of efficient 

algorithms for computing the solution. AR modeling has also been used extensively to 

model heart rate variability (HRV) and power spectrum estimation of ECG and HRV 

signals. To support heartwave feature extraction, a suitable set of features that consist 

of six coefficients resulting from autoregressive modeling of the three components of 

the ECG signal which are the P-Wave, QRS-Complex and T-Wave are used. In addition, 
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to enable AR method, R-Peak, being the most prominently, is separately detected. Upon 

detection of the R-Peak, a window of appropriate length sufficiently wide enough to 

accommodate a cardiac cycle is defined about R-Peak. Thus, AR is performed on a set 

of window length wide signal. (2.9) shows a general expression for an AR model of 

order P. 

                   𝑦(𝑛) = ∑ 𝑎𝑖(𝑛)𝑦(𝑛 − 𝑖) + 𝑒(𝑛)
𝑃
𝑖=0              (2.9) 

 

where 𝑦(𝑛)  represents heartwave signal, 𝑒(𝑛)  represents the unknown zero 

mean white noise of the uncorrected random variable which is also known as modelling 

error. 𝑎𝑖(𝑛) represents the AR model coefficients. P which is the model order refers 

to the past samples needed to predict the present value of the data. Burg’s algorithm is 

used to evaluate the AR coefficients. The criterion used to evaluate the model order 

selection is based on the sum-square error (SSE) which is defined by  

 

                     𝑆𝑆𝐸 =∑ ∑ 𝑒(𝑗)                    (2.10)

𝑁

𝑗=𝑀+1

2

𝑖=1

 

  

 where N refers to the number of sample points. A scalar AR process of order M is 

perform on each ECG and the each of the coefficients are concatenated to form the 

feature vectors for classification. It has been observed that as the value of the modeling 

order (M) increases, their corresponding SSE values decreases. However, for modeling 

orders equal or greater than three it remains constant. Consequently it can be inferred 

that greater values of M increase the accuracy of the classification method. 

 However, AR has not been report to support heartwave based biometric 

authentication. AR is commonly used to differentiate anomaly heartwaves which are 

typically, Ventricular Tachycardia, Super Ventricular Tachycardia (SVT), Premature 

Ventricular Contraction, Atrial Premature Contraction, Ventricular Fibrillation and the 

Normal Sinus Rhythm. The anomaly heartwave type are limited in classes as compared 
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to individual classification. Hence, although promising and simplicity in development, 

it is not appropriate for individual classification.  

 

2.4 Classification Techniques 

Following the introduction of the current state-of-the-arts methodologies for 

heartwave segmentation and feature extraction, it is necessary to explore state-of-the-

arts methodologies for classification. Several comparative works have been done [18, 

77-79] to survey the current state-of-the-arts methodologies in classification. The 

commonly adopted approaches are KNN Classifier, Linear Discriminant Analysis, 

Neural Network Classifier, Generative Model Classifiers and Support Vector Machine. 

Each of the methods will be briefly presented and discussed on the appropriateness to 

support the heartwave classification under highly variated heartwave morphological 

variations.   

 

2.4.1 KNN Classifier 

K-Nearest Neighbors (KNN) is one of the simplest algorithm which is used to 

support statistical estimation and pattern recognition based on either similarity or 

distance measured. In classification, the output is a class membership. An object is 

classify by majority vote if its neighbors with the object being assigned to the class, is 

most common among its k nearest neighbor as showed in expression (2.11). 

 

                 𝑃(𝑦 = 𝑗|𝑋 = 𝑥) =
1

𝐾
∑𝐼

𝑖∈𝐴

(𝑦𝑖 = j)             (2.11) 

 Given a positive integer K, an unseen observation x, KNN classifier performs by 

running through the whole dataset, A, computing the distance between x and each 
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training observation. The K in KNN refers to the number of K points in the training data 

that are closest to x in the dataset A. It will estimate the conditional probability for each 

class, that is, the fraction of points in A with that given class label. I(x) which is the 

indicator function evaluates to 1 when the argument x is true and 0 otherwise.  

 In heartwave based biometric classification, the KNN is usually deployed until 

classification as reported in [21, 22, 67, 68, 80-86]. In a recent work [80], KNN with 

k=3 as classification method is performed in conjunction with Multiresolution Analysis. 

Dimension reduction is subsequently performed to determine a subset of features which 

are highly correlation prior to classification. The method achieved an accuracy of 

94.4%. It is to note that the utilized database contains healthy individual whose 

heartwave signals are acquired under resting condition.  

 In the reported work of [81], after the segmentation and extraction of heartwave 

from single lead electrodes, template match methodology is implemented as a 

prescreening to determine the similarity between the test sample and the templates of 

5. The correlated coefficient provides a quantitative measure on the degree of similarity 

and group the test into one of the template group. Thereafter, Linear Discriminant 

Analysis distance classification via Euclidean metric system is used to performed 

classification within the group. To cater for the varying significant of the feature, a 

weight vector is imposed into the following expression.  

  

                   𝑑(𝑥𝑝, 𝑥𝑞) = √∑𝑤𝑖
𝑖∈𝑅

(x𝑖
𝑝 − x𝑖

𝑞)
2
              (2.12) 

  

where 𝑥𝑝 𝑎𝑛𝑑 𝑥𝑞 are the feature vectors. The smaller the expression of (2.12), the 

closer the distance between the vectors and hence the distance between the two classes 

can be computed. As intended by the author, the work is performed on resting heartrate 

with a total of 168 healthy subjects. It achieved a total of 98% accuracy. It is to note 
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that the work does not cater for heartrate variation which will affect the segmentation 

and under fitting distance which will result in higher mis-identification.    

 

2.4.2 Neural Network 

[66, 83, 87-92] have reported on the use of variants of Neural Network in the 

classification of the individual based on heartwave signal. Neural Network is essentially 

a multi layers of nodes consisting of the input layer, hidden layer and output layer. As 

it is a feed forward neural network (NN), information is only allow to travel from input 

to output. The input layer represents the raw information that is feed into the network. 

In the hidden layer, the activity of each unit or node is determined by the activities of 

the input units and the weights between the input and the hidden units. The output layer 

is dependent on the activity of the hidden layer and the weights between the hidden and 

the output. To enable a learned NN, backpropagation is used to optimize the weight 

values that will lead to minimal total error of the network over the set of training 

samples. Backpropagation is an iterative process between forward and backward pass. 

Figure 2.2 illustrates a simple NN.  

 

 

Figure 2.2: Architecture of a generic Neural Network 

In [66], heartwave signal is segmented in time domain that involves filtering with 

various peak detections and autocorrelation. To enable classification, the processed 

signal from autocorrelation is input to the Artificial Neural Network (ANN) to create a 
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supervised system for individual classification. The ANN is created by initializing 

settings such as number of Hidden Nodes (set according to the number of users to be 

registered in the current ANN), number of Output Nodes, Training Ratio (70%), 

Validation Ratio (15%), Testing Ratio (15%) and the Neural Network name. During the 

training period, a specific Binary pattern is assigned to each individual, when the 

autocorrelated input of all user is given to the ANN, it trains itself by varying the 

weights according to the Back Propagation Algorithm until the assigned binary pattern 

to each individual is obtained at the output. During the testing period the input of a 

single user is given to the ANN with the already established weights from the training 

period, the ANN gives a binary output which is further compared with all the pre 

assigned binary patterns of the users stored in the database. The user with a match of 

80% or above is identified. The work was tested on 4 individuals and achieved an 

accuracy of approximately 80%.  

In another recent work [93], a Convolution Neural Network (CNN) is used to 

perform user classification. This work used Wavelet Domain Multiresolution 

Convolution Neural Network (MCNN) methodology to perform user identify without 

performing heartwave segmentation and extraction. Briefly, it uses wavelet 

transformation to acquire temporal and spatial information for a fixed length of 

heartwave signal. For each of the wavelet component, autocorrelation is used to remove 

blind segmentation-induced phase difference. Thereafter, the data is input into CNN for 

extraction of feature and supervised learning. Datasets comprising of healthy individual 

and abnormal signal are used in the testing and the work achieved an average of 93%. 

To achieve the performance, 50% of the data are used for training the CNN and more 

importantly, the signals are acquired under resting heartrate condition. Hence, the 

impact of heartwave morphological changes is not evaluated.  
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2.4.3 Linear Discriminant Analysis 

Linear Discriminant Analysis (LDA) is an effective approach that aims to seek 

directions that are efficient for discrimination as reported in the work [67, 94-98]. 

Assuming a set of d-dimensional samples that contains multiple subsets of data each 

labelled as 𝜔1 and 𝜔2. The objective of LDA is to project data from d-dimensional 

space on a line with an expectation to have optimized orientation of the line to achieve 

minimal error. The mapping and the projection of the samples can be achieved with a 

linear combination of 𝑦 = 𝑤𝑇𝑥 with the subset of data divided into 𝑌1 and 𝑌2. Hence, 

this lead to the importance of determining w. The determination of w can be achieved 

by considering and maximizing the ratio of between class scatter to within-class scatter.  

Given that the means of the class can be expressed as follows: 
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And the project class means can be expressed as follows: 
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With the difference of the class to be expressed as  

 )(~~
1212 mmwmm T   (2.15) 

 

The variance of the projected data shall be: 
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And the ratio of the between class and within class is expressed as  
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The maximization of the ratio can be achieved  
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Finally, to achieve classification, based on the condition that if 𝑦(𝑥) > 0 , x belong to 

𝑌2 else it belong to 𝑌1. 
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 In the work of [94], a fiducial based feature extraction is performed in the time 

domain through the detection of prominent R-Peak. The subsequent characteristic 

features are detected about R-Peak through locating the minimum radius of curvature. 

After the completion of the feature extraction process, LDA is used to perform 

classification and achieved an average accuracy of 98%. In the work, the heartwave 

signal comprises of individual under stressful mental states such as reading, 

mathematical manipulation and driving in virtual reality. The variations of the heartrate 



Chapter 2  

2-31 

 

under mental stresses are not disclosed and it is extremely unlikely that the heartrate 

will be as extreme as under physical duress.  

 

2.4.4 Support Vector Machine 

The objective of the Support Vector Machine is to construct a hyperplane in a high 

dimensional space which can be used for classification. This hyperplane is maximized 

to achieve the largest possible distance between the nearest training data of any class. 

See Figure 2.3 for illustration.  

 

 

Figure 2.3: Illustration of Support Vector Machine 

 

In linear Support Vector Machine, hyperplane and support hyperplanes can be 

respectively expressed as follows: 

〈𝑤. 𝑥〉 + 𝑏 = 0 (2.20) 

〈𝑤. 𝑥〉 + 𝑏 = +1 (2.21) 

〈𝑤. 𝑥〉 + 𝑏 = −1 (2.22) 

 

where x is the variable. To determine the optimal separating hyperplane, the distance, d 

must be as large as possible and it can be computed as follows: 
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𝑑 =
1

‖𝑤‖
 (2.23) 

 

with the margin as 2d. Finding the maximum for expression (2.23) is equivalent to 

finding the minimum of 
‖𝑤‖2

2
⁄ . The margin of the hyperplane is divided by the line 

from expression (2.20). Hence the class of the point, denoted by y is and governed by 

the following: 

𝑦𝑖[〈𝑤. 𝑥〉 + 𝑏] ≥ 1 , 𝑖 = 1,2, … , 𝑙 (2.24) 

 

Where l is the number of samples. To solve the optimal value of w and b, a cost function 

of can be defined and solved by a Lagrange function. The cost function is defined as  

 

min∅(𝑤) =
‖𝑤‖2

2
 (2.23) 

 

And the Larange function to solve 𝐿(𝑤, 𝑏, 𝛼) is 

               𝐿(𝑤, 𝑏, 𝛼) =
‖𝑤‖2

2
−∑𝛼𝑖(𝑦𝑖[〈𝑤. 𝑥〉 + 𝑏] − 1)

𝑙

𝑖=1

                    (2.24) 

 

And 𝛼 is the saddle point for solving the extreme value of the Lagrange function.  

Support Vector Machine (SVM) as the classifier has been reported in [17, 21, 43, 47, 

54, 61, 78, 82, 99-109].  

In [54], chaotic theory is implemented in the extraction of the heartwave feature. 

In this reported work, chaotic theory is adopted in the extraction of 4 chaotic indices 

which are ECG features, Lyapunov exponent spectrum (λ1, λ2, λ3, λ4),   correlation 

dimensions (D2) and Root Mean Square (RMS)( Vrms). Although SVM has been 

effective for linearly separable data, the reported work does not contain linearly 

separable data as the data comprises of ECG features, Lyapunov exponent spectrum,   
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correlation dimensions and Root Mean Square. In solving non separable data, the author 

proposed to re-project the data into higher dimensions before linear separation is 

adopted. To solve the non-linear problem, non-linear kernel SVM classifier is proposed. 

The reported work proposed the classification function as shown 

 

     max𝑤(𝛼) = 𝑚𝑎𝑥 [∑𝛼𝑘 −
1

2
∑∑𝛼𝑖

𝑙

𝑗=1

𝛼𝑗

𝑙

𝑖=1

𝑦𝑖

𝑙

𝑘=1

𝑦𝑗𝐾〈𝑥𝑖 ∙ 𝑥𝑗〉]     (2.25) 

 

In (2.25), 𝑤 is maximum distance, 𝑙 is the number of data points in the training data,  

𝑦  as the output of the data, 𝑥  as the feature vector in the data set and 𝛼  as the 

Lagrangian constant. Lastly, the kernel 𝐾〈𝑥𝑖 ∙ 𝑥𝑗〉  is the inner product computation 

between training data which contains non-linear separable data. The author evaluated 3 

different kernels namely Polynomial, Radial Basis Function (RBF) and sigmoid based Multi-

layer Perceptron. Result shown that the polynomial kernel achieved the highest accuracy. The 

polynomial kernel is represented by (2.26) with d as the degree of polynomial: 

 

                                         𝐾〈𝑥𝑖 ∙ 𝑥𝑗〉 = (〈𝑥, 𝑥
′〉 + 1)

𝑑
                                     (2.26) 

 

This work is one of the very few to perform classification for user under exercise. 

26 individual signals are acquired under bicycle exercise for a period of 5 minutes and 

the intensity of the exercise it capped at 35% of the Target Heart Rate (THR) where it 

is defined as (Peak HR – Resting HR) x intensity% + Resting HR. Peak HR is defined 

as (220-age). This work achieved a classification accuracy of approximately 81%. The 

work is commendable but it is unfortunate that the work is not conducted under the full 

spectrum of heartwave morphological changes. Under extreme physical duress, the 

intensity of the heartrate can double and triple from resting heartrate. 
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2.4.5 Generative Model Classifier 

A generative classifier is a methodology that relies on Bayes’ Theorem. A 

generative model classifier tries to learn the model that generates the data behind the 

scenes by estimating the assumptions and distributions of the model. It then uses this to 

predict unseen data, because it assumes the model that has learned, captures the real 

model. Generative model is vastly different from discriminative model as 

discriminative model tries to model by just depending on the observed data. It makes 

fewer assumptions on the distributions but depends heavily on the quality of the data. 

There are different variants of generative model such as Gaussian Mixture Model, 

Hidden Markov Model, Restrictive Boltzman Machine and Probabilistic Context 

Grammar.   

In Bayes’ Theorem, it describes the probability of an event based on the prior 

knowledge of conditions related to the event. Mathematically, Bayes’ Theorem is 

expressed by the following equations. 

 

                                𝑃(𝐴|𝐵) =
𝑃(𝐵|𝐴)𝑃(𝐴)

𝑃(𝐵)
                                        (2.27) 

  

where A and B are event and the P(A) and P(B) are the independent events. 𝑃(𝐴|𝐵) 

is the conditional probability of observing event A when B is true, vice versa for 

𝑃(𝐵|𝐴).  

Numerous work has been report on the use of generative model as classifier in 

classification [16, 22, 46-50, 110]. In a reported work [46], Hidden Markov Model 

method in conjunction with Hierarchical Dirichlet Auto-regression (HDP-AR-HMM) 

is implemented to support heartwave feature segmentation and classification. This work 

uses a combination of discriminative and generative approaches to perform biometric 

classification. It starts off with the detection of R-Peak which is most prominent. Upon 

detection of the R-Peak, the segment of the raw data is feed into (HDP-AR-HMM) to 

map into a sequence of state label by performing joint segmentation and clustering. 
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After mapping into a string of state label, n-gram language model is used to perform 

scoring of the loglikelihood. The work is tested on 52 healthy individuals and 238 

individuals with cardiac disorder. The performance of the proposed framework 

achieved an EER of average 25%. Although large dataset has been used, there is no 

mentioned of data containing heartwave signal under accelerated heartrate.  

 

2.5 Summary 

In the elaboration of the current state-of-the-art in the domains of heartwave 

segmentation and classification, none of the reported work has investigate the 

performance of their proposed architecture on intense heartwave morphological 

variations due to physical duress. The current standalone heartwave segmentation 

methods is not applicable to detect heartwave features under elevated heartrate. 

However, method like Discrete Wavelet Transformation can be enhanced to aid in the 

feature extraction. This enhancement will be elaborated in Chapter 3. With regards to 

the classification techniques, it is essential that the classification techniques cater for 

variation in discriminating features to enable classification. To recap, the discriminating 

features under resting condition may be significantly different under elevated heartrate 

conditions. Classifiers such as Generative Model and Neural Network have the means 

to cater for variations in discriminating features which will be presented in Chapter 4 

and Chapter 5.  
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CHAPTER  3  

 

HEARTWAVE SEGMENTAION AND FEATURE 

EXTRACTION  

 

3.1 Introduction 

This chapter presents the heartwave segmentation and feature extraction 

methodology which will allow for accurate and reliable extraction of heartwave 

characteristic features to support heartwave based biometric classification. The chapter 

commences with the theoretical understanding of Discrete Wavelet Transformation 

(DWT), followed by the implementation of DWT integrated with heartrate dependent 

parameters: PR-Interval and QT-Interval to perform specific waves’ components 

extraction and delineation. The chapter concludes with results of feature extraction and 

extraction of features from anomaly heartwave signal.  

3.1.1 Motivation 

• To develop a basis of an extraction method using Discrete Waveform 

Transformation to partition heartwave signal into various resolution correlated 

to the frequencies of the heartrate characteristic components.  

• To integrate heartrate dependent parameters of PR Interval and QT Interval to 

extract characteristic features to support feature extraction under extreme 

heartwave morphological variation.  
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3.2 Proposed Method of Discrete Wavelet Transformation 

with Heartrate Dependent Parameters 

To achieve a reliable segmentation and extraction of heartwave characteristic 

features, the methodology proposed the use of Discrete Wavelet Transformation (DWT) 

together with heartrate dependent parameters of QT-Interval and PR Interval. In 

variable heartrate, the amplitude and the temporal locations of the characteristic 

features displaced is proportion to the heartrate. To address the challenges of locating 

the features, a fixed window length for detection of features reported by numerous work 

is not applicable as it leads to false detection in highly elevated heartrate. 

Briefly, the proposed methodology commences with using DWT to decompose the 

signal into variable levels. The intent is to isolate heartrate signal into different bands 

of frequency. DWT technically comprises of high pass and low pass filter. The 

decomposition of signal into various levels allows different components of the 

heartwave to be easily detected using peak and valley detection function. Upon 

decomposition, R-Peak is the first characteristic point from QRS-Complex to be 

identified. This is followed by detection of Q-Valley and S-Valley of QRS-Complex. 

To address the heartrate variation, the detected R-Peaks are used to determine the R-R 

interval in each sequence. Converting R-R interval to heartrate, QT-Interval and PR-

Interval can be computed. PR-Interval is imposed from the left region of R-Peak to 

detect the components of P-Wave components. QT interval is imposed from Q-Valley 

into the right region of R-Peak to detect the components of T-Wave components. See 

Figure 3.1 for illustration of the methodology on heartwave characteristic features 

detection. 
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Figure 3.1: Proposed methodology for heartwave characteristic features detection  

   

3.2.1 Data Preparation  

To prepare for characteristic features detection, the dataset from individual needs 

to be prepared. For each heartwave, a total of 11 unique features are to be extracted. To 

maintain consistency in the detection, only Lead I and Lead II signals will be used. In 

the data preparation, the data from each individual is segmented into sequences of 10 

seconds duration. Each of the sequences can contain from 8 to as much as 30 individual 

segmented sequential heartwaves which is proportional to the heartrate acquired at that 

instance. See Figure 3.2 for illustration of data preparation. Each of the sequence is 

input to the proposed methodology to extract the features. The extracted features are 

compiled into a dataset for each individual. In total, there are 27 records of heartwaves 

signals acquired under treadmill testing. The duration of the treadmill test ranges from 

13 minutes to as long as 67 minutes. Importantly, the minimum heartrate which is the 

resting heartrate varies from 50 beats per minute (bpm) to as high as 90 bpm and the 
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maximum heartrate ranges from 82 bpm to as high as 190 bpm. The extremities that an 

individual can stretch from their resting heartrates to maximum heartrates ranges from 

150% to more than 300%. 

 

 

Figure 3.2: Schematics of data preparation for feature extraction 

 

3.2.2 Introduction of DWT 

DWT has been widely used to separate signals into different frequency bands 

where critical information at different scales can be easily qualified and quantified. 

Advantages of DWT methodology is the ability to determine the time location of the 

desired frequency. Wavelet analysis consists of signal decomposition (wavelet 

transform) and reconstruction (inverse wavelet transform) phases. Alfred Haar is 

credited with the first use of wavelet, although the term wave was not coined until 

Morlet used it in his signal processing work of 1983. The wave shape used by Haar is 

known as the Haar wavelet. It is the simplest wavelet possible and resembles a step 

function. The Haar wavelet is discontinuous and therefore consequently yields poor 

frequency localization. Haar wavelets are helpful for developing a basic understanding 

of wavelet analysis but not often use in practice. Ingrid Daubechies constructed wavelet 

bases with compact support which implies that the wavelets are non-zero on an interval 

of finite length. Compact supported wavelet families accomplish signal decomposition 

and reconstruction using only Finite Impulse Responses (FIR) filters. Stephane Mallet 
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proposed the concept of Multi-Resolution Analysis (MRA). MRA is based on the 

concept that objects can be examined using varying levels of resolution. An example is 

the zooming concept in viewing graphics. When the view is a distance from a picture, 

a low level of details can be used to represent the object. As the user zooms into the 

picture, the resolution of the picture increases with higher details in sight. This zoom-

in zoom-out property of MRA serves as one of the basic properties for wavelet analysis. 

Importantly, DWT has the characteristic of orthonormal wavelet. Orthonormal wavelets 

have specific properties that provide a means of efficient decomposition of a signal. 

Orthonormal wavelet function defines a specific set of filters for efficient signal 

decomposition and reconstruction. 

 

3.2.3 Theory of Discrete Wavelet  

In DWT, wavelet methodology analyze the input signal in section by translation of 

a analysis function with a wavelet function,  𝜓 . The wavelet function is scaled 

(expanded or dilated) in addition to be translated in time. The 𝜓  is often called a 

mother wavelet because it “gives birth” to a family of wavelets through the dilations 

and translation. Given a mother wavelet 𝜓, an orthonormal basis of {𝜓
𝑎,𝑏
(𝑡)} in the 

Hilbert space of 𝐿2(𝑅), the square of square integrable function is defined as  

 

𝜓𝑎,𝑏(𝑡) =
1

√𝑎
𝜓 ∗ (

𝑡−𝑏

𝑎
) (3.1) 

 

Where a represents the scale and b represents the translation parameters. The scale 

parameter, a, indicates the level of analysis. Small values of a provides a local, fine 

gran or high frequency analysis while large values correspond to large scale, coarse 

grain or low-frequency analysis. Changing the b parameter moves the time localization 

center of each wavelet; each 𝜓𝑎,𝑏(𝑡) is localized around x=b.  
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In DWT, the scale factor between levels increases by two. Thus, scaling is also known 

as dilation. Widely used a and b parameters setting create an orthonormal bases as a 

=2j and b=2jk (j, k ∈ z) where j refers to the level and k as the translation index. The 

wavelet family from the substitution of a and b into expression (3.1), becomes 

 

𝜓𝑗,𝑘(𝑡) = 2−
𝑗

2 𝜓(2−𝑗𝑡 − 𝑘) (3.2) 

 

 𝜓𝑗,𝑘 is an orthonormal basis because ∫(𝜓𝑗,k ∙ 𝜓𝑙,m) = 0 , ((𝑗 ≠ 𝑙)(𝑘 ≠ 𝑚)) and 

the norm of unity for 𝐿2 , ∫(2
−
𝑗

2 𝜓(2−𝑗𝑡 − 𝑘))

2

= 1.   The wavelet transform 

calculates the wavelet coefficients by taking the inner product of an input signal, f(X), 

with a wavelet function 𝜓𝑗,𝑘(𝑡) which leads to the Discrete Wavelet Transformation 

(DWT) of the following form: 

 

𝐷𝑗,𝑘 = 〈𝑓, 𝜓𝑗,𝑘〉 = 2
−𝑗/2 ∫ 𝑓(𝑥)

+∞

−∞
 𝜓(2−𝑗𝑥 − 𝑘)𝑑𝑥 (3.3) 

 

where 𝐷𝑗,𝑘, are the wavelet coefficients. The wavelet coefficients are measures of the 

goodness of fit between signal and the wavelet. Large coefficients indicates a good fit.  

 

3.2.4 Multi-Resolution Analysis 

Calculating wavelet expansion from the expression (3.3) directly is 

computationally intensive. Mallet introduced the technique called Quadrature Mirror 

Filtering which shows that any discrete wavelet transformation can be calculated 

rapidly using cascade-like algorithm. This reduces the number of operations necessary 

for the translation and transformation. Technically, a Multi-Resolution Analysis 
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projects a function on a set of closed subspaces.  

 

𝑉−2 ⊂ 𝑉−1 ⊂ 𝑉0 ⊂ 𝑉+1 ⊂ 𝑉+2 ⊂ 𝑉+3 (3.4) 

 

With the nested subspaces, Vj can be expressed as the direct sum of the approximated 

subspace 𝑉𝑗−1 with the detail subspace, 𝑊𝑗−1: 

 

𝑉𝑗 = 𝑉𝑗−1⊕𝑊𝑗−1 (3.5) 

  

The function 𝑓𝑁 ∈ 𝑉𝑁  can be split into different components represented by 

subspaces 𝑉𝑁−𝑖 (𝑖 = 1, 2, … )  together with the orthogonal complements through 

MRA: 

 

 𝑓𝑁 = 𝑓𝑁−1 + 𝑔𝑁−1 = ∑ 𝑔𝑁−𝑀 + 𝑓𝑁−𝑀
𝑀
𝑖  (3.6) 

 

At each level, the scaling function changes. Based on the example of zooming 

picture, subspaces Vj can represent the zoom-in effects at different level and with each 

level, different details are manifested. Hence the expression  

 

𝑓(𝑥) ∈ 𝑉𝑗 ⇔ 𝑓(2𝑥) ∈ 𝑉𝑗+1, 𝑗 ∈ 𝑍 (3.7) 

 

The pairs of functions 𝑓𝑁−1  and 𝑔𝑁−1  can be obtained by applying a pair of 

Quadrature Mirror Filters (QMR) to the original function 𝑓𝑁. QMR is a filter most 

commonly used to implement a filter bank that splits an input signal into two bands. 

The resulting high-pass and low-pass signals reduce the signal by a factor of 2, giving 
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a critically sampled two channel representations of the original signal. For DWT, the 

QMR are a pair of sequences, {ℎ(𝑘)} as the low pass filter and {𝑔(𝑘)} as the high 

pass filter.  The low-pass filters averages the data and the high-pass filter contains 

more information. The relationship between the two filters are expressed as  

 

𝑔(𝑛) = (−1)𝑛ℎ(1 − 𝑛) (3.8) 

 

 At each of the space of 𝑉0, the signal is transform by the scaling function, 𝜙. This 

implies that for the subspace, the functions can be combined linearly for the next level 

of subspace 𝑉1 . Hence the relationship for the scaling functions between adjacent 

subspaces, 𝑉𝑗 and 𝑉𝑗+1 is known as the scaling/dilation equation which defines the 

filter coefficients. 

 

𝜙𝑗,𝑘(𝑥) =∑ℎ𝜙(𝑛)𝜙𝑗+1,𝑛(𝑥)

𝑛

 

 

Substituting 𝜙𝑗,𝑘(𝑥) = 2
𝑗

2 𝜙(2𝑗𝑥 − 𝑘) into the equation above 

 

𝜙𝑗,𝑘(𝑥) =∑ℎ𝜙(𝑛)2
−
𝑗+1
2 𝜙𝑗+1,𝑛(2

𝑗+1𝑥 − 𝑛)

𝑛

 

 𝜙(𝑥) =∑ℎ𝜙(𝑛)√2𝜙(2𝑥 − 𝑛)                 (3.9)

𝑛
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Similarly the wavelet may be refined with double resolution as shown below 

 

                   𝜓(𝑥) =∑𝑔(𝑛)√2𝜙(2𝑥 − 𝑛)

𝑛

               (3.10) 

 

where the coefficients 𝑔𝑛 are useful in wavelet decomposition as the highpass filter.  

 

 

Figure 3.3: Illustration of a Multi-Resolution Analysis  

 

From (3.9), the equation transform a vector with n elements into two vectors with 

length of n/2 each. One of which contains the data smoothed by the low-pass filter with 

the other containing the details. See Figure 3.3 for illustration. Each wavelet is 

characterized by a finite sets of filter coefficients derived from the scaling equation that 

relates scaling functions of different subspaces, 𝑉𝑖, to each other. For Daubercies 4th 

order wavelet, the coefficients for Scaling and Daubechies DB4 wavelet are as follows 

 

ℎ0 =
1+√3

4√2
, ℎ1 =

3+√3

4√2
, ℎ2 =

3−√3

4√2
, ℎ3 =

1−√3

4√2
 (3.11) 

 

𝑔0 =
3−√3

4√2
, 𝑔1 =

−(3−√3)

4√2
, 𝑔2 =

3+√3

4√2
, 𝑔3 =

−(1+√3)

4√2
 (3.12) 
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Notice that (3.11) and (3.12) are bounded by the relationship as defined in (3.8). For 

convenience, low-pass and high-pass filters are denoted by H and G with the sequence 

represented by a={an}  

(𝐻𝑎)𝑘 = ∑ ℎ(𝑛 − 𝑘)𝑎𝑛𝑛  (3.13) 

(𝐺𝑎)𝑘 = ∑ 𝑔(𝑛 − 𝑘)𝑎𝑛𝑛  (3.14) 

 

To appreciate the wavelet transformation, let the data be represented by 𝑐(𝑛) , 

which is a vector with 2n elements. Letting 𝑐(𝑛−1) = 𝐻𝑐(𝑛)  and 𝑑(𝑛−1) = 𝐺𝑐(𝑛) . 

Through the application of low-pass filtering, it will double 𝑐(𝑛−2) = 𝐻2𝑐(𝑛)  and 

𝑑(𝑛−2) = 𝐻𝐺𝑐(𝑛). Using MRA, the DWT output of a sequence 𝑦 = 𝑐(𝑛) with a length 

of 2n is equivalent to another sequence of the same length represented by  

 

𝑤 = [𝑑(𝑛−1), 𝑑(𝑛−2), … , 𝑑(1), 𝑑(0), 𝑐(0)] = [𝐺𝑦, 𝐺𝐻𝑦, 𝐺𝐻2𝑦,… , 𝐺𝐻𝑛−1𝑦, 𝐺𝐻𝑛𝑦, 𝐻𝑛𝑦]

 (3.15) 

 

(3.15) is the wavelet transform consists of all layers of details, from fine to coarse, 

stacked next to each other. Figure 3.4 shows the graphical representation of the 

multiresolution analysis.  

 



Chapter 3  

3-46 

 

 
Figure 3.4: Illustration of a Multi-Resolution Analysis on Daubechies DB 4 Wavelet 

 

3.2.5 Heartwave Feature Extraction 

The extraction of heartwave features uses DWT with the fourth order mother 

wavelet of Daubechies. None has reported on the use of DWT for extraction of 

heartwave features where heartrate of individual is under physiological duress. 

Daubechies DB 4 has been chosen as it has a close resemblance to the heartwave signal. 

Figure 3.5 shows the architecture of the heartwave features detection methodology. 

Broadly, the extraction is partitioned into three stages. The first stage centered on the 

feature extraction of QRS-Wave complex. Second stage focuses on the extraction of 

features of P-Wave. The last stage focuses on the extraction of features of T-Wave.  
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Figure 3.5: Process architecture for feature extraction 

 

 QRS-Wave Complex Extraction 

3.2.5.1.1  R-Peak Detection: 

In the detection of the heartwave characteristic features, R-Peak detection is the 

most essential as it establishes the reference for detection of other characteristic features. 

The R-Peak detection starts with the removal of baseline signal of 50Hz which is 

contributed by the mains AC electrical signal. Thereafter the signal is decomposed 

using Discrete Waveform Transformation with mother wavelet of Daubechies 4. In the 

determination of R-Peak, Detail Coefficients from Level 3, 4 and 5 are reconstructed 

and the frequency spectrum from the reconstructed coefficients exhibited a clustering 

of frequencies between 15Hz to 25Hz. This reconstruction of signals using multiple 

levels is in contrast to the work by Mazomenos [111] which uses only one level. This 
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reconstruction of multiple levels allows the extraction of heartwave features to be 

spanned across the full spectrum of the heartrate from resting to maximum heartrate of 

an individual. Hence, using only one-level from DWT is significantly inadequate to 

perform a reliable feature extraction. Squaring of the reconstructed signal is 

implemented to remove noise in the negative region. Using maximum peak detection 

algorithm, the peaks in the reconstructed signal are detected. See Figure 3.6 on the 

proposed methodology for R-Peak detection. As the peaks are not uniform in amplitude, 

a 40% threshold factor against the maximum peak is proposed.  

 

 

Figure 3.6: Block diagram for R-Peak detection 

 

In typical ECG signal acquisition, due to placement of ECG acquisition sensor and 

motion artifact, there are uncommon occurrence of spikes between consecutive R peaks. 

See Figure. 3.7 for details. Although amplitude threshold has been established at 40% 

of maximum peak, the random spikes can still be detected. Hence, an effective approach 

is the determination of time period between peaks. Thereafter, a median ranking is 

performed. As random spike is not a common occurrence, in event of random spike, the 

false time period between 2 peaks will be ranked either in the front or towards the end. 

Hence through the use of median ranking of time period, the approximated true time 

period can be extracted. This approximated true time period can be used to narrow the 

region of search of true R-peaks with successful omission of random spike.  

 

 



Chapter 3  

3-49 

 

 

Figure 3.7: Spike signal between two R-Peaks 

 

3.2.5.1.2  Q-Wave Peak and S-Wave Peak Detection: 

After the completion of R-Peak detection, the algorithm proceeds to detect Q-Peak 

from Q-Wave and S-Peak of S-Wave. The detection process uses the reconstructed 

signal comprises of detail coefficients from Level 2, 3, 4 and 5. The resultant 

reconstructed signal is a filtered signal void of high frequency components. Q-Peak and 

S-Peak which are the minimal points about R-Peak use established method available in 

Matlab to detect the mentioned peaks.  

 

3.2.5.1.3  Q-Wave Onset and S-Wave Offset Detection: 

In most published papers reviewed which performed heartwave characteristic 

features extraction to support heartwave based biometric authentication, the definition 

of QRS-wave complex has been defined from Q-Wave peak (local minima) to S-Wave 

peak (local minima) [57, 59, 61, 112] except [56] which uses modulus maximum with 

Continuous Wavelet Transform for onset and offset detection. This definition is 

inconsistent from medical definition where QRS-Wave complex is defined from Q-
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Wave onset to S-Wave offset [113]. The determination of Q-Wave onset is traced and 

determined using first order differentiation from Q-Wave peak. See Figure 3.8 for 

schematic process flow.  

 

 

Figure 3.8: Block diagram for Q-Wave onset detection 

 

The first order differentiation approach is the one-dimensional 5-point stencil 

numerical differentiation [57] that performs first derivation of the point of interest with 

4 other adjacent values using the formula as shown in (3.16).  

 

𝑓′(𝑥) ≈
−f(x+2h)+8f(x+h)−8f(x−h)+f(x−2h)

12ℎ
  (3.16) 

 

where x is the point of interest and h represents the adjacent values of x.  

Q-Wave onset is the inflexion point also knows as the stationary point that lies 

between the falling edge of P-Wave offset and rising edge of the Q-Wave peak. The 

first order differentiation is adopted within a defined segment of the signal with a period 

of 100msec. Thereafter a zero-crossing detection is performed. All the values from the 

first order differentiation process within the defined segment are evaluated. The first 

value that crosses from positive region to negative region is defined as the first zero 

crossing which is the inflexion point and the P-Wave onset is registered. See Figure 3.9 

for illustration.  
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Figure 3.9: Example of an inflexion point on S-Wave Onset 

 

While first order differentiation can be efficient, the method has a drawback. The 

presence of random noise can degrade the signal-to-noise ratio of first order signal. This 

can result in many false zero-crossings. To overcome this limitation and to maintain the 

integrity of the whole signal, a signal smoothing operation is adopted within a defined 

segment as mentioned in the earlier paragraph. A polynomial based curve fitting of up 

to 6th degree is used as an approximate fit to the signal segment using the polynomial 

equation as shown below:  

 

𝑦 = 𝑎𝑥6 + 𝑏𝑥5 + 𝑐𝑥4 + 𝑑𝑥3 + 𝑒𝑥2 + 𝑓𝑥 + 𝑔  (3.17) 

 

where a, b, c, d, e, f, and g are coefficients for 6th degree polynomial curve fitting. 

The values of the coefficients are dynamic and dependent on the variability of the signal 

portion. The coefficients can be determined using Cramer’s Rule. Thereafter, a first 

order derivative using 5-point stencil numerical differentiation is performed followed 
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by zero-crossing detection. See Figure 3.10 for illustration. 

 

 

Figure 3.10: Detection of inflexion on smoothened signal  

 

The determination of S-Wave offset is similar to the method described in the 

detection of Q-Wave onset. S-Wave offset is almost symmetrically located about R peak 

after S-Wave peak. However, algorithm is enhanced to support heartwave signal of 

different ECG electrodes from Leads of aVL, V1, V2 and V3. Leads of aVl, V1, V2 

and V3 produce high negative amplitude of S-Wave. Using the similar method to detect 

Q-Wave onset, characteristic feature S-Wave offset can be easily detected. See Figure 

3.11 for details. 

 

 

Figure 3.11: Approach for S-Wave offset detection 
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 T-Wave Components Extraction 

3.2.5.2.1  T-Peak Detection 

A simple and novel method for the detection of T-Wave component has been 

proposed. The method uses approximate signals of Discrete Waveform Transformation. 

This is in contrast to all the mentioned approaches proposed by others where detail 

signals have been used. In T-Wave peak detection, the detection leverages on the 

approximate signals of Discrete Waveform Transformation of Level 1, 2, 3, 4 and 5. 

See Figure 3.12 for details. As high frequencies components have been filtered, the 

resulting combination of approximation signals contains relatively clean signal. 

Frequency spectrum analysis of approximate signals from Level 1 to 5 shows clustering 

of frequencies between 2Hz to 42Hz.  

  

Figure 3.12: Distinct profiles of T-Wave and P-Wave from DWT approximate signal of Level 1 to 5 
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Figure 3.13: Block diagram for T-Wave peak detection 

 

 Using the combined approximate signals, an adaptive region of interest is defined 

to enable the detection of the local maxima. See Figure 3.13 for details. The region of 

interest is a dynamic window that is dependent on the heart rate of the individual. The 

heart rate dependent window takes reference from the QT interval which is defined 

from the onset of Q-Wave and terminates at the offset of T-Wave. QT interval duration 

is inversely proportional to the heart rate [37, 45]. The region of interest based on QT 

Interval Duration is derived from the QT Interval Nomogram [114, 115] which is a 

clinical risk assessment tool that predicts risk of QT prolongation in individual in 

respond to cardiac related drugs. The region of interest based on QT Interval Duration 

in accordance to QT Nomogram is determined with the following equation:  

 

𝑄𝑇 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 (𝑚𝑠𝑒𝑐) = 2.2095 × 𝐻𝑅𝐵𝑃𝑀 + 627.41  (3.18) 

 

The equation for QT Duration is valid for heart rate that falls within the range from 

64bpm to 154bpm. For heart rate below 64bpm, a constant QT Duration of 484msec is 

defined.  Figure 3.14 shows the consistence of the heartrate dependent QT Interval 

under variable heartrate.  

During the testing of the signals acquired under exercise duress, there are 

encounters where the heart rate of individual are in excess of 150bpm to as high as 
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180bpm. For heart rate at rate greater than 150bpm, an occurrence of Supraventricular 

Tachycardia is observed. See Figure 3.15 for details. The occurrence of 

Supraventricular Tachycardia in healthy individuals in context of testing is attributed 

by the physiological stress from ECG treadmill. In situation where heart rate is in excess 

of 150 beats per minute coupled with the occurrence of Supraventricular Tachycardia, 

P-Wave delineation is almost impossible in Lead I electrode as T-Wave eclipsed the P-

Wave of succeeding heartwave. During this instance, the QT Interval Duration is 

increased by 20% of maximum QT duration at heart rate of 154 bpm to include the 

morphology of P-Wave of successive heartwave. Thereafter, a local maximum is 

performed to detect the T-Wave peak and the detected T-Wave peak can be registered.  
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Figure 3.14: QT Interval window at various heartrate 
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Figure 3.15: Occurrence of Supraventricular Tachycardia of three different individuals at respective 

heart rate a. 150 bpm, b. 169 bpm and c. 157 bpm. Notice the non-existent of P-Wave (eclipsed by T-

Wave) 

3.2.5.2.2 T-Wave Onset and Offset Detection: 

Upon the successful detection of T-Wave peak, the same reconstructed signal 

comprises of approximate signals from Level 1, 2, 3, 4 and 5 is used to perform T-Wave 

offset and onset detection. The reconstructed signal provided a clear outline of the T-

Wave that comprises of the local maxima and two local minima located about the local 
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maxima that represent the T-Wave onset and offset respectively. 

Local minima detection together with zero crossing detection using first order 

differentiation is conveniently applied to detect T-Wave offset and onset. See Figure 

3.16 for details. For T-Wave onset, the region of interest is established from the 

presiding characteristic feature S-Wave offset to T-Wave peak. This region of interest 

ensures and minimizes wrong detection of the local minima. With regards to the T-Wave 

offset, the region of interest relies on the adaptive boundary window determined from 

QT Interval Duration as defined in accordance to the QT Nomogram Plot [114]. 

 

 

Figure 3.16: Block diagram for T-Wave onset and offset detection 

 

 P-Wave Components Extraction 

3.2.5.3.1  P-Peak Detection: 

The detection of P-Wave peak is similar to the detection of T-Wave peak where the 

reconstructed signal comprises of approximate signals from Level 1, 2, 3, 4 and 5. 

Similar to T-Wave, P-Wave duration is dynamic and is inversely proportional to heart 

rate[39]. Hence an adaptive region of interest for detection of P-Wave is adopted. As P-

Wave resides on the left portion of the R-peak, the region of interest utilizes the PR 
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Interval Duration instead of the QT Interval Duration. PR Interval Duration is a 

dynamic interval that varies according to the rate of the heart rate. PR interval is used 

medically to diagnose cardiac related issue. According to medical definition, PR 

Interval is defined from the onset of P-Wave till the onset of Q-Wave. It is affirmative 

that the termination is at onset of Q-Wave contradicting the implied name of PR Interval. 

The region of interest is defined using the equation developed by [39, 116, 117] 

 

𝑃𝑅 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 (𝑚𝑠𝑒𝑐) =  −0.351 × 𝐻𝑅𝐵𝑃𝑀 + 176.7 (3.19) 

 

The PR Interval is valid for heartrate that falls within the range of 60bpm to 

160bpm. Upon the determination of region of interest for detection, local maxima 

detection is employed to facilitate the detection of the P-Wave peak. The detected P-

Wave peak is detected and registered. See Figure 3.17 for details. 

In the event of heart rate in excess of 150 coupled with the occurrence of 

Supraventricular Tachycardia, the equation is invalidated and superseded the calculated 

PR Interval Duration at maximum heart rate of 160 bpm increases by 20%. As 

mentioned in T-Wave peak detection, P-Wave in Supraventricular Tachycardia 

occurrence cannot be delineated in Lead I electrode as it is being eclipsed by preceding 

T-Wave and hence the assumption of values from preceding T-Wave.  

 

 

Figure 3.17: Block diagram for P-Wave peak detection 
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Figure 3.18: PR Interval window at various heartrate 

3.2.5.3.2  P-Wave Onset and Offset Detection: 

The detection of P-Wave onset and offset is highly similar to the detection of T-

Wave onset and offset. The reconstructed signal comprises of the approximate signals 

of Level 1, 2, 3, 4 and 5. Detection of onset and offset are detected using local minima 

coupled with the tracing of zero crossing using first order differentiation which detects 

the deflection to and from P-Wave peak. See Figure 3.19 for details.  
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Figure 3.19: Block diagram for P-Wave onset and offset detection 

 Extraction of Signals from Unipolar Chest: 

The algorithm is developed to perform extraction of the features from Lead I. Lead 

I is known as lateral lead where the signal is acquired from both arms. Incidentally, in 

the course of developing the approach for features extraction, the database contains 

signals from unipolar chest leads namely V1, V2 and V3 and signal with inverted T-

Wave.  

Lead V1, V2 and V3 are leads acquired from the chest of an individual. The 

characteristic feature of the mentioned leads is the significant S-Peak of the QRS-Wave 

complex. See Figure 3.20a for details. In addition to the ultra-high amplitude spike, the 

signal exhibits an extended duration from S-Peak to onset of T-Wave. This phenomenon 

is due to the repolarization of the heart muscle that follows after contraction and 

depolarization. During repolarization, the cardio muscle elongates to prepare for the 

subsequent heartbeat and it takes longer than the previous depolarization.  

 



Chapter 3  

3-62 

 

 

(a)     (b)    

Figure 3.20: Successful extractions of features of heartwave signals with: (a) elongated S-Peak and (b) 

inverted T-peak.  

 

Incidentally during the development, detection of inverted T-Wave signal has also 

been successfully implemented. See Figure 3.20b for details. Except for signal acquired 

from Augmented Vector Right (aVR) lead, where the signal is acquired from right wrist 

reference to the ground lead, the T-Waves from all leads are typically in upright position 

relative to the position and direction of QRS-Complex. Medically, inverted T-Wave has 

been extensively studied and there is no definite correlation of inverted T-Wave to 

cardiac related symptoms. Inverted T-Wave has been found in healthy individuals[118]. 

Although uncommon, the algorithm has been enhanced to support the feature extraction 

for signal with inverted T-Wave. As the T-Wave is inverted, it is necessary to polarize 

inverted T-Wave signal into positive region.  
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3.3 Experimentation and Results 

The algorithm has been tested on public databases: MIT-BIH ST Change from 

Physionet. The database contains readings of 27 individuals with most recordings 

recorded with a minimum duration of 20 minutes. Of the 27 readings, 5 reading belongs 

to individual with anomaly heartwave signal. A total of 63,388 heartwaves have been 

fed to the methodology and the feature characteristics are successfully extracted as 

shown in Table 3.1.   

The validity of the detected features are evaluated using performance indicator 

Positive Predictive Value (PPV) of the following form: 

 

𝑃𝑃𝑉 =
𝑁𝑜.𝑜𝑓 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑁𝑜.  𝑜𝑓 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑁𝑜.  𝑜𝑓 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 (3.20) 

 

where True Positive refers to the ability to detect the correct R peaks in accordance to 

the gold standard (reference to annotated R peak) and False Positive refers to an 

invalidated detection under gold standard (reference to annotated R peak). The Positive 

Predictive Value for R peak detection achieved 100%.   

For the remaining 10 features, unfortunately, annotation from the dataset is not 

available. To determine the accuracy of the detection, 100 random heartwaves from 

each individual are selected and each of the features has been manually determined to 

the best ability from the author. In addition, a random selection of 10 users together 

with random selection of 20 heartwaves from each user have been positively validated 

by medical cardiologist. The accuracy of the detection for the remaining 10 features an 

average of 98.5%. Results of the accuracy is shown in Figure 3.21.  
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Table 3.1: Summary of heartwave signals from 27 users  

 

 

In comparison, the performance from [59] that use combined Daubechies 4 and 6 

wavelets solely, achieved an average of 98% accuracy. Importantly it is to the note that 

the compared method has only been tested on databases under resting heartrate and no 

compensation approach has been used to address QT and PR variability. When heartrate 

variability due to exercise duress is included, the accuracy drops to below 90%.  

In another comparison, [119] use Laser Doppler Vibrometry methodology for pulse 

signal recognition and achieved an EER of 2.8%. However, the mentioned method 

suffered deteriorating performance when the heartrate exceeds 55% of individual 

maximum heartrate.  
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 Figure 3.21: Accuracy of extracted features 

 

3.4 Summary 

The development of the heartrate adaptive extraction method for heartwave 

characteristic features has achieved a consistent accuracy and reliability. More 

importantly, the adaptive algorithm has the tenacity to tolerate morphological changes 

of the heartwave signal due to increasing heart rate. Equally important, algorithm 

provided a detection feature that includes the detection of onset and offset of QRS-

Wave complex which has been unexplored previously. The extracted features will be 

used for data classification to support authentication which will be covered in Chapter 

4.  
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CHAPTER  4  

 

GAUSSIAN MIXTURE MODEL-HIDEN MARKOV 

MODEL WITH USER SPECIFIC THRESHOLD 

AND HEARTATE AS CRITERIA 

 

4.1 Introduction 

With the concluded extraction of heartwave features as described in Chapter 3, this 

chapter will describe the use of GMM-HMM methodology to classify the feature data 

to support user authentication. Chapter 4 commences with the presentation of the 

proposed architecture which includes the mathematical concepts of Gaussian Mixture 

Model and Hidden Markov Model. Thereafter, the results of the proposed architecture 

is presented and discussed.  

 

4.1.1 Motivations 

• To investigate the use of statistical methodology namely the Gaussian Mixture 

Modelling–Hidden Markov Modelling to support heartwave based 

classification under intense morphological changes of the heartwave signal. 

• To investigate the effectiveness in integrating user unique parameters of user 

thresholding score and heartrate as part of the classification criteria to improve 

the performance of heartwave based classification.  
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4.2 Proposed architecture of GMM-HMM Topology 

To cater for heartwave morphological variations, the proposed architecture uses a 

combined Gaussian Mixture Modelling with Hidden Markov Modelling (GMM-HMM) 

methodology. The GMM module of the architecture uses the extracted features to 

generate a GMM model for each of the users. To recap, individual heartrate can vary as 

much as 400% under intense physical exercise which causes significant heartwave 

morphological variation. The use of GMM on individual allows all variations of 

heartwaves to be contained in a single GMM model. Leveraging on the individual 

GMM model, the output of GMM model is further used to develop a classification 

model via the Hidden Markov Modelling module. This resulted into each user having 

a unique HMM model. To further strengthen the performance of the classification, 2 

additional parameters namely, the individual threshold based on individual 

loglikelihood score together with individual heartrate range are incorporated in the 

classification. These parameters are individual dependent and unique to individual. 

Important, the incorporation of the individual dependent parameters addresses 

morphological variations of the heartwave signal to achieve a reliable heartwave based 

biometric authentication. See Figure 4.1 for a schematic summary of the proposed 

architecture.  

The proposed methodology comprises of 3 stages. The first stage focuses on the 

data preparation. As the heartwave signals involved consist of users whose signals are 

acquired under intense physical duress and to ensure a reliable classification, 

repeatability and accuracy of the input data play an important role. The second stage 

focuses on the representation of data by Gaussian distribution. The joint distribution of 

the data is based on individual dataset and it comprises of heartwaves at different 

heartrate. The distribution model of the data via GMM allows a model representative 

of individual to support the subsequent classification. The last stage focuses on the 

generation of classification model using Hidden Markov Modelling. The classification 

also includes the use of user unique parameters to support classification.  



Chapter 4  

4-68 

 

 

Figure 4.1: Proposed Architecture for GMM-HMM 

 

4.2.1 Stage 1: Data Preparation 

Chapter 3 reveals the extraction methodology of heartwave features. For each 

heartwave, a total of 11 unique features are extracted. To maintain consistency in the 

classification development, only Lead I and Lead II signals will be used for the 

development of classification algorithm. In the data preparation, the data from each 

individual is segmented into sequences of 10 seconds. Each of the sequences can 

contain from 8 to as much as 30 individual segmented sequential heartwaves which is 

proportional to the heartrate acquired at that instance. Please see Figure 4.2 for 

illustration of data preparation. In each of the heartwave, it contains 11 features as 

shown in Figure 4.3. 
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Figure 4.2: Organization of data to support GMM-HMM classification 

 

 

Figure 4.3: 11 features of a heartwave signal  

 

Each sequence of heartwave data from an individual can comprise of signal 

morphologies from different states of the heartrate. During the acquisition process of 

heartwave signal from individual, an individual will start off in a resting state. The 

physical duress during the treadmill session will stress an individual physically at 

increasing intensity till the individual cannot tolerate the activity or when an individual 

has reached it maximum heartrate which is defined by the general guidelines of 240 -

Age of Individual. Typically, the duration of maximum intensity lasts for few minutes. 
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Thereafter, the individual will undergo a recovery phase till the heartrate returns to 

resting state. Hence, during the short period of 10 seconds in a sequences, period of R-

R interval is varying in particular to sequence acquired under intense physical duress.  

During the data extraction, it is also observed that although heartrate has returned 

to the initial resting heartrate, for some individuals, the recovered heartwave are still 

different from the initial resting heartwave morphology. This implies that for some 

individuals, a longer recovery period of approximately 30mins is required before the 

heartwave can return to normal resting state. See Figure 4.4 for the variations of 

heartwave signal. Figure 4.4 shows a compilation of all the heartwave signals from the 

same individual at about R-Peak. The signal contains heartwave from resting heartrate 

to accelerated heartrate. Notice the variation of the waveforms in particular to the P-

Wave and T-Wave. Hence with the understanding of the heartwave morphological 

changes in a single session of treadmill exercise, it can be hypothesized that each 

heartwave comprising of 11 fiducial parameters can be normally distributed into 

different components signifying different states of heartrates. 

 

 
Figure 4.4: Superposition of all heartwaves from an individual 

 

In total, there are 27 records of heartwaves signals acquired under treadmill testing. 

See Table 4.1 for details. The duration of the treadmill testing ranges from 13 minutes 

to as long as 67 minutes. Importantly, the minimum heartrate which is the resting 
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heartrate varies from 50 beats per minute (bpm) to as high as 90 bpm and the maximum 

heartrate ranges from 82 bpm to as high as 190 bpm. The extremities that an individual 

can stretch from their resting heartrates to maximum heartrates ranges from 150% to 

more than 300%.  

 

Table 4.1: Profiles of individual heartrate under treadmill testing 

 

4.2.2 Gaussian Mixture Modelling (GMM) 

  Pre-GMM Data Preparation 

To enable heartwave signal data to be represented by multiple Gaussian densities, 

it is necessary to prepare the data. This preparation is different from the preparation 

described in 4.2.1. The latter is the preparation needed for classification.  

After implementing the heartwave delineation methodology, each of the heartwave 
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sample consisting of 11 features is labelled as a sample vector. Theereafter all the 

individual heartwave signal are concatenated into a dataset of [N x D] where N is the 

total number of samples in individual and D is the 11 dimensions of heartwave features. 

See Figure 4.5 for illustration of the data preparation.  

 

 
Figure 4.5: Data preparation for GMM 

 

  GMM Modelling 

The concept of GMM methodology starts from the understanding of the Gaussian 

distribution, joint and conditional probability to identify the posterior probability or 

responsibility to best explain the observed sample. To achieve it, it rides on the well-

established approach of Expectation Maximization (EM) to determine the parameters.  

Gaussian mixture distribution which comprises of multiple Gaussian can be 

expressed as a linear superposition of Gaussian which is of the form  

 

𝑝(𝑥) = ∑ 𝜋𝑘𝒩(𝑥|𝜇𝑘 , Σ𝑘)
K
𝑘=1  (4.1) 

where  𝜋𝑘𝒩(𝑥|𝜇𝑘, Σ𝑘) =
1

(2𝜋)D/2|Σ𝑘|
1/2 𝑒

−
1

2
(x−𝜇𝑘)

𝑇Σ𝑘
−1(x−𝜇𝑖𝑘)  

 

𝑝(𝑥) refers to the probability density function of a mixture model, 𝒩(𝑥|𝜇𝑘, Σ𝑘) as 

the Gaussian distribution and 𝜋𝑘 as the weightage also known as the prior probability 
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or mixing coefficient. A K-dimensional binary random variable z have a 1-of-K 

representation is introduced. In the variable z, only a particular element zk is equal to 1 

and all the other elements are zero such that ∑ 𝑧𝑘𝑘 =1 and 𝑧𝑘 ∊  {0,1}. Therefore the 

distribution over the variable z with respect to the mixing coefficients 𝜋𝑘, is of the 

following:  

𝑝(𝑧𝑘 = 1) = 𝜋𝑘 (4.2) 

 

where {𝜋𝑘} is satisfied by  

0 ≤ 𝜋𝑘 ≤ 1  

∑ 𝜋𝑘
𝐾
𝑘=1 =1 

 

Expression (4.2) can be formatted into the distribution form and expressed as the 

following: 

𝑝(𝒛) = ∏ 𝜋𝑘
𝑧𝑘𝐾

𝑘=1  (4.3) 

 

Expressing (4.3) as a Gaussian, the conditional distribution of x given a latent value for 

variable z is as follows: 

𝑝(𝐱|𝑧𝑘 = 1) = 𝒩(𝐱|𝜇𝑘, Σ𝑘)
𝑧𝑘 (4.4) 

 

which can be expressed as  

𝑝(𝐱|𝐳) = ∏ 𝒩(𝐱|𝜇𝑘, Σ𝑘)
𝑧𝑘𝐾

𝑘=1  (4.5) 

 

 The joint distribution of 𝑝(𝐱, 𝐳) is 𝑝(𝐳)𝑝(𝐱|𝐳). With the expressions of (4.3) and 

(4.4), the marginal distribution of x is the probability distribution of x averaging over 
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the information about z. This is calculated by summing the joint probability distribution 

over all possible states of z and is represented by the following: 

 

 𝑝(𝐱) = ∑ 𝑝(𝐳)𝑧 𝑝(𝐱|𝐳) 

= ∑ 𝜋𝑘𝒩(𝐱|𝜇𝑘, Σ𝑘)
K
𝑘=1  (4.6) 

 

Hence the marginal distribution of x is a Gaussian mixture of the form expressed 

in (4.1). For several observations 𝐱𝟏,𝐱𝟐… , 𝐱𝐧 the marginal distribution 𝑝(𝐱) of (4.6) 

can be re-expressed as 𝑝(𝐱) = ∑ 𝑝(𝐱, 𝐳)𝑧  as for every observed data 𝐱𝐧, there is a 

corresponding latent variable 𝐳𝐧.  

 Next, we define a conditional probability of z given x. Let 𝛾(𝑧𝑘) to denote 

𝑝(𝑧𝑘 = 1|𝐱) where the value can be achieved by Bayes’ theorem. 

 

𝛾(𝑧𝑘) ≡  𝑝(𝑧𝑘 = 1|𝐱) 

=
𝑝(𝐱|𝑧𝑘 = 1)𝑝(𝑧𝑘 = 1)

𝑝(𝐱)
 

=
𝑝(𝐱|𝑧𝑘 = 1)𝑝(𝑧𝑘 = 1)

∑ 𝑝(𝑧𝑗 = 1)𝑝(𝐱|𝑧𝑗 = 1)
𝐾
𝑗=1

 

=
𝜋𝑘𝒩(𝐱|𝜇𝑘, Σ𝑘)

∑ 𝜋𝑗𝒩(𝐱|𝜇𝑗, Σ𝑗)𝐾
𝑗=1

 (4.7) 

 

 From expression (4.7), 𝜋𝑘 is the prior probability of 𝑧𝑘 = 1 with 𝛾(𝑧𝑘) as the 

corresponding posterior probability based on the observed x. 𝛾(𝑧𝑘) can also be viewed 

as the responsibility that component k takes for explaining the observation x.  

 Given a dataset of observation 𝐗 = {x1,x2… , xn} with the intention to model the 

data by Gaussian mixture, the maximum loglikelihood function can be applied to 

expression (4.1) through the application of log as shown.  
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𝑝(x|𝜋, 𝜇, Σ) = ∑𝜋𝑘𝒩(x|𝜇𝑘, Σ𝑘)

K

𝑘=1

 

ln𝑝(𝐗|𝜋, 𝜇, Σ) = ∑ ln {∑ 𝜋𝑘𝒩(x𝑛|𝜇𝑘, Σ𝑘)
K
𝑘=1 }𝑁

𝑛=1  (4.8) 

 

Maximizing the loglikelihood expression of (4.8) is complex as it is not a close form 

due to presence of the summation over k that appears inside the logarithm. To maximize 

the loglikelihood, expression (4.8) can be solved by Expectation Maximization (EM). 

Prior to EM, to maximize the parameters, partial derivative is applied to (4.8) with 

respect to the parameters and setting the partial derivative to zero.  

 Optimization of the mean 𝜇 is achieved by performing a partial derivative of (4.8) 

with respect to the mean and setting it to zero.  

 

𝜕

𝜕𝜇𝑘
(𝑙𝑛𝑝(𝑿|𝜋, 𝜇, 𝛴)) = 0 

=
𝜕

𝜕𝜇
(∑ ln {∑𝜋𝑘𝒩(x𝑛|𝜇𝑘, Σ𝑘)

K

𝑘=1

}

𝑁

𝑛=1

) 

=∑
1

∑ 𝜋𝑗𝒩(x𝑛|𝜇𝑗, Σ𝑗)𝑗

𝜕

𝜕𝜇
{𝜋𝑘𝒩(x𝑛|𝜇𝑘, Σ𝑘)}

𝑁
𝑛=1  

=∑
{𝜋𝑘𝒩(x|𝜇𝑘, Σ𝑘)}
∑ 𝜋𝑗𝒩(x𝑛|𝜇𝑗, Σ𝑗)𝑗

Σ𝑘
−1(𝑁

𝑛=1 x𝑛 − 𝜇𝑘) 

= ∑ 𝛾(𝑧𝑘)(
𝑁
𝑛=1 x𝑛 − 𝜇𝑘) (4.9) 

 

Hence from expression (4.9) it is now possible to determine 𝜇𝑘 and can be rearranged 

as follows: 

∑𝛾(𝑧𝑘)(

𝑁

𝑛=1

x𝑛 − 𝜇𝑘) = 0 

∑𝛾(𝑧𝑘)

𝑁

𝑛=1

x𝑛 =∑𝛾(𝑧𝑘)

𝑁

𝑛=1

𝜇𝑘 

𝜇𝑘 =
1

𝑁𝑘
∑ 𝛾(𝑧𝑘)
𝑁
𝑛=1 x𝑛 (4.10) 
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𝑤ℎ𝑒𝑟𝑒 𝑁𝑘 = ∑𝛾(𝑧𝑘)

𝑁

𝑛=1

 

 

The number of points assigned to a specific Gaussian component k, is the term, 𝑁𝑘. 

Expression (4.10) implies that 𝜇𝑘  for the kth Gaussian component is the weighted 

means of all the points in the dataset. Data point, x𝑛 is factored with a weighting factor 

of posterior probability, 𝛾(𝑧𝑘) from (4.7) that implies the likelihood of k generating 

the data, x𝑛. 

Optimization of the covariance Σ𝑘  similar to optimization of 𝜇𝑘 , through the 

partial derivative of (4.8) with respect to Σ𝑘 and setting it to zero.  

 

𝜕

𝜕Σ𝑘
(𝑙𝑛𝑝(𝑿|𝜋, 𝜇, 𝛴)) = 0 

=
𝜕

𝜕Σ𝑘
(∑ ln {∑𝜋𝑘𝒩(x𝑛|𝜇𝑘, Σ𝑘)

K

𝑘=1

}

𝑁

𝑛=1

) 

= ∑
1

∑ 𝜋𝑗𝒩(x𝑛|𝜇𝑗, Σ𝑗)𝑗

𝜕

𝜕Σ𝑘
{𝜋𝑘𝒩(x𝑛|𝜇𝑘, Σ𝑘)}

𝑁

𝑛=1

 

Σ𝑘 =
1

𝑁𝑘
∑ 𝛾(𝑧𝑘)
𝑁
𝑛=1 (x𝑛 − 𝜇𝑘)(x𝑛 − 𝜇𝑘)

T (4.11) 

where 
𝜕(x−𝜇𝑘)

𝑇Σ𝑘
−1(x−𝜇𝑖𝑘) 

𝜕Σ𝑘
= 𝛴𝑘

−1(x𝑛 − 𝜇𝑘)(x𝑛 − 𝜇𝑘)
T𝛴𝑘

−1  

 

Similarly to maximization of Σ𝑘  and 𝜇𝑘 , the mixing coefficients 𝜋𝑘 ,  are also 

optimized and setting the partial derivatives to 0. However, to be coherent to expression 

∑ 𝜋𝑘
𝐾
𝑘=1 =1, a Larange multiplier is applied.  

 

𝜕

𝜕𝜋𝑘
(ln𝑝(𝑿|𝜋, 𝜇, 𝛴) +  𝜆 (∑𝜋𝑘 − 1

𝐾

𝑘=1

)) = 0 

=
𝜕

𝜕𝜋𝑘
(∑ ln {∑𝜋𝑘𝒩(x𝑛|𝜇𝑘, Σ𝑘)

K

𝑘=1

}

𝑁

𝑛=1

+  𝜆 (∑𝜋𝑘 − 1

𝐾

𝑘=1

)) 
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𝜕

𝜕𝜋𝑘
(∑∑(−

𝛾(𝑧𝑘)

2
ln 2𝜋𝑘 − 

1

2
ln|Σ𝑘| −

1

2
∑(x𝑛 − 𝜇𝑘)(x𝑛 − 𝜇𝑘)

T𝛴𝑘
−1

𝑁

𝑛=1

)

K

𝑘=1

𝑁

𝑛=1

+  𝜆 (∑𝜋𝑘 − 1

𝐾

𝑘=1

)) = 0 

𝜕

𝜕𝜋𝑘
(∑∑(

𝐷

2
ln 2𝜋𝑘 )

K

𝑘=1

𝑁

𝑛=1

−  𝜆 (∑𝜋𝑘 − 1

𝐾

𝑘=1

)) = 0 

∑
𝛾(𝑧𝑘)

𝜋𝑘

𝑁

𝑛=1

− ∑𝜆

𝐾

𝑘=1

= 0 

∑∑(
𝛾(𝑧𝑘)

𝜋𝑘
)

K

𝑘=1

𝑁

𝑛=1

− ∑𝜆

𝐾

𝑘=1

= 0 

∑𝛾(𝑧𝑘)

𝑁

𝑛=1

−∑∑𝜆

𝐾

𝑘=1

𝜋𝑘

𝑁

𝑛=1

 = 0 

∑𝛾(𝑧𝑘)

𝑁

𝑛=1

= 𝑁𝜋𝑘 

𝑁𝑘 = N𝜋𝑘 

𝜋𝑘 =
𝑁𝑘

𝑁
 (4.12) 

 

Expression (4.12) implies that the mixing coefficient for a particular component is 

the resulting average of the responsibility which the component takes for the 

representation of the data points.  

With the expression of (4.10), (4.11) and (4.12), an iterative algorithm of EM can 

be applied to establish the optimum solutions to compute (4.7). It starts with an arbitrary 

assignment of values to the GMM parameters of mean, covariance and mixing 

coefficients including the initial loglikelihood score. EM algorithm comprises of 2 steps: 

Expectation (E-step) and Maximization (M-step). In E-step, based on the initial 

assignment of values into the parameters, the posterior probability based on expression 

(4.7) is evaluated. The evaluated new posterior probability is subjected to parameters 

maximization in M-step. In M-step, expressions (4.10), (4.11) and (4.12) are evaluated 
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based on the new posterior probability. Thereafter the loglikelihood score from 

expression (4.8) is computed with new values of the evaluated parameters. Similarly, 

the newly computed parameters are input to re-compute the posterior probability. An 

iteration cycle of E-step and M-step increase the loglikelihood function. The solution 

is deemed to have converged when the difference of present and prior loglikelihood 

scores satisfies a user defined threshold or tolerance. Refer to the Figure 4.6 for 

flowchart of the EM algorithm.  

 

 

Figure 4.6: GMM EM for each user 

 

With over 2000 heartwave signals from each user and more importantly, a complete 

heartwave morphology of an individual, GMM is used to represent each of the 

heartwave dataset. This results into each user having its unique parameters distribution.  
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In the development of the GMM for each user, it is known the higher the number 

of components in the GMM, the higher the loglikelihood score and it has the tendency 

to lead to infinity. Therefore in the GMM generation for each user, a further process to 

limit the number of components is executed. This work limits the model to be trained 

until over-fitting. As shown in Figure 4.7, as the number of components approaches 

infinitely, the loglikelihood result tends towards positive loglikelihood.  

 

 

Figure 4.7: Increasing loglikelihood score against increasing components 

 

Various approaches are available such as Akaike Information Criterion (AIC), 

Bayesian Information Criterion (BIC) or Minimum Description Length (MDL) to 

evaluate the most appropriate number of components for each user. Expressions (4.12), 

(4.13) and (4.14) for AIC, BIC and MDL respectively are various methods to implement 

a penalty term. AIC does not account for number of samples. As the size of the samples 

tends towards infinity, AIC estimate does not converge to true value since more data 

can potentially lead to an over-fitting model. AIC is typically used for unknown model 

with high dimensional reality. Both BIC and MDL are for true models as they account 

for the data and more explicitly, MDL accounts for total number of data values. This 

allows MDL to impose a heavier penalty for more complex model as compared to BIC 

estimation [120, 121]. These two approaches have been consistently used for model 
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order determination:  

 

𝐴𝐼𝐶(𝐾, 𝜃) = −2(𝑙𝑜𝑔𝑝(𝑥|𝜇, Σ, 𝜋)𝑀𝐿) + 2𝐿 (4.13) 

𝐵𝐼𝐶(𝐾, 𝜃) = −2∑ log 𝑝(𝑥𝑖|𝜃𝑖)
𝑀𝐿𝑁

𝑖=1 + (𝐿)log (𝑁) (4.14) 

𝑀𝐷𝐿 = −∑ log 𝑝(𝑥𝑖|𝜃𝑖)
𝑀𝐿𝑁

𝑖=1 + (
𝐿

2
)log (𝑑𝑁) (4.15) 

 

where = 𝐾 (1 + 𝑑 + 
𝑑(𝑑+1)

2
) − 1 ,  

d is the number of features,  

N is the number of data values,  

K is the number of components. 

 

In the determination on the limits of GMM components, the BIC and MDL 

methods are used. The loglikelihood results of BIC and MDL from each component are 

compared to the next higher components. When the existing loglikelihood from current 

component is lower than the loglikelihood from the next higher components, the current 

component is deemed the limited parameter.  
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Table 4.2: Component limit for each user in GMM modelling 

 

 

Table 4.2 shows the component limits for all the users. Most of the users have an 

optimum component at approximately 20. User_311 did not achieve optimum 

component using BIC Criterion unless the range of components testing is extended. 

Using MDL however established the optimum component at 25. The table also shows 

similar optimum components for both BIC Criterion and MDL for most users.  

 

4.2.3 Hidden Markov Modelling  

From the GMM process for each user, it is assumed that the optimized user specific 

GMM is sufficiently appropriate as a representative of the full data distribution for each 

individual. Hence, the number of ‘k’ components for each user is equivalent to the 

number of states for Hidden Markov Modelling (HMM). The optimized parameters 

values of GMM are input to the initial states of the HMM parameters. In order for the 

HMM to be used as classification model, similar EM is employed to optimize the 

parameters of the HMM model.  

Base on the understanding of the heartwave signal variations for each user, given 

a dataset of sequences, the heartwave can exist at any stationary state or any series of 

state sequence. For example, during the recovery from strenuous exercise, an individual 

S/N User Min HR Max HR
No of 

Sequences
BIC MDL

1 300 91 120 149 19 19

2 301 56 133 190 19 19

3 302 53 133 142 16 16

4 304 51 84 182 18 14

5 307 52 103 219 20 19

6 309 76 177 249 23 23

7 310 89 182 114 18 18

8 311 73 159 182 0 24

9 312 59 144 166 23 23

10 313 65 185 138 21 18

11 316 81 189 150 15 15

12 320 77 161 193 21 21

13 321 70 134 138 23 17

14 322 89 137 80 12 12

15 325 59 82 127 13 13

16 327 54 82 119 21 21
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heartrate can progress from a heartrate of 120bpm to a recovery heartrate of 90bpm 

within a span of 2 minutes. The use of HMM will be able to statistically determine the 

progression of states given a sequence or concatenated sequences. With this capability, 

classification of a heartwave sequence can be used to support user classification.  

HMM can be presented as the simplest Bayesian Network and HMM has been 

widely use in speech recognition, gesture recognition and even medical diagnostic 

application. The latter has been widely used to detect heartwave anomaly. It is an 

approach for modelling dynamics systems that are observed through a time-series. 

HMM is characterized by the following 5 traits. 

  

1. The number of 𝑁 hidden states within the model. Each state corresponds to a 

unique state provided by the model.   

2. The number of unique observations per state. These symbols are denoted as: 

𝑉 =  {𝑣1, 𝑣2, … . , 𝑣𝑀  }.   (4.16) 

3. State transition probability distributions 𝐴 = {𝑎𝑖𝑗} where 

𝑎𝑖𝑗 = 𝑃(𝑞𝑡+1 = 𝑆𝑗  |𝑞𝑡 = 𝑆𝑖),   1 ≤ 𝑖, 𝑗 ≤ 𝑁 (4.17) 

4. The emission probability distribution in state 𝑗, 𝐵 =  {𝑏𝑗(𝑘)} where  

𝑏𝑗 = 𝑃(𝑣𝑘 𝑎𝑡  𝑡 |𝑞𝑡 = 𝑆𝑗),   1 ≤ 𝑗 ≤ 𝑁, 1 ≤ 𝑘 ≤ 𝑀 (4.18) 

5. The prior probability 𝜋𝑖 = {𝜋𝑖} of being in state i at the beginning of the 

observations where 

 𝜋𝑖 = 𝑃(𝑞1 = 𝑆𝑖), 1 ≤ 𝑖 ≤ 𝑁 (4.19) 

 

In a simplified representation HMM methodology as shown in Figure 4.8, 

observations are generated according to the probability distribution known as the 

emission probability 𝑃(𝑂|𝑆). The emission probabilities do not change over time. In 

addition, the state that generates the respective observation is only dependent on the 

previous state which is governed by transmission probability 𝑃(S2|𝑆1).  . Hence, the 
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observation is independent of all other variable except on the current state.  

In the generation of HMM for each user, each model from each user will have a 

model parameter represented by 𝝀𝒖𝒔𝒆𝒓,𝒌. The 𝝀𝒖𝒔𝒆𝒓,𝒌 comprises of (𝑨, 𝑩,𝚷) where 

A is the state transition probability distribution {𝑎𝑖𝑗}, B is the observation probability 

distribution {𝑏𝑖(𝜈𝑘)} where 𝜈 is the symbol observation at the respective state and 𝚷 

as the initial state distribution. For the proposed architecture, for a given set of 

sequences, HMM is used to determine the probability or the likelihood of the observed 

sequence. With HMM model for each of the user, the classification is based on the 

HMM model that generates the highest probability. Prior to the classification, it is 

necessary to train and generate a HMM model for each user.  

 

 
Figure 4.8: Illustration of a HMM model 

 

Let 𝜆 = (𝐴, 𝐵, 𝜋)  be the parameters of the HMM model and 𝑂 =

(𝑂0, 𝑂1, … , 𝑂𝑇−1) be the series of observations from the sequence. The objective is to 

find 𝑃(𝑂|𝜆) . 𝑆 = (𝑠0, 𝑠1, … , 𝑠𝑇−1)  refers to the state sequence and hence the 

observation is as follow using the forward algorithm.  

 

𝛼𝑡(𝑖) = 𝑃(𝑂0, 𝑂1  … 𝑂𝑇 , 𝑠𝑡 = 𝑞𝑖|𝜆) (4.20) 
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where 𝛼𝑖(𝑖) is the probability of the partial observation sequence at state 𝑞𝑖 at 

time t, for t=0,1,…T-1 and number of states being i=0,1,…N-1. Recursively 

computation commences from the initial state where 𝛼0(𝑖) = 𝜋𝑖𝑏𝑖(𝑂0) as the initial 

state when t=0. For t=1,2,…T-1, the probability of the partial observation at state i, time 

t is the summation of all previous states ending at state i, time t and is expressed as 

follows for every node: 

𝛼𝑡(𝑖) = [∑ 𝛼𝑡−1(𝑗)

𝑁−1

𝑗=0

𝑎𝑗𝑖] 𝑏𝑖(𝑂𝑡)                 (4.21)   

for 𝑡 = 1,2, …𝑇 − 1 and 𝑖 = 0,1, …𝑁 − 1  

 

Hence, the total probability at T-1 is shown in expression (4.22). See Figure 4.9 for a 

graphical representation of the forward algorithm on a lattice.  

                                           𝑃(𝑂|𝜆) = ∑ 𝛼𝑇−1(𝑖)

𝑁−1

𝑖=0

                          (4.22) 

 

 
Figure 4.9: Forward algorithm on a trellis representation 
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Similar to GMM, HMM model needs to be train. Firstly, it is necessary to establish 

the posterior probability. Prior to establishing the posterior probability, it is also 

necessary to define the backward algorithm. The backward algorithm is defined by the 

following expression. 

                                  𝛽𝑡   (𝑖) =∑𝑎𝑖𝑗𝑏𝑗(𝑂𝑡+1)

𝑁

𝑗=1

𝛽(𝑡+1)(𝑗)                     (4.23)  

 

𝛽𝑡(𝑖) is defined as the total probability of all state sequences that depart from s at time 

t and all observations after 𝑞𝑡. See Figure 4.10 for a graphical representation of the 

backward algorithm on a lattice  

 

 
Figure 4.10: Representation of a backward algorithm 

  

With the established expression of backward algorithm, the probability of the state 

can be determined. This is also known as the E-step of Expectation Maximization. It 

defines that the probability assigned to any state s, for any observation 𝑜𝑡  is the 

probability that the process is at state s when it generates 𝑜𝑡.  

 

𝑝(𝑠𝑡𝑎𝑡𝑒(𝑡) = 𝑠|𝑜1, 𝑜2, … 𝑜𝑇) ∝  𝑝(𝑠𝑡𝑎𝑡𝑒(𝑡) = 𝑠, 𝑜1, 𝑜2, … 𝑜𝑇)      (4.24)   
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Figure 4.11: Lattice representation of Forward Backward algorithm 

 

Therefore the probability of assigning an observation to a state comprises of the 

total probability the all state sequences ending at state s at time t and the total probability 

of all state sequences that begins at state s at time t. See Figure 4.11 and Figure 4.12 for 

illustration. The complete probability is shown in expression (4.25). 

 

𝛼𝑡(s) 𝛽𝑡(s) = 𝑝(𝑠𝑡𝑎𝑡𝑒(𝑡) = 𝑠, 𝑜1,  𝑜2, … 𝑜𝑇|𝜆)  (4.25) 

 

 

Figure 4.12: Complete probability of state s at time t 
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With the complete probability determined, the posterior probability can be achieved by 

normalization via the summation of all other states.   

 

𝑝(𝑠𝑡𝑎𝑡𝑒(𝑡) = 𝑠|𝑂, 𝜆) =
𝑝(𝑶, 𝑠𝑡𝑎𝑡𝑒(𝑡) = 𝑠|𝜆)

∑ 𝑝(𝑶, 𝑠𝑡𝑎𝑡𝑒(𝑡) = 𝑠′|𝜆)𝑠′
 

=
𝛼𝑡(s)𝛽𝑡(s)

∑ 𝛼𝑡(𝑠′)𝛽𝑡(𝑠′)𝑠′
 

= 𝛾𝑖(𝑡)  (4.26) 

 

Following, probability of the sequence at state i at time t and state j at time t+1 is 

computed using  

𝜉𝑖𝑗(𝑡) =
𝛼𝑖(𝑡)𝑎𝑖𝑗𝑏𝑗(𝑂𝑡+1)𝛽𝑗(𝑡+1)

∑ 𝛼𝑡(𝑇)
𝑁
𝑖=1

 (4.27) 

 

In the M-step, the following parameters are updated and subsequently test for 

observation convergence  

𝑎𝑖𝑗 =
∑ 𝛼𝑖(𝑡)𝑎𝑖𝑗𝑏𝑗(𝑂𝑡+1)𝛽𝑗(𝑡+1)
𝑇−1
𝑡=1

∑ 𝛼𝑡(𝑖)𝛽𝑡(𝑖)
𝑇−1
𝑡=1

 (4.28)  

𝜇̂ =
∑ 𝛾𝑖(𝑡)𝑂𝑡
𝑇
𝑡=1

∑ 𝛾𝑖(𝑡)
𝑇
𝑡=1

 (4.29) 

Σ𝑖 =
∑ 𝛾𝑖(𝑡)(𝑂𝑡−𝜇̂)(𝑂𝑡−𝜇̂)

𝑇𝑇
𝑡=1

∑ 𝛾𝑖(𝑡)
𝑇
𝑡=1

 (4.30) 

 

 The summary of the EM for HMM is summarized in the Figure 4.13. 
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Figure 4.13: EM for HMM modelling 

 

4.3 Experimentation and Results 

4.3.1 Parameter Optimization: Size of Training Data  

This investigation examines the percentage of data necessary to train a GMM-

HMM model while ensuring the authentication will not be compromised. In actual 

implementation, it is not possible to train HMM model based on all data and at the same 

time to continuously train HMM upon an addition of new data. Hence this investigation 

uses the results of loglikelihood as a criteria to determine to most appropriate proportion 

of data for training.  

The size of the training dataset starts off at a fixed percentage from 10% to 100%. 

Only sequences not using in the training of HMM parameters are used in the testing. In 

other words, data sequences that are used in the testing are not used for training of 

HMM model. The selection of the sequences for training is generated randomly to 

eliminate biasness.  
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The testing is conducted on all users and the raw results are tabulated. As each user 

has different number of sequences in their respective dataset, an appropriate approach 

is to use percentage as an incremental step. As evident from the table, using 10% to 20% 

of data sequences for training has a tendency to under-fit which leads to higher means 

and standard deviations. Conversely, having too much data for training will lead to a 

situation of over-fit as evident from Figure 4.14. Hence, a stable region will be within 

the range of 40% to 70% which can be appropriate for HMM parameter training. This 

work uses the upper bound of 70% for a more conservative approach. Figure 4.14 shows 

a normalized mean score based on the percentage of training data. The scores are 

normalized to 1 based on the 10% training data. Evidently, the score of individual is 

homogenous based within a range of 40% to 70% training data.  

 

Figure 4.14: Distribution of normalized mean scores at increasing training data 

 

4.3.2 Parameter Optimization: GMM-HMM State 

Optimization 

Leveraging on the proposed 70% of data as training data, the remaining 30% 

sequences are used in the authentication investigation. Prior to authentication 
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investigation, it is important to determine what is the optimum number of states 

required by the HMM module. The investigation is performed by collating all test 

sequences from all users. Each of the test sequences is tested on all the individual HMM 

model. For each test sequence, the HMM model that output the maximum loglikelihood 

result is indexed. See Figure 4.15 for the schematic of the investigating procedure.  

To ensure non-biasness, the testing are carried out over 5 runs. In each of the run, 

the 30% testing data and 70% training data are re-randomized. The GMM-HMM model 

for each user are re-trained. The test sequences are re-subjected to testing as all over 

again. The results are accumulated, compiled and analyzed. 25 sub-models for each 

users are created and trained with 70% data. Simply, each user will have 25 HMM 

models ranging from HMM model with 1 state to model with 25 states.  

 

 

Figure 4.15: Testing of the test sequences against a database of 27 HMM model for identification 

testing 

 

The results from the 5 runs are accumulated and tabulated in a confusion table as 

shown in Table 4.3. In the confusion table, the rows represent the actual class and the 
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column represents the classification performance. The values along the major diagonal 

represents the correctly identified user with respect to the test sequence. Errors or values 

along the rows and between the major diagonal is known as the error of omission. It 

refers to the False Negative (FN). In an identification process, it means an authorized 

user has been denied access. Error or value along the vertical (below or above the major 

diagonal) is referred to as False Positive (FP). In identification process, it means 

unauthorized individual has been granted access to the system.  

Table 4.3 shows the confusion table of the classification testing performed at State 

1 together with the computational percentage of FP and FN. From the Confusion Table 

shown, User 312 has an Error of Commission at 16.68%. This anomaly is primarily due 

to the Error of Omission contributed by User 313 and User 320. Figure 4.16 shows the 

signal morphologies of User 312, 313 and 320. Comparing the signals of the mentioned 

User 312, 313 and 320, temporally the signals varies minimally. The deterioration of 

the accuracy in particular to User 312 can be attributed to the exclusion of amplitude 

profile as one of the features. This is evident from the varying R-Peak, Q-Wave Peak 

and even the T-Wave Peak among the three morphologies. Equally importantly, in the 

classification process that uses HMM as the basis, data sequence of heartwave signals 

in fixed duration of 10 seconds is used to determine the likelihood scores against the 27 

HMM-GMM Models. The use of the data sequence averages the discriminating features 

as compared to using a singular heartwave signal.  

In the testing and validation, each user has 25 sub-models of HMM that ranges from 

HMM model with 1 state to HMM model with 25 states. Hence, 25 such tables have 

been tabulated. From the tabulated confusion table at each state, the computed 

percentage of FP and FN data facilitates easy computation of parameters comprises of 

True Positive (TP), True Negative (TN), False Positive, False Negative, False Positive 

Rate (FPR) and True Negative Rate (TNR). Importantly, it facilities the computation of 

sensitivity and specificity which have been derived from TPR and TNR, respectively. 

See Table 4.4 for results.  
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Figure 4.16: Heartwave profile for User 312, User 313 and User 320.  

 

At each of the 25 sub-model state, the results are summed and analyzed based on the 

overall classification process involving 27 users. Figure 4.17a, 4.17b, 4.18a and 4.18b 

show the overall results for each of the individual states. 

Figure 4.17a shows the Sensitivity analysis which is the ability to authorize access to 

the correct users. It shows the average sensitivity at different state. Figure 4.17b also 

shows that sensitivity achieved well over 90% at lower states between State 1 and State 

5. This aligns well with the objectives that BIC and MDL criterion are useful to limit 

over-specification and conserve computation processing. It does not consider the effects 

of over-fit and under-fit.  
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   Table 4.3: Confusion Table showing the accumulation of classification results from 5 runs at 

State 1  
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Table 4.4: Computation of biometric assessment parameters at State 1 

  

 

Figure 4.17b shows the Specificity analysis which is defined as ability to deny 

access to unauthorized individuals. The results of the Specificity for all 25 states have 

been impressive as the specificity is well above 90% for all levels of states. 

While the sensitivity and specificity have shown impressive results, the False 

Positive and False Negative in contrast provided avenues for more robust investigation. 

4.18a shows the False Positive results at different states represented by 3 series of data 

which are the Percentage of Minimum, Maximum and Average at each stage. Minimum 

refers to the minimum value of False Positive among the group of 16 users at each State. 

The same definition applies to Maximum and Average. 

Sensitivity Specificity

User TP FN FP TN FPR FNR TPR TNR

300 207 3 0 3339 0.00 1.43 98.57 100.00

301 283 2 8 3263 0.24 0.70 99.30 99.76

302 202 8 0 3344 0.00 3.81 96.19 100.00

304 270 0 0 3276 0.00 0.00 100.00 100.00

307 315 0 0 3231 0.00 0.00 100.00 100.00

309 349 11 0 3197 0.00 3.06 96.94 100.00

310 165 0 2 3381 0.06 0.00 100.00 99.94

311 267 3 0 3279 0.00 1.11 98.89 100.00

312 238 2 48 3308 1.43 0.83 99.17 98.57

313 181 14 2 3365 0.06 7.18 92.82 99.94

316 218 7 3 3328 0.09 3.11 96.89 99.91

320 270 15 0 3276 0.00 5.26 94.74 100.00

321 191 4 0 3355 0.00 2.05 97.95 100.00

322 120 0 3 3426 0.09 0.00 100.00 99.91

325 177 3 2 3369 0.06 1.67 98.33 99.94

327 165 0 4 3381 0.12 0.00 100.00 99.88

Overall 3618 72 72 53118 0.14 1.95 98.05 99.86
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(a) 

 

(b) 

Figure 4.17: HMM results for 25 different models: (a) Sensitivity. (b) Specificity. 

 

At lower states of up to State 4, the False Positive is 20% and below. Beyond State 

4, the False Positive Errors are in excess of 20% exclude State 8 and State 20.  

In the False Negative results as shown in Figure 4.18b where authorized individuals 

are denied access, the False Negative errors are below 10% at State 5 and below. Based 

on best fit, the error worsen at increasing number of States. This observation is in-line 

with False Positive error and Sensitivity results that lower states provide better 
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classification results. Thus this analysis concluded that at low number states up to 3 

states, offers the most appropriate selection without compromising the results of the 

confusion table.  

 

Figure 4.18a: Percentage of False Positive for 25 different HMM models 

 

Figure 4.18b: Percentage of False Negative for 25 different HMM models 

 

4.3.3  User Classification with User Specific Thresholding 

Recap in Figure 4.17 and Figure 4.18, where the classification is based on the 



Chapter 4  

4-97 

 

maximum likelihood score, it is not practical to use a model generated score to perform 

classification in particular when the population grows too big. An important observation 

is the presence of user specific parameters maximum and median loglikelihood scores. 

Figure 4.18 shows the distribution of the loglikelihood score from User316. Notice that 

the loglikelihood scores are homogenous at the heartrate of 120bpm and below. When 

the heartrate is between 140bpm to 180bpm, the loglikelihood scores are in the range 

between -600 to -1000. This is attributed to the morphological changes in the heartwave 

signal where the heart is under supraventricular tachycardia mode. Supraventricular 

tachycardia is a condition where the P-wave signal is eclipsed by T-wave of previous 

heartwave signal. For User316, the resting heartrate is around 80bpm. Hence, Figure 

4.19 shows the stability of loglikelihood score at heartrate within the range of 80bpm 

to 140bpm but decreases for heartrate from 140bpm and above.  

 

 

Figure 4.19: Varying loglikelihood score due to varying heartrate from User316 

 

See Figure 4.20 for user specific score. Due to the nature of individual 

physiological signals, the user specific thresholding criteria on median loglikelihood 

score can be used as a user-specific thresholding criteria in classification.  

In this validation, all individual’s 30% of the untrained data sequences are input as 

a lot to all the user specific GMM-HMM model to perform classification. The criteria 

to classify each sequence is dependent on user specific thresholding criteria of median 
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loglikelihood score.  

 

 

Figure 4.20: Distribution of the different thresholds: Minimum, Maximum and Median from all users 

 

Figure 4.21: Relative Operating Characteristic of the identification process using median threshold, 

proposed architecture and GMM Module only 

 

The results are tabulated and represented in ROC as shown in Figure 4.21. The 

results using user specific median threshold value achieved a 68% True Positive Rate 

with a corresponding 10% False Positive Negative Rate. Compared to using maximum 

loglikehood score, the False Positive Rate improved by double to achieve a False 
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Positive Rate of 10% 

 

4.3.4 User Classification with User-Specific Heartrate and 

Thresholding Criteria 

To further improve the classification, the use of individual heartrate in the 

identification process is proposed. Every individual has confined range of heartrate 

between resting and maximum duress. Hence, the individual loglikelihood score is 

constructed against individual heartrate. Figure 4.19 is replot into Figure 4.22 which 

illustrates the loglikelihood score against increasing heartrate. It is evident that the 

loglikelihood score decrease linearly with accelerating heartrate.  

With the understanding of the behavior, it is proposed to further improve the 

classification process, two additional criteria can be imposed on the classification 

criteria. Prior to discriminate the individual based on highest loglikelihood score, it has 

to satisfy two criteria.  

 

• Criteria 1: The heartrate from the sequence under test is within the range of the 

user.  

• Criteria 2: The loglikelihood score from sequence under test must fall with the 

range of the user unique heartrate based loglikelihood score.  

 

Hence, if the tested loglikelihood score is the highest and matches the two criteria, the 

result is deemed true positive. See Figure 4.23 for an illustration of the classification 

using heartrate and dynamic thresholding criteria 

Through the use of heartrate in the classification, the identification improves by 

more than 35% to achieve a 0.89 True Positive Rate while maintaining a False Positive 

Rate of 0.11. Figure 4.24 shows the performance comparison between proposed 

architecture and fiducial based Linear Discriminant Analysis (LDA) with Nearest 
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Center as classifier. The LDA is commonly used in machine learning for biometrics 

verification and identification. To enable fair comparison with the LDA methodology, 

similar database from the proposed method is used. The performance of LDA achieved 

a TPR of approximately 0.78 and FPR of 0.25. In another comparison, GMM-HMM 

with user specific median score as criteria achieved 0.68 for TPR and 0.11 for FPR. 

This reinforces the hypothesis that the use of heartrate together with user specific 

thresholding criteria is crucial to achieve better identification accuracy under highly 

variated heartwave signals. 

 

 

Figure 4.22: Decreasing loglikelihood score against increasing heartrate 

 



Chapter 4  

4-101 

 

 

Figure 4.23: Schematic of classification using heartrate and dynamic thresholding criteria 

 

 

Figure 4.24: Performance of proposed architecture against other methods 
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4.3.5 Impact of Performance Between Resting and Intense 

Heartrate  

The effect of heartwave morphological changes from heartrate variation (rest state to 

intense duress state) on the performance of the proposed architecture is investigated. 

Resting heartrates from all users are sorted and tested on the proposed architecture, and 

compared against LDA approach. Using resting heartrate dataset, the EER for the 

proposed architecture and LDA approach are relatively similar at 0.03 and 0.035 

respectively. However, with the inclusion of heartwave data under intense heartrate, the 

EER for proposed architecture and LDA approach are 0.11 and 0.25 respectively. The 

performance of the proposed architecture has performed reasonably well at EER 0.11 

on heartwave signal under full spectrum of heartrate variation. The result is shown in 

Figure 4.25. 

 

Figure 4.25: Comparison of proposed method against fiducial based LDA 
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4.4 Summary 

The identification of individuals using heartwave has shown promising results. In 

the extraction process, it has proven that the use of heartrate adaptive parameters such 

as QT interval from Nomogram and PR interval have led to reliable extractions of 

heartwave features. In the preparation of data for classification, it is concluded that the 

use of BIC and MDL to limit the components do not significantly contribute to better 

classification results. In GMM-HMM classification testing, results have shown that the 

classification performs better at lower number of states than in higher number of states. 

The classification work to support identification achieved an ERR of 0.11.  

It has been shown that using User-Specific Heartrate and Thresholding Criterial 

yielded a much desirable performance. Deliberately, identification performance is 

performed with just the GMM module using the same dataset. The EER based on GMM 

module alone is approximately 0.27. This underlines the importance of HMM module 

to achieve better identification performance. The work is limited by the availability of 

heartwave data where user has been subjected to physiological duress. However at the 

current development, the results have shown the feasibility of using heartwave signal 

as biometric mode with varying heartrate. This work has demonstrated that at varying 

heartrate, the heartwave signal exhibited unique characteristic features that can be used 

to discriminate individual. 
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CHAPTER  5  

DEEP ENSEMBLE HEARTWAVE 

AUTHENTICATION 

5.1 Introduction 

Chapter 4 presented the statistical architecture of Gaussian Mixture Model–Hidden 

Markov Model (GMM-HMM) methodology where individual data are statistically 

clustered and modelled to support classification. In Chapter 5, the use of neural network 

based methodology to support heartwave based authentication is presented. Chapter 5 

commences with the detailed explanation of the proposed architecture that consists of 

an ensemble-Deep Belief Network (DBN) framework, complemented by Multiview 

Spectral Embedding [106] connected to a single stacked DBN and classified using an 

efficient method of Extreme Learning Machine [122-124]. Equally, the performance of 

the proposed architecture is also compared against statistical methodology of GMM-

HMM. In addition, this chapter will also present a second neural architecture known as 

Architecture 2 which exhibits similar classification performance to the proposed 

architecture.  

5.1.1 Motivation 

• To investigate the feasibility of proposed Deep Learning architecture to achieve 

a robust heartwave based biometric classification under extreme signal 

morphological variations.  

• To investigate the uniqueness of anomaly heartwave signal which can be used 

as an authentication mode. This allows the possibility of heartwave based 

authentication solutions to be extended beyond healthy and normal heartwave 

signal.  
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• To investigate the minimum data requirement to support training of Deep 

Learning architecture to address the insufficiency of data for training.  

5.2 Proposed Architecture of Deep Multi-View Heartwave 

Authentication  

This chapter proposed a heartwave based authentication approach that is reliable 

and robustness to individual varying heartrate. Figure 5.1 illustrates the proposed 

architecture and can be broadly classified into 5 stages. Stage 1 focuses on the data 

preparation prior for input to the ensemble-DBN. Stage 2 focuses on the use of 

ensemble-DBN as opposed to using single DBN for feature extraction. Stage 3 focuses 

on the combination of outputs from ensemble-DBN into a single view and the adoption 

of Multi-View Spectral Embedding [106] method to form a single low dimensional 

embedding. Stage 4 focuses on the use of stacked DBN to support the eventual 

classification at Stage 5. The last stage focuses on the use of an efficient method of 

Extreme Learning Machine (ELM) for accurate and reliable classification.  

 

 

Figure 5.1: Illustration of the proposed deep multi-view architecture 
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5.2.1 Stage 1: Data preparation 

In the data preparation, the heartwave of each individual is independently delineated 

and extracted. The delineation process uses Discrete Wavelet Transform (DWT) with a 

fourth order Daubechies wavelet (DB4) to achieve heartwave delineation. Chapter 3 

has described in details the methodology to delineate each heartwave independently. To 

recap from Chapter 3, due to the presence of wide variations in heartrates, waves in 

particular to P-Wave and T-Wave experience significant morphological variations 

which are highly dependent on heartrate. Refer to Figure 5.2 for illustration. At elevated 

heartrate, the duration of T-Wave can shrink by approximately 40%. To ensure accurate 

delineation, the extraction of the heartwave signal incorporated heartrate related 

parameters of QT Interval and PR Interval to perform extraction of features related to 

P-Wave and T-Wave. The detail methodology of the heartwave delineation can be found 

in Chapter 3. 

 

Figure 5.2: Superimpose of all extracted heartwaves of an individual around R-Peak. P-Wave and T-

Wave show the morphological changes at different heartrate 

 

For the investigation of the proposed architecture, heartwave signals from all 52 

individuals consisting of 75,188 heartwaves are made available. Of the 52 individuals, 

there are 5 individuals with inverted T-Waves whose heartwaves have been successfully 

extracted. To further prepare the heartwaves for subsequent ensemble Deep Belief 

Network (DBN) training, each of the heartwave is aligned inside a fixed window length 
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of 500 units. Using the location of the detected R-Peak, the R-Peak is aligned at the 

240th unit. This provides a consistent data to the ensemble-DBN. See Figure 5.2 for an 

illustration of the alignment of heartwaves at about R-Peaks at 240th unit. In Deep 

Learning analysis, the data preparation differs from the data preparation for the 

statistical methodology. Recall in Chapter 4 on the statistical methodology, only the 

features of the heartwave signal are use and a total of 11 features are extracted. For the 

Deep Learning methodology, the extraction methodology presented in Chapter 3 is used 

to detect the heartwave extremities of P-Wave onset and T-Wave offset. This two 

features define the whole heartwave profile of each heartbeat. Upon detection of the 

two extremities, the signal data are extracted, store as a sample and concatenated into a 

data array. Included in the extraction is also the location of the R-Peak which will be 

used for alignment within a defined window.   

 

5.2.2 Stage 2: Ensemble-Deep Belief Network (Ensemble-

DBN)  

Deep Belief Network (DBN) is an undirected probabilistic model that is 

constructed by multiple layers of Restricted Boltzmann Machine (RBM). RBM is a 

shallow stochastic neural network comprises of one layer of visible units and one layer 

of hidden units. Characteristically, each visible unit is connected to all hidden units and 

vice versa. Hence RBM is bipartite graph since no visible unit is connected to any other 

visible unit and is equally said for hidden layer. As a parameterized model of probability 

distribution, it is used to learn and identify important characteristics or features of an 

unlabeled target distribution based on the samples from the target distribution. Given a 

sample, the RBM learns and trains through the adjustment of its parameters to achieve 

a probability distribution that representatively fits the training data. RBM as a stochastic 

system is commonly used for pattern recognition and pattern classification.  

Figure 5.3 illustrates a RBM layer. RBM, an undirected graphical model is also a 
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bipartite undirected graph. It is contains m visible units and n hidden units. Each of the 

visible units capture the 1 units of the heartwave window and each hidden unit captures 

the dependency between units. The computation of RBM involves the use of energy 

model which is defined in 5.1 below. 

 

𝐸𝑅𝐵𝑀(𝑣, ℎ) = −∑ 𝑎𝑖𝑣𝑖𝑖 − ∑ 𝑏𝑗ℎ𝑗𝑗 − ∑ 𝑣𝑖ℎ𝑗𝑤𝑖𝑗𝑖𝑗   (5.1) 

 

From (5.1), 𝑖 ∈ {1,2, … 𝑛} and  𝑗 ∈ {1,2, …𝑚} while a and b refer to the visible 

and hidden biases respectively. wij is the connecting weight between the visible and 

hidden units. The stated equation implies that given the parameters {𝑎, 𝑏, 𝑤} , the 

energy between the visible layer and hidden layer can be computed.  

Hence, the objective of the training RBM is to determine the parameters that best 

represent the probability distribution of the training data.  

 

 

Figure 5.3: Illustrates a single layer RBM 

Figure 5.3 also illustrates that only one layer is connected to one layer. Units within 

the same layer are not connected. This implies if the states of the hidden units and 

visible units are known, the visible units and hidden units are deem independent 
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respectively. Through this understanding, the conditional distributions of 𝑝(𝑣|ℎ) and 

𝑝(ℎ|𝑣) for each unit can be factorized as follows 

 

𝑝(𝑣|ℎ) = ∏ 𝑝(𝑣𝑖|ℎ)
𝑚
𝑖=1  (5.2) 

𝑝(ℎ|𝑣) = ∏ 𝑝(ℎ𝑗|𝑣)
𝑛
𝑗=1  (5.3) 

 

Based on Gibbs distribution and energy model, the joint distribution of the visible and 

hidden unit can be described as follow:  

 

𝑝(𝑣, ℎ) =
1

𝑍
exp(−𝐸𝑅𝐵𝑀(𝑣, ℎ)) (5.4) 

𝑍 = ∑ exp(−𝐸𝑅𝐵𝑀(𝑣, ℎ))𝑣,ℎ  (5.5) 

 

where Z is known as the partition function and is the summation of all possible pairs of 

visible and hidden vectors. The probability that the network assigns to a visible vector 

is given by summing over all possible hidden vector: 

 

𝑝(𝑣) = ∑ 𝑝(𝑣, ℎ) =
1

𝑍ℎ ∑ exp(−𝐸𝑅𝐵𝑀(𝑣, ℎ))ℎ  (5.6) 

 

Let the parameters of the RBM layer be represented by 𝜃 = {𝑤, 𝑎, 𝑏}. Expression (5.6), 

based on given parameters, it can be expressed as follow, 

 

 𝑝(𝑣|𝜃) = ∑ 𝑝(𝑣, ℎ) =
1

𝑍ℎ ∑ exp(−𝐸𝑅𝐵𝑀(𝑣, ℎ))ℎ  (5.7) 

 

Hence, to estimate the parameters of the RBM model, maximum likelihood can be 

applied to expression (5.7). 
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𝐿(𝜃|𝑣) = (𝑝(𝑣|𝜃) = ∑ 𝑝(𝑣, ℎ) =
1

𝑍ℎ ∑ exp(−𝐸𝑅𝐵𝑀(𝑣, ℎ))ℎ  (5.8) 

 

Applying log to expression (5.8),  

 

𝑙𝑜𝑔𝐿(𝜃|𝑣) = 𝑙𝑜𝑔𝑝(𝑣|𝜃) = 𝑙𝑜𝑔
1

𝑍
∑exp(−𝐸𝑅𝐵𝑀(𝑣, ℎ))

ℎ

 

= 𝑙𝑜𝑔 ∑ exp(−𝐸𝑅𝐵𝑀(𝑣, ℎ))ℎ − 𝑙𝑜𝑔∑ exp(−𝐸𝑅𝐵𝑀(𝑣, ℎ))𝑣,ℎ  (5.9) 

 

Applying a partial derivative with respect to the parameter, (5.9) becomes  

 

𝜕𝑙𝑜𝑔𝐿(𝜃|𝑣)

𝜕𝜃
=
𝜕

𝜕𝜃
(𝑙𝑜𝑔∑𝑒𝑥𝑝(−𝐸𝑅𝐵𝑀(𝑣, ℎ))

ℎ

)

−
𝜕

𝜕𝜃
(𝑙𝑜𝑔∑𝑒𝑥𝑝(−𝐸𝑅𝐵𝑀(𝑣, ℎ))

𝑣,ℎ

) 

=
1

∑ 𝑒𝑥𝑝(−𝐸𝑅𝐵𝑀(𝑣, ℎ))ℎ

∑𝑒𝑥𝑝(−𝐸𝑅𝐵𝑀(𝑣, ℎ))

ℎ

(−
𝜕𝐸𝑅𝐵𝑀(𝑣, ℎ)

𝜕𝜃
)

−
1

∑ 𝑒𝑥𝑝(−𝐸𝑅𝐵𝑀(𝑣, ℎ))𝑣,ℎ

∑𝑒𝑥𝑝(−𝐸𝑅𝐵𝑀(𝑣, ℎ))

𝑣,ℎ

(−
𝜕𝐸𝑅𝐵𝑀(𝑣, ℎ)

𝜕𝜃
) 

= −∑
𝑒𝑥𝑝(−𝐸𝑅𝐵𝑀(𝑣, ℎ))

∑ 𝑒𝑥𝑝(−𝐸𝑅𝐵𝑀(𝑣, ℎ))ℎℎ

𝜕𝐸𝑅𝐵𝑀(𝑣, ℎ)

𝜕𝜃

+∑
𝑒𝑥𝑝(−𝐸𝑅𝐵𝑀(𝑣, ℎ))

∑ 𝑒𝑥𝑝(−𝐸𝑅𝐵𝑀(𝑣, ℎ))𝑣,ℎ𝑣,ℎ

(
𝜕𝐸𝑅𝐵𝑀(𝑣, ℎ)

𝜕𝜃
) 

= −∑ 𝑝(ℎ|𝑣) (
𝜕𝐸𝑅𝐵𝑀(𝑣,ℎ)

𝜕𝜃
)ℎ + ∑ 𝑝(𝑣, ℎ) (

𝜕𝐸𝑅𝐵𝑀(𝑣,ℎ)

𝜕𝜃
)𝑣,ℎ   (5.10) 

 

The condition probability term 𝑝(ℎ|𝑣) can be solved by the following 
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𝑝(ℎ|𝑣) =
𝑝(𝑣, ℎ)

𝑝(𝑣)
=

1
𝑍 exp(−𝐸𝑅𝐵𝑀

(𝑣, ℎ))

1
𝑍
∑ exp (−𝐸𝑅𝐵𝑀(𝑣, ℎ))ℎ

=
exp(−𝐸𝑅𝐵𝑀(𝑣, ℎ))

∑ exp(−𝐸𝑅𝐵𝑀(𝑣, ℎ))ℎ

  

 (5.11) 

 

Expression (5.10)  comprises of two terms. The first term represents the 

probability value of the energy from the conditional probability of the hidden units 

based on the training samples. The second term refers to the joint distribution between 

the hidden and visible units and it can be expressed as ∑ 𝑝(𝑣)𝑣 ∑ 𝑝(ℎ|𝑣) (
𝜕𝐸𝑅𝐵𝑀(𝑣,ℎ)

𝜕𝜃
)𝑣,ℎ . 

This expression however is computationally extensive and complex.  

Given the expression of (5.11), it is now possible to compute the each of the 

parameters of the RBM model {𝑤, 𝑎, 𝑏}. Hence, individual parameters of the model 

can be computed by imposed a derivative with respective parameter components.  

 

𝜕𝑙𝑜𝑔𝐿(𝜃|𝑣)

𝜕𝑤𝑖𝑗
= −∑𝑝(ℎ|𝑣) (

𝜕𝐸𝑅𝐵𝑀(𝑣, ℎ)

𝜕𝑤𝑖𝑗
)

ℎ

+∑𝑝(𝑣, ℎ) (
𝜕𝐸𝑅𝐵𝑀(𝑣, ℎ)

𝜕𝑤𝑖𝑗
)

𝑣,ℎ

=∑𝑝(ℎ|𝑣)ℎ𝑖𝑣𝑗
ℎ

−∑𝑝(𝑣)

𝑣

∑𝑝(ℎ|𝑣)

ℎ

ℎ𝑖𝑣𝑗  

= 𝑝(ℎ𝑖 = 1|𝑣)𝑣𝑗 − ∑ 𝑝(𝑣)𝑣 𝑝(ℎ𝑖 = 1|𝑣)𝑣𝑗 (5.12) 

where from (5.1) 

𝜕𝐸𝑅𝐵𝑀(𝑣, ℎ)

𝜕𝑤𝑖𝑗
=

𝜕

𝜕𝑤𝑖𝑗
(−∑ 𝑎𝑖𝑣𝑖

𝑖
−∑ 𝑏𝑗ℎ𝑗

𝑗
−∑ 𝑣𝑖ℎ𝑗𝑤𝑖𝑗

𝑖𝑗
) 

= −ℎ𝑖𝑣𝑗   (5.13) 

 

And as the hidden state is a binary output of sigmoid function, the state of the hidden 

unit is either ON or OFF with ℎ𝑖 ∈ {0,1},  
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∑ 𝑝(ℎ|𝑣)ℎ𝑖ℎ = 𝑝(ℎ𝑖 = 1|𝑣)  (5.14) 

Similarly, the parameters of a and b for the ith and jth variables can be computed using 

the respective derivatives.  

 

𝜕𝑙𝑜𝑔𝐿(𝜃|𝑣)

𝜕𝑎𝑗
= −∑𝑝(ℎ|𝑣) (

𝜕𝐸𝑅𝐵𝑀(𝑣, ℎ)

𝜕𝑎𝑗
)

ℎ

+∑𝑝(𝑣, ℎ) (
𝜕𝐸𝑅𝐵𝑀(𝑣, ℎ)

𝜕𝑎𝑗
)

𝑣,ℎ

 

=∑𝑝(ℎ|𝑣)𝑣𝑗
ℎ

−∑𝑝(𝑣)

𝑣

∑𝑝(ℎ|𝑣)

ℎ

𝑣𝑗 

= 𝑣𝑗 − ∑ 𝑝(𝑣)𝑣 𝑣𝑗 (5.15) 

𝜕𝑙𝑜𝑔ℒ(𝜃|𝑣)

𝜕𝑏𝑖
= −∑𝑝(ℎ|𝑣) (

𝜕𝐸(𝑣, ℎ)

𝜕𝑏𝑖
)

ℎ

+∑𝑝(𝑣, ℎ) (
𝜕𝐸(𝑣, ℎ)

𝜕𝑏
)

𝑣,ℎ

 

=∑𝑝(ℎ|𝑣)ℎ𝑖
ℎ

−∑𝑝(𝑣)

𝑣

∑𝑝(ℎ|𝑣)

ℎ

ℎ𝑖 

= 𝑝(ℎ𝑖 = 1|𝑣) − ∑ 𝑝(𝑣)𝑣 𝑝(ℎ𝑖 = 1|𝑣) (5.16) 

 

The states of the single variable being turn ON depend on conditional probability of a 

single variable with sigmoid activation function 𝑠𝑖𝑔𝑚(𝑥) =
1

1+𝑒𝑥𝑝 (−𝑥)
.  

 

𝑝(ℎ𝑖 = 1|𝑣) = 𝑠𝑖𝑔𝑚(∑ 𝑤𝑖𝑗𝑣𝑗
𝑚
𝑗=1 + 𝑏𝑖) (5.17) 

𝑝(𝑣𝑗 = 1|ℎ) = 𝑠𝑖𝑔𝑚(∑ 𝑤𝑖𝑗ℎ𝑖
𝑛
𝑖=1 + 𝑎𝑗) (5.18) 

 

(5.17) and (5.18) can be derived as follows. Let 𝑣−𝑘 represents the states of units that 

are visible except for the 𝑘-th one and hence can be defined as 

 

𝛼𝑘(ℎ) = −∑𝑤𝑖𝑘ℎ𝑖

𝑛

𝑖=1

− 𝑏𝑘  
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𝛽(𝑣−𝑘 , ℎ) = −∑ ∑ 𝑤𝑖𝑗ℎ𝑖𝑣𝑗

𝑚

𝑗=1,𝑗≠𝑘

𝑛

𝑖=1

− ∑ 𝑏𝑗𝑣𝑗

𝑚

𝑗=1,𝑗≠𝑘

−∑𝑐𝑖ℎ𝑖

𝑛

𝑖=1

 

 

Therefore 𝐸𝑅𝐵𝑀(𝑣, ℎ) = 𝛽(𝑣−𝑘, ℎ) + 𝑣𝑘𝛼𝑘(ℎ) , with 𝑣𝑘𝛼𝑘(ℎ)  represents the terms 

involving 𝑣𝑘. 

 

𝑝(𝑣𝑘 = 1|ℎ) = 𝑝(𝑣𝑘 = 1|𝑣−𝑘, ℎ) =
𝑝(𝑣𝑘 = 1, 𝑣−𝑘, ℎ)

𝑝(𝑣−𝑙, ℎ)

=
e−𝐸𝑅𝐵𝑀(𝑣𝑘=1,𝑣−𝑘,ℎ)

e−𝐸𝑅𝐵𝑀(𝑣𝑘=1,𝑣−𝑘,ℎ)+e−𝐸𝑅𝐵𝑀(𝑣𝑘=0,𝑣−𝑘,ℎ)

=
e−𝛽(𝑣−𝑘,ℎ)−1∙𝛼𝑘(ℎ)

e−𝛽(𝑣−𝑘,ℎ)−1∙𝛼𝑘(ℎ) + e−𝛽(𝑣−𝑘,ℎ)−0∙𝛼𝑘(ℎ)

=
e−𝛽(𝑣−𝑘,ℎ) ∙ 𝑒−𝛼𝑘(ℎ)

e −𝛽(𝑣−𝑘,ℎ) ∙ e −𝛼𝑘(ℎ) + e−𝛽(𝑣−𝑘,ℎ)
 

=
e−𝛽(𝑣−𝑘,ℎ) ∙ 𝑒−𝛼𝑘(ℎ)

e−𝛽(𝑣−𝑘,ℎ) ∙ e−𝛼𝑘(ℎ)+1
 

=
𝑒−𝛼𝑘(ℎ)

e−𝛼𝑘(ℎ)+1
 

=
1

1 + 𝑒𝛼𝑘(ℎ)
 

= 𝑠𝑖𝑔𝑚(−𝛼𝑘(ℎ)) 

= 𝑠𝑖𝑔𝑚(∑𝑤𝑖𝑘ℎ𝑖

𝑛

𝑖=1

+ 𝑏𝑘) 

 

From (5.12), (5.15) and (5.16), of the two terms of the loglikelihood gradient, the 

first term on the left can be computed whereas the second term will least to complexity 

in the summing of visible units. An effective method to overcome this complexity is the 

adopting of approximation via Gibbs sampling. To enable Gibbs sampling to be 

achieved, it requires repetitive iterations to ensure convergence. An alternative is 

proposed through the use of Contrastive Divergence to determine the approximate the 

loglikelihood. Contrastive Divergence is always accompanied by k-step which denotes 

the number of steps for approximation computation. Contrastive Divergence is also 

commonly denotes as CD. The Gibbs chain starts with a training data 𝑣(0)  of the 
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training dataset and produces the sample 𝑣(𝑘) after 𝑘 step. Each step represented by 

𝑡  involves sampling ℎ(𝑡)  from 𝑝(ℎ|𝑣(𝑡))  followed by sampling 𝑣(𝑡+1)  from 

𝑝(𝑣|ℎ(𝑡)). The gradient (5.10) with respect to 𝜃 of the log-likelihood for the specific 

sample 𝑣(0) is represented by  

 

𝐶𝐷𝑘(θ, 𝑣
(0)) = −∑ 𝑝(ℎ|𝑣(0))ℎ

𝜕𝐸𝑅𝐵𝑀(𝑣
(0),ℎ)

𝜕𝜃
+ ∑ 𝑝(ℎ|𝑣(𝑘))ℎ

𝜕𝐸𝑅𝐵𝑀(𝑣
(𝑘),ℎ)

𝜕𝜃

 (5.19 ) 

 

Hence each of the parameters can be obtained by approximating the expectations over 

𝑝(𝑣) 

 

𝐶𝐷1(w𝑖𝑗 , 𝑣
(0)) = −∑𝑝(ℎ|𝑣(0))

ℎ

𝜕𝐸𝑅𝐵𝑀(𝑣
(0), ℎ)

𝜕𝜃
+∑𝑝(ℎ|𝑣(1))

ℎ

𝜕𝐸𝑅𝐵𝑀(𝑣
(1), ℎ)

𝜕𝜃
 

= 𝑝(ℎ𝑖 = 1|𝑣(0))𝑣𝑗
(0) − 𝑝(ℎ𝑖 = 1|𝑣

(1))𝑣𝑗
(1)

 (5.20) 

 

𝐶𝐷1(a𝑗 , 𝑣
(0)) = −∑𝑝(ℎ|𝑣(0))

ℎ

𝜕𝐸𝑅𝐵𝑀(𝑣
(0), ℎ)

𝜕𝜃
+∑𝑝(ℎ|𝑣(1))

ℎ

𝜕𝐸𝑅𝐵𝑀(𝑣
(1), ℎ)

𝜕𝜃
 

= 𝑣𝑗
(0) − 𝑣𝑗

(1)
 (5.21) 

 

𝐶𝐷1(b𝑖, 𝑣
(0)) = −∑𝑝(ℎ|𝑣(0))

ℎ

𝜕𝐸𝑅𝐵𝑀(𝑣
(0), ℎ)

𝜕𝜃
+∑𝑝(ℎ|𝑣(1))

ℎ

𝜕𝐸𝑅𝐵𝑀(𝑣
(1), ℎ)

𝜕𝜃
 

= 𝑝(ℎ𝑖 = 1|𝑣(0)) − 𝑝(ℎ𝑖 = 1|𝑣(1)) (5.22) 

 

 

As the heartwave signal contains continuous data, it is necessary to prep the signals 

where the input to the visible layer are linear units with independent Gaussian noise. 



Chapter 6  

5-115 

 

Therefore the energy function of (5.1) becomes  

 

𝐸𝑅𝐵𝑀(𝑣, ℎ) = −∑∑𝑤𝑖𝑗ℎ𝑖
𝑣𝑗

𝜎𝑗

𝑚

𝑗=1

𝑛

𝑖=1

−∑
(𝑣𝑗 − 𝑎𝑗)

2

2𝜎𝑗
2

𝑚

𝑗=1

−∑𝑐𝑖𝑏𝑖

𝑛

𝑖=1

 

 (5.23) 

This RBM is termed as Gaussian Bernoulli RBM (GBRBM) and the hidden units 

remains as binary. Since the visible units contains linear units with Gaussian noise, the 

updated rules for visible units becomes  

 

𝑝(𝑣𝑗|ℎ) = 𝒩(𝑣𝑗|𝜇𝑗, 𝜎𝑗
2) (5.24) 

 

where 𝜇𝑗 = ∑ 𝑤𝑖𝑗ℎ𝑖
𝑛
𝑖=1 + 𝑏𝑗 and 𝒩 is normal distribution.  

This concludes the unsupervised pre-training for a RBM. In a single DBN, three 

layers of RBM are stack onto each other. To achieve a supervised trained DBN, an 

output layer consisting of 52 nodes is stacked above the third layer. Once the initial set 

of parameters for the first layer has been determined by the pre-training, another layer 

of RBM is stacked and the activation probabilities of the first RBM are used as input 

data for the second RBM. Similarly, pre-training continues until the second set of initial 

parameters for the second layer is completed. Pre-training continues till the third layer 

of RBM. See Figure 5.4 for illustration of a DBN. Upon completion of pre-training for 

the three layers of RBM, the pre-determined initial weights in the three layers are 

subjected to supervise training using backpropagation with fine tuning with the output 

layer using commonly adopted softmax method. The pre-training on the stack RBM is 

an unsupervised model, which characterizes the input data distribution using hidden 

variables and there is no label information provided. 
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Figure 5.4: Illustrates a pre-train DBN with 3 layers of RBM 

 

Although the parameters of the 3-layer RBM has been obtained using layer-wise 

pre-training method. The parameters are not optimal for classification. Therefore, 

supervised fine-tuning is required to optimize the parameters to improve the 

performance of the network. To support the objective of classification, the fine-tuning 

is performed by adding a layer of variables that represent the desired labels provided in 

the training data. Back-propagation algorithm is implemented to fine tune the 

parameters using the approach of feed-forward method in neural network. See Figure 

5.5 for illustration of a supervised fine-tuning. 

The classification layer uses Softmax as the activation functions. As the training 

target for classes of users is value either 0 or 1, softmax function is adopted. The output 

layer as softmax function is a generalization of logistic function, whose output 

represents a categorical distribution. 
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𝑝(𝑦 = 𝑗|𝑥) =
𝑒
𝑥T𝑤𝑗

∑ 𝑒𝑥
T𝑤𝑘𝐾

𝑘=1

 (5.25) 

where 𝑝(𝑦 = 𝑗|𝑥) denotes the predicted probability for the 𝑗th class given a sample 

vector 𝑥 and a weighting vector 𝑤. 

 

 

Figure 5.5: DBN with classification layer for supervised training  

 

In the proposed method, 3 separate DBNs are adopted to form an ensemble-DBN. 

The continuous data of heartwave signal in particular to records acquired under physical 

duress contains multiple high frequency components and random spikes possibly 

contributed by contacts of the signal electrodes. To address signal noises and the 

morphological changes due to physical duress with the objective to ensure maximum 

reliability for feature extraction, 3 DBNs with different parameters are used to 

maximize features extraction. The ensemble-DBN consist of the following 

configurations: DBN-1 with 500-100-500-52, DBN-2 with 500-500-500-52 and DBN-

3 with 500-1000-500-52 where the last layer is the output layer for softmax based 
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classification. The configuration of the ensemble-DBN including the number of DBNs 

are determined by hyper-parameters optimization using parameters of the number of 

hidden nodes, number of hidden layers and number of DBN based on the results of 

False Acceptance Rate and False Rejection Rate The inputs to the three DBNs are 

identical and the outputs from the penultimate layers of the multiple-DBNs are 

subsequently input into Stage 3 for low dimensional embedding using multi-view 

spectral methodology. See Figure 5.6 for illustration. 

 

 

Figure 5.6: Penultimate layer of DBN as input to MSE 

 

5.2.3 Stage 3: Multi-View Spectral Embedding 

Outputs of the penultimate layers of the ensemble-DBN contain the extracted 

features under different DBN configurations. Conversely, the outputs also contain 

features that are irrelevant and contribute to the misclassification rate. Notably, in low 

training data, the error in misclassification increases exponentially. The use of multi-

view spectral embedding (MSE) is an effective approach to combine representations of 
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multi-DBN through the identification of the complementary property of each view and 

embed to form a singular view. See Figure 5.7 for illustration of the MSE methodology. 

 

 

Figure 5.7: Schematic of MSE methodology 

 

Prior to input to MSE, the data is sort according to individual users. Hence, the data 

are sorted into 52-user specific clusters comprising of 3 views each. Each of 52 clusters 

is individually input to MSE to determine the contribution factor of each view per user 

specific cluster 𝛼 = [𝛼1, … , 𝛼𝑚]  where m refers to the number of DBNs in the 

ensemble-DBN.  

Let X be the representation from each of the DBN input into the MSE module and 

is given by 𝑋 = {𝑋𝑚 ∈ ℝ𝑚𝑖×𝑛}𝑖=1
𝑚 where n is the number of objects or samples. 𝑋𝑚 

is the feature matrix from each DBN. For each of the feature matrix,   

 

𝑋𝑖 = [𝑥1,
𝑖 … . 𝑥𝑛

𝑖 ] ∈ ℝ𝑚𝑖×𝑛 (5.26) 

 

In each of the view, a patch is determined by considering an arbitrary point with its 

k-related samples using nearest neighbor. Hence, consider an arbitrary point  𝑥𝑗
𝑖 
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together with its k related points, the patch can be defined as 𝑋𝑗
𝑖 = [𝑥𝑗,

𝑖𝑥𝑗1,
𝑖 … . 𝑥𝑗𝑘

𝑖 ] ∈

ℝ𝑚𝑖×(𝑘+1) . For each of the determined patch, a mapping is performed and express 

as 𝑓𝑗
𝑖: 𝑋𝑗

𝑖 → 𝑌𝑗
𝑖  where 𝑌𝑗

𝑖 = [𝑦𝑗,
𝑖𝑦𝑗1,

𝑖 … . 𝑦𝑗𝑘
𝑖 ] ∈ ℝ𝑑×(𝑘+1) from each view, the part 

mapping is defined as  

argmin
𝑌𝑗
𝑖

∑ ‖𝑦𝑗
𝑖 − 𝑦𝑗𝑙

𝑖 ‖
2
(𝜔𝑗

𝑖)
𝑙

𝑘
𝑙=1   (5.27) 

 

where 𝜔𝑗
𝑖 is a dimensional column vector weighted limited by k. The vector weight is 

represented by (𝜔𝑗
𝑖)
𝑙
= 𝑒𝑥𝑝 (−‖𝑥𝑗

𝑖 − 𝑥𝑗𝑘
𝑖 ‖

2
𝛾⁄ ). The closeness or the compactness of 

the neighborhoods is defined by 𝛾 . Hence, the optimization of mapping can be 

expressed to 

 

argmin

𝑌𝑗
𝑖

𝑡𝑟

(

 
 

[
 
 
 
 (𝑦𝑗

𝑖−𝑦𝑗𝑙
𝑖 )

𝑇

…

(𝑦𝑗
𝑖−𝑦𝑗𝑘

𝑖 )
𝑇

]
 
 
 
 

× [𝑦𝑗
𝑖−𝑦𝑗𝑙

𝑖 , … ,𝑦𝑗
𝑖−𝑦𝑗𝑘

𝑖 ] 𝑑𝑖𝑎𝑔 (𝜔𝑗
𝑖
)

)

 
 

 

= argmin
𝑌𝑗
𝑖

𝑡𝑟 (𝑌𝑗
𝑖𝐿𝑗
𝑖(𝑌𝑗

𝑖)
𝑇
) (5.28) 

 

where 𝑡𝑟(∙) is the trace operator, 𝐿𝑗
𝑖 = [

∑ (𝜔𝑗
𝑖)
𝑙

𝑘
𝑖=1 −(𝜔𝑗

𝑖)
𝑇

−𝜔𝑗
𝑖 𝑑𝑖𝑎𝑔(𝜔𝑗

𝑖)
] ∈ ℝ(𝑘+1)×(𝑘+1) that 

embeds the complimentary property of a view into a low-dimensional embedding 𝑌𝑗
𝑖. 

As MSE module is managing multiple views, there is a need to assign a weight factor 

to each of the represented views. This is to ensure that only complimentary and 

homogenous property of multiple views contributes to the embedment. To extract the 

complimentary property, nonnegative weights 𝛼 = [𝛼1, … , 𝛼𝑚]  are incorporated to 

each of the optimized mapping of each view. The significance of the complement 

property of a view is directly proportional to the value of the non-negative weight factor 

𝛼𝑖 . Hence with the inclusion of weight to the represented 𝑚 -th learned views, the 
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summation of the 𝑗th part from the all views can be expressed as   

argmin
𝑌={𝑌𝑗

𝑖}
𝑖=1

𝑚
,𝛼

∑ 𝛼𝑖𝑡𝑟 (𝑌𝑗
𝑖𝐿𝑗
𝑖(𝑌𝑗

𝑖)
𝑇
)𝑚

𝑖=1  (5.29) 

 

To ensure all patches are reference to a specific global origin,  𝑌𝑗
𝑖 is mapped using the 

coordinates of  𝑌𝑗
𝑖 = [𝑦𝑗,

𝑖𝑦𝑗1,
𝑖 … . 𝑦𝑗𝑘

𝑖 ]  which is referred globally to 𝑌 =

[𝑦1, 𝑦2, 𝑦3, … , 𝑦𝑛] .  𝑌𝑗
𝑖 = 𝑌𝑆𝑗

𝑖 , where  𝑆𝑗
𝑖 ∈ ℝ𝑛×(𝑘+1)  is the selection matrix to 

translate the relationship of parts from its original space into a patch. Therefore, (5.29) 

can be rewritten as 

 

argmin
𝑌𝑗,𝛼

∑ 𝛼𝑖𝑡𝑟 (𝑌𝑆𝑗
𝑖𝐿𝑗
𝑖(𝑆𝑗

𝑖)
𝑇
(𝑌)𝑇)𝑚

𝑖=1  (5.30) 

 

By summing all the optimizations of the part, the globally aligned parts should be 

expressed as  

 

{
argmin

𝑌,𝛼
∑ 𝛼𝑖

𝜀𝑡𝑟(𝑌𝐿𝑖𝑌𝑇)𝑚
𝑖=1                            

𝑠. 𝑡. 𝑌𝑌𝑇 = 𝐼, ∑ 𝛼𝑖
𝜀𝑚

𝑖=1 = 1, 𝛼𝑖 ≥ 0
 (5.31) 

 

where 𝐿𝑖 ∈ ℝ𝑛×𝑛 is the alignment matrix for the 𝑚th learned representations, and it 

is expressed as 𝐿𝑖 = ∑ 𝑆𝑗
𝑖𝐿𝑗
𝑖(𝑆𝑗

𝑖)
𝑇𝑛

𝑗=1 . For the Y, it can be determined by constraining 

YY to 𝑌𝑌 = 𝐼. 𝜀 controls the relationships between views where 𝜀 ≥ 1. Normalizing 

𝐿𝑖, the Laplacian Graph 𝐿𝑠𝑦𝑠 is symmetric and is expressed as follows:  

 

𝐿𝑠𝑦𝑠 = 𝐷
𝑖−

1

2𝐿𝑖𝐷𝑖
−
1

2 = 𝐼 − 𝐷𝑖
−
1

2𝑄𝑖𝐷𝑖
−
1

2  (5.32) 
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where 𝑄𝑖 ∈ ℝ𝑛×𝑛  and [𝑄𝑖]
𝑙𝑗
= 𝑒𝑥𝑝 (−‖𝑥𝑛

𝑖 − 𝑥𝑗
𝑖‖
2
𝛾⁄ )  wherer 𝑥𝑛

𝑖   is part of the 

group in 𝑘-nearest neighbors of 𝑥𝑗
𝑖 and [𝑄𝑖]

𝑙𝑗
= 0 if it is not. 𝐷𝑖 is diagonal matrix 

of degree  [𝐷𝑖]
𝑗𝑗
= ∑ [𝑄𝑖]

𝑙𝑗𝑙 . To solve (5.30), the solution can be obtained by using 

Expectation Maximization (EM). The process is iterative through the optimizations of 

𝑅 and 𝛼.  

 

Maximization: M-Step: Update 𝜶 

𝜆, Lagrange multiplier is incorporated and constrain ∑ 𝛼𝑖
𝜀𝑚

𝑖=1  to unity which can be 

expressed as shown: 

 

𝐿(𝛼, 𝜆) = ∑ 𝛼𝑖
𝜀𝑡𝑟(𝑌𝐿𝑠𝑦𝑠𝑌

𝑇)𝑚
𝑖=1 − 𝜆(∑ 𝛼𝑖 − 1

𝑚
𝑖=1 )  (5.33) 

 

Imposing derivative on 𝐿(𝛼, 𝜆)  with respect to 𝛼𝑖  and 𝜆  to zero, 𝛼𝑖  can be 

determined via (5.34) by proposing a fixed Y.  

 

𝛼𝑖 =
(1 𝑡𝑟(𝑌𝐿𝑠𝑦𝑠𝑌

𝑇)⁄ )
1 (𝜀−1)⁄

∑ (1 𝑡𝑟(𝑌𝐿𝑠𝑦𝑠𝑌𝑇)⁄ )
1 (𝜀−1)⁄𝑚

𝑖=1

 (5.34) 

 

Expectation: E-Step: Update 𝒀. 

To solve expression (5.31) optimization constraints, which are   

 

𝑚𝑖𝑛
𝑌
(𝑌𝐿𝑌𝑇)      𝑠. 𝑡. 𝑌𝑌𝑇 = 𝐼 (5.35) 

 

where 𝐿 = ∑ 𝛼𝑖
𝜀𝑚

𝑖=1 𝐿𝑠𝑦𝑠 . Using the theorem of KyFan, the optimized solution for 

expression (5.31) can be resolved by imposing a fixed 𝛼. The optimization of Y shall 
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be represented by eigenvectors extracted from smallest eigenvalues equivalent the final 

embedded dimension from matrix L.  

With the optimized 𝛼𝑖  obtained, it is multiply to the penultimate layers of the 

respective views and summed. This ensures that for each user, only significant 

complementary property is amplified. This process is applies to all users. 

 

5.2.4 Stage 4: Ensemble-DBN with Stacked-DBN 

At this stage, a second DBN is stacked above the MSE module for extraction of 

higher order features. The input to the stacked DBN can be represented as follow  

 

Ψ𝑚 = 𝑓𝑀𝑆𝐸(𝐷(ℴ𝑖) + ⋯+ D(ℴ𝑚)) (5.36) 

 

where i refers to the number of DBN in the ensemble-DBN and ℴ𝑖  refers to the 

multiplied factor 𝛼𝑖  to the penultimate layer of respective learned representation. The 

lower features from the ensemble-DBN are inputs to the stacked DBN which serve to 

identity higher order features. More importantly, views with higher significant 

contribution are given higher weightage relative the associated views. With the 

contribution of weightage from MSE, the view with significant domain features will 

provide greater learning probability by the DBN. This is in contrast to linear 

combination where the inputs from the three views are averaged which leads to 

significant domain features being suppressed and lesser significant domain features 

being elevated. The DBN used in this stack is configured with the following 

configuration of 500-500-500-52 where the last layer is the classification layer. 
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5.2.5 Stage 5: Classification with Extreme Learning Machine 

From the penultimate layer of the stacked DBN, Extreme Learning Machine (ELM) 

is used as a classifier. See Figure 5.8 for illustration. The classification approach is not 

limited to ELM, approach like Softmax is applicable. The advantage of ELM over 

Softmax is the significantly lower computation speed required to train and test the 

samples. Another difference between ELM and Softmax lies on the training process. 

Softmax is an iterative process to fine tune the weights in the classification layer. ELM 

however is an analytical process that relies on universal approximation. ELM is 

essentially a single hidden-layer feedforward neural network (SLFN). ELM 

accomplishes through the assignment of random weights and biases to the hidden nodes 

and subsequently uses matrix computations to determine the output weights.  

Given N as inputs to ELM where {𝑥𝑖,𝑡𝑖}𝑖=1
𝑁 . ELM model with K hidden nodes can 

be written as (5.37) and as shown in Figure 5.9 

 

𝑡𝑖 =∑𝑔(𝑥𝑖 ∙ 𝑢𝑖 + 𝑣𝜅)

𝛫

𝜅=1

𝛽𝜅 ,    𝑖 = 1,… ,𝑁 

= ∑ 𝑔(𝑥𝑖, 𝑢𝜅 , 𝑣𝜅)
𝛫
𝜅=1 𝛽𝜅   (5.37) 

 

where 𝑡𝑖 is the output, 𝑥𝑖 denote the input vector, 𝑢𝜅 and 𝑣𝜅 are the parameters of 

the activation function of the 𝜅th hidden node, 𝑔(𝑥𝜙, 𝑢𝜅 , 𝑣𝜅) is the output of the 𝜅th 

hidden node with respect to the 𝜅th input. 𝛽𝜅 is the output weight of the 𝜅th hidden 

node. The expression of (5.37) can be written as 

 

𝑻 = 𝒈𝜷 (5.38) 

 

where 𝑻 = [𝑡1, … , 𝑡𝑖]
𝑇, 𝜷 = [𝛽1, … , 𝛽𝛫]

𝑻, and the hidden output matrix 
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𝒈 = [
𝑔(𝑥1, 𝑢1, 𝑣1) ⋯ 𝑔(𝑥1, 𝑢𝛫 , 𝑣𝛫)

⋮ ⋱ ⋮
𝑔(𝑥𝑁 , 𝑢1, 𝑣1) ⋯ 𝑔(𝑥𝑁 , 𝑢𝛫 , 𝑣𝛫)

]

𝑁×𝛫

 (5.39) 

 

An ELM learns the parameters in two stages: 1) random feature mapping and 2) 

linear parameter solving. In the first stage, the input data is projected into a feature 

space with randomly initialized parameters using the activation function𝑠(∙). It has been 

proven that the randomly initialized parameters are able to approximate any continual 

function [123, 124]. During the training of ELM, only two parameters are to be 

established. They are the number of hidden neurons and type of activation function. By 

default, typically the sigmoid function is selected as the activation function. Therefore, 

the only parameter that needs to be determined is the output weight 𝜷, which can be 

estimated by 

 

Figure 5.8: Adoption of ELM after supervised training 
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𝜷̂ = 𝒈†𝑻 (5.40) 

 

where 𝒈†  is the Moore-Penrose generalized inverse. The use of ELM offers the 

following benefits that have been well documented by [122, 125, 126]. Advantages 

include local minimal overtraining and significantly lower computing resources. Due 

to single matrix operation, it leads to extremely efficient computation.  

 

 
Figure 5.9: Schematics of ELM operation 

 

5.3 Experimentation and Results 

In the validation of classification performance on the novel architecture, heartwave 

from 52 individuals are used. Of the 52 individuals, 5 individuals have heartwaves 

which are non-healthy. There are 27 individual whose signals have been subjected to 

extreme physical duress causing maximum morphological variation.  
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5.3.1 Classification with Anomaly Heartwave 

Heartwave based biometric methodologies have been actively tested on individual 

with normal heartwave signals. Conversely, there are also work in classifying unhealthy 

heartwave signals into different categories [127, 128]. However, there has been no 

investigation on the possibility of using individual anomaly heartwave as an 

authentication mode. For some individuals, the anomaly heartwave signature occurs in 

every heartwave such as the extended T-Peak. See Figure 5.10 for illustration. For 

others, the anomaly can be due to the abnormal R-R interval where the period between 

R peaks are not consistent. See Figure 5.11 for illustration. Of the 52 individuals, there 

are 5 individuals with anomaly heartwave signals.  

The proposed architecture robustness is tested with a mixture of healthy and 

unhealthy heartwave signals. Importantly, this robustness test determines the possibility 

of individual with anomaly signal having uniqueness characteristic to support 

authentication. Similar to the normal healthy signal, anomaly heartwave is tested using 

30% of training data with unique 70% data as testing.  

In the testing, the proposed architecture is tested on two separate dataset in which one 

of the dataset contains normal heartwave and the second dataset contains anomaly 

heartwave signal. Lastly, a third dataset containing all heartwave signal is generated. 

The performance results are tabulated in Figure 5.12. 

From the test performance as shown in Figure 5.12, misclassification rate of 0.8% is 

achieved on dataset contained healthy heartwave signal. A misclassification rate of  

1.8% is achieved on dataset that contains anomaly heartwave signal. The dropped in 

performance is likely due to the limited data available for training. In combining all 

heartwave signal into a single dataset, the overall performance is a misclassification 

rate of 1.1%. In contrast to a statistical method of using Gaussian Mixture Model with 

Hidden Markov Model (GMM-HMM), the misclassification rate achieved is at 25% 

under similar proportional of training and testing data. Prior to the proposed architecture, 

the author proposed a statistical based architecture that uses the characteristic strength 
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of GMM and HMM for classification. For each individual, the dataset belong to a single 

individual is clustered using GMM. This clustering of individual dataset using GMM 

allows a user representative model to be developed. The GMM is subsequently used by 

HMM to develop into a user specific HMM model to support classification. 

 

Figure 5.10: Anomaly signal with inverted T-Wave that occurs in every heartwave 
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Figure 5.11: Anomaly signal with extended T-Peak and inconsistent R-R interval 

  

Figure 5.12: Proposed architecture performance on normal and anomaly heartwave signal 
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5.3.2 Comparison of Single DBN vs Ensemble-DBN 

The proposed architecture uses 3 signal DBNs and combined the outputs from each 

DBN before transferring to the upper module of the proposed architecture consisting of 

single DBN.  

There are reported works that use Deep Learning in biometric authentication and 

only single DBN is adopted. Primarily, the dataset used in their works are homogenous 

and most importantly, heartwave signal is acquired under non-physical duress.  

In the process of DBN configuration, the hyper parameters consisting of hidden 

nodes and layers are used to determine the optimized DBN configurations. Considering 

the dataset that consists of heartwave signals acquired under physical duress, the Signal-

to-Noise-Ratio (SNR) of heartwave signals between individual varies. This is primarily 

due to the placement of the electrodes and motion artifact. Figure 5.13 illustrates a low 

SNR of a noisy heartwave signal. Further investigations reveal that for heartwave signal 

with high SNR, the DBN configuration with lower number of hidden nodes performs 

well in classification, in excess of 98% accuracy. Conversely, for heartwave signal with 

low SNR, DBN with higher number of hidden nodes performs better in classification. 

To further complicates the process the classification process, the SNR of most 

individual heartwave signal varies at different heartrates. During the heartwave signal 

acquisition process, for most individual, at the early stage of the treadmill testing where 

the heartrate is near resting heartrate, the signal has high SNR. With increasing intensity 

of the treadmill, the SNR deteriorates at increasing heartrates. This concludes that 

having multiple DBNs is necessary to manage the varying SNR of individual heartwave 

signal.  
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Figure 5.13: Extreme noisy signal with low SNR 

 

In this investigation, the performance of the proposed configuration for each of the 

three DBNs is compared. The results are shown in Figure 5.14. For single DBN with 

configuration of 500x500x500, the classification accuracy is in excess of 91% as 

compared to DBNs with higher number of hidden nodes. This is primarily because of 

the large number of heartwaves having higher SNR at lower heartrate. Leveraging on 

the strength of each of the single DBN, the three outputs are combined through the 

adoption of MSE. The MSE works to determine views with higher significant strength 

which output a weight for each of the views. The greater the significance of the view, 

the higher the weight. This results in the ability of the proposed architecture to achieve 

a classification accuracy of 98.3%.  



Chapter 6  

5-132 

 

 

Figure 5.14: Classification performance of various standalone DBN against proposed architecture 

 

5.3.3 Classification Performance on Proportion of Training 

Data with Proposed Architecture 

In some of the reported works, the proportion of training data against testing data 

is benchmarked from 70% to 90% [92, 128]. While having the 70% of the data may 

seems appropriate, it is necessary to explore the strength of Deep Learning with the aim 

to reduce the training data required. Importantly, it is of the opined that the apportioning 

of 70% of data for training is still excessive.  

The investigation starts with the varying percentage of training data. In addition, 

the investigation also examines the performance of the three single DBNs against the 

proposed architecture. The results of the classification are summarized in Figure 5.15. 

From Figure 5.15, it is evident that the conventional apportioning of 70% of data for 

training is reasonable. At 70% of data for training, the classification performance easily 

achieved an accuracy rate in excess of 95%. With decreasing training data, the 

performance deteriorates rapidly.  

It is noted that for the proposed architecture, the classification performance remains 

consistent at about 98.3% even at 30% training data. This is in stark contrast to the 
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performance of individual DBNs. As discussed in Section 5.3.2, where due to variable 

heartrate, leads to variable signal-to-noise ratio. Each of the DBN has limited capability 

to capture all the morphological variations of heartwave signal. For heartwave signal 

with high SNR, the DBN configuration with lower number of hidden nodes performs 

differently in contrast to heartwave signal with low SNR. Importantly, this reinforces 

the strength in importance of incorporating MSE into the architecture. As explained in 

earlier section, MSE determines the significant view contribution and output the 

appropriate weight for respective view. This adoption of MSE has contributed 

significantly to the classification performance under low training data. 

 

 

Figure 5.15: Classification performance under different proportion of training data 

 

5.3.4 Comparison of proposed architecture with statistical 

methodology 

The performance of the proposed architecture is evaluated and compared against 

other statistical methodologies. The work in [129] uses a combination of fiducial, non-

fiducial data of heartwave signal and inertial sensor parameter and achieved a True 
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Positive Rate of approximately 80% with False Negative Rate of 12%. A commonly 

adopted methodology is the generative modelling such as Gaussian Mixture Modelling 

and Hidden Markov Modelling which are used to support data clustering and 

classification. Hence, the proposed architecture is compared against generative 

modelling of Gaussian Mixture Model with Hidden Markv Model. The GMM-HMM 

method achieved a True Positive Rate of approximately 90% with False Negative Rate 

of 10%. In comparison of proposed architecture, the True Positive Rate achieved is 98% 

with False Negative Rate of under 2%. See Figure 5.16 for comparison. Deep learning 

methodology offers a highly reliable approach to classification.  

 

Figure 5.16: Comparison of classification performance between proposed architecture and statistical 

methods 

5.3.5 Performance of Proposed Architecture with 

Architecture 2 

The proposed architecture uses a coefficient factor from MSE to amplify view with 

significant contribution. This proposed architecture has resulted a classification 

performance of 98.3%. The expression (5.36) can be expressed into the following form 

where 𝑣𝑖 represents the penultimate layer of DBN i and 𝛼𝑖 refers to the multiplier 

factor for view i from MSE. 
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Ψ𝑢𝑠𝑒𝑟 = 𝑓𝑀𝑆𝐸(𝑣𝑖𝛼𝑖 +⋯+ 𝑣𝑚𝛼𝑚)  (5.41) 

 

An alternative architecture (termed as Architecture 2) has been investigated. In 

Architecture 2, in contrast to the proposed architecture, all the outputs of the 

penultimate layers are arithmetically sum and average. The output of the MSE, Y, which 

contains the embedded low-dimensional complementary property from all the views is 

concatenate with the averaged penultimate layers. The input to the stacked DBN can be 

expressed as shown in (5.42). The eventual dataset, Ψ𝑢𝑠𝑒𝑟 from Architecture 2 is of 

higher dimension than proposed architecture due to the concatenation. See Figure 5.17 

for schematic of proposed Architecture 2. 

 

Ψ𝑢𝑠𝑒𝑟 = 𝑓𝑀𝑆𝐸 (𝐶𝑜𝑛𝑐𝑎𝑡 (
𝑣𝑖+⋯+𝑣𝑚

𝑚
, 𝑌))  (5.42) 

 

Figure 5.18 shows the performance similarity between the proposed architecture 

and the alternative architecture. The performance between the proposed and alternative 

are similar at approximately around 98.2%. Interesting, the architecture 2 is able to 

perform similarly with reduce training sample size.  
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Figure 5.17: Illustration of the proposed architecture 2 

The performance of architecture 2 reaffirms the strength of MSE. The difference 

between expression (5.41) and (5.42) is the used of MSE output. Proposed architecture 

uses multiplier factor 𝛼, to amplify views with significant contribution. Architecture 2 

uses Y, which is the embedded low dimensional data structure complimentary of the 

three single DBNs. Although the multiplier factor is not utilized, the embedded low 

dimension structure Y has already been encoded with view containing significant 

property. Thus the embedded low dimensional structure plays a key role in the higher 

module classification. 

The results from the Architecture 2 is tabulated into a Confusion Table as shown in 

Table 5.1 and evaluated against GMM-HMM methodology in particular to Table 4.3. 

To ensure a consistent comparison, the Architecture 2 is trained with 30% Training Data 

and tested on 70% unique Testing Data.  

In Table 4.3, User 312 has an Error of Commission at 16.68% and User 313 with 

an Error of Omission at 7.18%. Using Architecture 2, User 312 Error of Commission 

improved by more than a factor at 0.73% and User 313 has an Error of Omission at 

1.32%.  
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Figure 5.18: Comparison of classification performance between proposed architecture and architecture 

2 (alternative) 

 

The vast improvement exhibited the strength of neural network based methodology. 

The implementation of Architecture 2 is almost similar to this thesis proposed 

architecture except that the outputs of the penultimate layers are arithmetically summed 

and averaged. The output of the MSE, Y, which contains the embedded low-

dimensional complementary property from all the views is concatenate with the 

averaged penultimate layers before feeding to stacked DBN as expressed in (5.42).  

Importantly, in GMM-HMM methodology, only temporal data are used to 

determine the discriminating feature of individual. In Architecture 2, the heartwave is 

individual extracted and the full heartwave profile containing amplitude and temporal 

details are used for training and discriminating. Equally important, the use of 

MultiView Spectra Embedding (MSE) to combine the multiple outputs from ensemble-

DBN into a single structure has enabled significant discriminating features from 

multiple views to play a significant role in discriminating. 
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Table 5.1: Confusion Table for Architecture 2 with 52 users.  
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5.4 Summary 

The proposed architecture in the heartwave based biometric authentication 

exceeded statistical methodology. Importantly, classification on individual heartwave 

with intense varying heartrates which causes signification morphologically variations 

has been tested by the proposed architecture. The proposed architecture has shown the 

ability to identify individuals comprising of normal and abnormal heartwave signals 

with high level of reliability. Architecturally, the ensemble-DBN is necessary to enable 

feature extractions under different morphological variations. The incorporation of MSE 

has enabled views with significant features with greater biasness in aggregated inputs 

to stacked DBN module. 
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CHAPTER  6  

 

CONCLUSION OF THESIS 

 

The work in this thesis have concluded the objectives of the research on the 

development and investigation of new methodologies to enable a better and reliable 

performance of a heartwave based biometric classification. More importantly, the 

proposed solutions and architectures are robust and resilient to heartwave 

morphological variation and heartrate variation.  

 

Chapter 2 provided an overview of the current states-of-the-art in the domains of 

heartwave segmentation and extraction, and identifying discriminating features for 

classification. The various algorithms and methodologies are suited for different type of 

signals in different situations based on their limitations and constraints. In particular to the 

heartwave segmentation and extraction of features, none of the reported work have been 

attempt on heartwave signal under elevated heartrate. With regards to the classification, the 

review of the reported work provided an in-depth understanding of the limitations in 

performing heartwave based biometric in particular to heartwave signal under extreme 

morphological variation. This fact is the motivation of this thesis, which commits to 

develop new algorithms and methodologies to address extraction and classification issues 

caused by elevated heartrate.  

 

In Chapter 3, a methodology consisting of Discrete Waveform Transformation 

integrated with heartrate dependent parameters: PR-Interval and QT-Interval has been 
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proposed and tested to perform 11 heartwave features identification and extraction. In 

total, more than 63,000 heartwaves have been extracted from 27 individuals. The 

dataset of the 27 individuals contains heartwave signal acquired during extreme 

exercise duress. Specifically, it achieved 100% detection accuracy for R-Peak and an 

average of 98% for the other 10 heartwave features. The use of heartrate dependent 

windows for PR Interval and QT Interval to support detection of wave components 

before and after R-Peak has achieved superior performance as compared to fixed 

window length. In addition, the same algorithm has been able to extract heartwave 

features from anomaly heartwave signal. From the database of 27 users, there are 5 

individuals with anomaly heartwave signals which include signals with extended T-

Peak, inverted T-Wave and irregular R-R interval. The ability to extract characteristic 

features with high accuracy and high sensitivity concluded the ability of the proposed 

solution to extract heartwave features reliably and accurately under highly variated 

heartrate.  

 

In chapter 4, a novel architecture consisting of statistical based methodology of 

Gaussian Mixture Model integrated with Hidden Markov Model (GMM-HMM) aided 

with discriminating criteria of user specific thresholding score and heartrate range has 

been tested. The presentation of heartwave morphological variations due to heartrate 

has prompted a generative modelling methodology to model the joint distribution of 

data on individual dataset. The GMM generated model is unique to individual and the 

integration of Hidden Markov Model is implemented to perform discrimination of 

individual. Through this development, it is observed the individual matching score via 

loglikelihood is a linear behavior against individual heartrate. In addition, every 

individual has its own unique heartrate range. These understanding lead to the 

affirmation that individual discriminating features are not static and it vary according 

to its respective heartrate at the instance. To cater for the variation, the two imposing 

criteria, individual heartrate range and individual unique thresholding behavior are 

implemented. The proposed architecture achieved an accuracy of 89% from 27 
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individuals. More importantly, all the heartwave signals contain heartwave with 

extreme heartwave morphological variations. Comparing the novel proposed 

architecture against commonly adopted methodology of Linear Discriminant Analysis 

(LDA) with the same dataset, LDA achieved an accuracy of 78% with a False Positive 

Rate of 25%. The proposed architecture doubled the performance and achieved a False 

Positive Rate of 11%. This development and investigation conclude the need for 

proposed methodology to account for varying discriminating features. Unless an 

individual has no varying heartrate, methodology with fixed and static discriminating 

feature will more likely result in poor classification accuracy. The proposed 

methodology has achieved its intending objective to develop a classification model and 

methodology to perform biometric classification which is resilient to individual 

dynamic and varying heartrate.  

 

In Chapter 5, a novel architecture categorized under neural network, has been 

developed and investigated. The architecture consists of an ensemble of Deep Belief 

Networks (DBN) connected to a module of MultiView Spectral Embedding (MSE) to 

combine the multiple output from ensemble-DBN into a single structure that contains 

significant discriminating features from multiple views. The single view structure is 

further input to a stacked DBN to perform classification and output via an effective and 

resource efficient method of Extreme Learning Machine. The performance of the 

proposed architecture is impressive. The proposed neural network of Deep Ensemble 

Architecture, is tested on 52 individuals consisting of 22 individuals with extreme 

heartwave morphological variations, 25 individuals whose heartwave are acquired 

under resting condition and 5 individuals under extreme heartwave morphological 

variation with anomaly heartwave signals. The proposed architecture has an accuracy 

of 98.9% . Equally important, the proposed architecture is capable of achieving 98.3% 

accuracy with a limited portion of the training data at 30%. This result is a vast 

improvement against most reported work where the 60% to 80% of the available data 

has been apportioned for training. This investigation leads to the understanding that the 
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increase in nodes in DBN is not necessary an advantage for highly variated signal for 

low signal-to-noise-ratio (SNR). DBN with lower number of nodes will results in 

under-fit for highly variated signals with low SNR. Conversely, DBN with high 

dimensional units suffers from over-fit for highly variated signals with low SNR. MSE 

plays a key role in identifying complementary property on views with higher order of 

significant. The development of the proposed neural network architecture has achieved 

its intended objective to develop a classification model and methodology to perform 

biometric classification which is resilient to individual dynamic and varying heartrate 

at lower proportion of training data.   

 

6.1 Future Works 

Two novel architectures, statistical and neural network methodologies, have been 

proposed to address heartwave based biometric constraints dues to varying heartrate 

and the results demonstrated promising performance. Heartwave based biometric has 

vast potentials to support the current and future digital age services such as IoT, cloud 

services and big data service. Before the solution is ready for adoption, there are works 

which require further exploration.  

 

6.1.1 Improvement to Deep Neural Network based 

Architecture 

Although the performance for deep ensemble-DBN architecture has been stellar, 

there exist an opportunity for further improvement of the architecture. In the current 

setup, there is a need for data preparation prior to the initialization of ensemble-DBN. 

The data structure requires the heartwave to be individual extracted and compiled into 

stacked of single column of single heartwave via Chapter 3 proposed Heartrate 

dependent Discrete Wavelet Transformation solution. With DBN discrimination feature 
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extraction capability and to eliminate the single heartwave segmentation process, it is 

recommended to explore the possibility of incorporating another layer of DBN 

primarily to identify the segment of a single whole heartwave from a sequence of input 

source that contains a series of heartwave signals.  

 

6.1.2 Lack of Heartwave Data under Extreme Physical Duress 

The current work and testing of the methodologies is limited by lack of data whose 

heartwave signals have been subjected to treadmill testing. The current data are 

extracted from Physionet –ST Change and it contains only 27 users. More datasets are 

required to stretch and stress the proposed architectures of heartwave segmentation 

under variable heartrates and heartwave based classification.  

 

6.1.3 Multi-Modality Biometric Solution 

With the emergence of wearable devices that is capable to extend the measurement 

to SPO2, perspiration, blood pressure, heartrate and motion sensor, it is possible to 

incorporate these measurements as part of the discriminating features for either 

classification or monitoring of individual wellness. The proposed deep neural network 

architecture has the potential to expand the ensemble-DBN to cater to additional 

dimensions of measurement parameters. The module of MSE has proven to be useful 

to identify significant feature of interest and combining the complementary properties 

from Multiview into a single structure view.  
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