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Abstract  

 

This study aims to develop methods to reduce energy demand in the building sector, 

which is one of the main energy consumers. An extensive literature review has been 

carried out to understand the behaviour of buildings’ energy consumption and 

investigate the previous methods proposed in tackling building’s energy 

consumption. This work mainly focused on cooling dominated buildings in a hot and 

humid region. A typical medium sized commercial office building located in South 

East Asia was chosen as the case study. The building was audited to analyse its 

energy performance and mapped out its end-use energy consumption. It was found 

that the building consumed 7,334,630 kWh energy a year where 87.5% of the energy 

were spent on supplying a good indoor comfort for the occupant (that involves air 

conditioning and lighting). A detail data from the building’s energy manager was 

used to build a baseline building model before thermal analysis, and further 

investigation was carried out to achieve ZECB. It was discovered that 84% of the 

building’s heat gain was emanated from internal sources and 16% from solar. In this 

study, a whole-building approach encompassing of all the three methods (passive 

cooling using phase change material, retrofitting procedure based on thermal analysis 

and combined heat power solar energy generation system) were applied to the target 

building as a retrofit means that resulted in a zero energy commercial building 

(ZECB). The methods if implemented is estimated to reduce 52.2% of the total 

energy consumption with the remaining energy requirement will be fully supplied by 

on-site solar energy generator. While 573,674.77 kWh excess electricity and 

3,531,703 kWh excess cold energy will be supplied to the grid and neighbouring 

buildings. Parts of the suggested retrofit strategies were fully implemented by the 

case-study building in February 2016. It is found that the actual energy consumptions 

after retrofitting were reduced as predicted from the simulation. This proves that the 

developed methods from this research are applicable to the real world. 
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Chapter 1. Introduction 

 

There have been a significant change in energy landscape in the past decades due to the 

uncertainty in energy demand and supplies, volatility in energy prices and changes in energy 

policies [1][2]. Fossil fuel has been the main energy resource since the ancient time but hugely 

exploited during the industrial revolution in the 18th to 19th centuries. In the 1970’s the first ‘oil 

shock’ happened in 1973 due to the oil embargo by the Organization of Petroleum Exporting 

Countries (OPEC) in retaliation for the Western support of Israel during the Yom Kippur War or 

Ramadhan War. It is then followed by the second ‘oil shock’ in 1978 due to Iran Revolution 

[3][4]. This two political instability in the main oil producer countries resulted in oil shortages in 

industrial countries, and an increased in the oil price (see Figure 1). Subsequently in the 1970s to 

the recent years, energy crisis were experienced by one country to another due to volatility in 

energy prices and an increased in energy demand which resulted in the shortage in energy supply 

[3][4][5][6]. As the world population increases and many countries are undergoing industrial 

development, the energy demand keeps on rising [7]. This scenario is further worsened by the 

global warming. The global warming due to human activities was first acknowledged by a 

scientist, Svante Arrhenius [8] in 1896. Scientific publications related to environmental pollution 

and climate change related to human activities escalated in the 1960s to the 1970s [9][10]. In 

1979 the first World Climate Conference was organized and in 1988 the global climate was first 

being acknowledged to be higher than any time since 1880 (see Figure 2) [8][9][10]. Since then, 

there is a perceived need by the world-leading organisations such as the United Nation (UN), 

Organisation for Economic Co-operation and Development (OECD) and the European Union 

(EU) to improve the global energy landscape. Their aim is to attain the energy sustainability and 

to combat the climate change which resulted from the greenhouse gas (GHG) emission 

[1][9][11].  
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Figure 1. Historical monthly West Texas Intermediate (WTI or NYMEX) crude oil prices per barrel back 

to 1946. The price of oil shown is adjusted for inflation using the headline CPI and is shown by default on 

the algorithmic scale [12]. 

 

 

Figure 2:Global Land-Ocean Temperature Index (C) (anomaly with base: 1951-1980) [13]. 
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The GHG were largely contributed by the burning of fossil fuels for energy supply (electricity 

generation, heating, and transportation) then followed by the land-use changes which include 

agriculture and deforestation [14][15]. These two factors that contributed to the increase in GHG 

emission are the main ‘fuel’ for social and economic development [16][17]. Additionally, the 

increase in human’s population has been the main reason for the growth in the energy demand 

besides other factors such as industrialisation, development, and consumerism [7]. As can be 

observed in Figure 3, the total world final energy consumption is proportionate to the increase in 

the number of world’s population. Based on the fact that social and economic development and 

the growth in human’s population are essential for human’s sustainability, cutting down energy 

supply or preventing agriculture are perceived as impractical in solving current energy and 

environmental problem. Hence, new exploration of clean energy resources, environmentally 

friendly practices in every aspect of human activities is deemed essential for future sustainability 

[7][9][18][19][20][21].  

 

 

Figure 3: Annual total world population (in billion) and total final energy consumption (in billion tonne of 

energy) since 1971 to 2013 [18][22][23]. 

 

The constraints of the conventional energy resources and the changes in energy policies sparked 

an interest in alternative energy resources and the development of high-efficiency technology 
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[7][24]. This recent energy and environment awareness scenario had boosted new consumer 

behaviour patterns which focus on increasing the energy efficiency ranging from the end-use 

technology, transportation, household goods, industrial use, and buildings. Even though the 

excessive cost limits the development of these technologies, it is still estimated to earn a 

substantial market share in the future [7][25]. These technology breakthroughs accelerate the 

adoption of renewable energy and help in slowing down the global energy demand [19]. The 

annual production of the energy from renewables and waste product were increasing even though 

fossil fuels (natural gas, coal, peat, oil shale, crude, NGL, and feedstock) are still dominating the 

market share (see Figure 4) [18]. 

 

 

Figure 4: World production of energy resources since 1971 to 2013 [18]. 

 

 

1.1 Contribution to the energy sector  

Building Sector account for the largest share of global primary energy demand, that is 45% 

worldwide [26][27]. This sector is responsible for  41% of the total primary energy consumption 

in the United States  [28], 40% of the total primary energy consumption in the International 

Energy Agency (IEA) countries [18] and the European region [29], and 30% of total final 
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consumption in the South East Asian region [30]. Whereas, in term of the global end-use energy 

demand, buildings is the 3rd largest energy consumer (20%) after industries (54%) and 

transportation (25%) [31]. The percentage of buildings’ global end-use energy demand is 

expected to increase by an average of 1.5% a year from 2012 to 2040 [31]. The Buildings Sector 

energy demands annual growth rate in different countries were listed in Table 1. The highest 

energy demand growth rate by the building sector was in Spain then followed by Malaysia and 

Thailand. Moreover, this sector is also one of the main contributors for the global GHG emission 

(30% of the global GHG) [27][32]. In Europe, 36% of the CO2 was emitted by the Building 

Sector [29] and 38% in the USA [28]. The CO2 emission by the Building Sector is estimated to 

have grown at a rate of 2.5% per year for the commercial buildings and 1.7% per year for the 

residential buildings [32]. Despite the significant share of the global energy demand and the 

global GHG emission, Building Sector is claimed to be a sector that possesses the highest 

potential for reducing the GHG emission based on the available technologies [32]. Hence, 

making the Building Sector more energy efficient were seen as the main solution for this 

worldwide crisis [27][32][33][34][35].  

 

Table 1: Buildings sector energy demand annual growth rate by country [30][36]. 

Country  Energy demand annual growth 

rate for the buildings sector (%) 

Sources  

Europe 1.50 Lombard et al., 2008 [32] 

USA 1.90 Lombard et al., 2008 [32] 

UK  0.50 Lombard et al., 2008 [32] 

Malaysia  3.10 SEA Energy Outlook, Sept 2013 [30] 

Spain  4.20 Lombard et al., 2008 [32] 

Indonesia 1.00 SEA Energy Outlook, Sept 2013 [30] 

Thailand 2.40 SEA Energy Outlook, Sept 2013 [30] 

Philippines  2.00 SEA Energy Outlook, Sept 2013 [30] 

 

 

This study address the global energy challenges by developing methods for the Building Sector to 

move to zero energy commercial buildings (ZECB) which in return, will reduce the energy 

consumption and increase the adoption of clean energy. It is thus hoped that this work will play a 
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small part in stimulating global energy security and tackling climate change. Progress is indeed 

made in small steps. 

 

1.2 Contribution to the existing research 

As the regulations on the building’s energy and environmental performance are becoming more 

rigorous, numerical studies were conducted to aid the Building Sector in obtaining the objective 

and adapting to the changes made to the building’s regulations. Previous studies are mainly 

concentrated on energy efficiency in residential building, small size commercial building and 

buildings in the cold climate areas. Most of the studies were focused on the improvement of a 

certain aspect of the building such as the building’s envelope, fenestration, material, equipment, 

local energy generation system, thermal comfort, waste management or the sub-system. Whereas 

in this study, a holistic approach was taken and promoted throughout the study on a medium size 

commercial office building located in a hot and humid country. This whole-building approach is 

in conjunction with the suggested approach by the world leading energy agencies such as the IEA 

and the United Nations Environment Programme (UNEP) in improving the energy landscape 

from the Building Sector [27][32]. This thesis presents several contributions to the existing 

research namely:  

 A comprehensive study of the energy distribution and indoor air quality in a typical 

medium-sized office building in a cooling dominated country (can be found in Chapter 3);  

 A finding of the impact of installing a phase change material and an insulation material in 

a hot and humid country, and the most optimum construction and cooling operational 

settings to reduce its dependency on cooling system (presented in Section 4.1). Parts of 

the content in this Section was submitted to the Building and Energy and currently under 

revision; 

 A new retrofit method based on the building’s thermal analysis to reduce the building’s 

cooling demand (presented in Section 4.2). The method used a whole-building and 

holistic approach in tackling the building’s energy consumption. The whole-building 

approach analyses the whole building aspects that contributed to energy consumption and 

building’s heat gain. While the holistic approach cater the problem from both passive and 

active approaches. Parts of the content in this section was published in Energy Procedia 

[37] and Applied Energy [38]; 
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 An investigation on powering a typical medium-sized commercial office building in a 

cooling dominated country with 100% solar energy. This section offers an overview of 

the solar technologies, the challenges in meeting the demand and the most optimum way 

to manage the solar power as to increase the whole system’s efficiency (presented in 

Section 4.3); 

 An investigation of the whole-building approach to achieve ZECB by combining all the 

three methods suggested in Section 4.1, 4.2 and 4.3 (presented in Section 4.4);  

 An interactive study between a simulations-based analyses with the actual implementation 

of the suggested methods. This chapter offers a reality check between the research 

findings and the actual implementation of the target building. The performance gap 

between the simulation works and the actual implementation, and the stakeholders’ 

preference in decision-making related to retrofit were acknowledged (presented in 

Chapter 5).  

 

1.3 Organization of the thesis  

The findings of this study are presented in the following approach (see Figure 5).  

 

 

Figure 5: The structure of the thesis. 

 

This chapter (Chapter 1) explained the co-relation between Building Sector and global energy. 

Chapter 2 presents a comprehensive review of high-performance building and building’s end-use 

energy pattern which directed to the focus of this study. In Chapter 3, a building case-study 

matching the criteria desired was chosen. The case-study building was analysed, and the audit 
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results are presented in Section 3.1, and a model of the case-study building was constructed in 

Design Builder software and presented in Section 3.2. The case-study building model is called 

baseline model. In Chapter 4, methods to reduce the building’s energy consumption were 

investigated and developed using computer simulation. Three main methods were proposed that 

are using passive designs (explained in Section 4.1), a holistic retrofit procedures based on the 

thermal analysis (presented in Section 4.2), and solar-powered cooling system (detail in Section 

4.3). All these three methods were combined and applied to the baseline model to achieve ZECB 

(presented in Section 4.4). In Chapter 5, the outcome of an actual application of the methods 

suggested in Chapter 4 on the case-study building was analysed and reported. The whole findings 

are then concluded in Chapter 6 (Section 6.1). The recommendations for future work were 

presented in Section 6.2.  
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Chapter 2. Literature Review 

 

This chapter offers a comprehensive review of the factors that have driven the adoption of high-

performance buildings and the established terms and their definitions that have been used to 

describe or quantify the high-performance building before revising the methods applied in the 

previous studies to increase a building’s energy efficiency. The previous studies on the building’s 

end-use energy consumption are then being looked at before shifting to the indoor environment 

quality topic. The literature review used top-bottom analysis where we analysed the topic from a 

broader perspective and narrowing it down to the core issue. The sequence of the reviewed topics 

is as described in Figure 6.  

 

 

Figure 6: The sequence of the reviewed topics based on the top bottom analysis approach. 

 

 

2.1 Factors that motivate the adoption of energy efficient buildings 

Even though the energy crisis and global warming are the main drive for the shift-change in the 

Building Sector, the primary motivation for a building developer and building owners to adopt to 
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the energy efficient buildings are due to the enforcement by the government through legislation, 

incentive and the benefit that this type of building offers (which includes cost-effective measures) 

[32][39]. The movement towards high energy efficient buildings started in the 1970s as a result 

of the post-oil crisis and the rising awareness related to the environmental pollution caused by the 

massive industrialization in the 18th and the 19th century in the West [40][41]. Although there is 

an agreement of the advantages that green buildings offer, there is still a lack of green buildings 

being consructed today [42]. Some of the reasons pointed out by previous studies and 

publications [26][42][43] are:  

 Funding/cost  

 The resistance towards a new approach by the construction sector 

 A conflict of interest between the different building’s stakeholder during its lifetime (from 

developer, architect, sub-system designers, contractor, and tenants) 

 Lack of exposure to the benefits of employing green measures 

 Unstructured decision making in the retrofit process  

 

However, with stringent regulations being enforced over GHG emissions [9][11], the developed 

countries and countries in the European Union have been more proactive in accelerating the 

progress of reducing the energy and GHG emissions from the Building Sector 

[26][27][32][33][44]. Whereas, for developing countries, the guidelines were introduced by the 

government on a voluntary basis to create awareness [26][30].  

 

 

2.2 High-performance building 

Several terms were used across the globe by different organisations to describe a high-

performance building. It ranges from Green Building [45][46], Sustainable Building [27][40][46], 

Low Energy Building, Passive Building, near Zero Energy Building, Zero Energy Building, Net 

Zero Energy Building, Net Zero Energy Emission Building, Zero Carbon Building, Carbon 

Neutral Building and PlusEnergy Building. The definition of each term is presented in Table 2. 

All these terms describe a quality of a Green Building. However, the technical definition may 

vary between each term.  
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Table 2: Terms that have been used to describe a high-performance building and its definition. 

Term  Definition  

Green Building/ 

Sustainable Building/ 

High-performance 

Building   

 “Green building is the practice of creating structures and using 

processes that are environmentally responsible and resource-

efficient throughout a building's life-cycle from siting to design, 

construction, operation, maintenance, renovation, and 

deconstruction. This practice expands and complements the 

classical building design concerns of economy, utility, durability, 

and comfort. Green building is also known as a sustainable or high-

performance building.” [40][27][45][46] 

Passivhaus (Passive 

House) 

“A Passive House is a building, for which thermal comfort (ISO 

7730) can be achieved solely by post-heating or post-cooling of the 

fresh air mass, which is required to achieve sufficient indoor air 

quality conditions – without the need for additional recirculation of 

air.” [47] 

Zero carbon home "Requires all new homes from 2016 to mitigate, through various 

measures, all the carbon emissions produced on-site as a result of 

the regulated energy use. This includes energy used to provide 

space heating and cooling, hot water and fixed lighting, as outlined 

in Part L1A of the Building Regulations. Emissions resulting from 

cooking and ‘plug-in’ appliances such as computers and televisions 

are not being addressed as part of this policy." [48] 

Plusenergiehaus®/ 

PlusEnergy House 

"The Plusenergiehaus® fulfils a threefold objective: it will be 

supported exclusively by 100% renewable energy. It will operate 

CO2-neutral. Moreover, it reduces the energy consumption so 

extensively, that it will generate more energy than it will use. 

Additionally comes the selection of healthy building materials and a 

feasible market price" [49] 

nearly Zero Energy 

Building 

  

"A building that has a very high energy performance, as determined 

in accordance with Annex I. The nearly zero or very low amount of 

energy required should be covered to a very significant extent by 

energy from renewable sources, including energy from renewable 

sources produced on-site or nearby.” [29]. This term was 

introduced by the European Union (UE) and the technical definition 

is determined by the Member States in Table 3. 

 

 

In the European region, all the EU members have agreed to reduce GHG emissions through the 

Energy Performance of Buildings Directive 2010/31/EU (EPBD). According to the Directive:  
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“Member States shall ensure that: (a) by 31 December 2020, all new buildings are nearly zero-

energy buildings; and (b) after 31 December 2018, new buildings occupied and owned by public 

authorities are nearly zero-energy buildings.” [29] 

 

The detailed technical definition of an nZEB is determined by every Member State (MS). As of 

April 2015, nZEB definition by fourteen MS has been approved. The technical definition of 

nZEB for non-residential buildings by the MS is measured by annual energy intensity, the share 

of renewables and compliance of a certain building’s regulations. The list of maximum annual 

primary energy intensity for non-residential nZEB as determined by the MS are listed in Table 3 

[33]. 

 

Table 3: The primary energy intensity for the non-residential near Zero Energy Building (nZEB) as 

defined by the EU Member States [33]. 

Country  Maximum primary energy intensity (kWh/m²/year) 

New building  Existing building  

Austria  170 250 

Belgium (Brussels)  ~ 90 ~ 108 

Cyprus  125 125 

Denmark  25 25 

Estonia  90-270 n/a 

France 70-110 60% of energy consumed are PE  

Latvia 90 90 

Romania 50-192 n/a 

Slovakia 34-96 n/a 
 

The concept of Zero Energy Building (ZEB) was first demonstrated by Esbensen and Korsgaard 

in 1977 [50] for a house that was built in a Technical University in Denmark. The attention was 

only gained in 2008 [51] when the U.S Department of Energy (U.S DOE) launched a Net Zero 

Energy Commercial Building Initiative (CBI) [52] which aims to achieve marketable Net Zero 

Energy Commercial Building (NZECB) by 2025. The concept of ZEB was discussed by P. 

Torcellini et al. in June 2006 [53], D. Crawley et al. in September 2009 [54] and it is then further 

discussed in A.J. Marszala et al. in 2011 and M. Panagiotidou and R.Fuller in 2013.  
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The foundation concept of ZEB defined by U.S DOE as:  

 

“An energy-efficient building where, on a source energy basis, the actual annual delivered 

energy is less than or equal to the on-site renewable exported energy.” [52] 

 

However, technically the ZEBs have rather broader definitions which vary from one region to 

another (parts of the definitions published in previous studies were listed in Table 4). It was also 

stressed by the U.S DOE that:  

 

“A broadly accepted definition of ZEB metrics and boundaries is foundational to efforts by 

governments, utilities, or private entities to recognize or incentivize zero energy buildings, and 

would have a significant impact on the development of design strategies for buildings and help 

spur greater market uptake of such projects.” [52] 
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Table 4: The definition of ZEB as published in the previous studies.  

Term  Definition  

Zero Energy 

Building  

“ZEB concept is the idea that buildings can meet all their energy 

requirements from low-cost, locally available, nonpolluting, renewable 

sources. At the strictest level, a ZEB generates enough renewable energy 

on site to equal or exceed its annual energy use.” [54][55]  

 

net Zero Site 

Energy 

A site NZEB produces at least as much renewable energy as it uses in a 

year when accounted for at the site [54][55]. 

net Zero 

Source Energy  

A source NZEB produces (or purchases) at least as much renewable 

energy as it uses in a year when accounted for at the source. Source 

energy refers to the primary energy used to extract, process, generate, 

and deliver the energy to the site. To calculate a building’s total source 

energy, imported and exported energy is multiplied by the appropriate 

site-to-source conversion multipliers based on the utility’s source energy 

type. [54][55]. 

net Zero 

Energy Costs 

In a cost NZEB, the amount of money the utility pays the building owner 

for the renewable energy the building exports to the grid is at least equal 

to the amount the owner pays the utility for the energy services and 

energy used over the year. [54][55]. 

net Zero 

Emissions 

 A net zero emissions building produces (or purchases) enough 

emissions-free renewable energy to offset emissions from all energy used 

in the building annually. Carbon, nitrogen oxides, and sulfur oxides are 

common emissions that ZEBs offset. To calculate a building’s total 

emissions, imported and exported energy is multiplied by the appropriate 

emission multipliers based on the utility’s emissions and on-site 

generation emissions (if there are any) [18][54][55].  

net Zero 

Energy 

Building  

A net zero-energy building (ZEB) is a residential or commercial building 

with greatly reduced energy needs through efficiency gains such that the 

balance of energy needs can be supplied with renewable technologies. 

[51] 

 

Autonomous 

Zero Energy 

Building  

The building "…does not require connection to the grid or only as a 

backup. Stand-alone buildings can supply all their energy needs as they 

have the capacity to store energy for night-time or winter-time use.” 

[51][56] 

 

All these terms mainly originated from developed countries. As for developing countries the 

Green Building, Sustainable Building and ZEB are the terms that are commonly used to describe 

a high-performance building. Such as in Malaysia, the high-performance commercial office 
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building is classified into two categories that are Low Energy Office (LEO) building and Green 

Energy Office (GEO) building. These two type of building were judged based on its primary 

energy intensity where the maximum annual primary energy intensity for LEO building is 115 

kWh/m² and 50 kWh/m² for GEO building [57][58][37]. Each country generally has its Green 

Building assessment standard such as Leadership in Energy and Environmental Design (LEED) 

found in the U.S.A, Building Research Establishment Environmental Assessment Method 

(BREEAM) was discovered in the U.K, Green Building Index (GBI) was found in Malaysia, 

BCA Green Mark was found in Singapore and Greenship that was found in Indonesia. LEED and 

BREEAM are widely used worldwide even though it was debated if a building national rating 

system can be widely adapted to another region.  

 

Ozge Suzer suggested that it is better for the building to opt for the local rating system since the 

weighting and rating criteria reflect the reality of the country [59]. A simple comparison of the 

weighting and criteria used by different rating systems for an existing non-domestic buildings are 

presented in Table 5 (for LEED, GBI, Greenship and BCA Green Mark) and Table 6 (for 

BREEAM). For BREEAM system, the assessment for an existing non-domestic building is 

divided into three parts that are: asset, building management and organisational. It can be noticed 

that a different number of criteria were used to evaluate a building’s performance and the 

weighing point/percentage are also different. However, ‘energy performance’ is the most 

important criteria in every building rating systems. This study only focuses on energy 

performance and indoor environmental performance, whereas the other criteria are essential for 

sustainable building, but not essential for a Zero Energy Building.  
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Table 5: The comparison of rating criteria and weighting by LEED, GBI, Greenship and Green Mark. 

LEED [60] GBI [61] Greenship [62] Greenmark [63] 

Item  Available 

Point  

Item  Available 

Point  

Item  Available 

Point  

Item  Available 

Point  

Energy and 

atmosphere 

35 Energy  35 Energy  36 Energy  116 

Site development 26 IEQ 21 Indoor health and 

comfort 

20 Environmental 

protection  

42 

IEQ 15 Site development 16 Water conservation  20 Water conservation  17 

Material resources 14 Material 

resources 

11 Site development 16 IEQ 8 

Water conservation  10 Water 

conservation  

10 Building 

environment 

management 

13 Other green features 

and innovation  

7 

Innovation  6 Innovation  7 Material resources 

and cycle 

12   

Regional  4             
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 Table 6: The rating criteria and weighting used by BREEAM for existing non-domestic 

buildings. 

  Weightings Percentage (%) 

Item  Part 1:  

Asset  

Part 2:  

Building Management  

Part 3: 

Organisational 

Management  n/a 15 12 

Energy  26.5 31.5 19.5 

Land use and ecology  9.5 12.5 5 

Pollution  14 13 10.5 

Materials 8.5 7.5 4.5 

Waste 5 n/a 11.5 

Water 8 5.5 3.5 

Health and wellbeing  17 15 15 

Transport  11.5 n/a 18.5 
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2.3 Previous studies to increase building’s efficiency  

Previous studies to improve the building’s energy performance focused on three main methods that are 

passive designs [64][65][66][67][68][69][70][71][72][73][74][75][76][77][78][79][46][80][81][82] 

[83][84], active designs [11][20][44][85][86][87][88][89] and whole building approach [37][38][90] 

[91][92][93][94][95][96][97]. Passive designs deal with the construction of a building that can reduce 

energy consumption such as choices of construction materials, the design of windows and envelope, a 

building’s orientation, and incorporating passive heating, passive cooling and passive lighting in the 

building design. Active designs, on the other hand, deal with the mechanical system in the building 

which is added to the building to reduce energy consumption that includes local renewable energy 

system and the implementation of equipment with improved efficiency. Meanwhile, the whole-building 

approach examines a building as a whole to reduce its energy dependency, and holistic approach 

combines both active and passive design to reduce energy consumption.  

 

The whole building approach was recommended by professional bodies (UNEP, U.S DOE, and IEA) to 

achieve ZEB for both new and existing buildings [27][32][98]. Previous studies show that the energy in 

buildings is influenced by the interaction of a building’s structure and sub-systems [80]. The outcome 

of the finding indicates that both active and passive designs are equally important in minimising a 

building’s primary energy requirement and with the right designs a building can be made to harness 

and supply energy.  

 

It is claimed that the whole building approach could yield a larger energy reduction compared to an isolation 

approach [98][99], and it is important to achieve a cost effective and viable market solution to the Building 

Sector [27]. Previous studies (on academic buildings [90][92][96], offices [37][38][91][93][100] and residential 

buildings [94]) that used the whole building approach to improve a building’s energy performance for an 

existing and a new building estimated a reduction of between 36% to 56% on total energy consumption 

[90][91][92][93][100][94][96] and between 64% and 69% reduction in total cooling and heating load [92]. The 

key findings of the proposed energy efficient measures (EEMs) from the previous studies that used whole-

building approached are listed in Table 7. 

 

A recognized method to achieve low energy buildings known as Passivhaus method was developed 

through a number of research projects initially made to cater European climate. The method 
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demonstrates how a massive reduction in the building's HVAC requirement can reduce the buildings’ 

energy consumption to a minimum. The method was aimed at isolating the building from the climate 

outside and to reduce the building’s heat loss [47]. The definition of Passivhaus is:  

 

"A Passivhaus is a building in which thermal comfort can be achieved solely by post-heating or post-

cooling the fresh air flow required for a good indoor air quality, without the need for additional 

recirculation of air." -Passivhaus Institut (PHI) [47] 

 

The main strategies employed by Passivhaus are:  

 Good levels of insulation with minimal thermal bridges 

 Passive solar gains and internal heat sources 

 Excellent level of airtightness 

 Good indoor air quality 

 

The methods have been proven successful in cold regions, but will it applicable to tropical and arid 

regions that experience warm temperatures the whole year round? It was also mentioned by the 

Passivhaus formal website, that:  

 

“It would be a pitfall just to apply the Central European Passive House design, especially the details 

used for insulation, windows, and ventilation and just copy these to a completely different situation 

because there is a specific building tradition in every country and there are specific climatic boundary 

conditions in every region. Therefore, the specific solution for a Passive House building has to be 

adapted to the country and the climate under consideration.” - www.passipedia.org [47]. 

 

As mentioned in the Passivhaus website, the building’s code of practice that was implemented in the 

cold region requires modification if it is to be applied in regions with a different climate. The previous 

study in the cooling dominated region that implemented insulation material in their studies reported 

that insulating the building increased the building’s energy consumption. A study by Griego et al. on an 

office building in Mexico reveals that insulating the office’s roof and wall resulted in an increased in 

the building’s energy consumption. They explained that this situation happened because of the majority 

http://www.passipedia.org/
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of the cooling load were originated from internal heat gain. Therefore, adding thermal insulation to the 

building traps the internal heat gain indoors.  

 

Previous studies to reduce energy consumption in cooling dominated countries focused on reducing 

cooling load demand in a building as the main method to reduce building’ energy consumption. This 

goal was achieved by implementing passive and active technologies such as changing air conditioning 

set point temperature, changing constant air volume air conditioner to variable air volume air 

conditioner, re-sizing air conditioning system, changes in more efficient motors, changes in building 

envelope and façade, night time ventilation and lighting control. The methods used were summarised in 

Table 8. Based on the previous studies listed in Table 8, highest energy reduction was achieved by 

making changes to the air conditioning system. While improving the building envelope by changing the 

glazing is more effective in energy reducing energy consumption compared to adding insulation to the 

wall and roof.  
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Table 7: Summary of the key findings in the previous studies that used whole building approach. 

Building type and 

country 

Tool  E.E.R  Approaches EEMs Reference 

Residential 

Sweden  

Simulink 

Matlab  

55% Simplified one zone model 

that represent the whole 

building. EEMs screening. 

Envelope, facades, lighting, 

equipment, set point temperature. 

E. Mata et 

al., 2013 [94] 

Classroom (50m²), 
Israel  

ENERGY 55.5% Whole building simulation 

based on the typical 

classroom in Israel. EEMs 

screening.  

Envelope, night time ventilation, 

façade.  

Y.V.Perez et 

al., 2009 [95] 

Education building  

(1783.2m²),  
Arab Saudi 

Manual 

audit work 

45% EEMs were chosen based 

on the end-use energy 

consumption. 

ACMV resizing, set point 

temperature, lighting, facades. 

H.H Sait, 

2013 [96] 

Five different type of 

offices in Europe 

Computer 

modelling 

48% to 56% EEMs were chosen based 

on the end-use energy 

consumption and the 

building's type. 

Envelope, HVAC, lighting, 

passive heating and cooling. 

Dascalaki 

and 

Santamouris, 

[101] 

Historical university's 

building (~7000m²),  

Italy  

Energy 

Plus 

69.2% 

(cooling) 

64% 

(heating) 

EEMs were analysed based 

on its suitability to preserve 

the building's historical 

architectures 

Passive cool roof, ground source 

heat plant (GSHP) and storage 

tank for the GSHP. 

A.L.Pisello 

et al., 2016 

[92] 

Office (12,500m²), 

Saudi Arabia 

Visual 

DOE 

36% EEMs were chosen based 

on the end-use energy 

pattern. 

Set point temperature, operational 

changes, envelope, glazing, 

lamps, A/C type. 

Iqbal and Al-

Homoud, 

2007 [91] 

Office (1,275m²), 

Mexico 

DOE-2 

eQuest 

47% 

(retrofit) 

49% (new 

construction) 

EEMs were chosen using 

the sequential search 

option.  

Lighting, operational, skylight at 

the lobby, equipment, PV panels. 

D.Griego et 

al., 2015 

[102] 

 



 

  

22 

 

Table 8: The previous studies to reduce building's energy consumption in cooling dominated countries. 

Location  Climate Main EEMs (estimated energy reduction)  References 

Thailand Tropical (a) reduction of the latent load by using desiccant 

dehumidification system (13.7%) 

(b) change single glazing to double glazing (13.1%) 

(c) change CAV to VAV system (9.54%) 

(d) add a film to the glazing (7.1%)  

(e) use electronic ballast (5.12%)  

Other: roof insulation, wall insulation, changes in air 

conditioning settings, change incandescent to 

fluorescent lamps: resulted in less than 5% reduction 

each.  

S.Chirarattananon 

[103] 

Malaysia Tropical (a) energy saving using high-efficiency motors at load 

50%, 75% and 100% calculated based on different 

engine capacity ranging from 1.5 HP to 25 HP. 76.03 

MWh energy reduction was estimated for 25HP motor 

at 100% load. 

(b) energy saving by using variable speed drive. 1404 

MWh energy saving was estimated by using speed 

drive at 60% speed reduction for 25HP motor.  

R.Saidur [85] 

Saudi 

Arabia 

Hot 

Desert 

Climate 

(a) change to VAV system (17%) 

(b) efficient glazing (7%) 

(c) re-schedule of lighting and equipment. (6%) 

(d) energy efficient lamps (6%) 

(e) night time ventilation (4%) 

(f) changes in set point temperature (3%) 

(g) insulated wall (2%) 

(h) insulated roof (1%) 

I. Iqbal and M.S. 

Al-Homoud [91] 

Saudi 

Arabia 

Hot 

Desert 

Climate 

(a) an air conditioning control system (25.5%) 

(b) Improving equipment's power factor (6.1%) 

(c) glass insulation (2.5%) 

(d) reduce the number of lamps to achieve 400-500 

lux (0.6%) 

H.H. Sait [96] 

Saudi 

Arabia 

Hot 

Desert 

Climate 

(a) switching to VAV central system  (22.5%) 

(b) night time ventilation (21.4% to 21.7% depending 

on schedule) 

(d) introduce economizer to method (a) - (25.5%) 

M. Fasiuddin and 

I. Budaiwi [88] 
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2.3.1 Reviews on the previous retrofit approaches 

Due to the high numbers of existing unsustainable buildings, great interest was paid on building 

refurbishment to increase energy efficiency [104]. The importance of improving a building’s 

energy performance was emphasized by the government with the enforcement of sustainable 

building policies. Article 9 of the Directive 2010/31/EU of the European Parliament and the 

Council (19th May 2010) [105] on the energy performance of buildings states the importance of 

stimulating refurbishment of existing buildings into near zero-energy buildings.  

 

In many cases this process is more economical and has a less environmental impact compared to 

a complete demolition and rebuild [99][104][106]. However, the effectiveness of the process 

depends on the core building structure and the refurbishment designs [106][107]. Hence, methods 

to find effective strategies for retrofitting and modelling to predict energy reduction are vital 

[99][107]. General energy retrofit guides and energy efficient measures (EEMs) were published 

by various institutions including the US Department of Energy (US DOE) and ASHRAE (in 

collaboration with other institutes) [98][108][109] as a response to the increasing demand for 

building refurbishment. Nonetheless, retrofit measures may have different impacts on different 

buildings due to the variance in design and sub-systems, making the retrofit selection very 

complex [99].  

 

In previous studies, buildings were audited to determine the area of concerns (which is based on 

the end-use energy consumption) before applying EEMs. The estimated energy reduction for 

potential EEMs using this method is normally being made using calculation (see Figure 7) 

[85][91] or computer simulation (Figure 8) [92][110][111][112]. Several studies selected EEMs 

based on the multi-objective optimization methods (see Figure 9) [99][107][113][114][115] or 

cost-benefit analysis (see Figure 10) [93][116]. While, A.L. Pisello et al. used proposed a retrofit 

approach for historical building (see Figure 11) [92] ,Z. Ma et al. reviewed previous retrofit 

methods and summarized a systematic approach for sustainable building retrofit (see Figure 12) 

[99], and J. Park and T. Hong introduced a maintenance management process for a shopping mall 

to reduce carbon emission [117]. Mainly, the audit process concerns the end-use energy 

consumption was used to determine the sector that requires a retrofit, but not in depth whole-

building approach to defining the building’s parameters that contribute towards the large energy 

share from the sector and heat sources that contribute to cooling demand. 
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Data collection Energy audit
Retrofit strategies are 

designed based on 
the audit analysis

Payback periodLife cycle analysis

 

Figure 7: Retrofit method based on audit analysis [85][91]. 

 

 

 

Figure 8: Retrofit procedure based on audit analysis and computer simulation results [92][110][111][112]. 
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Figure 9: Retrofit procedure based on multi-objective optimisation method published by D. Grieogo e al. 

[93].  

 

 

 

 

 

 

 

Figure 10: Retrofit based on cost benefit analysis method as published by E. Piksa et al. [223] 
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Figure 11: Retrofit method proposed by A. L. Pisello et al. for historical buildings [92]. 
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Figure 12: The retrofit method summarised and proposed by Z. Ma et al. [99]. 
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Whereas in the early design phase, sensitivity analysis is widely adopted to determine parameters 

which significantly contributes towards the performance of the design solution [118]. Sensitivity 

analysis is a method used during a building’s design stage where building’s variable such as 

windows, envelope material, and orientation were modified to discover the impact of different 

parameters on the building’s energy consumption [118][119][120]. Andarini et al. [119] used a 

sensitivity analysis to obtain parameters that can significantly reduce cooling demand in a 

shophouse design for the  Indonesian climate. A sensitivity analysis was also performed by Yildiz 

et al. [120] to define parameters in an apartment’s design which greatly contributes towards 

heating and cooling load. While Heiselberg et al. [118] studied a wider range of input parameters 

to determine their impact on the total energy performance of an office building design. 

Meanwhile in this study, the retrofit method  

 

Normally, heating and cooling load were assigned as the output variables for the sensitivity 

analysis as it is a significant energy performance indicator and the major building’s energy 

consumer globally [36][40][118][119][120] [121]. Whereas, in cooling-dominated countries, air 

conditioning dominated the building’s energy share [27][85][86]. A study by S.Aun et al. [122] 

concluded that Malaysia’s office buildings used 64% of the total building’s energy for air 

conditioning. Meanwhile, other tropical countries such as Indonesia, Thailand, and Singapore, 

spent 51% to 59% of the building’s energy budget on air conditioning [85][119]. A summary 

findings of the buildings’ energy intensity and buildings’ end-use energy consumption from the 

previous studies are discussed in Section 2.4. 
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2.4 Energy use in buildings   

The average worldwide building’s annual energy intensity (BAEI) based on the information 

gathered in Table 9 was 233.46 kWh/m²/year. Whereas the typical BAEI for office building range 

from as low as 69 kWh/m²/year to as high as 355kWh/m²/year [101]. The building’s energy 

consumption depends on various factors primarily the building’s design, location, sub-systems 

and its energy management [80][101][123]. Dascalaki and Santamouris [101] studied five 

different type of office buildings, and they acknowledged that the building’s design (interior and 

exterior), location (urban, stand-alone), climatic condition and sub-systems play a significant role 

in determining the building’s energy pattern. Huge differences in energy consumption between 

the same building but located in a different climatic region can be seen. The buildings in the 

North Coast tend to have almost double of the energy consumption compared to the same type of 

building which was located in the South Mediterranean.  

 

This observation can also be seen in a study by Peng Xu et al. [124]. The authors analysed 402 

buildings in six different cities in China which experience humid subtropical climate. The 

buildings in the coast (Shanghai and Fuzhou) tend to have higher electricity consumption 

compared to the buildings in the Midland (Chengdu and Wuhan). Other important findings made 

by the authors are related to the building’s age, construction, floor area and types. It was found 

that the buildings with low electricity intensity do not necessarily have a good comfort level. In 

most cases, the office building with low electricity intensity was built since the Soviet Union with 

corridors in the middle and the offices on the sides with windows. This design allows high 

daylight penetration into the office which could reduce the building's dependency on artificial 

lighting. However, these buildings do not employ cooling or heating. Instead, they use ceiling 

fans. Meanwhile, most of the buildings built in 1990 to 2000 were designed with curtain wall 

which resulted in high solar heat gain through the window. Authors noted that modern buildings 

tend to use higher electricity due to the increased of comfort level that they need to meet (such as 

Heating Ventilation and Air Conditioning (HVAC) system and lighting). 

 

Based on the review made on the previous research about the building’s end-use energy 

consumption (listed in Table 10), it is found that most of the commercial buildings (which 

include offices, shopping malls, hotels, and museums. [124]) spent most of their energy on 

HVAC system [86][88][101]. Meanwhile in the cooling dominated countries more than 50% of 
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the building’s energy were used for air conditioning and mechanical ventilation (ACMV) 

[86][88]. The only exception to this statement is the office in Mexico which used only 8% of its 

overall energy consumption for cooling (direct expansion (DX) split system with a coefficient of 

performance 3.10 and set point air temperature 23.9°C) and ventilation fans [93]. The case-study 

office was located in Salamanca, Mexico which experiences a humid subtropical weather (with 

maximum temperature 32°C and lowest 12°C during the daytime) [125]. The weather condition 

is considered as mild which could have contributed to the low cooling consumption.  

 

HVAC system is a necessity in the harsh climate countries to ensure a good indoor environment 

is being delivered to the occupants. The main purpose of HVAC system as described by the USA 

Environmental Protection Agency is to ‘maintain a good indoor air quality trough adequate 

ventilation with filtration and provide thermal comfort for the building’s occupants’ [126]. This 

statement is in alignment with a study by BjarneW.Olesen, who described the main purpose of 

most buildings and HVAC system is to ‘provide an environment that is acceptable and does not 

impair health and performance of the occupants’ [127]. Whereas, for the Chartered Institute of 

Architectural Technologists (CIAT) comfort air conditioning was described as ‘all the 

conditioning processes applied to the ambient air to obtain an indoor environment that is 

comfortable regarding temperature and relative humidity’ [128]. So, against all this information, 

HVAC system is mainly used to ensure a healthy indoor environment for the occupants by 

regulating the air quality to its desired conditions.  

 

 

 

 

 

 

 

 

 

 

 

 

https://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwie37SZ6YvNAhXMJsAKHT9pCA4QFggcMAA&url=http%3A%2F%2Fwww.ciat.org.uk%2F&usg=AFQjCNG7Ef1RFHRfWwhwSO0h2X-ZfBxJ3A&sig2=qGWamgxqzioGXq0lxVGsJQ&bvm=bv.123664746,d.ZGg
https://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwie37SZ6YvNAhXMJsAKHT9pCA4QFggcMAA&url=http%3A%2F%2Fwww.ciat.org.uk%2F&usg=AFQjCNG7Ef1RFHRfWwhwSO0h2X-ZfBxJ3A&sig2=qGWamgxqzioGXq0lxVGsJQ&bvm=bv.123664746,d.ZGg
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Table 9: The building's energy intensity for a different building type, location, and climate condition. 

Building type Location  Climate BAEI  

(kWh/m²/year) 

Reference 

University   Saudi Arabia Hot desert climate 266 H.H.Sait [96] 

Office  Jeddah, Arab Saudi Hot desert climate 330 Iqbal and Al-Hamoud [91] 

Shopping mall Dammam, Saudi Arabia Hot desert climate 275 Fasiuddin and Budaiwi [88] 

Office  Mexico Humid subtropical  106 D.Griego et al. [93] 

Office  South Korea Humid subtropical  189 B.-L.Ahn et al. [129] 

Office  Europe North Coastal  355 Dascalaki and Santamouris [101] 

Office  Europe North Coastal  193 Dascalaki and Santamouris [101] 

Office  Europe North Coastal  328 Dascalaki and Santamouris [101] 

Office  Europe Southern Mediterranean 195 Dascalaki and Santamouris [101] 

Office  Europe Southern Mediterranean 69 Dascalaki and Santamouris [101] 

Office  Europe Southern Mediterranean 196 Dascalaki and Santamouris [101] 

Hospital Malaysia Tropical rainforest  234 R.Saidur et al. [85] 

Office  Typical Malaysia Tropical rainforest  200-250 S.A Chan [122] 

Office Northern Europe Humid continental 269-350 Dubois and Blomsterberg [123] 

Office Typical Europe Unspecified 306 Dubois and Blomsterberg [123] 

Office USA Unspecified 293 Lombard et al. [36] 

Commercial  Thailand  Tropical rainforest 154 Saidur et al. [86] 
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Table 10: The building's end-use energy consumption for different building types, location, and climate condition. 

Building type Location  Climate End-use energy consumption 

(%) 

References 

HVAC Lighting  Equipment  

and others 

University   Saudi Arabia Hot desert climate  82.9C 4.8 12.2 H.H.Sait [92] 

School   Seoul, South Korea Humid subtropical 12HC 37 40 T.Hong et al. [90] 

School   Seoul, South Korea Humid subtropical 5HC 37 41 T.Hong et al. [90] 

Commercial Saudi Arabia Hot desert climate  50C 20 30 R.Saidur [82] 

Office  Salamanca, Mexico Humid subtropical  8C 41 52 D.Griego et al. [89] 

Office  South Korea Humid subtropical  49.4HC 7.2 43.4 B.-L.Ahn et al. [123] 

Commercial Spain  Humid continental  52 HC 33 15 Lombard et al [36] , R.Saidur [82]  

Office  Europe North Coastal  90 HC 10 0 Dascalaki and Santamouris [115] 

Office  Europe North Coastal  98 HC 2 0 Dascalaki and Santamouris [115] 

Office  Europe North Coastal  94 HC 6 0 Dascalaki and Santamouris [115] 

Commercial USA Oceanic  48 HC 22 30 Lombard et al [36] , R.Saidur [82]  

Commercial UK Oceanic  55 HC 17 28 Lombard et al [36] , R.Saidur [82]  

Office  Europe Southern Mediterranean 90 HC 10 0 Dascalaki and Santamouris [115] 

Office  Europe Southern Mediterranean 98 HC 2 0 Dascalaki and Santamouris [115] 

Office  Europe Southern Mediterranean 94 HC 6 0 Dascalaki and Santamouris [115] 

Hospital Malaysia Tropical rainforest  3.45V 36.3 60.3 R.Saidur et al. [82] 

Commercial Malaysia Tropical rainforest 57 C 19 24 R.Saidur et al. [82] 

Commercial  Thailand  Tropical rainforest 59 C 21 20 R.Saidur et al. [82] 

Commercial Singapore Tropical rainforest 59 C 7 34 R.Saidur et al. [82] 

Commercial  Indonesia Tropical rainforest 51 C 14 26 R.Saidur et al. [82] 
 

C means the building only used HVAC for cooling, meanwhile H for heating, HC for both cooling and heating, and V for the ventilation.
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2.5 Indoor environmental quality  

An energy efficient building does not necessarily have a good indoor comfort [124]. It is not one 

of the criteria listed in the ZEB definition as discussed in Section 2.2. However, it is one of the 

criteria of a high-performance building [27][40][45][46]. A satisfying indoor environment 

influences occupants’ behaviour, health and productivity [40][130][131] which is a very crucial 

aspect especially for a commercial building and can increase the resale value of the building 

[130]. The indoor environmental quality is one of the elements being assessed in green building 

rating systems (GBI, LEED, BCA Green Mark, Greenship) [132][133][134][135]. While 

W.Turner and S. Doty wrote one of the criteria of the green building, as defined by Energy 

Management Handbook, is the ability of the building to deliver a good indoor environmental 

quality to the occupants [40]. The National Institute for Occupational Safety and Health (NIOSH) 

[136], defined indoor environmental quality (IEQ) as:  

 

‘The quality of buildings environment about the health and well-being of those who occupy the 

space within it. Indoor environmental quality is determined by many factors, including lighting, 

clean air, and damp contents’ [136].  

 

The aspect that determined IEQ could have variation in expressions such as the US GBC defines 

IEQ as the indoor environment and their impact on the occupants which relies on the IAQ, 

lighting, thermal condition and ergonomic [137]. Whereas, the Whole Building Design Guide 

(WBDG) added to more factors that influence the level of IEQ, that are acoustic and equipment 

but does not acknowledge ergonomic as part of the qualities that define IEQ [130].  

 

Nonetheless, IAQ is widely recognised by professional bodies to contribute to the IEQ [130] 

[136][137] and it is also part of the quality that contributed to the thermal comfort [40]. Thermal 

comfort is determined by the indoor temperature (air, radiant, surface), air velocity and personal 

parameters (depending on occupants’ attire and activity types) [40][138]. ASHRAE Standard 

62.1 and 62.2 [139], and have been widely adopted globally as a standard for IAQ and ventilation 

in buildings [127]. Meanwhile, CR 1752 has been developed since 1998 for European Standard 

[140]. However, it is argued by B.W Olesen that the international standards of IAQ work for 

every geographical location is often hard to determine [127]. This opinion is in parallel with the 

statement made by W. Turner and S. Doty that indoor air quality (IAQ) is qualitative and 
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quantitative, measurable and perceive, and objective and subjective [40] since the personal 

parameters could vary between individual and geographical location. W.Turner and S. Doty 

defined a good indoor air quality as the one with tolerable pollutants concentration without 

causing physical discomfort, allergies, reactions or illness to the occupants [40].  

 

Due to the importance of IAQ for the occupants and residences, a guideline that suits the local 

condition was developed by local authorities. In Malaysia, standard IAQ for buildings (not 

included residential) was aligned in ‘Industry Code of Practice on Indoor Air Quality (ICPIAQ)’ 

published in 2010 by the Ministry of Human Resources, Department of Health and Safety 

(DOSH) [141]. Specific indoor environmental guidelines for offices was aligned by the DOSH in 

the ‘Guidelines for Occupational Safety and Health in the Office (GOSHO)’ published in 1996 

[131] and also in the ‘Code of Practice on Energy Efficiency and Use of Renewable Energy for 

Non-residential Buildings (MS1525:2014)’ by the Department of Standards Malaysia (DSM) for 

a high performance buildings . The guidelines derived from these code of practices are listed in 

three different sub-sections that are indoor air quality (Section 2.5.1), indoor visual quality 

(Section 2.5.2) and indoor thermal comfort (section 2.5.3).  

 

 

2.5.1 Indoor air quality  

The indoor air quality is quantified by DOSH and DSM based on three main criteria that are the 

dry bulb temperature, the relative humidity, ventilation and the amount of contamination in the 

air. The contamination is caused by several factors depending on the type of contamination. The 

acceptable standards derived from ICPIAQ, GOSHO, and MS1525:2014 are listed in Table 11. 

The acceptable limit of a contaminant in the indoor air as defined in ICPIAQ [141] and the causes 

for every contaminant are listed in Table 12.  
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Table 11: The minimum acceptable standards for the indoor air quality  [131][141][142][143]. 

Type Standard limit  Reference 

Dry bulb temperature (°C) 23 - 26  MS1525:2007 and ICPIAQ 

20 - 26 GOSHO 

Relative humidity (%) 55 - 70 MS1525:2007 

40 - 60 GOSHO 

  40 - 70 ICPIAQ 

Ventilation  10 ls-1/person or ls-1/m² GOSHO 

  0.15 - 0.50 m/s MS1525:2007 and ICPIAQ 

 

 

Table 12: The acceptable limit of a contaminant in the indoor air as defined in ICPIAQ [141] and the 

causes for every contaminant [144][145][145]. 

Type Acceptable limits Causes 

Carbon dioxide level ≤1000 ppm Occupant 

Ozone ≤0.05 ppm Photocopier and electrostatic air cleaners. 

Carbon monoxide ≤10 ppm Automobile exhaust, tobacco smoke, 

generators and gas space heaters. 

Formaldehyde ≤0.1 ppm Building materials, automobile exhaust and 

tobacco smoke. 

Volatile organic 

compounds (VOC) 

≤3 ppm Solvents, workplace cleansers, pesticides, 

disinfectants, and glues. 

 

 

2.5.2 Indoor visual quality  

Regarding the indoor visual quality, this study only considers the visual quality related to light. 

The basic metrics to measure light consist of three main components that are:  

 

 Luminous flux is the amount of light emitted from the source  

 Illuminance is the amount of light incident to the surface 

 Luminance is the amount of light reflected from a surface 

 

The mainly used method to measure the quality of light in a space is illuminance level which is 

quantified by lux or lumen per meter squared. Guidelines for suitable illuminance level at 

different areas are normally given by the local government bodies such as in Malaysia, the 
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guidelines were given by GOSHO and MS1525:2014 (as listed in Table 13). The suggested 

illumination level at office by MS1525:2014 is 300 - 400 lux. The value is higher than the 

recommended lighting illumination level at offices suggested by Lighting at Workplace published 

by Health and Safety Executive of United Kingdom (HSE), that is 200 lux [146] and lower that 

the Guidelines of Office Ergonomics (GOE) published by the government of Singapore [147][ 

that suggested 500 lux.  

 

Table 13: The standard luminance level for different zones in the building as suggested by MS1525:2014 

[142][143].  

Zone MS1525:2014 

Car park  50 

Corridors, passageway, stairs 100 

Lifts 100 

Entrance and exit 100 

Hotel bedroom 100 

Escalator 150 

Lounge 150 

Restroom  150 

Restaurant, canteen, café 200 

Kitchen 150 - 300 

General office 300 - 400 

 

 

Another important measurement in quantifying visual quality is daylight. Daylight is another 

source of light apart from artificial lighting. Optimising daylight receives onto a space can reduce 

a building’s dependency on artificial lighting. However, a high amount of daylight can also cause 

glares which resulted in discomfort to human eyes. There are several methods to measure day 

light performance for visual quality such as daylight factor (D.F), daylight autonomy (DA) and 

useful daylight illuminance (UDI) [148]. D.F is the percentage of daylight incident on a surface 

compared to the daylight receives directly from an overcast sky. It is calculated based on the 

standard overcast sky and the calculated D.F using computer simulation is visualise on a grid in a 

given space. The daylight distribution across the room or space can be seen based on the D.F 

visualisation. DA is the percentage of working hours where the required luminance level can be 

met by daylight alone. Meanwhile, UDI measures the percentage of working hours that space 

receives adequate daylight level and classify the daylight receives into three categories that are 
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insufficient (daylight less than 100 lux), useful (daylight in between 100 lux and 2000 lux) and 

discomfort ( daylight more than 2000 lux) [148].  

 

In Malaysia, for an existing building, the quality of daylight is quantified based on the D.F and 

the guideline is given by MS1525:2014 (see Table 14). Since Malaysia receives high sun 

radiation all year round, the main problem for a building design related to daylight concerns 

glares. To avoid glare problem and to optimise daylight usage, the most suitable D.F as suggested 

by MS1525:2014 is in the range of 1 to 6.  

 

Table 14: The classification of the average daylight factor for windows without glazing by MS1525:2014 

[142][143]. 

Daylight factor (%) Distribution  

> 6 Very bright with thermal and glare problem  

3 to 6 Good  

1 to 3 Fair  

0 to 1 Poor 

 

 

2.5.3 Thermal comfort  

Thermal comfort was defined by American Society of Heating, Refrigerating, and Air-

conditioning Engineers (ASHRAE) in ASHRAE 55 as 'that condition of mind which expresses 

satisfaction with the thermal environment' [149]. ASHARE 55 and ISO 7730 are widely used 

standards to determine thermal comfort and Predictive Mean Value established by P.O Fanger 

was used in the standard mentioned above as a mean to predict human’s comfort [138][150] 

[151][152][153]. PMV method was developed based on the physiological comfort condition 

where the human’s body need to maintain inner body temperature at 37°C by maintaining a heat 

balance between the body and the surrounding [152][153]. The human’s heat balance is 

expressed by the equation (2.1) and (2.2) where equation (2.1) is used for a person without 

clothing and equation (2.2) for a person with clothing. The sensation scale based on the 

calculated PMV is shown in Table 15. 

 

S = M ± W ± R ± C ± K - E- RES   (2.1) 

M ± W - E- RES = Kcl = ± R ± C  (2.2) 
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Where:  

S = Heat storage 

W = External work  

M = Metabolism  

R = Heat exchange by radiation 

C = Heat exchange by convection 

K = Heat exchange by conduction 

K = Heat conduction through the clothing  

E = Heat loss by evaporation  

RES = Heat exchange by respiration.  

 

Table 15: PMV sensation scale [150]. 

PMV values Sensation 

-3 Cold 

-2 Cool 

-1 Slightly cool 

0 Neutral 

1 Slightly warm 

2 Warm 

3 Hot 

 

 

As explained by P.O Fanger in his book, Thermal Comfort the PMV calculation is rather 

complicated and hardly suitable for calculation by hands. Hence, it is suggested to simulate the 

value using a computational method or a table established by P.O Fanger [153]. The simplified 

equation for the PMV is shown in the equation (2.3) [154]. PMV value is a function of the room 

air temperature, relative air humidity, mean radiant air temperature, air velocity, human’s 

metabolic rate and clothing [153][155].  

 

PMV = [0.303 e-0.036M + 0.028] x L   (2.3) 

Where: 

M = metabolic rate  
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L = thermal load  

 

Based on the ISO 7730  and ASHRAE 55 comfort range is achieved if the PMV values are in the 

range of -1 and +1 [156][157]. P.O Fanger explained that this method might not be able to satisfy 

100% occupants, but it is developed to find the best environmental condition to suit a large group 

of people sitting together in the same room climate [138]. Some studies argued that the sensation 

indicator may vary to people in a different climate. Some field studies were carried out in 

different climatic region using PMV method, and the results were compared to the sensation scale 

preferred by the occupants. The studies reported that there is a significant difference between the 

calculated thermal state and the preferred thermal state by the occupants 

[150][155][156][157][158][159].  

 

However, despite the highly debated topic of methods of measuring indoor thermal comfort, 

mean predictive vote (PMV) established by P.O Fanger [150][138][151] was used as the 

indicators to measure the offices’ thermal comfort. This method was selected for its global 

reputation in measuring thermal comfort for buildings with HVAC system under steady state 

condition [150][155][156][160][161]. Plus, this quality is not covered in Malaysia’s code of 

practice. However, the actual preferred thermal condition by the occupants will be prioritized.   

 

 

2.6 Summary 

“Buildings have a relatively long lifespan, and therefore, actions taken now will continue to 

affect their greenhouse gas emissions over the medium-term.” United Nations Environmental 

Programme, Sustainable Buildings and Climate Initiative, 2009 [32]. 

 

The literature review using top-bottom analysis (where we analysed the topic from a broader 

perspective and narrowing it down to the core issue) reveals that we spent most of the energy for 

our comfort in the building (see Table 10). Combining the energy used by HVAC system and 

lighting, the total energy consumption exceeds the energy used for other sectors in the building. 

Peng Xu et al. and Lombard et al. also stated that the building’s energy consumption keeps on 

increasing as the human’s demand for comfort level increases [36][124]. This fact was also 

acknowledged by the well-known method to achieve low energy buildings that are, Passivhaus 
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method where the buildings demonstrate how a massive reduction in the building's HVAC 

requirement can reduce the buildings’ energy consumption to a minimum. The Passivhaus concept 

was developed in Germany to cope with the European cold climate by opting for an airtight and 

highly insulated construction. The methods have been proven successful in cold regions, but will it 

applicable to tropical and arid regions that experience warm temperatures the whole year round? It 

was also mentioned by the Passivhaus formal website, that:  

 

“It would be a pitfall just to apply the Central European Passive House design, especially the details 

used for insulation, windows, and ventilation and just copy these to a completely different situation 

because there is a specific building tradition in every country and there are specific climatic 

boundary conditions in every region. Therefore, the specific solution for a Passive House building 

has to be adapted to the country and the climate under consideration.” - www.passipedia.org [47].  

 

As mentioned in the Passivhaus website, the building’s code of practice that was implemented in the 

cold region requires modification if it is to be applied in regions with a different climate. The 

previous study in the cooling dominated region that implemented insulation material in their studies 

reported that insulating the building increased the building’s energy consumption. A study by Griego 

et al. on an office building in Mexico reveals that insulating the office’s roof and wall resulted in an 

increased in the building’s energy consumption. They explained that this situation happened because 

of the majority of the cooling load were originated from internal heat gain. Therefore, adding thermal 

insulation to the building traps the internal heat gain indoors [102]. Based on the previous studies in 

cooling dominated countries (listed in Table 8), highest energy reduction was achieved by making 

changes to the air conditioning system. While improving the building envelope by changing the 

glazing is more effective in energy reducing energy consumption compared to adding insulation to 

the wall and roof. 

 

Previous studies also demonstrated how the same type of building but located at different climate 

could have a significant difference in their energy consumptions [101][124]. So what is the 

thermal pattern of commercial buildings in hot climates? Moreover, what are the suitable criteria 

for buildings in the hot region to reduce the building’s HVAC demand?  Will it apply to an 

existing medium-size commercial building in hot climate regions (previous studies are mainly 

concentrated in cold regions, residential and small size buildings)? What is the best retrofit 

approach to achieve ZEB for this type of building?  
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In summary, it is, therefore, necessary to carry out further research to find the answers/solutions 

to these questions. With the existing technologies and knowledge, reducing energy consumption 

and carbon emission from the building sector is possible for both the developed and developing 

countries alike [32][105]. In this study, it is believed that by reducing a building’s HVAC 

requirement (the successful approach demonstrated by Passivhaus to achieve nZEB) and 

increasing the renewable use, ZEB is achievable for an existing medium-size commercial office 

building. This study gives an insight in answering the most important questions and will give a 

contribution in accelerating the adoption of ZEB.  
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Chapter 3. The Target Building  

 

A medium size office building with a typical modern office structure located in a hot climate 

region was taken as the target building. The building was audited (presented in Section 3.2) to get 

a clear understanding of the building’s performance and sub-systems. The detail audit work is 

then used to build a baseline building model in Design-Builder software (presented in Section 

3.3).  Parts of this section was published in journals by W.I.Wan Mohd Nazi et al. [38] and 

W.I.W Nazi et al. [37]. 

 

3.1 Building audit 

A medium size office building in Putrajaya, Malaysia, was taken as the building case study 

(shown in Figure 13 and Figure 14) as it represents cooling-dominated nature of modern offices 

in Malaysia. It is located at Lat 3.12°, longitude 101.55° in South East Asia region, experiencing 

hot and humid weather trough out the year. The site plan of the target building referred from 

Google map [162] are shown in Figure 15, Figure 16, Figure 17 and Figure 18. The audit work 

was aimed to get a clear understanding of the building’s performance, sub-systems and 

construction.  

 

 

Figure 13: A picture of the target building taken during a field visit. 
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Figure 14: A picture of the target building taken during a field visit. 

 

 

 

Figure 15: The case-study building (red symbol) on world map [162]. 
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Figure 16: The case-study building (red symbol) on Malaysia map [162]. 

 

 

Figure 17: The case-study building (red symbol) on Putrajaya map [162]. 
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Figure 18: The site map of the case-study building (red symbol) [162]. 

 

3.1.1 Methods 

To better understand the nature of the target building and to aid the modelling process, the 

building’s data was gathered through personal interviews with the building’s energy manager, 

site visits, online building consumption input system (BCiS) and the annual audit reports. The 

audit report was performed and written by the qualified energy consultants and the facility 

management company [163][164].  The Building Energy Index (BEI) was used as a benchmark 

to compare the current building energy performance with the low energy office (LEO) suggested 

by the Malaysian government [57][122]. BEI is calculated using equation (3.1) [85][86] while the 

annual energy consumption for the building is expressed by the equation (3.2). It is a sum of the 

building’s annual electricity consumption and the estimated energy used for chilled water 

supplied to the building. The estimated energy utilized by the external Gas District Cooling Plant 

(GDP) chiller is shown in equation (3.3) [163][164]. The chilled water usage is recorded in 

refrigeration tonne hour (RTH). Therefore, the values are converted to kWh (1 RTH is equivalent 

to 3.5 kWh). It is assumed that there are no energy losses while the chilled water travels from the 

GDP to the building.   
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BEI = ΣAEC/ΣFA(conditioned)  (3.1) 

AEC = Σ Elbuilding(kWh) + ΣECW(kWh)  (3.2) 

ECW (kWh) = (CW(RTH) × 3.5)/ COPchiller (3.3) 

 

Where:  

Building energy index (BEI) 

Total annual energy consumption (ΣAEC) 

Total conditioned floor area (ΣFA(conditioned)) 

Total chilled water in kWh (ECW (kWh)) 

Chilled water in RTH (CW(RTH)) 

Chiller’s coefficient of performance (COPchiller) 

 

The building’s energy usage and the indoor environmental measurement (air temperature, 

humidity, carbon dioxide level and lux) were referred to the building audit report ([164]) and 

BMS. The equipment used for the measurement is listed in Table 16.  

 

Table 16: List of equipment used for indoor environmental measurement. 

Equipment model  Usage Accuracy  

Testo 540 Illuminance  All measurement:  +/- 3% 

pSENSE RH CO2  For 0 to 2000 ppm measurement: +/- 5%  

HT305 Air temperature and 

humidity  

RH measurement : +/- 3%  

Air temperature measurement: -0.8°C 

 

 

3.1.2 Results and Discussion  

 

3.1.2.1 The background of the target building 

The target building consists of two underground floors and a ground floor that connects the North 

and South building. Only the building’s communal areas and offices in the North block were 

studied. It is a hub for Malaysia’s Ministry of Federal Territories administration allocating 351 

government servants (in North building alone), while the South building was rented to private 
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sectors. The 10 years old (as in 2016) office complex is equipped with two levels of underground 

parking spaces, a cafeteria, an auditorium and a communal hall. The findings concerning the 

building’s specification are summarized in sub-sections 4.1 to 4.5. The building’s fabric and floor 

plan were derived from the architect’s drawings. The building information is summarized in 

Table 17 and further elaborated in the subsections. Meanwhile, the weather data was referred to 

Malaysia Meteorological Department and Design Builder’s weather data (presented in  Figure 19 

and Figure 20).  

 

Table 17: Summary of the case study building specification gathered from [33] and architect’s 

drawings. 

 

 

Component  Description  

Weather Hot and humid (tropical weather)  

Floor area 40,477 m² (total floor area)/ 35,659 m² (conditioned area) 

Occupants  351 (peak time). The ratio of person per floor area is 39.4m² per 

person. 

Major zones  Lobby, corridors, toilets, AHU rooms, custodian rooms, offices, 

IT rooms, pantries, parking areas, kitchen, cafeteria, cold room, 

auditorium, data center and communal hall.  

External wall  Brick and cement construction with granite tiles with a total area 

of 5343 m² including 1442m² of the underground floor. U-value : 

2.898 W/m²K 

Glazing Green float glass (8mm). 85% glazed with local shades. Glazing 

area 4180 m².  

Lighting  Provided by 3119 lamps (84.4% of PL-L 36W recessed and 

surface mounted. Average lighting density in office zones is 4.85 

W/m²).  

Roof  Total roof area 7263 m² 
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Figure 20: The average monthly dry bulb temperature at 8.00 am, 2.00 pm and the monthly average in 

Putrajaya in 2012 [165]. 

 

 

Figure 19: The monthly solar radiation and average outside dry bulb temperature in Putrajaya [149]. 
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3.1.2.1.1 Building monitoring system (BMS) 

The building is equipped with a monitoring system (Circutor Power Studio Scada by Monitor 

Power Energy) that monitors ACMV system (chilled water supply and AHU system) and indoor 

environment [163][164][166]. Figure 21, Figure 22 and Figure 23 are the pictures of the BMS’s 

monitor for AHU system, CHWP system, and indoor environment’s control system.  

 

 

Figure 21: A print screen of the BMS's monitor for AHU control system [154]. 

 

 

Figure 22: A print screen of the BMS's monitor for CHWP system [154]. 
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3.1.2.1.2 Electricity supply  

The building’s electricity demand was supplied by the main electricity provider in Peninsular 

Malaysia (TNB Sdn Bhd) via six 1MVA transformers connected using six 11KV/400V 

transformers. Four of the transformers were connected to the North building, and another two 

were connected to the South building. Two electricity generators with 1500 kVA and 750 kVA 

capacity were also used as a standby in case of a shortage [163][164][166]. Maximum electric 

demand in 2012 was 1,121 kW, and the minimum was 782.4 kW. The building is classified as 

Commercial C1 user, and the electricity tariff is listed in Table 18.  

 

Table 18: The building’s electricity tariff for the building [43][44][45] 

Type Before Jan 2011 After Jan 2011 After Jan 2014 

Charge rate per kWh RM 0.288/kWh RM 0.312/kWh RM 0.365/kWh 

Charge rate for each kilowatt of 

maximum demands per month  

RM 23.930/kW RM 25.90/kW RM 30.3/kW 

Voltage level  415V 415V 415V 

Power factor  > 0.85 to 1 > 0.85 to 1 > 0.85 to 1 

 

 

Figure 23: A print screen of the BMS's monitor for indoor environment [154]. 
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The electricity for the main grid was mainly generated by natural gas and coal and coke. Table 19 

shows the fuel input to power stations in Malaysia in 2011 to 2013 [167]. 

 

Table 19: Types of fuel input to power stations in Malaysia in 2011 to 2013 [155]. 

Year  Natural 

gas 

Diesel Fuel oil Coal & 

coke 

Hydropower  Solar  Biomass Biogas  

  (ktoe) (ktoe) (ktoe) (ktoe) (ktoe) (ktoe) (ktoe) (ktoe) 

2011 10,977 981 1,103 13,013 1,850 0 0 0 

2012 11,533 811 550 14,138 2,150 11 65 4 

2013 13,520 623 392 13,527 2,688 38 164 6 

  

 

3.1.2.1.3 Air conditioning and mechanical ventilation (ACMV) 

The ACMV system is provided by a combination of unitary constant air volume system, AHU 

systems on every floor, fan coil air conditioning units for the lifts lounge and mechanical 

ventilation units for the washrooms. The chilled water for cooling system was supplied by an 

external GDP [163][164]. Also, the cooling energy consumption is logged separately by the 

district provider since the chilled water is supplied by a GDP. A co-generation system powered 

by natural gas and absorption chiller was used by the GDP [168]. The chiller’s coefficient of 

performance (COP) is 4.0 [163][164]. A 500kW electric chiller was also used in the building as a 

backup. The flow of the chilled water from the GDP to the building’s equipment and back to the 

GDP is illustrated in Figure 24, and the chilled water tariff as stated in the supplier-buyer contract 

is shown in Table 20.  

 

 

Figure 24: The chilled water flow process from the GDP to the building and return to the GDP [163][164]. 
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Table 20: The chilled water tariff as stated in the supplier-buyer contract. 

Type 2011 2013 2014 

Charge rate per kWh RM 0.248/kWh RM 0.250/kWh RM 0.271/kWh 

Charge rate for each 

kilowatt of maximum 

demands per month 

RM 114.33/kW RM 114.33/kW RM 124.61/kW 

Demand in Refrigeration 

Tonne (RT) 

1450 1450 1450 

 

 

The air conditioner used was a constant air volume (CAV) type air handling unit (AHU) located 

in the air-conditioned areas in the building. The chilled water supplied by GDC plant was set to 

reach the heat exchanger at 7°C. The chilled water is then pumped by CHWP to all AHU system 

in different floors for cooling purposes. Each AHU system will reuse the return air, mixing it 

with the outside air before conditioning it (filter, cooling and humidify/dehumidify if necessary) 

before supplying it into the air conditioned rooms. The return chilled water is then pumped back 

to the heat exchangers (HEXs) before returning to the GDC for re-cooling.  

 

A set of measurements from AHU systems were taken by IEN Sdn Bhd [164] for audit purposes. 

The measurement was taken in the morning at a specific time and does not represent AHU 

system performance for the whole time. However, it still can be a good indicator to monitor the 

chilled water performance and air temperatures in a broad-spectrum. The measurements are 

presented in Table 21.  
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Table 21: The air and chilled water measurement at every AHUs in the building. 

Area Served  Outside 

Air  

Mix Air  Return Air  Supply Air  Chilled Water  

T RH DOP T RH T RH T T(in) T(out) 

ᴼC % % ᴼC % ᴼC % ᴼC ᴼC ᴼC 

Office (L1) 0 0 0 24.1 71.1 23.3 73.2 17.6 10 17 

Office (L1) 23 78.5 100 23.6 76.8 23.9 74.8 20 - 20 

Office (L2) 24 79.6 80 24.5 71.2 23.6 72.1 19.1 10 - 

Office (L2) 0 0 0 25 64.7 23 69 17.8 11.5 20 

Office (L3) 23 68 50 23.4 67.8 23.2 67.4 17.3 10 - 

Office (L3) 23 87.8 50 23.9 77.4 24.4 73.7 20.8 10 - 

Office (L4) 0 0 0 23.5 68.5 23 67.7 17 10 18 

Office (L4) 24 85.6 50 24 74.6 24 73 20 - 21 

Office (L5) 23 77 100 23.4 69.6 23.9 64.8 17 10 18 

Office (L5) 24 79.5 50 23.7 67.8 23.7 66.8 16.5 10 19 

Office (L6) 0 0 0 25.3 67.7 25 68.1 19.6 10 21 

Office (L6) 25 79.1 100 23.9 69.7 23.6 67.5 17.2 9.5 18 

Office (L7) 0 0 0 24.4 68.5 24 68.8 18.5 9.5 20 

Office (L7) 28 75.2 75 24.6 69.3 24.2 67.1 17.8 9 - 

Note: DOP is the damper opening percentage. 

 

The measurement data shows that average chilled water temperature reached AHU at 9°C and the 

mean temperature it leaves the AHU system was 19.4°C. This data shows that, the chilled water 

experience an average increment of 10.4°C after cooling the mixture air (fresh air and return air) 

before supplying it into the air conditioned rooms. The average supplied air was 18.6°C. It can be 

observed that the chilled water experienced an average increment of 3.4°C while travelling from 

the CHWP to the AHUs. A better pipe insulation might reduce the heat loss which then will 

reduce chilled water demand. Based on the measurement taken from the air conditioning system, 

the ratio of fresh and return air was in the range of 20%-30% fresh air and 80% - 70% return air. 

A specific ratio of fresh air and return air was not stated in Malaysia building regulation, but 

China’s Building Regulation suggested a ratio of 30% fresh air and 70% return air [70]. Carbon 

dioxide measurements were also taken in all office zones and the measurements complied with 

the indoor air quality requirement for an office building.  The waste heat recovery practised by 
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the building could promote energy saving. A detail specification of the cooling system’s 

components is presented in Table 22 and Table 23.  

 

Table 22: The main parts of the cooling system and their power ratings. 

Type Units  Specification Note 

Heat Exchanger (HEX) 2 370 RT each  - 

Chilled Water Pump (CHWP) 3 30 HP each  Equipped with variable speed 

drive but operated on fixed 

frequencies. 

Air Handling Unit (AHU) 19 Rated at 11kW to 

18.5kW each  

- 

Fan Coil Unit 8 Rated at 0.47kW 

to 2.33kW each  

Only 5 were used.  

Electric backup chiller  1 500kW Only used when the supplied 

chilled water is higher than 8°C 
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Table 23: The type of cooling system used in every air-conditioned areas and their operation schedule. 

Location  Type Unit Power Rate 

(kW) 

Schedule 

Lower Ground CHWP 3 67.11 0645-1800 (Mon-Sat) 

 

ACSU 1 1.34 Not Running  

 

FCU 1 2.33 0800-1800 (Mon-Sat) 

 

ACSU 1 1 Not Running  

 

ACSU 1 1 Not Running  

 

FCU 1 1 0800-1700 (Mon-Fri) 

  ACSU 1 1 Not Running  

Café AHU 1 26 0600-2000 (Mon-Sat) 

Basement 1 ACSU  1 1.34 Not Running  

 

FCU 1 2.33 Not Running  

 

FCU 1 1 Not Running  

  FCU 1 1 Not Running  

Ground Floor AHU 1 11 0655-1900 (Mon-Fri) 

 

AHU 1 11 0655-1900 (Mon-Fri) 

  DB MGN 1 12.24 N/A 

Level 1 AHU  1 11 0650-1900 (Mon-Fri) 

 

FCU  1 0.57 0720-1900 (Mon-Sat) 

  FCU  1 0.47 0720-1900 (Mon-Sat) 

Level 2 AHU  1 11.25 0640-1900 (Mon-Fri) 

 

AHU  1 11.25 0640-1900 (Mon-Fri) 

  FCU 1 0.9 Not Running  

Level 3 AHU  1 11 0630-1900 (Mon-Fri) 

  AHU  1 11 0630-1900 (Mon-Fri) 

Level 4 AHU  1 11 0630-1900 (Mon-Fri) 

  AHU  1 11 0630-1900 (Mon-Fri) 

Level 5 AHU  1 11 0635-1900 (Mon-Fri) 

  AHU  1 11 0635-1900 (Mon-Fri) 

Level 6 FCU 1 11 0650-1900 (Mon-Fri) 

  AHU  1 11 0650-1900 (Mon-Fri) 

Level 7 AHU  1 18.5 0655-1800 (Mon-Fri) 

  AHU  1 18.5 0655-1800 (Mon-Fri) 

Level 8 ACSU 1 2.23 Not Running  
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3.1.2.1.4 Lighting 

Lighting was provided by 3,119 lamps ranging from PL-L types and PL-C types, ceramic 

discharge metal lamp (CDM), fluorescent tubes, light emitting diode (LED), emergency light and 

metal halide lamp. However, at most areas, a recessed mounted and manually controlled PL-L 

types and PL-C types were utilized. The power rating and schedule of lamps in every area were 

attained from Energy Management & Conservation Program Report [163]. However, the lamps 

were listed based on the floors and the main areas such as office spaces, café, and parking lot. 

The type of light used in small rooms such as AHU rooms, IT rooms, and toilets were not 

specified but listed altogether with the lamps used in the general areas of each floor. Even though 

the lighting schedule in main areas was set in BMS but the lighting control system was not 

functioning, and it was controlled manually by the users. The LED lamps were implemented in 

2012 to cater outside areas where lighting was used after office hour from 7.00pm until 7.00 am 

the next morning. While at the Atrium (ground floor) lighting was supplied by daylight during 

the day (0730 hours to 1930 hours) and the artificial lighting was switched on at night time only. 

 

3.1.2.1.5 General Office Equipment  

There is a total of 529 office equipment in the building which can be categorized into 5 different 

categories that are computers, general office equipment, pantry equipment, meeting room 

equipment and other items. The percentage of equipment distribution is shown in Figure 25, and 

the type of equipment in different categories are listed in Table 24. 
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Figure 25: Percentage of office equipment distribution in 2012 [151][164]. 

 

Table 24: List of equipment based on its categories [151][152]. 

Category  Equipment Type 

Computers Desktop and laptops 

General office equipment Small printers, multifunction printers, scanners, paper 

shredding and photocopies 

Pantry and kitchenware Refrigerator, hot and cold water cooler, toaster, rice 

cooker, kettle and microwave.    

Meeting room and presentation 

equipment  

Meeting room's monitor, PA system, DVD player, 

television, radio cassette recorder.   

Others Stand fan  

 

Computers (252 units) were the biggest unit of equipment used in the building, followed by 

general office equipment, meeting room, pantry and others. The equipment in the pantry such as 

the refrigerators and hot and cold water coolers were switched on 24 hours. The equipment used 

was a mixture of Energy Star equipment and non-Energy Start equipment biasing more towards 

non-energy star rated.  
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3.1.2.2 Space optimisation analysis  

In the baseline building, 13,840m² office zones were occupied by 351 employees which means, 

39.4m² of the office floor was dedicated to a person. Based on the guidelines from the 

‘Guidelines and Plan for Building’ published by The Department of Prime Minister, Malaysia in 

2005 [169] it is stated that the suggested space for an employee is 16 m² while the suggested 

space for the Minister’s office is 616 m² [169]. The space allocation includes workspace, meeting 

rooms, pantry, toilets, file rooms, kitchen, AHU room, janitor rooms, corridors and other 

essential areas in an office building. This guideline when followed results in a total area of 8,004 

m² for the North building instead of 13,840m². Optimising the space occupancy will reduce 

energy usage, land usage, and cost.  

 

3.1.2.3 Energy Analysis  

In 2012, the building used 7,334,630 kWh of energy to support its operation. That was 5,330,997 

kWh of electricity and 2,003,633 kWh energy for chilled water [163]. This figure is the lowest in 

four years (2009 to 2012). The building’s owner is committed to improving the building’s energy 

performance. Hence, the audit was carried out every year to analyse its enactment and planning 

out possible ways for improvement. The building’s monthly energy consumption and carbon 

emission are shown in Figure 26 [163][164][170]. 

 

The average BEI over four years from 2009 to 2012 was 238.53 kWh/m²/year [163][164]. The 

building’s BEI varied from 216.9 kWh/m²/year in 2012 to as high as 254.3 kWh/m²/year in 2011 

(see Figure 27). The variation in the building’s energy consumption might originate from 

occupants’ behaviour such as how they control lighting and equipment usage. Another reason 

that could contribute to the variation is equipment replacement to new equipment that is more 

energy efficient once they have reached their lifetime. Meanwhile in 2012, a significant dropped 

in the building’s BEI was mainly originated from the building undergoes a renovation in the 

South building from July to December. During this period, every office floors were emptied 

including the communal areas on the ground floor and first floor. The BEI is slightly lower than 

the typical BEI for Malaysian office buildings (250 kWh/m²/year) [58][86] and in range with the 

BEI of Malaysian public hospitals (234 kWh/m²/year) as studied by Saidur et al. [85]. 

Interestingly, the BEI value is comparatively lower when compared to the average office’s BAEI 
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in Europe (306 kWh/m²/year) [123] and an office’s BAEI in Saudi Arabia (330 kWh/m²/year) 

[91]. The annual BEI values in 2009 to 2012 are listed in Figure 27. The building needed to 

reduce its total energy consumption by 46.9% to become an LEO building and 76.9% to become 

a GEO building. This energy reduction is possible primarily through cooling load reduction.  

 

 

Figure 26: The building's monthly energy consumption and monthly total carbon emission. 

Figure 27: The building annual energy index (BEI) over four years [43][44] compared to BEI for LEO and 

GEO. 
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Cooling was responsible for 58.9% of the building total energy consumption [164]. The energy 

intensity of the cooling system was 127.89 kWh/m²/year that is higher than the BEI benchmark 

for LEO buildings (114 kWh/m²/year) [57] and passive buildings (120 kWh/m²/year) [171]. The 

building end-use energy intensity by sectors are shown Table 25. A breakdown of cooling load in 

every air-conditioned zones (based on a simulation made in Design Builder software) in the 

building shows that offices consumed majority (78%) of the total building’s cooling load then 

followed by data centre (10%), corridors (6%), cafeteria (3%), IT rooms (2%) and hall and 

auditorium (1%). The percentage of the annual cooling load in every air-conditioned zones to the 

building’s total cooling load is shown in Figure 28.while the detail value of cooling load in every 

air-conditioned zones in the building is presented in Table 26. 

 

Table 25: End-use energy intensity by sectors in 2012 [163][164]. 

 End-use Energy Consumption  

Sectors Energy intensity 

(kWh/m²/year)  

Percentage of total energy 

(%) 

Cooling system  128 58.9 

Lighting  62 28.6 

General sockets  15 6.9 

Data centre  12 5.5 

 

 

Table 26: Annual cooling load in different cooling zones based on simulation made in Design Builder 

software.  

Cooling zones Annual cooling load (kWh) 

Offices 3,199,514 

Data centre 402,493 

Corridors  238,284 

Cafeteria 147,128 

IT rooms 67,799 

Hall and Auditorium 25,963 

Total 4,081,181 
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Figure 28: The percentage of the annual cooling load in different air conditioned zones in the building to 

the total building's cooling load. The data were based on a simulation made in Desgin Builder. 

 

3.1.2.4 Indoor environmental measurements 

A set of indoor lux, air temperature, relative air humidity and carbon dioxide measurements were 

taken at seven different zones on each floor during the building energy audit conducted by IEN 

Sdn Bhd. The readings were compared to the indoor environmental quality requirement set in 

MS1525:2014 and DOSH. The suggested indoor environmental values were listed in Table 27 

while the recorded measurement at the offices is presented in Table 28 and Table 29.  

 

Table 27: Indoor environmental guidelines by MS1525:2007 and DOSH for office space. 

Type Suggested Value Guidelines 

Lux 300 – 400 lux MS1525:2014 

Air Temperature 23°C – 26°C MS1525:2014 

Air Humidity  55% – 70% MS1525:2007 

Carbon Dioxide < 1000 DOSH 
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Table 28: The indoor illumination level, air temperature, RH and carbon dioxide measurement in offices 

on the ground floor, Level 1, 2, 3 and 4.  

Area Location point Luminance Temperature Relative humidity CO2 

    (lux) (°C) (%) (ppm) 

Office GF B 316 22.1 56.7 725 

 C 256 21.7 58.8 711 

 D 354 23.9 61.2 645 

 E 152 23.3 50.1 643 

 F 498 25.3 60.5 632 

  Average 315.2 23.3 57.5 671 

Office L1 B 231 24.3 61.3 662 

 C 205 22.2 65.2 599 

 D 230 23.5 59.1 677 

 E 170 23.6 69.2 690 

  Average 209 23.4 63.7 657 

Office L2 B 372 23 65 710 

 C 314 22 66 645 

 D 334 22 65 634 

 E 299 23 64 716 

 F 327 22 64 680 

  Average 329.2 22.4 64.8 677 

Office L3 B 235 23 62.3 752 

 C 356 23 60.7 787 

 D 352 22 60.4 762 

 E 350 23 59.8 752 

 F 202 21 60.6 795 

  Average 299 22.4 60.7 770 

Office L4 C (daylight) 390 23.1 66.7 539 

 D 202 21.5 60.2 569 

 E 186 21.1 65.9 589 

 F 200 21.4 62.8 638 

  Average 244.5 21.8 63.9 583 
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Table 29: The indoor illumination level, air temperature, RH and carbon dioxide measurement in offices at 

level 5, 6 and 7. 

Area Location point Luminance Temperature Relative humidity CO2 

    (lux) (°C) (%) (ppm) 

Office L5 C 276 22.2 64.7 564 

 D 256 21.8 67.3 595 

 E 292 21.9 67.8 732 

 F 124 22.5 67.3 665 

 Average 237 22.1 66.8 639 

Office L6 B 199 21.2 71.6 591 

 C (daylight) 216 22.8 68.4 597 

 D (daylight) 377 23.7 65.4 646 

 E 295 22.1 65.4 622 

 F 193 23.3 66.4 593 

  Average 256 22.6 67.4 609.8 

Office L7 B (daylight) 204 22.1 68.8 601 

 C 335 22.2 66.3 588 

 D 350 21.8 68.1 556 

 E 210 23.8 61 649 

 F 196 21 70.2 574 

  Average 259 22.2 66.9 593.6 

 

 

From the data collected, room temperatures in 23 out of 40 zones in the whole building were 

lower than the room temperature suggested by MS1525:2014 [143] even though no negative 

feedback were made to the energy manager related to the room temperature. Meanwhile, the 

luminance measurements in 24 zones were lower than minimum requirement and 2 zones 

exceeded the maximum requirement. Only 14 out of 40 zones fell in the right lux 

requirement.  The air humidity level at two zones exceeded the maximum requirement by 

less than 1.6%. Meanwhile, the carbon dioxide level in the whole building was below the 

maximum limit stated by DOSH. Table 30 shows the comparison of measured luminance 

level in the building’s common areas and the suggested luminance by MS1525:2014 [142]. 
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Table 30: A comparison of measured luminance level at the building's common areas and the suggested 

levels by MS1525:2014. 

Area  Average luminance 

 Recorded Guidelines 

  (lux) (lux) 

Cafeteria 279.5 200 

Parking area B 99.3 50 

Parking area LG 89.5 50 

Lift lobby B  90 100 

Lift lobby cafeteria 78 100 

Lift lobby LG 372 100 

Lift lobby GF 446 100 

Lift lobby L1 430 100 

Lift lobby L2 502 100 

Lift lobby L3 503 100 

Lift lobby L4 396 100 

Main lobby GF 357 150 

Corridor (windows area) L2 21000 100 

Corridor (windows area) L3 25001 100 

Corridor (windows area) L4 14840 100 

 

 

Based on the recorded measurements, all of the areas have higher luminance exposure 

compared to the suggested luminance levels. These areas are exposed to sunlight during the 

daytime which resulted in high luminance level. Incorporating automatic daylight dimmer at 

these areas will contribute to energy reduction for the building in the lighting sector.  

 

3.1.3 Summary 

The building’s owner and energy manager show a continuous commitment to reducing the 

building’s energy consumption. Based on the data analysed, 87.5% of the total building’s energy 

consumption were spent on air conditioning and lighting system. These two sectors are 

responsible for delivering a good indoor environment to the occupants. However, the indoor air 

temperature in the offices and luminance level in the building’s areas can be improved to adhere 

to the local indoor environment guidelines as discussed in Section 2.5. Since the building used 

7,334,630 kWh energy a year to support its operation, a deep retrofit is required to enable the 
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building to achieve net ZECB. This objective is achievable by reducing the building’s energy 

dependent then powering it with renewable energy generated on-site. Further study on methods to 

achieve net ZECB for the target building were carried out through virtual building simulation. 

Hence, a model of the target building is built in Design Builder software (using the data gathered 

from building’s energy audit) for further analysis to achieve the objective. The development of 

the model is presented in Section 3.3 and the methods used to achieve net ZECB are shown in 

Chapter 4.   



 

  

66 

 

3.2 Development of the baseline building model  

 

3.2.1 Introduction  

A model of the case study building was constructed using the Design Builder software version 

4.2.0.034. It is a complete Graphical User Interface to the Energy Plus simulation engine (from 

US DOE) which has been intensively used for building modelling in previous research 

[90][129][154][172][173][174]. It provides an intuitive interface and high-resolution data output 

on energy consumption, carbon emissions, occupant comfort, and daylight availability [160].  

 

3.2.2 Methods  

In this study, the input data listed below was collected by the help from building’s facility 

management and onsite visits to ensure the model reflects the actual building in:  

 

 Geometry: The building’s floor plan, geometry and fabric (derived from architect’s drawings 

(see Figure 29, Figure 31 and Figure 30). DXF files created from the architect’s drawings  

(AutoCAD) to import into Design Builder [173].  

 Equipment data: Power rating, operation’s schedule, equipment quantity in every office floor.  

 Lighting: lux measurement, operation’s schedule, lamp and luminaire types.   

 Occupancy in every floor: number of occupants, type of activities and schedule. It was 

assumed that all occupants used the equipment and occupied the building at all time during 

working hours (0830 to 1730) and 50% of the occupants occupied the building at 0700 to 

0830 and during recess hour (1300 to 1400). Variation in occupants’ behaviour such as 

opening windows or doors was not taken into account since there isn’t any actual data for it.  

 Local weather data was collected from Malaysia Meteorological Department [165] and 

ASHRAE global weather repository provided in Design Builder software [160].  

 HVAC system: the building HVAC system schematic drawing, HVAC system and chiller’s 

COP, the average zone’s temperature measurement for every office floor and average chilled 

water temperature for every AHU’s was extracted from the building audit reports prepared by 

facility management [163][164].  
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Figure 29: The building’s C-C cross section drawings obtained from the energy manager. 
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Figure 30: The floor plan of target building's level 3 obtained from the energy manager. 
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Figure 31: The floor plan of target building's ground floor imported to DXF file in design builder software. 
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Modelling complex buildings involves inaccuracies and errors due to various input requirements 

and limitations [172][173]. Studies on building modelling presented ways of increasing the 

model’s prediction accuracy [172][173] and ASHRAE Guide 14 [175] is an established method 

for measuring a model’s accuracy [90][110][172][173]. It is suggested that with instances of 

monthly data, a building is considered accurate if the CV(RMSE) for monthly values is below 

≤+15% and MBE of monthly values is within  ±5% [175]. If these tolerances are met, EnergyPlus 

was demonstrated to be capable of predicting space air temperatures within zones of interest with 

an accuracy of ± 1.5°C for 99.5% of the time [172]. 

 

This software simulates the total energy for the cooling system as ‘district cooling’ while the 

building’s chilled water was supplied by a district cooling plant. Hence, the actual energy 

consumption by the cooling system was calculated using equation (3.4) where the monthly 

electric consumption by the cooling system (ELCS(kWh)) is calculated using Equation (3.5). 

Equation (3.6) calculates CV(RMSE) and equation (3.7) calculates MBE between the simulated 

and actual results [172]. Model parameter inputs were refined until the tolerance range was met.  

 

ACC  = ELCS(kWh) + ECW (kWh)   (3.4) 

ELCS(kWh) = 𝐶𝑝 ×  𝛴𝐴𝐸𝐿𝐶   (3.5) 

CV(RMSE)  = 
√∑ [(𝑀𝑖−𝑆𝑖)2/𝑁𝑖]

𝑁𝑖
𝑖=1      

1

𝑁𝑖
  ∑    𝑀𝑖

𝑁𝑖 

𝑖=1

   (3.6) 

𝑀𝐵𝐸 =  
∑  (𝑀𝑖−𝑆𝑖)

𝑁𝑖
𝑖=1  

∑    𝑀𝑖
𝑁𝑖
𝑖=1

     (3.7) 

 

Where:  

Annual cooling consumption (ACC) 

Cooling system’s electric consumption in kWh (ELCS(kWh)) 

Total annual electricity consumption (ΣAELC)   

Ratio of cooling system’s electricity consumption per total building’s electricity (Cp) 

Coefficient of variation of the root mean square (CV (RMSE)) 

Mean bias error (MBE) 

Actual monthly energy consumption (M) 

Simulated monthly energy consumption (S) 
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Number of months (N) 

 

3.2.2.1 Building simulation software 

This section discussed the building simulation software that is used in this study. Section 

3.2.2.1.1 discussed the primary reason for choosing the software, Section 3.2.2.1.2 discussed the 

EnergyPlus simulation tool and Section 3.2.2.1.3 discussed Design Builder software (a graphical 

user interface that was used as an interface to EnergyPlus simulation engine).  

 

3.2.2.1.1 Review of building simulation software.  

A highly cited review article of existing building simulation software published by D. B. Crawley 

et al. [176] was used as the main reference in determining the choice of software to be used in 

this study. D. B. Crawley et al. compares 20 main building energy simulation software regarding 

their features and capabilities. The comparison was made based on the vendor-supplied 

information. Table 31 shows the comparison of the number of features available in every 

software compared to the total features being analysed in Crawley et al. Meanwhile, Table 32 

compares a number of renewable energy (RE) systems, pre-configured systems and discrete 

HVAC components available in the each software. Based on the information published by 

Crawley et al. it was found that Energy Plus offered the highest number of features in terms of: 

 Zone loads; 

 Building envelope, daylighting and solar (BDS); 

 Infiltration, ventilation and multi-zones airflow (IVAAF);  

 HVAC systems (HVAC) and; 

 Economic evaluation.  

 

Meanwhile, regarding renewable energy systems and Discrete HVAC components, TRNSYS 

offered the highest number of systems and components compared to other software then followed 

by EnergyPlus. In this study, 5 main features mentioned above are the main priority. Hence 

Energy Plus was chosen as the simulation tool and Design Builder software was used as the user 

interface software for EnergyPlus.   
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Table 31: The comparison of the number of features available in every software [176]. 

Software Zone 

loads 

BDS IVAAF HVAC Economic 

Evaluation  

Total 

features 

available  

BLAST 4 2 1 1 0 8 

BSim 4 3 6 1 3 17 

DeST 6 3 7 2 3 21 

DOE-2.1 5 1 1 0 4 11 

ECOTECT 3 1 1 1 1 7 

Ener-Win 4 1 3 1 1 10 

Energy Express 6 0 1 1 2 10 

Energy-10 2 1 1 0 1 5 

EnergyPlus 8 8 6 2 4 28 

eQUEST 4 2 2 0 4 12 

ESP-r 5 6 8 2 1 22 

IDA-ICE 7 4 4 2 2 19 

IES<VE> 9 0 7 2 3 21 

HAP 4 5 1 1 3 14 

HEED 6 1 1 1 4 13 

PowerDomus 4 2 5 1 4 16 

SUNREL 3 2 5 1 0 11 

Tas 8 4 6 1 2 21 

TRACE 5 6 1 1 4 17 

TRNSYS 5 3 6 2 4 20 

Overall features being 

compared 

9 9 9 2 4 33 
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Table 32: Comparison of the number of renewable energy systems, pre-configured systems and discrete 

HVAC components available in the each software [176]. 

Software RE 

systems 

Pre-configured 

systems  

Discrete HVAC 

components 

Total 

available 

BLAST 1 14 51 66 

BSim 2 14 24 40 

DeST 2 20 34 56 

DOE-2.1 1 16 39 56 

ECOTECT 4 0 0 4 

Ener-Win 0 16 24 40 

Energy Express 0 5 8 13 

Energy-10 2 7 15 24 

EnergyPlus 4 28 66 98 

eQUEST 2 24 61 87 

ESP-r 7 23 40 70 

IDA-ICE 1 32 52 85 

IES<VE> 3 28 38 69 

HAP 0 28 43 71 

HEED 0 10 7 17 

PowerDomus 1 8 15 24 

SUNREL 2 1 3 6 

Tas 2 23 26 51 

TRACE 0 26 63 89 

TRNSYS 12 20 82 114 

Total systems identified  12 34 98 144 
 

 

 

3.2.2.1.2 Energy Plus  

EnergyPlus combined the best feature from Blast and DOE-2 and were built based on 

recommendations from users and developers about their needs in energy simulation. The software 

was developed by the developer of DOE-2 program Lawrence Berkeley National Laboratory, and 
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the developers of DOD’s BLAST program (U.S Army Construction Engineering Laboratory and 

University of Illinois) [177].  

 

The underlying concept used in EnergyPlus is Integrated Simulation where it simulates two main 

simulation types (heat and mass balance simulation (HMBS) modules and building systems 

simulation manager (BSSM)) simultaneously. The HMBS module calculates thermal and mass 

loads based on the time step. Once the HMBS was completed the system will call for the BSSM. 

BSSM will handle the communication between the heat balance engine and the HVAC system. 

BSSM also manages data communication between building systems modules (such as HVAC 

system and electrical system), the building description and the calculation results. The whole 

EnergyPlus workflow structure is shown in Figure 32. The workflow figure was taken from a 

journal published by ASHRAE that discussed EnergyPlus software. In HMBS, the room surfaces 

such as walls, windows, ceiling, and floors have uniform surface temperatures, uniform long and 

short wave irradiation, diffuse radiating and reflecting surfaces and internal heat conduction 

[177].  
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Figure 32: Overall EnergyPlus structure as published in ASHRAE Journal 42 [177]. 

 

 

3.2.2.1.3 Design builder software 

Design Builder software is a complete Graphical User Interface to the Energy Plus simulation 

engine (from US DOE). The first version was launched in 2005 and had been under continuous 

development. It is intensively used for building modelling in previous research [90][129] 
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[154][172][173][174]. It provides an intuitive interface and high-resolution data output on energy 

consumption, carbon emissions, occupant comfort, and daylight availability [160]. 

 

It provides easy to use software and high-quality data for building assessors and building 

designers on energy consumption, carbon emissions, occupant comfort, daylight availability 

and status of the construction based on national building regulations and certification standards. 

The software is also a leading provider of Energy Performance Certificates and Building 

Regulations Compliance checking software in the UK, France, Ireland, and Portugal [71]. It 

enables the users to construct a building’s model adjacent to the original building’s specification. 

Various types of templates, construction materials, equipment and suggested schedule based on 

ASHRAE standard are included in the library. The user can also itemize the building’s model 

based on the actual practice by adding a new template. There are eight main sectors to control the 

specification of the building model and simulation (see Table 33).  
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Table 33: Control Section in Design Builder 

Control 

Section 

Description  

Activity  Enable the user to specify the occupancy in different zones, occupants’ metabolic rate and clothing, holidays, 

environmental control (such as the heating and cooling set point, humidity, minimum fresh air and luminance level), 

power density and operational schedule for computers, office equipment, and catering.  

Construction The construction section allows the user to identify the building’s materials. A selection of different type of materials is 

available in the library, or the user can create a new material’s file based on the actual material's specification. The user 

can determine the building's air tightness. The readymade template was also available based on established building's 

regulations. The estimated cost of the building's construction was calculated based on the material's cost.  

Openings This section enables the user to state different types of opening such as the window, sky-roof, doors, and ventilation. 

The user can add shading to the windows with choices of window shading or local shading.  

Lighting  The software enables the user to choose different lighting templates available in the library or add a new lighting 

template, and specify the power density, luminaire type, radiant fraction, visible fraction and lighting control.  

HVAC The type of HVAC system can be selected from the HVAC templates’ library, or the user can customize the HVAC 

system based on the actual model. Another specification such as mechanical ventilation, auxiliary energy, heating, 

cooling, humidity control, district hot water, earth tube, natural ventilation, air temperature distribution, and cost can be 

itemized too.  

Generation  This section allows the user to include on-site electricity generation ranging from the photovoltaic solar panel and wind 

turbine.  

Output  The output options allow the user to select simulation output for heating design, cooling design, energy performance, 

thermal comfort and daylight. The air contaminant simulation is not provided by the software. 

CFD The software also allows the user to run computational fluid dynamic in the building by specifying the boundary 

condition. 
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3.2.2.2 Parameter Input 

The case-study building consists of 123 conditioned zones listed in Table 34 spread across 

40,477m² building’s area. The complexity of the building requires a detailed data acquired from 

the building’s audit reports, interviews and constant contact with the building’s energy manager 

to reduce the level of uncertainties. Some changes in the building’s geometry were also made to 

simplify the model. That is, only the communal areas in the South building were included in the 

building’s model. Hence, the South building in the building model appears to have three-floor 

levels (lower ground, underground and ground floor) whereas, in reality, it has 12 floors 

(including two underground floors and a ground floor).  

 

Table 34: The conditioned zones in the case-study building. 

Floor  Total area 

(m²) 

Zone 

Lower Ground 9310 Parking space 

Underground 9310 Parking space, cafeteria, kitchen 

Ground floor (South) 4330 AHU room, auditorium, cold room, kitchen, lifts, 

corridors, multipurpose hall, toilets (female, male and 

disabled) 

Ground floor (Atrium) 858 Lobby and reception area.  

North building (every 

floor from the ground 

floor to floor 7) 

2078 2 AHU rooms, corridor, IT room, custodian's room, 

lifts, office, pantry, stairs, toilets (female, executive 

and male). 

Floor 8 205 Machines' room  

 

The building inputs are divided into five main categories, which are occupancy, lighting, HVAC, 

construction, and openings. Input for very categories is listed in Table 35 to Table 41. 
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Table 35: List of occupancy density and activity types in every zone. 

Floor  Zone Occupancy  

density  

(People/m²) 

Activity type 

Lower Ground Parking space 0.0059 Standing/walking 

Underground Parking space 0.0059 Standing/walking 

Cafeteria 0.29 Eating/drinking 

Kitchen 0.11 Food preparation 

Ground floor 

(South) 

Auditorium  0.34 Seating  

Multi-purpose hall 0.34 Seating  

Corridors 0.1 Standing/walking 

Kitchen  0.1 Food preparation 

Cold room  0.1 Storage 

Toilets  0.1 Standing/walking 

Data centre 0.1 Light office work/standing/ 

walking 

AHU room 0.1 Light manual work  

Ground floor 

(Atrium) 

Lobby  0.1 Standing/walking 

Reception area 0.1 Standing/walking 

North building  

(ground floor to 

floor 7) 

AHU rooms and 

Custodian's room 

0.1 Light manual work  

Lifts 0.1 Standing/walking 

Office ground the floor 0.02 Light office work/standing/ 

walking Office floor 1 0.04 

Office floor 2 0.02 

Office floor 3 0.05 

Office floor 4 0.02 

Office floor 5 0.04 

Office floor 6 0.03 

Office floor 7 0.02 

Pantry  0.3 Eating/drinking 

Stairs 0.1 Standing/walking 

Toilets  0.24 Standing/walking 

Corridors 0.1 Standing/walking 

IT rooms 0.1 Standing/walking 

Floor 8 Light plant room  0.01 Light manual work  
Whole building  0.10606   
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Table 36: Lighting consumption and luminaire type in every zone. 

Floor  Zone Lighting 

consumption  

(W/m²)  

Luminaire type 

Lower Ground Car park 1 Surface mount  

Underground Car park  1 Surface mount  

Cafeteria 15 Recessed 

Kitchen 8 Surface mount  

Ground floor 

(South) 

Auditorium  8 Surface mount  

Multi-purpose hall 8 Surface mount  

Corridors 4.6 Suspended 

Kitchen  8 Surface mount  

Cold room  none None 

Toilets  5 Recessed 

Data center 5 Recessed 

AHU room 5 Surface mount  

Ground floor 

(Atrium) 

Lobby  7 Surface mount  

Reception area 4.6 Surface mount  

North building  

(ground floor to 

floor 7) 

AHU rooms and custodian's 

Room 

7 Surface mount  

Lifts 9 Recessed 

Office 7 Recessed 

Pantry  7 Surface mount  

Stairs 7 Surface mount  

Toilets  7 Surface mount  

Corridors 7 Surface mount  

IT rooms 7 Surface mount  

Floor 8 Light plant room  7 Surface mount  

Whole building    6   

 

 

 

 

 

 

 

 

 



 

  

81 

 

Table 37: Equipment consumption in every zone. 

Floor  Zone Equipment consumption  

(W/m²) 

Lower Ground Parking space 0 

Underground Parking space 0 

Cafeteria 3 

Kitchen 59 

Ground floor 

(South) 

Auditorium  1.78 

Multi-purpose hall 1.78 

Corridors 0 

Kitchen  43 

Cold room  120 

Toilets  5.48 

Data center   500 

AHU room 0 

Ground floor 

(Atrium) 

Lobby  6.19 

Reception area 6.19 

North building  

(ground floor to 

floor 7) 

AHU rooms and custodian's room 0 

Lifts 60 

Office ground floor 14 

Office floor 1 10 

Office floor 2 37 

Office floor 3 41 

Office floor 4 5 

Office floor 5 10 

Office floor 6 10 

Office floor 7 6 

Pantry  60 

Stairs 0 

Toilets  0 

Corridors 0 

IT rooms 50 

Floor 8 Light plant room  30 

Whole building  36 
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Table 38: Data input for air conditioning and mechanical ventilation system in every zone. 

Floor  Zone Type Settings 

Lower 

Ground 

Parking space Mechanical ventilation  2 (ac/h) 

Underground Parking space Mechanical ventilation  3 (ac/h) 

Cafeteria KWP Cooling system  26.5 C  

Kitchen Mechanical ventilation  Min fresh air (sum per 

person and area) 

Ground floor 

(South) 

Auditorium  KWP Cooling system  23 

Multi-purpose 

hall 

KWP Cooling system  23 

Corridors KWP Cooling system  27 

Kitchen  Mechanical ventilation  min fresh air (sum per 

person and area) 

Cold room  - - 

Toilets  KWP Cooling system  - 

Data center KWP Cooling system  21 

AHU room - - 

Ground floor 

(Atrium) 

Lobby  Natural ventilation    

Reception area KWP Cooling system  24 

North 

building  

(ground 

floor to floor 

7) 

AHU rooms 

and custodian's 

room 

- - 

Lifts - - 

Office ground 

floor 

KWP Cooling system  23 

Office floor 1 KWP Cooling system  23.5 

Office floor 2 KWP Cooling system  23.5 

Office floor 3 KWP Cooling system  24 

Office floor 4 KWP Cooling system  22.5 

Office floor 5 KWP Cooling system  22 

Office floor 6 KWP Cooling system  22.5 

Office floor 7 KWP Cooling system  21 

Pantry  - - 

Stairs - - 

Toilets  - - 

Corridors KWP Cooling system  

and FCU (for ground 

floor and 1st floor) 

26.7 

IT rooms KWP Cooling system  21 

Floor 8 Light plant 

room  

- - 
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Table 39: Input for KWP Cooling system 

KWP cooling system  Input  

Cooling system type Constant air volume (CAV) 

Auxiliary energy (kWh/m²) 64.18 

Cooling system COP 4 

Supply air condition (min temperature) 17°C 

Min supply air humidity ratio (g/g) 0.009 

Chiller District cooling  

Unitary cooling COP 4 

Unitary distribution loss 5 

Central cooling coil type Chilled water  

Cooling coil set point  13°C 

Corresponding outdoor (high temperature) 37°C 

Corresponding outdoor (low temperature) 23°C 

Air temperature distribution  Mixed 

Humidity control  Humidistat  

min: 55% max: 70% 

 

 

Table 40: Schedule for the building's main areas. 

Zones Cooling system  Lighting system  Equipment  Occupancy  

Offices Monday to Friday:  

0600hours to 

1900hours 

Sunday: Off 

Monday to Friday:  

0600hours to 

1900hours 

Sunday: Off 

0800 - 1730 0800 - 1730 

Corridors Monday to Friday:  

0600hours to 

1900hours 

Sunday: Off 

24hours none 0800 - 1730 

Data 

center  

24hours 24hours 24hours  24hours  

Cafeteria  Monday to Saturday: 0600hours to 1900hours 

Sunday: Off/Close 
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Table 41: Construction design for the building. 

Construction  U-value  

(W/m²K) Layers from outer to inner skins and its thickness 

Outer wall  

(atrium and south building) 
1.804 [1] Granite 30mm  

 

[2] Plaster cement 30mm 

 

[3] Brick outer leaf 100mm 

 

[4] Brick inner lead 100mm 

 

[5] Plaster cement 30mm 

  [6] Granite 30mm  

Outer wall  

(north building) 
1.838 [1] Granite 30mm  

 

[2] Plaster cement 30mm 

 

[3] Brick outer leaf 100mm 

 

[4] Brick inner lead 100mm 

  [5] Plaster cement 30mm 

Outer wall  

(north building level 8) 
2.221 [1] Plaster cement 30mm 

 

[2] Brick outer leaf 100mm 

 

[3] Brick inner lead 100mm 

  [4] Plaster cement 30mm 

Ground floor  1.7 [1] Granite 30mm 

 

[2] Cement plaster 30mm 

  [3] Cast concrete 300mm  

Internal floor 2.929 Concrete slab 100mm 

Glazing  5.74 [1] Green float glass 8mm 

 

[2] Curtain wall, 85% glazed 

  [3] Local shading 1m overhang  

 

 

3.2.3 Results 

The comparison of actual energy usage and simulated energy usage using the ASHRAE Guide 14 

shows the building model prediction to be within the acceptance range. The built model is 

presented in Figure 33, Figure 34, Figure 35 and Figure 36.  
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Figure 33: The target building modelled in Design Builder software with detail sun path and shadow. 

 

 

 

Figure 34: The building model built in Design Builder software. 
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Figure 35: The cross-section of the building model. 

 

 

 

Figure 36: The floor plan of the North Building floors. 

 

The simulated MBE was +1.89% (acceptance criteria is ±5%), and the CV (RMSE) value was 

11.09% (less than the 15% requirement). Total energy consumption in 2012 was 7,334,631 kWh 

while the simulation results predicted it to be 7,195,646 kWh. The comparison of monthly actual 

and simulated total energy, electricity and energy for cooling usage and its percentage deviation 
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is shown in Figure 37, Figure 38 and Figure 39. The average energy deviation was +1.29% with 

the highest deviation on August (over predicted by 20.8%). A summary of the MBE and 

CV(RMSE) values for the total energy, electricity and energy for cooling is listed in Table 42. 

The end-use energy consumption by sectors was also compared and presented in Table 43.  

 

Table 42: Summary of the MBE and CV(RMSE) of the total energy, electricity usage and energy for 

cooling. 

  MBE CV(RMSE) 

Total energy usage 1.89% 11.09% 

Electricity usage 1.29% 9.65% 

Energy for cooling  2.32% 8.03% 

 

 

Table 43: End-use energy consumption and their deviation. 

Type Actual energy consumption  

(kWh) 

Simulated energy consumption  

(kWh) 

Deviation  

(%) 

Lighting  2,095,081.82 1,791,731.51 14 

Equipment 916,931.48 1,166,463.88 -27 

Cooling  4,322,616.69 4,221,275.97 2 

Total  7,334,629.99 7,179,471.36 2 
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Figure 37: Comparison of the actual and simulated monthly energy consumption. 

 

 

Figure 38: Comparison of the actual and simulated electricity usage. 
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Figure 39: Comparison of the actual and simulated energy usage for cooling. 

 

 

Further analysis was carried out to figure out the cooling load consumption in different zones. 

Results are presented in Table 44 and Figure 40. The majority of the cooling demand was 

originated from the offices (78% of the total building’s cooling load) then followed by data centre 

(10%), corridors (6%), cafeteria (3%), IT rooms (2%) and Hall and Auditorium (1%). 

 

Table 44: Annual cooling load in different cooling zones. 

Cooling zones Annual cooling load (kWh) 

Offices 3,199,514 

Data centre 402,493 

Corridors 238,284 

Cafeteria 147,128 

IT rooms 67,799 

Hall and Auditorium 25,963 

Total 4,081,181 
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Figure 40: The breakdown of cooling load in different zones. 

 

3.2.4 Discussion and summary  

Modelling a complex building involves a greater uncertainty as it involves a large number of 

zones each with its unique criteria (lighting, envelope, cooling, equipment and occupancy). This 

building has 123 conditioned zones spread across 40,477 m² building area. Modelling this 

complex building requires a significant number of details and involves larger uncertainties too.  

 

Minimising uncertainties can increase the model’s accuracy. However, uncertainties related to 

occupants’ behaviour (manually controlled equipment and occupancy in the office building) are 

tough to predict. This statement is supported by the end-use energy deviation analysis, where it 

shows that sectors that suffer the highest deviation are office equipment (over predicted by 27%) 

then followed by lighting (under predicted by 14%). For this building, lighting in maintenance 

rooms such as AHU rooms, IT rooms, machines’ rooms, office’s pantry and office zones were all 

manually controlled. The occupancy, equipment and lighting schedule for these zones were set 
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based on the normal practices as advised by the energy manager while operation and settings for 

cooling system (under predicted by 2%) are centrally controlled by the facility management.  

 

Other contributors towards the deviation are operational changes throughout the year that gave an 

impact on the energy usage. In this case study, the building undergoes a renovation in the South 

building from July to December. During this period, every office floors were emptied, and the 

energy consumption in the South building’ communal area is highly uncertain. Plus, due to a 

celebration in August, a large number of employees applied for a holiday. These contributed to a 

greater deviation during that period. While, a detail information from the building’s facility 

management regarding the building’s equipment, schedule, floor plan, fabric and average indoor 

environment settings essentially contributes towards achieving a standardized building model.  

 

In a nutshell, most of the deviation are rooted from the operational control of the sub-systems in 

the building that were manually controlled, rather than errors in the building (envelope and sub-

systems) settings.  
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Chapter 4. Holistic Approach to Achieve ZECB for an Existing Building  

 

Air conditioning and lighting make up 87.5% of the total building’s energy consumption (as 

shown in Chapter 3) whereas another 12.5% goes to the general socket and data centre. These 

findings acknowledge the fact that most of the building’s energy were spent on ensuring a good 

indoor environment for the occupants. Previous studies explore the potential of reducing the 

energy usage in mainly domestic and small size office buildings by the mean of active designs, 

passive designs or the combination of both that is a holistic design. In this chapter, a holistic 

approach to achieving a zero energy commercial office building is proposed.  

 

In Section 4.1, 4.2 and 4.3, an isolation approach were presented before combining the three 

methods together in Section 4.4. The methods are split into four main sections that are:  

 

 Section 4.1 detailing about a passive approach to reduce cooling load (part of this work 

was submitted to Building and Energy, it is under revision);  

 Section 4.2 present a novel retrofit methods to reduce cooling load based on the thermal 

analysis (part of this work was published in [37] and [38]); 

 Section 4.3 presented a solar powered cooling system and; 

 Section 4.4 all the three methods were applied to the target building as a whole-building 

approach.  
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4.1 Passive designs to reduce cooling load.   

 

4.1.1 Introduction  

A building’s energy consumption increases as the human’s demand for comfort level increases 

[36][124]. A properly designed building is proven to use less energy compared to typical 

buildings types [80]. A high-performance building envelope normally has one or more of these 

attributes: a low thermal conductivity (U-value), higher airtightness and high thermal mass 

capacity [72][73][80]. These specifications, if employed, can reduce the external heat gain, 

reduce energy loss from the air conditioned zones to the outer surroundings and provide a good 

indoor thermal comfort with less energy requirement [72][73][80]. This fact was also 

acknowledged in the Passivhaus method where the buildings demonstrate how a massive 

reduction in the building's HVAC requirement can reduce the buildings’ energy consumption to a 

minimum. The Passivhaus concept was developed in Germany to cope with the European cold 

climate by opting for an airtight and highly insulated construction. The method was aimed at 

isolating the building from the climate outside and to reduce the building’s heat loss [47]. The 

main strategies employed by Passivhaus are:  

• Good levels of insulation with minimal thermal bridges 

• Passive solar gains and internal heat sources 

• Excellent level of airtightness 

• Good indoor air quality 

 

The methods have been proven successful in cold regions, but will it applicable to tropical and 

arid regions that experience warm temperatures the whole year round? It was also mentioned by 

the Passivhaus formal website, that:  

 

“It would be a pitfall just to apply the Central European Passive House design, especially the 

details used for insulation, windows, and ventilation and just copy these to a completely different 

situation because there is a specific building tradition in every country and there are specific 

climatic boundary conditions in every region. Therefore, the specific solution for a Passive 

House building has to be adapted to the country and the climate under consideration.” - 

www.passipedia.org [47]. 

http://www.passipedia.org/
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As mentioned in the Passivhaus website, the building’s code of practice that were implemented in the 

cold region requires modification if it is to be applied in regions with a different climate. Previous 

studies in cooling dominated countries that implemented insulation material in their studies reported 

that insulating the building increased the building’s energy consumption. A study by Griego et al. 

reported that the use of insulation materials in their case-study buildings (an office in Mexico) yielded 

the opposite results. They explained, the heat gain in the building is far greater than the external solar 

heat gain penetrated into the building. Therefore, insulating the building traps this heat which resulted 

in an increase in the HVAC load [93]. Meanwhile, a study of a classroom in Israel (hot summer 

Mediterranean weather) reported, insulating the external of the roof and high thermal mass on the 

inside is more energy efficient. This study also reported that the internal heat gain is higher than the 

external heat gain. The insulation prevents solar heat gain from coming into the room, and the thermal 

mass absorbs internal heat gain and releases it at night time [95]. These two studies demonstrated the 

impact of adding insulation to the building’s envelope on the building’s energy consumption for a 

building in two different climates. The outcomes demonstrates how the same building’s envelope 

give a different impact on building in different climates. This statement were supported by the 

previous studies by Dascalaki and Santamouris [101] and Peng Xu et al. 

 

Ruolang Zeng et al. and Yinping Zhang et al. developed a mathematical equation manipulating a 

building’s predicted heat gain to find the most optimum criteria for the building's envelope 

material and natural ventilation to minimise cooling load [97][178]. Meanwhile, Hatice Sozer 

studied the effect of passive solar design techniques for the hotel buildings in a cooling 

dominated climate [80]. These findings are useful for the buildings in the design phase. As for an 

existing building, adding insulation material [64][79][81][82][84], PCM [73][179][180][181] 

[182][183] or using a low energy cooling system [154][184] were studied to reduce the load 

demand for HVAC system. Most of the studies on insulation compared different types of 

insulation material, different configuration (either on the inside or outside of the wall) and 

different climatic conditions mainly to find the most optimum thickness to reduce HVAC load. 

These studies reported that there are differences in performance at different climates 

[64][79][81][82][84]. Whereas for the PCM, most of the studies incorporated PCM panels/board 

into the building’s wall [73][179][180][181][182], ceilings and floor [183]. It was reported that 

the performance of PCM depends on its melting/freezing point, latent heat, building’s 

construction design and climates [179][181][183]. Based on the previous studies, it can be seen 
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that the performance of the insulation material and PCM depends on the climate, and the 

installation of this material predominantly managed to reduce HVAC’s load.  

In this section (Section 4.1), the main aim is to study the most optimum configuration for the 

building’s envelope that is suitable to cater retrofitting process for a medium size office building 

located in the tropical region. [124]. Previous work on the passive designs implemented on the 

building envelope to reduce a building’s HVAC demand focused on: 

 using insulation material to the building’s wall  

 incorporating phase change material into the building’s construction (mainly phase 

change material (PCM) panels/board in the building’s wall structure) 

 manipulating the building’s thermal mass 

 

To achieve the goal of this section, a series of simulations of the building' ground floor office and 

IT room were conducted to determine the best retrofit arrangement to improve the building’s 

envelope (wall, ceiling, and floor but does not include windows) to reduce the target building's 

cooling load. Insulation material and PCM will be used in this study due to their proven 

performance in reducing building’s HVAC load. PCM type such as the PCM blanket or PCM 

paint were chosen since it is easier to install in an existing building and studies on this type of 

PCM on building’s performance is still scarce. In fact, studies on the installation of PCM and 

insulation material on building envelope for retrofitting in the tropical region for a medium-size 

commercial office building is still limited. Hence, the aim of this study is to: 

(a) Determine the best retrofit arrangement to improve the building’s envelope (wall, ceiling, 

and floor but does not include windows) to reduce the target building's cooling load 

(b) Investigate the impact of using insulation and PCM on the air conditioned zones. 

(c) Discover the most optimum settings for PCM and insulation materials in air conditioned 

zones in tropical settings. 

(d) To give guidelines for architects, building developers and building designers on potential 

passive retrofitting approaches to achieving nZEB in tropical countries.  

 

4.1.2 Methods 

Two different types of air-conditioned rooms in the building were tested; rooms with air 

conditioning operating 24 hours and rooms with scheduled air conditioning operations (office 

hour). The office and IT room on the ground floor of the building model were used for the 
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experiment. The ground floor office room representing rooms with scheduled air conditioning 

and ground floor IT room represent the rooms with 24 hours air conditioning. It is assumed that 

the energy interaction will be the same for every office and server room due to the similarities in 

their physical outlet, internal content, and air conditioning system.  

 

To simplify the initial analysis on the most optimum construction types for the office and IT 

room, only the ground floor structure was taken into consideration. An adjustment on the ground 

floor’s ceiling was made so that it reflects the actual building structure by employing the roof 

structure instead of the initial concrete slab as the roof. This is to ensure enough insulation was 

given to the office and IT room from the solar heat gain so the result will not be far deviated once 

the new construction was applied to the whole building model. However, it is assumed that the 

heat gains from the neighbouring floors are negligible. The ground floor building model used for 

simulation is shown in Figure 41.   

 

 

Figure 41: The simplified building's model that was used to investigate different PCM and insulation 

arrangement in different types of air-conditioned rooms. 

 

4.1.2.1 Most optimum room constructions and ACMV schedules 

Different types of insulations were compared and selected based on its resistivity value, 

embodied carbon and lifetime before being used in the simulation. While PCM materials were 

selected based on the latent heat storage capacity, melting temperature and feasibility of 

application for a building construction. In this study, two PCM products that are ENERCIEL 

manufactured by Winco Technologies [185] and ENRG Blanket manufactured by Phase Change 
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Energy Solution [186]) were selected for a simulation based performance comparison. Different 

scenarios that consist of a different room’s constructions were listed in Table 45, and each 

construction’s specification was detailed in Table 46 and illustrated in Figure 42 to Figure 45.  

 

Table 45: List of scenarios to find the most optimum arrangement for PCM and insulation materials in an 

air conditioned zones. 

Scenarios                       Arrangements  

Floor  Roof Wall Partition 

Base and Base* Floor 1 Roof 1 Wall 1 Partition 1 

1 and 1* Floor 2 Roof 2  Wall 2  Partition 2 

2 and 2* Floor 2 Roof 3  Wall 2 Partition 2 

3 and 3* Floor 2 Roof 4 Wall 2 Partition 2 

4 and 4* Floor 1 Roof 5 Wall 1 Partition 1 

5 and 5* Floor 1 Roof 5 Wall 2 Partition 2 

6 and 6* Floor 1 Roof 6 Wall 1 Partition 1 

 

 

Table 46: The U-values, cost and thermal quality of the construction type. 

Construction 

type 

U-Values (with and 

without bridging)  

W/m².K 

Internal heat 

capacity  

KJ/m².K 

Cost 

 

GBP/m² 

Thermal 

quality  

Roof 1 0.373 0 100 Good thermal 

quality with 

unlikely mould 

growth. 

Roof 2 0.164 0 175 

Roof 3 0.174 32.15 175 

Roof 4 0.175 0 150 

Roof 5 0.328 0 125 

Wall 1 1.838 139.55 250 

Wall 2 0.188 78.694 300 

Floor 1 1.702 195.90 150 

Floor 2 0.185 52.85 200 

Partition 1 1.69 126.12 150 

Partition 2 0.187 30.43 200 
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Figure 42: The roofs/ceilings construction for the simulation work. 
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Figure 43: The wall construction for the simulation work. 
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Figure 44: The partition construction used in the simulations. 
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Figure 45: The floors construction for the simulation work 
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The ENRG Blanket encapsulated the pure PCM into thin sheet rolls which vary in length and are 

easily installed on the ceilings, while the ENERCIEL product is available as a coating that can be 

sprayed or painted on the walls, ceilings, and floorings. Sample pictures of these products are 

shown in Figure 46, and the specifications of both products are listed in Table 47. The melting 

point temperatures were chosen based on several experiments that were carried out to determine 

the suitable PCM’s melting point for both types of PCM. Choices of PCM types (storage capacity 

and melting point) play a significant role in determining the amount of energy saving. The same 

PCM brand (BioPCM and ENERCIEL) with different melting point (25°C, 26°C, 27°C, 28°C 

and 29°C) were tested. The highest energy reduction was achieved by BioPCM with melting 

point 29°C. The enthalpy values for each PCM types at different temperature are shown in Figure 

47 and Figure 48 [158]. 

 

 

Figure 46: (Left) The ENERCIEL product and (Right) the ENRG Blanket product. Pictures were courtesy 

of Winco Technologies and Phase Change Energy Solution websites [185][186]. 
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Table 47: PCM material specifications [160][185][186]. 

Specification  ENRG Blanket  ENERCIEL  

Product’s name in Design Builder  BioPCM M182/Q29 Winco28 

Thermal energy storage capacity per 

square meter (kWh/m²) 

0.574 0.633 

Melting temperature (°C) 29 28 

Conductivity (W/m.K) 0.2 0.148 

Specific heat (J/kg.K) 1970 8750 

Density (kg/m³)  235 863 

Temperature coefficient (W/m.K²)  1.108 1.108 

Embodied carbon  0.08 0.08 

Cost per surface area (GBP/m²) 25 25 

 

 

 

Figure 47: The ENERCIEL (Winco28) enthalpy values at different temperature. 
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Figure 48: The ENRG Blanket (BioPCM M182/Q29) enthalpy values at various temperatures 

 

In Scenario Base and Scenario 1 to 6 for the office zone, the set point temperature setting for the 

air conditioning was set at 24°C and scheduled to operate at 0700 to 1730 every work day. 

Meanwhile for Scenario Base* and Scenario 1* to 6* in the office, night time ventilation was 

added, and the air conditioning schedule was modified to optimise the energy reduction while 

maintaining a good thermal comfort. While for the IT room, Scenario 1, 2 and 3 were tested and 

the air conditioning was scheduled to operate 24hours with the set point temperature fixed at 

21°C. The ACMV settings for all scenarios are listed in Table 48. 

 

Table 48: The ACMV settings for every simulation scenarios for the office. 

Scenario Tset AC  schedule MV schedule 

Base, Base*,  

1, 2, 3, 4, 5 and 6 
24°C 0700 to 1730 off 

2* and 3* 24°C 0700 to 1700 1700 to 2400 and 

0000 to 0600 

4* 26°C 0700 to 1700  

(with varying load percentage. 

Refer Figure 49) 

1700 to 2400 and 

0000 to 0700 

5* and 6* 25°C 0700 to 1700  

(with varying load percentage. 

Refer Figure 49) 

170 to 2400 and 

0000 to 0630 
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Figure 49: The cooling load schedule for the office room (hourly load percentage).  

 

4.1.2.2 Simulation settings 

There are two main solution algorithms used for simulation in EnergyPlus: CTF and Finite 

Difference. The default algorithm is CTF that is known as the state space method. While 1-D 

Finite Difference solution is used in the construction element for PCM simulation. Two types of 

schemes were used to conduct finite difference model that are Fully Implicit 1st Order and Crank 

Nicolson 2nd order. In this study, the fully implicit first order is used since it is more stable over 

time compared to Crank Nicolson 2nd order. However, the only disadvantage of this option is, it 

can be slower. The parameters used to simulate building model with PCM is shown in Figure 50. 

This simulation setting can be found at Simulation Options tab. The suggested values for time 

step is 12. Higher time step will increase the accuracy but will increase the simulation times. 

Space discretisation constant suggested by Design Builder was 3, relaxation factor 1, and inside 

surface temperature convergence criteria 0.01. A lower value for inside surface convergence 

criteria will increase the accuracy, but it will also increase the simulation time [160]. In this 

study, the inside surface convergence criteria were set at 0.002. Space discretion constant 

determines the number of nodes used to represent each material in the construction material. The 

nominal distance associated with a node, ΔX is calculated using equation (4.1.1) [160]:  

 

ΔX = (C × α × Δt)0.5   Equation (4.1.1)  
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Figure 50: Simulation settings for the building model with PCM. 

 

 

4.1.2.2 Whole building and performance evaluation 

The outcomes from Section 4.1.2.1 are then applied in the air-conditioned areas in the building. 

The thermal comfort in the offices and the energy performance were evaluated. Further 

modification of the ACMV’s settings was made until the indoor comfort is within the suggested 

range for the office zones. Meanwhile, for the IT rooms, the requirement was to ensure that the 

air temperature is below 21.5°C to avoid equipment overheating. The energy and economic 

performance were evaluated based on the equation (4.1.1) to (4.1.7). 

 

Annual cooling load reduction = Cooling loadi - Cooling loadn   (4.1.2) 

Energy reduction   = Energyi - Energyn     (4.1.3) 

Energy reduction cost (RM/kWh) = Initial cost / ΣEnergy reduction   (4.1.4) 

ΣEnergy reduction (kWh)  = Annual energy reduction × lifetime   (4.1.5) 

Payback period (year)   = ΣRetrofit cost / ΣSaving on energy bills  (4.1.6)  

ΣSaving on energy bills (RM) = ΣEnergy reduction × Energy price per kWh (4.1.7) 

ΣRetrofit cost   = [(Material cost/m²) × installation area] + installation cost  (4.1.8) 

 

Where:  

Initial/baseline (i) 
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After retrofit (n) 

Total (Σ) 

 

4.1.3 Results and Discussion  

The annual cooling load and external infiltration for every scenario were compared to examine 

the room’s construction that resulted in the least additional energy requirement to maintain the 

requisite thermal comfort. The results (listed in Table 49) suggested that a different construction 

type best suits a different cooling requirement. For an office room where the cooling system was 

only used during the office period, Scenario 4* deemed to offer the highest cooling load 

reduction (49.21%) while maintaining the desired thermal comfort. It is then followed by 

Scenario 6* (48.16%) and Scenario 5* (40.35%). Meanwhile for a room with 24 hours cooling 

requirement, a fully insulated construction (Scenario 3) yield to use the least energy to maintain 

the required room temperature. Other notable findings were observed from the simulation results 

and will be further discussed in Section 4.1.3.1 while the application on a whole building and 

performance evaluation is discussed in Section 4.1.3.2. Whereas Section 4.1.3.3 presents the 

economic analysis of the suggested method. 

 

4.1.3.1 Most optimum construction and ACMV schedules. 

One of the most important findings of the use of PCM in a building’s construction with a 

scheduled air conditioning in a hot and humid region is its requirement for breathability. In this 

study, breathability refers to the building’s ability to transfer heat and ventilation. It is observed 

that the installation of PCM (Scenario 1, 2, 4, 5, 6, 4*, 5* and 6*) could overcome the benefit of 

using a fully insulated room (Scenario 1, 2, 3 and 3*) when being paired up with a night time 

ventilation system and walls with higher U-values (Scenario 4* and 6*). Besides acting as a pre-

cooling, the night time ventilation is necessary to allow a good charging and discharging period 

for the PCM for it to be effective in providing free cooling during the day [187].   

 

An additional latent load can be seen in the base case, Scenario 4 and Scenario 6 at midnight ( 

Figure 51). At night time, the outside air relative humidity could reach 100%. Rooms with 

breathable walls (high U-values) tend to transfer the moisture from outside into the room. This 

high moisture content could cause condensation when the room’s atmosphere comes in contact 
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with a cold surface which then leads to mould. The mould problem can be avoided by using 

insulation, dehumidification, and ventilation [188]. In the base case, Scenario 4 and Scenario 6, 

the rooms were not insulated or ventilated. In order to avoid mould problem the humidistat was 

automatically turned on when the R.H rises above 70%. This resulted in an additional latent 

cooling load at night. The energy usage for night time ventilation was far less than the energy use 

to dehumidify the room’s R.H and in fact, the mechanism also pre-cool the room which resulted 

in the elimination of peak cooling load in the morning when the cooling system was switched on. 

The use of nighttime ventilation and re-setting the air conditioning set point temperature and 

operation schedule for the base case resulted in a 13.69% cooling load reduction.  

 

Table 49: Total external infiltration and cooling load in January and its percentage reduction in different 

scenarios. 

Zone Scenarios External Infiltration Total Cooling Load Cooling 

Reduction  

    kWh kWh % 

Office 

 

Base 2130.10 23093.00 0.00 

1 1408.76 15619.67 32.36 

2 1408.75 15619.74 32.36 

3 1408.76 15619.70 32.36 

4 1567.06 17971.85 22.18 

5 1424.80 16193.80 29.88 

6 1498.80 17182.20 25.60 

Office  

 

Base* 1522.03 19932.60 13.69 

2* 49.03 24670.33 -6.83 

3* 103.18 23911.49 -3.54 

4* 949.20 11728.47 49.21 

5* 1086.00 13775.87 40.35 

6* 1036.05 11971.25 48.16 

IT room  Base 21.55 826.31 0.00 

S1 16.29 674.82 18.33 

S3 16.29 674.72 18.34 

S4 20.91 821.92 0.53 
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Figure 51: Total hourly cooling load for the ground floor office in every scenario on 2nd January 

for 24 hours. 

 

Four scenarios with PCM application were compared in Figure 52 to show the PCM performance 

in a different room’s construction and ACMV settings.  Scenario 1 represents a fully insulated 

room with PCM, Scenario 4 represents a typical construction with PCM, Scenario 4* represents a 

typical room construction with PCM and night time ventilation and Scenario 5* represents a 

partially insulated room with PCM and night time ventilation. It can be seen that night time 

ventilation is very crucial in making sure that the PCM is effective in supplying free cooling 

during office hours. This free cooling resulted in the reduction of total cooling load. However, the 

higher reduction is shown in Scenario 4* compared to Scenario 5*.  
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Figure 52: The hourly indoor relative humidity, air temperature, sensible cooling load and latent 

cooling load for the ground floor office room from the 0700 (2nd January) to 0700 (3rd January).  

 

The maximum cooling system set point temperature to ensure a good thermal comfort in Scenario 

5* is 25°C while as for Scenario 4* it could reach 26°C (refer to Figure 53 and Figure 54). The 

differences in both scenarios were the walls and partitions in Scenario 4* which have a higher 

thermal conductivity compared to Scenario 5*. During office hours, internal heat gain (heat from 

respiration, equipment and lighting) was higher than the external heat gain (heat from solar). The 

theory of thermal conduction, Fourier’s Law (Equation (4.8)) states that ‘the time rate of heat 

transfer through a material is proportional to the negative gradient in the temperature and to the 

area, at right angles to that gradient, through which the heat flows.’ 

  

𝛥𝑄/𝛥𝑡 = 𝑈 × 𝐴 × (−𝛥𝑇)      (4.1.8) 

 

Where:  

Gradient of thermal energy (𝛥𝑄) 

Gradient of time (𝛥𝑡) 

Material’s thermal conductivity (U) 

Gradient in the temperature (𝛥𝑇) 

Area (A) 

https://en.wikipedia.org/wiki/Heat_transfer
https://en.wikipedia.org/wiki/Heat_transfer
https://en.wikipedia.org/wiki/Proportionality_(mathematics)
https://en.wikipedia.org/wiki/Gradient
https://en.wikipedia.org/wiki/Gradient
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Figure 53: The office’s hourly indoor air temperature, relative humidity, and PMV for the ground floor 

office in Scenario 4* on the 2nd January.  

 

 

Figure 54:  The office’s hourly indoor air temperature, relative humidity, and PMV for the ground floor 

office in Scenario 5* on the 2nd January. 
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In natural conditions when the air conditioning was not switched on, the room’s air temperature 

was higher than the outside air temperature (see Figure 55). Hence, in a natural state, the cooling 

process happens when the heat flows from the room to the outside surroundings. The rate of heat 

transfer depends on the room’s U-values and surface area. The cooling process was further 

enhanced by the use of air conditioning and PCM. This explains why Scenario 4* (high U-values 

construction) requires less energy in providing a good thermal comfort for the occupants 

compared to Scenario 5* (low U-values construction).  

 

 

 

Figure 55: The ground floor’s hourly internal and external heat gain, the room's temperature without 

cooling and the outside air temperature on the 2nd of January. 

 

Conversely, for a fully insulated room, the night time ventilation resulted in an increment in the 

total cooling load (Scenario 2* and 3*). Figure 56 shows a comparison of the hourly sensible 

cooling load, hourly latent cooling load, relative humidity and air temperature for the Scenario 

Base, Scenario 3 and Scenario 3* at the office room. It can be observed that the fully insulated 

room (Scenario 3 and Scenario 3*) experienced a peak latent load in the morning. The peak latent 

load increased from 35 kWh (in Scenario 3) to 85 kWh (in Scenario 3*) when the night time 

ventilation was introduced to the fully insulated room. Scenario 3* shows the highest hourly 

sensible cooling load during office hours and highest room temperature after office hours. 
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Meanwhile, in Scenario 3 the indoor air temperature is the highest during office hours, the air 

relative humidity is the highest after office hours and the sensible cooling load is the lowest 

during office hours.  

 

This observation is explained by the fact that the fully insulated room has a low breathability. 

After the air conditioning was switched off, the room retains heat and humidity that was 

produced during office hours. The warm and humid condition is worst when the night time 

ventilation ditributes the outside air which contains high humidity into the room. The warm and 

humid condition of the room resulted in condensation when the room’s air was in contact with 

the colder surfaces (such as windows since the outside air was colder at night time). The 

condensation process released a substantial amount of heat into the room which is then being 

retained by the fully insulated walls. This phenomenon resulted in a peak latent load in the 

morning and a high sensible cooling load during the day. Breathable walls allow moisture and 

heat to be absorbed and released from the upper concentration to the lower concentrated 

atmosphere [188]. To prove this hypothesis, the indoor air characteristics at 0300 in the Scenario 

Base, Scenario 3 and Scenario 3* are compared in Table 50. As can be seen, the room’s air 

temperature is close to the dew-point temperature for scenario 3 and 3* and the relative humidity 

in both scenarios are significantly higher than the Scenario Base. The outside dry bulb 

temperature at 0300 on the 3rd of January was 23.7°C.  
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Table 50: The office’s indoor air characteristics at 0300 (3rd Jan) in different room's scenarios. 

Type Base S3 S3* 

Relative humidity (%) 70.2 97.5 81.4 

Air temperature (°C) 23.0 23.6 26.6 

Enthalpy (J/g)  54.7 69.6 72.6 

Dew point (°C) 17.3 23.2 23.2 

Absolute humidity (g/m³) 14.5 20.8 20.6 

 

 

However, a fully insulated room without the night time ventilation could reduce up to 32.36% of 

the cooling load by retaining the cold and reducing heat leakage during office hours (which 

resulted in the low sensible cooling load during office hours in Scenario 3). The disadvantages of 

this construction occur when the night time ventilation was introduced and the possibility of 

condensation to happen at night time which will lead to the mould problem. Meanwhile, the IT 

room requires 24 hours cooling, hence making it fully insulated (Scenario 1 and 3) enables the 

room to retain its cold energy for a longer period imitating a cold room. The condensation can be 

Figure 56: The office's hourly indoor air temperature, relative humidity, latent and sensible cooling 

load in different scenarios. 24 hours data on 2nd January. Note: scl is the sensible cooling load, lcl is 

the latent cooling load. 
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avoided since the room’s air is continuously conditioned to the desired room temperature and 

humidity. However, as explained earlier, PCM in Scenario 1 was not effective without night time 

ventilation [182] and when installed in a fully insulated room. Therefore, it is concluded that the 

most optimum construction type for a room with 24 hours cooling is Scenario 3.  

 

4.1.3.2 Application on the whole building  

Applying the findings from Section 4.1.3.1 into all the areas with air conditioning which are, 

installing scenario 4* at the corridors, offices and cafeteria and scenario 3 at the IT rooms and 

data centre resulted in 22.36% reduction in total cooling load and 13.24% reduction in the 

building’s total energy consumption. The comparison of the buildings energy consumption and 

the building’s total cooling load before and after retrofit are listed in Table 51. 

 

Table 51: The energy consumption and cooling load before and after the retrofit. 

  

Baseline 

(kWh) 

Passive cooling  

(kWh) 

Reduction  

(kWh) 

Reduction  

(%) 

 

Total energy consumption  7179471.36 6229050.40 950420.96 13.24 

Total cooling load 4213853.11 3271838.51 942014.60 22.36 

     

 

 

The total annual cooling load reduction using the PCM installation varied between every office 

(see Table 52) with the highest reduction attained by the ground floor office (148,854.80 kWh), 

and the lowest cooling reduction was achieved by the office at the 3rd floor (76,260.20 kWh). 

This is mainly because of PCM absorbs heat and only reduce sensible cooling load, not latent 

cooling load. The amount of heat can be absorbed depend on the total PCM’s thermal energy 

storage capacity. This value is given by the manufacturer which is a product of thermal energy 

storage capacity multiplied by PCM’s area (meter squared of PCM material). The total thermal 

energy storage capacity of the installed PCM in every floor is theoretically the same since the 

materials used and the amount of materials used are the same. However, this value is also 

affected by the effectiveness of charging and discharging of PCM materials through night time 

forced ventilation. Plus, PCM only absorbs heat during working hour which will only reduce the 

sensible cooling load. The installation of PCM does not reduce latent cooling load, and the 
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amount of sensible cooling load and latent cooling load are different on every floor. In office 

rooms, latent load originated from human occupancy.  

 

An analysis of different heat sources and the amount of cooling load reduction shows that only 

the heat gain from occupancy has the opposite pattern of the cooling load reduction. The ground 

floor office has the lowest heat gain from occupancy and the highest cooling load reduction, 

while the third-floor office has the highest heat gain from occupancy and the lowest cooling load 

reduction. The annual cooling load reduction and heat gain from occupancy in every office are 

shown in Figure 57. The overall amount of cooling load reduction might be influenced by the 

initial total sensible heat gain and latent heat gain in the room, and the effectiveness of PCM’s 

discharging process through night time ventilation. Meanwhile, for the IT rooms, the cooling load 

reduction ranges between 3,044.00 kWh to 3,555.00 kWh annually (see Table 53). The hourly 

cooling load for the ground floor office building before and after retrofit (simulated using the 

actual baseline model) is presented in Figure 58. 
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Table 52: Total cooling load reduction in every zone installed with PCM. 

Zone Base Retrofit Cooling load 

reduction 

Cooling load 

reduction 

  kWh kWh kWh % 

Office GF 374,537.2 225,682.4 148,854.8 39.7 

Office 1 331,774.5 248,638.6 83,135.9 25.1 

Office 2 483,497.4 384,219.3 99,278.1 20.5 

Office 3 476,984.4 400,724.2 76,260.2 16.0 

Office 4 366,308.8 262,458.8 103,850.0 28.4 

Office 5 398,350.3 285,075.3 113,275.0 28.4 

Office 6 390,081.8 290,622.1 99,459.7 25.5 

Office 7 377,979.2 241,547.3 136,431.9 36.1 

Corridor GF 22,005.27 11,609.19 10,396.1 47.2 

Corridor 1 27,250.28 14,646.07 12,604.2 46.3 

Corridor 2 35,220.23 20,322.6 14,897.6 42.3 

Corridor 3 35,220.23 20,932.21 14,288.0 40.6 

Corridor 4 30,070.45 20,900.21 9,170.2 30.5 

Corridor 5 27,489.28 20,691.49 6,797.8 24.7 

Corridor 6 38,705.21 20,333.09 18,372.1 47.5 

Corridor 7 27,191.91 19,535.28 7,656.6 28.2 

Corridor South  111,015.1 97,437.86 13,577.2 12.2 

Café 147,127.8 12,1533.1 25,594.7 17.4 

Total  3,700,809.0 2,706,909.0 993,900.26 26.9 

 

 

Figure 57: The annual cooling load reduction and heat gain from occupancy in every office. 
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Table 53: The simulated annual cooling load for the IT room before and after the retrofit. 

Floor Base Retrofit Reduction  Reduction  

  (kWh) (kWh) (kWh) (%) 

GF 9,292 6,126 3,166 34.1 

1 8,142 5,031 3,111 38.2 

2 8,336 5,073 3,263 39.1 

3 8,334 5,079 3,255 39.1 

4 8,323 5,204 3,119 37.5 

5 8,329 5,285 3,044 36.5 

6 8,333 5,065 3,268 39.2 

7 8,709 5,154 3,555 40.8 

Total  67,798 42,017 25,781 38.0 

 

 

Figure 58: The simulated hourly total cooling load in January for the ground floor office before and after 

retrofit (installation of passive cooling). 
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 A comparison of the simulated cooling load in January between the office and IT room located 

in the simplified ground floor model and office in the actual baseline model before and after 

retrofit are shown in Table 54 and Table 55.  

 

Table 54: A comparison of the simulated cooling load in January between the office in the simplified 

ground floor model and office in the actual baseline model before and after the retrofit. 

Type Baseline Retrofit  Reduction  Reduction  

  kWh kWh kWh % 

Simplified model  23,093.00 11,728.47 11,364.53 49.20 

Actual baseline model  30,235.79 19,361.51 10,874.28 36.00 

 

 

Table 55: A comparison of the simulated cooling load in January between the IT room in the simplified 

ground floor model and IT room in the actual baseline model before and after the retrofit. 

Type Baseline Retrofit Reduction Reduction 

  kWh kWh kWh % 

Simplified model 644.97 424.36 220.61 34.20 

Actual baseline model 772.22 509.34 262.87 34.04 

 

 

There was 9.5% difference in the simulated cooling load reduction for the ground floor office 

when it was simulated using the simplified model, and the simulation made using the actual 

building model (consisting of other floors and areas). Meanwhile, there were only a 0.16% 

differences between the cooling load reduction for the IT room when it was simulated using the 

simplified model and the actual baseline model. This is due to the 26.47% standard deviation and 

+2.2% mean bias error in the total cooling load between the simplified ground floor model and 

the ground floor in the actual baseline model. The monthly cooling load and solar heat gain 

through exterior windows at the ground floor in the simplified model and the actual baseline 

model is shown in Table 56.  

 

The simplified version was modified to leave only the ground floor without the 1st to the 7th floor. 

The roof was modified to imitate the rooftop construction in the 7th floor to reduce solar gain. 

However, even though the total cooling load in the simplified model was lower than the total 
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cooling load of the ground floor in the actual baseline model, the total heat gain in the simplified 

version is higher than the actual baseline model. The differences can be seen in the solar heat 

gain through windows, whereas the heat gain in another aspect were 100% the same.  The 

simplified model may not experience additional heat transfer from the neighbouring floors, and 

the internal heat was lost into the ground which resulted in the lower total energy consumption 

and total cooling load. Meanwhile, the IT room was fully insulated in both models and does not 

have windows. Hence, it has higher resistance to the thermal transfer in both situations. However, 

the simplified model was used to investigate different PCM and insulation settings on different 

types of air-conditioned rooms before applying it to the actual baseline building model to 

investigate the energy and cooling load reduction as a whole (as explained in Section 4.1.2). 

 

Table 56: The monthly cooling load and solar heat gain through exterior windows at the ground floor in 

the simplified model and the actual baseline model. 

Month  Total Cooling Solar Gains Exterior Windows 

 Simplified 

baseline 

Actual baseline's 

GF 

Simplified 

baseline 

Actual baseline's 

GF 

  kWh kWh kWh kWh 

January  23802.15 32702.77 7034.576 5312.272 

February  20575.75 28157.69 6591.681 4837.49 

March  27142.81 36094.9 7534.467 5481.646 

April  26586.64 35928.74 7138.52 5287.33 

May 26747.63 36019.95 7058.597 5265.639 

June 24380.14 33040.8 7015.647 5239.083 

July 28789.65 39075.24 7175.352 5383.648 

August 23596.58 32078.88 7208.003 5373.74 

September 23077.88 31619.17 6905.276 5099.304 

October 26550.26 35955.38 6975.237 5057.847 

November 23100.82 31453.83 6594.346 4882.718 

December 24328.67 33706.66 6667.279 4982.815 

 

 

4.1.3.3 Economic analysis 

The economic analysis was carried out based on the payback period and the energy reduction 

cost. The energy reduction cost was analysed based on total energy reduction for the whole 
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building’s remaining lifetime or the product’s lifetime (whichever came first). The total retrofit 

cost for the PCM is based on the price rate provided in Design Builder software and the total 

retrofit cost for insulation material is based on the quotation given by XPS extruded polysterene 

manufacturer (Cellecta Company based in UK [189]). The price given is for a general guideline, 

it may vary depending on the seller’s price. The prices were based on bulk purchase and the total 

retrofit cost is based on the materials’ cost. The detail cooling load and economic analysis results 

for the retrofitting are presented in Table 57 and Table 58.  

 

Table 57: The economic analysis for the IT rooms (installation of insulation materials). 

Zone Installation 

area 

Insulation 

cost  

Payback 

period 

Estimated energy 

reduction cost  

  m² RM Year RM/kWh 

IT rooms GF 66.5 6,916 6.8 0.0546 

IT rooms L1 66.5 6,916 6.9 0.0556 

IT rooms L2 66.5 6,916 6.6 0.0530 

IT rooms L3 66.5 6,916 6.6 0.0531 

IT rooms L4 66.5 6,916 6.9 0.0554 

IT rooms L5 66.5 6,916 7.1 0.0568 

IT rooms L6 66.5 6,916 6.6 0.0529 

IT rooms L7 66.5 6,916 6.0 0.0486 

Total  532 55,328 6.7 0.0537 

 

 

  



 

  

122 

 

Table 58: The economic analysis for the offices, corridors and cafeteria (installation of PCMs). 

Zone Installation 

area 

PCM cost  Payback 

period 

Estimated energy 

reduction cost  

  m² RM Year RM/kWh 

Office GF 1731 225030 4.7 0.0378 

Office 1 1731 225030 8.4 0.0677 

Office 2 1731 225030 7.0 0.0567 

Office 3 1731 225030 9.2 0.0738 

Office 4 1731 225030 6.7 0.0542 

Office 5 1731 225030 6.2 0.0497 

Office 6 1731 225030 7.0 0.0566 

Office 7 1731 225030 5.1 0.0412 

Corridor GF 115 14950 4.5 0.0360 

Corridor 1 115 14950 3.7 0.0297 

Corridor 2 115 14950 3.1 0.0251 

Corridor 3 115 14950 3.2 0.0262 

Corridor 4 115 14950 5.1 0.0408 

Corridor 5 115 14950 6.8 0.0550 

Corridor 6 115 14950 2.5 0.0203 

Corridor 7 115 14950 6.1 0.0488 

Corridor South  2505 325650 74.5 0.5996 

Café 580 75400 9.1 0.0736 

Total cooling load 17853 2,320,890 7.3 0.0584 

 

 

The calculated cost for the insulation and PCM is RM 2,320,890.0 (the currency exchange used 

was referred on 15th July 2016) which yields a total simulated energy reduction of 

1,019,681.26kWh a year. The potential saving on the energy bill is RM 305,450.07 (RM 

185,940.34 potential saving on the electricity bill and RM 119,509.73 potential saving on the 

chilled water bill). In Malaysia, the electricity price rate for a medium size building under C1 

category is RM 0.365/kWh and the chilled water rate is RM 0.271/kWh. The energy price rate for 

the cooling system is RM 0.322/kWh (based on the energy ratio between electricity and chilled 

water supply for the cooling system). Hence, the payback period will be 7.3 years. This 

calculation is based on the ratio of energy used for the cooling system where 53.9% of total 

energy used by the cooling system is supplied by electricity and 46.4% is supplied by chilled 

water. The payback period for installing insulation in IT rooms and data centre is lower compared 

to the installation of ENRG Blanket in the offices, corridors and cafeteria.  
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Nonetheless, the price to reduce 1 kWh energy using PCM and insulation is more economical 

than paying for the electricity and chilled water bills for the rest of the building’s lifetime. The 

PCM and insulation material used have an expected lifetime longer than the expected building’s 

lifetime (50 years). ENRG Blanket has a total lifetime of 23,563 cycles (64.55 years for a cycle a 

day) [190] and the XPS extruded polystyrene (insulation material) has a lifetime more than 100 

years [191]. The total energy reduction if based on the estimated building’s remaining lifetime 

(40 years) will be 38,016,838.4 kWh which will make the energy reduction cost as 

RM0.0583/kWh (assuming that other factors in the building remain the same throughout the 

years). However, as can be seen in Table 58, installing PCM in the corridor at the South building 

is not cost-efficient. If the PCM installation does not include the South building’s corridor, the 

payback period for the PCM alone will be 6.3 years and the total energy reduction cost for 

insulation and PCM is RM0.051/kWh. The benefit of using the passive cooling designed in this 

study will outstrip the initial cost of the installation and material of PCM and insulation material. 

Furthermore, the electricity and chilled water price rates have been increasing (refer Table 18 and 

Table 20) and it is expected to be higher in the future. 

 

4.1.4 Summary  

The most optimum configuration for the installation of PCM and insulation material in two types 

of air-conditioned rooms with high internal heat gain in a tropical climate has been studied in this 

section. It is learnt that PCM application is more suitable for an office room (and rooms with air 

conditioning that operates during office hour) while internal insulation is more suitable for a 

server room with a 24 hour air conditioning requirement. The application of PCM could result in 

extra energy usage if force ventilation is not provided at night time [182], and it is not effective 

when paired with a fully insulated room. It is also found that the internal heat gain in the office 

zone is higher than the external heat gain from the windows. Hence, the envelope’s requirement 

for this building in this particular climate is its ability to absorb the building’s heat gain during its 

operation at daytime and release it at night time when it is vacant, or its ability to release internal 

heat to the outside. Due to high internal heat gain, passive cooling alone is not sufficient to 

provide thermal comfort for the occupants. In the next section, further analysis of the building’s 

heat gain was carried out, and a retrofit method based on the thermal analysis was developed.  
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4.2 Novel retrofit methods based on thermal analysis to reduce cooling load  

 

4.2.1 Introduction  

The importance of improving a building’s energy performance was emphasized by the 

government with the enforcement of sustainable building policies. Article 9 of the Directive 

2010/31/EU of the European Parliament and the Council (19th May 2010) on the energy 

performance of buildings states the importance of stimulating refurbishment of existing buildings 

into near zero-energy buildings. However, the effectiveness of the process depends on the basic 

building structure and the refurbishment designs. Hence, methods to find the effective strategies 

for retrofitting and modelling to predict energy reduction is vital. Unlike previous studies, this 

research presents a method for a deep building retrofit based on the whole building’s thermal 

analysis specifically for cooling demand countries. This work set against recommended best 

practice office building energy benchmarks in Malaysia, and following a comprehensive building 

audit, a retrofit strategy was proposed based on the target building’s thermal analysis with 

cooling demand reduction in particular focus.  

 

4.2.2 Reviews on the previous retrofit methods 

Due to high numbers of unsustainable existing buildings, great interest was paid on building 

refurbishment to increase energy efficiency [104]. In many cases this process is more economical 

and has a less environmental impact compared to a complete demolition and rebuild 

[99][104][106]. However, the effectiveness of the process depends on the basic building structure 

and the refurbishment designs [106][107]. Hence, methods to find effective strategies for 

retrofitting and modelling to predict energy reduction are vital [99][107]. General energy retrofit 

guides and energy efficient measures (EEMs) were published by various institutions including 

the US Department of Energy (US DOE) and ASHRAE (in collaboration with other institutes) 

[98][108][109] as a response to the increasing demand for building refurbishment. Nonetheless, 

retrofit measures may have different impacts on different buildings due to the variance in design 

and sub-systems, making the retrofit selection very complex [99]. In previous studies, buildings 

were audited to determine the area of concerns before applying EEMs [85][92][91][110][111] 

[112] selected based on the multi-objective optimization methods [99][107][113][114][115] or 

cost-benefit analysis [93][116]. Mainly, the audit process concerns the end-use energy 
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consumption to determine the sector that requires retrofitting but not an in-depth holistic 

approach to defining the building’s parameters that contribute towards the large energy share 

from the sector. Whereas in the early design phase, sensitivity analysis is widely adopted to 

determine parameters which significantly contributes towards the performance of the design 

solution [118]. Andarini et al. [119] used a sensitivity analysis to obtain parameters that can 

significantly reduce cooling demand in a shophouse design for the Indonesian climate. A 

sensitivity analysis was also performed by Yildiz et al. [120] to define parameters in an 

apartment’s design which greatly contribute towards the heating and cooling load. While 

Heiselberg et al. [118] studied a wider range of input parameters to determine their impact on the 

total energy performance of an office building design. Normally, heating and cooling load were 

assigned as the output variables for the sensitivity analysis as it is a significant energy 

performance indicator and the major energy consumer globally for buildings 

[36][40][118][119][120][121]. Whereas, in cooling-dominated countries, air conditioning 

dominated the building’s energy share [27][85][86]. A study by S.Aun et al. [122] concluded that 

Malaysia’s office buildings used 64% of the total building’s energy for air conditioning. 

Meanwhile, other tropical countries such as Indonesia, Thailand, and Singapore, spent 51% to 

59% of the building’s energy budget on air conditioning [85][119]. Against this background, this 

study aimed to discover a retrofit method based on a whole building thermal analysis for cooling 

dominated countries.  

 

4.2.3 Methods 

The proposed method consists of four steps as summarized in   Figure 59. The process involved 

the fundamental audit work and building modelling which has been explained in Chapter 3. The 

building thermal analysis consists of three steps. Step 1 aimed to define the zones with the 

highest cooling load and cooling load intensity, step 2 aimed to discover the main heat sources in 

those zones and step 3 aimed to diagnose what causes these components to emit such a high 

amount of heat which contributes towards the retrofit strategies. The strategies were proposed to 

the facility manager for implementation. The energy data after a year of implementation was 

analysed and presented in Chapter 5. 
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The economic analysis was carried out using equation (4.1.1) to equation (4.1.7) in Section 4.1.  

The initial implementation cost for light emitting diode (LED) is based on the actual LED price 

from Lamp Shop Online [192] and the initial cost for PV panels was calculated based on the 

actual PV panel price distributed by Photonic Universe [193]. While other retrofit costs were 

derived from the material’s price provided in the Design Builder software. The initial cost for 

LED was calculated based on the equation (4.2.1) which was derived from equation (4.2.2) to 

equation (4.2.4).  

 

LED price (RM/m²)  = (Room’s lux × Price per lamp) / Lumen per lamp (4.2.1) 

LED price (RM/m²)  = (Number of lamps × Price per lamp)/ Area  (4.2.2) 

Number of lamps  = 
𝛴𝐿𝑢𝑚𝑒𝑛 (𝑟𝑒𝑞)

𝐿𝑎𝑚𝑝′𝑠 𝑙𝑢𝑚𝑒𝑛 𝑜𝑢𝑡𝑝𝑢𝑡
    (4.2.3) 

ƩLumen (req)   = (Lux × Area)      (4.2.4) 

 

Where:  

Initial/baseline (i) 

After retrofit (n) 

Total lumen required to achieved the desired lux in a room (𝛴𝐿𝑢𝑚𝑒𝑛 (𝑟𝑒𝑞)) 
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  Figure 59: The retrofit method based on the thermal analysis. 
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4.2.4 Results and Discussion  

 

4.2.4.1 Thermal analysis  

Zones with the highest overall cooling load and cooling load intensity were defined (shown in 

Table 59) for a further heat source analysis.  It is found that zones with heavy duty equipment 

(data centre and IT rooms) were deemed to have the highest cooling load intensity (annual 

cooling load per zone’s area) while total annual cooling loads are largest in bigger areas. Further 

analysis of the heat sources in the main cooling areas area shown in Table 60. It can be seen that 

heat distribution in every area varied depending on the zone’s internal equipment type, 

architectural design (fenestration and area), type of activities and operational schedules. In this 

case study, four important components contributing to the heat gain were highlighted as the 

lighting system, windows, and equipment and operation settings. An in-depth holistic analysis 

was carried out and discussed to obtain the causes for the components’ high heat emission rate.  

 

Table 59: Annual cooling load in different cooling zones. 

Cooling zones Annual cooling load (kWh) 

Offices 3,199,514 

Data centre 402,493 

Corridors  238,284 

Cafeteria 147,128 

IT rooms 67,799 

Hall and Auditorium 25,963 

Total 4,081,181 

 

 

Table 60: Heat gain distribution in different zones.  

 

 Annual heat gain distribution (%) 

Zones SG L Eq Occ 

Office 18 52 27 4 

Data centre 0 5 94 1 

Corridors 34 59 0 7 

Note: Solar gain from external windows (SG), lighting (L), Equipment (Eq) and Occupancy (Occ). 
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4.2.4.1.1 Lighting system   

Despite the fact that the majority of the office zones received lower than the MS1525:2014 

recommended light luminance level, the heat emitted and energy consumed by the lighting 

system was high. This finding highlighted the actual inefficiency of the lighting system and 

potential for improvement. An example of the luminance in office areas is shown in Table 28 and 

Table 29 (in Section 3.1) and a picture of the typical office room taken during a field visit is 

shown in Figure 60. The actual lighting system efficiency was calculated using equation (4.2.5) 

which was derived from the equation (4.2.6) [123]. The results are listed in Table 61.  

 

ȠLS = measured lumen/ total power used  (4.2.5) 

ɸ = (MF×UL×LOR×ȠL× Ƞg ) × Psys  (4.2.6) 

 

Where:  

Lighting system’s efficiency (ȠLS)  

Luminous flux at task area (ɸ) 

Maintenance factor (MF) 

Lamp’s utilization factor (UL) 

Light output ratio (LOR) 

Lamp’s efficiency (ȠL) 

Lamp’s gear efficiency (Ƞg) 

Power consumption by lighting (Psys) 
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Table 61: Measured efficiency of the lighting system. 

 

 

 

 

 

 

 

 

 

 

The low average lighting system efficiency in office areas explains the high heat gain as the lamp 

power losses are emitted into space as heat (radiation and convection) [129]. Previous studies 

(P.Hanselear et al.) [194] suggested that the light’s utilization factor (utilance) is more important 

than the lighting output ration in reaching energy efficiency and it depends on:  

 

a) the arrangement of the luminaires in the room concerning the position of the task area; 

b) the luminous intensity distribution of the luminaires and the spacing to height ratio;  

c) the reflectance of the surroundings, which determined the indirect contribution.  

 

Therefore, besides lamp efficiency, their arrangement, maintenance, lamp’s control gear 

efficiency, as well as the construction and space design play a major part in determining the 

efficiency of the whole lighting system in delivering the minimum required lumen to space. Most 

of the lamp types used were PL-L (36W) lamps 2008’s version that has low lamp efficiency and 

used a recessed type configuration. Typical fluorescent lamps emit 21% of its input power to 

visible light, 37% radiant heat and 42% convective heat [129].  

 

Office zones ƞLS 

(%) 

Power rating  

(W/m²) 

Level 1 1.94 6 

Level 2 4.02 5 

Level 3 4.20 5 

Level 4 2.82 5 

Level 5 3.42 4 

Level 6 2.96 5 

Level 7 3.74 4 
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Figure 60: Lighting in a typical office room taken during a field visit in 2014. 

 

 

The curtain wall windows in corridors and office areas allowed high daylight luminance to light 

up the spaces without depending on artificial light. The recommended luminance level for a 

corridor is 50 lux and 100 lux for lift lobbies [143] whereas the daylight luminance measurement 

in those areas (as listed in Table 62) were in the range of 502 lux to 25,001 lux. In practice, 

lightings in these areas were switched on 24 hours a day even though it could benefit from the 

high levels of daylight. A daylight linked installation could have eliminated the unnecessary 

energy usage and excessive internal heat gains. 
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Table 62: Daylight luminance measurement. 

Zone Luminance  

(lux)  

Corridor level 2 21,000 

Corridor level 3 25,001 

Corridor level 4 14,840 

Lift lobby level 2 502 

Lift lobby level 3 503 

Lift lobby level 4 396 

 

4.2.4.1.2 Windows 

For countries requiring high cooling demand, windows are an important element in ensuring the 

occupants’ thermal comfort and in providing daylight illumination into the building. Malaysia 

receives an average of 4.67 kWh/m² average of daily solar radiation [31] where the incident solar 

radiation on a building’s glazing is partially reflected and partially transmitted into the building 

depending on the glazing properties [195][196]. Despite a degree of overlap, the infrared 

component of the incoming daylight transmitted into the building materialises itself in the form 

of internal heat gain whereas the visible light spectrum (which in its lower bands overlaps with 

the near infra-red) increases daylight luminance. The proportion of infrared component 

transmitted into the building’s space through the windows depends the solar heat gain coefficient 

value, while the proportion of visible light component that transmits into the building depends on 

the value of ‘visible light transmittance’. In a cooling-dominated country, glazing with high 

visible light transmittance (VLT) and low solar heat gain coefficient (SHGC) is preferable to 

maximise daylight luminance and reduce heat gain. The choice of glazing is imperative in 

determining the amount of sunlight, and heat gain receives from solar energy through windows. 

The amount of sunlight will reduce the building’s dependency on the artificial light when paired 

up with automatic daylight dimmer and an important factor to control glares. Meanwhile, the heat 

gain penetrates through windows formatting the building’s cooling load. The instantaneous room 

heat gain is governed by the equation (4.2.7) [195] and SHGC value is defined by equation 

(4.2.8).  

 

Qi =Ug * (Tout −Troom)+ (SHGC * G)   (4.2.7) 
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Where:  

Instantaneous room’s heat gain (Qi) 

Glazing’s thermal conductivity (Ug) 

Outside ambient temperature (Tout) 

Room’s temperature (Troom) 

Coefficient of solar heat gain (SHGC) 

Solar irradiance (G) 

 

Even though the building has an 85% window to wall ratio (see Figure 61), it benefits from its 

architectural selection of window pane and shading designs that managed to offset a major 

fraction of the external solar heat gain. The building windows were made from single panel green 

float glass: 8 mm thick, SHGC value of 0.447, VLT 0.237 and U-value of 5.7 W/m². However, a 

further reduction of solar heat gain through windows is achievable by selectively adding a second 

pane to the existing window to create double panel windows with a lower SHGC and U-value 

while maintaining the VLT to maintain the daylight received.  
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Figure 61: The typical windows at the building's corridors (floor 1-7) taken during a field visit in 2015. 

 

4.2.4.1.3 Equipment  

The heat gain analysis revealed that zones with heavy duty equipment (data centre and IT rooms) 

had the highest cooling load intensity (annual cooling load per zone area) that reached up to 5545 

kWh/m²/year for the data centre and 938 kWh/m²/year for the IT rooms. The equipment high 

rating power and 24 hours operation released substantial amounts of heat into the surroundings 

which in turn requires the building manager to set the cooling set point temperature at 21°C at all 

times in these zones to avoid equipment overheating and ensure good operating conditions. In the 

office areas, equipment was responsible for 22% of the total annual heat gain. 529 pieces of 

office equipment were used in the building with mainly desktop computers (256 units) and small 

printers (137 units). Office pantries at each level used refrigerators that constantly operate and 

most of the desktop computers did not have Energy Star rating. Inefficient equipment increased 

heat gains, which in turn exacerbated the cooling load.  
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4.2.4.1.4 Operation settings 

The air conditioning in office areas was set to 22°C, which is 1°C lower than the suggested value 

by MS1525:2014 that is 23°C to 26°C. While the cooling system and lighting system were 

scheduled to turn on at 6.30 am and switched off at 7.30 pm that is an hour earlier than the office 

opening time and an hour and a half after office hour. These operation settings resulted in energy 

waste. Furthermore, an analysis of the building’s cooling load shows that peak demand occurs 

every morning at 8.00 am in workdays. This happened due to the highest point of latent cooling 

load on the day (this can be observed in Figure 62). As the total cooling load is expressed by the 

equation (4.2.8). The amount of latent load was derived by deducting simulated sensible cooling 

load from the simulated total cooling load.  

 

Total cooling load = sensible cooling load + latent cooling load  (4.2.8) 

  

The demand for a latent cooling load originated from the requirement to maintain a healthy 

relative humidity in the office and the communal areas. A graph of hourly latent load spanned in 

a week duration in January against the outside and inside relative humidity (Figure 62) proved 

this hypothesis. It can be observed that the relative humidity in the office area started to reach its 

peak at 0700 as the air conditioning was switched on at 0630. The air conditioning system 

introduced the outside air into the office area. This increase in relative humidity resulted in an 

increment of latent cooling load at 0800.  

 

Figure 62: The hourly latent cooling load and relative humidity in the office at the 4th floor and outside the 

building. 
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4.2.4.2 Strategies to reduce cooling load 

 

The retrofit plans were designed based on the thermal analysis and primarily aimed at reducing 

the heat gain that causes an increase in the cooling load. This objective is achieved by following 

the strategies listed in the subsections below.  

 

4.2.4.2.1 Lighting System 

A lighting system that includes automatic daylight dimmer in corridors and office zones as well 

as replacing existing lamps with high-efficiency LEDs [129]. Luminance in the office zones was 

adjusted to 300 lux by the recommendations from previous studies [123] and MS1525:2014 

[143]. Lighting operating schedule was proposed to accommodate the employees when the area is 

occupied (i.e. 0730 hours to 1800 hours).  

 

4.2.4.2.2 Glazing 

A 6mm thick low emissivity (Low-E) glass panel was added to the existing model as an internal 

layer of the current green float glass with a 16mm air gap between them. The new glazing has an 

SHGC value of 0.381, VLT value of 0.6 and U-value of 5.672. The commonly used clear glass 

window panels were also examined for comparative studies. The impact of different glazing 

types on building solar heat gain is detailed in Table 63. 

 

Table 63: The impact of different glazing types on the building solar heat gain through external 

windows. 

Glazing type SHGC U-value 

(W/m²) 

SHGW 

(kWh) 

Single panel clear float glass (8mm) 0.815 5.7 2,014,444 

Single panel green float glass (8mm) 0.447 5.7 598,054 

Double panel (retrofit) 0.381 5.672 175,833 

  

4.2.4.2.3 Equipment 

The office equipment in the model was changed so as to represent the latest generation of energy-

efficient ICT devices. While the original HP desktop used 300W of power, a 216W Energy Star 
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rated HP desktop computer was chosen as a replacement. Also, Aficio™ MP C2051 by RICOH 

multifunction printers (rated power 1680 kWh) were changed to HP Color LaserJet Pro MFP 

M476dw printers (rated power 640 kWh). Finally, the chest freezers in the kitchens were changed 

from band F energy rated to band A+.  

 

4.2.4.2.4 Operation settings 

24 °C (air temperature) was chosen as the new set point temperature while the new operation 

schedule for the cooling system is shown in Figure 63 and lighting systems in office zones were 

set to 0730 to 1730 hours. This new set point temperature was chosen based on a discussion with 

the building energy manager concerning the occupants’ thermal comfort. Previously, a series of 

trials were conducted by the building energy manager to appraise the sensitivity of the office 

workers to increases in internal office temperatures. The cooling temperature set points were 

adjusted within the suggested guideline by MS1525:2014 [143]. Based on the information 

provided by the building energy manager, 24 ᴼC was the maximum temperature set point for 

office areas that was voted acceptable in occupants’ feedback trials (the building management 

increased cooling temperature set point to 24 ᴼC and 25 ᴼC to examine space thermal 

acceptability range). The employees launched complaints when the cooling set point was raised 

to 25 ᴼC, but interestingly no negative feedback was received when it was set to 24 ᴼC. Although 

this does not conclusively elucidate the neutral thermal point of the occupants, it demonstrates the 

possibility of raiding zone target temperatures while maintaining occupant satisfaction.  
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Figure 63: Modified cooling operation schedule (hourly cooling load) for office zones from the Design Builder 

software. 

 

4.2.4.2.5 Renewable Energy 

Solar panels with 15% efficiency were installed on the South building’s roof (3,681 m² area) to 

aid operational de-carbonization and limit the building’s envelope heat gain. The generated 

electricity was directly supplied to the building and was also stored in a battery.  

 

 

4.2.4.3 Simulated performance  

The cumulative effect of all the strategies was estimated to reduce 47% of the total energy 

consumption, 57% reduction in the annual primary energy demand and 40.2% reduction in the 

total cooling load. The energy performance and the initial cost for the suggested methods are 

summarised in Table 64, and the comparison of end-use energy consumption before and after 

retrofit is shown in  Figure 64. The monthly heat gain and cooling load before and after retrofit 

are shown in  Figure 65 and Figure 66. Analysis of the buildings total heat gain, and the 

building’s total cooling load shows that a reduction of 1,724,815.00 kWh in the building’s heat 
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gain resulted in a reduction of 1,915,437.00 kWh in the building’s total cooling load. Clearly, 

managing the heat gain from its sources have a direct impact on the total cooling load. Plus, 

besides supplying 12% of the total building’s annual energy demand the installation of PV panels 

on the rooftop is estimated to reduce cooling load by 0.3%. 

 

 Figure 64: The comparison of end-use energy consumption for the initial and after the retrofit. 
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 Figure 65: The comparison of the building's monthly cooling load before and after the retrofit. 

 

 

Figure 66: The comparison of the building's heat gain before and after the retrofit. 

 

By switching on only 60% of the cooling system at 0730 hours as pre-cooling, peak latent load 

that arises due to the high outside humidity at that hour [51] can be significantly reduced. These 
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changes resulted in a significant reduction in peak cooling load that occurs in the morning. The 

comparison of hourly building's cooling load before and after retrofit is shown in Figure 67.  

 

 

Figure 67: The simulated hourly building's cooling load before and after retrofit - 450 hours data 

(01/01 to 19/01) 

 

 

4.2.4.4 Economic analysis 

Notably, besides having no cost implication, modification in operational regimes is estimated to 

be more effective in reducing cooling load compared to the modification in glazing and 

equipment. While from an economic perspective, modification in operation settings and lighting 

system deemed to be the most economical compared to other strategies. The shortest payback 

period is operational changes (0 year/instantaneous), then followed by changes in the lighting 

system (3.5 years), installation of PV panels (24.1 years) and the longest payback time is changes 

in glazing (45.7 years). Considering the fact that the average building’s lifetime is 50 years and 

the building’s age is 10 years, the installation of glazing is deemed to be uneconomical due to the 

payback period that was estimated to be 47.1 years. However, the estimated cost for glazing is 

based on the data given in Design Builder software. Whereas, prices for other products are quoted 

from manufacturers for bulk purchase. The actual cost will vary depending on the shops or 

manufacturers, and quantity of purchase made. Bulk buy will be cheaper than small purchase, and 

direct purchase from the manufacturers will be cheaper than buying from distributors. 
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On the other hand, the price that is to be paid to reduce the 1kWh energy through retrofitting the 

lighting system (RM 0.19/kWh) is cheaper than paying the electricity bill (RM 0.365/kWh). This 

calculation was made based on the LED’s lifetime is 30,000 hours and assuming that the lamps 

were used 12 hours a day for 365 days which make the lamp’s lifetime 6.85 years. Meanwhile 

installing the PV panels is estimated to generate electricity at the price of RM 0.351/kWh. This 

calculation was made based on the PV panel’s lifetime (25 years). The PV panel’s lifetime is 

derived from the distributor’s guarantee that the solar cells will produce at least 90% of its 

nominal power after 10 years of installation and at least 80% of its nominal power after 25 years 

of its installation [193]. 
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Table 64: The estimated energy performance and initial cost for the suggested methods. 

Method Total energy 

consumption 

Renewable 

energy 

Total 

cooling 

load 

Primary 

energy 

reduction 

Primary 

energy 

reduction 

Cooling 

load 

reduction 

Total retrofit 

cost  

Energy 

reduction 

cost 

Payback 

period 

  (kWh) (kWh) (kWh) (kWh) (%) (%) (RM) (RM/kWh) (Year) 

Initial 7,224,042 - 4,082,655 - n/a - - - - 

Operation 6,594,767 - 3,570,735 629,275 9 12.5 0 0 0 

Lighting 4,726,123 - 3,137,779 2,497,919 35 23.1 3,229,262.90 0.190 3.5 

Glazing 7,095,982 - 3,954,596 128,059 2 3.1 2,137,560.80 0.417 45.7 

Equipment 6,855,625 - 3,941,439 368,417 5 3.5 n/a n/a n/a 

PV 7,210,797 746,703 4,069,411 759,948 12 0.3 6,675,014.32 0.351 24.1 

Combine 3,830,363 746,703 2,439,678 4,140,382 57 40.2 n/a n/a n/a 
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4.2.5 Summary  

Reducing building cooling load and increasing the cooling systems efficiency is a major 

component in the de-carbonisation of buildings in tropical countries. Sensible cooling load arises 

from the need to remove heat gain in a building as to maintain a comfortable thermal condition. 

Managing the heat sources and cooling system operation settings proved successful in reducing a 

significant amount of cooling load. The thermal analysis method proposed in this study enables 

heat gain components to be mapped, allowing the design of effective strategies to reduce the 

cooling load. It was found that the heat gain were mainly contributed by the internal factors such 

as the lighting and equipment. A reduction in 1,724,815.00 kWh in the building’s heat gain 

resulted in a reduction of 1,915,437.00 kWh in the building’s total cooling load and a total of 

47% total energy reduction. This again shows the importance of HVAC system in prompting the 

building’s total energy consumption. If this HVAC system is powered by solar energy (since 

Malaysia received high solar radiation all year round) a massive reduction in GHG emission and 

dependency on primary energy can be reduced. However, will it be sufficient to power up the 

whole HVAC system with solar energy for a building that used up to 387,152.53 kWh cooling 

load in a month (March) ? Further investigation of this idea is presented in Section 4.3.  
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4.3 Hybrid solar powered cooling system 

 

4.3.1 Introduction  

Most of the commercial buildings (which include offices, shopping malls, hotels, and museums. 

[124]) spent most of their energy on HVAC system [86][88][101]. Meanwhile in the cooling 

dominated countries more than 50% of the building’s energy were used for air conditioning and 

mechanical ventilation (ACMV) [86][88]. HVAC systems are a necessity in the harsh climate 

countries to ensure a good indoor environment is being delivered to the occupants. Due to the 

large portion required to power up HVAC system in commercial buildings, this section is aimed 

to investigate the possibility of powering the cooling system with solar energy. Previous studies 

proposed various designs on the solar-powered cooling system. However, these studies were 

mainly focused on domestic and small commercial buildings. This chapter proposes a design for 

a solar powered cooling system for a typical medium sized office building in a tropical region 

located in an urban area. 

 

4.3.2 Reviews 

A typical Malaysia Office Building consumes about 250 kWh/m²/year which is 400% higher than 

the recommended Building Energy Index (BEI) for Green Energy Office (GEO) building 

[57][58][86][122][197]. Research revealed that Heating Ventilation and Air Conditioning 

(HVAC) system is the highest energy consumer in a commercial building [40]. Meanwhile in 

cooling demand countries, more than 50% of the building’s energy was used for air conditioning 

[85][86]. The study by Chan and S. Aun discovered that Malaysia’s office building used 64% of 

the total building’s energy for air conditioning while other tropical countries such as Indonesia, 

Thailand, and Singapore, spent 51% to 59% of the building’s energy budget on cooling [85]. 

High heat gain and humidity made it necessary for offices in hot and humid region to adopt 

ACMV to maintain a good thermal comfort for the occupants. Malaysia receives an average of 

4.7 kWh/m² daily solar radiation.  Besides being responsible for the external solar heat gain for 

the building, the energy radiated can be harnessed to cool and power up the building. 

 

Previous research has been exploring the solar assisted cooling system and ways to enhance its 

efficiency [198][199][200][201][202][203][204][205][206][207][208][209][210][211]. All these 
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studies were based on computer simulations except for the study conducted by Rosiek and Batles 

[199] and A. Pongtornkulpanich et al. [210] that were based on the actual data. The reported 

maximum COP of the solar cooling system ranged between 0.55 to 0.68 

[199][200][201][202][204][207][208]. Previous studies mainly combined solar collector with 

liquid desiccant for the latent cooling while the sensible cooling load was powered by vapour 

compression chiller using either auxiliary energy or electricity generated by the solar plate 

[204][207][208], or a combination of solar collector and heat driven chiller [199][201][210]. 

However, all these studies were conducted for a small scale cooling system (1.5 kWh to 70 kWh) 

with an exception to the study carried out by G. Mittelman et al. [201] which was modelled for a 

1MWh cooling load. The actual results presented by Rosiek and Batles [199] and A. 

Pongtornkulpanich et al. [210] shows that the cooling systems could not be powered fully by 

solar energy. Both cases utilized flat plate solar collector with an additional backup system such 

as an auxiliary heater. It was reported by Rosiek and Batles [184] that for the cooling load more 

than 70 kWh, the inlet water temperature for the heat driven chiller needed to be more than 80°C. 

Whereas G. Mittelman developed a concentrating photovoltaic/thermal (CPVT) model to power 

up 1MWh absorption chiller driven by 85°C and 100°C coolant outlet from the CPVT. The 

simulated chiller’s COP ranged between 0.6 to 0.75 [201].  

 

The photovoltaic/thermal (PV/T) system has been studied three decades ago [212] and it was 

initially aimed to increase the efficiency of the PV cells [213]. The technology offers a higher PV 

efficiency compared to the flat plate collector and also produced hot water in the range of 40°C to 

60°C [201][212]. This temperature is suitable for a low-grade heat usage such as space heating or 

a liquid desiccant system for solar cooling and dehumidification. However, for an office building 

located in a tropical climate with a high cooling demand (~1600 kWh), higher temperature is 

required to power up the heat-driven chillers such as adsorption chiller and absorption chiller 

[201]. For this purpose, a concentrating photovoltaic and thermal (CPVT) system deemed to be 

the most suitable for a building with high cooling demand. A CPVT modelled by G. Mittelman et 

al. [201] showed 20% electric conversion efficiency at 150°C coolant outlet for a direct 

insolation flux of 900 W/m² and concentration ratio of 200. Whereas a miniature CPVT (MCPV) 

system developed by A. Kribus et al. [214] with an aperture area 0.95m² and concentration ratio 

of 500 showed a combined heat power (CHP) efficiency of 80% when varying the coolant outlet 
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from 58°C to 200°C. As the coolant outlet increases, the thermal efficiency increases and the PV 

efficiency was decreased.  

 

4.3.3 Methods 

The cooling system was designed based on the cooling load from the simulated base building 

model in Section 3.3 after being applied operational schedule suggested in Section 4.2.4.2.4. It 

was intended to substitute the current chilled water supply from the Gas District Cooling (GDC) 

to the air conditioning unit and also generating solar energy to power up the cooling system. If 

there is excess electricity generated, it will be used to power up the other electrical equipment in 

the building. The system is illustrated in Figure 68.  

 

 

 

 

 

 

 

 

 

 

Figure 68: Block diagram of solar assisted air conditioning system. 

 

The system was built to yield a high coolant outlet (85°C – 95°C) to power up the absorption 

chiller while maintaining a high PV efficiency to generate electricity. The absorption chiller is 

expected to produce 7°C chilled water which then will be stored in a cold storage tank. The 

stored electricity will be used to power up the electric chiller during the time when the chilled 

water stored in the cold storage is not sufficient. Any excess electricity will then be used to power 

up the absorption chiller’s pumps, AHUs, and the building electricity (priority usage is in the 

mentioned order). Detailed design for every component is described in the sub-sections below.  
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4.3.3.1 Miniature concentrating photovoltaic/thermal (MCPV) systems 

The MCPV model (see Figure 69) established by A. Kribus et al. [214] was used in the system 

for its efficiency for large scale cooling and its ability to operate at higher temperatures than PVT 

or flat plate collector, which is deemed to be more suitable to support absorption chiller’s 

operation [201][214]. The size of the MCPV is also suitable for rooftop installation and in fact it 

is made to cater to urban environments [214]. It comes in a 0.95m² parabolic size with tracking 

mechanism, and the project was collaboration between Tel Aviv University and Distributed Solar 

Power Ltd.  It used a triple-junction PV cells that have 32% nominal conversion efficiency [214].  

 

 

The system was modelled using the simplified equations derived from A. Kribus et al. [214]. The 

mathematical equations (equation (4.3.1) to (4.3.10) were solved using Excel spreadsheet and 

compared to the PV efficiency and thermal efficiency values at different coolant outlet published 

by A. Kribus et al. [214] for model validation.  

 

Qthermal = Qincident × ƞoptical × (1- ƞPV) [214]   (4.3.1) 

Qelectric = (Qincident × ƞoptical × ƞPV – Qloss) × ƞinverter [201] (4.3.2) 

Qincident = Global solar radiation × collection area [215] (4.3.3) 

ƞpv = ƞcollector × ƞmodule     (4.3.4) 

ƞcollector = 0.288 - 0.000558 × (Tcell - 25)   (4.3.5) 

Figure 69: The MCPV unit as published by A. Kribus et al. [214]. 
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ṁ = Qthermal / Cp × (Tout - Tambient)   (4.3.6) 

ƞelectric = ƞoptical × ƞPV × (1 – (Qloss/Qgross)) × ƞinverter   (4.3.7) 

Qgross = Qincident × ƞoptical × ƞPV    (4.3.8)  

Qloss = 0.02 × Qincident + Qpump    (4.3.9) 

Qpump = ṁ (ΔP) / ρ ×ƞpump     (4.3.10) 

 

It is assumed that;  

ƞoptical = 0.85 

ƞinverter = 0.9  

Tcell = Toutlet + 10°C 

Concentration factor = 500 

Qthermal = Qcoolant, it is assumed that the sides losses are neglected.  

 

Where:  

Thermal energy (Qthermal) 

Incident solar energy (Qincident) 

Electricity generated (Qelectric) 

Coolant’s thermal energy (Qcoolant) 

Thermal losses (Qloss) 

Energy used for pumps (Qpump) 

Gross DC power produced by the modul (Qgross) 

Optical efficiency (ƞoptical) 

Efficiency of the PV cells (ƞPV) 

Efficiency of the inverter (ƞinverter) 

Efficiency of the coolant’s collector (ƞcollector) 

Efficiency of the module (ƞmodules) 

Efficiency of the pump (ƞpump) 

Mass flow rate of the coolant outlet (ṁ) 

Pressure drop (ΔP) 

Fluid density (ρ) 

Temperature of the PV cell (Tcell) 

Temperature of the outlet (Toutlet) 
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For the model validation, the input used in A. Kribus et al. [214] were employed in the simplified 

equations and the results were compared with the results published in A. Kribus et al. [214] to 

measure its accuracy. The global solar radiation used was 900W/m² and the collection area 

0.95m². The results are shown in Table 65.  

 

Table 65: The calculated overall system efficiency by varying the coolant exit temperature. 

Tcell Global Solar  Qincident ƞPV Qelectric Qthermal ƞelectric ƞthermal ƞCHP 

°C  W/m² W   W W       

68 900 855 0.26 172 535 0.18 0.61 0.80 

110 900 855 0.24 155 552 0.17 0.63 0.80 

160 900 855 0.21 135 572 0.14 0.66 0.80 

210 900 855 0.18 115 592 0.12 0.68 0.80 

 

 

The graph plotted from the calculation achieved in this work (Figure 70) seems to agree with the 

output graph published by the original author shown in Figure 71. At Tcell  68°C the electric 

power achieved by A. Kribus et al. [214] was 172W and the thermal output was 530W.  

 

 

 

Figure 70: The overall system efficiency calculated in this work. 
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Figure 71: The diagram of overall system efficiency from A. Kribus et al. [214] 

 

The equations for MCPV model were validated with a standard deviation of 0.94% in thermal 

power and 100% accuracy in electrical power. However, the 5W difference in thermal power 

originated from the power loss from pumps which was not yet included in the calculation. Hence, 

it is assumed here that the pumps’ power used by A. Kribus et al. [214] was 5W. The cost 

analysis conducted by A. Kribus et al. [214] shows that when both electricity and thermal power 

were used, the system is more economical than PV/T whereas when the system only used 

electricity, it is still cheaper than flat plate photovoltaic panels and PV/T systems. 

 

4.3.3.2 Absorption chiller  

A heat driven refrigeration can be divided into two categories that are adsorption chiller and 

absorption chiller. The thermal input requirement for absorption chiller is higher than adsorption 

chiller. However, the coefficient of performance for an absorption chiller is greater compared to 

adsorption chiller. A lithium bromide/water (LiBr/water) absorption system is chosen for this 

work due to its high COP, less environmental impact, non-volatile, less pump work and simpler 

components compared to other heat driven refrigeration systems [216]. A simplified analytical 

expression of the cycles in the LiBr/water absorption chiller established by F.L. Lansing [101] 

was used. The mathematical expressions (equation (4.3.11) to (4.3.33)) were processed in Excel 
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as a simple modelling. The mathematical expression and assumptions made in the modelling 

equations are divided into two categories that are the input data and the steps of analysis.  

 

4.3.3.2.1 Input data 

 

Tg, °C generator temperature  

Te, °C evaporator temperature  

Tc, °C condenser temperature  

Ta, °C absorber temperature  

EL, exchanger effectiveness 

QE, kcal/hr, load 

 

4.3.3.2.2 Steps of analysis 

 

X1=
(49.04+1.125Ta−Te)

(134.65+0.47Ta)
  kg LiBr/kg solution      (4.3.11) 

X2=
(49.04+1.125Tg−Tc)

(134.65+0.47Tg)
  kg LiBr/kg solution     (4.3.12) 

If 0.5< (X1 and X4) < 0.65 proceed, else stop.     (4.3.13)  

H8 = (Tc – 25) kcal/kg        (4.3.14) 

H10 = 572.8 + 0.417Te        (4.3.15) 

mR = QE/(H10 – H8) kg/hr       (4.3.16) 

ms = mR × X4/(X4 – X1) kg/hr       (4.3.17) 

mw = mR × X1/(X4 – X1) kg/hr       (4.3.18) 

Ts = Tg – EL(Tg – Ta)  °C       (4.3.19) 

CX1 = 1.01 – 1.23X1 + 0.48X1² kcal/kg°C     (4.3.20) 

CX4 = 1.01 – 1.23X4 + 0.48X4² kcal/kg°C     (4.3.21) 

T3 = Ta + [EL × (X1/X4) × (Cx4/Cx1) × (Tg – Ta)] °C    (4.3.22) 

H1 = (42.81 – 425.92X1 + 404.67X1²) + (1.01 – 1.23X1 + 0.48X1²) × (Ta), kcal/kg    (4.3.23) 

H5 = (42.81 – 425.92X4 + 404.67X4²) + (1.01 – 1.23X4 + 0.48X4²) × (T5), kcal/kg    (4.3.24) 

H7 = (572.8 – 0.46Tg + 0.43Tc) kcal/kg      (4.3.25) 

QC = mR/ (H7 – H8)  kcal/hr      (4.3.26) 

QG = m10H5 – mRH7 – m8H1  kcal/hr      (4.3.27) 
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QA = m10H5 – mRH10 – m8H1  kcal/hr      (4.3.28) 

COP = QE/QG         (4.3.29) 

(COP) max = ((Te + 273.15) (Tg – Ta))/ ((Tg + 273.15) (Tc - Te))   (4.3.30)  

Relative performance = COP/ (COP) max      (4.3.31)  

Pe = antilog [7.8553 – (1555/ (Te +273.15)) – ((11.2414 ×104)/(Te + 273.15)², mmHg  (4.3.32) 

Pc = antilog [7.8553 – (1555/ (Tc +273.15)) – ((11.2414 ×104)/(Tc + 273.15)²), mmHg (4.3.33) 

 

Where:  

Strong solution (X1, X2, X3) 

Weak solution (X4, X5, X6) 

Enthalpy of saturated liquid water (H8) 

Enthalpy of saturated water vapor (H10) 

Heat exchanger effectiveness (EL) 

Refrigerant flow rate (mR) 

Water flow rate (mw) 

Solution flow rate (ms) 

Specific heat of the strong solution (CX1) 

Specific heat of the weak solution (CX4) 

Enthalpy (H) 

Heat balance of the condenser (Qc) 

Heat balance of the generator (QG) 

Heat balance of the absorber (QA) 

Pressure in the evaporator (Pe) 

Pressure in the condenser (Pc) 

 

Input data published in F.L. Lansing [101] were used in the calculation and the results were 

compared with the published results to validate the mathematical model.  The input data given 

were listed below, and the results were compared in Table 66.  

 

Tg = 90°C generator temperature  

Te = 7°C evaporator temperature  

Tc = 40°C condenser temperature  
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Ta = 40°C absorber temperature  

EL = 0.8 

QE = 3014 kcal/h 

 

Table 66: A comparison of the values published by F.L. Lansing [101] with values that were 

calculated in this study, and the standard deviation. 

Types Unit Published Calculated Standard deviation 

X1 kg LiBr/kg  0.5672 0.5672 0.00% 

X4 kg LiBr/kg 0.6233 0.6233 0.00% 

H8 Kcal/kg 15 15 0.00% 

H10 Kcal/kg 575.72 575.72 0.00% 

mR Kg/hr 5.3931 5.3931 0.00% 

ms Kg/hr 59.199 59.958 1.27% 

mw Kg/hr 54.5268 54.5649 0.07% 

T5 °C 50 50 0.00% 

Cx1 Kcal/kg°C 0.4677 0.4675 -0.04% 

Cx4 Kcal/kg°C 0.42982 0.42983 0.00% 

T3 °C 73.52 73.52 0.00% 

H1 Kcal/kg -49.9124 -49.9123 0.00% 

H5 Kcal/kg -43.9594 -43.9601 0.00% 

H7 Kcal/kg 612.48 612.48 0.00% 

Qc Kcal/hr 3222.3 3222.3 0.00% 

QG Kcal/hr 3896.9 3897.1 0.01% 

QA Kcal/hr 3698.6 3698.9 0.01% 

COP  0.776 0.776 0.00% 

(COP)max  1.1689 1.1689 0.00% 

Relative performance ratio  0.664 0.664 0.00% 

Pe mmHg 7.45 7.45 0.00% 

Pc mmHg 55.37 55.37 0.00% 

 

 

The highest standard deviation was the mass flow rate of the strong solution (1.27%) followed by 

the mass flow rate of the weak solution (0.07%), the specific heat of the strong solution (-0.04%), 

the rate of heat transfer of the generator and absorber (both 0.01%).  Mass flow rate of the strong 

and weak solution are both dependent on the X1, X4, H8 and H10 values which are all 100% 

accurate. Similarly, the specific heat of the strong solution reliant on the X1 value which is 100% 

accurate too. It is possible that the deviations were rooted from X1 value since mw, ms and Cx1 are 

all dependent on X1. The difference in the rate of heat transfer of the generator and absorber were 
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originated by the deviance in the ms and mw values. However, all of the values calculated are 

within 1.27% standard deviation with seventeen out of 22 values are 100% accurate. Hence, the 

model is validated with a standard deviation of ±1.27%. However, the main characteristic that is 

going to be used in the further calculation is the COP value that is 100% accurate.  

 

The input component was modified based on the requirement for this study. The COP values are 

then used in the whole system’s calculation. Below is the input parameters used in the new 

absorption chiller model that will be utilized in the solar cooling system.  

 

Tg = 85°C generator temperature  

Te = 5°C evaporator temperature  

Tc = 40°C condenser temperature  

Ta = 40°C absorber temperature  

EL = 0.8 

QE = 1,612,209.8 kcal/h 

   

The absorption chiller’s capacity was designed based on the peak cooling load recorded in 2012 

that is 1,631.65 kWh at 10.00 am on March 4th. The building’s hourly cooling load on the 8th 

(Friday) and 9th (Saturday) of July are shown in Figure 72 and the hourly cooling load for the 

whole year is shown in Figure 73. As can be seen in Figure 72, the cooling load varied depending 

on the air conditioning operation. Out of office hour, the cooling load remains below 246.7 kWh. 

Meanwhile during office hour, cooling load varied from as low as 569.9 kWh to 1631.6 kWh 

depending on the air conditioning’s load schedule which varied from 50% to 100% (see Figure 

63).  
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Figure 72: The building's hourly total cooling load on the 8th (weekday) and 9th (weekend) of March. 

 

 

 

Figure 73: The building's hourly total cooling load for the whole year. 
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The QE value used in the model considered additional 15% load, making it 1,612,209.8 kcal/hour 

or 1875.65 kWh. The maximum COP value for the system is 0.9985, and the COP value is 0.704. 

The maximum coolant temperature is fixed at 85°C. The values for every parameter are listed in 

Table 67, and the model is illustrated in Figure 74.  

 

Table 67: The values of the model's parameters. 

Model’s parameter   Value Unit  

X1 0.5803 kg LiBr/kg  
X4 0.5995 kg LiBr/kg 

H8 15 Kcal/kg 

H10 574.89 Kcal/kg 

mR 8.6958 Kg/hr 

ms 271.4722 Kg/hr 

mw 262.7764 Kg/hr 

T5 49 °C 

Cx1 0.4579 Kcal/kg°C 

Cx4 0.4452 Kcal/kg°C 

T3 73.88 °C 

H1 -49.7655 Kcal/kg 

H5 -45.2805 Kcal/kg 

H7 610.18 Kcal/kg 

Qc 5175.6 Kcal/hr 

QG 6917.3 Kcal/hr 

QA 6610.4 Kcal/hr 

COP 0.704  

(COP)max 0.9985  

Relative performance ratio 0.705  

Pe 6.48 mmHg 

Pc 55.37 mmHg 
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Figure 74: Flow diagram for the lithium bromide/water absorption system. 

 

4.3.3.3 Backup system  

An electric chiller powered up by the electricity harnessed by solar energy, and cold energy 

storage was chosen as the backup to the lithium bromide/water absorption chiller. The high 

building’s cooling load demand and the limited area for solar energy collection might require a 

backup system that can fully utilise the energy harnessed when the solar energy is available. 

Hence, a battery to store the electricity generated by the MCPV and a thermal energy storage to 

store the chilled water produced by the absorption chiller are included in the design as a backup 

system.  

 

Cold energy storage is chosen due to the fact that the thermal losses rate is higher for hot energy 

storage compared to the cold energy storage. Heat loss rate is governed by the equation (4.3.34) 

and (4.3.35) where it is proportionate to the temperature difference between the stored energy and 

the ambient temperature.  

 

Q = k × ΔT   (4.3.34) 

k  = m × C / t   (4.3.35) 

Where:  

Amount of heat transfer (Q) 

Heat transfer coefficient (k) 
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Temperature gradient (ΔT) 

Mass flow rate (m) 

Specific heat capacity (C) 

Time (t) 

 

A hot water with an initial temperature of 100°C stored in a normal conditioned room will 

experience a temperature difference of 65°C during peak daytime. Meanwhile, the temperature 

difference for chilled water stored at 5°C in a normal conditioned room is 30°C. Hence, the hot 

energy storage has 2.2 times higher heat loss rate compared to the cold energy storage. Moreover, 

it is more energy efficient to use the stored electricity to drive the environmental friendly chiller 

with a high COP at night time rather than to use the stored hot water to power up a big capacity 

absorption chiller for an average of 100 kWh cooling loads at night time.  

 

4.3.3.3.1 Thermal energy storage  

Phase change material was opted to store cold energy due to its capability of storing high latent 

heat capacity in a smaller volume compared to sensible heat storage. PlusICE Eutectic PCM 

[217] was selected due to the substance attributes that are non-toxic, non-combustible and 

inorganic. The PlusICE product range was manufactured by Phase Change Material Products 

Limited aimed for a heating and cooling purposes. The range comes in a wide range of operating 

temperature (between -40°C to 117°C) with three different kinds of capsules that are a cylindrical 

tube, sphere, and rectangular shape containers. The cylindrical tube containers were selected due 

to its tank capacity and feasibility to store it in a storage tank. The number of tubes and storage 

tank volume requirement are calculated using equation (4.3.36) and (4.3.37) [217]. The capacity 

for each cylindrical tube is 0.099 kWh or 43 kWh/m³ for the TES tank. The tubeICE phase 

change temperature is 7°C.  

 

Tank volume (m³) = 
load (kWh)

tube ice capacity (
kWh

m3 )
   (4.3.36) 

Number of tubes = 440 × tank volume    (4.3.37) 

 

The ice melting rate (K) is given by the equation (4.3.38)  
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K = (A × U) / L , kg/h°C   (4.3.38) 

 

Where:  

A = Area of the tank, m² 

L = latent heat fusion of the ice, kcal/kg 

U = coefficient of heat transfer for the element, kcal/m²h°C 

 

Meanwhile, the heat loss rate can be calculated using the equation (4.3.39) 

 

Q = A × U × (to - ti)     (4.3.39) 

 

Where: 

Q = total heat loss rate, kcal/h 

A = area of the element, m² 

U = coefficient of heat transfer for the element, kcal/m²h°C 

to = outside temperature of the element, °C 

ti = inside temperature of the element, °C 

 

 

4.3.3.3.2 Environmental friendly electric chiller 

The electric chiller was included in the design as a backup during inadequate chilled water in the 

cold storage. It is intended to be powered by the solar electricity harnessed by the MCPV, 

however in the case of a shortage, the primary electricity will be used. The chiller’s capacity will 

be chosen based on the peak load requirement. The chiller has been selected based on the COP 

and refrigerant types. An environmental friendly refrigerant with a satisfactory COP value was 

prioritised. In this study, a two-stage centrifugal chiller AART-I model, manufactured by 

Mitsubishi Heavy Industries Ltd was chosen. The COP for the chiller when the auxiliary power 

was included is 5.73, and the temperature of the chilled water outlet is 6.7°C. An environmental 

friendly refrigerant R134-a was used in the chiller. The chiller’s specification is shown in Table 

68 [218]. 
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Table 68: The specification data of the electric chiller [218]. 

Parameters Unit Value 

Chilled water  Entering temperature °C 12.2 

Leaving temperature °C 6.7 

Flow rate m³/h 272 

Pressure drop kPa 117 

Piping connection/ nozzle size inch 8 

No. of pass - 3 

Cooling water  Entering temperature °C   

Leaving temperature °C 34.5 

Flow rate m³/h 342 

Pressure drop kPa 107 

Piping connection/ nozzle size inch 8 

No. of pass - 3 

Inverter input  50Hz kW 270 

60 Hz kW 273 

Inverter output  50Hz kW 231 

60 Hz kW 231 

COP 50Hz   6.51 

60 Hz   6.44 

Cooling capacity    RT 500 

  kW 1758 

 

 

4.3.3.4 Whole system mathematical modelling  

The mathematical modelling of the whole system was solved using Excel, and the equations are 

listed below:  

 

4.3.3.4.1 Mathematical modelling of the cooling system  

The flow chart of the cooling system (Figure 75) is described using the simplified mathematical 

modelling derived from the equations (4.3.40) to (4.3.48). Excel was used to solve the 

mathematical modelling.  

 

Qincident = Global solar radiation × collection area [215]    (4.3.40) 

Qthermal = Qincident × ƞoptical × (1- ƞPV) [214]      (4.3.41) 

Qelectric = (Qincident × ƞoptical × ƞPV – Qloss) × ƞinverter [201]    (4.3.42) 



 

  

162 

 

Ebattery(n) = Qelectric (n) – Eelectric chiller(n)  – Eabs pumps(n)  – Ebuilding’s load(n)  + Ebattery (n-1) (4.3.43) 

Qcool abs =  Qthermal / COPabs         (4.3.44) 

QTES (n) = Qcool abs (n) – Qload (n) + QTES (n-1)       (4.3.45) 

ΣQcool supplied = Qcool abs + QTES + Qcool aux       (4.3.46) 

ΣQcool supplied = ΣQcool load         (4.3.47) 

Eelectric chiller = Qcool aux / COP electric chiller      (4.3.48) 

 

Where: 

COP of the absorption chiller (COPabs) 

Thermal energy generated by the MCPV (Qthermal) 

Incident solar energy (Qincident) 

Electricity generated (Qelectric) 

Coolant’s thermal energy (Qcoolant) 

Thermal losses (Qloss) 

Energy used for pumps (Qpump) 

Gross DC power produced by the modul (Qgross) 

Optical efficiency (ƞoptical) 

Efficiency of the PV cells (ƞPV) 

Efficiency of the inverter (ƞinverter) 

Efficiency of the coolant’s collector (ƞcollector) 

Electricity stored in the battery (Ebattery)  

Electricity generated at that hour (Qelectric (n) )  

Electricity required to power up chiller at that hour (Echiller) 

Electricity required to power up absorption chiller’s pumps at that hour (Eabs pumps) 

Electricity required by the building’s electricity load at that hour (Ebuilding’s load) 

Total electricity stored in the battery an hour earlier (Ebattery (n-1)) 

Cold energy/chilled water generated by the absorption chiller (Qcool abs)     

Thermal energy stored in the thermal energy storage system at that hour (n) (QTES (n)) 

Thermal energy stored in the thermal energy storage system at (n-1) hour (QTES (n-1)) 

Thermal energy demand at that hour (n) (Qload (n)) 

Cold energy/chilled water generated by the absorption chiller at that hour (n) (Qcool abs (n)) 
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Total cold energy supplied (ΣQcool supplied)    

Cold energy/chilled water generated by electric chiller (Qcool aux)    

Total cooling load (ΣQcool load  ) 

Energy demand/Auxiliary energy by electric chiller (Qaux chiller) 

Coefficienct of performance of the electric chiller (COP electric chiller) 

At that hour (n)  

An hour before (n-1)  
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Figure 75: The cooling system's flow chart. 
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4.3.3.5 Performance and economic analysis 

The energy and economic performance were evaluated based on the equation (4.1) to (4.7) in 

Section 4.1.2.2. The maximum cost for retrofitting to achieve the desired payback period is 

calculated based on the equation (4.3.49) [219] and (4.3.50). The maintenance is assumed to be 

10% of the total retrofit cost throughout the system’s lifetime. The maintenance includes cleaning 

the MCPV, repairs and replacement of the system’s components such as pumps, etc.  

 

Payback period = 
𝑅𝑒𝑡𝑟𝑜𝑓𝑖𝑡 𝐶𝑜𝑠𝑡 

[(𝐼𝑛𝑐𝑜𝑚𝑒 𝑡𝑎𝑟𝑖𝑓𝑓 + 𝛴𝑆𝑎𝑣𝑖𝑛𝑔 (𝑒𝑛𝑒𝑟𝑔𝑦 𝑏𝑖𝑙𝑙)) – 𝐶𝑜𝑠𝑡 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒] 
  (4.3.49) 

Retrofit cost = Cost of products + Installation cost      (4.3.50) 

 

Where:  

Retrofit cost (Retrofit cost) 

The desired payback period (Payback period)  

Total saving in energy bills (ΣSaving (energy bill)) 

Income gain from excess electricity fed into the main grid (Income tariff) 

Cost to maintain the whole system (cost maintenance) 

 

4.3.4 Results and Discussion  

This section will be presented in two sections. The first section (Section 4.3.4.1) will present the 

overall performance of the cooling system. Section 4.3.4.2 will discuss the technical detail of the 

cooling system such as the energy storage, peak demand, and the demand in the cooling load and 

the supply. While section 4.3.4.3 discussed the economic analysis.  

 

4.3.4.1 The system’s overall performance 

The hybrid solar cooling system is projected to supply a total cooling load of 3,655,150.67 kWh a 

year, powered by 99.99% (6,595,232 kWh) solar energy and 0.01% (956.8 kWh) electricity from 

the main grid. The whole cooling system’s coefficient of performance (COP) is calculated to be 

0.678. It is projected that 5,474,042.56 kWh collected solar energy will generate 4,349,957.15 

kWh thermal energy and 1,124,085.41 kWh electricity in a year. The electricity generated by the 
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MCPV is expected to be used by the cooling system with a remaining of 124,935.20 kWh stored 

in the battery which can be utilised by the building for other means or fed it into the main grid.  

 

The calculated COP of the MCPV for combined heat and power usage is 0.83. The estimated 

chilled water generated by the absorption chiller is 3,349,467.01 kWh and the estimated chilled 

water produced by the electric chiller is 314,902.88 kWh. The electricity requirement for the 

cooling system (including the electricity to power up the system fans, pumps, AHUs and the 

backup chiller) is 999,710.36 kWh. 99.904% of this requirement will be supplied by the 

electricity generated from the solar energy, and the remaining 0.096% will be provided by the 

electricity from the grid.  

 

By using the hybrid solar cooling system and changes in the operational management, the 

building is predicted to cut down 4,730,510 kWh (65.7%) from the 7,195,646 kWh of its 

dependency on the primary energy. The installation of the hybrid solar cooling system will make 

the building’s total primary energy consumption as 2,465,135.90 kWh and the building’s energy 

index (BEI) as 67.08 kWh/m²/year. The energy data before and after retrofit were simplified in 

Table 69. The reduction in the primary energy consumption enables the building to be 

categorised as a LEO building.  

 

Table 69: The building's energy data before and after the retrofit. 

Type Value (kWh) 

Initial primary energy consumption 7,195,646.00 

Total energy reduction  4,730,510.10 

Primary energy consumption  2,465,135.90 

BEI 67.08 

 

 

4.3.4.2 Technical discussion  

A solar collection area of 4,000 m² was used in the calculation to meet the cooling demand. In 

this study, the potential space for installation is the South buildings’ rooftops that come with a 

total rooftop area of 4,330 m². The total incident solar in a year was 1648 kW/m² and the total 

solar energy collected 935,708.8 kWh. Figure 76 shows the hourly incident solar energy and the 

hourly collected solar energy for the whole year (8763 hourly data presented in 24hours time 
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range). It can be observed that the solar energy was available from 0900 to 1900. Meanwhile, the 

server rooms in the building require a 24 hours cooling and the cooling system started at 0700. 

Hence, backup energy sources are needed to supply the cooling load demand from 2000 to 0800 

the next day.  

 

The cooling load was supplied by the absorption chiller, cold energy storage, and the backup 

electric chiller. Figure 77 shows the hourly collected solar energy, hourly electricity generated by 

the MCPV, the hourly total cooling demand and the hourly cooling provided by the absorption 

chiller. The graph summarises 8763 hourly data into 24hours time range. As shown in the graph 

(Figure 77), the building requires 24 hours cooling where the cooling load stays in the range of 

50.00 kWh to 208.00 kWh during the night time to the early morning (2000 to 0600 the next 

morning). Meanwhile, at 0700, the cooling load reached 1,000.00 kWh (maximum load for that 

hour) and increased to 1,612.00 kWh (maximum load for that hour) at 0800. During these hours, 

solar energy was not available. Hence, a backup system to supply the energy required is 

indispensable.  

 

 

 

Figure 76: The hourly incident and collected solar energy for a year presented in 24 hours range. 
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Figure 77: The hourly collected solar energy, electricity and cooling generated. 

 

 

At 1100 to 1900, the cold energy generated by the absorption chiller was higher than the cooling 

demand. This excess chilled water enables us to store the cold energy and uses it during the time 

when the solar energy was not available. Four cylindrical tanks of PCM cold energy storage with 

a total capacity of 51,600 kWh was designed to maximise the storing of the generated cold 

energy. The cylindrical storage tank manufactured by Lacaze Energies Groupe Cahors [220] were 

chosen to store the PCM ice tubes at 7°C. The specification of each cold storage tank is listed in 

Table 70.  

 

Table 70: The specification of each cold storage tank. 

Specification  Unit  Value 

k W/m²/°C 0.02 

Volume m³ 300 

Radius m 1.5 

Length  m 42.44 

Total surface area m² 414.12 

Thermal loss per hour kW 0.025 

Ice melting rate kg/h°C 0.0352 

Storage capacity  kWh 12,900 
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Each storage tank has a volume of 300 m³ with 528,000 PCM ice tubes. The cold energy storage 

will be placed in an air-conditioned room with air temperature setpoint 10°C. A graph of the 

calculated hourly energy storage in a year is shown in Figure 78.   

 

 

Figure 78: The calculated hourly cold energy storage in a year. 

 

The cold energy is mainly stored during the holidays and weekends and lasts for a few days 

during the weekday. The backup chiller is mostly required to meet the morning peak load and 

when the energy storage was not sufficient to supply the cooling demand. A graph of the cooling 

load provided by the backup chiller, the hourly energy storage and total cooling load supply in 

every month from January to December are shown in Figure 79 to Figure 90.  
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Figure 79: The hourly cooling demand, energy storage and the energy supplied by the backup chiller in 

January. 

 

 

Figure 80: The hourly cooling demand, energy storage and the energy provided by the backup chiller in 

February. 
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Figure 81: The hourly cooling demand, energy storage and the energy supplied by the backup chiller in 

March. 

 

 

Figure 82: The hourly cooling demand, energy storage and the energy supplied by the backup chiller in 

April. 
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Figure 83: The hourly cooling demand, energy storage and the energy supplied by the backup chiller in 

May. 

 

 

Figure 84: The hourly cooling demand, energy storage and the energy supplied by the backup chiller in 

June. 

 



 

  

173 

 

 

Figure 85: The hourly cooling demand, energy storage and the energy supplied by the backup chiller in 

July. 

 

 

Figure 86: The hourly cooling demand, energy storage and the energy supplied by the backup chiller in 

August. 

 



 

  

174 

 

 

Figure 87: The hourly cooling demand, energy storage and the energy supplied by the backup chiller in 

September. 

 

 

Figure 88: The hourly cooling demand, energy storage and the energy supplied by the backup chiller in 

October. 
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Figure 89: The hourly cooling demand, energy storage and the energy supplied by the backup chiller in 

November. 

 

 

Figure 90: The hourly cooling demand, energy storage and the energy supplied by the backup chiller in 

December. 
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The highest amount of energy stored was 47,916.88 kWh on the 11th of February during a 

weekend. It is possible for the energy storage to reach this peak due to the three days of holidays 

that occur early in that week. Figure 91 demonstrates the incident solar energy and the total 

cooling load every month in a year. The incident solar energy was highest in March and lowest in 

December. However, the highest cooling load was in March, but the lowest cooling load was in 

February. This observation shows that the cooling load was not proportionate with the incident 

solar energy, but instead, it is mainly influenced by the operational schedule and the building’s 

usage. In February, the employee has more holidays compared to any other month which means 

that the hours of operation for the air conditioning was lowest. This cooling operation schedule 

resulted in lowest cooling load demand in February.  

 

Meanwhile, the backup chiller was required to meet the cooling load demand in the morning 

when the total cooling load was at its peak, and the solar energy was not available. The backup 

chiller is estimated to be mainly used to meet the peak cooling load in March and June followed 

by May, December, July, August, October, January, April, November, February and September. 

The backup chiller is also required at the night time of the first day the cooling system was in 

operation since the cooling started from 0000 of the 1st of January. The target building's total 

cooling load and incident solar energy every month is shown in Figure 91 and the target 

building's monthly total cooling load, collected solar energy, incident solar energy and the 

number of days that requires backup chiller during the morning peak load is shown in Table 71. 
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Figure 91: The incident solar energy and the total cooling load every month in a year. 

 

Table 71: The incident and collected solar energy, the total cooling load and number of days that requires 

the use of backup chiller for the morning peak load every month in a year 

Month  Incident solar 

energy  

Collected solar 

energy  

Total cooling 

load 

Number of days that 

requires backup chiller for 

the morning peak load 

  (kWh/m²) (kWh) (kWh) (day) 

January  141.35 565416.00 307444.29 5 

February  132.32 529296.00 264765.02 0 

March 152.08 608316.00 338072.58 10 

April 140.50 561980.00 333276.59 4 

May 135.36 541424.00 334928.08 9 

June 136.43 545712.00 310342.60 10 

July 139.49 557952.00 333189.00 7 

August 141.54 566172.00 280838.05 7 

September 136.95 547788.00 274777.78 0 

October 136.01 544036.00 309450.27 6 

November 129.03 516132.00 275864.01 3 

December 127.75 511008.00 292202.34 9 
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4.3.4.3 Economic analysis  

The total building’s energy reduction is estimated to be 4,855,445.20 kWh where 4,730,510 kWh 

is the reduction in cooling system, and the other 124,935.20 kWh is the reduction in the 

building’s electricity. The projected cost saving for a year is RM 4,776,111.67. If the same 

amount of energy is to be reduced every year for the period of the building’s lifetime and the 

CHP system’s lifetime is 25 years, the accumulated reduction in energy cost will be RM 

119,402,791.80. This calculation does not consider degradation rate of PV cells which is 

estimated to be 0.7% a year [NREL] and possibility of an increase in energy prices or a reduction 

in feed-in tariff to the main grid. To achieve a payback period less than 25 years, the total cost for 

the CHP system should be equal to or lower than RM 108,547,992.50.  

 

The price for the whole system could not be predicted due to insufficient data on the CHP’s 

components prices. The CHP solar system mainly consists of MCPV, electric chiller, PCM 

tubeICE, absorption chillers, chilled water storage tank, and pumps. The MCPV is not yet being 

commercialized, and the prices for the chillers were not attainable from the manufacturers. 

However, the comparative cost for the MCPV was made by the author of the original paper, A. 

Kribus [214]. Based on the quotes given by the manufacturers for the major components of the 

MCPV, A. Kribus et al. [214] compared the cost of peak electric generated by flat plate PV 

(FPPV), MCPV and PVT. It was found that the MCPV will cost $2.50 per peak electric Watt 

which is lower than the FPPV and PVT peak electric cost which is $6 per peak electric Watt for 

FPPV and $4 per peak electric Watt for the PVT system. This comparison does not include the 

thermal energy harnessed by the MCPV and also the PVT. Hence, there is a high potential that 

the MCPV will be more attractive for the developers and building owners in the future compared 

to the FPPV and PVT. The article was published in 2006, so the prices published by the author 

might have changed since the paper was published. 

 

Meanwhile, based on the actual cost of FFPV with 15% efficiency, the electricity cost is 

estimated to be RM0.351/kWh (refer Table 64 in Section 4.2.4.3). The quoted FFPV price was 

GBP3.20/m² or RM 16.64/m² [193]. If it is assumed that the MCPV’s price is three times higher 

than FFPV, the estimated cost for the installation of MCPV is RM 199,680.00. Meanwhile the 

price for thermal energy storage as quoted from Phase Change Products Ltd [221] is expected to 

be RM 13 Million/GBP 2.5 Million.  The combined cost for both MCPV and TES is 
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RM13,199,680.00 (12.16 % of the required cost to achieve payback period 25 years).  The figure 

is just for a basic indication.  

 

 

4.3.5 Summary  

The designed hybrid cooling system has shown a positive possibility in powering the whole 

cooling system for a medium sized office building with an average hourly cooling load of 

1600kW during office hours. 99.99% of total energy required to power up the whole system is 

estimated to be coming from solar energy and the remaining 0.01% of the total energy 

requirement is from the main grid. A combination of a high efficient technology in harnessing the 

solar energy, energy storage, and a high efficient electric chiller could avoid unnecessary energy 

surplus throughout the whole process which in return managed to increase the whole system’s 

COP to 0.678. Powering the cooling system with solar energy enables the building to cut down a 

massive amount of primary energy consumption since cooling system typically consumes more 

than 50% of the building’s energy for a hot and humid country. A combination of this hybrid 

solar cooling system with a passive cooling and a reduction in the cooling demand may yield to a 

larger energy saving in the building’s energy consumption. The combined methods from Section 

4.1, 4.2 and 4.3 will be investigated and presented in Section 4.4.  
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4.4 Holistic approach to achieve ZECB 

 

4.4.1 Introduction 

This chapter investigates the impact of combining all the three methods suggested in Section 4.1, 

Section 4.2 and Section 4.3 on the target building. When combined, this method caters energy 

reduction based on a holistic approach (combine passive and active). Previous studies (on 

academic buildings [90][92][96], offices [37][38][91][93][100] and residential buildings [94]) 

that used the holistic approach to improve a building’s efficiency for an existing and a new 

building estimated a reduction of between 36% to 55% on total energy consumption [90][91][92] 

[93][94][96][100] and between 64% and 69% reduction in total cooling and heating load [92]. 

These studies included lighting, appliances, operational management, facades, orientation, 

thermal mass, night ventilation, insulation, PV panels, HVAC systems, cool roof technologies, air 

filtration and indoor environmental adjustment in their studies but did not combined solar cooling 

system, thermal based retrofit designs, PCM and insulation material application in their solution. 

This study aims to retrofit the target building to reduce building’s energy requirement to deliver a 

good indoor comfort for the occupant and optimise renewable energy utilisation. 

 

4.4.2 Methods  

The methods from Section 4.1, Section 4.2 and Section 4.3 were applied on the baseline building 

model as a retrofit mean. The baseline building model was applied with the methods established 

in Section 4.1 and 4.2 before being simulated to acquire its cooling load, energy consumption, 

cost, and indoor environmental performance. The simulated cooling load is then used to design a 

CHP solar system from Section 4.3. The process that has been used for the retrofit is simplified in 

the flow chart in Figure 92.  
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Figure 92: The diagram illustrates the whole retrofit process used in this section (section 4.4). 

 

The building’s baseline model was calibrated based on the findings in Section 4.1 and 4.2. The 

calibration made to the equipment, air conditioning, operation and construction are listed in Table 

72 to Table 76.  

 

 

  

Energy audit

• energy consumption analysis

• BEI: 216 kWh/m²/year

Reducing the building's energy demand

• Thermal analysis for cooling load reduction

• Energy reduction in another construction material 

CHP solar system

• Powering the cooling system and the building electricty 
demand with solar energy

Net zero energy commercial building

• Net BEI: 0 kWh/m²/year
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Table 72: Equipment consumption in every zones. 

Floor  Zones Equipment consumption 

    (W/m²) 

Lower Ground Parking space 0 

Underground Parking space 0 

 Cafeteria 3 

  Kitchen 30 

Ground floor (South) Auditorium  1.78 

 Multi-purpose hall 1.78 

 Corridors 0 

 Kitchen  20 

 Data center   500 

  AHU room *  

Ground floor (Atrium) Lobby  0 

  Reception area 6.19 

North building AHU rooms  * 

(ground floor to floor 7) Custodian's room 50 

 Lifts 60 

 Office ground floor 9 

 Office floor 1 5 

 Office floor 2 4 

 Office floor 3 6 

 Office floor 4 3 

 Office floor 5 5 

 Office floor 6 5 

 Office floor 7 4 

 Pantry  30 

 Stairs 0 

 Toilets  0 

 Corridors 0 

 IT rooms 50 

Floor 8 Light plant room  30 

*equipment power consumption are included in the cooling system’s energy consumption.  
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Table 73: Data input for air conditioning and mechanical ventilation system in every zones. 

Floor  Zones Type Settings 

Lower 

Ground 

Parking space Mechanical ventilation  2 (ac/h) 

Underground Parking space Mechanical ventilation  3 (ac/h) 

Cafeteria KWP Cooling system  26.5 C  

Kitchen Mechanical ventilation  Minimum fresh air (sum 

per person and area) 

Ground floor 

(South) 

Auditorium  KWP Cooling system  24 

Multi-purpose 

hall 

KWP Cooling system  24 

Corridors KWP Cooling system  27 

Kitchen  Mechanical ventilation  Minimum fresh air (sum 

per person and area) 

Cold room  - - 

Toilets (OKU) KWP Cooling system  - 

Data center KWP Cooling system  21.5 

AHU room - - 

Ground floor 

(Atrium) 

Lobby  Natural ventilation   - 

Reception area KWP Cooling system  24 

North 

building  

(ground floor 

to floor 7) 

AHU rooms 

and custodian's 

room 

- - 

lifts - - 

office ground 

the floor 

KWP Cooling system  24 

office floor 1 KWP Cooling system  24 

office floor 2 KWP Cooling system  24 

office floor 3 KWP Cooling system  24 

office floor 4 KWP Cooling system  24 

office floor 5 KWP Cooling system  24 

office floor 6 KWP Cooling system  24 

office floor 7 KWP Cooling system  24 

Pantry  - - 

Stairs - - 

Toilets  - - 

Corridors KWP Cooling system  

and FCU (for ground 

floor and 1st floor) 

27 

IT rooms KWP Cooling system  21.5 

Floor 8 Light plant 

room  

- - 
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Table 74: Construction design for the offices, corridors, auditorium, hall, and cafeteria. 

Construction  U-value Layers from outer to inner skins and its thickness 

(W/m²K) 

Wall 1.838 [1] Granite 30mm  

 
 

[2] Plaster Cement 30mm 

 
 

[3] Brick outer leaf 100mm 

 
 

[4] Brick inner leaf 100mm 

   [5] Plaster Cement 30mm 

Ceilings  0.742 [1] Concrete slab 100mm 

 
 

[2] Air gap 100mm 

 
 

[3] BioPCM ENRG Blanket 74mm 

   [4] Ceiling tiles 25mm 

Partition  1.69 [1] Plaster lightweight 13mm 

 
 

[2] Brickwork inner leaf 105mm 

  

 

[3] Plaster lightweight 13mm 

Internal floor 1.702 Concrete slab 100mm 

Glazing  5.67 [1] Green float glass 8mm 

 

[2] Air gap 16mm 

  [3] Low-emissivity glass 6mm  

 

Table 75: Construction design for the IT rooms and data centre. 

Construction  U-value Layers from outer to inner skins and its thickness 

(W/m²K) 

Wall 0.188 [1] Granite 30mm  

  [2] Plaster Cement 30mm 

  [3] brick outer leaf 100mm 

  [4] brick inner leaf 100mm 

  [5] XPS extruded polystyrene 160mm 

  [5] Plaster Cement 30mm 

Ceilings  0.175 [1] Concrete slab 100mm 

  [2] Air gap 100mm 

  [3] XPS extruded polystyrene 160mm 

  [4] Ceiling tiles 25mm 

Internal floor 0.185 [1] Concrete slab 100mm 

 [2] Cement plaster 30mm 

 [3] XPS extruded polystyrene 160mm 

  [4] Floor/roof screed 50mm 

Partition  0.187 [1] Plaster lightweight 13mm 

 [2] Brickwork inner leaf 105mm 

  [3] Plaster lightweight 13mm 
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Table 76: Schedules for the building's main areas. 

Zones Cooling system  Lighting system  

Offices Monday to Friday:0700 to 1700 Monday to Friday:0730 to 1800 

  Weekend: Off Weekend: Off 

Corridors Monday to Friday: 24hours  

 0600hours to 1900hours  

  Weekend: Off   

Data centre  24hours 24hours 

Cafeteria  Monday to Saturday: 0600 to 1900 

  Sunday: Off   

 

The performance analysis was measured based on the energy performance, indoor environment 

quality and the cost analysis. The energy performance was evaluated based on the comparison 

between the simulated energy of the baseline building model and the results after the retrofit. 

Equation (4.4.1) to (4.4.4) were used for the evaluations. Meanwhile for the cost analysis, 

equation (4.1.1) to (4.1.7) were used.  

 

ΣECHP  = ΣQe + ΣQth     (4.4.1) 

ΣEFiT  = ΣQe - ΣEbldg - ΣEbattery   (4.4.2) 

ΣQcold-exs = ΣQcold - ΣQcool load – ΣQth stored  (4.4.3) 

Net BEI = 
Total energy consumption from the grid

Conditioned building area 
  (4.4.4) 

 

Where:  

Total energy delivered by the solar CHP (ΣECHP) 

Electricity (Qe) 

Thermal energy (Qth) 

Electricity feed into the grid (ΣEFiT) 

Excess cold energy (Qcold-exs) 

Total cold energy (Qcold) 

Total cooling load (Qcool load) 

Total thermal energy stored (Qth stored) 

Building’s energy consumption (ΣEbldg) 

Electricity stored in the battery (ΣEbattery) 
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4.4.3 Results and Discussion  

The results will be discussed in three main parts that are Section 4.5.3.1 for energy performance, 

Section 4.5.3.2 for indoor environmental performance and Section 4.5.3.3 for the economic 

analysis.  

 

4.4.3.1 Energy performance 

Combining all the three methods, passive cooling (Section 4.1), retrofit methods based on 

thermal analysis to reduce cooling load (Section 4.2) and CHP solar system (Section 4.3) is 

projected to result in a net-zero energy commercial building (ZECB) with an excess of 8,652.40 

kWh electricity that can be fed into the grid. The building is projected to consume 52.2% less 

energy consumption, 49.68% reduction in cooling load and 55.53% reduction in the building’s 

electricity consumption compared to the baseline building. 62% of 3,439,316.75 kWh total 

energy consumption is allocated to the cooling system, and another 38% allocated to the 

building’s electricity consumption. This energy requirement will be provided by the CHP solar 

system explained in Section 4.3 where the chilled water requirement will be provided by the 

CHP’s thermal energy, and the whole building’s electricity requirement will be supplied by the 

electricity generated by the CHP solar system. The building’s energy consumption after retrofit is 

presented in Table 77.  

 

Table 77: The building’s energy consumption after the retrofit. 

Type Value  

(kWh) 

Total energy consumption 3,439,316.75 

Total energy provided by solar CHP 9,237,446.82 

Clean energy feeds into the grid 573,674.77  

Excess cold energy 3,531,703.26 

Cooling load after retrofit  2,120,523.32 

Electricity load after retrofit 1,318,794.43 

Net BEI  0 

 

A similar design of CHP solar system in Section 4.3 was utilised with a total solar collection area 

of 6,750.00 m². The system is expected to collect a total of 11,129,454.00 kWh solar energy to 

produce 1,896,894.12 kWh electricity and 7,340,552.70 kWh thermal energy. The MCPV’s COP 

is predicted to be 0.83. The whole generated thermal energy is assumed to drive two absorption 
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chiller with a capacity of 1875 kWh each that will generate a total of 5,652,225.57 kWh chilled 

water (cold energy) a year. The overall CHP solar system’s COP (including the cooling and 

electricity supply) is predicted to be 0.678.  

 

After the retrofit, the building only requires 2,639,643.20 kWh of energy to deliver a good indoor 

environment (IEQ) to the occupants, instead of 6,005,582.11 kWh. The building is predicted to 

use 56% less energy to maintain a good IEQ for the occupants. Additionally, the simulated IEQ 

after retrofit shows an improvement regarding the indoor luminance level and daylight factor. 

The reduction in energy requirement to maintain a good IEQ for the occupants shows that with a 

proper design, energy management, and efficient equipment, a building can maximise its 

renewable energy utilisation which in return will reduce the building’s dependency on non-

renewable energy. The energy consumption by sectors before and after retrofit is shown in Figure 

93.  

 

 

Figure 93: The building's energy consumption by sectors before and after the retrofit. 

 

Nonetheless, the cooling system still consumes the highest amount of energy compared to other 

sectors even after the retrofit. Air conditioning is required when the air temperature and humidity 

level exceeds a human’s comfort level. The fluctuation in the air temperature results from the 
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fluctuation of the air sensible heat capacity. Meanwhile, the fluctuation in the air humidity is 

influenced by the moisture content. The sensible and latent heat gain is contributed by the 

internal and external factors. As can be seen in Figure 94 and Figure 95, the building’s heat gain 

(before and after retrofit) is mainly contributed by the internal factors compared to external 

factors. Hence, this observation of heat gain pattern highlighted the importance of utilising 

efficient equipment (such as the lighting, computer and office equipment) and managing the 

equipment’s operation to reduce the heat gain, hence reducing the cooling load.  

 

 

Figure 94: The simulated building's heat gain sources before retrofit (baseline model). 
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Figure 95: The building's simulated heat gain sources after the retrofit. 

 

A total of 1,908,729.48 kWh heat gain was reduced after the retrofit. The highest heat gain 

reduction was projected to be originated from changing the lighting system followed by the 

changes of the glazing and the changes in the computer and office equipment to more energy 

efficient computers and equipment. The changes in the three sectors mentioned earlier 

contributed to 97% of the total annual heat gain reduction after the retrofit. Whereas the rest of 

overall heat gain reduction is resulted from the changes made in other sectors. The heat gain from 

every sector is listed in Table 78. 

 

Table 78: The amount of heat gain from different sources before and after the retrofit. 

Sector  Baseline After retrofit Heat gain 

reduction 

Heat gain 

reduction  

  (kWh)  (kWh)  (kWh) (%) 

Task Lighting 1879.67 1387.63 492.04 26 

General Lighting 1627100.00 516912.80 1110187.20 68 

Miscellaneous 11093.52 9237.36 1856.16 17 

Catering Gains 75117.10 38083.42 37033.68 49 

Computer and equipment 1074100.00 738720.80 335379.20 31 

Solar Gains Exterior Windows 583380.90 175833.00 407547.90 70 

Occupants 196216.4 196216.4 0 0 
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Meanwhile, the simulated total hourly cooling load for the whole year before and after the retrofit 

spanned into 24hours is shown in Figure 96. It can be observed that the peak cooling load is kept 

below 1,000.00 kWh at all time and the cooling load after office hours was reduced below 161.13 

kWh as opposed to the peak cooling load demand during the non-office hours before retrofit that 

reached 266.34 kWh.  

 

 

Figure 96: The hourly total cooling load in a year spanned into 24 hours view before and after the retrofit. 

 

4.4.3.2 Technical discussion  

A similar design of CHP solar system in Section 4.3 was utilised with a total solar collection area 

of 6,750.00 m². The system is expected to collect a total of 11,129,454.00 kWh solar energy to 

produce 1,896,894.12 kWh electricity and 7,340,552.70 kWh thermal energy in a year. The 

MCPV’s COP is predicted to be 0.83. The outlet temperature of the coolant outlet is kept at 90°C, 

and the PV efficiency is estimated to be 0.224. The whole generated thermal energy is assumed 

to drive two absorption chillers with a capacity of 1,875 kWh each that will generate a total of 

5,652,225.57 kWh chilled water (cold energy) a year. The overall CHP solar system’s 

performance is predicted to be 0.678.  
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The building requires electricity and cooling supply 24 hours in a day for every day. However, 

the solar energy is only available from 0800 to 2000 every day, and the amount of solar energy 

radiated from the sun fluctuates from low during sunrise to its peak at the noon and decreasing 

again until it approaches night. Figure 97 and Figure 98 show the hourly demand and supply and 

the differences in the demand and supply of electricity and cold energy for the first 10 days of the 

year. The positive values in the differences between demand and supply mean excess in energy 

while the negative values indicate that the building is short in supply.  

 

 

 

Figure 97: The comparison of the hourly electricity generated, total building's electricity demand and the 

differences between the demand and the supply on the 1st to the 10th of January. 
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Figure 98: The comparison of the hourly chilled water generated, total building's cooling demand and the 

differences between the demand and the supply on the 1st to the 10th of January. 

 

As can be seen in the graphs, the building requires additional supply for electricity and cooling 

from 2000 to 2400 and from 0000 to 0900 during work days. The highest insufficient supply for 

both cooling and electricity occur at 0800 during work days (which can be seen as a spike every 

morning in the graph). However during the afternoon, an increase in the solar radiation results in 

excess energy. The graph of the differences in the supply energy and the demand for the whole 

year can be seen in Figure 99 and Figure 100. The excess energy reaches its peak at 1400 with 

the highest excess electricity 1,048 kWh and the highest excess cold energy 3,317 kWh. The 

deficient in electricity are always below 515 kWh and the deficient in cold energy for cooling 

load are always below 949 kWh. This variation in excess energy and insufficient supply is solved 

by utilizing energy storage.  
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Figure 99: The hourly differences between generated electricity and the electricity demand in a year. 

 

 

Figure 100: The hourly differences between generated cold energy and the cooling demand in a year. 

 

The CHP solar system is set to start on the 31st of December, a day before the building started to 

operate. This operation schedule managed to eliminate the electricity requirement from the grid 
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since the stored cold energy and electricity on the first day of the CHP solar system’s operation 

can be used to power up the building’s system during the hours without solar energy. A 

cylindrical storage tank that contains PCM ice tubes with a total storage capacity of 6,000.00 

kWh will be used to store the cold energy. Meanwhile, the generated electricity is stored in a DC 

battery with a total capacity of 5,000 kWh. The excess electricity and cold energy not including 

stored energy are estimated to be 573,674.77 kWh and 3,525,955.51 kWh. The excess cold 

energy can be supplied or sold to the neighbouring offices in the South building which are rented 

by non-government agencies while the excess electricity can be sold to the primary energy 

provider by feeding it into the grid. The technical data of the designed cold energy storage and 

the battery is shown in Table 79, and Figure 101, and Figure 102 show the hourly electricity and 

cold energy storage for the building in a year. 

 

Table 79: The PCM thermal energy storage for the building. 

Specification  Unit  Value 

k W/m²/°C 0.02 

Volume m³ 116.28 

Radius m 1.5 

Length  m 16.45 

Total surface area m² 169.17 

Thermal loss per hour kW 0.01 

Ice melting rate kg/h°C 0.0143 

Storage capacity  kWh 6000.00 

Heat loss rate kWh 0.01 

Cold room temperature °C 10 
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Figure 101: The building's hourly electricity demand, hourly generated electricity and battery storage in a 

year. 

 

 

Figure 102: The building's hourly cooling demand, hourly generated chilled water, and cold energy stored 

in a year. 
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4.4.3.3 Indoor environmental performance  

Part of the definition of a high efficient building is its ability to provide a good indoor comfort for 

the occupant while being resource efficient. In this study, only three aspects of IEQ were 

included which are indoor air quality (IAQ), indoor thermal comfort (ITC) and indoor visual 

quality (IVQ). The simulated building’s indoor condition after retrofit was adjusted until it 

reaches the suggested indoor conditions by the local regulation which is MS1525:2014 and 

DOSH. A mean predictive vote (PMV) established by P.O Fanger [138][150][151] was used as a 

mean of comparison for the offices’ thermal comfort. The indoor air temperature in the office 

building was set at 24°C during office hours based on the occupants’ feedback on thermal 

preference. An actual air temperature adjustment was made to the building by raising the set 

point air temperature from 22.5°C to 23°C, 24°C and 25°C. No negative feedback was issued 

when the temperature was raised to 24°C. However, concerns of discomfort were made by the 

occupants when the temperature was raised to 25°C. Hence, 24°C was chosen as the air set point 

temperature throughout this study. The simulated hourly indoor air temperature in all the offices 

in workdays spanned in a 24 hours’ time frame is shown in Figure 103.  

 

 

Figure 103: The hourly indoor air temperature in the offices (a year data during workdays) captured in 24 

hours time slot.  
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As can be observed in Figure 103, the air temperature during the office hours is within the 

guidelines given by the local authorities in MS1525:2014 and DOSH. At 0900 to 1700, the 

simulated air temperature is projected to be at 24.0±0.5 °C at all times for the whole year during 

workdays. However, it took up to two hours after the air conditioning was switched on to achieve 

indoor air temperature 24.0±0.5 °C and maintain the same air temperature until 1700. Figure 104 

analysed the simulated air temperature in the offices at 0800 during work days. The highest 

simulated air temperature recorded at 0800 was 25.62°C in the office on the 6th floor on day 152 

(4th June). It can be observed that the air temperature in the offices at the 1st to the 7th floor was 

higher than normal on day 60, 88, 109 and 152. On these dates, the air temperature at 0800 

exceeds 25.0°C for the offices at the 4th, 6th and 7th floor. Whereas, for the ground floor office, 

the air temperatures were most of the time, the lowest. The same observation can be clearly seen 

in Figure 105.  

 

 

Figure 104: The simulated hourly offices' air temperature at 0800 during workdays. 
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Figure 105: The hourly indoor air temperature from 1st to 5th day of the year. 

 

Air temperature is a measure of how hot or cold the air is which is influenced by the kinetic 

energy of the air molecules which is influenced by the sensible heat gain in the atmosphere. 

However, the analysis of the total annual heat gain in every office (Figure 106) shows that the 

differences in the air temperature between every floor was not influenced by the room’s heat gain 

since the total heat gain at the ground floor’s office was not the lowest. Instead, the lowest total 

annual heat gain was the office at the 4th floor then followed by the office on the 7th floor. 

However, the total heat gain does influence the total annual cooling load. This statement is 

supported by the graph in Figure 107.  
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Figure 106: The comparison of the total heat gain sources in a year for every office. 

 

 

 

Figure 107: The comparison between the total heat gain and the total cooling load in a year for every 

office. 
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It is found that the moisture content in the air did influence the air temperature. Figure 108 

analysed the relative air humidity (R.H) in the offices on the 1st to the 3rd of January. The R.H’s 

pattern was inverse of the simulated air temperature in the offices. It can be observed that during 

the non-office hours, the humidity decreases and the air temperature increases as the altitude 

increases. Meanwhile, the simulated R.H during office hours were in the range of 50% to 70% 

(see Figure 109). The simulated hourly operative and radiant temperature during workdays for a 

year spanned into 24 hours view are illustrated in Figure 110 and Figure 111.  

 

 

 

 

Figure 108: The simulated air relative humidity in the offices for the first three days of the year. 
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Figure 109: The simulated air relative humidity at the offices during workdays in a year (spanned into 24 

hours). 

 

 

Figure 110: The simulated offices' indoor hourly mean radiant temperature during workdays spanned into 

24 hours. 
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Figure 111: The simulated hourly operative temperature in the offices during workdays. 

 

The luminance level in every area was set based on the guidelines given by the local authority. 

Hence, the indoor light quality does satisfy the requirement. Regarding the daylight at the offices 

and the communal areas that were exposed to the daylight such as the cafeteria and corridors, the 

simulated daylight factor (D.F) ranged in between 1.47 to 4.08. The main problem for a tropical 

country is the glare issue. With the suggested new glazing, it is predicted that glare does not 

occur since the D.F are below 6. The simulated D.F values at the offices and communal areas 

during a clear sunny day are shown in Table 80 and the simulated daylight distribution in the 

areas are attached at the Appendices A. The daylight distribution were simulated using BREEAM 

Credit HEA1 Report.  
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Table 80: The average simulated D.F values at the offices and communal areas. 

Area  D.F Illuminance  

(lux) 

Office ground floor 2.08 208 

Office Level 1 1.94 194 

Office Level 2 1.75 175 

Office Level 3 1.62 162 

Office Level 4 1.82 182 

Office Level 5 4.08 408 

Office Level 6 1.78 178 

Office Level 7 1.96 196 

Corridor Level 2 2.38 239 

Corridor Level 3 2.39 240 

Corridor Level 4 2.39 239 

Corridor Level 5 2.39 239 

Corridor Level 6 2.39 240 

Corridor Level 7 2.41 242 

Cafeteria 1.47 147 

 

 

4.4.3.4 Economic analysis 

If the same building was to be constructed again but this time including the recommended 

changes, the estimated building’s material and sub-systems cost is £34,009,027.25. This figure is 

5.25% lower than the simulated cost for the baseline building (£35,893,865.00). The building’s 

cost reduction is mainly due to the changes made to the lighting system.  This value does not 

consider the budget for equipment and the CHP solar system. The advancement in technologies 

and the increase in demand for high efficient equipment have enabled a high efficient gadget to 

be sold at a competitive price as the non-energy star rated equipment. Plus, the suggested 

building is estimated to use 52% less energy which enables the building’s owner to reduce more 

than half of the expenditure for energy bills for the building’s lifetime (average building’s 

lifetime is 50 years). The cost for retrofitting is listed in Table 81. The payback period for double 

glazing exceeds 40 years (remaining building’s lifetime) which is deemed to be uneconomical. 

However, the retrofit cost for glazing is based on the estimated cost given by the Design Builder 

while the estimated costs other EEMs suggested were quoted from the manufacturers. The actual 

cost varied depending on the type of seller either it is a distributor or a manufacturer. The price 
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quote also highly depends on the purchase quantity. The prices given in this study are based on 

bulk price.  

 

The economic analysis for each retrofitting was discussed in Section 4.1, 4.2 and 4.3. The cost for 

the PCM thermal energy storage (PCM TES) with a capacity of 6,000 kWh as quoted by the 

manufacturer, is RM 1.3 Million/ GBP250,000.00 [221]). The figure is 90% less than the cost for 

PCM TES in Section 4.3 due to its smaller size and capacity. Meanwhile, for this holistic 

approach, 6,750.00 m² roof area will be used. Hence the total cost for MCPV is expected to be 

more than the estimated cost in Section 4.3. If the same assumption is used (that the cost for 

MCPV is three times higher than the cost for FFPV) the total cost for MCPV will be 

RM112,320.00. Therefore, the estimated total cost for MCPV and PCM TES is RM1,412,320.00.  

 

Besides the reduction in energy bills, when CHP solar system is used to power up the whole 

building, the building is predicted to feed 573,674.77 kWh of electricity into the grid and produce 

3,525,955.51 kWh of excess cold energy in a year. The feed-in tariff (FiT) was introduced by the 

government of Malaysia to encourage the utilisation of renewable energy by enabling any 

individuals or non-individual that hold Feed-in Approval Holders (FIAHs) to employ renewable 

energy generation systems. The amount of electricity from the renewable energy being fed into 

the grid will be paid by the Distribution Licenses (DLs) based on the FiT assigned by the 

government [222]. As of 22nd May 2016, FiT for solar PV is listed in Table 82. It is estimated 

that the building will generate RM 429,108.73 a year by selling the produced electricity to the 

grid at RM0.748 per 1kWh rate. Since the CHP solar system is installed on the building’s rooftop 

which enables the FIAH to get additional bonus price of RM 0.155 per 1 kWh besides a fixed 

energy price of RM 0.593.  

 

A system that enables a private institution to sell cold energy does not yet exist. However, if 

buildings widely employ the CHP solar system, a possibility to create the same system which 

allows an approved vendor to sell cold energy (as a form of chilled water) might surface in the 

future. Currently, the chilled water is provided by a Gas District Cooling (GDC) company that 

charges RM 0.248 per 1 kWh and the maximum demand charge of RM114.33 per 1 kWh. If the 

same tariff is used, the building could sell the chilled water to the neighbouring buildings for the 
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total price of RM 874,436.97 a year. This calculation does not include maximum demand 

charges.  
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Table 81: The summary of the suggested retrofitting. 

Method Clean on-site 

energy  

Electricity fed 

into the grid 

Cold energy 

fed into the 

grid 

Cooling load 

reduction 

Cooling load 

reduction 

Total retrofit 

cost  

Energy 

reduction 

cost 

Payback 

period 

  (kWh) (kWh) (kWh) (kWh) (%) (RM) (RM/kWh) (Year) 

Initial - - - - - - - - 

Operation - - - 511920 12.5 0 0 0 

Lighting - - - 944876 23.1 3,229,262.90 0.190 3.5 

Glazing - - - 128059 3.1 2,137,560.80 0.417 45.7 

Equipment - - - 141216 3.5 n/a n/a n/a 

PCM - - - 993900 26.9 2320890 0.058 7.3 

Insulation  - - - 25781 38.0 7687713.7 0.054 6.7 

CHP 9,237,446.82 573,674.77 3,531,703.26 - - n/a n/a n/a 
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Table 82: The feed into the grid tariff established by Malaysia's government [222]. 

FiT Rates for Solar PV (Non-individual) (21 years from FiT Commencement Date) 

Description of Qualifying Renewable Energy Installation FiT Rates (RM per kWh) 

(i) up to and including 4kW 0.8249 

(ii) above 4kW and up to and including 24kW 0.8048 

(iii) above 24kW and up to and including 72kW 0.6139 

(iv) above 72kW and up to and including 1MW 0.593 

(v) above 1MW and up to and including 10MW 0.4651 

(vi) above 10MW and up to and including 30MW 0.4162 

(b) Bonus FiT rates having the following criteria (one or more): 

(i) use as an installation in buildings or building structures 0.155 

(ii) use as building materials 0.1325 

(iii) use of locally manufactured or assembled solar PV modules 0.05 

(iv) use of locally manufactured or assembled solar inverters 0.05 

 

 

4.5.4 Summary 

Tackling the energy issue based on the core problems proved to be the most effective. This study 

developed a retrofit method based on the building’s energy consumption by focusing on the 

sectors which used the highest amount of energy that is cooling. The developed method enables a 

retrofit designers to diagnose parts of the building that contributed the most to the building’s heat 

gain that causes the rise in cooling demand. Passive cooling and solar driven cooling systems are 

also adopted to reduce the building’s dependence on primary energy. From the results, it can be 

seen that a high-efficiency technology to harness the renewable energy combined with efficient 

energy management that includes the cooling system and energy storage can highly influence the 

change in building’s landscape to achieve ZECB in the future. The simulated and calculated 

results after retrofit show that the target building could achieve a net zero energy consumption 

and also act as a renewable energy provider. Besides the high-energy performance, the simulated 

results show that the building also satisfies the local indoor environmental quality requirement.  
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Chapter 5. Actual Retrofit Application on the Target Building 

 

5.1 Introduction  

The retrofit methods based on the thermal analysis as suggested in Section 4.2 was proposed to 

the target building's facility management company for their reference and implementation. The 

actual implementation took place at different phases within 3 years (from 2013 to 2016) that 

involves operational schedule, replacement of lamps to LED lamps at certain areas in the building 

and installation of 94 PV panels on the rooftop. The actual implementation resulted in 299,344.88 

kWh energy reduction in two months and an average of 24.15% energy reduction every month. 

The customer’s feedback, detail implementation and energy consumption results are discussed in 

this chapter.  

 

5.2 Methods  

The retrofit procedures based on a thermal analysis published in Section 4.2 were implemented in 

the target building in 2013. The results were presented to the building’s owner and the building’s 

energy manager for their evaluation and future reference. The retrofit process taken place is 

simplified in            Figure 112. The strategies were implemented by the building’s facility 

management company and the building’s owner in different phases depending on the time 

required implementing the strategies, the practicality of replacing the old equipment and lamps 

and the budget allocation. The strategies were modified based on the feedback given by the 

occupants and also their budget allocation. The list of the retrofit strategies suggested in Section 

4.2 and the retrofit strategies applied by the building’s owner are summarised in Table 83.  
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           Figure 112: The actual retrofit process implemented on the target building. 

Retrofit procedures based on the 
thermal analysis (Section 4.2) 
was implemented on the target 

building

Present the thermal analysis 
results and energy reduction 

strategies to the facility 
management company

2013: The building's energy 
manager implemented changes 
in the operational schedule and 

promotes energy saving 
measures (no cost incurred)

After the changes made to suits 
the clients' satisfaction

Performance evaluation
2015: Installation of PV panels 
on the North building's rooftop

2016: Replace the lamps in the 
North building (except for the 
toilet areas) and parking areas

Performance evaluation
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Table 83: The list of the retrofit strategies suggested in Section 4.2 and the retrofit strategies applied by 

the building’s owner. 

  Suggested  Implemented  

Operation  Air condition air temperature is 

set to 24 °C and scheduled to 

operate from 0730 to 1730 (see 

Figure 113).  

 Lighting systems in office zones 

were set to 0730 to 1800.  

 Air condition air temperature was set 

to 24 °C. The system was switched on 

at 0700 to 1300 and 1400 to 1800 

every workday. When a special 

occasion took place, the air condition 

will be switched on from 0700 to 

1800.  

 The lighting system in the office 

zones was switched on from 0700 to 

1800 and switched off during the 

recess hour. However, the occupants 

can manually control the lighting. 

 The implementation took place in 

2013. 

Lighting   A lighting system that includes 

automatic daylight dimmer in 

corridors and office zones as well 

as replacing existing lamps with 

high-efficiency LEDs [52].  

 Luminance in the office zones 

was adjusted to 300 lux by the 

recommendations from previous 

studies [47] and MS1525:2007 

[62]. 

 Lighting operating schedule was 

proposed to accommodate the 

employees when the area is 

occupied (i.e. 0730 hours to 1800 

hours).  

 Some of the lamps in the corridors 

were removed leaving 4 lamps in 

each corridor to match the suggested 

luminance for the corridors (100 lux). 

 All lamps in the north building were 

replaced with LEDs except for the 

toilet areas.  

 The lighting system in the office 

zones was switched on from 0700 to 

1900. However, the occupants can 

manually control the lighting.  

 The implementation took place at the 

end of January 2016. 

Renewable 

energy  

 Solar panels with 15% efficiency 

proposed to be installed on the 

South building’s roof utilising 

3,681 m² area. The generated 

electricity was proposed to 

directly supply to the building 

and stored in a battery.  

 94 PV panels (24.44 kWp) were 

installed in the north building.  

 The implementation took place in 

2015.  
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Figure 113: Modified cooling operation schedule for office zones from the Design Builder software 

(hourly cooling load percentage). 

 

The selected retrofit strategies were fully installed at the end of January 2016. The changes were 

made at different phases. The actual retrofit started with the shifts in the operational schedule in 

2013, then followed by the installation of PV panels on the North building’s rooftop in May 2015 

and the replacement of the lamps in the North building (except for toilets) and parking areas to 

LEDs at the end of January 2016. Figure 114 shows the image of the PV panels installed on the 

target building's rooftop and Figure 115 shows the inverters used for the solar energy generation 

system. These pictures were taken during a field visit in May 2015.   
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Figure 114: The PV panels installed on the target building's rooftop. 

 

 

Figure 115: The inverters for the solar energy generation system. 
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All the strategies implemented by the building’s owner were applied to the base building model. 

The simulated building’s energy in February and March 2016 is then compared to the building’s 

actual energy data that were gathered from the building’s energy manager. Equations (5.1) to 

(5.4) were used for the calculation.  

 

Er (actual) = Ec (2012) – Ec (2016)     (5.1) 

Er (estimated) = Ec (simulated 2012) – Ec (simulated 2016)    (5.2) 

Percentage Er = Er / Ec (2012)      (5.3) 

Percentage Er (estimated) = Er (estimated) / Ec (simulated 2012)   (5.4) 

 

Where:  

Energy reduced (Er) 

Energy consumption (Ec) 

 

 

5.3 Results and Discussion  

This section is presented in three different sections that are Section 5.3.1 (total energy reduction), 

Section 5.3.2 (generated solar energy), Section 5.3.3 (lighting system), Section 5.3.4 (changes in 

the operation schedule) and Section 5.3.5 (other discussion).  

 

5.3.1 Total energy reduction  

The estimated energy reduction based on the simulation results for February and March are 

102,691.42 kWh (19.73% estimated energy reduction) and 129,085.83 kWh (19.99% estimated 

energy reduction). The actual energy reduction achieved by the building after retrofit was 

132,506.15 kWh in February and 166,828.73 kWh in March. The average differences in the 

estimated energy reduction and the actual energy reduction every month is 33,778.82 kWh and 

the average difference in the percentage energy reduction is 4.29%. This result is in agreement 

with the results published earlier which compared the energy reduction after operational changes 

implemented by the building’s owner [38]. The comparison of the actual and estimated energy 

reduction is shown in Table 84.  
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Table 84: The comparison of the actual and estimated energy reduction. 

Month        Energy reduction (kWh)            Energy reduction (%) 

  Simulated  Actual  Simulated  Actual  

Feb  102,691.42 132,506.15 19.73% 23.49% 

March 129,085.83 166,828.73 19.99% 24.81% 

 

Meanwhile, the simulated total energy consumption in February is 1.9% lower than the actual 

energy consumption, and the simulated total energy consumption in March is 3.4% higher than 

the actual energy consumption. The difference in the estimated energy reduction and the actual 

energy reduction achieved is mainly originated from the deviation in the base model’s energy 

consumption where the model has 1.89% (138,985 kWh) lower energy consumption compared to 

the actual energy consumption in 2012 and the actual amount of electricity generated by the PV 

system. The mean bias error (MBE) between the simulated and actual energy consumption is 

shown in Table 85. 

 

Table 85: The mean bias error (MBE) between the simulated and actual energy consumption. 

Month  
Energy consumption 

(kWh) MBE 

  Simulated  Actual  

Feb-12 520383.39 563991.82 7.73% 

Feb-16 417691.97 431485.67 3.20% 

Mar-12 645808.84 672395.03 3.95% 

Mar-16 516723.01 505566.29 -2.21% 

 

 

5.3.2 Renewable energy generation 

The solar panels were installed by the Malaysia’s Sustainable Energy Authority (SEDA), a 

statutory body under the Ministry of Energy, Green Energy and Water as part of their ‘PV 

Installation on the Government Buildings in Putrajaya’ project. It was not part of the project that 

was handled by the facility management company. Hence, the specification of the PV panels and 

the generated energy data for the whole duration since it was first installed could not be accessed. 

However, the solar panels performance was directly connected to an equipment (see Figure 116) 

that displays the daily generated solar energy in a different month. The equipment was located in 

the building’s lounge nearby the entrance to educate and alert the occupants about sustainable 
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energy. The data taken from the display screen during a field visit in the afternoon on the 6th of 

May 2015 is compared to the simulated data. The comparison graph of the generated electricity 

for 1st to the 5th May is shown in Figure 117. As told by the energy manager and SEDA’s officer 

(Mr. Al-Fadzriq) the generated electricity from these solar panels were fully utilized by the 

building without being fed into the grid.  

 

 

 

 

The actual specifications of the PV panels were not provided by the building’s owner, hence, the 

efficiency of the PV panels were set to a range of typical solar panel’s efficiency. To predict the 

PV panels’ efficiency, a number of simulations were carried out by varying the PV panels’ 

efficiency from 9% to 15%. The results suggested that PV panels’ with 9.5% efficiency matches 

the actual electricity generated by the PV panels installed on the building’s rooftop (see Figure 

117). It can be observed that the efficiency of the PV panels might have varied throughout the 

Figure 116: Direct display of the building's daily electricity generated by the PV panels. 
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day. It is worth noting that in May, West-Coast Malaysia received heavy rainfall due to the 

South-West monsoon [155]. This weather condition (heavy rainfall and could cover) might have 

caused reduction in solar radiation. Other possible reason is the fluctuation in PV cell’s 

temperature that has influenced the PV panels’ efficiency. As the outside air temperature 

increases, the PV cells also increases which leads to the declination of the PV cells’ efficiency 

[201]. Hence, installing a MCPV will be more efficient for a hot and humid country such as 

Malaysia since the temperature of the PV cells can be cooled down by the coolant outlet which in 

return will retain the efficiency of the PV cells. Plus, the MCPV has higher efficiency for thermal 

and electric generation. 

 

 

Figure 117: The actual and simulated electricity generated by PV panels in early May. 

 

5.3.3 Lighting system 

Pictures of the lift lounge that has been installed with new LED lamps at the north building and 

one with fluorescent lamps at the South building were taken during a visit in May 2015 (see 

Figure 118) to compare the differences in the illumination level. Whereas another picture of the 

cafeteria in the north building taken in 2012 (before retrofit) and 2015 (after retrofit) is shown in 

Figure 119.  
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It can be seen that the installed LED lamps gave a better luminance compared to the previous 

lamp types. This is because the LEDs have a higher luminous efficacy. Hence, it generates more 

light at the same power input compared to the fluorescent lamps. Another point to note is the 

number of halogen lamps used in the cafeteria after retrofit were reduced since the illumination 

provided by the ceiling’s indirect lighting from the LED lamp are sufficient to provide the 

required illumination level (200 lux). Therefore, besides reducing the energy consumption, LED 

lamps also gives a better indoor lighting quality to the occupants. However, the efficiency of the 

lighting system can be further enhanced with the application of the daylight dimmer that enables 

the lighting system to adjust its luminous output automatically according to the daylight received 

by the room.  

 

 

Figure 118: Pictures of the lift lounge that has been installed with new LED lamps at the north building 

(left) and one with fluorescent lamps at the South building (right), taken during a visit in May 2015. 
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Figure 119: The cafeteria in the north building taken in 2012 (before retrofit) and 2015 (after retrofit). 
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5.3.4 Changes in the air condition settings 

Changes in the operational schedule were implemented in two phases, the first one was in 2013 

and then in 2014. In 2013, the energy manager changed the air conditioning operation schedule 

from 0630 - 1900 to 0700 - 1900, and raised the air temperature set point in the offices from 23°C 

to 24° and finally 25°C.  No negative feedback was received when the temperature was raised 

from an average of 22.5°C to 24°C. However, when the air temperature was raised to 25°C, 

negative feedback was received from the occupants. Hence, the air conditioning set point 

temperature was set to 24°C to satisfy clients’ thermal comfort.  

 

In 2014, the building’s owner made another change in the air conditioning operation schedule, 

where the air conditioning was switched off during the recess time (1300 to 1400) since the 

offices are mostly vacant during this time. It is worth mentioning here that it is a culture for the 

Malaysian government employees to spend their time outside during the recess time spent mainly 

visiting the cafeteria or nearby restaurants. During the first few days of the changes being 

implemented, some complaints were made, but after a week, the occupants had adjusted to the 

changes and no negative feedback was received afterwards. The changes in the air conditioning 

schedule have been used since 2014 up to now.  

 

An analysis of the simulated offices’ temperature and relative humidity ranged in between 35% 

to 70% during the recess hour which shows that the air temperature varied between 28°C to 

34.5°C during the recess hour. This simulation result does not consider the possibility of having 

natural ventilation (if the occupants opened the windows). The simulated temperature and relative 

humidity in the ground floor office during recess hour (1300 to 1400) are shown in Figure 120. 

While the simulated temperature and relative humidity in other offices can be found in 

Appendices B. Plus, it is possible to open the windows if the occupants feel uncomfortable. So 

this could explain why there is no complaint received from the occupants even though the air 

conditioning was switched off during the recess hour.  

 

A comparative analysis of the preferred air temperature and the PMV sensation was carried out 

(see Figure 121). Even though the air temperature was fixed at 24°C, PMV values varied 

depending on four other factors (metabolism, clothing, humidity, mean radiant temperature and 

air velocity). The PMV values (when the air conditioned was in operation) varied in between 0.65 
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to 1.8. High PMV values are spotted after recess hour (1400 to 1500). Meanwhile, the PMV 

values from 0900 to 1300, and 1500 to 1800 were in the range of 0.65 to 1.35. Based on the P.O 

Fanger sensation scale, the values lingers around slightly warm and slightly exceeds the comfort 

range (-1 ≤ PMV ≤ +1). This is aligned with the findings from the previous studies on thermal 

comfort in offices and classrooms in tropical regions. Authors reported that the thermal neutrality 

was 24.7°C to 26.2°C. While the preferred temperature in summer varied in between  22.9°C to 

28°C [159]. Findings from Chen and Chang (Singapore) and S.Yatim et al. (Malaysia) also 

reported that the occupants thermal sensation vote were different from the PMV sensation scale. 

The occupants in both case studies perceived neutral sensation in the PMV scale (-0.5 to +0.5) as 

slightly cool [156] and too cold [157]. The finding from this study also confirmed to the previous 

discoveries that the sensation scale for the occupants from tropical regions is more lenient 

towards warmer temperature [156][157][159]. The occupants might have adapted to warm 

climate which resulted in the differences.   

 

 

Figure 120: The simulated temperature and relative humidity in the office at the ground floor during 

recess hour (1300 to 1400). 
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Figure 121: The hourly PMV values in the offices during office hours in workdays (February to March). 

 

 

5.3.5 Other discussion 

Based on the retrofit approach taken by the target building's owner (Ministry of Federal Territory, 

Malaysia), it can be presumed that budget and feasibility play a significant role in their decision 

making. The building’s owner has been progressively making effort and changes in reducing the 

building’s energy consumption. The retrofit process took place at different phases since 2013 to 

now (2016). Instead of making a full renovation at a time which will distract their daily 

operation, the installation process for the lamps’ replacement to LEDs took place at difference 

phases. The building owner opted to install the retrofit strategies that does not involve any cost 

first then followed by the one with least cost. This is in agreement with the estimated cost 

analysis per energy reduction (in Section 4.2) where the operational changes are the most cost 

optimum (no additional cost) then followed by changes in the lighting system (GBP 0.96 per 1 

kWh energy reduction).  

 

Moreover, the lamps were only replaced once they have reached their lifetime. It can be observed 

that instead of changing PL-C and PL-L to LEDs with the same lamp type, the energy manager 

opted to remove the older PL-C and PL-L lamp types to T8 LED tubes installed as indirect 
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lighting on the ceilings. This is because the T8 LED tubes are more economical compared to 

LED PL-C lamp even though the T8 LED range offers a higher lumen output. A comparison of 

different lamp types is listed in Table 86.  

 

Table 86: A comparison of different lamp types [192]. 

Lamp type Power 

rating  

Lumen output  Current market 

price 

Lifetime 

  W lumen  GBP hours 

PL-C  18 n/a 1.55 10,000 

PL-L 36 n/a 2.28 10,000 

PL-C LED  

(replacement for PL-C 18W) 

6.5 650 14.96 30,000 

T8 LED 9 1470 6.62 30,000 

T8 LED 18 1850 10.8 30,000 

 

 

The building owner does have the interest to reduce their energy consumption. However, it is 

mainly for the benefit of reducing their running cost (energy bills) and the enforcement made by 

Parliament. In a commercial world, profit is perceived as more important than the social 

responsibility unless there is enforcement by the government or the society. Hence, the payback 

period and the cost of the retrofitting must align with their budget, and the feasibility to carry out 

the retrofit work is their top priority so it will not distract their daily operation.  

 

5.4 Summary 

The retrofit method based on the thermal analysis to reduce cooling load as suggested in Section 

4.2 has been applied on the target building and the post-retrofit feedback gathered shows a 

clients’ satisfaction and a reduction of 299,344.88 kWh in the energy consumption in two months 

after the installation. The actual percentage of energy reduction is 5.3% more than the estimated 

percentage energy reduction attained from the simulation results. The differences are originated 

from the deviation in the base model constructed in the software. It is hoped that the target 

building will implement the methods suggested in Section 4.1 and 4.3 in the future once those 

methods are proposed to them later.  
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Chapter 6. Conclusion and Future Work  

 

This thesis has presented a detailed investigation into the retrofit methods for a typical medium-

sized commercial office building located in tropical climate. This work considered the impact on 

the building’s energy consumption, indoor environment (IAQ, IVQ, and ITQ) and basic cost 

analysis. The results from the simulation work were compared to the actual retrofit application.  

 

This study started with three main questions that are: 

 What is the thermal pattern of typical medium-sized commercial office buildings in a 

tropical climate?  

 What are the suitable criteria for buildings in hot regions to reduce the building’s HVAC 

demand?   

 What is the best retrofit approach to achieve ZEB for this type of building? 

 

The answers to these questions were discovered throughout the study. The findings will be 

recapped and evaluated to summarise them in one piece, and in a broad-spectrum (presented in 

Section 6.1). The recommendation for future work will be presented in Section 6.2.  

 

6.1 Conclusion  

Retrofit methods for an existing commercial office building in a tropical country have been 

studied. A comprehensive energy audit was carried out to map out building’s energy 

consumption (detail in Chapter 3). Outcomes from this study confirm the findings from foregoing 

studies related to the building’s energy consumption, where most of the buildings, despite the 

climatic condition, spent most of the energy to deliver a good indoor comfort for the occupants 

(IAQ, IVQ, and ITQ). The case-study building spent an average of 238.53 kWh/m²/year (from 

2009 to 2012) with 87.5% of the total energy consumption in 2012 was spent on providing indoor 

comfort to the occupants. HVAC system’s energy intensity alone was 128 kWh/m²/year in 2012. 

This finding is in agreement with the outcomes from former studies that more than 50% of total 

building’s energy were spent on HVAC system.  
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Based on this discovery, retrofit methods to achieve zero energy building was developed through 

a combination of building’s energy audit (Chapter 3), computer-based analysis (Chapter 4) and 

actual implementation of the proposed methods (Chapter 5). A well-known method called 

Passivhaus concept has been widely used in cold climate regions and has managed to achieve 

nZEB. The main principal used by Passivhaus method was to reducing HVAC load by decreasing 

heat loss through building’s envelope. Taking the same principal, this study investigates the most 

effective building’s envelope for buildings in cooling dominated country (Section 4.1) to reduce 

its dependency on HVAC system and lighting system. A retrofit approach was also developed to 

reduce building’s heat gain from the main sources (Section 4.2). Combining the findings from 

Section 4.1 and Section 4.2, it can be concluded that for buildings in tropical climate regions, 

different construction criteria deemed to be more suitable to reduce the building’s dependency on 

HVAC system and artificial lighting. As opposed to buildings in cold regions, the building’s heat 

gain in a hot region needed to be removed from a building as to attain a good thermal comfort. 

Meanwhile, in cold regions, the building’s construction was aimed to retain heat and reduce heat 

loss. The requirement for HVAC system such as cooling in tropical regions arose due to the 

accumulation of heat gain which increases the air temperature and the changes in the moisture 

content in the air. Studying the heat gain sources in a building (detail in Section 4.2) enables us to 

discover that these heat gains are highly dependent on the building’s structure and sub-systems. 

In this study, the heat gain in the office rooms in the case-study building mainly emitted by the 

lighting system (52%) then followed by office equipment (27%), solar heat gain through 

windows (18%) and occupancy (4%).  Hence, the use of high efficient lighting and equipment do 

not only benefit the energy sector, but indeed, it plays a significant role in reducing a building’s 

heat gain and providing indoor comfort for the occupants.  

 

Besides the internal heat gain, external heat gain also has a major impact on the overall building’s 

cooling load. The external heat gain emanated from solar radiation. However, this solar radiation 

is also useful to reduce the building’s dependency on artificial lighting. For this reason, most of 

the buildings in the 1990s to the early 2000s mainly opted for a large window to wall design. In 

this case-study building, it has curtain wall designed where windows to wall ratio in the offices 

and corridors are 85%. However, the main objective of this design may not result in a fruitful 

outcome if it is not paired with the automatic dimmer to regulate the lamps’ luminance output 

based on the daylight received in the particular room. Plus, a high amount of solar heat gain 
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radiated and conducted through the windows will contribute to the buildings’ heat gain, which in 

return, will increase the building's cooling load. It is suggested to use window glass that has a low 

SHGC value and high VLT value to limit the infrared penetration and allow high visible light 

penetration into the room to encounter this issue. Meanwhile for the wall construction, high U-

value, high thermal mass and airtight is more preferable. Moreover, with the use of PCM material 

and night time ventilation, the building is capable of naturally removing a significant amount of 

the heat gain. The building’s criteria mentioned above will reduce the building’s energy 

requirement for indoor comfort, particularly for the tropical climate.  

 

Applying the principals mentioned above (detail in Section 4.1 and 4.2), the building is estimated 

to reduce 52.2% of its primary energy demand and 49.68% reduction in cooling load. This 

enables the building to be classified as an nZEB. If the same building was to be constructed again 

but this time including the recommended changes, the estimated building’s material, and sub-

systems cost is £34,009,027.25. This figure is 5.25% lower than the simulated cost for the 

baseline building (£35,893,865.00). The building’s cost reduction is mainly due to the changes 

made to the lighting system.  This value does not consider the budget for equipment and the CHP 

solar system. 

 

While, the remaining energy demand from the building can be powered up by solar energy. For 

this case-study building (a medium to a large sized commercial building), the energy 

consumption even after the retrofit is still high compared to other building types. Hence, to be 

fully powered by renewable energy, a mini concentration PV/T (MCPV) system is deemed to be 

the most suitable for the buildings located in the dense urban areas but are not being shadowed by 

nearby buildings. The reason is, the MCPV is capable of maintaining optimum efficiency even at 

a high temperature, and the waste heat can be recycled to power up heat driven chiller. The 

combined heat power (CHP) MCPV system designed in Section 4.3 was estimated to supply 

9,237,446.82 kWh energy a year (thermal energy and electricity). The thermal energy will be 

used to drive absorption chillers, and the generated electricity will be used to drive electric 

chillers, pumps for absorption chillers, and building’s electricity load. Energy storage is crucial in 

the design to ensure the energy is adequate at all time (especially during at early morning and 

night time). Besides supplying energy demand from the building, the CHP MCPV is estimated to 

generate 573,674.77 kWh excess electricity and 3,531,703 kWh excess cold energy which can be 
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fed into the grid or supply to neighbouring buildings. Combining all the three methods developed 

in this study (detail in Chapter 4), the building is estimated to achieve ZEB standard.  

 

Nevertheless, most of the modern commercial office buildings are high rise. This structure limits 

the solar collection area which can be a drawback for the solar flat plate collector, PV panels, and 

MCPV if the building’s energy consumption is too high. Hence, pairing up the MCPV with 

concentrating building integrated photovoltaic (CBIPV) can be a good option to this limited roof 

area. BIPV was not covered in this study. However, it is recommended for future work. The 

visual summary of the suggested criteria for buildings in tropical climates is illustrated in Figure 

122.  

 

 

Figure 122: The visual summary of the suggested building's criteria in tropical climates. 

 

Based on the comparison of the actual retrofit application and the simulated results (detail in 

Chapter 5), it can be concluded that if the base model can be validated, the building simulation 

software is a reliable tool to predict a building’s energy consumption for a retrofit design. One of 

the reasons that slow down the adoption of green buildings is unstructured decision making in the 

retrofit process. This study developed a retrofit method based on computer simulations. If the 

simulation work is included in the retrofit decision-making process before the actual 
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implementation, it could reduce the take-back effect. This tool could increase stakeholder’s 

confidence to retrofit their buildings if they are exposed to knowing the accuracy of the software 

tool in predicting a building’s energy and indoor environment. Based on the feedback from the 

stakeholders (the facility management company and energy manager) on the retrofit approach 

based on thermal analysis developed in Section 4.2, the methods helps them to identify the key 

areas which require improvement before implementing EEMs for retrofit. This highly helped 

them in making a high impact retrofit to the building within their budget allocation. It also aids 

them to understand the main sources of heat gain and be informed about the fact that building’s 

sub-systems such as lighting system and equipment highly contributed towards the enormous 

cooling load. Though, before the implementation of the proposed EEMs, they do convey their 

concern about take-back effect and performance gap. However, the actual energy reduction 

achieved after the implementation has gained their trust in the method used and proved that the 

building’s energy simulation software is a reliable tool to predict building’s energy performance 

and helped to reduce performance gap for retrofit design.  

 

 

6.2 Recommendations for future work 

This thesis has contributed to some fundamental findings in the typical medium-sized 

commercial buildings in tropical regions. The methods developed in this study are predicted to 

assist similar type of buildings in achieving ZEB.  

 

(a) This study has contributed to some essential criteria for buildings in tropical regions to 

reduce its energy dependency. An experimental study on this area is highly recommended 

especially for a low-rise residential area since these type of buildings use less energy and 

have lower heat gain, and the impact of passive construction can be very significant. A 

simpler building type such as a residential building will allow a better analysis of the 

building’s thermal impact which enables the researcher to come out with more concrete 

evidence. Tropical countries are mainly developing countries while most of the building’s 

regulations were adopted from developed countries that have an entirely different climate. 

Previous studies have shown that climate contributed to significant differences in the 

building’s behaviour. Therefore, it is hoped that the building’s regulations are revised and 
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developed based on experiment or actual analysis from the local buildings instead of 

recaptured from other regions. 

 

(b) The simulations made in this study were limited to certain technologies that are available 

in the software’s library. For that reason, it is desirable to include other types of a smart 

control system in the building (such as the occupancy sensor) and BIPV system.  

(c) One of the factors that slow down the adoption of high efficient buildings either as a 

retrofit or new construction is the lack of exposure to the benefits of employing the green 

measures. Accordingly, it is suggested to conduct a study to build a database of the 

building’s performance before and after retrofit, and the simulated/expected energy 

reduction predicted by the simulation work. Public access to this database can increase the 

public exposure to the benefit of green measures, enhance their confidence on the pre-

retrofit simulation designs and the green measures, and educate the retrofit designers on 

what works and what does not work.  
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Appendix A 

 

The simulated daylight factor and daylight luminance level (lux) in areas that are exposed to 

sunshine. A continuation from Section 4.4. 

 

 

Figure 123: The simulated daylight factor and daylight luminance at the level 2's corridor. 
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Figure 124: The simulated daylight factor and daylight luminance at the level 3's corridor. 

 

 

Figure 125: The simulated daylight factor and daylight luminance at the level 4's corridor. 
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Figure 126: The simulated daylight factor and daylight luminance at the level 5's corridor. 

 

 

Figure 127: The simulated daylight factor and daylight luminance at the level 6's corridor. 
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Figure 128: The simulated daylight factor and daylight luminance at the level 7's corridor. 

 

Figure 129: The simulated daylight factor and daylight luminance at first floor's office. 
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Figure 130: The simulated daylight factor and daylight luminance at second floor's office. 

 

Figure 131: The simulated daylight factor and daylight luminance at third floor's office. 
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Figure 132: The simulated daylight factor and daylight luminance at fourth floor's office. 

 

Figure 133: The simulated daylight factor and daylight luminance at fifth floor's office. 
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Figure 134: The simulated daylight factor and daylight luminance at sixth floor's office. 

 

Figure 135: The simulated daylight factor and daylight luminance at seventh floor's office. 
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Figure 136: The simulated daylight factor and daylight luminance at ground floor's office. 

 

Figure 137: The simulated daylight factor and daylight luminance at the cafeteria. 
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Appendix B 

 

The simulated temperature and relative humidity in the office at the first to the seventh floor 

during recess hour (1300 to 1400). A continuation from Chapter 5.  

 

 

 

Figure 138: The simulated temperature and relative humidity in the office at the first floor during recess 

hour (1300 to 1400). 
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Figure 139: The simulated temperature and relative humidity in the office at the second floor during recess 

hour (1300 to 1400). 

 

 

 

Figure 140: The simulated temperature and relative humidity in the office at the third floor during recess 

hour (1300 to 1400). 
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Figure 141: The simulated temperature and relative humidity in the office at the fourth floor during recess 

hour (1300 to 1400). 

 

 

Figure 142: The simulated temperature and relative humidity in the office at the fifth floor during recess 

hour (1300 to 1400). 
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Figure 143: The simulated temperature and relative humidity in the office at the sixth floor during recess 

hour (1300 to 1400). 

 

 

Figure 144: The simulated temperature and relative humidity in the office at the seventh floor during 

recess hour (1300 to 1400). 
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