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Abstract 

Acute leukaemia with the t(4;11) translocation is strongly associated with pro B-acute 

lymphoblastic phenotype. Here is described a lineage switch from acute 

lymphoblastic leukaemia (ALL) to acute myeloid leukaemia (AML) which carries 

identical t(4;11) breakpoints that provides insight into regulation of lineage 

commitment and the haematopoietic origin of leukaemia.  

Stable DNA microsatellite sequences argue against a therapy-related AML. Genome 

sequencing and RNAseq identified 12 novel and deleterious mutations unique to the 

AML. Immunoglobulin rearrangement analysis suggested the common cell of origin 

lied within a population prior to B cell differentiation. Sorting of haematopoietic 

stem/progenitor cell populations followed by multiplex PCR and next generation 

sequencing for the fusion and secondary mutations demonstrated the occurrence of 

the leukaemogenic MLL-AF4 fusion gene in cell populations as early as the 

multipotent progenitor, MPP, population in both ALL and AML. In this most primitive 

population, the AML carries mutations in chromatin modulating genes CHD4 and 

PHF3, suggesting their importance in lineage commitment. 

Knockdown CHD4 and PHF3 individually and in combination in the pro-B ALL t(4;11) 

SEM cell line resulted in ~3 fold higher expression of the myeloid cell surface marker 

CD33. Further analysis was performed using a recently described model of MLL-AF4 

leukaemogenesis consisting of CD34+ cord blood cells transduced with a chimeric 

MLL-Af4 fusion gene.  Knockdown of CHD4 and PHF3 resulted in loss of lymphoid 

differentiation potential in vitro. 

Analysis of different PHF3 splice variants revealed that only mutation-carrying PHF3 

variants increased CD33 on SEM cells and that a balance between PHF3 variants 

was required for the lineage fidelity. 

This study suggests that the ALL and AML share a common primitive cell of origin 

and that mutations in CHD4 and PHF3 shift the lymphoid phenotype towards a 

myeloid lineage leukaemia.  
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Chapter 1 Introduction 

 

1.1. Haematopoiesis  

Understanding physiological haematopoiesis is an important prerequisite to studying 

the control of lineage commitment in leukaemia. It may provide insight into which 

stage or differentiation step the aberrant leukemic development occurs. 

Haematopoiesis is the formation process of all blood cells from haematopoietic stem 

cells (HSCs) by following controlled differentiation steps. It is highly regulated to 

maintain the steady-state by producing approximately 1012 new blood cells each day 

in adult humans[1, 2]. This high rate of regeneration is required to provide the 

continuous circulation and immune function under normal conditions and will be 

elevated amplification in haematological stress circumstances[3]. 

The HSC is located at the base of the haematopoiesis hierarchy (Figure 1-1). These 

cells have the potential to self-renew or reproduce the stem cells and to differentiate 

into any of the blood cells. When the cells differentiate, the process is accompanied 

by loss of self-renewal potential, but increasing lineage restriction. The HSC and 

progenitor cells are characterised by the expression of CD34, and when they 

differentiate into more mature cells, the CD34 expression is gradually lost[2]. 

HSCs differentiate into multipotent progenitor (MPP) cells. These cells lose the self-

renewal ability, but are capable of differentiating into any haematopoietic cells.  

MPPs differentiate into oligopotent progenitor cells, which have undergone a certain 

degree of lineage commitment [2]. This process is characterised by the expression of 

CD45RA, an isoform of CD45. CD45 is a surface marker that is expressed on all of 

the mature haematopoietic cells apart from erythrocytes and plasma cells, but 

expressed only at low levels on progenitor cells. However, the CD45RA isoform is 

exclusively presented on the oligopotent progenitor cells[2, 4].  

The oligopotent progenitors are divided into lymphoid and myeloid progenitors. The 

lymphoid lineage originates from multipotent lymphoid progenitors (MLPs). These 

cells are capable of differentiating into all lymphoid cells, including the earliest thymic 

progenitors (ETPs) that give rise to T cells, and BNK progenitors that give rise to B 

cells and natural killer (NK) cells[2]. In addition to this, Doulatov et al (2010) 

described that these cells could also generate some myeloid cells, including 
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monocytes, macrophages, and dendritic cells (DC), but not erythroid and 

megakaryocytes[5]. Furthermore, while MLP is defined by the presence of 

CD34+CD38-CD45RA+CD10+, Goardon et al (2011) described a population of 

CD34+CD38-CD45RA+CD10-, recognised as lymphoid-primed multipotent 

progenitors (LMPPs) as the population that could differentiate into lymphoid, 

macrophages, DC, and granulocytes in human[6]. On the other side, the myeloid 

lineage is represented by common myeloid progenitors (CMPs), granulocyte-

macrophage progenitors (GMPs), and megakaryocyte-erythrocyte progenitors 

(MEPs), with the CMP being the early developmental intermediate of both GMP and 

MEP[2, 4]. Further, the GMPs give rise to granulocytes, monocytes, and DCs, and 

the MEPs generate erythrocytes and megakaryocytes/platelets. The granulocytes 

consist of neutrophils, eosinophils, and basophils. 

These different subpopulations of haematopoiesis and their specific markers are 

summarised in Figure 1-1.  
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Figure 1-1 Human haematopoiesis scheme and the markers. HSC that is located at the apex of 

the hierarchy is described as CD34+CD38-CD90+CD45RA-. CD90 expression is lost in MPP. CD38 is 

gradually gained on the further differentiation states. MLP and GMP are characterised by the 

expression of CD45RA. MLP is determined to differentiate into lymphoid cells but remains to have the 

capacity to differentiate into some myeloid cells. Lin is a cocktail of cell surface markers of terminally 

differentiated cells such as B cell, T cell, DC, monocytes, granulocytes, megakaryocytes, and 

erythrocytes. B cell receptor (BCR) is formed during the B cell maturation. The figure is adapted from 

[1] and [2]. HSC = haematopoietic stem cell, MPP = multipotent progenitor, MLP = multilymphoid 

progenitor, BNK = B/NK cell progenitor, ETP = earliest thymic progenitor, CMP = common myeloid 

progenitor, GMP = granulocyte-macrophage progenitor, MEP = megakaryocyte-erythrocyte progenitor, 

NK = natural killer. 

Lineage commitment is influenced by the presence of transcription factors. A change 

in the expression level of the transcription factor may lead to different lineage fate[7]. 

For instance, GATA1 is an important factor for MEP and GMP differentiation. High 

expression of GATA1 and FOG1 specify megakaryocyte-erythroid-restricted 

progenitors. However, moderate expression of GATA1 and C/EBPα or C/EBPβ direct 
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granulocyte/eosinophil development[7, 8]. Furthermore, in addition to preventing the 

erythroid fate, C/EBPα can also inhibit the lymphoid development[7, 9]. It has been 

shown that over-expression of C/EBPα initiated myeloid differentiation in pro-B 

cells[10]. On the other side, EBF1 and PAX5 are known as the main regulators of 

lymphoid development. Enforced expression of Ebf1 in mouse promotes lineage 

commitment to B cells and inhibits myeloid development[11].  

The understanding of haematopoiesis is expected to help to understand the 

development of leukaemia, what the gene regulatory networks are and how it affects 

the lineage fate choice and lineage commitment. 

1.2. Acute leukaemia 

Leukaemia is a type of blood cancer where the immature blood cells undergo 

aberrant proliferation, accumulate massively, and infiltrate into the bloodstream. 

Based on its cellular maturity and rate of clinical change, it can be divided into acute 

and chronic leukaemia. Acute leukaemias are characterised by the rapid proliferation 

of immature cells, while chronic leukaemias are characterised by a more gradual 

accumulation of terminally differentiated progeny[12]. Both groups are further 

classified based on the cell types into lymphoid and myeloid leukaemia. 

The acute lymphoblastic leukaemia (ALL) occurs when the transforming abnormality 

happened within the lymphoid precursor cells and generates the excessive 

accumulation of the lymphoblasts. ALL is the dominant type of childhood cancer that 

accounts for up to 85% of childhood leukaemia cases with the peak age at 0 – 4 years 

old[13, 14]. Precursor B-cell lineage malignancy forms the majority (~85%) of cases, 

while the remaining includes mature B-ALL, T-ALL, and mixed phenotype acute 

leukaemia (MPAL) that co-expresses B- and T-cell markers or lymphoid and myeloid 

cell markers[15]. CD19 and cytoplasmic CD79a are expressed in all types of B-

ALL[16]. The negative expression of CD10 characterise pro-B ALL sub-types and is 

mostly observed in infants with MLL rearrangement (11q23)[13]. 

Acute myeloid leukaemia (AML) develops within the myeloid precursor cells and can 

happen within the erythroid, granulocytic, monocytic, or megakaryocytic 

populations[17]. In contrast to ALL, AML is mostly found in adult patients where more 

than 40% of patients are >65 years and rarely diagnosed before the age of 40 years 

old[18]. Myeloperoxidase (MPO) is typically expressed in AML, as well as CD13, 

CD33, CD65, and CD117[19]. 
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1.2.1. Infant ALL 

1.2.1.1. Clinical features 
Infant ALL (<1 year of age) is rare, accounting for <5% of childhood ALL. It is 

classified into two categories: infant ALL with MLL germline (MLLg) and MLL 

rearrangement (MLLr). The majority of infant ALL cases carry a rearrangement of 

MLL (80%) and are characterised at diagnosis by higher white blood cells (WBCs) 

count, and frequent involvement of extramedullary sites, in particular, central nervous 

system (CNS) and skin[20-26]. It also has a poor outcome with frequency of event-

free survival (EFS) 37-49% regardless of the MLL translocation partner, whereas that 

of EFS MLLg is 60-74%[20-26]. The status of MLL is also used by each of the major 

cooperative groups, including Interfant, Children’s Oncology Group (COG), and 

Japanese Infant Leukemia Study Group (JILSG) to risk-stratify infant ALL treatment. 

Infant ALL MLLg has a higher incidence (~77%) in older infants (>6 month years 

old)[27]. Cytogenetics are shared with older children, albeit with different distribution, 

including lower frequency of the favourable abnormalities ETV6-RUNX1 and 

hyperdiploidy, and higher frequency of unfavourable abnormalities, including BCR-

ABL1[27, 28]. Also, MLLg shows less risk of relapse incidences (~20%), in contrast 

to MLLr (~50%)[27, 28]. 

Among the different MLL translocation partners in infant ALL MLLr group, 

t(4;11)(q21;q23) accounts for about 49% of the total cases, followed by 

t(11;19)(q23;p13), t(9;11)(p22;q23), and t(10;11)(p12;q23) in about 22%, 17%, and 

5%, respectively[25, 29]. The leukaemia cells are predominantly CD10- and may co-

express one or more myeloid-associated antigens, in contrast to MLLg and childhood 

ALL that more commonly have a CD10+ immunophenotype[29, 30]. This indicates 

infant ALL MLLr may come from the immature B-cell precursor cells. Also, studies 

from Guthrie cards (neonatal blood spots) demonstrate the presence of MLL fusion 

sequences on the specimens, which suggest the in utero development or foetal 

haematopoiesis origin of MLLr ALL[31, 32]. However, the cell of origin of the 

leukaemia is still a question.  

1.2.1.2. Infant specific ALL treatment protocols 
Infant ALL was initially treated according to childhood ALL protocols, but was soon 

recognised to have an unfavourable prognosis, leading this group into high-risk 

stratification within these protocols[33]. Even though the outcome was sub-optimal, 

several key features of poor outcome were identified, including the presence of MLL 
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rearrangement[34], higher WBC[35], CD10-[35], age <6 months at diagnosis[36], and 

poor initial response to prednisone[36]. 

Given the rarity of infant ALL, a large international collaborative study group is required 

to provide a useful insight in determining the treatment protocol for infant leukaemia 

[37]. The first collaborative studies were named as Interfant-99 that included 482 

patients by 17 study groups from 22 countries and resulted in an improved EFS when 

compared with other larger multicentre studies[37], summarised in Table 1-1. 

 

Table 1-1 Treatment results in infant ALL by several different protocols. DFCI = Dana-Farber 

Cancer Institute (USA, Canada), AIEOP = Associazione Italiana Ematologia Oncologia Pediatrica 

(Italy), BFM = Berlin-Frankfurt-Münster (Austria, Germany, Switzerland), EORTC-CLG = European 

Organisation for Research and Treatment of Cancer – Children’s Leukaemia Cooperative Group 

(France, Belgium, and Portugal), CCG = Children’s Cancer Group (US), UKALL = Medical Research 

Council United Kingdom, POG = Paediatric Oncology Group (USA). The table is taken from Pieters et 

al[37]. 

Interfant-99 data collected several factors that associated with the prognosis of the 

patients, including the role of sex, the age of diagnosis, WBC at diagnosis, CD10 

expression, the status of MLL germline or rearranged, and prednisone response[37, 

38]. High WBC, negative expression of CD10, MLL rearranged, and poor prednisone 

response (PPR) indicates a poor prognosis. These factors were further analysed with 

statistical Cox regression analysis that produced a new stratification risk group which 

has been used in the more recent protocol, Interfant-06. The classification 

includes[38]:  

Date (year) CR rate EFS or survival timepoint EFS rate (SE) Survival rate (SE) Patients enrolled

DFCI (1985–95) 1997 96% 4 year 54% (11) – 23

Interfant‐99 2007 94% 4 year 47% (2∙6) 55% (2∙7) 482

AIEOP‐91/95 2006 96% 5 year 45% (95% CI 31–58) – 52

BFM 1999 95% 6 year 43% (5) 48% (6) 105

EORTC‐CLCG 1994 86% 4 year 43% (95% CI 24–62) ‐ 25

CCG‐1953 2006 97% 5 year 42% (9) 45% (6) 115

CCG‐1883 1999 97% 4 year 39% (4) 51% (4) 135

CCG‐107 1999 94% 4 year 33% (5) 45% (5) 99

UKALL‐92 2002 94% 5 year 33% (95% CI 23–44) 46% (95% CI 35–57) 86

POG 8493 1997 93% 4 year 28% (5) – 82

POG alternating drugs 1998 94% 4 year 17% (8) – 33
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Classification Conditions 

Low-risk (LR) MLL germline 

High-risk (HR) MLL-r, and 

diagnosed < 6 months (i.3. <183 days), and 

WBC ≥ 300 x 109/L and/or poor prednisone 

response 

Medium-risk (MR) all other cases 

 

Also, Interfant-06 includes a transition from “hybrid chemotherapy” of ALL- and AML-

oriented drugs in Interfant-99 to an early intensification of AML-oriented drugs 

(cytarabine, daunorubicin or mitoxantrone, and etoposide)[39]. It was initiated since 

cytarabine showed a high sensitivity effect to the infant ALL cells, while the 

combination of high-dose methotrexate (ALL-oriented chemotherapy) and high-dose 

cytarabine (AML-oriented chemotherapy) in the delayed intensification of Interfant-99 

did not benefit patients[25]. 

The Interfant-06 protocol consisted of two arms, the standard (control) arm that 

consists of induction (prednisone, dexamethasone, vincristine, cytarabine, 

daunorubicin, L-asparaginase), protocol IB (6-mercaptopurine, cytarabine, 

cyclophosphamide), MARMA (6-mercaptopurine, methotrexate, leucovorin rescue, 

prednisone, cytarabine, PEG-asparaginase), OCTADAD (dexamethasone, 6-

thioguanine, vincristine, daunorubicin, PEG-asparaginase, cytarabine, 

cyclophosphamide), and maintenance (methotrexate, cytarabine, prednisolone, 6-

mercaptopurine) and the experimental arm that consists of induction, ADE 

(cytarabine, daunorubicin, etoposide), MAE (cytarabine, mitoxantrone, etoposide), 

MARMA, OCTADA, and maintenance. Daunorubicin is included in OCTADAD, but 

not in OCTADA.  

Patients with low risk were eligible for the standard arm, while medium- and high-risk 

patients were randomised for standard or experimental arm. Furthermore, the HR 

patients were eligible for stem cell transplantation (SCT), while the MR group were 

assessed for their MRD level[38, 40]. It is defined that the level of ≥10-4 (more than 

one leukaemic blast among 104 normal cells) was eligible for the SCT for the MR[38, 

40]. A summary is depicted in Figure 1-2. 
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Figure 1-2 Scheme protocol Interfant-06. All LR is treated with standard arm (induction, IB, 

MARMA, OCTADAD, and maintenance. The MR and HR are randomised for standard or 

experimental arm (induction, ADE, MAE, MARMA, OCTADA, and maintenance). The HR is also 

eligible for SCT after MARMA or after receiving part of OCTADA(D). The figure is reproduced from 

[38].  

At the time of this report writing, the protocol Interfant-06 trial has been closed, and 

the results are being analysed.  Current interim guidance in the UK is to use the 

standard arm therapy. 

1.2.2. Paediatric acute myeloid leukaemia (AML) 

1.2.2.1. Epidemiology and clinical features 
AML accounts for 15-20% of acute leukaemia in children[41]. In contrast to ALL, AML 

has higher incidence rate by age. Infant AML is a rare disease, accounting for only 

0.8% among all AML age groups, rising to 1.5%, 4.3%, 23.1, and 28.7% in age 

groups 1-4, 5-19, 40-59, and 60-74 years, respectively[42]. It was observed that 

myelodysplastic syndrome (MDS) may precede AML in adult and elderly patients, but 

this is rare in paediatric AML[41]. Nevertheless, studies on genetic mutations of AML 

showed a similar mutation spectrum with different frequencies between adult and 

childhood[43, 44]. It also leads to different risk stratification groups for paediatric 

AML. 
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An extensive cytogenetic study of 729 paediatric AML patients (age 0 to 16 years) on 

the United Kingdom Medical Research Council trial allowed the evaluation of the 

chromosomal changes and the associated-risk[45]. This study showed that 75% of 

the cases had abnormal karyotypes and MLLr is the most frequent abnormality in 

paediatric AML, accounting for 16% of the cases, where it predominated in the infant 

cases. While the 11q23 rearrangement, apart from t(9;11), were categorised as high-

risk in adult AML, this study observed the abnormalities as an intermediate outcome, 

including the t(9;11). Translocation t(8;21) and inv(16) had a favourable prognosis, 

whilst monosomy 7, abnormalities of 5q, and t(6;9) had the adverse outcome[45]. 

Recent large clinical trials for paediatric AML showed a complete response and 

overall survival of >90% and >60%, respectively[44, 46-52]. 

Initial classification by French-American-British (FAB) distinguish the AML into eight 

subtypes (M0 – M7) based on the morphology of the cells. Later, the better 

understanding of cytogenetic, immunophenotypic, and the disease biology of the 

AML develop a new classification by WHO[53]. The latest update in 2016 classifies 

the AML into AML with recurrent genetic abnormalities (e.g. t(8;21), inv(16), PML-

RARA) , AML with myelodysplasia-related changes, therapy-related myeloid 

neoplasms, and AML that do not fit to these criteria, recognised as AML not 

otherwise specified (AML NOS), summarised in Table 1-2[54].   
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Group  Subgroup 

AML with recurrent genetic 

abnormalities 

AML with t(8;21)(q22;q22.1) 

AML with inv(16)(p13.1q22) or 

t(16;16)(p13.1;q22);CBFB-MYH11 

APL with PML-RARA (FAB M3) 

AML with t(9;11)(p21.3;q23.3);MLLT3-KMT2A 

AML with t(6;9)(p23;q34.1);DEK-NUP214 

AML with inv(3)(q21.3q26.2) or t(3;3)(q21.3;q26.2); 

GATA2, MECOM 

AML (megakaryoblastic) with 

t(1;22)(p13.3;q13.3);RBM15-MKL1 

Provisional entity: AML with BCR-ABL1 

AML with mutated NPM1 

AML with biallelic mutations of CEBPA 

Provisional entity: AML with mutated RUNX1 

AML with myelodysplasia-

related changes 

  

Therapy-related myeloid 

neoplasms 

  

AML, not otherwise specified 

(NOS) 

AML with minimal differentiation (FAB M0) 

AML without maturation (FAB M1) 

AML with maturation (FAB M2) 

Acute myelomonocytic leukemia (FAB M4) 

Acute monoblastic/monocytic leukemia (FAB M5) 

Pure erythroid leukemia (FAB M6) 

Acute megakaryoblastic leukemia (FAB M7) 

Acute basophilic leukemia 

Acute panmyelosis with myelofibrosis 

Table 1-2 WHO AML classification. The AML is classified based on the recurrent genetic 

abnormalities, the incidence of myelodysplasia, therapy-related myeloid neoplasms, and not otherwise 

specified (NOS). Several of the subgroups are overlapped with the FAB classification, indicated by 

FAB in italic annotation[54].  
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1.2.2.2. Therapy-related AML (t-AML) 
Myeloid neoplasm in patients that had a history of cytotoxic agent exposure is 

classified as therapy-related myeloid neoplasms (t-MN) by the WHO. This condition 

consists of two groups, therapy-related myelodysplastic syndrome (t-MDS) and 

therapy-related AML (t-AML). The categorisation is solely based on the blast count 

where ≥20% count is the t-AML, except for the neoplasms with t(8;21) or inv(16) that 

are diagnosed as t-AML regardless of the blast count[55]. These neoplasms are 

thought to be a consequence of mutational events induced by the cytotoxic 

agents[56]. They were found in various primary malignancies, but more frequently in 

Hodgkin lymphoma, non-Hodgkin lymphoma, myeloma, ALL, breast cancer, 

sarcoma, ovarian and testicular cancer[57-60]. A large-scale population study on 

3,055 AML patients showed the t-AML accounted for 6.6% of the AML cases[58]. 

WHO further classified t-AML based on its major causative therapeutic exposures: 

alkylating agent-related and topoisomerase II inhibitor-related t-AML[61]. Alkylating 

agents act by transferring alkyl group to specific bases and cause inaccurate base 

pairing, which then creates single and double-strand breaks during the repair 

process[62, 63]. It has a latency of 4 to 7 years after the exposure[62]. Also, there is 

a high incidence of deletion of part or all chromosome 5 and/or 7 (i.e. -5/del(5q) 

and/or -7/del(7q)) in this group[57]. In contrast to the alkylating agent-related t-AML, 

the topoisomerase II inhibitor agent showed shorter latency within 2 to 3 years after 

the initial exposure[55]. Most of the cases carried the translocation involving 11q23, 

and less commonly 21q22 (AML1), 16q22 (CBFB), and 11p15.5 (NUP98)[64-66]. 

1.2.3. MLL-rearranged leukaemia 

1.2.3.1. Lineage specificity of rearranged 11q23 
As briefly mentioned in Section 1.2, the fusion partner of MLL is correlated with a 

certain lineage of leukaemia, which raises questions on whether mechanisms 

regulating lineage specificity are determined by 11q23 rearrangements.  

A large-scale study of the MLL recombinome in 2017 by Meyer et al.[67] described in 

detail the distribution of the MLL partner and the associated leukaemia. It included 

2,345 acute leukaemia patients consisting of infant, childhood, and adult patients and 

identified 135 different MLL rearrangements[67]. The study showed there were 35 

recurrent translocation partner genes, and 9 of them account for more than 90% of 

rearrangements within the studied patients[67]. Lineage specificity of acute 
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leukaemia can be observed from these data. They are re-written and summarised in 

Table 1-3. 

 ALL  AML 

  Infant  Paediatric  Adult  Infant  Paediatric  Adult 

AF4  338/352 (96.0%)  139/152 (91.4%)  332/335 (99.1%)  4/352 (1.14%)  3/152 (1.97%)  3/335 (0.90%) 

ENL  154/160 (96.3%)  56/78 (71.8%)  50/64 (78.1%)  2/160 (1.25%)  21/78 (26.9%)  14/64 (21.9%) 

PTD  N/A  0/6 (0.00%)  1/101 (0.99%)  N/A  6/6 (100%)  98/101 (97.0%) 

ELL  0/25 (0.00%)  0/24 (0.00%)  1/48 (2.08%)  24/25 (96.0%)  24/24 (100%)  45/48 (93.8%) 

EPS15  16/18 (88.9%)  6/11 (54.5%)  4/9 (44.4%)  1/18 (5.56%)  5/11 (45.5%)  5/9 (55.6%) 

AF1Q  1/14 (7.14%)  0/7 (0.00%)  0/2 (0.00%)  13/14 (92.9%)  7/7 (100%)  2/2 (100%) 

SEPT6  0/5 (0.00%)  0/10 (0.00%)  0/2 (0.00%)  5/5 (100%)  10/10 (100%)  2/2 (100%) 

MLLT6  N/A  1/3 (33.3%)  0/11 (0.00%)  N/A  2/3 (66.7%)  11/11 (100%) 

SEPT9  0/2 (0.00%)  0/5 (0.00%)  0/6 (0.00%)  2/2 (100%)  5/5 (100%)  6/6 (100%) 

the numbers = case/total case (percentage of the case) 

Table 1-3 Distribution of the MLL translocation partner gene and their type of leukaemia 

incidences. The overview includes only the recurrent translocation partner genes and the genes that 

showed distinct specificity of ALL or AML. AF4, ENL in infant, and EPS15 in infant yield ALL as the 

majority of the cases (blue highlight). On the other hand, PTD, ELL, AF1Q, SEPT6, MLLT6, and 

SEPT9 yield AML (green highlight). The overview includes ALL and AML but excludes ‘others’ 

category that consists of mixed lineage leukaemia, MDS, lymphoma, and no information. Infant = 0 – 1 

year, paediatric = 1 – 18 years, adult = >18 years. PTD = partial tandem duplication. The data are 

adapted from Meyer et al.[67]. 

These data showed that there are at least 9 MLL fusion partners that are specifically 

associated with certain lineages of MLLr leukaemia, including AF4, ENL and EPS15 

in the infant, which are associated with ALL, and PTD, ELL, AF1Q, SEPT6, MLLT6, 

and SEPT9 in AML. 

How MLL-altered genes specify the lineage of leukaemia still needs to be 

determined. A possible mechanism is due to MLL roles that target distinct HOX 

genes, while HOX gene family is correlated with embryogenesis and 

haematopoiesis[68]. MLL consists of three AT-hooks that bind to target DNA, methyl-

DNA binding domain (MBD), three PHDs (PHD1-3), one bromodomain followed by 

another PHD (PHD4), one transactivation domain (TAD), and one SET domain 

(Figure 1-3)[68].  
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Figure 1-3 MLL scheme. MLL is a large protein (~4000 amino acids) that consists of three AT hooks, 

followed by MBD, PHD, BD, TAD, and SET domain. The major breakpoint cluster region is indicated 

on the dotted line. The chromosomal rearrangement will separate the MBD from the PHD domain. 

It was observed that the third PHD of MLL interacts with CYP33[68, 69]. Over-

expression of CYP33 in human chronic myelogenous leukaemia cells, K562, 

negatively affects the expression of HOXC8 and HOXC9[69]. By comparing ChIP 

and gene expression datasets of MLL/AF4-harbouring cells, the upregulation of 

HOXA7 (+13.1 fold), HOXA9 (+11.1 fold), and HOXA10 (+10.1 fold) was identified 

[70, 71]. Moreover, the SET domain of MLL is known to act as a histone methylase 

on H3K4, and directly binds to HOXA9 and Hoxc8 promoters in human and mouse, 

respectively[68]. Methylation of H3K4 correlates with an active mark of transcription.  

Consequently, MLL may relate to the activation of HOXA9 and Hoxc8[68]. Also, the 

SET domain has been demonstrated to interact with the chromatin remodelling 

NuRD complex, SWI/SNF, hSNF2H, and Sin3A [72]. In line with these data, 

expression of MLL/AF4 in human embryonic stem cells showed upregulation of 

global Hox gene expression[73]. Taken together, MLL rearrangement and its 

partners may deregulate the normal functions of MLL haematopoiesis. The presence 

of secondary mutations might create an additional dysregulation on the rearranged 

11q23 leukaemia cells and lead to another lineage specificity. 

1.2.3.2. Models of MLLr leukaemia 
Several MLLr models have been developed to understand the oncogenic 

mechanisms of the rearrangement. The MLL/AF9 fusion gene has been 

demonstrated to induce ALL or AML in vitro and in vivo in mice[74, 75]. It has been 

shown that microenvironmental factors impact on lineage commitments of MLL/AF9 

acute leukaemia, i.e. lymphoid growth factors induce ALL development, and myeloid 

factors induce AML development[75]. This principle suggests that introducing 

important regulators to MLL/AF9 leukaemia stem cells (LSCs) can direct the 

leukaemia lineage commitment of the model. 
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Further to the MLL/AF9 model, Stavropoulou et al.[76]  successfully expressed and 

characterised the fusion gene on two different mouse haematopoietic progenitor 

compartments, long-term HSC and GMP populations. They showed that introducing 

the fusion gene into these populations was sufficient to develop AML, but with 

different aggressiveness and outcome. MLL/AF9 long-term HSC developed more 

dispersed clonogenic growth of AML cells in vitro, indicating higher migratory 

capacity[76]. The fusion gene expression in this compartment was also more potent 

in inducing AML, by having shorter latency compared with the GMP population in 

vivo[76]. Moreover, they showed that bone marrow transplantation of only 125 

MLL/AF9 long-term HSC cells were sufficient to induce AML, but required at least 

2,500 transplanted cells in MLL/AF9 GMP cells transplantation[76]. 

Despite the success of MLL/AF9 model, different attempts to model MLL/AF4 to 

generate pro-B ALL have not been successful[77-81]. Recently, Lin et al.[82] 

developed a hybrid MLL/Af4 model that was derived from human N-terminal MLL and 

mouse C-terminal Af4. The fusion gene was transduced into human CD34+ cells 

using a retrovirus system, followed by in vitro culture or transplantation into 

immunodeficient mice (NSG mice). They showed that the cells were capable to 

expand into CD19+CD33- in the lymphoid culture, and the mouse transplanted cells 

reproducibly induced pro-B ALL phenotype[82]. Moreover, they also performed ChIP-

seq and RNAseq and confirmed that the cells had highly similar DNA binding sites 

and gene expression signature with the human MLL/AF4 ALL. 

We received the MLL/Af4 cells from the group (Mulloy lab) to explore further our 

study. 

1.3. Leukaemia lineage switch 

1.3.1. Introduction to leukaemia lineage switch 

Leukaemia lineage switch is a condition where the patient is diagnosed with a certain 

lineage of leukaemia (lymphoid or myeloid) but then relapses with leukaemia of the 

opposite lineage[83, 84]. Although the underlying factors that cause lineage switch 

remain undetermined, several mechanisms have been suggested. Phenotypic 

conversion may occur at the multipotent progenitor cells that can differentiate into 

both lineages[83-89]. Intrinsic (genetic alterations) or extrinsic (chemo- and 

radiotherapy) factors could trigger a change in the differentiation program of those 

progenitor cells resulting in a phenotypic switch at relapse[83-89]. Alternatively, 

lineage switch may occur if there are 2 different de novo leukaemia clones. Therapy 
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at the primary diagnosis kills the dominant clone, followed by outgrowth of the 

secondary clone at relapse[83-89]. 

1.3.2. Study cases 

A study looking at 239 childhood leukaemia patients with complete remission by 

Stass et al.[84] found that there were 89 relapsed in the bone marrow (BM), and 6 

lineage switch from those relapse cases (6.7%). Among these 6 lineage switch 

cases, 5 cases were a conversion from ALL to AML, and 1 case was the reverse. In 

addition to its rare evidence, the reports[84, 86-97] also showed that the disease had 

a very poor prognosis with no standard treatment (most cases were resistant to 

chemotherapy at relapse).  Conversion from ALL to AML forms the majority of cases 

and predominantly occurred in children. On the other hand conversion from AML to 

ALL predominately occurred in adults. Furthermore, lineage switch from T cell 

malignancy, such as T-cell lymphoblastic lymphoma (T-LBL) relapsed to AML was 

also reported[98, 99]. The conversions mostly arose less than 4 years after primary 

diagnosis. The reported study cases were collected and summarised in Table 1-4. 
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Case 
Age initial 
diagnosis 

Sex 

Time to 
conversion 
from diagnosis 
(month) 

Number 
haematological 
relapse at 
conversion 

Diagnosis  Karyotype or cytogenetic abnormality 

Notes  Ref. 
Pres.  Rel.  Pres.  Rel. 

1  Neonate  F  3  First  L1  M5 
46,XX,t(1;6)(p36.2;q25.3),
t(4;11)(q21;q23) 

46,XX,t(1;6)(p36.2;q25.3), 
t(4;11)(q21;q23) 

Lineage switch from a congenital acute 
leukaemia (CAL) is a rare case. CAL itself 
accounts for less than 1% of childhood 
leukaemia. The immunophenotypes on the 
presentation showed the lymphoid markers, 
also expressed dim CD33, but negative CD34. 

[94] 

2  Neonate  F  2  First  M5  Pro‐B ALL  46,XX,ins(11;4)(q23;q21q25)  46,XX,ins(11;4)(q23;q21q25) 
Up to 4% B cell precursor 
immunophenotypes coexisted in the blast 
presentation examination. 

[100] 

3  Neonate  M  0 (day 15)  First  Pro‐B ALL  M5  MLL/ENL (RT‐PCR)  MLL/ENL (RT‐PCR) 

The patient was treated based on Interfant‐
06, null response, and switched on day 15. 
The treatment was converted to the AML 
protocol and achieved CR. 

[100] 

4  Neonate   M  6  ND  B ALL 
Mono‐
cytoid 

MLL/ENL (RT‐PCR)  MLL/ENL (RT‐PCR) 
The blast in the presentation showed 
lymphoid immunophenotypes that 
coexpressed CD34. 

[101] 

5  Neonate  F  0 (day 14)  First  M5  L2  t(4;11)(q21;q23)  t(4;11)(q21;q23) 

At primary diagnosis, immunophenotypes of 
AML were identified, but negative for 
myeloperoxidase. The investigators 
concluded the case as the AML M5 that 
rarely carried t(4;11). Due to no 
chemotherapy treatment medicated, they 
suggested an evidence of leukaemic 
transformation in utero during foetal 
haematopoiesis. 

[95] 

6  21 d  M  ± 12  First  Pre‐B ALL  MPAL1  t(4;11)(q21;q23)  t(4;11)(q21;q23) 

The MPAL relapse included monocytoid 
lineage (predominant) and lymphoid lineage 
(subdominant). The investigators showed 
previously undescribed MLL/AF4 sequence 
that had a breakpoint between MLL exon 12 
and AF4 exon 4, found in both the 
presentation and relapse. 

[93] 

7  3 mo  F  2  First  L1  M4  t(4;11)(q21;q23)  t(4;11)(q21;q23)  The ALL presentation coexpressed CD33.  [102] 
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Age initial 
diagnosis 
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Time to 
conversion 
from diagnosis 
(month) 

Number 
haematological 
relapse at 
conversion 

Diagnosis  Karyotype or cytogenetic abnormality 
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Pres.  Rel.  Pres.  Rel. 

8  <6 mo  M  6  First  Pro‐B ALL  M5  47,XY,t(4;11)(q21;q23),+8 
Complex karyotype 
including t(4;11)(q21;q23) 

The patient was treated based on 1‐ALL’96 
BFM‐HPG on the initial diagnosis, achieved 
CR 

[100] 

9  <6 mo  F  7  Second  Pro‐B ALL  M5  46,XX,add(19)(p13 or q13) 
46,XX,add(19)(p13 or q13)/ 
48,idem,+21,+mar 

The patient was treated based on Interfant‐
99, achieved CR, but relapsed with the same 
disease after six months latency. Following 
the relapse treatment, the patient 
underwent the switch to M5 22 days later. 

[100] 

10  <6 mo  M  0 (day 8)  First  Pre‐B ALL  M5  t(11;19)(q23;p13)  t(11;19)(q23;p13) 
The patient was treated based on Interfant‐
99 and achieved CR. However, undergoing 
another relapse three months later. 

[100] 

11  <6 mo  M  0 (day 8)  First  Pro‐B ALL  M5  47,XY,+X,t(9;11)(p21;q23)  Unsuccessful karyotype 

The patient was treated based on Interfant‐
99; death during induction. The karyotyping 
was not complete on the relapse. However, 
the presentation and relapse showed the 
same TCR rearrangement sequences. 

[100] 

12  <6 mo  ND  0 (day 15)  First   Pre‐B ALL  M4  MLL/ENL (RT‐PCR)  MLL/ENL (RT‐PCR) 

The patient was treated based on Interfant‐
99 on the initial diagnosis. After undergoing 
the switch to AML, the treatment was 
changed to AML protocol and achieved CR. 
However, the initial Pre‐B ALL reappeared 
after three months latency. 

[100] 

13  9 mo  M  ± 8  First  Pre‐B ALL  M5b 
48~50,xy,+2,+8,t(11;16) 
(q23;p13.3),+r,+mar 

47~50,XY,+8,t(11;16) 
(q23;p13.3),+1~3mar 

The t(11;16)(q23;p13.3) gave the product 
MLL/CBP that was previously described in t‐
AML. 

[89] 

14  18 mo  F  0 ( day 13)  First  Pro‐B ALL  M5  t(4;11)(q21;q23)  t(4;11)(q21;q23) 

The patient was treated based on the high‐
risk group AIEOP‐BFM‐ALL‐2000 on the initial 
diagnosis but relapsed with AML thirteen 
days later. The protocol was changed to the 
conventional AML‐type treatment and 
achieved CR. However, the patient relapsed 
back with the initial pro‐B ALL phenotype 
eight months afterwards. 

[103] 

15  3 y  F  ± 14  First  L1  M1 
46,XX,t(11;14)(p13;q13)/ 
46,XX,del(6)(q?24) 

46,XX,del(6)(q?24) 
The 6q deletion clone in primary diagnosis 
was less than 15% of the cells. 

[84] 
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16  3 y 10 mo  M  138  Second  L1  M1  ND  t(4;11)(q21;q23) 

t(4;11) was found in AML relapse. However, 
the cytogenetic identification had not been 
performed at primary state. This case 
demonstrated a lineage switch after 11 years 
interval. 

[104] 

17  4 y  M  19  First  T‐ALL  M0  46,XY,del(12)(p12) 
45,X,‐Y,t(11;17)(q13;p12)/ 
46,XY 

The study included array comparative 
genomic hybridization (Array CGH) and 
whole exome sequencing (WES) on the 
presentation and relapse. The Array CGH 
showed heterozygous deletion accompanied 
by a small homozygous deletion, both 
encompassing 9p21.3, two heterozygous 
deletions at 7q34 and 11p13 on both the 
presentation and relapse. The WES listed 
mutated genes in presentation, relapse, also 
shared by both. 

[105] 

18  4 y  M  264  First  Pre‐B ALL  AML  t(9;22)(q34;q11)  t(9;22)(q34;q11) 

The case showed pre‐B ALL switched to AML 
immunophenotypes after 22 years. The 
identical BCR‐ABL1 breakpoint was identified 
on the presentation and relapse. Also, the 
relapse shared two identical immunoglobulin 
rearrangements with the presentation. 

[106] 

19  4 y  M  9  First  M5  pro‐B ALL  Normal  Normal 

The authors argued the case as a lineage 
switch because of the short latency (two 
months after treatment) compared with at 
least twelve months as in the secondary ALL. 

[91] 

20  6 y  M  13  Second  L1 
Unclassifi
able AML 

47,XY,+C 
47,XY,+C,13p+,del(17)(p11)/ 

47,XY,+C,i(7q),del(17)(p11)2 

The lineage switch occurred one month after 
receiving 2'‐dCF. The relapse blasts did not 
express any lymphoid markers but showed a 
monomorphic proliferation of immature 
myeloid cells with granules and moderate 
cytoplasm. 

[84] 

21  15 y  F  0 (day 8)  First 
Common 
ALL 

M5 
46,XX,del(6)(q13q21 or 
q21q23) 

46,XX,del(6)(q13q21 or 
q21q23) 

The patient was treated based on ALLIC 02 
but changed to AML protocol after the 

[100] 
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Pres.  Rel.  Pres.  Rel. 

lineage switch. She achieved CR, but death 
due to sepsis in CR. 

22  15 y  M  17  First  L2  M1  Normal  46,XY,del(7)(p14),9p+ 

The lineage switch occurred one week after 
receiving 2'‐dCF. The investigators suspected 
the effect of this drug in cell differentiation 
program. 

[84] 

23  20 y  M  21  First  T‐ALL  AML 
52,XY,+?X,+8,+10,+11,+13
,+19/46,XY 

52,XY,+?X,+8,+10,+11,+13
,+19/46,XY 

The diagnosis showed the immature T 
lymphoid immunophenotypes (CD7+, CD4‐, 
CD8‐, CD1a‐). Retrospect immunophenotype 
analysis on the non‐WBC population 
(CD45dim) showed 1.2% CD34high 
population with possible coexpression of 
CD117, CD33, and CD19, which were 
expressed in the relapse. 

[107] 

24  21 y  F  ND  First  Pro‐B ALL  MPAL  46,XX,t(4;11)(q21;q23) 

46,XX,t(4;11)(q21;q23)/
50,XX,t(4;11)(q21;q23),+8,+12,
+13,+m/ 
50,XX,t(4;11)(q21;q23),+8,+12,
+13,+der(4)t(4;11)(q21;q23)

The MPAL relapse blasts consisted of about 
10% lymphoid morphology cells and 
myeloid/monocytic of the remainings.  

[108] 

25  25 y  F  31  Second  Pro‐B ALL  M5b  TAF15‐ZNF384 (RT‐PCR)  TAF15‐ZNF384 (RT‐PCR) 

Conventional cytogenetics did not find 
t(12;17)(p13;q11) in the presentation but re‐
evaluation with PCR identified the 
translocation. CD33 and CD34 were 
expressed in the presentation. 

[92] 

26  27 y  M  67  Seventh  T‐LBL3  M5a  t(6;11)(q27;q23)  t(6;11)(q27;q23) 

T‐cell lymphoma that switched to AML is a 
highly rare case. The translocation in initial 
diagnosis and relapse had identical 
breakpoint sequences. Furthermore, the T‐
LBL coexpressed CD33. However, the AML 
showed no T‐LBL markers. 

[98] 

27  31 y  M  14  First  T‐LBL  M4  t(10;11)(q22;q23)  t(10;11)(q22;q23) 

The initial diagnosis showed the clonal TCR 
gamma chain and a minor IgG kappa gene 
rearrangements. However, both 
rearrangements were not found on the 
relapse blasts. 

[99] 
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28  32 y  M  84  Second  T ALL 
Myeloid 
sarcoma 

ND  ND 

The study declared the case as a lineage 
switch due to the identical TCR 
rearrangements. The patient was treated 
according to GMALL 07/2003 protocol during 
the T ALL diagnosis. 

[109] 

29  38 y  M  59  First  M4Eo  B‐ALL  inv(16)(p13q22)  inv(16)(p13q22) 
Eosinophilia was found in the AML diagnosis; 
the presentation also showed CD19 and TdT 
expression 

[90] 

30  40 y  F  42  First  Pro‐B ALL  AML  46,XX,t(2;16)(p11;p11)  47,XX,t(2;16)(p11;p11),+12 

Whole exome sequencing was performed on 
the presentation, relapse, and germline 
(saliva). The investigators found seven 
variants, including six variants (ETV6, JARID2, 
KLF4, PIK3C2A, PTPRG) presented at relapse, 
and one variant (SMC3) presented at both 
presentation and relapse.  

[110] 

31  46 y  M  10  First  M4  L2  Normal  Normal 

A lineage switch from AML to ALL in adult 
was very rare. The authors argued the case 
was not therapy‐related leukaemia because 
of the short latency (six months) between 
the treatment and the switch. 

[96] 

32  62 y  M  4  First 
Erythro‐
leukaemia 

Pre‐B ALL 

41,XY,‐5,‐
7,add(11)(q23),der(14;21)
(q10;q10),‐16, 
add(17)(p13),‐18,‐20,‐21,‐
22,+2mar 

41,XY,add(1)(q21),‐
3,add(3)(q22),‐4,‐5,‐
7,der(9)t(9;11)(q34;q13),
der(11)del(11)(p11.2)add(
11)(q23),der(14;21)(q10;
q10),‐16,add(17)(p13),‐
18,‐20,‐22,+4mar 

The first study case of lineage switch from 
erythroleukemia to ALL. Complex karyotypes 
on presentation and relapse indicated that 
the ALL was from the same clone with the 
AML. 

[97] 

Table 1-4 Summary study cases from different literatures. The switch from ALL to AML was the majority of the cases. Two T-LBL switches that carried the same 

translocation between presentation and relapse were also reported. Diagnosis classifications L- and M- refer to standard French–American–British (FAB) 

classification; 1MPAL: mixed phenotype acute leukaemia; 2karyotype from the same clone; 3T-LBL: T-cell lymphoblastic lymphoma; ND: not defined; y: year; mo: 

month.
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These collected reports showed rearrangement on 11q23 occurred on a high number 

of the cases. 

MLL rearrangement (t(4;11) or t(9;11)) was found in all of the very rare congenital 

acute leukaemia (CAL) lineage switch patients and was also found in several 

childhood lineage switch cases. Interestingly, t(11;16) is uncommon and associated 

with therapy-related AML (t-AML) and was observed in both presentation and relapse 

of the lineage switch patient[89]. 

The two unique cases[98, 99] of T-LBL switched to AML also carried the 11q23 

rearrangement, t(6;11)(q27;q23) and t(10;11)(q22;q23), respectively. Both studies 

showed the identical breakpoint in the presentation and relapse. Moreover, the study 

from Higuchi et al., (2016) also showed the coexpression of the myeloid marker, 

CD33, in the initial T-LBL diagnosis, which suggested the involvement of myeloid 

precursor on the early malignancy[98]. However, it remained unclear if the AML 

relapse was due to clonal selection or phenotypic changes of the precursor cells.  

One unique lineage switch was reported that included AML-M7 (acute 

megakaryoblastic leukaemia), relapse to ALL-L3, and back to AML-M7 in a 39 years 

old female patient[88]. Conversion from primary AML to ALL occurred within 1 year, 

and the second conversion to AML also happened within another year. Short interval 

neoplasms suggested a double lineage switch instead of secondary 

malignancies[88]. Complex karyotypes were found in the relapse states. This report 

showed that an oscillation between the 2 lineages could also occur in leukaemia. 

Lastly, two reports suggested the effect of chemotherapy, in particular, adenosine 

deaminase inhibitor, 2'-deoxycoformycin (2’-dCF), as an extrinsic factor that caused a 

lineage switch[84, 111]. Even though the exact mechanism is still unknown, but gene 

activation through DNA methylation as a secondary effect of the drug has been 

proposed[84]. 

1.4. Patient L826 and preliminary data 

Patient L826 (Newcastle-upon-Tyne Hospitals NHS Foundation Trust) presented with 

ALL at 9 months old with t(4;11). He was treated with Interfant-06 protocol and 

underwent complete remission, but relapsed with AML at 4 years old.  In 

collaboration with Claus Meyer, Diagnostic Center of Acute Leukemia, Frankfurt, we 

determined that both initial presentation and relapse leukaemias shared an identical 

t(4;11) breakpoint. The presence of this identical breakpoint in both states has an 
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important meaning, determining that the current case is a lineage switch, instead of 

secondary neoplasm. Also, this data was supported by microsatellite instability (MSI) 

analysis which indicated no impairment of DNA mismatch repair in the relapse AML. 

While the presence of microsatellite instability (MSI) correlates with t-AML[112-114], 

these data imply that the relapse AML in patient L826 was not a therapy-related 

case. 

1.4.1. Immunophenotypes 

Patient L826 was diagnosed in presentation as ALL and relapse as AML. His white 

blood count in the ALL showed a total of 253 x 109 cells/l with a very high number 

(90%) of intermediate/small sized blast cells. Total white cell count in the AML was 

17.99 x 109 cells/l of which 9.71 x 109 cells/l were blasts of an intermediate/large size. 

His bone marrow aspirate was clinically immunophenotyped by flow cytometry, as 

summarised in Table 1-5. 
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Marker ALL AML 
CD19 90 9 
CD5 2 <1 
CD10 <1 <1 
CD34 10 87 
CD7 9 87 
CD33 12 96 
CD2 3 2 
CD13 <1 2 
Surface Ig lambda <1 <1 
Surface Ig kappa <1 <1 
CD14 <1 <1 
CD3 3 nd 
CD64 3 89 
CD45 100 70 
Glycophorin A nd 2 
CD15 30 <1 
CD117 <1 89 
HLA-DR 86 96 
CD41a <1 6 
cytoCD3 <1 2 
Anti-myeloperoxidase 2 <1 
cyCD79a 1 <1 
Tdt 3 <1 

Table 1-5 Immunophenotype of patient L826 presenting with ALL and relapse AML. The 

shading on CD19 indicated the ALL marker. The immunophenotype also showed negative 

expression of surface Ig and CD10 which indicated pro-B ALL. The shading on CD33 and CD117 

showed the AML markers. CD64 suggested the monocytoid morphology of the cells. Furthermore, co-

expression of CD34 and CD7 indicated that the cells were immature. The anonymised data were 

obtained from Newcastle upon Tyne Hospitals. 

High CD19 expression indicated the B ALL. The negativity of surface immunoglobulin 

lambda and kappa chains showed the immature phenotype, i.e. prior to complete B 

cell receptor formation. Furthermore, negative expression of CD10 concluded the 

characteristics of pro-B ALL. In addition to this, negative expression of myeloid 

markers (myeloperoxidase, CD13, CD33, CD117) and T ALL markers (CD3, CD2, 

CD5) suggested the disease to be exclusively pro-B ALL, rather than mixed 

phenotypic leukaemia. 

In contrast, AML markers including CD33, CD64, and CD117 were highly expressed 

in the relapse. Also, the presence of CD64 indicated a tendency of monocytoid 
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differentiation. Similarly, the T ALL markers (CD3, CD2, CD5, CD10) and B ALL 

markers (CD79a, CD19, CD10, TdT) were not expressed. Intriguingly, the relapse 

also expressed CD7. Even though CD7 is a marker of T ALL, but its expression 

alone is insufficient for the categorisation. Instead, simultaneous expression of CD7 

and CD34 in the AML, as in the relapse case, indicated immature blasts[115, 116]. 

1.4.2. Chromosome study 

Chromosome study data were obtained from the Northern Genetics Service. Both 

presentation and relapse karyotyping showed t(4;11)(q21;q23) and confirmed the 

rearrangement of MLL by fluorescent in situ hybridisation (FISH). Details of the 

results were summarised in Table 1-6. 

ALL Karyotype 46, XY, t(4;11)(q21;q23)[3]/46, XY [2] 

FISH MLL rearranged [89/100] 

AML Karyotype 46, XY, t(4;11)(q21;23) [1] / 46, idem, del(5)(q2?q3?), 

add(10)(q) [7] /  

47, idem, +der(4) t(4;11) [1] / 46, XY [2] 

FISH MLL rearranged [92/100], extra 3'MLL signal [8/100] 

Table 1-6 Karyotype and FISH analysis on L826 presentation and relapse. Karyotype L826 ALL 

presentation showed the translocation t(4;11) and the normal karyotype was also seen. The 

translocation was confirmed by MLL FISH that proved the MLL rearrangement, observed in 89/100 

analysed cells; the remaining 11/100 cells are wild-type or non-leukaemic cells that are commonly also 

present on the analysed samples. The karyotype AML was more complex than the ALL. The 

translocation t(4;11) was observed, but seven of the examined cells also showed co-mutation deletion 

chromosome 5 and structural abnormality chromosome 10q. It was also found a cell with an extra 

copy of the der(4) t(4;11) indicating a subclonal event. FISH on the AML sample confirmed the MLL 

rearrangement as well as the additional copy of the MLL signal. This cytogenetics analysis was 

performed by the Northern Genetics Service, Newcastle. 

Cytogenetic analysis on the ALL identified three cells with t(4;11)(q21;q23). This 

result was confirmed by MLL (11q23) breakapart FISH that showed MLL 

rearrangement in 89/100 cells.  

The translocation was also found in the AML although several cells had more 

complex karyotypes. Seven cells showed deletion 5q and a structural abnormality of 

10q along with the t(4;11). One cell showed t(4;11) with an extra copy of the 

der(4)t(4;11) chromosome. This result was confirmed by MLL FISH that showed the 

rearrangement in 92/100 cells also an additional copy 3’-MLL signal in 8/100 cells 

examined, consistent with the single karyotype der(4)t(4;11). 
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These data indicated there might be a shared clonal origin of the presentation and 

the relapse. 

1.4.3. Fusion gene breakpoint sequences 

The presence of t(4;11) in both presentation and relapse indicated that both states 

might have the same clonal origin. To confirm this, LDI-PCR followed by Sanger 

sequencing were conducted on the fusion products, MLL/AF4 and its reciprocal 

AF4/MLL, performed by Dr Claus Meyer. The sequencing showed the same 

breakpoint as depicted in Figure 1-4. 

 

Figure 1-4 Breakpoints MLL/AF4 and AF4/MLL on L826 presentation and relapse. Sanger 

sequencing genomic breakpoint der(11) (A) and der(4) (B) on L826 presentation (top) and relapse 

(bottom). Identical breakpoint sequences were seen on der(11) product, MLL/AF4, between ALL 

presentation and AML relapse, as well as on the der(4) product, AF4/MLL. The sequencing also 

showed the recombination MLL/AF4 between MLL intron 9 and AF4 intron 4, yielded the transcript 

product MLL exon 9 and AF4 exon 5. Data obtained from Dr Claus Meyer, Diagnostic Center of Acute 

Leukemia, Frankfurt, Germany. 

The identical breakpoints between the presentation and relapse confirmed that the 

relapse arose from the same origin as the presentation, instead of being a secondary 

leukaemia. It was further verified by the same random joining (filler) sequences 

appearing in both states, since it is extremely unlikely for two different leukaemias to 

share the same filler sequences. This result also showed the fusion gene product 

contained the truncated MLL gene (exon 1-9) and downstream of exon 5 of AF4 

(exon 5-21). 

1.4.4. Microsatellite instability analysis 

Microsatellites are short, repetitive regions of the DNA found throughout the genome. 

Due to their repetitive sequences, they are prone to slippage events during DNA 

replication which results in extra repeats being inserted, defined as microsatellite 

der(11); MLL/AF4 der(4); AF4/MLL 

A B



26 
 

instability (MSI). These errors can be detected and removed by DNA mismatch repair 

mechanism. However, DNA-damaging chemotherapies (particularly alkylating 

agents, e.g. cyclophosphamide in Interfant-06), which are given during treatment for 

the primary malignancy, can cause defects in mismatch repair. Hence, MSI is 

accepted as a condition of secondary malignancy due to previous chemotherapy. 

MSI is frequently found in t-AML and t-MDS, but it is uncommon in primary 

leukaemia[117]. To further validate that the relapse L826 was not secondary 

leukaemia due to t-AML, MSI analysis that included five mononucleotide 

microsatellite markers (BAT25, BAT26, NR-21, NR-24, and MONO-27) as described 

by Bacher et al.[118] was performed on the presentation and relapse, also the 

remission samples. DNA was extracted from the L826 samples and then assessed 

by fluorescent multiplex PCR for these microsatellite markers. The products were run 

on capillary electrophoresis and then analysed using Microsatellite Instability (MSI) 

Analysis System v1.2 (Promega). According to the current guidelines as defined by 

Umar et al.[119], L826 presentation, relapse, and remission had stable sequences on 

all of the markers, presented in Figure 1-5. 
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  A. ALL Presentation 

B. AML Relapse 

C. Remission 

D. Microsatellite stable control

E. Microsatellite unstable control 
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Figure 1-5 MSI analysis on L826 presentation, relapse, and remission. MSI analysis at five 

mononucleotide microsatellite markers (BAT25, BAT26, NR-21, NR-24, and MONO-27) using 

fluorescent multiplex PCR was assessed on L826 presentation (A), relapse (B), remission (C), and the 

analysis controls (D and E). MSI-positive is recognised for having longer or shorter length of 

microsatellite due to insertion (most of the cases) or deletion, respectively, as seen in the unstable 

control (E). Two pentanucleotide repeat markers, Penta C and Penta D, were included in the analysis 

to confirm the samples (presentation, relapse, and remission) were from the same individual, by 

having the same size of those markers. The analysis was performed using Microsatellite Instability 

(MSI) Analysis System v1.2 (Promega). Data obtained from Northern Genetics Service. 

None of the tested samples showed microsatellite instability. This finding indicated a 

normal DNA mismatch repair in the relapse L826, suggesting it was not a t-AML. 

1.4.5. Whole genome, whole exome, and RNA sequencing 

Having validated the occurrence of lineage switch in patient L826, this case allowed 

us to study the control of lineage commitment. Whole genome sequencing (WGS) and 

whole exome sequencing (WES) were performed on the presentation, relapse, and 

remission L826 to identify candidate driver genes. Novel somatic variants including 16 

in ALL and 98 in AML samples were found by the sequencing. Among these variants, 

1 and 12 of them, respectively, were non-synonymous mutations and predicted to have 

a deleterious effect on the protein function by Condel scoring (a scoring to evaluate 

the deleterious probability impact of a variant based on weighted average of the 

normalized scores method)[120]. Furthermore, RNA sequencing confirmed that 11 of 

the 12 non-synonymous mutations unique to the AML were amongst the top 25% of 

expressed genes in both the AML also ALL. These variants are listed in Table 1-7. 
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ALL AML 

Gene 
Chromosome 

location 
Mutation Gene 

Chromosome 

location 
Mutation 

CES1 16q12.2 G19V ACAP1 17p13.1 R662P 

BACE2 21q22.3 R442P 

CACNB4 2q22-q23 G105R 

CEP164 11q23.3 R953Q 

CHD4 12p13 R1068H 

CHTF8 16q22.1 E27Q 

DHX36 3q25.2 S557G 

NCOA2 8q13.3 K640Q 

PHF3 6q12 K1119I 

PPP1R7 2q37.3 R199L 

SLC4A8 12q13.13 I772F 

ZNF136 19p13.2 L117V 

Table 1-7 Non-synonymous mutated genes on L826 ALL presentation and AML relapse. The 

mutations were based on Exome sequencing comparing presentation, relapse, and remission. It was 

found there were 1 and 12 mutations in the ALL and AML, respectively. Among the 12 genes, 11 of 

them (highlighted) were confirmed to be expressed and located in the top 25% expressed genes in 

both ALL and AML L826. The sequences were aligned by Dr Sirintra Nakjang. The chromosome 

location and mutation were reviewed and summarised from the aligned sequences using Integrative 

Genomics Viewer Software[121]. 

In addition to these 12 variants, the exome and RNA sequencing also showed that 

these variants had 40 – 60% reads for the mutation. Considering the analysed samples 

contained 80% blast cells, it indicated heterozygosity of each mutation (Figure 1-6). 
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Figure 1-6 Identification of point mutations of non-synonymous mutation genes patient L826 by 

exome (top panel) and RNA sequencing (bottom panel). The graphs show the percentage of 

single-nucleotide where the point mutation is located. The left graphs are the reads at the ALL 

presentation that contain the wild-type genes; while the right graphs are the AML relapse with the 

mutated genes. The patterns of mutated genes at the AML demonstrate a ratio of 60/40 

(reference/mutation), which indicates the mutations are heterozygous. Seven genes are shown as 

representatives, the other genes show the same pattern.  

1.5. Candidate driver genes 

Twelve mutated genes in L826 AML relapse are the candidate driver genes that are 

hypothesised to divert the leukaemia lineage commitment. Eleven of these candidate 

genes are expressed and located in the top 25% expressed genes in the AML L826 

(Table 1-7). These mutated genes include genes that have important roles in cellular 

and molecular regulatory mechanisms, such as CHD4 (nucleosome remodelling 

complex, DNA repair[122-127], lineage fidelity[128-132]) ACAP1 (intracellular 

trafficking[133]), PPP1R7 (control of mitosis[134, 135]), PHF3 (potential role in 

transcription elongation[136], DNA repair[137]), DHX36 (RNA helicase – transcription 

regulation[138]), NCOA2 (transcriptional coactivator[139]), and CEP164 (microtubule 

organisation and chromosome segregation[140], DNA damage response[141, 142]). 
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These candidate genes were screened for the order of mutation acquisition, as 

described in Chapter 4. Based on that result, ACAP1, CHD4, PHF3, and PPP1R7 

were studied more intensively in this thesis.    

1.5.1. ACAP1 

ArfGAP with coiled-coil, ankyrin repeat and PH domains 1 (ACAP1) is a member of 

Arf-GTPase-activating protein (GAP) family protein, a family that regulates ADP-

ribosylation factors (Arfs)[133]. Arfs are a family of GTP-binding proteins that function 

as molecular switches in a variety of cellular events[133]. One member of Arf family 

is Arf6 that is known to have roles in GLUT4 trafficking[143], phagocytosis in 

macrophages[144], also modelling the plasma membrane and underlying 

cytoskeleton[145]. A study by Jackson et al[133] demonstrated Arf6 as the substrate 

of ACAP1, in which ACAP1 acted as a negative regulator of its activity. 

ACAP1 consists of a Bin/Amphiphysin/Rvs (BAR) domain, a Pleckstrin homology 

(PH) domain, the Arf-GAP domain, and ankyrin (ANK)-repeats (Figure 1-7). Mutation 

L826 relapse R662P was found on an ANK repeat. A crystal structure of PAP, 

another member of Arf-GAP family, showed that the ANK repeats physically 

associate with the Arf GAP domain[133, 146]. Since ANK repeats and Arf-GAP 

domain are the conserved domains of AZAP subgroup of Arf-GAP family (where the 

ACAP1 and PAP are categorised in[147]), it may also imply that the ANK repeat and 

Arf-GAP interaction is a common mechanism in this subgroup[133]. 

 

Figure 1-7 ACAP1 scheme. ACAP1 consists of BAR, PH, Arf-GAP domains, and ANK repeats. 

L826 relapse mutation occurred at R662P of ACAP1. The scheme is designed using IBS 

illustrator[148]. 

In addition to the known protein domains, an evaluation of ACAP1 protein expression 

showed that ACAP1 was widely expressed in different cells, including HeLa, CHO, 

Jurkat, lymphoblastoid C1R and JY cells, Daudi, B cells, HEK 293, NIH 3T3, but not 

in monocytes (myeloid cells)[133]. This expression profile may raise questions on the 
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effect of cellular organisation by ACAP1 mutation on the L826 relapse (i.e. myeloid 

leukaemia). 

1.5.2. CHD4 

Chromodomain helicase DNA-binding protein 4 (CHD4) was initially found in 

dermatomyositis-specific autoantigen[149, 150] and confirmed in 10-30% of the 

disease cases[151-153]. Interestingly, dermatomyositis is related with malignancies, 

particularly in ovary, lung, pancreas, stomach, colorectal, non-Hodgkin lymphomas 

and also ALL and AML[154-160]. 

CHD4 is recognised as a major subunit of nucleosome remodelling and histone 

deacetylase (NuRD) complex that also recruits HDAC1 and HDAC2, MBD2 and 

MBD3, MTA1, MTA2, and MTA3, RBBP4 and RBBP7, and it is also observed that it 

is involved in recruiting LSD1[155, 161]. CHD4 and other components of the NuRD 

complex work generally as transcriptional repressors through the chromatin 

remodelling ATPase activity of CHD4, histone deacetylation (HDAC), histone 

demethylation (LSD1), and DNA/promoter methylation[129, 155, 161, 162]. 

Looking in detail at its structure, CHD4 consists of two plant homeodomains (PHDs), 

two chromodomains, and an ATPase/helicase domain (helicase ATP-binding and 

helicase C-terminal; Figure 1-8) that apparently act in concert with each other or in 

combination with other NuRD components[129, 163, 164]. The PHDs interact with 

HDAC of the NuRD complex and also the histone tails, preferentially unmodified 

H3K4 and H3K9me[129, 163, 165]. The chromodomains have DNA binding activity 

and are required for nucleosome binding and nucleosome mobilisation through 

ATPase activity[165]. The ATPase/helicase domain is the part that promotes 

nucleosome mobilisation to maintain compact chromatin[129, 166]. Both PHDs and 

chromodomains work interdependently from the ATPase activity to regulate 

chromosome remodelling, shown by molecular shape reconstruction from small-

angle X-ray scattering that revealed the extensive domain-domain interactions[164]. 

We found that the mutation of L826 was located in the ATPase/helicase domain 

(R1068H). Moreover, exome sequencing analysis on 52 serous, 23 clear-cell, 67 

endometrioid, and 18 mixed-histology endometrial tumours, identified 17%, 4%, 7%, 

and 11% mutations in CHD4, respectively[167]. Intriguingly, 50% of the mutations 

were also located in the ATPase/helicase domain[167], which may indicate the 

importance of this domain. Furthermore, the mutation R1068H was also found in 
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congenital heart disease[168] and developmental disorder[169] cases, which indicate 

the probable change of function due to the mutation.  

 

Figure 1-8 CHD4 scheme. CHD4 consists of two PHDs, two chromodomains, and ATPase/helicase 

domain that divided into helicase ATP-binding and helicase C-terminal. The mutation on L826 is 

located at Arg1068His. Other mutations found by other group[167] are denoted in the yellow circles.  

The roles of CHD4 have been identified as (1) transcription regulation, such as in 

haematopoiesis (CD79a, Ikzf1, RORγ)[128-132], cell maturation (Wnt and Tcf7, 

GATA3, γ-globin)[170, 171], and embryonic stem cells (ESCs) self-renewal (Tbx3, 

Klf4, Klf5)[172], also (2) genome maintenance (OGG1, p53, BRCA1, RPA2, RNF8, 

CDC25A)[122-127]. 

In lymphopoiesis, CHD4 was shown to interact with RORγ and repress its 

activity[128]. RORγ is a nuclear receptor that binds gene promoters as monomers to 

activate the target genes[128]. It is recognised to have important roles in thymocyte 

development and T-cell lymphoma formation[128]. It is also revealed that CHD4 

expression is required for transition from double negative (CD4-CD8-) to double 

positive (CD4+ CD8+) stage and normal expression of CD4 during T cell 

development[131]. 

Studies in B cell lineage differentiation demonstrate that CHD4 is associated with 

CD79a, a gene that encodes Igα (the trans-membrane component of the B cell 

receptor)[129, 130]. CHD4 acts to enhance hypermethylation of the CD79a promoter, 

which represses its transcription[129]. Knockdown of CHD4 substantially enhanced 

the chromatin accessibility of the promoter and increased the transcription of 

CD79a[129, 130]. Furthermore, a study on a patient with CD79a mutation shows a 

block from pro-B to pre-B transition[173]. As a result, NuRD is referred to as the 

gatekeeper for B-cell development. 
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In vivo study of Chd4 deletion in mouse BM revealed early loss of lymphoid and 

myeloid cells and compensated with erythroid cells accumulation[132]. The study 

confirmed that Chd4-depleted BM progressed only to erythroid commitment which 

arrests at the proerythroblast stage while restricting myeloid cells and their 

downstream differentiation pathways[132]. Furthermore, they also found that Chd4 

expression was required to prime myeloid differentiation program on HSCs. 

CHD4 is also known to influence lymphopoiesis by its interaction with Ikzf1[174]. 

Ikzf1 is required for the differentiation of multipotent cells into lymphoid cells, and 

also restricts the myeloid programming[175]. The study by Reynaud et al[176] 

showed that B cell development was completely blocked in the absence of Ikzf1. 

Taken together, we hypothesise that the mutation on CHD4 L826 might disrupt its 

interaction with IKZF1, thus affect the lineage fate. 

In addition to the transcription regulation, the function of CHD4 is also widely studied 

in DNA-damage response (DDR) and cell cycle[122-127]. Polo et al (2010)[125] and 

Larsen et al (2010)[122] demonstrated rapid recruitment of CHD4 to the damage site 

upon DNA double-strand break (DSB) – inducing treatment. A further study identified 

that the recruitment promoted efficient ubiquitin conjugation by RNF8, which then 

mediated chromatin unfolding and recruitment of the other repair components, 

RNF168 and BRCA1[123].  

As well as in DSB, the role of CHD4 was also identified during oxidative damage and 

single strand breaks (SSBs)[127]. By treating cells with H2O2 to induce oxidative 

damage, OGG1 (a key DNA repair enzyme involved in oxidative damage) strongly 

binds with CHD4 at the damage sites[127]. After that, CHD4 recruits repressive 

chromatin proteins, including DNMT1, DNMT3A, DNMT3B, EZH2, and EHMT2 to 

those sites[127]. Moreover, this study also demonstrated that the recruitment of 

EZH2, DNMTs, and EHMT2 by CHD4 was dependent its ATPase domain. 

Lastly, a recent study by Sperlazza et al[177] investigated the importance of CHD4 

on AML cells. They demonstrated the necessity of CHD4 for efficient DSB repair, 

where depletion of CHD4 yields a more susceptible effect of DNA-damaging agents, 

daunorubicin and cytarabine, both in vitro and in vivo. Furthermore, this study 

showed the knockdown of CHD4 reduced the capacity of AML cells to form colonies 

in soft agar. Conclusively, CHD4 is one of the main candidate genes in this study due 

to its known roles. 
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1.5.3. PHF3 

PHD finger protein 3 (PHF3) was first identified as a tumour antigen (i.e. 

immunogenic) in 24 of 39 (61.53%) glioblastoma multiforme (GBM) patients, but in 

none of 14 healthy patients[136]. Further study by the same group in a higher 

number of patients found that there were 35 antibody responses against PHF3 from 

62 glioblastoma patients (56.5%)[178]. In both studies, the presence of PHF3 

autoantibodies was associated with a significantly better survival rate. The latter 

showed a median survival time of 14.5 months compared with 7.2 months for the 

patients with and without the autoantibody, respectively[178]. Moreover, they 

identified the wide expression of PHF3 in different tissues, including brain, heart, 

placenta, lung, liver, skeletal muscle, kidney, pancreas, and stomach, but the 

expression was significantly reduced in 15/21 glioblastoma, 2/2 glioblastoma cell 

lines, 2/2 anaplastic astrocytoma, and 2/2 astrocytoma WHO grade II[179].  

In addition to the glioma cases, Sroczynska et al (2014) showed the significance of 

PHF3 in human AML harbouring MLL/AF9 in the mouse model[180]. They performed 

epigenetic shRNA library targeting 319 known and candidate epigenetic regulators to 

screen for novel potential drug targets. They showed Phf3 was located at a high rank 

(4th rank) in the library indicating its role in cell survival and proliferation[180]. 

PHF3 is predicted to have a PHD finger domain, TFIIS homology domain, Spen 

paralog and ortholog C-terminal (SPOC) domain, and a proline-rich region (Figure 

1-9). This protein consists of 2039 amino acids and has a total molecular weight of 

229.45 kDa[136]. It is suggested to have a role as a transcription elongation factor 

due to homology in domains TFIIS[136]. In our study, exome sequencing data shows 

a point mutation from lysine to isoleucine on the 1119th amino acid of PHF3. 

 

Figure 1-9 PHF3 scheme. PHF3 consists of PHD finger, TFIIS homology, SPOC, and proline-rich 

region. The mutation on L826 is located at K1119I.  

A starting point of understanding PHF3 function is from its homologue in 

Saccharomyces cerevisiae, Bye1 that has the same domain organisation[181]. This 
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study demonstrated that Bye1 bound directly to the core of RNA polymerase II 

(RNAP II) through its TFIIS-like domain (TLD)[181]. The investigators also analysed 

that the surface forming an interface between RNAP II and Bye1 TLD are well 

conserved in human RNAP II and PHF3, respectively, which suggests the same 

domain function of Bye1 and PHF3[181]. 

This hypothesis is supported by a study by Boeing et al[137] that examined the 

factors that responded to UV-induced DNA damage. DNA lesions lead to RNAP II 

stalling, resulting in a block of transcription elongation, which then is repaired by 

transcription-coupled nucleotide excision repair (NER)[137]. CSB is a protein that is 

recruited to the damage-stalled RNAP II and plays a key role in the NER[137]. This 

study included two interactome analyses: CSB and RNAP II interactomes upon UV 

irradiation, and showed PHF3 was recruited in both events. This investigation not 

only demonstrates the interactions of PHF3 but also indicates the role of PHF3 in 

DNA damage response[137]. 

Furthermore, PHF3 function is also studied from its mouse paralogue protein, Dido3, 

which has the same domain structure. Gatchalian et al[182] demonstrated that while 

the PHD domain of Dido3 could bind to H3K4me3, this binding was not found on 

PHF3[182]. 

In assistance with Dr Dan Williamson, we analysed the centrality of our mutated 

genes to variation in expression profiles of ALL and AML cases using an ARACNe 

(Algorithm for the Reconstruction of Accurate Cellular Networks) analysis[183, 184]. 

This algorithm allows the gene expression comparisons between one group (i.e. 

samples in ALL group) and the other group (i.e. samples in AML group). Genes that 

show consistent high expression pattern in certain group but not in the other group 

would be given higher score. By using Boolean logic, these consistent genes are 

collected and reconstructed into a network.  

The expression data of ALL and AML cases were obtained from public genomics 

data repository GEO (Gene Expression Omnibus; NCBI), with accession number 

GSE11877 (207 samples) and GSE17855 (237 samples), respectively. The 

calculation was displayed in Cytoscape program[185]. When our 12 candidate 

mutations were overlaid on the analysis, PHF3 was found to have the highest 

number of degrees within the networks generated (Figure 1-10), implying a stronger 
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impact of this mutation on the switch from ALL to AML than our other 11 candidate 

mutations.  

 

Figure 1-10 PHF3 gene network based on transcriptional changes in the ALL and AML cases. 

The branch shows the relation among the genes referring to the transcriptional changes, and not to 

the protein functional interactions. The yellow node indicates the central node, in this case, is PHF3. 

Higher red intensity node indicates the gene with higher transcript expression in ALL cases. Higher 

blue intensity node indicates the gene with higher transcript expression in AML cases. This network 

indicates that the change in PHF3 expression is accompanied by those number of highly differentially 

expressed ALL-AML genes, which was much more than the other 11 other candidate genes.  

Lastly, a translocation t(6;15)(q12;q15), in which PHF3 is involved in one of these 

chromosomes, was identified in t-MDS[186]. This report hypothesised that one of the 

genes that were affected was PHF3. Taken together, these studies lead us to focus on 

PHF3 as the potential candidate driver gene. 

1.5.4. PPP1R7 

Protein phosphatase 1 regulatory subunit 7 (PPP1R7; 2q37.3, also called SDS22) 

encodes a protein that is part of the regulatory subunit of serine/threonine protein 

phosphatase 1 (PP1), consists of 360 residues and has the molecular weight of 41.6 

kDa[187]. This protein is highly conserved and is also found in Saccharomyces 

cerevisiae, suggesting an important role [188]. It is composed almost entirely of 11 

leucine-rich repeats (LRR) motifs (Figure 1-11). This motif consists of 22 residues 

with consensus sequences ExLxxLxxLxxLxLxxNxIxxI (x is any residue) which 
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provides the essential binding region with the PP1[187]. L826 sequencing showed a 

mutation on a conserved residue, R199L that is located at the sixth LRR. This 

evidence might indicate an important effect of the mutation on PPP1R7 function. 

 

Figure 1-11 PPP1R7 scheme. PPP1R7 mainly consists of LRR repeats that allow the binding to 

PP1. The mutation R199L in L826 is found in the sixth LRR domain.  

The interaction between PPP1R7 and PP1 is known to modulate the activity of 

Aurora-B kinase. While the Aurora-B is required for microtubule-kinetochore 

attachment, PPP1R7-PP1 reverses the phosphorylation of the kinase during 

anaphase, which then promotes the completion of mitosis[134, 135]. By depleting 

PPP1R7, it was shown a reduction of PP1 localisation at the kinetochore and 

increased the phosphorylated Aurora-B kinase[134]. 

In addition to counteracting Aurora-B phosphorylation, PPP1R7 is also known to 

interact with hADA3, a subunit of HAT complexes, which, interestingly, is involved in 

p53 acetylation[189, 190]. These observations suggest a role of PPP1R7 in cell cycle 

control. 

Furthermore, a study on Drosophila showed sds22 had a role as a tumour 

suppressor gene[191]. This study demonstrated the loss of sds22 on activated Ras 

(RasV12) promoted tumour growth and invasive behaviour. Conversely, over-

expression of sds22 on RasV12scrib-/- mutant cells suppressed the tumour growth, 

suggested by inhibiting myosin II and Jun N-terminal kinase (JNK) signalling[191]. 

Taken together, PPP1R7 may have an important role in cell growth and tumorigenesis. 
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Chapter 2 Materials and Methods 

2.1. Materials 

2.1.1. Laboratory equipment 

Instrument Manufacturer 

Centrifuges 
Avanti J-26 XP centrifuge 
Centrifuge 5424 
Centrifuge 5424R 
Heraus Multifuge 3SR+ 
Mistral 1000 
Optima L-100 XP ultracentrifuge 

 
Beckman Coulter 
Eppendorf 
Eppendorf 
Thermo Fisher Scientific 
MSE 
Beckman Coulter 

DNA gel imaging 
GelDoc 
G:BOX 

 
Bio-Rad 
Syngene 

Flow cytometer 
Astrios EQ Cell Sorter 
FACSAria III  
FACSAria Fusion  
FACSCalibur  
FACSCanto II 

 
Beckman Coulter  
Beckton Dickinson 
Beckton Dickinson 
Beckton Dickinson 
Beckton Dickinson 

Spectrophotometer 
FLUOstar Omega  
Nanodrop 1000 spectrophotometer 
SmartSpec Plus 
Qubit 3.0 Fluorometer 

 
BMG labtech 
Thermo Fisher Scientific 
Bio-Rad 
Thermo Fisher Scientific 

Thermal cycler 
ABI 7900HT   
GeneAmp PCR System 2700 
ViiA 7 Real-Time PCR System 

 
Applied Biosystems 
Applied Biosystems 
Applied Biosystems 

Immunoblotting 
Mini-PROTEAN Tetra Cell 2 
X-Ray Film Processor JP-33 

 
Bio-Rad 
JPI 

Table 2-1 Instruments 
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2.1.2. Chemicals and reagents 

2.1.2.1. General chemicals and reagents 
All general chemicals and reagents were purchased from Sigma Aldrich, unless 

otherwise stated. 

2.1.2.2. Experimental kits 
Name Manufacturer 

AllPrep DNA/RNA Micro Kit QIAGEN 

AllPrep DNA/RNA Mini Kit QIAGEN 

BCA Protein Assay Kit Santa Cruz Biotech 

DNeasy Blood and Tissue Kit QIAGEN 

Endofree Plasmid Maxi Kit QIAGEN 

Gateway LR Clonase II Enzyme Kit Invitrogen 

HotStarTaq® DNA Polymerase Kit QIAGEN 

KOD Hot Start DNA Polymerase Merck Millipore 

Phusion® High‐Fidelity PCR Master Mix with HF Buffer NEB 

Platinum® SYBR® Green SuperMix UDG Applied Biosystems 

QIAprep Miniprep Kit QIAGEN 

QIAquick Gel Extraction Kit QIAGEN 

QIAquick PCR Purification Kit QIAGEN 

REPLI-g Single Cell Kit QIAGEN 

RevertAid™ H Minus cDNA Synthesis Kit Thermo Fisher Scientific 

RNeasy Mini Kit QIAGEN 

RNeasy Plus Micro Kit QIAGEN 

Table 2-2 Experimental kits 
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2.1.2.3. Cell culture media and supplements 
Name Manufacturer 

α-MEM, no nucleoside (22561021) Thermo Fisher Scientific 

DMEM (D5671) Sigma Aldrich 

GIBCO™ Foetal bovine serum Thermo Fisher Scientific 

IMDM (I3390) Sigma Aldrich 

L-Glutamine (G7513) Sigma Aldrich 

Polybrene (H9268) Sigma Aldrich 

Recombinant human FLT3LG (308-FK) R&D Systems 

Recombinant human IL-3 (203-IL) R&D Systems 

Recombinant human IL-6 (130-095-352) MACS Miltenyi Biotec 

Recombinant human IL-7 (207-IL) R&D Systems 

Recombinant human SCF (14-8449-62) Affymetrix eBioscience 

Recombinant human TPO (288-TP) R&D Systems 

RPMI 1640 (R8758) Sigma Aldrich 

Sodium pyruvate solution (S8636) Sigma Aldrich 

Trypsin-EDTA solution (T4174) Sigma Aldrich 

Table 2-3 Cell culture media and supplements 
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2.1.3. Buffers and media 

2.1.3.1. Cell culture 
Cells Medium Supplements 

SEM, Kasumi-1 RPMI 1640 10% (v/v) FBS 

2 mM L-glutamine 

SKNO-1 RPMI 1640 20% (v/v) FBS 

2 mM L-glutamine 

10 ng/ml GM-CSF 

293T DMEM 10% (v/v) FBS 

4 mM L-glutamine 

1 mM sodium pyruvate 

MS-5 α-MEM 10% (v/v) FBS 

2 mM L-glutamine 

Cord blood CD34+ 

MLL/Af4 – myeloid 

condition 

IMDM 10% (v/v) FBS 

2 mM L-glutamine 

10 ng/ml SCF 

10 ng/ml IL-3 

10 ng/ml IL-6 

10 ng/ml FLT-3L 

10 ng/ml TPO 

Cord blood CD34+ 

MLL/Af4 – lymphoid 

condition 

α-MEM 10% (v/v) FBS 

2 mM L-glutamine 

10 ng/ml SCF 

10 ng/ml FLT-3L 

10 ng/ml IL-7 

Co-culture with MS-5 cells 

Table 2-4 Growing media and the supplements  
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2.1.3.2. Mammalian cells transfection 
Name Ingredients 

2X HeBS 280 mM NaCl 

50 mM HEPES 

1.5 mM Na2HPO4 

pH 7.00 

HEPES buffer solution 0.25% (v/v) 1 M HEPES 

pH 7.3 

Polybrene solution, 8 mg/ml 8 mg/ml hexadimethrine bromide 

0.9% (w/v) NaCl 

Table 2-5 Transfection reagents 

2.1.3.3. Flow cytometry 
Name Ingredients 

Sort buffer 0.5% (v/v) filtered FBS 

2 mM EDTA 

in Dulbecco’s PBS 

RF-10 media 10% (v/v) FBS 

100 IU/ml penicillin-streptomycin 

4 mM L-glutamine 

in RPMI 1640 

Table 2-6 Flow cytometry and cell sorting media 

2.1.3.4. DNA electrophoresis  
Name Ingredients 

5X DNA loading dye 40% (v/v) glycerol 

0.01% (w/v) bromophenol blue 

10 mM EDTA pH 8.0 

50X TAE 2 M tris 

1 M acetic acid 

50 mM EDTA pH 8.0 

10X TBE 890 mM tris 

890 mM boric acid 

20 mM EDTA pH 8.0 

Table 2-7 DNA electrophoresis buffers 
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2.1.3.5. Bacterial culture 
Name Ingredients 

LB medium 1% (w/v) tryptone 

0.5% (w/v) yeast extract 

1% (w/v) NaCl 

pH 7.4 

LB agar LB media 

1.5% (w/v) agar 

TB medium 1.2% (w/v) tryptone 

2.4% (w/v) yeast extract 

0.4% (v/v) glycerol 

17 mM KH2PO4 

72 mM K2HPO4  

(potassium phosphate solution was autoclaved 

separately and added when the components were 

less than 60°C) 

SOB media 2% (w/v) tryptone 

0.5% (w/v) yeast extract 

0.05% (w/v) NaCl 

2.5 mM KCl 

pH 7.0 

20 mM MgSO4 

(magnesium sulphate solution was autoclaved 

separately and added before used) 

SOC media SOB media 

20 mM glucose 

(glucose solution was sterilised through 0.22 µm 

filter and added when the components were less 

than 60°C) 

Inoue transformation buffer 55 mM MnCl2 

15 mM CaCl2 

250 mM KCl 

10 mM PIPES (0.5 M, pH 6.7) 

Table 2-8 Bacterial culture and transformation buffer 
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2.1.3.6. Western blotting and Co-IP 
Name Ingredients 

RIPA buffer 50 mM tris pH 7.4 

150 mM NaCl 

1% (v/v) Triton X-100 

0.5% sodium deoxycholate 

0.1% (w/v) SDS 

1 tablet protease inhibitor cocktail (Roche) in a 50 ml solution 

5X sample buffer 300 mM tris pH 6.8 

10% (w/v) SDS 

50% (v/v) glycerol 

0.01% (w/v) bromophenol blue 

5% β-mercaptoethanol 

Co-IP lysis buffer 20 mM tris pH 7.5 

150 mM NaCl 

1 mM EDTA 

1 mM EGTA 

1% (v/v) Triton X-100 

1 table protease inhibitor cocktail (Roche) in 50 ml solution 

4X separating gel 

buffer 

1.5 M tris 

0.4% (w/v) SDS 

pH 8.8 

4X stacking gel 

buffer 

500 mM tris 

0.4% (w/v) SDS 

pH 6.8 

Electrophoresis 

buffer 

25 mM tris 

192 mM glycine 

0.1% (w/v) SDS 

Blotting buffer 25 mM tris 

192 mM glycine 

10% (v/v) methanol 

TBS 20 mM tris 

137 mM NaCl 

pH 7.6 
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Name Ingredients 

TBS-T 10 mM tris 

150 mM NaCl 

0.1% (v/v) Tween-20 

Coomasie blue 

stain 

0.1% (w/v) Coomassie G-250 

10% (v/v) acetic acid 

40% (v/v) methanol 

Destaining 

Coomasie buffer 

40% (v/v) methanol 

10% (v/v) acetic acid 

Table 2-9 Western blot and Co-IP buffers  
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2.1.4. Bacterial strains 

Strain Genotype Vendor 

Stbl3 F–mcrB mrrhsdS20(rB
–, mB

–) recA13 supE44 ara-14 

galK2 lacY1 proA2 rpsL20 (StrR) xyl-5 λ–leumtl-1 

Invitrogen

XL-1 Blue recA1 endA1 gyrA96 thi-1 hsdR17 supE44 relA1 lac 

[F´ proAB lacIqZ∆M15 Tn10 (Tetr)] 

Agilent 

Table 2-10 Bacterial strains 
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2.1.5. Antibodies 

Antibodies for FACS staining, primary and secondary western blotting are listed: 

Epitope Clone Manufacturer 

hCD19-APC SJ25C1 BD Biosciences 

hCD19-APC/Cy7 SJ25C1 BioLegend 

hCD19-BV421 HIB19 BioLegend 

hCD19-PerCP-Cy5.5 SJ25C1 BD Biosciences 

hCD33-APC/Cy7 P67.6 BioLegend 

hCD33-BV421 WM53 BioLegend 

hCD33-PE WM53 BD Biosciences 

hCD45-FITC 2D1 BD Biosciences 

mCD45-PE-Cy7 30-F11   BD Biosciences 

hCD117-BV421 104D2 BioLegend 

Table 2-11 Fluorochrome labelled antibodies for flow cytometry 

Epitope Species Dilution Manufacturer Catalogue 

BMI1 Rabbit 1:5000 BETHYL A301-694A 

CHD4 Rabbit 1:10000 BETHYL A301-081A 

EZH2 Mouse 1:500 Merck Millipore MABE 362 

GAPDH Mouse 1:320000 HyTest 5G4 

IKZF1 Mouse 1:1000 Merck Millipore MABE912 

Strep-tag Rabbit 1:1000 ABCAM ab76949 

Table 2-12 Primary antibodies for western blotting 

  Epitope Species Dilution Manufacturer Catalogue 

Anti-mouse HRP Goat 1:10000 DAKO  PO447 

Anti-rabbit HRP Goat 1:10000 DAKO PO448 

Table 2-13 Secondary antibodies for western blotting 
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2.1.6. Oligonucleotides 

All of the oligonucleotides were purchased from Sigma Aldrich, desalted purification. 

 

2.1.6.1. qRT-PCR primers 
Name  Sequences (5’3’) 

ACAP1 
Fw : CTTCGTTGTCGGCATTTGTG 

Rev: GGCTCACGGTGAATTTTTCC 

AF4/MLL 
Fw : CAGAAGCCCACGGCTTATGT 

Rev: GGCAATACACAAACTCAACAG 

CD19 
Fw : TGACCCCACCAGGAGATTCTT 

Rev: CACGTTCCCGTACTGGTTCTG 

CD33 
Fw : CTCGTGCCCTGCACTTTCTT 

Rev: CCCGGAACCAGTAACCATGA 

CD79A 
Fw : GTGGCCCCCTGAGTTCTTG 

Rev: TCTTGTTCACATTCTGGATGATCA 

CEP164 
Fw : GCCTGGACTTCGGTT 

Rev: TGTCTTCTATTCCCAGTGGTTGCT 

CHD4 
Fw : TGCTGACACAGTTATTATCTATGACTCTGA 

Rev: ACGCACGGGTCACAAACC 

CSF1R 
Fw : CCTCGCTTCCAAGAATTGCA 

Rev: CCATTGGTCAACAGCACGTT 

CSF3R 
Fw : CCCAGGCGATCTGCATACTT 

Rev: AACAAGCACAAAAGGCCATTG 

DHX36 
Fw : ATGCCTACAGTTAACCAGACACA 

Rev: ATACAGATGATAGCAATGACCAGG 

EBF1 
Fw : GAATTCACTACCGGCTTCAGCTT 

Rev: GTCAATGAGGCGCACGTAGA 

EGR1 
Fw : AAGTTTGCCAGGAGCGATGA 

Rev: CCGCAAGTGGATCTTGGTATG 

GAPDH 
Fw : GAAGGTGAAGGTCGGAGTC 

Rev: GAAGATGGTGATGGGATTTC 

HBA1 
Fw : AAGTTTGCCAGGAGCGATGA 

Rev: CCGCAAGTGGATCTTGGTATG 
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Name  Sequences (5’3’) 

HIPK1 
Fw : CATTGTGCCTCCACTGAA 

Rev: CTGCTGGTTCTGGCTAAG 

HOXA5 
Fw : AGTCATGACAACATAGGCGGC 

Rev: CGGGTCAGGTAACGGTTGAA 

HOXA6 
Fw : CGGTTTACCCTTGGATGCA 

Rev: GCCCATGGCTCCCATACAC 

HOXA7 
Fw : GAGGCCAATTTCCGCATCTA 

Rev: GCGGTTGAAGTGGAACTCCTT 

HOXA9 
Fw : CCACCATCCCCGCACA 

Rev: TTTCCAAGGCAAACCCTGTT 

HOXC5 
Fw : AGCCAATTCATTCTATAAGCAGAG 

Rev: CAATCCGCCGTAGCAGTA 

IL6R 
Fw : ACATTCACAACATGGATGGTCAA 

Rev: CGTGGATGACACAGTGATGCT 

IL6ST 
Fw : GGAAGCCCTGAATCCATAAAGG 

Rev: CTTTGGAAGGTGGAGCTTGTTT 

ITGAL 
Fw : TCTGCAGGGTCCCATGCT 

Rev: CATCAAACAGAAATACCAGGTCTACGT 

KIT 
Fw : GGACCAGGAGGGCAAGTCA 

Rev: GATAGCTTGCTTTGGACACAGACA 

LEF1 
Fw : CGGGTGGTGTTGGACAGATC 

Rev: CCTGAATCCACCCGTGATG 

MDK 
Fw : AGTTTGGAGCCGACTGCAA 

Rev: CATCACACGCACCCCAGTT 

MLL/AF4 
Fw : ACAGAAAAAAGTGGCTCCCCG 

Rev: TATTGCTGTCAAAGGAGGCGG 

MT2A 
Fw : CTCCAAGTCCCAGCGAACC 

Rev: CTTTACATCTGGGAGCGGGG 

NCOA2 
Fw : TGCGAATTTCACAGAGCACTTTT 

Rev: GGAAAGGTCCAGCACCAGTT 

p16 
Fw : TTCCTGGACACGCTGGTGGTG 

Rev: GGCATCTATGCGGGCATGGTTA 
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Name  Sequences (5’3’) 

PAX5 
Fw : GATGGTGCCTGGGAGTGAGT 

Rev: GGAGTCGTTGTACGAGGAATACTGA 

PHF3 
Fw : ATGGACCTGGGCTTGAACTG 

Rev: TGGTGGTGCACTTTCAGGAG 

PPP1R7 
Fw : CAGGAGATGATGGAGGTTGACA 

Rev: CGATGCCACTGCTGTGTTTC 

PRSS12 
Fw : GTCAGCTTGGCTACAAGGGT 

Rev: AGTCAGCCAAGGACCTCTCA 

ZFHX3 
Fw : CAACGCAGATAACGACAGT 

Rev: TGACCAGACCAGATGACAA 

ZHX3 
Fw : CCTCGTGGTCTCTTGTCTCTT 

Rev: TTGGCTGGCTCTCCTCTC 

Table 2-14 qRT-PCR primers 

2.1.6.2. Primers MLLr transcript breakpoint identification 
Name  Sequences (5’3’) 

MLL exon 8  Fw : GCCTCCACCACCAGAATCAG  

MLL exon 9  Fw : CCGCCCAAGTATCCCTGTAA 

AF4 spanning exon 8 and 9  Rev: CGAGCATGGATGACGTTCCT 

AF9 spanning exon 10 and 11_A  Rev: TCACGATCTGCTGCAGAATGT 

AF9 spanning exon 10 and 11_B  Rev: GGTTCACGATCTGCTGCAGAA 

Table 2-15 Primers MLL/AF4 and MLL/AF9 for detecting common breakpoint in transcript 
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2.1.6.3. Mutagenesis primers 
Name  Sequences (5’3’) 

ACAP1 
Fw : CCTGTTCCTGAAACcGGGAGCTGATCTGG 

Rev: CCAGATCAGCTCCCgGTTTCAGGAACAGG 

CHD4 
Fw : GGAGGGTGGGCATCaTGTACTCATCTTTTCCC 

Rev: GGGAAAAGATGAGTACAtGATGCCCACCCTCC 

PHF3 
Fw : CTTTTTGATCTCAACTGCAtAATCTGCATAGGTCGAATGG 

Rev: CCATTCGACCTATGCAGATTaTGCAGTTGAGATCAAAAAG 

PPP1R7 
Fw : GGGATCTAACCGCATCCtGGCAATCGAAAATATCG 

Rev: CGATATTTTCGATTGCCaGGATGCGGTTAGATCCC 

Table 2-16 Primers mutagenesis candidate genes. The mutated nucleotide is indicated by the 

lower case. 

2.1.6.4. Fluidigm MiSeq candidate gene primers – cDNA template 
Name  Sequences (5’3’) 

ACAP1 
Fw : ACACTGACGACATGGTTCTACACTGCACCACGCAACCATTC 

Rev: TACGGTAGCAGAGACTTGGTCTGGAGAAGTCGCGGAAGATGTC 

CHD4 
Fw : ACACTGACGACATGGTTCTACATATTGCTGCTGCAGAAAATGCT 

Rev: TACGGTAGCAGAGACTTGGTCTCATCTTGGTCATCTGGGAAAAGA 

CEP164 
Fw : ACACTGACGACATGGTTCTACATTGAAACCAGAGCTAAAGATGTCAA 

Rev: TACGGTAGCAGAGACTTGGTCTTGCCTCTGCACATCAAGCA 

CHTF8 
Fw : ACACTGACGACATGGTTCTACATGGGTGCTGATGGAGCTACA 

Rev: TACGGTAGCAGAGACTTGGTCTTGATCCCCAGGAGTGTGTTTG 

DHX36 
Fw : ACACTGACGACATGGTTCTACATGTTCGGAAAATAGTAATTGCTACCA 

Rev: TACGGTAGCAGAGACTTGGTCTCCCACTCAGCGGACATTGTA 

MLL/AF4 
Fw : ACACTGACGACATGGTTCTACAACAGAAAAAAGTGGCTCCCCG 

Rev: TACGGTAGCAGAGACTTGGTCTTATTGCTGTCAAAGGAGGCGG 

NCOA2 
Fw : ACACTGACGACATGGTTCTACAGGCCGTGAGCAGTGAGAGA 

Rev: TACGGTAGCAGAGACTTGGTCTGCAAGCTACCTGTGGAGTCTTTGT 

PHF3 
Fw : ACACTGACGACATGGTTCTACACAGGAAGCAGCCATGGAGAT 

Rev: TACGGTAGCAGAGACTTGGTCTCTACAGGTGGTGCCATTCGA 

PPP1R7 
Fw : ACACTGACGACATGGTTCTACACAGTAAAATTGAGAACTTAAGCAACTTACA 

Rev: TACGGTAGCAGAGACTTGGTCTCCCAAAAACAAACTCTCCAGGTT 

Table 2-17 Primers MiSeq MLL/AF4 and candidate genes for cDNA template. The primers include 

CS1 (5’-ACACTGACGACATGGTTCTACA-3’) and CS2 (5’-TACGGTAGCAGAGACTTGGTCT-3’) on 

the forward and reverse, respectively, that complement to the Fluidigm MiSeq barcode system. 
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2.1.6.5. Fluidigm MiSeq candidate gene primers – DNA template 
Name  Sequences (5’3’) 

ACAP1 
Fw : ACACTGACGACATGGTTCTACACTGCACCACGCAACCATTC 

Rev: TACGGTAGCAGAGACTTGGTCTGGCATTCTTACAGGGTGACGAT 

BACE2 
Fw : ACACTGACGACATGGTTCTACATTTGAGCGAGCCCATTTTGT 

Rev: TACGGTAGCAGAGACTTGGTCTGCAGCCCAATCCACTCTGTT 

CACNB4 
Fw : ACACTGACGACATGGTTCTACAGAGTCATCTCTGCAGGTTTCTTGA 

Rev: TACGGTAGCAGAGACTTGGTCTCAGAGCTGATTCCTGGCTTCA 

CEP164 
Fw : ACACTGACGACATGGTTCTACAGTCAGCCAGAAAATCCTGTCTCTT 

Rev: TACGGTAGCAGAGACTTGGTCTTGCCCTGGACAGATCAGATG 

CHD4 
Fw : ACACTGACGACATGGTTCTACAGCAGTGCCCTAATCAGAGCAT 

Rev: TACGGTAGCAGAGACTTGGTCTGTCCACATGATACCTGGGAAAAG 

CHTF8 
Fw : ACACTGACGACATGGTTCTACAATGCCTAGCACTGCCCAATT 

Rev: TACGGTAGCAGAGACTTGGTCTCCCAGGAGGTTTCCAGCTAAT 

DHX36 
Fw : ACACTGACGACATGGTTCTACATCGGAAAATAGTAATTGCTACCAACA 

Rev: TACGGTAGCAGAGACTTGGTCTGCCTGGGCAACATAGTGAGACT 

IL23A 
Fw : ACACTGACGACATGGTTCTACATGGGAGACTCAGCAGATTCCA 

Rev: TACGGTAGCAGAGACTTGGTCTTGGAGATCTGAGTGCCATCCT 

MLL/AF4 
Fw : ACACTGACGACATGGTTCTACAAATTATTTTTTGACCCCAACATCCT 

Rev: TACGGTAGCAGAGACTTGGTCTTTTGGGTGTGCATGCCTGTA 

NCOA2 
Fw : ACACTGACGACATGGTTCTACAGGCCGTGAGCAGTGAGAGA 

Rev: TACGGTAGCAGAGACTTGGTCTGGACTCCTGGCTCAGGTCTTT 

PHF3 
Fw : ACACTGACGACATGGTTCTACAAGCCGCCAATAAGTCATTGG 

Rev: TACGGTAGCAGAGACTTGGTCTGTCACACGAAAGCTTAAAGACTGTGA 

PPP1R7 
Fw : ACACTGACGACATGGTTCTACAACTGAAAAAACTCTTCTTGGTCAACA 

Rev: TACGGTAGCAGAGACTTGGTCTGCTAGCTGCCTCTCCCTGAA 

SLC4A8 
Fw : ACACTGACGACATGGTTCTACACCCTTAGCCAACAAGGGATGA 

Rev: TACGGTAGCAGAGACTTGGTCTTCCTGTTAATAATGACGGCTGTGA 

ZNF136 
Fw : ACACTGACGACATGGTTCTACAAAAATCCCTGGAGTGAAACTCTGT 

Rev: TACGGTAGCAGAGACTTGGTCTTGGTGAGAACTGAAGGGTTTCC 

Table 2-18 Primers MiSeq MLL/AF4 and candidate genes for DNA template. The primers include 

CS1 (5’-ACACTGACGACATGGTTCTACA-3’) and CS2 (5’-TACGGTAGCAGAGACTTGGTCT-3’) on 

the forward and reverse, respectively, that complement to the Fluidigm MiSeq barcode system. 
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2.1.6.6. shRNA sequences 

Name  Sequences (5' ‐> 3')  Target region 

shACAP1_1 
Fw:  agcgcGCTGATGTCAACTGGGTCAATtagtgaagccacagatgtaATTGACCCAGTTGACATCAGCt 

CDS 

Rev: ggcaaGCTGATGTCAACTGGGTCAATtacatctgtggcttcactaATTGACCCAGTTGACATCAGCg 

shACAP1_2 
Fw:  agcgcTCACGCTAAATACGTGGAGAAtagtgaagccacagatgtaTTCTCCACGTATTTAGCGTGAt 

CDS 

Rev: ggcaaTCACGCTAAATACGTGGAGAAtacatctgtggcttcactaTTCTCCACGTATTTAGCGTGAg 

shACAP1_3 
Fw:  agcgcGCAGGAGATGAGACGTATCTTtagtgaagccacagatgtaAAGATACGTCTCATCTCCTGCt 

3'UTR, CDS 

Rev: ggcaaGCAGGAGATGAGACGTATCTTtacatctgtggcttcactaAAGATACGTCTCATCTCCTGCg 

shCEP164_1 
Fw:  agcgcGCAGTGAAAGTTCTGAATCTTtagtgaagccacagatgtaAAGATTCAGAACTTTCACTGCt 

CDS 

Rev: ggcaaGCAGTGAAAGTTCTGAATCTTtacatctgtggcttcactaAAGATTCAGAACTTTCACTGCg 

shCEP164_2 
Fw:  agcgcGCATTGTTTCCATCTGTCTTTtagtgaagccacagatgtaAAAGACAGATGGAAACAATGCt 

3'UTR, CDS 

Rev: ggcaaGCATTGTTTCCATCTGTCTTTtacatctgtggcttcactaAAAGACAGATGGAAACAATGCg 

shCEP164_3 
Fw:  agcgcTTACCTCTCTTCTCGTCAACAtagtgaagccacagatgtaTGTTGACGAGAAGAGAGGTAAt 

CDS 

Rev: ggcaaTTACCTCTCTTCTCGTCAACAtacatctgtggcttcactaTGTTGACGAGAAGAGAGGTAAg 

shCHD4_1 
Fw:  agcgcGCGGGAGTTCAGTACCAATAAtagtgaagccacagatgtaTTATTGGTACTGAACTCCCGCt 

CDS 

Rev: ggcaaGCGGGAGTTCAGTACCAATAAtacatctgtggcttcactaTTATTGGTACTGAACTCCCGCg 

shCHD4_2 
Fw:  agcgcTTCCTGCCAGGCTTGAAGAAAtagtgaagccacagatgtaTTTCTTCAAGCCTGGCAGGAAt 

3'UTR, CDS 

Rev: ggcaaTTCCTGCCAGGCTTGAAGAAAtacatctgtggcttcactaTTTCTTCAAGCCTGGCAGGAAg 

shCHD4_3 
Fw:  agcgcCGAAGGTTTAAGCTCTTAGAAtagtgaagccacagatgtaTTCTAAGAGCTTAAACCTTCGt 

CDS 

Rev: ggcaaCGAAGGTTTAAGCTCTTAGAAtacatctgtggcttcactaTTCTAAGAGCTTAAACCTTCGg 

shDHX36_1 
Fw:  agcgcTCCGCTGAGTGGGTTAGTAAAtagtgaagccacagatgtaTTTACTAACCCACTCAGCGGAt 

CDS 

Rev: ggcaaTCCGCTGAGTGGGTTAGTAAAtacatctgtggcttcactaTTTACTAACCCACTCAGCGGAg 

shDHX36_2 
Fw:  agcgcCGACGAGAAGAACAAATTGTAtagtgaagccacagatgtaTACAATTTGTTCTTCTCGTCGt 

CDS 

Rev: ggcaaCGACGAGAAGAACAAATTGTAtacatctgtggcttcactaTACAATTTGTTCTTCTCGTCGg 

shDHX36_3 
Fw:  agcgcCCCACTCTTTGGGAGTATATTtagtgaagccacagatgtaAATATACTCCCAAAGAGTGGGt 

3'UTR 

Rev: ggcaaCCCACTCTTTGGGAGTATATTtacatctgtggcttcactaAATATACTCCCAAAGAGTGGGg 

shNCOA2_1 
Fw:  agcgcGCACTCTTGTTGCTGCACAAAtagtgaagccacagatgtaTTTGTGCAGCAACAAGAGTGCt 

CDS 

Rev: ggcaaGCACTCTTGTTGCTGCACAAAtacatctgtggcttcactaTTTGTGCAGCAACAAGAGTGCg 

shNCOA2_2 
Fw:  agcgcATCCGTTCTCAGACTACTAATtagtgaagccacagatgtaATTAGTAGTCTGAGAACGGATt 

CDS 

Rev: ggcaaATCCGTTCTCAGACTACTAATtacatctgtggcttcactaATTAGTAGTCTGAGAACGGATg 

shNCOA2_3 
Fw:  agcgcATTCACCTTAGTGCAACTTAGtagtgaagccacagatgtaCTAAGTTGCACTAAGGTGAATt 

3'UTR 

Rev: ggcaaATTCACCTTAGTGCAACTTAGtacatctgtggcttcactaCTAAGTTGCACTAAGGTGAATg 

shPHF3_1 
Fw:  agcgcCCAGTCAAGTAGCGTTTCTTAtagtgaagccacagatgtaTAAGAAACGCTACTTGACTGGt 

CDS 

Rev: ggcaaCCAGTCAAGTAGCGTTTCTTAtacatctgtggcttcactaTAAGAAACGCTACTTGACTGGg 

shPHF3_2 
Fw:  agcgcGCAACTGGATAGGCCATTTAAtagtgaagccacagatgtaTTAAATGGCCTATCCAGTTGCt 

CDS 

Rev: ggcaaGCAACTGGATAGGCCATTTAAtacatctgtggcttcactaTTAAATGGCCTATCCAGTTGCg 

shPHF3_3 
Fw:  agcgcCCTCGTTTAATGGCACAAGAAtagtgaagccacagatgtaTTCTTGTGCCATTAAACGAGGt 

5'UTR, CDS 

Rev: ggcaaCCTCGTTTAATGGCACAAGAAtacatctgtggcttcactaTTCTTGTGCCATTAAACGAGGg 

shPHF3_4 
Fw:  agcgcCGCCAATAAGTCATTGGAGAAtagtgaagccacagatgtaTTCTCCAATGACTTATTGGCGt 

CDS 

Rev: ggcaaCGCCAATAAGTCATTGGAGAAtacatctgtggcttcactaTTCTCCAATGACTTATTGGCGg 

shPHF3_5 
Fw:  agcgcATCTATTGTTGGGCTTAATTAtagtgaagccacagatgtaTAATTAAGCCCAACAATAGATt 

CDS 

Rev: ggcaaATCTATTGTTGGGCTTAATTAtacatctgtggcttcactaTAATTAAGCCCAACAATAGATg 

shPPP1R7_1 
Fw:  agcgcAGTTCTGGATGAACGACAATCtagtgaagccacagatgtaGATTGTCGTTCATCCAGAACTt 

CDS 

Rev: ggcaaAGTTCTGGATGAACGACAATCtacatctgtggcttcactaGATTGTCGTTCATCCAGAACTg 

shPPP1R7_2 
Fw:  agcgcGCAACTTACATCAACTACAGAtagtgaagccacagatgtaTCTGTAGTTGATGTAAGTTGCt 

CDS 

Rev: ggcaaGCAACTTACATCAACTACAGAtacatctgtggcttcactaTCTGTAGTTGATGTAAGTTGCg 
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Name  Sequences (5' ‐> 3')  Target region 

shPPP1R7_3 
Fw:  agcgcCAGTCACAAACCCAATGGCAAtagtgaagccacagatgtaTTGCCATTGGGTTTGTGACTGt 

3'UTR 

Rev: ggcaaCAGTCACAAACCCAATGGCAAtacatctgtggcttcactaTTGCCATTGGGTTTGTGACTGg 

shNTC 
Fw:  agcgATCTCGCTTGGGCGAGAGTAAGtagtgaagccacagatgtaCTTACTCTCGCCCAAGCGAGAt  Lupinus 

angustifolius 
Rev: ggcaCTCTCGCTTGGGCGAGAGTAAGtacatctgtggcttcactaCTTACTCTCGCCCAAGCGAGAg 

Table 2-19 shRNA sequences on pLKO5d.SFFV.miR30n backbone. The upper case nucleotides 

on the sequences column indicate the target sequences. The lower case nucleotides on each end 

indicate the provided BsmBI restriction site. The lower case nucleotides in the middle sequences 

indicate the shRNA loop.  
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2.1.7. Software 

Name Manufacturer 

CellQuest Pro BD Biosciences 

FACSDiva BD Biosciences 

FlowJo v10.0.8 FlowJo 

MARS Data Analysis Software BMG Labtech 

Primer Express 2.0 Applied Biosystems 

QuantStudio Real-Time PCR System Applied Biosystems 

SDS 2.3 Applied Biosystems 

Table 2-20 Software 
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2.2. Cell culture methods 

2.2.1. Culture of cell lines 

2.2.1.1. Culture of suspension cells 
The suspension cell lines were cultured in tissue culture flasks at 37°C, 5% CO2 in 

humidified conditions. The cells were maintained at a concentration of 5 x 105 to 2 x 

106 cells/ml by replacing media every 2 – 3 days. All of the cell lines were validated 

by the presence of specific fusion gene sequences. 

2.2.1.2. Culture of adherent cells 
The adherent cell lines were cultured in tissue culture dishes or flasks at 37°C, 5% 

CO2 in humidified conditions. The cells were passaged when they reached 80 – 90% 

confluence by washing with PBS and then adding 1 volume (approximately 0.026 

ml/cm2) of 0.5X trypsin-EDTA, incubated 1 – 10 min, depending on the cell line, at 

37°C. The enzyme reaction was stopped by the addition of 1 volume of growth 

media; 1/10 of these cells were transferred into a new flask with pre-warmed culture 

medium. 
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2.2.2. Culture of CD34+ cord blood MLL/Af4 cells 

2.2.2.1. Culture of CD34+ cord blood MLL/Af4 cells in myeloid condition 
CD34+ cord blood MLL/Af4 cells were obtained from Mulloy’s lab in frozen vials. The 

cells are immortal in myeloid condition media (composition was written in Table 2-4) 

as described previously[82]. 

After thawing, i.e. the recovery phase, the cells were grown at a concentration of 1 – 

2 x 106 cells/ml. One week after the recovery, the cells were grown at a concentration 

of 0.25 – 0.5 x 106 cells/ml, adjusted once a week. Fresh media was added in the 

middle of the week. The cells had approximately three doublings per week. 

2.2.2.2. Culture of CD34+ cord blood MLL/Af4 in lymphoid condition 
Lymphoid culture components were described in Table 2-4.  Co-culture with MS-5 

cells was included. Lymphoid differentiation must be performed on the cord blood 

MLL/Af4 before they reach week 10. After this timepoint, no lymphoid differentiation 

could be achieved, as informed by Mulloy’s lab. 

MS-5 cells were grown at a concentration of 4 – 5 x 103 cells/cm2 in α-MEM 10% 

FBS one day before the co-culture (it was preferable to use 12 well plate or larger 

surface area plate/flask due to the expansion of the cord blood cells after the long 

culture). On the day of co-culture, the MS-5 cells should reach 60-80% confluence. 

The cord blood cells were seeded at a concentration of 1 – 2 x 105 cells/ml onto the 

MS-5 layer in complete lymphoid growing media. During the co-culture, the media 

only required a 50% replacement, once a week. 

Lymphoid differentiation was observed from week 2 – 3, and became the majority of 

the population on week 5 – 6. During this period, the MS-5 layer was effective at 

supporting growth for at least 19 days before it detached. When it started to detach, 

the cord blood cells were transferred onto a new MS-5 layer. 
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2.2.3. Cell counting and concentration determination 

Cells numbers were counted using an Improved Neubauer haemocytometer 

(Hawksley). An aliquot of suspension cells was mixed with the viability stain, trypan 

blue (0.2% w/v), in a ratio 1:1, and 10 μl of the mixture was loaded into the 

haemocytometer. The slide was transferred to an inverted microscope with 10x 

objective magnification for counting. For routine subculture, two quadrants of the 

haemocytometer were counted, while for more precise experiments, four quadrants 

were counted. The cell concentration (cell/ml) is determined by dividing the average 

number of cells (total number of cells/number of counted quadrants) by 0.1 mm3, or 

10-4 ml (the volume of each quadrant), compensating for the dilution factor of the 

viability stain. 

2.2.4. Thawing cells 

Frozen cells were thawed rapidly in a 37°C water bath, the cryovial was cleaned with 

70% ethanol, and diluted in 10 ml growth media. The suspensions were centrifuged 

at 300 g for 5 min to remove the supernatant with the cryoprotectant (DMSO). The 

cells were resuspended in fresh growth media at a concentration of 106 cells/ml for 

cell lines, or 1 – 2 x 106 cells/ml for patient materials and primograft cells. 

The cell lines were cultured and routinely assessed to ensure a normal rate of growth 

prior to any experimental procedures. 

2.2.5. Freezing cells 

Cells were grown to reach the late log phase for cryopreservation. They were 

counted and centrifuged at 300 g for 5 min. The cells were resuspended in freezing 

medium at a concentration of 5 x 106 to 107 cells/ml and transferred to pre-labelled 

cryovials. They were placed in an insulated freezing box to provide a slow cooling 

and transferred to -80°C.  
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2.2.6. Lentivirus production  

Lentivirus was produced in 293T cells by co-transfection of the lentiviral envelope 

(pMD2.G), packaging (pCMVdR8.91), and expression plasmids using calcium 

phosphate precipitation method. 293T cells with less than 16 passages were used for 

optimal lentiviral production. They were grown in 150 mm tissue culture dishes at a 

concentration of 3 x 106 cells in 30 ml medium the day prior to co-transfection. On the 

following day when the cells had reached 30 – 50% confluence, 60 µg of the lentiviral 

transfer vector containing expression cassette, 45 µg of pCMVdR8.91, and 15 µg of 

pMD2.G were mixed. The volume of the mixture was adjusted with HEPES buffer 

solution to a total volume of 750 µl. A volume of 750 µl of 0.5 M calcium chloride 

solution was added and mixed well. This solution was added to a prepared 1.5 ml of 

2X HeBS pH 7.00 solution in a 5 ml vial. They were mixed by vortexing and left for 30 

minutes at room temperature to allow the formation of the calcium phosphate 

precipitate. This suspension was then added dropwise and evenly on 293T cells. The 

cells were cultured for 6 – 14 hours at standard culture conditions. Afterwards, the 

medium was removed, the cells were washed with PBS, and 30 ml fresh growth 

medium was added. They were cultured for three days before harvesting the lentiviral 

particles (section 2.2.7). 

2.2.7. Lentiviral harvesting and concentrating 

Approximately 90 hours following co-transfection, the lentivirus particles were 

collected. The 30 ml supernatant of the transfected cells containing the viruses were 

collected in a conical tube. It was centrifuged at 600 g for 15 min at 4°C, and the 

supernatant was further filtered using PVDF membrane filter with 0.45 µm pore size 

to remove any residual debris. 

The lentivirus particles were concentrated using a Beckman Optima L-100 XP 

Ultracentrifuge at 120,000 g, 4°C for 2 h in a swinging bucket rotor within a constant 

vacuum. Afterwards, the supernatant was removed by carefully decanting, and the 

viruses were resuspended in 1 ml of the experimented target cells growth media, 

aliquoted into several (up to fifteen) tubes, and stored at -80°C. 

2.2.8. Lentiviral transduction 

Lentiviral transduction (including transduction on cord blood cells) was performed 

using the spinoculation method. The cells were prepared and adjusted to a 

concentration of 106 cells/ml. Polybrene (stock concentration is 8 mg/ml) was 

supplemented to a final concentration of 8 µg/ml to assist in neutralising charge 
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repulsion between virions and sialic acid of the cells. The cells were plated into a 48 

well plate with a volume of 500 µl/well (i.e. 5 x 105 cells/well). Different amounts of 

virus were added to the cells and spinoculated at 900 g, 32°C for 50 min, followed 

with overnight incubation at 37°C. The cells were transferred into 24 well plate on the 

next day and cultured for at least three days before conducting subsequent analysis.  

2.2.9. Single cell cloning by limiting dilution 

The suspension cells were seeded at a concentration of 5 x 105 cells/ml the day prior 

to cloning to provide good conditions for the cells and reliable counting on the day of 

the cloning. 

On the next day, the cells were counted and serially diluted (10 fold for each dilution) 

to obtain a final concentration 100 – 500 cells/ml. From this lower density, the cells 

were poured into growing media to get 10 ml volumes with a final concentration of 3 

cells/ml. These cells were then distributed into 96 well U-bottom cell culture plates 

with 100 μl volume per well (i.e. approximately 1 cell per 3 wells). They were cultured 

in the standard conditions and transferred into larger culture plates when the 

numbers of cells were sufficient (approximately 3 – 4 weeks). 
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2.3. Flow cytometry and cell sorting  

2.3.1. Flow cytometry analysis 

Flow cytometry analyses involved analysis of the endogenous fluorescent protein 

and immunophenotypes of the cells. They were performed using FACSCalibur 

(Becton Dickinson), or FACSCanto II (Becton Dickinson) when it required a blue 

laser.  

2.3.1.1. Endogenous fluorescent protein analysis 
The transduced cells that have fluorescent protein marker could be measured using 

flow cytometry. A small number of the cells (as few as 105 cells) were put into a 

FACS tube, diluted to 4 ml using PBS, and centrifuged (450 g for 4 min) to prevent 

colour interference from the growing media. The cells were resuspended in PBS at a 

maximum concentration of 106 cells/ml and measured using appropriate fluorescent 

channels (Table 2-21). 

2.3.1.2. Surface marker staining and analysis 
A small number of cells (1 – 5 x 105 cells) were collected into FACS tubes, made up 

to 4 ml using PBS, and centrifuged at 450 g for 4 min. They were resuspended in 50 

μl of 0.2% PBSA (0.2% BSA in PBS) containing the labelled antibodies (antibody 

volume was based on the manufacturer’s recommendation) and incubated for 20 min 

in the dark at room temperature. Subsequently, the samples were washed by adding 

3.5 ml of 0.2% PBSA and centrifuged, to remove the untagged antibodies. The 

samples were resuspended in 500 μl of 0.2% PBSA and measured using the 

appropriate fluorescent channels (Table 2-21). 
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Fluorochrome Fluorescent channel 

APC FL4 

eGFP FL1 

FITC FL1 

PE FL2 

PE-Cy7 FL3 

PerCp-Cy5.5 FL3 

RFP657 FL4 

tdTomato FL2 

Venus FL1 

Table 2-21 Fluorescent channels for different fluorochromes on FACSCalibur. APC-Cy7 and 

BV421 were analysed using FACSCanto II due to no available filters and laser in FACSCalibur. Also, 

the fluorescent channels have been named according to the fluorochromes in FACSCanto II, apart 

from eGFP and Venus, tdTomato, RFP657, and BV421 that were analysed using FITC, PE, APC, and 

Pacific Blue channels, respectively. 

2.3.2. Cell sorting 

Cell sorting techniques were used to isolate fluorescent protein expressing cells, 

labelled cells populations, or single cells. Three different instruments were used: 

FACSAria III (Becton Dickinson), Astrios EQ Cell Sorter (Beckman Coulter) and 

FACSAria Fusion Cell Sorter (Becton Dickinson). The FACSAria III was located in 

NICR and experiments were carried out by Hesta McNeill, while others are located 

with and performed by the Flow Cytometry Core Facility, Newcastle University. The 

sample labelling for haematopoietic sub-population sorting was carried out with 

assistance from Dr Paul Milne, who had previously optimised the antibody panel 

used. 

2.3.2.1. Fluorescent protein expressing cells sorting 
Before sorting, the population of fluorescent protein-expressing cells was evaluated 

(section 2.3.1), to have an estimate of the number of cells that would be collected. 

After that, the desired number of cells was centrifuged (300 g, 5 min) and 

resuspended in sorting buffer at a concentration of 1 – 2 x 107 cells/ml. The cells 

were then passed through a 40 µm cell strainer to remove any clumped cells and 

transferred into a FACS tube to be sorted. 

The cells were sorted and collected into a 1.5 ml microfuge tube, FACS tube, or 15 

conical tube containing 500 μl, 1 ml, or 2 ml culture media, respectively, depending 
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on the number of cells to be collected. Afterwards, the cells were cultured under 

standard conditions. 

2.3.2.2. Haematopoietic sub-population sorting 
Haematopoetic sub-population analyses were performed on primary and primograft 

patient samples. The sorting preparation was assisted by Dr Paul Milne. Up to 107 

cells were prepared, centrifuged, and resuspended in 100 µl sort buffer. The 

antibodies were added and incubated in the dark at 4°C for 30 min. The antibodies to 

be used are listed in Table 2-22. After staining, the cells were washed, resuspended 

in sort buffer, and passed through a 40 µm cell strainer to remove any clumped cells 

and transfer into a FACS tube, and sorted. 

The sorted cells were collected into 1.5 ml microfuge tubes containing 500 µl RF-10 

media. After sorting, they were added with additional 500 µl media to dislodge any 

cells that may attach to the upper part of the microfuge containing no media, and 

continued with further applications. 

Antibody Fluorochrome Astrios filter 

CD56 FITC 488/530 

CD34 PerCP-Cy5.5 488/695 

CD117 PE 561/586 

CD19 PE-CF594 561/620 

CD38 PECy7 561/795 

CD33 APC 642/671 

CD90 A700 642/722 

CD3 APC-Cy7 642/795 

CD123 BV421 405/448 

CD45RA BV510 405/530 

CD10 BV650 405/671 

HLA-DR BV786 405/795 

Table 2-22 Antibodies panel for haematopoietic sub-populations sorting on Astrios 

2.3.2.3. Single cells sorting 
Single cell analysis was started with the isolation of the single cells into 96 well plates 

(Eppendorf twin.tec PCR Plate 96 full skirt). The cells were sorted to the plates based 

on the design in Figure 2-1 that includes forty-five single cell samples, two 0 cells as 

a negative control, and one bulk (300 – 1,000 cells) as positive control sample in one 
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96 well plate. This design provides the plate with only 48 total samples to have a 

good time allocation for distribution of the whole genome amplification (WGA) 

reagents. 

 

Figure 2-1 Plate design for single cell sorting. The design included two 0 cells as negative controls, 

one bulk (300 – 1,000 cells) as a positive control, and forty-five single cell samples.  

Before the sorting, the plates were filled with 3.5 µl PBS/well and sealed with tape 

pad (it is recommended to prepare extra plates per cell type). The cells were 

prepared from as many as 105 cells. They were centrifuged and re-suspended in 500 

µl filtered 0.2% PBSA. 

When the preparations were finished, the plate to be sorted was centrifuged at 2,000 

rpm for 1 min. The sorting was performed by the Flow Cytometry Core Facility team 

using FACSAria Fusion Cell Sorter. During sorting, plates not actively on the cell 

sorter were kept on ice. Following the sorting, the plate was resealed with new tape 

pad and centrifuged at 2,000 rpm for 1 min to ensure single cells were not attached 

to the no-media surface of the well. Plates were then stored at -20°C until further 

application. 

   

1 2 3 4 5 6 7 8 9 10 11 12

A 0 0 0 0 0 0 0 0 0 0 0 0

B 0 0 0 0 0 0 0 0 0 0 0 0

C 0 bulk ctrl sample sample sample sample sample sample sample sample 0 (neg ctrl) 0

D 0 sample sample sample sample sample sample sample sample sample sample 0

E 0 sample sample sample sample sample sample sample sample sample sample 0

F 0 sample sample sample sample sample sample sample sample sample sample 0

G 0 sample sample sample sample sample sample sample 0 (neg ctrl) 0 0 0

H 0 0 0 0 0 0 0 0 0 0 0 0
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2.4. Molecular biology methods 

2.4.1. RNA isolation 

RNA was isolated using QIAGEN RNA isolation kits, based on the number of cells. 

These include the isolation from less than and more than 105 cells that were done 

using QIAGEN RNeasy Plus Micro Kit and RNeasy Mini Kit, respectively. 

2.4.1.1. RNA isolation from small number of cells (<105 cells) 
RNA from a small number of cells (<105 cells; e.g. cell clones) were isolated using 

RNeasy Plus Micro Kit according to the manufacturer’s protocol. Cells were 

centrifuged at 500 g for 5 min, and then the supernatant was aspirated. They were 

lysed and homogenised by adding 350 µl RLT Plus containing 1% β-mercaptoethanol 

and vortexing for 1 min. The lysate was transferred into a gDNA Eliminator spin 

column and centrifuged at 8,000 g for 30 s to eliminate gDNA. The flow-through was 

mixed with 350 µl of 70% ethanol and transferred to the RNeasy MinElute spin 

column. The RNA bound to the column by centrifugation at 8,000 g for 30 s. The 

column with the RNA was washed three times with (1) 700 µl Buffer RW1, (2) 500 µl 

Buffer RPE (each was at 8,000 g for 30 s centrifugation), and (3) 500 µl of 80% 

ethanol (8,000 g for 2 min centrifugation). The column was placed in a new collection 

tube, the lid was opened, and centrifuged at full speed for 5 min to remove residual 

ethanol. After that, the column was transferred to a 1.5 ml collection tube and the 

RNA was eluted from the column by adding 12.5 µl RNase-free water, incubated at 

room temperature for 5 min, and then centrifuged at full speed for 1 min. The RNA 

was stored on the ice when the cDNA synthesis was performed immediately, 

otherwise RNA was stored at -20° C. 

2.4.1.2. RNA isolation from larger number of cells (>105 cells) 
General RNA isolation (>105 cells) was done using QIAGEN RNeasy Mini Kit. Up to 5 

x 106 cells were collected and washed once with PBS (300 g for 5 min). The cell 

pellet was lysed by adding 350 µl RLT buffer containing 1% β-mercaptoethanol. The 

lysed cells were transferred to Qiashredder column and centrifuged at full speed for 2 

min to homogenise the sample. The homogenised sample was mixed with 350 µl of 

70% ethanol and applied to RNeasy spin column. The RNA bound to the column by 

centrifugation at 8,000 g for 30 s. The column with the RNA was washed three times 

that included once with 700 µl RW1 buffer, and twice with 500 µl RPE buffer (all of 

the washing was done by centrifugation at 8,000 g for 30 s). The column was dried 

by centrifugation at full speed for 2 min to remove residual ethanol. After that, the 
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column was transferred to a 1.5 ml collection tube and the RNA was eluted from the 

column by adding 50 µl RNase-free water, incubated at room temperature for 5 min, 

and then centrifuged at full speed for 1 min. The RNA was stored on the ice when the 

cDNA synthesis could be done soon afterwards, or otherwise stored at -20° C. 

2.4.2. cDNA synthesis 

The cDNA was synthesised from RNA using RevertAid H Minus First-Strand cDNA 

Synthesis Kit (Thermo Fisher Scientific). Up to 1 µg RNA was used as the template 

and mixed with 1 µl random hexamer primers (0.2 µg/µl), and the volume was 

adjusted to 12 µl with H2O. Subsequently, the mixture was incubated at 70°C for 5 

min to heat-denature the secondary structure of the RNA, followed by cooling at 4°C 

and adding 8 µl reverse transcription master mix components. The master mix 

includes 4 µl of 5X reaction buffer, 1 µl Ribolock RNase inhibitor (20 U/µl), 2 µl of 10 

mM dNTP, and 1 µl RevertAid H minus reverse transcriptase (200 U/µl). The reaction 

was started with incubation at 25°C for 10 min to extend the random hexamer 

primers, continued with the reverse transcriptase by incubating at 42°C for 60 min, 

and heat-inactivated at 70°C for 10 min. The product was diluted with H2O, and the 

added volume depends on the starting template amount (Table 2-23). 

Template VH2O (µl) 

Small amount of cells (<105 cells) 0 

<500 ng RNA 30 

500 – 1,000 ng RNA 80 

Table 2-23 H2O volume for cDNA dilution 

2.4.3. DNA isolation 

The DNA was isolated using QIAGEN DNeasy Blood & Tissue Kit. Up to 5 x 106 cells 

were harvested by centrifugation at 300 g for 5 min. The cells were resuspended in 

200 µl PBS and added with 20 µl proteinase K (enzymatic activity 600 mAU/ml 

solution) to digest protein, in particular, DNases. The cells were lysed by adding 200 

µl Buffer AL, vortexed, and incubated at 56°C for 10 min, and then mixed with 200 µl 

ethanol. The mixture was transferred into the DNeasy Mini spin column and 

centrifuged at 6,000 g for 1 min to allow the DNA bind to the column. The column 

with the DNA was transferred to another collection tube. It was washed twice, firstly 

by adding 500 µl Buffer AW1 and centrifuged at 6,000 g for 1 min, and secondly by 

adding 500 µl Buffer AW2 and centrifuged at 20,000 g for 2 min (new collection tube 
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was used for every washing step). The flow-through was removed and centrifuged 

again at 20,000 g for 1 min to remove any residual liquid. The column was 

transferred to a 1.5 ml microfuge tube and the DNA was eluted by adding 100 – 200 

µl Buffer AE (depending on the necessity of concentrated DNA), incubated for ~5 

min, and centrifuge at 17,900 g for 1 min. The DNA was stored at -20°C. 

2.4.4. Simultaneous DNA and RNA extraction 

DNA and RNA from a small number of cells (<105 cells) from precious samples, e.g. 

the sorted haematopoietic populations, were extracted simultaneously using QIAGEN 

AllPrep DNA/RNA Micro Kit. The cells were centrifuged at 500 g for 5 min, and the 

supernatant was aspirated. They were lysed and homogenised by adding 350 µl RLT 

Plus containing 1% β-mercaptoethanol and vortexing for 1 min. The lysate was 

transferred to an AllPrep DNA spin column and centrifuged at 8,000 g for 30 s to bind 

the DNA, while the RNA would pass the membrane and was in the flow-through. The 

column was stored at 4°C, and the RNA was isolated first. 

The flow-through containing RNA was augmented with 350 µl of 70% ethanol and 

transferred into the RNeasy MinElute spin column. It was centrifuged at 8,000 g for 

30 s to allow the column to bind the RNA. The column was washed three times by 

adding 700 µl Buffer RW1 and 500 µl Buffer RPE (centrifuged 8,000 g for 30 s) and 

500 µl of 80% ethanol (centrifuged 8,000 g for 2 min). After the washing steps, the 

column was placed in a new 2 ml collection tube, the lid was opened, and centrifuged 

at full speed for 5 min to dry any residual ethanol. Subsequently, it was placed in a 

new 1.5 ml collection tube, and the RNA was eluted by adding 12.5 µl RNase-free 

water, incubated at room temperature for 5 min, and then centrifuged at full speed for 

1 min. The RNA was stored on the ice when the cDNA synthesis could be done soon 

afterwards, or otherwise stored at -20° C.  

The process was continued by isolating the DNA that had bound to the AllPrep DNA 

spin column. The DNA and column were washed twice by adding 500 µl Buffer AW1 

and AW2, centrifuged at 8,000 g for 30 and 20,000 g for 2 min, respectively. The 

column was placed in a new 1.5 ml collection tube, and the DNA was eluted by 

adding 30 µl preheated to 70°C Buffer EB. It was incubated at room temperature for 

5 min, and then centrifuged at full speed for 1 min. After that, a further 30 µl pre-

heated Buffer EB was added to elute any remaining DNA. It was incubated at room 

temperature for 5 min, and then centrifuged at full speed for 1 min. The DNA was 

stored at -20°C.   
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2.4.5. PCR  

Different PCR components and reactions were performed depending on the length of 

amplicons, proofreading activity, and difficulty of the templates. 

2.4.5.1. General PCR – short, non-complex amplicon 
PCR on short (<750 bp), non-complex, and no proofreading required amplicons were 

performed using HotStarTaq DNA Polymerase (QIAGEN). It was done in 25 µl 

reaction with annealing temperature ranged from 0 – 5°C below melting temperature 

of the primer sets. DNA template was used in a range 20 – 200 ng, while cDNA was 

used 1 - 2 µl of the diluted product (refer to Section 2.4.2). The amount of template 

added was dependent on the availability of the material. 

The pipetting scheme and thermal cycle are described in Table 2-24 and Table 2-25, 

respectively. 

Components Final concentration/amount 

10x PCR buffer 

dNTP mix (10 mM of each) 

10 µM primer mix 

DNA/cDNA 

H2O 

HotStarTaq DNA Polymerase (5U/µl) 

1 x 

200 µM of each dNTP 

400 nM 

20 - 200 ng DNA or 1 - 2 µl cDNA 

up to 25 µl total volume 

0.625 U or 0.025 U/µl 

Table 2-24 PCR components using HotStarTaq DNA Polymerase (QIAGEN) 

Step Temperature (°C) Time Cycles 

Initial activation 95 15 min 1 

Denaturation 

Annealing 

Extension 

94 

Tm-(0 to 5) 

72 

30 s 

30 s 

1 min/kb

 

18 – 35 

Final extension 72 10 min 1 

Table 2-25 Thermal cycle of PCR reaction using HotStarTaq DNA Polymerase (QIAGEN) 
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2.4.5.2. PCR longer or complex amplicon 
Phusion® High-Fidelity PCR Master Mix with HF Buffer (NEB) was used for the 

reaction with (1) longer than 750 bp amplicon, (2) complex template (e.g. GC-rich, 

containing high impurities, a small amount of template, etc.), or (3) where 

proofreading was required. The annealing temperature was determined using the 

manufacturer’s specific program (tmcalculator.neb.com/). DNA template was used in 

a range of 20 – 200 ng, while cDNA was used in the range of 1 – 5 µl, either from the 

diluted (refer to Section 2.4.2) or non-diluted product, dependent on the availability of 

the materials. 

The pipetting scheme and thermal cycle are described in Table 2-26 and Table 2-27, 

respectively. 

Components Amount 

2x Phusion master mix 

10 µM Primer mix 

DNA/cDNA 

H2O 

12.5 µl 

200 nM 

20 - 200 ng DNA or 1 - 5 µl cDNA 

Up to 25 µl total volume 

Table 2-26 PCR components using Phusion® High-Fidelity PCR Master Mix with HF Buffer 

(NEB) 

Step Temperature (°C) Time Cycles 

Initial activation 98 2 min 1 

Denaturation 

Annealing 

Extension 

98 

Ta 

72 

10 s 

30 s 

30 s/kb 

 

18 – 35  

Final extension 72 10 min 1 

Table 2-27 Thermal cycle of PCR reaction using Phusion® High-Fidelity PCR Master Mix with 

HF Buffer (NEB) 

2.4.5.3. PCR identification transcript breakpoint MLL/AF4 and MLL/AF9 
Common primers were designed to identify transcript breakpoint MLL/AF4 and 

MLL/AF9. The locations of the primers were determined from the study cases by 

Cerveira et al.[192] and De Braekeleer et al.[193]. These studies showed exon 8 as 

the earliest location of the MLL breakpoint, and exon 6 and 9 as the latest location of 

AF4 and AF9 breakpoints, respectively. Based on these criteria, the combinations of 

the common primers were listed in Table 2-28. 
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Primer mix Primer component  

MLL/AF4 common 1 
MLL exon 8 
AF4 spanning exon 8 and 9 

MLL/AF4 common 2 
MLL exon 9 
AF4 spanning exon 8 and 9 

MLL/AF9 common 1 
MLL exon 8 
AF9 spanning exon 10 and 11_A 

MLL/AF9 common 2 
MLL exon 9 
AF9 spanning exon 10 and 11_B 

Table 2-28 Primer components of the common primer MLL/AF4 and MLL/AF9 transcript 

breakpoints. The sequences of them were listed in Table 2-15. 

PCR reaction using Phusion® High-Fidelity PCR Master Mix with HF Buffer (NEB) 

Section 2.4.5.2 was used for the identification, with annealing temperature 65°C. The 

MLL/AF4 and MLL/AF9 products might have <1,000 bp and <1,800 bp sizes, 

respectively. 

2.4.6. Multiplex PCR 

Multiplex PCR was performed to amplify numerous candidate driver genes in order to 

preserve the valuable material. Before performing the multiplex PCR, single reaction 

PCR (Section 2.4.5.2) was conducted to validate the primers and the locations of the 

target bands. In our case, the multiplex PCR products would be tagged with a 

barcode for next generation sequencing (Illumina MiSeq). Therefore, high-fidelity 

polymerase (Phusion® High-Fidelity PCR Master Mix with HF Buffer (NEB)) was 

used to avoid A-tailing on the amplicons. Furthermore, Illumina MiSeq will read 

lengths up to 300 bp from both ends. Accordingly, the primers were designed to 

contain small amplicon sizes, ranging from 100 bp to 300 bp, or up to 600 bp if 

necessary (however, longer than 300 bp would only be covered by either one of the 

sequencing ends). The primers were also designed to have the same melting 

temperature (66°C) for all of the analysed genes. 

It was recommended that each amplicon had different size of at least 25 bp to be 

able to be differentiated by gel electrophoresis. Up to six amplicons were designed in 

a single multiplex reaction. The primers were designed using Primer Express® 

Software v2.0 (Applied Biosystems). 

After the validation by single reaction PCR, multiplex PCR was conducted with the 

pipetting scheme and thermal cycle shown in Table 2-29 and Table 2-30. 
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Components Amount 

2x Phusion master mix 

10 µM Primer mix 

DNA/cDNA 

H2O 

12.5 µl 

80 nM each primer set 

Up to 5 µl 

Up to 25 µl total volume 

Table 2-29 Multiplex PCR components 

Step Temperature (°C) Time Cycles

Initial activation 98 2 min 1 

Denaturation 

Annealing 

Extension 

98 

Tm (66°C) 

72 

10 s 

30 s 

30 s 

 

35  

Final extension 72 10 min 1 

Table 2-30 Thermal cycle of the multiplex PCR 

In the case when a particular amplicon had much lower signal than the others on the 

electrophoresis, the primer amount of the appropriate amplicon was increased.  

2.4.7. Barcoding PCR 

Multiplex PCR products required the addition of barcodes for Illumina MiSeq. 

Barcodes tagging was produced by barcoding PCR using the primers Access Array 

Barcode Library for Illumina Sequencers-384, Single Direction (Fluidigm). Multiplex 

PCR products per sample were pooled for one reaction, i.e. one barcode/sample. 

Phusion® High-Fidelity PCR Master Mix with HF Buffer (NEB) was used for the 

amplification. The pipetting scheme and thermal cycle are described in Table 2-31 

and Table 2-32, respectively. 

Components Amount 

2x Phusion master mix 

Fluidigm barcoded primer (2 µM) 

Multiplex PCR products 

H2O 

10 µl 

4 µl 

0.4 µl/multiplex product 

Up to 20 µl 

Table 2-31 PCR components for barcoding PCR using the Access Array Barcode Library for 

Illumina Sequencers-384, Single Direction (Fluidigm) 
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Step Temperature (°C) Time Cycles

Initial activation 98 2 min 1 

Denaturation 

Annealing 

Extension 

98 

60 

72 

10 s 

30 s 

1 min 

 

6  

Final extension 72 10 min 1 

Table 2-32 Thermal cycle of barcoding PCR using the Access Array Barcode Library for 

Illumina Sequencers-384, Single Direction (Fluidigm) 

The products were run on gel electrophoresis and purified subsequently, to remove 

any impurities, and eluted in H2O. The concentration was measured using Qubit 3.0 

Fluorometer (Thermo Scientific). It was recommended to have a concentration of >10 

nM or the minimum 5 nM in 5µl for the sequencing. 

2.4.8. Nested PCR 

Sample with limited amounts of available DNA were amplified using nested PCR 

method. Due to undergoing many cycles, high-fidelity polymerase (Phusion® High-

Fidelity PCR Master Mix with HF Buffer (NEB)) was used. The first PCR reaction 

followed the protocol in Section 2.4.5.2, but the template was up to 5 µl and 30 PCR 

cycles used. Following the first PCR reaction, the product was diluted 100 fold in H2O 

and used as the template for the second PCR. The pipetting scheme and thermal 

cycles are described in Table 2-33 and 2-34, respectively. 

Components Amount 

2x Phusion master mix 

10 µM Primer mix 

Diluted PCR product 

H2O 

12.5 µl 

0.5 µl 

1 µl 

11 µl 

Table 2-33 PCR components second reaction of nested PCR 
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Step Temperature (°C) Time Cycles

Initial activation 98 2 min 1 

Denaturation 

Annealing 

Extension 

98 

Ta 

72 

10 s 

30 s 

30 s/kb 

 

20 – 35  

Final extension 72 10 min 1 

Table 2-34 Thermal cycle second PCR reaction of nested PCR 

2.4.9. Quantitative PCR (qPCR) 

Quantitative analysis of specific mRNA was performed using qPCR ABI Prism 

7900HT Sequence Detection System (Applied Biosystems) or ViiA Real-Time PCR 

System (Applied Biosystems). SYBR Green (Platinum® SYBR® Green qPCR 

SuperMix-UDG with ROX, 2X, Invitrogen) which intercalates with double-stranded 

DNA and emits a fluorescent signal upon excitation, was used as the detection 

reagent. The primers were designed using Primer Express® Software v2.0 or v3.0 

(Applied Biosystems). The reactions were performed in 384 well PCR plates, 

triplicates for each analysed gene, with components are described in Table 2-35. 

Components Amountgeneral AmountMLL/AF4

2X SYBR Green master mix 

10 µM Primer mix 

cDNA 

H2O 

1X 

300 nM 

2 µl 

up to 10 µl 

1X 

50 nM 

2 µl 

up to 10 µl 

Table 2-35 qPCR components. Amountgeneral column is the common components for routine reaction. 

AmountMLL/AF4 column is exclusively used for MLL/AF4 L826 and SEM. 

The component mix was prepared on ice, and the plate was sealed (MicroAmp® 

Optical Adhesive Film, Applied Biosystems) and centrifuged for 1 min at 1,000 g. 
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The thermal profile of the PCR is described in Table 2-36. 

Temperature (°C) Time Cycles 

50 2 min 
1 

95 10 min 
95 15 s 

40 
60 1 min 
95 15 s 

1 60 15 s 

95 15 s 

Table 2-36 Thermal cycle of qPCR. The initial temperature setting, 50°C, activated the UDG to 

remove cross-contamination from uracil-containing DNA (e.g. previous PCR products). The reaction 

was inactivated at the next temperature setting, 95°C. This temperature also functioned to activate the 

polymerase. The second segment was the amplification reaction, where the signal was recorded 

during the extension step (i.e. 60°C). The third part was the amplicon dissociation phase where the 

melting curve was recorded. 

The data were analysed using SDS 2.3 System Software (Applied Biosystems) or 

QuantStudio Real-Time PCR System (Applied Biosystems), and the comparative Ct 

method was used. Each gene of interest was normalised to the housekeeping gene 

(GAPDH), yielding ∆Ct value. This normalisation is required as the internal control for 

gene expression. Subsequently, the ∆Ct value was compared with reference Ct value 

(i.e. between reference control and experimental samples), resulting in ∆∆Ct value. 

Since Ct value was represented in a two-fold expression change (i.e. log2), the ∆∆Ct 

value was linearised by using antilog to the base of 2 to obtain the relative RNA 

expression. 

2.4.10. Agarose gel electrophoresis 

DNA fragments were visualised using agarose gel electrophoresis. The agarose 

(UltraPure™ Agarose; Invitrogen) was made in 1X TAE buffer with different 

concentration depending on the nucleic acid size, listed as follow: 

Agarose concentration (w/v) Nucleic acid size (bp) 

1% >1,000 

2% 100 – 1,500 

3% <150 
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The mixture was heated using the microwave until all the agarose was dissolved. It 

was then swirled gently to mix the solution. GelRed (Biotium) was added to 1X 

concentration (stock is 10,000X), and the solution was poured into the constructed 

horizontal gel tray. The gel was left at room temperature for approximately 15 

minutes to allow it to completely polymerise, before being transferred into the gel 

electrophoresis tank. The 1X TAE buffer was used as the running buffer. The DNA 

was mixed with 5X loading dye and loaded onto the gel. The electrophoresis was run 

at 3.5 – 4 V/cm.  

The gel was visualised either by GelDoc (Biorad) or G:BOX (Syngene). 

2.4.11. DNA polyacrylamide gel electrophoresis (DNA-PAGE) 

Multiple DNA fragments that were shorter than 300 bp, e.g. multiplex PCR products, 

were visualised using DNA-PAGE to provide appropriate separation of the bands.  

The electrophoresis was performed on 8% PAGE gel in 1X TBE buffer as denoted in 

Table 2-37. 

Composition Volume Final concentration 

1 x TBE 

40% acrylamide/bis-acrylamide 

10% ammonium persulfate 

TEMED 

8 ml 

2 ml 

50 µl 

10 µl 

~1X 

8% 

0.05% 

0.1% 

Table 2-37 DNA-PAGE compositions 

The gel was run on vertical electrophoresis apparatus using 1X TBE buffer as 

running medium. The sample was mixed with 5X loading dye. The electrophoresis 

was run at 50 V. Afterwards, the gel was stained with GelRed (Biotum) (Section 

2.4.12) and visualised using Geldoc or G:BOX. 

2.4.12. Staining polyacrylamide gel 

The GelRed solution was used for staining the DNA-PAGE. 15 µl of GelRed 

(10,000X stock concentration) was added to 50 ml of 1X TBE. The gel was immersed 

in the solution and incubated at room temperature for 15 – 30 min with gentle 

shaking. 

2.4.13. Whole genome amplification (WGA) single cells 

DNA from single cell samples was amplified using REPLI-g Single Cell Kit (QIAGEN). 

The protocol was modified and adapted from Weizmann Institute. The sorting was 
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done as described in Section 2.3.2.3 and then followed with the amplification 

procedures. The WGA work was performed in a laminar-flow hood to reduce the risk 

of foreign DNA contaminations. Outside the laminar-flow hood, the plate was sealed 

with tape pad. 

The WGA procedures consisted of lysis of the cell, DNA denaturation, terminating the 

denaturation, and the amplification itself. The plate was centrifuged at 2,000 rpm for 

1 min, and the samples were added with 1.5 µl Buffer D2 to lyse the cells and 

denature the DNA. The reaction was incubated at 65°C for 10 min in a thermal cycler 

(HYBAID PCRExpress). Subsequently, the plate was transferred to the ice and 

centrifuged briefly. The reaction was terminated by adding 1.5 µl Stop Solution, 

centrifuged briefly, and stored on the ice. Meanwhile, the polymerase master mix was 

prepared with components described in Table 2-38. 

Component V/reaction (µl) 
H2O 4.5 
REPLI-g sc Reaction Buffer 14.5 
REPLI-g sc DNA Polymerase 1 

Table 2-38 WGA polymerase master mix 

The 20 µl polymerase master mix was added to each sample, centrifuged briefly, and 

incubated at 30°C for 8 h in the thermal cycler (without lid heating setting). Following 

the amplification, the reaction was heat-inactivated at 65°C for 3 min. A small volume 

of the amplified products was taken and diluted 100 fold with TE buffer for further 

applications. They were stored at -20°C. 

2.4.14. Production of competent bacteria 

Competent bacteria for cloning was made based on the Inoue method[194]. All of the 

containers, buffers, and solutions were prepared sterile. 

The bacterial source was streaked on antibiotic-free agar plate and incubated for 16 

– 20 h at 37°C. A single colony was picked and grown in 25 ml SOB medium in a 250 

ml flask, incubated for 6 – 8 h at 37°C with vigorous shaking (250 rpm). This culture 

was used for inoculation into three different flasks containing 250 ml SOB media with 

different inoculated culture volumes 2 ml, 4 ml, and 10 ml, respectively. They were 

incubated at 18°C overnight with moderate shaking (200 rpm). On the following 

morning, the OD600 of the cultures was read, continuously monitored every 45 min 

until one of the cultures reached 0.55 (i.e. the exponential phase). The culture was 
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transferred to an ice bath and incubated for 10 min (the others two cultures were 

discarded), and then the cells were harvested by centrifugation at 2,500 g for 10 min 

at 4°C. The medium was discarded and dried on a paper towel for 2 min. 

Subsequently, the cells were resuspended in 80 ml ice-cold Inoue transformation 

buffer by gentle swirling. They were harvested by centrifugation at 2,500 g for 10 min 

at 4°C. The cells were resuspended in 20 ml ice-cold Inoue transformation buffer by 

gentle swirling. DMSO as the stabiliser of the frozen cells was added at a 

concentration of 7% (i.e. 1.5 ml) as the optimum concentration. The cell suspension 

was incubated on the ice for 10 min and aliquoted 200 µl/vial. They were cold 

shocked in liquid nitrogen to enhance the transformation efficiency and stored at -

80°C afterwards. 

2.4.15. Site-directed mutagenesis 

Site-directed mutagenesis method was used for mutating genes of interest in a 

plasmid vector. KOD Hot Start DNA Polymerase (Merck Millipore) was used for the 

reaction. The process consists of annealing oligonucleotides that contain the mutated 

sequences to the plasmid DNA and amplifying it several times. The amplified 

sequences would then carry the mutation base pair(s). 

The mutant oligonucleotides were designed with several characteristics, including 25 

– 45 nt with melting temperature around 78°C, and the mutation located in the middle 

of the sequences. The reaction and thermal cycle are described in Table 2-39 and 

Table 2-40, respectively. 

Component V (µl) Final conc. or amount 

10X KOD buffer 2.5 1X 

25 mM MgSO4 1.5 1.5 mM 

2 mM dNTP mix 2.5 0.2 mM 

10 µM primer forward 1 0.4 µM 

10 µM primer reverse 1 0.4 µM 

Plasmid DNA template (20 ng/µl) 1 20 ng 

H2O 15  

KOD polymerase (1 U/µl) 0.5 0.5 U or 0.02 U/µl 

Table 2-39 Site-directed mutagenesis using KOD Hot Start DNA Polymerase (Merck Millipore) 
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Step Temperature (°C) Time Cycles 

Initial activation 95 15 min 1 

Denaturation 

Annealing 

Extension 

95 

55 

72 

30 s 

30 s 

1 min/kb 

 

12  

Final extension 72 15 min 1 

Table 2-40 Thermal cycle of site-directed mutagenesis using KOD Hot Start DNA Polymerase 

(Merck Millipore) 

Following the amplification, the product was diluted by adding 25 µl H2O. The 

parental DNA that did not contain the mutation was cleaved by the addition of 1 µl 

DpnI restriction enzyme (10 U/µl; the enzyme recognised methylated and hemi-

methylated DNA that are present on the parental DNA but not on the amplification 

products) and incubated at 37°C for 1 h. The final product was transformed into XL1-

Blue cells (Section 2.4.22). 

Following the plasmid DNA extraction, the product was verified by Sanger 

sequencing. 

2.4.16. Hybridisation and phosphorylation pair of oligonucleotides 

The pairs of shRNA oligonucleotides (sense and antisense) were synthesised by 

Sigma-Aldrich. They were hybridised and phosphorylated on the 5’ termini to create 

oligo duplexes and able to ligate into the vectors, respectively. The ATP-containing 

reaction buffer was used to provide the condition for phosphorylation. The reaction 

compositions are described in Table 2-41. 

Component V (µl) 

Forward oligo (100 µM) 1 

Reverse oligo (100 µM) 1 

10X T4 DNA ligase buffer  1 

H2O 6.5 

T4 Polynucleotide kinase (10 U/µl) 0.5 µl 

Table 2-41 Hybridisation and phosphorylation reaction of oligonucleotides 

Firstly, the mixture was incubated at 37°C for 30 min to allow the phosphorylation 

reaction. After that, it was transferred to the thermal block (Eppendorf Thermomixer® 

Comfort) that was set at 95°C and incubated for 4 min to denature the DNA and heat-
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inactivate the kinase. Subsequently, the hybridisation was carried by ramping down 

the temperature 5°C/min to 70°C. When the thermal block reached 70°C, the reaction 

was left for 10 min, and continued the slow cooling to 22°C. The complete 

hybridisation was achieved by incubating the reaction at 22°C between 4 h and 

overnight. Finally, the annealed oligo duplex was diluted 1:200 with H2O for further 

applications. 

2.4.17. Ligation 

Ligation reactions included ligating the DNA or gene of interest and oligo duplex into 

their appropriate vectors. 

For ligating the DNA or gene of interest into the vector, a molar ratio from 1:3 to 1:5 

was used. T4 DNA Ligase (5 U/µl; Thermo Scientific) was used for the reaction. The 

pipetting scheme is described in Table 2-42. 

Component Amount 

Vector  20 ng 

Insert 3 x or 5 x of vector molarity 

10X T4 DNA ligase buffer 2 µl 

T4 DNA ligase 1 U for sticky end ligation 

5 U for blunt end ligation 

4 U for sticky and blunt end ligation 

H2O up to 20 µl 

Table 2-42 Ligation reaction of DNA or gene of interest into the vector 

For oligo duplex ligation, a different pipetting scheme was prepared, as described in 

Table 2-43. 

Component Amount 

Vector  50 ng 

Diluted oligo duplex (refers to Section 2.4.16) 1 µl 

10X T4 DNA ligase buffer 1 µl 

T4 DNA ligase 2.5 U  

H2O up to 10 µl 

Table 2-43 Ligation reaction of oligo duplex into the vector 
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The reactions were performed at room temperature for ≥ 3 h or overnight for both 

conditions. The final products were either directly transformed into bacteria (Section 

2.4.22) or stored at -20°C. 

2.4.18. Restriction endonuclease digestion 

An appropriate amount of plasmids (300 – 1,000 ng) were digested using specific 

restriction endonucleases (Thermo Fisher Scientific). Digestions were performed by 

adding 2 – 3 U of the enzyme (stock is 10 U/µl) in their particular buffers. H2O was 

added to the reactions to make the volume 20 µl, followed by incubation at the 

appropriate temperature of the enzymes (mostly 37°C; referred to the datasheet of 

the enzyme) for 1 h. 

2.4.19. Fill-in/removal DNA overhangs 

The fill-in of 5’-overhangs or removal of 3’-overhangs DNA was performed using 

Klenow Fragment (10 U/µl; Thermo Fisher Scientific). The enzyme works in various 

buffers, including restriction enzyme buffers. The DNA (500 – 1000 ng) in those 

buffers were supplemented with 0.5 µl of 2 mM each dNTP mix and 0.5 µl Klenow 

Fragment. The reaction was incubated for 10 min at 37°C and inactivated by heating 

at 75°C for 10 min. 

2.4.20. DNA dephosphorylation 

Vector plasmids with the blunt end on both or one of their termini were 

dephosphorylated to reduce the formation of re-ligation. The dephosphorylation was 

performed using FastAP Thermosensitive Alkaline Phosphatase (1 U/µl; Thermo 

Fisher Scientific). The enzyme worked in a large variety of restriction enzyme buffers. 

One microliter of the enzyme was added to up to 1 µg of the digested vector and 

incubated at 37°C for 10 min. The reaction was inactivated by heating at 75°C for 5 

min. 

2.4.21. Gateway recombination 

DNA sequences in a vector containing attL sites (e.g. pDONR221 and pENTR1A) 

can be recombined to the destination vector that contains attR sites (e.g. pSIEW). 

The reaction was catalysed by Gateway® LR Clonase® II enzyme mix (Thermo 

Fisher Scientific). The pSIEW destination vector contains ccdb death cassette 

between the attR sites so that non-recombined vector clones do not grow. 
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The recombination reaction is described in Table 2-44. 

Component Amount 

Entry clone  75 ng 

Destination vector 75 ng 

TE buffer to 4 µl  

5X enzyme mix 1 µl 

Table 2-44 Gateway LR clonase reaction  

They were incubated for at least 1 h at 25°C, and the reaction was stopped by adding 

0.5 µl Proteinase K, incubated at 37°C for 10 min. One microliter of the 

recombination reaction was used for transformation into Stbl3 (Section 2.4.22). 

2.4.22. Bacterial transformation of plasmid ligation and mutagenesis  

Plasmids from ligation and mutagenesis products were amplified by transformation 

into Stbl3 and XL-1 blue bacteria, respectively (for the genotype of the strains refer to 

Section 2.1.4). As many as 4 µl ligation or 1 µl mutagenesis product was placed in 

1.5 ml microfuge on the ice, followed by transferring 40 – 50 µl competent bacteria 

into the tube. They were incubated for 30 min on ice. Cells were heat shocked at 

42°C for 40 s, allowing the uptake of the plasmid to the cells. They were re-incubated 

at 4°C at least for 2 min before adding 400 µl SOC medium and continued with 37°C, 

200 – 250 rpm incubation for 1 h. Subsequently, 100 – 200 µl of the bacteria were 

plated on the LB agar plate which contained the plasmid-specific antibiotic. They 

were incubated at 37°C for 12 – 16 h. The bacterial colonies were either processed 

for further applications or stored at 4°C for up to one and half weeks. 

2.4.23. Bacterial transformation using supercoiled DNA 

Plasmid DNA that was isolated directly from bacteria (i.e. supercoiled DNA) was 

amplified by bacterial transformation. As many as 1 – 2 µl that contain 300 – 1000 ng 

DNA was added into 25 µl bacteria and directly plated onto an agar plate with the 

plasmid-specific antibiotic. They were incubated at 37°C for 12 – 16 h. The bacterial 

colonies were either processed for further applications or stored at 4°C for up to one 

and half weeks. 

2.4.24. Miniprep plasmid isolation 

QIAprep Miniprep Kit (QIAGEN) was used to isolate a small plasmid quantity 

(depending on the plasmids, ranging from 5 µg to 25 µg). The procedures consist of 
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alkaline lysis (NaOH/SDS) with the presence of RNase A, neutralisation and binding 

of the plasmid to the silica column, washing for removing endonucleases and salts, 

and elution of the DNA. 

A single colony was inoculated in either 3 ml TB or 5 ml LB media with appropriate 

selection antibiotic and grown at 37°C with vigorous shaking (200 – 250 rpm) for 8 – 

12 h or 12 – 18 h, respectively. The bacterial cells were harvested by centrifugation 

3,000 g for 10 min at 4°C. They were resuspended in 250 µl resuspension buffer 

(Buffer P1) containing LyseBlue (0.1% v/v) and RNase A (100 µg/ml). After that, the 

cells were lysed by adding 250 µl the alkaline lysis buffer (Buffer P2), followed by 

mixing by gently inverting the tube six times and incubating at room temperature for 5 

min. The lysis was terminated by adding 350 µl Buffer N3 and mixed by gently 

inverting the tube six times. The buffer also contained high-salt conditions that would 

precipitate denatured proteins, chromosomal DNA, cellular debris, and SDS, but 

allowed the plasmid DNA stayed soluble. The sample was centrifuged at 17,900 g for 

10 min to separate the plasmid and the precipitations. The supernatant was 

transferred to the QIAprep 2.0 spin column and centrifuged at 17,900 g for 1 min to 

allow the DNA bind to the column. The sample was washed twice, firstly with 500 µl 

Buffer PB followed by 750 µl Buffer PE to remove the endonucleases and salts, 

respectively. The washings were done by centrifugation at 17,900 for 1 min. Residual 

washing buffer was removed by additional centrifugation 17,900 g for 1 min. After 

that, the plasmid was eluted by adding 50 µl Buffer EB, incubated for 1 min, and 

centrifuged at 17,900 g for 1 min. It was stored at 4°C or at -20°C for long-term 

storage. 

2.4.25. Maxiprep plasmid isolation 

EndoFree Plasmid Maxi kit (QIAGEN) was used to isolate larger plasmid quantity (up 

to 500 µg). The procedures consist of alkaline lysis (NaOH/SDS), neutralisation, 

endotoxin removal, binding of the plasmid DNA to the QIAGEN resin, removing the 

impurities, plasmid elution with high-salt buffer, and concentrated and desalted of the 

plasmid. 

A single colony was inoculated in 5 ml LB media with appropriate selection antibiotic, 

grown as a starter culture by incubating at 37°C for approximately 8 h with vigorous 

shaking (225 – 300 rpm). Following the incubation, 500 µl of the culture was 

inoculated into 250 ml LB media with the appropriate selection antibiotic, grown at 

37°C for 12 – 16 h with vigorous shaking. The bacterial cells were harvested by 
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centrifugation at 4,000 g for 15 min at 4°C. They were resuspended in 10 ml Buffer 

P1 that was supplemented with LyseBlue (0.1% v/v) and RNase A (100 µg/ml) and 

then lysed by adding 10 ml the alkaline lysis buffer (Buffer P2). It was mixed by 

gently inverting the tube six times or until the cell suspension turned homogeneously 

blue, and incubated for 5 min at room temperature. The reaction was terminated by 

adding 10 ml chilled Buffer P3, gently inverted six times or until the suspension 

turned homogeneously colourless. It was immediately transferred into QIAfilter 

Cartridge and incubated for 10 min at room temperature to float the precipitation 

containing proteins, genomic DNA, and detergent. The lysate containing plasmid was 

filtered through the cartridge, and 2.5 ml of the endotoxin removal reagent (Buffer 

ER) was added, mixed by inverting the tubes for ten times, and incubated on ice for 

30 min. 

QIAGEN-tip 500 was equilibrated by applying 10 ml Buffer QBT, left to drain 

completely by gravity flow. The lysate was applied to the QIAGEN-tip and allowed to 

empty by gravity flow. It was then washed twice with 30 ml Buffer QC to remove the 

contaminants. The plasmid was eluted by adding 15 ml high-salt buffer (Buffer QN), 

followed by the addition of 10.5 ml room-temperature isopropanol to the eluted DNA 

to concentrate and desalt the plasmid. The solution was centrifuged at 16,000 g for 

30 min at 4°C. The supernatant was discarded, and the DNA pellet was rewashed 

with endotoxin-free 70% ethanol to remove any precipitated salt. It was centrifuged at 

16,000 g for 10 min at 4°C. The supernatant was discarded, and the DNA pellet was 

dissolved in 400 – 500 µl endotoxin-free Buffer TE. 
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2.5. Proteomic methods 

2.5.1. Protein isolation and quantification – western blotting 

Protein was isolated from 106 – 107 cells. The cells were washed once with PBS and 

lysed using RIPA buffer at a concentration of 30 µl/106 cells. The lysis reaction was 

conducted on ice for 20 min with regular vortexing. Afterwards, the samples were 

centrifuged at 14,000 g for 10 min at 4°C to separate the cell debris. The 

supernatants contained proteins and transferred into a new vial. 

For protein quantification, 2 µl of the protein was taken and diluted 10 fold with PBS. 

The diluted protein was quantified using BCA Protein Assay Kit (Santa Cruz 

Biotechnology) and read using plate reader FLUOstar Omega (BMG Labtech). The 

concentration was adjusted to 1 mg/ml with RIPA buffer. Before the immunoblotting, 

the protein was added with sample buffer (5X stock concentration) and denatured by 

heating at 100°C for 7 min. 

2.5.2. Protein electrophoresis 

The proteins that have been denatured and provided with a negative charge due to 

heat inactivation and SDS treatment in sample buffer, respectively (Section 2.5.1), 

were separated using SDS-polyacrylamide gel electrophoresis (SDS-PAGE). An 

appropriate concentration of separating gel was prepared based on the size of the 

protein of interest. The gel was poured into three-quarters of 1.5 mm casting 

chamber (BioRad), and 70% ethanol was pipetted onto the surface to set a flat 

surface of the gel. The gel was left until completely polymerised, and then the ethanol 

was discarded. After that, the stacking gel was poured on top of the separating gel 

surface. A comb was placed on the gel for providing the wells. After complete 

polymerisation, the gel was transferred into a vertical electrophoresis tank, and the 

appropriate amount of protein samples and ladder were loaded into the wells. The 

electrophoresis buffer was added into the tank, and the electrophoresis was run at 50 

V until the samples passed through stacking gel, continuing with 150 V for the 

remainder of the electrophoresis. 

2.5.3. Immunoblotting 

The proteins from SDS-PAGE were transferred onto PVDF membrane (Millipore) and 

then detected by specific antibodies for the protein of interest. Before the assembly, 

the membrane was submerged into methanol for 30 s and then soaked in the blotting 

buffer for 5 min to equilibrate it. After the equilibration the SDS-PAGE gel and the 

membrane were assembled into blotting cassette, in order: the black side of cassette 
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holder, foam pad, filter paper, gel, membrane, filter paper, foam pad, and red side of 

the cassette holder. The transfer was performed at 100 V for 1 h in the blotting buffer. 

Following transfer, the membrane was blocked with 5% milk-TST in a gentle shaking 

for 60 min. Subsequently, the membrane was incubated with the primary antibody 

(the antibody concentrations are in Table 2-12 and Table 2‐13) in 5% milk-TST on a 

rotating platform for 1 h at room temperature or overnight at 4°C. The membrane was 

washed three times with TST buffer for 10 min/washing. Following the washing, the 

membrane was incubated with the secondary antibody in 5% milk-TST on the 

rotating platform for 1 h at room temperature. It was rewashed three times with TST 

buffer to remove the unbound antibodies, followed with immunodetection. 

2.5.4. Immunodetection 

Immunodetection was visualised by the addition of luminol-based detection using 

Immobilon Western HRP Substrate (Millipore) on the membrane, followed by 

exposure to the X-ray film. Luminol and peroxidase solutions were mixed in a ratio of 

1:1 and pipetted onto the membrane. It was incubated at room temperature for 5 min. 

After that, the reagent was drained off, and the membrane was placed on the X-ray 

film cassette. The protein was screened by exposing it to the imaging film (Kodak) for 

an appropriate time. 

2.5.5. Co-immunoprecipitation (Co-IP) 

The Co-IP was conducted from overexpression samples by transfecting 293T cells. 

The transfection was performed on two 100 mm tissue culture dishes and was 

collected 24 – 36 h afterwards. The cells were washed once with PBS, lysed by 

adding 500 µl Co-IP lysis buffer/plate (i.e. 1 ml/construct), and put on the ice. In 

addition to the buffer, the lysis reaction was also assisted by sonication twice for 10s 

at 6 A. The cell debris was separated by centrifugation at 13,000 g for 30 min at 4°C, 

and the supernatant containing protein was transferred into a new 2 ml microfuge 

tube. Meanwhile, 70 µl of the supernatant was taken, added with 17.5 µl of 5X 

sample buffer, and stored at -20°C as the total cell lysate sample (control). The 

supernatant was added with 40 µl diluted agarose G beads (dilution 50:50 agarose G 

beads stock with Co-IP lysis buffer) and optimised amount of the antibody (5 µg for 

twin-strep-tag antibody). The mixture was further added with 760 µl lysis buffer and 

incubated at 4°C for 3 h with slow rotation (approximately 4 rpm) to allow the binding 

of the antibodies to the beads and antigens. After that, the complex bead-antibody-

antigen was pelleted by centrifugation at 3,000 rpm for 3 min at 4°C. The supernatant 
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was removed and washed three times. Each washing was done by adding 1000 µl 

lysis buffer and centrifugation at 3,000 rpm for 3 min at 4°C. Subsequently, it was 

resuspended in 200 µl Co-IP lysis buffer, mixed with 50 µl of 5X sample buffer. The 

complex interaction and the protein structure were denatured by boiling at 100°C for 

10 min and further analysed by western blotting (Section 2.5.2-4) or stored at -20°C.  
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Chapter 3 Pre-leukaemic populations of L826 and other MLLr 

leukaemia 

 

Fundamental to understanding the process of lineage commitment in a lineage 

switch situation is to know what the origin of the relapse is. Despite the preliminary 

data presented in the introduction, it remains undetermined if the AML relapse 

directly changed from the ALL blasts or if there a common pre-leukaemic progenitor. 

If it is the latter, will it be possible to identify where in the differentiation pathway that 

common ancestor is located? And then, is it feasible to trace the candidate driver 

genes that are present in that population?  

This chapter aims to understand: 

1. the origin of the AML relapse L826 

2. the pre-leukaemic population of L826  

3. evaluate and compare the pre-leukaemic populations on other MLLr 

leukaemia cases. 

Immunoglobulin rearrangement is commonly found in B-ALL cases, but not in AML. 

Looking at the rearrangement pattern between the ALL presentation and the AML 

relapse was the first approach in this identification study. This investigation would 

identify whether the common point of origin lies within a population which has already 

rearranged its B cell receptor, i.e. an early B cell progenitor, or is more primitive than 

that. Secondly, the presentation and relapse cells were sorted into different 

haematopoietic subpopulations. The pre-leukaemic mutation MLL/AF4 was evaluated 

on each of the subpopulations to identify the location of the common clonal origin. 

Lastly, the cell of origin in MLLr infant ALL was further explored by studying the 

location of the transforming translocation in other MLLr cases. 
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3.1. Clonal V(D)J rearrangement in ALL and AML L826 

Assessment on Ig and TCR gene rearrangements was commonly performed 

because of the principle that the cells of the lymphoid malignancy share a common 

clonal origin[195]. The Ig and TCR gene loci consist of a large number of different 

variable (V), diversity (D), and joining (J) gene segments that will undergo 

recombination during early lymphoid differentiation[195]. The Ig loci consist of the 

heavy chain (IGH) and the kappa (IGK) or lambda (IGL) light chain. The heavy chain 

gene segment rearrangement starts with D to J, followed with V to DJ recombination. 

On the other hand, the light chains consist of only V to J recombination. The 

rearrangement process follows an order started with (1) IGH recombination, and then 

(2) IGK recombination yields to IGH/κ expression, or (3), if IGK rearrangement is 

unsuccessful, followed by IGK deletion and IGL rearrangement that yields IGH/λ 

expression[195]. Here, we performed the Ig rearrangement analyses, conducted by 

Dr Paul Evans, Leeds Institute of Oncology, to study the clonal similarity between the 

ALL presentation and the AML relapse. These analyses would show if the AML 

carried a common clonal origin at the B cell differentiation, i.e. at the Ig recombination 

level. This study was conducted based on the standard protocol BIOMED-2[195]. 

The VH (variable domain of heavy chain) consists of 46 – 52 functional segments, 

depending on the individual haplotypes and divided into 6 to 7 subgroups (VH1, VH2, 

VH3, VH4, VH5, VH6, and VH7). These subgroups can be detected by three different 

multiplex amplifications where different primers are located in the region called 

framework region (FR) as the forward primers and on a single JH as the reverse 

primer. These multiplex amplifications are named as FR1, FR2, and FR3, Figure 3-1a 

and b. Assessment of this rearrangement can determine whether the cells have the 

complete IGH gene rearrangement. 

The DH consists of 27 functional segments and is divided into 7 families (DH1, DH2, 

DH3, DH4, DH5, DH6, and DH7), Figure 3-1a and c. Similar to the VH analysis, 

multiplex amplification, named Tube D, is used to detect DH1 to DH6 and a single 

amplification, called Tube E, to assess the DH7 if these regions are included in the 

clonal rearrangement. This evaluation can determine if the cells have incomplete IGH 

gene rearrangement. 

In addition to the VH-JH and the DH-JH assessments, we also performed the 

immunoglobulin light chain IGK analysis. The IGK variable region (i.e. VK-JK) 

consists of 5 JK gene segments and many distinct VK gene segments which are 
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grouped into 7 VK families. Multiplex primers were designed to cover these gene 

segments and concluded into two different reactions, named Tube A and Tube B. 

 

Figure 3-1 The schematic diagrams of IGH gene complex and the primer locations. a) IGH gene 

complex consists of VH, DH, JH segments and the constant (or C) region. The VH segment is 

composed of the functional (blue) and rearrangeable pseudogenes (grey). The two digits number on 

VH and DH segments represent the subgroup and the member, respectively. b) Schematic diagram of 

IGH VH-JH rearrangement indicates the location of the three framework regions (FR1, FR2, FR3). 

Each of the FR regions consists of multiplex forward primers. The single reverse primer is located and 

indicated as in ‘JH primer’. c) Schematic diagram of IGH DH-JH rearrangement shows the location of 

the seven DH subgroups and the consensus JH reverse primer. DH7 primer (Tube E) is separated 

from the other six family primers (Tube D). The relative position of the DH and JH primers is given 

according to their most 5’ nucleotide upstream or downstream of the involved recombination signal 

sequences. The schemes are adapted from BIOMED-2 guidelines[195]. 
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We analysed whether the ALL presentation carried the clonal rearrangement and if 

that rearrangement was also present in the AML relapse. The results showed an 

oligoclonal pattern of rearrangements in the ALL, but no rearrangement on the AML 

depicted on Figure 3-2.
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Figure 3-2 Immunoglobulin rearrangement on presentation (a) and relapse (b) L826, referring to 

the standard protocol BIOMED-2[195]. Incomplete DH-JH tube D consisted of DH1, DH2, DH3, 

DH4, DH5, and DH6 segment primer sets, while DH-JH tube E included DH7 segment primer set. 

Tube E also detected the germline DH-JH band at location 221, as shown on the relapse graph (b; 

incomplete DH-JH tube E). The electropherogram showed the incomplete DH-JH peaks in the 

presentation, but not in the relapse. Similarly, multiplex amplification FR1, FR2, and FR3 of the VH 

segments showed the clonal products only in the presentation. The result was confirmed by single 

amplification using VH1-JH, VH2-JH, VH3-JH, VH4-JH, VH5-JH, and VH6-JH primer sets, which 

further showed two clonal VH3, one clonal VH1, and one clonal VH4 rearrangement. Moreover, no IgK 

recombination was observed in both samples. The amplification signal is denoted by blue signal and 

box, and the marker signal by red. The experiment was performed by Dr Paul Evans, Leeds Institute 

of Oncology. 

The incomplete DH-JH rearrangement was assessed by the amplifications on Tube D 

and Tube E. The incomplete rearrangement signals were seen in the presentation, 

but no clonal rearrangement on the relapse (Figure 3-2 blue box on the presentation 

Tube D and E, but not on the relapse column). Furthermore, the VH-JH 

recombination was assessed by multiplex FR1, FR2, and FR3 VH segments. 

Similarly, the prominent clonal peaks (blue box in the Figure 3-2) were observed only 

in the presentation. This analysis was further explored by single amplification of the 

segment VH1, VH2, VH3, VH4, VH5, and VH6, which showed two VH3, one VH1, 

and one VH4 rearrangement. These recombinations mean that the B cells of L826 

presentation had undergone B cell receptor heavy chain constructions, although had 

not been completed with light chain partner. These data demonstrate an oligoclonal 

(>3 clones) pattern of rearrangement in the ALL which is a feature typically found in 

the MLLr ALL due to the continued expression of TdT and RAG1 genes[195, 196]. 

Because the clonal patterns were not identified in the AML, it indicated that the 

relapse did not arise directly from the ALL blasts , but that any common cell of origin 

must originate within a precursor population more primitive than those undergoing 

early V(D)J rearrangement. 

   



94 
 

3.2. Pre-leukaemic populations L826 presentation and relapse 

The V(D)J clonal analysis indicated that the AML arose from a common cell that was 

primitive to early V(D)J rearrangement. The next step was to identify where the origin 

of the relapse is within the haematopoietic stem/progenitor cells. 

Our method to address this was by taking advantage of the fusion gene MLL/AF4. 

The L826 presentation and relapse bone marrow cells were separated into the 

differential haematopoietic subpopulations, including HSC, MPP, CD38-CD45RA+, 

CMP, GMP, MEP, T cells, B cells, NK cells, and monocytes, and then the presence 

of MLL/AF4 was evaluated on each of the subpopulations. These major 

subpopulations and their specific markers are shown in Figure 3-3. 
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Figure 3-3 Haematopoiesis scheme (a) and the markers of the subsets (b). The scheme shows 

the construction of the blood cell subsets. It consists of the progenitor cells (HSC, MPP, CD38-

CD45RA+, CMP, GMP, and MEP), lymphocytes (T cells, B cells, and NK cells), and monocytes. The 

CD38-CD45RA+ population is a mixed population of MLP and LMPP since both populations alone 

have too few cells for analysis (Figure 3-4). The progenitor cells are indicated by the positivity of 

CD34, while the more mature cells do not express CD34.  
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The HSC and progenitor cells are characterised by the expression of CD34. While 

HSC is further defined by the presence of cell surface antigens CD34+CD38-

CD45RA-CD90+, the MPP has lost the CD90 expression, i.e. it is described as 

CD34+CD38-CD45RA-CD90-. Both HSC and MPP are CD38low/-, and this marker 

expression gradually increases upon more mature differentiation (refers to Figure 

1-1)[2, 197]. 

Based on the markers listed in Figure 3-3b, the cells were stained and sorted using 

FACS (Section 2.3.2.2). The DNA was isolated from each subset, and the MLL/AF4 

was evaluated by nested PCR.  ATP10A gene detection was used as a positive 

control to show each sample had sufficient template amount for the amplification.  

The distribution of the haematopoietic subpopulations and the agarose gel 

electrophoresis of the PCR products are shown in Figure 3-4.
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Figure 3-4 Distribution of haematopoietic populations and evaluation of MLL/AF4 on L826 

presentation (a, b) and relapse (c, d). The haematopoietic subset analyses were divided into two 

panels: progenitor (a, c, top panels) and lymphocytes/monocytes (a, c, bottom panels) populations. 

The distinct progenitor subpopulations of HSC, MPP, CMP, GMP, and LMPP were seen. On the 

lymphocytes/monocyte panel, the flow analysis showed B cells, T cells, NK, and monocytes 

subpopulations.  Following the cell sorting, too few cells were obtained from MLP (CD34+CD38-CD90-

CD45RA+CD10+) and LMPP (CD34+CD38-CD90-CD45RA+CD10-) for the analysis; therefore these 

populations were represented by CD38-CD45RA+ population (mixed of MLP and LMPP; 

CD34+CD38-CD90-CD45RA+) that were also known for differentiation potential into GMP and 

lymphoid lineage[6]. Each population was evaluated for the presence of the pre-leukaemic mutation 

MLL/AF4 by PCR. The gel electrophoresis was shown on the presentation (b) and relapse (d). 

ATP10A was used as positive control PCR to show each population had sufficient template for the 

amplification. SKNO-1 is a t(8;21) AML cell line as a negative control of MLL/AF4. ATP10 amplicon 

size is 100 bp. MLL/AF4 amplicon size is 208 bp. All of the samples were analysed from the same 

experiment, but the locations were rearranged for these figures. Original images are shown in 

Appendix A. Flow axis Lin 3 14 16 56 represented combination Lin CD3 CD14 CD16 CD56 antibodies 

that were used for selecting the lineage negative progenitor cells. 

Haematopoietic stem and progenitor populations included HSC, MPP, CD38-

CD45RA+, GMP, and CMP were observed at both presentation and relapse L826. 

These populations were relatively conserved between the two states although the 

separation of MPP and HSC from CD38-CD45RA+ was much sharper in the AML 

case. The flow data showed that GMP population was the major CD34+ population. 

Considering the differentiation potential of GMP into myeloid fate (granulocytes and 

monocytes), it was intriguing to see the large population within the ALL. The staining 

for lymphocytes/monocytes showed that both samples also had the B cells, T cells, 

NK, and monocytes subsets. However, the analysis excluded MLP and LMPP due to 

too low cell numbers (less than 200 cells), but the population was represented by 

CD38-CD45RA+ that is similar to the LMPP, known to have the potential to 

differentiate into both lymphoid and myeloid lineages[6]. 

The evaluation of MLL/AF4 within each population was performed three times 

(separate PCRs from the same sample) in order to review the consistency of the 

data. Figure 3-4b,d showed one of the three replicates. Consistent results were 

achieved in the fusion gene negativity within the HSC population, and positivity within 

the CD38-CD45RA+, CMP, and GMP at both L826 presentation and relapse. A 

similarly consistent finding was also obtained for the presence of the mutation within 

the MPP at presentation. However, it was not apparent in the MPP L826 relapse. 
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Among the three replicates, there was one replicate that showed the positivity, but 

not the others. It was difficult to conclude if it was because of the insensitivity of the 

assay due to the minimum number of pre-leukaemic cells or it was a contamination. 

However, by looking at the positive fusion gene result within the CMP and CD38-

CD45RA+ at relapse, it is likely that there are pre-leukaemic cells within the MPP 

population that were not detected in this current assay. In order to provide more 

conclusive results, the analysis was extended by evaluating the secondary mutations 

that accompanied the MLL/AF4, described in Chapter 4.3. 

Secondly, the data were further analysed by looking at the expression of MLL/AF4 by 

reverse transcriptase nested PCR method. A similar result was obtained, where the 

MLL/AF4 fusion gene was identified in MPP and CD38-CD45RA+/CMP in both the 

presentation and relapse, summarised in Figure 3-5. It is interesting because both 

CD38-CD45RA+ and MPP have the potential to differentiate into lymphoid and 

myeloid lineages. This result suggests the origin of the AML relapse may come from 

either one of these populations.  



101 
 

HSC MPP

45RA+
38- 

T

B

NK

CMP

GMP

Mono

T

DNA L826 ALL 

HSC MPP

45RA+
38- 

T

B

NK

CMP 

GMP

Mono

T

cDNA L826 ALL 

HSC MPP

45RA+
38-

T 

B 

NK 

CMP

GMP

Mono 

T

HSC MPP

45RA+
38-

T 

B 

NK 

CMP

GMP

Mono 

T

DNA L826 AML 

cDNA L826 AML 

MLL fusion negative 

MLL fusion positive 

a. b. 



102 
 

Figure 3-5 Progenitor leukaemic populations in L826 presentation (a) and relapse (b). The 

progenitor leukaemic populations were determined by PCR MLL/AF4 on the DNA (top graph) and the 

cDNA (bottom graph). (a) MLL/AF4 positivity was present starting from the MPP subpopulation on the 

ALL. The mutation was also expressed in the MPP. Additionally, the data showed that although the 

mutation was observed in CMP and T cell populations, it was not shown on the transcripts of these 

populations. (b) MLL/AF4 was identified on the CD38-CD45RA+ onwards on the AML. The mutation 

also showed on the CMP, but not on the MPP (although one out of three PCR replications showed the 

positivity of MLL/AF4 in MPP which may indicate a sensitivity issue). The reason remained unclear, 

but might be due to few pre-leukaemic cells on the MPP. Similarly, CMP and T cell populations also 

had the mutation on the DNA analysis, but not expressed as transcript. The AML also showed 

negativity MLL/AF4 on the NK population. 

Lastly, these data also showed that the positivity of MLL/AF4 on CMP and T cells on 

the DNA, but not on the transcript. Interestingly, MLL wt analysis on another 

MLL/AF4 patient case, LK228, showed that the wild-type gene was expressed on all 

of the subpopulations, including the CMP and T cells (n = 2; Section 3.5.3, Figure 

3-11; both MLL fusion and MLL wt primers have been optimised to have a high 

sensitivity prior to the analysis, although MLL wt was in favour, probably because 

MLL fusion primer was restricted to a specific region within a certain breakpoint 

amplicon). It remains unknown how this differently regulated MLL wt and MLLr 

expression can occur on these different subsets, and if this phenomenon has any 

effect on the leukaemia propagation. 

   



103 
 

3.3. Pre-leukaemic populations on the primograft L826 

Having identified the L826 pre-leukaemic population, the study was continued by 

evaluating the development of the leukaemia within primograft patient-derived 

xenograft models (primary transplant). The ALL sample was transplanted into NSG 

mice (non-irradiated) via intrafemoral injection under isoflurane anaesthetic with 

analgesia Carprofen 5 mg/kg subcutaneous injection. The engraftments were present 

on spleen of the mice, collected when the mice became ill (weight loss, pale skin, 

piloerection, and an enlarged spleen that can be seen through the skin) after 

approximately 4 months after the injection. The transplantation and leukaemic cells 

collection were conducted by Dr Helen Blair and Dr Alex Elder.  

The harvested cells were stained for different haematopoietic markers to see the 

distribution of the haematopoietic subsets. The analysis of the populations showed 

the blast cells as the majority population, but also showed the presence of GMP and 

a small proportion of HSC, as shown in Figure 3-6a. These populations were 

collected, and the MLL/AF4 was evaluated. Interestingly, the translocation was found 

within all of the collected populations including the HSC, shown in Figure 3-6b.  This 

is in contrast to the primary ALL cells analysis (Figure 3-4b), in which the HSC 

population were not found to be MLL/AF4 positive.  
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Figure 3-6 L826 ALL primograft progenitor population distribution (a) and the fusion gene (b). 

a) Flow analysis on the primograft sample showed the GMP population as the majority of the 

progenitor population. In contrast to the primary cells, the CMP population was not seen on the 

primograft. Also, there was a substantial reduction in the proportion of MPP and CD38-CD45RA+ 

populations. Interestingly, the HSC population seemed enriched on the primograft. b) The HSC, 

CD38-CD45RA+, GMP, and BNK populations were collected. The pre-leukaemic mutation MLL/AF4 

was evaluated in these populations by PCR, and it was shown that all of them contained the mutation. 

Bulk: bulk, unsorted population; SKNO-1: an AML cell line, not carrying the MLL/AF4 sequences. 

The flow data demonstrated the distribution of different haematopoietic populations 

between the primary and primograft cells. It showed a substantial reduction in the 

MPP, CMP, and CD38-CD45RA+ populations. Interestingly, the GMP that dominated 

the progenitor population on the primary cells was also the major population on the 

primograft. By considering the potential of GMP to differentiate into granulocytes and 

monocytes, it remained unknown if the pre-leukaemic GMP is related to the 

characteristics of MLLr leukaemia with its occasional co-expression of both lymphoid 

and myeloid markers. 

Another finding in this study was the enrichment of the HSC population among the 

CD34+CD38- (HSC, MPP, and CD38-CD45RA+) subpopulations. While the HSC 

was the minor of the three subpopulations in the primary cells, it became the only 

subpopulation in the primograft. It raised the question of whether there was pre-

leukaemic potential in the HSC, which was enriched by the xenograft environment. 

Therefore, the MLL/AF4 was evaluated in this population, together with the CD38-

CD45RA+, GMP, and BNK subsets. Intriguingly, despite the fact that no fusion gene 

had been identified in the HSC primary cells, the mutation was found within the 

primograft HSC compartment (Figure 3-6b). This might indicate (1) an enrichment of 

the HSC pre-leukaemic population by the primograft environment and (2) a possibility 

of a minimal number of HSC pre-leukaemic cells on the primary cells that were not 

able to be detected by the assay.   

To further validate the HSC enrichment, flow analysis on more L826 ALL primograft, 

including the primary, secondary, and quaternary transplant samples were 

performed. The secondary and quaternary transplant were injected from 106 

leukaemic cells from the spleen of the previous transplant generation. In addition, in 

this case, each population was also gated for CD19- to prevent recruiting the 

leukaemic/blast/CD19+ cells, Figure 3-7.
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Figure 3-7 The distribution of haematopoietic subpopulations L826 primograft on the primary 

(a), secondary (b), and quaternary (c) transplants. The progenitor populations were isolated for 

CD19- expression. A distinct HSC and small GMP subset was observed on all of the samples.  The 

other populations were markedly depleted.  

The three different L826 primograft samples showed the HSC as the majority of the 

population with percentages: 0.018% (513 HSC/2,884,223 total live cells), 0.013% 

(275 HSC/2,093,476 total live cells), and 0.101% (4,058 HSC/4,026,989 total cells) 

on the primary, secondary, and quaternary transplants, respectively (it must be 

underlined that these are rough proportions because the antibodies are specific to 

human, but the number of total live cells includes the mouse cells, too). A small GMP 

subset was the only other precursor population identified. These data indicated the 

enrichment of HSC population in the xenograft. 

This result was further confirmed by the presence of MLL/AF4 sequences on the 

gDNA of the isolated HSC from the quaternary sample primograft L826 (Figure 3-8). 

 

Figure 3-8 MLL/AF4 evaluation on HSC primograft L826 quaternary transplant. MLL/AF4 

positivity was observed in the isolated DNA from quaternary transplant mouse L826 presentation. The 

sample was obtained from the spleen. HSC was the only progenitor population able to be collected 

(the GMP was too few cells). Amplicon size: 343 bp. 
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3.4. Pre-leukaemic populations in other primografts, t(4;11) and t(9;11) 

Having shown the potential of pre-leukaemic population maintenance on L826 

primograft, the experimental approach was extended to other MLLr leukaemia cases. 

Therefore, the same flow analysis was performed on two other ALL samples 

including a secondary transplant t(4;11) and a primary transplant t(9;11) sample, 

named P929, and A789, respectively. This analysis was also gated for the 

CD34+CD19- progenitor population. It showed the presence of a major progenitor 

population, but in the CD38-CD45RA+ population, rather than in the HSC, as 

illustrated in Figure 3-9.  



109 
 



110 
 

Figure 3-9 The distribution of haematopoietic subpopulations on the secondary transplant 

t(4;11) patient P929 (a) and primary transplant t(9;11) patient A789 (b) primograft. Patient P929 

and patient A789 were diagnosed with ALL at the age of 3.6 months and 22 months, respectively. 

These primograft samples were isolated from the mouse spleen engraftments. Both samples were 

selected for CD34+CD19- expression. CD38-CD45RA+ population appeared as the only distinct 

progenitor population. Although the data showed the MLP (CD34+CD38-CD90-CD45RA+CD10+) 

subset, this population was not present as a distinct CD10+ population, but rather a continuum from 

CD10+ to CD10-, which made it unclear if that was a true MLP population or an aberrant leukaemic 

population. 

In contrast to the primograft L826 that showed the HSC population, P929 and A789 

showed the CD38-CD45RA+ as the majority progenitor population. Of note, the P929 

sample came from a secondary transplant mouse which might suggest that the 

population was maintained, rather than carried over from the primary cells. It remains 

unanswered regarding (1) the reason of different subpopulation maintenance 

between L826 and P929 and A789, and (2) the meaning of HSC or CD38-CD45RA+ 

presence within the primograft cells. 
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3.5. Pre-leukaemic population in other MLLr iALL 

The current data on L826 showed the presence of MLL fusion gene within progenitor 

populations as early as MPP during the presentation. This study was extended to 

examine the pattern of fusion gene presence in other MLLr iALL. 

3.5.1. Clinical characteristics MLLr iALL 

Four t(4;11) and two t(9;11) ALL cases were included in the study. The details of the 

patients were summarised in Table 3-1. The analyses were performed on the 

peripheral blood (L876, L880, and LK124) or bone marrow (LK228, LK230, and 

LK271) samples. 
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Patient 
ID 

Gender 
Cytogenetic 
phenotype 

Age at 
presentation

WBC 
(x 109  cells/l) 

Additional notes 

L876  Female  t(4;11)  4.5 months  334 
Immunophenotype ‐ CD19 89%, CD34 39%, 
CD15 56%, cyCD79a 21%, Tdt 10%, HLA‐DR 
90%. 

L880  Female  t(9;11)  2.3 months  147 

Immunophenotype ‐ CD19 88%, CD34 10%, 
CD10 13%, CD15 10%, cyCD79a 76%, TdT 
N/A, HLA‐DR 90%.  Karyotype ‐ 49, XX, +X, 
t(9;11)(p22;q23), +18, +21. 

LK124  Female  t(4;11)  3.3 months  333 

Morphology ‐ The film is overwhelmed by 
abundant small and medium sized blasts 
with a high N:C ratio and basophilic 
cytoplasm.  Some larger more pleomorphic 
blasts are also present.  Many smear cells 
and bare nuclei seen.  No cytoplasmic 
granulation or Auer rods seen on high power 
inspection.  Severe anaemia and 
thrombocytopenia in addition.  Likely acute 
leukaemia.  Immunophenotype ‐ CD19 97%, 
CD34 1%, CD10<1%, CD15 32%, CD79a 92%, 
HLA‐DR 97%, Tdt (90%). 

LK228  Male  t(4;11)  1.5 months  95 

Bone marrow morphology ‐ Markedly 
hypercellular sample.  Normal 
haematopoiesis largely replaced by medium 
sized lymphoblasts, blast count >90%. 
Immunophenotype ‐ CD45 87%.  CD34 
variable +/neg, CD19+, CD10 neg, HLA DR+, 
CD15+, sIg neg, nTDT+, cCD79a+, CD20 neg, 
CD22+.  Karyotype 
46,XY,t(4;11)(q21;q23)[8]/46,XY[2]. 

LK230  Female  t(4;11)  4 months  130 

Peripheral blood morphology – Many small‐
to‐medium sized blasts with fairly high N:C 
ratio and large nucleoli.  There is no 
granulation or Auer rods. Immunophenotype 
‐ CD45 77%.  CD34 +, CD19+, CD10 neg, HLA 
DR+, CD15 variable +/neg, sIg neg, nTDT+, 
cCD79a+, CD20 neg, CD22+.  Karyotype ‐ 
46,XX,t(4;11)(q21;q23)[5]/46,XX[1]. 

LK271  Male  t(9;11)  7.5 months  718 
Immunophenotype ‐ CD34‐, Tdt‐, CD19+, 
CD10+, CD7 ‐/weak, HLA‐DR+, CD22+, CD20 
variable, sIg‐, cCD79a+.   

Table 3-1 Characteristics of patient infant ALL MLLr samples. 

3.5.2. Haematopoietic populations in the MLLr iALL 

The six MLLr iALL were stained for the haematopoietic population 

immunophenotypes. The distribution of the population was shown in Figure 3-10.
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Figure 3-10 Haematopoietic progenitor populations on L876 (a), LK124 (b), LK228 (c), LK230 

(d), L880 (e), and LK271 (f). a, b, c, and d were t(4;11) iALL cases, whereas e and f were t(9;11) iALL 

cases. The populations were gated for CD19- expression, as shown in the second graph in each 

instance. Despite having different progenitor population proportions, the samples L876, LK124, 

LK228, LK230, and L880 contained the entire progenitor populations. However, the sample LK271 

had almost no CD19-CD34+ fractions, dominated only by the blast. It included no CD38-CD45RA+ 

and GMP subsets. The DR+ population is the mixture of monocytes and dendritic cells. 

The progenitor populations were shown by initially selecting by absence of CD19 

expression, as indicated on the second pseudocolour plot in each case. The flow 

data showed the presence of HSC, MPP, CD38-CD45RA+, CMP, GMP, and T cells 

on all of the samples, apart from the LK271, which did not show the GMP and CD38-

CD45RA+ populations. LK271 also showed an unusual ‘BNK’ population that had a 

negative expression of CD45RA or a population with CD34+CD38+CD45RA-

CD10negative-to-high. Therefore, sample LK271 was sorted only for HSC, MPP, and the 

population named CD34+CD38+. It was still unknown why LK271 had different 

population distribution, despite being a bone marrow sample, but it might correlate 

with the substantially high number of blast cells present in peripheral blood at 

diagnosis (718 x 109 white blood cells/l). 

3.5.3. Pre-leukaemic populations on the MLLr iALL 

The MLL fusion as the primary mutation was evaluated on the sorted progenitor 

populations described in section 3.5.2 (Figure 3-10) in both the DNA and transcript. 

The fusion DNA sequences were determined in collaboration with Dr Claus Meyer 

(DCAL, Frankfurt)[198]. Based on these DNA sequences, the primers for DNA and 

cDNA fusion genes were designed using Primer Express 2.0. Detection of the 

mutations by PCR identified the pre-leukaemic populations, summarised in Figure 

3-11a.   
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 t(4;11)  t(9;11) 
  L876  LK124  LK228  LK230  L880    LK271 
  DNA  cDNA  DNA  cDNA  DNA  cDNA  DNA  cDNA  DNA  cDNA    DNA 

HSC              HSC 
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GMP             
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B cells             

T cells             

Mono + DC             

    
   MLL fusion negative   
   MLL fusion positive   
  No cells   

 

Figure 3-11 The pre-leukaemic populations on t(4;11) and t(9;11) iALL. a) The MLL fusion was 

evaluated on the different haematopoietic subpopulations on the DNA and cDNA. The variation in 

positivity between DNA and cDNA might be either the gene was not expressed on the transcript, or 

the assay was not sensitive enough because of the very low number of cells. MLL/AF4 was present as 

early as in CD38-CD45RA+ on two of the cases and GMP population on the other two of the cases. 

MLL/AF9 was only detected in the blast cells (B cells might be biased with blast cells due to co-

expression of CD19) on patient L880. Patient LK271 had different population distribution, where the 

distinct and isolated populations were HSC, MPP, and CD34+CD38+. The MLL/AF9 was observed on 

the CD34+38+ and blast populations. b) Nested qRT-PCR MLL/AF4 and MLL wt on patient LK228 

showed that the MLL gene was expressed on all of the populations (n=2). Although the fusion gene 

was found in the HSC and monocytes + DC DNA, the transcript was not detected. The analysis was 

relative to Blast sample. Due to the saturation that might have been reached on the first PCR of the 

nested reaction, the value on the graph might not be fully quantitative.  
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The analysis showed a difference progenitor harbouring fusion gene between t(4;11) 

and t(9;11) cases. In t(4;11) cases, two samples (LK228 and LK230) contained 

MLL/AF4 in CD38-CD45RA+ population, and the other two cases (L876 and LK124) 

had the fusion as early as in GMP population. Case LK228 also showed the fusion 

gene on the HSC on the DNA analysis, but not on the transcript. The reason might 

be due to the low number of cells that became the limitation of the assay or because 

the gene was not transcribed into mRNA. Moreover, patient LK228 also showed the 

MLL/AF4 positivity on the CD38-CD45RA+ and the downstream population, GMP, 

but not on the CMP. These data may indicate the GMP MLL/AF4 positive population 

was derived from CD38-CD45RA+, but not from CMP. 

In contrast to the t(4;11), the analysis of t(9;11) on case L880 showed the fusion 

gene only appeared in the blast and B cells. The mutation was not observed in any of 

the progenitor populations, which might suggest that the primary mutation happened 

in the more mature cells. This result was further supplemented with the case LK271. 

Interestingly, LK271 showed a different population distribution, where there were 

nearly no CD19- precursor populations, i.e. dominated by the blast cells. These 

CD19- progenitor populations were isolated for HSC, MPP, and the more mature 

CD34+CD38+ populations. The latter was not able to be differentiated into the 

commonly known populations. Nevertheless, the analysis of this population showed 

the presence of MLL/AF9 sequences. Ultimately, it might indicate that MLL/AF9 

mutation occurred in the more mature population or the population CD34+CD38+ 

was the result of incomplete differentiation due to the effect of the fusion gene. 

In addition to the MLL fusion gene evaluation on DNA and transcript of the 

subpopulations, the MLL wt expression was also assessed in order to understand 

whether the wild-type gene itself was expressed. Interestingly, all of the 

subpopulations showed the transcript, including the HSC and monocytes + DC (n = 

2), exemplified by case LK228, Figure 3-11b. Although it does not conclusively 

exclude the limitation, it may suggest the possibility of different transcription 

regulation between the MLL and MLL fusion gene. 
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3.6. Discussion 

The major focus of these investigations was to identify the origin of leukaemia in the 

lineage switch L826 and MLLr iALL. The study was started with the analysis of the Ig 

rearrangement within L826. The B cells and T cells rearrange their BCR and TCR 

loci, respectively, during their development. These receptors retain their germline 

configuration and are not expressed by myeloid cells. The analysis of the 

recombination in both presentation and relapse L826 indicated that the relapse AML 

cells were not derived directly from the pre-B lineage ALL cells, but arose as a result 

of a differential lineage fate from a common, non-lineage committed precursor, 

primitive to B cell differentiation and V(D)J rearrangment. Nevertheless, this result 

may not represent all of the lineage switch cases because some reports have 

identified the same IgH or TCR rearrangements in both the presentation and 

relapse[100, 106, 108, 110]. This phenomenon is intriguing because it implies that 

the lineage switch driver(s) can even convert the more mature blast cells. 

The next question is where the common precursor cell in L826 switch is located. 

Based on the studies on neonatal blood spots[32, 199], it was suggested that the 

t(4;11) ALL has arisen during the foetal haematopoiesis. Furthermore, several 

backtracking studies in non-MLLr AML[200-202] have shown evidence of mutations 

in non-leukaemic progenitor cells. These studies suggest the possibility of finding the 

pre-leukaemic population L826 by identifying the primary mutation, MLL/AF4.  

The progenitor populations were isolated from Lin-CD3-CD14-CD16-CD56-CD34+ 

cell haematopoietic subsets. The fusion gene was consistently found as early as the 

MPP and the CD38-CD45RA+ populations in both the L826 presentation and relapse 

samples, respectively. However, the result also showed an inconsistency on the MPP 

relapse case. The fusion gene was detected once among the three repetitions which 

might indicate the possibility of an assay sensitivity issue, but may equally result from 

a contamination problem. Nevertheless, this finding is encouraging because both 

MPP and CD38-CD45RA+ population[6] have potential for lymphoid and myeloid 

differentiation. It indicates the origin of the AML relapse may come from either one of 

these populations. This origin of the relapse population may provide a hint of what 

are the driver gene(s) that create the different lineage fate in L826 by detailed 

examination of the mutation profiles of these populations. This approach was 

investigated in Section 4.3 and 4.4. 
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The presence of a progenitor population harbouring MLLr in the MLLr ALL cases was 

supported by including the additional four t(4;11) and two t(9;11) samples. The 

MLL/AF4 was identified in CD38-CD45RA+ in two of the cases and GMP in the other 

two cases. Additionally, the mutation was found in fully differentiated populations, 

e.g. B cells, T cells, monocytes and, in some cases, DC cells. These data 

demonstrate that the presence of MLL/AF4 may still allow the normal differentiation 

of a pre-leukaemic precursor population, although the functional role of the fusion in 

the specific subpopulations has not been assessed here. Interestingly, the CD38-

CD45RA+ and GMP populations were also shown to have leukaemic stem cell 

activity in most AML cases (in a study on 100 primary AML samples)[6]. Furthermore, 

this study included the expression analysis of specific genes on normal HSC, CD38-

CD45RA+, GMP, and MEP populations that revealed HOXA9, CD79A, IGHM, and 

FLT3 only expressed predominantly in the CD38-CD45RA+ population[6]. The 

HOXA9 expression was accompanied by MEIS1 that was expressed in CD38-

CD45RA+ and HSC, but substantially lower on the other populations. This finding is 

fascinating because the correlation between the upregulation of HOXA9 and its 

cofactor MEIS1 has been previously shown in t(4;11)[203] and t(9;11) 

leukaemias[204, 205]. Moreover, the immunophenotyping of P929, a t(4;11) 

primograft from infant ALL and A789, a t(9;11) primograft from mixed phenotypic 

acute leukaemia, showed that both samples had the CD38-CD45RA+ as the majority 

of their progenitor populations (Figure 3-9). This evidence raises a question if there is 

any correlation between the subpopulation characteristics and the MLLr, and in 

different MLL fusion partner genes. This question could be partially addressed by 

further studying the transcriptomic profiles of each haematopoietic precursor 

population harbouring the MLLr. 

In contrast to the t(4;11), the analysis of iALL with t(9;11), L880, identified the fusion 

gene only in the CD19+ blast and B  cell populations. This finding is consistent with 

the identification of more mature Ig gene rearrangements on MLL/AF9-positive 

iALL[30]. This study[30] showed the incomplete IgH rearrangement in the t(4;11), but 

a complete IgH rearrangement in the t(9;11), also accompanied by significantly 

higher frequencies of patients with IgK, IgL, TCRB, and Vδ2-Jα rearrangements. 

These data may suggest the difference between the two leukaemias, with the t(9;11) 

ALL coming from a more mature clone. Nevertheless, further assessments need to 

be performed to provide a conclusion. 
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In addition to L880, the case LK271 also represented the t(9;11) iALL. Interestingly, 

patient LK271 showed a different haematopoietic subpopulations pattern compared 

with the other samples. This sample showed a population of CD34+CD38+ that was 

not presenting a distinct population of either BNK, GMP, or CMP. Whilst this sample 

was derived from the patient’s bone marrow, it is possible that this finding relates to 

the extremely high peripheral white blood count seen in this patient at presentation.  

In contrast to other primary mutations such as the MLL/AF4 in this study, 

AML1/ETO[201], or DNMT3A[202] that appear to allow normal differentiation, it 

remains unknown if MLL/AF9 prevents the canonical differentiation fate of the 

progenitor cells. It is also unclear whether the potential of MLL/AF9 to create ALL, 

AML, or MPAL is related to secondary mutations, microenvironment, or it is also 

influenced by the location of the cell of origin. 

The incidence of recurrence and relapse ALL remain an important issue in the 

current therapy. The identification of the pre-leukaemic population described in this 

study provides the possibility of exploring the cellular components and the system to 

test drug efficiency. 
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Chapter 4 Order of accumulations of mutations in candidate driver 

genes L826  

 

Following understanding the origin of the AML relapse L826, the next question is to 

identify the driver of the lineage switch and study its mechanism; how does it allow 

the progenitor cells to transform into the myeloid rather than the lymphoid lineage, 

despite the strong lymphoid lineage specification provided by MLL/AF4. 

The first approach was to investigate the genomic landscape of the switch by 

performing WGS, WES, and RNAseq on the presentation, relapse, and remission 

L826, as described in the preliminary data (Section 1.4.5). Here we found 1 and 12 

non-synonymous mutations in the presentation and relapse, respectively, which were 

also predicted to have a deleterious effect based on Condel scoring. Moreover, the 

mutated amino acids of the AML candidate genes are found to be conserved 

throughout the different species, analysed using Clustal Omega tool[206-208], 

indicating that they might be essential for the structure of the protein. The 

conservation is shown in Table 4-1. 

Based on these data, we hypothesised that understanding the order of acquisition of 

mutations within the AML relapse would help determine the candidates that had the 

role as the driver of the switch. The selected candidates from these results would be 

carried further for the functional studies. 

This chapter aims to characterise the mutation acquisition of the candidate driver 

genes. 

There were three different approaches performed in this study. The first was an 

analysis based on the combination of mutations within individual clones. The AML 

cells were cultured in a semi-solid medium colony formation assay, and then the 

candidate mutation profiles from each colony were compared. The second was the 

analysis based on single cells. The AML cells were sorted into single cells, and 

similarly, the mutated candidate genes were examined within an individual cell. 

Lastly, the mutation profiles of candidate genes were evaluated in the sorted 

haematopoietic stem/progenitor populations. These different methods were expected 

to complement each other or to develop the previous analysis. 
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Table 4-1 Conservation of mutated residues of candidate genes across different species. The 

protein sequences from different species are aligned. It includes chimpanzee, rhesus macaque, 

mouse, dog, and cat. The mutated amino acid is indicated in the orange box. The analysis was 

performed using Clustal Omega tool. Asterisk ‘*’ indicates fully conserved residue. Colon ‘:’ indicates 

conservation between groups of strongly similar properties, scored >0.5 in the Gonnet PAM 250 

matrix. Period ‘.’ indicates conservation between groups of weakly similar properties, scored ≤0.5 in 

the Gonnet PAM 250 matrix[206-208]. 

Species UniProt Entry Amino acid alignment Mutation

Human Q15027 620 LLACEFLLQNGANVNQADSAGRGPLHHATILGHTGLACLFLKRGADLGARDSEGRDPLTI 679

Rhesus macaque F7HLN4 620 LLACEFLLQNGANVNQADSTGRGPLHHATILGHTGLACLFLKRGADLGARDSEGRDPLTI 679

Dog F1PZP3 620 LLACEFLLQNGANVNQADNHGRGPLHHATILGHTGLACLFLKRGADLGARDSEDKDPLTI 679

Mouse Q8K2H4 620 LLACEFLLQNGANVNQADSAGRGPLHHATILGHTGLACLFLKRGADLGARDTEGRDPLTI 679

‐ ‐

Western clawed frog F6ZX71 584 ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐

Channel catfish A0A2D0RBA0 635 LAACEFLLQNGANVNQADSNGRGPLHHATILGHTGLVCLFLKRGADYNKKDISQKDPITI 694

‐ ‐

Human Q14839 1033 PKMPNGMYDGSALIRASGKLLLLQKMLKNLKEGGHRVLIFSQMTKMLDLLEDFLEHEGYK 1092

Rhesus macaque F6ZS61 1030 PKMPNGMYDGSALIRASGKLLLLQKMLKNLKEGGHRVLIFSQMTKMLDLLEDFLEHEGYK 1089

Dog J9NW81 1053 PKMPNGMYDGSALIRASGKLLLLQKMLKNLKEGGHRVLIFSQMTKMLDLLEDFLEHEGYK 1112

Mouse Q6PDQ2 1026 PKMPNGMYDGSALIRASGKLLLLQKMLKNLKEGGHRVLIFSQMTKMLDLLEDFLEHEGYK 1085

Chicken F1NH79 1027 PKMPNGMYDGSALIRASGKLLLLQKMLKNLKEGGHRVLIFSQMTKMLDLLEDFLEHEGYK 1086

Western clawed frog A3KN93 1023 PKMPNGMYDGSALIKGAGKLLLLQKMLRKLKDDGHRVLIFSQMTKMLDLLEDFLEHEGYK 1082

Channel catfish A0A2D0S5T1 1037 PKMPNGMYDGSALTKSSGKLLLLHKMLRKLKEGGHRVLIFSQMTKMLDLLEDFLENEGYK 1096

Fruit fly E1JI46 1035 TTAAGGLYEINSLTKAAGKLVLLSKMLKQLKAQNHRVLIFSQMTKMLDILEDFLEGEQYK 1094

      .  .*:*: .:* :.:***:** ***::**  .**************:****** * **

Human Q9UPV0 942 LALLE‐‐‐‐‐‐VQEETARREKQQLLDVQRQVALKSEEA‐‐‐T‐‐‐‐ATHQQLEEAQKEHT 988

Rhesus macaque F7CQ41 903 LALLE‐‐‐‐‐‐VQEETARREKQQLLDVQRQVALKSEEA‐‐‐T‐‐‐‐ATHQQLEEAQKEHT 949

Dog F1PB71 929 LAQLD‐‐‐‐‐‐LQEETARREQQQLLDVQRQVVLKSQEA‐‐‐T‐‐‐‐ANHQHLDEAKKEHT 975

Mouse Q5DU05 933 LAQLN‐‐‐‐‐‐VQEENIRKEKQLLLDAQRQAALEREEA‐‐‐T‐‐‐‐ATHQHLEEAKKEHT 979

Chicken E1C8Q1 905 SVQLL‐‐‐‐‐‐SQEESLRRKKQQLLDEDRRTERERDEAA‐‐L‐‐‐‐ASQLRLEENRKEHS 952

‐ ‐

Channel catfish A0A2D0ST88 946 ESRLL‐‐‐‐‐‐THAADLKKRRKQLDEEEDEVESGLETLPRLMKERERLRADLERARQESD 999

Fopius arisanus A0A0C9Q384 507 YLKLKHEVRVAVERRSKRRESNT‐‐‐‐‐‐‐TASETERSAS‐TKT‐‐RTEKNESMGQKTPS 556

       *        .    ::. :        .    :            .   .  ::   

Human P0CG13 13 GLAEWVLMELQGEIEARYSTGLAGNLLGDLHYTTEGIPVLIVGHHILYGKIIHLEKPFAV 72

Rhesus macaque H9EX86 13 GLAEWVLMELQGEIEARYSTGLAGNLLGDLHYTTEGTPVLIVGHHILYGKIIHLEKPFAV 72

‐ ‐

Mouse P0CG15 13 GLAEWVLMELQGEIEARYSTGLAGNLLGDLHYTTEGIPVLIVGHHILYGKTIHLEKPFAV 72

Chicken A0A1L1RT85 61 GLERWVLVELQGEVEPRGGGALPGSLLGDLHYTREGIPVLIVGHHILYGKVVQLEKPFAV 120

Western clawed frog Q28J63 13 QPEDWILMELQGEIEARKQDGLAGKMMGDLHYTKEGVPLLLVGHHILYGKMVRLDKPFAV 72

Channel catfish E3TDS5 13 SPGEWLLVELQGETVSRHDTGLAGNLMGDLHYTKEGVPILIVGHHILYGKQVKLEKPFAV 72

Malaysian fruit fly A0A0K8WGV6 12 MLEEYAIVELQGDLEIRSEENIHNLFIGDLYYNKYGQPILIIGHHILQGREQKLEKPFAV 71

       : ::****:   *    : . ::***:*.  * *:*::***** *:  :*:*****

Human Q9H2U1 513 MFKSD‐‐‐‐KFLIIPLHSLMPTVNQTQVFKRTPPGVRKIVIATNIAETSITIDDVVYVID 568

Rhesus macaque F6U0W0 513 MFKSD‐‐‐‐KFLIIPLHSLMPTVNQTQVFKRTPPGVRKIVIATNIAETSITIDDVVYVID 568

Dog F6V8H1 627 MFKSD‐‐‐‐RFLIIPLHSLMPTVNQTQVFKKTPPGVRKIVIATNIAETSITIDDVVYVID 682

Mouse Q8VHK9 506 MFKSD‐‐‐‐KFLIIPLHSLMPTVNQTQVFKKTPPGVRKIVIATNIAETSITIDDVVYVID 561

Chicken A0A1D5PHB6 492 MFKSD‐‐‐‐RFIIIPLHSLMPTVNQTQVFKKTPPGVRKIVIATNIAETSITIDDVVFVID 547

Western clawed frog F7ETR2 501 MFKSD‐‐‐‐KFIIIPLHSLMPTVNQTEVFKRPPPGVRKIVIATNIAETSITIDDVVHVID 556

Channel catfish A0A2D0QSL4 531 MFKSD‐‐‐‐KFVIIPLHSLMPTVNQTQVFKRPPAGVRKIVIATNIAETSITIDDVVYVID 586

Fruit fly A0A1W4UVM3 443 TPKGQRWRNQLTVFPLHSLMQSAEQQAVFRRPPSGQRKVIISTIIAETSVTIEDVVYVIN 502

      *.:    :: ::****** :.:*  **:: * * **::*:* *****:**:***.**:

Human Q15596 600 AESSCHPGEQKETNDPNLPPAVSSERADGQSRLHDSKGQTKLLQLLTTKSDQMEPSPLAS 659

Rhesus macaque F6XNZ4 600 AESSCHPGEQKETNDPNLPPTVSGERADGQSRLHDSKGQTKLLQLLTTKSDQMEPSPLAS 659

Dog E2QXC0 600 AESSCHPGEQKETNDSNMPPAVSSERADGQNRLHDSKGQTKLLQLLTTKSDQMEPSPLSS 659

Mouse Q61026 600 AEASCHPEEQKGPNDSSMPQAASGDRAEGHSRLHDSKGQTKLLQLLTTKSDQMEPSPLPS 659

Chicken A0A1D5PK20 395 ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐

Western clawed frog B5DE09 593 GESGCHSNEQKDCSEN‐‐‐LSSVGDQTEGQSRLLDSKGQQKLLKLLTTKSDQMEPSPLPS 649

Channel catfish A0A2D0PS41 545 ENDNIRHQRDEKGN‐‐‐‐‐‐‐PGQFNSSDENKIHESKGHTKLLQLLTTKNENTESSSSPS 597

‐ ‐

Human Q92576 1117 ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐NCKICIGRMAPPVD‐DL‐‐‐‐‐‐‐‐‐SPKKVKVVVGVA 1144

Rhesus macaque F7H0T5 1118 ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐NCKICIGRMAPPVD‐DL‐‐‐‐‐‐‐‐‐SPKKVKVVVGVT 1145

Dog E2R727 1119 ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐NCKICIGRMAPPVD‐DL‐‐‐‐‐‐‐‐‐SPKKVKVVVGVS 1146

Mouse B2RQG2 1096 ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐NCKICIGRMAPPID‐DL‐‐‐‐‐‐‐‐‐SPKTVKVVVGGA 1123

Chicken E1BVY1 1036 ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐NCKICIGRMAPPTDDDL‐‐‐‐‐‐‐‐‐SAKKVKVSVGVA 1064

Western clawed frog F7D5S8 1026 ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐NCKICTGRMAPPAE‐DI‐‐‐‐‐‐‐‐‐SPTKVTNSTGLI 1053

Channel catfish A0A2D0QHY5  856 ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐HCKICTGRMVPPVE‐EA‐‐‐‐‐‐‐‐‐TTKAVKVASTVI 883

Mediterranean fruit fly W8B032 1776 KPAIKNSPANINLNKSSVMSSSKDKSCLKKPIAPKPIEVYSLIDQILESTKTVEEAANLI 1835

                           : * *  :   *   :          : . *       

Human Q15435 180 ENLSNLHQLQMLELGSNRIRAIENIDTLTNLESLFLGKNKITKLQNLDALTNLTVLSMQS 239

Rhesus macaque F7GK00 137 ENLSNLHQLQMLELGSNRIRAIENIDTLTNLESLFLGKNKITKLQNLDALTNLTVLSMQS 196

‐ ‐

Mouse Q3UM45 181 ENISNLHQLQMLELGSNRIRAIENIDTLTNLESLFLGKNKITKLQNLDALTNLTVLSVQS 240

Chicken A0A1D5PH53 174 ENLSNLQLLQMLELGSNRIRAIENIDTLTNLDSLFLGKNKITKLQNLDALTNLTVLSIQS 233

Western clawed frog Q6DIQ3 166 ENFGTLTQLRLLELGSNRLRVIENLDSLRELDSLFLGKNKITKLQNLETLTNLTVLSVQS 225

Channel catfish E3TGG0 165 SNLEHLTGLQMLELGSNRIRIIENLDTLTSLDSLFLGTNKIAQLQNLDGLYNLTVLSIQS 224

Fruit fly Q9U3W5 143 ENLDMLTNLTMLELGDNKLKKIENIEMLVNLRQLFLGKNKIAKIENLDTLVNLEILSLQA 202

    .*:  *  * :****.*::: ***:: * .* .****.***::::**: * ** :**:*:

CHD4 R1068H

ACAP1 R662P

CEP164

CHTF8

DHX36

NCOA2

PPP1R7

PHF3

R953Q

E27Q

S557G

K640Q

R199L

K1119I
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4.1. Mutation acquisition analysis at the clonal level 

The relapse L826 bone marrow (BM) cells were grown in semi-solid medium at a low 

concentration, allowing the formation of individual colonies. The colonies were 

picked, and their RNA was isolated. Eight out of the twelve candidate genes were 

selected for multiplex PCR on the colonies’ RNA, based on their functions. The eight 

genes were CHD4, CEP164, PPP1R7, DHX36, NCOA2, CHTF8, PHF3, and ACAP1. 

CACNB4 and SLC4A8 that act as calcium channels and sodium and bicarbonate 

channels, respectively, were excluded in this primary study due to the assumption 

that their functions may not closely correlate with the cell lineage determination. 

ZNF136, that has zinc finger protein and a Kruppel-associated box (KRAB) A-box 

domain, might have roles in transcription regulation, but was excluded initially to 

simplify the assay. Also, BACE2 was omitted due to low transcript expression in the 

primary samples. Lastly, MLL/AF4 was included in the multiplex PCR to confirm that 

the colonies were from the leukaemic cells, rather than any remaining normal BM 

cells. 

Following the multiplex PCR, 99 colonies that showed the clear candidate gene and 

MLL/AF4 bands on the agarose gel electrophoresis were selected. In addition, three 

samples that did not show the MLL/AF4 band and one bulk SKNO-1 (a t(8;21) AML 

cell line) sample were also included as negative controls that were used to determine 

the cut-off values. Subsequently, the amplicons were barcoded (based on Fluidigm 

barcodes) and sequenced using Next Generation Sequencing MiSeq with coverage 

minimum 1,000 reads per amplicon. 

The analysis was made by calculating the percentage of each mutation per sample 

(i.e. %mutant = read_countmutant/(read_countmutant + read_countwt) x 100%). However, 

it is important to note that there is a risk of contamination when using this technique, 

including the scattering floating RNA from dead cells in the culture media and the 

possibility that more than one colony was picked at the same time. Therefore, a 

higher cut-off value was used to conclude the results, which then ended up with only 

79 samples out of the total 99 samples. The results are represented in two forms, 

firstly the whole 79 samples (Figure 4-1a) and secondly by including only the 

samples with higher sequencing reads and %mutant close to 100% (Figure 4-1b). 
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Figure 4-1 The order of mutation acquisition based on the individual clones derived from L826 

relapse. a) Multiplex sequencing of 8 candidate genes from 79 different colonies showed concurrent 

PPP1R7, PHF3, and ACAP1 (symbolised with agh) mutations are the first mutations. CHD4 was 

acquired subsequently before any others mutations. b) The analysis by including only the samples 

with high sequencing reads and mutation percentage close to 100%. This more stringent analysis 

identifies simultaneous CHD4 and CHTF8 mutations following PPP1R7, PHF3, and ACAP1. DHX36 

and then NCOA2 mutations occurred after the others mutation. CEP164 was excluded in the analyses 

due to read counts not meeting the cut-off criteria. Red numbers indicate the number of representative 

clones.  
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These results suggest that concurrent mutations of PPP1R7, PHF3, and ACAP1 are 

the initial mutations. Looking in more detail at these genes, PHF3 is the candidate 

with the highest number of degrees relating to the difference between ALL and AML 

transcriptional changes in an ARACNe analysis (performed by Dr Dan Williamson, 

Section 1.5.2). The mutations of ACAP1 and PPP1R7 are located on their active 

domain. R662P on ACAP1 is located on its ANK repeat (Section 1.5.1), a region that 

may interact with Arf-GAP domain[133, 146]. It may be significant since Arf-GAP 

regulates Arf6, a molecular switch that acts in a variety of targets, including 

metabolism (GLUT4 trafficking)[143] and phagocytosis in macrophages[144]. 

Mutation R199L occurred on LLR6 of PPP1R7 (Section 1.5.4). These repeats are 

also known to interact with PP1 and regulate cell proliferation through counteracting 

Aurora B kinase activity[134, 135]. 

In addition to the order of mutations, these results also suggest the concurrent 

mutations may have an advantage in the AML cells clonogenicity, indicated by their 

presence in all of the colonies. It also means that this analysis is subject to the risk 

that a mutation or a particular group of mutations may confer either a clonal 

advantage or disadvantage, which then became the reason for their dominance or 

absence, respectively. Therefore, additional approaches, such as the analysis on the 

single cell level needs to be performed to validate the results. 
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4.2. Mutational acquisition analysis at the single cell level 

Analysis of mutational evolution at the single cell level is required to validate the 

analysis at the clonal level for two reasons. Firstly, to reduce the risk of contamination 

and secondly to prevent clonal dominance within the samples where cells with a 

dominant mutation will out compete and form the majority of the colonies. 

Furthermore, a phylogenetic tree that shows chronology of cell divisions has also 

been developed from single cell samples using microsatellite (MS) sequence 

analysis[209-212]. Thus, it is possible to overlay candidate driver gene acquisition 

with the microsatellite analysis of the single cells to confirm the evolutionary 

development of the relapse and the order of acquisition of mutations. These 

experiments were conducted in collaboration with the Shapiro lab; Weizmann 

Institute, Israel[212]. 

Single cells were obtained using single cell flow cytometry sorting in 96 well plate 

format. The cells were lysed and the DNA was directly amplified using the multiple 

displacement amplification (MDA) whole genome amplification (WGA) method. Due 

to high risk of extraneous DNA contamination that could be amplified by the WGA, 

two negative control (0 cells) were included per amplification run, in addition to the 

forty-five single cell samples. 

The amplified products were validated using a multiplex PCR assay with four MS 

PCR primers.  From these, at least two amplified products were required as a quality 

control. The validated products were divided into two pathways. Firstly, the 

mutational analysis was performed in Newcastle, whilst in parallel, MS sequences 

were amplified and sequenced at the Weizmann Institute. 

The investigation of mutational analysis was performed by multiplex PCR of the 

candidate genes, followed by next generation sequencing. The amplification of the 

target genes was achieved, represented by the DNA electrophoresis in Figure 4-2. 

The electrophoreses showed the amplifications on the majority of the samples, but 

not 100% on some of the samples, e.g. sample 4 and 10 in Figure 4-2. It was 

probably because the efficiency issue of the WGA or the multiplex PCR reaction. 
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Figure 4-2 Multiplex PCR candidate driver genes from amplified DNA single cell L826 relapse. 

The electrophoresis represented one of the three different multiplex PCRs for the 12 candidate driver 

genes. This multiplex reaction included DHX36 (445 bp), NCOA2 (345 bp), ACAP1 (270 bp), CEP164 

(245 bp), and CHD4 (155 bp). It showed that the majority of the genes could be amplified even though 

the coverage was not 100% on some of the samples (sample 4 and 10). 

Unfortunately, the order of mutations from the sequencings have not been 

successfully constructed. The major problem was the presence of various mutation 

percentages, such as 0%, 3%, 7%, 10%, to any other percentages up to 100%, while 

we expect to have mutation percentage either ~0 or ~100% (homozygous) or ~50% 

(heterozygous) per gene, exemplified in Table 4-2. A possible explanation for this 

effect might  be allelic drop-out (ADO), a condition where one of the alleles 

outompetes the other during amplification. This remains a primary difficulty with WGA 

from the genomic DNA as template[213-215]. Consequently, the analysis showed 

disordered sequences of mutations. 

In addition to our data, the MS analysis by Shapiro’s lab was still undergoing at the 

time of this report writing. 
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 Cell_1 Cell_2 Cell_3 Remission

CHD4 
wt 31912 74 432 18779
mut 9722 28532 28717 54
mut percentage (%) 23 100 98 0

NCOA2 
wt 2192 4488 3603 6407
mut 4109 1375 3186 103
mut percentage (%) 65 23 47 2

PHF3 
wt 4579 143 317 7826
mut 26 9680 8104 39
mut percentage (%) 1 98 96 0

ACAP1 
wt 15902 11742 7498 11415
mut 18 14 494 6
mut percentage (%) 0 0 6 0

CEP164 
wt 76 7028 12713 12994
mut 18917 7021 2165 7
mut percentage (%) 99 50 14 0

PPP1R7 
wt 15471 13201 27449 17052
mut 14756 790 50 43
mut percentage (%) 49 37 0 0

CHTF8 
wt 3297 12 53 13400
mut 8816 7493 17554 11
mut percentage (%) 71 97 97 0

CACNB4 
wt 2028 3318 3160 4666
mut 1417 1713 42 7
mut percentage (%) 40 33 1 0

SLC4A8 
wt 28 22860 6620 16330
mut 23423 2358 13933 50
mut percentage (%) 100 9 68 0

ZNF136 
wt 34 21344 2901 19047
mut 27517 1617 27087 37
mut percentage (%) 100 7 90 0

Table 4-2 Examples of read count and mutation percentage sequencing L826 single cells. 

Column Cell_1, _2, and _3 represent each single cell sample. Remission is a negative control carrying 

no mutation but underwent the whole genome amplification. The mutation percentages vary from 0 to 

100% in the single cell samples, rather than showing heterozygous (~50%) or homozygous wild-type 

or mutant (~0 or ~100%). Further, a contrary mutation acquisition pattern was shown in the result. For 

instance, mutant PHF3 was shown on Cell_3, but not on Cell_1 which indicated Cell_1 was located at 

a higher hierarchy. However, CACNB4 mutation was found in Cell_1, not in Cell_3, which implicated a 

contrary result. wt = wild-type, mut = mutant. 

Although at the moment a conclusive result has not been obtained, we expect that a 

study using single cell RNA sequencing might provide better results because of the 

availability of the initial templates (i.e. higher copies on the RNA). 
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4.3. Mutational acquisition analysis based on the haematopoietic hierarchy 

Haematopoietic hierarchy depicts the order of blood cells formation. Backtracking the 

fusion gene allowed us to identify its presence in a progenitor population (Chapter 3). 

Based on this principle, we hypothesised that the method could also enable us to 

construct the sequential order of acquisition of the secondary mutations. 

The DNA from L826 relapse haematopoietic sorted populations (Section 3.2.1) was 

used as the template for the analysis. Multiplex PCRs containing the 12 candidate 

genes and MLL/AF4 were performed, followed by next generation sequencing of the 

products. The results of the sequencing were shown in Table 4-3 and summarised in 

Figure 4-3. 

Concurrent PHF3 and CHD4 mutations were identified as the first abnormalities 

within the hierarchy, as early as in the MPP, followed with the others mutations in the 

progeny populations. Intriguingly, in contrast to the previous attempts to identify the 

MLL/AF4 fusion in the AML related MPP, Section 3.2, in this experiment the fusion 

gene was detected along with candidate mutations of CHD4 and PHF3. This may 

reflect a greater sensitivity with the next generation sequencing approach taken here. 

Taken together, these results indicate that MPP is the first mutated population, and 

PHF3 and CHD4 are the first secondary mutations. 

These data also suggest the control of lineage commitment was affected by the 

mutated genes. The mutated genes were only identified within the myeloid lineage, 

despite the ongoing identification of the MLL/AF4 fusion gene within lymphoid 

restricted (B, T and NK) populations. It indicates that the mutated genes may restrict 

the leukaemic or pre-leukaemic cells to myeloid differentiation. 
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Table 4-3 Sequencing reads candidate genes of L826 haematopoietic subsets. Reads are based on next generation sequencing multiplex candidate genes and 

MLL/AF4. A cut-off of 10% was used to determine a mutation. The red values indicate the mutated genes. The green values indicate very low read counts. ‘AML 

bulk’ sample is unsort AML relapse L826 as a positive control containing all of the mutations. Kasumi-1 is an AML cell line as the negative control. 

  



133 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-3 The schematic order of mutations L826 relapse based on the haematopoietic hierarchy. Concurrent PHF3 and CHD4 mutations were found in the 

MPP, in which MLL/AF4 as the transforming mutation also presented. Other mutations were identified in the progeny populations, with minimum mutations in the 

lymphoid restricted populations. 

mutated gene 
wt gene 
low read count 

HSC MPP

45RA+ 
38-

T

B

NK

CMP

GMP

Mono

CHD4   CHTF8 ZNF136 NCOA2 
CEP164 DHX36 SLC4A8 CACNB4 
PPP1R7 ACAP1 PHF3   BACE2 

CHD4   CHTF8 ZNF136 NCOA2 
CEP164 DHX36 SLC4A8 CACNB4 
PPP1R7 ACAP1 PHF3   BACE2

CHD4   CHTF8 ZNF136 NCOA2 
CEP164 DHX36 SLC4A8 CACNB4 
PPP1R7 ACAP1 PHF3   BACE2

CHD4   CHTF8 ZNF136 NCOA2 
CEP164 DHX36 SLC4A8 CACNB4 
PPP1R7 ACAP1 PHF3   BACE2

CHD4   CHTF8 ZNF136 NCOA2 
CEP164 DHX36 SLC4A8 CACNB4 
PPP1R7 ACAP1 PHF3   BACE2 

CHD4   CHTF8 ZNF136 NCOA2 
CEP164 DHX36 SLC4A8 CACNB4 
PPP1R7 ACAP1 PHF3   BACE2 

CHD4   CHTF8 ZNF136 NCOA2 
CEP164 DHX36 SLC4A8 CACNB4 
PPP1R7 ACAP1 PHF3   BACE2 

CHD4   CHTF8 ZNF136 NCOA2 
CEP164 DHX36 SLC4A8 CACNB4 
PPP1R7 ACAP1 PHF3   BACE2 

CHD4   CHTF8 ZNF136 NCOA2 
CEP164 DHX36 SLC4A8 CACNB4 
PPP1R7 ACAP1 PHF3   BACE2
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In addition to these results, it also has to be noted that there is a contrary outcome 

with the analysis of mutation acquisition based on the clonal level (Section 4.1), 

where the latter showed the concurrent mutation of PHF3, PPP1R7, and ACAP1 as 

the initial mutations, and CHD4 as the subsequent mutation. The absence of CHD4 

mutation on the initial colonies may relate with the clonogenicity disadvantage 

affected by the mutant. The study by Zhao et al.[216] demonstrated that Chd4 was 

required for the maintenance of ESC self-renewal in the mouse model, while 

knockdown of Chd4 disrupted self-renewal. It might be possible that the mutation of 

CHD4 disrupts its activity, affecting colony formation. 

This hypothesis is supported by the colony formation studies on depleted CHD4 

within (1) AML cells by Sperlazza et al.[177] and (2) SEM cells in my MRes project. 

CHD4 knockdown in different AML cell lines (U937, AML3, and MV4-11) resulted in a 

dramatic reduction of the colony formation[177]. Similarly, the knockdown in SEM 

cells showed ~50% reduction of colony formation (Figure 4-4), although it is 

important to mention that the functional effect of the CHD4 mutation seen in L826 

has not been addressed. 

 

Figure 4-4 Colony formation assay on CHD4-depleted SEM cells. The cells were grown in 24 well 

plate at a concentration of 5,000 cells/ml (or 2,500 cells/well). The colonies were counted at day 8 

after the plating. Error bars showed standard error from 4 replicates of a single experiment (pilot data 

from the MRes project). 
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4.4. Secondary mutations on the L826 presentation, relapse, and remission 

After observing the presence of PHF3 and CHD4 mutations in the MPP L826 

relapse, it led to a further question of whether these mutations have occurred on the 

presentation haematopoietic subpopulations that were not detected by the bulk 

sequencing (WGS, WES, and RNAseq). Therefore, the evaluation study of the 

relapse secondary mutations was conducted on the haematopoietic subsets of the 

presentation. This study also included the genes with secondary mutations that were 

detected only on the ALL and the mutations that were shared between the ALL and 

AML to provide additional information. Of note, these other genes have intronic 

mutation, rather than being non-synonymous coding mutations. They are 

summarised: 

a. mutations only on the presentation: IL1RAPL2 and MAGED1 

b. mutations only on the relapse: PHF3, CHD4, and NCOA2 

c. mutations on the presentation and relapse: PIN4 and OSTF1 

d. germline mutation: PHF5A, as a control 

These different groups were expected to complement each other to construct the 

result. The mutations were analysed by multiplex PCR followed by MiSeq 

sequencing, summarised in Table 4-4. 
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    ALL  AML  ALL and AML  Germline

Leukaemia  Subpopulation  IL1RAPL2  MAGED1 CHD4 NCOA2 PHF3 PIN4 OSTF1  PHF5A

ALL 
Presentation 

HSC     No read    
MPP        
45RA+38‐        
CMP        
GMP        
Monocytes        
BNK        
B cells        
T cells        
NK cells        
DR+        
Bulk        

AML    
relapse 

HSC        
MPP  No read    
45RA+38‐        
CMP        
GMP        
Monocytes        
BNK        
B cells        
T cells        
NK cells        
DR+        
Bulk        

Remission  Remission        

 

Table 4-4 Secondary mutations of L826 in different haematopoietic subpopulations. Mutations 

that present only in the ALL (IL1RAPL2 and MAGED1), only in the AML (CHD4, NCOA2, and PHF3), 

and shared between ALL and AML (PIN4 and OSTF1) were evaluated on DNA of the haematopoietic 

subpopulations of L826 presentation and relapse samples by multiplex sequencing. PHF5A was a 

control mutated gene that was found in the germline cells.  

These results demonstrated that the mutations which were found only in the AML 

based on WGS, WES, and RNAseq were absent in any haematopoietic 

subpopulations of ALL or remission, and vice versa. Additionally, the PIN4 mutation 

was found as early as on the HSC of the ALL and was also found in the MPP of the 

AML. Although disappointingly HSC of the AML could not be analysed due to the 

availability of the material, these data again corroborated that the origin of the AML 

mutations occurred no later than in the MPP.  



137 
 

Lastly, this separate experiment showed the repeated finding of PHF3 and CHD4 

mutation, but not NCOA2, in the MPP, indicating the techniques were operating at 

the limit of detection.   

4.5. Discussion 

These results showed the suggested order of acquisition obtained from different 

approaches. The first method was by constructing the mutation tree from the 

transcripts of individual AML colonies that showed PHF3, PPP1R7, and ACAP1 as 

the first mutations, where the others mutations always carried these three mutations 

together with them. Interestingly, the colonies with these concurrent mutations were 

also the most prevalent colonies (28/79 colonies), despite approximately 50% of bulk 

sequencing reads showing the mutant allele of all mutations. This result might be 

arguable due to the potential of the mutations having a stemness advantage so that 

they become the dominant clones. Nevertheless, it also indicates that the mutations 

support AML clonogenicity.  

The second method by using single cells of the relapse samples for the mutation tree 

construction aimed to validate the clonal mutation order. However, the results have 

not been conclusive, probably because of the impact of ADO, as has been reported 

in some studies[212-215]. Nonetheless, these data provide a pilot study, in which at 

least two aspects can be suggested. Firstly, the using of single cell transcript, rather 

than the genome may reduce the possibility of ADO, even though the possibility of 

one allele being transcribed more than the other needs to be considered. Secondly, 

selecting the progenitor cells rather than the bulk cells should be applied. The results 

of mutation acquisition based on haematopoietic hierarchy (Section 4.3) indicated 

two key findings: (1) MPP is the initial mutated population, and (2) more mature cells 

(blast cells) had all of the mutations. Therefore, it will potentially be better to isolate 

and sort the earlier populations, such as MPP, CD38-CD45RA+, and CMP as the 

samples, rather than the bulk cells since the order of mutation acquisition might be 

more accurately derived within these populations. 

Even though a conclusive result has not been achieved by the single cell method, the 

study was able to be developed from the haematopoietic hierarchy. This approach 

interestingly showed PHF3 as the initial mutation, accompanied with CHD4 mutation, 

while CHD4 mutation was also identified as the subsequent mutation after the 

concurrent PHF3, PPP1R7, and ACAP1 mutations on the clonal analysis. The 

absence of CHD4 mutation in the initial colonies is hypothesised to be related to the 
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disadvantage of clonogenicity potential affected by the mutant. It is supported by 

colony formation study on depleted CHD4 on AML cells[177], assuming the mutation 

generated the loss of function. These functional studies were explored further in the 

subsequent chapters. 

Lastly, mutations in PHF3, CHD4, and PIN4 further support the MPP as the 

originating population of the AML relapse. The next investigation is to identify if PHF3 

and CHD4 co-mutations are required and adequate for the lineage fate regulation. 
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Chapter 5 Functional evaluation of candidate driver genes 

 

The analysis of the 12 acquired mutations identified PHF3, PPP1R7, ACAP1, and 

CHD4 as the most likely founder mutations. The next part of the study was to 

investigate the function of the candidate genes with respect to their control of lineage 

commitment in MLL/AF4 bearing cells. The initial approach to this was over-

expression of the mutant versus wild-type candidates in SEM cells, an ALL cell line 

with t(4;11). The impact of over-expression of mutant candidates was assessed by 

analysis of the expression of genes associated either with ALL or AML. Furthermore, 

genes known to be targets of the candidate genes, which have also been shown to 

be differentially expressed in L826 presentation and relapse RNAseq data, were 

included. They are summarised in Table 5-1. 

Gene 
Read counts Fold change 

(AMLread/ALLread) ALL AML 

HOXA5 2458.918 2.577109 0.001048 

HOXA6 2322.468 3.163938 0.001362 

HOXA7 3037.711 5.096784 0.001678 

PRSS12 2834.465 9.222607 0.003254 

EBF1 8244.554 69.50365 0.008430 

LEF1 11173.05 169.5515 0.015175 

ZFHX3 1705.756 116.4877 0.068291 

PAX5 28182.33 4559.287 0.161778 

MDK 2197.134 519.7407 0.236554 

HOXA9 28664.86 32039.23 1.117718 

CDKN2A 831.075 1089.459 1.310904 

ZHX3 607.5331 1512.568 2.489688 

MT2A 137.8099 343.4829 2.492440 

HIPK1 7664.73 19933.04 2.600619 

IL6R 1729.571 5853.621 3.384435 

HOXC5 36.67685 913.2538 24.90000 

Table 5-1 RNAseq reads L826 on the assessed genes. The genes were selected based on the 

known related function with ALL and AML cases or known target genes of the candidate driver genes, 

also differentially expressed between L826 ALL and AML. 
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Regarding CHD4 target genes, a chromatin immunoprecipitation sequencing (ChIP-

seq) CHD4 dataset in human glioblastoma has been deposited by Chudnovsky et 

al.[217] in the NCBI Gene Expression Omnibus under accession number GSE52419. 

This dataset provides the information of CHD4 binding to the target DNA. In addition 

to this, we have L826 presentation and relapse DNase hypersensitivity sequencing 

datasets (generated by Constanze Bonifer, University of Birmingham) that show the 

DNA (chromatin) locations that are accessible for the protein to bind. Lastly, we also 

have L826 paired RNAseq that indicate the genes that are differentially expressed. 

Analysis of these three combined datasets identifies three important points: (1) CHD4 

binds to several haematopoietic-associated genes, (2) the binding patterns are 

different between presentation and relapse, and (3) those genes are also 

differentially expressed between presentation and relapse. This intersection analysis 

was performed by Dr Sirintra Nakjang, and can be accessed in 

https://genome.ucsc.edu/cgi-

bin/hgTracks?hgS_doOtherUser=submit&hgS_otherUserName=sirintra&hgS_otherUserSess

ionName=hg19_ricky_olaf. Several of these mentioned binding regions are shown in 

Appendix B, including HOXA5, HOXA6, HOXA7, EBF1, LEF1, and PAX5. These 

genes are also the target genes that were evaluated on the CHD4 section in this 

chapter. 

Furthermore, the function of two of our lead candidate genes, CHD4 and PHF3, was 

explored in more depth in a model of MLL/AF4 leukaemia using CD34+ cord blood 

cells carrying a chimeric MLL/Af4 fusion gene[82]. The lymphoid and myeloid 

immunophenotypes were assessed following knockdown of CHD4 and/or PHF3. 
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5.1. Over-expression of mutant candidate driver genes 

The over-expression experiments were performed on PHF3, CHD4, PPP1R7, and 

ACAP1 genes. Mutant expression constructs were prepared in different vectors with 

different fluorescent protein tags, which allowed analysis of combinations of 

expression. An empty vector control was provided on each of the different vector 

backbones. The experiment was started with single transduction, and then continued 

with the combination transduction, summarised in Figure 5-1.  

 

Figure 5-1 Workflow over-expression of candidate genes analysis. Candidate genes were 

constructed in different lentivirus vectors each with different fluorescent proteins. The fluorescent 

proteins included were as follows: cerulean fluorescent protein (CFP), enhanced green fluorescent 

protein (eGFP), tandem tomato fluorescent protein (tdTFP), and venus fluorescent protein (VFP) in 

PHF3, CHD4, PPP1R7, and ACAP1, respectively. The study was initiated with individual gene 

transduction of the SEM cell line (a) and following this a combination transduction was performed (b). 

The presence of different fluorescent protein markers allows tracking the cells that contain that specific 

gene.  
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5.1.1. PHF3 over-expression 

A 3382A>T (accession number NM_015153.3) mutation was generated for PHF3 

(6120 bp), resulting in the K1119I mutation, using site-directed mutagenesis of the 

pCR-XL-TOPO PHF3 vector. The cDNA was added with a twin-strep-tag on its N-

terminal and then transferred to LeGO iCer2 lentiviral vector using the following 

method: 

a. Isolation of the PHF3 cDNA by PCR with additional SacII and XhoI restriction 

site sequences on its forward and reverse primers, respectively 

b. Creating the restriction sites SacII and XhoI on the PHF3 PCR product using 

the restriction enzymes 

c. Digestion of pEXPR-IBA105 twin-strep-tag vector using SacII and XhoI to 

provide the cloning sites 

d. Ligation of PHF3 into pEXPR-IBA105 vector to obtain twin-strep-tag on N-

terminal of PHF3 

e. Isolation of the PHF3-twin-strep-tag in pEXPR-IBA105 using NotI and XbaI, 

where XbaI was made blunt-ended (Section 2.4.19) 

f. Digestion of LeGO iCer2 vector using NotI and EcoRI, where EcoRI was made 

blunt-ended, to provide the cloning sites 

g. Ligation of PHF3-twin-strep-tag into the LeGO iCer2 vector 

The PHF3-twin-strep-tag LeGO iCer2 lentiviral vector also had cerulean fluorescent 

protein (CFP), linked by an internal ribosome entry site (IRES) to the spleen focus-

forming virus (SFFV) promoter. The final construct was confirmed by Sanger 

sequencing. The vector map and mutated nucleotide sequencing are depicted in 

Appendix C.1. 

The lentivirus was generated and then transduced into SEM cells (Section 2.2.6-8). 

The RNA was collected on day 8 after transduction. Genes that are associated with 

lymphoid and myeloid haematopoiesis, and that were differentially expressed 

between presentation and relapse L826, were evaluated by qRT-PCR. These results 

are shown in Figure 5-2. 
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Figure 5-2 PHF3 over-expression effects on lymphoid- or myeloid-associated genes on SEM 

cells. The analysis was performed on day 8 after transduction, relative to the empty vector control. 

PHF3 wt and mutant were over-expressed 4.7 fold and 7.4 fold, respectively. No effect on the 

lymphoid- and myeloid-associated genes were observed. 

Although higher expression of PHF3 wt and mutant were seen, none of the 

haematopoietic-associated gene transcripts was changed. This result suggests 

several possibilities, including (1) no effect of the mutation, (2) no effect of PHF3 on 

these genes, or (3) the over-expression does not affect the equilibrium condition, 

especially in a cell line. This experiment may need to be continued by firstly knocking 

down the endogenous PHF3, followed by rescue by over-expression. 
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5.1.2. CHD4 over-expression 

A 3415G>A (accession number NM_001273.3) mutation was generated on CHD4 

(5814 bp) that created the R1068H mutation using site-directed mutagenesis on the 

pDONR221 CHD4 vector. The cDNA was added with twin-strep-tag on either its N- or 

C-terminal end and then transferred to pSIEW lentiviral vector using the following 

method: 

a. Isolation of the CHD4 cDNA by PCR with additional SacII and KpnI restriction 

site sequences on its forward and reverse primers, respectively 

b. Creating the restriction sites SacII and KpnI on the CHD4 PCR product using 

the restriction enzymes 

c. Digestion of pEXPR-IBA105 (N-terminal twin-strep-tag) and pEXPR-IBA103 

(C-terminal twin-strep-tag) vectors using SacII and KpnI to provide the cloning 

sites 

d. Ligation of CHD4 to the pEXPR-IBA105 or pEXPR-IBA103 vector to obtain the 

twin-strep-tag on N- or C-terminal of CHD4, respectively 

e. Isolation of the CHD4-twin-strep-tag (N- and C-terminal had the same 

methods) using NotI and XbaI, where XbaI was made blunt-ended 

f. Digestion of pENTR1A using NotI and SalI, where SalI was made blunt-ended, 

to provide the cloning sites 

g. Ligation of CHD4-twin-strep-tag into the pENTR1A vector 

h. Gateway cloning to transfer CHD4-twin-strep-tag from pENTR1A vector to 

pSIEW vector (method is described in Section 2.4.21) 

The pSIEW CHD4-twin-strep-tag vector also had enhanced green fluorescent protein 

(eGFP), linked by IRES with SFFV promoter. The final construct was confirmed by 

Sanger sequencing. Further analysis was using the C-terminal tag construct unless 

stated otherwise. The vector map and mutated nucleotide sequencing are depicted in 

Appendix C.2. 

The CHD4 wt and mutant vectors were transduced into SEM cells. The transduction 

level was evaluated by FACS on the eGFP expression, as shown in Figure 5-3. 
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Figure 5-3 CHD4 over-expression evaluation by FACS on eGFP expression. The wild-type and 

mutant CHD4 over-expressed SEM cells showed the positive eGFP expression. 

5.1.2.1. Analysis of transcript target genes 
The transcripts of CHD4 target genes on the over-expressed mutant versus wild-type 

samples were assessed by qRT-PCR. The analysis was performed on day 9 and 10 

after the transduction, summarised in Figure 5-4.   
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Figure 5-4 CHD4 over-expression effect on SEM cells transcripts. a) Assessment of CHD4 wt and 

mutant on day 9 showed the increase by 6.0 fold and 6.5 fold, respectively. The over-expression was 

accompanied by higher expression of the other genes, apart from MDK, but no differential expression 

pattern was seen between the wild-type and mutant. b) The transcript of the lymphoid marker (CD19) 

and myeloid marker (CD33) showed a difference between the wild-type and mutant CHD4. CD19 had 

an increase up to 1.4 fold on the mutant over-expression. A 40% decrease of CD33 expression was 

observed upon CHD4 wt, but not mutant over-expression. All data were relative to the empty vector 

control. The result was generated from a single experiment. 

The analysis of the target gene transcripts showed their increase upon CHD4 over-

expression compared to the empty vector control. However, the increase had the 

same pattern between wild-type and mutant. It was continued by evaluating the 

lymphoid marker (CD19) and myeloid marker (CD33) expressions. A reduction by 

40% was seen in the wild-type sample, but not on the mutant. Unexpectedly, CD19 

was expressed higher in the mutant sample. These data are preliminary results that 

need to be confirmed by repetitions and further validation with others methods (e.g. 

protein expression). 
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5.1.2.2. Co-IP CHD4 and EZH2 
Although no consistent difference was observed in the CHD4 target gene expression, 

it was possible that the point mutation disturbed the interaction of CHD4 and its 

protein partners, rather than the interaction with DNA. One of primary protein binding 

partners of CHD4 is EZH2. Ezh2 is known to be required for early B cell 

development, studied in mouse model[218]. Additionally, EZH2 is also shown to be 

recruited by CHD4 during DNA-damage response[127]. In order to assess this 

hypothesis, over-expression and immunoprecipitation of CHD4 using its twin-strep-

tag were performed on 293T cells that also included PPP1R7 wt (also has the twin-

strep-tag) as a control. EZH2 binding by Co-IP was evaluated, shown in Figure 5-5. 

 

Figure 5-5 Co-IP EZH2 in CHD4 over-expression on 293T cells. CHD4 mutant, wt, and PPP1R7 wt 

(control) were over-expressed in 293T cells. All of the constructs contained the twin-strep-tag that was 

used for the immunoprecipitation. No difference of EZH2 Co-IP product was observed between CHD4 

mutant and wt. CHD4 and EZH2 total lysate were used as positive control.  

This result showed the binding of CHD4 and EZH2, but no difference between 

mutant and wild-type CHD4.  
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5.1.3. PPP1R7 over-expression 

Wild-type and mutant PPP1R7 cDNA (1083 bp) were isolated by RT-PCR, using 

L826 relapse as the template. It contains the 1434G>T (accession number 

NM_002712.2) that created the R119L mutation. A twin-strep-tag was added to the 

N-terminal of the cDNA. The initial plan was to use LeGO iT2 lentiviral vector that 

contained tandem tomato fluorescent protein (tdTFP) as described in Figure 5-1. 

However, the transduction was only stable for few days (~8 days) in this vector, 

indicated by the expression of the fluorescent protein. Therefore, the gene was 

inserted into LeGO iV2 that contained venus fluorescent protein (VFP), instead, by 

using the following method: 

a. Digestion of the PPP1R7 PCR product using SacII and XhoI to provide the 

restriction sites (the primers contain these additional sequences) 

b. Digestion of pEXPR-IBA105 twin-strep-tag vector using SacII and XhoI to 

provide the cloning sites 

c. Ligation of PPP1R7 into pEXPR-IBA105 to obtain twin-strep-tag on N-terminal 

of PPP1R7 

d. Isolation of the PPP1R7-twin-strep-tag in pEXPR-IBA105 using NotI and SacI, 

where SacI was made blunt-ended 

e. Digestion of LeGO iV2 vector using NotI and EcoRI, where EcoRI was made 

blunt-ended to provide the cloning sites 

f. Ligation of PPP1R7-twin-strep-tag into the LeGO iV2 vector 

The final construct was confirmed by Sanger sequencing. The vector map and 

mutated nucleotide sequencing are depicted in Appendix C.3. 

The PPP1R7 wt and mutant vectors were transduced into SEM cells. The 

transduction level was evaluated by FACS based on the VFP expression, as shown 

in Figure 5-6.  
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Figure 5-6 PPP1R7 over-expression evaluation by FACS on VFP expression. The wild-type and 

mutant PPP1R7 over-expressed SEM cells showed the positive VFP expression. 

The genes that were differentially expressed between L826 presentation and relapse 

were assessed on the over-expressed cells, four days post-transduction by qRT-

PCR, as shown in Figure 5-7a. Although higher expression of PPP1R7 wt and 

mutant were seen on the graph, no differential expression was observed in the 

associated genes. The analysis was continued with a second experiment by looking 

at the second set of differentially expressed genes, including ZHX3, ZFHX3, HOXC5, 

HIPK1, and p16, shown in Figure 5-7b. However, no different expression pattern 

between wild-type and mutant target genes were seen.  
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Figure 5-7 PPP1R7 over-expression effect on SEM cells transcripts. The genes that were 

differentially expressed between L826 presentation and relapse were evaluated after four days of 

transduction. Graphs (a) and (b) show two different experiments with different target genes. 

The over-expression experiment was also performed on ACAP1 that was inserted 

into LeGO iV2 lentivirus vector, again followed by qRT-PCR assessment of the same 

target genes. However, it again showed no difference between the mutant and wild-

type gene. In addition, no growth curve difference was observed on any of these 

over-expressed genes. Therefore, the strategy was revised to take the approach of 

knocking-down the candidate genes, under the assumption that the mutation 

generates the loss of gene function. This approach was taken to address the 
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possibility that the SEM cells have reached the saturation or equilibrium of the 

candidate gene expression, so that over-expression may not produce an effect. 

5.2. Knockdown candidate driver genes on SEM cells 

The knockdown experiment was performed on seven of the candidate genes, 

including PHF3, PPP1R7, ACAP1, CHD4, NCOA2, DHX36, and CEP164 by shRNA 

approach. Three constructs per gene were selected from The RNAi Consortium 

(TRC) shRNA library database. These sequences were inserted into lentivirus vector 

pLKO5d.SFFV.eGFP.miR30n (later the name is simplified to pLKO5d eGFP). Also, a 

non-targeting shRNA (shNTC) in pLKO5d.SFFV.RFP657.miR30n (simplified to 

pLKO5d RFP657) was provided as a control. All of the constructs were validated by 

Sanger sequencing. The sequences are listed in Table 2-19. 

5.2.1. Knockdown levels 

The analysis was performed on SEM cells. As the first step, the knockdown efficiency 

was evaluated by qRT-PCR, shown in Figure 5-8. 
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Figure 5-8 Candidate gene expression level after shRNA knockdown. Three different shRNA per 

gene were transduced into SEM cells. The transcript expressions were evaluated four days post-

transduction. The y-axis was the relative expression of each particular gene according to the specific 

shRNA. The majority of the constructs reached ≥50% knockdown. The expressions were relative to 

shNTC control. 
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The majority of the constructs yielded more than 50% knockdown of the target gene. 

It is also important to note that there was no effect on the growth curve observed on 

any of these genes compared with the shNTC. One construct/gene was selected for 

further analysis. They were: 

- shPHF3_2 with 73% knockdown 

- shPPP1R7_2 with 76% knockdown 

- shACAP1_3 with 67% knockdown 

- shCHD4_3 with 59% knockdown 

- shNCOA2_2 with 81% knockdown 

- shDHX36_1 with 81% knockdown 

- shCEP164_1 with 75% knockdown 

These constructs were continued with immunophenotyping analysis. 

5.2.2. Immunophenotyping of the knockdown cells 

The most efficient shRNA constructs were selected and carried forward for evaluation 

of the lymphoid and myeloid markers (CD19 and CD33, respectively) by FACS. 

Using this approach, higher expression of the myeloid surface marker CD33 was 

observed most convincingly in two samples, shPHF3 and shCHD4, summarised in 

Figure 5-9.  
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Figure 5-9 Flow analysis CD33 on knockdown candidate genes on SEM cells. The histogram 

showed CD33 expression that were gated for fluorescent protein-positive cells. The shPHF3 and 

shCHD4 samples had higher CD33 expression compared with the other samples.  

This result demonstrated the expression of myeloid immunophenotype CD33 on ALL 

cells following knockdown of PHF3 or CHD4. Confirmation by qRT-PCR using three 

different targeting constructs showed the increase of CD33 expression, despite 

stable expression of CD19, Figure 5-10. 
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Figure 5-10 qRT-PCR following PHF3 (a) and CHD4 (b) knockdown.  Knockdown of either PHF3 or 

CHD4 did not affect CD19 expression.  However, the myeloid marker CD33 showed an increase of 

~2.5 fold. Expression is relative to shNTC. The error bar shows the standard deviation from the three 

different shRNA constructs. Due to a technical issue, the three shCHD4 samples and one shPHF3 

sample were analysed on day 7 post-transduction, and the other two shPHF3 constructs were 

analysed on day 8 post-transduction. The expressions were relative to shNTC. 

Collectively, these results indicate a possible function for both PHF3 and CHD4 in 

controlling the haematopoietic lineage fate. These findings were further explored by 

studying the combined knockdown of both genes. 
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5.2.3. Combination PHF3 and CHD4 knockdown on SEM cells 

After observing the increase of the myeloid marker by single knockdown PHF3 and 

CHD4, the impact of simultaneous knockdown was investigated since both genes are 

concurrently mutated in L826 relapse. Therefore, the combination study of shPHF3, 

shCHD4, and shNTC was conducted. The shPHF3 constructs were transferred from 

pLKO5d eGFP to pLKO5d Tomato, the same backbone vector but containing the 

tomato fluorescent protein (TFP), instead of eGFP. These different fluorescent 

proteins allowed a combination transduction and differentiating each different 

knockdown population. 

CD19 and CD33 surface markers were assessed on the combination knockdowns. 

Again, no change was seen in CD19 expression in this cell line model. However, as 

expected, the simultaneous knockdown showed even higher CD33 increase than the 

single knockdown, shown in Figure 5-11. 

 

Figure 5-11 PHF3 and CHD4 combination knockdown effect on CD33 expression. a) The graphs 

show the single shNTC (blue), shPHF3 (orange), shCHD4 (green), and the combination of the shRNA 

(red). b) The average values of CD33 geometric means from three experiments. It shows more than 

two-fold increase in CD33 expression following the combination knockdown compared with the single 

shNTC+ sample. The p-values are generated from three different experiments, compared to the single 

shNTC+ sample. The data were collected 10 days after the transduction. 
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These results showed more than two-fold increase in CD33 expression following the 

combined knockdown of PHF3 and CHD4, compared to the shNTC sample. It may 

indicate a co-activity of PHF3 and CHD4 in regulating the lineage commitment. There 

are at least two hypotheses can be proposed: (1) CHD4 and PHF3 interact with each 

other, since both of them have been described to be involved in DNA-damage 

response[127, 137] and (2) disruption of CHD4 changes the chromatin accessibility 

of haematopoiesis associated genes[132], where those genes are also controlled by 

PHF3 by its transcription elongation activity[136]. 
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5.3. Knockdown PHF3 and CHD4 on CD34+ cord blood MLL/Af4 cells 

PHF3 and CHD4 knockdowns showed the increase of myeloid immunophenotype on 

the pro-B ALL cell line, SEM. However, no change was seen in the expression of 

CD19, a result which may reflect the intrinsic properties of this cell line model.  To 

further investigate the role of these genes in lineage commitment, the knockdown of 

PHF3 and CHD4 was performed in a more complex model of haematopoietic 

progenitor cell development. In collaboration with Mulloy lab (Cincinnati Children's 

Hospital Medical Center), we received samples of a human CD34+ cord blood model, 

transduced with a chimeric MLL/Af4 fusion gene[82]. The fusion gene consists of N-

terminal MLL from human and C-terminal Af4 from murine that were introduced by 

retrovirus vector. This model initially has a myeloid immunophenotype (CD33+ and 

CD19-). However, when cultured in lymphoid conditions (Section 2.2.2), the cells 

differentiate to express a lymphoid signature and surface immunophenotype, i.e. 

CD19+CD33-[82].  

Initially, the ability to differentiate the model cells down both myeloid and lymphoid 

lineages was replicated.  This experiment obtained the expected differentiation in the 

lymphoid culture, shown in Figure 5-12b. 
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Figure 5-12 Flow analysis CD34+ cord blood MLL/Af4 cells in myeloid culture (a) and lymphoid 

culture (b), summarised in the graph (c). The cells in myeloid culture showed the CD19-CD33+ 

immunophenotype, while the cells in lymphoid culture had the CD19+CD33- on almost all of the cells. 

The data were collected after 41 days in their specific culture conditions. 

Following confirmation that the model was reproducible within our lab, the single and 

combination knockdowns were performed alongside the two differentiation 

conditions. Lymphoid and myeloid markers were assessed on day 24 following 

transduction. This analysis showed a reduced potential for lymphoid differentiation 

following single PHF3 and CHD4 knockdown compared with the shNTC. Once again, 

the lineage restriction was seen to be more pronounced following combination 

knockdown, with only a minimal lymphoid population identified, Figure 5-13. 
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Figure 5-13 Flow analysis of CD34+ cord blood MLL/Af4 cells in myeloid culture control (a), and 

lymphoid culture with shNTC (b), shPHF3 (c), shCHD4 (d), and combination shNTC, shPHF3, 

and shCHD4 (e), and summarised in the graph (f). While the myeloid culture maintained the 

myeloid immunophenotype (CD19-CD33+) as shown in (a), the lymphoid culture lost the myeloid 

marker (CD33). The cells with shNTC (b) showed the lymphoid population (CD19+CD33-) as the 

majority (72%) of the population. This proportion was less in cells transduced with shPHF3 (c) and 

shCHD4 (d).  Following the combination knockdown (e), almost no differentiation was demonstrated. 

The distribution of lymphoid and myeloid populations in lymphoid culture are summarised in the graph 

(f). 
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This result showed the majority of the cells (72%) differentiated into lymphoid 

population on the shNTC control sample. The shPHF3- and shCHD4-treated cells 

also presented the lymphoid population (36.2% and 56.7%, respectively), although in 

a lower proportion of cells than the shNTC. In keeping with this, the proportion of 

cells demonstrating myeloid differentiation was increased, despite the lymphoid 

culture conditions.  The graphs also showed the population of CD19-CD33- which 

might be the transition phase from CD19-CD33+ to CD19+CD33-. Interestingly, the 

combination NTC, PHF3, and CHD4 knockdown resulted in the CD19-CD33- 

becoming the majority population (88.9%), with nearly no distinct populations of 

CD19-CD33+ (2.84%) and CD19+CD33- (2.98%).  This implies an intolerable effect 

of combined knockdown of PHF3 and CHD4, as opposed to heterozygous mutation, 

on lineage determination in this model 

In order to obtain more information in the study, the flow analysis was recollected 

after extended culture period, d.32. This assessment was only successfully 

performed on shNTC and shPHF3 samples because the other two samples had lost 

their IRES-driven fluorescent protein expressions. Nevertheless, the analysis 

confirmed an even more pronounced myeloid differentiation following transduction 

with shPHF3, Figure 5-14. 
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Figure 5-14 Flow analysis CD34+ cord blood MLL/Af4 cells with shNTC (a) and shPHF3 (b), 32 

days post-transduction.  a) Following transduction with shNTC, 70.5% of cells show a CD19+CD33-

lymphoid immunophenotype. In contrast, b) cells with PHF3 knockdown showed only a small 

proportion of lymphoid differentiation and were dominated by the myeloid population (76.4%). 

These data demonstrated the two distinct populations, the lymphoid and myeloid 

populations, without a residual undifferentiated CD19-CD33- population. This may 

support the hypothesis that the CD19-CD33- population is a transient transition 

phase, in which PHF3 knockdown diverts differentiation down the myeloid lineage.  

In conclusion, down-regulation of PHF3 skews differentiation potential away from the 

lymphoid lineage, towards the myeloid lineage.  This effect was more pronounced in 

combination with CHD4 knockdown.  
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5.4. Discussion 

Firstly, it is necessary to note the interpretation difficulty in Section 5.1.1 (PHF3 over-

expression) data. The qRT-PCR on day 8 after transduction showed 4.7 fold and 7.4 

fold increase of PHF3 wt and mutant, respectively, but no CFP expression was seen 

by FACS analysis (n = 2). This might be because the large size of PHF3 cDNA that 

reaches 6.2 kb inhibits the IRES-mediated translation process, as has been 

described previously[219]. Nevertheless, it should be able to be solved by replacing 

the IRES with 2A peptide that should translate both proteins equally[220].  

Knocking down CHD4 and PHF3 showed an increase of the myeloid marker CD33, 

both in the transcript and protein on the SEM cell line, which was then confirmed on 

the CD34+ cord blood cells model. This model contains a hybrid of human MLL and 

mouse Af4 that creates pro-B ALL in the transplanted mice, validated by the surface 

marker phenotypes, DNA binding sites, and gene expression signatures[82]. The 

results on these models indicate the role of both genes in the control of lineage 

commitment. More interestingly, the combination knockdown showed even greater 

impact. 

CHD4 is known to have roles in the DNA-damage response. It is recruited to the 

damage site upon DNA DSB, SSB, and oxidative damage[122-127]. A study by 

Shanbhag et al.[221] demonstrated the inhibition of RNAP II elongation on the region 

of DSB damage site. Additionally, PHF3 has been shown to interact with RNAP II 

upon UV irradiation[137], although its role remains unknown. These data may 

indicate a correlation between CHD4 and PHF3 at the DNA damage sites. 

In addition to the RNAP II, the SPOC domain of PHF3 may also support its 

association with CHD4. This domain was found in SHARP and has been shown to 

bind directly to HDAC1[222], a member of NuRD complex, of which CHD4 is also an 

intrinsic subunit. It is possible that PHF3 and CHD4 may cooperate through their 

function with NuRD. 

In regard to the hypothesis of PHF3 and CHD4 co-activity, perhaps several further 

investigations can be suggested.  These would include Co-IP to assess their 

interaction, e.g. within NuRD, and finding the target DNA of PHF3 (due to its TFIIS 

domain). Since CHD4 acts a nucleosome remodeller, it may also be interesting to 

perform micrococcal nuclease assay to study the different nucleosome locations 

under different CHD4 conditions (knockdown, rescue mutant and wild-type). Also, 
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very interestingly, CHD4 and PHF3 are known for being autoantigens in 

dermatomyositis[149, 150] and glioblastoma[136], respectively. It means that it may 

be possible to target it using engineered T cells. When the working mechanisms of 

both genes in acute leukaemia lineage commitment have been completely explored, 

it will be interesting to consider the possibility of coupling it with a haematopoietic 

marker for dual CAR T cells[223] or something more developed.  
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Chapter 6 PHF3 haematopoietic lineage control 

 

The impact of PHF3 knockdown on the regulation of lineage specific differentiation in 

SEM and CD34+ cord blood MLL/Af4 cells was investigated in the previous chapter. 

This chapter aims to extend understand of the working mechanism of PHF3.  

Different PHF3 transcript variants were explored from Ensembl, NCBI RefSeq, and 

the collaborative consensus coding sequence (CCDS) databases. This chapter will 

describe that the knockdown of specific PHF3 variants increased expression of 

CD33, and subsequent knockdown of the other variants brought back the expression 

to baseline levels. 

Two different cell lines in various settings were used in this study, however the 

results presented so far represent a single experimental replicate. Nevertheless, by 

understanding the working mechanism of PHF3, it is expected to provide the 

materials to benefit PHF3 for the therapy, as the final aim of this study. 

6.1. PHF3 variants 

There are at least nine PHF3 transcript variants described to generate proteins 

(ENSG00000118482), and three of them are recognised in the CCDS, i.e. 

consistently represented on the NCBI, Ensembl, and UCSC Genome Browsers[224]. 

These three variants include NM_001290259 (ENST00000262043.7), NM_015153 

(ENST00000393387.5), and NM_001290260 (ENST00000509330.5). In addition to 

this, the protein from the first two variants (i.e. NM_001290259 and NM_015153) has 

also been reviewed by UniProtKB/Swiss-Prot, as entry Q92576. Although the other 

variants have not been reviewed, all of them are aligned and depicted in Figure 6-1 

to get more insight into PHF3. In this figure, each variant is also given an identifier 

name, to help identification in the subsequent text. 
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Figure 6-1 PHF3 variants. The protein schemes are constructed based on UniProt protein 

sequences. The ‘identifier’ column is generated for identification within the text. PHF3_a and _b are 

members of UniProtKB/Swiss-Prot. PHF3_a, _b, and _c are members of CCDS. PHF3_c and PHF3_d 

have an incomplete PHD finger domain and an incomplete SPOC domain, respectively, on their C-

terminal end. The mutation in L826 is annotated with the red line, present only in PHF3_a, _b, _d, and 

_e.  

The lysine to isoleucine mutation on L826 is not found in all of the variants, but only 

in PHF3_a, _b, _d, and _e. All of these mutated variants contain the transcription 

elongation factor, TFIIS domain. Interestingly, no other variants have the domain. 

Three of these mutated variants also contain the SPOC domain, a domain that is 

known to interact with SMRT, NCoR, and HDAC1[222, 225]. Apart from PHF3_h, no 

other non-mutated variant have the SPOC domain. 

Despite the complexity of the variant lengths and positions, several different shRNA 

constructs were designed (the sequences are listed in Table 2-19) to include different 

target combination. These constructs and their targets are depicted in Figure 6-2. It 

includes shPHF3_1 and shPHF3_3 that target nearly all of the variants, also 

shPHF3_2, shPHF3_4, and shPHF3_5 that differentially target the mutated variants 

alone (i.e. without any non-mutated variants).    
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Figure 6-2 shRNA constructs target different PHF3 transcript variants. a) Domain maps of PHF3 

isoforms showing position of shRNA construct target sequences.  shPHF3_1 and shPHF3_3 target the 

majority of variants. Constructs shPHF3_2, shPHF3_4, and shPHF3_5 target only the L826 mutated 

variants. shPHF3_2 binds only the PHF3 isoforms with all domains present. shPHF3_4 targets all of 

the mutated variants, and shPHF3_5 targets three of the four mutated variants. The primer for qRT 

PCR, spanning an exon-exon junction, is indicated with the double-arrow symbol. PHF3_g and 

PHF3_i are not detected due to alternative splicing at this junction. b) Summary of target specificity. 
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These combinations were investigated started from SEM cells. 

6.2. The effect of different PHF3 variants on myeloid marker expression 

The five shRNA and one shNTC constructs were inserted into the pLKO5d lentiviral 

vector and transduced into SEM cells. The RNA was collected for analysis of the 

myeloid marker CD33 on day 7 post-transduction. This demonstrated that the three 

constructs targeting the L826 mutated variants (i.e. shPHF3_2, _4, and _5) resulted 

in a higher CD33 expression, whilst the other two constructs did not, Figure 6-3.  

 

Figure 6-3 qRT-PCR knockdown different PHF3 variant on CD33 on SEM cells, day 7. The 

constructs shPHF3_2, shPHF3_4, and shPHF3_5 that target the L826 mutated variant showed the 

increase of CD33. The rise was not observed on the shPHF3_1 and shPHF3_3 constructs that target 

the whole variants. The expression levels are relative to shNTC. 

The graph showed the increase of CD33 only on shPHF3_2, shPHF3_4, and 

shPHF3_5 (the constructs that target L826 mutated variants), but no effect on the 

shPHF3_1 and shPHF3_3 (the constructs that also target the non-mutated variants). 

This result provides a hint that the PHF3 variants that contain TFIIS and/or SPOC are 

required for the CD33 regulation. 

6.3. Downregulating CD33 in SEM CD33+ cells 

Firstly, the knockdown of PHF3 L826 mutated variants showed an increase in CD33, 

whilst knockdown of all variants did not. Secondly, the flow analysis in Section 5.2.2 

proved the increased CD33 surface protein expression on SEM cells. These results 

raised the question of what would happen on the CD33 surface protein expression if 
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the knockdown of all PHF3 variants was performed on the CD33+ SEM cells? Was it 

related to the balance of the different PHF3 variants? Therefore, a sequential second 

transduction (i.e. not a co-transduction) was conducted on those cells that included 

combinations: 

- shNTC only as the control for CD33- cells 

- shPHF3_2 + shNTC 

- shPHF3_2 + shPHF3_1  

Interestingly, the flow analysis on day 15 after the second sequential transduction 

showed a substantial reduction of CD33 expression on the shPHF3_1 treated cells, 

summarised in Figure 6-4.  

 

Figure 6-4 CD33 expression following differential PHF3 variant knockdown in SEM cells. a) The 

single transduction shNTC had minimal CD33 expression (red curve). The expression increased 

substantially with the introduction of shPHF3_2 (blue curve). Sequential transduction shPHF3_1 54 

days after the first transduction showed a reduction ~50% CD33 expression (orange curve). The 

analysis was collected 15 days after the second transduction. b) Pseudocolour plot of CD33 

expression by flow cytometry. 

This result indicates the requirement for balanced PHF3 isoforms in the lineage 

maintenance. Downregulating the PHF3 variants containing TFIIS and SPOC 

domains drives the myeloid lineage commitment. In contrast, downregulating PHF3 

variants not containing the two domains either inhibits the myeloid differentiation or 

drives the lymphoid lineage commitment. 
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6.4. PHF3 knockdown on the AML cell line 

A different study model may provide more information regarding the general 

understanding of PHF3. Knockdown of different PHF3 variants was performed in 

Kasumi-1, a t(8;21) AML cell line to study if there any effect in a myeloid 

environment. The constructs shPHF3_1, shPFH3_4, and shPHF3_5 were 

transduced into the cells, and their CD33 expression was measured by FACS, shown 

in Figure 6-5.  

 

Figure 6-5 CD33 expression following knockdown of different PHF3 variants in Kasumi-1 cells. 

a) Histogram showing shNTC and shPHF3_1 produced no change in CD33 expression. However, 

shPHF3_4 and shPHF3_5 constructs result in reduced CD33 expression. b) Pseudocolour plots show 

reduced CD33 expression following shPHF3_4 and shPHF3_5 transduction, with a distinct CD33- 

population identified (right plots). 

Unexpectedly, shPHF3_1 that reduced CD33 expression on SEM did not show any 

changes in Kasumi-1, when compared with shNTC. However, the constructs that 

increased CD33 in SEM (shPHF3_4 and shPHF3_5) reduced CD33 in Kasumi-1 

cells. Although these data are coming from a single experiment, they indicate the role 

of PHF3 in haematopoietic cell identity.  They identify the impact of isoform on 

myeloid lineage commitment, highlighting the importance of TFIIS- and SPOC-

containing PHF3 variants.  

6.5. Discussion 

The findings in this chapter are summarised (1) the point mutation found in L826 is 

present only within PHF3 variants containing TFIIS and SPOC domains, (2) 

downregulating these variants increased CD33 on SEM but decreased CD33 on 
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Kasumi-1, and (3) downregulation of all variants in the experimental CD33+ SEM 

population reduced the CD33 expression back towards baseline. These preliminary 

data suggest that an imbalance of different PHF3 isoforms drives the lineage 

infidelity or PHF3 is required for myeloid cell identity. 

The functional mechanism of PHF3 remains unknown. However, these data support 

a role for the TFIIS and/or SPOC domains. 

Kinkelin et al.[181] studied in detail the structure of Bye1, a homologue of PHF3 from 

Saccharomyces cerevisiae. They demonstrated the TFIIS-like domain of Bye1 bound 

directly to the RNAP II, also showed that the surface forming the interface between 

the species was conserved as in human RNAP II and PHF3[181]. This interaction is 

supported by Boeing et al.[137] who showed the binding of PHF3 and RNAP II upon 

UV radiation. In addition to these two studies, the opposing effect of PHF3 

knockdown on CD33 expression in SEM and Kasumi-1 cells may result from the 

interaction of PHF3 with super-enhancers that define the cell identity[226]. One of the 

predictions is that PHF3 may be a member of the super-enhancers via its TFIIS – 

RNAP II interaction. Or, as discussed in Section 5.4, there is a possibility of PHF3-

HDAC1 interaction via its SPOC domain[222], with a consequent impact on NuRD 

complex function and subsequent lineage specific transcription via super-

enhancers[226].  

The other interesting finding in this study is the decrease of CD33 expression on 

CD33+ SEM cells upon knockdown of all PHF3 variants. It may indicate there is an 

inhibitor version among the various PHF3 variants. It may be possible since this 

functional protein-inhibitor-single gene setting has also been identified at least in Tn5 

transposase (Tnp) and inhibitor (Inh), although it is in prokaryotes[227-230]. The Tn5 

consists of the full-length Tnp transcript and another transcript that loses 55 amino 

acids on the N-terminal, named as Inh. While the Tnp acts as a transposase by 

binding to the target transposed DNA via its N-terminal 55 amino acids, the Inh 

inactivates the Tnp by forming mixed oligomers with the Tnp[227]. It is suspected a 

similar mechanism of full-length PHF3 that is counteracted by the other isoforms. 

Perhaps mechanisms such as binding competition to the target DNA, the formation of 

direct interaction inhibition among the isoforms, or competition with some host factors 

that are necessary for the PHF3 function can be proposed for further investigation of 

this phenomenon. 
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Lastly, these data remain preliminary. Broader and deeper approaches are required 

to generate robust conclusions. It may be started with over-expression of certain 

transcripts, certain domain, or DNA region deletion (e.g. by CRISPR) experiment, 

verification of the protein target binding (e.g. co-immunoprecipitation PHF3, RNAP II, 

HDAC1, SMRT, NCoR), identification of any DNA target binding, if present (e.g. 

ChIP-seq), and then overlaying the information with L826 DHS and RNAseq data. 

Also, the role of MLL/AF4 should not be excluded since it may also be possible that 

the increase of CD33 expression was related with this mutation. 
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Chapter 7 Concluding discussion and future works 

 

Different MLL fusion partner genes strongly specify a certain lineage of leukaemia. 

MLL/AF4 leads to ALL in more than 90% of the cases regardless of age[67]. Other 

fusion partners such as ELL, AF1Q, SEPT6, and SEPT9 result in AML in majority of 

the cases[67]. In addition to this, the age of diagnosis also influences the lineage of 

the leukaemia, but only in certain fusion partners, especially MLL/AF9. ALL has been 

shown to occur in 71% of infant MLL/AF9 leukaemia, but the trend changes to 69% 

and 90% of AML MLL/AF9 cases in paediatric and adult, respectively[67]. These data 

suggest the potential of MLL and its fusion partner as a master regulator of lineage 

instruction. Here in the lineage switch patient L826 it was shown that the ALL 

MLL/AF4 was skewed by the presence of the mutated driver genes. 

This study showed the presence of a common cell of origin between ALL 

presentation and AML relapse in the MPP population. In addition to harbouring the 

MLL/AF4, the MPP population also carried PHF3 and CHD4 mutations. The 

functional studies showed that both genes could change the lymphoid differentiation 

towards the myeloid lineage. 

The immunoglobulin rearrangement analysis suggested that the relapse L826 arose 

from a common origin prior to the B cell development stage. The haematopoietic 

stem/progenitor populations sorting followed by evaluating the presence of MLL/AF4 

indicated the CD34+CD38-CD90- (MPP) as the initial progenitor population 

harbouring the fusion gene, both in the presentation and relapse. However, the 

analysis on primograft ALL-derived xenograft L826 showed not only the presence of 

HSC as the majority of the haematopoietic stem/progenitor populations but also the 

positivity of fusion gene in this population. These results suggested (1) the 

enrichment of the MLL/AF4 harbouring population in primograft model, (2) possibility 

that the fusion gene was present on HSC of L826 primary cells that were not able to 

be detected by the assay, or (3) reversion to HSC.  

Although differentiated haematopoietic cells were initially determined to be incapable 

of cell reprogramming, this paradigm had now been overturned by several 

experimental manipulations to suggest that cells can dedifferentiate or trans-

differentiate the committed haematopoietic cells[231]. These ectopic conditions 

included introducing cytokine receptors[232-234] and different transcription factors, 
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such as PAX5[235, 236] and CEBPB[237] which allow the committed cells to 

traverse backwards and forwards in the differentiation hierarchy. The reprogramming 

of the committed cells was further studied by Bonifer et al who observed the 

epigenetic profile of the haematopoietic precursors[231]. They suggested that (1) cell 

fate determination occurred gradually at the epigenetic level and (2) different early 

progenitors still showed epigenetic similarities[231]. The presence of lineage-specific 

activators (e.g. PU.1, PAX5) changed the chromatin structure of certain lineage-

specific genes which then allowed the cells to differentiate[231]. In other words, their 

model suggested that instead of being hierarchical, the early haematopoietic 

progenitors constituted a pool of epigenetically dynamic cells[231]. This stem cell 

plasticity characteristic is in-line with the well-studied plasticity of epithelial stem cells 

(reviewed in [238]). These studies infer that it might be possible that the pre-

leukaemic population in HSC primograft L826 presentation was due to reversion of 

the pre-leukaemic progenitor cells, possibly due to the microenvironment of the 

mouse. 

The pre-leukaemic population study was extended by including four t(4;11) and two 

t(9;11) cases. The MLL/AF4 was found in CD38-CD45RA+ in two and GMP on the 

other two of t(4;11) cases. Interestingly, in t(9;11), MLL/AF9 was only found in the 

lymphoblast cells in L880 case and no classical haematopoietic progenitor cells on 

the other case, LK271. It suggests MLL/AF9 is located in the more mature 

population, or it may disrupt the canonical haematopoietic differentiation pathway if it 

is found on earlier progenitor populations. Future work to evaluate the different 

cellular profiles between MLLr and MLL wt progenitor cells may provide a new 

system to test drug efficiency in order to eliminate both leukaemic and pre-leukaemic 

cells. 

Further studies on the relapse progenitor cells showed co-mutation PHF3, CHD4, 

and the fusion gene. These secondary mutations were presented on MPP, CD38-

CD45RA+, CMP, GMP, and monocytes, but not on T cells, B cells, and NK cells, i.e. 

only on the population containing myeloid lineage differentiation potentials, but not on 

the lymphoid lineage. The roles of these genes were confirmed by knockdown 

experiment on t(4;11) ALL, SEM cells. The myeloid marker CD33 increased in the 

transcript and protein upon the individual gene knockdown and even greater impact 

on the combined knockdown of both genes. Moreover, the results were further 

validated in the CD34+ cord blood cells harbouring chimaeric MLL/Af4. The 
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knockdown of PHF3 and CHD4 prevents the lymphoid differentiation, i.e. maintain 

the myeloid immunophenotypes on this model, and once again, the lineage 

restriction was more pronounced following the combination knockdown.  

CHD4 is known as a major subunit of NuRD complex that plays a role in nucleosome 

mobilisation through its ATPase domain[239, 240]. The mutation in L826 (R1068H) is 

located in this domain. Further study by looking at the ATPase function of mutated 

CHD4 may suggest its role in the lineage switch mechanism. Recently, Morra et al 

(2016) described the methods of ATPase assay specifically in CHD4[240] that may 

need to be reproduced in the L826 case. Also, micrococcal nuclease assay, in which 

the micrococcal nuclease cut the DNA within nucleosome linker regions, i.e. at the 

accessible region between nucleosomes[241], may provide further insight of mutation 

CHD4 role. Since CHD4 induces nucleosome movements (i.e. nucleosome 

mobilisation) to provide the accessible (euchromatin) or inaccessible 

(heterochromatin) DNA[239, 240], the micrococcal nuclease assay is expected to 

provide the information chromatin pattern between mutant and wild-type CHD4. 

Although PHF3 has not been widely studied, its protein domain has been 

defined[136]. The different variant study in Chapter 6 showed particular splicing 

variants of PHF3 had a different effect on CD33 expression, while that effect was 

compromised by the other variant. However, its regulation mechanism remains a 

question. Domain studies may need to be explored. Homologous recombination 

CRISPR to delete certain domain (PHD, TFIIS, SPOC) and/or add a tag protein may 

provide the initial step of the study. The TFIIS and domain may suggest its role in 

transcription elongation[181]. Also, its SPOC domain may interact with HDAC1[222] 

which then relates it to nucleosome remodelling complex. 

Chd4 deletion in mouse bone marrow has been established[132]. This study showed 

early loss of lymphoid and myeloid cells, compensated by erythroid cells 

accumulation. However, in vivo PHF3 deletion study has not been found. 

Investigation on the PHF3 knockout model may provide an essential understanding 

of PHF3 function. 

Since the lineage restriction was shown to be more pronounced in combination PHF3 

and CHD4 deregulation on SEM and cord blood cell models, it may suggest their 

cooperation. A proposed hypothesis is CHD4 converts certain lymphoid- or myeloid-

essential regulatory regions from heterochromatin to euchromatin, and that area 
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becomes accessible for transcription initiation and elongation, regulated by PHF3 

(Figure 7-1). 

 

Figure 7-1 Model of CHD4 and PHF3 cooperation. CHD4 induces nucleosome movement that 

changes the chromatin density from heterochromatin (inaccessible) to euchromatin 

(accessible) form. The accessible form allows the transcription initiation complex to transcribe the 

DNA until reaching the pause site. At this site, the presence of PHF3 that contains TFIIS domain may 

allow the RNA polymerase II to continue the transcription, i.e. elongation process. 

Based on this hypothesis, it will be interesting to have ChIP-seq data of CHD4 and 

PHF3 on the haematopoietic cells in order to observe their DNA binding region, 

whether they have the same binding target related to the haematopoiesis or 

leukaemogenesis. 

Another hypothesis for cooperation of PHF3-CHD4 is based on their interaction with 

HDAC1, another member of NuRD complex. CHD4 is widely known to directly 

interact with HDAC1 as in the NuRD complex[242]. And, as mentioned earlier, PHF3 

may also interact with HDAC1 through its SPOC domain. In addition to this 

interaction, CHD4 has also been shown to interact with MLL[243], which raises the 

question if there is any correlation between CHD4 mutation and MLL or MLL/AF4 in 

lineage switch. It might be interesting to perform an immunoprecipitation of CHD4, 

PHF3, and MLL to observe the interaction among them, which then may suggest 

their mutual work in lineage commitment. 

Furthermore, both PHF3 and CHD4 have been shown to be recruited into the DNA-

damage lesion, which suggests their roles in DNA-damage response[122, 125, 127, 

137]. It encourages a further study of drug testing using DNA-damaging agents, e.g. 

PARP or ATR inhibitor. It is expected that the mutations will increase the sensitivity of 

the drugs if those mutations impair the repair mechanisms. 

Lastly, both CHD4 and PHF3 have been found as autoantigens in 

dermatomyositis[149, 150] and glioblastoma[136], respectively. The presence of 
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PHF3 autoantibodies in the glioblastoma cases had higher median survival time 14.5 

months compared with 7.2 months in the cases without the autoantibodies. These 

data may indicate (1) the potential of the immune system to target CHD4 and PHF3 

in the transformed cells, and (2) that function yields a higher survival rate. It will be 

interesting to isolate and/or expand the tumour-specific lymphocytes to target the 

tumour/leukaemic cells, such as via cancer vaccines[244].  
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Appendix A PCR MLL/AF4 L826 on different haematopoietic populations 

A.1 L826 Presentation 
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A.2 L826 Relapse and L826 ALL primograft 
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Gel electrophoresis image of nested PCR MLL/AF4 and ATP10 (positive control to 

show sufficient template amount for PCR reaction). Sample 34+ is a mixed of any 

haematopoietic stem and progenitor expressing CD34. LMPP is originally 

characterised by CD34+CD38-CD90-CD45RA+CD10-CD117+. However, the cell 

sorting showed similar population, but did not express CD117. This population might 

be due to aberrant population in L826 sample or technically limitation of 

fluorochromes spill-over. GMP is characterised by CD34+CD38+CD10-

CD123+CD45RA+. GMP-A, -B, and -C were separated based on the level of CD123 

expression, from lower to higher expression, respectively. Sample 123++ is GMP that 

highly expressed CD123. Monocyte is defined by CD45+DR+Lin-CD14+CD16- 

marker expression. Monocyte CD16+ is a non-classical monocyte that has not fully 

characterised. SKNO-1 is t(8;21) AML cell line as a negative control of MLL/AF4 

expression. MLP population L826 relapse showed positivity of MLL/AF4, but not on 

the positive control ATP10A. The ambiguity was probably because the minimum 

template for the reaction that came only from 16 cells.  
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Appendix B Overlaying DNase hypersensitivity, RNA-seq L826 and CHD4 ChIP-

seq 

B.1 Hox cluster
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B.2 EBF1 
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B.3 LEF1 
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B.4 PAX5 
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The graphs consist of CHD4 binding region based on ChIP-seq human glioblastoma 

(GSE52419) on the top panel, DNase hypersensitivity L826 presentation and relapse 

(second and third panels, respectively), and RNAseq L826 presentation and relapse 

(fourth and fifth panels, respectively). Multiple CHD4 binding sites are seen on HOXA 

cluster and LEF1. The binding sites are also observed on the area around promoter 

in EBF1 and PAX5. 
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Appendix C Vector maps 

C.1 LeGO PHF3 N-tag iCer2 

 

 

PHF3 mutation 3382A>T (accession number NM_015153.3) created K1119I was 

generated in LeGO iCer2 lentiviral vector. 

 



188 
 

C.2 pSIEW CHD4 C-tag eGFP 

 

 

CHD4 mutation 3415G>A (accession number NM_001273.3) created R1068H was 

generated in pSIEW lentiviral vector. 
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C.3 LeGO PPP1R7 N-tag iV2 

 

 

PPP1R7 mutation 1434G>T (accession number NM_002712.2) created R119L was 

generated in LeGO iV2 lentiviral vector. 
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C.4 LeGO ACAP1 N-tag iV2 

 

 

ACAP1 mutation 2191G>C (accession number NM_014716.3) created R662P was 

generated in LeGO iV2 lentiviral vector. 
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