
School of Computing Science

Workload-sensitive Approaches to
Improving Graph Data Partitioning

Online.

Hugo Firth

Submitted for the degree of Doctor of
Philosophy in the School of Computing

Science, Newcastle University

July 2018

c© 2018, Hugo Firth

- B -

Abstract

Many modern applications, from social networks to network security tools, rely upon

the graph data model, using it as part of an offline analytics pipeline or, increasingly,

for storing and querying data online, e.g. in a graph database management system

(GDBMS). Unfortunately, effective horizontal scaling of this graph data reduces to

the NP-Hard problem of “k-way balanced graph partitioning”.

Owing to the problem’s importance, several practical approaches exist, producing qual-

ity graph partitionings. However, these existing systems are unsuitable for partitioning

online graphs, either introducing unnecessary network latency during query process-

ing, being unable to efficiently adapt to changing data and query workloads, or both.

In this thesis we propose partitioning techniques which are efficient and sensitive to

given query workloads, suitable for application to online graphs and query

workloads.

To incrementally adapt partitionings in response to workload change, we propose

TAPER: a graph repartitioner. TAPER uses novel datastructures to compute the

probability of expensive inter -partition traversals (ipt) from each vertex, given the

current workload of path queries. Subsequently, it iteratively adjusts an initial parti-

tioning by swapping selected vertices amongst partitions, heuristically maintaining low

ipt and high partition quality with respect to that workload. Iterations are inexpensive

thanks to time and space optimisations in the underlying datastructures.

To incrementally create partitionings in response to graph growth, we propose Loom:

a streaming graph partitioner. Loom uses another novel datastructure to detect com-

mon patterns of edge traversals when executing a given workload of pattern matching

queries. Subsequently, it employs a probabilistic graph isomorphism method to in-

crementally and efficiently compare sub-graphs in the stream of graph updates, to

these common patterns. Matches are assigned within individual partitions if possible,

thereby also reducing ipt and increasing partitioning quality w.r.t the given workload.

- i -

Both partitioner and repartitioner are extensively evaluated with real/synthetic graph

datasets and query workloads. The headline results include that TAPER can reduce

ipt by upto 80% over a naive existing partitioning and can maintain this reduction in

the event of workload change, through additional iterations. Meanwhile, Loom reduces

ipt by upto 40% over a state of the art streaming graph partitioner.

- ii -

Declaration

I declare that this thesis is my own work unless otherwise stated. No part of this thesis

has previously been submitted for a degree or any other qualification at Newcastle

University or any other institution.

Hugo Firth

January 2018

- iii -

Publications

Significant portions of the work presented within this thesis have been documented in

the following publications:

JOURNAL

1. H. Firth and P. Missier, TAPER: query-aware, partition-enhancement for large,

heterogenous graphs, Distributed and Parallel Databases, 35(2) Special Issue:

Distributed Graph Processing and Management, 85-115, June 2017

CONFERENCE

1. H. Firth and P. Missier, Loom: Query-aware Partitioning of Online Graphs,

Proceedings of 21st International Conference on Extending Database Technology

(EDBT), March 2018

2. H. Firth and P. Missier, ProvGen: Generating Synthetic PROV Graphs with

Predictable Structure, Proceedings of 5th International Provenance and Annota-

tion Workshop (IPAW), June 2014

WORKSHOP

1. H. Firth and P. Missier, Workload-aware streaming graph partitioning, Proceed-

ings of the Joint EDBT/ICDT Workshops (GraphQ), March 2016

- iv -

Acknowledgements

I’d like to start by thanking my PhD supervisor, Dr. Paolo Missier, for all his patience,

advice and support throughout my studies. I apologise for my tendency to over-

engineer: both sentences and programs.

More generally, I’d like to thank some of the people I have worked alongside: Jack

Aiston, for his help understanding the arcane mysteries of combinatorics; Naomi Han-

naford, both for being really supportive and for suffering through my loudness; finally,

Thomas Cooper and Lauren Roberts, who kept things interesting with the occasional

much needed distraction.

Thank you to my family, whose support and belief, though occasionally daunting,

means the world to me. Huge thank yous to Rob Thompson and Wojciech Mu-

sialkiewicz, who are the best team. Finally, and most importantly, love and thanks to

my partner Lisa, whose contributions towards who I am are elided for space.

- v -

Contents

1 Introduction 1

1.1 Graph Partitioning . 4

1.2 Motivating problem . 6

1.2.1 Workload-agnostic partitioners 7

1.3 Research Aim and Contributions . 9

2 Preliminaries 12

2.1 Graph datastructures . 13

2.1.1 Graph stream orderings . 14

2.2 Graph operations . 15

2.3 Graph partitions . 18

2.4 Partitioning Quality and Objective Functions 19

2.5 Partitioning Hardness . 20

3 Related work 22

3.1 Local graph re-partitioners . 23

3.2 Global graph partitioners . 26

3.2.1 Spectral techniques . 27

3.2.2 Diffusions techniques . 28

3.2.3 Multilevel application . 29

3.3 Distributed graph partitioners . 32

3.4 Streaming graph partitioning . 34

3.4.1 Re-streaming . 36

3.5 Workload sensitive partitioning . 38

3.5.1 Offline workloads . 39

3.5.2 Online workloads . 40

3.5.3 Replication systems . 42

3.6 Comparing partitioner systems . 44

3.6.1 System properties . 45

3.6.2 Suitability of existing systems to online workload-sensitive par-
titioning. 46

- vi -

4 Query-aware partition-enhancement with TAPER 50

4.1 Introduction . 51

4.1.1 The TAPER re-partitioner . 53

4.1.2 Contributions . 55

4.1.3 Related Work . 55

4.2 Definitions . 56

4.2.1 Stability of a graph partitioning 57

4.2.2 Workload-sensitive stability . 58

4.2.3 The Visitor Matrix: Non-random walks with memory 59

4.3 Enhancing a Partitioning . 61

4.3.1 Increasing stability by Vertex swapping 61

4.3.2 Introversion and Extroversion 62

4.4 Prefix Trie encoding of query expressions 64

4.4.1 Associating probabilities to trie nodes 66

4.4.2 Computing VM cells with the TPSTry 68

4.5 Implementation . 70

4.5.1 Architecture . 70

4.5.2 Reducing the cost of the Visitor matrix 71

4.5.2.1 Space complexity . 71

4.5.2.2 Time complexity . 73

4.5.3 TPSTry Implementation . 73

4.5.4 Calculating a partial extroversion order 74

4.5.5 Vertex Swapping . 75

4.6 Evaluation . 77

4.6.1 Experimental setup . 78

4.6.1.1 Test datasets . 78

4.6.1.2 Test query workloads 79

4.6.2 Results . 81

4.6.2.1 Improvement over an initial hash partitioning 81

4.6.2.2 Improving over other initial partitionings 82

4.6.2.3 The effect of differing numbers of partitions 83

4.6.2.4 Optimising for frequent queries 84

4.6.2.5 The effect of changes in query workloads 85

4.7 Conclusion . 87

- vii -

5 Loom: Query-aware Partitioning of Online Graphs 91

5.1 Introduction . 92

5.1.1 The Loom partitioner . 94

5.1.2 Contributions . 96

5.2 Identifying Motifs . 97

5.2.1 Sub-graph signatures . 98

5.2.2 Constructing the TPSTry++ 101

5.2.3 Avoiding signature collisions . 102

5.3 Matching Motifs . 105

5.3.1 Building a graph index . 110

5.4 Allocating Motifs . 111

5.5 Evaluation . 115

5.5.1 Experimental setup . 115

5.5.1.1 Graph datasets . 116

5.5.1.2 Query workloads . 117

5.5.2 Comparison of systems . 118

5.5.3 Effect of stream order and window size 122

5.6 Conclusion . 124

6 Discussion 127

6.1 Thesis Summary . 128

6.2 Summary of contributions . 130

6.2.1 Properties desirable for online graph partitioning techniques . . 130

6.2.2 Capturing online query workload information 131

6.2.3 Workload-sensitive re-partitioning of existing graphs for online
workloads . 132

6.2.4 Workload-sensitive partitionings of online, growing graphs . . . 132

6.3 Future research directions . 134

6.3.1 Integrating TAPER and Loom 134

6.3.2 Distributing Loom across multiple hosts 135

6.3.3 Restreaming with Loom . 136

6.3.4 A timeseries approach to triggering TAPER repartitionings . . . 136

6.3.5 Considering other forms of graph data 137

Bibliography 139

- viii -

List of Figures

1.1 Example graph representations of various data models. 2

1.2 A 4-way graph partitioning distributed across a cluster of machines . . 5

1.3 Sub-optimal partitioning w.r.t a workload Q 7

2.1 Example graph G with query workload Q 17

2.2 Vertex vs Edge centric partitionings . 18

3.1 The partitioning pattern common to multilevel apparoaches. Inspired
by similar figures in [58, 102] . 30

3.2 Example of “folding” in distributed mulilevel graph partitioners. 33

3.3 Trivial example of an adversarial graph stream ordering. 36

4.1 Illustrative example graph . 53

4.2 Visitor Matrix structure . 60

4.3 Summary trie construction from queries. 66

4.4 Visitor Matrix (left), TPSTry probabilities (right) 68

4.5 Architecture . 71

4.6 Offer/Receive algorithm in each TAPER instance 76

4.7 ipt per TAPER internal iteration . 81

4.8 ipt per approach . 83

4.9 ipt vs k partitions (ProvGen) . 83

4.10 ipt per query . 84

4.11 ipt vs Workload change . 84

4.12 ipt over time w. TAPER invocations 86

5.1 Example graph G with query workload Q 94

5.2 TPSTry++ for Q in fig. 2.1 . 97

5.3 Combining tries for query graphs q1, q2 99

5.4 Probability of < 5% factor collisions for various p 104

5.5 t-length window over G (left), Motifs from TPSTry++ (center) and
motif matchList for window (right) . 107

5.6 Examples of q for MusicBrainz, DBLP & ProvGen 117

- ix -

5.7 ipt %, vs. Hash, when executing Q over 8-way partitionings of graph
streams in multiple orders. 119

5.8 ipt %, vs. Hash, when executing Q over multiple k-way partitionings
of breadth-first graph streams. 120

5.9 ipt (y-axis) when executing Q over Loom partitionings with multiple
window sizes t(x-axis) . 123

6.1 Potential architecture for a distributed variant of Loom 135

- x -

List of Tables

3.1 Properties of Graph partitioners . 47

4.1 Properties of the TAPER re-partitioner 88

4.2 Comparison framework properties overview 88

5.1 Graph datasets, incl. size & heterogeneity 118

5.2 Time to partition 10k edges . 122

5.3 Comparison framework properties overview 125

5.4 Properties of the Loom partitioner . 125

6.1 Properties of TAPER and Loom . 134

- xi -

- xii -

1
Introduction

Contents
1.1 Graph Partitioning . 4

1.2 Motivating problem . 6

1.2.1 Workload-agnostic partitioners 7

1.3 Research Aim and Contributions 9

- 1 -

Chapter 1: Introduction

Group
Person

Person

Person

Post

Post

Post

MemberOf

MemberOf

M
em

be
rO
f

Follows

Su
bm

itt
ed

Su
bm

itt
ed

Submitted

Journal

Paper Paper

Author

PublishedInPu
bli
sh
ed
In

Cited

Wr
ote

Wrote

Protein Protein

Function

InteractsWith

Re
lat
es
To

RelatesTo

Social network Protein-Protein interactions Academic publishing

Figure 1.1: Example graph representations of various data models.

Structuring data as a graph, representing records as labelled vertices with inter-

connecting edges corresponding to relationships, is increasingly common in many

application domains. These include social networks [16, 47, 122], Bioinformatics

tools [10, 121] and structured document networks such as academic papers and the

world wide, or semantic webs [4, 21, 39].

There are several reasons for this recent prevalence. Notably, graphs are a very natural

representation of data, sidestepping issues of complex schema design [5]. Consider the

examples presented in Figure 1.1. In a social network a Person record might have a

Submitted relationship with several Post records, along with MemberOf relationships

to several Group records. Meanwhile, Bioinformaticians often model the interaction

between the proteins in living cells using protein-protein interaction (PPI) graphs [121],

where vertices may represent individual proteins or the bodily functions to which

proteins relate (e.g. cell growth). In a more traditional tabular format, such as found

in relational database management systems (RDBMS), the edges in Fig. 1.1 would

require structures like pivot tables or data duplication (i.e. denormalisation) to express.

Furthermore, storing data in a graph format also renders many classes of operation

efficient and/or simple to express. A classic example of such an operation is the

shortest-path query [69]: selecting the smallest possible sequence of edges which

connect any two given vertices. Shortest-path queries are often used for physical route

planning, or finding chains of social connections, known as “friend-of-friend”. In a

- 2 -

Chapter 1: Introduction

tabular format, each additional “of-friend” step requires an expensive scan of the data

or index lookup: a join in RDBMS parlance.

On the other hand, when storing data in a graph format, such queries typically corre-

spond to a single index lookup and subsequent traversal of a small number of graph

edges. Edge traversal is analogous to pointer dereferencing, significantly faster than

an index intensive join [100]. Specialised graph analysis frameworks1, graph database

management systems (GDBMS)2 and certain RDF Stores3 exist to exploit these ad-

vantages.

Note that, with the exception of simple aggregation tasks such as finding the average

degree4, the majority of graph operations are implemented using a large number of

these efficient edge traversals.

Besides shortest-path, the famous PageRank algorithm [88] can be written as a graph

operation [75]. Each document is represented as a vertex with an initial rank. For

each vertex v in turn, the algorithm traverses all outgoing edges (links)5 and updates

the rank of all neighbours, based on the rank of v. This process is repeated until the

ranks of vertices converge to stability.

Additionally, consider the common follower recommendation feature of social net-

works [47]. Given the example in Fig. 1.1, Person a might wish to be recommended

other members of their Group who they do not Follow. This is known as a sub-

graph pattern matching query, and is implemented in GDBMS as a series of edge-

traversals [100] from a given starting vertex (e.g. Person a).

Pagerank is a classic example of an offline analytical operation: a slow running

task, often executed as a one-off (offline), e.g. by an analyst, or very infrequently.

Sub-graph pattern matching queries may also be executed infrequently, often in large

batches, constituting offline analytical operations. However, they are more typically

an example of an online data-management operation: a fast and relatively cheap

operation often executed automatically and frequently (online). For example, as part

1e.g. Pregel [74], GraphX [124], GraphChi [66] and others
2e.g. Neo4j [86], TitanDB [114], Trinity [108]
3e.g. Apache Jena [14], Virtuoso [30]
4The average number of edges incident to each vertex in a graph.
5In some literature this traversal is referred to as message passing between vertices. For the

purposes of this thesis, message passing and traversal are considered equivalent.

- 3 -

Chapter 1: Introduction

of a read request to a GDBMS, to find and return a small number of records; or as

part of a write request, to find the area of a graph to update or add to.

Note that online data-management operations are often collectively referred to as On-

line Transactional Processing (OLTP). However, we do not use that acronym through-

out this thesis, simply referring to operation types in full, or as online/offline. This

avoids confusion with types of operation we do not consider, such as online analytical,

and with the common misunderstanding that OLTP refers only to operations executed

in strongly consistent relational database management systems.

Despite the clear advantages presented above, there are some potential drawbacks to

the graph representation of data, namely concerning the efficiency of systems which

make use of it at scale. It is the scalability of graph based applications which we aim

to improve with this work, particularly in an online context.

1.1 Graph Partitioning

To understand the scalability concerns surrounding graphs, first note that applications

from domains where we argue graphs are most useful produce large quantities of data,

often continuously. This is especially true of social networks: a widely used Twitter

dataset from 2010 [65] contains 1.5 billion Follow relationships, whilst Facebook’s

graph data may now contain as many as many as 13 billion vertices [45]. Given such

quantities of data, systems must scale up or scale out regardless of representation.

Scaling up describes the process of increasing the effective resources of a single machine,

using specialised hardware6 or techniques, in order to process large amounts of data.

Notably, this is the approach taken by the GraphChi analysis framework [66], which

applies a “parallel sliding windows” approach to only process a small subset of a graph

at any time. The downside to scaling up is that the specialised hardware involved is

very expensive and still has some fundamental scalability limits which are difficult to

overcome (e.g. network bandwidth).

Scaling out is more common, and usually implies data sharding: splitting data into

a number of similar chunks in order to take advantage of the increased resources of

6i.e. “Supercomputers” with hundreds of cores and thousands of Gigabytes of RAM.

- 4 -

Chapter 1: Introduction

Machine A

Machine B Machine D

Machine C

Figure 1.2: A 4-way graph partitioning distributed across a cluster of machines

a homogeneous cluster of machines. Over graph structured data, effective sharding

is equivalent to the well-known NP-Complete [3] problem of “k-way balanced graph

partitioning”. Each of k machines in a cluster contains a distinct portion of the graph,

known as a partition. Partitions are likely connected by some number of edges, in

which case corresponding machines will also contain copies of the connecting elements.

Figure 1.2 presents an example of such a partitioning.

To understand why scaling out effectively is challenging for graph based systems,

consider Fig. 1.2 and recall that most workloads of graph operations require large

numbers of edge traversals, regardless of whether they are offline or online in nature.

When a traversal is required over an edge which connects two partitions, intuitively one

or more network requests are required; we refer to these as inter-partition traversals

(ipt). As network latency is orders of magnitude higher and more variable than main-

memory, or even disk access [22], the more ipt an operation causes, the slower its

running time.

- 5 -

Chapter 1: Introduction

In order to scale out graph based systems effectively, sophisticated graph partitioners

have been proposed [17, 52, 58, 76, 110, 117, 125], the details of which we discuss in

Chapter 3. The fundamental goal of these systems is to arrange the vertices and edges

of a graph across distributed partitions in such a way that operations may be executed

efficiently, with minimal network latency.

1.2 Motivating problem

Despite the challenging nature of the problem, aforementioned existing partitioners

are often able to produce good results: graph partitionings which support the efficient

execution of operations whilst distributed. This is especially common when given

graphs subject to workloads of offline analytical operations. However, these systems

are rarely an effective or appropriate choice when given large graphs used in an online

context. This lack of graph partitioning systems which are well optimised for online

data-management serves as the ongoing motivation for this work.

Broadly speaking, the difference in effectiveness is due to the fact that existing par-

titioners make trade offs which are acceptable to an offline system, but incompatible

with the requirements of an online one. For instance, most graph partitioners are slow

over large graphs, taking on the order of tens of minutes, or even hours [117]. Addi-

tionally, most partitioners are not incremental in nature, i.e. if a sub-graph is added

to an existing partitioning, the partitioner must be re-executed over the entire graph,

not just the new portion.

For offline analytics applications, where the data is often static or updated in infrequent

batches, graphs can be partitioned once prior to an operation. The execution time of

an analytics operation may exceed that of even a complex partitioner by several orders

of magnitude [125]. Therefore, if a quality graph partitioning reduces the operation’s

execution by (e.g.) 30% then the upfront cost of the partitioner is worthwhile.

Meanwhile, in online data-management applications graphs grow continuously, which

requires repeated re-execution of expensive non-incremental partitioners. As consis-

tent availability and performance is paramount online, such existing partitioners are

rendered impractical [55].

- 6 -

Chapter 1: Introduction

Machine A

Machine B Machine D

Machine C

Figure 1.3: Sub-optimal partitioning w.r.t a workload Q

More importantly, even existing incremental [52, 87, 110, 117] partitioners may produce

sup-optimal partitionings in an online context because they optimise for an inappro-

priate goal.

1.2.1 Workload-agnostic partitioners

Recall that when partitioning graphs to scale out effectively, our primary aim is to

minimise the network latency when executing operations (Sec. 1.1). ipt is an ideal

approximation for partitioning quality with respect to this goal, because it is essentially

equivalent to network latency 7, whilst also being a scale-free metric.

On the other hand, existing partitioners are largely designed to operate inde-

pendent of any particular workload and therefore cannot optimise directly

for ipt or even network latency, which both intuitively require a workload trace to

7Assuming, for simplicity, a homogeneous network and a consistent number of network packets
per traversal.

- 7 -

Chapter 1: Introduction

measure. Instead, these systems, which we call workload agnostic, use some other mea-

sure of graph partitioning quality as the objective function for their optimisation. The

most common function used in existing partitioners [33, 58, 90, 102, 110, 117] is the

number of edges which connect vertices in different partitions (a.k.a min. edge-cut).

It follows that the quality of graph partitionings produced by a workload agnostic

system depend upon the accuracy with which that system’s objective function ap-

proximates ipt, given a workload.

For example, min. edge-cut approximates ipt closely, only assuming a constant and

uniform likelihood of traversal for each edge throughout workload execution. In other

words, if every edge is equally likely to be traversed, then minimising the number of

inter-partition (cut) edges minimises the number of inter-partition traversals. Such

uniform distributions of edge traversals are actually common to many categories of

offline analytical operation [107], including PageRank [75] and Graph Colouring. It

is for this reason that workload agnostic partitioners often produce quality graph

partitionings with respect to offline analytical workloads.

However, given a workload of the pattern matching queries common to online data-

management applications such as GDBMS, the assumption of uniform edge traversal

likelihoods is unrealistic: a query workload may traverse a limited subset of edges

and edge types, which is specific to its graph patterns and subject to change over

time. For example, consider Fig. 1.3. The partitioning A,B,C,D is optimal for the

min. edge-cut function, but may not be optimal for the queries in a given workload

Q. For example, Q only traverses highlighted edges then every query would increase

ipt (create network requests). This explains why workload agnostic partitioners often

produce poor quality partitionings with respect to online data-management workloads.

- 8 -

Chapter 1: Introduction

1.3 Research Aim and Contributions

In order to address its motivating problem, the high-level aim of this thesis is to:

Design, implement and evaluate techniques for producing partitionings of

large graphs which are well optimised for use in an online data-management

context.

Implicit in this aim, however, there are a number of more nuanced research questions:

• What properties are desirable for graph partitioning techniques intended for use

online?

• How best to capture information about a given query workload?

• How to incrementally and efficiently partition a growing graph in such a way

that it exhibits high quality (few ipt) with respect to the given workload.

• How to efficiently repartition an existing graph partitioning such that it exhibits

the same or better quality?

In an attempt to answer these questions and thereby address its aim, this thesis

presents the following concrete contributions:

1. A detailed survey on the state-of-the-art in graph partitioning, including re-

cent, relevant or fundamental results from the literature. Existing systems are

described, categorised and critically analysed. Finally, we isolate a number of

properties of graph partitioners which are beneficial for addressing our motivat-

ing problem (e.g. workload-sensitive). These properties constitute a framework

which may be used to consistently evaluate systems with respect to the thesis

aim. This is presented in Chapter 3.

2. A compact, trie-based [69] datastructure for encoding the paths of edge traversals

which occur in a graph when executing path queries from a given workload Q,

along with their frequencies. We describe how this structure may be efficiently

constructed and updated if Q evolves over time. This is presented in Chapter 4.

- 9 -

Chapter 1: Introduction

3. An extended version of the previous trie datastructure, which builds upon fre-

quent sub-graph mining research [115] to encode common patterns of edge traver-

sals over a graph when executing a workload of pattern matching queries. We

present an efficient algorithm for constructing the structure using a probabilistic

method of sub-graph isomorphism. Finally, we demonstrate how these structures

may be used as a space-efficient and discriminative indices over graphs. This is

presented in Chapter 5.

4. A practical system, called TAPER, for improving the quality of an existing graph

partitioning with respect to a workload of path queries. Specifically, TAPER

uses the original trie data structure to calculate which vertices in a partition-

ing are presently most likely to be the source of inter-partition traversals and

iteratively relocates small numbers of them. Given a naive initial partitioning,

this reduces future ipt by around 80%, comparable or superior to state-of-the-art

workload agnostic partitioners [59], while requiring far less network communica-

tion. This is presented in Chapter 4.

5. Another practical system, Loom, which produces a high quality partitioning of a

graph stream8 with respect to a given workload of general pattern matching

queries Q. Loom uses the extended trie data structure to efficiently detect sub-

graphs which Q will frequently traverse together, as they arrive in the graph

stream. The system then attempts to place these sub-graphs entirely within

single partitions, reducing ipt by up to 40% relative to state-of-the-art streaming

graph partitioners [110, 117]. This is presented in Chapter 5.

8Equivalent to an online, growing graph.

- 10 -

Chapter 1: Introduction

- 11 -

2
Preliminaries

Contents
2.1 Graph datastructures . 13

2.1.1 Graph stream orderings . 14

2.2 Graph operations . 15

2.3 Graph partitions . 18

2.4 Partitioning Quality and Objective Functions 19

2.5 Partitioning Hardness . 20

- 12 -

Chapter 2: Preliminaries

In this chapter we provide those concepts and definitions which are depended upon or

referred to throughout the remainder of this work.

2.1 Graph datastructures

A simple graph G, such as the one seen in figure 2.1, is usually denoted as G = (V,E)

where V is a set of vertices v1, v2, . . . vn and E is a set of pairwise relationships between

these vertices, called edges e = (vi, vj) ∈ E. A graph’s size is defined as |E|, its order

as |V |.

Throughout this work we. also discuss several distinct forms of graph data, though all

are specific instances of the above simple graphs.

For instance, graphs which also have labels associated with their vertices and/or edges.

Such a labelled graph is denoted as G = (V,E, Lv, fv), where Lv is the set of vertex

labels, the function fv is a mapping of vertices to labels and so on. Note that fv is

surjective; i.e. every vertex has a label, which may be shared by several other vertices

respectively.

A proper sub-graph Gi of G is a graph whose vertices and edges are a subset of G’s

vertices and edges, Gi = (Vi, Ei), Vi ∈ V , Ei ∈ E.

A path of length k is a sub-graph in which k vertices and k−1 edges form an alternating

sequence (v1, e1, v2, . . . , vk−1, ek−1, vk) such that each vertex is part of no more than 2

edges.

The neighbourhood of a vertex NG(v) is defined as the set of all vertices in V which

are adjacent to v. Formally, NG(v) = {u ∈ V : (u, v) ∈ E}, where NG is a function

from a vertex to some vertex set, V → P(V).

A graph motif is a typically small graph which occurs, with a frequency of more than

some user defined threshold T , as a sub-graph of some larger graph, or a collection of

larger graphs.

A graph stream is defined simply as a (possibly infinite) sequence of vertices and

edges which are being accumulated to a graph G, over time. Note also that when we

discuss sliding windows over such graph streams, we consider them to be fixed width.

- 13 -

Chapter 2: Preliminaries

In other words, a sliding window of “time” t is equivalent to the t most recently added

elements, rather than those which have arrived within the last time period t.Relatedly,

note that an online graph 1 may be viewed as an infinite graph stream; we use the

two terms interchangeably.

Finally, note that there exist three additional forms of graph data which, for simplicity,

we do not consider throughout the remainder of this thesis.

Firstly, directed graphs, wherein edges are not simple pairs, but have source and

target vertices.

Secondly, edge-labelled graphs, whose definition is expanded to include a set of

edge labels Le and additional surjective labelling function fe, allowing edges to possess

labels distinct from their vertices.

Thirdly, given that we do not consider directed or edge-labelled graphs, we also do

not consider multi-graphs, which allow multiple edges to exist between the same

two vertices. The reason for this is that having multiple, undirected, unlabelled edges

between two vertices is intuitively identical to having just a single edge.

2.1.1 Graph stream orderings

Clearly, when working with graph streams it is important to consider not only the

graph elements (data), but also the order in which elements appear in a stream.

Throughout this thesis, we consider the following commonplace orderings:

• Random ordering is computed by randomly permuting the existing ordering of

a graph’s elements.

• Breadth-first ordering is computed by performing a bread-first traversal across

the connected components of a graph. If a graph contains several connected

components then these are selected in random order.

• Depth-first ordering is computed by performing a depth-first traversal across

the connected components of a graph. Again, if a graph contains several such

components, they are selected in random order.

1Sometimes referred to as a dynamic or growing graph.

- 14 -

Chapter 2: Preliminaries

One more important ordering to consider, particularly for a dynamic graph or a static

snapshot of a dynamic graph, is the order in which its elements are created. We refer

to this ordering as stochastic. Unfortunately, the information necessary to derive

a stochastic ordering is not available for most publicly accessible datasets. There-

fore, throughout this work we consider random ordering to be an imperfect proxy for

stochastic as many graphs may be viewed as growing at least pseudo-randomly.

2.2 Graph operations

The various algorithms and other operations which may be executed over a graph can

be broadly separated into one of two previously mentioned (Ch. 1) categories: offline

analytical operations, and online data-management operations.

Offline analytical operations are often designed in a vertex-centric fashion and

executed using bulk synchronous parallel (BSP) systems, such as Google’s Pregel [75].

In such BSP systems a graph operation is performed in a number of supersteps.

These operations are expressed as functions executed for each vertex, where the ver-

tex contains information about itself and its neighbours. At the start of each system

superstep, a vertex will receive messages sent from its neighbours during the previous

superstep. The operation’s function will then execute, updating the vertex’s stored

information and sending messages on to its neighbours. Additionally, during a super-

step a vertex may vote to halt, rendering itself inactive. When all vertices in a graph

are inactive the operation terminates.

As messages may be serialised and supersteps between partitions synchronised, these

operations can execute over distributed graphs. The scalability and the relative ease

of programming has made this vertex-centric pattern popular for graph processing

systems [78].

There are many examples of offline analytical operations besides the PageRank al-

gorithm [75] previously mentioned (Ch. 1). These include, e.g, computing minimum

spanning trees [41] or graph matching algorithms [2], which derive sub-graphs con-

taining only those edges not adjacent to one another and are commonly used in graph

partitioners.

- 15 -

Chapter 2: Preliminaries

Three common features shared by the majority of such operations is that they a) re-

quire the entire graph as input; b) take on the order of minutes to hours to complete;

and c) are typically executed as one-off events or at large regular intervals (e.g. weeks).

This is distinct from Online data-management operations, which typically com-

plete on the order of milliseconds to seconds, consider only a very small subset of a

graph and are executed continuously in large numbers.

Online operations are typically executed in systems with soft real-time constraints like

graph database management systems (GDBMS) such as Neo4j [86]. Pattern matching

queries, which we highlight earlier (Ch. 1), are one of the most common examples.

We consider a pattern matching query as defined in terms of sub-graph isomor-

phism. Given a pattern graph q = (Vq, Eq) and a host graph G , a query should

return R: a set of sub-graphs of in G. For each returned sub-graph Ri = (VRi
, ERi

)

there should exist a bijective function f such that: a) for every vertex v ∈ VRi
, there

exists a corresponding vertex f(v) ∈ Vq; b) for every edge (v1, v2) ∈ ERi
, there exists

a corresponding edge (f(v1), f(v2)) ∈ Eq; and c) for every vertex v ∈ Ri, the labels

match those of the corresponding vertices in q, l(v) = l(f(v)). As an example, consider

Figure 2.1, which presents a host graph G, along with three queries (pattern graphs)

q1, q2 andq3. Given the query q2, a result R is returned, containing two sub-graphs

{(1, 2), (2, 3)} and {(6, 2), (2, 3)} in G.

Although pattern matching queries may be described in terms of sub-graph isomor-

phism, they are rarely implemented solely in those terms as the problem is known

to be NP-Complete [43] and practical verification algorithms [79, 119] are expen-

sive [99]. Instead modern pattern matching query engines adopt what is known as

a filter-verify approach [32, 49, 86]. In the filter step, a graph index structure [60]

to look up candidate vertices or sub-graphs, which may form part or all of a pattern

match. Subsequently, in the verify step, the candidates and their local neighbourhoods

are traversed, edge by edge, to detect any exact matches. Intuitively, the number of

traversals which occur when executing a pattern matching query depend upon the

number of candidates returned by a filter step and the average degree of the graph

around each candidate.

- 16 -

Chapter 2: Preliminaries

BA
1 2 3 4

5 6 7 8

a b c d

b a d c

G Q (q1:30%, q2:60%, q3:10%)

q3

q1

q2

a

b

b

a

a b c

a b c d

a b

Figure 2.1: Example graph G with query workload Q

Throughout this work we consider partitioning strategies for large graphs which ac-

count for particular workloads of the above pattern matching queries. Formally, we

consider a query workload as a simple set of tuples Q = {(q1, n1) . . . (qh, nh)}, where

ni is the relative frequency of each query qi in Q.

Note that in this work we do not consider pattern matching queries as defined in terms

of graph homomorphism [32]. This is primarily because homomorphism does not imply

an exact match between a pattern graph q and a host graph G, but also because the

same choice (i.e. opting for isomorphism) is taken by many widely used graph query

languages [32, 40, 49].

Furthermore, for simplicity, we do not consider queries which perform negative pattern

matching, i.e. vertex a must be adjacent to vertex b (a− b), but not c. However, all

techniques presented throughout this thesis naturally apply to queries which include

negative matches because the process of executing them is identical to that of executing

queries with only positive matches. Consider again q2 from Fig. 2.1: to verify whether

the vertex 2 does, or does not have a c labelled neighbour, an execution engine must

still traverse all neighbours of vertex 2.

- 17 -

Chapter 2: Preliminaries

Vertex-centric Edge-centric

Figure 2.2: Vertex vs Edge centric partitionings

2.3 Graph partitions

A k -way graph partitioning Pk(G) may be thought of as a view over a graph G,

wherein G is separated into a set of k sub-graphs. These graph partitionings are

typically defined in one of two ways: vertex-centric or edge-centric.

A vertex-centric graph partitioning is defined as a disjoint family of sets of vertices

Pk(G) = {V1, V2, . . . , Vk}. Each set Vi, together with its edges Ei (where ei ∈ Ei,

ei = (vi, vj), and vi, vj ⊆ Vi), is referred to as a partition Si. A partition forms a

proper sub-graph of G such that Si = (Vi, Ei), Vi ⊆ V and Ei ⊆ E.

An edge-centric partitioning is similar, though defined as a disjoint family of sets

of edges. Note that, in a vertex-centric partitioning2, vertices are unique to single

partitions whilst edges may be shared between two. Meanwhile, in an edge-centric

partitioning, edges are unique whilst vertices may be shared between two or more

partitions. Figure 2.2 provides a simple example of the difference between these two

definitions.

The focus of this thesis is largely upon producing and improving those partitions which

are vertex-centric.

2Assuming no replication

- 18 -

Chapter 2: Preliminaries

2.4 Partitioning Quality and Objective Functions

In order to improve a graph partitioning, some consistent notion of partitioning quality

is needed. Existing graph partitioners usually define this quality as one of several

objective functions, i.e. some measure, calculated over an entire graph, which must be

maximised or minimised.

The most common such measure is the previously mentioned min. edge-cut (Sec. 1.2).

Edge-cut is the number of edges which connect vertices in different partitions, formally:

|Ecut| where e ∈ Ecut, e = (vi, vj), vi ∈ VA, vj ∈ VB and A 6= B. By minimising

the number of these inter-partition edges, systems somewhat reduce the network

communication cost for a broad range of analyses, including many BSP operations

and sub-graph pattern matching. Besides min. edge-cut, there are other metrics which

may be used as objective functions for graph partitioners, including communication

volume [76] and partition stability [24].

The communication volume of a vertex v refers to the number of distinct partitions

adjacent to v, i.e. the number of partitions which contain neighbours of v but not

v itself. Communication volume partitioners minimise this metric for all the vertices

v ∈ V . This is similar to, but distinct from min. edge-cut partitioners: communication

volume does not account for multiple edges between a vertex v and neighbours in a

single partition. Communication volume partitioners have become increasingly popular

for application to graphs over which min. edge-cut systems do not achieve good results,

such as power-law graphs [76].

Partiton stability, first introduced by Delvenne et al. [24], is another measure of parti-

tioning quality, defined in terms of network flow and random walks over a graph. The

full definition of stability is left “in situ” in chapter 4, where it is required for context.

Note that, by default, the measures above are not able capture the quality of a graph

partitioning with respect to a specific query workload. As a result they are unsuitable,

both as objective functions for the techniques we present in this work and as a means

by which to evaluate their impact.

Some measures may be modified, making them workload-sensitive. Indeed, we propose

a modified version of stability for this purpose (Sec. 4.2.2). Technically, if graph edges

- 19 -

Chapter 2: Preliminaries

are given weights corresponding to the frequency with which they are traversed by a

query workload, then even min. edge-cut 3 partitionings are high quality with respect

to that workload. However, in an online system such modified metrics are expensive

to calculate and impractical to update [55].

Regardless of the objective functions they employ, when evaluating the graph parti-

tioning quality achieved by different algorithms, throughout this thesis we primarily

consider the number of inter-partition traversals (ipt) which occur when executing a

given workload Q over Pk(G). The reasons for this are twofold. Firstly, as we have

argued (Sec. 1.2), low ipt is equivalent to the true goal of graph partitioners in the con-

text of data processing systems: reduced network latency 4. Secondly, unlike network

latency, ipt is a scale-free measure, independent of complex implementation details.

2.5 Partitioning Hardness

Note that, in addition to the metrics above, quality graph partitionings must be ap-

proximately balanced 5. In the absence of a balance requirement, optimising for

quality metrics leads to work being distributed unevenly between partitions (and phys-

ical hardware), which is inefficient. As a pathological example, consider that a single

partition containing all vertices and edges (i.e. an unpartitioned graph) is guaranteed

not to cut any edges an is therefore optimal w.r.t imbalanced min. edge-cut. k-way

balanced graph partitioning, as it is formally called, is known to be NP-Hard.

Andreev and Racke [3] demonstrate that, if perfect partition balance is required, there

exists no constant-time approximation for partitioning general graphs. They also

present an algorithm which is able to offer an improved approximation of O(log2n)

in the event that the balance constraint is relaxed, e.g. one partition is permitted to

be 30% larger than another. However, this approximation, along with others like it [13]

is too slow and expensive to be used for large graphs.

3Now min. edge-weight-cut
4Assuming, for simplicity, a homogeneous network and a consistent number of network packets

per traversal.
5Where no one partition is significantly bigger or smaller than any other.

- 20 -

Chapter 2: Preliminaries

- 21 -

3
Related work

Contents
3.1 Local graph re-partitioners . 23

3.2 Global graph partitioners . 26

3.2.1 Spectral techniques . 27

3.2.2 Diffusions techniques . 28

3.2.3 Multilevel application . 29

3.3 Distributed graph partitioners 32

3.4 Streaming graph partitioning 34

3.4.1 Re-streaming . 36

3.5 Workload sensitive partitioning 38

3.5.1 Offline workloads . 39

3.5.2 Online workloads . 40

3.5.3 Replication systems . 42

3.6 Comparing partitioner systems 44

3.6.1 System properties . 45

3.6.2 Suitability of existing systems to online workload-sensitive par-
titioning. 46

- 22 -

Chapter 3: Related work

Summary

This chapter seeks to provide context for the contributions presented in our thesis by

examining both the relevant background material and more recent related works.

k-way balanced graph partitioning is clearly of practical importance to any appli-

cation with large amounts of graph structured data. As a result, despite the fact

that the problem is known to be NP-Hard [3] and available approximation algo-

rithms too expensive [13], various practical solutions have been proposed using heuris-

tics [18, 52, 58, 76, 90, 110, 117, 125].

In the sections that follow we survey these partitioning solutions and assign them

to one of five potentially overlapping categories: Local (Sec. 3.1), Global (Sec. 3.2),

Distributed (Sec. 3.3), Streaming (Sec. 3.4) and Workload-sensitive (Sec. 3.5). Graph

partitioning has been the subject of significant research over many years, which we do

not attempt to comprehensively review. Instead, in this chapter we highlight recent,

relevant or fundamental results. Particularly close attention is paid to solutions which

are either well suited to online use1, or workload-sensitive, as these may partially

address the motivations for this work (Ch. 1). We refer the reader to [5, 12, 13, 106]

for further general material.

Finally, in section (Sec. 3.6), we identify eight key properties for graph partition-

ers, particularly those which are workload-sensitive. These properties are used as a

framework for comparing the graph partitioners presented throughout the chapter,

highlighting deficiencies in existing research and providing context for our own efforts.

This framework will also be used to evaluate techniques presented in later chapters

(Ch. 4 and 5).

3.1 Local graph re-partitioners

The category of local graph partitioners includes any partitioner which makes use

of local search, which is also known as iterative vertex swapping or local refinement.

Simply put, local search aims to improve an existing graph partitioning by swapping

1As opposed to offline, analytical use.

- 23 -

Chapter 3: Related work

vertices between partitions in order to minimise some objection function, usually min.

edge cut. Local graph partitioners vary in how they select which vertices to swap and

which partitions they will consider sending vertices between (e.g. adjacent partitions,

or highly imbalanced partitions).

In their work to reduce the number of object references between memory pages during

program execution, Kernighan and Lin [61] propose the classic example of a local

search algorithm. Indeed perhaps the first example of a graph partitioner in general.

Their key intuition was as follows: given two partitions forming halves of a balanced

graph bisection P2(G) = {V1, V2}, there exist subsets of vertices A ⊂ V1, B ⊂ V2

which may be swapped between partitions to produce an arrangement that is globally

optimal for some objective function (usually min. edge-cut).

The Kernighan-Lin algorithm (KL) operates in iterations, selecting vertex sets to swap

which will result in the greatest improvement (which we call objective function gain,

or simply gain). Within each iteration, the algorithm considers every vertex vi from

a partition (say V1), then calculates the potential gain when swapping vi with each

vertex vj from partition V2. The pair (vi, vj) with the highest gain is marked for

swapping (i.e. vi, vj are added to A,B respectively) and the next vertex in V1 \ v1
is considered with each vertex in V2 \ v2. Note that when considering swapping the

neighbours of vertices already marked in this iteration, the potential objective gain for

those neighbours is calculated as if marked vertices have already been swapped. When

every vertex has been considered, the sets A,B are swapped between partitions and

the next iteration may begin. Iterations continue until the total gain for all suggested

swaps is ≤ 0.

There are two main issues with the KL algorithm as a graph partitioner. The first is

that it is limited to improving the partitioning quality of graph bisections, rather than

k-way partitionings. The second is that it is highly expensive, with a single iteration

of the algorithm having the complexity O(n2 log n), remembering that n = |V |.

In order to address such issues with the KL algorithm, several improvements have been

proposed. Perhaps most significantly, Fiduccia and Mattheyses [33] present a modified

- 24 -

Chapter 3: Related work

algorithm (KL/FM) which is significantly less expensive. The iteration complexity for

KL/FM is O(m), nothing that m = |E| and that the upper bound 2for m is (n− 1)2.

There are two major differences between the KL/FM and KL algorithms. Firstly, the

vertex swapping between bisections is asymmetric, i.e. vertices are marked for transfer

individually, rather than as a pair with a vertex from the other partition. This means

that for each vertex considered for swapping, it is not necessary to consider every vertex

from the other partition. Secondly, Fiduccia and Mattheyses use a datastructure called

a bucket queue [80] for efficiently updating neighbour objective function gain after

marking vertices for swapping.

Despite the improvement that the KL/FM algorithm represents, it shares KL’s orig-

inal limitation of being application only to graph bisections. However there are ex-

tensions of local search techniques which generalise to improving k -way partition-

ings [58, 98, 132]. Notably, Karypis and Kumar [58]propose an algorithm they call

Greedy Refinement (GR) as part of their work on the well know global partitioner

METIS, which we discuss shortly.

For efficiency, GR moves only boundary vertices 3 between partitions, considering all

such vertices in random order during each iteration. For each vertex v, GR orders the

partitions to which v is adjacent by the potential gain of moving v to them, subject to

some balance constraints. If a move does not satisfy chosen balance constraints, then

progressively less beneficial destination partitions are considered. Once a destination

partition has been chosen, the move is immediately performed and the next random

vertex considered. An iteration of GR terminates when more than some threshold

number of vertex moves have been performed without any positive objective function

gain as a result.

Unfortunately, despite some ability to climb out of local optimisation minima, the

quality of partitionings produced by the local search algorithms above is strongly de-

pendent on the quality of the initial partitionings they receive. They remain important

to consider however, for two reasons. Firstly, they are often integrated as part of a

2In the rare case of a strongly connected simple graph with an edge from each vertex to every
other vertex.

3Vertices with neighbours in ≥ 1 external partitions.

- 25 -

Chapter 3: Related work

global graph partitioner [51, 58, 101] such as with Greedy Refinement and the afore-

mentioned METIS [58]. Secondly, as the name local search implies, the information

required for each vertex migration is local to that vertex. This allows asymmetric

methods to perform very little or no global coordination between partitions. As a re-

sult, such methods are effectively applied in distributed settings [98, 120, 131], where

inter-partition coordination is costly.

3.2 Global graph partitioners

In general, global graph partitioners [9, 26, 28, 29, 50, 51, 58, 64, 82, 90, 102] refers to

those partitioners which, unlike their local counterparts, take an entire unpartitioned

graph as input. By default, such partitioners are also executed within the confines of

a single machine.

They are the most commonly used family of techniques, likely due to their effectiveness:

global graph partitioners produce some of the highest quality partitionings of any

techniques we consider. Indeed Karypis and Kumar’s METIS [58] is considered the

de-facto gold standard for partitioning quality [76]. However, it is also likely that the

popularity of such techniques is at least partially due to their being relatively simple

to use and available in a number of robust software packages 4 5 6.

As we alluded to previously in Chapter 1, however, simple (undistributed) global graph

partitioners are not without their drawbacks, particularly in an online setting. Firstly,

they are highly resource intensive [120] and are typically performed ahead of offline

analytical workloads. Additionally, they require an entire graph to be available a priori

as input, and may therefore require periodic re-execution, i.e. given a dynamic graph

following a series of graph updates, which is impractical online [55].

Secondly, like local graph partitioners, the vast majority of global partitioning tech-

niques [33, 58, 90, 102, 110, 117] optimise for the min. edge cut objective function.

This renders them workload-agnostic: assuming uniform and constant usage of a graph

by a workload. As a result the partitionings they produce, whilst effective at reducing

4The METIS [58] family of graph partitioning software: http://bit.ly/1tqUcSQ
5The Scotch [90] graph partitioning software: http://bit.ly/2r2mbfI
6The KaHiP [102] graph partitioning software: http://bit.ly/2raQSj2

- 26 -

http://bit.ly/1tqUcSQ
http://bit.ly/2r2mbfI
http://bit.ly/2raQSj2

Chapter 3: Related work

the runtime of distributed analytical jobs (e.g. Pagerank), are sub-optimal for other

types of workload, such as sub-graph pattern matching queries, which are common in

an online graph data-management setting.

Note that although global graph partitioners are broadly similar in terms of advantages,

disadvantages and behaviour, they may differ significantly in the method of their

implementation. For example, some systems [26, 82, 90] use the natural representation

of a graph as a network, and derive partitions in terms of breadth-first traversals and

diffusion. Other systems [9, 28, 29, 51], known as spectral partitioners, treat graphs

as matrices and derive partitions using linear algebra.

Finally, some global partitioning systems [50, 58, 64, 90, 102] apply an existing tech-

nique (spectral, diffusion-based or otherwise), but over compressed versions of a graph.

These systems, which are called multilevel, are arguably the most effective global graph

partitioners in terms of performance, scalability and partitioning quality.

3.2.1 Spectral techniques

Spectral graph partitioning was first proposed by Donath and Hoffman [29] for com-

puting bisections of a graph G with respect to min. edge-cut. Firstly the Laplacian

matrix LG of G is computed by subtracting G’s adjacency matrix AG from its degree

matrix DG, LG = DG − AG. Secondly, the eigenvector associated with the second

smallest eigenvalue of LG is computed. The algorithm relies upon the intuition that

this eigenvector, called the Fiedler vector [34], contains an integer value for each vertex,

which corresponds to its connectedness in the graph. Using this value as an order-

ing, the algorithm then divides the vertices of G around the median, into two sets of

equal size. These sets represent a bisection which is good with respect to min. edge-

cut. Note that this algorithm generalises to producing k -way partitionings of graphs

through recursively bisecting generated partitions7. All other spectral partitioning

techniques [9, 28, 51] extend this core algorithm.

These extensions usually aim to improve performance as, in practice, the Fielder vector

is approximated using Lanczos algorithm [67] which is highly computationally expen-

sive for large graphs. For instance, Hendrickson and Leland [51] propose a method

7Provided k is a power of 2.

- 27 -

Chapter 3: Related work

for computing graph partitionings where k > 2 without recursive application , thereby

avoiding computing the Fiedler vector more than once. Furthermore, Barnard and

Simon [9] propose a multilevel spectral method. Whilst the algorithm is structurally

similar to those we discuss in section 3.2.3, Barnard and Simon do not compute and

refine a graph partitioning over compressed versions of a graph. Instead, they compute

and refine an approximation of a Fiedler vector over compressed versions of a given

graph, thereby substantially reducing its computational cost. This Fiedler vector is

subsequently used to compute a bisection over the uncompressed graph.

3.2.2 Diffusions techniques

Besides spectral techniques, there are a number of global graph partitioners which

employ random walks or breadth-first traversals in order to derive partitions [26, 82,

90]. These systems are broadly referred to as Diffusion-based and implement some

variation on the following simple algorithm:

Firstly, for a k -way partitioning, k seed nodes are selected, evenly distributed through-

out a graph’s structure. Secondly, random walks or traversals are performed through-

out the graph, originating from these seeds. Each vertex may only be traversed once.

Once all vertices have been traversed, each vertex belongs to the same partition as its

traversal’s seed. This procedure is often employed iteratively, with new seeds being

selected each round [26, 82]. Diekmann et al. [26] were the first to propose this mod-

ification, referring to is as the Bubble framework. Meyerhenke et al. [82] extend the

Bubble framework, generalising it to graphs with variable edge weights and improving

its performance by introducing a random walk mechanism which only operates over

small (local) areas of a graph.

Whilst Diffusion and traversal based partitioning techniques can yield high quality

results, they are also somewhat computationally intensive. Variants of the Bubble

framework have a worst case complexity of O(km), where m is equal to the number of

vertices in a graph and k the desired number of partitions. Additionally, naive imple-

mentations of the Bubble framework can lead to highly imbalanced partitions [103],

though this limitation is usually addressed through the use of additional heuristics,

these may add to the overall computational complexity of a scheme.

- 28 -

Chapter 3: Related work

Pellegrini et al. also employ diffusion-based techniques in their popular graph parti-

tioning tool Scotch [90]. However, Scotch is an example of the multilevel partitioners

we discuss in the following section. In other words, in order to ameliorate the com-

plexity of diffusion-based partitioning, they only apply their technique to compressed

versions of a graph and even then, only to vertices near predicted partition boundaries.

3.2.3 Multilevel application

As mentioned at the start of this section, some of the most effective global graph

partitioning systems are known as multilevel [50, 58, 64, 90, 102]. Proposed in its

current form by Hendrickson and Leland [50], multilevel partitioning works in three

stages: coarsening, partitioning and uncoarsening.

The Coarsening stage: a succession of recursively compressed graphs is computed,

tracking exactly how the graph was compressed at each step.

The Partitioning stage: the coarsening stage continues until the most compressed

form of the graph is small enough that an initial partitioning may be trivially

produced using an existing technique (e.g. spectral partitioning).

The Uncoarsening stage: using the knowledge of how each compressed graph was

produced from the previous one, the initial partitioning is then “projected” back

onto the original graph, using a local technique (e.g. KL/FM [33]) to improve

the partitioning after each step. Figure 3.1 presents an example of multilevel

partitioning over a small graph.

The various multilevel techniques which exist differ in how they implement the above

three stages. Consider the canonical example of a multilevel partitioner: the afore-

mentioned METIS [58].

In the coarsening stage METIS compresses a graph G by computing maximal egde

matchings [50]8. An edge matching is defined as a set of edges EM from G, such that

no two edges in EM are incident upon the same vertex. Given such a matching, a

8Also referred to as a maximal independent edge set.

- 29 -

Chapter 3: Related work

Trivial partitioning

Com
press Un

co
m

pr
es

s

Figure 3.1: The partitioning pattern common to multilevel apparoaches. Inspired by
similar figures in [58, 102]

single level of compressed graph is computed by combining vertices connected by an

edge e ∈ EM , treating each pair as a single “multi” vertex. Compression is performed

using these matchings rather than, for example, arbitrarily combining vertices as it

prevents any one“multi”vertex from containing many more elements than another. As

a result, a balanced partitioning of the compressed graph will correspond to a balanced

partitioning of the original graph.

Next, when computing an initial partitioning for the compressed graph GM , METIS

uses a technique based upon spectral recursive bisection. Finally, in the uncoarsening

stage of partitioning, METIS uses the Greedy Refinement local algorithm (Sec. 3.1) to

move “multi” vertices between partitions, improving the partitioning after each step of

match/combine compression has been reversed.

On the other hand, consider alternative multilevel partitioners [64, 102]. Korosec and

Silc propose MACA [64], which uses an ant-colony optimisation technique for both

initially partitioning the most compressed graph, and for improving the partitioning

after each step of the uncoarsening stage. This is interesting because ant-colony opti-

- 30 -

Chapter 3: Related work

misation techniques are highly parallelisable; a fact Tashkova et al. exploit with their

work in Distributed MACA [112] (DMACA). Meanwhile, Sanders and Schulz [102]

propose an edge rating function which prioritises edges which are close w.r.t algebraic

distance [15]9 when computing edge matchings in the coarsening phase. As a result of

this edge rating function, good partitionings of compressed graphs correspond to good

partitionings of their uncompressed counterparts, even more closely than with other

matching techniques.

In general, the three key advantages to a multilevel approach to global graph parti-

tioning may be summarised as follows: Firstly, as matchings and other forms of graph

compression are relatively inexpensive, it is possible to compress large graphs before

applying an initial partitioning technique which is highly effective, but would be be

impractically expensive at the graph’s original scale. Secondly, the local partitioning

techniques applied during the uncoarsening stage will perform well, given that the

movement of a vertex in the compressed graph corresponds to the movement of sev-

eral vertices in the original graph and that each compressed graph . Finally, due to

the initial partitioning and repeated improvements, the input to each step of uncoars-

ening will be of high quality; as mentioned (Sec. 3.1) this significantly increases the

effectiveness of local partitioning techniques performing the improving.

As a result of these advantages, multilevel partitioners are the most performant and

effective of all global graph partitioners. Despite this, they still share many of the

disadvantages, such as optimising for an objective function and requiring an entire

graph as input. This means they too are not suited for graphs which may grow, or be

subject to a changing workload; i.e. they are unsuitable for application to an online

graph data-management setting. Most importantly, however, the scalability of such

undistributed multilevel partitioners remains fundamentally limited by the resources

of their host hardware and so struggle to partition graphs with a more than a few tens

of millions of vertices and edges [117].

9Edges which are part of strongly connected clusters in a graph will have low algebraic distance
(are close to one another).

- 31 -

Chapter 3: Related work

3.3 Distributed graph partitioners

In order to scale to graphs which do not fit within the memory of a single machine,

global graph partitioners (i.e. those which require the entire graph a priori) must be

modified to operate when distributed: executed by multiple machines communicating

via a network.

As mentioned in Chapter 1, in recent years there have been an increasing number

of applications making use of such large amounts of graph data, such as social net-

working [47, 122], search engines [11] and genome analysis [10, 121]. As a result,

several distributed graph partitioning algorithms have been proposed, often as exten-

sions to existing systems, e.g. PT-Scotch [18], ParMETIS [59] and ParHIP [83] and

DMACA [112].

These distributed extensions [18, 59] are implemented along broadly similar lines to

their single-machine counterparts. In other words, the first stage of the algorithm is to

recursively coarsen/compress a graph, this time by computing a distributed maximal

edge matching. Intuitively, computing whether a given inter-partition edge forms part

of a matching requires coordination between the machines to which the edge’s two

vertices belong. Typically, this coordination happens iteratively, with each partition

sending messages to it’s neighbours, proposing and rejecting potential matched edges

in rounds. To reduce the communication overhead caused by these messages, progres-

sively smaller graphs are gathered (or“folded”) onto smaller numbers of machines until,

at the end of the coarsening stage, the smallest graph resides on a single machine.

Once, the smallest graph is contained on a single machine, the initial partitioning

stage takes place as normal. Subsequently, during the uncoarsening stage, the graph

partitioning is refined using a local refinement technique to move vertices between

(distributed) partitions. In addition, after each step of uncoarsening, the graph par-

titioning is “unfolded” back onto a larger number of machines. Fig. 3.2 presents an

example of this distributed multilevel partitioning process.

Meyerhenke et al’s recent ParHIP [83] follows a similar pattern, though employs a

novel parallel label-propagation based graph clustering technique to coarsen the input

graph, instead of computing an edge matching. This label-propagation technique is

- 32 -

Chapter 3: Related work

8 hosts

4 hosts

2 hosts

1 host

Figure 3.2: Example of “folding” in distributed mulilevel graph partitioners.

highly effective, producing significantly smaller graphs at the coarsest level than other

edge matching techniques, and allowing ParHIP to partition larger graphs than is

possible with, e.g. ParMETIS.

Another interesting example of a distributed graph partitioner which uses label-propagation

is JA-BE-JA [98]. JA-BE-JA is actually an example of a local-search technique

(Sec. 3.1), using vertex labels to denote partition assignments, and iteratively swapping

labels between neighbouring vertices. Additionally, JA-BE-JA uses simulated anneal-

ing to escape local optimisation minima better than other local search techniques.

Finally, Margo and Seltzer’s work on Sheep [76] is worthy of consideration. The Sheep

algorithm efficiently creates an elimination tree [92] from a distributed graph using a

map-reduce procedure, then partitions the tree and subsequently translates it into a

partitioning of the original graph. Unlike the other distributed partitioners we consider,

which optimise for min. edge-cut, Sheep optimises for the min. communication volume

objective function. In other words, it minimises the number of different partitions in

which a given vertex v has neighbours. This metric has been shown to be more effective

than min. edge-cut for producing partitionings of certain graphs, such as graphs whose

degrees are distributed according to a power-law.

In general distributed partitioners exhibit significantly improved scalability, success-

fully partitioning graphs with billions of edges [83]. Furthermore, because such algo-

- 33 -

Chapter 3: Related work

rithms require input graphs to be spread between host machines, they are theoretically

applicable to re-partitioning a graph in situ, unlike their single-machine counterparts.

Despite addressing the scalability concerns of global graph partitioners, the distributed

systems above are not without their drawbacks, however. Principle among these is

communication cost: all of the above systems incur significant communication over-

head, both when computing a new partitioning10 and when migrating vertices and

edges between partitions.

Whilst some techniques do exist to minimise the number of inter-partition vertex swaps

which occur during a repartitioning [104], these inevitably trade off against the quality

of the final partitioning. Additionally, such techniques have been shown to have only

a limited effect [132].

As a result, despite distributed partitioners’ theoretical applicability to the task, graph

analytical frameworks often employ them only as initial, highly scalable, partitioning

step, rather than for repeated repartitioning [62].

Finally, note that distributed partitioners share the other drawbacks of normal global

partitioners, besides scalability. In particular, they remain unsuitable for dynamically

growing graphs and agnostic to changes in the workloads being applied to them.

3.4 Streaming graph partitioning

Like the distributed systems above, streaming graph partitioners [52, 87, 110, 117]

have been proposed to address the scalability and performance issues of global par-

titioners. The strict streaming model considers each element of a graph stream11 as

soon as it arrives, efficiently assigning it to a partition. Additionally, streaming parti-

tioners do not perform any refinement of portions of the graph already considered and

partitioned. In other words, they will not employ local refinement techniques to move

vertices to other partitions, nor perform any sort of global introspection such as in

spectral partitioning. This model has two key advantages. Firstly, the memory usage

of streaming partitioners is both low and independent of the size of the graph being

10In spite of improvements due to “folding” heuristics [18, 59].
11This may be either vertices or edges.

- 34 -

Chapter 3: Related work

partitioned, allowing them to scale to to very large graphs (e.g. billions of elements).

Secondly, although graph streams are often created by reading static data serially from

disk, streaming partitioners may trivially be applied to dynamically growing graphs

by treating each new edge or update as an element in the stream. This is in stark

contrast to the mentioned difficulties with applying distributed partitioners to such

graphs.

The canonical examples of streaming graph partitioners are Linear Deterministic Greedy

(LDG) [110] and Fennel [117], which both make partition assignment decisions on the

basis of inexpensive heuristics considering the local neighbourhood of each vertex 12

at the time it arrives. LDG was proposed by Stanton and Kliot in a survey of vari-

ous streaming graph partitioning heuristics, where it was the most effective technique

considered. It assigns vertices to the partitions where they have the most existing

neighbours, but penalises that number of neighbours for each partition by how full it

is, maintaining balance. Later, Tsourakakis et al. propose Fennel, which interpolates

between the LDG and another heuristic [95], which amounts to assigning vertices to

the partitions where they have the fewest non-neighbours. Fennel produces partition-

ings of higher quality than LDG w.r.t. min. edge-cut, in similar runtime, though at

the cost of slightly worse partitioning balance.

Despite offering unlimited scalability and up to an order of magnitude speedup vs

global and distributed techniques [117], streaming partitioners have their drawbacks

as well. By relying upon the available local neighbourhood information for a vertex v at

the time v is added to the graph stream, such techniques render themselves sensitive

to the graph stream’s ordering. For example, consider one of the common stream

orderings outlined in chapter 2.1.1, breadth-first (BFS). Given a BFS ordering, a graph

stream maintains a high degree of locality: vertices which are connected will appear

close together within the stream. As a result, for each new vertex v which arrives in a

BFS stream, the partitioner has likely already placed many of its neighbours and can

make an effective decision about where to place v such that it is in the same partitions

as the largest number of them.

12All neighbouring vertices and adjacent edges

- 35 -

Chapter 3: Related work

2

1

4

3

time

21 43

Figure 3.3: Trivial example of an adversarial graph stream ordering.

One the other hand it is simple to come up with an ordering for a graph stream

which deprives a streaming partitioner of almost all neighbourhood information for

each arriving vertex. Consider the 2-way partitioning of a diamond graph in Fig. 3.3,

streamed in the order (1, 3, 2, 4). Given no neighbours for the first half of vertices

received, a naive partitioner might greedily place them in a single partition which,

intuitively, causes a final balanced partitioning with the maximum edge cut: |E|. This

is referred to as an adversarial ordering. Whilst truly adversarial graph stream orders

are uncommon, random graph stream orderings have been shown to exhibit somewhat

poor locality [110] and occur frequently in practice. Indeed we consider the order in

which dynamic graphs grow to be approximately random.

As a result of this sensitivity, streaming algorithms generally produce partitionings of

lower quality than their non-streaming counterparts but with much improved perfor-

mance. Note an important caveat to this performance improvement: some streaming

algorithms (e.g. Fennel) are difficult to parallelise [87] and therefore must read a graph

purely sequentially. Thus, if a large static graph is available in advance, the load-

ing of which dominates partitioner runtime, distributed techniques may exhibit better

performance [76].

3.4.1 Re-streaming

Some systems [52, 87] attempt to strike a balance between the performance of a stream-

ing graph partitioner and the quality of a non-streaming one by dropping the“one-pass”

requirement of the strict streaming model.

- 36 -

Chapter 3: Related work

For example, Huang et al’s Leopard [52] repeatedly considers placed vertices for reas-

signment to other partitions later. Specifically, Leopard notes that when a new vertex

v′ arrives in a stream and is assigned to partition Vi, an adjacent vertex v previously

assigned to partition Vj may no longer be in the optimal partition to cut as few edges

as possible. Therefore, Leopard re-streams vertices such as v after their neighbourhood

has changed, reapplying the original partitioning heuristic. This improves partitioning

quality over time, especially for dynamic graphs, but at the cost of performance.

To understand the performance impact of this technique, consider a pathological case

where each new vertex v′ in the stream causes a cascade of re-streaming operations

amongst its neighbours, then their neighbours, and so on. Huang et al. control the

trade off between quality and performance by only actually re-streaming a subset of

the neighbours of a new vertex v′. This subset is selected using a heuristic which is

biased against neighbours with high degree. Therefore, if a neighbour v has many

other neighbours already, it will be re-streamed less frequently.

Interestingly, Leopard can also consider replicating vertices as they arrive in a graph

stream. Replication may be used to ensure data availability and to further optimise

for the min. edge-cut objective function, as discussed below (Sec. 3.5.3). Throughout

this review, however, we consider Leopard without replication as that is how it is

evaluated [52].

Rather than focus on partitioning dynamically growing graphs, Nishimura et al. [87]

focus on a common use-case whereby an entire graph is partitioned using a streaming

heuristic, repeatedly and at regular intervals. For example, a social network may wish

to partition its data each night before performing some routine analytical computation.

They propose partitioning in a number of iterations, processing the entire graph stream

in each iteration using a modified streaming heuristic which accounts for the location

of each vertex’s neighbours after previous iterations, even if they have not yet arrived

in the current stream. This provides significant partitioning quality improvements over

strictly “one-pass” streaming systems, whilst preserving their constant memory usage

and therefore scalability. Furthermore, Nishimura et al’s evaluation demonstrates that

their approach achieves partitioning quality similar to that of global partitioners such

as METIS, in around 10 iterations. Whilst impressive, this approach intuitvely has one

- 37 -

Chapter 3: Related work

major drawback: performance. It takes n times longer than, e.g., LDG to partition of

a graph from scratch, where n is the desired number of restreaming iterations.

Finally, note that besides their other advantages and disadvantages, all the (re)streaming

partitioners above13 are workload agnostic, optimising for the min. edge-cut objective

function. As a result, they share the implied disadvantages with their non-streaming

counterparts.

3.5 Workload sensitive partitioning

Thus far in this chapter we have discussed only those systems which optimise for var-

ious objective functions (Sec. 2.4), most commonly min. edge-cut. As mentioned,

optimising for this function renders the output of such partitioners agnostic to the

traversal patterns of specific workloads, cutting each edge of a graph with equal like-

lihood. A workload which focuses on small and shifting subsets of graph edges, e.g. a

stream of sub-graph pattern matching queries, risks causing many expensive inter-

partition traversals.

It is technically true that many min. edge-cut partitioners [33, 58, 90, 102, 110, 117]

may account for edges with varied weights, essentially optimising for min. edge-

weight-cut. If these weights are set to reflect the frequency with which a work-

load traverses each particular edge, then a min. edge-weight-cut partitioning may

be somewhat workload-sensitive. However, for many classes of graph workload it is

not possible, or at least highly expensive to track the number of traversals of each

edge in order to derive their weights [129]. Additionally, partitionings optimised for

this modified function are still agnostic to workloads which may change over time. A

min. edge-weight-cut system would have to continuously update edge weights and

repeatedly repartition a graph in order to be workload sensitive.

Recently, several specialised systems [20, 89, 91, 97, 107, 125] attempt to account for

specific workloads more efficiently when partitioning graphs. However, these often

focus on offline, analytical workloads [107, 125] or are replication [84, 91, 96, 120, 129]

schemes, rather than graph partitioners. There are some systems [20, 89, 97] which

13Both streaming and restreaming.

- 38 -

Chapter 3: Related work

are focused on online, transactional workloads, though these are largely confined to

partitioning traditional relational databases, rather than large graphs.

Note that workload-sensitive systems may be local, global, distributed or streaming,

but are discussed separately here as they most closely relate to the motivating problem

for our thesis (Sec. 1.2).

3.5.1 Offline workloads

Some partitioners, such as LogGP [125], CatchW [107] and Mizan [62], are focused

on improving graph analytical workloads designed for the bulk synchronous parallel

(BSP) model of computation (Sec. 2.2).

Remember that in the BSP model a graph processing job is performed in a number

of supersteps, synchronised between partitions. CatchW examines several common

categories of graph analytical workload. It proposes techniques for predicting the set

of edges likely to be traversed in the next superstep, given the set of edges traversed in

the previous ones, along with the category of workload being executed. Subsequently,

between supersteps, CatchW moves a small number of these predicted edges to other

partitions, minimising future inter-partition communication.

LogGP uses a similar log of activity from previous supersteps of an analytical job

to construct a hypergraph14 where vertices which are frequently accessed together are

connected. LogGP then uses an existing global technique to partition this hypergraph,

using the result to suggest placement of graph vertices and reducing the job’s execution

time in future.

Finally, Mizan also collects a log of inter-partition traversals (messages) from each

superstep, along with their response times. Rather than construct and partition a

hypergraph, however, Mizan uses a local partitioning technique. It identifies a small

number of vertices which may be causing workload imbalance and iteratively swaps

them with other partitions before the next superstep.

Though not strictly workload-sensitive, another collection of partitioning techniques

optimised for BSP workloads are those which are environment-sensitive [126, 131,

14A hypergraph is a graph in which single edges may connect more than 2 vertices.

- 39 -

Chapter 3: Related work

132]. These systems contend that, whilst reducing the number of inter-partition edges

traversed by an analytical job effectively reduces its communication time, it may not

be the most effective way to minimise total job execution time. This is due to the fact

that a cluster of machines may be heterogeneous15, i.e. machines may have different

levels of computing power, or be virtualised across various physical hosts, affording

different levels of inter-machine communication.

For example, Xu et al. propose modelling the topology of a cluster upon which a graph

partitioning will reside, as a graph itself. Subsequently, given some basic information

about a workload’s communication and computation characteristics, vertices and edges

of the data graph are assigned to appropriate machines, minimising workload execution

time.

3.5.2 Online workloads

Relational database management systems (RDBMS), whilst not strictly storing graphs,

are most often subject to online, transactional workloads. Some works propose par-

titioning schemes for relational data which are sensitive to such workloads [20, 89,

97]. Interestingly, this often involves representing a relational query workload as a

graph [20, 97].

For instance, Schism [20] captures a query workload sample ahead of time, modelling

it as a hypergraph where edges correspond to sets of records which are involved in

the same transaction. This graph is then partitioned using existing global techniques

(specifically, METIS) to achieve a min. edge-cut. When mapped back to the origi-

nal database, this partitioning represents an arrangement of records which causes a

minimal number of transactions in the captured workload to be distributed.

Whilst this technique does reduce inter-partition communication and therefore improve

query performance, it does have some limitations. Firstly, a hypergraph representation

of the relational query workload can be very large and therefore expensive or imprac-

tical to partition with METIS, impacting system scalability [97]. Secondly, because

the workload-graph partitioning is “one-off”, Schism is only as workload-sensitive as

15Not to be confused the heterogeneity of labelled graphs, which we define in chapter 4.

- 40 -

Chapter 3: Related work

min. edge-weight-cut graph partitioners. In other words, it assumes that a workload

is available a priori and does not change over time.

In SWORD, Quamar et al. [97] build upon the ideas presented in Schism while ad-

dressing some limitations. For instance, they use a compressed representation of the

workload graph and perform incremental re-partitioning to improve the partitioning’s

scalability to workload changes.

Despite these improvements, SWORD does not quite address the motivating problem

of this thesis (Sec. 1.2). Fundamentally, the system is focused on optimising workloads

executed over relational data, which overwhelmingly consist of short , 1-2“hop”queries.

This justifies Quamar et al’s simplifying decision, when repartitioning a graph, to

consider only queries which span a single partition. However, this assumption does

not hold for general sub-graph pattern matching queries. It is unclear how SWORD’s

approach would perform given a workload containing many successive join operations,

equivalent to the traversals required for pattern matching.

Other RDBMS partitioners, such as Horticulture [89], rely upon a function to estimate

the cost of executing a sample workload over a database and subsequently explore a

large space of possible candidate partitionings. We do not consider such partitioners in

this work for two reasons. Firstly, these cost functions, whilst effective, are expensive

and so executed offline and ahead of time. Partitioning systems which employ them

therefore suffer from the same drawbacks as Schism: assuming a consistent workload.

Secondly, many cost functions, such as the “Large-Neighbourhood Search” employed

by Horticulture, depend heavily upon the relational data model and are not naturally

applicable to graph databases.

In the domain of RDF stores, Peng et al. [91] use frequent sub-graph mining ahead

of time to select a set of patterns common to a provided SPARQL query workload.

They then propose partitioning strategies which ensure that any data matching one

of these frequent patterns is allocated wholly within a single partition, thus reducing

average query response time. They also keep track of what frequent pattern matches

have been assigned to which partitions, using this index to produce distributed query

plans during workload execution.

- 41 -

Chapter 3: Related work

Note that, because sub-graphs may form part of multiple frequent pattern matches,

they are replicated across many partitions. Whilst replication is an important ap-

proach to improving the effective quality of a graph partitioning, it is not without its

drawbacks, increased storage and data synchronisation costs. We discuss these costs

further in the following section.

3.5.3 Replication systems

Replication based partitioners broadly refers to those systems which produce graph

partitionings where vertices, edges or larger sub-graphs exist in several partitions si-

multaneously. The most common application of replication in OLTP focused databases

is data redundancy, i.e. ensuring that data is still accessible in the event that one or

more partitions become unavailable (due to an error, maintenance etc. . .). However,

replication may also be used to improve the quality of a graph partitioning with respect

to a workload.

Consider two adjacent vertices a, b residing on separate partitions S1, S2. If a query

engine must traverse the connecting edge in order to verify a potential match, then a

costly inter-partition traversal will occur. If instead, a and b are replicated to S2 and

S1 respectively, then no such traversal will occur; all of the information is available to

the query engine within a single partition.

As mentioned, replication has two distinct costs: storage space and write performance.

If you have a replication factor of three16 then your graph will take three times as much

space. Additionally, if a vertex or edge which has been replicated is subsequently up-

dated then all the replicas must also be updated, incurring additional network com-

munication overhead. As a result of these costs, graph partitioning systems must be

selective about which elements they replicate and how many replicas they produce.

This is most often achieved by considering characteristics of the workload due to be

executed over a graph [84, 91, 96, 129]. In other words, replication based systems are

often workload-sensitive.

Peng et al. [91], mentioned previously, consider micro-level properties of a workload

(namely the sub-graphs common to many pattern queries in a workload) when deciding

16Maintain 2 replicas of each vertex, on average.

- 42 -

Chapter 3: Related work

what to replicate. However, other replication systems [84, 91, 129] focus on macro-

level, statistical workload properties.

For instance, Pujol et al. [96] present a “social partitioning and replication middle-

ware” (SPAR). In social networking, and other applications which produce very large

scale graph data, the de facto approach is to use a random, hash-based partitioning.

Whilst this approach minimises the complexity of generating graph partitionings, it

also maximises the edges cut, and subsequently network traffic. In order to combat

this issue, Pujol et al. propose ensuring that all single-hop neighbours of a vertex are

replicated locally to that vertex’s parent partition; They call this ensuring local seman-

tics. For most classes of query common to social networking applications (e.g. list all

followers of user x), the relevant information is a single traversal away from x. In the

presence of these broad, shallow traversals, local semantics may provide a reduction in

network communication overhead of up to 200%. However, this performance increase

is dependent upon the domain specific knowledge that the majority of traversals are

of length 1, and would be substantially less effective in the case of other, more gen-

eral workloads. Furthermore, despite Pujol et al’s assertion that data is likely already

replicated due to a requirement for data redundancy, the scheme incurs significant

space complexity costs, with replication factors as high as 8 [84].

In a later work, Mondal and Deshpande [84] propose an extension to the local semantics

concept which significantly reduces the replication overhead incurred. They introduce

a new measure, called the fairness criterion, which dictates that for each vertex v, at

least a fraction τ of its neighbours must be replicated locally (to v’s partition), where

τ is a threshold value less than or equal to 1. Thus, the local semantics of Pujol et

al. can be seen as a special case of the fairness criterion: where τ = 1.

In addition, Mondald and Deshpande’s system monitors the read/write frequencies of

vertices and use these to decide which fraction τ of a vertex’s neighbours it is most

beneficial to replicate at any given time.

Mondal and Deshpande also propose novel techniques for reducing the cost of keep-

ing replicated nodes upto date throughout a distributed system. Typically, systems

seeking to synchronise distributed data must choose between push-on-change (active)

and pull-on-demand (passive) semantics. The former is more expensive in terms of

- 43 -

Chapter 3: Related work

overall network communication, but the latter incurs more query-time latency. In

their system, Mondal and Deshpande adopt a mixed approach, selecting active or pas-

sive updates based on the same vertex read/write frequencies they collect to inform

replication decisions.

Overall, the replication techniques presented by Mondal and Deshpande are effective,

reducing the number of messages required to keep replicas upto date by 30% whilst

only increasing the average read query latency by 2-3 ms. However, as mentioned,

the system stores histograms of read/write frequencies for each vertex. Not only

is there significant overhead associated with storing this metadata; in some database

management systems (DBMS) it may be non-trivial to collect.

Finally, Yang et al. propose Sedge [129], a system which analyses online query work-

loads as they’re being executed in order to detect “hotspots”: cross partition clusters

of vertices that are being frequently traversed. Sedge dynamically replicates these

hotspots, thereby reducing ipt and network communication whilst the hotspot is ac-

tive. Whilst highly effective at dealing with unbalanced query workloads over time,

the system focuses solely upon the replication of vertices and edges using temporary

secondary partitions. It does not improve upon the initial partitioning of the graph,

which is not guaranteed to be workload sensitive. This can result in Sedge’s replication

mechanism doing more work than is necessary over time, adversely affecting overall

system performance.

3.6 Comparing partitioner systems

In preceding sections we have surveyed various existing approaches to the problem

of balanced graph partitioning. The survey identifies a number of flaws common to

each category of approach, then discusses to what extent these flaws are minimised or

eliminated by the state of the art.

In this section we identify eight distinct properties of state of the art graph partitioners

which allow them to overcome the flaws of their predecessors, with respect to our

motivating problem (Sec. 1.2).

- 44 -

Chapter 3: Related work

Recall that this problem is: optimising large online graph partitionings for workloads

of transactional queries executed online, e.g. against a graph database management

system (GBMS). The properties identified below are those which we believe are ben-

eficial in addressing this said problem. They are not intended as a comprehensive list

of the useful properties of graph partitioners. Indeed, note that each property natu-

rally implies a dual, such as workload sensitive vs. workload agnostic partitioners. A

partitioner which supports a given property essentially cannot support its potentially

useful dual. For example, streaming is identified as a property; whilst normally ben-

eficial for performance, as noted (Sec. 3.4), streaming partitioners should be avoided

when partitioning quality is of the highest importance. Instead a partitioner with the

dual property global should be preferred.

3.6.1 System properties

Streaming (S) partitioners treat graphs as ordered sequences of vertices and edges,

immediately assigning each to a partition using cheap heuristics, thus trading off

partitioning quality against performance and scalability (Sec. 3.4).

Distributed (DT) partitioners partition graphs which have already been partitioned,

albeit potentially naively. The cluster of machines which hosts the graph com-

municate to compute reassignments of elements amongst partitions, optimising

for some objective function. The ability to add machines to the cluster means

that these partitioners typically have excellent scalability, though at the cost of

some network overhead and therefore performance (Sec. 3.3).

Scalable (SC) partitioners are those partitioners which may take advantage of “infi-

nite” resources (i.e. are distributed) or whose resource usage scales independently

to the size of graph being partitioned (i.e. streaming). These partitioners may

be applied to graphs with billions of vertices and edges.

Dynamic (DY) partitioners are those systems which are capable of partitioning

graphs which grow over time. Streaming partitioners are naturally applicable

to dynamic graphs, but other systems may also introduce schemes to handle the

- 45 -

Chapter 3: Related work

updates to a greater or lesser extent. These schemes usually come at the expense

of some computational overhead.

Replication Free (RF) partitioners are those which maintain the disjoint property

for produced partitionings, i.e. each element of the graph exists on a single par-

tition. Replication may be used in partitioners to effectively optimise for min.

edge-cut (or some other objective function) by ensuring that vertices and edges

are stored locally to the various partitions where they may be needed, reduc-

ing the number of expensive inter-partition traversals (ipt). Replication free

partitioners evidently lose these benefits, however they also avoid the storage

overhead incurred in storing replicas as well as the network overhead associated

with keeping replicas consistent in the presence of updates.

Workload Sensitive (WS) graph partitioners are those which produce partitionings

optimised for a specific workload.

Note that there are markedly different approaches to graph partitioning which may

be said to share the workload sensitive property. As a result, the subsequent two

properties may be used to distinguish between workload-sensitive systems.

Online Workload (OW) capable partitioners are those which are able to continu-

ously optimise a graph partitioning for a given workload, the contents or relative

frequencies of which may change over time.

Transactional Workload (TX) capable graph partitioners are those which opti-

mise for a workload typically consisting of many queries traversing highly lo-

calised areas of a graph and either performing updates or returning small result

sets. In GDBMS these queries correspond to sub-graph pattern matching oper-

ations.

3.6.2 Suitability of existing systems to online workload-sensitive
partitioning.

Table 3.1 shows which of the graph partitioners we have surveyed support which of the

properties listed above. Each cell contains a Y to indicate support, a P to indicate

- 46 -

Chapter 3: Related work

Table 3.1: Properties of Graph partitioners

System S D SC DY RF WS OW TX
KL/FM [33] Y P Y
Spectral [9, 28, 51] Y
DMACA [112] Y Y
PT-Scotch [18] Y Y Y
ParMETIS [59] Y Y Y
ParHiP [83] Y Y Y
Sheep [76] Y Y Y
LDG [110] Y Y Y Y
Fennel [117] Y Y Y Y
Nishimura et al. [87] Y P P Y
Leopard [52] Y Y Y Y
Peng et al. [91] P Y Y
CatchW [107] Y Y Y P
Mizan [62] Y Y Y P
LogGP [125] Y Y Y P
Sedge [129] Y Y Y Y Y
Mondal & Deshpande [84] Y Y P Y
Schism [20] Y Y
Sword [97] P P Y P Y

partial support, or is blank to indicate no support. In order to improve readability,

some systems in Table 3.1 are grouped together, e.g. Spectral graph partitioners [9,

28, 51] sharing the same properties, or elided altogether, e.g. the non-parallel versions

of global partitioners (KaHiP [102], METIS [58], Scotch [90] and MACA [64]).

Note that Table 3.1 indicates partial support (P) of the online workload (OW) prop-

erty by several systems. This is because workload-sensitive (WS) partitioners may be

more or less capable of handing a dynamic workload, even without explicitly tracking

workload changes over time. For example, the WS partitioners least suited to han-

dling a dynamic workload are those like Schism [20], which account for specific vertices

and edges traversed, a priori, instead of general traversal patterns [91, 97] or broad

statistics [84].

Table 3.1 would seem to indicate that systems such as Fennel [117], Leopard [52] or

Sedge [129] are the most appropriate choice for partitioning online graphs. However,

all these systems have flaws highlighted previously in this survey, leaving significant

room for innovation.

- 47 -

Chapter 3: Related work

As a replication system, Sedge is unable to produce initial partitionings. Instead,

Yang et al. employ a workload-sensitive method to create temporary partitions and

replicate graph elements currently involved in large numbers of queries, improving read

performance. This means the amount of replication Sedge performs, and therefore the

overhead it incurs, is sensitive to the quality of the initial partitioning with respect to

the workload (Sec. 3.5.3). As Table 3.1 demonstrates, there are currently no scalable

and workload-sensitive partitioners with which to produce such an initial partitioning.

As streaming partitioners, both Fennel and Leopard are able to scale to partitioning

large dynamic graphs. However, as discussed (Sec. 3.4), the “one-pass” approach of

Fennel produces partitionings of around 40−60% lower quality than those produced by

Leopard. Meanwhile, the “re-streaming” approach of Leopard is up to 44 times slower

than Fennel, unless it sacrifices some partitioning quality . Additionally, both systems

optimise for the min. edge-cut objective function (i.e. are not workload-sensitive)

and therefore may not produce truly high-quality partitionings with respect to certain

query workloads (Sec. 3.5).

In general, Table 3.1, along with the above issues, demonstrates a clear need for graph

partitioning techniques which are scalable, applicable to online graphs and sensitive

to online workloads. It is such techniques which we propose and evaluate throughout

subsequent chapters.

- 48 -

Chapter 3: Related work

- 49 -

4
Query-aware

partition-enhancement with
TAPER

Contents
4.1 Introduction . 51

4.1.1 The TAPER re-partitioner . 53

4.1.2 Contributions . 55

4.1.3 Related Work . 55

4.2 Definitions . 56

4.2.1 Stability of a graph partitioning 57

4.2.2 Workload-sensitive stability . 58

4.2.3 The Visitor Matrix: Non-random walks with memory 59

4.3 Enhancing a Partitioning . 61

4.3.1 Increasing stability by Vertex swapping 61

4.3.2 Introversion and Extroversion 62

4.4 Prefix Trie encoding of query expressions 64

4.4.1 Associating probabilities to trie nodes 66

4.4.2 Computing VM cells with the TPSTry 68

4.5 Implementation . 70

4.5.1 Architecture . 70

4.5.2 Reducing the cost of the Visitor matrix 71

4.5.3 TPSTry Implementation . 73

4.5.4 Calculating a partial extroversion order 74

4.5.5 Vertex Swapping . 75

4.6 Evaluation . 77

4.6.1 Experimental setup . 78

4.6.2 Results . 81

4.7 Conclusion . 87

- 50 -

Chapter 4: Query-aware partition-enhancement with TAPER

Summary

This chapter presents TAPER: our graph repartitioning algorithm which is both

workload-sensitive and suitable for use in online settings. TAPER takes any given

initial partitioning as a starting point, and iteratively adjusts it by swapping cho-

sen vertices across partitions, heuristically reducing the probability of inter-partition

traversals for a given workload of path queries. Iterations are inexpensive thanks to

time and space optimisations in the underlying support data structures.

We evaluate TAPER on two different large test graphs and over realistic query work-

loads. Our results indicate that, given a hash-based partitioning, TAPER reduces the

number of inter-partition traversals by ∼ 80%; given an unweighted METIS partition-

ing, by ∼ 30%. These reductions are achieved within 8 iterations.

4.1 Introduction

Recall that one of the advantages of representing application data as a labelled graph

is the many useful types of operation which are rendered efficient and/or simple to

express (Ch. 1). One such operation type is the path query, employed specifically for

learning analytics [93], querying scientific workflow provenance [1] and fuzzy search of

semantic web documents [94].

In this chapter we address the problem of efficiently, incrementally and continuously

improving the performance of these path queries over k-way partitionings

of large, heterogeneous, labelled graphs.

Note that we consider the heterogeneity of a graph as the absolute size of its vertex

label set, or |Lv| given the definition of a labelled graph G = (V,E, Lv, fv) from section

2.1. For example, a social graph with Lv = {Person, Post} is more heterogeneous than

a web graph with Lv = {Url}.

In the Introduction chapter (Ch. 1), we present how balanced k -way graph partitioning

may be used to effectively horizontally scale graph based applications (Sec. 1.1).

- 51 -

Chapter 4: Query-aware partition-enhancement with TAPER

However, when subsequently outlining the motivating problem for this thesis (Sec.

1.2), we argued that existing systems for producing such graph partitionings [17, 20,

33, 51, 52, 58, 59, 76, 83, 87, 90, 97, 102, 107, 110, 117, 125] are unsuitable for graphs

subject to online, data-management workloads. This argument is further supported by

Yang et al.[129], who experimentally demonstrate that online graph queries (including

path queries) cause large numbers of expensive inter-partitioned traversals (ipt) over

graphs partitioned by traditional methods.

The literature survey in Chapter 3 outlined eight distinct properties whose lack may

render graph partitioners unsuitable for addressing our motivating problem (Sec. 3.6).

However, in this chapter, we focus on three in particular.

Firstly, many partitioners [51, 52, 58, 90, 102, 110, 117] cannot operate whilst dis-

tributed across multiple machines (i.e. no support for property D), instead requiring

that an entire graph is collected to, or streamed through a single point. Additionally, all

graph partitioning algorithms will require re-execution in an online data-management

setting, i.e. after a series of graph updates or workload changes. As graphs are likely

only partitioned at all if they are very large, this implies a huge network communication

overhead, which is certainly impractical online [55].

Secondly, most existing partitioners [17, 33, 51, 52, 58, 59, 59, 76, 83, 87, 102, 110, 117]

are workload-agnostic, as they optimise for the minimum number of inter-partition

edges (min. edge-cut) or some other workload-agnostic objective function. In other

words, they lack the workload-sensitive (WS) property. As previously mentioned,

these workload-agnostic partitioners essentially assume a uniform likelihood of traver-

sal for each edge throughout workload execution, which, for workloads of online opera-

tions such as path queries, is unrealistic (Sec. 1.2). Even applicable existing workload-

sensitive graph partitioners [20, 91, 97, 107, 125] can only account for a constant

likelihood of each edge’s traversal and therefore lack the OW property: they are not

sensitive to any workload changes which may occur over time.

To appreciate the importance of query-sensitive partitioning, consider the graph of

Fig. 4.1. The partitioning {A,B} is optimal following a balanced min edge-cut ap-

proach [58], but it may not be optimal when query patterns are taken into account.

- 52 -

Chapter 4: Query-aware partition-enhancement with TAPER

a cb

d ac

1 2 3

4 5 6A

B

Figure 4.1: Illustrative example graph

Following common practice, we express queries using a Regular Path Queries [8, 81]

(RPQ) formalism, which can be expressed using a restricted form of regular path

expressions over the set of vertex labels. For example, expression c · (b|d) evaluates to

paths (3, 2), (3, 4), (5, 2), (5, 4) over the graph in fig. 4.1.

Notice that computing each of these paths requires 1 ipt . However, it is easy to see that

with the alternative partitioning V1 = {1, 3, 6}, V2 = {2, 4, 5}, only paths (3, 2), (5, 4)

require traversing a partition boundary, although this new partitioning is not optimal

with respect to min edge-cut. As concluded in the previous chapter, mature research

on the creation and maintenance of online workload-sensitive partitionings is currently

confined to relational DBMS and replication systems [20, 97, 129].

4.1.1 The TAPER re-partitioner

This chapter presents TAPER: a new graph repartitioning system which is sensitive to

evolving query workloads (WS and OW), designed to work on distributed graphs (D)

and not reliant on replication (RF). Let Q = {(Q1, n1) . . . (Qh, nh)} denote a query

workload, where ni is the relative frequency of Qi in Q, and let Pk(G) be an existing

k-way partitioning of G. This could be for instance a simple Hash-based partitioning,

or one based on an established method such as METIS [58], LDG [110] or spectral

recursive octasection [51].

The goal of TAPER is to enhance Pk(G), by computing a new partitioning P ′k(G,Q)

from Pk(G) that takes Q into account. The new partitioning is obtained by swapping

- 53 -

Chapter 4: Query-aware partition-enhancement with TAPER

vertices across the partitions of Pk(G), using heuristics that attempt to minimise the

total probability of ipt , denoted total extroversion, that occur during execution of any

of the queries in Q. As this method only involves moving relatively few vertices from

one partition to another, it is much less expensive than a complete re-partitioning,

even after many iterations. Furthermore, by virtue of its incremental nature, TAPER

is able to track changesQ → Q′ in the workload by re-partitioning its own partitioning,

i.e.,

Pk(G,Q)
Q′−→ P ′k(G,Q′) (4.1)

In general, given an initial, possibly workload-agnostic, and non-optimal initial parti-

tioning P 0
k (G), TAPER can be used to compute a progression of partitionings:

P 0
k (G)

Q1−→ P 1
k (G,Q1)

Q2−→ P 2
k (G,Q2) . . . (4.2)

These partitionings have the property that each P i
k(G,Qi) exhibits lower extroversion

than the previous P i1
k (G,Qi−1) given Qi: it is approximately optimised for that new

workload.

TAPER makes use of space-efficient main-memory data structures to encode Q and to

associate estimates of traversal probability with the edges in G. These are then used

to calculate the extroversion of each vertex in its partition. A TAPER re-partitioning

step, as in Definition 4.1, is actually several internal iterations of a vertex-swapping

procedure aimed at reducing extroversion one vertex at a time. Each time a new TA-

PER invocation is required (Def. 4.1) we update our data structures for Q′ and G′,

recompute vertex extroversion and begin a new round of iterations. Note that as a

technique which relies upon iterative swapping of vertices, TAPER is technically a “lo-

cal graph re-partitioner”, similar to others discussed in the literature survey (Sec. 3.1).

- 54 -

Chapter 4: Query-aware partition-enhancement with TAPER

4.1.2 Contributions

The specific contributions contained within this chapter are as follows:

• Firstly, from the notion of stability of a partition[24] we derive a workload-

sensitive operational metric of partitioning quality, expressed in terms of ex-

troversion for each vertex. This acts as the objective function for TAPER’s

repartitioning.

• Secondly, we describe a space-efficient encoding of the traversal probabilities for

each edge in G, given Q. We also show how these traversal probabilities can be

updated following the evolution of Q.

• Thirdly, we demonstrate how TAPER makes use of these structures to iteratively

achieve a re-partitioning step (Def. 4.1).

We present an extensive evaluation of the TAPER system using both real and syn-

thetic graphs of varying sizes, comparing its efficiency and output quality against one-

off workload-agnostic partitionings obtained using the popular METIS approach[58],

without edge weights. In our experiments we use both a simple hash-based partition-

ing as well as a METIS partitioning as a starting point P 0
k (G) for one invocation of

TAPER. Our results show that such an invocation converges to a stable quality within

6-7 internal iterations, and that the resulting new partitioning P i+1
k (G,Q) exhibits

78% quality improvement when a hash-based P 0
k (G) starting point is used, and 31%

improvement when using a METIS initial partitioning.

Finally, we show experimentally how the quality of a partitioning degrades following

successive simulated changes in Q, and how it is successfully restored by repeatedly

invoking TAPER on the current partitioning and the new workload.

4.1.3 Related Work

Although Chapter 3 presents a thorough survey of graph partitioning techniques which

are related to those in this thesis, this section briefly highlights those which are similar

or relevant to TAPER in particular.

- 55 -

Chapter 4: Query-aware partition-enhancement with TAPER

TAPER’s goal of repeatedly refining an existing partitioning is technically supported

by ParMETIS[59], the parallel implementation of METIS[58], as well as by other

distributed versions of global graph partitioners[18, 83] highlighted previously (Sec.

3.3). However, this process is computation and communication intensive and as such

is often only used as a “one-off” step, rather than for repeated repartitioning of a

graph[120].

Additionally recall that, like their undistributed global counterparts[58, 90, 102], these

partitioners are workload-agnostic. Although some, including ParMETIS, may be

provided with edge-weights which correspond to the traversal frequencies of individual

edges by a query workload, such weights are much too expensive to collect and maintain

over time (Sec. 3.5).

The work of Vaquero et al. [120] is perhaps the most relevant to our own with TAPER.

They propose a system of iterative vertex swapping to adapt to graph changes over

time in a data-management context (e.g. vertex additions and removals). This is

highly effective at maintaining a good partitioning over time, w.r.t min edge-cut.

However, because the system optimises for min edge-cut, it does not consider the

heterogeneity of a graph, or that of its query workload. Thus the work we present

here could complement that of Vaquero et al: they consider changes to the graph

whilst we consider changes to its workload. Other modern iterative swapping systems,

whilst still similar to TAPER either focus on analytical workoads [62] or adapting to

heterogeneity in the physical network layer of a distributed system [126, 131, 132].

4.2 Definitions

Given the previous definition of a labelled graph G = (V,E, Lv, fv), where the function

fv : V → Lv surjectively associates a label fv(v) from the given set Lv to each vertex

v ∈ V , a path-query q over G is equivalent to a regular expression over the symbols

in Lv. We use a type of Regular Path Queries (RPQ) [81], defined by the following

expression language over Lv:

E ::= τ | (E · E) | (E + E) | (E | E) | E∗ (4.3)

- 56 -

Chapter 4: Query-aware partition-enhancement with TAPER

where τ ∈ Lv, and as usual “+” represents union, “|” exclusive disjunction, and “*” the

Kleene closure operator.

Let L(q) denote the regular language defined by a query q. The result of executing q

is a set of paths Gi = (Vi, Ei, Lv, l), where Vi = {vi1 . . . vin} ⊂ V consists of all and

only the vertices such that l(vi1) . . . l(vin) is a valid expression in L(q). Ei ⊂ E is the

set of edges e ∈ E that connect the vertices vij in G.

Note that path queries are a special case of more general sub-graph pattern matching

queries, able to express only simple sequential paths of connected vertices, rather than

more complex topologies such as those including branches and cycles. Whilst RPQs

may be used to express sub-graph pattern matching queries, this requires either con-

junctions between expressions or other extensions, such as those proposed by Barcelo

et al.[8]. For simplicity, these extensions are not covered by the RPQ fragment de-

fined by expression language (Def. 4.3), and are considered out of scope for the work

presented in this chapter.

4.2.1 Stability of a graph partitioning

The broad goal of TAPER is to increase the quality of a k -way graph partitioning

(Sec. 4.1.1). Recall that throughout this thesis, we consider the quality of a partition-

ing Pk(G) to be defined as the number of inter-partition traversals (ipt) which occur

when executing a given query workload Q, however, do not employ ipt directly as an

objective function in partitioning algorithms (Sec. 2.4).

In the following sections we define the workload-sensitive proxy quality measure which

does serve as the objective function for TAPER’s optimisation. For this, we extend the

notion of partition stability [24], first introduced by Delvenne et al. in the context of

multi-resolution community detection in graphs [23]; stability defines partition quality

in terms of network flow. The main intuition is that, when a partition is stable, a

flow that originates from a point within a partition and moves randomly along paths

should be trapped within the same partition for a long time t.

Network flow in graphs is modelled as a random walk, where discrete time t is measured

as the number of steps. More precisely, the stability of a partition Vi is defined as the

- 57 -

Chapter 4: Query-aware partition-enhancement with TAPER

probability that it contains the same random walker both at time t0 and at time t0 + t,

less the probability for an independent walker to be in Vi (by ergodicity1):

p(Vi, t0, t0 + t)− p(Vi, t0,∞)

Note that this definition allows for the possibility of a walker crossing multiple partition

boundaries before returning to its initial partition at any time during the [t0, t0 + t]

interval. The overall stability of a partitioning Pk(G) is the sum of the stability of all

partitions Vi where 1 ≤ i ≤ k. In other words, the greater the stability of a partitioning,

the higher the probability that a random walker, having traversed t steps, will be in

the same partition where it started.

4.2.2 Workload-sensitive stability

We extend stability, creating a new measure of partition quality which we will refer to

as workload-sensitive stability. Our extensions are driven by two main requirements.

Firstly, as mentioned, TAPER aims to improve the quality of a graph partitioning

by minimising the probability of expensive inter -partition traversals, when executing

a given query workload Q (Def. 4.1 in Sec. 4.1.1). Using stability, which models

network flow as random walkers that traverse paths in a graph, gives us more flexibility

than other measures of partition quality, such as edge-cut, when we try to incorporate

information on a query workload. Stability’s ‘walkers’, represented by the probabilities

in a transition matrix, may be modified to account for the specific graph patterns

associated with the queries in Q, along with their relative frequency. This will reveal

different dominant traversal patterns and produce a measure of quality more closely

correlated with the cost of executing Q over a particular graph partitioning. Secondly,

the current definition of stability as given above is limited, as it does not account

for the probability that a walker crosses partition boundaries multiple times within t

steps. In contrast, we need to be able to estimate the probability that the walker does

not leave the partition within the interval.

1According to the ergodic hypothesis [42] P (S, t0,∞), after an infinite time a walker holds no
memory of its initial position.

- 58 -

Chapter 4: Query-aware partition-enhancement with TAPER

4.2.3 The Visitor Matrix: Non-random walks with memory

We address both requirements by extending the well-known notion of a biased random

walk over a graph. Rather than uniform transition probabilities, such a random walk

assumes the more general Markov property; that is, the probability of a transition

from vertex vm to vn only depends on the prior probability of being in vm:

Pr(vm → vn|vi → . . .→ vm) = Pr(vm → vn|vm)

In this case, the probabilities Pr(vm → vn|vm) are captured by a transition matrix M :

M [m,n] = Pr(vm → vn|vm)

and the probability of a t-steps walk from vm to vn is computed as M t[m,n]. How-

ever, taking into account the query matching patterns, as per our requirements above,

invalidates the Markov property, because the probability of a transition vm → vn now

depends on the specific path through which we arrive at vm:

Pr(vm → vn|p→ vm) 6= Pr(vm → vn|p′ → vn)

in general, for any two paths p 6= p′ leading to vm.

In other words, in order to account for query matching patterns of length up to t,

where t is defined by the query expressions in Q, we use a multi-step (non-random)

walk model over the graph, which has memory of the last t steps. Each transition

probability vm → vn is now explicitly conditioned on the paths, of length up to t,

which lead to vm.

To represent these probabilities, we extend M to a set of matrices:

VM (t) ≡ {VM (1), . . . ,VM (t)} (4.4)

where t denotes the longest query matching pattern in Q, and VM (n) has dimension

1 ≤ n ≤ t. We use the term Visitor Matrix (VM) to refer to (4.4).

The definition of VM is by induction, where the base cases are the prior probabili-

ties Pr(vi) to be in vi, for VM (1), and the normal transition matrix M , for VM (2).

- 59 -

Chapter 4: Query-aware partition-enhancement with TAPER

n

n2

n

2 D

3 D

1,1 1,2 1,6

6,1 6,2 6,6

(1,1),1 (1,1),6

(6,6),1 (6,6),6

Q1 = a⋅(b|c)⋅(c|d)

1 2 3

1 2
6 3
6 5

1 2 4

6 5 4

(1,2),1 (1,2),6

(6,5),1 (6,5),6

1 2 3

4 5 6

a b c

d c a

Figure 4.2: Visitor Matrix structure

Formally:

VM (1)[i] = Pr(vi)

VM (2)[i1, i2] = Pr(vi1 → vi2|vi1) = M [i1, i2]

VM (n)[i1, .., in] = Pr(vin−1 → vin|vi1 → . . .→ vin−1) (4.5)

for 2 < n ≤ t. Fig. 4.2 shows a representation of a Visitor Matrix with t = 3, using

a 2-dimensional matrix layout where VM (3) is “appended” to VM (2). The cells in

the matrix store probabilities for paths in the example graph to the right (originally

Fig. 4.1), relative to query expression Q1. For example, path 1→ 2→ 3 is an instance

of query pattern abc, and its probability is stored in VM (3)[1, 2, 3] (similarly for the

other highlighted elements in the matrix). A VM , like any finite transition matrix, is

right-stochastic, i.e., each row sums to 1, and the cells represent all paths up to length

t. We show how to compute the elements of VM (t) for a given query workload Q in

Section 4.4.2.

- 60 -

Chapter 4: Query-aware partition-enhancement with TAPER

In practice, we assume VM (t) is partitioned into k sub-matrices VM i(t), one for each

of k partitions, because we can always find a permutation of the rows and columns of

VM such that VM i(t) is a contiguous sub-matrix of VM . Thus, in the following we

use VM i(t) to refer the VM for partition Vi.

Note that the visitor matrix is impractically large to compute, with a space complexity

of O(|V |t). In Sec. 4.5.2 we present heuristics that are designed to reduce both space

complexity, as well as to avoid computing some of the cells in the VM .

4.3 Enhancing a Partitioning

We exploit the VM structure, to compute a new partitioning P (G,Q) from a partition-

ing P (G), as in Def. 4.1. First we identify a set of vertices in each partition with highest

likelihood of being the source of inter -partition traversals (extroversion). Subsequently

we swap such high-extroversion vertices between partitions, internalising the common

traversal paths resulting from Q in single partitions. As we will show experimentally,

repeated iterations of these steps reduce the overall likelihood of inter-partition traver-

sal across all partitions Vi, and thus, indirectly, increase workload-sensitive stability2.

These iterations constitute one invocation of the TAPER algorithm; not to be confused

with repeated invocations given a changing workload (as described in Def. 4.2).

4.3.1 Increasing stability by Vertex swapping

Informally, we define the extroversion of a vertex v to be the likelihood that it is the

source of an inter -partition traversal, given any of the query patterns in Q. TAPER

seeks to enhance a partitioning by determining a series of vertex swaps between graph

partitions such that their total extroversion is minimised. This is an extension of

the general graph partitioning problem, a classic approach to which is the algorithm

KL/FM, proposed by Kernighan and Lin [61] and later improved upon by Fiduccia

and Mattheyes [33]. They present techniques that attempt to find sets of vertices

and edges which, when moved between two halves of a graph bisection, produce an

2We never explicitly calculate stability, as it is an expensive global measure (O(|V |·|E|+|V |2) [77])
, unsuitable for use as a cost function.

- 61 -

Chapter 4: Query-aware partition-enhancement with TAPER

arrangement that is globally optimal for some criteria (usually min edge-cut). Karypis

and Kumar [58] subsequently generalise this technique to address the problem of k -way

partitioning, in an algorithm that they call Greedy Refinement. Greedy Refinement

selects a random boundary vertex3 and orders the partitions to which it is adjacent by

the potential gain (reduction in edge-cut) of moving the vertex there, subject to some

partition balance constraints. If a move does not satisfy chosen balance constraints,

progressively less beneficial destination partitions are considered. Finally, the move will

be performed. Greedy Refinement has been shown to converge within 4-8 iterations. It

is this algorithm which we use as the basis for our TAPER’s vertex swapping procedure.

However, rather than reduction in edge-cut, we use the reduction in extroversion as

our measure of gain for evaluating vertex swaps.

There are some other key differences between our own approach, and that of Greedy

Refinement. Firstly, Greedy Refinement considers vertices at random from the bound-

ary set, whilst we consider only the set of most extroverted vertices, in descending order

of extroversion. This reduces the number of swaps performed and so should improve

performance. Secondly, Greedy Refinement is designed to operate on a graph com-

pressed using a matching algorithm, so every vertex move corresponds to the movement

of a cluster of vertices in the original graph. Without this trait, Greedy Refinement

would be more susceptible to being trapped in local optimisation minima: as vertex

clusters are iteratively moved across partition boundaries edge-cut may temporarily

increase. We do not operate on a compressed graph; instead we opt for a simple flood

fill approach, detailed in Section 4.5.5. Using traversal probabilities, precomputed in

the visitor matrix, we identify a vertex v’s family : those vertices likely to be the source

of traversals to v. This is the clique of vertices which should accompany a swapping

candidate to a new partition.

4.3.2 Introversion and Extroversion

We now formally define a vertex’s extroversion (symmetrically, along with its in-

troversion), in terms of the VM . Given v ∈ Vi, we have seen that a VM cell

VM
(n+2)
i [vi1 , . . . , vin , v, v

′] denotes the probability of a transition from v to v′, given a

3A vertex with neighbours in ≥ 1 external partitions.

- 62 -

Chapter 4: Query-aware partition-enhancement with TAPER

path p = vi1 → . . . → vin → v that matches a query pattern. Let paths(v, Vi) denote

the set of all such paths in Vi, i.e. those that match a query pattern in Q and end

in v. We define introversion(v) of v as the total probability of such transition occur-

ring, summed over every path p ∈ paths(v, Vi) and every destination vertex v′ ∈ Vi.

Formally:

introversion(v) =
1

Pr(v)

∑
p

(Pr(p) ·
∑
v′∈Vi

VM i(t)[p, v
′])

for all p ∈ paths(v, Vi) (4.6)

where for path p = vi1 → . . .→ vin → v of length n+ 1, we have:

Pr(p) = Pr(v|vi1 → . . .→ vin)·

Pr(vin|vi1 → . . .→ vin−1) · . . . · Pr(vi2|vi1) · Pr(vi1) =

VM
(n+1)
i [vi1 , . . . , v]·

VM
(n)
i [vi1 , . . . , vin] · . . . · VM

(2)
i [vi1 , vi2] · VM

(1)
i [vi1]

and the total intra-partition traversal probability is divided by the total probability

of all traversal paths to v:

Pr(v) =
∑

p∈paths(v,Vi)

Pr(p)

to account for the percentage of the traversals from v that are internal.

Symmetrically, we define the extroversion of vertex v as the total likelihood of inter-

partition traversal v → v′, where v ∈ Vi and v′ ∈ Vj, j 6= i. As the VM is right

stochastic and we may assume that a partition’s VM forms a sub-matrix of the global

VM, inter -partition probabilities are the complement to 1 of the intra-partition prob-

abilities:

extroversion(v) =
1

Pr(v)

∑
p

(Pr(p) · (1−
∑
v′∈Vi

VM i(t)[p, v
′]))

for all p ∈ paths(v, Vi) (4.7)

- 63 -

Chapter 4: Query-aware partition-enhancement with TAPER

4.4 Prefix Trie encoding of query expressions

We use a prefix trie [69], which we have called the Traversal Pattern Summary Trie

(TPSTry), to encode the set of path expressions defined by each new query Q in our

workload Q. Combined with continuous tracking of query frequencies over a time

window t, the TPSTry gives us a compact way to represent legal paths that may lead

to each vertex v in G, along with each path’s current probability of being traversed.

A trie is highly efficient at matching prefixes for multiple sequences or strings. From

the stream of regular expressions which comprise the query workload Q, we derive

a dictionary set D of all label sequences (strings) described by these expressions.

If a sequence of vertices p1, . . . , pn is connected, such that (pn, pn−1) ∈ E, and its

corresponding sequence of labels l(p1) . . . l(pn) is a prefix of some sequence from D,

then that sequence is considered legal.

The idea of using a trie is inspired by Li et al. [70] who use them to encode sequences

of clicked hyperlinks over a web graph, summarising the top k most frequent patterns

in web browsing sessions. In our context, a sequence of clicked hyperlinks is just a

particular case of generic traversals over more general forms of graph data.

Instead of encoding all actual graph traversals, however, we only encode query patterns

in terms of the labels associated with each vertex. Then we associate probabilities

to each node 4 in this, smaller, trie of labels. In practice, each path in the trie is

an intensional representation of a (possibly very large) set of paths in the graph,

namely those whose vertices match the sequence of labels in the trie branch. This

representation is very compact, because this trie grows with |LV |t, where t is the length

of the longest path expressed by queries in Q and LV is typically small. Of course,

one path in the trie now corresponds to a set of paths in the graph. We are going

to take this one-to-many relationship into account when we convert the probabilities

associated with nodes in the trie, into the probabilities associated with vertices in the

graph, i.e., the elements of the VM.

4Note that throughout this thesis, we refer to elements of data and query graphs as vertices,
elements of metadata structures like The TPSTry as nodes.

- 64 -

Chapter 4: Query-aware partition-enhancement with TAPER

Given a workload Q, TPSTry is constructed by mapping each new regular expression

Q ∈ Q to a set of strings, and adding these to a trie using standard trie insertion

procedure. Each node in the TPSTry which corresponds to one of these added strings

is then labelled with the expression Q, even if the node existed as the result of a distinct

previous expression5. The labels for each query in Q are hashes of the expressions

themselves, as these are guaranteed to be unique6. If an expression is not seen within

the preceding time t (i.e. has a frequency of 0) then its label is removed from nodes

in the trie; any node without any query labels is also removed. Such an infrequent

expression is then treated as new in future. The mapping s = str(Q) of a query

expression Q to string s is straightforward and is defined as follows (append(x, y)

simply appends string y to string x):

str(l) = {l} for each l ∈ LV

str(e1 | e2) = str(e1) ∪ str(e2)

str(e1 · e2) = {append(x, y)|x ∈ str(e1), y ∈ str(e2)}

str(e{min,max}) = str(e · e . . . e) // between min and max times

Example. Consider again the graph in Fig. 4.1 and the expressions Q1 = a·(b|c)·(c|d)

and Q2 = (c|a) · c · a. These two expressions are encoded using the two prefix trees

in Fig. 4.3(a). The two trees are then further combined into the single prefix tree in

Fig. 4.3(b), with each node labelled with the set of queries it pertains to.

Finally, consider these additional notes about the construction of the TPSTry data

structure:

Firstly, recall that the RPQ fragment we consider in this chapter includes the Kleene

star operator (Sec. 4.2), allowing for zero or more repetitions of an expression. In-

tuitively, expressions which include this operator map to an infinite set of arbitrarily

large strings, presently impractical to encode in the TPSTry. Instead, we consider the

repetition of an expression to have a minimum length min and a maximum length

max. We contend that this is not an important limitation however, as most practi-

cal implementations of graph query languages recommend or enforce similar limits for

5TPSTry nodes may be labelled with multiple queries
6We use Qi labels in examples for readability

- 65 -

Chapter 4: Query-aware partition-enhancement with TAPER

Q1: � a

b

c

d

d

Q2: �

a c

c

a

ac

Q1, Q2: �

a

c

c

d

ac

b
d

a

(a)

(b)

Q1, Q2

Q1, Q2

Q1
Q1

Q1

Q2

Q2 Q2 Q2

c

c

c

c

Q1

Q1

Q1: � a

b

c

d

d

Q2: �

a c

c

a

ac

Q1, Q2: �

a

c

c

d

ac

b
d

a

(a)

(b)

Q1, Q2

Q1, Q2

Q1
Q1

Q1

Q2

Q2 Q2 Q2

c

c

c

c

Q1

Q1

Figure 4.3: Summary trie construction from queries.

performance reasons [7, 40]. Thus, the TPSTry is still able to encode realistic query

workloads.

Secondly, although we do not consider directed or labelled edges in this work (Sec. 2.1),

the TPSTry is equally applicable to path queries which do include them. Provided that

the edge directions and labels are captured as distinct symbols in query expressions

they may be translated to strings using the same str(Q) procedure, simply producing

a TPSTry of greater depth.

4.4.1 Associating probabilities to trie nodes

Given a trie, such as in Fig. 4.3(b), we associate a probability to each node in the

trie, reflecting the relative likelihood that a sequence of vertices with those labels

will be traversed in the graph. These probabilities are periodically (re)calculated by

considering both the individual contribution of each query Q to the trie structure, as

well as the frequency with which Q appears in the workload during some preceding

time t.

To understand these calculations, consider again Fig. 4.3, where we assume that Q1, Q2

each occur once in Q over time t, i.e., they have the same relative frequency. Starting

- 66 -

Chapter 4: Query-aware partition-enhancement with TAPER

from root E , consider transition E → a. Its probability can be expressed as:

Pr(E → a) = Pr(E → a|Q1) · Pr(Q1) + Pr(E → a|Q2) · Pr(Q2)

where the conditional probabilities are computed using the labels on the nodes and

the Pr(Qi) are the relative frequencies of the Qi. In the example we have Pr(Q1) =

Pr(Q2) = .5, Pr(E → a|Q1) = 1 because a is the only possible first match in Q1’s

pattern, and Pr(E → a|Q2) = .5 because initially Q2 can match both a and c, with

equal probability. Thus, Pr(E → a) = 1 · .5 + .5 · .5 = .75.

We can now use Pr(E → a) to compute Pr(E → a→ b) and Pr(E → a→ c):

Pr(E → a→ b) =

Pr(E → a→ b|Q1) · Pr(Q1)+

Pr(E → a→ b|Q2) · Pr(Q2)

where

Pr(E → a→ b|Q1) =

Pr(a→ b|E → a,Q1) · Pr(E → a|Q1) =

.5 · 1 = .5

and Pr(E → a→ b|Q2) = 0 because pattern E → a→ b is not feasible for Q2. Thus,

Pr(E → a→ b) = .5 · .5 = .25.

Formally, we identify each node ηn in the trie by the sequence of n steps (η1, η2, . . . , ηn)

required to reach it from the root node, E . A probability label Pr(ηn) is then associated

with each node, its value computed as follows:

Pr(ηn) = Pr(E → . . .→ ηn) =∑
Qi∈Q

Pr(E → . . .→ ηn|Qi) · Pr(Qi)

The individual terms of the sum are conditional probabilities over the path in the trie

to node ηn. As we have seen in the example, these conditional probabilities over the

- 67 -

Chapter 4: Query-aware partition-enhancement with TAPER



v1 v2 v3 v4 v5 v6

v1 0.67 0.33 0 0 0 0
v2 0 0 0 0 0 0
...

...
...

...
...

...
...

v6 0 0 0.33 0 0.33 0.33
v1, v1 0 0 0 0 0 0
v1, v2 0 0 0.25 0.5 0.25 0

...
...

...
...

...
...

...
v6, v3 0 0 0 0.25 0.25 0.5

...
...

...
...

...
...

...
v6, v6 0 0 0 0 0 0


Trie with probabilities on the nodes

.25

�

a

c

c

d

ac

b
d

a

c

c

.75

.5

.125

.125

.125

.125

.25

.25.25.25

Figure 4.4: Visitor Matrix (left), TPSTry probabilities (right)

paths are computed recursively on the length n:

Pr(E → . . .→ ηn−1 → ηn|Qi) =

Pr(ηn−1 → ηn|E → . . .→ ηn−1, Qi)·

P (E → . . .→ ηn−1|Qi)

4.4.2 Computing VM cells with the TPSTry

The TPSTry encodes the current likelihood of traversing from a vertex with some

label, to any connected vertex with some other label (Sec. 4.4.1). This is an abstrac-

tion over the values we actually need for the visitor matrix, which are vertex-to-vertex

transition probabilities. We may derive the desired vertex transition probabilities from

a path of previously traversed vertices p = p1, p2, . . . , pn, as follows. First we look up

the the path’s corresponding sequence of vertex labels in the pattern summary trie.

This returns a set of child trie nodes ηi ∈ N which represent legal labels for the next

vertex to be traversed, along with each label’s associated probability Pr(ηi). Subse-

quently, the traversal probabilities for each label are uniformly distributed amongst

those neighbours of pn which share that label. This produces a vector of traversal

probabilities, one for each neighbour of the pn. This vector corresponds to a row in

the visitor matrix.

- 68 -

Chapter 4: Query-aware partition-enhancement with TAPER

For each path of traversals with length< t, the VM assumes that a subsequent traversal

is guaranteed, i.e. the total traversal probability in each row is 1, and the VM is

stochastic. In reality some paths of traversals must have a total length < t, either

because a query expression defines a path of a shorter length, or because a vertex

does not have a neighbour with the label required by a query expression. A query

execution engine would stop traversing in such a scenario. We represent this non-zero

probability of no subsequent traversal from a vertex as probability to traverse to the

same vertex7, as this is equivalent to intra-partition traversal probability.

In Section 4.2.3 we described a VM cell as containing the probability of traversing to a

vertex v given some preceding sequence of traversals p1 → p2 → . . .→ pt−1. Formally,

we compute the value of a cell VM (t)[p1, . . . , pt−1, v] as

Pr(pt−1 → v|p1 → . . .→ pt−1) =

Pr(l(pt−1)→ l(v)|E → l(p1)→ . . .→ l(pt−1)) ·

Pr(pt = v|l(pt) = l(v), pt ∈ NG(pt−1))

where l : V → LV is the labelling function for a graph G, and NG : V → P(V)

corresponds to the set of neighbours of v such that (v, u) = e ∈ E for all u ∈ NG(v).

The latter term of this definition uniformly distributes the traversal probability to a

vertex with label l across all of of pt−1’s l labelled neighbours.

Example. Given the graph in Figure 4.1, consider the element VM (3)[1, 2, j] in its

visitor matrix. The probability to be in vertex 2, having previously been in vertex 1, is

given by the matrix’s VM (2)[1, 2]th element. The labels of vertices 1 and 2 are a and b

respectively. There exist two valid suffixes to the label sequence a→ b: c and d. From

the query pattern summary trie in Figure 4.4, we know that the relative frequency of

c from a→ b is 0.5 .

Pr(b→ c|a→ b) =
0.125

0.25
= 0.5

The relative frequency of d from a→ b is also 0.5 . Vertex 2 has the neighbours 1,3,4

and 5 with the labels a, c, d and c respectively. As an example, the probability of

traversing to vertex 3 is the probability of traversing to a c labelled vertex, divided by

7We do not consider the possibility of self-referential edges; any probability to remain in the same
vertex is equivalent to probability of no subsequent traversal.

- 69 -

Chapter 4: Query-aware partition-enhancement with TAPER

the number of c labelled neighbours of 2.

VM (3)[1, 2, 3] = 0.5 · Pr(j = 3|l(j) = c, j ∈ NG(2))

= 0.5 · 0.5 = 0.25

Therefore, as shown in Figure 4.4(left), we have VM (3)[1, 2, ∗] = (0, 0, 0.25, 0.5, 0.25, 0).

In the previous section (Sec. 4.4.1) we mention that TPSTry probabilities are period-

ically updated to reflect query frequencies changing over time. We do not recompute

VM cells for each change to the TPSTry, instead they are lazily re-evaluated each

time a vertex swapping iteration (Sec. 4.3.1) is triggered. Additionally, we store a

snapshot of the TPSTry at the point of the pervious vertex swapping iteration; if a

trie node’s probability remains the same between two iterations, we are able to safely

avoid recomputing its associated VM cells.

4.5 Implementation

The TAPER system consists of a main algorithm for calculating elements of the Vis-

itor Matrix and for deriving the most extroverted vertices for each vertex swapping

iteration. The system also implements the TPSTry traversal pattern summary trie.

In this section we present the TAPER prototype architecture, we discuss heuristics for

managing the space and time complexity associated with the Visitor Matrix, and we

describe in detail the vertex ranking and swapping algorithm that takes place at each

iteration.

4.5.1 Architecture

We have implemented a system prototype on top of the Tinkerpop graph process-

ing framework [113], which allows us to use any of several popular GDBMS to store

G. Though our prototype, built using the Akka framework [72], is designed to be dis-

tributed across multiple hosts, in the current implementation input graph partitionings

reside on a single host. Partitions are defined in terms of vertex-cut, as opposed to

edge-cut: inter -partition connections are represented by flagging cut vertices and an-

notating them with the partitions they belong to. We have extended Tinkerpop so

- 70 -

Chapter 4: Query-aware partition-enhancement with TAPER

TAPER

VM

Partition 2

TAPER

VM

Partition k

TAPER

VM

Partition 1

Client

Query
Processor

TPSTry
Manager

Blueprints Graph

Figure 4.5: Architecture

that multiple edge-disjoint sub-graphs are treated as a single, global, graph and queried

using the Gremlin query language8. An inter-partition traversal is detected when a

Gremlin query retrieves the external neighbours of a cut vertex. Our test architecture

is shown in Figure 4.5. It simulates a distributed deployment, where each partition is

logically isolated, managed by a separate instance of the TAPER algorithm implemen-

tation. Each instance is responsible for updating the Visitor Matrix for its partition,

and also determines the rank of extroverted vertices to evict at each iteration.

4.5.2 Reducing the cost of the Visitor matrix

As noted in Section 4.2.3, the space complexity of the VM for each partition Vi grows

with the number of vertices in the partition, and exponentially with the length of the

query patterns: O(|Vi|t). Here we discuss two heuristics, aimed at reducing the portion

of the VMs that need to be explicitly represented or computed for each partition,

reducing both the time and space complexity of the TAPER algorithm.

4.5.2.1 Space complexity

Firstly, we note that large graphs are typically sparse [44] : i.e. |E| << |V |2. As

each vertex is only connected to a small number of neighbours, the adjacency and

transition matrices representing such graphs contain many 0-value elements, which

8The Gremlin query language: http://bit.ly/1tqUpWk

- 71 -

http://bit.ly/1tqUpWk

Chapter 4: Query-aware partition-enhancement with TAPER

may be discarded, compressing the matrices. A VM, which is essentially a family of k

dimensional transition matrices where 2 ≤ k ≤ t and t is the number of traversal steps

we remember, can be compressed using this standard technique. Although in general

we cannot be certain that the graphs against which TAPER is applied will be sparse,

the only non-zero elements that may exist in a VM are those that correspond to label

paths in the pattern summary trie. This serves to make the VM sparser relative to

the corresponding adjacency matrix, especially well suited to compression.

Secondly, we avoid the costly computation and storage of many VM rows associated

with vertices likely to be “safe”; i.e. vertices unlikely to have high extroversion. Re-

member that, with TAPER, we are only interested in identifying highly extroverted

vertices. These are the most likely to be the source of inter -partition traversals and

therefore good candidates for being swapped to another partition. From equations 4.6

& 4.7 (Sec. 4.3.2), we know that such extroverted vertices will necessarily have a low

total intra-partition traversal probability: low introversion. We therefore declare ver-

tices with introversion above a configurable threshold“safe”and discard them, reducing

the space complexity of the VM .

Consider for example vertex 3 (denoted v3) of partition B in Figure 4.1. Accounting for

the TPSTry of Figure 4.3, the traversal probabilities for v3 are found in VM B(3) rows

VM
(2)
B [3, ∗], VM

(3)
B [5, 3, ∗], VM

(3)
B [6, 3, ∗] and so on. The probability to be in v3 from

vertex 5 is computed as VM
(1)
B [5] ·VM

(2)
B [5, 3]. Extending this, the total intra-partition

traversal probability from 3, given 5, is

VM
(1)
B [5] · VM

(2)
B [5, 3] ·

∑
j

VM
(3)
B [5, 3, j]

Given the values in Figure 4.4, completing this process for paths p ∈ paths(v3, VB) to

all j ∈ VB gives v3 an intra-partition traversal probability of 0.44. Doing the same for

all j ∈ V gives a total traversal probability through v3 (Pr(v3)) of 0.5. For any choice

of introversion threshold less than 0.44
0.5

= 0.88, v3 would be a safe vertex. We may

discard any VM rows associated with v3 except where necessary for paths through

other, more extroverted, vertices.

- 72 -

Chapter 4: Query-aware partition-enhancement with TAPER

4.5.2.2 Time complexity

In order to maximise the savings of the heuristic above, we would like to avoid com-

puting some of the matrix rows we eventually discard. We rely upon the following

observations to achieve this: as the probability of any given traversal from a vertex

is usually less than 1.0, longer paths of traversals generally have a lower probability

than shorter ones; the less likely a path of traversals though a vertex v, the less it

will contribute to v’s introversion and extroversion; and the VM rows for each vertex

v are computed in ascending order of the length of their associated paths (Sec. 4.4.2).

Given these observations, we know that for the set of VM rows associated with a given

vertex v: those rows computed earlier should contribute more to v’s introversion and

extroversion than those compute later.

We may therefore compare v’s introversion to our chosen “safe” threshold after only

having considered paths through v of length up to k, where k is less than the maximum

length k < t. We then do not need to compute further VM rows for safe vertices. In

effect this provides another configurable threshold, this time controlling time complex-

ity at the potential expense of accuracy. The smaller the value of k the more likely the

algorithm is to declare a vertex safe which actually has a total introversion below the

“safe” threshold and might therefore have been an effective candidate for swapping to

another partition.

Vertices without external neighbours represent a special case of this heuristic. They

are guaranteed to be “safe” and have no extroversion. We do not calculate VM rows

associated with these vertices, except where needed by other paths.

4.5.3 TPSTry Implementation

TPSTry (Sec. 4.4) is implemented as two separate data structures: i) a trie multimap,

where each trie node maps to the set of queries which could be responsible for a

traversal path with the associated sequence of vertex labels; and ii) a sorted table

mapping queries to their respective frequencies. These frequencies are approximated

using a sketch datastructure [6] which samples the occurrences of each query within a

sliding window of time t.

- 73 -

Chapter 4: Query-aware partition-enhancement with TAPER

4.5.4 Calculating a partial extroversion order

TAPER relies upon an ordering of the vertices in a partition by their likelihood to be

the source of inter -partition traversals. In order to produce this order, we group the

rows of a partition’s visitor matrix by the final vertex of the paths they represent and

then derive their extroversion (Sec. 4.3.2).

As a result of the heuristics defined above, not all vertices are represented in the

visitor matrix. Therefore we refer to the sorted set of vertices produced as a partial

extroversion ordering. Rather than grouping the rows of a pre-existing matrix, we

define a corecursive algorithm to efficiently produce such rows consecutively during

initial VM construction. This greatly simplifies the process of maintaining a running

total of intra-partition transition probabilities for each vertex, as required for the

heuristics presented in Section 4.5.2. A simplified version of the procedure is expressed

in Algoritm 1. Consider again our earlier example of vertex 3 in partition B (Fig. 4.1),

Algorithm 1 Calculate the VM i rows for a vertex v

path← sequence of vertices (initially (v))
paths← set of paths (initially {(v)})
transitions← vector of probability values for v’s neighbours
trie← traversal pattern summary trie
threshold← safe introversion value
length← max length of a path in trie
rows← map of path→ transitions vectors
introversion(rows)← total introversion of a set of VM i rows

calcVMRows(paths, transitions, rows)
newPaths← ∅
for path in paths do

if path size > length then return rows
if path in trie then

transitions← probabilities from trie given path
rows← rows + (path→ transitions)
if introversion(rows) > threshold then

rows← ∅
stop calcVMRows

neighbours← path.head.neighbours
for n in neighbours do

newPaths← newPaths + n prepended to path
return calcVMRows(newPaths, transitions, rows)

along with the pattern summary trie in Figure 4.4 (right). Vertex 3 has the label c,

- 74 -

Chapter 4: Query-aware partition-enhancement with TAPER

which does exist as a prefix in the trie. It has local neighbours 5 and 6, along with

external neighbours 2 and 4, labelled c,a,b and d respectively. The external transition

probability from 3 given a path of (3) is 1 − Σ(0, 1, 0) multiplied by the probability

to have made the sequence of traversals which that path represents (0.25|c| = 0.125). In

this case: 0.

The prefixes cc and ac also exist in the trie, therefore (5, 3) and (6, 3) are further

potential paths through 3. The external transition probabilities from 3 given paths of

(5, 3) and (6, 3) are (1 − Σ(0, 0, 1)) · 0.125 and (1 − Σ(0, 0.25, 0.5)) · 0.25 respectively.

Note that the total probability for the path (6, 3, j), j ∈ VB is < 1 because acd is also a

prefix in the pattern summary trie, and vertex 3 is adjacent to the “external” vertex 4.

The final external transition probability from 3 is 0.06; its extroversion 0.06· 1
0.5

= 0.12.

4.5.5 Vertex Swapping

To achieve its aims, TAPER improves distributed query performance by reducing the

probability of inter-partition traversals when answering queries. For each partition,

given a sorted collection of the vertices with the highest extroversion, TAPER must

reduce this probability without mutating the underlying graph structure.

To this end, we propose a simple variation on the k-way Kernighan-Lin algorithm pro-

posed by Karypis and Kumar [58] (Sec. 4.3.1). This is a two-step, symmetric process,

shown in Figure 4.6: firstly, given a priority queue of candidate vertices with high ex-

troversion, compute the preferred destination partition for each vertex, along with the

clique of neighbours which should accompany it (its family); secondly, when offered a

new group of vertices, a partition should compute potential gains in introversion and

decide whether or not to accept the offer .

We determine a swapping candidate’s family set with a simple recursive procedure:

Given each family member (initially just the candidate), we examine its local neigh-

bours; if a traversal from a neighbour to the member is more likely than not, then it is

added to the family. Once the family-set has been determined, we evaluate the total

loss in introversion the sending partition would suffer from their loss. This process

is highly efficient as all the relevant values are preserved in the visitor matrix, either

- 75 -

Chapter 4: Query-aware partition-enhancement with TAPER

TAPER TAPEROffer

Offer

Recieve

Recieve
Visitor
Matrix

Visitor
Matrix

Partition 1 Partition k

Figure 4.6: Offer/Receive algorithm in each TAPER instance

from calculating the introversion of vertices, or from constructing a candidates set in

the previous step.

When on the receiving end of a swap, a partition should calculate the total local in-

troversion of a family, and compare it to the potential loss to the offering partition.

Partitions are “cooperative” rather than greedy, so if the introversion gain for a receiv-

ing partition is not greater than the loss for a sending one, the swap is rejected. If

a swap is rejected the offering partition will try less “preferable” destinations until all

partitions adjacent to the candidate vertex are exhausted. In this event the candidate

vertex and its family remain in their original partition.

This process runs independently for each partition, swapping extroverted vertices to

their preferred neighbouring partitions. A vertex may only be swapped once per iter-

ation of the algorithm. Note that, because partitions calculate potential vertex swaps

independently of one another, it is possible that highly extroverted connected vertices

would “flip-flop” between two partitions without ever improving workload-sensitive

stability. In order to avoid this we adopt another technique from (Par)METIS [59].

First, every partition is assigned an ordered identifier. Subsequently, we split vertex

swapping into two phases: Initially, given its queue of extroverted vertices, a partition

will only attempt swaps whose destination partition has an id lower than itself. In

the second phase, each partition will do the reverse, swapping vertices with partitions

of a higher id. For each iteration, the ordering of these phases flips (higher→lower,

lower→higher, . . .). This process prevents vertices “chasing” one another continuously

- 76 -

Chapter 4: Query-aware partition-enhancement with TAPER

by ensuring that when the introversion loss is calculated by the second partition, both

offending vertices will be present locally.

When swaps have been attempted for every vertex in each partition’s extroverted

queue, the iteration is considered finished. Where necessary, we update each partition’s

VM by adding and removing rows for swapped vertices, the resulting sub-graph acts

as input to a subsequent iteration of vertex-swapping. Repeated iterations of this

process will produce the desired result: an enhanced partitioning with a lower overall

probability for inter-partition traversals, better workload-sensitive stability given a

query workload Q.

At this point, recall that we do not compute or store all VM rows associated with

introverted vertices, only those associated with paths through other more extroverted

vertices. A nice property of this approach is that whilst these safe vertices may be-

come extroverted as we swap their neighbours between partitions, the VM rows which

contribute the most to this new extroversion are, by construction, those which already

existed for computing the extroversion of swapped neighbours. As a result we do not

need to compute new VM probabilities in each iteration, instead retaining the VM

computed at the start of each distinct TAPER invocation.

4.6 Evaluation

Our evaluation aims to show how TAPER achieves and maintains high partitioning

quality, measured as low inter -partition traversals (ipt). We present three main results.

The first two on the effect of a single TAPER invocation given a workload snapshot

Q (i.e. Def. 4.1, from Sec. 4.1.1): 1) given a simple hash-partitioning P 0
k (G) and a

workload Q, a single TAPER invocation achieves a quality comparable to that of a

METIS partitioning [58] in at most 8 iterations; 2) given the same workload, along

with input partitionings generated by proven existing techniques, a TAPER invocation

is still able to achieve significant quality improvements.

The third result is on the impact of a changing workload, given periodic TAPER

invocations (i.e. Def. 4.2 from Sec. 4.1.1): 3) given a workload stream Q1,Q2, . . ., our

system maintains an up-to-date query summary in the TPSTry. As a result, repeated

- 77 -

Chapter 4: Query-aware partition-enhancement with TAPER

TAPER invocations are able to keep ipt below some desired minimum, despite any

workload changes.

We use METIS [58] as our primary basis for comparison because, despite its age,

it remains a gold standard for producing quality workload-agnostic partitionings of

medium sized graphs [76, 117]. As such it is a compelling yard-stick for our evalu-

ation of the TAPER prototype, which will consider partitioning quality in terms of

scale free metrics such as ipt and the number of vertex swaps. We avoid additional,

implementation dependent, metrics because, as a prototype, TAPER is unlikely to

exhibit realistic performance. For instance, without true distributed query processing

(Sec. 4.5.1) across a network, query response times are meaningless as a measure of

partitioning quality.

4.6.1 Experimental setup

For all experiments we initially partition the test graphs using either hash or METIS.

Except where otherwise stated, these are 8-way partitions. As mentioned, with TAPER

we optimise a graph partitioning for higher workload-sensitive stability (Sec. 4.2.2),

corresponding to lower probability of inter-partition traversals occuring when execut-

ing a workload Q. We measure the effectiveness of this experimentally by executing

snapshots of query workloads over partitioned graphs and counting (Sec. 4.5) the

number of inter-partition traversals ipt . All algorithms, data structures and dataset

pre-processing steps, including calcVMRows and the TPSTry, are publicly available9.

All our experiments are performed on a machine with a 3.1Ghz Intel Core i7 CPU and

16GB of RAM.

4.6.1.1 Test datasets

TAPER is designed to perform best on heterogeneous graphs (Sec. 4.4). When the

graph is homogeneous, the uniformity of traversal probabilities renders min edge-cut

an equally good measure of partition quality. Thus, we have tested the system on two

heterogeneous graphs.

9The TAPER repository: http://bit.ly/1W3f0eH

- 78 -

http://bit.ly/1W3f0eH

Chapter 4: Query-aware partition-enhancement with TAPER

The first, MusicBrainz [111]10, is a freely available database of music which contains

curated records of artists, their affiliations and their works. This database currently

stores over 950,000 artists and over 18 million tracks. When converted to a graph, the

subset of data we use amounts to around 10 million vertices and more than 30 million

edges. The graph is also highly heterogeneous, containing more than 12 distinct vertex

labels.

The second test dataset is a synthetic provenance graph, generated using the ProvGen

generator [35] and compliant with the PROV data model [85]. ProvGen is designed to

produce arbitrarily large PROV graphs starting from small seed graphs and following

a set of user-defined topological constraint rules. Provenance graphs are a form of

metadata, which contains records of the history of entities, e.g. documents, complex

artifacts, etc. . . They are exemplars of the large-scale heterogeneous graphs that TA-

PER is designed to partition. For the purpose of these experiments we generated a

graph with about 1 million vertices and 3 million edges. As described in [85], PROV

graphs naturally have three labels, representing the three main elements of provenance:

Entity (data), Activity (the execution of a process that acts upon data), and Agent,

namely the people, or systems, that are responsible for data and activities.

4.6.1.2 Test query workloads

For each dataset we need to create a corresponding query stream: an infinite sequence

of path queries consisting of a small number of distinct graph patterns. The rela-

tive frequencies of each query pattern should shift continuously, representing workload

changes with time. For our experiments, we selected a simple periodic model of work-

load change where the frequency of each query pattern grows and shrinks according to

a constant, repeating pattern11 and no new query patterns are added over time. These

frequency changes are the complement of each other, so that the total frequency of

all query patterns in the workload stream is always equal to 1. Note that TAPER

does not assume any such distribution of query frequencies, and can refine a graph

partitioning given arbitrary changes in workload.

10The MusicBrainz database: http://bit.ly/1J0wlNR
11Details of the workload stream are elided for space.

- 79 -

http://bit.ly/1J0wlNR

Chapter 4: Query-aware partition-enhancement with TAPER

We also define the set of distinct query patterns for each dataset. Regarding Mu-

sicBrainz, to the best of our knowledge there is no widely accepted corpus of bench-

mark queries. Thus, we define a small set of common-sense queries that focus on

discovering implicit relationships in the graph, such as collaborations between artists,

and migrations between geographical areas.

MQ1 Area · Artist · (Artist|Label) · Area: searches for two distinct patterns which

would indicate an artist has moved away from their country of origin.

MQ2 Artist · Credit · (Track|Recording) · Credit · Artist: might be used to detect

collaboration between 2 or more artists on a single track.

MQ3 Artist · Credit · Track ·Medium: would return a set of all the Mediums (e.g.

Cd) which carry an Artist’s work.

Regarding provenance graphs, several categories of typical path query have been pro-

posed [25, 57]. Using these categories, we propose four query patterns typical of

provenance analysis.

PQ1 Entity ·(Entity){1,5} ·Entity: computes the transitive closure over a data deriva-

tion relationship.

PQ2 Agent ·Activity ·Entity ·Entity ·Activity ·Agent: identifies pairs of agents who

have collaborated as data producer/consumers pairs.

PQ3 (Entity){1,5} ·Activity · Entity: returns all entities and all activities involved in

the creation of a given entity.

PQ4 Entity · Activity · (Agent){1,5}: returns agents responsible for the creation of a

given an entity.

- 80 -

Chapter 4: Query-aware partition-enhancement with TAPER

TAPERipt Hashipt METISipt TAPERSw < METISSw

1 2 3 4 5 6 7 8 9 10

40K

80K

120K

160K

200K

In

te
r-

pa
rt

iti
on

 tr
av

er
sa

ls
 (i

pt
)

ProvGen Iterations
0

0

100K

200K

300K

400K

500K

Ve

rt
ex

 s
w

ap
s

(S
w

)

1 2 3 4 5 6 7 8 9 10

200K

400K

600K

800K

1M

In

te
r-

pa
rt

iti
on

 tr
av

er
sa

ls
 (i

pt
)

MusicBrainz Iterations
0

0

1M

2M

3M

4M

5M

Ve

rt
ex

 s
w

ap
s

(S
w

)

Figure 4.7: ipt per TAPER internal iteration

4.6.2 Results

4.6.2.1 Improvement over an initial hash partitioning

Figure 4.7 shows the improvement in partitioning quality which a single TAPER invo-

cation achieves for each dataset, given static workload snapshots Q and initial hash-

partitionings P 0
8 (G). The top dotted line bisecting the left y-axis is our baseline:

the ipt required to execute Q over P 0
8 (G). The bottom dotted line indicates the ipt

required to execute Q over an initial METIS partitioning. The chart shows how par-

titioning quality converges to within 10% of that over a METIS partitioned graph,

after fewer than 8 internal iterations. Note that these iterations satisfy a maximum

partition imbalance of 5%. Also note that, though we do not fully evaluate running

time, the longest iteration over the MusicBrainz graph takes around 250s. This run-

ning time generally decreases with each successive iteration, with the average being

less than 150s. We are confident that optimisation work will be able to reduce this

time significantly.

Figure 4.7 also demonstrates that a TAPER invocation requires far less communication

than a full METIS repartitioning. A Lower bound for the number of vertex swaps

required for METIS to repartition a Hash partitioning of the ProvGen graph is around

500k. On the other hand, 5 iterations of TAPER over the ProvGen graph (Fig. 4.7(a))

require just 300k vertex swaps to produce ∼ 80% enhancement.

- 81 -

Chapter 4: Query-aware partition-enhancement with TAPER

We use a lower bound in our comparisons because, as mentioned (Sec. 4.1.3), there

are multiple different implementations of METIS [58, 59] which will exhibit different

numbers of vertex swaps during a repartitioning. Rather than compare to each of

these systems, we simply calculate an absolute lower bound for their performance by

observing that, for the ProvGen graph, a METIS partitioning cuts around 500k fewer

edges than a Hash partitioning. Regardless of the repartitioning algorithm used, a

reduction in the edge-cut of a partitioning by 1 must intuitively cost at least 1 vertex

swap. In reality, the number of vertex swaps caused by METIS would be much higher.

For instance, conventional METIS would have to collect the entire graph to a single

partition in order to compute its partitioning, then redistribute. Even if the overhead of

gathering the graph is not considered, METIS usually requires around 97% of vertices

to be swapped when repartitioning [105]. Meanwhile, the number of vertex swaps

caused by ParMETIS’ diffusion based repartitioning approach is ∼ 1.5X the edge-cut

reduction produced [105].

Practically, a METIS repartitioning has a cost at least 2X that of a TAPER invo-

cation in both our test cases, yet achieves only a small improvement in query perfor-

mance. This suggests that, by performing swaps in extroversion order (Sec. 4.3.1),

we are correctly prioritising those swaps that are more effective at reducing ipt ,

given a workload snapshot Q. This supports TAPER’s applicability to continuous

re-partitioning in online settings, such as distributed graph DBMS, where other sys-

tem requirements may severely limit the number of vertex swaps possible in a given

timeframe.

4.6.2.2 Improving over other initial partitionings

Figure 4.8 illustrates that a TAPER invocation may achieve a quality improvement

over not only an initial hash-partitioning, but also over initial partitionings produced

with existing partitioning techniques, e.g. METIS. When improving upon a METIS

partitioning (METIS + TAPER in the figure), TAPER averages a 30% reduction in ipt .

As seen in the previous section, a TAPER invocation over an initial hash-partitioning

achieves a quality less than an initial METIS partitioning. Thus we conjecture that

the TAPER algorithm is sensitive to its starting input and, despite swapping vertex

- 82 -

Chapter 4: Query-aware partition-enhancement with TAPER

In

te
r-

pa
rt

iti
on

 tr
av

er
sa

ls

Hash Hash+TAPER METIS METIS+TAPER

MusicBrainz

1M

800K

0

600K

400K

200K

200K

160K

0

120K

80K

40K#
In

te
r-

pa
rt

iti
on

 tr
av

er
sa

ls

ProvGen

Figure 4.8: ipt per approach

In

te
r-

pa
rt

iti
on

 tr
av

er
sa

ls

Hash Hash+TAPER METIS METIS+TAPER

k = 2

300K

240K

0

180K

120K

60K

k = 8 k = 16 k = 32

Figure 4.9: ipt vs k partitions (ProvGen)

family cliques (Sec. 4.5.5), when starting from a Hash partitioning is gets trapped in

local optimisation minima. Starting from a METIS partitioning, TAPER iteratively

approaches a new minimum closer to the global.

TAPER’s ability to improve over METIS graphs may be explained by observing that in

non-trivial partitionings, some edges must cross partition boundaries. As a workload-

agnostic algorithm, METIS is optimising for a different cost function than TAPER and

may cut edges which are likely to be frequently traversed, giving TAPER scope for

its improvement. Note that improvement is not necessarily possible when METIS is

given an input graph with edge-weights corresponding to traversal likelihood given Q.

In that instance, edge-weight cut is equivalent to inter-partition traversal probability:

both METIS and TAPER are optimising for the same cost function. However, tracking

an online workload with edge-weights is challenging and highly expensive [129]. Also,

adapting to any workload changes with METIS would still require a repartitioning,

which we know to be more costly than TAPER in terms of vertex-swaps.

4.6.2.3 The effect of differing numbers of partitions

Figure 4.9 demonstrates the applicability of a TAPER invocation to partitionings

with different numbers of partitions (different values of k). The figure presents the

ipt caused by executing a query workload Q over several distinct partitionings of the

ProvGen graph: four for each of the partitioning approaches we consider, with k values

- 83 -

Chapter 4: Query-aware partition-enhancement with TAPER

MQ1 MQ3MQ2

MusicBrainz Query No.

1M

100K

10K

1K

100

In

te
r-

pa
rt

iti
on

 tr
av

er
sa

ls

Hash Hash+TAPER METIS

Figure 4.10: ipt per query

TAPER

75K

150K

225K

300K

In

te
r-

pa
rt

iti
on

 tr
av

er
sa

ls

% Workload change
0

0
20 40 60 80 100

Figure 4.11: ipt vs Workload change

2,8,16 and 32. The improvement in ipt offered by TAPER is readily apparent across

this range of k.

As the number of partitions k grows, there is a higher probability that parts of a graph

traversed by the same query will be spread across multiple partitions. Combined with

partition balance constraints 12, this results in an increase of absolute ipt when exe-

cuting Q over a TAPER partitioning. However, increasing k also increases the general

probability that any two vertices which share an edge are split between partitions,

thus reducing the quality of Hash and METIS partitionings as well. This effect is par-

ticularly pronounced for Hash partitionings. Indeed, for a partitioning where k = 2,

TAPER achieves only around 50% reduction in ipt relative to Hash; for k = 16 this

reduction is over 80%.

4.6.2.4 Optimising for frequent queries

Figure 4.10 demonstrates the effect of TAPER’s use of query frequencies within a

workload to prioritise vertex swaps. The figure presents ipt over various partitionings

of the MusicBrainz graph, given a workload snapshot with the relative frequencies

of queries MQ1, MQ2, and MQ3 at 10%, 20% and 70%, respectively. Relative to

the METIS partitioning, a TAPER invocation achieves its worst quality for MQ1,

improving with MQ2 and surpassing the other system for MQ3. This is because

12Which prevent TAPER from amassing extroverted vertices to a single partition, reducing ipt
regardless of k

- 84 -

Chapter 4: Query-aware partition-enhancement with TAPER

paths in a graph which form a full, or partial, match of a high frequency query afford

their vertices and edges a higher probability of being traversed. When edges in the

path cross partition boundaries, this traversal probability contributes to extroversion.

Again, TAPER is prioritising vertex-swaps to internalise paths traversed by the most

common queries to single partitions.

4.6.2.5 The effect of changes in query workloads

So far in our evaluation we have performed single invocations of TAPER: several

iterations of vertex-swapping over an initial partitioning, given a static snapshot of

queries. This is essentially fitting the distribution of vertices across partitions to

a particular workload snapshot’s dominant traversal patterns (Sec. 4.2.2). However,

within a larger workload stream, query frequencies are likely to change continuously.

Figure 4.11 trivially demonstrates that the quality of a fitted partitioning degrades in

the presence of such workload change.

For simplicity this experiment was performed over the provenance dataset, with a finite

workload stream comprised of two query patterns, traversing single edges guaranteed

not to be incident to the same vertex: Qa Entity · Entity and Qb Agent · Activity.

These queries were chosen to avoid overlap between the traversals required for a new

query workload and those optimised for by TAPER given the previous one, thereby

producing a clearer performance trend. At the head of the stream, the frequency of

Qa is 100%; throughout the stream the frequency of Qa tends linearly to 0%, Qb

to 100%. The initial partitioning has been pre-improved with TAPER, assuming a

workload of 100% Qa queries. As the frequency of Qb queries increases, so does

the ipt . For comparison, the top dotted line in Figure 4.11 shows the ipt required

to execute solely Qb queries over a hash-partitioning of the graph; the bottom line

shows those required over a partitioning improved by TAPER correctly assuming

Qb = 100%. In other words, in the presence of an unexpected change in workload,

TAPER’s quality improvement may degrade to near that of a naive hash-partitioner.

However, the TPSTry is continually updated to reflect changing query frequencies

(Sec. 4.4) and our experiments depicted in Figure 4.7 demonstrate that TAPER in-

vocations are inexpensive compared to a full re-partitioning operation. Therefore, by

- 85 -

Chapter 4: Query-aware partition-enhancement with TAPER

Time
0

500K

1M

1.5M

2M

2.5M

3M

3.5M

#I
nt

er
-p

ar
tit

io
n

tr
av

er
sa

ls

InvocationInvocationInvocationInvocation

PeriodPeriod

TAPER Hash

Figure 4.12: ipt over time w. TAPER invocations

periodically executing TAPER invocations with the current partitioning as input, we

are able to maintain our partitioning quality improvement even in the presence of a

dynamic and changing workload stream. Figure 4.12 presents the ipt which occur

when executing a full streaming query workload, generated as described (Sec. 4.6.1.2),

over the MusicBrainz graph partitioning. Knowing the ipt required to execute each

query pattern over a hash partitioning, the chart displays a derived trendline for base-

line performance. We denote a single “period” of the periodic workload stream on the

x-axis. Each stream period starts with the highest frequency of the cheapest query

pattern, hence baseline ipt starts at a minimum. As the frequency of queries which re-

turn more results rises, then falls, the ipt follows suit. Comparing against this baseline,

Figure 4.12 clearly demonstrates that, with periodic invocations, TAPER is able to

prevent some performance decay over time. The highlighted areas of the chart indicate

when TAPER has been executed; each followed by a drop in ipt , as we expect.

In this experiment we trigger TAPER’s execution at regular intervals, which is naive,

as invocations may occur when a trend in the workload renders them unnecessary

or detrimental. For instance, the second highlighted invocation acts on workload

information which quickly becomes “stale”. This actually causes a slight rise in ipt ; a

- 86 -

Chapter 4: Query-aware partition-enhancement with TAPER

risk when tracking values which change frequently. Identifying more effective trigger

conditions is left as future work.

4.7 Conclusion

In this chapter we have presented TAPER: a practical system for improving path query

performance over graph partitionings. By monitoring the traversals and frequencies

associated with queries in a workload stream, we can calculate the likelihood for any

vertex in a graph to be a source of costly inter-partition traversals - its extroversion.

Using vertex labels in the TPSTry (Sec. 4.4) as an intensional representation of these

traversal patterns, along with several other heuristics and datastructures such as the

Visitor Matrix, the resource intensive challenge of identifying and relocating these

most extroverted vertices becomes tractable.

Our experiments show that TAPER significantly reduces the number of inter-partition

traversals (ipt) over a graph partitioning. It achieves improvements similar to quality

existing partitioners, such as METIS, whilst requiring a lower total communication

volume, even after many internal iterations of its vertex-swapping algorithm. Fur-

thermore, as it is workload-sensitive, TAPER may even improve the quality of input

partitionings already good w.r.t. some workload agnostic objective function, such as

min edge-cut.

The final experiment shows that, with the TPSTry acting as a continuous workload

summary, and the incremental nature of TAPER invocations, we are able to maintain

high workload-sensitive stability and therefore low ipt, in the presence of a change

stream of queries.

Recall that in terms of our comparison framework for partitioning techniques (Sec. 3.6)

this means that TAPER has both the WS and OW properties: it is sensitive to

online, dynamic query workloads. Table 4.1 presents an overview of all the framework

properties TAPER possesses, along with Table 4.2 which acts as an index for property

keys.

- 87 -

Chapter 4: Query-aware partition-enhancement with TAPER

Table 4.1: Properties of the TAPER re-partitioner

System S D SC DY RF WS OW TX
TAPER Y P Y Y Y P

Table 4.2: Comparison framework properties overview

Key Description
S Capable of partitioning graph streams
D Capable of partitioning distributed graphs
SC Capable of partitioning very large graphs
DY Capable of partitioning dynamic, growing graphs
RF Partitionings do not rely upon replication
WS Partitionings are sensitive to given workloads
OW Partitionings are sensitive to changing workloads
TX Partitionings are sensitive to changing data-management workloads

Though we contend that the work presented in this chapter is a valuable contribution

in isolation, Table 4.1 also serves to highlight some properties which are either partially

or wholly unaddressed.

Firstly, there is no support for the partitioning of dynamic, growing graphs (DY) as

TAPER is a strict repartitioner and cannot produce initial partitionings of graphs at

all, whether static or dynamic. Instead, TAPER may be used in conjunction with

another partitioner which does have the DY property, such as Hash or streaming

graph partitioners[110, 117].

Secondly, we indicate only partial support for data-management workload sensitivity

(TX). As mentioned, the TPSTry is only capable of encoding path queries: single

regular expressions over the set of vertex labels (Sec. 4.2). As a result, TAPER’s

partitioning is only sensitive to workloads of path queries, a subset of the more general

sub-graph pattern matching query workloads required in an online, data-management

context.

Thus, there exist several useful and interesting avenues for further research, building

on the contributions of this chapter. Indeed, in the subsequent chapter, we present a

workload-sensitive graph stream partitioning technique which, while unable to improve

existing partitionings, does support dynamic, growing graphs (i.e. possesses the DY

property). This technique also makes use of a modified TPSTry datastructure, able to

- 88 -

Chapter 4: Query-aware partition-enhancement with TAPER

encode arbitrary graph patterns, and is therefore sensitive to the more general class

of workloads (i.e. fully supports the TX property). Finally, we still plan to explore

more sophisticated, predictive, trigger conditions for TAPER invocations when given

a changing workload stream, as the current regular intervals are ineffective.

- 89 -

Chapter 4: Query-aware partition-enhancement with TAPER

- 90 -

5
Loom: Query-aware Partitioning

of Online Graphs

Contents
5.1 Introduction . 92

5.1.1 The Loom partitioner . 94

5.1.2 Contributions . 96

5.2 Identifying Motifs . 97

5.2.1 Sub-graph signatures . 98

5.2.2 Constructing the TPSTry++ 101

5.2.3 Avoiding signature collisions 102

5.3 Matching Motifs . 105

5.3.1 Building a graph index . 110

5.4 Allocating Motifs . 111

5.5 Evaluation . 115

5.5.1 Experimental setup . 115

5.5.2 Comparison of systems . 118

5.5.3 Effect of stream order and window size 122

5.6 Conclusion . 124

- 91 -

Chapter 5: Loom: Query-aware Partitioning of Online Graphs

Summary

In the previous chapter we presented TAPER, an efficient graph repartitioning tech-

nique which is sensitive to workloads of path queries.

In this chapter we present a further technique, Loom which creates graph partitionings

from scratch. Loom consumes the stream of graph updates which constitute a dynamic,

growing graph and continuously allocates new vertices and edges to partitions. These

allocations account for a given workload of sub-graph pattern matching queries, along

with their relative frequencies.

First we capture the most common patterns of edge traversals which occur when exe-

cuting queries. We then compare sub-graphs, which present themselves incrementally

in the graph update stream, against these common patterns. Finally we attempt to

allocate each match to single partitions, reducing the number of inter-partition edges

within frequently traversed sub-graphs and improving average query performance.

Loom is extensively evaluated over several large test graphs with realistic query work-

loads and various orderings of the graph updates. We demonstrate that, given a work-

load, our prototype produces partitionings of significantly better quality than existing

streaming graph partitioning algorithms Fennel & LDG.

5.1 Introduction

The overall aim of this thesis is to propose graph partitioning techniques which are

suitable for online, data-management contexts (Sec. 1.3).

The sub-graph pattern matching query is a class of operation fundamental to most

applications which use the graph data model online. In addition to the application

domains highlighted in the Introduction chapter of this thesis, these queries are used for

“real-time”anomaly detection in computer network logs [19] and payment records [116],

as well as a means for interacting with web-based APIs [31, 48].

Efficiently and continuously partitioning large, growing graphs to optimise

for given workloads of such queries is the primary goal of this chapter.

- 92 -

Chapter 5: Loom: Query-aware Partitioning of Online Graphs

Informally 1, recall that a sub-graph pattern matching query usually involves exploring

the sub-graphs of a large, labelled graph G then finding those which match a small

labelled graph q. Figure 5.1 2 presents an example graph G and a set of queries

Q, which we will refer to throughout. Note that, as mentioned, sub-graph pattern

matching queries are a super-category containing the path queries considered in the

previous chapter (Sec. 4.2). Indeed, q2 in Figure 5.1 is equivalent to a path.

Just as existing partitioners are unsuitable for graphs subject to dynamic workloads of

path queries, they are unsuitable for dynamic graphs subject to workloads of pattern

matching queries. The reasons for this have been stated several times throughout this

thesis (Ch. 1, 3 & 4), and crystallised in a comparison framework of eight properties

which indicate how suitable a given partitioner is to addressing our thesis aim.

Namely, however, workload-agnostic partitioners [17, 33, 51, 52, 58, 59, 59, 76, 83, 87,

102, 110, 117] employ objective functions which poorly approximate partitioning qual-

ity with respect to a given workload of sub-graph pattern matching queries (Sec. 1.2.1).

As a result, partitionings will suffer many expensive inter-partition traversals (ipt) dur-

ing workload-execution.

Even if a graph partitioning is initially high quality with respect to a given workload,

recall that most existing partitioners are not designed for incremental execution and

are too computationally intesnsive to re-execute regularly (Sec. 3.6.2). As a result,

partitioning quality will deteriorate over time given dynamic graphs and workloads,

both common in the online data-management context we focus on here.

The TAPER repartitiner was purposefully designed to address some of these shortcom-

ings with existing partitioners. For instance, its partitionings are both of high quality

with respect to a given workload and are cheaply adapted in the event of workload

change (i.e. possess the WS and OW properties from our partitioning framework).

However, as concluded in the previous chapter (Sec. 4.7), there are still some properties

beneficial to the aim of this thesis which TAPER does not possess.

Firstly, as a re-partitioner it is not capable of providing an initial partitioning for dy-

namic graphs which, as mentioned, are common in our context. Secondly, TAPER

1For a formal definition refer to section 2.2 in the Preliminaries chapter.
2Repeating Figure 2.1 from Section 2.2 for ease of reference.

- 93 -

Chapter 5: Loom: Query-aware Partitioning of Online Graphs

BA
1 2 3 4

5 6 7 8

a b c d

b a d c

G Q (q1:30%, q2:60%, q3:10%)

q3

q1

q2

a

b

b

a

a b c

a b c d

a b

Figure 5.1: Example graph G with query workload Q

considers workloads of path queries and so is sensitive to only a subset of all possible

pattern matching queries, whose distributed performance we aim to improve through-

out this thesis.

In this chapter we focus on designing a workload-senstive graph partitioner which fully

supports these two properties, amongst others.

To appreciate the importance of a workload-sensitive partitioning, consider the graph

of Figure 5.1. The partitioning {A,B} is optimal for the balanced min. edge-cut goal,

but may not be optimal for the query graphs in Q. For example, the query graph

q2 matches the sub-graphs {(1, 2), (2, 3)} and {(6, 2), (2, 3)} in G. Given a workload

which consisted entirely of q2 queries, every one would require a potentially expensive

inter-partition traversal (ipt). It is easy to see that the alternative partitioning A′ =

{1, 2, 3, 6}, B′ = {4, 5, 7, 8} offers an improvement (0 ipt) given such a workload, whilst

being strictly worse w.r.t min. edge-cut.

5.1.1 The Loom partitioner

Given the above motivation, we present Loom: a system for partitioning an online,

dynamic graph G into k parts (DY), optimising for a given workload of sub-graph pat-

- 94 -

Chapter 5: Loom: Query-aware Partitioning of Online Graphs

tern matching queries Q (WS and TX). The resulting partitioning Pk(G,Q) reduces

the probability of ipt, when executing a random q ∈ Q.

This is equivalent to reducing the total extroversion of the graph partitioning (Sec. 4.3.2),

though Loom does not rely upon this definition, nor calculate explicit traversal prob-

abilities of any sort. Instead, Loom’s partitioning is made up of three distinct com-

ponents. Firstly, we discover patterns of edge traversals which are common when

executing queries from a given workload Q (Sec. 5.2). Secondly, we efficiently detect

instances of these patterns in the ongoing stream of graph updates which constitutes

an online, dynamic graph (Sec. 5.3). Thirdly, we attempt to assign these pattern

matches wholly within individual partitions, avoiding the need for ipt when corre-

sponding queries traverse them later (Sec. 5.4).

As mentioned (Sec. 2.1), online, dynamic graphs may be viewed as graph streams.

Thus, Loom is actually a graph-stream partitioner, similar to those discussed [52, 87,

110, 117] in our literature survey (Sec. 3.4). It executes the latter two steps above

continuously and is able to partition each new vertex and edge which is added as a

graph changes over time G→ G′.

This is distinct from the TAPER re-partitioner (Sec. 4.1.1), which only operates over

existing graph partitionings but can continuously improve the quality of a partition-

ing with respect to a query workload which changes over time. An effective way to

summarise this key difference between the two systems is to compare their abstract

definitions below:

Loom : P 0
k (G,Q)

G1−→ P 1
k (G1, Q)

G2−→ P 2
k (G2, Q) . . .

TAPER : P 0
k (G)

Q1−→ P 1
k (G,Q1)

Q2−→ P 2
k (G,Q2) . . .

- 95 -

Chapter 5: Loom: Query-aware Partitioning of Online Graphs

5.1.2 Contributions

Underpinning Loom’s components, this chapter presents the following spcecific contri-

butions:

• A compact 3 trie-like encoding of the most frequent traversal patterns over edges

in G. This encoding is conceptually similar to the TPSTry from the previous

chapter (Sec. 4.4), though its implementation and use differs significantly. We

show how it may be constructed and updated given a workload of sub-graph

pattern matching queries Q.

• A method of sub-graph isomorphism checking, extending a recent probabilistic

technique [109]. We show how this measure may be efficiently computed and

demonstrate both the low probability of false positives and the impossibility of

false negatives.

• A method for efficiently and incrementally computing matches for frequent traver-

sal patterns in a graph stream, using our trie-like encoding and isomorphism

method.

• Finally, a novel heuristic for assigning matching sub-graphs from the graph

stream, splitting as few as possible across inter-partition borders whilst still

preserving partition balance.

As mentioned, Loom is a graph stream partitioner, therefore we present an extensive

evaluation comparing Loom to popular single-pass streaming graph partitioners Fen-

nel [117], and LDG [110]. We partition real and synthetic graph streams of various

sizes and with three distinct stream orderings: breadth-first, depth-first and random

order. Subsequently, we execute query workloads over each graph, counting the num-

ber of expensive ipt which occur. Our results indicate that Loom achieves a significant

improvement over both systems, with between 15 and 40% fewer ipt when executing

a given workload.

3Grows with the size of query graph patterns, which are typically small

- 96 -

Chapter 5: Loom: Query-aware Partitioning of Online Graphs

a b

c d

b c

b a b

a b c

a b a

b c d

a b a

a b c

b a b

a b c

b

c

a

a b c

a

a
b

a

a b c

a

b

b

d

a b c

a

d

b

d

Motif

Low support
node

Figure 5.2: TPSTry++ for Q in fig. 2.1

5.2 Identifying Motifs

We now describe the first of Loom’s three distinct components (Sec. 5.1.1), namely

the encoding of all query graphs found in our pattern matching query workload Q.

For this we use a trie-like datastructure, conceptually extending the Traversal Pattern

Summary Trie (TPStry) from the previous chapter (Sec. 4.4); we refer to this new

datastructure as a TPSTry++. For this, we use a trie-like datastructure which we

have called the Traversal Pattern Summary Trie (TPSTry++). A TPSTry++ forms

a directed acycling graph (DAG) in which every node 4 represents a graph, while every

parent node represents a sub-graph which is common to the graphs represented by its

children. As an illustration, the complete TPSTry++ for the workload Q in Fig. 2.1

is shown in Fig. 5.2.

This structure not only encodes all sub-graphs found in each q ∈ Q, it also associates a

support value p with each of its nodes. This support value tracks the relative frequency

of occurences of each sub-graph in our query graphs, revealing query motifs.

Recall that, given a threshold T for the frequency of occurrences, a motif is defined

as a sub-graph which occurs at least T times within some larger graph or collection

of graphs (Sec. 2.1); in this instance, the query graphs in Q. As an example, for

T = 40%, Q’s motifs are the shaded nodes in Fig. 5.2.

4Note again that throughout this thesis, we refer to elements of data and query graphs as vertices,
elements of metadata structures like The TPSTry++ as nodes.

- 97 -

Chapter 5: Loom: Query-aware Partitioning of Online Graphs

Intuitively, a sub-graph of G which is frequently traversed by a query workload should

be assigned to a single partition in order to reduce the number of inter-partition

traversals which occur during query processing. We can idenfity these sub-graphs as

they form within the stream of graph updates, by matching them against the motifs in

the TPSTry++. Details of the motif matching process are provided in Sec. 5.3. In the

rest of this section we explain how a TPSTry++ is constructed, given a workload Q.

First however, to appreciate the difference between the TPSTry++ and its predecessor,

consider the following.

The TPSTry is a tree datastructure which encodes a space of possible traversal paths

as a conventional prefix trie of strings (Sec. 4.4). Each path is a string of vertex labels

and possible paths are described by a stream of regular path queries [81].

In contrast, the TPSTry++ employs methods from frequent sub-graph mining [54, 115]

to compactly encode general labelled graphs. The resulting structure is formally

a sub-graph lattice [115], practically a Directed Acyclic Graph (DAG), using multiple

routes to each node to reflect the multiple ways in which a particular query pattern

may extend smaller ones. For example in Fig. 5.2 the graph in node a-b-a-b can be

produced in two ways, by adding a single a-b edge to either of the sub-graphs b-a-b,

and a-b-a.

Note that the TPSTry++ is similar to, though more general than, Ribiero et al’s G-

Trie [99] and Choudhury et al’s SJ-Tree [19], which use trees (not DAGs) to encode

unlabelled graphs and labelled paths respectively.

Finally, note that the TPSTry is a relatively compact structure, as it grows with |LV |t,

where t is the number of edges in the largest query graph in Q and LV is typically

small.

5.2.1 Sub-graph signatures

We build the trie for Q by progressively building and merging smaller tries for each

q ∈ Q, as shown in Fig. 5.3. This process relies on detecting graph isomorphisms,

as any two trie nodes from different queries that contain identical graphs should be

merged. Failing to detect isomorphism would result, for instance, in two separate trie

- 98 -

Chapter 5: Loom: Query-aware Partitioning of Online Graphs

a

b

b

c

a

b

c

a
b

a
b

a
b

a
b

b
a

b

a
b

a

ab a
b

a
b

a
b

a
b

b

a

b

a

b

a

ab

bc

abc

q1

q2

Figure 5.3: Combining tries for query graphs q1, q2

nodes being created for the simple graphs a-b-c and c-b-a, rather than a single node

with a support of 2, as intended. One way of detecting isomorphism, often employed

in frequent sub-graph mining, involves computing the lexicographical canonical form

for each graph [79, 127], whereby two graphs are isomorphic if and only if they have

the same canonical representation.

Computing a graph’s canonical form provides strong guarantees, but can be expen-

sive [99]. Instead, we propose a probabilistic, but computationally more efficient ap-

proach based on number theoretic signatures, which extends recent work by Song et

al. [109]. In this approach we compute the signature of a graph as a large, pseudo-

unique integer hash that encodes key information such as its vertices, labels, and nodes

degree. Graphs with matching signatures are likely to be isomorphic to one another,

but there is a small probability of collision, i.e., of having two different graphs with

the same signature.

Given a query graph Gq = {Vq, Eq} we compute its signature as follows. Initially we

assign a random value r(l) = [1, p), between 1 and some user specified prime p, to each

possible label l ∈ LVi
from our data graph G; recall that the function fl maps vertices

in G to these labels. We then perform three steps:

- 99 -

Chapter 5: Loom: Query-aware Partitioning of Online Graphs

1. Calculate a factor for each edge e = (vi, vj) ∈ Eq, according to the formula:

edgeFac(e) = (|r(fl(vi))− r(fl(vj))|) mod p

2. Calculate the factors that encode the degree of each vertex. If a vertex v has a

degree n, its degree factor is defined as:

degFac(v) = ((r(fl(v)) + 1) mod p)·

((r(fl(v)) + 2) mod p) · . . . · ((r(fl(v)) + n) mod p)

3. Finally, we compute the signature of Gq = (Vq, Eq) as:

(
∏
e∈Ei

edgeFac(e)) · (
∏
v∈Vi

degFac(v))

To illustrate, consider query q1 from Fig. 2.1. Given a p of 11 and random values

r(a) = 3, r(b) = 10 we first calculate the edge factor for an a-b edge: edgeFac((a, b)) =

(|3 − 10|) mod 11 = 7. As q1 consists of four a-b edges, its total edge factor is

74 = 2401. Then we calculate the degree factors 5, starting with a b labelled vertex

with degree 2: degFac(b) = ((10 + 1) mod 11) · ((10 + 2) mod 11) = 11, followed by an

a labelled vertex also with degree 2: degFac(a) = 20. As there are two of each vertex,

with the same degree, the total degree factor is 112 · 202 = 48400. The signature of

q1 = 2401 · 48400 = 116208400.

Note that an edge’s factor is calculated using the absolute difference between the two

random values corresponding to its vertices, e.g. |3 − 10| = 7. This is due to the

fact that we consider only undirected edges throughout this thesis (Sec 2.1). However,

factors may be extended to account for directed edges, by simply subtracting the

random value for a destination vertex from that of a source vertex. For example,

edgeFac′((a, b)) = (3− 10) mod 11 = 4, while edgeFac′((b, a)) = (10− 3) mod 11 = 7.

This signature based approach to graph isomorphism is appealing for two reasons.

Firstly, since the factors in the signature may be multiplied in any order, a signature

for G can be calculated incrementally if the signature of any of its sub-graphs Gi is

known, as this is the combined factor due to the additional edges and degree in G\Gi.

5Note we don’t consider 0 a valid factor, and replace it with p (e.g. 11 mod 11 = 11)

- 100 -

Chapter 5: Loom: Query-aware Partitioning of Online Graphs

Secondly, the choice of p determines a trade-off between the probability of collisions

and the performance of computing signatures. Specifically, note that signatures can

be very large numbers (thousands of bits) even for small graphs, rendering operations

such as remainder costly and slow. A small choice of p reduces signature size, because

all the factors are mapped to a finite field [71] (factor mod p) between 1 and p, but

it increases the likelihood of collision, i.e., the probability of two unrelated factors

being equal. We discuss how to improve the performance and accuracy of signatures

in Section 5.2.3.

5.2.2 Constructing the TPSTry++

Our approach to constructing the TPSTry++ is to incrementally compute signatures

Algorithm 2 Recursively add a query graph Gq to a TPSTry++

1: factors(e, g)← degree/edge factors to multiply a graph g’s signature when adding edge
e

2: support(g)← a map of TPSTry++ nodes (graphs) to p-values
3: tpstry ← the TPSTry++ for workload Q
4: parent← a TPSTry++ node, initially root (an empty graph)
5: Gq ← the query graph defined by a query q
6: g some sub-graph of Gq

7: for e in edges from Gq do
8: g← new empty graph
9: corecurse(parent, e, tpstry,g)

10: sig ← factor(e, g) · parent.signature
11: if tpstry.signatures contains sig then
12: n← node from tpstry with signature sig
13: n.support← n.support + 1
14: else
15: n← new node with graph g + e, signature sig and support 1
16: tpstry ← tpstry + n
17: if not parent.children contains n then
18: parent.children← parent.children + n
19: newEdges← edges incident to g + e & not in g + e
20: for e′ in newEdges
21: corecurse(n, e′, tpstry,g + e)
22: return tpstry

for sub-graphs of each query graph q in a trie, merging trie nodes with equal signatures

to produce a DAG which encodes the sub-graphs of all q ∈ Q. Alg. 2 formalises this

approach.

- 101 -

Chapter 5: Loom: Query-aware Partitioning of Online Graphs

Essentially, we recursively “rebuild” the graph Gq | Eq | times, starting from each

edge e ∈ Eq in turn. For an edge e we calculate its edge and degree factors, initially

assuming a degree of 1 for each vertex. If the resulting signature is not associated with

a child of the TPSTry++’s root, then we add a node n representing e. Subsequently,

we “add” those edges e′ which are incident to e ∈ Gq, calculating the additional edge

and degree factors, and add corresponding trie nodes as children of n. Then we recurse

on the edges incident e+ e′.

Consider again our earlier example of the query graph q1: as it arrives in the workload

stream Q, we break it down to its constituent edges {a-b, a-b, a-b, a-b}. Choosing an

edge at random we calculate its combined factor. We know that the edge factor of an

a-b edge is 7. When considering this single edge, both a and b vertices have a degree

of 1, therefore the signature for a-b is 7 · ((3 + 1) mod 11) · ((10 + 1) mod 11) = 308.

Subsquently, we do the same for all other edges and, finding that they have the same

signature, leave the trie unmodified. Next, for each edge, we add each incident edge

from q1 and compute the new combined signature. Assume we add another a-b edge

adjacent to b to produce the sub-graph a-b-a. This produces three new factors: the

new edge factor 7, the new a vertex degree factor ((3 + 1) mod 11) and an additional

degree factor for the existing b vertex ((10 + 2) mod 11). The combined signature for

a-b-a is therefore 308 ·7 ·4 ·1 = 8624; if a node with this signature does not exist in the

trie as a child of the a-b node, we add it. This continues recursively, considering larger

sub-graphs of q1 until there are no edges left in q1 which are not in the sub-graph, at

which point, q1 has been added to the TPSTry++.

5.2.3 Avoiding signature collisions

As mentioned, number theoretic signatures are a probabilistic method of ismorphism

checking, prone to collisions. There are several scenarios in which two non-isomorphic

graphs may have the same signature: a) two factors representing different graph fea-

tures, such as different edges or vertex degrees, are equal; b) two distinct sets of factors

have the same product; and c) two different graphs have identical sets of edges, vertices

and vertex degrees.

- 102 -

Chapter 5: Loom: Query-aware Partitioning of Online Graphs

The original approach to graph isomorphic checking [109] makes use of an expensive

authoritative pattern matching method [73] to verify identified matches. Given a query

graph, it calculates its signature in advance, then incrementally computes signatures

for sub-graphs which form within a window over a graph stream. If a sub-graph’s

signature is ever divisible by that of the query graph, then that sub-graph should

contain a query match.

There are some key differences in how we compute and use signatures with Loom,

which allow us to rely solely upon signatures as an efficient means for mining and

matching motifs. Firstly, remember our overall aim is to heuristically lower the prob-

ability that sub-graphs in a graph G which match our discovered motifs straddle a

partition boundary. As a result we can tolerate some small probability of false posi-

tive results, whilst the manner in which signatures are executed (Sec. 5.2.1) precludes

false negatives; i.e. two graphs which are isomorphic are guaranteed to have the same

signature. Secondly, we can exploit the structure of the TPSTry++ to avoid ever

explicitly computing graph signatures. From Fig. 5.2 and Alg. 2, we can see that all

possible sub-graphs of a query graph Gq will exist in the TPSTry++ by construction.

We calculate the edge and degree factors which would multiply the signature of a sub-

graph with the addition of each edge, then associate these factors to the relevant trie

branches. This allows us to represent signatures as sets of their constituent factors,

which eliminates a source of collisions, e.g. we can now distinguish between graphs

with factors {6, 2}, {4, 3} and {12}. Thirdly, we never attempt to discover whether

some sub-graph contains a match for query q, only whether it is a match for q. In

other words, the largest graph for which we calculate a signature is the size of the

largest query graph |Gq| for all q ∈ Q, which is typically small6. This allows us to

choose a larger prime p than Song et al. might, as we are less concerned with signa-

ture size, reducing the probability of factor collision, another source of false positive

signature matches.

Concretely, we wish to select a value of p which minimises the probability that more

than some acceptable percentage C% of a signature’s factors are collisions. From

Section 5.2.1 there are three scenarios in which a factor collision may occur: a) two

6Of the order of 10 edges.

- 103 -

Chapter 5: Loom: Query-aware Partitioning of Online Graphs

0 50 100 150 200 250 300

0.
0

0.
4

0.
8

Probability of acceptance tolerance 5%

P

pr
ob

ab
ilit

y

of factors
24
36
48

0 50 100 150 200 250 300

0.
0

0.
4

0.
8

Probability of acceptance tolerance 10%

P

pr
ob

ab
ilit

y

of factors
24
36
48

0 50 100 150 200 250 300

0.
0

0.
4

0.
8

Probability of acceptance tolerance 20%

P

pr
ob

ab
ilit

y

of factors
24
36
48

Figure 5.4: Probability of < 5% factor collisions for various p

edge factors are equal despite different vertices with different random values from our

range [1, p); b) an edge factor is equal to a degree factor; and c) two degree factors are

equal, again despite different vertices. Song et al. show that all factors are uniform

random variables from [1, p), therefore each scenario occurs with probability 1
p
.

For either edge or degree factors, from the above it is clear that there are two scenarios

in which a collision may occur, giving a collision probability for any given factor of

2
p
. The Handshaking lemma [27] tells us that the total degree of a graph must equal

2|E|, which means that a graph must have 3|E| factors in its signature: one per

edge plus one per degree. Combined with the binary measure of “success” (collision

/ no collision), this suggests a binomial distribution of factor collision probabilities,

specifically Binomial(3|E|, 2
p
). Binomial distributions tell us the probability of exactly

x “successes” occuring, however we want the probability that no more than Cmax =

C% · 3|E| factors collide and so must sum over all acceptable outcomes x ∈ Cmax:

Cmax∑
x=0

Pr(X = x) where X ∼ Binomial(3|E|, 2

p
)

Figure 5.4 shows the probabilities of having fewer than 5% factor collisions given

query graphs of 8, 12 or 16 edges and p choices between 2 and 317. In Loom, when

- 104 -

Chapter 5: Loom: Query-aware Partitioning of Online Graphs

identifying and matching motifs, we use a p value of 251, which as you can see gives a

neglible probability of significant factor collisions.

5.3 Matching Motifs

We have seen how motifs that occur in Q are identified. By construction, motifs

represent graph patterns that are frequently traversed during executions of queries in

Q. Thus, the sub-graphs of G that match those motifs are expected to be frequently

visited together and are therefore best placed within the same partition. In this section

we clarify how we discover pattern matches between sub-graphs and motifs, whilst in

the next Section we describe the allocation of those sub-graphs to partitions.

Loom operates on a sliding window of configurable size over the stream of edges that

make up the growing graph G. The system monitors the connected sub-graphs that

form in the stream within the space of the window, efficiently checking for isomor-

phisms with any known motif each time a sub-graph grows. Upon leaving the window,

sub-graphs that match a motif are immediately assigned to a partition, subject to

partition balance constraints as explained in Section 5.4.

Note that this technique introduces a delay, corresponding to the size of the window,

between the time edges are submitted to the system and the time they are assigned

and made available. In order to allow queries to access the new parts of graph G,

Loom views the sliding window itself as an extra partition, which we denote Ptemp. In

practice, vertices and edges in the window are accessible in this temporary partition

prior to being permanently allocated to their own partition.

To help understand how the matching occurs, note that in the TPSTry++, by con-

struction, all anscestors of any node n must represent strict sub-graphs of the graph

represented by n itself. Also, note that the support of a node n is the relative fre-

quency with which n’s sub-graph Gn occurs in Q. As, by definition, each time Gn

occurs in Q so do all of its sub-graphs, a trie node n must have a support lower than

any of its anscestors. This means that if any of the nodes in the trie, including those

representing single edges, are not motifs, then none of their descendants can be motifs

either. Thus, when a new edge e = (v1, v2) arrives in the graph stream, we compute

- 105 -

Chapter 5: Loom: Query-aware Partitioning of Online Graphs

its signature (Sec. 5.2.1) and check if e matches a single-edge motif at the root of the

TPSTry++. If there is no match, we can be certain that e will never form part of

any sub-graph that matches a motif. We therefore immediately assign e to a partition

and do not add it to our stream window Ptemp. If, on the other hand, e does match a

single-edge motif then we record the match into a map, matchList, and add e to the

window. The matchList maps vertices v to the set of motif matching sub-graphs in

Ptemp which contain v; i.e. having determined that e = (v1, v2) is a motif match, we

treat e as a sub-graph of a single edge, then add it to the matchList entries for both

v1 and v2. Additionally, alongside every sub-graph in matchList, we store a reference

to the TPSTry++ node which represents the matching motif. Therefore, entries in

matchList take the form v → {〈Ei,mi〉, 〈Ej,mj〉, . . .}, where Ei is a set of edges in

Ptemp that form a sub-graph gi with the same signature as the motif mi.

Given the above, any edge e which is added to Ptemp must at least match a single

edge motif. However, if e is incident to other edges already in Ptemp, then its addition

may also form larger motif matching sub-graphs which we must also detect and add

to matchList. Thus, having added e = (v1, v2) to matchList, we check the map for

existing matches which are connected to e; i.e we look for matches which contain one

of v1 or v2. If any exist, we use the procedure in Alg. 3, along with the TPSTry++,

to determine whether the addition of edge e to these sub-graphs creates another motif

match.

Essentially, for each sub-graph gi from matchList to which e is connected, we calculate

the set of edge and degree factors fac(e, gi) which would multiply the signature of

gi upon the addition e, as in Sec. 5.2. Recall, also from Sec. 5.2, that a TPSTry++

node contains a signature for the graph it represents, and that these signatures are

stored as sets of factors, rather than their large integer products. As each sub-graph

in matchList is paired with its associated motif n from the trie, we can efficiently

check if n has a child c where a) c is a motif; and b) the difference between n’s

factor set and c’s factor set corresponds to factors for the addition of e to gi, i.e.,

fac(e, gi) = c.signatures \ n.signatures. If such a child exists in the trie then adding

e to a graph which matches motif n (gi) will likely create a graph which matches motif

c: the addition of e to Ptemp has formed the new motif matching sub-graph gi + e.

- 106 -

Chapter 5: Loom: Query-aware Partitioning of Online Graphs

1 2 3 4 5

{<
e 1, m

1>,
 <

{e
1,e

4},
 m

3>,
 …

 }

{<
e 1, m

1>,
 <

e 4, m
2>

, <
{e

1,e
4},

 m
3>,

 …
 }

{<
e 2, m

1>,
 …

 }

{<
e 4, m

2>,
 <

e 3, m
2>,

 <
{e

1,e
4},

 m
3>,

 …
 }

t

1 a

2 b

3 a

4 b

5 c

e 1
e 2

e 3
e 4

e 5

a
b

b
c

b
a

b

a
b

c

a
b

a

a
b

a
b

m
5

m
2m
1

m
4

m
3

m
6

{<
e 3, m

2>,
 …

 }

F
ig

u
re

5.
5:
t-

le
n
gt

h
w

in
d
ow

ov
er
G

(l
ef

t)
,

M
ot

if
s

fr
om

T
P

S
T

ry
+

+
(c

en
te

r)
an

d
m

ot
if
m
a
tc
h
L
is
t

fo
r

w
in

d
ow

(r
ig

h
t)

- 107 -

Chapter 5: Loom: Query-aware Partitioning of Online Graphs

Algorithm 3 Mine motif matches from each new edge e ∈ G
1: fac(e, g)← degree/edge factors to multiply a graph g’s signature when adding edge e
2: tpstry ← the filtered TPSTry++ of motifs for workload Q

3: for each new edge e(v1, v2) do
4: matches← matchList(v1) ∪matchList(v2)
5: for each sub-graph m in matches do
6: n← the tpstry node for m
7: if n has child c w. factor = fac(e,m) then
8: add 〈m + e, c〉 to matchList for v1&v2 //Match found!
9: ms1 ← matchList(v1)

10: ms2 ← matchList(v2)
11: for all possible pairs (m1,m2) from (ms1,ms2) do
12: n1 ← the tpstry node for m1

13: recurse(tpstry,m2,m1,n1)
14: for each edge e2 in m2 do
15: if n1 has child c1 w. factor = fac(e2,m1) then
16: recurse(tpstry,m2 − e2,m1 + e2, c1)
17: if m2 is empty then //Match found!
18: add 〈m1 + m2, n1〉 to matchList for v1&v2

We also detect if the joining of two existing multi edge motif matches (〈E1,m1〉, 〈E2,m2〉)

forms yet another motif match, in roughly the same manner. First we consider each

edge from the smaller motif match (e.g. e ∈ E2 from 〈E2,m2〉), checking if the addition

of any of these edges to E1 constitutes yet another match 7; if it does then we add the

edge to E1 and recursively repeat the process until E2 is empty. If this process does

exhaust E2 then E1 ∪ E2 constitute a motif matching sub-graph. Once this process

is complete, matchList will contain entries for all of the motif matching sub-graphs

currently in Ptemp. Note that as more edges are added to Ptemp, matchList may contain

multiple entries for a given vertex where one match is a sub-graph of another, i.e. new

motif matches don’t replace existing ones.

As an example of the motif matching process, consider the portion of a graph stream

(left), motifs (center) and matchList (right) depicted in Fig. 5.5. Our window over

the graph stream G is initially empty, with the depicted edges being added in label

order (i.e. e1, e2, . . .). As the edge e1 is added, we first compute its signature and

verify whether e1 matches a single-edge motif in the TPSTry++. We can see that, as

an a-b labelled edge, the signature for e1 must match that of motif m1, therefore we

7Treating E1 as a sub-graph.

- 108 -

Chapter 5: Loom: Query-aware Partitioning of Online Graphs

add e1 to Ptemp, and add the entry 〈e1,m1〉 to matchList for both e1’s vertices 1,2.

As e1 is not yet connected to any other edges in Ptemp, we do not need to check for

the formation of additional motif matches. Subsequently, we perform the exact same

process for edge e2. When e3 is added, again we verify that, as a b-c edge, e3 is a match

for the single-edge motif m3 and so update Ptemp and matchList accordingly. However,

e3 is connected to existing motif matching sub-graphs in Ptemp therefore the union of

matchList entries for e3’s vertices 4,5 (line 4 Alg. 3) returns {〈e2,m1〉}. As a result,

we calculate the factors to multiply e2’s signature by, when adding e3. Remember that

when computing signatures, each edge has a factor, as well as each degree. Thus, when

adding e3 to e2 our new factors are an edge factor for a b-c labelled edge, a first degree

factor for the vertex labelled c (5) and a second degree factor for the vertex labelled

b8 (4) (Sec. 5.2.1). Subsquently we must check whether the motif for e2, m1, has any

child nodes with additional factors consistent with the addition of a b-c edge, which

it does: m3. This means we have found a new sub-graph in Ptemp which matches the

motif m3, and must add 〈{e2, e3},m3〉 to the matchList entries for vertices 3, 4 and 5.

Similarly, the addition of b-c labelled edge e4 to our graph stream produces the new

motif matches 〈e4,m2〉 and 〈{e1, e4},m3〉, as can be seen in our example matchList.

Finally, the addition of our last edge, e5, creates several new motif matches (e.g.

〈{e1, e5},m4〉, 〈{e2, e5},m5〉 etc. . .). In particular, notice that the addition of e5 creates

a match for the motif m6, combining the new motif match 〈{e1, e5},m4〉 with an

existing one 〈e2,m1〉. To understand how we discover these slightly more complex

motif matches, consider Alg. 3 from line 11 onwards. First we retrieve the updated

matchList entries for vertices 2 and 3, including the new motif matches gained by

simply adding the single edge e5 to connected existing motif matches, as above. Next

we iterate through all possible pairs of motif matches for both vertices. Given the pair

of matches (〈{e1, e5},m4〉, 〈e2,m1〉), we discover that the addition of any edge from

the smaller match (i.e. e2) to the larger produces factors which correspond to a child

of m4 in the TPSTry++: m6. As e2 is the only edge in the smaller match, we simply

add the match 〈{e1, e2, e5},m6〉 to the matchList entries for 1, 2, 3 and 4. In the

general case however, we would not add this new match but instead recursively “grow”

8As, with the addition of e3, vertex 4 has degree 2.

- 109 -

Chapter 5: Loom: Query-aware Partitioning of Online Graphs

it with new edges from the smaller match, updating matchList only if all edges from

the smaller match have been successfully added.

5.3.1 Building a graph index

As mentioned in Chapter 2, sub-graph pattern matching queries are defined in terms of

sub-graph isomorphism checking, an NP-Complete problem [43] with computationally

expensive practical implementations [79, 119]. As a result, in production systems

where the graphs may be very large, a graph index [60] is used to produce a number

of candidate sub-graphs which may then be verified as matching or not using an

expensive algorithm. This approach improves query performance by reducing the

number of isomorphism checks which need to be performed, and is known informally,

as filter-verify.

Traditional graph indices such as gIndex [128] are conceptually similar to a Hash Mul-

tiMap datastructure, where the key (hash) for each entry is a canonical labelling [79]

for a given pattern graph q and the value is a list of the sub-graphs in G which con-

tain a match for q. However, some highly effective graph indices [123, 130] employ a

sub-graph lattice structure rather than a HashMap of canonical labels. For example,

Lindex [130] maintains a lattice, where each node represents a pattern graph 9 and

has an associated list of matching sub-graphs in G.

Now recall that the TPSTry++ is a sub-graph lattice (Sec. 5.2), and observe from

Figure 5.5 that if the matchList were grouped by motif instead of by vertex, our

motif matching procedure would produce the exact equivalent of the datstructures

underpinning Lindex: a sub-graph lattice containing pattern graphs (motifs), where

each node is associated with a list of matching sub-graphs in G (motif matches).

Despite this equivalence between Lindex and the TPSTry++, there are some additional

considerations before employing our datastructure in this manner. For example, a

matchList which never removed entries would quickly grow quite large, needing some

9Or other graph feature/motif being indexed.

- 110 -

Chapter 5: Loom: Query-aware Partitioning of Online Graphs

existing index pruning procedure [123] to remain managable. Such extensions, along

with a thorough evaluation, are left as an important area for future work.

5.4 Allocating Motifs

Following graph stream pattern matching, we are left with a collection of sub-graphs,

consisting solely of the most recent t edges in G, which match motifs from Q. As new

edges arrive in the graph stream, our window Ptemp grows to size t and then “slides”,

i.e. each new edge added to a full window causes the oldest (t + 1th) edge e to be

dropped. Our strategy with Loom is to then assign this old edge e to a permanent

partition, along with the other edges in the window which form motif matching sub-

graphs with e. The sole exception to this is when an edge arrives that may not form

part of any motif match and is assigned to a partition immediately (Sec. 5.3). This

exception does not pose a problem however, because Loom behaves as if the edge was

never added to the window and therefore does not cause displacement of older edges.

Recall again that with Loom we are attempting to assign motif matching sub-graphs

wholly within individual partitions with the aim of reducing ipt when executing our

query workload Q. One naive approach to achieving this goal is as follows: When

assigning an edge e = (v1, v2), retrieve the motif matches associated with v1 and

v2 from Ptemp using our matchList map, then select the subset Me that contains e,

where Me = {〈E1,m1〉, . . . 〈En,mn〉}, e ∈ Ei and Ei is a match for mi. Finally, treating

these matches as a single sub-graph, assign them to the partition with which they share

the most incident edges. This approach would greedily ensure that no edges belonging

to motif matching sub-graphs in G ever cross a partition boundary. However, it would

likely also have the effect of creating highly unbalanced partition sizes, potentially

straining the resources of a single machine, which prompted partitioning in the first

place.

Instead, we rely upon two distinct heuristics for edge assignment, both of which are

aware of partition balance. Firstly, for the case of non-motif-matching edges that

are assigned immediately, we use the existing Linear Deterministic Greedy (LDG)

- 111 -

Chapter 5: Loom: Query-aware Partitioning of Online Graphs

heuristic [110]. Similar to our naive solution above, LDG seeks to assign edges10 to

the partition where they have the most incident edges. However, LDG also favours

partitions with higher residual capacity when assigning edges in order to maintain a

balanced number of vertices and edges between each. Specifically, LDG defines the

residual capacity r of a partition Si in terms of the number of vertices currently in

Si, given as V(Si), and a partition capacity constraint C: r(Si) = 1 − |V(Si)|
C

. When

assigning an edge e, LDG counts the number of e’s incident edges in each partition,

given as N(Si, e), and weights these counts by Si’s residual capacity; e is assigned to

the partition with the highest weighted count. The full formula for LDG’s assignment

is:

max
Si∈Pk(G)

N(Si, e) · (1−
|V(Si)|
C

)

Secondly, for the general case where edges form part of motif matching sub-graphs, we

propose a novel heuristic, equal opportunism. Equal opportunism extends ideas present

in LDG but, when assigning clusters of motif matching sub-graphs to a single partition

as we do in Loom, it has some key advantages. By construction, given an edge e to be

assigned along with its motif matches Me = {〈E1,m1〉 . . . 〈En,mn〉}, the sub-graphs

Ei Ej in Me have significant overlap (e.g. they all contain e). Thus, individually

assigning each motif match to potentially different partitions would create many inter-

partition edges. Instead, equal opportunism greedily assigns the match cluster to the

single partition with which it shares the most vertices, weighted by each partition’s

residual capacity. However, as these vertices and their new motif matching edges may

not be traversed with equal likelihood given a workload Q, equal opportunism also

prioritises the shared vertices which are part of motif matches with higher support in

the TPSTry++.

Formally, given the motif matches Me we compute a score for each partition Si and

motif match 〈Ek,mk〉 ∈ Me, which we call a bid. Let N (Si, Ek) = |V(Si) ∩ V(Ek)|

denote the number of vertices in the edge set Ek (which is itself a graph) that are

already assigned to Si
11. Additionally, let supp(mk) refer to the support of motif mk

in the TPSTry++ and recall that C is a capacity constraint defined for each partition.

10LDG may partition either vertex or edge streams.
11Note that N is a generalisation of LDG’s function N

- 112 -

Chapter 5: Loom: Query-aware Partitioning of Online Graphs

We define the bid for partition Si and motif match 〈Ek,mk〉 as:

bid(Si, 〈Ek,mk〉) = N (Si, Ek) · (1− |V(Si)|
C

) · supp(mk) (5.1)

We could simply assign the cluster of motif matching sub-graphs (i.e. E1∪ . . .∪En) to

the single partition Si with the highest bid for all motif matches in Me. However, equal

opportunism further improves upon the balance and quality of partitionings produced

with this new weighted approach, limiting its greediness using a rationing function we

call l. l(Si) is a number between 0 and 1 for each partition, the size of which is inversely

correlated with Si’s size relative to the smallest partition Smin = minS∈Pk(G) |V(S)|, i.e.

if Si is as small as Smin then l(Si) = 1. Equal opportunism sorts motif matches in Me

in descending order of support, then uses l(Si) to control both the number of matches

used to calculate partition Si’s total bid, and the number of matches assigned to Si

should its total bid be the highest. This strategy helps create a balanced partitioning

by a) allowing smaller partitions to compute larger total bids over more motif matches;

and b) preventing the assignment of large clusters of motif matches to an already large

partition. Formally we calculate l(Si) as follows:

l(Si) =
|V(Si)|
Smin

· α , where α =


1, |V(Si)| = |V(Smin)|

0, |V(Si)| > |V(Smin)| · b

α, otherwise

(5.2)

where α is a user specified number 0 < α ≤ 1 which controls the aggression with which

l penalises larger partitions and b limits the maximum imbalance. Throughout this

chapter we use an empirically chosen default of α = 2
3

and set the maximum imbalance

to b = 1.1, emulating Fennel [117].

Given definitions (5.1) and (5.2), we can now simply state the output of equal oppur-

tinism for the sorted set of motif matches Me, as:

max
Si∈Pk(G)

l(Si)·|Me|∑
k=0

bid(Si, 〈Ek,mk〉) (5.3)

Note that motif matches in Me which are not bid on by the winning partition are

dropped from the matchList map, as some of their constituent edges (e.g. e, which all

- 113 -

Chapter 5: Loom: Query-aware Partitioning of Online Graphs

matches in Me share) have been assigned to partitions and removed from the sliding

window Ptemp.

To understand how to the rationing function l improves the quality of equal oppor-

tunism’s partitioning, not just its balance, consider the following: Just because an edge

e′ falls within the motif match set Me of our assignee e, does not necessarily imply

that placing them within the same partition is optimal. e′ could be a member of many

other motif matches in Ptemp besides those in Me, perhaps with higher support in the

TPSTry++ (i.e. higher likelihood of being traversed when executing a workload Q).

By ordering matches by support and prioritising the assignment of the smaller, higher

support motif matches, we often leave e′ to be assigned later along with matches to

which it is more “important”.

As an example, consider again the graph and TPSTry++ fragment in Fig. 5.5. If as-

signing the edge e1 to a partition at the time t+ 1, its support ordered set of motif

matches Me1 would be 〈e1,m1〉, 〈{e1, e4},m3〉, 〈{e1, e5},m4〉 and 〈{e1, e2, e5},m6〉. As-

sume two partitions S1 and S2, where S1 is 33.3% larger than S2 and vertex 2 already

belongs to partition S1, whilst all other vertices in the window are as yet unassigned

(i.e. this is the first time edges containing them have entered the sliding window). In

this scenario, S1 is guaranteed to win all bids, as S2 contains no vertices from Me1 and

thereforeN (S2,) will always equal 0. However, rather than greedily assign all matches

to the already large S1, we calculate the ration l for S1 as 1
1.33
· 1
1.5

= 1
2
, given α = 1.5.

In other words, we only assign edges from the first half of Me1 (〈e1,m1〉, 〈{e1, e4},m3〉)

to S1; edges such as e5 and e2 remain in the window Ptemp. Assume an edge e6 = (4, 6)

subsequently arrives in the graph stream G, where vertex 6 already belongs to parti-

tion S2 and e6 matches the motif m2 (i.e. has labels b-c). If we had already assigned

e5 to partition S1 then this would lead to an inter-partition edge which is more likely

to be traversed together with e5 than are other edges in S1, given our workload Q.

Instead, we compute a match in Ptemp between {e5, e6} and the motif m3, and will

likely later assign e5 to partition S2. Within reason, the longer an edge remains in the

sliding window, the more of its neighbourhood information we are likely to have access

to, the better partitioning decisions we can make for it.

- 114 -

Chapter 5: Loom: Query-aware Partitioning of Online Graphs

5.5 Evaluation

Our evaluation aims to demonstrate that Loom achieves high quality partitionings

of several large graphs in a single-pass, streaming manner. Recall that we measure

graph partitioning quality using the number of inter-partition traversals (ipt) when

executing a realistic workloads of pattern matching queries over each graph (Sec. 2.4).

Loom consistently produces partitionings of around 20% superior quality when com-

pared to those produced by state of the art alternatives: LDG [110] and Fennel [117]

Furthermore, Loom partitionings’ quality improvement is robust across different num-

bers of partitions (i.e. a 2-way or a 32-way partitioning). Finally we show that, like

other streaming partitioners, Loom is sensitive to the arrival order of a graph stream,

but performs well given a pseudo-adversarial random ordering.

5.5.1 Experimental setup

For each of our experiments, we start by streaming a graph from disk in one of three

predefined orders:

• Breadth-first: computed by performing a breadth-first search across all the

connected components of a graph.

• Random: computed by randomly permuting the existing order of a graph’s

elements.

• Depth-first: computed by performing a depth-first search across the connected

components of a graph.

We choose these stream orderings as they are common to the evaluations of other

graph stream partitioners [52, 87, 110, 117], including LDG and Fennel.

Subsequently, we produce 4 separate k-way partitionings of this ordered graph stream,

using each of the following partitioning approaches for comparison:

• Hash: a naive partitioner which assigns vertices and edges to partitions on the

basis of a hash function. This is the default partitioner used by many existing

- 115 -

Chapter 5: Loom: Query-aware Partitioning of Online Graphs

distributed graph databases and graph data management systems, including Ti-

tanDB [114], Microsoft’s Trinity [108] and Facebook’s TAO [122]. As such we

use it as a baseline for our comparisons.

• LDG: a simple graph stream partitioner with good performance which we extend

with our work on Loom.

• Fennel: a state-of-the-art graph stream partitioner and our primary point of

comparison. As suggested by Tsourakakis et al [117], we use the Fennel param-

eter value γ = 1.5 throughout our evaluation.

• Loom: our own partitioner which, unless otherwise stated, we invoke with a

window size of 10k edges and a motif support threshold of 40%.

Finally, when each graph is finished being partitioned, we execute the appropriate

query workload over it and count the number of inter-partition traversals (ipt) which

occur.

Note that, as with the evaluation of TAPER (Sec. 4.6), we avoid implementation

dependent measures of partitioning quality because, as an isolated prototype, Loom

is unlikely to exhibit realistic performance. For instance, lacking a distributed query

processing engine, query workloads are executed over logical partitions during the

evaluation. In the absence of network latency, query response times are meaningless

as a measure of partitioning quality.

All algorithms, data structures, datasets and query workloads are publicly available12.

All our experiments are performed on a commodity machine with a 3.1Ghz Intel i7

CPU and 16GB of RAM.

5.5.1.1 Graph datasets

Remember that the workload-agnostic partitioners which we aim to supersede with

Loom are liable to exhibit poor workload performance when queries focus on travers-

ing a limited subset of edge types (Sec. 5.1). Intuitively, such skewed workloads are

more likely over heterogeneous graphs, where there exist a larger number of possible

12The Loom repository: http://bit.ly/2eJxQcp

- 116 -

http://bit.ly/2eJxQcp

Chapter 5: Loom: Query-aware Partitioning of Online Graphs

Entity

Activity

Entity Paper

Person Person

PaperPaperAgent

Artist

Label

Area

Area

DBLPProvGen MusicBrainz

Figure 5.6: Examples of q for MusicBrainz, DBLP & ProvGen

edge types for queries to discern between, e.g. a-a, a-b, a-c. . . vs just a-a. Thus, we

have chosen to test the Loom partitioner over five datasets with a range of different

heterogeneities and sizes; three of these datasets are synthetic and two are real-world.

Table 5.1 presents information about each of our chosen datasets, including their size

and how heterogeneous they are (|LV |). We use the DBLP [63], and LUBM [46]

datasets, which are well known. MusicBrainz [111]13 is a freely available database of

curated music metadata, with vertex labels such as Artist, Country, Album and Label.

ProvGen [35] is a synthetic generator for PROV metadata [85], which records detailed

provenance for digital artifacts.

5.5.1.2 Query workloads

For each dataset we must propose a representative query workload to execute so that

we may measure partitioning quality in terms of ipt. Remember that a query workload

consists of a set of distinct query patterns along with a frequency for each (Sec. 2.2).

The LUBM dataset provides a set of query patterns which we make use of. For every

other dataset, however, we define a small set of common-sense queries which focus on

discovering implicit relationships in the graph, such as potential collaboration between

authors or artists 14. The full details of these query patterns are available12, Fig. 5.6

13The MusicBrainz database: http://bit.ly/1J0wlNR
14If possible, workloads are drawn from the literature, e.g. common PROV queries [25, 57] and

DBLP author-nets [116]

- 117 -

http://bit.ly/1J0wlNR

Chapter 5: Loom: Query-aware Partitioning of Online Graphs

Table 5.1: Graph datasets, incl. size & heterogeneity

Dataset ∼ |V | ∼ |E| |LV | Real Description
DBLP [63] 1.2M 2.5M 8 Y Publications & citations
ProvGen [35] 0.5M 0.9M 3 N Wiki page provenance
MusicBrainz [111] 31M 100M 12 Y Music records metadata
LUBM-100 [46] 2.6M 11M 15 N University records
LUBM-4000 [46] 131M 534M 15 N University records

presents some examples. Note that whilst the TPSTry++ may be trivially updated

to account for change in the frequencies of workload queries (Sec. 5.2), our evaluation

of Loom assumes that said frequencies are fixed and known a priori. Recall that, for

online databases, we argue this is a realistic assumption (Sec. 5.1). However, more

complete tests with changing workloads are an important area for future work.

5.5.2 Comparison of systems

Figures 5.7 and 5.8 present the improvement in partitioning quality achieved by

Loom and each of the comparable systems we desribe above. Initially, consider the

experiment depicted in Fig. 5.7. We partition ordered streams of each of our first 4

graph datasets15 into 8-way partitionings, using the approaches described above, then

execute each dataset’s query workload over the appropriate partitioning. The absolute

number of inter-partition traversals (ipt) suffered when querying each dataset varies

significantly. Thus, rather than represent these results directly, in Fig. 5.7 (and 5.8)

we present the results for each approach as relative to the results for Hash; i.e. how

many ipt did a partitioning suffer, as a percentage of those suffered by the Hash

partitioning of the same dataset.

As expected, the naive hash partitioner performs poorly: it produces partitionings

which suffer twice as many inter-partition traversals, on average, when compared to

partitionings produced by the next best system (LDG). Whilst the LDG partitioner

does achieve around a 55% reduction in ipt vs our Hash baseline, its produces par-

titionings of consistently poorer quality than those of Fennel and Loom. Although

both LDG and Fennel optimise their partitionings for the balanced min. edge-cut goal

(Sec. 5.1), Fennel is the more effective heuristic, cutting around 25% fewer edges than

15Excluding LUBM-4000

- 118 -

Chapter 5: Loom: Query-aware Partitioning of Online Graphs

(a) Random order

(b) Breadth-first order

(c) Depth-first order

Figure 5.7: ipt %, vs. Hash, when executing Q over 8-way partitionings of graph
streams in multiple orders.

- 119 -

Chapter 5: Loom: Query-aware Partitioning of Online Graphs

(a) k = 2

(b) k = 8

(c) k = 32

Figure 5.8: ipt %, vs. Hash, when executing Q over multiple k-way partitionings of
breadth-first graph streams.

- 120 -

Chapter 5: Loom: Query-aware Partitioning of Online Graphs

LDG for small numbers of partitions (including k = 8) [117]. Intuitively, the likelihood

of any edge being cut is a coarse proxy for the likelihood of a query q ∈ Q traversing

a cut edge. This explains the disparity in ipt scores between the two systems.

Of more interest is comparing the quality of partitionings produced by Fennel and

Loom. Fig. 5.7 clearly demonstrates that Loom offers a significant improvement in

partitioning quality over Fennel, given a workload Q. Loom’s reduction in ipt relative

to Fennel’s is present across all datasets and stream orders, however it is particularly

pronounced over ordered streams of more heterogeneous graphs; e.g. MusicBrainz in

subfigure 5.8b, where Loom’s partitioning suffers from 42% fewer ipt than Fennel’s.

This makes sense because, as mentioned, pattern matching workloads are more likely to

exhibit skew over heterogeneous graphs, where query graphs Gq contain a, potentially

small, subset of the possible vertex labels. Across all the experiments presented in

Fig. 5.7, the median range of Loom’s ipt reduction relative to Fennel’s is 20− 25%.

Additionally, Fig. 5.8 demonstrates that this improvement is consistent for different

numbers of partitions. As the number of partitions k grows, there is a higher proba-

bility that vertices belonging to a motif match are assigned across multiple partitions.

This results in an increase of absolute ipt when executing Q over a Loom partitioning.

However, increasing k actually increases the probability that any two vertices which

share an edge are split between partitions, thus reducing the quality of Hash, LDG

and Fennel partitionings as well. As a result, the difference in relative ipt is largely

consistent between all 4 systems.

On the other hand, neither Fig. 5.7, nor Fig. 5.8, present the runtime costs of producing

a partitioning. Table 5.2 presents how long (in ms) each partitioner takes to partition

10k edges. Whilst all 3 algorithms are capable of partitioning many 10s of thousands of

edges per second, we do find that Loom is slower than LDG and Fennel by an average

factor of 2-3. This is likely due to the more complex map-lookup and pattern-matching

logic performed by Loom, or a nascent implementation. The runtime performance of

Loom varies depending on the query workload Q used to generate the TPSTry++

(Sec. 5.2), therefore the performance figures presented in Table 5.2 are averaged across

many different Q. The minimum slowdown factor observed between Loom and Fennel

- 121 -

Chapter 5: Loom: Query-aware Partitioning of Online Graphs

Table 5.2: Time to partition 10k edges

Dataset LDG (ms) Fennel (ms) Loom (ms) Hash (ms)
DBLP 91 96 235 28
ProvGen 144 146 240 33
MusicBrainz 48 52 129 18
LUBM-100 47 51 147 22
LUBM-4000 45 49 138 16

was 1.5, the maximum 7.1. Note that popular non-streaming partitioner METIS [58]

is around 13 times slower than Fennel for large graphs [117].

We contend that this performance difference is unlikely to be an issue in an online

setting for two reasons. Firstly, most production databases do not support more than

around 10k transactions per second (TPS) [68]. Secondly, it is considered exceptional

for even applications such as twitter to experience >30k-40k TPS [118]. Meanwhile,

the lowest partitioning rate exhibited by Loom in Table 5.2 is equivalent to ˜ 42k edges

per second, the highest 72k.

Note that Figures 5.7 and 5.8 do not present the relative ipt figures for the LUBM-

4000 dataset. This is because measuring relative ipt involves reading a partitioned

graph into memory, which is beyond the constraints of our present experimental setup.

However, we include the LUBM-4000 dataset in Table 5.2 to demonstrate that, as a

streaming system, Loom is capable of partitioning large scale graphs. Also note that

none of the figures present partitioning imbalance as this is broadly similar between

all approaches and datasets 16, with LDG varying between 1%−3%, Loom and Fennel

between 7% and their maximum imbalance of 10% (Sec. 5.4).

5.5.3 Effect of stream order and window size

Fig. 5.7 indicates that Loom is sensitive to the ordering of its given graph stream.

In fact, subfigure 5.7a shows Loom achieve a smaller reduction in ipt over Fennel and

LDG, than in 5.7b and 5.7c. Specifically Loom achieves a 42% greater reduction

in relative ipt than Fennel given a breadth-first stream of the MusicBrainz graph,

but only a 26% when the stream is ordered randomly, despite Fennel and LDG also

16Except Hash, which is balanced.

- 122 -

Chapter 5: Loom: Query-aware Partitioning of Online Graphs

being sensitive to stream ordering [110, 117]. This implies that Loom is particularly

sensitive to random orderings: edges which are close to one another in the graph may

not be close in the graph stream, resulting in Loom detecting fewer motif matching

sub-graphs in its stream window.

Figure 5.9: ipt (y-axis) when executing Q over Loom partitionings with multiple win-
dow sizes t(x-axis)

Intuitively, this sensitivity can be ameliorated by increasing the size of Loom’s window,

as shown in Fig. 5.9 As Loom’s window grows, so does the probability that clusters of

motif matching sub-graphs will occur within it. This allows Loom’s equal opportunism

heuristic to make the best possible allocation decisions for the sub-graph’s constituent

vertices. Indeed, the number of ipt suffered by Loom partitionings improves signif-

icantly, by as much as 47%, as the window size grows from 100 to 10k. However,

increasing the window size past 10k clearly has little effect on ipt suffered to execute

Q if your graph stream is ordered. The exact impact of increasing Loom’s window

size depends upon the degree distribution of the graph being partitioned. However,

to gain an intuition consider the naive case of a graph with a uniform average vertex

- 123 -

Chapter 5: Loom: Query-aware Partitioning of Online Graphs

degree of 8, along with a TPSTry++ whose largest motif contains 4 edges. In this

case, a breadth-first traversal of 84 edges from a vertex a (i.e. window size t ≈ 4k)

is highly likely to include all the motif matches which contain a. Regardless, Fig. 5.9

might seem to suggest that Loom should run with the largest window size possible.

However, besides the additional computational cost of detecting more motif matches,

remember that Loom’s window constitutes a temporary partition (Sec. 5.3). If there

exist many edges between other partitions and Ptemp, then this may itself be a source

of ipt and poor query performance.

5.6 Conclusion

In this chapter, we have presented Loom: a practical system for producing k-way

partitionings of online, dynamic graphs, which are optimised for a given workload of

pattern matching queries Q.

By employing frequent sub-graph mining in the form of the TPSTry++ (Sec. 5.2), we

are able to identy sub-graphs which are common to many of Q’s query graphs: motifs.

Using an incremental and probabilistic form of pattern matching over the stream of

graph updates, we are able to efficiently detect matches for these motifs as they form.

Subsquently, we are able to heuristically assign the majority of motif matches within

single partitions, reducing ipt when executing a random q ∈ Q.

We also argue that a TPSTry++ may be used as a graph index. In this case, detecting

motif matches in the stream of graph updates is equivalent to an index update opera-

tion, amortizing Loom’s computational cost in production systems which already rely

on indices.

Our experiments indicate that Loom significantly improves graph partitioning quality

with respect to Q, relative to state-of-the-art (workload agnostic) streaming graph

partitioners. Furthermore they demonstrate that although Loom’s partitioning does

cause computational overhead relative to other approaches, its is more than performant

enough for application in online data-management contexts.

Consider once again our comparison framework for graph partitioners (Sec. 3.6), sum-

marised in Table. 5.3. Our experiments demonstrate that Loom is both workload-

- 124 -

Chapter 5: Loom: Query-aware Partitioning of Online Graphs

Table 5.3: Comparison framework properties overview

Key Description
S Capable of partitioning graph streams
D Capable of partitioning distributed graphs
SC Capable of partitioning very large graphs
DY Capable of partitioning dynamic, growing graphs
RF Partitionings do not rely upon replication
WS Partitionings are sensitive to given workloads
OW Partitionings are sensitive to changing workloads
TX Partitionings are sensitive to changing data-management workloads

Table 5.4: Properties of the Loom partitioner

System S D SC DY RF WS OW TX
Loom Y Y Y Y Y Y

sensitive (WS) and, unlike TAPER, capable of partitioning dynamic, growing graphs

(DY). Table. 5.4 presents all Loom’s framework properties; note that it possesses more

of these properties, which render a partitioner suitable for addressing our thesis aim,

than any other system we consider (Sec. 3.6.2 & 4.7).

Naturally, in spite of its effectiveness, there are several areas in which Loom could

benefit from further work. Firstly, as a workload-sensitive technique which may not

adapt existing partitionings, Loom is vulnerable to workload change over time (i.e. it

lacks the OW property). Secondly, due to our reliance upon graph pattern matching in

a single stream window, Loom is single threaded. This limits both the distributability

and maximum throughput of the technique. We briefly outline the details of future

research on several topics, including addressing these shortcomings, in the next chapter

(Sec. 6.3).

- 125 -

Chapter 5: Loom: Query-aware Partitioning of Online Graphs

- 126 -

6
Discussion

Contents
6.1 Thesis Summary . 128

6.2 Summary of contributions . 130

6.2.1 Properties desirable for online graph partitioning techniques . . 130

6.2.2 Capturing online query workload information 131

6.2.3 Workload-sensitive re-partitioning of existing graphs for online
workloads . 132

6.2.4 Workload-sensitive partitionings of online, growing graphs . . . 132

6.3 Future research directions . 134

6.3.1 Integrating TAPER and Loom 134

6.3.2 Distributing Loom across multiple hosts 135

6.3.3 Restreaming with Loom . 136

6.3.4 A timeseries approach to triggering TAPER repartitionings . . 136

6.3.5 Considering other forms of graph data 137

- 127 -

Chapter 6: Discussion

6.1 Thesis Summary

In Chapter 1, we argued that graph partitioning is an important problem due to

its potential to improve the network latency, and therefore performance, of many

modern applications which rely upon graph data operations. Broadly speaking, the

work throughout the rest of the thesis followed one of two threads motivated by this

problems’ relevance. Either demonstrating that existing graph partitioning systems

are poorly suited to improving the performance of the subset of graph operations

common to online, data-management applications. Or proposing, implementing and

evaluating a series of techniques which may be combined to produce graph partitionings

of high quality with respect to said operation subset, both from scratch and iteratively

from previously partitioned graphs. More specifically:

In Chapter 2 We presented background information on areas related to or depended

upon by the main topic of this thesis, including formal definitions of graphs,

graph workloads and graph partitionings. Additionally, several measures for

the quality of a graph partitioning were defined and discussed, including min.

edge-cut and partition stability [24]. Finally, we reiterated our argument from

chapter 1: that the number of inter-partition traversals (ipt) is an ideal measure

of partitioning quality with respect to a given online, data-management focused,

graph workload.

In Chapter 3 We presented a thorough survey of existing graph partitioning research

and systems, including both fundamental and state-of-the-art work. In this sur-

vey, we separated each piece of work into one of 10 potentially overlapping cat-

egories. For each such category, we provided a brief explanation of how graph

partitionings are produced, along with a critical analysis of category systems’

strengths and weaknesses. Finally we extracted 8 distinct properties of the sur-

veyed systems, arguing why each property is important to consider when design-

ing techniques to produce high quality partitionings of online graphs with respect

to online workloads: the stated aim of this thesis. These properties constitute

a comparison framework which we later used to evaluate our own partitioning

techniques against the thesis’ aim.

- 128 -

Chapter 6: Discussion

In Chapter 4 We proposed TAPER: a practical framework for workload-sensitive

graph repartitioning. Firstly, given a stream of regular path queries [81] (RPQs)

Q, we described how to construct and maintain a Traversal Pattern Summary

Trie (TPSTry), which encodes the likelihood of any given path of labelled ver-

tices being traversed by a random q ∈ Q. Using the TPSTry, TAPER is able to

discover vertices likely to be the source of costly ipt given Q, which we refer to as

having high extroversion. These extroverted vertices are then iteratively traded

amongst partitions, attempting to collocate vertices which are often traversed

together, thereby reducing ipt. As TAPER is intended for application to large,

distributed graphs, we also described heuristics used to avoid computing all but

the most highly extroverted vertices. These heuristics improved framework per-

formance and, importantly, network overhead. Indeed, in the evaluation of this

chapter (Sec. 4.6) we demonstrated that TAPER is able to approach or even im-

prove the quality of a partitioning produced by a state of the art offline, global

system (METIS [58]) with much less than half the network overhead. Finally, as

an incremental workload-sensitive graph repartitioning system, TAPER is able

to repartition its own output in order to adapt to the continuous workload change

common in online data-management applications. To this end, we presented a

further evaluation of the framework, demonstrating consistently high partition-

ing quality over time given a changing stream of queries and repeated executions

of TAPER.

In Chapter 5 We propsed Loom: another practical system, this time for workload-

senstive partitioning of online, dynamic graphs. Loom extends TAPER’s TPSTry

using a novel method of sub-graph isomorphism checking, deriving the graph pat-

terns (motifs) most frequently traversed by a given a workload of general pattern

matching queries Q. Subsequently, the same isomorphism checking method is

used to efficiently detect motif matching sub-graphs as they form in the graph

stream. Loom attempts to assign these matches wholly within single partitions so

that queries which cause the corresponding pattern of traversals may later be ex-

ecuted without increasing ipt. We conducted a thorough experimental evaluation

of Loom using several large datasets and query workloads. These experiments

- 129 -

Chapter 6: Discussion

indicated that Loom significantly reduces ipt relative to state of the art (but

not workload-sensitive) streaming partitioners [110, 117]. Finally, we demon-

strated that the TPSTry++ is equivalent to a graph feature index [123, 130]

and that, therefore, the motif matches computed by Loom may be used as index

entries. This potentially offsets the computational overhead of Loom in online

data-management applications where indexing is a common existing requirement.

6.2 Summary of contributions

Recall that the aim of this thesis was to Design, implement and evaluate tech-

niques for producing partitionings of large graphs which are well optimised

for use in an online data-management context. Subsequently, this was sepa-

rated into four, more concrete research questions (Sec. 1.3), each of which should be

answered in any attempt to effectively address the high-level aim. Throughout this

section we reflect upon the extent to which our own work satisfies these questions,

along with its impacts and shortcomings in general.

6.2.1 Properties desirable for online graph partitioning tech-
niques

The extensive research survey presented in chapter 3 revealed that no single existing

graph partitioner is well suited to the workload-sensitive partitioning of online graphs.

More recent systems such as Leopard [52] or the RDF partitioner of Peng et al [91]

fare the best but lack key features, such as the ability to practically account for query

workloads or partition an online graph (graph stream), respectively. This sort of

critical analysis revealed several properties, besides workload sensitivity (WS) and

stream partitioning (S), which are important to systems attempting to address the

thesis aim. As mentioned, the survey highlights 8 such properties to form a framework

for consistently comparing the functionality of different graph partitioners. Refer to

Table 5.3 in the previous chapter for an overview. However, for clarity, the comparison

framework only uses those properties which are relevant to the thesis aim, thereby

restricting the surveys applicability relative to general pre-existing works [5, 12, 13,

106].

- 130 -

Chapter 6: Discussion

On the other hand, to our knowledge, existing surveys do not consider the fitness of

graph partitioners at optimising specifically for online workloads; certainly not to

the extent that they provide a comparison framework for consistently measuring said

fitness. We therefore contend that our survey has value, not only for evaluating our

own work thus far, but also the future work of ourselves and others on this topic.

6.2.2 Capturing online query workload information

The choice of approach to capturing and encoding information about a graph query

workload was informed by some key insights. Firstly, it is impractical to track an

online graph query workload directly, let alone the traversals caused by a workload [97,

129]. Any attempt at such granular tracking would significantly impinge upon the

performance of the queries themselves, running counter to this thesis’ ultimate aim

(Sec. 3.5). Secondly, given a workload which changes over time, encodings need to

be easily adaptable to avoid overfitting (Sec. 4.6.2). We have demonstrated that as

intensional representations of a query workload’s traversals, both the TPSTry and

TPSTry++ are highly compact and simple to construct and update (Sec. 4.4 & 5.2).

They are not without their drawbacks. For instance, as intensional representations

of workload traversal patterns, neither datastructure encodes the traversal likelihoods

of individual vertices and edges, only collections of sub-graphs whose structure and

labels match a given pattern.

Furthermore, the TPSTry is only able to encode simple paths of traversals and cannot

be used with a workload of sub-graph pattern matching queries, which may contain

branches, cycles and other features. The TPSTry++ can encode complex sub-graphs,

but only those which are concretely specified. In other words, unlike the TPSTry, it

cannot currently encode traversals arising from queries which make use of operators

like exclusive disjunction “|” and the Kleene closure “*”.

Despite these drawbacks, we believe that both the TPSTry and TPSTry++ datastruc-

tures are valuable foundational contributions towards the aim of this thesis, both for

their attractive space-efficiency and for the TAPER and Loom partitioning techniques

they enable.

- 131 -

Chapter 6: Discussion

6.2.3 Workload-sensitive re-partitioning of existing graphs
for online workloads

In applications where workload-sensitive partitioners could usefully be applied, there is

often a large existing graph partitioning (Sec. 1.3). Furthermore, whilst a workload-

sensitive graph partitioning may be high quality with respect to a given query work-

load, that quality will degrade in the event that the workload varies over time, which

is common in online data-management applications (Sec. 4.6). The TAPER system

was designed as an efficient and repeatable workload-sensitive graph repartitioner in

order to address these issues. It constitutes a key tangible contribution towards the

aim of our thesis.

Unfortunately, as its partitioning algorithm is based upon the TPSTry, TAPER shares

that datastructure’s limitation to simple paths of vertices: it is only able to account for

traversal likelihoods arising from workloads of RPQs in its partitionings. Futhermore,

because the TAPER algorithm employs no real hill climbing, it is liable to get trapped

in local optimisation minima when given a naive input, rather than achieve the highest

possible quality of partitioning (Sec. 4.6).

On the other hand, as previously mentioned, we have demonstrated that TAPER is

able to provide significant improvements in partitioning quality, given inputs gener-

ated by a) a naive graph partitioner; b) a sophisticated workload-agnostic system; or

c) itself, prior to some workload change. Furthermore, because TAPER performs no

hill-climbing, it will never perform a vertex-swap which results in a net decrease in par-

titioning quality. This renders the repartitioning process interruptible, and particularly

well suited for use in an online graph data-management application: repartitioning can

be paused in periods of high system load.

6.2.4 Workload-sensitive partitionings of online, growing
graphs

Online dynamic graphs grow continuously over time, adding new vertices and edges.

Broadly, there are two possible approaches to partitioning such a graph: periodically

re-executing a global partitioner over the entire graph, including the new elements, or

- 132 -

Chapter 6: Discussion

using a streaming graph partitioner [52, 87, 110, 117] which assigns new elements to

partitions as they arrive1. As the former is impractical in an online application [55], a

streaming graph partitioner was required. To the best of our knowledge, no workload-

sensitive streaming previously existed, so we designed and implemented Loom.

Loom comes with a performance overhead that impacts system throughput. Specifi-

cally, it can only partition around 42% as many vertices and edges as state-of-the-art

workload agnostic alternatives, in the same time. We have observed, however, that this

is not an important limitation, because Loom can comfortably sustain a throughput

that is much higher than the typical vertex arrival rate (Sec. 5.5.2). Additionally, like

other streaming graph partitioners [52, 87, 110, 117], the quality of Loom’s partition-

ing is sensitive to the order of the graph update stream. However, this may be at least

partially ameliorated by increasing the size of the window in which motif matches are

detected (Sec. 5.5.3).

In spite of these issues, Loom is a one-of-a-kind system, capable of producing graph

stream partitionings in a single pass which are of significantly higher quality, compared

to those produced by existing workload-agnostic alternatives (Sec. 5.5).

In final summary, in order to address the aim of this thesis:

• We undertook significant research evaluating existing graph partitioning tech-

niques, highlighting those lacking features which render them unfit to address

our aim themselves.

• We presented a foundational contribution in the form of two novel datastruc-

tures (TPSTry and TPSTry++) for capturing and encoding the likely traversal

patterns arising from a graph query workload typical of online data-management

applications.

• We built upon the TPSTries to propose Loom and TAPER: two practical tech-

niques for creating and maintaining graph partitionings. We used the partitioner

features highlighted in early research to ensure that the techniques are well op-

timised for use in an online data-management context.

1A naive hash based approach can be seen as a workload-agnostic streaming graph partitioner.

- 133 -

Chapter 6: Discussion

6.3 Future research directions

In this section we describe several interesting topics for future research which build

upon or extend the work of this thesis.

6.3.1 Integrating TAPER and Loom

Readers may note that we have not presented a single output which is capable of both

creating and maintaining a high quality workload-sensitive partitioning of an online

graph. Loom creates high quality but fixed partitionings from a dynamic stream of

graph updates, whilst TAPER continuously improves the quality of pre-existing graph

partitionings. Table 6.1 presents this distinction in terms of the comparison framework

from chapter 3.

Table 6.1: Properties of TAPER and Loom

System S D SC DY RF WS OW TX
TAPER [37] Y P Y Y Y P
Loom [36, 38] Y Y Y Y Y Y

As a strict streaming graph partitioner, Loom will never reassign vertices and edges

which have previously been assigned to a given partition. As a result, it lacks the OW

property: the ability to adapt its partitioning to account for change in the makeup or

frequencies of queries in an online workload. Meanwhile, as a repartitioning system

TAPER cannot incrementally create a new partitioning from a stream of graph updates

and therefore lacks the Dynamic (DY) property.

Between them, the two systems possess every property which we have identified

as useful to addressing the aim of this thesis; evidently, it is desirable to integrate

them. This would require reformulating TAPER in terms of the TPSTry++ in order

to allow it to account for general sub-graph pattern matching queries. In particular,

the algorithm for computing Visitor Matrix values (Sec. 4.5.4) would need to be

replaced as, in its current form, it depends strongly on the linear structure of a graph

path.

- 134 -

Chapter 6: Discussion

a b

c d

b c

b a b

a b c

a b a

b c d

a b a

a b c

b a b

a b c

b

c

a

a b c

a

a
b

a

a b c

a

b

b

d

a b c

a

d

b

d

Machine B

Machine A

Routing

Graph stream

sub-stream

sub-stream

Figure 6.1: Potential architecture for a distributed variant of Loom

6.3.2 Distributing Loom across multiple hosts

As with other single-pass2 partitioners [110, 117], it is not possible for Loom to op-

erate whilst distributed amongst several hosts. Consider table 6.1 again: Loom lacks

support for the Distributed property (D). This is due to the fact that Loom relies

upon maintaining a single matchList for detecting motif matching sub-graphs within

a graph update stream (Sec. 5.3). If Loom were distributed and connected sub-graphs

were added to different matchLists, motif matches might go undetected.

In general, the lack of distributability is a performance bottleneck for streaming graph

partitioners. As throughput is an, admittedly minor, concern for Loom (Sec. 5.5.2) it

would be beneficial to address this.

One potential approach for distributing Loom across a cluster of machines would be to

partition the TPSTry++ itself, as per figure 6.1. Each machine would be responsible

for detecting matches for the motifs in its subset of the the TPSTry++. Meanwhile

the entire cluster would be fronted by lightweight and routing middleware, assigning

vertices and edges from the graph stream to the machine where they are most likely

to form part of a motif match, based on their labels. The effectiveness and fine details

of this approach are currently unknown, however.

2As opposed to restreaming partitioners [52, 87].

- 135 -

Chapter 6: Discussion

6.3.3 Restreaming with Loom

Recently, restreaming extensions have been proposed [52, 87] to the popular streaming

algorithms LDG [110] and Fennel [117]. As outlined in chapter 3, these extensions

depart from the general pattern of streaming graph partitioners by reapplying their

partitioning algorithm to some or all of the already partitioned graph. Obviously,

this technique has a performance cost relative to traditional single-pass systems, how-

ever it also produces substantial improvements in partitioning quality. For example,

Leopard [52] reports a reduction in min. edge-cut3 of between 10-70% relative to

Fennel [117], which is the algorithm it extends.

It is certainly possible that a restreaming extension to Loom would provide a similar

benefit to partitioning quality, and is therefore worthy of exploration.

6.3.4 A timeseries approach to triggering TAPER reparti-
tionings

The evaluation of TAPER demonstrated that repeated invocations of its algorithm

are able to maintain high partitioning quality (low numbers of ipt) with respect to a

changing query workload (Sec. 4.6.2.5). However, the same evaluation also highlights

the importance of effective trigger conditions for invocations. Indeed, naive trigger

conditions can actually cause a reduction in partitioning quality by optimising a par-

titioning immediately prior to rapid workload change.

One potential avenue for avoiding this issue is predicting workload change in advance,

and planning TAPER invocations accordingly. Workload change may periodic, as in

our experiments, the result of high-level application changes, or simple due to ran-

dom variations. Predicting such change based upon historical workload information

is a classic example of nonlinear timeseries analysis [56]. For example, assuming a

workload was at least roughly periodic, we could employ sketch datastructures to de-

rive a continuous approximation for this period [53]; using that to dictate TAPER’s

invocation schedule.

3The partitioning quality metric used in that work.

- 136 -

Chapter 6: Discussion

6.3.5 Considering other forms of graph data

Throughout this thesis, we have avoided considering some forms of graph data, such as

edge-labelled and multi-graphs (Sec. 2.1). In large part, these omissions simply allow

us to convey complex concepts with a greater degree of clarity and concision. Indeed,

many of the techniques presented may be trivially extended to, e.g. edge-labelled or

directed graphs, including both TPSTries. (Sec. 4.4, and 5.2.1).

However, there remain some areas of the thesis, notably TAPER’s Visitor Matrix

(Sec. 4.2.3), where the impact of considering these other forms of graph data remains

unexplored. This exploration, and any resulting extensions to the VM, are an impor-

tant direction for future effort.

- 137 -

138

Bibliography

[1] Manish Kumar Anand, Shawn Bowers, and Bertram Ludäscher. Techniques for
efficiently querying scientific workflow provenance graphs. In Proceedings of the
13th International Conference on Extending Database Technology - EDBT ’10,
page 287, 2010.

[2] Thomas E. Anderson, Susan S. Owicki, James B. Saxe, and Charles P. Thacker.
High-speed switch scheduling for local-area networks. ACM Transactions on
Computer Systems, 11(4):319–352, 1993.

[3] Konstantin Andreev and Harald Racke. Balanced Graph Partitioning. Theory
of Computing Systems, 39(6):929–939, 2006.

[4] Renzo Angles and Claudio Gutierrez. Querying RDF Data from a Graph
Database Perspective. In The Semantic Web: Research and Applications, Euro-
pean Semantic Web Conference (ESWC), pages 346–360, 2005.

[5] Renzo Angles and Claudio Gutierrez. Survey of graph database models. ACM
Computing Surveys, 40(1):1–39, 2008.

[6] Arvind Arasu and Gurmeet Singh Manku. Approximate counts and quan-
tiles over sliding windows. In Proceedings of the Twenty-third ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems, PODS ’04,
pages 286–296, 2004.

[7] Marcelo Arenas, Sebastián Conca, and Jorge Pérez. Counting beyond a yot-
tabyte, or how sparql 1.1 property paths will prevent adoption of the standard.
In Proceedings of the 21st international conference on World Wide Web, pages
629–638. ACM, 2012.

[8] Pablo Barceló, Leonid Libkin, Anthony W Lin, and Peter T Wood. Expressive
Languages for Path Queries over Graph-Structured Data. ACM Transactions on
Database Systems (TODS), 37(4), 2012.

[9] Stephen T Barnard. PMRSB: Parallel multilevel recursive spectral bisection. In
Proceedings of the 1995 ACM/IEEE conference on Supercomputing (CDROM),
pages 1–27, 1995.

[10] Gaëlle Brevier, Romeo Rizzi, and Stéphane Vialette. Pattern Matching in
Protein-Protein Interaction Graphs. In Fundamentals of Computation Theory,
pages 137–148. 2007.

[11] Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual web
search engine. In Proceedings of the Seventh International Conference on World
Wide Web 7, WWW7, pages 107–117, 1998.

- 139 -

[12] Mike Buerli. The Current State of Graph Databases. Department of Computer
Science, Cal Poly San Luis Obispo, 2012.

[13] Aydin Buluc, Henning Meyerhenke, Ilya Safro, Peter Sanders, and Christian
Schulz. Recent Advances in Graph Partitioning. In Algorithm Engineering,
volume 9220 of Lecture Notes in Computer Science, pages 117–158. 2016.

[14] Jeremy J. Carroll, Ian Dickinson, Chris Dollin, Dave Reynolds, Andy Seaborne,
and Kevin Wilkinson. Jena: Implementing the semantic web recommendations.
In Proceedings of the 13th International World Wide Web Conference on Alter-
nate Track Papers &Amp; Posters, WWW Alt. ’04, pages 74–83, 2004.

[15] Jie Chen and Ilya Safro. Algebraic Distance on Graphs. SIAM Journal on
Scientific Computing, 33(6):3468–3490, 2011.

[16] Lei Chen. Distance-Join : Pattern Match Query In a Large Graph. Science And
Technology, 2(1):886–897, 2009.

[17] C. Chevalier and F. Pellegrini. PT-Scotch: A tool for efficient parallel graph
ordering. Parallel Computing, 34(6-8):318–331, 2008.

[18] C Chevalier and F Pellegrini. PT-Scotch: A tool for efficient parallel graph
ordering. Parallel Computing, 34(6-8):318–331, 2008.

[19] Sutanay Choudhury, Lawrence B Holder, George Chin, Khushbu Agarwal, and
John Feo. A Selectivity based approach to Continuous Pattern Detection in
Streaming Graphs. Proceedings of the 18th International Conference on Extend-
ing Database Technology (EDBT), pages 157–168, 2015.

[20] Carlo Curino, Evan Jones, Yang Zhang, and Sam Madden. Schism: a workload-
driven approach to database replication and partitioning. Proceedings of the
VLDB Endowment, 3(1-2):48–57, 2010.

[21] D. J. de Solla Price. Networks of Scientific Papers. Science, 149(3683):510–515,
1965.

[22] Jeff Dean. Designs, lessons and advice from building large distributed systems.
2009.

[23] J-C Delvenne, S N Yaliraki, and M Barahona. Stability of graph communities
across time scales. Proceedings of the National Academy of Sciences of the United
States of America, 107(29):12755–60, 2010.

[24] Jean-charles Delvenne, Michael T Schaub, and Sophia N Yaliraki. The Stability
of a Graph Partition: A Dynamics-Based Framework for Community Detection.
In Dynamics On and Of Complex Networks, volume 2, pages 221–242. 2013.

[25] Saumen Dey, Vı́ctor Cuevas-Vicentt́ın, Sven Köhler, Eric Gribkoff, Michael
Wang, and Bertram Ludäscher. On implementing provenance-aware regular path
queries with relational query engines. Proceedings of the Joint EDBT/ICDT 2013
Workshops on - EDBT ’13, page 214, 2013.

- 140 -

[26] Ralf Diekmann, Robert Preis, Frank Schlimbach, and Chris Walshaw. Shape-
optimized mesh partitioning and load balancing for parallel adaptive FEM. Par-
allel Computing, 26(12):1555–1581, 2000.

[27] Reinhard Diestel. Graph theory {graduate texts in mathematics; 173}. 2000.

[28] C.H.Q. Ding, X. He, H. Zha, M. Gu, and H.D. Simon. A min-max cult algorithm
for graph partitioning and data clustering. In Proceedings - IEEE International
Conference on Data Mining, ICDM, 2001.

[29] W. E. Donath and a. J. Hoffman. Lower Bounds for the Partitioning of Graphs,
1973.

[30] Orri Erling and Ivan Mikhailov. Virtuoso: Rdf support in a native rdbms. In
Semantic Web Information Management, pages 501–519. 2010.

[31] Facebook Inc. GraphQL Informal Specification. http://facebook.github.io/
graphql/October2016/. Accessed: 2018-01-09.

[32] Wenfei Fan, Jianzhong Li, Shuai Ma, Hongzhi Wang, and Yinghui Wu. Graph
homomorphism revisited for graph matching. Proceedings of the VLDB Endow-
ment, 3(1-2):1161–1172, 2010.

[33] C.M. Fiduccia and R.M. Mattheyses. A Linear-Time Heuristic for Improving
Network Partitions. In Proceedings of the 19th Design Automation Conference,
1982.

[34] Miroslav Fiedler. A property of eigenvectors of nonnegative symmetric matri-
ces and its application to graph theory. Czechoslovak Mathematical Journal,
25(4):619–633, 1975.

[35] Hugo Firth and Paolo Missier. ProvGen: Generating Synthetic PROV Graphs
with Predictable Structure. In 5th International Provenance and Annotation
Workshop, IPAW, pages 16–27, 2014.

[36] Hugo Firth and Paolo Missier. Workload-aware streaming graph partitioning.
In Proceedings of the Joint EDBT/ICDT Workshops (GraphQ), 2016.

[37] Hugo Firth and Paolo Missier. TAPER: query-aware, partition-enhancement for
large, heterogenous graphs. Distributed and Parallel Databases, 35(2):85–115,
2017.

[38] Hugo Firth, Paolo Missier, and Jack Aiston. Loom: Query-aware Partitioning of
Online Graphs. Proceedings of the 21st International Conference on Extending
Database Technology (EDBT), 2018.

[39] Daniela Florescu, Alon Levy, and Alberto Mendelzon. Database techniques for
the World-Wide Web. ACM SIGMOD Record, 27(3):59–74, 1998.

- 141 -

http://facebook.github.io/graphql/October2016/
http://facebook.github.io/graphql/October2016/

[40] Nadime Francis, Alastair Green, Paolo Guagliardo, Leonid Libkin, Tobias Lin-
daaker, Victor Marsault, Stefan Plantikow, Mats Rydberg, Petra Selmer, and
Andrés Taylor. Cypher: An evolving query language for property graphs. In
Proceedings of the 2018 International Conference on Management of Data, pages
1433–1445. ACM, 2018.

[41] R. G. Gallager, P. a. Humblet, and P. M. Spira. A Distributed Algorithm for
Minimum-Weight Spanning Trees. ACM Transactions on Programming Lan-
guages and Systems, 5(1):66–77, 1983.

[42] Giovanni Gallavotti. Statistical mechanics: A short treatise. 2013.

[43] M.R. Garey, D.S. Johnson, and L. Stockmeyer. Some simplified np-complete
graph problems. Theoretical Computer Science, 1(3):237 – 267, 1976.

[44] Gaurav Goel and Jens Gustedt. Bounded Arboricity to Determine the Local
Structure of Sparse Graphs. In Graph-Theoretic Concepts in Computer Science,
pages 159–167. 2006.

[45] Leonid Grujic, Ivana and Bogdanovic-Dinic, Sanja and Stoimenov. Collecting
and analyzing data from e-government facebook pages. In ICT Innovations,
2014.

[46] Yuanbo Guo, Zhengxiang Pan, and Jeff Heflin. Lubm: A benchmark for owl
knowledge base systems. Web Semantics: Science, Services and Agents on the
World Wide Web, 3(2):158 – 182, 2005. Selcted Papers from the International
Semantic Web Conference, 2004.

[47] Pankaj Gupta, Venu Satuluri, Ajeet Grewal, Siva Gurumurthy, Volodymyr
Zhabiuk, Quannan Li, and Jimmy Lin. Real-time twitter recommendation. Pro-
ceedings of the VLDB Endowment, 7(13):1379–1380, 2014.

[48] Olaf Hartig and Jorge Perez. An initial analysis of facebook’s graphql language.
In Proceedings of the 11th Alberto Mendelzon International Workshop on Foun-
dations of Data Management and the Web., volume 1912 of CEUR Workshop
Proceedings, 2017.

[49] Huahai He and Ambuj K. Singh. Graphs-at-a-time: Query language and access
methods for graph databases. In Proceedings of the 2008 ACM SIGMOD In-
ternational Conference on Management of Data, SIGMOD ’08, pages 405–418,
2008.

[50] Bruce Hendrickson and Robert Leland. A multilevel algorithm for partitioning
graphs. In Proceedings of the 1995 ACM/IEEE conference on Supercomputing
(CDROM) - Supercomputing ’95, pages 28–40, 1995.

[51] Bruce Hendrickson and Robert Leland. An Improved Spectral Graph Partition-
ing Algorithm for Mapping Parallel Computations. SIAM Journal on Scientific
Computing, 16(2):452–469, 1995.

- 142 -

[52] Jiewen Huang and Daniel J. Abadi. LEOPARD : Lightweight Edge-Oriented
Partitioning and Replication for Dynamic Graphs. Proceedings of the VLDB
Endowment, 9(7):540–551, 2016.

[53] Piotr Indyk, Nick Koudas, and S. Muthukrishnan. Identifying representative
trends in massive time series data sets using sketches. In Proceedings of the 26th
International Conference on Very Large Data Bases, VLDB ’00, pages 363–372,
2000.

[54] Chuntao Jiang, Frans Coenen, and Michele Zito. A survey of frequent subgraph
mining algorithms. The Knowledge Engineering Review, 28(1):75–105, 2013.

[55] Alekh Jindal and Jens Dittrich. Relax and let the database do the partitioning
online. In Enabling Real-Time Business Intelligence, pages 65–80. 2012.

[56] Holger Kantz and Thomas Schreiber. Nonlinear time series analysis, volume 7.
2004.

[57] Grigoris Karvounarakis, Zachary G. Ives, and Val Tannen. Querying data prove-
nance. In Proceedings of the 2010 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’10, pages 951–962, 2010.

[58] George Karypis and Vipin Kumar. A Fast and High Quality Multilevel Scheme
for Partitioning Irregular Graphs. SIAM Journal on Scientific Computing,
20(1):359–392, 1998.

[59] George Karypis and Vipin Kumar. A Parallel Algorithm for Multilevel Graph
Partitioning and Sparse Matrix Ordering. Journal of Parallel and Distributed
Computing, 48(1):71–95, 1998.

[60] Foteini Katsarou, Nikos Ntarmos, and Peter Triantafillou. Performance and
scalability of indexed subgraph query processing methods. Proceedings of the
VLDB Endowment, 8(12):1566–1577, 2015.

[61] Brian W Kernighan and Shen Lin. An efficient heuristic procedure for partition-
ing graphs. Bell systems technical journal, 49(2):291—-307, 1970.

[62] Zuhair Khayyat, Karim Awara, Amani Alonazi, Hani Jamjoom, Dan Williams,
and Panos Kalnis. Mizan. In Proceedings of the 8th ACM European Conference
on Computer Systems - EuroSys ’13, page 169, 2013.

[63] Knowledge Discover Lab, UMass Amherst. Proximity dblp database. https:

//kdl.cs.umass.edu/display/public/DBLP. Accessed: 2015-09-15.

[64] Peter Korosec, Jurij Silc, and Borut Robic. Solving the mesh-partitioning prob-
lem with an ant-colony algorithm. Parallel Computing, 30(5-6):785–801, 2004.

[65] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. What is Twitter,
a social network or a news media? In Proceedings of the 19th international
conference on World wide web - WWW ’10, page 591, 2010.

- 143 -

https://kdl.cs.umass.edu/display/public/DBLP
https://kdl.cs.umass.edu/display/public/DBLP

[66] Aapo Kyrola, Guy Blelloch, and Carlos Guestrin. Graphchi: Large-scale graph
computation on just a pc. In OSDI’12 Proceedings of the 10th USENIX confer-
ence on Operating Systems Design and Implementation, pages 31–46, 2012.

[67] C. Lanczos. An iteration method for the solution of the eigenvalue problem of
linear differential and integral operators. Journal of Research of the National
Bureau of Standards, 45(4):255, 1950.

[68] S. Lee, B. Moon, C. Park, et al. A case for flash memory ssd in enterprise
database applications. In Proc. SIGMOD, page 1075, 2008.

[69] Ce Charles E Leiserson, Rl Ronald L Rivest, Clifford Stein, and Thomas H
Cormen. Introduction to Algorithms, Third Edition. 2009.

[70] HF Li and SY Lee. Mining Top-K Path Traversal Patterns over Stream-
ing Web Click-Sequences. Journal of Information Science and Engineering,
1133(95):1121–1133, 2009.

[71] R Lidl and H Niederreiter. Finite Fields: Encyclopedia of Mathematics and Its
Applications. . . . & Mathematics with Applications, page 1983, 1997.

[72] Lightbend Inc. Akka Distributed Application Framework. https://akka.io.
Accessed: 2018-01-15.

[73] Shuai Ma, Yang Cao, Wenfei Fan, Jinpeng Huai, and Tianyu Wo. Capturing
topology in graph pattern matching. Proceedings of the VLDB Endowment,
5(4):310–321, 2011.

[74] Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C. Dehnert, Ilan
Horn, Naty Leiser, and Grzegorz Czajkowski. Pregel. In Proceedings of the 2010
international conference on Management of data - SIGMOD ’10, page 135, 2010.

[75] Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C. Dehnert, Ilan
Horn, Naty Leiser, and Grzegorz Czajkowski. Pregel: a system for large-scale
graph processing. Proceedings of the 2010 international conference on Manage-
ment of data - SIGMOD ’10, pages 135–146, 2010.

[76] Daniel Margo and Margo Seltzer. A scalable distributed graph partitioner. Pro-
ceedings of the VLDB Endowment, 8(12):1478–1489, 2015.

[77] Erwan Le Martelot and Chris Hankin. Multi-scale community detection using
stability optimisation within greedy algorithms. CoRR, abs/1201.3307, 2012.

[78] Robert Ryan McCune, Tim Weninger, and Greg Madey. Thinking Like a Vertex.
ACM Computing Surveys, 48(2):1–39, 2015.

[79] Brendan D McKay. Practical graph isomorphism, 1981.

[80] Kurt Mehlhorn and Peter Sanders. Algorithms and data structures: The basic
toolbox. In Algorithms and Data Structures: The Basic Toolbox, chapter 10,
pages 191–215. 2008.

- 144 -

https://akka.io

[81] Alberto O Mendelzon and Peter T Wood. Finding Regular Simple Paths in
Graph Databases. SIAM Journal on Computing, 24(6):1235–1258, 1995.

[82] Henning Meyerhenke, Burkhard Monien, and Stefan Schamberger. Graph par-
titioning and disturbed diffusion. Parallel Computing, 35(10-11):544–569, 2009.

[83] Henning Meyerhenke, Peter Sanders, and Christian Schulz. Parallel Graph Par-
titioning for Complex Networks. In Proceedings - 2015 IEEE 29th International
Parallel and Distributed Processing Symposium, IPDPS 2015, pages 1055–1064,
2015.

[84] Jayanta Mondal and Amol Deshpande. Managing large dynamic graphs effi-
ciently. In Proceedings of the 2012 international conference on Management of
Data, pages 145–156, 2012.

[85] Luc Moreau, Paolo Missier, Khalid Belhajjame, Reza B’Far, James Cheney,
Sam Coppens, Stephen Cresswell, Yolanda Gil, Paul Groth, Graham Klyne,
Timothy Lebo, Jim McCusker, Simon Miles, James Myers, Satya Sahoo, and
Curt Tilmes. PROV-DM: The PROV Data Model. Technical report, World
Wide Web Consortium, 2012.

[86] Neo Technology Inc. Neo4j Graph Database. https://neo4j.com. Accessed:
2017-11-21.

[87] Joel Nishimura and Johan Ugander. Restreaming graph partitioning. In Proceed-
ings of the 19th ACM SIGKDD international conference on Knowledge discovery
and data mining - KDD ’13, pages 1106–1114, 2013.

[88] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The PageR-
ank Citation Ranking: Bringing Order to the Web. World Wide Web Internet
And Web Information Systems, 54(1999-66):1–17, 1998.

[89] Andrew Pavlo, Carlo Curino, and Stanley Zdonik. Skew-aware automatic
database partitioning in shared-nothing, parallel OLTP systems. In Proceedings
of the 2012 international conference on Management of Data, page 61, 2012.

[90] François Pellegrini. A Parallelisable Multi-level Banded Diffusion Scheme for
Computing Balanced Partitions with Smooth Boundaries. Euro-Par 2007 Par-
allel Processing, 4641:195–204, 2007.

[91] Peng Peng, Lei Zou, Lei Chen, and Dongyan Zhao. Query Workload-based RDF
Graph Fragmentation and Allocation. In Proc. 19th International Conference
on Extending Database Technology (EDBT), pages 377—-388, 2016.

[92] A Pothen and S Toledo. Elimination structures in scientific computing. In
Handbook on Data Structures and Applications, page 59. 2004.

[93] A. Poulovassilis, P. Selmer, and P. T. Wood. Flexible querying of lifelong learner
metadata. IEEE Transactions on Learning Technologies, 5(2):117–129, 2012.

- 145 -

https://neo4j.com

[94] Alexandra Poulovassilis and Peter T. Wood. Combining approximation and
relaxation in semantic web path queries. In The Semantic Web – ISWC 2010,
pages 631–646, 2010.

[95] Vijayan Prabhakaran, Ming Wu, Xuetian Weng, Frank McSherry, Lidong Zhou,
and Maya Haridasan. Managing Large Graphs on Multi-cores with Graph Aware-
ness. In Proceedings of the 2012 USENIX Conference on Annual Technical Con-
ference, page 4, 2012.

[96] Jm Pujol, Vijay Erramilli, and Georgos Siganos. The little engine (s) that could:
scaling online social networks. Acm Sigcomm’10, pages 375–386, 2010.

[97] Abdul Quamar, K. Ashwin Kumar, and Amol Deshpande. SWORD. In Proceed-
ings of the 16th International Conference on Extending Database Technology,
page 430, 2013.

[98] Fatemeh Rahimian, Amir H. Payberah, Sarunas Girdzijauskas, Mark Jelasity,
and Seif Haridi. JA-BE-JA: A distributed algorithm for balanced graph Parti-
tioning. In International Conference on Self-Adaptive and Self-Organizing Sys-
tems, SASO, pages 51–60, 2013.

[99] Pedro Ribeiro and Fernando Silva. G-Tries: a data structure for storing and
finding subgraphs. Data Mining and Knowledge Discovery, 28(2):337–377, 2014.

[100] Marko A Rodriguez and Peter Neubauer. The Graph Traversal Pattern. In
Sherif Sakr and Eric Pardede, editors, Graph Data Management: Techniques
and Applications, chapter 2, pages 29–46. 2011.

[101] Laura A. Sanchis. Multiple-Way Network Partitioning with Different Cost Func-
tions. IEEE Transactions on Computers, 42(12):1500–1504, 1993.

[102] Peter Sanders and Christian Schulz. Think locally, act globally: Highly balanced
graph partitioning. In Lecture Notes in Computer Science, volume 7933, pages
164–175. 2013.

[103] Stefan Schamberger. On partitioning FEM graphs using diffusion. In Proceedings
18th International Parallel and Distributed Processing Symposium, number C,
pages 277–284, 2004.

[104] K. Schloegel, G. Karypis, and V. Kumar. A Unified Algorithm for Load-
balancing Adaptive Scientific Simulations. ACM/IEEE SC 2000 Conference
(SC’00), 00(c):59–59, 2000.

[105] Kirk Schloegel, George Karypis, and Vipin Kumar. Multilevel diffusion schemes
for repartitioning of adaptive meshes. J. Parallel Distrib. Comput., 47(2):109–
124, 1997.

[106] Kirk Schloegel, George Karypis, and Vipin Kumar. Graph partitioning for high-
performance scientific simulations. In Sourcebook of parallel computing, pages
491–541. 2003.

- 146 -

[107] Zechao Shang and Jeffrey Xu Yu. Catch the Wind: Graph workload balancing on
cloud. 2013 IEEE 29th International Conference on Data Engineering (ICDE),
pages 553–564, 2013.

[108] Bin Shao, Haixun Wang, and Yatao Li. Trinity: A distributed graph engine
on a memory cloud. In Proceedings of the 2013 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’13, pages 505–516, 2013.

[109] Chunyao Song, Tingjian Ge, Cindy Chen, and Jie Wang. Event pattern matching
over graph streams. Proceedings of the VLDB Endowment, 8(4):413–424, 2014.

[110] Isabelle Stanton and Gabriel Kliot. Streaming graph partitioning for large dis-
tributed graphs. In Proceedings of the 18th ACM SIGKDD international confer-
ence on Knowledge discovery and data mining, pages 1222–1230, 2012.

[111] A. Swartz. Musicbrainz: a semantic web service. IEEE Intelligent Systems,
17(1):76–77, 2002.

[112] K Tashkova, P Korosec, and J Silc. A distributed multilevel ant-colony algorithm
for the multi-way graph partitioning. International Journal of Bio-Inspired Com-
putation, 3(5):286–296, 2011.

[113] The Apache Software Foundation. Apache Tinkerpop. https://tinkerpop.

apache.org. Accessed: 2018-01-15.

[114] Think Aurelius. TitanDB Graph Database. http://titan.thinkaurelius.

com/. Accessed: 2017-04-07.

[115] Lini T Thomas, Satyanarayana R Valluri, and Kamalakar Karlapalem. Margin:
Maximal frequent subgraph mining. ACM Transactions on Knowledge Discovery
from Data (TKDD), 4(3):10, 2010.

[116] Hanghang Tong, Brian Gallagher, Christos Faloutsos, and Tina Eliassi-Rad.
Fast best-effort pattern matching in large attributed graphs. In Proceedings of
the 13th ACM SIGKDD international conference on Knowledge discovery and
data mining, page 737, 2007.

[117] Charalampos Tsourakakis, Christos Gkantsidis, Bozidar Radunovic, and Milan
Vojnovic. FENNEL. In Proceedings of the 7th ACM international conference on
Web search and data mining, pages 333–342, 2014.

[118] Twitter Engineering. Tweets per second in 2013. https://blog.twitter.

com/engineering/en_us/a/2013/new-tweets-per-second-record-and-

how.html. Accessed: 2016-06-03.

[119] J. R. Ullmann. An algorithm for subgraph isomorphism. J. ACM, 23(1):31–42,
1976.

[120] Luis M. Vaquero, Felix Cuadrado, Dionysios Logothetis, and Claudio Martella.
Adaptive partitioning for large-scale dynamic graphs. In Proceedings - Interna-
tional Conference on Distributed Computing Systems, pages 144–153, 2014.

- 147 -

https://tinkerpop.apache.org
https://tinkerpop.apache.org
http://titan.thinkaurelius.com/
http://titan.thinkaurelius.com/
https://blog.twitter.com/engineering/en_us/a/2013/new-tweets-per-second-record-and-how.html
https://blog.twitter.com/engineering/en_us/a/2013/new-tweets-per-second-record-and-how.html
https://blog.twitter.com/engineering/en_us/a/2013/new-tweets-per-second-record-and-how.html

[121] A Vázquez, A Flammini, A Maritan, and A Vespignani. Modeling of Protein
Interaction Networks. ComPlexUs, 1:38–44, 2003.

[122] Venkateshwaran Venkataramani, Jeremy Hoon, Sachin Kulkarni, Nathan
Lawrence, et al. TAO: Facebook’s Distributed Data Store for the Social Graph.
In Proceedings of the 2012 international conference on Management of Data -
SIGMOD ’12, page 791, 2012.

[123] D. W. Williams, J. Huan, and W. Wang. Graph database indexing using struc-
tured graph decomposition. In Proceedings IEEE 23rd International Conference
on Data Engineering, pages 976–985, 2007.

[124] Reynold S. Xin, Joseph E. Gonzalez, Michael J. Franklin, and Ion Stoica.
Graphx: A resilient distributed graph system on spark. In First International
Workshop on Graph Data Management Experiences and Systems, GRADES ’13,
pages 2:1–2:6, 2013.

[125] Ning Xu, Lei Chen, and Bin Cui. LogGP: A Log-based Dynamic Graph Parti-
tioning Method. Proceedings of the VLDB Endowment, 7(14):1917–1928, 2014.

[126] Ning Xu, Bin Cui, Lei Chen, Zi Huang, and Yingxia Shao. Heterogeneous envi-
ronment aware streaming graph partitioning. IEEE Transactions on Knowledge
and Data Engineering, 27(6):1560–1572, 2015.

[127] Xifeng Yan and Jiawei Han. gSpan: Graph-based substructure pattern min-
ing. In Data Mining, 2002. ICDM 2003. Proceedings. 2002 IEEE International
Conference on, pages 721–724. IEEE, 2002.

[128] Xifeng Yan, Philip S. Yu, and Jiawei Han. Graph indexing: A frequent structure-
based approach. In Proceedings of the 2004 ACM SIGMOD International Con-
ference on Management of Data, SIGMOD ’04, pages 335–346, 2004.

[129] Shengqi Yang, Xifeng Yan, Bo Zong, and Arijit Khan. Towards effective partition
management for large graphs. In Proceedings of the 2012 international conference
on Management of Data, pages 517–528, 2012.

[130] Dayu Yuan and Prasenjit Mitra. Lindex: A lattice-based index for graph
databases. VLDB Journal, 22(2):229–252, 2013.

[131] A. Zheng, A. Labrinidis, P. Pisciuneri, P. K. Chrysanthis, and P. Givi. Paragon:
Parallel architecture-aware graph partition refinement algorithm. In Proceed-
ings of the 19th International Conference on Extending Database Technology
(EDBT), pages 365–376, 2016.

[132] Angen Zheng, Alexandros Labrinidis, Panos Chrysanthis, and K. Architecture-
aware graph repartitioning for data-intensive scientific computing. In Proceedings
- IEEE International Conference on Big Data, pages 78–85, 2014.

148

	Introduction
	Graph Partitioning
	Motivating problem
	Workload-agnostic partitioners

	Research Aim and Contributions

	Preliminaries
	Graph datastructures
	Graph stream orderings

	Graph operations
	Graph partitions
	Partitioning Quality and Objective Functions
	Partitioning Hardness

	Related work
	Local graph re-partitioners
	Global graph partitioners
	Spectral techniques
	Diffusions techniques
	Multilevel application

	Distributed graph partitioners
	Streaming graph partitioning
	Re-streaming

	Workload sensitive partitioning
	Offline workloads
	Online workloads
	Replication systems

	Comparing partitioner systems
	System properties
	Suitability of existing systems to online workload-sensitive partitioning.

	Query-aware partition-enhancement with TAPER
	Introduction
	The TAPER re-partitioner
	Contributions
	Related Work

	Definitions
	Stability of a graph partitioning
	Workload-sensitive stability
	The Visitor Matrix: Non-random walks with memory

	Enhancing a Partitioning
	Increasing stability by Vertex swapping
	Introversion and Extroversion

	Prefix Trie encoding of query expressions
	Associating probabilities to trie nodes
	Computing VM cells with the TPSTry

	Implementation
	Architecture
	Reducing the cost of the Visitor matrix
	Space complexity
	Time complexity

	TPSTry Implementation
	Calculating a partial extroversion order
	Vertex Swapping

	Evaluation
	Experimental setup
	Test datasets
	Test query workloads

	Results
	Improvement over an initial hash partitioning
	Improving over other initial partitionings
	The effect of differing numbers of partitions
	Optimising for frequent queries
	The effect of changes in query workloads

	Conclusion

	Loom: Query-aware Partitioning of Online Graphs
	Introduction
	The Loom partitioner
	Contributions

	Identifying Motifs
	Sub-graph signatures
	Constructing the TPSTry++
	Avoiding signature collisions

	Matching Motifs
	Building a graph index

	Allocating Motifs
	Evaluation
	Experimental setup
	Graph datasets
	Query workloads

	Comparison of systems
	Effect of stream order and window size

	Conclusion

	Discussion
	Thesis Summary
	Summary of contributions
	Properties desirable for online graph partitioning techniques
	Capturing online query workload information
	Workload-sensitive re-partitioning of existing graphs for online workloads
	Workload-sensitive partitionings of online, growing graphs

	Future research directions
	Integrating TAPER and Loom
	Distributing Loom across multiple hosts
	Restreaming with Loom
	A timeseries approach to triggering TAPER repartitionings
	Considering other forms of graph data

	Bibliography

